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Continuum physics is as old as science itself. The decision to write a textbook about this subject
has not been easy, because of the feeling that everything has been said and written before.
What prompted me to write this book was a one-semester course in which I had to teach the
basic principles of continuum physics to students of physics, geophysics and astrophysics. The
students had previously been taught mechanics and thermodynamics, and along with this course
on continuum physics they were also learning electromagnetism. There is a certain parallelism
in the use of partial differential equations in both of these subjects, but basically I could neither
assume they knew much about the mathematical methods nor the physics in advance. In the end
the book came to contain much more material than could be readily covered in one semester, but
its modular layout still makes it fairly easy to select a subset of topics that fits the needs of a
particular course.

The book is first and foremost an introduction to the basic ideas and the derivation of the
equations of continuum mechanics from Newtonian particle mechanics. The field concept is
introduced from the very outset and tensors are used wherever they are necessary. There is no
call for shyness in this respect, here nearly 200 years after Cauchy. Although many examples—
in particular in the first few chapters—are taken from geophysics and astrophysics, this does not
mean that the book is designed only for students of these subjects. All physics students ought to
be familiar with the description of the macroscopic world of apparently continuous matter.

Secondly, the necessary mathematical tools are developed along with the physics on a
‘need-to-know’ basis in order to avoid lengthy and boring mathematical preliminaries seemingly
without purpose. The disadvantage of this pedagogical line is of course that the general analytic
methods and physical principles, so important later in a physics student’s life, become scattered
throughout the book. I have attempted to counteract this tendency by structuring the text in
various ways and clearly marking out important results, sometimes repeating central material.
The three short appendices also help in this respect.

The important thing to learn from this book is how to reason about physics, both qualitatively
and—especially—quantitatively. Numerical simulations may be fine for obtaining solutions to
practical problems, but are of very little aid in obtaining real understanding. Physicists must
learn to think in terms of fundamental principles and generic methods. Solving one problem
after another of similar kind seems unnecessary and wasteful. This does not mean that the
physicist should not be able to reach a practical result through calculation, but the physical
principles behind equations and the conditions underlying approximations must never be lost
sight of. Nevertheless, numerical methods are used and explained in some detail whenever it
seems natural, including two whole chapters on numeric simulation in elastostatics and fluid
mechanics.

The book is divided into five parts; introduction, hydrostatics, deformable solids, basic fluid
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xiv PREFACE

mechanics and sp ecial topics in fluid mechanics. I h ave m ade n o attempt to b alance the space
allotted to fluid and so lid mechanics; flu id mech anics clearly dominat es the book because it is
after all conceptu ally simpler than even the lin ear mechanics o f iso tropic solid s. Although th ere
may b e a certain bu ilt-in logic in the way the fundamental equations of continuum physics are
derived and presented, th e subject of applications is so rich th at th ere can be no canonical order
of presentation. Ap art from the bare-bone fundamentals, continuum physics appears as a huge
collectio n o f interconnected topics, o r ‘stories’. Any textbook of su fficiently broad scope is
therefore n ecessarily coloured by th e interests, p redilections and idiosyncracies of its author.

The book should b e u seful at several levels of teaching. In an introductory second year
course one would perhaps choose as curriculum chapters 1–5, 9–12 and 15–20. Later and
more advanced courses might wish to in clude most of th e book. The level of difficulty is as
much as possible sought to rise steadily within each chapter and in the book as a whole. The
chapters are o f fairly uniform length, and each chapter h as a ‘ so ft’ introduction m aking contact
with everyday experience. Historical comments and microbiographies of th e major players are
sp rinkled th roughout th e tex t without any attempt at systematics o r completeness. Wh enever
f easib le, th e m u tu al in ter d ep en d e n c e o f c h a p ter s h as—at th e co st o f so m e r e p e titio n —b een
r e d u ced in o r d e r to facilitate th e ex c lu sio n o f wh o le c h a p ter s in a cu r r icu lu m . Cer tain sectio n s
and subsections have been marked with a star to indicate that they fall outside th e main lin e o f
presentation either in subject or in level o f d ifficulty, and may require more teacher support o r
simply be skipped in a first reading.

As an aid to the text the book has been provided with a large number of marginal vignettes,
outlining the salient features of a physical system or a choice of coordinates. They are nothing but
the simpleminded sketches that we all draw—or should draw—when trying to learn new physics.
Larger figures are of course used whenever the margin turns out to be too narrow. At the end
of each chapter there is a collection of problems with answers outlined in the back of the book.
Some problems test the use of the formalism in practical settings, others the understanding of
the theoretical concepts, and still others develop the theory presented in the chapter further. The
system of units is as in any other modern text the international one (SI), although commonly used
units strictly speaking outside of this system, for example bar or atm for pressure, are sometimes
also employed, though never without a proper definition.

Writing this book over the course of several years I have benefitted from advice and support of
many people of whom I can mention only a few. First among them are those that have dared to use
the earlier versions of the manuscript in their teaching; Tomas Bohr of the Technical University of
Denmark, Predrag Cvitanovic of Georgia Tech and Niels Kjær Nielsen of University of Southern
Denmark. For physics input, discussions, and criticism I also thank Anders Andersen, Luiza
Angheluta, Andy Jackson, Alex Lande, Morten Olesen, Laurette Tuckerman and all of the
students that have followed my course over the years. Special thanks go to Mogens Høgh Jensen
without whose generosity I would not have been able to sustain my expensive habit of buying
books. I am grateful to my institute and my colleagues for being patient with me, and finally I
could not have finished this book without the daily support of my wife Birthe Østerlund.

The book is written for adults with a serious intention to learn physics. I have selected for
the readers what I think are the interesting topics in continuum physics, and presented these as
pedagogically as I can without trying to cover everything encyclopedically. The list of literature
contains pointers to texts that deal with specialized subtopics; mostly the books that I have found
useful. I sincerely hope that my own joy in understanding and explaining the physics shines
through everywhere.

Benny Lautrup
Copenhagen, October 2004
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The everyday experience of the smoothness of matter is an illusion. Since the beginning of the twentieth
century it has been known with certainty that the material world is composed of microscopic atoms and
molecules, responsible for the macroscopic properties of ordinary matter. Long before the actual discovery
of molecules, chemists had inferred that something like molecules had to exist, even if they did not know
how big they were. Molecules are small—so small that their existence may be safely disregarded in all
our daily doings. Although everybody possessing a powerful microscope will note the irregular Brownian
motion of small particles in a liquid, it took quite some mental effort and a big conceptual jump from the
everyday manipulation of objects to recognize that this is a sign that molecules are really there.

Continuum physics deals with the systematic description of matter at length scales that are large
compared to the molecular scale. Most macroscopic length scales occurring in practice are actually huge
in molecular units, typically in the hundreds of millions. This enormous ratio of scales isolates continuum
theories of macroscopic phenomena from the details of the microscopic molecular world. There might, in
principle, be many different microscopic models leading to the same macroscopic physics.

This chapter paints in broad outline the transition from molecules to continuous matter, or
mathematically speaking from particles to fields. It is emphasized that the macroscopic continuum
description must necessarily be of statistical nature, but that random statistical fluctuations are strongly
suppressed by the enormity of the number of molecules in any macroscopic material object. The central
theme of this book is the recasting of Newton’s laws for point particles into a systematic theory of
continuous matter, and the application of this theory to the wealth of exotic and everyday phenomena
of the macroscopic material world.

1.1 Molecules
The microscopic world impinges upon the macroscopic almost only through material constants
characterizing the interactions between macroscopic amounts of matter, such as coefficients of elasticity
and viscosity. It is, of course, an important task for the physics of materials to derive the values of
these constants, but this task lies outside the realm of continuum physics. In continuum physics it is
nevertheless sometimes instructive to consider the underlying atomic or molecular structure in order to
obtain an understanding of the origin of macroscopic phenomena and of the limits to the macroscopic
continuum description.

H2

H2 +
H2O

H2O

→O2

The meaning of a chemical
formula.Molecular weight

Chemical reactions such as 2H2 + O2 → 2H2O are characterized by simple integer coefficients. Two
measures of hydrogen plus one measure of oxygen yield two measures of water without anything left over
of the original ingredients. What are these measures? For gases at the same temperature and pressure, it is
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4 1. CONTINUOUS MATTER

Figure 1.1. How continuous matter really looks at the atomic scale. Image of Mica obtained by atomic
force microscopy (AFM), approximately 225 Angstrom on a side. Image Courtesy Mark Waner (Mark J.
Waner, PhD dissertation, Michigan State University 1998).

simply the volume, so that for example two litres of hydrogen plus one litre of oxygen yield two litres of
water vapour, assuming that the water vapour without condensing can be brought to the same temperature
and pressure as the gases had before the reaction. In 1811, Count Avogadro of Italy proposed that the simple
integer coefficients in chemical reactions between gases could be explained by the rule that equal volumes
of gases contain equal numbers of molecules (at the same temperature and pressure).Lorenzo Romano Amadeo Carlo

Avogadro (1776–1856). Italian
philosopher, lawyer, chemist and
physicist. Count of Quaregna
and Cerratto. Formulated that
equal volumes of gas contain
equal numbers of molecules. Also
argued that simple gases consist
of diatomic molecules.

The various measures do not weigh the same. A litre of oxygen is roughly 16 times heavier than a
litre of hydrogen at the same temperature and pressure. The weight of a litre of water vapour must—of
course—be the sum of the weights of its ingredients, hydrogen and oxygen, and from the reaction formula
it now follows that this becomes roughly ((2×1)+ (1×16))/2 = 9 times the weight of a litre of hydrogen.
Such considerations lead to the introduction of the concept of relative molecular weight or mass in the ratio
1:16:9 (or equivalently 2:32:18) for hydrogen, oxygen and water.

In the beginning there was no way of fixing an absolute scale for molecular mass, because that would
require knowledge of the number of molecules in a macroscopic amount of a substance. Instead, a unit,
called a mole, was quite arbitrarily fixed to be one gram of atomic hydrogen (H). This scale is practical for
the chemist at work in his laboratory, and the ratios of molecular masses obtained from chemical reactions
would then determine the mass of a mole of any other substance. Thus the molar mass of molecular
hydrogen (H2) is 2 grams and that of molecular oxygen (O2) 32 grams, whereas water has a molar mass of
((2 × 2)+ (1 × 32))/2 = 18 grams. This system could be extended to all chemical reactions allowing the
determination of molar mass for any substance participating in such processes.

Avogadro’s number
We now know that chemical reactions actually describe microscopic interactions between individual
molecules built from atoms and that molecular mass is simply proportional to the mass of a molecule.
The constant of proportionality was called Avogadro’s number by Perrin, who in 1908 carried out the first
modern determination of its value from Brownian motion experiments. Perrin’s experiments relying on
Einstein’s recent (1905) theory of Brownian motion were not only seen as a confirmation of this theory
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1.2. THE CONTINUUM APPROXIMATION 5

but also as the most direct evidence for the reality of atoms and molecules. Today, Avogadro’s number is
defined to be the number of atoms in exactly 12 grams of the fundamental carbon isotope (12C), and its
value is NA = 6.022137(3) × 1023 molecules per mole1. Jean-Baptiste Perrin (1870–

1942). French physicist.
Received the Nobel Prize for
his work on Brownian motion
in 1926. He founded several
French scientific institutions,
among them the now famous
‘Centre National de la Rechèrche
Scientifique (CNRS)’.

Molecular separation
Consider a substance with mass density ρ and molar mass Mmol. A mole of the substance occupies a
volume Mmol/ρ, and the volume per molecule becomes Mmol/ρNA . A cube with this volume would have
sides of length

Lmol =
(

Mmol

ρNA

)1/3
, (1.1)

which may be called the scale of molecular separation. For iron we get Lmol ≈ 0.24 nm, for water
Lmol ≈ 0.31 nm, and for air at normal temperature and pressure Lmol ≈ 3.4 nm. For liquids and solids,
where the molecules touch each other, this length is roughly the size of a molecule, whereas in gases it may
be much larger. There is a lot of vacuum in a gas, in fact about 1000 times the volume of matter at normal
temperature and pressure. Johannes Diederik van der Waals

(1837–1923). Dutch physicist.
Developed an equation of state
for gases, now carrying his name.
Received the Nobel Prize in 1910
for his work on fluids and gases.

Molecular forces
Apart from the omnipresent gravitational interaction between all bodies, molecular interactions are entirely
electromagnetic in nature, from the fury of a tornado to the gentlest kiss. A deeper understanding of the
so-called van der Waals forces acting between neutral atoms and molecules requires quantum theory and
falls outside the scope of this book.

Generally, however, the forces between neutral atoms and molecules are short-ranged and barely reach
beyond nearest molecular neighbours. They are strongly repulsive if the atoms are forced closer than their
natural sizes allow and moderately attractive when they are moved apart a little distance, but farther away
they quickly die out. When two molecules are near each other, this tug of war between repulsion and
attraction leads to a minimum in the potential energy between the molecules. The state of matter depends,
broadly speaking, on the relation between the depth of this minimum, called the binding energy, and the
average kinetic energy due to the thermal motion of the molecules.

Solids, liquids and gases
In solid matter the minimum lies so deep that thermal motion cannot overcome the attraction. Each
individual atom or molecule is tied to its neighbours by largely elastic forces. The atoms constantly undergo
small-amplitude thermal motion around their equilibrium positions, but as long as the temperature is not so
high that the solid melts, they are bound to each other. If external forces are applied, solids may deform
elastically with increasing force, until they eventually become plastic or even fracture. Most of the work
done by external forces in deforming elastic solids can be recovered as work when the forces disappear.

� r

�


.......................
.........................

.............................
.................................

.......................................
........................................................

...............

repulsive

attractive

V

Sketch of the intermolecular po-
tential energy V (r) as a function
of intermolecular distance r . It is
attractive at moderate range and
strongly repulsive at close dis-
tance.

In fluid matter, liquids and gases, the minimum is so shallow that the thermal motion of the molecules
is capable of overcoming the attractive forces between them. The molecules effectively move freely around
between collisions, more so in gases than in liquids where molecular conglomerates may form. External
forces make fluids flow—in liquids a kind of continual fracturing—and a part of the work done by such
forces is dissipated into random molecular motion, heat which cannot directly be recovered as work when
the forces cease to act.

1.2 The continuum approximation
Whether a given number of molecules is large enough to warrant the use of a smooth continuum description
of matter depends on the precision desired. Since matter is never continuous at sufficiently high precision,
continuum physics is always an approximation. But as long as the fluctuations in physical quantities
caused by the discreteness of matter are smaller than the desired precision, matter may be taken to be

1In this book the absolute error on the last digit of a quantity is indicated by means of a parenthesis following the
mantissa.
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6 1. CONTINUOUS MATTER

Figure 1.2. Measured density as a function of volume size. A three-dimensional ‘universe’ consisting of
20 × 20 × 20 = 8000 cells is randomly filled with as many ‘molecules’. On average each of the 8000 cells
should contain a single molecule, corresponding to a density of ρ = 1. A ‘material particle’ consisting of
V cells will in general not contain precisely V molecules, and thus has an actual density that deviates from
unity. The plot shows the actual density of a random collection of V cells as a function of V . The drawn
curves, ρ = 1 ± 1/

√
V , indicate the expected fluctuations.

continuous. Continuum physics is, like thermodynamics, a limit of statistical physics where all macroscopic
quantities such as mass density and pressure are understood as averages over essentially infinite numbers
of microscopic molecular variables.

Luckily, it is only rarely necessary to exploit this connection. In a few cases, such as in the analysis
below, it is useful to look at the molecular underpinnings of continuum physics. In doing so, we shall use
the simplest ‘molecular’ description possible. A quite general meta-law of physics says that the physical
laws valid at one length scale are not very sensitive to the details of what happens at much smaller scales.
Without this law, physics would in fact be impossible, because we never know what lies below our currently
deepest level of understanding.

Precision and continuity
Suppose that we want to determine the mass density ρ = mN/V of a gas to a certain relative precision ε,
say ε = 1%, by counting the number of identical molecules N of mass m in a small volume V . Due to
random motion of the gas molecules, the number N will fluctuate and yield a different value if measured
again. For a typical fluctuation �N in N , the relative fluctuation in density will be the same as in N , or
�ρ/ρ = �N/N . If the relative density fluctuation should be at most ε we must require that �N � εN .
Provided the time between measurements is large compared to the time between molecular collisions, the
molecules in the volume V will all be replaced by other molecules, and become an essentially random
collection of molecules from the gas at large. In such a random sample the fluctuation in the number is of
order �N ≈ √

N , and the condition becomes
√

N � εN or N � ε−2 (see figure 1.2 and problem 1.1).
The smallest allowable number of molecules, Nmicro ≈ ε−2, occupies a cubic volume with side length
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In a gas the molecules move
rapidly in and out of a small
volume with typical velocities of
the order of the speed of sound.

Lmicro = N1/3
microLmol ≈ ε−2/3Lmol. (1.2)

At a precision level of ε = 1%, the smallest volume under consideration should contain at least Nmicro ≈
104 molecules, and the linear dimension of such a volume will be greater than Lmicro ≈ 22Lmol. For air
under normal conditions this comes to about 80 nm, while for liquids and solids it is an order of magnitude
smaller because of the smallness of Lmol.

In liquids and especially in solids the molecules do not move around much but oscillate instead
randomly around more or less fixed positions, and the density fluctuations in a volume are mainly due
to molecules passing in and out of the surface. In problems 1.2 and 1.3 the fluctuations are estimated for
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a cube and a sphere, resulting in a microscopic length scale of roughly the same form as above, although
with an exponent of −1/2 instead of −2/3.

Mean free path
Another condition for obtaining a smooth continuum description, is that molecules should interact with
each other to ‘iron out’ strong differences in velocities. If there were no interactions, a molecule with a
given velocity would keep on moving with that velocity forever. In solids and liquids where the molecules
are closely packed, these interactions take place over a couple of molecular separation lengths and put no
further restriction on the microscopic length scale.

In gases there is a lot of vacuum and molecules move freely over long distances. The mean free path
between collisions may be estimated by considering a spherical molecule or atom of diameter d with its
centre tracing out a straight path through the gas. It will hit any other sphere of the same diameter within
a ‘striking’ distance d from the path, i.e. inside a cylinder of diameter 2d . Since there is on average one
molecule in each volume L3

mol, the distance the original sphere has to move before being sure of hitting

another is on average, λ = L3
mol/πd2. A more careful analysis leads to the following expression for the

mean free path,

��
����
��

A sphere of diameter d will
collide with any other sphere of
the same diameter with its centre
inside a cylinder of diameter 2d .

λ = L3
mol√

2πd2
= Mmol√

2πd2ρNA
, (1.3)

with an extra factor
√

2 in the denominator.
For air at normal temperatures we find λ ≈ 94 nm which is not much larger than the microscopic

length scale, Lmicro ≈ 80 nm (for ε = 1%). For dilute gases the mean free path is much larger than the
microscopic scale and sets the length scale for the smallest continuum volumes rather than Lmicro, unless
the desired relative precision is very small (see problem 1.5).

Macroscopic smoothness
A smooth continuum description demands that there should be no measurable variation in density between
neighbouring microscopic volumes. If L denotes the typical macroscopic length scale for significant
variations in density, the relative change in density over the distance Lmicro will be of magnitude
�ρ/ρ ≈ Lmicro/L . Demanding that the relative density change is smaller than the measurement precision
�ρ/ρ � ε, we conclude that we must have L � Lmacro where

Lmacro ≈ 1

ε
Lmicro. (1.4)

Any region in which the density varies by a significant amount must be larger in size than Lmacro; otherwise
the smooth continuum description breaks down. With ε = 1% we find Lmacro ≈ 100Lmicro. For air under
normal conditions this is about 10 µm, while for solids it is an order of magnitude smaller.

Since interfaces between macroscopic bodies are usually much thinner than Lmacro, these regions of
space fall outside the smooth continuum description. In continuum physics interfaces appear instead as
surface discontinuities in the otherwise smooth macroscopic description of matter.

Both the micro and macro scales diverge for ε → 0, substantiating the claim that it is impossible
to maintain a continuum description to arbitrarily small relative precision. The smallness of both length
scales for ordinary matter and for reasonable relative precision shows that there is ample room for a smooth
continuum description of everyday phenomena. Nanophysics, however, straddles the border between the
continuum and particle descriptions of matter, resulting in a wealth of new phenomena outside the scope of
classical continuum physics.

Material particles
In continuum physics we shall generally permit ourselves to speak about material particles as the smallest
objects that may consistently be considered part of the continuum description within the required precision.
A material particle will always contain a large number of molecules but may in the continuum description
be thought of as infinitesimal or point-like.
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8 1 . C O N TIN U O U S MATTER

A l t hough w e usual l y shal l t hi nk of mat e r i al par t i c l e s a s bei ng si mi l a r i n di ff e r e nt t ypes of m at t e r, t hey
are i n fact quite di fferent. In solids, we may with some reservation t hi nk of solid particles as cont ai ni ng
a fi xed col l ect i on of m ol ecul es, w her eas i n l i qui ds and especi al l y i n gases w e s houl d not f orget t hat t he
mol ecul es m aki ng up a flui d part i c l e at a given i nst ant w i l l short l y be repl aced by ot her mol ecul es. If t he
molecular composition of t he material in the environment of a material particle has a slow spatial variation,
this incessant molecular game of ‘musical chai rs’ may slowly change the composition of t he material inside
the particle. S uch di ff usi on processes driven by spatial variations in material properties lie at the very root
of fluid mechanics. Even spatial variations in the average flow velocity will drive momentum diffusion,
causing internal (viscous) friction in the fluid.

I n moder n t ext books on cont i nuum physi c s t her e has been a t endency t o avoi d i nt r oduci ng t he
concept of a mat er i al par t i cl e. I nst ead t hese pr esent at i ons r el y on gl obal conser vat i on l aw s t o deduce
t he l ocal cont i nuum descr i pt i on— i n t he f or m of par t i a l di ff e r e nt i a l e quat i ons— by pur el y m at hemat i cal
means. A l t hough qui t e el egant and appar ent l y f r ee of physi cal i nt er pr et at i on pr obl ems, such an appr oach
unf or t unat e l y obscur e s t he condi t i ons under w hi ch t he l ocal l aw s may be a ssumed t o be val i d.

I n t hi s book t he concept of a mat er i al par t i cl e has been car ef ul l y i nt r oduced i n t he pr oper physi cal
cont ext of m easur ement pr eci si on. T hi s appr oach al l ow s us, f or exampl e, t o concl ude t hat a di ff e r e nt i a l
equation i nvolving the density (or any other quantity) cannot be assumed t o be physically meaningful at
di st ance scal es smal l er t han t he mi croscopi c l engt h s cal e Lmi cro , and t hat a s pat i al der ivat ive of t he densi t y
must be l i m i t ed by t he macr oscopi c l engt h s cal e, |∂ρ/∂ x| � ρ/Lmacro . A further advantage is that the
local description may be interpreted as representing the laws valid for the motion of individual material
par t i c l e s. To sat i s f y bot h poi nt s of vi ew, t he i nt er pr et at i on a nd equiva l e nce of t he l ocal and gl obal l aw s w i l l
be car ef ul l y el uci dat ed ever yw her e i n t hi s book.

1.3 Newtonian mechanics
I n N ew t oni an mechani c s ( see a ppendi x A ) t he basi c m at er i a l obj ect i s a poi nt par t i c l e w i t h a fi xe d m ass m .
N ew t on’s s econd l aw i s the f undament al equat i on of m ot i on, and s t a t e s t hat mass t i m es accel erat i on equal s
force. Mat hemat i cal l y, i t i s expr essed as a second- or der di ff er ent i al equat i on i n t i m e t ,S i r I saac N ew t on ( 1642–1727) .

E ngl i s h physi ci st and m at hem at i -
ci an. Founded cl assi cal m e-
chani cs on t hre e f am ous l aw s
i n hi s books ‘ P hi l osophi ae N at -
ural i z P r i nci pi a Mat hem at i c a’
( 1687) . N ew t on devel oped c al -
cul us t o s ol ve t he e quat i ons of
m ot i on, and f orm ul at ed t heori es
of opt i c s and of chem i s t r y. H e
still stands as perhaps the great-
est scientific genius of all time.

m
d 2 x

dt  2 
= f , (1.5)

where x the instantaneous position of the particle, and f the force acting on it. In chapter 2 we
shall i ntroduce vect or calculus t o handl e quantities like x and f in a systematic way, but for now any
under s t a ndi ng of t he m eani ng of a vect or w i l l wor k fi ne.

Since the force on any given particle can depend on the positions and velocities of the particle itself
and of other particles, as well as on external parameters, the dynamics of a collection of particles becomes
a web of coupled ordinary second-order differential equations in time. Even if macroscopic bodies are
huge collections of atoms and molecules, it is completely out of the question to solve the resulting web of
differential equations. In addition, there is the problem that molecular interactions are quantum mechanical
in nature, and Newtonian mechanics, strictly speaking, does not apply at the atomic level. This knowledge
is, however, relatively new and has as mentioned earlier some difficulty in making itself apparent at the
macroscopic level. So even if quantum mechanics rules the world of atoms, its special character is rarely
amplified to macroscopic proportions.

Global mechanical quantities
In Newtonian particle mechanics, a ‘body’ is taken to be a fixed collection of point particles, each obeying
the second law (1.5). For any body one may define various global mechanical quantities which like the
total mass are calculated as sums over contributions from each and every particle in the body. Some of the
global quantities are kinematic: momentum, angular momentum, and kinetic energy. Others are dynamic:
force, moment of force, and power (rate of work of the forces).

Newton’s second law for particles leads to three simple laws of balance between the kinematic and
dynamic quantities;

• the rate of change of momentum equals force,

• the rate of change of angular momentum equals moment of force,
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• the rate of change of kinetic energy equals power.

Even if these laws are insufficient to determine the dynamics of a multiparticle body, they represent seven
individual constraints on the motion of any system of point particles, regardless of how complex it is. In
particular, they can be taken over to continuum mechanics when exchange of matter between a body and its
environment is properly taken into account.

1.4 Continuum physics
In continuum physics a macroscopic body is seen as a huge collection of tiny material particles, each of
which contains a sufficiently large number of molecules to justify a continuum description. Continuum
physics does not ‘on its own’ go below the level of the material particles. Although the mass density may
be calculated by adding together the masses of all the molecules in a material particle and dividing with the
volume occupied by it, this procedure falls, strictly speaking, outside continuum physics.

The field concept
In the extreme mathematical limit, material particles are taken to be truly infinitesimal and all physical
properties of the particles as well as the forces acting on them are described by smooth functions of space
and time. Continuum physics is therefore a theory of fields.

Mathematically, a field f is simply a real-valued function f (x, y, z, t) of spatial coordinates x , y,
z and time t , representing the value of a physical quantity in this point of space at the given time, for
example the mass density ρ = ρ(x, y, z, t). Sometimes a collection of such functions is also called a field
and the individual real-valued members are called its components. Thus, the most fundamental field of
fluid mechanics, the velocity field v = (vx , vy , vz), has three components, one for each of the coordinate
directions.

Besides fields characterizing the state of the material, such as mass density and velocity, it is convenient
to employ fields that characterize the forces acting on and within the material. The gravitational acceleration
field g is a body force field, which penetrates bodies from afar and acts on their mass. Some force fields
are only meaningful for regions of space where matter is actually present, as for example the pressure field
p, which acts across the imagined contact surfaces that separate neighbouring volumes of a fluid at rest.
Pressure is, however, not the only contact force. For fluids in motion, for solids and more general materials,
contact forces are described by the nine-component stress field, σσσ = {σi j }, which is a (3 × 3) matrix field
with rows and columns labelled by coordinates: i, j = x, y, z.

Mass density, velocity, gravity, pressure and stress are the usual fields of continuum mechanics and will
all be properly introduced in the chapters to come. Some fields are thermodynamic, like the temperature T
and the specific internal energy density u. Others describe different states of matter, for example the electric
charge density ρe and current density je together with the electric and magnetic field strengths, E and B.
Like gravity g, these force fields are thought to exist in regions of space completely devoid of matter.

There are also fields that refer to material properties, for example the coefficient of shear elasticity
µ of a solid and the coefficient of shear viscosity η of a fluid. Such fields are usually constant within
homogeneous bodies, i.e. independent of space and time, and are mostly viewed as material constants
rather than true fields.

Field equations
Like all physical variables, fields evolve with time according to dynamical laws, called field equations. In
continuum mechanics, the central equation of motion descends directly from Newton’s second law applied
to every material particle. Mass conservation, which is all but trivial and most often tacitly incorporated in
particle mechanics, turns into an equation of motion for the mass density in continuum theory. Still other
field equations such as Maxwell’s equations for the electromagnetic fields have completely different and
non-mechanical origins, although they do couple to the mechanical equations of motion.

Mathematically, field equations are partial differential equations in both space and time. This makes
continuum mechanics considerably more difficult than particle mechanics where the equations of motion are
ordinary differential equations in time. On the other hand, this greater degree of mathematical complexity
also leads to a plethora of new and sometimes quite unexpected phenomena.
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In some field theories, for example Maxwell’s electromagnetism, the field equations are linear in the
fields, but that is not the case in continuum mechanics. The nonlinearity of the field equations of fluid
mechanics adds a further layer of mathematical difficulty to this subject, making it very different from
linear theories. The nonlinearity leads to dynamic instabilities and gives rise to the chaotic and as yet not
fully understood phenomenon of turbulence, well known from our daily dealings with water and air.

Physical reality of force fields
Whereas the mass density only has meaning in regions actually containing matter, or may be defined to
be zero in a vacuum, the gravitational field is assumed to exist and take non-vanishing values even in the
vacuum. It specifies the force that would be exerted on a unit mass particle at a given point, but the field is
assumed to be there even if no particles are present.

In non-relativistic Newtonian physics, the gravitational field has no independent physical meaning and
may be completely eliminated and replaced by non-local forces acting between material bodies. The true
physical objects appear to be the material bodies, and the gravitational field just a mathematical convenience
for calculating the gravitational force exerted by these bodies. There are no independent dynamical
equations that tell us how the Newtonian field of gravity changes with time. When material bodies move
around or change their mass distributions, their fields of gravity change instantaneously everywhere as they
move around.

In relativistic mechanics, on the other hand, fields take on a completely different meaning. The reason
is that instantaneous action-at-a-distance cannot take place. If matter is moved, the current view is that it
will take some time before the field of gravity adjusts to the new positions, because no signal can travel
faster than light. Due to relativity, fields must travel independently, obey their own equations of motion,
and carry physical properties such as energy and momentum. Electromagnetic waves bringing radio and
TV signals to us are examples of force fields thus liberated from their origin. Gravitational waves have not
yet been observed directly, but indirectly they have been observed in binary neutron star systems which can
only be fully understood if gravitational radiation is taken into account.

Even if we shall not deal with relativistic theories of the continuum, and therefore may consider the
gravitational field to be merely a mathematical convenience, it may nevertheless be wise, at least in the
back of our minds, to think of the field of gravity as having an independent physical existence. Then we
shall have no philosophical problem endowing it with physical properties, even in matter-free regions of
space.

Is matter really discrete or continuous?
Although continuum physics is always an approximation to the underlying discrete atomic level, this is
not the end of the story. At a deeper level it turns out that matter is best described by another continuum
formalism, relativistic quantum field theory, in which the discrete particles—electrons, protons, neutrons,
nuclei, atoms and everything else—arise as quantum excitations in the fields. Relativistic quantum field
theory without gravitation emerged in the first half of the twentieth century as the basic description of the
subatomic world, but in spite of its enormous success it is still not clear how to include gravity.

Just as the continuity of macroscopic matter is an illusion, the quantum field continuum may itself one
day become replaced by even more fundamental discrete or continuous descriptions of space, time and
matter. It is by no means evident that there could not be a fundamental length in nature setting an ultimate
lower limit to distance and time, and theories of this kind have in fact been proposed2. It appears that we
do not know, and perhaps will never know, whether matter at its deepest level is truly continuous or truly
discrete.

Problems
1.1 Consider a small volume of a gas which is a fraction p of a larger volume containing M molecules.
The probability for any molecule to find itself in the small volume may be taken to be p.

(a) Calculate the probability that the small volume contains n molecules.

2See, for example, J. A. Wheeler, It from bit, Proceedings of the 3rd International Symposium on Foundations of
Quantum Mechanics, Tokyo (1989).
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(b) Show that the average of the number of molecules in the small volume is N ≡ 〈n〉 = pM .

(c) Show that the variance is �N2 ≡ 〈(n − 〈n〉)2〉 = p(1 − p)M ≈ N for p � 1.

1.2 Show that a cube containing N = M3 smaller cubes of equal size will have K = 6M2 − 12M + 8
smaller cubes lying on the surface. Estimate the fluctuation �N when N molecules in a cube oscillate with
amplitude equal to the molecular size.

1.3 A spherical volume contains a large number N of molecules. Estimate the number of molecules NS
situated at the surface and show that the fluctuation in this number is �N ≈ 61/3π1/6N1/3 ≈ 2.2N1/3

when they randomly oscillate with amplitude equal to the molecular size.

1.4 Consider a material gas particle containing N identical molecules. Write the velocity of the nth
molecule as vn = v+un where v is the centre of mass velocity and un is a random contribution from thermal
motion. It may be assumed that the average of the random component of velocity vanishes 〈un〉 = 0, that
all random velocities are uncorrelated, and that their fluctuations are the same for all particles 〈u2

n〉 = v2
0.

Show that the average of the centre of mass velocity for the fluid particle is 〈vc〉 = v and that its fluctuation
due to thermal motion is �vc = v0/

√
N .

1.5 At what precision is the microscopic scale Lmicro equal to the mean free path, when the air density is
100 times smaller than normal?
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In classical Newtonian physics space is absolute and eternal, obeying the rules of Euclidean geometry
everywhere. It is the perfect stage on which all physical phenomena play out. Time is equally uniform and
absolute throughout space from beginning to end, and matter has no influence on the properties of space
and time. Rulers to measure length never stretch, clocks to measure time never lose a tick, and both can
be put to work anywhere from the deepest levels of matter to the farthest reaches of outer space. It is a
clockwork universe, orderly, rigorous and deterministic.

This semblance of perfection was shattered at the beginning of the twentieth century by the theories
of relativity and quantum mechanics. Space and time became totally intertwined with each other and with
matter, and the determinism of classical physics was replaced by the still disturbing quantum indeterminism.
Relativity and quantum mechanics are both theories of extremes. Although in principle they apply to the
bulk of all physical phenomena, their special features become dominant only at velocities approaching
the velocity of light in the case of relativity, or length scales approaching the size of atoms in the case of
quantum mechanics. Newtonian space and time remain a valid, if not ‘true’, conceptual framework over the
vast ranges of length and velocity scales covered by classical continuum physics.

In this chapter the basic ideas behind space and time are introduced in a way which emphasizes the
operational aspects of physical concepts. Care is exerted to ensure that the concepts defined here should
remain valid in more advanced theories. A certain familiarity with Euclidean geometry in Cartesian
coordinates is assumed, and the chapter serves in most respects to define the mathematical notation to
be used in the remainder of the book. It may be sampled at leisure, as the need arises.

2.1 Reference frames
Physics is a quantitative discipline using mathematics to relate measurable quantities expressed in terms
of real numbers. In formulating the laws of nature, undefined mathematical primitives—for example the
points, lines and circles of Euclidean geometry—are not particularly useful, and such concepts have for this
reason been eliminated and replaced by numerical representations everywhere in physics. This necessitates
a specification of the practical procedures by which these numbers are obtained in an experiment; for
example, which units are being used.

Behind every law of nature and every formula in physics, there is a framework of procedural
descriptions, a reference frame, supplying an operational meaning to all physical quantities. Part of the art
of doing physics lies in comprehending this—often tacitly understood—infrastructure to the mathematical
formalism. The reference frame always involves physical objects—balances to measure mass, clocks to
measure time and rulers to measure length—that are not directly a part of the mathematical formalism.
Precisely because they are physical objects, they can at least in principle be handed over or copied, and
thereby shared among experimenters. This is what is really meant by the objectivity of physics.

The system of units, the Système Internationale (SI), is today fixed by international agreement. But even
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if our common frame of reference is thus defined by social convention, physics is nevertheless objective. In
principle our frames of reference could be shared with any other being in the universe.

The unit of mass, the kilogram, is (still) defined by a prototype stored by the International Bureau of
Weights and Measures near Paris, France. Copies of this prototype and balances for weighing them
can be made to a precision of one part in 109 [34].

2.2 Time
Time is the number you read on your clock. There is no better definition. Clocks are physical objects
which may be shared, compared, copied and synchronized to create an objective meaning of time. Most
clocks, whether they are grandfather clocks with a swinging pendulum or oscillating quartz crystals, are
based on periodic physical systems that return to the same state again and again. Time intervals are simply
measured by counting periods. There are also aperiodic clocks, for example hour glasses, and clocks based
on radioactive elements. It is especially the latter that allow time to be measured on geological time scales.
Beyond such scales the concept of time becomes increasingly more theory-laden.

Like all macroscopic physical systems, clocks are subject to small fluctuations in the way they run. The
most stable clocks are those that keep time best with respect to copies of themselves as well as with clocks
built on other principles. Grandfather clocks are much less stable than maritime chronometers that in turn
are less stable than quartz clocks. The international frame of reference for time is always based on the most
stable clocks currently available.

Formerly the unit of time, the second, was defined as 1/86 400 of a mean solar day, but the Earth’s
rotation is not that stable, and since 1966 the second has been defined by international agreement as
the duration of 9 192 631 770 oscillations of the microwave radiation absorbed in a certain hyperfine
transition in the cesium-133 atom. A beam of cesium-133 atoms is used to stabilize a quartz oscillator
at the right frequency by a resonance method, so what we call an atomic clock is really an atomically
stabilized quartz clock. The intrinsic relative precision in this time standard is about 4 × 10−14, or
about one second in a million years [34].

In the extreme mathematical limit, time may be assumed to be a real number t , and in Newtonian physics
its value is assumed to be universally known.

2.3 Space
It is a mysterious and so far unexplained fact that physical space has three dimensions, which means that it
takes exactly three real numbers—say x1, x2 and x3—to locate a point in space. These numbers are called
the coordinates of the point, and the reference frame for coordinates is called the coordinate system. It must
contain all the operational specifications for locating a point given the coordinates, and conversely obtaining
the coordinates given the location. In this way we have relegated all philosophical questions regarding the
real nature of points and of space to the operational procedures contained in the reference frame.

On Earth everybody navigates by means of a geographical system, in which a point is characterized
by latitude, longitude and height. The geographical coordinate system is based on agreed upon fixed
points on Earth: the north pole, Greenwich in London, and the average sea level. The modern Global
Positioning System uses ‘fixed’ points in the sky in the form of satellites, and the coordinates of any
point on Earth is determined from differences in the time-of-flight of radio signals.

It is convenient to collect the coordinates x1, x2, and x3 of a point in a single object, a triplet of real numbers

x = (x1, x2, x3), (2.1)

called the position of the point in the coordinate system1. The triplet notation is just a notational
convenience, so a function of the position f (x) is completely equivalent to a function of the three
coordinates f (x1, x2, x3).

�x
�a �b

Points may be visualized as dots
on a piece of paper.

1In almost all modern textbooks it is customary to use boldface notation for triplets of real numbers (‘vectors’) and
we shall also do so here. In calculations with pencil on paper many different notations are used to distinguish such a
symbol from other uses, for example a bar (x), an arrow (�x) or underlining (x).
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There is nothing sacred about the names of the coordinates. In physics and especially in practical
calculations, the coordinate variables are often renamed x1 → x , x2 → y and x3 → z, so that the general
point becomes x → (x, y, z). It is also customary to write a = (ax , ay , az) for a general triplet, with the
coordinate labels used as indices instead of 1, 2 and 3. It is of course of no importance whether the range
of indices is labelled x , y, z or 1, 2, or 3 or something else, as long as there are three of them.

Coordinate transformations
Having located a point by a set of coordinates x = (x1, x2, x3) in one coordinate system, the coordinates
x′ = (x ′

1, x ′
2, x ′

3) of the exact same point in another coordinate system must be calculable from the first

x ′
1 = f1(x1, x2, x3),

x ′
2 = f2(x1, x2, x3),

x ′
3 = f3(x1, x2, x3).

In triplet notation this is written

x′ = f (x). (2.2)

This postulate reflects that physical reality is unique and that different coordinate systems are just different

�x ↔ x′

�a ↔ a′

�b ↔ b′

In different coordinate systems
the same points have different
coordinates.

ways of representing the same physical space in terms of real numbers. Conversely, each one-to-one
mapping of the coordinates defines another coordinate system. The study of coordinate transformations is
central to analytic geometry and permits characterization of geometric quantities by the way they transform
rat her t han i n abst ract t erms ( see sect i on 2. 7).

Length
From the earliest times humans have measured the length of a road between two points, say a and b, by
counting the number of steps it takes to walk along this road. In order to communicate to others the length
of a road, the count of steps must be accompanied by a clear definition of a step, for example in terms of an
agreed-upon unit of length.

�
�
�
�

� � �
� �

a

b

shortest
�
�
�� 

� �
� � �

road

The length of the road between
a and b is measured by counting
steps along the road. The
distance is the length of the
shortest road.

Originally the units of length—inch, foot, span and fathom—were directly related to the human
body, but increasing precision in technology demanded better-defined units. In 1793 the metre was
introduced as a ten millionth of the distance from equator to pole on Earth, and until far into the
twentieth century a unique ‘normal metre’ was stored in Paris, France. Later the metre became
defined as a certain number of wavelengths of a certain spectral line in krypton-86, an isotope of a
noble gas which can be found anywhere on Earth (thereby eliminating the need for a trip to Paris!).
Since 1983 the metre has been defined by international convention to be the distance travelled by
light in exactly 1/299 792 458 of a second [34]. The problem of measuring lengths has thus been
transferred to the problem of measuring time, which makes sense because the precision of the time
standard is at least a thousand times better than any proper length standard.

�
�
�
�

�
�

a

b

shortest

......................
.................
..............
............
...........
..........
..........
..........
..........
...........
...........
...........
.............
............
...............
...............
..................
....................
.........................
......................................

..........................................................................................................................................................................

path

In the mathematical limit the
shortest continuous path connect-
ing a and b is called the geodesic
(‘straight line’).

This method for determining length may be refined to any desired practical precision by using very short
steps. In the extreme mathematical limit, the steps become infinitesimally small, and the road becomes a
continuous path. The shortest such path is called a geodesic and represents the ‘straightest line’ between the
points. Airplanes and ships travel along geodesics, i.e. great circles on the spherical surface of the Earth.

Distance
The distance between two points is defined to be the length of the shortest path between them. Since the
points are completely defined by their coordinates, a and b relative to the chosen coordinate system, the
distance must be a real function d(a, b) of the two sets of coordinates. This function is not completely
general; certain axioms have to be fulfilled by any distance function (see problem 2.1).

From the definition it is clear that the distance between two points must be the same in all coordinate
systems, because it can, in principle, be determined by laying out rulers between points without any
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reference to coordinate systems. The actual distance function d ′(a′, b′) in a new coordinate system may be
different from the old, d(a, b), but the numerical values have to be the same,

d ′(a′, b′) = d(a, b), (2.3)

where a′ = f (a) and b′ = f (b) are calculated by the coordinate transformation (2.2). Knowing the
distance function d(a, b) in one coordinate system, it may be calculated in any other coordinate system by
means of the appropriate coordinate transformation.

�

�

�
�
�
�
�
�
�

a′ ↔ a

b′ ↔ b

d ′(a′, b′) = d(a, b)

Invariance of the distance.

This expresses the invariance of the distance under all coordinate transformations. In the same way
as (2.2) may be viewed mathematically as a definition of what is meant by ‘another coordinate system’,
equation (2.3) may be viewed mathematically as a definition of what is meant by distance in the other
coordinate system.

Cartesian coordinate systems
René Descartes (1596–1650).
French scientist and philosopher,
father of analytic geometry.
Developed a theory of mechan-
ical philosophy, later to be
superseded by Newton’s work.
Confronted with doubts about
reality, he saw thought as the
only argument for existence: ‘I
think, therefore I am’.

It is another fundamental physical fact that it is possible (within limited regions of space and time) to
construct coordinate systems, in which the distance between any two points, a and b, is given by the
expression

d(a, b) =
√
(a1 − b1)

2 + (a2 − b2)
2 + (a3 − b3)

2. (2.4)

Such coordinate systems were first analysed by Descartes and are called Cartesian. The distance function
implies that space is Euclidean and therefore has all the properties one learns about in elementary geometry.

2.4 Vector algebra
Triplets of real numbers play a central role in everything that follows, and it is now convenient to introduce a
set of algebraic rules for these objects. We shall see below (section 2.8) that vectors in Cartesian coordinate
systems are triplets that transform in a special way under coordinate transformations.

�����a����
�
���

sa

Geometric scaling of a vector.

�
�
��
�
�
��

�
�
�
�
�
��

a

b
a + b

�
�
��

�
�
��

�
a − b

b

Geometric addition and subtrac-
tion of a vector.

Basic algebraic rules
The following operations endow triplets with the properties of the familiar geometric vectors. Visualization
on paper is of course as useful as ever, so we shall also draw triplets and illustrate their properties by means
of arrows.

Linear operations: Linear operations lie at the core of triplet algebra,

s a = (sa1, sa2, sa3) (scaling), (2.5)

a + b = (a1 + b1, a2 + b2, a3 + b3) (addition), (2.6)

a − b = (a1 − b1, a2 − b2, a3 − b3) (subtraction). (2.7)

These rules tell us that the set of all triplets, also called �3, mathematically is a three-dimensional vector
space. A straight line with origin a and direction b is described by the linear function a + b s with
−∞ < s < ∞.

�
.......................................................

θ

�
�
�
��

���
����

a

b

The dot product of two vectors is
|a| |b| cos θ where θ is the angle
between them.

Bilinear products: There are three different bilinear products of triplets, of which the two first are well
known from ordinary vector calculus,

a · b = a1b1 + a2b2 + a3b3 (dot product), (2.8)

a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) (cross product). (2.9)

Two triplets are said to be orthogonal when their dot product vanishes. Note that the cross product is defined
entirely in terms of the coordinates and that we do not in the rule itself distinguish between left-handed and
right-handed coordinate systems. Whether you use your right or left hand when you draw a cross product
on paper does not matter for the triplet product rule, as long as you consistently use the same hand for all
such drawings.
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The last one,

ab =
a1

a2
a3

 (b1, b2, b3) =
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 (tensor product), (2.10)

called the tensor product, is unusual in that it produces a (3 × 3) matrix from two triplets, but otherwise
�

.............................................................................................................
.................

..............
............

..........
.........

�
�
�
��

�����

�

a
b

a × b

θ

The cross product of two vectors
is a vector orthogonal to both,
of length |a| |b| sin θ , here drawn
using a right-hand rule.

it is perfectly well defined and useful to have around. It is nothing but an ordinary matrix product of a
column-matrix and a row-matrix, also called the direct product and sometimes in the older literature the
dyadic product. In section 2.8 we shall introduce more general geometric objects, called tensors, of which
the simplest are matrices of this kind. The tensor product, and tensors in general, cannot be given a simple
visualization on paper.

Further definitions
Besides the basic algebraic rules for triplets, a number of other definitions are useful in practical
calculations.

Volume product: The trilinear product of three triplets obtained by combining the cross product and
the dot product is called the volume product,

a × b · c = a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1. (2.11)

The right-hand side shows that the volume product equals the determinant of the matrix constructed from
the three vectors,

a × b · c =
∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ (volume product). (2.12)

The volume product is antisymmetric under exchange of any pair of vectors. Its value is the (signed) volume
��
��
��
	
	
	
	������

	
	
	
	

��
��
��

	
	
	
	

a

b c

Three vectors spanning a paral-
lelepiped.

of the parallelepiped spanned by the vectors.

Square and norm: The square and the norm are standard definitions

a2 = a · a = a2
1 + a2

2 + a2
3 (square), (2.13)

|a| =
√

a2 =
√

a2
1 + a2

2 + a2
3 (norm or length). (2.14)

This definition of the norm is closely related to the form of the Cartesian distance (2.4) which may now be
written d(a, b) = |a − b|.

Vector derivatives: Various types of derivatives involving triplets may also be defined,

∂a
∂s

=
(
∂a1

∂s
,
∂a2

∂s
,
∂a3

∂s

)
(scalar derivative), (2.15)

∂

∂a
=

(
∂

∂a1
,
∂

∂a2
,
∂

∂a3

)
(vector derivative). (2.16)

In the first line, the derivative of a triplet after a parameter is defined. In the second line, a symbolic notation
is introduced for the three derivatives after a triplet’s coordinates (see problem 2.9 for simple uses of this
notation).

Norm of a matrix: The norm of an arbitrary (3 × 3) matrix AAA = {ai j },

|AAA| =
√∑

i j

a2
i j (matrix norm), (2.17)

can sometimes be useful in inequalities. This definition makes sense because the norm of a tensor product
is then the product of the norms of the factors, |ab| = |a| |b|.
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2.5 Basis vectors
The coordinate axes of a Cartesian coordinate system are straight lines with a common origin 0 = (0, 0, 0)
and directions,

e1 = (1, 0, 0), (2.18a)

e2 = (0, 1, 0), (2.18b)

e3 = (0, 0, 1). (2.18c)

These triplets are called the basis vectors of the coordinate system2, or just the basis, and every position x

�

�

�
�
�
��

1

2

3


�
��
� �

x

0

�

� �
x1

x2

x3

e1

e2

e3

Visualization of the Cartesian
coordinate system.

may trivially be written as a linear combination of the basis vectors with the coordinates as coefficients,

x = x1e1 + x2e2 + x3e3. (2.19)

The basis vectors are normalized and mutually orthogonal,

|e1| = |e2| = |e3| = 1, (2.20)

e1 · e2 = e2 · e3 = e3 · e1 = 0. (2.21)

Using these relations and (2.19) we find

x1 = e1 · x, (2.22a)

x2 = e2 · x, (2.22b)

x3 = e3 · x, (2.22c)

showing that the coordinates of a point may be understood as the normal projections of the point on the
axes of the coordinate system.

�

�

�
�
�
��

x

y

z


�
��
� �

x

0

�

� �
x

y

z

ex
ey

ez

A Cartesian coordinate system
with axes labelled x , y and z. Completeness of basis

Combining (2.19) with (2.22) we obtain the identity

e1(e1 · x)+ e2(e2 · x)+ e3(e3 · x) = x,

valid for all x. Since this is a linear identity, we may remove x and express this completeness relation in a
compact form by means of the tensor product (2.10),

e1e1 + e2e2 + e3e3 = 111, (2.23)

where on the right-hand side the symbol 111 stands for the (3 × 3) unit matrix3.

Handedness
It must be emphasized that the handedness of the coordinate system has not entered the formalism.
Correspondingly, the volume of the unit cube,

e1 · e2 × e3 = +1, (2.24)

is always +1, independent of whether you call the hand you write with the left or the right.

2In some texts the basis vectors are symbolized by the coordinate label with a hat above: 1̂, 2̂, and 3̂.
3To distinguish a matrix from a triplet, the matrix symbol will be written in heavy unslanted san serif boldface. The

distinction is unfortunately not particularly visible in print. With pencil on paper, (3 × 3) matrices are sometimes marked

with a double bar (1) or a double arrow (
←→
1 ).
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2.6 Index notation
Triplet notation for vectors is sufficient in most areas of physics, because physical quantities are mostly
scalars (i.e. single numbers like mass) or vectors such as velocity, but sometimes it is necessary to use a more
powerful and transparent notation which generalizes better to more complex expressions and quantities. It
is called index notation or tensor notation, and consists in all simplicity of writing out the coordinate indices
explicitly wherever they occur. Instead of thinking of a position as a triplet x, we think of it as the set of
coordinates xi with the index i running implicitly over the coordinate labels, i = 1, 2, 3 or i = x, y, z,
without having to state it every time.

Algebraic operations
Triplet and index notations coexist quite peacefully as witnessed by the linear operations

(sa)i = sai , (2.25)

(a + b)i = ai + bi , (2.26)

(a − b)i = ai − bi . (2.27)

For the scalar product we let the sum range implicitly over the coordinate labels,

a · b =
∑

i

ai bi . (2.28)

In full-fledged tensor calculus even the summation symbol is left out and understood as implicitly present
for all indices that occur precisely twice in a term. We shall, however, refrain from doing so here.

The Kronecker delta
The collection of nine scalar products of basis vectors has two indices that each run implicitly over the three
coordinate labels, and is written

ei · e j = δi j . (2.29)

The expression δi j is the unit matrix in index notation,

δi j =
{

1 for i = j

0 otherwise
, (2.30)

also called the Kronecker delta. This is the first example of a true tensor of rank 2. Another is the tensor Leopold Kronecker (1823–
1891). German mathematician,
contributed to the theory of
elliptic functions, algebraic
equations, and algebraic num-
bers.

product (2.10) of two vectors, which takes the form

(ab)i j = ai b j . (2.31)

It is, in fact, not enough for a tensor just to have two (or more) indices, but it suffices for now. In section
2.8 we shall see what really characterizes tensors.

The Levi-Civita symbol
The trilinear volume product (2.11) becomes a triple sum over indices,

a × b · c =
∑
i j k

εi j k ai b j ck , (2.32)

with 27 coefficients,

εi j k =


+1 i j k = 123 231 312,

−1 i j k = 132 213 321,

0 otherwise.

(2.33)

Copyright © 2005 IOP Publishing Ltd.



20 2. SPACE AND TIME

The symbol εi j k is, in fact, a tensor of third rank, called the Levi-Civita symbol.
Finally, the cross product (2.9) may be written as a double sum over two indices of the form,

(a × b)i =
∑
j k

εi j k a j bk . (2.34)

Mostly we shall avoid this complicated notation, although it does come in handy in general discussions.Tullio Levi-Civita (1873–1941).
Italian mathematician, con-
tributed to differential calculus,
relavitivy, and founded (with
Ricci) tensor analysis in curved
space.

2.7 Cartesian coordinate transformations
The same Euclidean world may be described geometrically by different observers with different reference
frames. Each observer constructs his own preferred Cartesian coordinate system and determines all
positions relative to that. Every observer thinks that his basis vectors have the simple form (2.18) and
satisfy the same orthogonality and completeness relations. Every observer believes he is right-handed.
How can they ever agree on anything with such a self-centred view of the world?

The answer is—as indicated in section 2.3—that the two descriptions are related by a coordinate
transformation (2.2). Since the distance between any two points is independent of the coordinate system,
the shortest paths must coincide, and straight lines must be mapped onto straight lines by any Cartesian
coordinate transformation. Seen from one Cartesian coordinate system, which we shall call the ‘old’, the
axes of another Cartesian coordinate system, called the ‘new’, will therefore also appear to be straight lines
with a common origin. Furthermore, since the scalar product of two vectors can be expressed in terms of
the norm (problem 2.5), it must—like distance—be independent of the specific coordinate system, such
that the new axes will also appear to be orthogonal in the geometry of the old coordinate system. Different
observers will thus agree that their respective coordinate systems are indeed Cartesian.



�

���

���
�
��


�

old

new

The old and the new Cartesian
systems. Simple transformations

We begin the analysis of coordinate transformations with the familiar elementary transformations:
translation, rotation and reflection. These transformations are of the general form (2.2), expressing the
coordinates of a geometrical point in the new system as a function of the coordinates of the same point in
the old. The simple transformations are related to a special choice of coordinate axes, and similar simple
transformations may be defined for other choices.

Simple translation: A simple translation of the origin of coordinates along the x-axis by a constant
amount c is given by

x ′ = x − c, (2.35a)

y′ = y, (2.35b)

z′ = z. (2.35c)

The axes of the new coordinate system are in this case parallel with the axes of the old.

� x, x ′

�
y

�
y′

�x, x′

c

Simple translation of the coordi-
nate system by c along the x-axis.

Simple rotation: A simple rotation of the coordinate system through an angle φ around the z-axis is
described by the transformation

x ′ = x cos φ + y sinφ, (2.36a)

y′ = −x sinφ + y cos φ, (2.36b)

z′ = z. (2.36c)

In this case the z-axes are parallel in the old and the new systems.� x

�
y

�
�
�
�
�
��

x ′

�
�

�
�
�
��

y′

φ
..........
..........
.............

.....

�x, x′

....

....

....

....

....

....

....

....

....

....

......
......

......
..

Simple rotation of the coordinate
system around the z-axis (point-
ing out of the paper) through an
angle φ.

Simple reflection: A simple reflection in the yz-plane is described by

x ′ = −x,

y′ = y,

z′ = z.

(2.37)
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A simple reflection always transforms a right-handed coordinate system into a left-handed one, and vice-
versa, independent of which hand you may claim to be the right one.

General transformations
�

�

� xx ′

y, y′

�x, x′

A simple reflection in the yz-
plane.

Let the new Cartesian coordinate system be characterized (in the old) by its origin c and its three orthogonal
and normalized basis vectors a1, a2, and a3, satisfying the usual relations,

|a1| = |a2| = |a3| = 1

a1 · a2 = a2 · a3 = a3 · a1 = 0

}
. (2.38)

A position x′ = (x ′
1, x ′

2, x ′
3) in the new coordinate system must then correspond to the (old) position,

x = c + x ′
1a1 + x ′

2a2 + x ′
3a3. (2.39)

The new coordinates are obtained by multiplying from the left with the new basis vectors and using
orthonormality (2.38)

x ′
1 = a1 · (x − c) = a11(x1 − c1)+ a12(x2 − c2)+ a13(x3 − c3),

x ′
2 = a2 · (x − c) = a21(x1 − c1)+ a22(x2 − c2)+ a23(x3 − c3),

x ′
3 = a3 · (x − c) = a31(x1 − c1)+ a32(x2 − c2)+ a33(x3 − c3),

where ai j = (ai ) j are the coordinates of the new basis vectors. This is the most general coordinate
transformation between any two Cartesian coordinate systems. It is not very difficult to show that the most
general transformation may be composed from a sequence of simple transformations (problem 2.22).


 e1

�
e2

�
��

e3

���� a1

�
���

a3


�

a2

�
�
�
�
��

		
		

	
�
c

x

x′

old

new

Arrangement of the old and new
coordinate systems.

Using index notation, the general coordinate transformation may be written,

x ′
i =

∑
j

ai j (x j − c j ). (2.40)

It is characterized by the translation vector c = {ci } and the transformation matrix AAA = {ai j } with
ai j = (ai ) j having the new basis vectors as rows. In matrix notation the transformation becomes even

more compact4,

x′ = AAA · (x − c). (2.41)

The transformation matrix for a simple translation along the x-axis (2.35) is just the unit matrix, AAA = 111,
whereas for a simple rotation around the z-axis (2.36) we obtain the non-trivial matrix,

AAA =
 cos φ sinφ 0

− sinφ cos φ 0
0 0 1

 . (2.42)

A simple reflection in the yz-plane (2.37) is characterized by a diagonal transformation matrix with
(−1, 1, 1) along the diagonal.

Orthogonality and completeness of the new basis
The orthogonality and completeness of the new basis vectors imply that

ai · a j = δi j , (2.43)

a1a1 + a2a2 + a3a3 = 111. (2.44)

4In ordinary mathematical matrix calculus one would not use the dot to indicate multiplication (nor to indicate a scalar
product), but this notation is quite natural for the three-dimensional vectors and matrices that we encounter so often in
physics.
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In index notation these two relations take the form,∑
k

aik a jk =
∑

k

aki akj = δi j , (2.45)

which in matrix notation become the usual conditions for the matrix to be orthogonal,

AAA · AAA = AAA · AAA = 111. (2.46)

Here (AAA)i j = (a j )i = a j i is the transposed matrix having the new basis vectors as columns. Since

AAA−1 = AAA, the second of the above relations actually follows from the first. Orthogonality of the basis
implies completeness.

The transposed matrix has the same determinant as the original matrix and the determinant of a product
of matrices is the product of the determinants. Calculating the determinant of (2.46) we obtain (det AAA)2 = 1,
or

detAAA = ±1. (2.47)

The transformation matrices are thus divided into two completely separate classes, those with determinant
+1, called rotations or sometimes proper rotations, and those with determinant −1, generically called
reflections. Since the simple reflection (2.37) has determinant −1, all reflections may be composed of a
simple reflection followed by a rotation.

2.8 Scalars, vectors and tensors
Geometric quantities may be classified according to their behaviour under pure rotations. When you rotate
the coordinate system the world stays the same; it is only the way you describe it that changes. Some
geometrical quantities, for example the distance between two points, are unaffected by a rotation; others,
like the coordinates of your current position, will change.

Scalar quantities
A single quantity S is called a scalar, if it is invariant under rotation

S′ = S. (2.48)

Thus the distance, the norm and the dot product are scalars. In physics the natural constants, material
constants, as well as mass and charge are scalars.

Vector quantities
Any triplet of quantities, V , is called a vector, if it transforms under rotation according to

V ′
i =

∑
j

ai j V j , (2.49)

or equivalently in matrix form,

V ′ = AAA · V . (2.50)

In physics, velocity, acceleration, momentum, force, and many other quantities are vectors in this sense.
The coordinates x of a point may also be called a vector according to this definition, but this is only correct
in Cartesian coordinate systems, and would be very wrong in curvilinear coordinates or curved spaces.

The above definition of a vector demonstrates that triplets must have special transformation properties
to qualify as vectors. A triplet containing your weight, your height, and your age, is not a vector but a
collection of three scalars.
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Tensor quantities
Using the vector transformation (2.49) the tensor product of two vectors V W is found to transform
according to the rule,

(V ′W ′)i j = V ′
i W ′

j =
∑

k

aik Vk

∑
l

a j l Wl

 =
∑
kl

aik a j l Vk Wl .

In the last step we have reordered the sums into a convenient form.
More generally, any set of nine quantities arranged in a matrix

TTT = {Ti j } =
T11 T12 T13

T21 T22 T23
T31 T32 T33

 (2.51)

is called a tensor of rank 2, provided it obeys the transformation law,

T ′
i j =

∑
kl

aik a j l Tkl , (2.52)

which in matrix form may be written,

TTT′ = AAA · TTT · AAA. (2.53)

In physics, the moment of inertia of an extended body and the quadrupole moment of a charge distribution
are well-known tensors of second rank.

Tensors of higher rank may be constructed in a similar way. A tensor of rank r has r indices and is a
collection of 3r quantities that transform as the direct product of r vectors. We have so far only met one
third rank tensor, the Levi-Civita symbol (2.33) (see problem 2.24). When nothing else is said, a tensor is
always assumed to be of rank 2.

2.9 Scalar, vector and tensor fields
In continuum physics the basic quantities are functions of the spatial coordinates, called fields, which may
also be classified according to their behaviour under rotation. The transformation laws are quite similar to
the ones above, the only difference being that the coordinates of the spatial position must also transform.

For scalar, vector and tensor fields we thus have (with x′ = AAA · x),

S′(x′) = S(x), (2.54a)

V ′(x′) = AAA · V (x), (2.54b)

TTT′(x′) = AAA · TTT(x) · AAA. (2.54c)

These definitions express that the new fields in the new position are obtained from the old fields in the old
position by transforming them according to their type. In the following chapters we shall meet a number of
such fields, such as the scalar mass density field, the vector velocity field and the tensor stress field.

Gradient, divergence and curl
In Cartesian coordinates a special symbol is introduced for the triplet of spatial derivatives, called the
gradient operator or nabla,

∇ = ∂

∂x
=

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
. (2.55)

Apart from being a differential operator, ∇ acts in all respects as a vector (see problem 2.16).
When this operator acts on a scalar field S(x) it creates a vector field, called the gradient of S,

∇S = (∇1S,∇2S,∇3S) =
(
∂S

∂x1
,
∂S

∂x2
,
∂S

∂x3

)
, (2.56)
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where we for clarity have suppressed the explicit dependence on the spatial coordinates x. Similarly, by
dotting ∇ with a vector field V (x) we obtain a scalar field, called the divergence of V ,

∇ · V = ∇1V1 + ∇2V2 + ∇3V3 = ∂V1

∂x1
+ ∂V2

∂x2
+ ∂V3

∂x3
. (2.57)

Finally, if we use the gradient operator as the left-hand component in the cross product (2.9) with a vector
field V (x) we obtain another vector field, called the curl of V ,

∇ × V = (∇2V3 − ∇3V2,∇3V1 − ∇1V3,∇1V2 − ∇2V1). (2.58)

Various combinations of these three operations obey important identities (see problem 2.15)5.
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y′z

z′�x′
x

A complete reflection of the
coordinate system in the origin.
A rotation through π around the
x-axis converts this to a simple
reflection in the yz-plane.

∗ 2.10 Pseudo- and improper quantities
Geometric quantities may be further subclassified according to their behaviour under reflection and
translation. Quantities that transform non-trivially under reflection are called pseudo-quantities whereas
quantities that transform non-trivially under translation are said to be improper.

Classification under reflections
Instead of a simple reflection in the yz-plane, we shall use a complete reflection of the coordinate system
through its origin,

x′ = −x. (2.59)

Geometrically, the reflection in the origin may be viewed as a composite of three simple reflections along
the three coordinate axes, or as a simple reflection of a coordinate axis followed by a simple rotation through
π around the same axis.
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 V , V ′

A polar vector retains its geomet-
ric placement under a reflection
of the coordinate system in the
origin.

Polar vectors: A vector which obeys the usual transformation equation (2.49) under rotation as well
as under reflection is called a polar vector. Under a reflection in the origin, the coordinates of a polar
vector change sign just like the coordinates of a point, i.e. V ′ = −V . Since the coordinate axes all
reverse direction, the geometrical position in space of a polar vector is unchanged by a reflection of the
coordinate system and the vector may faithfully be represented by an arrow, also under reflection. In
physics, acceleration, force, velocity and momentum are all polar vectors.
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Geometrically, an axial vector
has its geometric direction re-
versed under a reflection of the
coordinate system in the origin
because it has the same coordi-
nates in the reflected system as in
the original.

Axial vectors: There is, however, another possibility. The cross product of two polar vectors, U =
V × W , behaves differently than a polar vector under a reflection. According to our rules for calculating
the cross product, which are the same in all coordinate systems, we find

U ′ = V ′ × W ′ = (−V )× (−W ) = V × W = U, (2.60)

without the expected change of sign. Since U behaves normally under rotation with determinant +1,
we conclude that the missing minus sign is associated with any transformation with determinant −1, in
other words with any reflection. Generalizing, we define an axial vector U as a set of three quantities,
transforming according to the rule

U ′
i = det AAA

∑
j

ai j U j , (2.61)

under a Cartesian coordinate transformation. The extra determinant eliminates the overall sign change
otherwise associated with reflections in the origin. In physics, angular momentum, moment of force and
magnetic dipole moments are all axial vectors.

The basis vectors of the old coordinate system have the coordinates, e′
i = −ei , in the new (reflected)

coordinate system. Basis vectors are proper geometric quantities and always transform as polar vectors

5In the older literature the gradient, divergence and curl are often denoted by ∇S = grad S, ∇ · V = div V and
∇ × V = curl V or ∇ × V = rotV . This notation is now all but obsolete.
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under reflection. One may easily get confused by the fact that the new basis vectors in the new system have
(by definition) the same coordinates ei as the old basis vectors in the old system, but it would be a mistake
to take this to mean that the basis vectors are axial.

The geometric direction of an axial vector depends on what we choose to be right and left. It is for
this reason wrong to think of an axial vector as an arrow in space. Geometrically, it has magnitude
and direction, but not sense, meaning that the positive direction of an axial vector is not a geometric
property, but a property fixed by convention which changes under a reflection of the coordinate
system. For consistency all humans (even the British) have agreed that one particular coordinate
system and all coordinate systems that are obtained from it by proper rotation are right-handed,
whereas coordinate systems that are related to this class by reflection are left-handed. We do not
know whether non-human aliens would have adopted the same convention, but should we ever meet
such beings we would be able to find the correct transformation between our reference frames and
theirs.

Pseudo-scalars: The volume product of three polar vectors P = a · b × c is a scalar quantity which
changes sign under a reflection of the coordinate system because the cross product is an axial vector which
does not change sign. More generally a pseudo-scalar transforms like

P ′ = detAAA P, (2.62)

under an arbitrary rotation or reflection.
The sign of a pseudo-scalar is not absolute, but depends on the handedness of the coordinate system,

and thus on convention. One might think that physics had no use for such quantities, because after all
physics itself does not depend on coordinate systems, only its mathematical description does. Nevertheless,
magnetic charge, if it is ever found, would be pseudo-scalar, and more importantly some of the familiar
elementary particles, for example the pi-mesons, are described by pseudo-scalar fields.

Pseudo-tensors: Axial vectors are also called pseudo-vectors, and one may similarly define pseudo-
tensors of higher rank. The Levi-Civita symbol is a pseudo-tensor of third rank (problem 2.24).

Classification under translation
A true vector may always be viewed as the difference between two positions v = b−a, and is thus invariant
under a pure translation x → x′ = x − c. Such vectors are called proper. Triplets that transform as vectors
under rotations but change under translations, like the position x itself, are called improper. In physics
electric dipole moments are improper polar vectors, whereas angular momentum, moment of force, and
magnetic dipole moments are improper axial vectors.

Problems
2.1 Any distance function must satisfy the axioms

d(a, a) = 0, (2.63a)

d(a, b) = d(b, a), (symmetry) (2.63b)

d(a, b) ≤ d(a, c)+ d(c, b). (triangle inequality) (2.63c)

Show that a distance function defined by step counting satisfies these axioms.

2.2 Let a = (2, 3,−6) and b = (3,−4, 0). Calculate

(a) the lengths of the vectors,

(b) the dot product,

(c) the cross product,

(d) and the tensor product.
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2.3 Are the vectors a = (3, 1,−2), b = (4,−1,−1) and c = (1,−2, 1) linearly dependent (meaning
that there exists a non-trivial set of coefficients such that αa + βb + γ c = 0)?

2.4 Calculate the distance between two points on Earth in terms of longitude α, latitude δ and height h
over the average sea level.

2.5 Show that

|a · b| ≤ |a| |b| , (2.64a)

|a + b| ≤ |a| + |b| . (2.64b)

2.6 Show that

(a × b · c) (d × e · f ) =
∣∣∣∣∣∣
a · d a · e a · f
b · d b · e b · f
c · d c · e c · f

∣∣∣∣∣∣ . (2.65)

2.7 Show that

a × b · c = b × c · a = c × a · b, (2.66)

(a × b)× c = (a · c) b − (b · c) a, (2.67)

(a × b) · (c × d) = (a · c)(b · d)− (a · d)(b · c), (2.68)

|a × b|2 = |a|2 |b|2 − (a · b)2. (2.69)

2.8 Show that (with the normal definition of the matrix product) the following relations make sense for
the tensor product

(ab) · c = a(b · c) (2.70)

a · (bc) = (a · b)c (2.71)

This is sometimes quite useful.

2.9 Show that

∂(a · b)
∂a

= b (2.72)

and that

∂ |a|
∂a

= a
|a| . (2.73)

2.10 Show that

(a · b × c)d = (a · d)b × c + (b · d)c × a + (c · d)a × b (2.74)

for arbitrary vectors a, b, c, and d.

2.11 Show that ∑
i

δii = 3 (2.75)

∑
j

δi j δ j k = δik (2.76)
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2.12 Show that ∑
i

∇i xi = 3, (2.77)

∇i x j = δi j , (2.78)

∇i ∇ j (xk xl ) = δikδ j l + δilδ j k, (2.79)

2.13 Show that the Levi-Civita symbol is completely antisymmetric in all three indices,

εi j k = −εikj = −ε j ik = −εkj i . (2.80)

2.14 Show that the product of two Levi-Civita symbols is (see problem 2.6)

εi j k εlmn =
∣∣∣∣∣∣
δil δim δin
δ j l δ jm δ j n
δkl δkm δkn

∣∣∣∣∣∣
= δilδ jmδkn + δimδ j nδkl + δinδ j lδkm

− δinδ jmδkl − δilδ j nδkm − δimδ j lδkn

(2.81)

and derive from this ∑
k

εi j k εlmk =
∣∣∣∣δil δim
δ j l δ jm

∣∣∣∣ = δil δ jm − δimδ j l , (2.82)

∑
j k

εi j k εl j k = 2δil , (2.83)

∑
i j k

εi j k εi j k = 6. (2.84)

2.15 Prove the following relations involving the nabla operator (here � is a scalar field and v a vector
field),

∇ · (∇ × v) = 0, (2.85)

∇ × (∇�) = 0, (2.86)

∇ × (∇ × v) = ∇(∇ · v)− (∇ · ∇)v. (2.87)

Where in these relations does it make sense to remove the parentheses?

2.16 Show that the nabla operator (2.55) transforms as a vector, ∇′
i = ∑

j ai j ∇ j under an arbitrary
rotation.

2.17 Show that the trace
∑

i Tii of a tensor is invariant under a rotation.

2.18 Show that the Kronecker delta transforms as a tensor.

2.19 Show that the distance |x − y| is invariant under any transformation between Cartesian coordinate
systems.

∗ 2.20 Show that if Wi = ∑
j Ti j V j and if it is known that W is a vector for all vectors V , then Ti j must

be a tensor. This is called the quotient rule.

∗ 2.21 Consider two Cartesian coordinate systems and make no assumptions about the transformation
x′ = f (x) between them. Show that the invariance of the distance,∣∣x′ − y′∣∣ = |x − y| , (2.88)

implies that the transformation is of the form x′ = AAA · x + b where AAA is an orthogonal matrix.
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∗ 2.22 Show that the general Cartesian coordinate transformation may be built up from a combination of
simple translations, rotations and reflections.

∗ 2.23 Show that under a simple rotation, a tensor Ti j transforms into

T ′
x x = cos φ(Tx x cos φ + Txy sinφ)+ sinφ(Tyx cos φ + Tyy sinφ), (2.89a)

T ′
xy = cos φ(−Tx x sinφ + Txy cos φ)+ sinφ(−Tyx sinφ + Tyy cos φ), (2.89b)

T ′
xz = cos φTxz + sinφTyz, (2.89c)

T ′
yx = − sinφ(Tx x cos φ + Txy sinφ)+ cos φ(Tyx cos φ + Tyy sinφ), (2.89d)

T ′
yy = − sinφ(−Tx x sinφ + Txy cos φ)+ cos φ(−Tyx sinφ + Tyy cos φ), (2.89e)

T ′
yz = − sinφTxz + cos φTyz , (2.89f)

T ′
zx = Tzx cos φ + Tzy sinφ, (2.89g)

T ′
zy = −Tzx sinφ + Tzy cos φ, (2.89h)

T ′
zz = Tzz . (2.89i)

∗ 2.24 Show that

(a) the Levi-Civita symbol satisfies ∑
lmn

ail a jmaknεlmn = detAAA εi j k (2.90)

where AAA is an arbitrary matrix.

(b) the Levi-Civita symbol (which by the definition of the cross product must be invariant, ε′i j k = εi j k )
obeys the rule

ε′i j k = εi j k = detAAA
∑
lmn

ail a jmaknεlmn (2.91)

for an arbitrary coordinate transformation (which has det AAA = ±1).

(c) the cross product of two vectors W = U × V must transform like

W ′
i = detAAA

∑
j

ai j W j (2.92)
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T he f or ce of gr avi t y det e r m i nes t o a l arge ext e nt t he way w e l ive . I t i s cer t a i nl y t he f or ce about w hi c h w e
have t he best i nt ui t ive under s t a ndi ng. We l ear n t he har d wa y t o r i s e a gai nst i t as smal l c hi l dr e n, t o keep i t
at bay a s a dul t s , onl y t o be br ought dow n by i t i n t he e nd. A f ew peopl e have exper i enced t r ue absence of
gravity for l onger periods of time i n satellites orbiting t he E arth or r ockets coasting t owards the Moon.

N ew t on gave us t he t heor y of gr avi t y and t he mat hemat i c s t o deal w i t h i t . I n a wor l d w her e t hi ngs
onl y s eem t o get done by push a nd pul l , man s uddenl y had t o accept t hat t he E a r t h c oul d act on t he di s t a nt
Moon— and t he Moon back on E a r t h. A f t e r N ew t on eve r ybody had t o s uppr ess a f eel i ng of hor r or f or act i on
at a di s t ance and accept t hat gravi t y i nst ant aneousl y coul d j ump across t he empt i ness of s pace and t ug at
di st ant bodi es. I t t ook mor e t han t wo cent ur i es and t he geni us of E i nst e i n t o undo t hi s l ear ni ng. T her e i s no
act i on at a di st ance. A s w e under s t and i t t oday, gr avi t y i s medi at ed by a fi el d w hi ch emerges f r om m assive
bodi es and i n t he manner of l i ght t a ke s t i m e t o t r ave l t hr ough a di s t a nce. I f t he S un w e r e suddenl y t o bl i nk
out of exi s t e nce, i t woul d t ake e i ght l ong mi nut es bef or e dayl i ght wa s s w i t c hed off and t he E a r t h s et f r e e i n
space.

I n t hi s chapt e r w e s hal l st udy t he i nt er pl ay bet w een mass and t he i nst ant a neous N ew t oni an fi e l d of
gr avi t y, a nd der ive t he e quat i ons gove r ni ng t hi s fi el d a nd i t s i nt e r act i ons w i t h mat t e r. S ome basi c know l edge
of gravity is assumed i n advance, and t he presentation i n t hi s chapt er ai ms mainly to develop element ary
aspect s of fi el d t heor y i n t he comf or t a bl e e nvi r onment of N ew t oni an gr avi t y. Mor e a dvanced concept s w i l l
be deve l oped i n c hapt er 6.

3.1 Mass density
I n t he c ont i nuum appr oxi mat i on t he mass densi t y i s a fi el d, ρ(x, t) , assumed t o exist everywhere in space
and at all times. If t here is no mass in a region, the mass density simply vani shes. Knowing this field, we
may cal culate the mass of a material particle occupying a smal l vol ume dV  ar ound t he poi nt x at time t ,

d M  = ρ(x, t) dV . (3.1)

We shal l per mi t our sel ves t o suppr ess t he space and t i m e var i abl es and j ust w r i t e d M  = ρ dV  , w heneve r
such not at i on i s unambi guous.
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dV

d M

�
The volume dV occupied by a
material particle may take any
shape, here cubical. The nominal
position of the particle x may
be chosen anywhere within the
volume.

Although we usually think of the mass density field as varying smoothly throughout space, it is
sometimes convenient to allow for discontinuous boundaries in material bodies (an example is shown in
figure 3.1 on page 31). Often these discontinuities are ‘real’ in the sense that the transition between different
materials may happen on the molecular scale, as for example at the interface between two solid bodies that
touch each other.

In section 1.2 we discussed the continuum approximation and concluded that there are two length
scales, Lmicro and Lmacro, that depend on the measurement precision. If dV � L3

micro, the
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molecular structure may be disregarded, and if the l engt h scal e for major density changes i s l arger
than Lmacro , t he densi t y i s eff ect ivel y c ont i nuous and t he shape of t he mi ni mal vol ume dV  does not
matter.

To tal mass a nd centre o f mass
Mass density is a local quantity, defi ned i n every poi nt of space. The t ot al mass in a vol ume V is a gl obal
quantity obt ai ned mat hematically by integrating t he mass density over V ,................................................................................................................................... ............. .................. ....... ....... .... ....... .. .. .......................... .................... ............................................................
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V

dV

T he t ot al mass i n a vol ume i s
obt ai ned by i nt egr a t i ng ( ‘ s um-
ming’) over all material particles
i n t he vol ume. T he i nt egr a l s i gn∫

is in fact a stylized version of
the letter S (for ‘sum’).

M =
∫

V
d M  =

∫
V
ρ(x, t) dV . (3.2)

P hysi cal l y t he i nt egr a l s houl d be under s t ood as an appr oxi mat i on t o a huge sum ove r t he t i ny, t hough not
t r ul y i nfi ni t e si mal , mat e r i al par t i c l e s c ont ai ned i n t he vol ume. I f t he densi t y depends on t i m e or i f t he
volume changes shape and size with time, the t ot al mass may depend on time.

I n cont i nuum physi c s t he mat e r i al cont ai ned i n any vo l u m e V may be vi ew e d a s a ‘ body’ , a nd t he cent re
of m ass of such a body is naturally defi ned from t he average of t he position x over all material particles,

xM = 1

M

∫
V

x d M  = 1

M

∫
V

x ρ(x, t) dV . (3.3)

I n t he N ew t oni an mechani c s of par t i c l e s a nd st i ff bodi es, t he cent r e of m ass of a body pl ays a n i mpor t a nt
r ol e , because i t move s l i ke a poi nt par t i c l e under t he i nfl uence of t he t ot al f or c e act i ng on t he body ( s ee
appendi x A ) . Al t hough t hi s i s al so t r ue i n cont i nuum mechani c s, i t i s not near l y as usef ul because t he s hape
of a body may c hange dr ast i cal l y ove r l onger t i m e- spans. T hi nk f or exampl e of a bucket of oi l t hr ow n i nt o
a wat er fa l l . I t may not alwa ys be physi cal l y meani ngf ul t o speak about a w el l - defi ned ‘ body of oi l ’ at l a t e r
times.

Spheri cal s ystems
Planets like E arth or stars like the Sun are in the fi rst approximation spherically symmetric. S pherical
symmet r y i mpl i es t hat t he mass densi t y ρ at any poi nt x onl y depends on t he di s t a nce r = | x − c| to the
cent r e c, w hi ch f or s ymmet r y r easons must al so be t he cent r e of m ass. U s ual l y t he or i gi n of t he coor di nat e
syst em i s chosen t o be at t he cent r e s uch t hat c = 0. For a s i m pl e s pher i cal pl anet w i t h r a di us a and c onst a nt
densi t y ρ0 we have

ρ(r) =
{
ρ0 r < a

0 r > a
. (3.4)

S uch a di s t r i but i on m i ght be used f or a nal yt i c cal cul a t i ons f or a smal l r ock pl a net l i ke t he Moon, but
defi ni t e l y not f or t he E a r t h.

In figure 3.1 the mass density of the E arth is plotted (fully drawn) as a function of the central distance.
It cannot be measured directly, but is inferred from a combination of surface observations and modelling.
For a nal yt i c cal cul a t i ons, i t s mass di st r i but i on m ay be appr oxi mat e d by t wo l a yer s of const a nt densi t y,
ρ1 = 10. 9 g cm−3 in the core and ρ 2 = 4. 4 g cm−3 i n t he m ant l e ( s ee pr obl em 3. 7) .Galileo Galilei (1564–1642).

I t al i an nat ural phi l osopher,
ast ronom er, m at hem at i c i an, and
craf t s m an. C arri ed out gravi t y
experiments with falling objects
and inclined planes. Built better
t e l e scopes t han any bef ore hi m .
T he firs t t o s ee t he m ount ai ns of
t he M oon, t he l arge m oons of
Jupiter, and that the Milky Way is
m ade f rom st ars. C onsi dered t he
father of the modern scientific
m e t hod.

3.2 Gravitational acceleration
Galileo f ound empirically that all bodies fall in the same way, i ndependent of their mass. In Newton’s
language this shows that the force of gravity on a body is proportional to its mass. For a material particle
of mass d M = ρdV the force of gravity may be written

d� = g(x, t) d M = ρg dV, (3.5)

where g(x, t) is called the gravitational acceleration field, or just gravity. The last form shows that gravity
is a body force (also called a volume force) which acts everywhere in a body with a density of force
f = d�/dV  = ρ g . I n fi gur e 3. 3 on page 35 t he m agni t ude of E a r t h’s gr avi t y i s pl ot t e d a s a f unct i on
of the distance from the centre of the Earth.
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Figure 3.1. The mass density of the Earth as a function of distance r from the centre with the surface at
r = 6371 km (from the standard Earth model [41]). There is a sharp break in the density at the transition
between the iron core and the stone mantle at r = 3485 km, and a smaller break at r = 1216 km between
the outer liquid iron core and the inner solid iron core. The broken lines indicate the average densities in
mantle and core.

In Newtonian physics the gravitational field imparts a common acceleration to all bodies. Given
the same initial conditions all material bodies will follow the same orbits in a gravitational field.
As a consequence there is no way we can distinguish between gravitational forces and the inertial
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dV

The weight of the matter in a
volume element dV is d� =
ρg dV .

(so-called fictitious) forces experienced in accelerated motion. The identical behaviour of all bodies
in a field of gravity allows one to look upon the gravitational field as a property of space and time,
rather than simply a vehicle for gravitational interaction. The indistinguishability of gravity and
acceleration was raised to a fundamental law, the Principle of Equivalence, by Einstein in his General
Theory of Relativity from 1915, in which gravity reflects the geometric curvature of space and time
[78].

Total gravitational force and total moment of gravity
The field of gravity specifies the gravitational acceleration at every point of space and every instant of time.
The total gravitational force on a body of volume V , the weight of the body, is

� =
∫

V
ρg dV . (3.6)

The total force determines how the body as a whole moves. It is independent of the choice of origin of the
coordinate system, but depends like any other vector on its orientation. If ρ, g, or V change in the course
of time, the total force may also change.

The total moment of force of gravity relative to the coordinate origin is

� =
∫

V
x × ρg dV . (3.7)

The total moment determines how a body as a whole rotates around the origin. The moment depends not

�
�

��
��

d�

x
g

.............

..............

.............................................................................................

..................
......................................................

..................
...............
..............
....

.......
.......
.....
.......
...

....... ....... ...

dV

The moment of gravity for a
volume element dV is d� =
x × ρg dV .

only on the orientation of the coordinate system, but also on its origin. It is an improper axial vector. In a
translated coordinate system with origin in x = c, the coordinates are x′ = x − c, and the moment becomes

�
′ =

∫
V ′

x′ × ρ′ g′ dV ′ =
∫

V
(x − c)× ρg dV =�− c ×� , (3.8)
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where t he primed quantities all refer t o t he translat ed system. T hi s shows that t he t ot al m om e nt i s
i ndependent of t he choi ce of ori gi n of t he c oordi nat e s yst e m i f ( and onl y i f ) t he t ot al f orc e v ani shes .

Co ns ta nt g rav i ty
I n a c onst a nt gr avi t a t i onal fi el d g( x) = g0 , t he weight (3.6) becomes t he familiar

� = M g0, (3.9)

where M i s t he t ot al mass ( 3. 2) . I n const ant gr avi t y, i t i s cust omar y t o choose a ‘ fl at - ear t h’ coor di nat e
system with vertical z -axis, such that g0 = ( 0, 0,− g0) where g0 i s a posi t ive const a nt .

�

�

�
�
�
��

y

z

x

�

g0

A fl at -eart h coordi nat e syst em.
A t t he s ur face of E a r t h, gr avi t y i s ve r y cl ose t o bei ng const a nt w i t h magni t ude equal t o t he st andar d
gravity, defi ned by convention to be exactly g0 = 9. 80665 m s−2 with no uncertainty. T he actual
gravi t at i onal accel erat i on at t he surface of t he E art h depends on many fact ors, for exampl e l ocal mass
concent r at i ons and t he posi t i ons of t he Moon and S un ( s ee fi gur e 7. 1 on page 90) . T he gr avi t a t i onal
accel erat i on has been det ermi ned wi t h a r el at ive preci si on of 3 × 10−9 i n an exper i ment usi ng
atom interferometry [56]. Galileo’s law was verified in the same experiment to within 7 × 10−9 by
compar i ng t he measur ed va l ues of t he gr avi t a t i onal accel er at i on f or a m acr oscopi c body and f or a
cesi um at om, i n effect a modern versi on of hi s famous ‘l eani ng t ow er of P i sa’ experi ment .

T he m oment of f or ce may be expr essed i n t er ms of t he cent r e of m ass ( 3. 3) ,

� =
∫

V
x × ρ g0 dV  =

(∫
V
ρ x dV

)
× g0 = x M × M g 0. ( 3. 10)

T hi s show s t hat i n c onst a nt gr avi t y, t he t ot a l m oment i s t he same as t hat of a poi nt par t i c l e w i t h mass equal
t o t he t ot al mass of t he body, s i t uat ed at t he cent r e of m ass. I n a const ant gr avi t at i onal fi el d, t he m oment of
gravi t y cal cul at ed i n a coordi nat e syst em wi t h ori gi n at t he cent r e of mass must vani s h because xM = 0 in
these coordinates. T he moment of f orce in constant gravity is important for understanding the stability of
fl oat i ng bodi es ( c hapt er 5) .
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M g0

I n a c onst a nt gr avi t a t i onal fi el d
g0 , t he w e i ght of a body may
be vi ew ed as concent r at ed at t he
position of t he centre of mass,
xM .

Visualizing the gravitational field
A vi s ual i mpr e ssi on of t he gr avi t a t i onal fi el d m ay be give n by a pi ct ur e of t he field lines, defined to be
families of curves that at a given instant t0 have t he gr avi t a t i onal fi el d a s t angent ( s ee fi gur e 3. 2) . T hi s
means t hat t he cur ves ar e s ol ut i ons t o t he fi r s t - or der di ff e r e nt i a l e quat i on

d x
ds

= g( x, t0),  ( 3. 11)

where s i s a r unni ng par a met e r a l ong t he c ur ve . T hi s par amet er i s not t he t i m e, but has di mensi on of
t i me s quared because g has di m ensi on of l e ngt h per uni t of t i m e s quar e d. T he s ol ut i ons ar e of t he f or m
x = x( s, x0, t 0) with x 0 bei ng t he st ar t i ng poi nt at s = 0. T he fi el d l i nes f or m an i nst ant a neous pi ct ur e of
the fi eld at time t0 , and cannot be directly related t o particle orbits, as illustrated by t he nearly circular orbit
of a pl a net w hi ch i s ever yw her e or t hogonal t o t he fi e l d l i nes.

... ... .. ... .. ... .. ....... .. .. .............. .......
..... .................

................
...............

................
................

..............
.............

..............
.............

............
............

............
............

...........
...........
...........
...........
...........
...........
...........
...........
...........
..........

�����
�����

Field lines follow the instanta-
neous field everywhere. They are
very different from the orbits par-
ticles would follow through the
field. A thrown stone follows a
parabolic orbit as it falls to the
ground, whereas the field lines on
the surface of the Earth are verti-
cal.

Field lines have the very important property that they can never cross. For if two field lines crossed in
a point x, then by (3.11) there would have to be two different values of the gravitational field at the same
point, and that is impossible (except when the field vanishes, as it does in one point of figure 3.2). As will
be shown in the following section, all gravitational field lines have to come in from infinity and end on
masses, and we shall also see that field lines do not form closed loops.

3.3 Sources of gravity
The gravitational field tells us how gravity acts on material bodies. But what generates the gravitational
field? What is its source? The answer is—as most people are aware—that the field is generated by mass.
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Figure 3.2. The gravitational field (and some nearly circular equipotential surfaces) between Earth and
Moon. You should imagine rotating this picture around the Earth–Moon axis. The drawing is to scale,
except for two regions of 10 times the sizes of the Earth and the Moon that have been cut out for technical
reasons. The field lines are plotted everywhere with a density proportional to the field strength. The numbers
on the frame are coordinates centred on Earth in units of 1000 km. The Moon appears to have a streaming
‘mane of hair’ because all the field lines ending on its surface have to come in from spatial infinity and
cannot cross the lines of Earth’s field.

Quantitatively this is expressed by Newton’s law of gravity which says that the field from a point particle of
mass M at the origin of the coordinate system is

g(x) = −G M
x

|x|3 , (3.12)

where G is the universal gravitational constant. The negative sign asserts that gravitation is always
attractive, or equivalently that field lines always run towards masses. The last factor shows that the strength
of gravity decreases with the inverse square of the distance.
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Field lines around a point particle
all come in from infinity and
converge upon the particle.

The gravitational constant is hard to determine to high precision. The recommended [52] 1998
value, G = 6.673(10) × 10−11 N m2 kg−2, has an embarrassingly large uncertainty of more than
one part in 103. The inverse square law has been well tested at planetary distances during the
last centuries, but only recently at the submillimetre scale (see, for example Long et al , Nature
421, (2003) 922). The force of gravity is terribly weak compared to other forces. In the hydrogen
atom the ratio of the force of gravity to the electrostatic force (between electron and proton) is
4.4× 10−40. The only reason gravity can be observed at all is the nearly complete electric neutrality
of macroscopic bodies. Electrostatic and ‘gravistatic’ forces seem superficially alike in that they are
both inversely proportional to the square of the distance (which gives them infinite range; they are, in
fact, the only fundamental forces in nature with infinite range). But where electric charge can be both
positive and negative, mass is always positive, implying that there are no ‘neutral’ bodies unaffected
by gravity, nor bodies that are repelled by the gravity of other bodies (antigravity). Gravity and
electromagnetism are in fact very different at a deeper level, only completely revealed in General
Relativity.

Another basic property of gravity is that it is additive, so that matter—also from the point of view of
its gravity—may be viewed as a collection of material particles of mass d M = ρ dV , each contributing its
own little point-like field to the total. Using (3.12) but shifting the position of the source particle from the
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origin to an arbitrary point x′ , the collective gravitational fi eld due to all the material particles in a volume
V becomes an i nt egral ,

g( x) = −G
∫

V

x − x′
| x − x′|3 ρ(x

′) dV ′. ( 3. 13)

N ot e t hat t he i nt egr a nd has a si ngul ar i t y at x′ = x (when ρ(x) �= 0) . T hi s s i ngul ar i t y i s , how ever,
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T he vect ors i nvol ved i n cal cu-
lating the field in the position
x .

i nt egr abl e and c r eat es no pr obl em ( except pr obl em 3. 8) .

Fo rces between extended bodi es
T he expr essi on f or t he fi e l d ( 3. 13) br i ngs us f ul l ci r c l e . We a r e now a bl e t o cal cul a t e t he gr avi t a t i onal fi el d
from a mass distribution, as well as the force that this field exerts on anot her mass distribution, even on
itself. Substituting the field (3.13) into the force (3.6), and renaming the integration variables, the total
force by which a mass distribution ρ2 in the volume V2 acts on a mass distribution ρ 1 in V1 becomes,

�12 = −G
∫

V1

∫
V2

x1 − x 2
| x1 − x 2|3 ρ 1( x 1)ρ  2( x 2) dV1 dV2. ( 3. 14)

N ew t on’s t hi r d l aw i s f ul fi l l e d, �12 = −�21 , because t he i nt egr a nd i s ant i s ymmet r i c under exchange of
1 ↔ 2 due to the fi rst fact or. Consequently, t he force from a mass di stribution acting on itsel f vanishes, as
it ought to. For if this self-force did not vanish a body could, so to speak, lift itself by its bootstraps.

Asymptotic behaviour
The gravitational fi eld from the matter contained in a volume of finite extent has a particularly simple form
at large distances. S ince x′ t hen onl y r anges ove r a fi ni t e r egi on i n ( 3. 13) , i t f ol l ow s f or | x| → ∞ that

x − x′
| x − x′|3 

→ 
x

| x|3 .

Ta ki ng t hi s expr essi on out si de t he i nt egr a l w e obt ai n

g( x) → −G M
x

| x| 3 , ( 3. 15)

where M i s t he t ot al mass. A t suffi ci ent l y l arge di s t ances t he fi el d of an ar bi t r ar y s pat i al l y bounded m ass
di st r i but i on a lways a ppr oaches t hat of a poi nt par t i c l e cont ai ni ng t he t ot al mass of t he body.

Fi el d o f a spheri cal body
The mass distribution ρ(r) of a s pher i cal l y symmet r i c body i s onl y a f unct i on of t he di st ance r = | x| from
i t s cent r e, whi ch here i s t aken t o be at t he ori gi n of t he coordi nat e syst em. S i nce gravi t y accordi ng t o ( 3. 13)
i s caused by t he mass di st r i but i on, i t shoul d al s o be s pher i cal l y symmet r i c. For a vect or fi el d t hi s means
t hat i t i s everywhere di rect ed radi al l y away from t he cent r e,

g( x) = g(r) er , ( 3. 16)

where er = x/ r i s t he r adi a l uni t vect or and g(r) is a function of r al one. I n fi gur e 3. 3 t he val ue of − g(r)
is plotted for the E arth as a function of the radial distance. One notes the surprising fact that the strength of
gravity is actually larger (by about 10%) inside Earth’s mantle than on the surface.

In chapter 6 we shall see that spherical gravity takes an extremely simple form. We shall prove that the
field strength g(r) is everywhere—inside and outside the distribution—equal to the field of a point particle
situated at the centre of the distribution,

g(r) = −G
M(r)

r2
, (3.17)
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3.4. GRAVITATIONAL POTENTIAL 35

Figure 3.3. The strength of gravity −g(r) inside and outside the Earth as a function of distance from the
centre. The solid curve is obtained from the standard Earth data [41]. The strength of gravity grows roughly
linearly from the centre to the core/mantle boundary at r = 3485 km, and decreases slightly in the mantle
due to the sharp drop in mass density at the boundary. The dotted dropping line is the core field itself. The
dashed lines are obtained from the two-layer model of the Earth (problem 3.7).

with a mass equaling the total mass inside the radius r ,

M(r) =
∫ r

0
ρ(r ′)4πr ′2 dr ′. (3.18)

It is also possible to prove this by direct integration of (3.13) (see problem 3.11).
For a planet with constant density we find from (3.4) that

g(r) = −4

3
πGρ0


r r < a

a3

r2
r > a.

(3.19)

The strength of gravity grows linearly with r inside the planet because the total mass grows with the third
�

�

��
��
��
�

..........................................................................................................................

−g

ra

g0

The strength of gravity for a
planet with constant density.

power of r whereas the field strength decreases with the second power.
It follows from (3.18) that for every point in the vacuum outside a spherical mass distribution where

M(r) equals the total mass, the field (3.17) is exactly the same as that of a point particle at the centre with
mass equal to the total mass of the body. We have seen above that the field at great distances from an
arbitrary body is always approximately that of a point particle, but now we learn that the field is of this
form everywhere around a perfectly spherical body. There are no near-field corrections to the gravitational
field of a spherical body. Without this wonderful property, Newton could never have related the strength
of gravity at the surface of the Earth—iconized by the fall of an apple—to the strength of gravity in the
Moon’s orbit.

3.4 Gravitational potential
Although the field of gravity is a vector field with three components, there is really only one functional
degree of freedom underlying the field, namely the mass distribution giving rise to it. The relationship
between these two fields expressed by (3.13) is, however, non-local, meaning that g(x) in a point x depends
on a physical quantity ρ(x′) in points x′ that may be arbitrarily far away.
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F i gu re 3. 4. The gravitational potential −�(r) of the E arth as a function of distance from the centre. The
f ul l y dr aw n c ur ve i s obt ai ned by numer i cal l y i nt egr at i ng t he st andar d E a r t h dat a [ 41 ] . T he dot t e d c ur ve i s
t he pot ent i a l of t he cor e al one, a nd t he dashed c ur ve i s obt ai ned f r om t he t wo- l a yer m odel ( pr obl em 3. 7) .
The vertical dashed lines indicate the positions of the sharp transitions in the mass density (see figure 3.1),
whi ch have compl et el y di s appeared from vi ew i n t hi s pl ot .

Gravity as a gradient field
We shal l now prove t hat t he accel erat i on fi el d can be derived locally from a si ngl e s cal ar fi el d �(  x) , called
the gravitational pot ent i al . T he rel at i on bet ween t he accel erat i on fi el d and t he pot ent i al i s,

g = −∇�, ( 3. 20)

w i t h a c onve nt i onal m i nus si gn i n f r ont . T he gr adi e nt oper a t or ( nabl a) has been defi ned i n equat i on ( 2. 55) .
B ecause of t he gr a di ent , t he pot ent i a l i s defi ned onl y up t o a n undet e r m i ned addi t ive const a nt .

In order t o demonst r at e ( 3. 20) we fi r st cal cul at e t he gradi ent of t he cent r al di st ance (see al so probl em
2. 9)

∇| x| = ∇
√

x 2 = 1

2| x|∇ x 2 = 
1

2| x|∇( x 21 + x 22 + x 23 ) = 
x
| x| , ( 3. 21)

and from t hi s

∇ 1

| x| = − 1

| x|2 
∇| x| = −  

x

| x|3 . ( 3. 22)

C ompar i ng w i t h ( 3. 12) w e concl ude t hat t he pot ent i a l of a poi nt par t i c l e of mass M is

�(  x) = −G M

| x| , ( 3. 23)

apar t f r om t he ar bi t r ar y a ddi t ive const a nt w hi c h w e her e c hoose s o t hat t he pot ent i a l vani s hes a t s pat i a l
infinity. In t he same way we derived (3.13), we fi nd the pot ential from a mass di stribution i n V

�(x) = −G
∫

V

ρ(x′)
|x − x′|dV ′. (3.24)

Since the mass density is always positive, the gravitational potential is always negative, a direct consequence
of the attractive nature of gravity and the normalization to zero potential at infinity.

Even if the mass distribution may jump discontinuously, the gravitational field will always be
cont i nuous ( a s i s evi dent f r om fi gur e 3. 3) , because of t he i nt egr a t i on ove r t he mass di st r i but i on i n ( 3. 13)
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or (3. 18). T he potential i s still smoother, because its defi nition ( 3. 20) requires i t t o have a continuous
der iva t ive . T hi s i s a l s o bor ne out by fi gur e 3. 4 w hi c h s how s t he pot ent i a l of t he E a r t h a s a f unct i on of
central di stance. Almost all t races of the origi na l discontinuities have vanished from sight .

T he gravi t at i onal pot ent i al m ay be vi sual i zed by means of s urfaces of const ant pot ent i al , al so cal l ed
equi pot ent i al s urf aces . T he fi e l d l i nes ar e a lways or t hogonal t o t he equi pot ent i a l s ur faces, a nd i f t hey
ar e pl ot t e d w i t h const a nt pot ent i a l di ff e r e nce, t he s t r engt h of t he fi e l d w i l l be i nve r s el y pr opor t i onal t o t he
di st ances bet w een t hem. A few equi pot ent i al s urfaces have been show n i n t he E art h–Moon pl ot i n fi gure 3. 2
on page 33.

Asymptotic behaviour
For a mass distribution of finite extent, the denominator will for |x| → ∞ become independent of x′, so
that

�(x) → −G
M

|x| (3.25)

where M is the total mass, in complete accordance with (3.15). At large distances the potential of a finite
body thus approaches that of a point mass carrying the total mass of the body (see, however, problems 3.14
and 3.15).

The flat-Earth limit
For a constant gravitational field g(x) = g0 we may take

�(x) = −x · g0. (3.26)

This seems to be at variance with expression (3.24) and certainly does not vanish at infinity. Constant
gravitational fields should, however, always be understood as an approximation valid within limited regions
of space and time, and then the difficulty disappears.

For length scales much smaller than the radius of the Earth, the surface of the sea may be considered to
be flat and the gravitational field constant. In a flat-Earth coordinate system with the z-axis vertical and the
sea level at z = 0, we may take g0 = (0, 0,−g0) and find

� = g0z. (3.27)

The gravitational acceleration in the z-direction becomes gz = −∂�/∂z = −g0 and points downwards
everywhere, as it should be.

�
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�
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y

z

x

air

sea

The flat-earth coordinate system
with the sea level at z = 0.The spherical case

The potential of a spherical mass distribution can only depend on r = |x|. Using ∇�(r) = (d�(r)/dr)∇r
and ∇r = x/ |x| = er , we find by comparison with (3.16)

g(r) = −d�(r)

dr
. (3.28)

Conversely, integrating this from r to ∞ and using that the potential vanishes at infinity, we obtain

�(r) =
∫ ∞

r
g(s) ds = −G

∫ ∞
r

M(s)

s2
ds, (3.29)

where we have also made use of (3.17). Performing a partial integration we obtain

�(r) = G
∫ ∞

r
M(s) d

(
1

s

)
= −G

M(r)

r
− 4πG

∫ ∞
r

sρ(s) ds. (3.30)

The final expression is not quite as pretty as (3.17) because of the second term, which is necessary to secure
the continuity of the derivative of �(r). Outside the mass distribution the second term vanishes, and the
potential becomes, as expected, that of a point particle carrying the total mass of the body.
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For a planet with constant mass density we obtain from the above expression and (3.19),

�(r) = −2

3
πGρ0

3a2 − r2 r < a

2
a3

r
r > a.

(3.31)

One may avoid integrating and instead verify that the potential is continuous at r = a and that the derivative
−d�/dr is indeed identical to (3.19).
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The gravitational force m g must
be cancelled by an external force
� = −m g in order to move the
particle slowly along any desired
path between the end points x1
and x2.

3.5 Potential energy
According to the laws of elementary particle mechanics, work is calculated from the product of a force and
the distance it moves a particle. It is important to make completely clear who does work on whom. When
a particle falls freely in a gravitational field, it is the force of gravity which performs work on the particle
while the particle follows the path of its natural motion and gains kinetic energy. If we want the particle to
follow any other path, we must ‘by hand’ cancel the force of gravity with an equal and opposite force, and
slowly move the particle along the desired path.

For so-called conservative forces, the work we perform on the particle while moving it along the path
depends only on its end points and not on where the path goes between the end points. The work we must
perform in moving the particle from a fixed position to any desired point x in space is only a function of
the end point x of the path. This function, V (x), is called the potential energy of the particle at the point x
because it represents the work that a particle at x would potentially perform on us, should we move it back
to the fixed position.
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A path x(s) with s1 ≤ s ≤ s2
running from x1 to x2.

Working against gravity
Suppose we move a point particle of mass m from position x1 to x2 along a path P in a static field of
gravity, g(x). To keep the particle on this path, we must provide an external force −m g to counter gravity.
The work performed by us on the particle while moving it along the curved path is the sum of all the tiny
contributions −m g · d� from each little path element d�, and the total work we perform becomes a line
integral,

W = −
∫

P
m g · d� = −m

∫ s2

s1

g(x(s)) · dx(s)
ds

ds. (3.32)

In the last expression the line integral along the path x(s) from x1 = x(s1) to x2 = x(s2) has been made
explicit by means of a running parameter s varying in the interval s1 ≤ s ≤ s2 along the path.

Place km s−1

Earth surface 11.2
Mars surface 5.0
Moon surface 2.4
Sun surface 617.6
Earth orbit 42.1
Moon orbit 1.4
Neutron star 1 × 105

Black hole 3 × 105

Escape velocities from some
places in the solar system, and a
couple of exotic ones. Note that
escaping from the orbit of Earth
means escaping from the solar
system whereas escaping from
the orbit of the Moon only gets
you free of Earth’s gravity. The
neutron star is assumed to have
solar mass.

Because the field of gravity is the gradient of the gravitational potential, the line integral may be carried
out. Inserting (3.20) we find

W = m
∫ x2

x1

∇�(x) · d� = m
∫ s2

s1

d�(x(s))
ds

ds (3.33)

= m�(x2)− m�(x1). (3.34)

Since this result is independent of the actual path of the particle, it follows that the gravitational potential
energy of the particle is m�(x), and that the gravitational potential �(x) is the potential energy per unit of
mass.

Escape velocity
The total energy of a point particle at x with velocity v is the sum of its kinetic energy and its potential
energy, (1/2)mv2 + m�(x). From elementary mechanics we know that the total energy is conserved, i.e.
constant in time. In other words, a particle starting in the point x0 with velocity v0 must at all times obey
the equation

1
2 v2 +�(x) = 1

2 v2
0 +�(x0). (3.35)
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Taking x0 at infinity, where the potential vanishes, it follows immediately that in order to escape the grip of
gravity with |v0| > 0 from a point x with potential �, an object at x must be given a velocity that is larger
than

vesc = √−2�. (3.36)

Knowing the potential at a point is simply equivalent to knowing the escape velocity from that point.

A particularly interesting case occurs when the potential becomes so deep that the escape velocity
equals or surpasses the velocity of light c. In that case the body has turned into a black hole. Using
the potential of a point mass (3.23) we find that this happens when the radius a of a spherical mass
distribution satisfies

a <
2G M

c2
. (3.37)

Being a non-relativistic calculation this is of course highly suspect, but accidentally it is exactly the
same as the correct condition obtained in general relativity [49], where the right-hand side is called
the Schwarzchild radius. For the Earth the Schwarzchild radius is about a centimetre, and for the
Sun three kilometres.

No closed loops of gravity
For a closed path, C , which begins at the same point as it ends, the line integral must vanish∮

C
g · d� = 0 (3.38)

because the potential is the same at the end points of the path. This implies that there can be no closed loops
of field lines. For if there were, the product g · d� would have the same sign all around the loop, because
the tangent of a field line is everywhere proportional to the field, i.e. d� ∼ g, and such an integral cannot
vanish.
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A gravitational field line cannot
form a closed path C .

Conversely, if the line integral of a field g around any closed curve vanishes, the field must be a gradient
field. To prove this consider the line integral along some path P(x) connecting a fixed point, say the origin
0, with an arbitrary point x,

�(x) = −
∫

P(x)
g(x′) · d�′. (3.39)

This function only depends on the end point x and not on the path because two different paths, P and P ′,
connecting the same points form a closed curve C = P − P ′, and by (3.38)

....................................................................................................................................................................................
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�xP ′

P

A closed curve C = P − P ′
can be viewed as the difference
between two paths connecting the
same points.

∮
C

g · d� =
∫

P
g · d� −

∫
P ′

g · d� = 0. (3.40)

Finally, we must show that (3.39) has the gradient g. Using the additivity of line integrals we get,

�(x + δx)−�(x) = −
∫ x+δx

x
g(x′) · d�′ ≈ −g(x) · δx. (3.41)

Since the left-hand side is�(x+δx)−�(x) ≈ ∇�·δx , and since δx is arbitrary, it follows that ∇� = −g.

Problems
3.1 Show that the gravitational field outside a spherical planet may be written

g(r) = −g0
a2

r2
, (3.42)

where a is the radius of the planet and g0 the magnitude of the surface gravity.
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3.2 Show that a satellite moving in a circular orbit around a spherical planet has velocity v = √−�,
where � is the gravitational potential in the satellite’s orbit. Calculate the velocity of a satellite moving at
ground level.

3.3 Arthur C. Clarke proposed (Wireless World, October 1945, pp 305–308) that communication satellites
should be put into a circular equatorial orbit with revolution time equal to Earth’s rotation period, so that
the satellites would stay fixed over a point at the equator. Calculate the height of the orbit above the ground,
also taking into account that the Earth circles the Sun in one year.

3.4 A space elevator (fictionalized by Arthur C. Clarke in Fountains of Paradise (1978)) can be created if
it becomes technically feasible to lower a line down to Earth from a geostationary satellite at height h (see
problem 7.5). Assume that the line is unstretchable and has constant cross section A and constant density
ρ. Calculate the maximal tension σ = −�/A (force per unit of area) in the line. Determine the numerical
value of the ratio of tension to density, σ/ρ, and compare with the tensile strength (breaking tension) of a
known material.

3.5 A comet consisting mainly of ice falls to Earth. (a) Estimate the minimum energy released in the fall
per unit of mass. (b) Compare with the estimate of the energy needed to evaporate the comet.

3.6 A stone is set in free fall from rest through a mine shaft going right through the centre of a non-rotating
planet with constant density. (a) Calculate the speed with which the stone passes the centre. (b) Calculate
the time it takes to fall to the centre.

3.7 A planet consists of two layers with constant mass density,

ρ(r) =


ρ1 r ≤ a1

ρ2 a1 < r ≤ a

0 r > a

. (3.43)

(a) Calculate the strength of gravity and the potential. (b) Show that the strength of gravity at the boundary
between the layers is greater than at the surface when

�

�

�
�
�
�
�

..............................................................................................................................................................................................................................................................................

−g

raa1

g0

g1

The strength of gravity for a two-
layer planet with a dense core. ρ1 − ρ2

ρ2
>

a2

a1(a + a1)
. (3.44)

Verify that this is fulfilled for the Earth.

∗ 3.8 Show by direct integration in a small spherical volume around the singularity in (3.13) that it gives a
finite contribution to the integral.

∗ 3.9 Show that the mass density is a scalar field.

∗ 3.10 Show that the gravitational field is a vector field.

∗ 3.11 Show that gravitational field of a spherical body (3.17) may be derived by integration of (3.13).

∗ 3.12 A spherical planet has mass distribution of the form ρ(r) = Arα for r ≤ a. (a) Calculate the
gravitational field strength and the potential inside the planet for this distribution. (b) For what values of α
is the problem solvable with finite planet mass? (c) For what value of α does gravity grow stronger towards
the centre?

∗ 3.13 An ‘exponential star’ has a mass density ρ = ρ0e−r/a , where ρ0 is the central mass density and a
is the ‘radius’. Calculate the gravitational field and potential.
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∗ 3.14 (a) Calculate the gravitational potential and field from a mass distribution shaped like a very thin
line (a model of a cosmic string) of length 2a with uniform mass λ per unit of length. (b) Calculate the
behaviour of the potential at infinity orthogonally to the line. (c) Discuss what happens in the limit of
a → ∞.

∗ 3.15 (a) Write an expression for the gravitational potential from a mass distribution shaped like a very
thin circular plate of radius a with uniform mass σ per unit of area (a model of the luminous matter of a
galaxy). (b) Calculate the value of the potential along the central normal of the plate. (c) Calculate its form
far from the disk. (d) What happens for a → ∞?
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Fluids at rest
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If the Sun did not shine, if no heat were generated inside the Earth and no energy radiated into space, all the
winds in the air and the currents in the sea would die away, and the air and water on the planet would in the
end come to rest in equilibrium with gravity. In the absence of external driving forces or time-dependent
boundary conditions, and in the presence of dissipative contact forces, any fluid must eventually reach a
state of hydrostatic equilibrium, where nothing moves anymore and all fields become constant in time. This
state must be the first approximation to the sea, the atmosphere, the interior of a planet or a star.

In a continuous system in mechanical equilibrium there is everywhere a balance between contact forces
having zero range and body forces with infinite range. Contact interactions between material bodies or even
between parts of the same body take place across contact surfaces. A contact force acting on a tiny piece
of a surface may in principle take any direction relative to the surface, but can of course be resolved into its
normal and tangential components. The normal component is called a pressure force and the tangential a
shear force. Solids and fluids in motion can sustain shear forces, whereas fluids at rest can not.

�

�

Pressure

Shear

Force

  
  
  �

�
�
��

��
��
��

The force on a small piece of a
surface can always be resolved
as a normal pressure force and a
tangential shear force.

In this chapter we shall establish the basic concepts and formalism for pressure in hydrostatic
equilibrium and apply it to the sea and the atmosphere. Along the way we shall recapitulate some basic rules
of thermodynamics. In the following three chapters we shall continue the study of hydrostatic equilibrium
for fish, icebergs and ships, the interior of planets and stars, and the shapes of large and small fluid bodies.

4.1 The concept of pressure
A fluid at rest can as mentioned only sustain pressure forces. If shear forces arise, the fluid will flow
towards a new equilibrium without shear. This expresses the most basic property of fluids and may be
taken as a definition of what constitutes a fluid at the macroscopic level. In this section we shall take a first
look at pressure defined as force per unit of area, discuss its microscopic origins, and analyse a couple of
elementary cases.

The SI unit of pressure is pascal (Pa = N m−2 = kg m−1 s−2), but often pressure is quoted in units
of bars where 1 bar = 105 Pa or in atmospheres where 1 atm = 1.01325 bar is close to the average
air pressure at sea level. Modern meteorologists are now abandoning these units and tend to quote
air pressure in hectopascals (hPa) rather than in millibars.

Microscopic origin of pressure
In a liquid the molecules touch each other and the containing solid walls. The number of molecules that
are in direct contact with a small area A of a wall is proportional to the size of this area, and so is the total
normal force � that the molecules collectively exert on the area. The pressure defined as the normal force
per unit of area, p = �/A, is thus independent of the size of the small area.
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A gas consists mostly of vacuum with the molecules moving freely around between collisions, and the
pressure on a solid wall arises in this case from t he incessant molecular bombardment . We shall estimat e
the pressure using a simple ‘mol ecular’ model of a gas goi ng back to Dani el Bernoulli, in which mol ecules
of mass m ar e onl y a l l ow e d t o m ove back and f or t h al ong t hr e e or t hogonal di r ect i ons w i t h a fi xe d vel oci t y
v . W hen a mol ecul e hi t s a wal l or t hogonal t o one of t hese di r ect i ons, i t i s r efl ect ed di r ect l y back agai n a nd
t r ansfers a moment um 2 mv to the wall. Assuming that all six directions of motion are equally probable, the
number of molecules hitting an area A of t he wal l i n a smal l t i me i nt erval dt  will be d N  = 1/6ρ Av dt/ m ,
such that the t ot al moment um transfer to the area i n t he time dt  becomes d� = 2mv d N  = 1/3ρ Av 2 dt  .
T he nor mal f or ce exer t ed on t he ar ea equal s t he r at e of m oment um t r ansf er, � = d�/dt  = 1/3ρ Av 2 , and
divi di ng by t he a r e a w e obt ai n t he pr essur e ,

���
���

�

� !!!!!! 




In Bernoulli’s model a molecule
moves i n any of t he s i x possi bl e
di r ect i ons al ong t hr e e or t hogonal
directions with equal probability.

p = �

A
= 1

3
ρv2. (4.1)

In the kinetic theory of gases one finds the same result, except that v i s repl aced by t he r oot -mean-square

average of t he molecular vel ocities, v =
√〈

v  2
〉
.

E xamp l e 4. 1. 1 ( M ol ecu l ar vel oci t y) : At nor mal pressure, p = 1 at m, and t emperat ure, T = 18 ◦  C =
291 K, the density of ai r i s ρ ≈ 1. 2 kg m−3 . T he mol ecul ar vel oci t y cal cul at ed from t he above
expr essi on becomes v ≈ 500 m s−1 . We shall see later that this velocity is related to the velocity
of sound.

Ex ternal and i nterna l pressure
S o fa r w e have onl y defi ned t he ext e r nal pr essur e act i ng on t he wa l l s of a c ont ai ner. I s i t meani ngf ul t o
speak about pr essur e i n t he m i ddl e of a fl ui d away f r om c ont ai ni ng wa l l s ? We c oul d of c our se i nser t a t i ny
manomet er t o measur e t he pr essur e , but t hen w e woul d j ust obt ai n t he ext e r nal pr essur e act i ng on a not her
wall, the surface of the manometer. T here seems to be no simple way to determine directly what one would
cal l t he true internal pressure in the fl ui d.

Cutting through these ‘philosophical’ difficulties we shall simply postulate that there is indeed a well-
defined pressure field p(x) everywhere in the fluid and that it acts along the normal to any surface in the
fluid, whether it be a real interface or an imagined cut through the fluid. This postulate is supported by the
microscopic view of continuous matter. In a liquid we may define the internal pressure as the total force
per unit of area exerted by the molecules at one side of the cut on the molecules at the other side. Similarly,
in a gas the internal pressure may be defined by the rate of molecular momentum transfer per unit of area
acr oss t he cut . I n sol i ds i nt er nal pr e ssure is more subtle (see chapter 9).

Incompressible sea

��
����

��
�A

p0

p

h

�
g

A column of sea water. The pres-
sure difference between bottom
and top must carry the weight of
the water in the box.

Consider now a vertical box with cross-sectional area A and height h in a sea with constant density
ρ(x) = ρ0. In hydrostatic equilibrium the difference between the pressure forces pA at the bottom and
p0 A at the top must balance the total weight of the water in the box, or

pA − p0 A = ρ0 Ahg0, (4.2)

where g0 is the constant gravitational acceleration. If this equation were not fulfilled, the total force on
the column of water would not vanish, and it would have to move. Dividing by the area A, the pressure
difference between bottom and top of the box becomes,

p − p0 = ρ0g0h. (4.3)

In a flat-earth coordinate system with vertical z-axis and the surface of the sea at z = 0, we find by setting
h = −z,

p = p0 − ρ0g0z, (4.4)

where p0 is the surface pressure. The linear rise of the pressure with depth −z allows us to immediately

�

�

�
�
�
��

y

z

x

atmosphere

sea

The flat-earth coordinate system. calculate the total pressure force on the horizontal and vertical sides of a container. Skew or curved container
walls require a more powerful formalism which we shall soon set up.
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Using ρ0 ≈ 1000 kg m−3 and g0 ≈ 10 m s−2, the scale of the pressure increase per unit of depth
in the sea becomes ρ0g0 ≈ 104 Pa m−1, or about 1 atm/10 m. At the deepest point in the sea,
z ≈ −11 km, the pressure is a little more than 1000 atm. The assumption of constant gravity is well
justified even to this depth, because it changes only by about 0.35%, whereas the density of water
changes by about 4.5% (see page 54).

Example 4.1.2 (Sluice gate force): Water is stemmed up to height h behind a sluice gate of width L .
On the water surface and on the outer side of the gate there is atmospheric pressure p0. On the inside
of the gate the pressure is p(z) = p0 + ρ0g0(h − z), so that the total force on the gate becomes

h

�
z

�p(z) � p0

p0

Water stemmed up behind a
sluice gate. The pressure varies
linearly with height z from the
bottom.

� =
∫ h

0
(p(z)− p0) Ldz = 1

2
ρ0g0Lh2. (4.5)

Because the pressure rises linearly with depth, this result could have been calculated without an explicit
integral. The total force is simply the product of the area of the sluice gate Lh with the average pressure
excess 〈p − p0〉 = 1/2ρ0g0h acting on the gate.

Incompressible atmosphere?
Since air is compressible, it makes little sense to use expression (4.4) for the pressure in a fluid with constant
density (except for very small values of z). If we do so anyway, we find a pressure which falls linearly with
height and reaches zero at a height,

z = h0 = p0

ρ0g0
. (4.6)

Using p0 = 1 atm and air density ρ0 = 1.2 kg/m3 we get h0 = 8.6 km, which is a tiny bit lower than
the height of Mount Everest. This is, of course, meaningless, since climbers have reached the summit of
that mountain without oxygen masks. But as we shall see, this height sets nevertheless the correct scale for
major changes in the atmospheric properties.
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Paradox: the pressure along the
vertical wall of the ‘boot’ rises
linearly because it has to carry
the weight of the water above, but
what about the pressure in the tip
of the ‘toe’?

Paradox of hydrostatics
The linear rise of water pressure with depth may, as we have seen, be used to calculate the total pressure
force on any vertical container wall. For a curved container wall, like that of a vase or a boot, there seems
to be no problem, except handling the necessary mathematics. But if the water column does not reach all
the way to the surface, as when you fill a boot with water, what is then the pressure at the flat horizontal
bottom? Will it be constant along the bottom as in the open sea, or will it vary? And if it is constant, what
is it ‘up against’, since there is only a short column of water above?

The quick answer to this paradox is that the pressure is indeed constant along the horizontal bottom.
For if the pressure were lower in the ‘toe’ than in the ‘heel’, there would be unbalanced horizontal pressure
forces directed towards the toe acting on a horizontal box of water. But that is not allowed in complete
mechanical equilibrium. The only possible conclusion is that the material of the boot must supply the
necessary forces to compensate for the missing weight of the water column.
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S

d S

All normals to an oriented open
surface have a consistent orien-
tation with common positive and
negative sides.

4.2 Formal definition of pressure
To establish a concise mathematical formalism for pressure we consider a surface S that divides a body into
two parts. This surface need not be a real surface where material properties change dramatically but may
just be an imaginary surface separating two parts of the same body from each other. A tiny surface element
is characterized by its area d S and the direction of its normal n. It is convenient to combine these in the
vector surface element

d S = (d Sx , d Sy, d Sz) = n d S. (4.7)

There is nothing intrinsic in a surface which defines the orientation of the normal, i.e. whether the normal
is really n and not −n. A choice must, however, be made, and having done that, one may call the side
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of t he s ur face el ement i nt o w hi ch t he nor mal poi nt s, posi t ive ( a nd t he ot her, of c our se, negat ive) . U sual l y
nei ghbour i ng s ur face el ement s ar e r equi r ed t o be or i ent ed consi s t ent l y, i . e. w i t h t he s ame posi t ive si des. B y
univer s al convent i on t he nor mal of a cl osed sur face i s chosen t o be di r ect ed out of t he encl osed vol ume, so
t hat t he encl osed vol ume always l i es at t he negat ive si de of i t s surface.
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d S

A vol ume V defi ned by t he
cl osed surface S has a l l nor mal s
or i e nt ed t owa r ds t he out si de.

Local and global pressure force
T he c ont act f or ces due t o mi cr oscopi c m ol ecul a r i nt er act i ons have a fi ni t e r a nge at t he m ol ecul a r s cal e, but
zero r ange at macroscopi c distances. Across a tiny but still macroscopi c piece of surface, the number of
nei ghbour i ng m ol ecul e s par t i c i pat i ng i n t he i nt e r act i on a s w el l a s t he f or c e t hey exe r t may f or t hi s r eason be
expect ed t o be pr opor t i onal t o t he ar ea of t he s ur face. I n a fl ui d a t r est t he onl y c ont act f or c e i s t he pr essur e
force act i ng al ong t he normal t o t he surface, and t he force exert ed by t he mat eri al s i t uat ed at t he posi t ive
si de of a s urface el ement on t he mat eri al at t he negat ive s i de must be of t he form

d� = −p d S, (4.8)

with a coeffi cient of proportionality p called the pressure . Convention dictates that a positive pressure
exert s a f orce di rect ed towards t he m at er i a l on t he negat ive si de, a nd t hi s expl ai ns t he m i nus si gn.
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−p d S
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positive

negative

The force on a vector surface
element under positive pressure is
directed against the normal.

The total pressure force acting on a surface S is obtained by summing up all the little vector
contributions from each surface element,

� = −
∫

S
p d S. (4.9)

This is the force which acts on the cork in the champagne bottle, moves the pistons in the cylinders of your
car engine, breaks a dam, and fires a bullet from a gun. It is also this force that lifts fish, ships, and balloons
and t her eby cancel s t hei r w ei ght so t hat t hey ar e abl e t o fl oat ( see chapt er 5) .

Same pressure in all directions?
Newton’s third law guarantees that the material on the negative side of a surface element reacts with an
equal and opposite force, −d� = −p (−d S), on the material on the positive side (provided there is no
surface tension). Since the surface vector seen from the negative side is −d S, the above relation shows
that the pressure also has the value p on the negative side of the surface. This is part of a much stronger
result, called Pascal’s law, which we shall prove below: the pressure in a fluid at rest is independent of the
direction of the surface element on which it acts. It implies that pressure p(x) cannot depend on the normal
n, but only on the location x of a surface element, and is therefore a true scalar field.Blaise Pascal (1623–1662).

French mathematician and physi-
cist. Founded probability theory.
Constructed what may be viewed
as the first digital calculator. He
spent his later years with reli-
gious thinking in the Cistercian
abbey of Port-Royal. More than
one property of pressure goes
under the name of Pascal’s law.

The simple reason for pressure being the same in all directions in hydrostatic equilibrium is that the
pressure acts on the surface of a body whereas a body force by definition acts on the volume. If we let the
body shrink, the contribution from the body force will vanish faster than the contribution from the surface
force because the volume vanishes faster than the surface area. In the limit of vanishing body size only
the surface force is left, but it must then itself vanish in hydrostatic equilibrium where the total force on all
parts of a body has to vanish. This argument will now be fleshed out in mathematical detail.

∗ Proof of Pascal’s law: Assume first that the pressure is actually different in different directions. We
shall then show that for physical reasons this assumption cannot be maintained. Consider a tiny body in the
shape of a tetrahedron with three sides parallel to the coordinate planes. The total pressure force acting on
the body is

d� = −pd S − px d Sx − pyd Sy − pzd Sz , (4.10)

where we have denoted the pressures acting on the different faces of the tetrahedron by p, px , py , and
pz and the outwards pointing normals by d S, d Sx , d Sy , and d Sz . It is sufficient to consider infinitesimal
bodies of this kind, because an arbitrary body shape can be put together from these. Each of the three
triangles making up the sides of the tetrahedron is in fact the projection of the front face onto that plane. By
elementary geometry the areas of the three projected triangles are d Sx , d Sy and d Sz , so that their vector
surface elements become d Sx = (−d Sx , 0, 0), d Sy = (0,−d Sy, 0), and d Sz = (0, 0,−d Sz).
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Inserting this in the above equation we find the total force

d� = ((px − p)d Sx , (py − p)d Sy, (pz − p)d Sz). (4.11)

In hydrostatic equilibrium, which is all that we are concerned with here, the contact forces must balance
body forces,
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A body in the shape of a tetra-
hedron. The vector normals to
the sides are all pointing out of
the body (d Sx is hidden from
view). Any body shape can be
built up from sufficiently many
sufficiently small tetrahedrons.

d� + f dV = 0, (4.12)

where f is the density of body forces.
The idea is now to show that for sufficiently small tetrahedrons the body forces can be neglected and

the surface forces d� must consequently vanish. Consider a geometrically congruent tetrahedron with all
lengths scaled by a factor λ. Since the volume scales as the third power of λ whereas the surface areas only
scale as the second power, the hydrostatic equation for the scaled tetrahedron becomes λ2d�+λ3 f dV = 0
or d� + λ f dV = 0. In the limit of λ → 0 it follows that the total contact force must vanish, i.e. d� = 0,
and using (4.11) we find,

px = py = pz = p. (4.13)

As promised, the pressure must indeed be the same in all directions.

4.3 Hydrostatic equilibrium
In section 4.1 we intuitively used that in a fluid at rest the weight of a vertical column of fluid should equal
the difference in pressure forces between the bottom and the top of the column. We shall now generalize
this to an arbitrary macroscopic volume of fluid, often called a control volume. The material in a control
volume, fluid or solid or whatever, represents the most general ‘body’ that can be constructed in continuum
physics.

Up to this point we have studied only two kinds of forces that may act on the material in a control
volume. One is a body force described by a force density field f caused by long-range interactions, for
example gravity f = ρg. The other is a contact force, here the pressure field p, which has zero range and
only acts on the surface of the control volume. The total force on the control volume V with surface S is
the sum of two contributions

� =
∫

V
f dV −

∮
S

p d S. (4.14)

The first term is for the case of gravity just the weight of the fluid in the volume and the second is the
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A control volume V with its en-
closing surface S, a volume ele-
ment dV and a surface element
d S.

so-called buoyancy force. The circle in the symbol for the surface integral is only there to remind us that
the surface is closed.

Global hydrostatic equilibrium equation
In hydrostatic equilibrium, the total force must vanish for any volume of fluid, � = 0, or∫

V
f dV −

∮
S

p d S = 0. (4.15)

This is the equation of global hydrostatic equilibrium, which states that buoyancy must exactly balance the
total volume force, i.e. the weight. If the cancellation is not exact, as for example when a small volume
of water is heated or cooled relative to its surroundings, the fluid must start to move, either upwards if the
buoyancy force is larger than the weight or downwards if it is smaller.

The problem with the global equilibrium equation is that we have to know the fields f (x) and p(x) in
advance to calculate the integrals. Sometimes symmetry considerations can get us a long way. In constant
gravity, the sea on the flat Earth ought to have the same properties for all x and y, suggesting that the
pressure p = p(z) can only depend on the depth z. This was, in fact, a tacit assumption used in calculating
the pressure in the incompressible sea (4.4), and it is not difficult to formally derive the same result from
the equation of global equilibrium (4.15). But, in general, we need to establish a local form of the equations
of hydrostatic equilibrium, valid at each point x.
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Effective force on a material particle
A material particle is like any other body subject to pressure from all sides, but being infinitesimal it is
possible to derive a general expression for the resultant force. Let us choose a material particle in the shape
of a small rectangular box with sides dx , dy, and dz, and thus a volume dV = dxdydz. Since the pressure
is slightly different on opposite sides of the box the resultant pressure force is to leading approximation (in
the x-direction)�

(x, y, z) dx

dz dy

		
	

			
�p(x)

��
�

���
� p(x + dx)

Pressure difference over a small
rectangular box.

d�x ≈ (p(x, y, z)− p(x + dx, y, z))dydz ≈ −∂p

∂x
dxdydz.

Including the other coordinate directions we obtain

d� = −∇ p dV . (4.16)

The result of all pressure forces acting on a tiny material particle is apparently equivalent to a volume force
with a density equal to the negative gradient of the pressure. We shall see below that this result does not
depend on the shape of the material particle.

If there is also a true volume force, f , for example gravity ( f = ρg), acting on the material, the total
force on a material particle may be written,

d� = f ∗ dV, (4.17)

where

f ∗ = f − ∇ p, (4.18)

is called the effective force density. It must be emphasized that the effective force density is not a true body
force, but an expression which for a tiny material particle equals the sum of the true body force and all
pressure forces acting on its surface.

Local hydrostatic equilibrium
In hydrostatic equilibrium, the total force on an arbitrary body has to vanish. Applying this to all of the
material particles in the body, it follows that the effective density of force must vanish everywhere,

f ∗ = f − ∇ p = 0. (4.19)

This is the local equation of hydrostatic equilibrium. It is a differential equation valid everywhere in a fluid
at rest, and it encapsulates in an elegant way all the physics of hydrostatics.

The flat-Earth case

Returning to the case of constant gravity in a flat-earth coordinate system we have f = ρg0 = ρ(0, 0,−g0)

and the local equilibrium equation takes the following form when written out explicitly in coordinates,

∂p

∂x
= 0, (4.20a)

∂p

∂y
= 0, (4.20b)

∂p

∂z
= −ρg0. (4.20c)

The two first equations show that the pressure does not depend on x and y but only on z, which confirms
the previous argument based on symmetry. It also resolves the hydrostatic paradox because we now know
that independently of the shape of the container the pressure will always be the same at a given depth in
constant gravity. For the special case of constant density, ρ(z) = ρ0, the last equation may immediately be
integrated to yield the previous result (4.4) for the pressure in the incompressible sea.
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Constant density
More generally, if the density of the fluid is constant, ρ = ρ0, and the body force is due to gravity,
f = ρ0 g = −ρ0∇�, the equation of hydrostatic equilibrium (4.19) takes the form −∇(ρ0� + p) = 0,
which implies that the quantity,

H = �+ p

ρ0
, (4.21)

is a constant, independent of x. The first term is the gravitational potential and the second term is naturally
called the pressure potential. There is no agreement in the literature about a name for H , but one might call
it the effective potential, because the effective density of force becomes f ∗ = ρ0 g − ∇ p = −ρ0∇H . It is
also related to the thermodynamic enthalpy.

The constancy of H contains the complete solution of the hydrostatic equation. In constant gravity we
thus have � = g0z and recover immediately the pressure in the sea (4.4) with H = p0/ρ0.

Gauss’ theorem
The equation of local equilibrium (4.19) has been obtained by applying the global equilibrium equation
(4.15) to a tiny material particle. Is it also possible to go the other way and derive the global equation from
the local? Johann Carl Friedrich Gauss

(1777–1855). German mathe-
matician of great genius. Con-
tributed to number theory, al-
gebra, non-Euclidean geometry,
and complex analysis. In physics
he developed the magnetometer.
The older (cgs) unit of magnetic
strength is named after him.

The answer to the question is affirmative, because of a purely mathematical theorem due to Gauss (to
be proved below), which in its simplest form states that∮

S
p d S =

∫
V

∇ p dV, (4.22)

for an arbitrary function p(x). Using Gauss’ theorem it follows immediately that the total force (4.14)
equals the integral of the effective density of force,

� =
∫

V
f dV −

∮
S

p d S =
∫

V
f ∗ dV . (4.23)

This equivalence allows us to think of a macroscopic volume of fluid as composed of microscopic material
particles acted upon by the effective force density f ∗.

Gauss’ theorem is a fortiori also valid for a tiny material particle, where the total pressure force
becomes, ∮

S
p d S =

∫
V

∇ p dV ≈ ∇ p V .

This confirms that the force on a material particle is indeed independent of its shape as long as the pressure
gradient is essentially constant across the particle.

∗ Proof of Gauss’ theorem: To prove Gauss’ theorem, consider first a volume V described by the
inequalities a(x, y) ≤ z ≤ b(x, y) where a(x, y) and b(x, y) are two functions defined in some area A of
the xy-plane. We then find,∫

V
∇z p dV =

∫
A

dxdy
∫ b(x,y)

a(x,y)

∂p(x, y, z)

∂z
dz

=
∫

A
dxdy

(
p(x, y, b(x, y))− p(x, y, a(x, y))

)
=

∮
S

p(x, y, z) d Sz .

It is intuitively rather clear that a general volume may be cut up into pieces of this kind. Adding the surface

�

�

x

z

.........

.........

..........
...........
............
.............
..............
.................

......................
......................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................
...........................

......................
...................

................
..............
............

b(x, y)

a(x, y)

A volume described by a(x, y) ≤
z ≤ b(x, y).

integrals the contributions from the mutual interfaces between neighbouring pieces will cancel each other
in the sum, leaving only the integral over the outermost surface of the total volume on the left-hand side.
Similarly the volume integrals add up to a volume integral over the total volume of all the pieces. Gauss’
theorem thus holds in full generality.
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∗ What about non-gradi ent forces?
T he l ocal equation of hydrostatic equilibrium, f = ∇ p , demands t hat t he f or ce densi t y must equal a
gr adi e nt fi e l d, a nd t hus have a vani s hi ng cur l ∇ × f = 0 ( s ee pr obl em 2. 15) . A mat e r i al w i t h const a nt
densi t y, ρ = ρ0 , has a gr avi t a t i onal f or ce densi t y f = ρ 0 g = −ρ 0 ∇� w hi c h i s evi dent l y a gr a di ent fi el d.
B ut w hat happens i f a f or ce has a mani f e st l y non- va ni shi ng c ur l ? A s an exampl e one can t a ke f = a × x ,
which has ∇ × f = 2 a . T hen t he only possible conclusion is that hydrostatic equilibrium cannot be
est abl i s hed, and t he fl ui d must st ar t t o m ove. A physi cal exampl e of t hi s phenomenon i s an el ect r i cal l y
charged fl uid with a magnetic field that everywhere increases linearly with time. Such a magnetic field
i nduces a s t at i c el ect r i c fi el d w i t h non- vani shi ng cur l , whi ch i ndeed accel er at es t he charged mol ecul es, and
t hereby t he fl ui d.

4.4 Equation of state
T he l ocal equation of hydrostatic equilibrium is not enough in itself, but needs a relation between density
and pressure. I n t he exampl es of t he precedi ng s ect i on w e assumed t hat t he fl ui d was i ncompressi bl e w i t h
const a nt densi t y and c oul d t hen i nt egr a t e t he hydr ost a t i c equat i on a nd det e r m i ne t he pr essur e .

O r di nar y t her modynami cs [ 11 , 35] pr ovi des us w i t h a r el at i onshi p bet w een densi t y ρ , pressure p , and
absolute temperat ure T , called the equation of state, whi ch may be written i n many equivalent ways, for
ex a m p l e

f (ρ,  p, T ) = 0. ( 4. 24)

I n cont i nuum physi c s t he equat i on of s t a t e shoul d be under s t ood as a local r e l a t i on, va l i d at ever y poi nt x ,

f (ρ(  x),  p( x),  T ( x)) = 0. ( 4. 25)

A s usual w e s hal l suppr ess t he expl i c i t dependence on x w hen i t does not l ead t o ambi gui t y. T he act ual f or m
of t he e quat i on of s t a t e f or a par t i c ul ar subst a nce i s der ived f r om t he pr oper t i e s of m ol ecul a r i nt er act i ons, a
subj ect t hat fa l l s out si de t he s cope of t hi s book.B e noi t Paul Émile Clapeyron

( 1799–1864) . French engi neer
and physi ci st . Form ul at ed t he
i deal gas l aw f rom previ ous w ork
by B oyl e, Mari ot t e, C harl es,
G ay- L ussac, and ot hers . C on-
tributed to early thermodynam-
ics by building on Carnot’s work.
Defined the concept of reversible
transformations and formulated
the first version of the Second
Law of Thermodynamics. Estab-
lished what is now called Clapey-
ron’s formula for the latent heat
in the change of state of a pure
substance.

The ideal gas law
The oldest and most famous equation of state is the ideal gas law, credited to Clapeyron (1834) and usually
presented in the form,

p V = n R T . (4.26)

Here n is the number of moles of gas in a small volume V , and R = 8.31451(6) J K−1 mol−1 is the molar
gas constant. This equation of state has played an enormous role in the development of thermodynamics,
and an ideal gas is still the best ‘laboratory’ for understanding materials with a non-trivial thermodynamics.
I n appendi x C t he t her m odynami cs of i deal gases i s r ecapi t ul at ed i n s ome det ai l .

Using that ρ = M/V = nMmol/V , where M is the mass of the gas in V and Mmol its molar mass, we
obtain the ideal gas law in a form more suited for continuum physics,

p

ρ
= RT

Mmol
. (4.27)

The ideal gas law is not only valid for pure gases but also for mixtures of pure gases provided one uses the
molar average of the molar mass of the mixture (see problem C.1). Real air with Mmol = 28.9635 g/cm3

is quite well described by the ideal gas law, although in precise calculations it may be necessary to include
nonlinear corrections as well as corrections due to humidity [34].

4.5 Barotropic fluid states
The problem with the equation of state (4.24) is, however, that it is not a simple relation between density
and pressure which may be plugged into the equation of local hydrostatic equilibrium, but also involves
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t emper at ur e. To sol ve t he gener al pr obl em w e need a f ur t her equat i on connect i ng t emper at ur e, pr essur e
and densi t y. S uch a heat equat i on i s al so pr ovi ded by t her modynami cs, and w e shal l der ive i t i n chapt er
30.

Barotropic relationship
At this stage it is, however, best to avoid these complications and for simplicity assume that there exists a
so-called barotropic relationship between pressure and density,

p = p(ρ) or ρ = ρ(p). (4.28)

The assumption of a barotropic relationship is not as far-fetched as it might seem at first. The condition of
constant density ρ(x) = ρ0 which we used in the preceding section to calculate the pressure in the sea is a
trivial example of such a relationship in which the density is independent of the pressure.

A less trivial example is obtained if the walls containing a fluid at rest are held at a fixed temperature T0.
The omnipresent heat conduction will eventually cause all of the fluid to attain this temperature, T (x) = T0,
and in this state of isothermal equilibrium the equation of state (4.25) simplifies to,

f (ρ(x), p(x), T0) = 0 (4.29)

which is indeed a barotropic relationship.

Isothermal atmosphere
Everybody knows that the atmosphere is not at constant temperature, but if we nevertheless assume it to be,
we obtain by combining the equation of hydrostatic equilibrium (4.20) with the ideal gas law (4.27),

dp

dz
= −ρg0 = − Mmol g0

RT0
p. (4.30)

With the initial condition p = p0 for z = 0, this ordinary differential equation has the solution

p = p0e−z/h0 , (4.31)

where

h0 = RT0

Mmol g0
= p0

ρ0g0
. (4.32)

In the last step we have again used the ideal gas law at z = 0 to show that the expression for h0 is identical
to the incompressible scale height (4.6).

In the isothermal atmosphere the pressure thus decreases exponentially with height on a characteristic
length scale again set by h0. Now the pressure at h = h0 = 8.6 km (roughly the top of Mount Everest) is
finite and predicted to be e−1 = 37% of the pressure at sea level, or 373 hPa.

Bulk modulus
The archetypal thermodynamics experiment is carried out on a fixed amount M = ρV of a fluid placed
in a cylindrical container with a moveable piston. When you slightly increase the force on the piston, the
volume of the chamber decreases, dV < 0. The pressure in the fluid must necessarily increase, dp > 0. If
this were not the case, an arbitrarily small extra force would send the piston to the bottom of the chamber.
Since a larger volume diminishes proportionally more for a given pressure increase, we define the bulk
modulus as the pressure increase dp per fractional decrease in volume −dV/V , or

V

dV

The archetypal thought-
experiment in thermodynamics:
A cylindrical chamber with a
movable piston.

K = dp

−dV/V
= dp

dρ/ρ
= ρ

dp

dρ
. (4.33)

In the second step we have used the constancy of the mass d M = ρdV +V dρ = 0 to eliminate the volume,
dV/V = −dρ/ρ. The bulk modulus is a measure of incompressibility, and the larger it is, the greater
is the pressure increase that is needed to obtain a given fractional increase in density. As a measure of
compressibility one usually takes β = 1/K .
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F i gu re 4. 1. B ul k modul us as a f unct i on of pr e ssur e i n t he E ar t h ( dat a f r om [ 34 ] ) . T he s ur face of t he E ar t h
i s t o t he l ef t a nd t he cent r e t o t he r i ght i n t hi s fi gur e. T he bul k m odul us va r i es appr oxi mat e l y l i near l y w i t h
pressure, K ≈ 4p (the dashed line). The dramatic change in density at the core/mantle boundary (see
fi gur e 3. 1) i s bar el y vi s i bl e i n t he bul k m odul us.

The definition of the bulk modulus shows that it is measured in the same units as pressure. In water
under normal conditions it is fairly constant, K ≈ 22 000 atm, doubling only in value between 1 and
3000 atm [34]. As long as the pressure change is much smaller than the bulk modulus, dp � K , we may
estimate the relative change in density from (4.33) to be dρ/ρ ≈ dp/K . In the deepest abyss of the sea the
pressure is a bit more than 1000 atm, implying that the relative density change is dρ/ρ ≈ 1/22 ≈ 4.5%
(see also problem 4.7).

K [GPa]

Mercury 25.0
Glycerol 3.94
Water 2.21
Benzene 1.04
Ethanol 0.89
Methanol 0.82
Hexane 0.60

Bulk modulus for common liq-
uids at normal temperature and
pressure.

For an isothermal ideal gas it follows from the equation of state (4.27) that the bulk modulus is KT = p
where the index T reminds us that the temperature of the gas must be kept constant. The bulk modulus of
the nearly fluid material of the Earth is plotted in figure 4.1 and varies roughly as K ≈ 4p.

Pressure potential
For a barotropic fluid we may integrate the local equation of hydrostatic equilibrium in much the same way
as we did for constant density in (4.21), by defining

H = �+ w(p), (4.34)

where now the pressure potential is the integral,

w(p) =
∫

dp

ρ(p)
. (4.35)

It follows from the chain rule that ∇w(p) = (dw/dp)∇ p = (1/ρ)∇ p and using local hydrostatic
equilibrium (4.19) we obtain ∇H = 0. In hydrostatic equilibrium H is always a constant, even when
the barotropic fluid is compressible.

For an ideal gas under isothermal conditions, the pressure potential is calculated by means of the ideal
gas law (4.27),

w =
∫

RT0

Mmol p
dp = RT0

Mmol
log p. (4.36)

In flat-Earth gravity � = g0z, the constancy of H immediately leads back to the exponentially decreasing
pressure in the isothermal atmosphere (4.31).

4.6 The homentropic atmosphere
The assumption that the temperature is the same everywhere in the atmosphere is certainly wrong, as anyone
who has ever flown in a modern passenger jet and listened to the pilot can testify. Temperature falls with
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hei ght i nst ead of st ayi ng const ant . S o t he at mospher e i s not in isothermal equilibrium, and this is perhaps
not so sur pr i si ng, si nce t he ‘ c ont ai ner wal l s ’ of t he at mospher e , t he gr ound and out er space, have di ff er ent
t emper at ur es. T her e must be a heat fl ow t hr ough t he at m ospher e bet w een t he gr ound and out er space,
mai nt a i ned by t he i nfl ow of sol a r r adi a t i on a nd t he out fl ow of geot her mal e nergy. B ut a i r i s a bad conduct or
of heat , s o a l t hough heat conduct i on does pl a y a r ol e , i t i s not di r ect l y t he cause of t he t emper a t ur e dr op i n
t he a t m ospher e .

Of much great er i mport ance are t he i ndi rect effect s of s ol ar heat i ng, t he convect i on whi ch creat es ai r
cur r e nt s, w i nds, a nd l ocal t ur bul ence, cont i nual l y mi xi ng di ff er ent l ayer s of t he at mospher e . T he l ow e r par t
of t he a t m ospher e , t he t roposphere , i s qui t e unr ul y a nd ve r t i cal mi xi ng happens at t i m e s cal es t hat ar e m uch
shorter t han t hose r equired t o r each thermal equilibrium. T here is in fact no true hydrostatic equilibrium
st at e f or t he r eal at mosphere. E ven i f w e di s regard l arge-scal e w i nds and w eat her s yst ems, hori zont al and
vert i cal mi xi ng always t akes pl ace at smal l s cal es, and a r eal i s t i c model of t he at mosphere must t ake t hi s
i nt o account .

Bl o b-s wa ppi ng
L e t us i magi ne t hat w e t a ke a s mal l bl ob of ai r a nd exchange i t w i t h anot her bl ob of a i r of t he s ame m ass,
but t aken from a di ff erent hei ght wi t h a di fferent vol ume and pressure. I n order t o fi l l out t he correct
vol ume, one ai r m ass woul d have t o be c ompr essed a nd t he ot her expanded. I f t hi s i s done qui ckl y, t her e
w i l l be no t i m e f or heat exchange w i t h t he s ur r oundi ng ai r, and one ai r m ass w i l l consequent l y be heat ed
up by compression and t he ot her cool ed down by expansion. If the atmosphere initially were in isot hermal
equilibrium, t he temperature of t he swapped air woul d not be the s ame as t he temp erature of t he surrounding
air, and t he atmosphere woul d be brought out of equilibrium.

��
	

��
�

�
z

T1

T2

T0

S wappi ng ai r m asses f r om di ff er-
ent hei ght s. If t he ai r has t em-
perature T0 before the swap, the
compressed ai r woul d be warmer
T1 > T0 and t he expanded c ol der
T2 < T0 .

If, however, the surrounding air i nitially had a temperat ure distribution, such that the swapped air after
t he expansi on a nd compr e ssi on woul d a r r ive at pr eci sel y t he c or r ect t e mper at ur es of t hei r new sur r oundi ngs,
a kind of thermodynamic ‘equilibrium’ could be established, in which the omnipresent vertical mixing had
essentially no effect. Intuitively, it is reasonable to expect that the end result of fast vertical mixing and
slow heat conduction might be precisely such a state. It should, however, not be forgotten that this state is
not a true equilibrium state but rather a dynamically balanced state depending on the incessant small-scale
motion in the atmosphere.

Isentropic processes in ideal gases
A process that takes place without exchange of heat between the system and its environment is said to be
adiabatic. If furthermore the process is reversible, it will conserve the entropy and is called isentropic.
F r om t he t her m odynami cs of i deal gases ( see appendi x C ) i t f ol l ow s t hat an i s ent r opi c pr ocess i n a fi xed
amount M of an ideal gas will leave the expression pV γ unchanged. Here γ is the so-called adiabatic
index which for a gas like air with diatomic molecules is approximately γ ≈ 7/5 = 1.4. In terms of the
density ρ = M/V an isentropic process thus obeys,

p ρ−γ = C. (4.37)

Whereas the ‘constants’ γ and C keep their values during a local isentropic process, they could in principle
vary with the position x.

The bulk modulus (4.33) of an isentropic gas is immediately found to be,

KS = γ p, (4.38)

where the S indicates that the entropy must be kept constant during the compression. The pressure potential
(4.35) is similarly obtained,

w =
∫

dp

ρ
=

∫
Cγργ−2 dρ = C

γ

γ − 1
ργ−1.

By means of (4.37) and the ideal gas law (4.27) this may also be written,

w = γ

γ − 1

p

ρ
= γ

γ − 1

RT

Mmol
= cpT, (4.39)
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F i gu re 4. 2. T hr e e di ff e r e nt model s f or t he at mospher i c pr e ssur e : c onst a nt densi t y ( dashed) , homent r opi c
(fully drawn) and i sothermal (large dashes), plotted t ogether with the standard at mosphere data (dot s) [41 ].
T he paramet ers are h0 = 8. 6 km and γ = 7/5.

where

cp = 
dw

dT
= γ

γ − 1

R

Mmol
, (4.40)

is the speci fic heat at const ant pressure of t he gas ( s ee appendi x C ) . For a i r w i t h Mmol ≈ 29 g mol−1 and
γ ≈ 7/5 its value is cp ≈ 1000 J K−1 kg−1.

The atmospheric temperature lapse rate
The atmosphere of the flat Earth is translationally invariant in the horizontal directions, implying that γ and
C can only depend on z, but the blob-swapping argument indicates that both should also be independent of
z. The lower atmosphere, the troposphere, is at least approximatively in a so-called homentropic state in
which (4.37) is valid everywhere with the same values of γ and C .

In constant gravity we find from (4.34) and (4.39) that

H = g0z + cpT, (4.41)

is independent of z, implying that the temperature drops linearly with height,

T = T0 − g0

cp
z, (4.42)

where T0 = H/g0 is the temperature at the surface z = 0. The magnitude of the vertical temperature
gradient −dT/dz = g0/cp ≈ 0.01 K m−1 = 10 K km−1 is called the atmospheric temperature lapse rate.

The above equation may also be written

T = T0

(
1 − z

h2

)
, (4.43)

with the scale height,

h2 = cpT0

g0
= γ

γ − 1
h0. (4.44)

For γ = 7/5 we find h2 ≈ 30 km. At this altitude the temperature has dropped to absolute zero, which is,
of course, unphysical. It is nevertheless a reasonable scale for the true height of the atmosphere.
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The equation of state (4.27) combined with the adiabatic law (4. 37) implies that Tρ 1−γ and p 1−γ T −γ
are also constant , and the density and pressure become,

ρ = ρ0

(
1 − z

h2

)1/(γ−1)
, p = p0

(
1 − z

h2

)γ /(γ−1)
. ( 4. 45)

Both of these quantities vanish like the temperature for z = h2 . A t t he t op of Mount E ver est ( z = h 0 ) the
pr essur e i s now pr e di ct ed t o be 312 hPa w her eas t he s t a ndar d at mospher e dat a says i t i s 330 hPa.

The real atmosphere of Earth
I n fi gur e 4. 2 t he var i ous at mospher i c m odel s f or t he pr essur e have been pl ot t e d t oget her w i t h dat a f or t he
standard atmosphere [41]. Even if the homentropic model gives the best fit, it fails at higher altitudes. The
real atmosphere is in fact much more complicated than any of these models indicate.

Water vapour is always present in the atmosphere and will condense to clouds in rising currents of air.
The latent heat of condensation heats up the air, so that the temperature lapse rate becomes smaller than
10 K km−1, perhaps more like 6–7 K km−1, leading to a somewhat higher estimate for the temperature
at the top of Mount Everest. The clouds may eventually precipitate out as rain, and when the dried air
afterwards descends again, for example on the lee side of a mountain, the air will heat up at a higher rate
than it cooled during its ascent on the windward side and become quite hot, a phenomenon known as föhn
in the Alps.

The fact that the temperature lapse rate is smaller in the real atmosphere than in the isentropic model
has a bearing on the stability of the atmosphere. If a certain amount of air is transported to higher altitude
without heat exchange and condensation of water vapour, it will behave like in the isentropic model and
become cooler than the surrounding air. Consequently it will also be heavier than the surrounding air
and tend to sink back to where it came from, implying that the atmosphere is stable. Conversely, if the
real temperature lapse becomes larger than in the isentropic model, the atmosphere becomes unstable and
strong vertical currents may arise. This can, for example, happen in thunderstorms.

Problems
4.1 Consider a canal with a dock gate which is 12 m wide and has water depth 9 m on one side and 6 m
on the other side.

(a) Calculate the pressures in the water on both sides of the gate at a height z over the bottom of the
canal.

(b) Calculate the total force on the gate.

(c) Calculate the total moment of force around the bottom of the gate.

(d) Calculate the height over the bottom at which the total force acts.

4.2 An underwater lamp is covered by a hemispherical glass with a diameter of 30 cm and is placed with
its centre at a depth of 3 m on the side of the pool. Calculate the total horizontal force from the water on
the lamp, when there is air at normal pressure inside.

4.3 Using a manometer, the pressure in an open container filled with liquid is found to be 1.6 atm at a
height of 6 m over the bottom, and 2.8 atm at a height of 3 m. Determine the density of the liquid and the
height of the liquid surface.

4.4 An open jar contains two non-mixable liquids with densities ρ1 > ρ2. The heavy layer has thickness
h1 and the light layer on top of it has thickness h2. (a) An open glass tube is lowered vertically into the
liquids towards the bottom of the jar. Describe how high the liquids rise in the tube (disregarding capillary
effects). (b) The open tube is already placed in the container with its opening close to the bottom when the
heavy fluid is poured in, followed by the light. How high will the heavy fluid rise in the tube?
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4.5 The equation of state due to van der Waals is(
P + n 2 a

V 2

)
( V − nb) = n RT  ( 4. 46)

where a and b ar e const ant s. I t descr i bes gases and t hei r condensat i on i nt o l i qui ds. (a) C a l c ul at e t he
i s ot her m al bul k modul us. (b) U nder w hi ch condi t i ons can i t become negat ive , a nd w hat does i t m ean?

4.6 T he e quat i on of s t a t e f or wat er i s t o a good appr oxi mat i on ( f or pr e ssur e s up t o 100 000 bar ) give n by

p + B

p0 + B 
=

(
ρ

ρ0

)n
( 4. 47)

with B = 3000 at m, n = 7, p0 = 1 atm  and ρ 0 = 1 g cm−3 . (a) C a l c ul at e t he bul k modul us K for
wa t e r. (b) C al cul at e t he densi t y and pr essur e di st r i but i on i n t he sea. (c) What is the pressure and the relative
compressi on of t he wat er at t he deepest poi nt i n t he s ea ( z = −10. 924 km ) ?

4.7 C a l c ul at e t he pr essur e and densi t y i n t he s ea, assumi ng const a nt bul k modul us. S how t hat bot h
quantities are singular at a certain depth and calculate this depth.

4.8 A ver t i cal pl at e i s i nser t ed i nt o a l i qui d at r est w i t h const ant densi t y ρ0 i n const a nt gr avi t y g0 .
I nt r oduce a coor di nat e z goi ng vertically down with the pressure defined to vani sh for z = 0. I n t he
f ol l ow i ng w e denot e t he ve r t i cal ar ea moment s by,

In = 1

A

∫
A

z n d S, n = 1, 2, . . .  ( 4. 48)

where d S  i s t he s urface el ement . T he poi nt zM = I 1 i s cal l ed t he area cent r e.

(a) C a l c ul at e t he pr essur e i n t he l i qui d.

(b) Show that I2 ≥ I 21 .

(c) Calcul ate t he total pressure force on t he pl ate.

(d) Calculate the total moment of force of the pressure forces around z = 0.

(e) Show that the point of attack of the pressure forces is found below the area centre z P ≥ zM .

(f) A thin isosceles triangle with height h and bottom length b is lowered into the liquid such that its top
point is at z = 0. Calculate the area centre and the point of attack of the pressure forces.

4.9 Determine the form of the pressure across the core/mantle boundary when the bulk modulus is
K ≈ γ p with γ ≈ 4 t hr oughout t he E ar t h ( s ee fi gur e 4. 1) .
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‘Buoy’ mostly pronounced
‘booe’, probably of Germanic
origin. A tethered floating object
used to mark a location in the
sea.

Fishes, whales, submarines, balloons and airships all owe their ability to float to buoyancy, the lifting
power of water and air. The understanding of the physics of buoyancy goes back as far as antiquity and
probably sprung from the interest in ships and shipbuilding in classic Greece. The basic principle is due
to Archimedes. His famous Law states that the buoyancy force on a body is equal and oppositely directed
to the weight of the fluid that the body replaces. Actually the Law was not just one law, but a set of four
propositions dealing with different configurations of body and liquid [70]. Before his time it was wrongly
thought that the shape of a body determined whether it would sink or float. Archimedes of Syracuse (287–

212 BC). Greek mathematician.
Discovered the formulae for area
and volume of cylinders and
spheres. Considered the father of
fluid mechanics.

The shape of a floating body and its mass distribution does, however, determine whether it will float
stably or capsize. Stability of floating bodies is of importance to shipbuilding, and to anyone who has
ever tried to stand up in a small rowboat. Newtonian mechanics not only allows us to derive Archimedes’
Principle for the equilibrium of floating bodies, but also to characterize the deviations from equilibrium and
calculate the restoring forces. Even if a body floating in or on water is in hydrostatic equilibrium, it will
not be in complete mechanical balance in every orientation, because the centre of mass of the body and the
centre of mass of the displaced water, also called the centre of buoyancy, do not in general coincide.

The mismatch between the centers of mass and buoyancy for a floating body creates a moment of force,
which tends to rotate the body towards a stable equilibrium. For submerged bodies, submarines, fishes and
balloons, the stable equilibrium will always be with the centre of gravity situated directly below the centre
of buoyancy. For bodies floating stably on the surface, ducks, ships and dumplings, the centre of gravity is
mostly found directly above the centre of buoyancy.

5.1 Archimedes’ principle
Mechanical equilibrium takes a slightly different form than global hydrostatic equilibrium (4.15) when a
body of another material is immersed in a fluid. If its material is incompressible, the body retains its shape
and displaces an amount of fluid with exactly the same volume. If the body is compressible, like a rubber
ball, the volume of displaced fluid will be smaller. The body may even take in fluid, like the piece of bread
you dunk into your coffee, but then the physics becomes more complicated, and we shall disregard this
possibility in the following. A body which is partially immersed may formally be viewed as a body that
is fully immersed in a fluid for which the mass density and the equation of state vary from place to place.
This also covers the case where part of the body is in vacuum which may be thought of as a fluid with the
extreme properties, ρ = p = 0.
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Weight and buoyancy
Let the actual, perhaps compressed, volume of the immersed body be V with surface S. In the field of
gravity an unrestrained body is subject to two forces: its weight

�G =
∫

V
ρbody g dV, (5.1)

and the buoyancy due to pressure acting on its surface,
���
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Gravity pulls on a body over
its entire volume, while pressure
only acts on the surface.

� B = −
∮

S
p d S. (5.2)

In general these two forces do not have to be in balance. The resultant � = �G + � B determines the
direction that the unrestrained body will begin to move. In mechanical equilibrium the two forces must
exactly cancel each other so that the body can remain in place.
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DISPLACEMENT

For a body partially submerged
in water the displacement is the
amount of water that has been
displaced by the volume of the
body below the waterline.

Assuming that the body does not itself significantly contribute to the field of gravity, the local balance
of forces in the fluid (4.19) will be the same as before the body was placed in the fluid. In particular the
pressure in the fluid cannot depend on whether the volume V contains material that is different from the
fluid itself. The pressure on the surface of the immersed body must for this reason be identical to the
pressure on a body of fluid of the same shape. But then the global equilibrium condition (4.15) tells us that
the buoyancy force will exactly balance the weight of the displaced fluid, so that

� B = −
∮

S
p d S = −

∫
V
ρfluid g dV . (5.3)

This theorem is indeed Archimedes’ principle: the force of buoyancy equals (minus) the weight of the
displaced fluid.

The total force on the body may now be written

� = �G +� B =
∫

V
(ρbody − ρfluid)g dV, (5.4)

explicitly confirming that when the body is made from the same fluid as its surroundings, so that ρbody =
ρfluid, the resultant force vanishes automatically. In general, however, the distributions of mass in the body
and in the displaced fluid will be different.

Karl Friedrich Hieronymus Frei-
herr von Münchhausen (1720–
1797). German (Hanoveran) sol-
dier, hunter, nobleman, and de-
lightful story-teller. In one of his
stories, he lifts himself out of a
deep lake by pulling at his boot-
straps.

Note that Archimedes’ principle is valid even if the gravitational field varies appreciably across the
body. Archimedes principle fails, however, if the body is so large that its own gravitational field
cannot be neglected, such as would be the case if an Earth-sized body fell into Jupiter’s atmosphere.
The extra compression of the fluid near the surface of the body generally increases the buoyancy
force. In semblance with Baron von Münchhausen’s adventure, the body in effect lifts itself by its
bootstraps (see problems 5.6 and 5.7).

Constant field of gravity
If the gravitational field is constant, g(x) = g0, the weight of the body is,

�G = Mbody g0, (5.5)

and the buoyancy force becomes

� B = −Mfluid g0. (5.6)

Since the total force is the sum of these contributions, one might say that buoyancy acts as if the
displacement were filled with fluid of negative mass −Mfluid. In effect the buoyancy force acts as a kind of
antigravity.

The total force on an unrestrained object is now,

� = �G +� B = (Mbody − Mfluid)g0. (5.7)
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If the body mass is smaller than the mass of the displaced fluid, the total force is directed upwards, and
the unrestrained body will begin to move upwards. Alternatively, if the body is kept in place, the restraints
must deliver a force −� to prevent the object from moving.

A body can only hover motionlessly in a fluid if its mass equals the mass of the displaced fluid,

Mbody = Mfluid. (5.8)

Fish achieve this balance by adjusting the amount of water they displace through contraction and expansion
of an internal air-filled bladder. Submarines, in contrast, change their mass by pumping water in and out
of ballast tanks. Curiously, no animals seem to have developed balloons for floating in the atmosphere,
although both the physics and chemistry of ballooning appears to be within reach of biological evolution.

5.2 The gentle art of ballooning
Joseph Michel Montgolfier
(1740–1810). Experimented (to-
gether with his younger brother
Jacques Étienne (1745–1799))
with hot-air balloons. On
November 21, 1783, the first
human flew in such a balloon for
a distance of 9 km at a height of
100 m above Paris. Only one of
the brothers ever flew, and then
only once!

Jacques Alexandre César Charles
(1746–1823). French physicist.
The first to use hydrogen balloons
for manned flight, and made in
December 1783 an ascent to
about 3 km. Discovered Charles’
law, a forerunner of the ideal
gas law, stating that the ratio of
volume to absolute temperature
(V/T ) is constant for a given
pressure.

The first balloon flights are credited to the Montgolfier brothers who in November 1783 flew a manned
hot-air balloon, and to Jacques Charles who on December 1 that same year flew a manned hydrogen gas
balloon. In the beginning there was an intense rivalry between the advocates of Montgolfier and Charles
type balloons which presented different advantages and dangers to the courageous fliers. Hot air balloons
were easier to make but prone to catch fire, while hydrogen balloons had greater lifting power but could
suddenly explode. By 1800 the hydrogen balloon had won the day, culminating in the huge (and dangerous)
hydrogen airships of the 1930s. Helium balloons are much safer, but also much more expensive to fill. In
the last half of the twentieth century hot-air balloons again came into vogue, especially for sports, because
of the availability of modern strong lightweight materials (nylon) and fuel (propane).

Gas balloons
A large hydrogen or helium balloon typically begins its ascent being only partially filled, assuming an
inverted tear-drop shape. During the ascent the gas expands because of the fall in ambient air pressure,
and eventually the balloon becomes nearly spherical and stops expanding (or bursts) because the ‘skin’ of
the balloon cannot stretch further. Since the density of the displaced air falls with height, the balloon will
eventually reach a maximum height, a ceiling where it could hover permanently if it did not lose gas. In the
end no balloon stays aloft forever.

Let the total mass of the balloon be M0, including the mass of the gas, the balloon skin, the gondola,
people etc. The condition for upwards flight is then that M0 ≤ Vρ where V is the total volume of air that
the balloon displaces and ρ the air density at its actual position. In the homentropic atmospheric model the
air density is given by (4.45), and the condition for upwards flight at height z becomes,

M0 < ρ0V

(
1 − z

h2

)1/(γ−1)
(5.9)

where γ ≈ 7/5 is the adiabatic index of air, ρ0 ≈ 1.2 kg m−3 its density at sea level, and h2 ≈ 30 km
the isentropic scale height (4.44). If this inequality is fulfilled on the ground, the balloon will start to rise.
During the rise the volume may expand towards a maximal value while the air density falls, and the balloon
will keep rising until the inequality is no longer fulfilled, and the balloon has reached its ceiling.

Example 5.2.1: A gas balloon has a maximal spherical diameter of 10 m yielding a volume V ≈
524 m3. For the balloon to lift-off at all, its mass must be smaller than ρ0V = 628 kg. Taking
M0 = 400 kg the ceiling becomes z ≈ 5 km. At this height the air pressure is p = 0.53 atm and the
temperature T = 245 K = −29 ◦ C (ignoring humidity). Assuming that the balloon contains hydrogen
H2 (with MH2 = 2 g mol−1 and γ = 7/5) at this temperature and pressure, the total mass of the
hydrogen is merely 28 kg. The surface area of the balloon is 314 m2, so if the skin has thickness 2 mm
and density 300 kg m−3, its mass becomes 188 kg, which leaves about 400 − 28 − 188 = 184 kg for
the proper payload. Filled with helium He (with Mmol = 4 g mol−1 and γ = 5/3), the proper payload
would be reduced to 156 kg.
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Hot-air balloons
A hot-air balloon is open at the bottom so that the inside pressure is always the same as the atmospheric
pressure outside. The air in the balloon is warmer (T ′ > T ) than the outside temperature and the density
is correspondingly lower (ρ′ < ρ). If M0 denotes the total mass of the balloon, including the gondola and
the passengers but not the hot air, the condition for flight is now M0 < (ρ − ρ′)V . From the ideal gas
law (4.27) and the equality of the inside and outside pressures it follows that ρ′T ′ = ρT , so that the inside
density is ρ′ = ρT/T ′. The condition for flight at height z becomes,
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ρ
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A hot-air balloon has higher
temperature T ′ > T and
lower density ρ′ < ρ but the
same pressure as the surrounding
atmosphere because it is open
below.

M0 <

(
1 − T

T ′
)
ρV =

(
1 − T0

T ′
(

1 − z

h2

))(
1 − z

h2

)1/(γ−1)
ρ0V . (5.10)

On the right-hand side we have inserted the expressions (4.43) and (4.45) for the homentropic atmospheric
temperature and density.

Example 5.2.2: A spherical hot-air balloon with diameter d = 15 m is desired to reach a ceiling
of z = 1000 m with air temperature T ′ = 120 ◦ C = 393 K. When the ground temperature is
T0 = 20 ◦ C = 293 K and the density ρ0 = 1.2 kg m−3, it follows that this balloon would be capable
of lifting M0 ≈ 547 kg to the ceiling. Using the same parameters as for the gas balloon, the payload
becomes 123 kg.

5.3 Stability of floating bodies
Although a body may be in buoyant equilibrium, such that the total force composed of gravity and buoyancy
vanishes, � = �G +� B = 0, it may not be in complete mechanical equilibrium. The total moment of all
the forces acting on the body must also vanish; otherwise an unrestrained body will start to rotate.

Moments of weight and buoyancy
The total moment is like the total force a sum of two contributions,

� =�G +�B , (5.11)

with one contribution from gravity,

�G =
∫

V
x × ρbodyg dV, (5.12)

and the other from pressure, i.e. buoyancy,

�B =
∮

S
x × (−p d S). (5.13)

If the total force vanishes, � = 0, the total moment will be independent of the origin of the coordinate
system (page 32).

Assuming again that the presence of the body does not change the pressure distribution in the fluid, the
moment of buoyancy is independent of the nature of the material inside V . In hydrostatic equilibrium the
total moment on the same volume of fluid must vanish,�fluid

G +�B = 0, such that we get

�B = −
∫

V
x × ρfluidg dV . (5.14)

The moment of buoyancy equals the (minus) moment of gravity of the displaced fluid. This result is a natural
corollary to Archimedes’ principle, and of immense help in calculating the buoyancy moment. A formal
proof of the theorem is found in problem 5.8.
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Constant gravity and buoyant equilibrium
In the remainder of this chapter we assume that gravity is constant, g(x) = g0, and that the body is in
buoyant equilibrium so that it displaces exactly its own mass of fluid, Mfluid = Mbody = M . The densities
of body and displaced fluid will, however, in general be different, ρbody �= ρfluid.

The moment of gravity (5.12) may as before (page 32) be expressed in terms of the centre xG of the
body mass distribution (here called the centre of gravity),

�G = xG × M g0, xG = 1

M

∫
xρbody dV . (5.15)

Similarly the moment of the mass distribution of the displaced fluid (5.14) is,
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Body in buoyant equilibrium but
with non-vanishing total moment
which here sticks out of the paper.
The moment will for a submerged
body tend to rotate it in the
anticlockwise direction and thus
bring the centre of gravity below
the centre of buoyancy.

�B = −x B × M g0, x B = 1

M

∫
xρfluid dV, (5.16)

where x B is the centre of buoyancy. Although each of these moments depends on the choice of origin of
the coordinate system, the total moment,

� = (xG − x B )× M g0, (5.17)

will be independent, as witnessed by the appearance of the difference of the two centre positions.
As long as the total moment is non-vanishing, the body is not in mechanical equilibrium, but will start

to rotate towards an orientation with vanishing moment. Except for the trivial case where the centers of
gravity and buoyancy coincide, the above equation tells us that the total moment can only vanish if the
centers lie on the same vertical line,

xG − x B ∝ g0. (5.18)

For xG �= x B , there are two possible orientations satisfying this condition: one where the centre of gravity
lies above the centre of buoyancy, and another where the centre of gravity is lowest. At least one of these
will be stable.
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....................
......G′ �

A fully submerged body in stable
equilibrium must have the centre
of gravity directly below the
centre of buoyancy. If G is
moved to G′ a restoring moment
is created which sticks out of the
plane of the paper.

Submerged body
For a fully submerged rigid body, for example a submarine, both centres are always in the same place
relative to the body. If the centre of gravity does not lie directly below the centre of buoyancy, but is
displaced horizontally, the direction of the moment will always tend to turn the body so that the centre
of gravity is lowered with respect to the centre of buoyancy. The only stable orientation of the body is
where the centre of gravity lies vertically below the centre of buoyancy. Any small perturbation away
from this orientation will soon be corrected and the body brought back to the equilibrium orientation. A
similar argument shows that the other equilibrium orientation with the centre of gravity above the centre of
buoyancy is unstable and will flip the body over, if perturbed the tiniest amount.

This is why the gondola hangs below an airship or balloon, and why a fish goes belly-up when it dies,
because it loses control of the swim bladder which enlarges into the belly and reverses the positions
of the centers of gravity and buoyancy. It generally also loses buoyant equilibrium and floats to the
surface.

Body floating on the surface
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A floating body may have a stable
equilibrium with the centre of
gravity directly below the centre
of buoyancy.

At the surface of a liquid, a body such as a ship or an iceberg will according to Archimedes’ principle always
arrange itself so that the mass of displaced liquid exactly equals the mass of the body. Here we assume that
there is vacuum or a very light fluid such as air above the liquid. The centre of gravity is always in the same
place relative to the body, but the centre of buoyancy depends now on the orientation of the body, because
the volume of displaced fluid changes place and shape (while keeping its mass constant) when the body
orientation changes.

Stability can again only occur when the two centres lie on the same vertical line, but there may be
more than one stable orientation. A sphere made of homogeneous wood floating on water is stable in all
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Figure 5.1. The Flying Enterprise (1952). A body can float stably in many orientations, depending on the
position of its centre of gravity. In this case the list to port was caused by a shift in the load which moved the
centre of gravity to the port side. The ship and its lonely captain Carlsen became famous because he stayed
on board during the storm that eventually sent it to the bottom. Photograph courtesy Politiken, Denmark,
reproduced with permission.

orientations. None of them are in fact truly stable, because it takes no force to move from one to the other.
This is however a marginal case.

A floating body may, like a submerged body, possess a stable orientation with the centre of gravity
directly below the centre of buoyancy. A heavy keel is, for example, used to lower the centre of gravity of
a sailing ship so much that this orientation becomes the only stable equilibrium. In that case it becomes
virtually impossible to capsize the ship, even in a very strong wind.

The stable orientation for most floating objects, such as ships, will in general have the centre of gravity
situated directly above the centre of buoyancy. This happens always when an object of constant mass
density floats on top of a liquid of constant mass density, for example an iceberg on water. The part of the
iceberg that lies below the waterline must have its centre of buoyancy in the same place as its centre of
gravity. The part of the iceberg lying above the water cannot influence the centre of buoyancy whereas it
always will shift the centre of gravity upwards.
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A floating body generally has
a stable equilibrium with the
centre of gravity directly above
the centre of buoyancy.

How can that situation ever be stable? Will the moment of force not be of the wrong sign? Why don’t
ducks and tall ships capsize spontaneously? The qualitative answer is that when the body is rotated away
from such an equilibrium orientation, the volume of displaced water will change position and shift the
centre of buoyancy back to the other side of the centre of gravity, reversing the direction of the moment of
force to restore the equilibrium.

5.4 Ship stability
Sitting comfortably in a small rowboat, it is fairly obvious that the centre of gravity lies above the centre
of buoyancy, and that the situation is stable with respect to small movements of the body. But many a
fisherman has learnt that suddenly standing up may compromise the stability and throw him out among the
fishes. There is, as we shall see, a strict limit to how high the centre of gravity may be above the centre of
buoyancy. If this limit is violated, the boat becomes unstable and capsizes.
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Figure 5.2. The Queen Mary 2 set sail on its maiden voyage on January 2, 2004. It is the world’s largest
ocean liner—ever—with a length of 345 m, a height of 72 m from keel to funnel, and a width of 41 m.
Having a draft of only 10 m, its superstructure rises an impressive 62 m over the waterline. The low average
density of the superstructure, including 2620 passengers and 1253 crew, combined with the high average
density of the 117 megawatt engines and other heavy facilities close to the bottom of the ship nevertheless
allow the stability condition to be fulfilled. Photograph by Daniel Carneiro.

We shall assume that the ship is initially in complete mechanical equilibrium with vanishing total force
and vanishing total moment of force. The aim is now to calculate the moment that arises when the ship is
brought slightly out of equilibrium. If the moment tends to turn the ship back into equilibrium, the initial
orientation is stable, otherwise it is unstable.

Displacement geometry
Most ships are mirror symmetric in a plane, but we shall be more general and consider a ‘ship’ of an
arbitrary shape. In a flat earth coordinate system with vertical z-axis the ship displaces in equilibrium a
volume V0 of water below the waterline at z = 0. Since water has constant density, the centre of buoyancy
is simply the geometric average of the position over the displacement,
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The ship in an equilibrium ori-
entation, stable or unstable, with
the aligned centres of gravity and
buoyancy. The horizontal line at
z = 0 indicates the surface of the
water.

x B = 〈x〉0 = 1

V0

∫
V0

x dV . (5.19)

In equilibrium the horizontal positions of the centres of buoyancy and gravity must be equal xB = xG and
yB = yG , whereas the vertical position zG of the centre of gravity depends on the actual mass distribution
of the ship, determined by its structure and load.

In practical calculations it pays to introduce the ship’s equilibrium area function A(z), defined as the
horizontal area at depth z below the waterline. The displacement and the height of the centre of buoyancy
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then become,

V0 =
∫ 0

−d
A(z) dz, (5.20)

zB = 1

V0

∫ 0

−d
z A(z) dz, (5.21)

where d is the ship’s draft (maximal depth below the waterline).

Centre of roll
In the waterline the ship covers a horizontal region A0 = A(0) of arbitrary shape. The geometric centre of
this region is defined by the area average of the position,

(x0, y0) = 1

A0

∫
A0

(x, y) d A, (5.22)

where d A = dx dy is the area element. Without loss of generality we may always place the coordinate
system such that x0 = y0 = 0. In a ship that is mirror symmetric in a plane, the area centre will also lie in
this plane.
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The area A0 of the ship in
the waterline may be of quite
arbitrary shape.
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Tilt around the x-axis. The
change in displacement consists
in moving the water in the wedge
to the right into the wedge to the
left.

To discover the physical significance of the geometric centre of the waterline area, the ship is tilted (or
‘heeled’ in maritime language) through a tiny angle α around the x-axis, such that the equilibrium waterline
area A0 comes to lie in the plane z = αy. The net change in the volume of the displaced water is to lowest
order in α given by the difference in volumes of the two wedge-shaped regions between new and the old
waterlines. Since the displaced water is removed from the wedge at y > 0 and added to the wedge for
y < 0, the signed volume change becomes

δV = −
∫

A0

z d A = −α
∫

A0

y d A = 0. (5.23)

In the last step we have assumed that the origin of the coordinate system coincides with the geometric centre
of the waterline area. There will be corrections to this result of order α2 due to the actual shape of the hull
just above and below the waterline, but they are disregarded here. To leading order the two wedges have
the same volume.

Since the direction of the x-axis is quite arbitrary, the conclusion is that the ship may be heeled around
any line going through the geometric centre of the waterline area without any first order change in volume
of displaced water. This guarantees that the ship will remain in buoyant equilibrium during the tilt. The
geometric centre of the waterline area may thus be viewed as the ship’s centre of roll.

The metacentre

��
� ��

GG′

B B′B′′

α

The tilt rotates the centre of
gravity from G to G′, and the
centre of buoyancy from B to
B′. In addition, the change in
displaced water shifts the centre
of buoyancy back to B′′. In stable
equilibrium this point must for
α > 0 lie to the left of the new
centre of gravity G′.

The tilt around the x-axis changes the positions of the centres of gravity and buoyancy. The centre of
gravity is (hopefully!) fixed with respect to the ship and is to first order in α shifted horizontally by a simple
rotation through the infinitesimal angle α,

δyG = −αzG . (5.24)

There will also be a vertical shift, δzG = αyG , but that is of no importance to the stability in the lowest
order of approximation.

The centre of buoyancy is at first shifted by the same rule as the centre of gravity by the tilt, but because
the displacement also changes there will be another contribution �yB , so that we may write

δyB = −αzB +�yB . (5.25)

As discussed above, the change in displacement amounts to moving the water in the wedge at y > 0 to
the wedge at y < 0. The change in displacement is according to (5.19) calculated by averaging y over the
volume of the two wedges, taking the sign correctly into account,

�yB = −〈y〉0 = − 1

V0

∫
A0

yz d A = − α

V0

∫
A0

y2 d A = −α I0

V0
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where

I0 =
∫

A0

y2 d A , (5.26)

is the second “moment of inertia” or area moment around the x-axis of the waterline area A.
The total horizontal shift in the centre of buoyancy becomes

δyB = −α
(

zB + I0

V0

)
. (5.27)

This is of exactly the same form as the horizontal shift obtained by rotating the fixed point with vertical
coordinate,

zM = zB + I0

V0
. (5.28)

This point, called the metacentre, is usually placed on the straight line (the ‘mast’) that goes through the
centres of gravity and buoyancy. The above calculation shows that when the ship is heeled through a small
angle, the centre of buoyancy will move so that it stays vertically below the metacentre.

The metacentre is a purely geometric quantity. The displacement as well as the vertical height of the
centre of buoyancy may be calculated from the area function of the ship using (5.20) and (5.21), and the
second order moment from the shape of the ship in the waterline. The simplest shapes are,

Rectangular waterline area: For a ship with rectangular waterline area with sides 2a and 2b, the roll
centre coincides with the centre of the rectangle, and the second moment around the x-axis becomes,

I0 =
∫ a

−a
dx

∫ b

−b
dy y2 = 4

3 ab3 . (5.29)

If a > b this is the largest moment around any tilt axis.

Elliptic waterline area: If the ship has an elliptical waterline area with axes 2a and 2b, the roll centre
coincides with the centre of the ellipse, and the second moment around the x-axis becomes,

I0 =
∫ a

−a
dx

∫ b
√

1−x2/a2

−b
√

1−x2/a2
y2 dy = 4

3
ab3

∫ 1

0
(1 − t2)

3/2
dt = π

4
ab3. (5.30)

Notice that this is only about half of the result for the rectangle.
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The centre of buoyancy B shifts
horizontally by the same amount
as the metacentre M. In this
case the ship is stable because the
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In this case the ship is unstable
because the metacentre lies be-
low the centre of gravity.

Stability condition
The tilt also generates a restoring moment around the x-axis, which may be calculated from (5.17),

�x = −(yG − yB)Mg0. (5.31)

Since we have yG = yB in the original mechanical equilibrium, the difference in coordinates after the tilt
may be written, yG − yB = δyG − δyB where δyG and δyB are the small horizontal shifts of order α in the
centres of gravity and buoyancy, calculated above.

In terms of the metacentric height zM the restoring moment becomes

�x = −α(zM − zG )Mg0. (5.32)

For the ship to be stable, the restoring moment must counteract the tilt and thus have opposite sign of the
tilt angle α. Consequently, the stability condition becomes

zM > zG . (5.33)

Evidently, the ship is stable when the metacentre lies above the centre of gravity.
The orientation of the coordinate system with respect to the ship’s hull was not specified in the analysis

which is therefore valid for a tilt around any direction. For a ship to be fully stable, the stability condition
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must be fulfilled for all possible tilt axes. Since the displacement V0 is the same for all choices of tilt axis,
the second moment of the area on the right hand side of (5.28) should be chosen to be the smallest one.
Often it is quite obvious which moment is the smallest. Many modern ships are extremely long with the
same cross section along most of their length and with mirror symmetry through a vertical plane. For such
ships the smallest moment is clearly obtained with the tilt axis parallel to the longitudinal axis of the ship.

The restoring moment (5.32) is proportional to the vertical distance, zM − zG , between the metacentre
and the centre of gravity. The closer the centre of gravity comes to the metacentre, the smaller will the
restoring moment be, and the longer will the period of rolling oscillations be. The actual roll period
depends also on the true moment of inertia of the ship around the tilt axis (see problem 5.11). Whereas
the metacentre is a purely geometric quantity which depends only on the ship’s actual draft, the centre of
gravity depends on the way the ship is actually loaded. A good captain should always know the positions
of the centre of gravity and the metacentre of his ship before he sails, or else he may capsize when casting
off.

Example 5.4.1: An elliptical rowboat with vertical sides has major axis 2a = 2 m and minor axis
2b = 1 m. The smallest moment of the rectangular area is I0 = (π/4)ab3 ≈ 0.1 m4. If your
mass is 75 kg and the boat’s is 50 kg, the displacement will be V0 = 0.125 m3, and the draught
d ≈ V0/4ab = 6.25 cm, ignoring the usually curved shape of the boat’s hull. The coordinate of the
centre of buoyancy becomes zB = −3.1 cm and the metacentre zM = 75 cm. Getting up from your
seat may indeed raise the centre of gravity so much that it gets close to the metacentre and the boat
begins to roll violently. Depending on your weight and mass distribution the boat may even become
unstable and turn over.

�G
�B

2b

2c

d

Floating block with height h,
draught d , width 2b, and length
2a into the paper.

Floating block
The simplest non-trivial case in which we may apply the stability criterion is that of a rectangular block
of dimensions 2a, 2b and 2c in the three coordinate directions. Without loss of generality we may assume
that a > b. The centre of the waterline area coincides with the roll centre and the origin of the coordinate
system with the waterline at z = 0. The block is assumed to be made from a uniform material with constant
density ρ1 and floats in a liquid of constant density ρ0.

In hydrostatic equilibrium we must have M = 4abdρ0 = 8abcρ1, or

ρ1

ρ0
= d

2c
. (5.34)

The position of the centre of gravity is zG = c − d and the centre of buoyancy zB = −d/2. Using (5.29)� �
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tainer filled with liquid.

and V0 = 4abd , the position of the metacentre is

zM = −d

2
+ b2

3d
. (5.35)

Rearranging the stability condition, zM > zG , it may be written as(
d

c
− 1

)2
> 1 − 2b2

3c2
. (5.36)

When the block dimensions obey a > b and b/c >
√

3/2 = 1.2247 . . ., the right-hand side becomes
negative and the inequality is always fulfilled. On the other hand, if b/c <

√
3/2 there is a range of draught

values around d = c (corresponding to ρ1/ρ0 = 1
2 ),

1 −
√

1 − 2

3

(
b

c

)2
<

d

c
< 1 +

√
1 − 2

3

(
b

c

)2
, (5.37)

for which the block is unstable. If the draught lies in this interval the block will keel over and come to rest
in another orientation (see problem 5.13).
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Figure 5.3. Stability curve for large angles of heel. The metacentre is only useful for tiny heel angles where
all changes are linear in the angle. For larger angles one uses instead the ‘righting arm’ which is the distance
between the centre of gravity and the vertical line through the actual centre of buoyancy. Instability sets in
when the righting arm becomes negative, in the above plot for about 72◦ heel. Courtesy John Pike, Global
Security.

Ship with liquid cargo
Many ships carry liquid cargos, oil, water, etc. When the tanks are not completely filled this kind of cargo
may strongly influence the stability of the ship. In heavy weather or due to accidents, car ferries may
inadvertently also get a layer of water on the car deck. The main effect of an open liquid surface inside the
ship is that the centre of mass is shifted in the same direction by the redistribution of real liquid as the shift
in the centre of buoyancy due to the change in displaced water, i.e. towards negative y-values. This disturbs
the stability and creates a competition between the liquid carried by the ship and the water displaced by the
ship.

For the case of a single open tank the calculation of the restoring moment must now include the liquid
cargo. A similar analysis as before shows that there will be a horizontal change in the centre of gravity from
the movement of a wedge of real liquid of density ρ1,

�yG = −α ρ1 I1

M
= −α ρ1

ρ0

I1

V0
(5.38)

where I1 is the second moment of the open liquid surface. The metacentric height now becomes

zM = zB + I0

V0
− ρ1

ρ0

I1

V0
. (5.39)

The effect of the moving liquid is to lower the metacentric height with possible destabilization as a result.
The unavoidable sloshing of the liquid may further compromise the stability. The destabilizing effect of a
liquid cargo is often counteracted by dividing the hold into a number of smaller compartments by means of
bulkheads along the ship’s principal roll axis.

h

A ‘car ferry’ with water on
the deck is inherently unstable
because the movement of the real
water on the deck nearly cancels
the stabilizing movement of the
displaced water.

In car ferries almost any level h of water on the car deck may cause the ferry to capsize because
ρ1 = ρ0 and I1 ≈ I0, making zM ≈ zB independent of h. As several accidents have shown, car
ferries are in fact highly susceptible to the destabilizing effects of water on the car deck. Waterproof
longitudinal bulkheads on the car deck of a car ferry are usually avoided because it would hamper
efficient loading of the cars.
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∗ Principal roll axis
It has already been remarked that the metacentre for absolute stability is determined by the smallest second
moment of the waterline area. Instead of tilting the ship around the x-axis, it is tilted around an axis
n = (cos φ, sinφ, 0) forming an angle φ with the x-axis. Since this configuration is obtained by a simple
rotation through φ around the z-axis, the transverse coordinate to be used in calculating the second moment
becomes y′ = y cos φ − x sinφ (see equation (2.36b)), and we find

I ′
0 =

∫
A
(y′)2 d A = Ix x cos2 φ + Iyy sin2 φ + 2Ixy sinφ cos φ = n · III · n (5.40)

where Ix x , Iyy and Ixy are the elements of the matrix

III =
(

Ix x Ixy
Iyx Iyy

)
=

∫
A

(
y2 −xy

−xy x2

)
d A. (5.41)

The extrema of the positive definite quadratic form n ·III ·n are found from the eigenvalue equation III ·n = λn
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Tilt axis n forming an angle φ
with the x-axis.

(see problem 5.10). The eigenvector corresponding to the smallest eigenvalue is called the principal roll
axis of the ship and its eigenvalue determines the metacentre for absolute stability.

Problems
5.1 A stone weighs 1000 N in air and 600 N when submerged in water. Calculate the volume and average
density of the stone.

5.2 A hydrometer (an instrument used to measure the density of a liquid) with mass M = 4 g consists of
a roughly spherical glass container and a long thin cylindrical stem of radius a = 2 mm. The sphere
is weighed down so that the apparatus will float stably with the stem pointing vertically upwards and
crossing the fluid surface at at some point. How much deeper will it float in alcohol with mass density
ρ1 = 0.78 g cm−3 than in oil with mass density ρ2 = 0.82 g cm−3? You may disregard the tiny density of
air.

5.3 A cylindrical wooden stick (density ρ1 = 0.65 g cm−3) floats in water (density ρ0 = 1 g cm−3). The
stick is loaded down with a lead weight (density ρ2 = 11 g cm−3) at one end such that it floats in a vertical
position with a fraction f = 1/10 of its length out of the water. (a) What is the ratio (M1/M2) between
the masses of the wooden stick and the lead weight? (b) How large a fraction can stick out of the water
(disregarding questions of stability)?

5.4 A ship of length L has a longitudinally invariant cross section in the shape of an isosceles triangle
with half opening angle α and height h. It is made from homogeneous material of density ρ1 and floats in a
liquid of density ρ0 > ρ1. (a) Determine the stability condition on the mass ratio ρ1/ρ0 when the ship floats
vertically with the peak downwards. (b) Determine the stability condition on the mass ratio when the ship
floats vertically with the peak upwards. (c) What is the smallest opening angle that permits simultaneous
stability in both directions?
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Triangular ship of length L (into
the paper) floating with its peak
vertically downwards.

5.5 A right rotation cone has half opening angle α and height h. It is made from a homogeneous material
of density ρ1 and floats in a liquid of density ρ0 > ρ1. (a) Determine the stability condition on the mass
ratio ρ1/ρ0 when the cone floats vertically with the peak downwards. (b) Determine the stability condition
on the mass ratio when the cone floats vertically with the peak upwards. (c) What is the smallest opening
angle that permits simultaneous stability in both directions?

5.6 A barotropic compressible fluid is in hydrostatic equilibrium with pressure p(z) and density ρ(z) in
a constant external gravitational field with potential � = g0z. A finite body having a ‘small’ gravitational
field ��(x) is submerged in the fluid. (a) Show that the change in hydrostatic pressure to lowest order of
approximation is

�p(x) = −ρ(z)��(x). (5.42)
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(b) Show that for a spherically symmetric body of radius a and mass M , the extra surface pressure is
�p = g1aρ(z) where g1 = G M/a2 is the magnitude of surface gravity, and that the buoyancy force is
increased.

5.7 Two identical homogenous spheres of mass M and radius a are situated a distance D � a apart in
a barotropic fluid. Due to their field of gravity, the fluid will be denser near the spheres. There is no other
gravitational field present, the fluid density is ρ0 and the pressure is p0 in the absence of the spheres. One
may assume that the pressure corrections due to the spheres are small everywhere in comparison with p0.
(a) Show that the spheres will repel each other and calculate the magnitude of the force to leading order in
a/D. (b) Compare with the gravitational attraction between the spheres. (c) Under which conditions will
the total force between the spheres vanish?

∗ 5.8 Prove without assuming constant gravity that the hydrostatic moment of buoyancy equals (minus) the
moment of gravity of the displaced fluid (corollary to Archimedes’ law).

∗ 5.9 Assuming constant gravity, show that for a body not in buoyant equilibrium (i.e. for which the total
force� does not vanish), there is always a well-defined point x0 such that the total moment of gravitational
plus buoyant forces is given by� = x0 ×� .

∗ 5.10 Let III be a symmetric (2 × 2) matrix. Show that the extrema of the corresponding quadratic form
n ·III ·n = Ix x n2

x +2Ixy nx ny + Iyyn2
y where n2

x +n2
y = 1 are determined by the eigenvectors of III satisfying

III · n = λn.

∗ 5.11 Show that in a stable orientation the angular frequency of small oscillations around around a
principal tilt axis of a ship is

ω =
√

Mg0

J
(zM − zG )

where J is the moment of inertia of the ship around this axis.

∗ 5.12 A ship has a waterline area which is a regular polygon with n ≥ 3 edges. Show that the area moment
tensor (5.41) has Ix x = Iyy and Ixy = 0.

∗ 5.13 A homogeneous cubic block has density equal to half that of the liquid it floats on. Determine
the stability properties of the cube when it floats (a) with a horizontal face below the centre, (b) with a
horizontal edge below the centre, and (c) with a corner vertically below the centre. Hint: problem 5.12 is
handy for the last case, which you should be warned is quite difficult.

Copyright © 2005 IOP Publishing Ltd.



�
��	���� 	�� ��	��

Planets and stars are objects held together by their own gravity, but prevented from collapsing by internal
pressure, originating from repulsive atomic or nuclear forces. The more massive a body is, the higher
the pressure necessary to prevent collapse. For a sufficiently massive body ultimate gravitational collapse
cannot be prevented by any known forces, will eventually occur, and a black hole is born.

So far we have only been able to scratch the surface of our own planet Earth. A little has also been done
on the Moon and soon we shall know more about the surface of Mars. Seismic waves created by controlled
explosions do allow us to peer deeper into the planet, but mostly we are left with the ‘experiments’ carried
out by nature without any regard to us. Earthquakes generate strong seismic waves, revealing the inner
structure of the planet. Continental drift informs us about the mixture of heat and gravity deep inside.
Electromagnetic radiation from the surface of a star is almost the only source of information about what
goes on below, although neutrino observations have begun to provide a direct window into the deepest core
of our Sun, and into the supernovas that explode in our cosmic neighbourhood.
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A surface S surrounding a vol-
ume V . The direction n of a sur-
face element d S is always ori-
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� n

d�

d S

The solid angle subtended by a
surface element

Most of our understanding of the interiors of planets and stars comes from using the laws of physics
determined on Earth as an ‘analytic drill’ allowing us to get insight into processes which cannot be directly
observed from the outside. In this chapter, the first turns of this drill consist of applying the equations of
hydrostatic equilibrium to these massive self-gravitating bodies. The strongest simplifying assumption we
can make about planets and stars, is that they are spherically symmetric, but before we specialize to that case
we need to derive a fundamental differential equation connecting a mass distribution and its gravitational
field. At the end of the chapter, we apply the formalism to a homentropic star without internal energy
production.

6.1 Gravitational flux
Let S be a closed surface surrounding a volume V . We shall as before use the convention that the normal
n at a point x of the surface is always a unit vector oriented outwards from the surface, and a small surface
element of magnitude d S is represented by the vector d S = nd S. Seen from the origin of the coordinate
system, the solid angle subtended by this surface element is

d� = x · d S

|x|3 . (6.1)

Projecting the gravitational field (3.12) from a point mass on to the surface element, one obtains

g · d S = −G Md�.

This quantity is called the flux of gravity through the surface element.
Consider now the total flux through a closed convex surface containing the point mass at the origin.

All the little solid angles add up to 4π because the line-of-sight from the particle in any direction crosses

Copyright © 2005 IOP Publishing Ltd.



74 6. PLANETS AND STARS

the convex surface exactly once. If, on the other hand, the surface does not contain the point mass, the
line-of-sight from the particle will always cross the surface twice, and the two contributions to the solid
angle will have the same magnitude but opposite sign and thus cancel. In other words,
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The lines-of-sight from a point
inside a convex volume crosses
the surface once, whereas they
cross twice if the mass is outside.

∮
S

g · d S =
{

−4πG M for 0 ∈ V

0 otherwise.
(6.2)

This result is, in fact, valid for all surfaces, convex or not. For a convoluted surface, the line-of-sight from
the inside will instead cross the surface an odd number of times, and since the solid angles are evaluated
with sign, all the contributions along the line-of-sight cancel each other except for one. If the particle is
outside the volume the line-of-sight will cross an even number of times and all contributions cancel. The
conclusion is that the above equation holds in full generality.

Furthermore, this result cannot depend on the particle being at the origin, but must be generally valid
for any point particle inside or outside the volume. Adding together the contributions from all the material
particles in the volume V , we finally get∮

S
g · d S = −4πG

∫
V
ρ dV . (6.3)

The integral at the right is simply the total mass (3.2) within the volume, so we may conclude that the
gravitational flux through any closed surface is proportional to the total mass contained within the surface,
whereas the mass outside the surface does not contribute to the flux.

Gauss’ theorem and divergence
We have previously derived a vector relation (4.22) between the surface integral of a scalar field and a
volume integral over its gradient. Applying it componentwise to the left-hand side of (6.3) we obtain∮

S
g · d S =

∮
S
(gx d Sx + gyd Sy + gzd Sz) =

∫
V
(∇x gx + ∇y gy + ∇z gz) dV .

This is the usual form of Gauss’ theorem∮
S

g · d S =
∫

V
∇ · g dV, (6.4)

where the field on the right-hand side

∇ · g = ∇x gx + ∇y gy + ∇z gz = ∂gx

∂x
+ ∂gy

∂y
+ ∂gz

∂z
, (6.5)

is the divergence (2.57) of the gravitational field. Its value at a point is a measure of how much field lines
diverge away from each other if it is positive, or converge if it is negative.

Gauss’ theorem is in this form a general relation between any vector field g, not necessarily the
gravitation field, and its divergence ∇ · g. The two forms, (4.22) and (6.4), are completely equivalent
(see problem 6.1).
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The minus sign in the source
equation (6.6) expresses that
gravitational field lines always
converge upon masses.

Poisson’s equation
The global equation (6.3) relating the gravitational field to its sources may now, like the global hydrostatic
equation (4.15), be converted to a local differential equation. Using Gauss’ theorem (6.4) we find from (6.3)∫

V
∇ · g dV = −4πG

∫
V
ρ dV,

which must be valid for all volumes V . That is, however, only possible, if integrands are equal, or

∇ · g = −4πGρ. (6.6)
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T hi s i s one of t he f undament al fi e l d equat i ons of gr avi t y, expr essi ng t hat t he m ass densi t y i s t he l ocal source
of t he gr avi t a t i onal fi el d.

It is convenient to define the L apl ace operat or

∇ 2 = ∇ · ∇ = ∇2
x + ∇2

y + ∇2
z = ∂ 2

∂ x 2 
+ ∂ 2

∂ y 2 
+ ∂  2

∂ z 2
. (6.7)

T hi s oper at or pl ays a m aj or r ol e i n al l fi el d t heor i es. P i er r e S i mon m ar qui s de L apl ace
( 1749–1827) . French mathemati-
ci an, ast ronom er and physi ci st .
D evel oped gravi t at i onal t heory
and applied it to perturbations in
the planetary orbits and the con-
ditions for stability of the solar
system.

Using t hat g = −∇� (see section 3.4), the source equation (6. 6) may be rewritten i n t erms of the
gravitational potential, and we obtain Poisson’s equation,

∇2� = 4πGρ. (6.8)

The linearity of this equation guarantees that if �1 is a particular solution then the most general solution is

Simeon Denis Poisson (1781–
1840). French mathematician.
Contributed to electromagnetism,
celestial mechanics, and proba-
bility theory.

of the form � = �0 +�1 where �0 is an arbitrary solution to Laplace’s equation,

∇2�0 = 0. (6.9)

The actual solution selected in a particular problem depends on the boundary conditions.

Constant mass density: If the universe were uniformly filled with matter at constant density, ρ(x) =
ρ0, we would have

∇2� = 4πGρ0. (6.10)

It is easy to verify explicitly that a particular solution to this equation is

� = 2

3
πGρ0 |x|2 , (6.11)

corresponding to a gravitational acceleration

g = −4

3
πGρ0x. (6.12)

The gravitational field always points towards the origin of the coordinate system which is thus imbued with
an apparently unphysical preferred status. In section 15.7 we shall see that this field appears naturally in
Newtonian cosmology.

Hydrostatic equilibrium
One may rightly ask why we need Poisson’s equation when the complete connection between a mass
distribution and its gravitational potential is already given by the integral (3.24). For compressible matter,
however, the mass density depends on the pressure, which in turn depends on gravity through the equation
of hydrostatic balance (4.19), and gravity depends in turn on the mass density. Such physical circularity is
best handled by means of differential equations.

To see how this works out, we use (4.19) and (6.6) to calculate the divergence of g = ∇ p/ρ, and obtain

∇ ·
(

1

ρ
∇ p

)
= −4πGρ. (6.13)

Together with a barotropic relation of the form p = p(ρ), this becomes a nonlinear, second-order partial
differential equation for the density field.
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6.2 Spherical bodies
The mass distribution ρ(r) f or a spher i cal l y symmet r i c body such as a pl anet or a st ar i s , as di s cussed i n
sect i on 3. 3, onl y a f unct i on of t he di st ance r = | x| from i t s cent r e, whi ch i s t aken t o be at t he ori gi n of t he
coor di nat e syst em. T he fi e l d of gr avi t y must cor r e spondi ngl y be r adi a l , g( x) = g(r) er , with er = x/ r .
A ppl yi ng t he gl obal s our ce equat i on ( 6. 3) t o a s pher i cal sur face S(r) of r a di us r , t he sur face i nt egr al on t he
l eft -hand si de becomes ∮

S(r)
g · d S = 4π r 2 g(r).  ( 6. 14)

T he vol ume i nt egr a l on t he r i ght - hand s i de of ( 6. 3) i s si mpl y t he i nt egr a t e d m ass M(r) give n i n ( 3. 18) , s o
t hat we obt ai n

g(r) = −G M(r)

r 2
. ( 6. 15)

F i nal l y, w e have f ul fi l l e d t he pr omi s e of der ivi ng e quat i on ( 3. 17) .
T he general equation of hydrostatic equilibrium (6. 13) simplifi es cons iderably for a spherical system,

and becomes a n or di nar y s econd- or der di ff e r e nt i a l e quat i on f or t he pr e ssur e p(r) or the density ρ(r) .
I nst ead of der ivi ng t hi s di ff er ent i a l e quat i on f r om ( 6. 13) , i t i s easi e r t o go back t o t he or i gi nal e quat i on
of local hydrostatic equilibrium (4. 19). U sing that

∇ p(r) = dp(r)

dr
∇r = dp(r)

dr
er ,

we get from (4.19)

dp(r)

dr
= g(r)ρ(r) = −G

M(r)

r2
ρ(r). (6.16)

Multiplying with r2/ρ and differentiating after r , we find

d

dr

(
r2

ρ(r)

dp(r)

dr

)
= −G

d M(r)

dr
= −G4πr2ρ(r),

and rearranging, this becomes

1

r2

d

dr

(
r2

ρ

dp

dr

)
= −4πGρ. (6.17)

Combined with a barotropic equation of state of the form p = p(ρ), this is an ordinary second-order
differential equation for the density. In fi gure 6.1 the E arth’s pressure distribution is plotted and compared
with a simple model.

Boundary conditions
In principle, a second-order differential equation requires two boundary values (or integration constants),
for example the central pressure pc = p(0) and its first derivative dp/dr for r = 0. We shall make the
reasonable assumption that the density ρc at the centre of the body is finite. Then for ‘small’ r we have
M(r) ≈ 4

3πr3ρc and equation (6.16) becomes for r → 0,

dp

dr
≈ −4

3
πGρ2

c r,

which integrates to

p(r) ≈ pc − 2

3
πGρ2

c r2. (6.18)

Thus, under the assumption of finite central density, the pressure is parabolic near the centre with dp/dr = 0
for r = 0. This shows that under reasonable physical assumptions the hydrostatic equation (6.17) requires in
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Figure 6.1. Pressure distribution in the Earth. Solid line: data from [41] and dashed: the two-layer model
(problem 6.3). The agreement between the model and data is impressive in view of the coarseness of the
model.

fact only one boundary condition, for example the central pressure. Knowing pc together with the equation
of state (which also determines ρc), the pressure may be calculated throughout the body.

The central pressure and density are, of course, not known for planets and stars, objects that are only
accessible from the outside. Most such bodies have a well-defined surface radius, r = a, at which the
pressure vanishes. We shall arbitrarily call a body a planet, if the density jumps abruptly to zero at the
surface, and a star if the density vanishes along with the pressure at the surface. Such a convention makes
the gaseous giant planets, Jupiter and Saturn, count as stars even though they probably do not burn much
hydrogen.

�

�

r

p
..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

a

pc

The pressure varies as a parabola
in the central region of a spheri-
cally invariant body with a finite
central density.

The requirement of zero pressure at r = a will determine the central pressure. The solutions to the
hydrostatic equation can be expressed entirely in terms of the radius of the body and the parameters in the
equation of state. In particular the mass M0 of the body is—as we shall see below—calculable in terms
of a (and the state parameters). Conversely, if the mass and radius are known, one of the other unknown
parameters may be determined.

Planet with constant density
For a planet with constant density, ρ0, the assumption of finite central density is exactly valid throughout
the planet,

p = pc − 2

3
πGρ2

0r2. (6.19)

At the surface of the planet where the pressure has to vanish this leads to

pc = 2

3
πGρ2

0a2. (6.20)

If the mass and radius are known, the density is obtained from M0 = 4
3πa3ρ0.

Example 6.2.1: The Moon’s mass is 7.3 × 1022 kg and its radius is 1738 km, making the average
density 3.34 g cm−3 The central pressure is predicted to be 46 500 atm.

6.3 The homentropic star
Stars like the Sun are self-gravitating, gaseous and almost perfectly spherical bodies that generate heat by
thermonuclear processes in a fairly small region close to the centre. The heat is transferred to the surface
by radiation, conduction and convection and eventually released into space as radiation. Like planets, stars
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F i gu re 6. 2. T he e ff ect ive a di abat i c i ndex γeff near t he s ur face of t he S un. T he f ul l y dr aw n c ur ve i s t a ke n
f r om t he ‘ s t a ndar d’ S un model [ 16 ] a nd t he dashed l i ne i s t he const a nt monat omi c val ue γ = 5/3.

also have a fairly complex st ructure with several l ayers differing in chemical composition and other physical
pr oper t i es.

Example 6.3.1: O ur S un consi s t s of a m i xt ur e of about 71% hydr ogen, 27% hel i um a nd 2% ot her
el ement s . I t has a cent r al cor e of r a di us 150 000 km, a r a di at ive l ayer of t hi c kness 350 000 km , a nd
a c onvect i on l ayer of t hi c kness 200 000 km . T he ‘ s t a ndar d’ val ues [ 16] f or t he cent r al par a met e r s ar e
Tc = 15. 7 × 106 K, ρ c = 154 g c m−3 , and  pc = 2. 34 × 1011 bar .

The s tel l a r temperature l a pse rate
Here we shall completely ignore t he layering, heat production and ch emical composition, and concentrate
solely on hydrostatic equilibrium in a homogeneous star. We shall assume that the w hole star consists of an
ideal gas with adiabatic index γ = 5/3, and m ol ar mass Mmo l = 0. 5 g mol−1 . T hi s c or r e sponds t o f ul l y
i oni zed hydr ogen, w hi c h c onsi s t s af 50% hydr ogen i ons ( pr ot ons) a nd 50% essent i a l l y massl ess e l ect r ons.
Apart from a l ayer near t he s urface, t he eff ect ive adi abat i c i ndex, defi ned by 1 − 1/γeff = d log T/d log p
is in fact very close to this value throughout the Sun (see figure 6.2 and problem 6.5).

In section 4.6 we argued (for the case of Earth’s atmosphere) that—provided the time scale for local
mixing is fast compared to heat conduction—a homentropic dynamical ‘equilibrium’ will be established
in which pρ−γ t akes t he same val ue ever yw her e ( see appendi x C ) . A ssumi ng t hat t he w hol e s t ar i s
homentropic and using the ideal gas law ρ ∼ p/T , we conclude that pρ−γ ∼ p1−γ T γ is also constant.
Differentiating log(p1−γ T γ ) after r we obtain,

γ
1

T

dT

dr
+ (1 − γ ) 1

p

dp

dr
= 0,

and making use of the hydrostatic equation (6.16) we find the stellar temperature lapse rate,

dT (r)

dr
= g(r)

cp
, (6.21)

where g(r) = −G M(r)/r2 is the acceleration field, and cp = γ /(γ − 1) R/Mmol is the specific heat
(4.40) of the ideal gas at constant pressure. The only difference is that in the atmosphere the acceleration is
constant, whereas in the star it depends on r .

The above equation may be converted to a second-order differential equation,

cp

r2

d

dr

(
r2 dT

dr

)
= −4πGρ. (6.22)
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On the right-hand side we must use the constancy of pρ−γ ∼ Tρ1−γ to eliminate the density and make it
a differential equation for T only.

Approximative solutions near the centre and the surface
There are many types of solutions to the stellar equations (6.21) or (6.22). Some have infinite central
pressure, others have non-vanishing density all the way to infinity (see problem 6.8). We shall limit
ourselves to solutions with finite central density and a well-defined radius where the density and pressure
vanish.

If the central density ρc is finite, the integrated mass becomes M(r) ≈ 4
3πr3ρc near the centre, and

thus g(r) ≈ − 4
3πGρcr . From (6.21) we then obtain,

T ≈ Tc − 2π

3

Gρc

cp
r2, (6.23)

where Tc is the central temperature. Evidently, the temperature drops parabolically when one moves away
from the centre of the star, and in the leading approximation this is also true for the pressure and the density.

�

�

r

T
.........................................................................................................................................................................................................................

a

Tc

...................................................................................................

...........
...........

...........
.......... .....

The temperature follows a
parabola in the central region and
approaches zero linearly near
the surface. The dashed curve
interpolates between these two
extremes.

If the density vanishes at the surface, r = a, the temperature and pressure must also vanish. From
(6.21) it follows that the temperature derivative is finite close to the surface at r = a, so that we may make
a linear approximation

T (r) ≈ T0

(
1 − r

a

)
, (6.24)

near the surface. Inserting this into (6.21) and taking r = a on the right-hand side, we find

T0 = g0 a

cp
, (6.25)

where g0 = G M0/a
2 is the magnitude of the star’s surface gravity. Note that this temperature, which sets

the scale of the temperature gradient at the surface, is calculable in terms of the star’s known parameters.

Example 6.3.2: Putting in the Sun’s parameters, M0 ≈ 2 × 1030 kg, a ≈ 7 × 108 m, and
cp ≈ 4.2 × 104 J K−1 kg−1, we find g0 ≈ 274 m s−2 and T0 ≈ 4.6 × 106 K. Even if the surface
approximation is not valid near the centre, T0 is nevertheless of the same magnitude as the Sun’s central
temperature.

The Lane–Emden solutions
Having determined the behaviour of the temperature near the centre as well as near the surface, we need to
interpolate between these regions. From the general discussion of boundary conditions in section 6.2, we
expect that the stellar equation (6.22) will create a connection between the central temperature Tc and the
calculable temperature parameter T0.

Let us introduce the dimensionless variable ξ = r/λ, where λ is a suitable constant with the dimension
of length, and the dimensionless temperature function

θ(ξ) = T (r)

Tc
. (6.26)

The density is calculated from the homentropic condition Tρ1−γ = Tcρ
1−γ
c ,

ρ = ρc θ
1
γ−1 . (6.27)

Choosing the length parameter to be

λ =
√

cpTc

4πGρc
, (6.28)
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Figure 6.3. The family of Lane–Emden functions for selected values of γ .

the homentropic equation (6.22) becomes the Lane–Emden equation,

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
+ θ 1

γ−1 = 0. (6.29)

From the solution near the centre of the star we conclude that the boundary conditions for θ(ξ) are θ(0) = 1

γ ξ0 Tc/T0

∞ 2.449 0.500
5/3 3.654 1.346
7/5 5.355 2.449
4/3 6.897 3.417

Table of the crossing points ξ0
and scaled central temperature
Tc/T0 for the Lane–Emden func-
tions at selected values of γ .

and θ ′(0) = 0. The solutions form a family of functions parametrized by the adiabatic index γ .
Apart from special cases (see below and problem 6.8) this differential equation cannot be solved

analytically. In figure 6.3 the Lane–Emden functions have been evaluated numerically for a few relevant
values of γ . For γ > 6/5 it may be shown that the solutions cross the ξ -axis. This means that θ vanishes at
this point, which is identified with the boundary of the star and denoted ξ0 = ξ0(γ ). Its precise value may
be calculated numerically for all γ > 6/5. A few relevant ones are given in the table in the margin.

The limiting cases of the Lane–Emden functions are easily determined analytically. For γ → 1,
corresponding to an isothermal star, the solution is θ(ξ)→ 1 so that T (r) = Tc for all r (with a jump at the
surface that makes the star into a planet, according to our definition). For γ → ∞, we get from (6.19) and
the ideal gas law, θ(ξ) → 1 − ξ2/6, which also follows from (6.29). This particular curve crosses the axis
at ξ0(∞) = √

6 ≈ 2.45.

Central values
Knowing ξ0 = ξ0(γ ) the value of the scaling parameter λ = a/ξ0 can be calculated from the known radius
a of the star. Then from (6.21) at r = a we get

Tc

λ
θ ′(ξ0) = − g0

cp
,

where θ ′(ξ0) is the slope of the solution at ξ0. Introducing the temperature scale T0 from (6.25) this
becomes,

Tc

T0
= 1

(−θ ′(ξ0))ξ0 . (6.30)

A few selected values are shown in the margin table.
Similarly from (6.28) we find the central density

ρc

ρ0
= ξ2

0
3

Tc

T0
, (6.31)
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F i gu re 6. 4. T he t emper a t ur e di st r i but i on i n t he S un a s a f unct i on of t he di st ance f r om t he cent r e. T he f ul l y
dr aw n c ur ve i s f r om t he ‘ s t a ndar d’ S un model [ 16 ] a nd t he dashed c ur ve i s t he L ane–E m den s ol ut i on f or
γ = 5/3. T he ver t i cal l i nes ar e boundar i es bet w een va r i ous l a yer s of t he S un. T he di s cr epancy bet w een
t he c ur ve s r epr e sent s t he t her monucl ear heat pr oduct i on i n t he cent r e.

where ρ0 = M0/ 43π a 3 is the average density of the star. Knowing both ρ c and Tc allows us to determine
t he cent r al pr essur e , f ound f r om t he i deal gas l aw pc = ρ c RTc/ Mmo l .

Example 6.3.3: For γ = 5/3 w e obt ai n Tc/ T0 = 1. 35 and ρ  c/ρ 0 = 6. 0. For t he S un t hi s l eads t o a
cent r al t emperat ure of Tc = 6. 2 × 106 K , a cent r al densi t y of ρ c = 8. 4 g cm−3 , and a cent r al pressure
of pc = 8. 7 × 109 bar. The temperature distribution is shown in figure 6.4 together with the data from
t he ‘ st andar d’ S un model [ 16] . T he agr eement i s r eas onabl e, except i n t he deeper radi at ive l ayers and
t he cor e w her e i t fai l s because we have di sr egar ded t her m onucl ear heat pr oduct i on.

∗ 6.4 Gravitational energy
W hat i s t he gr avi t a t i onal e nergy of a pl anet or a s t a r ? S i nce t he gr avi t a t i onal pot ent i a l of a fi ni t e body i s
alwa ys negat ive and gr ow s mor e negat ive t he c l oser one get s t o t he body, one does not have t o per f or m any
wor k t o make such a body gr ow. I t i s s uffi c i e nt t o t hr ow m at er i a l i nt o t he gener a l vi c i ni t y of t he body, a nd
let gravity do the rest. Consequently, the gravitational energy of a body is expected to be negative.

Gravity is in this respect different from most of the other forces we meet in daily life, for example
friction, where we have to perform work to get anything done. It does not cost us anything to make matter
collapse gravitationally, quite the contrary, we get paid for it (in heat). Matter is inherently unstable because
of gravity, and this instability [13] lies at the root of galaxy and star formation, and thus of everything that
is.

Assembly work
In chapter 3 it was shown that the work requi red t o move a small particle of mass m from spatial infi nity,
where the gravitational potential vanishes, to a point x, where the potential takes the value�(x), is m�(x).
After you have done this (negative) work, it is conserved as (potential) energy of the particle.

Imagine now that we wish to increase the mass density inside a volume V by an amount δρ(x). The
total work required to assemble this extra mass by bringing each material particle in from spatial infinity is,

δW =
∫

V
�δρ dV . (6.32)

The added mass density δρ will change the potential both inside and outside V by an equally small amount
δ�, but its contribution to the work will be of higher order in δρ and can be disregarded. If no other energy
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is added to or removed from the body, the above work will be stored in the body as gravitational energy.

Gravitational energy in an external field
In an external potential �, not originating from or influenced by the mass distribution itself, the total work
of assembly becomes,

W =
∫

V
�ρ dV . (6.33)

For a constant gravitational field g0 where � = −x · g0 we get,

W = −xM · M g0, (6.34)

where as before xM is the centre of mass (3.3). With respect to potential energy, a body in a constant
gravitational field is also equivalent to a point particle with the total mass situated at the centre of mass.

Gravitational self-energy
For a mass distribution assembled in its own field, the situation is slightly more complicated. Intuitively it
is perhaps clear that each particle used to assemble the body on average meets only half the field of the final
body. Hence the energy is expected to be only half of (6.33).

To show that there is indeed such a factor 1/2 we shall employ a frequently used trick. Let us
imagine that we build up the mass distribution in such a way that it is everywhere proportional to the
final distribution. At any given moment, a certain fraction λρ of the final distribution is already in place,
where 0 < λ < 1. Since the potential is linear in the mass distribution, the current potential will also be
the same fraction λ� of the final potential. Increasing the fraction of the mass distribution by δλ will then
according to (6.32) cost an amount of work,

δW =
∫
(λ�)(δλ ρ) dV = λδλ

∫
�ρ dV, (6.35)

where the integrals now run over all space. Integrating over λ from 0 to 1, we get the total amount of work
we have to perform in building up the complete mass distribution from scratch,

W = 1

2

∫
�ρ dV . (6.36)

This work also equals the total gravitational self-energy � = W stored in the mass distribution. Since the
potential of a finite mass distribution normalized to vanish at infinity is always negative, the gravitational
energy will also be negative, as we foresaw at the beginning of this section.

Planet with constant density

A planet of radius a with constant density ρ0 and mass M0 = 4
3πa3ρ0 has the simple potential (3.19).

Carrying out the integral we find the total gravitational self-energy of the planet,

� = −2

5

G M2
0

a
= −2

5
M0g0a. (6.37)

In the last step we have introduced the surface gravity g0 of the planet. In spite of the primitive nature of
the model, this expression may be used as an order of magnitude estimate of the gravitational energy of a
planet, or even a star.

Example 6.4.1: For the Moon we get � = −8.3 × 1028 J, for Earth � = −1.5 × 1032 J and for
the Sun � = −1.5 × 1041 J. Since the Sun’s energy output is 3.85 × 1026 W, it could only last
for 3.9 × 1014 s or about 12.5 million years before the gravitational energy that was converted into
heat during its assembly would have been used up. This paradox was resolved in the 1930s with the
understanding of the thermonuclear processes responsible for the Sun’s energy production.
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Field energy density
The total gravitational self-energy of a body (6.36) only receives contributions from regions where the mass
density is non-zero. It is possible to transform it into a relation involving only the field strength g by making
use of the relationship,

∇ · (�g) = �∇ · g + (g · ∇)�, (6.38)

which is most easily proven by writing it explicitly out in coordinates. Integrating over a volume V and
using Gauss’ theorem (6.4) on the left-hand side we obtain∮

S
�g · d S =

∫
V

∇ · (�g) dV = −4πG
∫

V
�ρ dV −

∫
V

g2,

where on the right-hand side the definition of the potential (3.20) and the gravitational source equation (6.6)
have also been used.

If we now let the volume V expand to include all of space, the left-hand side will tend towards zero,
because at large distance r we have � ∼ 1/r and g ∼ 1/r2, whereas the surface area expands only as r2.
In the limit we may thus rewrite the gravitational energy (6.36) in the form

� = − 1

8πG

∫
g2 dV . (6.39)

This form also explicitly demonstrates that the gravitational self-energy of a body is always negative.
In the spherical case we use (3.17) and obtain

� = −1

2
G

∫ ∞
0

M(r)2

r2
dr. (6.40)

This integral always converges for a body of finite mass, i.e. provided M(r) → M0 for r → ∞, even if it
has no boundary. Inserting M(r) = 4

3πr3ρ0 one immediately recovers (6.37).

Where is the energy?
Until now we have calculated the total gravitational energy from the non-local interaction of the mass
density with itself through the potential (3.24). It now seems that equation (6.39) tells us that it may also
be viewed as arising from a local distribution of energy over all of space. The gravitational energy density
is −g(x)2/8πG which is non-vanishing even in regions of space completely devoid of matter. As we
discussed in section 1.4, the question of whether there is really energy out there in space depends largely
on your theoretical frame of mind. In classical Newtonian physics, rewriting the self-energy as an integral
over an energy density is just another mathematical trick.

Problems
6.1 Show that Gauss’ theorem in the form (4.22) is equivalent to the usual form (6.4).

6.2 Show that for a barotropic fluid the equation of hydrostatic equilibrium (6.13) may be rewritten

∇2w = −4πGρ (6.41)

where w = ∫
dp/ρ is the pressure potential (4.35). Could you derive this equation without any calculation?

6.3 Calculate the hydrostatic pressure in a two-layer planet (see problem 3.7) and determine the value of
the central pressure for Earth.

6.4 Show that for a planet with constant density and fixed mass, the central pressure falls as a−4.
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6.5 Show that the adiabatic index for an ideal gas in isentropic equilibrium is given by

1 − 1

γ
= d log T

d log p
. (6.42)

6.6 (a) Find the power law solutions to the stellar equation (6.22) of the form T ∼ rα with α < 0.
(b) Determine the condition for finite mass for r → 0.

6.7 Show that the short distance behaviour of the Lane–Emden functions is θ(s) = 1−ξ2/6, independent
of γ .

6.8 (a) Show that for γ = 6/5 the solution to the Lane–Emden equation is θ(s) = (1 + ξ2/3)−1/2.
(b) Calculate the pressure and density. (c) Show that although the star has no boundary, it nevertheless has
finite mass.

6.9 Compare the gravitational energy of the Earth to an estimate of how much energy would be needed to
melt the Earth. Do you think the Earth melted when its material was accumulated from an early cold cloud
around the Sun?

6.10 Compare for a spherical planet with constant mass density the total field energy inside the planet
with the field energy outside.

∗ 6.11 Show that

∇2 1
|x| = −4πδ(x), (6.43)

where δ(x) is the three-dimensional δ-function, i.e. the mass distribution of a unit mass point particle at the
origin.
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I t i s pr i m ar i l y t he i nt er pl ay bet w een gr avi t y and c ont act f or ces t hat shapes t he m acr oscopi c wor l d ar ound
us. T he seas, t he at mospher e , pl a net s and s t a r s al l ow e t hei r s hape t o gr avi t y, a nd even our ow n bodi es bear
w i t ness t o t he st r engt h of gr avi t y at t he s ur face of our massive pl anet . W hat physi cs pr i nci pl es det er mi ne
t he s hape of t he s ur face of t he s ea? T he s ea i s obvi ousl y hor i z ont al at shor t di s t a nces, but bends bel ow t he
hor i z on at l a rger di st ances f ol l ow i ng t he pl a net ’s c ur va t ur e . T he E a r t h a s a w hol e i s s pher i cal and s o i s t he
sea, but t hat i s onl y t he fi r st appr oxi mat i on. T he Moon’s gr avi t y t ugs at t he wat er i n t he s eas and r ai ses
tides, and even the massive Earth itself is fl attened by the centrifugal forces of its own rotation.

Disregarding surface tension, the simple answer i s t hat i n hydrostatic equilibrium with gravity, an
interface between two fl ui ds of di fferent densities, for example the sea and t he at mosphere, must coi ncide
wi t h a s urface of const a nt pot ent i a l , an equi pot ent i a l surface. Ot herwi se, i f an i nt erface crosses an
equi pot ent i a l s ur face, t her e w i l l ar i s e a t a ngent i a l c omponent of gr avi t y whi c h can onl y be bal anced by
shear cont act f or ces w hi c h a fl ui d at r e st i s unabl e t o s uppl y. A n i ceberg r i s i ng out of t he s ea does not obey
t hi s pri nci pl e because i t i s sol i d, not fl ui d. N ei t her i s t he pri nci pl e val i d for fl ui ds i n mot i on. Waves i n t he
sea ar e i n fact ‘ wat er bergs’ t hat nor mal l y move al ong t he s ur face, but under s peci al ci r cumst ances ar e abl e
st ay i n one pl ace, as for exampl e i n a r iver fl owi ng past a bi g st one.

I n t hi s chapt e r t he i nfl uence of gr avi t y on t he s hape of l a rge bodi es of fl ui d i s anal ysed, t he pr i m ar y
goal being the calculation of the size and shape of the tides. Centrifugal forces give rise to a gravity-like
fi e l d, w hi ch shapes al l r ot at i ng fl ui d bodi es wi t h open s ur faces, f or exampl e a bucket of wa t e r or a pl anet .
S ur face t e nsi on onl y pl a ys a r ol e f or smal l bodi es of fl ui d and w i l l be di scussed i n c hapt er 8.

7.1 Fluid interfaces in hy dros tatic equilibrium

�
z

1 2

�
g

p1 =
p0 − ρ  1 g0 z

p2 =
p0 − ρ  2 g0 z

An impossibl e vertical interface
between two fl ui ds at rest with
different densities. Even if the
hydr ost a t i c pr essur e s on t he t wo
si des ar e t he s ame f or z = 0 they
wi l l be di ff erent everywhere el s e.

T he i ntuitive argument about the i mpossibility of creating a hydrostatic ‘waterberg’ must i n fact follow
from t he equations of hydrostatic equilibrium. We shall now show t hat hydrostatic equilibrium implies t hat
the interface between two fl uids with different densities ρ1 and ρ  2 must be an equi pot ent i al s urface.

S i nce t he gr avi t a t i onal fi el d i s t he same on bot h s i des of t he i nt er face, hydr ost a t i c bal a nce ∇ p = ρ g
implies that there is a jump in the pressure gradient across the interface, because on one side (∇ p)1 = ρ1 g
and on the other (∇ p)2 = ρ2 g. If the field of gravity has a component tangential to the interface, there
will consequently be a jump in the tangential pressure gradient. If the pressures are equal at one point, they
must therefore be different a little distance away along the surface. Newton’s third law, however, requires
pressure to be continuous everywhere, even across an interface (as long as there is no surface tension),
so this problem can only be avoided if the tangential component of gravity vanishes everywhere at the
interface, implying that it is an equipotential surface.

If, on the other hand, the fluid densities are exactly the same on both sides of the interface but the fluids
themselves are different, the interface is not forced to follow an equipotential surface. This is, however,
an unusual and highly unstable situation. The smallest deviation from equality in density on the two sides
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wi l l cal l gravi t y i n t o make t he i nt erface hori zont al . S t abl e vert i cal i nt erfaces bet w een fl ui ds are si mpl y not
seen.

I s o ba rs a nd equi po tenti a l s urfa ces
S urfaces of const ant pressure, s at i s fyi ng p( x) = p0 , are called i s obars . T hr ough ever y poi nt of space
r uns one and onl y one i s obar, namel y t he one cor r e spondi ng t o t he pr e ssur e at t hat poi nt . T he gr adi e nt
of t he pressure i s everywhere normal t o t he l ocal i s obar s urface, l i ke gravi t y, g = −∇�, is everywhere
normal t o t he l ocal equi pot ent i al s urface, defi ned by �(  x) = �0 . L ocal hydrostatic equilibrium,
∇ p = ρ g = −ρ∇�, t ells us that the normal t o t he isobar i s everywhere parallel with the normal t o
t he e qui pot ent i a l s urface. T hi s can onl y be t he case i f i s obars c oi nci de w i t h equi pot ent i al s urf aces i n
hydrostatic equilibrium. I f a n i sobar c r ossed a n e qui pot ent i a l s ur face anyw her e at a fi ni t e angl e t he t wo
nor mal s coul d not be par a l l e l .

��
��
��
��������
�����
$
$%

p = const

� = const

∇ p

∇�

I f i s obar s and e qui pot ent i a l s ur-
faces cr oss, hydr ost at i c bal ance
∇ p +ρ∇� = 0 becomes i mpos-
sible.

S i nce t he cur l of a gr a di ent t r ivi al l y va ni shes, ∇×∇ f = 0, i t f ollows from hydrostatic equilibrium that

0 = ∇ × (ρ  g) = ∇ρ × g + ρ∇ × g = −∇ρ × ∇�. (7.1)

This implies that ∇ρ ∼ ∇�, s o t he surfaces of const ant densi t y must al so coi nci de wi t h t he equi pot ent i al
surfaces in hydrostatic equilibrium.

7 . 2 Sha pe o f ro t a t i ng fluids
Newton’s second law of motion is only valid in inertial coordinate systems, where free particles move on
straight lines with constant velocity. In rotating, or otherwise accelerated, non-inertial coordinate systems,
one may formally write the equation of motion in their usual form, but the price to be paid is the inclusion
of certain force-like terms that do not have any obvious connection with material bodies, but derive from
t he over al l mot i on of t he coor di nat e syst em ( s ee chapt er 20 f or a m or e det ai l ed anal ysi s) . S uch t er ms ar e
called fictitious forces, although they are by no means pure fiction, as one becomes painfully aware when
standing in a bus that suddenly stops. A more reasonable name might be inertial forces, since they arise as
a consequence of the inertia of material bodies.

Antigravity of rotation
A material particle at rest in a coordinate system rotating with constant angular velocity � in relation to
an inertial system will experience only one fictitious force, the centrifugal force. We all know about this
from carousels. It is directed perpendicularly outwards from the axis of rotation and of magnitude M r �2,
where r is the shortest distance to the axis.

�

��

�

r
x

		
		

	


x

The geometry of a rotating sys-
tem is characterized by a rotation
vector � directed along the axis
of rotation, with magnitude equal
to the angular velocity. The vec-
tor r is directed orthogonally out
from the axis to a point x.

In a rotating coordinate system placed with its origin on the rotation axis, and z-axis coincident with
it, the shortest vector to a point x = (x, y, z) is r = (x, y, 0). The centrifugal force is proportional to the
mass of the particle and thus mimics a gravitational field

gcentrifugal(r) = r�2 = (x, y, 0)�2. (7.2)

This fictitious gravitational field may be derived from a (fictitious) potential

�centrifugal(r) = −1

2
r2�2 = −1

2
�2(x2 + y2). (7.3)

Since the centrifugal field is directed away from the axis of rotation the centrifugal field is a kind of
antigravity field, which will try to split things apart and lift objects off a rotating planet. The antigravity
field of rotation is, however, cylindrical in shape rather than spherical and has consequently the greatest
influence at the equator of Earth. If our planet rotated once in a little less than 1.5 hours, people at the
equator could (and would) actually levitate!
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Newton’s bucket
A bucket of water on a rotating plate is an example going right back to Newton himself. Internal friction
(viscosity) in the water will after some time bring it to rest relative to the bucket and plate, and the whole
thing will end up rotating as a solid body. In a rotating coordinate system with z-axis along the axis of
rotation, the total gravitational field becomes g = (�2x, �2 y,−g0), including both ‘real’ gravity and the
‘fictitious’ centrifugal force. Correspondingly, the total gravitational potential is,

� = −g · x = g0z − 1

2
�2(x2 + y2), (7.4)

and the pressure

....................................................................................................................................................................................................................................
...........................

.....................
.................

...............
..............

...........�
�

The water surface in rotating
bucket forms a parabolic shape
because of centrifugal forces.

p = p0 − ρ0� = p0 − ρ0g0z + 1

2
ρ0�

2(x2 + y2) (7.5)

where p0 is the pressure at the origin of the coordinate system. It grows towards the rim, reflecting
everywhere the change in height of the water column.

The isobars and equipotential surfaces are in this case rotation paraboloids,

z = z0 + �2

2g0
(x2 + y2), (7.6)

where z0 is a constant. In a bucket of diameter 20 cm rotating once per second the water stands 2 cm higher
at the rim than in the centre.

Example 7.2.1: An ultracentrifuge of radius 10 cm contains water and rotates at � = 60 000 rpm ≈
6300 s−1. The centrifugal acceleration becomes 400 000 times standard gravity and the maximal
pressure close to 2000 atm, which is double the pressure at the bottom of the deepest abyss in the
sea. At such pressures, the change in water density is about 10%.

∗ Stability of rotating bodies
Including the centrifugal field (7.2) in the fundamental field equation (6.6), the divergence of the total
acceleration field g = ggravity + gcentrifugal becomes,

∇ · g = −4πGρ + 2�2. (7.7)

Effectively, centrifugal forces create a negative mass density −�2/2πG. This is, of course, a purely
formal result, but it nevertheless confirms the ‘antigravity’ aspect of centrifugal forces, which makes gravity
effectively repulsive wherever �2/2πGρ > 1.

For a spherical planet stability against levitation at the equator requires the centrifugal force at the
equator �2a to be smaller than surface gravity, g0 = G M/a2 = 4

3πρ0Ga, which leads to the stronger
condition,

q = �2a

g0
= 3

2

�2

2πGρ0
< 1. (7.8)

Inserting the parameters of the Earth we find q ≈ 1/291. At the end of section 7.4 the influence of the
deformation caused by rotation is also taken into account, leading to an even stricter stability condition.

7.3 The Earth, the Moon and the tides
Johannes Kepler (1580–1635).
German mathematician and as-
tronomer. Discovered that plan-
ets move in elliptical orbits and
that their motion obeys mathe-
matical laws.

Kepler thought that the Moon would influence the waters of Earth and raise tides, but Galilei found this
notion of Kepler’s completely crazy and compared it to common superstition. After Newton we know that
the Moon’s gravity acts on everything on Earth, also on the water in the sea, and attempts to pull it out of
shape, thereby creating the tides. But since high tides occur roughly at the same time at antipodal points of
the Earth, and twice a day, the explanation is not simply that the Moon lifts the sea towards itself.
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Galileo w rote about Kepler: ‘ But among all t he great men w ho have philosophized about this
remarkabl e effect , I am more ast oni shed at Kepl er t han at any ot her. D espi t e hi s open and acut e
mi nd, and t hough he has a t hi s fi nger t i ps t he mot i ons at t r i but ed t o t he ear t h, he has neve r t hel e ss l e nt
hi s ear and hi s assent t o t he m oon’s domi ni on ove r t he wa t e r s , a nd t o occul t pr oper t i e s, and t o s uch
puerilities.’ ( see [ 15 , p. 145]).

T he best nat ural sci ent i s t s and mat hemat i ci ans of t he ei ght eent h and ni net eent h cent uri es worked on t he
dynami cs of t he t i des, but her e w e shal l onl y c onsi der t he s i m pl est possi bl e case of a quasi - s t a t i c Moon. For
a m or e compl et e di s cussi on, i ncl udi ng t he dynami cs of t i dal waves, see, f or exampl e, S i r H or ace L amb’s
cl assi c book [ 36 ] or [ 48 ] f or a moder n account .

The Ea rth
We shal l l i m i t our sel ves t o st udyi ng t he Moon’s i nfl uence on a l i qui d s ur face l a yer of t he E a r t h. T he s ol i d
parts of t he E arth w ill, of course, also r eact to the Moon’s fi eld, but t he effects are somewhat smaller and are
due t o el ast i c def or m at i on r at her t han fl ow. T hi s def or mat i on has been i ndi rect l y measured t o a preci si on of
a f ew per cent i n t he dai l y 0. 1 ppm va r i at i ons i n t he s t r engt h of gr avi t y ( s ee fi gur e 7. 1 on page 90) . T her e
ar e al s o t i dal eff ect s i n t he at mospher e, but t hey ar e domi nat ed by ot her at m ospher i c m ot i ons.

We shal l f ur t her mor e di sr egar d t he changes t o t he E ar t h’s ow n gr avi t at i onal pot ent i al due t o t he s hi f t i ng
waters of the tides themselves, as well as the centrifugal antigravity of Earth’s rotation causing it to deviate
from a perfect sphere (whi ch i ncreases t he t i dal range by sl i ght l y more t han 10%, see sect i on 7. 4). Under
all these assumptions the gravitational potential at a height h over the surface of the Earth is to first order in
h given by

�Earth = g0h, (7.9)

where g0 is the magnitude of the surface gravity.

The Moon
The Moon is not quite spherical, but nevertheless so small and far away that we may approximate its
potential across the Earth with that of a point particle −Gm/|x − x0| situated at the Moon’s position x0
with the Moon’s mass m. Choosing a coordinate system with the origin at the centre of the Earth and the
z-axis in the direction of the Moon, we have x0 = (0, 0, D) where D = |x0| is the Moon’s distance. Since
the Moon is approximately 60 Earth radii (a) away, i.e. D ≈ 60a, the Moon’s potential across the Earth
(for r = |x| ≤ a) may conveniently be expanded in powers of x/D, and we find to second order
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Geometry of the Earth and the
Moon (not to scale). 1

|x − x0| = 1√
x2 + y2 + (z − D)2

= 1√
D2 − 2z D + r2

= 1

D

1√
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(
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D
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)
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(
−2z

D

)2
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= 1

D

(
1 + z

D
+ 3z2 − r2

2D2

)
.

The first term in this expression leads to a constant potential −Gm/D, which may of course be ignored. The
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How the Moon’s gravity varies
over the Earth (exaggerated).

second term corresponds to a constant gravitational field in the direction towards the moon gz = Gm/D2 ≈
30 µm s−2, which is precisely cancelled by the centrifugal force due to the Earth’s motion around the
common centre-of-mass of the Earth–Moon system (an effect we shall return to below). Spaceship Earth
is therefore completely unaware of the two leading terms in the Moon’s potential, and these terms cannot
raise the tides. Galilei was right to leading non-trivial order, and that’s actually not so bad.

Tidal effects come from the variation in the gravitational field across the Earth, to leading order given
by the third term in the expansion of the potential. Introducing the angle θ between the direction to the
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Moon and the observation point on Earth, we have z = r cos θ , and the Moon’s potential becomes (after
dropping the two first terms)

�Moon = −1

2
(3 cos2 θ − 1)

( r

D

)2 Gm

D
. (7.10)

This expansion may of course be continued indefinitely to higher powers of r/D. The coefficients Pn(cos θ)
are called Legendre polynomials (here P2(cos θ) = 1

2 (3 cos2 θ − 1)).
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The Moon’s gravity with com-
mon acceleration cancelled. This
also explains why the variations
in tidal height have a semi-
diurnal period.

The gravitational field of the Moon is found from the gradient of the potential. It is simplest to convert
back to Cartesian coordinates, writing (3 cos2 θ − 1)r2 = 2z2 − x2 − y2, before calculating the gradient.
In the xz-plane we get at the surface r = a

gMoon = (− sin θ, 0, 2 cos θ)
aGm

D3
.

Projecting on the local normal er = (sin θ, 0, cos θ) and tangent eθ = (cos θ, 0,− sin θ) to the Earth’s
surface, we finally obtain the vertical and horizontal components of the gravitational field of the Moon at
any point of the Earth’s surface

g⊥
Moon = gMoon · er = (3 cos2 θ − 1)

aGm

D3
, (7.11)

g‖
Moon = gMoon · eθ = − sin 2θ

3aGm

2D3
. (7.12)

The magnitude of the horizontal component is maximal for θ = 45o (and, of course, also 135◦ because of
symmetry).

Concluding, we repeat that tide-generating forces arise from variations in the Moon’s gravity across the
Earth. As we have just seen, the force is generally not vertical, but has a horizontal component of the same
magnitude. From the sign and shape of the potential as a function of angle, we see that effectively the Moon
lowers the gravitational potential just below its position, and at the antipodal point on the opposite side of
the Earth, exactly as if there were shallow ‘valleys’ at these places. Sometimes these places are called the
Moon and anti-Moon positions.

The tides
If the Earth did not rotate and the Moon stood still above a particular spot, water would rush in to fill up
these ‘valleys’, and the sea would come to equilibrium with its open surface at constant total gravitational
potential. The total potential near the surface of the Earth is

� = �Earth +�Moon = g0h − 1

2
(3 cos2 θ − 1)

( a

D

)2 Gm

D
, (7.13)

Requiring this potential to be constant we find the tidal height

h = h0 + 1

2
(3 cos2 θ − 1)

( a

D

)2 Gm

g0 D
, (7.14)

where h0 is a constant. Since the average over the sphere of the second term is,

1

4π

∫ π

0
dθ

∫ 2π

0
sin θ dφ (3 cos2 θ − 1) = 1

2

∫ +1

−1
(3z2 − 1)dz = 0,

we conclude that h0 is the average water depth.
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Figure 7.1. Variation in the vertical gravitational acceleration over a period of 56 h in units of 10−9g0
(measured in Stanford, California, on December 8–9, 1996 [56]; reproduced here with permission). The
semidiurnal as well as diurnal tidal variations are prominently visible as dips in the curves. Modelling the
Earth as a solid elastic object and taking into account the effects of ocean loading, the measured data is
reproduced to within a few times 10−9g0.

Tidal range
The maximal difference between high and low tides, called the tidal range, occurs between the extreme
positions at θ = 0 and θ = 90◦,

H0 = 3

2

( a

D

)2 Gm

g0 D
= 3

2
a

m

M

( a

D

)3
, (7.15)

where the last equation is obtained using g0 = G M/a2 with M being the Earth’s mass. Inserting the values
for the Moon we get H0 ≈ 54 cm. Interestingly, the range of the tides due to the Sun turns out to be half
as large, about 25 cm. This makes spring tides when the Sun and the Moon cooperate almost three times
higher than neap tides when they do not.

For the tides to reach full height, water must move in from huge areas of the Earth as is evident from
the shallow shape of the potential. Where this is not possible, for example in lakes and enclosed seas, the
tidal range becomes much smaller than in the open oceans. Local geography may also influence tides. In
bays and river mouths funnelling can cause tides to build up to huge values. Spring tides in the range of
15 m have been measured in the Bay of Fundy in Canada.

∗ Quasi-static tidal cycles
The rotation of the Earth cannot be neglected. If the Earth did not rotate, or if the Moon were in a
geostationary orbit, it would be much harder to observe the tides, although they would of course be there
(problem 7.5). It is, after all, the cyclic variation in the water level observed at the coasts of seas and large
lakes which makes the tides observable. Since the axis of rotation of the Earth is neither aligned with the
direction to the Moon nor orthogonal to it, the tidal forces acquire a diurnal cycle superimposed on the
‘natural’ semidiurnal one. This is clearly seen in the data plotted in figure 7.1.

For a fixed position on the surface of the Earth, the dominant variation in the lunar zenith angle θ is
due to Earth’s diurnal rotation with angular rate � = 2π/24 h ≈ 7 × 10−5 radians per second. In addition,
there are many other sources of periodic variations in the lunar angle [48], which we shall ignore here.

The dominant such source is the lunar orbital period of a little less than a month. Furthermore, the
orbital plane of the Moon inclines about 5◦ with respect to the ecliptic (the orbital plane of the Earth
around the Sun), and precesses with this inclination around the ecliptic in a little less than 19 years.
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The Earth’s equator is itself inclined about 23◦ to the ecliptic and precesses around it in about 25 000
years. Due to lunar orbit precession, the angle between the equatorial plane of the Earth and the
plane of the lunar orbit will range over 23 ± 5◦, i.e. between 18◦ and 28◦, in about 9 years.

Let the fixed observer position at the surface of the Earth have (easterly) longitude φ and (northerly)
latitude δ. The lunar angle θ is then calculated from the spherical triangle formed by the north pole, the
lunar position and the observer’s position, .........
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cos θ = sin δ sin δ0 + cos δ cos δ0 cos(�t + φ). (7.16)

Here δ0 is the latitude of the lunar position and the origin of time has been chosen such that the Moon at
t = 0 is directly above the meridian φ = 0.

Inserting this into the static expression for the tidal height (7.14), we obtain the quasi-static height
variation with time at the observer’s place, which becomes the sum of a diurnal and a semidiurnal cycle

h = 〈h〉 + h1 cos(�t + φ)+ h2 cos 2(�t + φ). (7.17)

Here 〈h〉 is the time-averaged height, and h1 = 1
2 H0 sin 2δ sin 2δ0 and h2 = 1

2 H0 cos2 δ cos2 δ0 are the
diurnal and semidiurnal tidal amplitudes. The full tidal range is not quite 2h1 + 2h2, because the two
cosines cannot simultaneously take the value −1 (see problem 7.6).

To go beyond the quasi-static approximation, the full theory of fluid dynamics on a rotating planet
becomes necessary. The tides will then be controlled not only by the tide-generating forces, but also by the
interplay between the inertia of the moving water and friction forces opposing the motion. High tides will
no more be tied to the Moon’s instantaneous position, but may be both delayed and advanced relative to it.

∗ Influence of the Earth–Moon orbital motion
A question is sometimes raised concerning the role of centrifugal forces from the Earth’s motion around
the centre-of-mass of the Earth–Moon system. This point lies at a distance d = Dm/(m + M) from the
centre of the Earth, which is actually about 1700 km below the surface, and during a lunar cycle the centre
of the Earth and the centre of the Moon move in circular orbits around it. Were the Earth (like the Moon)
in bound rotation so that it always turned the same side towards the Moon, one would (in the corotating
coordinate system, where the Moon and the Earth have fixed positions) have to add a centrifugal potential to
the previously calculated potential (7.13), and the tidal range (see problem 7.7) would become about 14 m!

..............

..............
..............
...............

................
..................

.....................
............................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.........................

...................
.................
................
...............
..............
..............
.........

..............
................

.........................
.......................................................................................................................................................................................

................
..............
....

�

�

�

Earth

Moon

M

d
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Luckily, this is not the case. The Earth’s own rotation is fixed with respect to the inertial system of
the fixed stars (disregarding the precession of its rotation axis). A truly non-rotating Earth would, in the
corotating system, rotate backwards in synchrony with the lunar cycle, cancelling the centrifugal potential.
Seen from the inertial system, the circular orbital motion imparts the same centripetal acceleration �2d
(along the Earth–Moon line) to all parts of the Earth. This centripetal acceleration must equal the constant
gravitational attraction, Gm/D2, coming from the linear term in the Moon’s potential, and equating the two,
one obtains �2 = Gm/D2d = G M/D3, which is the well-known Kepler equation relating the Moon’s
period of revolution to its mass and distance.

The Moon always turns the same side towards Earth and the bound rotation adds in fact a centrifugal
component on top of the tidal field from Earth. Over time these effects have together deformed the Moon
into its present egg-like shape.

∗ 7.4 Shape of a rotating fluid planet
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in shape of the Earth due to
rotation.

On a rotating planet, centrifugal forces will add a component of ‘antigravity’ to the gravitational
acceleration field, making the road from the pole to equator slightly downhill. At Earth’s equator the
centrifugal acceleration amounts to only q ≈ 1/291 of the surface gravity, so a first guess would be that
there is a centrifugal ‘valley’ at the equator with a depth of 1/291 of the Earths radius, which is about
22 km. If such a difference suddenly came to exist on a spherical Earth, all the water would like huge tides
run towards the equator. Since there is land at the equator, we may conclude that even the massive Earth
must over time have flowed into the centrifugal valley. The difference between the equatorial and polar radii
is in fact 21.4 km [34], and coincidentally, this is roughly the same as the difference between the highest
mountain top and the deepest ocean trench on Earth.
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92 7. HYDROSTATIC SHAPES

The flattening of the Earth due to rotation is, like the tides, a problem which has attracted the best minds
of past centuries [36]. We shall here consider the simplest possible model, which nevertheless captures all
the features relevant to slowly rotating planets.

Rigid spherical planet
If a spherical planet rotates like a stiff body, the gravitational potential above the surface will be composed
of the gravitational potential of planet and the centrifugal potential. In spherical coordinates we have,

�0 = −g0
a2

r
− 1

2
�2r2 sin2 θ (7.18)

from which we get the vertical and horizontal components of surface gravity,
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gr = − ∂�0

∂r

∣∣∣∣
r=a

= −g0(1 − q sin2 θ), (7.19a)

gθ = −1

r

∂�0

∂θ

∣∣∣∣
r=a

= g0 q sin θ cos θ, (7.19b)

where q = �2a/g0 is the ‘levitation parameter’ defined in (7.8). This confirms that the magnitude of
vertical gravity is reduced, and that horizontal gravity points towards the equator. For Earth the changes are
all of relative magnitude q ≈ 1/291.

Fluid planet
Suppose now the planet is made from a heavy fluid which given time will adapt its shape to an equipotential
surface of the form,

r = a + h(θ), (7.20)

with a small radial displacement, |h(θ)| � a. Assuming that the displaced material is incompressible we
require, ∫ π

0
h(θ) sin θ dθ = 0. (7.21)

If we naively disregard the extra gravitational field created by the displacement of material, the potential is
given by (7.18). On the displaced surface this becomes to first order in the small quantities h and q,

�0 ≈ g0h − g0a(1 + q

2
sin2 θ). (7.22)

Demanding that it be constant, it follows that

h = h0

(
sin2 θ − 2

3

)
, h0 = 1

2
aq. (7.23)

The −(2/3) in the parenthesis has been chosen such that (7.21) is fulfilled. For Earth we find h0 = 11 km,
which is only half the expected result.

Including the self-potential
This result shows that the gravitational potential of the shifted material must play an important role.
Assuming that the shifted material has constant density ρ1, the extra gravitational potential due to the
shifted material is calculated from (3.24) by integrating over the (signed) volume �V occupied by the
shifted material,

�1 = −Gρ1

∫
�V

dV ′∣∣x − x′∣∣ . (7.24)

Since the shifted material is a thin layer of thickness h, the volume element becomes dV ′ ≈ h(θ ′)d S′ where
d S′ is the surface element of the original sphere,

∣∣x′∣∣ = a. There are, of course, corrections but they will
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be of higher order in h. The square of the denominator may be written as
∣∣x − x′∣∣2 = r2 + a2 − 2ra cosψ

where ψ is the angle between x and x′. Consequently we have to linear order in h

�1 = −Gρ1

∮
S

h(θ ′)√
r2 + a2 − 2ra cosψ

d S′, (7.25)

where cosψ = cos θ cos θ ′+sin θ sin θ ′ cos φ and d S′ = a2 sin θ ′dθ ′dφ′. Note that this is exactly the same ..............
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potential as would have been obtained from a surface distribution of mass with surface density ρ1h(θ).
There are various ways to do this integral. We shall use a wonderful theorem about Legendre

polynomials, which says that a mass distribution with an angular dependence given by a Legendre
polynomial creates a potential with exactly the same angular dependence. So, if we assume that the
surface shape is of the form (7.23) with angular dependence proportional to P2(cos θ) = 1

2 (3 cos2 θ −1) =
1
2 (2 − 3 sin2 θ), the effective surface mass distribution will be proportional to P2(cos θ), implying that the
self-potential will be of precisely the same shape (see problem 7.8),

�1(r, θ) = F(r)

(
sin2 θ − 2

3

)
. (7.26)

The radial function may now be determined from the integral (7.26) by taking θ = 0. Since now ψ = θ ′,
all the difficult integrals disappear and we obtain

F(r) = −3

2
�1(r, 0) = 3

2
Gρ1h0a22π

∫ π

0

sin θ ′
(

sin2 θ ′ − 2
3

)
√

r2 + a2 − 2ra cos θ ′
dθ ′

= 3

2
Gρ1a2h02π

∫ 1

−1

1
3 − u2√

r2 + a2 − 2rau
du.

The integral is now standard, and we find

F(r) = −4π

5
ρ1Gah0

a3

r3
= −3

5
g0h0

ρ1

ρ0

a3

r3
. (7.27)

In the last step we have used g0 = G M0/a
2 = 4

3πGaρ0 where ρ0 is the average density of the planet.

Total potential and strength of gravity
The total potential now becomes

� = �0 +�1 = −g0
a2

r
− 1

2
�2r2 sin2 θ − 3

5
g0h(θ)

ρ1

ρ0

a3

r3
. (7.28)

Inserting r = a + h and expanding to lowest order in h and q, we finally obtain an expression of the form
(7.23) with,

h0 =
1
2 qa

1 − 3
5
ρ1
ρ0

. (7.29)

For Earth, the average density of the mantle material is ρ1 ≈ 4.5 g cm−3 whereas the average density is
ρ0 ≈ 5.5 g cm−3. With these densities and q = 1/291 one gets h0 = 21.5 km in close agreement with the
quoted value [34]. In the same vein, we may also calculate the influence of the self-potential on the tidal
range. Since the density of water is ρ1 ≈ 1.0 g cm−3, the denominator increases the tidal range (7.15) by
merely a factor of 1.12.

From the total potential we calculate gravity at the displaced surface,

gr = − ∂�

∂r

∣∣∣∣
r=a+h

= −g0

(
1 − q sin2 θ − 2

h(θ)

a
+ 9

5

ρ1

ρ0

h(θ)

a

)
, (7.30a)

gθ = −1

r

∂�

∂θ

∣∣∣∣
r=a+h

= g0

(
q + 6

5

h0

a

ρ1

ρ2

)
sin θ cos θ. (7.30b)
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Figure 7.2. The MacLaurin function (right-hand side of equation (7.32)). The maximum 0.225 is reached
for e = 0.93.

Finally, projecting on the local normal and tangent we find to first order in h and q,

g⊥ ≈ gr , g‖ = gθ + gr
1

a

dh(θ)

dθ
≈ 0. (7.31)

The field of gravity is orthogonal to the equipotential surface, as it should be.
Note that the three correction terms to the vertical field (7.30a) are due to the centrifugal force, to the

change in gravity due to the change in height, and to the displacement of material. All three contributions
are of the same order of magnitude, q, because they all ultimately derive from the centrifugal force.

The variation of g/g0 with lati-
tude δ.

Example 7.4.1 (Olympic games): The dependence of gravity on polar angle (or latitude) given in
(7.30a) has practical consequences. In 1968 the Olympic games were held in Mexico City at latitude
δ = 19 ◦ N whereas in 1980 they were held in Moscow at latitude δ′ = 55 ◦ N. To compare record
heights in jumps (or throws), it is necessary to correct for the variation in gravity due to the centrifugal
force, the geographical difference in height and air resistance. Assuming that the initial velocity is the
same, the height h attained in Mexico city would correspond to a height h′ in Moscow, related to h by
v2 = 2gh = 2g′h′. Using (7.30a) we find h/h′ = g′/g = 1.00296. This shows that a correction of
−0.3% due to variation in gravity (among other corrections) would have to be applied to the Mexico
City heights before they were compared with the Moscow heights.

Fast rotating planet
One of the main assumptions behind the calculations in this section was that the planet should be slowly
rotating, meaning that the deformation of the planet due to rotation is small, or |h(θ)| � a. Intuitively,
it is fairly obvious, that if the rate of rotation of the planet is increased, the flattening increases until it
reaches a point, where the ‘antigravity’ of rotation overcomes the ‘true’ gravity of planetary matter as well
as cohesive forces. Then the planet becomes unstable with dramatic change of shape or even breakup as a
consequence.Colin MacLaurin (1698–1746).

Scottish mathematician who de-
veloped and extended Newton’s
work on calculus and gravitation.

The study of the possible forms of rotating planets was initiated at a very early stage by Newton and
in particular by MacLaurin. It was found that oblate ellipsoids of rotation are possible allowed shapes
for rotating planets with constant matter density, ρ0. An oblate ellipsoid of rotation is characterized by
equal-size major axes, a = b and a smaller minor axis c < a, about which it rotates.

MacLaurin found that the angular rotation rate is related to the eccentricity e =
√

1 − c2/a2 through
the formula

�2

2πGρ0
= 1

e3

(√
1 − e2(3 − 2e2) arcsin e − 3e(1 − e2)

)
. (7.32)
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T he r i ght - hand s i de i s s how n i n fi gur e 7. 2 and has a m axi m um 0. 225 f or e = 0. 93, implying that stability can
only be maintained for �2/2πGρ0 < 0.225. Actually, various other shape instabilities set in at even lower
values of the eccentricity (see [63] for a thorough discussion of these instabilities and their astrophysical
consequences). For small e, the MacLaurin(!) expansion of the right-hand side of (7.32) becomes 4e2/15.
Since e2 ≈ 2h0/a, we obtain h0 = 15�2a/16πGρ0 = 5�2a2/4g0, in complete agreement with (7.29) for
ρ1 = ρ0.

Problems
7.1 The spaceship Rama (from the novel by Arthur C. Clarke) is a hollow cylinder hundreds of kilometres
long and tens of kilometres in diameter. The ship rotates so as to create a standard pseudo-gravitational field
g0 on the inner side of the cylinder. Calculate the escape velocity to the centre of the cylinder for radius
a = 10 km.

7.2 Calculate the change in sea level if the air pressure locally rises by �p = 20 hPa.

7.3 Calculate the changes in air pressure due to tidal motion of the atmosphere (a) over sea, and (b) over
land?

7.4 How much water is found in the tidal bulge (above average height)?

7.5 How heavy must a satellite in geostationary orbit be (problem 3.3) for the tides to be of the same size
as the Moon’s?

7.6 Calculate the mean value 〈h〉 and the tidal range in the quasi-static approximation (7.17).

7.7 Estimate the tidal range that would result if the Earth were in bound rotation around the centre-of-
mass of the Earth–Moon system.

∗ 7.8 Show that ∇2[ f (r)(3 cos2 θ − 1)] = g(r)(3 cos2 θ − 1) and determine g(r) as a function of f (r).

7.9 Show that the integral (7.24) may be written explicitly as

�1(θ) = −Gρ1a√
2

∫ 2π

0
dφ′

∫ π

0
sin θ ′dθ ′ h(θ ′)√

1 − cos θ cos θ ′ − sin θ sin θ ′ cos φ′ . (7.33)
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A t t he i nt er face bet w een t wo m at er i a l s physi cal pr oper t i e s c hange r a pi dl y ove r di s t a nces compar abl e t o t he
molecular separation scale. The transition layer is, from a macroscopic point of view, an infi nitely thin
sheet coinciding with the i nterface. Although the t ransition l ayer in the continuum limit thus appears t o
be a m at hemat i cal sur face, i t may never t hel ess possess macr oscopi c physi cal pr oper t i es, such as energy.
And w her e energy i s f ound, f or ces ar e not far away. S ur face energy i s necessar i l y accompani ed by s ur face
forces, because work has t o be performed i f t he area of an i nt erface and t hus i t s surface energy i s i ncreased.
T he s ur face energy per uni t of a r e a or e quiva l e nt l y t he f or ce per uni t of l engt h i s cal l e d surface t ension.

S ur face t e nsi on depends on t he physi cal pr oper t i e s of bot h of t he i nt e r faci ng mat e r i al s, and s o i s qui t e
di ff er ent f r om ot her mat e r i al const a nt s, f or exampl e t he bul k m odul us, t hat nor mal l y depend onl y on t he
physi cal pr oper t i es of j ust one mat er i al . S ur face t ensi on cr eat es a fi ni t e j ump i n pr essur e acr oss t he i nt er face,
but t he t ypi cal magni t ude of sur face t e nsi on l i m i t s i t s i nfl uence t o fl ui d bodi es much smal l e r t han t he huge
pl anet s and st ars di s cussed i n t he precedi ng chapt ers. W hen surface t ensi on does come i nt o pl ay, as i t does
for a drop of water hanging at the tip of an icicle , t he shape of t he fl uid body bears little relation t o t he
gravi t at i onal equi pot ent i al s urfaces t hat domi nat e l arge-scal e s yst ems. T he charact eri s t i c l engt h s cal e at
which surface tension matches standard gravity in strength, the capillary length, is merely three mm for
the water–air interface. This is the length scale of champagne bubbles, droplets of rain, insects walking on
water, and many other phenomena.

In this chapter surface tension is introduced along with the accompanying concept of contact angle, and
applied t o t he capillary effect, and to bubble and dropl et shapes. I n chapter 24 we shall study its infl uence
on surface waves.

8.1 The Young–Laplace law for surface tension
The apparent paradox that a mathematical surface with no volume can possess energy may be resolved by
considering a primitive three-dimensional model of a material in which the molecules are placed in a cubic
grid with grid length Lmol. Each molecule in the interior has six bonds to its neighbours with a total binding
energy of −ε, but a surface molecule will only have five bonds when the material interfaces with a vacuum.
The (negative) binding energy of the missing bond is equivalent to an extra positive energy ε/6 for a surface
molecule relative to an interior molecule, and thus an extra surface energy density,
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Two-dimensional cross section
of a primitive three-dimensional
model of a material interfacing
to vacuum. A molecule at
the surface has only five bonds
compared to the six that link a
molecule in the interior.

α ≈ 1

6

ε

L2
mol

. (8.1)

The binding energy may be estimated from the specific enthalpy of evaporation H of the material as
ε ≈ H Mmol/NA . Note that the unit for surface tension is J m−2 = kg s−2.

Example 8.1.1: For water the specific evaporation enthalpy is H ≈ 2.2 × 106 J kg−1, leading to the
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estimate α ≈ 0.12 J m−2. The measured value of the surface energy for water/air interface is in fact
α ≈ 0.073 J m−2 at room temperature. Less than a factor of two wrong is not a bad estimate at all!

α[mN m−1]

Water 72
Methanol 22
Ethanol 22
Bromine 41
Mercury 485

Surface tension of some liquids
against air at 1 atm and 25 ◦ C
in units of mN per metre (from
[41]).

Surface energy and surface tension
Increasing the area of the interface by a tiny amount d A, takes an amount of work equal to the surface
energy contained in the extra piece of surface,

dW = α d A. (8.2)

This is quite analogous to the mechanical work dW = −p dV performed against pressure when the volume
of the system is expanded by dV . But where a volume expansion under positive pressure takes negative
work, increasing the surface area takes positive work. This resistance against extension of the surface shows
that the interface has a permanent internal tension, called surface tension1 which we shall now see equals
the energy density α.

Formally, surface tension is defined as the force per unit of length that acts orthogonally to an imaginary
line drawn on the interface. Suppose we wish to stretch the interface along a straight line of length L by a
uniform amount ds. Since the area is increased by d A = Lds, it takes an amount of work dW = αLds,
implying that the force acting orthogonally to the line is � = αL , or �/L = α. Surface tension is thus
identical to the surface energy density. This is also reflected in the equality of the natural units for the two
quantities, N m−1 = J m−2.

d A

ds

L �
�

An external force � performs the
work dW = � ds to stretch the
surface by ds. Since the area
increase is d A = Lds, the force
is � = α L . The force per unit of
length, α = �/L , is the surface
tension.

Since the interface has no macroscopic thickness, it may be viewed as being locally flat everywhere,
implying that the energy density cannot depend on the macroscopic curvature, but only on the microscopic
properties of the interface. If the interfacing fluids are homogeneous and isotropic—as they normally are—
the value of the surface energy density will be the same everywhere on the surface, although it may vary
with the local temperature. Surface tension depends, as mentioned, on the physical properties of both of the
interfacing materials, which is quite different from other material constants that normally depend only on
the physical properties of just one material.

Fluid interfaces in equilibrium are usually quite smooth, implying that α must always be positive. If
α were negative, the system could produce an infinite amount of work by increasing the interface area
without limit. The interface would fold up like crumbled paper and mix the two fluids thoroughly, instead
of separating them. Formally, one may in fact view the rapid dissolution of ethanol in water as due to
negative interfacial surface tension between the two liquids. The general positivity of α guarantees that
fluid interfaces seek towards the minimal area consistent with the other forces that may be at play, for
example pressure forces and gravity. Small raindrops and champagne bubbles are for this reason nearly
spherical. Larger raindrops are also shaped by viscous friction, internal flow and gravity, giving them a
much more complicated shape.

Pressure excess in a sphere
Consider a spherical ball of liquid of radius a, for example hovering weightlessly in a spacecraft. Surface
tension will attempt to contract the ball but is stopped by the build-up of an extra pressure �p inside the
liquid. If we increase the radius by an amount da we must perform the work dW1 = α d A = αd(4πa2) =
α8πa da against surface tension. This work is compensated for by the thermodynamic work against the
pressure excess dW2 = −�p dV = −�p 4πa2 da. In equilibrium there should be nothing to gain,
dW1 + dW2 = 0, leading to,

�p = 2α

a
. (8.3)

The pressure excess is inversely proportional to the radius of the sphere.
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Surface tension increases the
pressure inside a spherical
droplet or bubble.

It should be emphasized that the pressure excess is equally valid for a spherical raindrop in air and a
spherical air bubble in water. A spherical soap bubble of radius a has two spherical surfaces, one from air

1There is no universally agreed-upon symbol for surface tension which is variously denoted α, γ , σ , S, ϒ and even
T . We shall use α, even if it collides with other uses, for example the thermal expansion coefficient.
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to soapy water and one from soapy water to air. Each gives rise to a pressure excess of 2α/a, such that the
total pressure inside a soap bubble is 4α/a larger than outside.

Example 8.1.2: A spherical raindrop of diameter 1 mm has an excess pressure of only about 300 Pa,
which is tiny compared to atmospheric pressure (105 Pa). A spherical air bubble the size of a small
bacterium with diameter 1 µm acquires a pressure excess due to surface tension a thousand times
larger, about 3 atm.
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When can we disregard the influence of gravity on the shape of a raindrop? For a spherical air bubble
or raindrop of radius a, the condition is that the change in hydrostatic pressure across the drop should be
negligible compared to the pressure excess due to surface tension, i.e. ρ0g02a � 2α/a, where ρ0 is the
density of water (minus the negligible density of air). Consequently, we require

a � Rc =
√

α

ρ0g0
, (8.4)

where the critical radius Rc is called the capillary length. It equals 2.7 mm for an air–water interface at
25 ◦ C and 1.9 mm for mercury.

Derivation of the Young–Laplace law
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A smooth surface may, at a given point, be intersected with an infinite number of planes containing the
normal to the surface. In each normal plane the intersection is a smooth planar curve which at the given
point may be approximated by a circle centred on the normal. The centre of this circle is called the centre of
curvature and its radius the radius of curvature of the intersection. Usually the radius of curvature is given
a sign depending on which side of the surface the centre of curvature is situated. As the intersection plane
is rotated, the centre of curvature moves up and down the normal between extreme values R1 and R2 of the
signed radius of curvature, called the principal radii of curvature. It may be shown (problem 8.3) that the
corresponding principal intersection planes are orthogonal, and that the radius of curvature along any other
normal intersection may be calculated from the principal radii.
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Consider now a small rectangle d�1 × d�2 with its sides aligned with the principal directions, and
let us begin with the assumption that R1 and R2 are positive. In the 1-direction surface tension acts with
two nearly opposite forces of magnitude αd�2, but because of the curvature of the surface there will be a
resultant force in the direction of the centre of the principal circle of curvature. Each of the tension forces
forms an angle d�1/2R1 with the tangent, and projecting both on the normal we obtain the total inwards
force 2αd�2 ×d�1/2R1. Since the force is proportional to the area d�1d�2 of the rectangle, it represents an
excess in pressure�p = α/R1 on the side of the surface containing the centre of curvature. Finally, adding
the contribution from the 2-direction we obtain the Young–Laplace law for the pressure discontinuity due
to surface tension,

�p = α

(
1

R1
+ 1

R2

)
. (8.5)

For the sphere we have R1 = R2 = a and recover the preceding result (8.3). The Young–Laplace law
may be extended to signed radii of curvature, provided it is remembered that a contribution to the pressure
discontinuity is always positive on the side of the surface containing the centre of curvature, otherwise
negative.

Example 8.1.3 (How sap rises in plants): Plants evaporate water through tiny pores on the surface of
their leaves. This creates a hollow air-to-water surface in the shape of a half-sphere of the same diameter
as the pore. Both radii of curvature are negative R1 = R2 = −a because the centre of curvature lies
outside the water, leading to a negative pressure excess in the water. For a pore of diameter 2a ≈ 1 µm
the excess pressure inside the water will be about �p ≈ −3 atm, capable of lifting sap through a
height of 30 m. In practice, the lifting height is considerably smaller because of resistance in the
xylem conduits of the plant through which the sap moves. Taller plants and trees need correspondingly
smaller pore sizes to generate sufficient negative pressures, even down to −100 atm! Recent research
has confirmed this astonishing picture (see M. T. Tyree, Nature 423, (2003) 923).
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Figure 8.1. Breakup of a water jet emerging from a tube with 4 mm diameter. The wavelength is roughly
equal to the Rayleigh–Plateau maximal value of π diameters just before breakup. Reproduced from D. F.
Rutland and G. J. Jameson J. Fluid Mech. 46 (1971) 267–71.

The Rayleigh–Plateau instability
Joseph Antoine Ferdinand
Plateau (1801–1883). Belgian
experimental physicist. Invented
the ‘phenakistiscope’, a strobo-
scopic device to study motion
of vibrating bodies. Stared into
the Sun for 20 s in 1829 to study
the after effects, an experiment
that made him lose his vision
permanently in 1843.

The spontaneous breakup of the jet of water emerging from a thin pipe is a well-known phenomenon (first
studied by Savart in 1833), although the physical explanation is not. Plateau found experimentally in 1873
that the breakup begins when the length of the water column is longer than its circumference, and it was
explained theoretically by Lord Rayleigh in 1879 as due to the interplay between pressure and surface
tension. Here we shall verify Plateau’s conclusion in a simple calculation without making a full stability
analysis involving the equations of fluid dynamics.
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Consider an infinitely long cylindrical column of incompressible fluid at rest in the absence of gravity
with its axis along the z-axis. If we normalize the pressure outside the cylinder to zero, surface tension will
make it larger inside, p = α/a where a is its radius. This uniform pressure excess will attempt to squeeze
the column uniformly towards a smaller radius, but if the column is infinitely long, it will be impossible to
move the fluid out of the way, which allows us to ignore this problem. What cannot be ignored are local
radial variations r = r(z) that make the column thicker in some places and thinner in others, because then
the amount of fluid to move out of the way will be finite.

The simplest such variation is a radial wave of wavelength λ and tiny amplitude b � a, described
by r(z) = a − b cos(2πz/λ). At any of its narrowest points, for example z = 0, one principal
radius of curvature is the radius of the cylinder, R1 = a − b, whereas the other radius of curvature is
1/R2 = r ′′(0) = b4π2/λ2, as a geometrical construction shows. Taking into account that its centre of
curvature is outside the fluid, the local pressure excess due to the variation in radius at the constriction thus
becomes,

δp = α

(
1

a − b
− 1

a
− b

4π2

λ2

)
≈ α

(
1

a2
− 4π2

λ2

)
b, (8.6)

when expanded to first order in b. For λ > 2πa the pressure excess is positive and will tend to squeeze
fluid away from the constriction, but that will only diminish the radius a − b further and again increase the
pressure excess, until the column is cut right through. A column of incompressible fluid is thus unstable
against radial disturbances with wavelength larger than its circumference (see problem 8.2 for an alternative
derivation of the stability condition).

8.2 Contact angle
An interface between two fluids is a two-dimensional surface which makes contact with a solid wall along a
one-dimensional line. Locally the plane of the fluid interface forms a certain contact angle χ with the wall.
For the typical case of a liquid/air interface, χ is normally defined as the angle inside the liquid. Water and
air against glass meet in a small acute contact angle, χ ≈ 0, whereas mercury and air meets glass at an
obtuse contact angle of χ ≈ 140 ◦. Due to its small contact angle, water is very efficient in wetting many
surfaces, whereas mercury has a tendency to make pearls. It should be emphasized that the contact angle is
extremely sensitive to surface properties, fluid composition, and additives.

In the household we regularly use surfactants that enable dishwater to wet greasy surfaces on which
it otherwise would tend to pearl. After washing our cars we apply a wax which makes rainwater
pearl and prevents it from wetting the surface, thereby diminishing rust and corrosion.
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Figure 8.2. Spider walking on water. Image courtesy David L. Hu, MIT (Hu, Chan and Bush 2003).

The contact angle is a material constant which depends on the properties of all three materials coming
together. Whereas material adhesion can sustain a tension normal to the wall, the tangential tension has to
vanish. This yields an equilibrium relation between the three surface tensions,
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α13 = α23 + α12 cosχ. (8.7)

This relation is, however, not particularly useful because of the sensitivity of χ to surface properties, and it
is better to view χ as an independent material constant.

Example 8.2.1 (Walking on water): Insects capable of walking on the surface of water must ‘wax’
their feet to obtain an obtuse contact angle and avoid getting wet. They are carried by surface tension
(and buoyancy which we disregard here). Denoting by L the length of the total contact perimeter of its
feet with water a crude condition for walking on water is αL > Mg0 where M is its mass. For an insect
with mass M = 10 mg the contact perimeter must be larger than 1.3 mm. The ratio Je = αL/Mg0
which must be larger than unity for anyone who wants to walk on water has been called the Jesus
number [74].

Capillary effect
Water has a well-known tendency to rise above the ambient level in a narrow vertical glass tube which is
lowered into the liquid. Closer inspection reveals that the surface inside the tube is concave. This is called
the capillary effect and is caused by the acute contact angle of water in conjunction with its surface tension
which creates a negative pressure just below the liquid surface, balancing the weight of the raised water
column. Mercury with its obtuse contact angle displays instead a convex surface shape, creating a positive
pressure just below the surface which forces the liquid down to a level where the pressure equals that at the
ambient level.

Let us first calculate the effect for an acute angle of contact. At the centre of the tube the radii
of curvature are equal, and since the centre of curvature lies outside the liquid, they are also negative,
R1 = R2 = −R0 where R0 is positive. Hydrostatic balance at the centre of the tube then takes the form
ρ0g0h = 2α/R0 where h is the central height, such that

h = 2α

ρ0g0 R0
= 2

R2
c

R0
. (8.8)

It should be noted that this is an exact relation which does not depend on the surface being spherical. It also
covers the case of an obtuse contact angle by taking R0 to be negative.

When the tube radius a is small compared to Rc , gravity has no effect on the shape, and the surface
may be assumed to be a sphere of radius R0. A simple geometric construction shows that a = R0 cosχ ,
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and thus,

h = 2
R2

c
a

cosχ. (8.9)

It is as expected positive for acute and negative for obtuse contact angles. From the same geometry it also
follows that the depth of the central point of the surface is d = R0(1 − sinχ), or

d = a
1 − sinχ

cosχ
. (8.10)

Both of these expressions are modified for larger radius, a � Rc where the surface flattens.
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Example 8.2.2 (Capillary tube): A capillary tube has diameter 2a = 1 mm. Water with χ ≈ 0 rises
h = +30 mm with a surface depth d = +0.5 mm. Mercury with contact angle χ ≈ 140 ◦ sinks on the
other hand to h = −11 mm and d = −0.2 mm under the same conditions.

8.3 Capillary effect at a vertical wall
In the limit of infinite tube radius the capillary effect only deforms the liquid surface close to the nearly
flat vertical wall to accommodate the finite contact angle. Far from the wall the surface is perfectly flat,
and there will be no pressure jump due to surface tension, and consequently no general capillary rise of the
surface above the ambient level. This is an exactly solvable case which nicely illustrates the mathematics
of planar curves.

The rise or drop at the wall may be estimated by a geometric argument of the same kind as at the
end of the preceding section. Assuming that the shape is a circle of radius R, the pressure change due to
surface tension inside the liquid is �p = −α/R roughly in the middle at z = d/2. Hydrostatic balance
thus requires ρ0g0d/2 ≈ α/R, and since the radius R as before is related by geometry to the depth by
d = R(1 − sinχ), we find for an acute angle of contact,

d ≈ Rc
√

2(1 − sinχ) = 2Rc sin
90 ◦ − χ

2
. (8.11)

The last expression is also valid for an obtuse angle of contact. We shall see below that this expression is,
in fact, identical to the exact result.

For water with nearly vanishing angle of contact, we find d ≈ √
2Rc ≈ 3.9 mm whereas for mercury

with χ = 140 ◦ we get d ≈ −1.6 mm.

Geometry of planar curves
Taking the x-axis orthogonal to the wall, and the z-axis vertical, the surface shape may be assumed to be
independent of y and described by a simple curve in the xz-plane. The best way to handle the geometry
of a planar curve is to use two auxiliary parameters: the arc length s along the interface curve, and the
elevation angle θ between the x-axis and the oriented tangent to the curve. From this definition of θ we
obtain immediately,

dx

ds
= cos θ,

dz

ds
= sin θ. (8.12)

The radius of curvature may conveniently be defined as,

R = ds

dθ
. (8.13)

Evidently this geometric radius of curvature is positive if s is an increasing function of θ , otherwise it is
negative. One should be aware that this sign convention may not agree with the physical sign convention
for the Young–Laplace law (8.5). Depending on the arrangement of liquid and air, it may be necessary to
introduce an explicit sign to get the physics right.

Copyright © 2005 IOP Publishing Ltd.



8.3. CAPILLARY EFFECT AT A VERTICAL WALL 103

Hydrostatic balance
Assuming that the air pressure is constant, p = p0, the pressure in the liquid just below the surface is
p = p0 + �p where �p is given by the Young–Laplace law (8.5). Denoting the local geometric radius
of curvature by R we have for an acute angle of contact R1 = −R and R2 = ∞, because the centre of
curvature lies outside the liquid. The pressure is thus negative �p = −α/R just below the surface, and the
hydrostatic pressure of the raised surface must balance the drop in pressure, ρ0g0z = α/R, everywhere on
the surface. Introducing the capillary radius (8.4), this may be written as 1/R = z/R2

c , and we find from
(8.13)

dθ

ds
= z

R2
c
. (8.14)

This equation together with the two definitions (8.12) determine x , z and θ as functions of s.
There are several different types of solution, depending on the boundary conditions. For the surface

near the wall the boundary conditions are x = 0 and θ = χ − 90 ◦ for s = 0, and z → 0 for s → ∞.
Having obtained the solution we may then determine the depth z = d for x = 0.

The pendulum connection
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Since Rc is a constant for the liquid, we may without loss of generality choose the unit of length such that
Rc = 1. Differentiating (8.14) once more with respect to s, we obtain the equation of motion for an inverted
mathematical pendulum,

d2θ

ds2
= sin θ. (8.15)

The boundary conditions correspond to the pendulum starting at an angle θ = θ0 = χ − 90 ◦ with velocity
dθ/ds = d , according to (8.14) (for Rc = 1). The depth d must be chosen precisely such that the pendulum
eventually comes to rest in unstable equilibrium at θ = 0.

If the velocity chosen is larger than the depth, the pendulum will continue through the unstable
equilibrium, and the liquid surface will start to rise again. When the pendulum reaches the angle
θ = −θ0, another vertical wall may be placed there, forming the same angle of contact with the
liquid surface. This is the planar analogue of the capillary effect in a circular tube, but this problem
is not solvable in terms of elementary functions. The periodic pendulum solutions obtained by letting
the pendulum move through stable equilibrium at θ = π correspond to a strip of liquid hanging at
the lower edge of the vertical plate.

To find the solution for the problem at hand, the surface shape near a single wall, we multiply the pendulum
equation of motion by dθ/ds and integrate, to get

1

2

(
dθ

ds

)2
= 1 − cos θ,

where the constant 1 has been determined from the condition that dθ/ds = 0 and θ = 0 for s → ∞. From
this equation and (8.14) we derive that,

z = −2 sin
θ

2
, (8.16)

independent of whether the contact angle is acute or obtuse. Taking θ = χ −90 ◦ we indeed recover (8.11).
The dependence of x on θ is calculated from,

dx

dθ
= dx/ds

dθ/ds
= cos θ

−2 sin θ2
= sin

θ

2
− 1

2 sin θ2
.

This integrates to

x = x0 − 2 cos
θ

2
− log

∣∣∣∣tan
θ

4

∣∣∣∣ , (8.17)

where x0 = 2 cos(θ0/2) + log |tan(θ0/4)| and θ0 = χ − 90 ◦. Together with (8.16) this constitutes a
parametric form for the surface shape.
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Figure 8.3. Capillary effect in water for a circular tube of radius a in units where Rc = 1. (a) Surface shape
z(r)/a plotted as a function of r/a for χc = 1◦ and a = 0, 1, 2, 3, 5, 10. Note how the shape becomes
gradually spherical as the tube radius a approaches 1. For a � 1 the shape is essentially independent of a.
(b) Computed capillary rise h and depth d as functions of a (solid lines). For a � 1 the computed values
deviate from the spherical surface estimates (8.9) and (8.10) (dashed).

∗ 8.4 Axially invariant surface shapes
Many static interfaces—capillary surfaces in circular tubes, droplets and bubbles—are invariant under
rotation around an axis, allowing us to establish a fairly simple formalism for the shape of the equilibrium
surface.
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Geometry of axially invariant interfaces
In cylindrical coordinates an axially invariant interface is a planar curve in the r z-plane. Using again the
arc length s along the curve and the angle of elevation θ for its slope, we find as in the planar case,

dr

ds
= cos θ,

dz

ds
= sin θ. (8.18)

The first principal radius of curvature may be directly taken from the planar case, whereas it takes some
work to show that the second centre of curvature lies on the z-axis (see problem 8.4), such that

R1 = ds

dθ
, R2 = r

sin θ
. (8.19)

One should be aware that the sign convention for these geometric radii of curvature may not agree with
the physical sign convention for the Young–Laplace law (8.5), and that it may be necessary to introduce
explicit signs to get the physics right. This will become clear in the calculations that follow.

The capillary surface
For the rising liquid/air capillary surface with acute contact angle, both geometric radii of curvature, R1
and R2, are positive. Since both centers of curvature lie outside the liquid, the physical radii will be −R1
and −R2 in the Young–Laplace law (8.5). Assuming that the air pressure is constant, hydrostatic balance
demands that H = g0z +�p/ρ0 is constant, or

g0z − α

ρ0

(
dθ

ds
+ sin θ

r

)
= − 2α

ρ0 R0
.

The value of the constant has been determined from the initial condition at the centre, where r = z = θ = 0
and the geometric radii of curvature are equal to the central radius of curvature, R1 = R2 = R0. Solving

Copyright © 2005 IOP Publishing Ltd.



8 . 4 . AXIALLY INVARIANT SURFACE SHAPES 1 0 5

F i gu re 8. 4. S hapes of sessi l e ai r bubbl es and dr opl et s of wat er ( Rc = 2. 7 mm, χc = 1◦ ) a nd mer c ur y
( Rc = 1. 9 mm, χc = 140◦ ). (a) A i r bubbl es i n wa t e r under a l i d ( t o s cal e) . (b) Wa t e r dr opl et on t a bl e
plotted with vertical scale enlarged 40 times. (c) A i r bubbl es i n mer cur y ( t o scal e) . (d) Mer c ur y dr opl et s on
a t abl e (t o scal e).

for dθ/ds  w e fi nd,

dθ

ds
= 2

R0
− sin θ

r
+ z

R 2c
, ( 8. 20)

where Rc is the capillary constant (8.4). In the second term one must remember that r/θ → R 0 for θ → 0.
Toget her w i t h t he t wo equat i ons ( 8. 18) w e have obt ai ned t hr ee fi r st - or der di ff er ent i a l e quat i ons f or r , z

and θ . Since s does not occur explicitly, and since θ gr ow s m onot oni cal l y w i t h s , one may eliminat e s and
i nst ead use θ as t he r unni ng par a met e r. U nf or t unat e l y t hese e quat i ons cannot be sol ved anal yt i cal l y, but
give n R0 they may be solved numerically with the boundary conditions r = z = 0 for θ = 0. T he s ol ut i ons
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are quasi-periodic curves that spiral upwards forever. The physical solution must however stop at the wall
r = a for θ = θ0 = 90 ◦ − χ , and t hat fi xes R 0 . T he numer i c sol ut i ons ar e di s pl ayed i n fi gur e 8. 3.

Sessile bubbles and droplets
If a horizontal plate (a ‘lid’) is inserted into water, air bubbles may come up against its underside, and
remain stably sitting (sessile) there. The bubbles are pressed against the plate by buoyancy forces that in
addition tend to flatten bubbles larger than the capillary radius. The shape may be obtained from the above
solution to the capillary effect by continuing it to θ0 = 180 ◦ − χ .

Mercury sitting on the upper side of a horizontal plate likewise forms small nearly spherical droplets
which may be brought to merge and form large flat puddles of ‘quick silver’. In this case the geometric
radii of curvature will both be negative while the physical radii of curvature are both positive because the
centers of curvature lie inside the liquid. The formalism is consequently exactly the same as before, except
that the central radius of curvature R0 is now negative. The shapes are nearly the same as for air bubbles,
except for the different angle of contact.

In figure 8.4 the four sessile configurations of bubbles and droplets are displayed. The depth approaches
in all cases a constant value for large central radius of curvature R0, which may be estimated by the same
methods as before to be d = Rc

√
2(1 ± cosχ) for bubbles(+) and droplets(−). Note that the depth of the

water droplet (frame 8.4b) is enlarged by a factor 40. If water really has contact angle χ = 1 ◦, the maximal
depth of a water droplet on a flat surface is only d = 0.018Rc ≈ 50 µm. This demonstrates how efficient
water is in wetting a surface, because of its small contact angle.

Pending droplets
Whereas sessile droplets in principle can have unlimited size, hanging liquid droplets will fall if they
become too large. Here we shall investigate the shape of a droplet hanging at the end of a thin glass
tube, for example a pipette fitted with a rubber bulb which allows us to vary the pressure. When the bulb
is slowly squeezed, a droplet emerges at the end of the tube and eventually falls when it becomes large
enough.
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Figure 8.5. Static droplet shapes at the mouth of a circular tube in units of Rc = 1. There are no solutions
with larger volumes than the largest ones shown here. All contact angles are assumed to be possible at the
mouth of the tube. Notice that the origin of z has been redefined. (a) Tube with radius a = 1 which is larger
than the critical radius (a1 = 0.918). (b) Tube with radius a = 0.5 which is smaller than the critical radius.

Both the geometric and physical radii of curvature are positive in this system, such that we get (for
Rc = 1),

dθ

ds
= 2

R0
− sin θ

r
− z, (8.21)

with a negative sign of z. In this case θ is not a monotonic function of s, and we may not eliminate s.
Assuming that the tube material is very thin, the boundary conditions may be taken to be r = z = θ = 0
for s = 0, because the rounded end of the tube material is able to accommodate any angle of contact.
The condition that the liquid surface must always make contact with the end of the glass tube at r = a
then determines the total curve length s0 as a function of the central curvature R0, and thereby the height
d = z(s0).
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A liquid drop hanging from a
tube. Any contact angle can be
accommodated by the 180 ◦ turn
at the end of the tube’s material.

The volume of a droplet (see problem 8.5),

V =
∫ d

0
πr2 dz, (8.22)

is a function of R0. As the bulb is squeezed slowly, the volume of the droplet must grow continuously
through a sequence of hydrostatic shapes. At some point instability sets in and the drop falls. It is not
possible to determine the point of instability in a purely hydrostatic calculation, but the Rayleigh–Plateau
result would indicate that it happens when it develops a ‘waist’, even if there are static solutions beyond
this point.

The solutions fall into two classes. If R0 is larger than a certain critical value, R0 > R01 =
0.778876 . . ., the radial distance r(s) will grow monotonically with s, but if R0 < R01 the surface will
be shaped like an old-fashioned bottle with one or more waists. The critical solution at R0 = R01 has a
turning point with vertical tangent, allowing us to locate the critical point by solving r ′(s) = r ′′(s) = 0.
The result is that at the critical point the curve length is s1 = 1.95863 . . ., the radius a1 = 0.917622 . . . and
the depth d1 = 1.47804 . . ..

In figure 8.5a is shown the family of shapes for a droplet with tube radius a = 1 > a1. For large central
radius of curvature R0 the shape is flat, but as R0 diminishes the droplet grows in volume and develops a
‘waist’. It finally reaches a maximum volume of 5.26R3

c , beyond which it cannot pass continuously and
the drop must surely have fallen. In figure 8.5b is shown a family of shapes for a droplet with tube radius
a = 0.5 < a1. In this case the droplet may expand beyond the radius of the tube until it reaches a maximal
volume of 2.32R3

c .
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Problems
8.1 A soap bubble of diameter 6 cm floats in air. What is the pressure excess inside the bubble when the
surface tension between soapy water and air is taken to be α = 0.15 N m−1? How would you define the
capillary length in this case, and how big is it? Do you expect the bubble to keep its spherical shape?

8.2 (a) Calculate the leading order change in area and volume of a column of incompressible fluid subject
to an infinitesimal radial periodic perturbation with wavelength λ. (b) Show that the Rayleigh–Plateau
stability condition is equivalent to the requirement that the area should grow for fixed volume. Instability
occurs when the area diminishes.

∗ 8.3 Consider a quadratic surface z = ax2 + by2 + 2cxy with a unique extremum at x = y = 0. For a
suitable choice of coordinates, a smooth function may always be approximated with such a function at any
given point. (a) Determine the radius of curvature of the surface along a line in the xy-plane forming an
angle φ with the x-axis. (b) Determine the extrema of the radius of curvature as a function of φ and show
that they correspond to orthogonal directions.

∗ 8.4 Determine the radii of curvature in section 8.4 by expanding the shape z = f (r) with r =
√

x2 + y2

to second order around x = x0, y = 0, and z = z0.

∗ 8.5 Show that the volume of a pending droplet of arc length s is

V = πr2
(

1

R2
− 1

R1

)
= πr2

(
2

sin θ

r
+ z − 2

R0

)
, (8.23)

where r = r(s) is the radius and z = z(s) the height.

Copyright © 2005 IOP Publishing Ltd.



Part III

Deformable solids

Copyright © 2005 IOP Publishing Ltd.



�
������

In fluids at rest pressure is the only contact force. For solids at rest or in motion, and for viscous fluids
in motion, this simple picture is no longer valid. Besides pressure-like forces acting along the normal to a
contact surface, there may also be shear forces acting tangentially to it. In complete analogy with pressure,
the relevant quantity turns out to be the shear stress, defined to be the shear force per unit of area. Friction
forces are always caused by shear stresses.

�

�

Normal

Tangential

Force

  
  
  �

�
�
��

��
��
��

The force on a small piece of
a surface can be resolved by a
normal pressure-like force and a
tangential shear force.

The two major classes of materials, fluids and solids, react differently to stress. Whereas fluids respond
by flowing, solids respond by deforming. Although the equations of motion in both cases are derived from
Newton’s second law, fluids and solids are in fact so different that they are usually covered in separate
textbooks. In this book, we shall as far as possible maintain a general view of the physics of continuous
systems, applicable to all types of materials.

The integrity of a solid body is largely due to internal elastic stresses, both normal and tangential to
the surfaces they act on. Together they resist deformation of the material and prevent the body from being
pulled apart. Unlike friction, elastic forces do not dissipate energy, and ideally the work done against
elastic forces during deformation may be fully recovered. In reality, some elastic energy will always be lost
because of the emission of sound waves that eventually decay and turn into heat. Baron Augustin-Louis Cauchy

(1789–1857). French mathemati-
cian who produced an astound-
ing 789 papers. Contributed to
the foundations of elasticity, hy-
drodynamics, partial differential
equations, number theory and
complex functions.

In this chapter the emphasis is on the theoretical formalism for contact forces, independent of whether
they occur in solids, fluids, or intermediate forms such as clay or dough. The vector notation used up to this
point is not adequate to the task, because contact forces not only depend on the spatial position but also on
the orientation of the surface on which they act. A collection of nine stress components, called the stress
tensor, was introduced by Cauchy in 1822 to describe the full range of contact forces that may come into
play.

9.1 Friction
µ0 µ

Glass/glass 0.9 0.4
Rubber/asphalt 0.9 0.7
Steel/steel 0.7 0.6
Metal/metal 0.6 0.4
Wood/wood 0.4 0.3
Steel/ice 0.1 0.05
Steel/teflon 0.05 0.05

Approximate friction coefficients
for various combinations of
materials.

The concept of shear stress is best understood through friction, a shear force known to us all. We hardly
think of friction forces, even though all day long we are served by them and do service to them. Friction is
the reason that the objects we hold are not slippery as a piece of soap in the bathtub, but instead allow us to
grab and drag, heave and lift, rub and scrub. Most of the work we do is in fact done against friction, from
stirring the coffee to making fire by rubbing two sticks against each other.

Static and sliding friction
Consider a heavy crate standing on a horizontal floor. Its weight mg0 acts vertically downwards on the floor,
which in turn reacts back on the crate with an equal and opposite normal force of magnitude N = mg0. If
you try to drag the crate along the floor by applying a horizontal force F , called traction, you may discover
that the crate is so heavy that you are not able to budge it, implying that the force you apply must be fully
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balanced by a tangential friction force between the floor and the crate of the same magnitude, T = F , but
of opposite direction.

�G
�
mg0

��N�T � � FA

R

Balance of forces on a crate
standing still on a horizontal
floor. The point of attack A is
here chosen at floor level to avoid
creating a moment of force which
could turn over the crate.

�
�
�
�
�
�

�

�
T

F
µ0 N

µ0N

µN

Sketch of tangential reaction T
as a function of applied traction
F . Up to F = µ0 N , the
tangential reaction adjusts itself
to the traction, T = F . At
F = µ0 N , the tangential
reaction drops abruptly to a lower
value, and stays there regardless
of the applied traction.

Empirically, such static friction can take any magnitude up to a certain maximum, which is proportional
to the normal load,

T < µ0 N . (9.1)

The dimensionless constant of proportionality µ0 is called the coefficient of static friction which in our
daily doings may take a quite sizable value, say 0.5 or greater. Its value depends on what materials are in
contact and on the roughness of the contact surfaces.

If you are able to pull with a sufficient strength, the crate suddenly starts to move, but friction will still
be present and you will have to do real work to move the crate any distance. Empirically, the dynamic
(kinetic or sliding) friction is proportional to the normal load,

T = µN, (9.2)

with a coefficient of dynamic friction, µ, that is always smaller than the corresponding coefficient of static
friction, µ < µ0. This is why you have to heave strongly to get the crate set into motion, whereas afterwards
a smaller force suffices to keep it going at constant speed.

It is at first sight rather surprising that friction is independent of the size of the contact area. A
crate on legs is as hard to drag as a box without, provided they weigh the same. Since larger weight
generates larger friction, a car’s braking distance will be independent of how heavily it is loaded. In
braking a car it is also best to avoid skidding because the static (rolling) friction is larger than sliding
friction (see problem 9.2). Anti-skid brake systems automatically adjust braking pressure to avoid
skidding and thus minimize braking distance.

The law of sliding friction goes back to Coulomb (1779) (and also Amontons (1699)). The full story
of friction is complicated, and in spite of our everyday familiarity with friction, there is still no universally
accepted microscopic explanation of the phenomenon1.

Charles-Augustin de Coulomb
(1736–1806). French physicist,
best known from the law of
electrostatics and the unit of
electric charge that carries his
name.

9.2 The concept of stress
Shear stress is, just like pressure, defined as force per unit of area, and the standard unit of stress is the
same as the unit for pressure, namely the pascal (Pa = N m−2). If a crate on the floor has a contact area A,
we may speak both about the average normal stress σn = N/A and the average tangential (or shear) stress
σt = T/A that the crate exerts on the floor. Depending on the mass distribution of the contents of the crate
and the stiffness of its bottom, the local stresses may vary across the contact area A.

External and internal stress
The stresses acting between the crate and the floor are external and are found in the true interface between
a body and its environment. In analogy with pressure, we shall also speak about internal stresses, even if
we may be unable to define a practical way to measure them. Internal stresses abound in the macroscopic
world around us. Whenever we come into contact with the environment (and when do we not?) stresses
are set up in the materials we touch, and in our own bodies. The precise distribution of stress in a body
depends not only on the external forces applied to the body, but also on the type of material the body is made
from and on other macroscopic quantities such as temperature. In the absence of external forces there is
usually no stress in a material, although fast cooling may freeze stresses permanently into certain materials,
for example glass, and provoke an almost explosive release of stored energy when triggered by a sudden
impact.

1D. A. Kessler, Surface physics: A new crack at friction, Nature 413 (2001) 260.
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Estimating internal stress
In many situations it is quite straightforward to estimate average stresses in a body. Consider, for example,
a slab of homogeneous solid material bounded by two stiff flat clamps of area A, firmly glued to it. A
tangential force of magnitude F applied to one clamp with the other held fixed will deform the slab a bit in
the direction of the applied force. Here we shall not worry about how to calculate the deformation of the
slab, but will just assume that the response of the slab is the same throughout, so that there is a uniform
shear stress σ = F/A acting on the surface of the slab.

�F

�
F

A

A

σ

σ

Clamped slab of homogeneous
material. The shear force F at
the upper clamp is balanced by an
oppositely directed fixation force
F on the lower clamp. The shear
stress σ = F/A is the same on
all inner surfaces parallel with the
clamps.

The fixed clamp will, of course, act back on the slab with a force of the same magnitude but in an
opposite direction. If we make an imaginary cut through the slab parallel with the clamps, then the upper
part of the slab must likewise act on the lower with the shear force F , so that the internal shear stress
acting on the cut must again be σ = F/A. If pressure had also been applied to the clamps, we would have
gone through the same type of argument to convince ourselves that the normal stress would be the same
everywhere in the cut.

For bodies with a more complicated geometry and non-uniform external load, internal stresses are not
so easily calculated, although their average magnitudes may be estimated. In analogy with friction one may
assume that variations in shear and normal stresses are roughly of the same order of magnitude, provided
the material and the body geometry are not exceptional.

Example 9.2.1 (Classic gallows): The classic gallows is constructed from a vertical pole, a horizontal
beam and sometimes a diagonal strut. A body of mass M = 70 kg hangs at the extreme end of the
horizontal beam of cross section A = 100 cm2. The body’s weight must be balanced by a shear stress
in the beam of magnitude σ ≈ Mg0/A ≈ 70 000 Pa ≈ 0.7 bar. The actual distribution of shear stress
will vary over the cross section of the beam and the position of the chosen cross section, but its average
magnitude should be of the estimated value.
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M

The classic gallows.

Example 9.2.2 (Water pipe): The half-inch water mains in your house have an inner pipe radius
a ≈ 0.6 cm. Tapping water at a high rate, internal friction in the water (viscosity) creates shear stresses
opposing the flow, and the pressure drops perhaps by�p ≈ 0.1 bar = 104 Pa over a length of L ≈ 10 m
of the pipe. In this case, we may actually calculate the shear stress on the water from the inner surface
of the pipe without estimation errors, because the pressure difference between the ends of the pipe
is the only other force acting on the water. Setting the force due to the pressure difference equal
to the total shear force on the inner surface, we get πa2�p = 2πaLσ , from which it follows that
σ = �p a/2L ≈ 3 Pa. This stress is indeed of the same size as we would have estimated from the
corresponding pressure drop �p · a/L over a stretch of pipe of the same length as the radius.

Tensile strength

Tensile Yield
[MPa] [MPa]

Titanium 500 450
Nickel 460
Steel 450 250
Copper 300
Cast iron 180
Zink 130
Lead 17

Typical tensile strength for com-
mon metals and some yield
stresses. The values may vary
widely for different specimens,
depending on heat treatment and
other factors.

When external forces grow large, a solid body may fracture and break apart. The maximal tension, i.e.
negative pressure or pull, a material can sustain without fracturing is called the tensile strength of the
material. Similarly, the yield stress is defined as the stress beyond which otherwise elastic solids begin
to undergo permanent deformation. For metals the tensile strength lies typically in the region of several
hundred megapascals (i.e. several kilobars) as shown in the margin table. Modern composite carbon fibers
can have tensile strengths up to several gigapascals (i.e. several megabars), whereas ‘ropes’ made from
single-wall carbon nanotubes are reported to have tensile strengths of up to 50 gigapascals2.

Example 9.2.3: Plain carbon steel has a tensile strength of 450 MPa. A quick estimate shows that a
steel rod with a diameter of 2 cm breaks if loaded with more than 14 000 kg. Adopting a safety factor
of 10, one should not load it with more than 1400 kg.

2Min-Feng Yu, Bradley S. Files, Sivaram Arepalli and Rodney S. Ruoff, Tensile loading of ropes of single wall carbon
nanotubes and their mechanical properties Phys. Rev. Lett. 84 (2000) 5552.
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9.3 Nine components of stress
Shear stress is more complicated than normal stress, because there is more than one tangential direction on
a surface. In a coordinate system where a force d�x is applied along the x-direction to a material surface
d Sy with its normal in the y-direction, the shear stress will be denoted σxy = d�x/d Sy , instead of just σ .
Similarly, if the shear force is applied in the z-direction, the stress would be denoted σzy = d�z/d Sy , and
if a normal force had been applied along the y-direction, it would be consistent to denote the normal stress
σyy = d�y/d Sy . By convention, the sign is chosen such that a positive value of σyy corresponds to a pull
or tension.		

	

			

��
�

���� �
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			�
σxy

σyy

σzy

� ��		� x

y

z

Components of stress acting on a
surface element in the xz-plane.

Cauchy’s stress hypothesis
Altogether, it therefore appears to be necessary to use at least nine numbers to indicate the state of stress in a
given point of a material in a Cartesian coordinate system. Cauchy’s stress hypothesis (to be proved below)
asserts that the force d� = (d�x , d�y , d�z) on an arbitrary surface element, d S = (d Sx , d Sy, d Sz), is
of the form

d�x = σx x d Sx + σxyd Sy + σxzd Sz,

d�y = σyx d Sx + σyyd Sy + σyzd Sz,

d�z = σzx d Sx + σzyd Sy + σzzd Sz,

(9.3)

where each coefficient σi j = σi j (x, t) depends on the position and time, and thus is a field in the normal
sense of the word. Collecting them in a matrix

σσσ = {σi j } =
σx x σxy σxz
σyx σyy σyz
σzx σzy σzz

 . (9.4)

The force may be written compactly as a matrix equation,

d� = σσσ · d S. (9.5)

The force per unit of area is, d�/d S = σσσ · n, where n is the normal to the surface. It is sometimes called
the stress vector, although it is not a vector field in the usual sense of the word because it depends on the
normal.

The stress tensor
Together the nine fields, {σi j }, make up a single geometric object, called the stress tensor, first introduced
by Cauchy in 1822. Using index notation, we may write

d�i =
∑

j

σi j d S j . (9.6)

Since the force d�i as well as the surface element d Si are vectors, it follows that σi j is indeed a tensor in the
sense of section 2.8 (see problem 2.20). This collection of nine fields {σi j } cannot be viewed geometrically
as consisting of nine scalar or three vector fields, but must be considered together as one geometrical object,
a tensor field σi j ( x, t) w hi ch i s nei t her scal ar nor vect or. A s f or or di nar y t ensor s ( see s ect i on 2. 8) , t her e i s
unfortunately no simple, intuitive way of visualizing the stress tensor field by geometric means.

Example 9.3.1: A stress tensor field of the form,

{σi j } = {xi x j } =
x2 xy xz

yx y2 yz
zx zy z2

 , (9.7)
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i s a t ensor pr oduct a nd t hus by const r uct i on a t r ue t e nsor. T he st r e ss ‘ vect or ’ act i ng on a sur face w i t h
nor mal i n t he di r ect i on of t he x -axi s i s

σ x = σσσ · e x =
x

y
z

 x. (9.8)

I t does not t r ansf or m under r ot at i on a s a t r ue vect or because of t he fact or x on t he r i ght - hand s i de.

H y drostatic pressure
For t he special case of hydrostatic equilibrium, w here the only contact force i s pressure, comparison of
(9.5) with (4.8) shows that the stress tensor must be

σσσ = −p 111, (9.9)

where 111 is the ( 3 × 3) uni t m at r i x. I n t e nsor not at i on t hi s becomes

σi j  = −p δi j , ( 9. 10)

where δi j  i s t he i ndex r epr e sent at i on of t he uni t m at r i x ( 2. 30) .

Mechanical pressure
G e ner a l l y, how ever, t he st r e ss t e nsor w i l l have bot h di a gonal a nd off - di a gonal non- va ni shi ng c omponent s.
A di a gonal c omponent behave s l i ke a ( negat ive ) pr e ssur e , a nd one of t e n defi nes t he pr essur e s a l ong di ff er ent
coor di nat e axes t o be

px = −σ  x x , p y = −σ  yy, p z = −σ  zz . ( 9. 11)

Since they may be different, it is not clear what the meaning of the pressure in a point should be.
Furthermore, it should be remembered that the diagonal elements of a tensor (σx x , σyy, σzz) do not have
a well-defined geometric meaning, and that the quantity (px , py, pz) does not behave like a vector under
C a r t esi a n c oor di nat e t r ansf or mat i ons ( s ee sect i on 2. 8 and pr obl em 2. 23) .

The mechanical pressure or simply the pressure is defined to be the average of the three pressures along
the axes,

p = 1
3 (px + py + pz) = − 1

3 (σx x + σyy + σzz). (9.12)

This makes sense because the sum over the diagonal elements of a matrix, the trace Tr σσσ = ∑
i σii =

σx x +σyy +σzz , is invariant under Cartesian coordinate transformations (problem 2.17). Defining pressure
in this way ensures that it is a scalar field, taking the same value in all coordinate systems. There is in fact
no other scalar linear combination of the stress components.

Example 9.3.2: For the stress tensor given in example 9.3.1 the pressures along the coordinate axes
become px = −x2, py = −y2 and pz = −z2. Evidently, they do not form a vector, but the average
pressure,

p = − 1
3 (x

2 + y2 + z2), (9.13)

is clearly a scalar, invariant under rotations of the Cartesian coordinate system.

∗ Proof of Cauchy’s stress hypothesis
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d S

The tiny triangle and its projec-
tions form a tetrahedron.

As in the proof of Pascal’s law (page 48) we take again a surface element in the shape of a tiny triangle with
area vector d S = (d Sx , d Sy, d Sz). This triangle and its projections on the coordinate planes form together
a little body in the shape of a tetrahedron. Since we aim to prove the existence of the stress tensor, we
cannot assume that it exists. What we know is that the forces acting from the inside of the tetrahedron on
the three triangular faces in the coordinate planes are vectors of the form d� x = σ x d Sx , d� y = σ yd Sy
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and d� z = σ z d Sz . D enot i ng t he f or c e act i ng f r om t he out si de on t he s kew face by d� , a nd addi ng a
possi bl e vol ume f or ce f dV  , t he equation of motion for the small tetrahedron becomes

d M w = f dV  + d� − σ x d Sx − σ y d Sy − σ z d Sz, ( 9. 14)

where w i s t he accel erat i on of t he t et r ahedron, and d M  = ρ dV  its mass, which i s assumed t o be constant .
T he s i gns have been chosen i n accordance wi t h t he i nward di r ect i on of t he area proj ect i ons d Sx , d Sy and
d Sz .

The volume of the tetrahedron scales like the third power of its linear size, whereas the surface areas
onl y s cal e l i ke t he second pow e r ( see s ect i on 4. 2) . Maki ng t he t et r a hedr on pr ogr essive l y smal l e r, t he
body force term and the acceleration term will vanish faster than the surface terms. In the limit of a truly
infinitesimal tetrahedron, only the surface terms survive, so that we must have
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σzx
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 x
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Components of the stress vector
σ x acting on a surface element in
the yz-plane.

d� = σ x d Sx + σ yd Sy + σ zd Sz . (9.15)

This shows that the force on an arbitrary surface element may be written as a linear combination of three
basic stress vectors, one for each coordinate axis. Introducing the nine coordinates of the three triplets,
σ x = (σx x , σyx , σzx ), σ y = (σxy, σyy , σzy) and σ z = (σxz, σyz, σzz), we arrive at (9.3).

9.4 Mechanical equilibrium
Including a volume force density fi , the total force on a body of volume V with surface S becomes
according to (9.6)

�i =
∫

V
fi dV +

∮
S

∑
j

σi j d S j . (9.16)

Using Gauss’ theorem (4.22) this may be written as a single volume integral

�i =
∫

V
f ∗
i dV, (9.17)

where

f ∗
i = fi +

∑
j

∇ jσi j , (9.18)

is the effective force density. The effective force is not just a formal quantity, because the total force on a
material particle is d� = f ∗ dV . As in hydrostatics (page 50) this may be demonstrated by considering a
small box-shaped particle.

�
(x, y, z) dx

dz dy

		
	

			�
��

σ x (x)
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���
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σ x (x + dx)

The total contact force on a small
box-shaped material particle is
calculated from the variations
in stress on the sides. Thus
d� = (σ x (x + dx, y, z) −
σ x (x, y, z))d Sx ≈ ∇xσ x dV for
the stress on d Sx , plus the similar
contributions from d Sy and d Sz .

Cauchy’s equation of equilibrium
In mechanical equilibrium, the total force on any body must vanish, for if it does not the body will begin to
move. So the general condition is that � = 0 for all volumes V . In particular, requiring that the force on
each and every material particle must vanish, we arrive at Cauchy’s equilibrium equation(s),

fi +
∑

j

∇ jσi j = 0. (9.19)

In spite of their simplicity these partial differential equations govern mechanical equilibrium in all kinds
of continuous matter, be it solid, fluid, or whatever. For a fluid at rest where pressure is the only stress
component, we have σi j = −p δi j , and recover the equation of hydrostatic equilibrium, fi − ∇i p = 0.

It is instructive to explicitly write out the three individual equations contained in Cauchy’s equilibrium
equation,

fx + ∇xσx x + ∇yσxy + ∇zσxz = 0,

fy + ∇xσyx + ∇yσyy + ∇zσyz = 0,

fz + ∇xσzx + ∇yσzy + ∇zσzz = 0.

(9.20)
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T hese e quat i ons ar e i n t hemsel ve s not suffi ci ent t o det er mi ne t he s t a t e of cont i nuous mat t e r, but m ust be
suppl ement e d by s ui t a bl e constitutive equat i ons connect i ng s t r ess a nd st at e. For fl ui ds at r e st , t he equat i on
of st at e s er ves t hi s pur pose by r el at i ng hydr ost at i c pr essur e t o mass densi t y and t emper at ur e ( chapt er 4) .
In elastic solids, the constitutive equations are mor e complicated and r elate stress t o displ acement ( chapter
11) .

Symmetry
There is one very general condition (also going back to Cauchy) which may normally be imposed, namely
the symmetry of the stress tensor

σi j = σ j i . (9.21)

Symmetry only affects the shear stress components, requiring

� �σxy

��σyx

� �� x

y

A symmetric stress tensor acts
with equal strength on orthogonal
faces of a cubic body.

σxy = σyx , σyz = σzy, σzx = σxz, (9.22)

and thus reduces the number of independent stress components from nine to six.

Being thus a symmetric matrix, the stress tensor may be diagonalized. The eigenvectors define the
principal directions of stress and the eigenvalues the principal tensions or stresses. In the principal
basis, there are no off-diagonal elements, i.e. shear stresses, only pressures. The principal basis is
generally different from point to point in space.

Proof of symmetry: There is in fact no general proof of symmetry of the stress tensor, but only some
theoretical arguments that allow us to choose the stress tensor to be symmetric in all normal materials. These
arguments are presented in section 9.5. Here we shall present a simple argument, only valid in complete
mechanical equilibrium.

Consider a material particle in the shape of a tiny rectangular box with sides a, b and c. The force acting
in the y-direction on a face in the x-plane is σyx bc whereas the force acting in the x-plane on a face in the
y-plane is σxyac. On the opposite faces the contact forces have opposite sign in mechanical equilibrium
(their difference is as we have seen of order abc). Since the total force vanishes, the total moment of force
on the box may be calculated around any point we wish. Using the lower left corner, we get

�z = a σyx bc − b σxyac = (σyx − σxy)abc.

This shows that if the stress tensor is asymmetric, σxy �= σyx , there will be a resultant moment on the

�

a

b

σxyac

�

σyx bc

�
−σxyac

�

−σyx bc

� �� x

y

An asymmetric stress tensor will
produce a non-vanishing moment
of force on a small box (the z-
direction not shown).

box. In mechanical equilibrium this cannot be allowed, since such a moment would begin to rotate the box,
and consequently the stress tensor must be symmetric. Conversely, when the stress tensor is symmetric,
mechanical equilibrium of the forces alone guarantees that all local moments of force will vanish.

Boundary conditions
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1 2

�n
σσσ 1 σσσ 2

Contact surface separating body
1 from body 2. Newton’s third
law requires continuity of the
stress vector σσσ · n across the
boundary, i.e. σσσ 1 · n = σσσ 2 · n.

Cauchy’s equation of equilibrium constitutes a set of coupled partial differential equations, and such
equations require boundary conditions. The stress tensor is a local physical quantity, or rather collection of
quantities, and may, like pressure in hydrostatics, be assumed to be continuous in regions where material
properties change continuously. Across real boundaries, interfaces, where material properties may change
abruptly, Newton’s third law only demands that the stress vector, σσσ · n = {∑ j σi j n j }, be continuous across
a surface with normal n (in the absence of surface tension). This does not mean that all the components of
the stress tensor should be continuous. Since Newton’s third law is a vector condition, it imposes continuity
on three linear combinations of stress components, but leaves for the symmetric stress tensor three other
combinations free to jump discontinuously. Surprisingly, it does not follow that the pressure (9.12) is
continuous. In full-fledged continuum theory, the pressure in fact loses the appealing intuitive meaning it
acquired in hydrostatics.

Example 9.4.1: Consider a plane interface in the yz-plane. The stress components σx x , σyx and
σzx must then be continuous, because they specify the stress vector on such a surface. Symmetry
implies that σxy and σxz are likewise continuous. The remaining three independent components
σyy , σzz and σyz = σzy are allowed to jump at the interface. In particular the average pressure,
p = −(σx x + σyy + σzz)/3, may be discontinuous.

Copyright © 2005 IOP Publishing Ltd.



118 9. STRESS

∗ 9.5 ‘Proof’ of symmetry of the stress tensor
If the stress tensor is manifestly asymmetric, we shall now show that it is always possible to make it
symmetric by exploiting an ambiguity in its definition. The argument which will now be presented is
adapted from P. C. Martin, O. Parodi and P. S. Pershan, Phys. Rev. A6, (1972) 2401 (also used in [37, p.
7]).

The ambiguous stress tensor		
	

			

��
�

���

 σx x		

σyx

�
σzx

� ��		
 x

z
y

Only the three components of
the stress vector need to be
continuous at the interface.

The stress tensor was introduced at the beginning of this chapter as a quantity which furnished a complete
description of the contact forces that may act on any surface element. But surface elements are not in
themselves physical bodies. We can only determine the magnitude and direction of a force by observing its
influence on the motion of a real physical body having a volume V and a closed surface S. The resultant
of all contact forces acting on the surface of a body is given by (9.17), showing that the relevant quantity
for the dynamics of continuous matter is the contribution

∑
j ∇ jσi j to the effective density of force rather

than the stress tensor σi j itself.
Two stress tensors, σi j and σ̃i j , are therefore physically indistinguishable, if they give rise to the same

effective density of force everywhere. This is, for example, the case if we write

σ̃i j = σi j +
∑

k

∇kχi j k (9.23)

where χi j k is antisymmetric in j and k,

χi j k = −χikj . (9.24)

For then ∑
j

∇ j σ̃i j =
∑

j

∇ jσi j +
∑
j k

∇ j ∇kχi j k =
∑

j

∇ jσi j ,

where the last term in the middle vanishes because of the symmetry of the double derivatives and the
assumed antisymmetry of χi j k .

It remains to show that there exists a tensor χi j k such that σ̃i j becomes symmetric. Let us put

χi j k = ∇iφ j k + ∇ jφik − ∇kφi j (9.25)

where φi j is an antisymmetric tensor, φi j = −φ j i . Evidently this choice of χi j k has the right symmetry
properties (9.24). Inserting it into (9.23) we obtain

σ̃i j = σi j +
∑

k

∇k(∇iφ j k + ∇ jφik )− ∇2φi j .

The tensor φi j is now chosen to be a solution to Poisson’s equation with the antisymmetric part of the
original stress tensor as source,

∇2φi j = 1
2 (σi j − σ j i ). (9.26)

Such a solution can in principle always be found, and then we obtain

σ̃i j = 1
2 (σi j + σ j i )+

∑
k

∇k(∇iφ j k + ∇ jφik ) (9.27)

which is manifestly symmetric. Notice, however, that the new symmetric stress tensor is not just the
symmetric part of the old, but contains extra terms.
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Non-classical continuum theories
The conclusion is, that if somebody presents you with a stress tensor which is asymmetric, you may always
replace it by a suitable symmetric stress tensor, having exactly the same physical consequences.

But even if it is formally possible to choose a symmetric stress tensor, it may not always be convenient,
because of the non-locality inherent in the solution to Poisson’s equation in (9.26). Asymmetric stress
tensors have been used in various generalizations of classical continuum theory, containing elementary
volume and surface densities of moments (body couples and couple stresses) and sometimes also intrinsic
angular momentum (spin). We shall not go further into these non-classical extensions of continuum theory
here; so-called micropolar materials are, for example, discussed in [51, p. 493].

Problems
9.1 A crate is dragged over a horizontal floor with sliding friction coefficient µ. Determine the angle α
with the vertical of the total reaction force.

9.2 A car with mass m moves with a speed v. Estimate the minimal braking distance without skidding
and the corresponding braking time. Do the same if it skids from the beginning to the end. For numerics
use m = 1000 kg and v = 100 km h−1. The static coefficient of friction between rubber and the surface of
a road may be taken to be µ0 = 0.9, whereas the sliding friction is µ = 0.7.

9.3 A strong man pulls a jumbo airplane slowly but steadily exerting a force of � = 2000 N on a rope.
The plane has N = 32 wheels, each touching the ground in a square area A = 40 × 40 cm2. (a) Estimate
the shear stress between the rubber and the tarmac. (b) Estimate the shear stress between the tarmac and
his feet, each with area A = 5 × 25 cm2.

9.4 Estimate the maximal height h of a mountain made from rock with a density of ρ = 3, 000 kg m−3

when the maximal stress the material can tolerate before it deforms permanently is σ = 300 MPa. How
high could it be on Mars where the surface gravity is 3.7 m s−2?

9.5 A stress tensor has all components equal, i.e. σi j = τ for all i, j . Find its eigenvalues and
eigenvectors.

9.6 Show that if the stress tensor is diagonal in all coordinate systems, then it can only contain pressure.

9.7 A stress tensor and a rotation matrix are given by,

σσσ =
 15 −10 0

−10 5 0
0 0 20

 , AAA =
 3/5 0 −4/5

0 1 0
4/5 0 3/5

 .
Calculate the stress tensor in the rotated coordinate system x′ = AAA · x.

9.8 (a) Show that the average of a unit vector n over all directions obeys

〈ni n j 〉 = 1

3
δi j . (9.28)

(b) Use this to show that the average of the normal stress acting on an arbitrary surface element in a fluid
equals (minus) the mechanical pressure (9.12).
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∗ 9.9 A body of mass m stands still on a horizontal floor. The coefficients of static and kinetic friction
between body and floor are µ0 and µ. An elastic string with string constant k is attached to the body in a
point close to the floor. The string can only exert a force on the body when it is stretched beyond its relaxed
length. When the free end of the string is pulled horizontally with constant velocity v, intuition tells us that
the body will have a tendency to move in fits and starts.

(a) Calculate the amount s that the string is stretched, just before the body begins to move.

(b) Write down the equation of motion for the body when it is just set into motion, for example in terms
of the distance x that the point of attachment of the string has moved and the time t elapsed since the
motion began.

(c) Show that the solution to this equation is

x = v

ω
(ωt − sinωt)+ (1 − r)s(1 − cosωt)

where ω = √
k/m, r = µ/µ0.

(d) Assuming that the string stays stretched, calculate at what time t = t0 the body stops again?

(e) Find the condition for the string to be stretched during the whole motion.

(f) How long time will the body stay in rest, before moving again?

∗ 9.10 One may define three invariants, i.e. scalar functions, of the stress tensor in any point. The first is
the trace I1 = ∑

i σii , the second I2 = (1/2)
∑

i j (σiiσ j j − σi j σ j i ) which has no special name, and the
determinant I3 = detσσσ . Show that the characteristic equation for the matrix σσσ can be expressed in terms
of the invariants. Can you find an invariant for an asymmetric stress tensor which vanishes if symmetry is
imposed?
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Al l mat eri al s deform when subj ect ed t o ext ernal forces, but di ff erent mat eri al s react i n di ff erent ways.
E l ast i c mat er i al s bounce back agai n t o t he or i gi nal confi gur at i on w hen t he f or ces cease t o act . O t her s ar e
pl ast i c and r et ai n t hei r shape af t er def or m at i on. Vi scoel ast i c mat er i al s behave l i ke el ast i c sol i ds under fast
def or m at i on, but c r eep l i ke vi s cous l i qui d ove r l onger per i ods of t i m e. E l ast i c i t y i s i t s el f a n i deal i zat i on,
l i mi t ed t o a cert ai n range of forces. I f t he ext ernal forces become excessive, al l mat eri al s become pl ast i c
and undergo per manent def or m at i on, even f r act ur e.

W hen a body is deformed, t he material is displaced away from its original pos ition. S mall deformations
ar e m at hemat i cal l y much easi er t o handl e t han l arge def or m at i ons, w her e par t s of a body become gr eat l y
and non- uni f or m l y di spl aced r e l a t ive t o ot her par t s , a s f or exampl e w hen you cr umpl e a pi ece of paper. A
rectilinear coordinate system embedded i n t he original body and def ormed along with the material of t he
body becomes a curvilinear coordinate system after t he deformation. It can therefore come as no surprise
t hat t he general t heory of fi ni t e deformat i on i s mat hemat i cal l y at t he s ame l evel of di ffi cul t y as general
curvilinear coordinate systems. Luckily, our buildings and machines are rarely subjected to such violent
t r eat ment , and i n most pract i cal cases t he deformat i on may be assumed t o be t i ny.

The description of continuous deformation inevitably leads to the introduction of a new tensor quantity,
the strain tensor, which characterizes the state of local deformation or strain in a material. Strained relations
between neighbouring material particles cause tension or stress—as they do among people. In this chapter
we shall focus exclusively on the description of strain, and postpone the discussion of the stress-strain
r e l a t i onshi p f or el ast i c mat e r i al s t o c hapt er 11.

10.1 Displacement
The prime example of deformation is a uniform dilatation, in which the coordinates of every material
particle in a body are multiplied by a constant factor, κ > 1. Under a dilatation a material particle originally
situated in the point x is displaced to the point,

x′ = κ x. (10.1)

Note that both x and x′ refer to the same coordinate system. Contraction is also included for κ-values in
the interval 0 < κ < 1. Negative values of κ are physically impossible for macroscopic bodies, because
they contain a reflection (x′ = −x) in the origin of the coordinate system. Although you can see your own
reflection in a mirror, the reflection cannot be realized physically.

Uniform dilatation. The arrows
indicate how material particles
are displaced.

The only point which does not change place during a uniform dilatation is the origin of the coordinate
system. Although it superficially looks as if the origin of the coordinate system plays a special
role, this is not really the case. All relative positions of material particles scale in the same way,
x′ − y′ = κ(x − y), independent of the origin of the coordinate system. There is no special centre
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for a uniform dilatation, either geometrically or physically. The origin of the coordinate system is
simply an anchor point for the mathematical description of dilatation.

The displacement field
Under a deformation the centre of mass of a material particle is displaced from its original position x to
its actual position x′. The displacement u = x′ − x depends on the particle’s position and is thus a field
u = u(x) in its own right, called the displacement field. Given the displacement field, we may calculate the
new position,

x′ = x + u(x). (10.2)

For the dilatation (10.1) the displacement field becomes u(x) = (κ − 1) x.

There are actually two equivalent ways of choosing a field to represent the displacement as a function
of the particle positions. In the Lagrange representation used here the displacement x′ − x = u(x)
is understood as a function of the original position x. In the Euler representation the displacement
x′ − x = u′(x′) is understood as a function of the actual position x′. The two representations
represent of course the same displacement, so that u′(x′) = u(x). Conceptually and mathematically,
the Lagrange representation is more convenient for the theory of small elastic deformations. The
Euler representation is on the other hand more physical, because the displacement field at a given
point represents the state of the material actually found in that position. For small and smooth
displacement fields there is very little difference between the Euler and the Lagrange representations.

Small displacements
The transformation (10.2) is for general u(x) a completely arbitrary vector mapping, x → x′ = f (x) =
x + u(x). The only reason to split off the displacement field, and not work with the mapping function
f (x) itself, is that the displacement always will be assumed to be ‘small’. Since u(x) is a quantity with
dimension of length, there is no absolute meaning to ‘small’. But in a body of size L , the first term in (10.2)
will change by L as the position x ranges over the body, and this allows us to define a displacement to be
small, if for all x,

Plot of the two-dimensional lin-
ear displacement field u =
(y, x, 0) for −1 < x < 1 and
−1 < y < 1. The material is di-
lated along one diagonal and con-
tracted along the other. These are
the principal directions of strain
(see problem 10.4). The appar-
ently skew sides are an artefact of
the ‘small arrows’ plot.

|u(x)| � L . (10.3)

In the following we shall always assume that the displacement is small, except for section 10.5 where the
generalization to finite displacements that do not fulfill this condition is briefly outlined.

Linear displacements
A general displacement includes all kinds of ordinary rigid body translations and rotations, and it would be
wrong to classify such displacements as deformations. Sailing a submarine at the surface of the water will
only displace it, not deform it, whereas taking it to the bottom of the sea will deform it (slightly). A real
deformation must involve changes in geometric relationships, i.e. lengths and angles, in the body.

Although the displacement in general will be a nonlinear function of the coordinates, we shall begin
by analysing linear displacements akin to the uniform dilatation (10.1). In the most general case, a linear
displacement field takes the form

u(x) = AAA · x + b. (10.4)

where AAA is a constant matrix and b is a constant vector. There is strong similarity between the class of
linear displacements and the transformations of Cartesian coordinates discussed in section 2.7, but the class
of linear displacements is larger, because the underlying coordinate transformation is not restricted to be
orthogonal. The conceptual difference lies in the interpretation of the displacement field, which represents
a physical shift of the material, as opposed to a change in the way the coordinates are calculated.

The general linear displacement may also be resolved into simpler types, namely translation along a
coordinate axis, rotation by a fixed angle around a coordinate axis, and scaling by a fixed factor along a
coordinate axis. The physically impossible reflections are excluded. We shall not prove here that the general
linear displacement may be resolved in this way, but instead rely on geometric intuition.
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Simple translation: A rigid body translation of the material through a distance b along the x-axis is
described by the displacement field

ux = b,

uy = 0,

uz = 0.

(10.5)

Since the geometric relationships in a body are unchanged under translation, it is not a deformation.

Simple translation field.

The displacement is small when |b| � L .

Simple rotation: The geometry of a rigid body rotation through the angle φ around the z-axis leads to,

�
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(x, y)

(x ′, y′)
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..............

A rigid body rotation through an
angle φ moves the particle at
(x, y) to (x ′, y′).

x ′ = x cos φ − y sinφ,

y′ = x sinφ + y cos φ,

z′ = z.

(10.6)

The corresponding displacement field is

ux = −x (1 − cos φ)− y sinφ,

uy = x sinφ − y (1 − cos φ),

uz = 0.

(10.7)

Since all distances in the body are unchanged, this is not a deformation.

Simple rotation field.

The displacement is only small when the angle is small, |φ| � 1. Expanding to first order in the angle
we find

ux = −yφ, uy = xφ, uz = 0. (10.8)

In vector form this may be written u = (−y, x, 0)φ.

Simple scaling: Finally, multiplying all distances along the x-axis by the factor κ , the displacement
field becomes

ux = k x,

uy = 0,

uz = 0,

(10.9)

where k = κ − 1. Uniform dilation (10.1) is a combination of three such scalings by the same factor along
the three coordinate axes. Scaling is a true deformation.

The displacement is small when |k| � 1.

10.2 Local deformation

Simple scaling field.

Displacement is, as demonstrated by the linear examples, not the same as deformation. All the parts of
a body could be simultaneously displaced by the same amount, or bodily rotated, without altering the
geometric relations between them. What is needed is a measure of the actual change of spatial relations
between different parts of the material, also called strain.

Large scale deformation can be very complex. Think of all the loops and knots that weavers make from
a roll of yarn. We should for this reason not expect to find a simple formalism for global deformation.
Weaving, folding, winding, writhing, wringing and squashing may bring particles that were originally far
apart into close proximity. Even the wildest weave consists, however, locally of small pieces of straight
yarn that have only been translated, rotated, stretched or contracted, but not folded, spindled or mutilated.
We may therefore expect to find a much simpler description of deformation for very small pieces of matter.
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Displacement of a ‘needle’
Consider a tiny elongated piece of matter, a material vector or ‘needle’, connecting a point x with the point
x + a. After displacement this needle connects the points x′ = x + u(x) and x′ + a′ = x + a + u(x + a),
and solving for a′ we find

a′ = a + u(x + a)− u(x). (10.10)

The needle is now assumed to be so small that we may expand the displacement field u(x + a) to first order
in a. For the x-component of the field, we find�����x

a �'''
'
'
'Æ

x′

a′�x + a

�x′ + a′

Displacement of a tiny material
needle from a to a′. It may be
translated, rotated, and dilated.
Only the latter corresponds to a
true deformation.

ux (x + a) ≈ ux (x)+ ax
∂ux (x)
∂x

+ ay
∂ux (x)
∂y

+ az
∂ux (x)
∂z

= ux (x)+ (a · ∇)ux (x).

Since a · ∇ is a scalar operator acting in the same way on each component of a vector, we may collect the
other components and write the original vector for an infinitesimal needle in the form

a′ = a + (a · ∇) u(x). (10.11)

Not surprisingly, since it is a relation between infinitesimal quantities, this transformation is linear in a. In
index notation, it may be written as,

a′
i = ai +

∑
j

(∇ j ui )a j . (10.12)

This shows that the coefficients of the linear transformation of a are computed from the derivatives of the
displacement field, ∇ j ui , also called the displacement gradients. For a general linear displacement (10.4)
we have ∇ j ui = Ai j .

Example 10.2.1: The displacement gradient matrix of a simple rotation (10.7) is,

{∇ j ui } =
−1 + cos φ − sinφ 0

sinφ −1 + cos φ 0
0 0 0

 (10.13)

where the index i enumerates the rows and j the columns. If the angle of rotation is small, |φ| � 1, the
displacement gradients are all small, and the matrix becomes,

{∇ j ui } =
0 −φ 0
φ 0 0
0 0 0

 (10.14)

to lowest order in φ.

Small displacement gradients
Since both displacements and coordinates have dimension of length, the displacement gradients are all
dimensionless quantities, i.e. pure numbers, and this makes it meaningful to speak of small displacement
gradients in an absolute way. We shall say that a displacement field is slowly varying or smooth, if all the
displacement gradients are small everywhere, i.e.

∣∣∇ j ui (x)
∣∣ � 1 for all i, j and x. In terms of the matrix

of displacement gradients, ∇u = {∇ j ui }, this may equivalently be written as a condition on the matrix
norm (2.17),

|∇u(x)| � 1, (10.15)

for all x in a body.
A small displacement gradient does not automatically imply that the displacement itself is small

compared to the size of the body, because the displacement could include a rigid body translation to the
other end of the universe which would not affect its gradient. But relative to a fixed anchor point in the body
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whi ch i s not di spl aced, a sl ow l y var yi ng fi el d m ust always be s mal l compar ed t o t he s i ze of t he body and
thus fulfi ll (10. 3). A displacement fi eld satisfying t his condition everywhere will in general also be slowly
va r yi ng, t hough t her e a r e not abl e except i ons. I f you, f or exampl e , m ake a c r ease i n your shi r t w hen you
i r on i t , t he di s pl acement gr a di ent s wi l l be al most i nfi ni t e l y l a rge i n t he cr ease a l t hough none of t he s hi r t ’s
mat eri al i s great l y di spl aced compared t o t he s i ze of t he shi r t .

E xcept f or sect i on 10. 5, w her e a f ew aspect s of t he t heor y of fi ni t e def or m at i ons ar e pr e sent ed, w e s hal l
from now on assume t hat t he di s pl acement fi el d i s bot h s mal l and s moot h. In t hat case t he change i n a
needl e vect or,

δ a ≡ a′ − a = ( a · ∇) u, ( 10. 16)

i s al so smal l compar ed t o t he l engt h of a , i.e. |δ a| � | a| . ����
�
�
��

�
�
�
�
�
�
�
��

�
�
��-

a
a′

δ a

T he c hange i n a needl e vect or
i s smal l w hen t he di spl acement
gradient s are small.

Ca uchy ’s s tra i n tens o r
S i nce t he scal ar pr oduct of t wo needl e s a · b i s unchanged by t r a nsl a t i on a nd r ot a t i on, i t ought t o be a
usef ul i ndi cat or f or a change i n geomet r y. U si ng ( 10. 16) , w e cal cul a t e t he c hange i n t he s cal ar pr oduct
δ(a · b) ≡ a′ · b′ − a · b t o fi r st order i n t he smal l di s pl acement gradi ent s

����
�
�
��

�

x

a

b �$$
$
$.

�
��

x′

a′

b′

Di spl acement of a pai r of i n-
fi ni t esi mal mat eri al needl es may
affect t hei r l engt hs as wel l as t he
angl e bet ween t hem.

δ(a · b) = δ a · b + a · δ b
= ( a · ∇) u · b + ( b · ∇) u · a
=

∑
i j

(∇i u j + ∇ j u i ) ai b j .

I n t he l ast l i ne w e have cast t he r a t her ugl y vect or expr essi on i n t he m uch m or e e l egant i ndex not at i on,
replacing all dot products by explicit sums. We may now (with a conventional factor 2) write,

δ(a · b) = 2
∑
i j

ui j ai b j , (10.17)

where

ui j = 1

2

(∇i u j + ∇ j ui
)
, (10.18)

is the symmetric combination of displacement gradients, called Cauchy’s strain tensor (or just the strain
tensor when that is unambiguous). The strain tensor contains all the information about geometric changes
in the displacement. It must, however, be emphasized that the above expression is only valid for small
displacement gradients. For finite displacement gradients, a more complicated expression must be used
( s ee sect i on 10. 5) .

It pays to write out all the components of the strain tensor explicitly, once and for all. On the diagonal,
they are

ux x = ∇x ux , uyy = ∇yuy , uzz = ∇zuz , (10.19)

whereas off the diagonal,

uxy = uyx = 1
2 (∇x uy + ∇yux )

uyz = uzy = 1
2 (∇yuz + ∇zuy)

uzx = uxz = 1
2 (∇zux + ∇x uz)

(10.20)

Had we not assumed that the displacement was slowly varying, there would also have been quadratic terms
in the displacement gradients, and the strain tensor might take large values. But with our assumption of
small displacement gradients (10.15), the strain tensor field is likewise small,

∣∣ui j (x)
∣∣ � 1 for all i, j and

x.

Example 10.2.2 (Simple translation): The displacement gradients of a bodily translation, u(x) = b,
vanishes trivially, and so does the strain tensor. This confirms that a translation is not a deformation.
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E xamp l e 10. 2. 3 ( S i mp l e rot at i on ) : For s mal l angl es of r ot a t i on, |φ| � 1, t he di s pl acement fi el d of
a simple rotation is u = (− y, x, 0)φ  . T he cor r e spondi ng mat r i x of di spl acement gr a di ent s ( 10. 14) i s
antisymmetric. Cauchy’s strai n t ensor, which i s t he symmetric part of this matrix, vanishes, confi rming
t hat a r ot at i on i s not a def or mat i on.

E xamp l e 10. 2. 4: T he l i near di spl acement u = ( 2α y, α  x, 0) with |α| � 1 has a mat ri x of di s pl acement
gr adi e nt s

{∇ j u i } =
0 2α 0
α 0 0
0 0 0

 . ( 10. 21)

Cauchy’s s t r ai n t ensor becomes

{ ui j } =
 0 3

2α 0
3
2α 0 0
0 0 0

 . ( 10. 22)

S i nce t he st r a i n t e nsor does not va ni sh, t hi s i s a t r ue def or m at i on.

Symmetry of the strain tensor
According to its definition (10.18) the strain tensor is symmetric in its indices

ui j = u j i . (10.23)

I t di ff er s i n t hi s r espect f r om t he st r ess t ensor, w hi ch f or s ymmet r y r equi r ed f ur t her assumpt i ons ( s ee sect i on
9. 5) . T he symmet r y i mpl i e s t hat t he st r a i n t e nsor may be di agonal i z ed at ever y poi nt . T he ei genvect or s of
the strain tensor at a given point are called the principal axes of strain, and form an orthonormal basis at
every point. Whereas the angles between the principal axes are unchanged under the displacement, the
signs and magnitudes of the eigenvalues determine how much the material is being stretched or contracted
along the principal axes. It should, however, be remembered that the principal basis varies from point to
point in space.

10.3 Geometrical meaning of the strain tensor
� ��
�� x 1

2

3

��������

�

x′

1’
2’

3’

Principal basis of deformation of
a point x. Apart from translation
and rotation, this basis is only
subject to scale changes along the
principal axes.

The strain tensor contains all the relevant information about changes in geometric relationships, such as
lengths of material needles and the angles between them. Other geometric quantities, for example volume,
are also changed under a deformation.

Changes in lengths and angles
It is useful for the following discussion to define the projection uab of a tensor ui j on the directions of two
arbitrary vectors a and b,

uab =
∑

i j ui j ai b j

|a| |b| . (10.24)

Then we may simply write,

δ(a · b) = 2 |a| |b| uab, (10.25)

for the change in a scalar product (10.17).
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Change in length: The change in length of a needle is obtained by setting b = a in (10.25), and using
that 2 |a| δ |a| = δ(a2) = 2 |a|2 uaa we get,

δ |a|
|a| ≡

∣∣a′∣∣ − |a|
|a| = uaa . (10.26)

The diagonal strain projection uaa is thus the fractional change of lengths in the direction a. Obtaining this

����
�
�
��

����
�
�
�
�
���

|a|

∣∣a′∣∣
δ |a|

The change in length δ |a| is de-
termined by the diagonal projec-
tion of the strain tensor.

relation is the reason behind the conventional factor 2 in the definition (10.18) of the strain tensor.

Change in angle: Introducing the angle φab between two needles we have a · b = |a| |b| cos φab, and
thus

� �

�
!!

!!/
�
�
��

a

b a′b′

...........................................

δφab

The off-diagonal projections of
the strain tensor determine the
change in angle for originally
orthogonal needles.

δ(a · b) = δ |a| |b| cos φab + |a| δ |b| cos φab − |a| |b| sinφabδφab.

Solving for δφab, we obtain by means of (10.25) and (10.26)

δφab ≡ φ′
ab − φab = − 2uab

sinφab
+ (uaa + ubb) cotφab. (10.27)

For φab → 0 the vectors become parallel and the expression diverges, but the divergence is only apparent
because uaa = ubb = uab for parallel vectors. For originally orthogonal vectors, such as the coordinate
axes, we have φab = π/2, and the change in angle simplifies to

δφab = −2uab . (10.28)

The off-diagonal projections of the strain tensor thus determine the change in angle between originally
orthogonal needles.

Change in volume and density
Under a displacement all the material particles in a volume V are simultaneously moved to fill out another
volume V ′ which for small displacements lies in the vicinity of the original volume. The smallness of the
displacement permits us to calculate the change in volume from the small displacement of its surface S.
Since a surface element d S at x is displaced through the vector distance u(x), it scoops up a tiny volume
u(x) · d S (counted with sign), so that the total change in the volume V becomes,

...........................................................................................................................................................
...........................

......................
......................

......................
......................
......................
......................
.....................
......................

......................
...........................

........................................................................................................................................................................................................................................................................................................................................................ .......... .......... .......... .......... .......... .......... .......... .........
.........

.........
.........
.........
.........
.........
.........

...........
....................

..........................................................................................................................

V V ′

Displacement of a volume of
material. The change in volume
is given by the thin surface layer
between the dashed and solid
curves.

δV = V ′ − V =
∮

S
u · d S. (10.29)

Converting the surface integral into a volume integral by means of Gauss’ theorem (6.4), we obtain,

δV =
∫

V
∇ · u dV . (10.30)

This shows that we may equivalently think of the change in volume V as the sum of the local volume
changes, δ(dV ) = ∇ · u dV , of each and every material particle contained in V . Dividing this equation by
dV we get,

δ(dV )

dV
= ∇ · u, (10.31)

saying that the local fractional volume change equals the divergence of the smooth displacement field.
The change in volume of a material particle induces a change in the local density of the displaced

matter. Since the displacement does not change the mass of a material particle, we find,

δ(d M) = δ(ρdV ) = ρ δ(dV )+ δρ dV = 0,

and making use of (10.31) the change in density becomes,

δρ ≡ ρ′ − ρ = −ρ∇ · u. (10.32)
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The fractional change in density δρ/ρ is equal to minus the divergence of the smooth displacement field. If
the divergence vanishes, there is no change of volume or density associated with the deformation.

Example 10.3.1: A translation u = b does not change the density. Likewise for an infinitesimal
rotation around the z-axis through a small angle φ where u = (−y, x, 0)φ, has vanishing divergence.
A dilatation u = kx has δρ/ρ = −3k. If k > 0 the volume increases and the density diminishes as it
should with a contribution k from each dimension.

∗ 10.4 Work and energy
Deforming a body takes work, a fact known to everyone who has ever kneaded clay or dough. In these
cases, the work you perform seems to be lost inside the material, but in other cases, as for example when
you squeeze an elastic rubber ball, the material appears to store the work and release it again when you
relinquish your grip. Many ball games like Ping-Pong or tennis rely entirely on the elasticity of the ball. No
material is, however, perfectly elastic. Some energy is always lost to sound waves that are radiated away
and eventually degenerate to heat. A hard steel ball may jump many times on a hard floor, but eventually it
loses all its energy and comes to rest, partly due to air resistance, partly due to losses in the ball and, perhaps
more importantly, in the floor. But even when your work seems to get lost in the dough, this is not really the
case. The energy you have put into the clay has in the end been converted into heat which, however, cannot
easily be recovered.

In continuum physics it can be quite subtle to derive the correct energy relations. The simplest way to
proceed is to follow the work, as we did in the qualitative argument above. This is quite analogous to the
admonition, ‘follow the money’, often used with success to uncover economic or political fraud.

Virtual displacement
Suppose we act on the external surface S of a body with some distribution of contact forces under our
control, as we for example do when we knead dough. Any mechanical system that is not in equilibrium, is
(literally) forced to move. If we nevertheless wish to keep it in place in one particular non-equilibrium state,
we must act on its material with an extra volume distribution of external forces, f ′ = − f ∗, to compensate
for the effective internal forces f ∗ acting on the material particles. This procedure freezes the system in
any desired state for any length of time, and is quite analogous to what we did to determine the potential
energy in a gravitational field in section 3.5 on page 38.

����
�
��

f ∗

f ′ = − f ∗

Every material particle can be
kept in place by acting on
it with an additional external
force that balances the already
existing effective body force on
the particle.

Imagine now that the material of the body is displaced by an infinitesimal displacement field, δu =
δu(x), perhaps on top of an already existing displacement. The work of all the external forces under this
so-called virtual displacement is then,

δW = −
∫

V
δu · f ∗ dV +

∮
S
δu · σσσ · d S. (10.33)

Applying Gauss’ theorem to the work of the last term we find,∮
S
δu · σσσ · d S =

∮
S

∑
i j

δuiσi j d S j =
∫

V

∑
i j

∇ j (δuiσi j )dV

=
∫

V

∑
i j

δui ∇ jσi j dV +
∫

V

∑
i j

σi j ∇ j δui dV,

and inserting the expression for the effective force (9.18) the virtual work may be written

δW = −
∫

V
δu · f dV +

∫
V

∑
i j

σi j ∇ j δui dV . (10.34)

Since the system is at rest during the virtual displacement, both of these terms can only contribute to its
internal energy.
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T he fi rst t erm r epresent s t he part of t he vi r t ual di spl acement work t hat i s s pent agai nst t he t r ue body
forces,

δ Wbody = −
∫

V
δ u · f dV . ( 10. 35)

In a fi eld of gravity this work contributes to the gravi t at i onal energy of t he body, because t he pot ent i a l
energy of material particle with mass d M  i s i ndeed changed by,(

�(  x + δ u)−�(  x))d M  ≈ −g · δ u d M  = −δ u · f dV

under an i nfi ni t esi mal di s pl acement δ u .
T he l ast t erm i n ( 10. 34) represent s t he part of t he vi rt ual di s pl acement work t hat i s s pent agai nst t he

internal stresses i n t he body,

δ Wd efo rm =
∫

V

∑
i j

σi j ∇  j δ u i dV  =
∫

V

∑
i j

σi j δ u i j  dV . ( 10. 36)

H er e w e have i n t he s econd st ep used t he ( assumed) symmet r y of t he st r ess t ensor t o expr ess t he i nt egr and
in terms of the infinitesimal change in the strain tensor δ ui j  = 1

2 (∇i δ u j + ∇ j δ u i ) . E vidently this work is
associ at ed wi t h deformat i on of t he mat eri al and cont ri but es t o t he deformation energy of t he body.

I n t he s peci al case t hat t he st r esses ar e onl y due t o pr essur e, σi j  = −pδi j  , t he def or m at i on wor k
becomes

δ Wd efo rm = −
∫

V
p ∇ · δ u dV . ( 10. 37)

Since δ(dV ) = ∇ · δ u dV  is the change in volume of a material particle, we see that the deformation work
i s i dent i cal t o t he l ocal t her modynami c wor k − p δ(dV ) integrated over all material particles. This confi rms
t he i nt erpret at i on of δ Wd efo rm as t he par t of t he vi r t ual wor k s pent on def or m i ng t he body.

I n chapt e r 11 w e s hal l fi nd expl i c i t expr essi ons f or t he gr avi t a t i onal a nd def or m at i on e nergi e s. I n
chapt er 22 energy bal ance i s di scussed w i t hout usi ng t he concept of vi r t ual wor k.

∗ 10.5 Finite deformations
When the condition (10.15) for slowly varying displacement is not fulfilled, we can no longer use the simple
Cauchy strain tensor (10.18). The local description of finite deformation (see for example [27]) is essentially
equivalent to the formalism of general curvilinear coordinate systems, but because space is Euclidean the
description is not quite as complicated as that of truly non-Euclidean spaces. Ronald Samuel Rivlin (1915–).

British born mathematician and
physicist. Contributed to the un-
derstanding of nonlinear materi-
als during the 1940s and 1950s.
Discovered exact nonlinear solu-
tions for isotropic materials.

Although many aspects of finite deformation theory were developed in the nineteenth century, the
subject was not fully established until the mid twentieth century through Rivlin’s work on nonlinear
materials. Here we shall only touch briefly on the most general aspects of finite deformation theory which
is a mathematically rather difficult subject [17, 26].

The Lagrange representation
In the Lagrange representation a finite displacement is simply an arbitrary mapping of the original position
of the material before the displacement to the actual position after the displacement,

x → x′ = f (x) ≡ x + u(x). (10.38)

There is in fact no reason to split off a special displacement field u(x), and we shall only do so to keep
contact with the preceding analysis.

The global mapping of coordinates is considerably simplified in infinitesimal regions of space, where
the local mapping is described by the differential transformation,

dx ′
i =

∑
j

∂x ′
i

∂x j
dx j , (10.39)
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which is what we called the transformation of a ‘needle’ in section 10.2. The matrix of derivatives ∂x ′
i/∂x j

is the Jacobian of the transformation.
The length of the deformed (Cartesian) differential dx′ may then be written as a double sum,

dx′2 =
∑
j k

g jkdx j dxk , (10.40)

where the coefficients,

g jk =
∑

i

∂x ′
i

∂x j

∂x ′
i

∂xk
(10.41)

constitute the deformation tensor. This tensor field, gi j = gi j (x), contains all the information about local
deformation of the material expressed in the coordinates of the undeformed body.

Inserting the actual displacement field (10.38) the Jacobian becomes

∂x ′
i

∂x j
= δi j + ∇ j ui . (10.42)

Splitting off the strain tensor by writing,

gi j = δi j + 2ui j , (10.43)

we find

ui j = 1

2

∇i u j + ∇ j ui +
∑

k

∇i uk∇ j uk

 . (10.44)

This is the generalization of Cauchy’s strain tensor (10.18) to finite displacements, also called Green’s
strain tensor.George Green (1793–1841).

Largely self-taught English
mathematician and mathemat-
ical physicist. Contributed
to hydrodynamics, electricity
and magnetism and partial
differential equations.

Example 10.5.1 (Uniform dilatation): For a uniform dilatation x′ = κ x we have

∇ j ui = (κ − 1)δi j , (10.45)

and the strain tensor becomes,

ui j = 1
2

[
(κ − 1)δi j + (κ − 1)δi j + (κ − 1)2δi j

] = 1
2 (κ

2 − 1)δi j , (10.46)

for any value of κ . It vanishes for κ = ±1, i.e. for no displacement and for a pure reflection in the
origin.

The scalar product of two needles then becomes,

a′ · b′ = κ2a · b, (10.47)

and just reflects that all vectors are scaled by the same amount κ .

The Euler representation
In the Euler representation, the displacement field is defined from the mapping of the actual position x′ to
the original coordinates x,

x′ → x = f ′(x′) ≡ x′ − u′(x′). (10.48)

By comparison with (10.38) it follows that u′(x′) = u(x), and that the mapping f ′ is the inverse of the
original mapping, f ′ = f (−1).

The analysis now proceeds exactly in the same way as for the Euler representation. The infinitesimal
transformation is,

dxi =
∑

j

∂xi

∂x ′
j

dx ′
j , (10.49)
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with Jacobian

∂xi

∂x ′
j

= δi j − ∇′
j u′

i . (10.50)

The Cartesian length of a needle dx becomes,

dx2 =
∑
j k

g′
j kdx ′

j dx ′
k (10.51)

with deformation tensor,

g′
j k =

∑
i

∂xi

∂x ′
j

∂xi

∂x ′
k
. (10.52)

Inserting (10.48) we obtain

g′
i j = δi j − 2u′

i j , (10.53)

where the Euler strain tensor becomes,

u′
i j = 1

2

∇′
i u′

j + ∇′
j u′

i −
∑

k

∇′
i u′

k∇′
j u′

k

 . (10.54)

It was introduced by Almansi in 1911 and Hamel in 1912 [14]. Emilio Almansi (1869–1948).
Italian mathematical physicist.
Worked on nonlinear elastic-
ity theory, electrostatics and
celestial mechanics.

Georg Hamel (1877–1954). Ger-
man mathematician. Solved one
of the famous Hilbert problems in
his doctoral thesis under Hilbert
(1901).

Example 10.5.2 (Uniform dilatation): For a uniform dilatation x′ = κ x we have

∇′
j u′

i =
(

1 − 1

κ

)
δi j , (10.55)

and the Euler strain tensor becomes,

u′
i j = 1

2

[(
1 − 1

κ

)
δi j +

(
1 − 1

κ

)
δi j −

(
1 − 1

κ

)2
δi j

]
= 1

2

(
1 − 1

κ2

)
δi j , (10.56)

for any value of κ .

Euler versus Lagrange
The difference between the Euler and Lagrange representations of displacement lies only in the nonlinear
terms of the strain tensor. Since the mappings are each other’s inverses they are related by relatively simple
expressions.

The two mutually inverse mappings satisfy the following elementary relations between the Jacobians,

∑
k

∂x ′
i

∂xk

∂xk

∂x ′
j

=
∑

k

∂xi

∂x ′
k

∂x ′
k

∂x j
= δi j . (10.57)

Using this and (10.52) we derive

∑
i j

g′
i j
∂x ′

i
∂xk

∂x ′
j

∂xl
= δkl (10.58)

and inserting (10.53) we obtain,

ukl =
∑
i j

u′
i j
∂x ′

i
∂xk

∂x ′
j

∂xl
. (10.59)
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The inverse relation is,

u′
i j =

∑
kl

ukl
∂xi

∂x ′
k

∂x j

∂x ′
l
. (10.60)

The Euler and Lagrange representations are thus completely equivalent, though in the general case
connected by fairly complicated expressions.

Example 10.5.3 (Uniform dilatation): For a uniform dilatation x′ = κ x we have

∂x ′
i

∂x j
= κδi j , (10.61)

and the relation between the Euler and Lagrange strains becomes,

ui j = κ2u′
i j , (10.62)

which is trivially fulfilled by the strain tensors of the preceding examples.

Problems
10.1 Calculate displacement gradients and the strain tensor for the transformation,

ux = α(5x − y + 3z),

uy = α(x + 8y),

uz = α(−3x + 4y + 5z),

where α is small.

10.2 A displacement field is given by

ux = α(x + 2y)+ βx2,

uy = α(y + 2z)+ βy2,

uz = α(z + 2x) + βz2,

where α and β are ‘small’. Calculate the divergence and curl of this field. Calculate Cauchy’s strain tensor.

10.3 Calculate the strain tensor for the displacement field u = (Ax + Cy,Cx − By, 0) where A, B,C
are small constants. Under what condition will the volume be unchanged?

10.4 Calculate the strain tensor for u = α(y, x, 0) where 0 < α � 1. Determine the principal directions
of strain and the change in length scales along these.

10.5 (a) Calculate the displacement gradients and the strain tensor for the displacement field u =
α(y2, xy, 0) with |α| � 1/L , where L is the size of the body. (b) Calculate the principal directions of
strain and the dilatation factors.

10.6 Show that the change in a scalar product under a deformation is derivable from changes in length,
i.e. from the diagonal projections uaa of the strain tensor.

10.7 Show that the general displacement rule for a an infinitesimal needle (10.11) may be written

a′ = a + φ × a + UUU · a (10.63)

where φ = (1/2)∇ × u and UUU = {ui j } is Cauchy’s strain tensor (10.18). What does the second term mean?
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10.8 Show that the most general solution, for which Cauchy’s strain tensor (10.18) vanishes, is

ux = A + Dy + Ez

uy = B − Dx + Fz

uz = C − E x − Fy

where A, B,C are arbitrary constants and D, E, F are small.

10.9 A deformable material undergoes two successive displacements, x′ = x + u(x) and x′′ =
x′ + u′(x′), both having small strain. Calculate the final strain tensor for the total deformation u′′

i j relative
to the original reference state.

∗ 10.10 Show that Cauchy’s strain tensor satisfies the relation

∇i ∇ j ukl + ∇k∇l ui j = ∇i∇l ukj + ∇k∇ j uil . (10.64)

[Conversely, if this relation is fulfilled for a symmetric tensor field ui j then there is a displacement field
such that the strain tensor is given by (10.18).]

∗ 10.11 Show that for finite deformations

δi j + 2ui j =
∑

k

(δik + ∇i uk)(δ j k + ∇ j uk), (10.65)

and use this to prove that the matrix {δi j + 2ui j } is positive definite. Show that

det {δi j + ∇i u j } =
√

det {δi j + 2ui j }. (10.66)

∗ 10.12 Show that the only finite displacements with vanishing strain tensor are the rigid body translations
and rotations.
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W hen you bend a s t i c k t he r eact i on gr ow s not abl y st r onger t he f ur t her you go— unt i l i t per haps br eaks w i t h
a s nap. I f you r e l ease t he bendi ng f or c e bef or e i t br eaks, t he s t i c k s t r ai ght ens out agai n a nd you can bend i t
agai n a nd agai n w i t hout i t changi ng i t s r eact i on or i t s shape. T hat i s el ast i c i t y. R ober t Hooke ( 1635–1703) . En-

gl i s h physi ci st . Worked on el as-
ticity, built telescopes, and the
di scovered di ff ract i on of l i ght .
T he f am ous l aw w hi ch bears hi s
nam e i s f rom 1660. H e al re ady
st at ed i n 1678 t he i nverse square
l aw f or gravi t y, over w hi ch he got
involved in a bitter controversy
with Newton.

In el ement ary mechani cs t he el ast i ci t y of a s pri ng i s expressed by H ooke’s l aw whi ch s ays t hat t he
f or ce necessar y t o st r et ch or compr ess a spr i ng i s pr opor t i onal t o how much i t i s st r et ched or compr essed.
I n cont i nuous el ast i c mat er i al s H ooke’s l aw i m pl i es t hat s t r ess i s a l i near f unct i on of s t r ai n. S ome mat er i al s
t hat w e usual l y t hi nk of a s hi ghl y e l a st i c , f or exampl e r ubber, do not obey H ooke’s l aw except under ver y
smal l def or mat i ons. W hen s t r esses gr ow l arge, m ost m at er i al s def or m mor e t han pr edi ct ed by H ooke’s l aw.
T he pr oper t r eat ment of nonl i near el ast i ci t y goes beyond t he s i m pl e l i near el ast i ci t y w hi ch w e s hal l di scuss
i n t hi s book.

T he e l a st i c pr oper t i e s of c ont i nuous mat e r i al s a r e det e r m i ned by t hei r under l yi ng mol ecul a r s t r uct ur e ,
but t he relation bet ween material properties and the mol ecular structure and arrangement in solids i s
compl i cat ed, t o s ay t he l east . L ucki l y, t here are broad cl asses of mat eri al s t hat may be descri bed by

T homas Young ( 1773–1829) .
E ngl i s h physi ci an, physi ci st and
egypt ol ogi st . H e observed t he
i nt e rf erence of l i ght and w as
t he firs t t o propose t hat l i ght
waves are transverse vibrations,
explaining thereby the origin
of polarization. He contributed
much to the translation of the
Rosetta stone.

a few material parameters which can be determined by macroscopic experiments. The number of such
parameters depends on the complexity of the crystalline structure of the material, but we shall almost
exclusively concentrate on the properties of structureless, isotropic elastic materials, described by just two
material constants, Young’s modulus and Poisson’s ratio.

In this chapter, the emphasis will be on matters of principle. We shall derive the basic equations of
l i near el ast i ci t y, but onl y s ol ve t hem i n t he s i m pl est possi bl e cases. I n chapt er 12 we shal l s ol ve t hese
equations in generic situations of more practical interest.

11.1 Hooke’s law
Ideal massless elastic springs obeying Hooke’s law are a mainstay of elementary mechanics. If a relaxed
spring of length L is anchored at one end and pulled in the other with a force � , its length is increased to
L + x . Hooke’s law states that there is proportionality between force and change in length,

� = kx, (11.1)

with a constant of proportionality, k, called the spring constant.

�
L x

� �...............................................................
...........................................................

...........................................................
...........................................................

...........................................................
...........................................................

.......................................................

A spring anchored at the left and
pulled towards the right by a
force F will be stretched by the
amount x = F/k.

Young’s modulus
Real springs are physical bodies with mass, shape and internal molecular structure. Almost any solid body,
anchored at one end and pulled at the other, will react like a spring, when the pull is not too strong. Basically,
this reflects that interatomic forces are approximately elastic, when the atoms are only displaced slightly
away from their positions (problem 11.1). Many elastic bodies that we handle daily, for example rubber
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bands, piano wire, sticks or water hoses, are long string-like objects with constant cross section, typically
made from homogeneous and isotropic material without any particular internal structure. Their uniform
composition and simple form make material strings convenient models for real springs.�� σx x �

The same tension must act on any
cross section of the string.

��
−� �

L ′

The force acts in opposite direc-
tions at the terminal cross sec-
tions of a smaller slice of the
string. The extension is propor-
tionally smaller.

Material
E

[GPa]
ν

[%]

Wolfram 411 28
Nickel (hard) 219 31
Iron (soft) 211 29
Plain steel 205 29
Cast iron 152 27
Copper 130 34
Titanium 116 32
Brass 100 35
Silver 83 37
Glass (flint) 80 27
Gold 78 44
Quartz 73 17
Aluminium 70 35
Magnesium 45 29
Lead 16 44

Young’s modulus and Poisson’s
ratio for various isotropic mate-
rials (from [34]). These values
are typically a factor 1000 larger
than the tensile strength. Single
wall carbon nanotubes have been
reported with a Young’s modulus
of up to 1500 GPa (see footnote 2
on page 113).

�
F

x

y

L

D

A string normally contracts in
transverse directions when pulled
at the ends.

The force � necessary to extend the length of a real string by a small amount x must be proportional
to the area, A, of the string cross section, because if we bundle N such such strings loosely together to
make a thicker string of area N A, the total force will have to be N� in order to get the same change of
length. This shows that the relevant quantity to speak about is not the force� itself, but rather the (average)
normal stress or tension, σx x = N�/N A = �/A, which is independent of the number of substrings N
and consequently of the size A of the cross section. Since the same force � acts on any cross section
of the string, the string tension σx x must be the same at each point along the string. For a smaller slice
of the string of length L ′ < L , the uniformity implies that it will be stretched proportionally less, i.e.
x ′/L ′ = x/L . This indicates that the relevant parameter is not the absolute change of length x but rather
the relative longitudinal extension or strain ux x = x/L , which is independent of the length L of the string.

Putting everything together, we conclude that the quantity,

E = σx x

ux x
= �/A

x/L
= k

L

A
(11.2)

must be independent of both the length L of the spring, the area A of its cross section, and the extension
x . It is a material parameter, called the modulus of extension or Young’s modulus (1807). Given Young’s
modulus we may calculate the actual spring constant,

k = E
A

L
, (11.3)

for any string of length L and cross section A made from this particular material.
Young’s modulus characterizes the behaviour of the material of the spring, when stretched in one

direction. The relation (11.2) also tells us that a unidirectional tension σx x creates a relative extension,

ux x = σx x

E
, (11.4)

in the material. Evidently, Hooke’s law leads to a linear relation between stress and strain, and materials
with this property are generally called linear.

Young’s modulus is by way of its definition (11.2) measured in units of pressure, and typical values
for metals are, like the bulk modulus (4.33), of the order of 1011 Pa = 1 Mbar. In the same way as the
bulk modulus is a measure of the incompressibility of a material, Young’s modulus is a measure of the
instretchability. The larger it is, the harder it is to stretch the material. In order to obtain a large strain
ux x ≈ 100%, one would have to apply stresses of magnitude σx x ≈ E , as shown by (11.4). Such strains
are, of course, not permitted in the theory of small deformations, but Young’s modulus nevertheless sets the
scale.

Example 11.1.1 (Rope pulling contest): At company outings, employees often play the game of
pulling in teams at each end of a rope. Before the inevitable terminal instability sets in, there is often a
prolonged period where the two teams pull with almost equal force � . If the teams each consist of 10
persons, all pulling with about their average weight of 70 kg, the total force becomes � = 7000 N. For
a rope diameter of 5 cm, the stress becomes quite considerable, σx x ≈ 3.6 MPa. For a reasonable value
of Young’s modulus, say E = 36 MPa, the rope will stretch by ux x ≈ 10%.

Poisson’s ratio
Normal materials will contract in directions transverse to the direction of extension. If the transverse size,
the ‘diameter’ D of a string changes by y, the transverse strain becomes of the order of uyy = y/D, and
will in general be negative for a positive stretching force � . In linear materials, the transverse strain is also
proportional to � , so that the ratio uyy/ux x will be independent of � . The negative of this ratio is called
Poisson’s ratio (1829)1,

ν = −uyy

ux x
, (11.5)

1Poisson’s ratio is also sometimes denoted σ , but that clashes too much with the symbol for the stress tensor. Later
we shall in the context of fluid mechanics also use ν for the kinematic viscosity, a choice which does not clash seriously
with the use here.
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and is another parameter characterizing isotropic materials. It is dimensionless, and typical values lie around
0.30 in metals. We shall see below that it cannot exceed 0.5 in isotropic materials.

Whereas longitudinal extension can be understood as a consequence of elastic atomic bonds being
stretched, it is harder to understand why materials should contract transversally. The reason is, however,
that in an isotropic material there are atomic bonds in all directions, and when bonds that are not purely
longitudinal are stretched, they create a transverse tension which can only be relieved by contracting the
material.

��

��

Stretching a ladder with purely
transverse rungs will not create
transverse forces.

A ladder constructed from ideal springs, with rungs orthogonal to the sides, will not experience a
transverse contraction when stretched. If, on the other hand, some of the rungs are skew (making
the ladder unusable), they will be stretched along with the ladder. But that will necessarily generate
forces that tend to contract the ladder, i.e. a negative transverse tension, which either has to be
balanced by external forces or relieved by contraction of the ladder.

�
�
�
��
�
�
��
�
�
�

���
����

�

�� ����

�

�

Stretching a ladder with skew
rungs creates transverse forces
which must be balanced by
external forces at the boundary
(as here) or relieved by transverse
contraction.

11.2 Hooke’s law in isotropic materials
For a stretched string-like object laid out along the x-direction of the coordinate system, the only non-
vanishing stress component is a tension P along x ,

σx x = P. (11.6)

From (11.4) and (11.5) we obtain the corresponding diagonal strain components,

ux x = P

E
, uyy = uzz = −ν P

E
. (11.7)

All the shear strains vanish, uxy = uyz = uzx = 0, in this coordinate system.
In an arbitrary coordinate system, the components of the strain tensor will be completely mixed up with

each other, as illustrated by the simple rotation (2.89), and there will also arise shear stresses and strains,
but the relation between the stress tensor and the strain tensor will still be linear. To determine the form of
the most general linear relationship between stress and strain in an isotropic material, we note that in such a
material there are no internal directions which can be used to construct a linear relation between the tensors
σi j and ui j . In that case only two tensors can appear in the relation: one is the strain tensor ui j itself,
another is the Kronecker delta δi j multiplied with the trace of the strain tensor

∑
k ukk . This is the only

possible factor, because the trace is the only scalar quantity that can be formed from a linear combination
of the strain tensor components. Gabriel Lamé (1795–1870).

French mathematician. Worked
on curvilinear coordinates,
number theory and mathematical
physics.

Thus, we conclude that the most general strictly linear tensor relation between stress and strain tensors
in an isotropic material is of the form (Cauchy 1822; Lamé 1852),

σi j = 2µ ui j + λ δi j
∑

k

ukk , (11.8)

which is the generalization of Hooke’s law to arbitrary isotropic materials. The coefficients λ and µ are
material constants, called elastic moduli or Lamé coefficients. The coefficient λ has no special name,
whereas µ is called the shear modulus or the modulus of rigidity, because it controls the magnitude of
shear (off-diagonal) stresses. Since the strain tensor is dimensionless, the Lamé coefficients are, like the
stress tensor itself, measured in units of pressure, and we shall soon see that the Lamé coefficients are
directly related to Young’s modulus and Poisson’s ratio.

In practical calculations it always pays to write out Hooke’s law explicitly. Its diagonal elements are,

σx x = (2µ+ λ)ux x + λ(uyy + uzz), (11.9a)

σyy = (2µ+ λ)uyy + λ(uzz + ux x ), (11.9b)

σzz = (2µ+ λ)uzz + λ(ux x + uyy), (11.9c)

and its off-diagonal elements,

σxy = σyx = 2µ uxy, (11.10a)

σyz = σzy = 2µ uyz, (11.10b)

σzx = σxz = 2µ uzx . (11.10c)
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For µ = 0 there are no shear stresses and all pressures become equal px = py = pz = p, just as in a fluid.

The arguments leading to the general form of Hooke’s law depend strongly on our understanding
of tensors as geometric objects in their own right with well-defined transformation properties under
rotations. As soon as we have cast a law of nature in the form of a scalar, vector or tensor relation,
its validity in all Cartesian coordinate systems is immediately guaranteed. The form invariance of
the natural laws under transformations that relate different observers has since Einstein been an
important guiding principle in the development of modern theoretical physics.

Young’s modulus and Poisson’s ratio
Young’s modulus and Poisson’s ratio must be functions of the two Lamé coefficients. To derive the relations
between these material parameters we insert the stresses (11.6) and strains (11.7) for the simple stretching
of a material spring into the general relations (11.9a,b), and get,

P = (2µ+ λ) P

E
− 2λν

P

E
, 0 = −(2µ + λ)ν P

E
+ λ

(
−ν P

E
+ P

E

)
.

These equations are solved for E and ν,

E = µ(3λ+ 2µ)

λ+ µ , ν = λ

2(λ+ µ) . (11.11)

Conversely, we may also express the Lamé coefficients in terms of Young’s modulus and Poisson’s ratio,

λ = Eν

(1 − 2ν)(1 + ν) , µ = E

2(1 + ν) . (11.12)

The ‘engineering’ constants, Young’s modulus and Poisson’s ratio, are in practice what is found in tables,
and the above relations allow us to immediately calculate the Lamé coefficients.

Average pressure and bulk modulus
The trace of the stress tensor (11.8) becomes∑

i

σii = (2µ+ 3λ)
∑

i

uii , (11.13)

because the trace of the Kronecker delta is
∑

i δii = 3. Since the stress tensor in Hooke’s law represents
the change in stress due to the deformation we find the change in average pressure (9.12) caused by the
deformation,

�p = −1

3

∑
i

σii = −
(
λ+ 2

3
µ

)∑
i

uii . (11.14)

The trace of the strain tensor was previously shown in (10.32) to be proportional to the relative local
change in density,

∑
i uii = ∇ · u = −�ρ/ρ, and using the definition of the bulk modulus (4.33)

K = ρdp/dρ ≈ �p/(�ρ/ρ), one finds,

K = λ+ 2

3
µ = E

3(1 − 2ν)
. (11.15)

The bulk modulus equals Young’s modulus for ν = 1/3, which is in fact a typical value for ν in many
materials. The Lamé coefficients and the bulk modulus are all proportional to Young’s modulus and thus of
the same order of magnitude. The values of the elastic moduli in metals are huge on ordinary scales, of the
order of 1011Pa = 100 GPa = 106 bar.
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Inverti ng H ooke’s l aw
H ooke’s l aw ( 11. 8) may be i nver t ed s o t hat s t r ai n i s i nst ead expr essed as a l i near f unct i on of s t r ess. S ol vi ng
( 11. 8) f or ui j  and i nsert i ng 

∑
k u kk =

∑
k σ  kk/( 3λ+ 2µ) f r om ( 11. 13) , w e get

ui j  = 1

2µ
σ  i j  − λ

2µ(3λ+ 2µ)
δi j

∑
k

σkk . ( 11. 16)

I nt r oduci ng Young’s m odul us and P oi sson’s r at i o ( 11. 11) , t hi s t akes t he s i m pl er f or m

ui j  = 
1 + ν

E
σi j  − ν

E
δi j

∑
k

σkk . ( 11. 17)

E xplicitly, w e fi nd for t he diagonal components

ux x  = 1

E
σ  x x  − ν

E
(σ  yy  + σ zz),  ( 11. 18a)

uyy  = 1

E
σ  yy  − ν

E
(σ  zz  + σ x x ),  ( 11. 18b)

uzz  = 1

E
σ  zz  − ν

E
(σ  x x  + σ  yy),  ( 11. 18c)

and f or t he off - di a gonal ones,

uxy  = 
1 + ν

E
σxy , ( 11. 19a)

uyz  = 
1 + ν

E
σyz, ( 11. 19b)

uzx  = 
1 + ν

E
σzx . ( 11. 19c)

Evidently, if the only stress is σx x  = P , w e obt ai n i mmedi at el y f r om ( 11. 18) t he c or r ect r e l a t i ons f or s i m pl e
st r e t c hi ng, ( 11. 6) and ( 11. 7) .

Po sitivity constraints
T he bul k m odul us K = λ + 2µ/ 3 cannot be negat ive , because a m at er i a l w i t h negat ive K woul d expand
when put under pr essur e. I magi ne what woul d happen t o s uch a st r ange mat er i al i f pl aced i n a cl osed vessel
also containing normal material like air or water. The hydrostatic pressure would make the strange material
expand, causing a further pressure increase followed by expansion until the whole thing blew up. Likewise,
materials with negative shear modulus, µ, would mimosa-like pull away from a shearing force instead of
yi el di ng t o i t . For m al l y, i t m ay be show n ( see s ect i on 11. 4) t hat t he c ondi t i ons 3λ + 2µ >  0 and µ >  0
follow from the elastic energy density being bounded from below. Although λ, in principle, may assume
negative values, natural materials always have λ ≥ 0.

Young’s modulus cannot be negative because of these constraints, and this confirms that strings always
stretch when pulled at the ends. If there were materials with the ability to contract when pulled, they would
also behave magically. As you begin climbing up a rope made from such material, it pulls you further up.
Presumably, if such materials were ever created, they would spontaneously contract into nothingness at the
first possible occasion or at least into a state with a normal relationship between stress and strain.
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�

Grid of connected ‘umbrellas’. If
anchored to the left and pulled
to the right, the umbrellas will
open and expand the grid in the
transverse direction.

Poisson’s ratio ν = λ/2(λ + µ) depends only on the ratio λ/µ and reaches its maximum ν → 1/2
for λ/µ → ∞. In the extreme limit ν = 1/2 corresponding to µ = 0 there are no shear stresses in the
material which therefore behaves like a fluid at rest. Since the bulk modulus K = 2µ + 3λ is positive
we have λ/µ > −2/3, and the minimal value of Poisson’s ratio ν = −1 is obtained for λ/µ = −2/3.
Although most materials shrink in the transverse directions when stretched, and thus have ν > 0, there
might actually exist materials which expand transversally without violating the laws of physics. In practice
all natural materials have ν > 0, but it is fairly easy to construct artificial models of materials that expand
when pulled, for example a grid of connected umbrellas.
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Limits to Hooke’s law
Hooke’s law in isotropic materials, expressed by the linear relationships, (11.8) or (11.17), between stress
and strain, is only valid for stresses up to a certain value, called the proportionality limit. Beyond the
proportionality limit, nonlinearities set in, and the present formalism becomes invalid. Eventually, one
reaches a point, called the elasticity limit, where the material ceases to be elastic and undergoes permanent
deformation, or even fracture, without much further increase of stress. Hooke’s law is, however, a very
good approximation for most metals under normal conditions where stresses are tiny compared to the elastic
moduli.�

�
........................................................................................................................................................................................................................................................................

P

E

Sketch of how Young’s modulus
might vary as a function of
increased tension. Beyond the
proportionality limit, its effective
value becomes generally smaller.

∗ Anisotropic materials
In this book we shall limit the discussion to isotropic materials, for which Hooke’s law takes the simple form
(11.8). Anisotropic (also called aeolotropic) materials having different properties in different directions are
of great technical importance.

For generally anisotropic materials, the linear relation between the stress and strain tensors, the
generalized Hooke’s law, is of the form,

σi j =
∑
kl

λi j kl ukl , (11.20)

where the coefficients λi j kl form a tensor of rank 4, called the elasticity tensor. For isotropic materials the
elasticity tensor is of the form,

λi j kl = λδi j δkl + µ(δikδ j l + δ j kδil ). (11.21)

In general there are more parameters depending on the intrinsic complexity of the material structure.
Requiring only that the stress tensor is symmetric, the elasticity tensor connects the six independent

components of stress with the six independent components of strain and can in principle contain (6×6) = 36
independent parameters. If one further demands that an elastic energy function should exist (see problem
11.9) this (6 × 6) array of coefficients must itself be symmetric under the exchange i j ↔ kl , i.e.
λi j kl = λkli j , and can thus only contain 6 + (6 × 5)/2 = 21 independent parameters. The orientation of an
anisotropic material relative to the coordinate system takes three parameters (Euler angles), so altogether
there may be up to 18 independent constants characterizing the intrinsic elastic properties of a general
anisotropic material, a number actually realized by triclinic crystals [37, 26].

11.3 Static uniform deformation
To see how Hooke’s law works for continuous systems, we now turn to the extremely simple case of a static
uniform deformation in which the strain tensor ui j takes the same value everywhere in a body at all times.
Hooke’s law (11.8) then ensures that the stress tensor is likewise constant throughout the body, so that all
its derivatives vanish, ∇kσi j = 0. From the condition for mechanical equilibrium, fi + ∑

j ∇ jσi j = 0,
it follows that fi = 0 so that uniform deformation necessarily excludes body forces. Conversely, in the
presence of body forces, there must always be non-uniform deformation of an isotropic material, a quite
reasonable conclusion.

Furthermore, at the boundary of a uniformly deformed body, the stress vector σσσ ·n is as always required
to be continuous, and this puts strong restrictions on the form of the external forces that may act on the
surface of the body. Uniform deformation is for this reason only possible under very special circumstances,
but when it applies the analytic solution for the displacement field is nearly trivial.

Uniform compression
In a fluid at rest with a constant pressure P, the stress tensor is σi j = −Pδi j everywhere in the fluid. If
a solid body made from isotropic material is immersed into this fluid, the natural guess is that the pressure
will also be P inside the body. Inserting σi j = −Pδi j into (11.17) and using that

∑
k σkk = −3P, the

strain may be written,

ui j = − P

3K
δi j . (11.22)
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Since
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A body made from isotropic,
homogenous material subject to a
uniform external pressure will be
uniformly compressed.

ux x = ∇x ux = − P

3K
, (11.23)

we may immediately integrate this equation (and the similar ones for uyy and uzz) and obtain a particular
solution to the displacement field,

ux = − P

3K
x, uy = − P

3K
y, uz = − P

3K
z. (11.24)

The most general solution is obtained by adding an arbitrary small rigid body displacement to this solution.
We arrived at this result by making an educated guess of the form of the stress tensor inside the body.

It could in principle be wrong, but is in fact correct due to a uniqueness theorem to be derived in section
11.4. The theorem guarantees, in analogy with the uniqueness theorems of electrostatics, that provided the
equations of mechanical equilibrium and the boundary conditions are fulfilled by the guess (which they are
here), there is essentially only one solution to any elastostatic problem. The only liberty left is an arbitrary
rigid body displacement which may always be added to the solution.

Uniform stretching
At the beginning of this chapter we investigated the reaction of a string-like material body stretched along
its main axis, say the x-direction, by means of a tension σx x = P acting uniformly over its cross section.
If there are no other external forces acting on the body, the natural guess is that the only non-vanishing
component of the stress tensor is σx x = P throughout the body. Inserting that into (11.16), we obtain as
before the strains (11.7).
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P

Uniformly stretched body with a
constant tension P.

The corresponding displacement field is again found by integrating ∇x ux = ux x etc, and we find the
particular solution

ux = P

E
x, uy = −ν P

E
y, uz = −ν P

E
z. (11.25)

The solution describes as expected a simple dilatation along the x-axis and a contraction along the other
axes.

Uniform shear
Finally we return to the example from section 9.2 of a clamped slab of homogeneous, isotropic material in
the xz-plane, subjected to a shear force in the x-direction. As we argued, the shear stress σxy = P must
be constant throughout the material. Assuming that there are no other stresses, the only strain component
becomes uxy = P/2µ, and using that 2uxy = ∇x uy + ∇yux , we find a particular solution
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�
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x

�

�
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�

Clamped slab of homogeneous
material under shear stress. The
displacement grows linearly with
y.

ux = P

µ
y, uy = uz = 0. (11.26)

As expected, the displacement in the x-direction vanishes for y = 0 and grows linearly with y. Evidently,
this is why µ is called the shear modulus. In problem 11.8 the displacement field is calculated without
making the assumption of small strains.

∗ 11.4 Energy of deformation
The work performed by the external force in extending a spring further by the amount δx is dW = �δx =
kxδx . Integrating this expression, we obtain the total work W = (1/2)kx2, which is identified with the
well-known expression for the elastic energy, E = (1/2)kx2, stored in a stretched spring. Calculated per
unit of volume V = AL for a material string, we find the density of elastic energy in the material

ε = �

V
= kx2

2V
= 1

2
Eu2

x x = P2

2E
. (11.27)

Note that Poisson’s ratio ν does not appear. The transverse contraction controlled by Poisson’s ratio can
play no role in building up the elastic energy of a stretched string, when there are no forces acting on the
sides of the string.
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Elastic energy
In the general case, strains and stresses vary over the body, and the calculation becomes more complicated.
To determine the general expression for the elastic energy density we use the expression derived in section
10.4,

δWdeform =
∫

V

∑
i j

σi j δui j dV . (11.28)

This is the work that must be performed in order to change the internal strain field by an infinitesimal
amount δui j .

If the stress tensor is a linear function of the strain tensor one must build up the deformation in
infinitesimal steps, as we did for the gravitational self-energy in section 6.4. The elastic self-energy, i.e.
the energy of a deformation in its own stress field, becomes in this way quadratic in the strain tensor with a
factor 1/2 to represent the average value of the final stress field,

� = 1

2

∫
V

∑
i j

σi j ui j dV, (11.29)

where the integral runs over the volume V of the undeformed material. The corrections due to the change
of volume are negligible for small and smooth displacements.

In the general linear case the elastic energy density becomes,

ε = 1

2

∑
i j

σi j ui j = 1

2

∑
i j kl

λi j kl ui j ukl . (11.30)

For anisotropic materials the mere existence of such an energy function will, as mentioned, impose the
further condition that λi j kl must be symmetric under exchange i j ↔ kl (see problem 11.9).

For isotropic materials σi j is given by Hooke’s law (11.8) and the energy density simplifies to,

ε = µ
∑
i j

u2
i j + 1

2
λ

∑
i

uii

2

= 1 + ν
2E

∑
i j

σ 2
i j − ν

2E

∑
i

σii

2

. (11.31)

Inserting the stresses for uniform stretching where the only non-vanishing stress is σx x = P, all the
dependence on Poisson’s ratio ν cancels out, bringing us back to the energy density in a material string
(11.27).

The energy density must be bounded from below, for if it were not, elastic materials would be unstable,
and an unlimited amount of work could be obtained by increasing the state of deformation. Imagine
for a moment how magically a body made from such material would behave when squeezed. From the
boundedness, it follows immediately that the shear modulus must be positive, µ > 0, because otherwise we
might make one of the off-diagonal components of the strain tensor, say uxy , grow without limit without
performing any work. The condition on λ is more subtle because the diagonal components of the strain
tensor are involved in both terms. For a uniform deformation with ui j = kδi j we get the energy density

ε = (3/2)(3λ+2µ)k2, implying that 3λ+2µ > 0, i.e. that the bulk modulus (11.15) is positive. In problem
11.7 it is shown that there are no stronger conditions.

Total energy in an external gravitational field
In an external gravitational potential, �(x), not depending on the displacement field, the change in
gravitational energy due to the displacement of a material particle of fixed mass d M from x′ = x + u(x)
to x is to leading order in the displacement,(

�(x′)−�(x))d M ≈ −g(x) · u(x) d M.

The last expression is obtained under the assumption that the displacement is small compared to the length
scale for variations in the gravitational potential. The total (potential) energy of a deformed body in a
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gr avi t a t i onal fi el d i s t her e f or e t he s um of t he ext r a gr avi t a t i onal e nergy of t he def or m at i on a nd t he i nt er nal
energy of def or m at i on,

� = −
∫

V
ρ g · u dV  + 1

2

∫
V

∑
i j

σi j  u i j  dV, ( 11. 32)

where ρ(x) i s t he m ass densi t y of t he body. T hi s expr essi on f or t he t ot a l pot ent i a l e nergy of a n e l a st i c
body i n a gr avi t a t i onal fi el d w i l l be usef ul w hen w e deve l op t he t heor y behi nd numer i cal comput at i on of
the displ acement fi eld i n mechanical equilibrium in chapter 13.

Suppose we vary the displacement field by an infinitesimal amount, δui (x). The associated change in
energy becomes,

δ� = −
∫

V
ρg · δu dV + 1

2

∫
V

∑
i j

σi j δui j dV + 1

2

∫
V

∑
i j

δσi j ui j dV

= −
∫

V
ρg · δu dV +

∫
V

∑
i j

σi j δui j dV .

In the second step we used the assumed symmetry of the coefficients in the generalized Hooke’s law (11.20).
This is exactly the same as the work in a virtual displacement work (10.34), such that we have now explicitly
proven that the virtual work contributes to the internal energy, δ� = δW .

Absolute minimum of energy in mechanical equilibrium
In mechanical equilibrium, f ∗ = 0, it follows from (10.33) that the virtual work is given entirely by the
external work of the contact forces on the surface of the body,

δ� = δW =
∮

S
δu · σσσ · d S. (11.33)

If the external work also vanishes the total deformation energy will be unchanged or stationary, δ� = 0,
under the variation in the displacement. In practice it often happens that some parts of the external boundary
of a body are held fixed with vanishing displacement, u = 0, while other parts are left free with vanishing
stress vector, σσσ · n = 0. In that case the integrand of (11.33) will vanish everywhere on the surface of the
body, and the energy will be stationary under any variations respecting these boundary conditions.

Assuming that the elastic energy density (11.30) is a positive definite quadratic polynomial in the
strains, it follows that when no external work is performed on a body, the total potential energy must
have a unique minimum corresponding to mechanical equilibrium. Below we shall prove that this result
also guarantees the uniqueness of solutions in elastostatics, and we shall see in chapter 13 that it constitutes
the foundation for numerical calculations.

Proof of uniqueness of elastostatics solutions: To prove the uniqueness of the solutions to the
mechanical equilibrium equations (9.19) for linearly elastic materials we assume that we have two solutions
u(1) and u(2) that both satisfy the equilibrium equations and the boundary conditions for a specific problem.
Due to the linearity, the difference between the solutions u = u(1) − u(2) generates a difference in strain
ui j = (1/2)(∇i u j + ∇ j ui ) and a difference in stress σi j = ∑

kl λi j kl ukl . Under the assumption that the
body forces are identical for the two fields the change in stress satisfies the equation,

∑
j ∇ jσi j = 0, and

by means of Gauss’ theorem (4.22) we obtain as before,

0 =
∫

V

∑
i j

ui ∇ jσi j dV =
∮

S

∑
i j

uiσi j d S j −
∫

V

∑
i j

∇ j uiσi j dV .

Here the surface integral vanishes because of the boundary conditions, which either specify the same
displacements for the two solutions at the surface, i.e. ui = 0, or the same stress vectors, i.e.

∑
j σi j n j = 0.

Using the symmetry of the stress tensor we get,

0 =
∫

V

∑
i j

∇ j uiσi j dV =
∫

V

∑
i j

ui j σi j dV =
∫

V

∑
i j kl

λi j kl ui j ukl dV .
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The integrand is of the same form as the energy density (11.30), which is always assumed to be positive
definite, and consequently, the integral can only vanish if the strain tensor for the difference field vanishes
everywhere in the body, i.e. ui j = 0.

Given the boundary conditions, there is essentially only one solution to the equations of mechanical
equilibrium in linear elastic materials. Although the two displacement fields may, in principle, differ by
a rigid body displacement, they must give rise to identical deformations everywhere in the body. If we
have somehow guessed a solution satisfying the equations of mechanical equilibrium and the boundary
conditions, it will necessarily be the right one.

Problems
11.1 Two particles interact with a smooth distance dependent force �(r). Show that the force obeys
Hooke’s law in the neighbourhood of an equilibrium configuration.

11.2 (a) Show that we may write (11.8) in the form

σi j = 2µ

ui j − 1

3
δi j

∑
k

ukk

 + K δi j
∑

k

ukk . (11.34)

(b) Show that first term gives no contribution to the average pressure.

11.3 A displacement field is given by

ux = α(x + 2y)+ βx2,

uy = α(y + 2z)+ βy2,

uz = α(z + 2x) + βz2,

where α and β are ‘small’.

(a) Calculate the divergence and curl.
(b) Calculate Cauchy’s strain tensor.
(c) Calculate the stress tensor in a linear elastic medium with Lamé coefficients λ and µ for the special case
β = 0.

11.4 A beam with constant cross section is fixed such that its sides cannot move. One end of the beam
is also held in place while the other end is pulled with a uniform tension P. Determine the strains, stresses
and the displacement field in the beam.

11.5 A rectangular beam with its axis along the x-axis is fixed on the two sides orthogonal to the y-axis
but left free on the two sides orthogonal to the z-axis. The beam is held fixed at one end and pulled with a
uniform tension P the other. Determine the strains, stresses and the displacement field in the beam.

11.6

(a) Show that Cauchy’s strain tensor always fulfills the condition,

∇2
y ux x + ∇2

x uyy = 2∇x ∇yuxy . (11.35)

(b) Assume now that the only non-vanishing components of the stress tensor are σx x , σyy and σxy =
σyx . Formulate Cauchy’s equilibrium equations for this stress tensor in the absence of volume forces.

(c) Show that the following stress tensor is a solution to the equilibrium equations,

σx x = ∇2
yφ, σyy = ∇2

xφ, σxy = −∇x ∇yφ, (11.36)

where φ is an arbitrary function of x and y.
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(d) Calculate the strain tensor in terms of φ in an isotropic elastic medium, and show that the condition
(11.35) implies that φ must satisfy the biharmonic equation,

∇4
xφ + ∇4

yφ + 2∇2
x ∇2

yφ = 0. (11.37)

(e) Determine a solution of the displacement field (ux , uy , uz), when φ = xy2 and Young’s modulus is
set to E = 1. Hint: begin by integrating the diagonal elements of the strain tensor, and afterwards
add to extra terms to ux to get the correct off-diagonal elements.

∗ 11.7 Show that one may write the energy density (11.30) in the following form

ε = 1
2 [λ− 2µ(3α2 − 2α)]

(∑
i

uii

)2
+ µ

∑
i j

(
ui j − α

∑
k

ukkδi j

)2
(11.38)

where α is arbitrary. Use this to argue that 3λ+ 2µ > 0 and that this is the strictest condition on λ.

∗ 11.8 Consider a shear deformation of a slab of elastic material in the xz-plane by a force in the x-
direction. Assume that the sides of the slab are kept free to move, so that the only non-vanishing components
of the strain tensor are uxy = uyx = α. Show that the displacement becomes

ux = αy, (11.39)

uy = −
(

1 −
√

1 − α2
)

y. (11.40)

for a deformation which is not assumed to be small. Describe what happens for α → 1.

∗ 11.9 The most general linear relation between stress and strain is of the form (11.20). (a) Show that the
elasticity tensor is symmetric in the first two and last two indices. (b) Show that for the elastic energy to
take the form (11.29), the elasticity tensor must obey the further symmetry relation λi j kl = λkli j .
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F l agpol es, br i dges, houses and t ow er s ar e bui l t f r om el ast i c mat er i al s, and ar e desi gned t o s t ay i n one pl ace
with at most smal l excursions away from equilibrium due to wind and wat er current s. Ships, ai rplanes and
space shuttles are designed t o move around, and t heir structural integrity depends crucially on the elastic
propert i es of t he mat eri al s from w hi ch t hey are made. Al most al l human const r uct i ons and nat ur al st r uct ur es
depend on elasticity for stability and ability to withstand external stresses [74 , 76 ].

It can come as no surpri se t hat t he t heory of s t at i c el ast i c deformat i on, elastostatics, i s a huge
engi neer i ng s ubj ect . E ngi neer s m ust know t he def or m at i on a nd i nt e r nal st r e sses i n t hei r const r uct i ons
i n or der t o pr e di ct r i sk of fa i l ur e and s et saf e t y l i m i t s , a nd t hat i s onl y possi bl e i f t he el ast i c pr oper t i e s of
the building materials are known, and if they are able to solve the equations of elastostatics, or at least
get decent approxi mations to them. Today comput ers aid engi neers i n getting precise numeric solutions to
these equations and allow them to build critical structures, such as submarines, supertankers, airplanes and
space vehicles, in which over-dimensioning of safety limits is deleterious to fuel consumption as well as to
const r uct i on c ost s . I n c hapt er 13 t he basi c t echni que behi nd t he numer i c sol ut i on of e l a st ost a t i c s pr obl ems
is presented and applied to the relatively simple two-dimensional problem of how a long block of elastic
material settles under gravity.

In this chapter we shall develop the theory of elastostatics for bodies made from isotropic materials and
apply it to generic cases with simple body geometries for which analytic solutions can be obtained. The
field equations of elastostatics and their solutions are in many respects similar to the field equations and
solutions of electrostatics and magnetostatics. They also bear comparison to the equations of stationary
fluid flow that will be taken up in later chapters.

12.1 Equations of elastostatics
Combining the results of the preceding three chapters we arrive at the fundamental equations for
elastostatics,

ui j = 1
2 (∇i u j + ∇ j ui ), Cauchy’s strain tensor (10.18) (12.1a)

σi j = 2µ ui j + λδi j
∑

k

ukk , Hooke’s law (11.8) (12.1b)

f ∗
i = fi +

∑
j

∇ jσi j = 0, mechanical equilibrium (9.19). (12.1c)
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Inserting Hooke’s law and Cauchy’s strain tensor into the effective force we get,

f ∗
i = fi + 2µ

∑
j

∇ j ui j + λ∇i
∑

j

u j j

= fi + µ
∑

j

∇2
j ui + (λ+ µ)∇i

∑
j

∇ j u j .

Rewriting this in vector notation, we finally arrive at Navier’s equation of equilibrium, also called the
Navier–Cauchy equilibrium equation,Claude Louis Marie Henri Navier

(1785–1836). French engineer,
worked on applied mechanics,
elasticity, fluid mechanics and
suspension bridges. Formulated
the first version of the elastic
equilibrium equation in 1821, a
year before Cauchy gave it its
final form.

f + µ∇2u + (λ+ µ)∇ ∇ · u = 0. (12.2)

After all the troubles with tensor notation, we end up with a relatively simple linear field equation for the
vector displacement field! One should, however, not be taken in by its apparent simplicity. There is a
surprising richness hidden in its compact form.

It should be noted that the linearity of the equilibrium equation permits us to superpose solutions to it.
For example, if you both compress and stretch a body uniformly, the displacement field for the combined
operation will be the sum of the respective displacement fields, (11.25) and (11.24).

There is a subtlety in the derivation of the Navier–Cauchy equation which we have quietly ignored.
The problem arises from the use of the Lagrange representation where the displacement field is
viewed as a function of the original coordinates x whereas the derivatives in the equation of
mechanical equilibrium (12.1c) refer to the actual coordinates x′. Using the definition of the
displacement field (10.2) we find the following relation between the two kinds of derivatives,

∇i = ∂

∂xi
=

∑
j

∂x ′
j

∂xi

∂

∂x ′
j

= ∇′
i +

∑
j

∇i u j ∇′
j . (12.3)

Under the assumption of small displacement derivatives (10.15) the second term may be consistently
ignored in the linear approximation, such that ∇i ≈ ∇′

i .

Estimates
Confronted with partial differential equations, it is always useful to get a rough idea of the order of
magnitude of a particular solution. It should be emphasized that such estimates just aim to find the right
orders of magnitude of the fields, and that there may be special circumstances in a particular problem which
invalidate them. If that is the case, or if precision is needed, there is no way around analytic or numeric
calculation.

Imagine, for example, that a body made from elastic material is subjected to surface stresses of a typical
magnitude P and no body forces. A rough guess on order of magnitude of the stresses in the body is then
also σi j ∼ P. The elastic moduli λ, µ, E and K are all of the same magnitude, so that the deformation
is of the order of ui j ∼ P/E . Since the deformation is calculated from gradients of the displacement
field, the variation in displacement across a body of typical size L may be estimated to be of the order of
ui ∼ Lui j ∼ L P/E .

Example 12.1.1 (Deformation of a chair): Standing with your full weight of 70 kg on the seat of a
chair supported by four wooden legs, each 7 cm2 in cross section and 50 cm long, you exert a stress
P ≈ 250 kPa = 2.5 bar on the legs. Taking E ≈ 109 Pa, the deformation will be about 2.5 × 10−4 and
the maximal displacement about 0.12 mm. The squashing of the legs of the chair due to your weight is
barely visible.

In mechanical equilibrium (12.1c), there is balance between local changes in stress and body forces. This
allows us to estimate the change in stress over a distance L due to, for example gravity f = ρg to be
σi j ≈ ρgL . The corresponding variation in strain becomes ui j ∼ Lρg/E for non-exceptional materials.
Since ui j is dimensionless, it is convenient to define a deformation scale,

D ∼ E

ρg
, (12.4)
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so that ui j ∼ L/D. The quantity D has dimension of length and sets the scale for major changes in
deformation (of order unity). Small deformations require L � D. Finally, we estimate the variation in the
displacement over a distance L to be of magnitude ui ∼ Lui j ∼ L2/D, which depends quadratically on L .

Example 12.1.2 (Settling of a tall building): How much does a tall building settle under its own
weight when it is built? Let the height of the building be L = 413 m, its ground area A = 63 × 63 m2,
and the average mass density ρ = 100 kg m−3, including walls, columns, floors, office equipment and
people. The weight of it all is carried by steel columns taking up about f = 1% of its ground area.

The total mass of the building is M = ρAL = 1.6× 108 kg and the stress in the supports at ground
level is P = Mg0/ f A ≈ 400 bar. Taking Young’s modulus to be that of steel, E = 2 × 1011 Pa, the
deformation scale becomes huge, D ∼ f E/ρg0 ≈ 2000 km so that the strain is about 2 × 10−4. The
top of the building settles thus by merely L2/D ≈ 8 cm.

12.2 Standing up to gravity
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Settling of a body under the
influence of gravity.

Solid objects, be they mountains, bridges, houses or coffee cups, standing on a surface are deformed by
gravity, and deform in turn, by their weight, the supporting surface. Intuition tells us that gravity makes
such objects settle towards the ground and squashes their material so that it bulges out horizontally, unless
prevented by constraining walls. In a fluid at rest, each horizontal surface element has to carry the weight
of the column of fluid above it, and this determines the pressure in the fluid. In a solid at rest, this is more
or less also the case, except that shear elastic stresses in the material are able to distribute the vertical load
in the horizontal directions. �� �

�� �

�

�

�

�

�

� �
g

Shear stresses may aid in carry-
ing the weight of a vertical col-
umn of elastic material.

Uniform settling
An infinitely extended slab of homogeneous and isotropic elastic material placed on a horizontal surface is
a kind of ‘elastic sea’, which like the fluid sea may be assumed to have the same properties everywhere in
a horizontal plane. In a flat-Earth coordinate system, where gravity is given by g = (0, 0,−g0), we expect
a uniformly vertical displacement, which only depends on the z-coordinate,

u = (0, 0, uz(z)) = uz(z) ez . (12.5)

In order to realize this ‘elastic sea’ in a finite system, it must be surrounded by fixed, vertical and slippery

�

� x

z

h

�
g

uz

Elastic ‘sea’ of material under-
going a uniform downwards dis-
placement because of gravity.
The container has fixed, slippery
walls.

walls. The vertical walls forbid horizontal but allow vertical displacement, and at the bottom, z = 0, we
place a horizontal supporting surface which forbids vertical but allows horizontal displacement. At the top,
z = h, the elastic material is left free to move without any external forces acting on it.

The only non-vanishing strain is uzz = ∇zuz . From Hooke’s law (11.9), we obtain the non-vanishing
stresses

σx x = σyy = λuzz, σzz = (λ+ 2µ)uzz , (12.6)

and Cauchy’s equilibrium equation (12.1c) simplifies in this case to

∇zσzz = ρ0g0. (12.7)

Using the boundary condition σzz = 0 at z = h, this equation may immediately be integrated to

σzz = −ρ0g0(h − z). (12.8)

The vertical pressure pz = −σzz = ρ0g0(h − z) is positive and rises linearly with depth h − z, just as in
the fluid sea. It balances everywhere the full weight of the material above, but this was expected since there
are no shear stresses to distribute the vertical load. The horizontal pressures px = py = pzλ/(λ + 2µ)
are also positive but smaller than the vertical, because both λ and µ are positive in normal materials. The
horizontal pressures are eventually balanced by the fixed vertical walls.

The strain

uzz = ∇zuz = σzz

λ+ 2µ
= − ρ0g0

λ+ 2µ
(h − z) (12.9)
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is negative, corresponding to a compression. The characteristic length scale for major deformation is in this
case

D = λ+ 2µ

ρ0g0
= 1 − ν
(1 + ν)(1 − 2ν)

· E

ρ0g0
. (12.10)

Integrating the strain with the boundary condition uz = 0 for z = 0, we finally obtain

�
� zh...........................................................................................................................................................................................................................................................................................................................................................................................................

σzz

uz

Sketch of the displacement (solid
curve) and stress (dashed) for the
elastic ‘sea in a box’.

uz = −h2 − (h − z)2

2D
. (12.11)

The displacement is always negative, largest in magnitude at the top, z = h, and varies quadratically with
height h at the top, as expected from the estimate in the preceding section.

Shear-free settling
What happens if we remove the container walls? A fluid will of course spill out all over the place, whereas
an elastic material is only expected to settle a bit more while bulging horizontally out where the walls were
before. Jelly on a flat plate is perhaps the best image to have in mind. In spite of the basic simplicity of
the problem, there seems to be no simple analytic solution. But if one cannot find the right solution to a
problem, it is common practice in physics to redefine the problem to fit a solution which one can get! What
we can obtain is a solution with no shear stresses (in the chosen coordinates), but the price we pay is that
the vertical displacement will not vanish across the bottom of the container, as it ought to.
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A

Horizontal cross section of elastic
block of ‘jelly’. Straight lines
running parallel with the axes of
the coordinate system must cross
the outer perimeter in at least two
places.

The equilibrium equations (12.1c) with all shear stresses set to zero, i.e. σxy = σyz = σzx = 0,
simplify now to

∇xσx x = 0, ∇yσyy = 0, ∇zσzz = ρ0g0. (12.12)

The first equation says that σx x does not depend on x , or in other words that σx x is constant on straight
lines parallel with the x-axis. But such lines must always cross the vertical sides, where the x-component
of the stress vector, σx xnx , has to vanish, and consequently we must have σx x = 0 everywhere. In the same
way it follows that σyy = 0 everywhere. Finally, the third equation tells us that σzz is linear in z, and using
the condition that σzz = 0 for z = h we find

σzz = −ρ0g0(h − z), (12.13)

implying that every column carries the weight of the material above it. This result was again to be expected
because there are no shear stresses to redistribute the vertical load.�
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Simple model for the gravita-
tional settling of a block of elastic
material (‘jelly on a plate’). The
model is not capable of fulfilling
the boundary condition uz = 0 at
z = 0 and describes a cylindrical
block which partly settles into the
supporting surface.

From the inverse Hooke’s law (11.16), the non-vanishing strain components are found to be

ux x = uyy = ν
ρ0g0

E
(h − z), uzz = −ρ0g0

E
(h − z), (12.14)

where E is Young’s modulus and ν Poisson’s ratio. The typical scale of major deformation is in this case

D = E

ρ0g0
. (12.15)

Using that ux x = ∇x ux , etc, the strains may be readily integrated, but in doing so, one must remember that
all shear strains have to vanish. One may verify that the following displacement field leads to the strains
above,

ux = ν

D
(h − z)x,

uy = ν

D
(h − z)y,

uz = − 1

2D

(
h2 − (h − z)2 + ν(a2 − x2 − y2)

)
,

(12.16)

where a is a constant. The peculiar last term in uz is forced upon us by the requirement of vanishing shear
strains, uxz and uyz . The most general solution is obtained by adding a small translation of the body in the
xy-plane and a small rotation of the body around the z-axis.
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T he t r oubl e w i t h t hi s sol ut i on i s t hat w e cannot i m pose fl at ness at t he bot t om, i . e. uz = 0 for  z = 0,
as we woul d l i ke t o do. T he vert i cal di spl acement i s negat ive everywhere at t he bot t om except at t he ci rcl e
x 2 + y 2 = a 2 , w her e i t va ni shes. I n t he xy-pl ane, how ever, t he hori zont al di spl acement r epresent s a
uni f or m expansi on i n a l l hor i z ont al di r ect i ons w i t h a z - dependent scal e fact or, w hi ch va ni shes on t op a nd
is maxi mal at t he bottom. Instead of describi ng the deformation of a bl ock of mat erial sitting on a hard and
fl at hori zont al surface, we have obt ai ned a sol ut i on w hi ch seems t o descri be a cyl i ndri cal bl ock s i nki ng i nt o
t he s uppor t i ng s ur face! Adh émar Jean Cl aude Barr é

de S a i nt - Ve nant ( 1797–1886) .
French engi neer. Worked on m e-
chani cs, el ast i ci t y, hydrost at i cs
and hydrodynam i c s. R e deri ved
t he N avi e r–St okes equat i ons
i n 1843, avoi di ng N avi er’s
m ol ecul ar approach, but di d not
ge t c re di t e d f or t hese e quat i ons
w i t h hi s nam e.

T here can be only one explanation, namely that the i nitial assumption about the s hear-free stress t ensor
i s w r ong. W hat seems t o be needed t o fi nd a sol ut i on i ncl udi ng a har d, fl a t s uppor t i ng s ur face i s an ext r a
vertical pressure distribution from the supporting surface which is able to ‘shore up’ the sagging underside
of the shear-free solution and make it flat. We expect that this extra pressure will be accompanied by shear
stresses, enabling the inner part of the block close to x = 0 to carry more than its share of the weight of the
mat eri al above i t , and t he out er part at x = a to carry less. This intuition is in fact verified by numerical
solution (see section 13. 3).

The extra stress distribution can presumably only exert influence on the deformation up to a height of
the same order of magnitude as the horizontal dimensions of the block. For a tall block, the shear-free
solution may thus be expected to be practically valid everywhere except in a region near the bottom of the
same height as the horizontal dimensions of the block. This argument is an application of a rule known as
Saint-Venant’s principle, which states that the effects of a particular application of external forces is only
notable near the regions where these forces are applied. ............................
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Bending a beam by wrenching it
at the ends.
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A bending couple may be cre-
ated by varying normal stresses
applied to a terminal.

12.3 Bending a beam
Sticks, rods, girders, struts, masts, towers, planks, poles and pipes are all examples of a generic object,
which we shall call a beam. Geometrically, a beam consists of a bundle of straight parallel lines or rays,
covering the same cross section in any plane orthogonal to the lines. Physically, the beam is assumed to be
made from homogeneous and isotropic elastic material.

Uniform pure bending
There are many ways to bend a beam. A cantilever is a beam that is fixed at one end and bends like a
horizontal flagpole or a fishing rod. A beam may also be weighed down in the middle like a bridge, but the
cleanest way to bend it is probably to grab it close to the ends and wrench it like a pencil so that it adopts
a uniformly curved shape. Ideally, in pure bending, external stresses should not be applied to the sides
of the beam, but only to the terminal cross sections, and on average these stresses should neither stretch
nor compress the beam, but only provide external couples (moments) at the terminals. It should be noted
that such couples do not require shear stresses, but may be created by normal stresses alone which vary in
strength over the terminal cross sections. If you try, you will realize that it is in fact rather hard to bend a
pencil in this way. Bending a rubber eraser by pressing it between two fingers is somewhat easier, but tends
to add longitudinal compression as well.
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In uniform bending, the bent
beam becomes a part of a circular
ring (without twist).

The bending of the beam is also assumed to be uniform, such that the physical conditions, stresses and
strains, will be the same everywhere along the beam. This is only possible if the originally straight beam
of length L is deformed to become a section of a (huge) circular ring of radius R with every ray becoming
part of a perfect circle. In that case, it is sufficient to consider just a tiny slice of the beam in order to
understand uniform bending for a beam of any length. We shall see below that non-uniform bending can
also be handled by piecing together little slices with varying radius of curvature. Furthermore, by appealing
to Saint-Venant’s principle and linearity, we may even calculate the properties of a beam subject to different
types of terminal loads by judicious superposition of displacement fields.

Centring the beam
In a Cartesian coordinate system, we align the undeformed beam with the z-axis, and put the terminal cross
sections at z = 0 and z = L . The length L of the beam may be chosen as small as we please. The cross
section A in the xy-plane may be of arbitrary shape, but we may, without loss of generality, position the
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coordinate system in the xy-plane such that its origin coincides with the centre of the area, defined by,∫
A

x dxdy =
∫

A
y dxdy = 0. (12.17)

We require in other words that the z-axis, x = y = 0, coincides with the central ray of the unbent beam.
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The unbent beam is aligned with
the z-axis, and its cross section,
A, in the xy-plane is the same for
all z. The z-axis goes through the
centre of the cross section.

Finally, we fix the remaining degree of freedom by requiring the central ray after bending to be part of a
circle in the xz-plane with radius R and its centre on the x-axis at x = R. The radius R is obviously the
length scale for major deformation.
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The length of the arc at x must
satisfy L ′/(R − x) = L/R.

Shear-free solution
What precisely happens in the beam when it is bent depends on the way the actual stresses are distributed
on its terminals, although by Saint-Venant’s principle, the details should only matter near the terminals. In
the simplest case we may view the beam as a loose bundle of thin elastic strings that do not interact with
each other, but are stretched or compressed individually according to their position in the beam without
generating shear stresses. Let us fix the central string so that it does not change its length L , when bent into
a circle. A simple geometric construction then shows that a nearby ray in position x will change its length
to L ′ = L(1 − x/R), and consequently experience a longitudinal strain,

uzz = L ′ − L

L
= − x

R
. (12.18)

For negative x the material of the beam is being stretched, while for positive x it is being compressed.
Under the assumption that the bending is done without shear and that there are no forces acting on the

sides of the beam, it follows as in the preceding section that σx x = σyy = 0. The only non-vanishing stress
is σzz = Euzz , and the non-vanishing strains are as before found from the inverted Hooke’s law (11.16),

ux x = uyy = −νuzz = ν
x

R
, (12.19)

where ν is Poisson’s ratio. This shows that the material is being stretched horizontally for x < 0 and
compressed for x > 0.
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Sketch of the bending of a beam
towards positive x-values. The
arrows indicate the strain uzz .

Using ux x = ∇x ux , etc, a particular solution is found to be

ux = 1

2R

(
z2 + ν

(
x2 − y2

))
,

uy = ν

R
xy,

uz = − 1

R
xz.

(12.20)

The quadratic terms dependent on y and z in ux are as in the preceding section forced upon us by
the requirement of no shear stresses (and strains). In order for displacement gradients to be small, all
dimensions of the beam have to be small compared to R. Note that the beam’s actual dimensions do not
appear in the displacement field, so that this may be considered to be an entirely local solution to the bending
problem.

Total force
The only non-vanishing stress component is as mentioned before

σzz = Euzz = − E

R
x. (12.21)

It is a tension for negative x , and we consequently expect the material of the beam to first break down at the
extreme point of the cross section opposite to the direction of bending, as common experience also tells us.

The total force acting on a cross section vanishes

�z =
∫

A
σzz d Sz = − E

R

∫
A

x dxdy = 0, (12.22)
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because of the conditions (12.17). The total force would of course vanish even if the beam was not centred,
because the stress would then be σzz = −E(x − x0)/R where x0 is the x-coordinate of the centre.

If the terminal load is not a pure moment, the total force on a cross section will not vanish, but the
linearity of the Navier–Cauchy equilibrium equation (12.2) allows us as usual to superpose solutions. A
uniform normal force �z may, for example, be included by adding the stretching displacement field (11.25)
which in the present coordinates becomes,

ux = −ν P

E
x, uy = −ν P

E
y, uz = P

E
z, (12.23)

where P = �z/A. Similarly, uniform shear forces �x and �y may be included by adding the shear
displacement field (11.26), suitably expressed in the present coordinates.
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Sketch of the deformation in the
xy-plane of a beam with rectan-
gular cross section (exaggerated).
This peculiar deformation may
easily be observed by bending a
rubber eraser.

Total moment
The non-vanishing moments of the longitudinal stress in a cross section are

�x =
∫

A
yσzz d Sz = − E

R

∫
A

xy dxdy, (12.24)

�y = −
∫

A
xσzz d Sz = E

R

∫
A

x2 dxdy. (12.25)

It is often the case that the undeformed beam is mirror symmetric under reflection in the xz-plane or in the
yz-plane, so that

∫
A xy dxdy = 0, and this implies that �x = 0. The important moment is the one in the

bending plane, i.e.�y .
The expression for �y is the same as the Bernoulli–Euler law,

1

R
= �

E I
, (12.26)

where

I =
∫

A
x2 d A (12.27)

is the ‘moment of inertia’ of the beam cross section around the direction of � (analogous to the area
moment of the ship’s waterline in equation (5.26) on page 67). Note that constant shear or normal stresses, if
present, do not contribute to the cross-section moment, and in many engineering applications the Bernoulli–
Euler law combined with linearity and Saint-Venant’s principle is enough to give a reasonable idea of how
much a beam is deformed by external loads.

Rectangular beam: For a rectangular beam with A = 2a × 2b, we get

I =
∫ b

−b
dy

∫ a

−a
x2dx = 4

3
a3b. (12.28)

It grows more rapidly with the width of the beam in the direction of bending (x) than orthogonally to it (y).
This agrees with the common experience that to obtain a given bending radius R it is much harder to bend
a thick beam than a thin. In lorries and train wagons flat steel springs are often used to soften the impact
forces due to irregularities in the road or rails.

Elliptic beam: For an elliptical beam with axes 2a and 2b along x and y, the moment of inertia becomes,

I =
∫ b

−b
dy

∫ a
√

1−y2/b2

−a
√

1−y2/b2
x2 dx = 4

3
a3b

∫ 1

0
(1 − t2)

3/2
dt = π

4
ab3, (12.29)

which is only about half of the rectangular result. An elliptical spring would thus bend about twice the
amount of a flat spring.
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Threshold for buckling
A walking stick must be chosen with care. Too sturdy, and it will be heavy and unyielding; too slender, and it
may buckle or even collapse under the weight you put on it. More generally, all kinds of columns and struts
are used to support buildings and other structures, and buckling can lead to dangerous collapse. Luckily,
however, buckling does not happen until the forces on the beam terminals exceed a certain threshold, first
determined by Euler.

Let an undeformed slender beam of length L be placed ‘vertically’ along the z-axis. Applying a constant
terminal force � along the negative z-direction, it follows from geometry that the moment exerted by the
upper part of the deformed beam on a cross section is � = x� , where x is the ‘horizontal’ displacement
of the cross section at ‘height’ z. There will also be non-vanishing normal and shear forces at play in the
cross section, but as discussed above they do not contribute to the moment. Evidently, the moment is not
constant throughout the deformed beam, so this cannot be a uniform pure bending of the beam. We may
nevertheless exploit the Bernouilli–Euler law (12.26) and relate the local moment to the local curvature,
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A strut with a longitudinal ter-
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force � exceeds a certain thresh-
old. There is of course an
equal and opposite force from the
‘ground’ at z = 0. The local mo-
ment exerted in a strut cross sec-
tion is � = x� .

1

R
= �

E I
x. (12.30)

This result is valid for any deformation of the terminally loaded beam and shows that the curvature is largest
in the middle of the beam and smallest at the ends where x vanishes.

To determine the threshold for buckling, we assume that the beam is only slightly displaced, such that
the curvature is given by the double derivative, 1/R ≈ −d2x/dz2. The above expression then becomes an
equation for the shape,

d2x

dz2
= −k2x, (12.31)

where k = √
�/E I . This is nothing but the standard harmonic equation with ‘wavenumber’ k, and its

general solution is x = A sin kz + B cos kz where A and B are constants. Applying the boundary conditions
that x = 0 for z = 0 and z = L , the solution becomes,

x = A sin
nπz

L
, (12.32)

where n is an arbitrary integer. This shows that k = nπ/L and since � = k2E I we arrive at Euler’s result
for the force,

� = n2π2 E I

L2
. (12.33)

This is quite surprising: the slightly displaced shape of a terminally loaded beam is only mechanically stable
for certain values of the applied force, corresponding to integer values of n.

Actually, this conclusion cannot be right because everyday experience tells us that we can load a
walking stick with a small terminal force and still keep it in stable equilibrium. This is in fact what we
do when we lean on it. What must happen is that a small force cannot bend the beam but only compress
it longitudinally, an effect we have not taken into account in the above calculation. As the applied force
increases, it will eventually reach the threshold value corresponding to n = 1 above,

�E = π2 E I

L2
, (12.34)

and at this point the longitudinal compression mode becomes unstable and the first buckling solution takes
over at the slightest provocation. To prove that this is indeed what takes place requires a stability analysis,
which we shall not go into here. In practice only the lowest mode is seen, unless a strong force is rapidly
applied, in which case the beam may crumble and collapse completely. That is why you wouldn’t choose a
straw as your walking stick!

Example 12.3.1 (Wooden stick): A wooden walking stick has length L = 1 m and circular cross
section of radius a = 1 cm. Taking Young’s modulus E = 1010 Pa and using (12.29), the buckling
threshold becomes �E = 775 N, corresponding to the weight of 79 kg. If you weigh more, it would be
prudent to choose a slightly thicker stick. Since the threshold grows as the fourth power of the radius,
increasing the radius by just one millimetre raises the threshold mass to 116 kg which is sufficient for
most people.
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∗ Sha pe of a relaxed s tringed bow
I f t he a ppl i e d f or ce cont i nues t o i ncr ease beyond t he t hr eshol d val ue, t he di spl acement gr ows r a pi dl y a nd
t he approxi mat i on used i n E ul er’s cal cul at i on ceases t o be val i d. A rel axed s t r i nged bow may, for exampl e,
be view ed as a beam that has been brought beyond the buck ling t hreshold and is kept in equilibrium by the
t ensi on i n t he bowst r i ng. In t hi s case, t he overal l di spl acement of t he beam i s not smal l , even i f t he l ocal
strains are small everywhere.

To determine the equilibrium shape we may directly use the description of planar curve geometry
i nt r oduced on page 102,

dx

ds
= cos θ,  

dz

ds
= sin θ,  

dθ

ds
= 1

R
. ( 12. 35)

Differentiating the last equation once more and using (12. 30), we obtain the equilibrium equation,
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change in the elevation angle θ
det e r m i ned by t he l ocal r a di us
of curvat ure. Here t he r adi us of
cur vat ur e i s posi t ive .

d 2θ

ds2 
= k 2 cos θ ( 12. 36)

where as before k = √
�/ E I . T hi s i s t he equat i on f or a m at hemat i cal pendul um i n a s l i ght di sgui se.

Integrating t he pendulum equation w ith the boundary condition t hat dθ/ds  = 1/ R = 0 for  x = 0, w e
find (

dθ

ds

)2
= 2k2(sin θ − sinα), (12.37)

where α is the elevation angle at the ends of the beam. The inverse derivative ds/dθ may now be integrated
to yield the length L of the beam,

L = 1

k

∫ π−α
α

dθ√
2(sin θ − sinα)

. (12.38)

This is an elliptic integral which is easy to evaluate numerically. It provides a relation between the ratio
�/FE = ( Lk/π) 2 and α ( s ee fi gur e 12. 1) .

Plots of three different relaxed
bow shapes. The numbers
indicate the bow elevation angle
α in degrees.

Similarly, we may calculate dx/dθ and dz/dθ and integrate to find the coordinates of the displaced
beam,

x = 1

k

√
2(sin θ − sinα), z = 1

k

∫ θ

α

sin θ ′√
2(sin θ ′ − sinα)

dθ ′. (12.39)

Together these expressions define the shape of the beam parametrized by θ . In the margin three different
bow shapes are plotted.

Example 12.3.2 (Steel bow): A longbow is constructed from a rectangular steel beam of length
L = 200 cm with dimensions 2a = 10 mm and 2b = 20 mm. The bow is stringed with an opening
angle of 30 ◦ corresponding to α = 60 ◦. The maximal string distance from the bow becomes d ≈ 32 cm
and the stringed height h ≈ 186 cm. The moment of inertia becomes I ≈ 1.67 × 10−9 m4, and taking
E = 2×1011 Pa the Euler threshold becomes �E ≈ 822 N. Since�/FE ≈ 1.035 we find � = 851 N,
corresponding to a weight of 87 kg. It would take ‘Little John’s’ strength to fit the string to this bow
and shoot an arrow. If the thickness were reduced by 20%, it would only take half the strength to string
it.

12.4 Twisting a shaft
The drive shaft in older cars connects the gear box to the differential and transmits engine power to the
rear wheels. In characterizing engine performance, maximum torque is often quoted, because it creates
the largest shear force between wheels and road and therefore maximal acceleration, barring wheel-spin.
Although the shaft is made from steel, it will nevertheless undergo a tiny deformation, a torsion or twist.
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Figure 12.1. Plots of the force ratio �/�E , the stringed height h/L and the maximal string displacement
d/L , as functions of the bow elevation angle α (in degrees).

Pure torsion
The shaft is assumed to be a circular beam with radius a and axis coinciding with the z-axis. The
deformation is said to be a pure torsion if the shaft’s material is rotated by a constant amount τ per unit
of length, such that a given cross section at the position z is rotated by an angle τ z relative to the cross
section at z = 0. The constant τ which measures the rotation angle per unit of length is sometimes called
the torsion angle.
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The displacement field for a
rotation through a tiny angle
τ z (exaggerated here) is purely
tangential and grows linearly
with the radial distance.

The uniform nature of pure torsion allows us to consider just a small slice of the shaft of length L
which is only twisted through a tiny angle, τ L � 1. Since the physical conditions are the same in all such
slices, we can later put them together to make a shaft of any length. To lowest order in the angle τ z, the
displacement field in the slice becomes

u = τ zez × x = τ z(−y, x, 0). (12.40)

Not surprisingly, it is purely tangential and is always much smaller than the radius, a, of the shaft because
τ L � 1.

Strain and stress
From the displacement field we calculate displacement gradient tensor

{∇ j ui } =
 0 −τ z −τ y
τ z 0 τ x
0 0 0

 . (12.41)

For this matrix to be small, we must also require τa � 1, or in other words that the twist must be small
over a length of the shaft comparable to its radius.

The only non-vanishing strains are,

uxz = − 1
2τ y, uyz = 1

2 τ x. (12.42)

The corresponding stresses are obtained from Hooke’s law (11.8),

σxz = σzx = −µτ y, σyz = σzy = µτ x. (12.43)

Inserting these stresses into the equilibrium equations (12.1c), it is seen that it is trivially fulfilled.
At the cylindrical surface of the shaft, the normal is (x, y, 0)/a, and the stress vector vanishes, i.e.
σzx x/a + σzy y/a = 0, as it should when there are no external forces acting there.

This solution was first obtained by Coulomb in 1787, whereas the corresponding solution for rods
with non-circular cross section (see [37, p. 59] or [65, p. 109]) was obtained by Saint-Venant in 1855.

Copyright © 2005 IOP Publishing Ltd.



12.5. TUBE UNDER PRESSURE 157

In order to realize a pure torsion, the correct stress distribution (12.43) must be applied to the ends of
the shaft. Applying a different stress distribution by, for example, grabbing one end of the shaft with a
monkey-wrench, leads to a different solution near the end, but the pure torsion solution should according to
Saint-Venant’s principle still be valid far away from the ends.

Torque
In any cross section we may calculate the total moment of force around the shaft axis, in this context called
the torque. On a surface element d S, the moment is d� = x × d� = x ×σσσ · d S. Since the cross section
lies in the xy-plane, we have d S = ezdxdy, and the z-component of the moment becomes,

�z =
∫

A
(xσyz − yσxz) dxdy =

∫
A
µτ(x2 + y2)dxdy

=
∫ a

0
µτr2 · 2πrdr = π

2
µτa4. (12.44)

The quantity

C = Mz

τ
= π

2
µ a4, (12.45)

is called the torsional rigidity of the shaft. The torsional rigidity depends only the radius of the shaft and
the shear modulus but not on the applied torque. Knowing the torsional rigidity and the torque �, one may
calculate the torsion angle τ = �/C , and conversely.

Transmitted power
If the shaft rotates with constant angular velocity �, the material at the point (x, y, z) will have velocity
v(x, y) = �ez × x = �(−y, x, 0). The shear stresses acting on an element of the cross section,
d S = ezdxdy, will transmit a power (i.e. work per unit of time) of d P = v · d� = v · σσσ · d S. Integrating
over the cross section the total power becomes,

P =
∫

A
v · σσσ · d S =

∫
A
�(xσyz − yσxz)dxdy = ��z . (12.46)

As the derivation shows, this relation P = � ·� is generally valid.

Example 12.4.1 (Car engine): The typical torque delivered by a family car engine can be of the order
of 100 Nm. If the shaft rotates with 3000 rpm, corresponding to an angular velocity of � ≈ 314 s−1,
the transmitted power is about 31.4 kW, or 42 horsepower. For a drive shaft made of steel with radius
a = 2 cm, the torsional rigidity is C ≈ 2 × 104 Nm2. In direct drive without gearing, the torsion angle
becomes τ ≈ 0.005 m−1 = 0.3 ◦ m−1. For a car with rear-wheel drive, the length of the drive shaft
may be about 2 m, and the total twist amounts to about 0.6 ◦. The maximal shear stress in the material
is µτa ≈ 8 × 106 Pa = 80 bar at the rim of the shaft.

12.5 Tube under pressure
Elastic tubes carrying fluids under pressure are found everywhere, in living organisms and in machines,
not forgetting the short moments of intense pressure in the barrel of a gun or canon. How much does a
tube expand because of the pressure, and how is the deformation distributed? What are the stresses in the
material and where will it tend to break down?

Uniform radial displacement
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Tube cross section.The ideal tube is a beam in the shape of a circular cylinder with inner radius a, outer radius b and length L ,
made from homogeneous and isotropic elastic material. When subjected to a uniform internal pressure, the
tube is expected to expand radially and perhaps also contract longitudinally. The latter may be prevented
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by cl ampi ng t he ends of t he t ube, s o t o s i m pl i f y m at t ers we shal l assume t hat t he di s pl acement fi el d i s
uni formly radi al, of t he form1

u = ur (r) er , ( 12. 47)

where ur (r) i s onl y a f unct i on of t he r a di al di st ance r =
√

x 2 + y 2 , and  er is the radial unit vector at the
poi nt ( x, y, z) ,

er = ( x, y, 0)

r
. ( 12. 48)

I t i s t e mpt i ng her e t o i nt r oduce t r ue cyl i ndr i cal coor di nat e s, (r, φ,  z) , i nst ead of t he C ar t esi an coor di nat es,
( x, y, z) , but al t hough mor e syst emat i c i t woul d i n fact make t he f ol l ow i ng anal ysi s har der. T he onl y ot her
el ement w e need her e i s t he a ngul ar uni t vect or
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Cylindrical coordinates and basis
vectors.

eφ = (−y, x, 0)

r
, (12.49)

which is orthogonal to both er and ez = (0, 0, 1). The three unit vectors form together a local orthogonal
basi s f or cyl i ndr i cal geomet r y ( s ee appendi x B f or det ai l s ) .

Displacement gradients
In Cartesian coordinates, the displacement field takes the form

ux = x

r
ur (r) (12.50)

uy = y

r
ur (r). (12.51)

It is then straightforward to calculate the non-vanishing displacement gradients

∇x ux = x2

r

d

dr

(ur

r

)
+ ur

r
= x2

r2

dur

dr
+ y2

r2

ur

r
, (12.52a)

∇yuy = y2

r

d

dr

(ur

r

)
+ ur

r
= y2

r2

dur

dr
+ x2

r2

ur

r
, (12.52b)

∇x uy = ∇yux = xy

r

d

dr

(ur

r

)
= xy

r2
dur

dr
− xy

r2
ur

r
, (12.52c)

where we have also used ∂r/∂x = x/r , etc. Adding the two first equations we obtain the divergence of the
displacement field,

∇ · u = dur

dr
+ ur

r
= 1

r

d(rur )

dr
, (12.53)

where the last expression has been rewritten for later convenience.

Equilibrium equation
Since ∇r = er , it follows from the radial assumption (12.47) that the displacement field may be written as
the gradient of another field

u = ∇ψ(r), ψ(r) =
∫

ur (r) dr. (12.54)

Now the gradient of its divergence becomes,

∇i ∇ · u = ∇i ∇2ψ = ∇2∇iψ = ∇2ui , (12.55)

1The index on ur is redundant and could be dropped, but we keep it systematically so as to remind ourselves that it is
the radial component of the displacement field.
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and the Navier–Cauchy equation (12.2) takes the much simpler form

f + (2µ+ λ)∇∇ · u = 0. (12.56)

Using the expression (12.53) for the divergence, the Navier–Cauchy equation becomes,

f + (2µ+ λ)er
d

dr

(
1

r

d(rur )

dr

)
= 0. (12.57)

This shows that the body force density, if present, must also be radial,

f = fr (r)er , (12.58)

and we finally arrive at the ordinary second-order differential equation in r ,

fr + (λ+ 2µ)
d

dr

(
1

r

d(rur )

dr

)
= 0. (12.59)

Given a radial body force, this equation may be integrated to yield the radial displacement.

General solution without body forces
In the simplest case, fr = 0, we find immediately

1

r

d(rur )

dr
= 2A, (12.60)

where A is a constant. Integrating once more we obtain

ur (r) = Ar + B

r
, (12.61)

where B is another constant. These constants will be determined by the boundary conditions imposed on
the tube.

Strain and stress
Expressed in the tensor product notation (2.10), the displacement gradients (12.52) may be compactly
written

∇u = dur

dr
er er + ur

r
eφeφ.

Since the right-hand side is a symmetric matrix, it is identical to Cauchy’s strain tensor, which accordingly
has only two non-vanishing projections on the basis vectors,

urr = dur

dr
= A − B

r2
, (12.62)

uφφ = ur

r
= A + B

r2
. (12.63)

Finally, the non-vanishing stress tensor components are found from Hooke’s law (11.8) by projecting on
the basis vectors

σrr = 2µurr + λ(urr + uφφ) = 2A(λ+ µ)− 2µB

r2
, (12.64a)

σφφ = 2µuφφ + λ(urr + uφφ) = 2A(λ+ µ)+ 2µB

r2
, (12.64b)

σzz = λ(urr + uφφ) = 2Aλ. (12.64c)

Here we have used that the trace of the strain tensor is independent of the basis, so that
∑

k ukk =
ux x + uyy + uzz = urr + uφφ + uzz . One should note that a longitudinal stress, σzz , appears as a
consequence of the fixed clamps on the ends of the cylinder.
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Solution for the pressurized clamped tube
The boundary conditions are σrr = −P at the inside surface r = a and σrr = 0 at the outside surface
r = b. The minus sign may be a bit surprising, but remember that the normal to the inside surface of
the tube is in the direction of −er , so that the stress vector σrr (−er ) = Per points in the positive radial
direction, as it should. Solving the boundary conditions for A and B,

2A(λ+ µ)− 2µB

a2
= −P (12.65)

2A(λ+ µ)− 2µB

b2
= 0 (12.66)

we find the integration constants,

A = 1

2(λ+ µ)
a2

b2 − a2
P = (1 + ν)(1 − 2ν)

a2

b2 − a2
P

E
, (12.67a)

B = 1

2µ

a2b2

b2 − a2
P = (1 + ν) a2b2

b2 − a2
P

E
, (12.67b)

where E is Young’s modulus and ν Poisson’s ratio.

Displacement field: The displacement field becomes

ur (r) = (1 + ν) a2

b2 − a2

(
(1 − 2ν)r + b2

r

)
P

E
. (12.68)

Since ν ≤ 1/2, it is always positive and monotonically decreasing. It reaches its maximum at the inner
surface, r = a, confirming the intuition that the pressure in the tube should push the innermost material
farthest away from its original position.

Strain tensor: The non-vanishing strain tensor components become

urr = (1 + ν) a2

b2 − a2

(
1 − 2ν − b2

r2

)
P

E
, (12.69a)

uφφ = (1 + ν) a2

b2 − a2

(
1 − 2ν + b2

r2

)
P

E
. (12.69b)

For normal materials with 0 < ν ≤ 1/2, the radial strain urr is negative, corresponding to a compression

�

�

strain
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uφφ

urr

a b

Sketch of strain components in
the tube.

of the material, whereas the tangential strain uφφ is always positive, corresponding to an extension. There
is no longitudinal strain because of the clamping of the ends of the tube.

The scale of the strain is again set by the ratio P/E . For normal materials under normal pressures,
for example an iron pipe with E ≈ 1 Mbar subject to a water pressure of a few bars, the strain is only
of the order of parts per million, whereas the strains in the walls of your garden hose or the arteries
in your body are much larger. When the walls become thin, i.e. for d = b − a � a, the strains grow
stronger because of the denominator b2 − a2 ≈ 2da, and actually diverge towards infinity in the

�

�

stress

r

...........................................................................................................................................................................................

..............
..............

...............
................

................
..................

..................
.....................

.....................
.........................

.........

σφφ

σrr

a b

Sketch of stress components in
the tube.

limit. This is in complete agreement with agreement with our understanding that the walls of a tube
need to be of a certain thickness to withstand the internal pressure.

Stress tensor: The non-vanishing stress tensor components become

σrr = − a2

b2 − a2

(
b2

r2
− 1

)
P, (12.70a)

σφφ = a2

b2 − a2

(
b2

r2
+ 1

)
P, (12.70b)

σzz = 2ν
a2

b2 − a2
P. (12.70c)

Note that the transversal stresses, σrr and σφφ , are independent of the material properties of the tube, E
and ν, and that the longitudinal stress, σzz , only depends on Poisson’s ratio, ν.
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Pressure: The radial pressure, pr = −σrr can never become larger than P, because we may write

pr

P
= b2 − r2

b2 − a2

a2

r2
, (12.71)

which is the product of two factors, both smaller than unity for a < r < b. The tangential pressure
pφ = −σφφ and the longitudinal pressure pz = −σzz are both negative (tensions), and can become large
for thin-walled tubes. The average pressure

p = 1

3
(pr + pφ + pz) = −2

3
(1 + ν) a2

b2 − a2
P (12.72)

is also negative and like the longitudinal pressure is constant throughout the material. Note that the average
pressure is not continuous with the pressure outside the tube. This confirms the suspicion voiced on page
115 that the pressure may behave differently in a solid with shear stresses than the pressure in a fluid at rest,
which has to be continuous across boundaries in the absence of surface tension.

Blowup: A tube under pressure develops cracks and eventually blows up if the material is extended
beyond a certain limit. Compression does not matter, except for enormous pressures. The point where the
tube breaks is primarily determined by the point of maximal local tension and extension. As we have seen,
this occurs at the inside of the tube for r = a in the tangential direction. A crack will develop where the
material has a small weakness, and the tube then blows up from the inside!

Unclamped tube
The constancy of the longitudinal tension (12.70c) permits us to solve the case of an unclamped tube by
superposing the above solution with the displacement field for uniform stretching (11.25). In the cylindrical
basis the field of uniform stretching becomes (after interchanging x and z)

ur = −νr Q

E
, uz = z

Q

E
, (12.73)

where Q is the tension applied to the ends. Choosing Q equal to the longitudinal tension (12.70c) in the
clamped tube,

Q = 2ν
a2

b2 − a2
P, (12.74)

and subtracting the stretching field from the clamped tube field (12.68), we find for the unclamped tube

ur = a2

b2 − a2

(
(1 − ν)r + (1 + ν)b2

r

)
P

E
, (12.75a)

uz = −2ν
a2

b2 − a2
z

P

E
. (12.75b)

The strains are likewise obtained from the clamped strains (12.69a) by subtracting the strains for uniform
stretching, and we get

urr = a2

b2 − a2

(
1 − ν − (1 + ν)b2

r2

)
P

E
, (12.76a)

uφφ = a2

b2 − a2

(
1 − ν + (1 + ν)b2

r2

)
P

E
, (12.76b)

uzz = −2ν
a2

b2 − a2

P

E
. (12.76c)

The superposition principle guarantees that the radial and tangential stresses are the same as before and
given by (12.70), while the longitudinal stress now vanishes, σzz = 0.
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Thin wall approximation
Most tubes have thin walls relative to their radius. Let us introduce the wall thickness, d = b − a, and the
radial distance, s = r − a, from the inner wall. In the thin-wall approximation, these quantities are small
compared to a, and we obtain the following expressions to leading order for the unclamped tube.

The radial displacement field is constant in the material whereas the longitudinal one is linear in z,

ur ≈ a
a

d

P

E
, uz ≈ −zν

a

d

P

E
. (12.77)

The corresponding strains become

urr ≈ −ν a

d

P

E
, uφφ ≈ a

d

P

E
, uzz ≈ −2ν

a

d

P

E
. (12.78a)

The strains all diverge for d → 0, and the condition for small strains is now P/E � d/a. The ratio a/d
amplifies the strains beyond naive estimates. Finally, we get the non-vanishing stresses

σrr ≈ −
(

1 − s

d

)
P, (12.79a)

σφφ ≈ a

d
P. (12.79b)

The radial pressure pr = −σrr varies between 0 and P as it should when s ranges from 0 to d . It is always
positive and of order P, whereas the tangential tension pφ = −σφφ diverges for d → 0. Blowups always
happen because the tangential tension becomes excessive.

Problems
12.1 Show that Navier’s equation of equilibrium may be written as

∇2u + 1

1 − 2ν
∇ ∇ · u = − 1

µ
f , (12.80)

where ν is Poisson’s ratio.

12.2 A body made from isotropic elastic material is subjected to a body force in the z-direction, fz = kxy.
Show that the displacement field

ux = Ax2 yz, uy = Bxy2z, uz = Cxyz2, (12.81)

satisfies the equations of mechanical equilibrium for suitable values of A, B and C .

12.3 A certain gun has a steel barrel of length of L = 1 m, a bore diameter of 2a = 1 cm. The charge of
gunpowder has length x0 = 1 cm and density ρ0 = 1 g cm−3. The bullet in front of the charge has mass
m = 5 g. The expansion of the ideal gases left by the explosion of the charge at t = 0 is assumed to be
isentropic with index γ = 7/5. (a) Determine the velocity ẋ as a function of x for a bullet starting at rest
from x = x0. (b) Calculate the pressure just after the explosion and when the bullet leaves the muzzle with
a velocity of U = 800 m s−1. (c) Calculate the initial and final temperatures when the average molar mass
of the gases is Mmol = 30 g mol−1. (d) Calculate the maximal strains in the steel on the inside of the barrel
when it has thickness d = b − a = 5 mm and compare with the tensile strength of the steel. Will the barrel
blow up?

12.4 Show that the most general solution to the uniform shear-free bending of a beam is

ux = ax − φz y + φyz − ανx + 1
2βx

(
z2 − ν(x2 − y2)

)
− βyνxy, (12.82a)

uy = ay + φz x − φx z − ανy + 1
2βy

(
z2 − ν(y2 − x2)

)
− βxνxy, (12.82b)

uz = az − φy x + φx y + αz − βx xz − βy yz, (12.82c)

and interpret the coefficients.
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12.5 Calculate the displacement, strain and stress for an evacuated tube with fixed ends subject to an
external pressure P.

12.6 A massive cylindrical body with radius a and constant density ρ0 rotates around its axis with
constant angular frequency �. (a) Find the centrifugal force density in cylindrical coordinates rotating
with the cylinder. (b) Calculate the displacement for the case where the ends of the cylinder are clamped
to prevent change in length and the sides of the cylinder are free. (c) Show that the tangential strain always
corresponds to an expansion, whereas the radial strain corresponds to an expansion close to the centre and a
compression close to the rim. Find the point, where the radial strain vanishes. (d) Where will the breakdown
happen?

12.7 Show that a shift in the x-coordinate, x → x −α, in the shear-free bending field (12.20) corresponds
to adding in a uniform stretching deformation (plus a simple translation).
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Historically, almost all of the insights into elasticity were obtained by means of analytic calculations,
carried out by some of the best scientists of the time using the most advanced methods available to them,
sometimes even inventing new mathematical concepts and methods along the way. Textbooks on the theory
of elasticity are often hard to read because of their demands on the reader for command of mathematics
[44, 27, 50, 17, 66].

In the last half of the twentieth century, the development of the digital computer has changed the
character of this field completely. Faced with a problem in elastostatics, modern engineers quickly turn to
numerical computation. The demand for prompt solutions to design problems has over the years evolved
these numerical methods into a fine art, and numerous commercial and public domain programs are now
available to assist engineers in understanding the elastic properties of their constructions.

In this chapter we shall illustrate how it is possible to solve a concrete problem numerically, providing
sufficient detail that a computer program can be implemented. It is not the intention here to expose the
wealth of tricks of the trade, but just present the basic reasoning behind the numerical approach and the
various steps that must be carried out in order to make a successful numerical simulation. First, one must
decide on the field equations and boundary conditions that should be implemented, and what simplifications
can be made to these from the outset. Second, the infinity of points in continuous space must be replaced
by a finite set, often a regular grid or lattice, and the fundamental equations must be approximated on this
set. Third, a method must be adopted for an iterative approach towards the desired solution, and finally
one needs to choose convergence criteria that enable one to monitor the progress of the computation and
calculate error estimates that give confidence in the solution.

13.1 Relaxing towards equilibrium
As we do not, from the outset, know the solution to the problem we wish to solve by numerical means, we
must begin by making an educated guess about the initial displacement field. This guess should preferably
satisfy the boundary conditions, but unless we are incredibly lucky it will fail to satisfy the mechanical
equilibrium equation, resulting in a non-vanishing effective body force f ∗

i = fi + ∑
j ∇ jσi j . The idea is

now to create an iterative procedure which through a sequence of tiny displacements δu will proceed from
an arbitrary initial state towards the desired equilibrium state, satisfying f ∗ = 0 with the right boundary
conditions.
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Work and relaxation
It was shown in section 11.4 that the (potential) energy of a displaced elastic body in an external
gravitational field f = ρg is the sum of gravitational and elastic contributions,

� = −
∫

V
f · u dV + 1

2

∫
V

∑
i j

σi j ui j dV . (13.1)

It was also shown that the change in energy under an arbitrary variation in displacement is given by,

δ� = −
∫

V
δu · f ∗ dV +

∮
S
δu · σσσ · d S. (13.2)

Here the first term represents the work done against the non-equilibrium effective body forces under the
change in displacement, and the second term represents the work of the external stresses acting on the
surface of the body. The second term evidently vanishes if every point of the surface of the body is either
held fixed, δu = 0, or left free to vary with no stresses, σσσ · n = 0. We shall assume this to be the case in the
following, such that the change in energy under any variation respecting these boundary conditions is given
by the first term, which vanishes in equilibrium.

The iterative procedure now consists of designing each infinitesimal displacement to drain energy away
from the body, such that it continually moves towards states of lower energy while respecting the boundary
conditions. Since we perform negative work against the non-equilibrium forces, i.e. they perform work on
us, such a procedure is said to relax the body. When δ� < 0 in each iteration the energy of the body will
decrease until it reaches a minimum, which in section 11.4 for linear elastic materials was shown to be
unique. Having arrived at the minimum, the internal energy must be stationary δ� = 0 for all variations
in displacement δu(x), and that is only possible if f ∗(x) = 0 for all x. Thus, in the end the relaxation
procedure will arrive at an equilibrium state.

Gradient descent
A common relaxation procedure is to select the change in displacement to always be proportional to the
effective force,

δu = ε f ∗, (13.3)

where ε is a positive quantity, called the step-size. Relaxing the displacement in this way by ‘running along’
with the effective force guarantees that the density of work, − f ∗ · δu = −ε( f ∗)2, is negative everywhere
and thus drains energy away from every material particle in the body that is not already in equilibrium.
Since the displacement ‘walks downhill’ against the gradient of the total energy (in the space of all allowed
displacement fields), it is naturally called gradient descent.

Gradient descent is not a foolproof method, even when the energy (as in linear elastic media) is a
quadratic function of the displacement field with a unique minimum. In particular the step-size ε
must be chosen judiciously. Too small, and the procedure may never seem to converge; too large,
it may overshoot the minimum and go into oscillations or even diverge. Many fine tricks have been
invented to get around these problems and speed up convergence [59, 10], for example conjugate
gradient descent in which the optimal step-size is calculated in advance by searching for a minimum
along the chosen direction of descent. Here, however, we shall just use the straightforward technique
of the dedicated downhill skier, always looking for the steepest gradient.���
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A two-dimensional (10 × 10)
square grid. There are 36
points at the boundary and 64
inside. Small grids have a lot of
boundary.

13.2 Discretization of space
The infinity of points in space cannot be represented in a finite computer. In numerical simulations of
the partial differential equations of continuum physics, smooth space is nearly always replaced by a finite
collection of points, a grid or lattice, on which the various fields ‘live’. In Cartesian coordinates the most
convenient grid for a rectangular volume a×b×c is a rectangular lattice with (Nx +1)×(Ny +1)×(Nz +1)
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points that are equally spaced at coordinate intervals �x = a/Nx , �y = b/Ny , and �z = c/Nz . The grid
coordinates are numbered by nx = 0, 1, . . . , Nx , ny = 0, 1, . . . , Ny and nz = 0, 1, . . . , Nz , and the
various fields can only exist at the positions (x, y, z) = (nx�x, ny�y, nz�z).

There are many other ways of discretizing space besides using rectangular lattices, for example
triangular, hexagonal or even random lattices. The choice of grid depends on the problem itself, as
well as on the field equations and the boundary conditions. The coordinates in which the system is
most conveniently described may not be Cartesian but curvilinear, and that leads to quite a different
discretization. The surface of the body may or may not fit well with the chosen grid, but that problem
may be alleviated by making the grid very dense at the cost of computer time and memory. When
boundaries are irregular, as they usually are for real bodies, an adaptive grid that can fit itself to the
shape of the body may be the best choice. Such a grid may also adapt to put more points where they
are needed in regions of rapid variation of the displacement field.

Finite difference operators with first-order errors
In a discrete space, coordinate derivatives of fields such as ∇x f (x, y, z) must be approximated by finite
differences between the field values at the allowed points. Using only the nearest neighbours on the grid
there are two basic ways of forming such differences at a given internal point of the lattice, namely forwards
and backwards

∇̂+
x f (x) = f (x +�x) − f (x)

�x
, (13.4a)

∇̂−
x f (x) = f (x)− f (x −�x)

�x
. (13.4b)

Here and in the following we suppress for clarity the ‘sleeping’ coordinates y and z and furthermore assume

� x� � �
x −�x x x +�x

...............................................................................................................................................................................................................................................
..........................

...................
...........

Forward and backward finite
differences can be very different,
and may as here even have
opposite signs.

that finite differences in these coordinates are defined analogously.
According to the rules of differential calculus, both of these expressions will in the limit of �x → 0

converge towards ∇x f (x). Inserting the Taylor expansion

f (x +�x) = f (x) +�x∇x f (x)+ 1

2
�x2∇2

x f (x)

+ 1

6
�x3∇3

x f (x) + 1

24
�x4∇4

x f (x)+ · · · ,

we find indeed

∇̂±
x f (x) = ∇x f (x)± 1

2
�x∇2

x f (x)+ · · · ,

with an error that is of first order in the interval �x .

� x� � �
x −�x x x +�x

................................................................................................................................................................................................................................................
.........................

...................
...........

...........
...........
............
.............
..............

...............
.................

...................
.........................

.........................................
........................................................................................................................................................................................................................................................................................................

The central difference is insen-
sitive to the value at the cen-
tre. The two curves shown here
have the same symmetric differ-
ence but behave quite differently.

Finite difference operators with second-order errors
It is clear from the above expression that the first-order error may be suppressed by forming the average of
right- and left-difference operators, called the central difference,

∇̂x f (x) = f (x +�x)− f (x −�x)

2�x
. (13.5)

Expanding the function values to third order we obtain

∇̂x f (x) = ∇x f (x)+ 1

6
�x2∇3

x f (x)+ · · · ,

with errors of second order only. The central difference does not involve the field value at the central point
x , so one should be wary of possible ‘leapfrog’ or ‘flipflop’ numeric instabilities in which half the points of
the lattice behave differently than the other half.

On a boundary, the central difference cannot be calculated, and one is forced to use one-sided
differences. If the grid is rectangular with a rectangular border, one must use the right-hand difference
on the boundary to the left and the left-hand difference on the boundary to the right. In order to consistently
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avo i d� (�  x) er r or s one may i nst ead of ( 13. 4) use t he one- s i ded t wo- st ep di ff er ence oper a t or s ( s ee pr obl em
13. 1) ,

∇̂+
x f ( x) = − f ( x + 2� x) + 4 f ( x +� x) − 3 f ( x)

2� x 
, ( 13. 6a)

∇̂−
x f ( x) = f ( x − 2� x) − 4 f ( x −� x)+ 3 f ( x)

2� x 
. ( 13. 6b)

T he coeffi ci ent s are chosen here such t hat t he l eadi ng order correct i ons vani sh. E xpandi ng t o t hi r d order
we fi nd

∇̂±
x f ( x) = ∇x f ( x) ∓ 

1

3
� x 2∇ 3x f ( x) + · · · ,

w hi c h s how s t hat bot h one- s i ded di ff er ences r e pr esent t he der iva t ive at t he poi nt x with leading errors of

�
(
� x 2

)
onl y.

O t her s chemes i nvol vi ng m or e di s t a nt nei ghbour s t o s uppr ess eve n hi gher or der er r or s ar e of c our se
also possible.

Numeri c i ntegrati on
In simulations it will al so be necessary to cal culate various line, surface and vol ume i nt egrals over
di scretized space. S i nce t he fi elds are onl y known at the poi nt s of t he di screte lattice, the i nt egrals must be
repl aced by suitabl y w eight ed sums over t he lattice poi nt s.

� x� � � � �
0 a

︷︸︸︷� x...........
............
.............

.............
..............

................
..................

....................
.........................

... ... ... ..................... . .. ........
.... . .. ...................................... ...................................... ................................ ................................................................................

The interval 0 ≤ x ≤ a has f our
subi nt er val s of si ze� x number e d
n = 0, 1, 2, 3.

L et us, f or exampl e, consi der a one- di m ensi onal i nt egr al over an i nt er val , say
∫ a

0 f ( x) dx , on a r egul ar
gr i d w i t h coor di nat e s xn = n� x where n = 0, 1, . . . ,  N . T he cont r i but i on t o t he i nt egr al f r om t he n th
subi nt er va l xn ≤ x ≤ x n+1 i s appr oxi mat e d by t he t r apezoi dal r ul e [ 59 , p. 131]∫ xn+ 1

xn

f ( x) dx  = 1

2

(
f ( xn)+ f ( x n+1)

)
� x +�

(
� x 3

)
,

w hi c h i s a nal ogous t o t he cent r al di ff er ence i n suppr essi ng t he l eadi ng or der er r or. A ddi ng t he c ont r i but i ons
from t he N subi nt er va l s t oget her, w e obt ai n t he w e l l - know n ext e nded t r a pezoi dal r ul e f or numer i cal
integration

∫ a

0
f ( x) dx  ≈ 1

2
f (0)�x +

N−1∑
n=1

f (n�x)�x + 1

2
f (a)�x +�

(
�x2

)
. (13.7)

In higher dimensions one may integrate each dimension according to this formula.
Again there exist schemes for numerical integration on a regular grid with more complicated weights

and correspondingly smaller errors, for example Simpson’s famous formula [59, p. 134] which is correct to

�
(
�x4

)
.

13.3 Gravitational settling in two dimensions
One of the simplest non-trivial problems that does not seem to admit an exact analytic solution is the
gravitational settling of a rectangular block of elastic material in a long open box of dimensions a × b × c
wi t h one of t he s i des removed ( see s ect i on 12. 2 f or t he case w here al l s i des are r emoved).
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a
Expected two-dimensional grav-
itational settling. If the wall at
x = a is removed, the elastic ma-
terial will bulge out, because of
its own weight.

In this case we follow the conventions normally used in two dimensions and take the y-axis to be
vertical. The wall that is removed is situated at x = a whereas the wall at x = 0 remains in place. It is
reasonable to assume that the clamping in the z-direction at z = 0 and z = c prevents any displacement in
that direction, i.e. uz = 0 everywhere. Since the block is assumed to be very long in this direction, it is also
reasonable to assume that the displacements ux and uy only depend on x and y, but not on z. The problem
has become effectively two-dimensional, although there are vestiges of the three-dimensional problem, for
example the non-vanishing stress along the z-direction which is taken up by the walls at the ends.
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Equations
The components of the two-dimensional strain tensor are

ux x = ∇x ux , (13.8a)

uyy = ∇yuy , (13.8b)

uxy = 1
2 (∇x uy + ∇yux ). (13.8c)

The corresponding stresses are found from Hooke’s law (11.9) and (11.10),

σx x = (2µ+ λ)ux x + λuyy, (13.9a)

σyy = (2µ+ λ)uyy + λux x , (13.9b)

σxy = σyx = 2µ uxy . (13.9c)

Finally, the components of the effective force are

f ∗
x = ∇xσx x + ∇yσxy , (13.10a)

f ∗
y = ∇xσxy + ∇yσyy − ρ0g0. (13.10b)

Note that only first-order partial derivatives are used in these equations.

We could of course substitute the equations into each other to express the effective force in terms of
second-order derivatives of the displacement fields

f ∗
x = (λ+ 2µ)∇2

x ux + µ∇2
y ux + (λ+ µ)∇x∇yuy , (13.11a)

f ∗
y = (λ+ 2µ)∇2

y uy + µ∇2
x uy + (λ+ µ)∇x∇yux − ρ0g0. (13.11b)

Although there are excellent numerical methods to solve such (elliptic) differential equations, the
boundary conditions that involve stresses (see below) are not so easy to implement. uy = 0, σxy = 0

σyy = 0, σxy = 0

ux = 0
σyx = 0

σyx = 0
σx x = 0

Boundary conditions for the rect-
angular block.Boundary conditions

The boundary consists of the two fixed surfaces at x = 0 and y = 0 and the free surfaces at x = a and
y = b. We shall adopt the following boundary conditions,

σx x = 0, σyx = 0 free surface at x = a, (13.12a)

σyy = 0, σxy = 0 free surface at y = b, (13.12b)

ux = 0, σyx = 0 fixed wall at x = 0, (13.12c)

uy = 0, σxy = 0 fixed wall at y = 0. (13.12d)

Here we have assumed that the fixed surfaces are slippery, so that the shear stress must vanish. That is
however not the only choice.

Had we instead chosen the fixed walls to be sticky so that the elastic material were unable to slip
along the sides, the tangential displacements at these boundaries would have to vanish, i.e. uy = 0 at
x = 0 and ux = 0 at y = 0. The tangential stress σxy = σyx would, on the other hand, be left free
to take any value determined by the field equations. Whereas freedom appears to be unique, there is
always more than one way to constrain it.

Shear-free solution
Since the shear stress vanishes at all boundaries, it is tempting to solve the equations by requiring the shear
stress also to vanish throughout the block, σxy = σyx = 0, as we did for the three-dimensional settling in
section 12.2. One may verify that the following field solves the field equations

ux = ν

(1 − ν)D (b − y)x (13.13)

uy = − 1

2D

(
b2 − (b − y)2 + ν

1 − ν (a
2 − x2)

)
, (13.14)
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where

D = 4µ(λ+ µ)
( 2µ+ λ)ρ0 g0

= E

( 1 − ν  2)ρ0 g0
( 13. 15)

i s t he char act er i s t i c def or m at i on s cal e. T he s ol ut i on i s of t he same gener al f or m as i n t he t hr ee- di mensi onal
case ( 12. 16) , but t he dependence on P oi sson’s r at i o ν is di ff erent because of the t wo-dimensionality. As
before, t his solution also fails to meet the boundary conditions at the bottom, here y = 0.

Convergence measures
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a

The shear-free sol ution sinks into
t he bot t om of t he box. A n
extra vertical stress di stribution i s
needed from bel ow i n order t o
fulfi ll the boundary conditions.

The approach towards equilibrium may, for example, be monitored by means of the integral over the square
of t he e ff ect ive f or ce fi e l d w hi c h m ust c onve rge t owar ds zer o, i f t he a l gor i t hm wor ks. We s hal l choose t he
moni t or i ng par a met e r t o be

χ = 1

ρ0 g0

√
1

ab

∫ a

0
dx

∫ b

0
dy

(
f ∗x 2 + f ∗y 2

)
. ( 13. 16)

It i s normal i zed such t hat χ = 1 i n t he undef or m ed st at e w her e ux = u y = 0 a nd t hus f ∗x = 0 and
f ∗y = −ρ0 g0 . T he integral is calculated as a sum over the two-dimensional lattice (with appropriate
w e i ght i ng of t he boundar i es) . T he i t e r a t ive pr ocess can t hen be st opped w hen t he va l ue fal l s bel ow a ny
desi red accuracy, say χ � 0. 01.

Another possibility is to calculate the total energy (11. 32),

� =
∫ a

0
dx

∫ b

0
dy

[
1

2
( u x xσ  x x  + u yyσ yy  + 2u xyσ  x y)+ ρ  0 g0 u y

]
, ( 13. 17)

with the i ntegral r eplaced by a double sum over t he lattice points. T his quantity should decrease
monot oni cal l y t owa r ds i t s mi ni mum a nd, si nce i t , l i ke χ , a l s o has a w el l - defi ned cont i nuum l i m i t , i t s
value should be r elatively i ndependent of how fi ne-grained the discr etization i s, as long as the l attice
i s l arge enough. I t i s , how ever, har der t o det er mi ne t he accur acy at t ai ned.

Iterati on cycl e
Assuming that the discretized di splacement fi eld on t he lattice ( ux , u y) satisfi es t he boundary conditions,
we may cal culate the strai ns ( ux x , u yy, u zz) f r om ( 13. 8) by means of t he di scr e t e der iva t ive s, and t he
stresses (σx x , σyy, σxy) from H ooke’s l aw (13. 9). S tress boundary conditions are t hen i mposed and t he
effective force field ( f ∗

x , f ∗
y ) is calculated from (13.10). At this point the monitoring parameter χ may be

checked and if below the desired accuracy, the iteration process is terminated. If not, the corrections

δux = ε f ∗
x (13.18)

δuy = ε f ∗
y (13.19)

are added into the displacement field, boundary conditions are imposed on the displacement field, and the
cycle repeats.

The iteration process may be viewed as a dynamical process which in the course of (computer) time
makes the displacement field converge towards its equilibrium configuration. The true dynamics of
def or m at i on ( see c hapt er 14) go on i n r eal t i m e a nd ar e qui t e di ff er ent . S i nce di ssi pat i on i n s ol i ds
is not included here, the true dynamics are unable to eat away energy and make the system relax
towards equilibrium. Releasing the block from the undeformed state, as we do here, would instead
create vibrations and sound waves that reverberate forever throughout the system.
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Figure 13.1. Computed deformation of a square two-dimensional block. On the left the equilibrium
displacement field is plotted by means of little arrows (not to scale). On the right is plotted the outline
of the deformed block. The displacement vanishes as it must at the fixed walls. The protruding material
(solid line) has a slightly convex shape rather than the concave shape in the shear-free approximation (small
dashes).

Choice of parameters
Since we are mostly interested in the shape of the deformation, we may choose convenient values for the
input parameters. They are the box sides a = b = 1, the lattice sizes Nx = Ny = 20, Young’s modulus
E = 2, Poisson’s ratio ν = 1/3 and the force of gravity ρ0g0 = 1. The step-size is chosen of the form

ε = ω

E

�x2�y2

�x2 +�y2
(13.20)

where ω is called the convergence parameter. The reason for this choice is that the effective force is
proportional to Young’s modulus E and (due to the second-order spatial derivatives) to the inverse squares
of the grid spacings, say 1/�x2 + 1/�y2 = (�x2 + �y2)/�x2�y2. The convergence parameter ω is
consequently dimensionless and may be chosen to be of order unity to get fastest convergence. In the
present computer simulation, the largest value that could be used before numeric instabilities set in was
ω = 1.

Programming hints
The fields are represented by real arrays, containing the field values at the grid points, for example

U X[i, j ] ⇔ ux (i�x, j�y), (13.21)

UY [i, j ] ⇔ uy(i�x, j�y), (13.22)

and similarly for the strain and stress fields. Allocating separate arrays for strains and stresses may seem
excessive and can be avoided, but when lattices are as small as here, it does not matter. Anyway, the days
of limited memory are over.

The iteration cycle is implemented as a loop, containing a sequence of calls to subroutines that evaluate
strains, stresses, effective forces and impose boundary conditions, followed by a step that evaluates the
monitoring parameters and finally updates the displacement arrays before the cycle repeats. The iteration
loop is terminated when the accuracy has reached the desired level, or the number of iterations has exceeded
a chosen maximum.

Results
After about 2000 iteration cycles the monitoring parameter χ has fallen from 1 to about 0.01 where it seems
to remain without further change. This is most probably due to the brute enforcing of boundary values. The
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F i gu re 13. 2. T he comput ed ver t i cal pr essur e, py = −σ  yy  , is plotted on the left for y = 0. 5 a s a f unct i on of
the true x . O n t he r i ght , t he cor r e spondi ng shear st r e ss i s pl ot t e d a t t he same hei ght . T he pr essur e i s hi gher
in the central regi on than the shear-free estimate ( py = 0. 5) and t he shear st r ess i s negat ive ( but smal l )
and t hus adds t o t he f orce exert ed by gravi t y. T he curves have been l i nearl y i nt erpol at ed bet w een t he dat a
poi nt s. If the grid i s made denser, there will be more detail in the region of t he prot rusion ( x � 1) .

limiting value of χ diminishes with increasing lattice volume N = Nx Ny , in accordance with the lessened
importance of the boundary which decreases like 1/

√
N relative to the volume.

The fi nal displ acement fi eld and its infl uence on the outline of t he original box is shown i n fi gure 13. 1.
One notes how the displacement does not penetrate into the fixed bottom wall as it did in the shear-free
approximation. In figure 13.2 the vertical pressure py = −σyy is plotted as a function of x in the middle
of the block (y = 0.5). Earlier we argued that there would have to be an extra normal reaction from the
bottom in order to push up the sagging solution to the shear-free equations. This is also borne out by the
plot of py which has roughly the same shape throughout the block. Since the vertical pressure is now larger
than the weight of the column of material above, we expect that there must be a negative shear stress on the
sides of the column to balance the extra vertical pressure, as is also evident from figure 13.2.

Problems
13.1 Show that the coefficients in the one-sided two-step differences (13.6) are uniquely determined.
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Sound is the generic term for harmonic pressure waves in matter, be it solid, liquid or gaseous. Our daily
existence as humans, communicating in and out of sight, is strongly dependent on sound transmission in
air, and only rarely—as for example in the dentists chair—do we note the primary effects of sound in solids.
What we do experience in our daily lives are mostly secondary effects of vibrations in solids transferred to
air as sound waves, for example a mouse scratching on the other side of a wooden wall, or more insidiously
the neighbour’s drilling into concrete. There are also wave motions in elastic solids, for example caused
by earthquakes that we would hardly call sound, except sometimes one speaks about infrasound. We do
not hear these phenomena directly but rather experience an earthquake as a motion of the ground, though
usually accompanied by audible sound.

There are actually two kinds of vibrations in isotropic elastic solids: longitudinal pressure waves and
transverse shear waves. The two kinds of waves are transmitted with different phase velocities because
elastic materials respond differently to pressure and shear stress. Vibrations in ideal elastic materials do
not dissipate energy, but energy can be lost to spatial infinity through radiation of sound. A church bell or
tuning fork may ring for a long time but eventually stops because of radiative and dissipative losses.

In this chapter we shall use Newton’s second law to derive the basic equations for small-amplitude
vibrations in isotropic elastic materials and then apply them to a few generic situations. Elastic vibrations
constitute a huge subfield of continuum physics which cannot be given just treatment in a single chapter.
The chapter is, however, important because it is the first time we encounter continuous matter in motion,
the main theme for the remainder of this book.

14.1 Elastodynamics
The instantaneous state of a deformable material is described by a time-dependent displacement field u(x, t)
which indicates how much a material particle at time t is displaced from its original position x. The field
u(x, t) should as before be understood as the displacement from a chosen reference state which may itself
already be highly stressed and deformed. There are, for example, huge static stresses in balance with gravity
in the pylons and girders of a bridge, but when the wind acts on the bridge, small-amplitude vibrations may
arise around the static state.

In this section we shall first establish the fundamental equation of motion for isotropic elastic matter
and then draw some general conclusions about the nature of its solutions. Some of the results to be derived
will have much wider application than just for elastic waves.

Navier’s equation of motion
The actual position of a displaced particle is x′ = x + u(x, t), and since its original position x is time-
independent, its actual velocity is v(x, t) = ∂u(x, t)/∂t and its acceleration w(x, t) = ∂2u(x, t)/∂t2.
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Newt on’s s econd l aw— mass t i mes accel er at i on equal s f or ce— appl i ed t o ever y mat er i al par t i cl e i n t he body
takes t he form, d Mw = f ∗ dV  . Dividing by dV  and r eusi ng t he eff ect ive f or ce densi t y f or an i sot r opi c
homogeneous elastic material from the left-hand side of the equation of equilibrium (12. 2), we arrive at
Navier’s equation of motion ( 1821) ,

ρ
∂  2 u

∂ t 2 
= f + µ∇  2 u + (λ+ µ)∇∇ · u. ( 14. 1)

Here λ , µ, and ρ are, as before, assumed t o be mat eri al paramet ers t hat do not depend on space and t i me.
In the case that they depend on the spatial position x , as t hey do i n E arth’s solid mantle, Navier’s equation
of mot i on t akes a s omew hat di ff e r e nt f or m ( s ee pr obl em 14. 1) . T he above equat i on of m ot i on r educes by
construction t o Navier’s equilibrium equation for a time-independent di splacement. As in elastostatics, the
di spl acement fi el d and t he s t r ess vect or must be cont i nuous acr oss m at er i al i nt er faces.

I t must be emphasi zed t hat N avi er ’s equat i on of m ot i on i s onl y val i d i n t he l i m i t of smal l and smoot h
di spl acement fi el ds. I f t he di spl acement gr adi ent s ar e l arge, nonl i near t er m s w i l l fi r st of al l appear
in the strai n t ensor (10. 44), but there will al so arise nonlinear terms from t he derivatives of t he stress
t e nsor i n t he e ff ect ive f or ce, as demonst r at ed by equat i on ( 12. 3) . I n c hapt er 15 w e shal l der ive t he
cor r ect equat i ons of mot i on f or cont i nuous mat t e r ( i n t he E ul er r e pr esent a t i on) w i t h al l s uch t er ms
i ncl uded.

Driving forces, dissipation and free waves
Ti me-dependent di spl acement i s oft en caused by cont act forces t hat — l i ke t he wi nd on t he bri dge— i mpose
t i m e- dependent st r e sses on t he sur face of a body. I f you hi t a nai l w i t h a hammer or s t r oke t he st r i ngs of a
vi ol i n, t i m e-varyi ng di s pl acement fi el ds are al s o s et up i n t he mat eri al . Body forces may l i kew i se drive t i me-
dependent di spl acement s . T he Moon’s t i dal def or m at i on of t he r ot a t i ng E ar t h i s caused by t i m e- dependent
gr avi t a t i onal body f or ces, act i ng on t op of t he s t a t i c gr avi t a t i onal f or ce of E a r t h i t s el f . Magnet ost r i ct ive,
el ect r ost r i ct ive and pi ezoel ect r i c m at er i al s def or m under t he i nfl uence of el ect r omagnet i c fi el ds, and ar e,
for example, used in loudspeakers to set up vibrations that can be transmitted to air as sound.

The omnipresent forces of dissipation—not included in Navier’s equation of motion—will in the
end make all vibrations die out and turn their energy into heat. Sustained vibrations in any body can
strictly speaking only be maintained by time-dependent external forces continually performing work by
interacting with the body. Dissipation is nevertheless so small in most elastic materials that it, to a very
good approximation, can be omitted, as it is in Navier’s equation of motion. This argument justifies the
study of free elastic waves in a body subject only to time-independent external forces. Due to the linearity
of Navier’s equation of motion, a time-independent body force may be removed by means of a suitable
time-independent displacement, such that the general equation of motion for free elastic waves becomes,

ρ
∂2u

∂t2
= µ∇2u + (λ+ µ)∇∇ · u. (14.2)

Although free waves must at some point in time have been created by time-dependent driving forces, they
will in a finite, isolated, perfectly elastic body continue indefinitely after the driving forces cease to act.

The violin paradox: How can stroking a violin string with a horsehair bow at constant speed
make the string vibrate at a nearly constant frequency, when we claim that sustained vibration
demands time-dependent driving forces?

Although the external force delivered by your arm to the bow is nearly constant for the length of
the stroke, the interaction between the bow and the string develops time-dependence because of the
finite difference between static and dynamic friction forces (section 9.1). The string sticks to the
bow when it starts to move until the restoring elastic force in the string surpasses the static friction
force, whereupon the string slips and begins to move with much smaller or even no friction (if it
lifts off the bow). Swinging once back and forth the string eventually again matches the speed of
the bow and sticks. Since it only sticks for a very short time, the frequency generated in this way
is very nearly equal to the natural oscillation frequency of a taught but otherwise free string. This
stick-slip mechanism underlies many oscillatory phenomena apparently generated by steady driving
agents (see for example problem 9.9 on page 120).
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Lo ng i t udi na l a nd tra ns vers e w aves
An arbi t r ary vect or fi el d may always be r esol ved i nt o l ongi t udi nal and t ransverse component s ( see pr obl em
14. 5) ,

u = uL + u T , ( 14. 3)

w her e t he l ongi t udi nal c omponent uL has no c ur l , and t he t r ansver se component u T has no divergence,

∇ × uL = 0 ∇ · u T = 0. ( 14. 4)

B y t he ‘ doubl e- cr oss’ r ul e ( 2. 67) on page 26 i t f ol l ow s t hat ∇ × (∇ × uL ) = ∇(∇ · u L )− ∇  2 u L = 0, or
∇∇ · uL = ∇  2 u L , s o t hat t he wave equat i on ( 14. 2) speci al i zed t o pur el y l ongi t udi nal a nd t r ansver se f r e e
waves becomes,

ρ
∂ 2 u L
∂ t 2

= (λ+ 2µ)∇ 2 uL , ρ
∂  2 uT

∂ t 2
= µ∇ 2 uT . ( 14. 5)

C onver sel y i t may be s how n t hat t he l ongi t udi nal and t r ansver se component s of any mi xed fi el d ( 14. 3) must
al so sat i s f y t hese e quat i ons ( s ee pr obl em 14. 5) .

Mat er i al

cL

[ km s−1]
q

[%]

Aluminium 6.4 48
Ti t a ni um 6. 1 51
Iron 5.9 54
Ni ckel 5. 8 52
Magnesi um 5. 8 54
Quartz 5. 5 63
Wolfram 5.2 55
C opper 4. 7 49
Silver 3.7 45
Gold 3. 6 33
L ead 2. 1 33

L ongi t udi nal s ound speed and t he
ratio of transverse to longitudi nal
speed, q = cT /c L , f or va r i ous
i s ot r opi c m at er i a l s . T he l i ght -
est and hardest mat eri al s gener-
al l y have t he l argest l ongi t udi nal
sound speed.

B ot h of t hese e quat i ons ar e i n t he f or m of t he s t a ndar d wave equat i on,

∂ 2 u

∂ t 2 
= c 2 ∇ 2 u, ( 14. 6)

f or non- di sper sive waves w i t h phase vel oci t y c . For longitudi nal and transverse waves t he phase velocities
are,

cL =
√
λ+ 2µ

ρ
, cT =

√
µ

ρ
. ( 14. 7)

In typi cal el astic material s t he phase velocities are a few kilometres per second which i s an order of
magni t ude gr eat er t han t he vel oci t y of sound i n ai r, but r oughl y of t he same magni t ude as t he s ound ve l oci t y
i n l i qui ds, s uch as wat er.

The ratio between the transversal and longitudinal velocities is a useful dimensionless parameter,

q = cT

cL
=

√
µ

λ+ 2µ
=

√
1 − 2ν

2( 1 − ν) . ( 14. 8)

I t depends onl y on P oi sson’s r at i o ν , a nd i s a m onot oni cal l y decr easi ng f unct i on of ν . I ts maximal value
( 1/2)

√
3 ≈ 0. 87 i s obt ai ned f or ν = −1, i m pl yi ng t hat t he t r a nsve r s e vel oci t y i s alwa ys smal l e r t han t he

l ongi t udi nal one. I n pr act i c e t her e ar e no m at er i a l s w i t h ν < 0, so t he r eal i zabl e upper l i m i t t o t he r at i o
is instead ( 1/2)

√
2 ≈ 0. 71. For a t ypi cal va l ue ν = 1/3 we get  q = 1/2 a nd hence l ongi t udi nal waves

t ypi cal l y pr opagat e w i t h doubl e t he speed of t r ansver se waves.
T he t i ny pressure change (11. 14) generat ed by t he di spl acement fi el d i s � p = −K ∇ · u , where

K = λ + 2/3µ is the bulk modulus. Since ∇ · u = 0 for transverse waves, only the longitudinal
waves are accompanied by an oscillating pressure. They are for this reason also called pressure waves
or compressional waves. Transverse waves generate no pressure changes in the material, only shear, and
are therefore called shear waves.

Finally, it must be emphasized that although the longitudinal and transverse displacement fields
individually satisfy the standard wave equation, the boundary conditions on the surface of a body must
be applied to the complete displacement field (14.3). The boundary conditions will thus in general couple
the longitudinal and transverse components, the only exception being plane waves in an infinitely extended
medium.

Ea rt hqua ke wave t y pes: I n ear t hquake s ( see fi gur e 14. 1) pr essur e wave s a r e denot ed P ( f or
primary), because they arrive first due to the higher longitudinal phase velocity in any material.
Typically they move at speeds of 4–7 km s−1 in the Earth’s crust. Shear waves move at roughly
half the speed and thus arrive later at the seismometer. They are for this reason denoted by S (for
secondary). In fluid material, such as the Earth’s liquid core, shear waves cannot propagate. Besides
these body waves, earthquakes are also accompanied by surface waves to be discussed in section
14.3.

Copyright © 2005 IOP Publishing Ltd.



176 14. ELASTIC VIBRATIONS

Figure 14.1. Seismogram of an earthquake of strength 4.2 that took place in Comanche county, Oklahoma
on April 28, 1998. [Reproduced here with the permission of the Oklahoma Geological Survey]. The four
traces are: EHZ vertical earth velocity at all frequencies, BHZ the low-frequency vertical component,
br the low-frequency horizontal compressional component (Rayleigh waves) and bt the low-frequency
horizontal shear component (Love waves). The times labelled Pn and Sg represent the onset of the primary
and secondary disturbances.

Harmonic analysis
A general mathematical theorem due to Fourier tells us that any time-dependent function may be
resolved as a superposition of harmonic or monochromatic components, each oscillating with a single
frequency. For linear differential equations—ordinary or partial—with time-independent coefficients this
is particularly advantageous because it reduces the time-dependent problem to a time-independent one (for
each frequency).

A real harmonic displacement field with circular frequency ω and period 2π/ω satisfies the equation,

∂2u

∂t2
= −ω2u. (14.9)

The most general solution is a linear superposition of two time-independent standing wave fields u1(x) and
u2(x),

u(x, t) = u1(x) cosωt + u2(x) sinωt . (14.10)

Instead of working with two real fields it is often most convenient to collect them in a single complex
time-independent standing-wave field,

u(x) = u1(x)+ iu2(x). (14.11)

The harmonic displacement field then becomes the real part of a complex field,

u(x, t) = �e
[
u(x) e−iωt

]
. (14.12)

The displacement velocity is correspondingly given by the imaginary part,

∂u(x, t)
∂t

= ω �m
[
u(x) e−iωt

]
, (14.13)

as may easily be verified.
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Figure 14.2. Displacement fields for plane waves moving towards the top of the page. (a) Longitudinal
wave; the displacement oscillates in the direction of motion. (b) Transversal wave; the displacement
oscillates orthogonally to the direction of motion.

Since the wave equation (14.2) is linear in u, it is also satisfied by the velocity field ∂u/∂t and thus
by both the real and imaginary part of the complex field u(x)e−iωt , i.e. by the whole complex field itself.
Inserting this field into the wave equation we obtain a single time-independent equation for the complex
standing-wave field u(x),

−ρω2u = µ∇2u + (λ+ µ)∇∇ · u. (14.14)

It may be viewed as an eigenvalue equation for the operator µδi j ∇2 + (λ + µ)∇i ∇ j with eigenfunction

u(x) and −ρω2 as the eigenvalue. It may be shown that ω2 is always real and positive (problem 14.4). In a
finite body, the boundary conditions only allow solutions for a discrete set of eigenfrequencies, whereas in
an infinite medium the eigenfrequencies normally form a continuum.

The harmonic analysis may immediately be extended to Navier’s equation of motion with a time-
dependent body force field f (x, t). This will only add the complex harmonic amplitude f (x) of the force
field to the right-hand side of (14.14).

Plane waves
Plane waves have infinite extension, and infinitely extended material bodies do not exist. Nevertheless,
deeply inside a finite body, far from the boundaries, conditions are almost as if the body were infinite, and
the displacement field may be resolved into a superposition of independent longitudinal or transverse plane
waves. The condition for this to be possible is that the typical wavelengths contained in the wave should be
much smaller than the dimensions of the body or the distance to boundaries.
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A plane wave has constant phase
on planes orthogonal to the wave
vector k (here with ky = 0). The
phase is spatially periodic with
wavelength λ = 2π/ |k|.

It is instructive to carry through the harmonic analysis for a plane harmonic wave, described by (the
real part of) a complex harmonic field of the form,

u = a ei(k·x−ωt). (14.15)

Here a is the generally complex amplitude or polarization vector, k the wave vector and ω the circular
frequency. The wave’s direction of propagation is k/ |k|, its wavelength 2π/ |k| and its period 2π/ω. The
phase of the wave is k · x − ωt and its phase velocity ω/ |k|. Inserting this field into (14.2) (or just aeik·x
into (14.14)), we obtain,

ρω2a = µk2a + (λ+ µ)kk · a. (14.16)

This is a simple eigenvalue equation for the real symmetric (3 × 3) matrix µk2δi j + (λ + µ)ki k j , with

eigenvector a and eigenvalue ρω2.
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T he e i genvect or s a r e easi l y f ound. O ne i s l ongi t udi nal w i t h ampl i t ude pr opor t i onal t o t he wave vect or
itsel f, a ∼ k . I nser t i ng t hi s i nt o ( 14. 16) w e obt ai n ρω2 = (λ+ 2µ) k 2 , s how i ng t hat a gener al l ongi t udi nal
har m oni c pl a ne wave i s of t he f or m ( see fi gur e 14. 2( a )),

uL = A k ei(k·x−ωt), |k| = ω

cL
, (14.17)

where cL is given in (14.7) and A is an arbitrary complex number representing the longitudinal amplitude.
The two other eigenvectors are transverse with amplitudes orthogonal to the wave vector, i.e. k · a = 0, and
it follows from (14.16) that ρω2 = µk2. The transverse harmonic plane wave is therefore of the form (see
figure 14.2(b)),

�
z

cL , cT

c′
L , c

′
T

ω, kx , ky, kz

ω, kx , ky, k′
z

A plane interface between two
media. The material properties
are different on the two sides of
the interface, but the frequency
and the wavenumbers compo-
nents along the interface are the
same.

uT = aT ei(k·x−ωt), |k| = ω

cT
, (14.18)

where aT is an arbitrary vector orthogonal to k. All of the transverse directions orthogonal to k propagate
with the same phase velocity, and are thus degenerate eigenvectors. We may write aT = A1n1 + A2n2
where n1 and n2 are mutually orthogonal transverse vectors (both orthogonal to k), and A1 and A2 are
arbitrary complex numbers representing the transverse amplitudes.

Fourier’s theorem applied to both space and time variables tells us that the most general solution to the
wave equation (14.2) is (the real part of) a superposition of longitudinal and transverse plane waves with
different frequencies, directions of propagation and amplitudes.

14.2 Refraction and reflection
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0
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0
0

L in LT

T ′
L ′

An incident longitudinal wave
L in is refracted into longitudinal
and transverse components L ′, T ′
and also reflected into L and T .

The simplest system which differs from an infinitely extended medium consists of two semi-infinite media
interfacing along a plane. The materials on both sides of the interface are homogeneous and isotropic, but
have different longitudinal and transverse phase velocities, cL , cT and c′

L , c′
T . A plane wave incident on one

side of the interface will give rise to both a refracted wave on the other side and a reflected wave on the same
side. Even if the incident wave is purely longitudinal or purely transverse, the refracted and reflected waves
will in general be superpositions of longitudinal and transverse waves propagating in different directions.
In this section we shall investigate some aspects of these waves which even in this simplest non-trivial case
are rather complicated.

Snell’s law

2
2
2
2
2
2
θ

kx

k |kz |

Geometry for determining the
angle between the direction of
propagation and the normal to the
interface.

Taking the interface to be the xy-plane, z = 0 of the coordinate system, the planar geometry is
translationally invariant in all directions along x and y. That permits us to resolve the displacement field on
either side into a superposition of plane waves of the form (14.15) where all the components have the same
fixed values of ω, kx and ky on both sides of the interface, whereas in the z-direction the waves may have
different values of kz and k′

z . From this we conclude that the refracted and reflected waves propagate in the
same plane as the incident wave. In the following we shall, without loss of generality, choose the waves to
propagate in the xz-plane with ky = 0 and kx ≥ 0.

Willebrord van Roijen Snell
(1580–1626). Dutch mathemati-
cian. Contributed to geodesy
(triangulation), and discovered
the law of refraction.

A simple geometric construction shows that the angle between the normal to the interface and the
direction of propagation of any plane wave with phase velocity c = ω/ |k| is given by

sin θ = kx

|k| = kx c

ω
. (14.19)

From the geometry it also follows that

|kz | = kx cot θ =
√
ω2

c2
− k2

x . (14.20)

For kx < ω/c the last expression is real and θ < 90 ◦. We shall later discuss what happens for kx > ω/c
where the square root becomes imaginary.

Since kx and ω are the same for any plane wave component, the angles of incidence of two different
wave components with phase velocities c1 and c2 must be related by Snell’s law,

sin θ2
sin θ1

= c2

c1
. (14.21)
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This relation applies to any combination of plane wave components whether they are longitudinal or
transverse, on the same side (ipsilateral) as for reflection or on opposite sides (contralateral) as for refraction.
Since cL > cT we always have θL > θT for the ipsilateral longitudinal and transverse components of a
refracted or reflected wave. Reflected and incident waves of the same type will have the same angles with
the normal. The angles of contralateral components are determined by the different material properties of
the interfacing media, and cannot be generally characterized.
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Tin T

L

T ′

L ′
θ ′T

θ ′L
...............................................

...................................................................................................................

An incident transverse wave pro-
duces a reflected transverse wave
having the same angle with the
normal, �T = θ , but may also
produce a longitudinal wave with
larger angle. Snell’s law connects
all these angles with the phase ve-
locities.

Snell’s law takes the same form for elastic, acoustic and electromagnetic waves. The fact that light
moves with smaller phase velocity in water than in air immediately tells us that a light ray passing
the plane water surface has a smaller angle with the normal in water than in air, thereby explaining
the familiar observation that a straight rod apparently breaks when it is partially immersed into water.
If the interface is curved we expect that Snell’s law will be valid for wavelengths much smaller than
the radii of curvature of the interface.

A peculiar thing happens when a refracted wave passes from lower to higher phase velocity, c′ > c
(which it will always do from one side of the interface). By increasing the angle of incidence there will be
a maximal incidence angle θmax satisfying sin θmax = c/c′ where the refraction angle becomes θ ′ = 90 ◦,
and the wave appears to crawl along the interface. For θ > θmax the incident wave is completely unable to
penetrate the interface and is totally reflected. Comparing with (14.20) total reflection is seen to correspond
to imaginary values of the refracted wave vector component k′

z . A similar phenomenon takes place for
reflection in isotropic elastic media when the incident wave is transverse. The reflected longitudinal wave
always has larger velocity than the reflected transverse wave, and there will be a maximal incident angle for
longitudinal reflection. Beyond that angle, the reflected wave will be purely transverse.
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θ

θ ′

c

c′

in

Refraction into a medium with
higher phase velocity c′ > c.

Total reflection is well known to divers looking at the water surface from below, or to fish looking
at you from inside their aquarium. It is also of great importance for the functioning of optical fibers
where total reflection guarantees that light sent down the fiber stays inside it even if it bends and
winds.

Boundary conditions
At the interface z = 0, the boundary conditions demand continuity of the displacement fields and the stress
vectors on the two sides of the interface,

u′
x = ux , u′

y = uy , u′
z = uz , (14.22a)

σ ′
xz = σxz, σ ′

yz = σyz, σ ′
zz = σzz . (14.22b)

A single incident longitudinal or transverse wave can, in principle, generate one longitudinal and two
transverse waves on either side of the interface. The amplitudes of the six waves are determined by the
six boundary conditions. Intuitively it is fairly clear that ‘supertransverse’ waves polarized orthogonally to
the plane of incidence (i.e. along the y-direction) must decouple from the others which only involve the x-
and z-directions. We therefore only face four equations with four unknowns for the waves with polarization
in the plane of incidence, or two equations with two unknowns for the ‘super-transverse’ waves. It is still
an unpleasant task to solve four equations with four unknowns, so in the remainder of this section we shall
limit the analysis to a couple of cases resulting in only two equations with two unknowns.
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Tin T

T ′

θ θ

θ ′

An incident supertransverse wave
Tin is refracted and reflected into
supertransverse waves, T ′ and T .

‘Supertransverse’ waves at an interface
In a ‘supertransverse’ wave the incident as well as the reflected and refracted components are polarized
along ey = (0, 1, 0). It is convenient to set kx = k and define kT =

√
(ω/cT )

2 − k2 and

k′
T =

√
(ω/c′

T )
2 − k2. Leaving out the common factor ei(kx−ωt), the only non-vanishing displacement

components are,

uy = eikT z + Ae−ikT z , u′
y = A′eik′

T z . (14.23)

The first term in uy represents the incident field, normalized to unity, while the second term represents the
reflected wave with amplitude A. The field u′

y consists entirely of the refracted wave with amplitude A′.
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Figure 14.3. ‘Supertransverse’ waves at an interface with µ′ = µ. The refracted amplitudes are obtained
by adding 1. (a) Reflected amplitude for c′

T = 2cT . The maximum angle is 30 ◦ before total reflection sets

in. (b) Reflected amplitude for c′
T = 1

2 cT . The maximum angle is 90 ◦. Note that the amplitude is plotted
as −A.

Since all the diagonal strains vanish, the boundary conditions are u′
y = uy and σ ′

yz = σyz at z = 0. Using
that σyz = µ∇zuy and σ ′

yz = µ′∇zu′
y we are led to the equations,

A′ = 1 + A, µ′k′
T A′ = µkT (1 − A). (14.24)

The solution is,

A = µkT − µ′k′
T

µkT + µ′k′
T
, A′ = 2µkT

µkT + µ′k′
T
, (14.25)

and using that kT = k cot θ and k′
T = k cot θ ′, the reflected and refracted amplitudes may be expressed in

terms of the angles and the ratio µ′/µ (called the Fresnel equations),Jean Augustin Fresnel (1788–
1827). French physicist. Derived
the equations for the amplitudes
of reflected and transmitted light.
Rejected Newton’s corpuscular
theory of light in favour of an
ether theory.

A = cot θ − µ′
µ cot θ ′

cot θ + µ′
µ cot θ ′

, A′ = 2 cot θ

cot θ + µ′
µ cot θ ′

. (14.26)

Snell’s law, sin θ ′/ sin θ = c′
T /cT , connects the two angles, such that

cot θ ′ =
√

1

sin2 θ ′
− 1 =

√√√√(
cT

c′
T sin θ

)2

− 1. (14.27)

In figure 14.3 the reflected amplitude A is plotted as a function of the incident angle θ for two choices of
material parameters.

If c′
T > cT and k > ω/c′

T , the refracted wavenumber becomes imaginary, k′
T = iκT with

κ ′
T =

√
k2 − (ω/c′

T )
2. The refracted wave now decays with increasing z as exp(−κ ′

T z) and only penetrates
a finite distance into the upper half space. It has become a surface wave. The amplitudes are in this case,

A = µkT − iµ′κ ′
T

µkT + iµ′κ ′
T

= e−iφ, A′ = 1 + e−iφ , (14.28)

where tan 1/2φ = µ′κ ′
T /µkT . Since the complex modulus is unity, |A| = 1, the totally reflected wave has

the same intensity as the incident wave, although phase shifted by φ relative to the incident wave.
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θ θ
................................

..............
.

Tin T

Reflection of a super-transverse
wave at a free boundary. Reflection from a free surface

A longitudinal or transverse wave incident on a free surface can only be reflected, and the boundary
conditions reduce in this case to the vanishing of the stress vector on the boundary z = 0,

σxz = σyz = σzz = 0. (14.29)
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Figure 14.4. Reflected amplitudes as functions of the incident angle θ for q = 1
2 . (a) Transverse incident

wave. The maximum angle with both transverse and longitudinal reflected waves is 30 ◦. (b) Longitudinal
incident wave. The maximum angle is in this case 90 ◦.

For the ‘supertransverse’ wave (14.23) the solution is trivial. We simply take A′ = 0 and find A = 1, such
that uy ∼ cos(kT z).

For a ‘normal’ transverse wave the field is more complicated, because it can contain both longitudinal
and transverse reflected components. Apart from an overall oscillating factor ei(kx−ωt) the field is of the
form,

u = (−kT , 0, k)e
ikT z + AT (kT , 0, k)e

−ikT z + AL(k, 0,−kL)e
−ikL z , (14.30)

where AT and AL are the amplitudes of the reflected longitudinal and transverse fields, and where as before
kT =

√
(ω/cT )

2 − k2 and kL =
√
(ω/cL )

2 − k2. It may readily be verified that the longitudinal field is a
gradient, and the transverse fields have no divergence (remembering the oscillating factor ei(kx−ωt)).
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Tin T

L

Reflection of a transverse wave
at a free boundary. The trans-
verse reflection angle is always
the same as the angle of inci-
dence, whereas the longitudinal
reflection angle is larger. There is
a maximal value θmax = arcsin q
for which a longitudinal reflec-
tion is possible.

From the above field we obtain the surface stresses (apart from the oscillating factor),

σxz = 1

2
iµ

(
(k2 − k2

T )(1 + AT )− 2kkL AL

)
, (14.31a)

σzz = i
(

2µkkT (1 − AT )+ ((λ+ 2µ)k2
L + λk2)AL)

)
. (14.31b)

Using the relation ρω2 = (λ + 2µ)(k2
L + k2) = µ(k2

T + k2), and requiring these stresses to vanish, we
obtain the equations,

2kkL AL − (k2 − k2
T )AT = k2 − k2

T , (14.32a)

(k2 − k2
T )AL + 2kkT AT = 2kkT , (14.32b)

with the straightforward solution

AT = 4k2kL kT − (k2 − k2
T )

2

4k2kL kT + (k2 − k2
T )

2
, AL = 4kkT (k

2 − k2
T )

4k2kLkT + (k2 − k2
T )

2
. (14.33)

Setting kT = k cot θ and kL = k cot θ ′, the solution may be cast into a convenient form depending only on
�
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L in LT

Reflection of a longitudinal wave
at a free boundary. The longitudi-
nal reflection angle is the same as
the angle of incidence, whereas
the transverse reflection angle is
smaller.

the two angles,

AT = 4 cot θ cot θ ′ − (1 − cot2 θ)2

4 cot θ cot θ ′ + (1 − cot2 θ)2
, AL = 4 cot θ(1 − cot2 θ)

4 cot θ cot θ ′ + (1 − cot2 θ)2
. (14.34)

Snell’s law sin θ/ sin θ ′ = cT /cL = q, connects as before the two angles,

cot θ ′ =
√

1

sin2 θ ′
− 1 =

√
q2

sin2 θ
− 1. (14.35)

This clearly shows that a transverse incident wave produces a longitudinal reflected wave for sin θ < q,
whereas for sin θ > q only a reflected transverse wave is obtained.

The case of a longitudinal incident wave is very similar and is analysed in problem 14.2. In figure 14.4
the intensities of the reflected wave amplitudes are shown for both a transverse and longitudinal incident
wave as a function of the angle of incidence.
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Figure 14.5. One period of a Rayleigh wave moving to the right. The shear component creates a wave-like
motion of the surface. Note the exponential decay of the wave under the surface.

∗ 14.3 Surface waves
At a material interface there are special types of waves which do not penetrate into the bulk of the materials,
but decay exponentially with the distance from the interface. We have already seen in the preceding section,
how such wave components can arise in the refraction of an incident wave into a material with larger phase
velocity when the angle of incidence becomes large enough. In this section we shall consider two kinds of
free surface waves, Rayleigh waves and Love waves. Both have geophysical significance, in particular in
relation to earthquakes where they arise when seismic bulk waves encounter the surface of the Earth.

Rayleigh waves
The most general exponentially decaying superposition of normal transverse and a longitudinal surface
wave in the lower half space z < 0 is (apart from the oscillating factor exp(i(kx − ωt)) which is common
to both terms),

u = AT (iκT , 0, k)e
κT z + AL (k, 0,−iκL )e

κL z , (14.36)

where AT and AL are generally complex constants. It is obtained from the general expression (14.30)
by leaving out the incident wave (which diverges exponentially) and setting kT = iκT with κT =√

k2 − (ω/cT )
2 and kL = iκL with κL =

√
k2 − (ω/cL )

2. Both κT and κL are real for k > ω/cT ,
because cT < cL . One may verify directly that the longitudinal wave is indeed a gradient field, and that the
transverse wave is free of divergence.John William Strutt, 3rd Baron

Rayleigh (1842–1919). Discov-
ered and isolated the rare gas
Argon for which he got the No-
bel Prize (1904). Published the
influential book ‘The Theory of
Sound’ on vibrations in solids
and fluids in 1877–78.

The free surface boundary conditions are the same as in the preceding section σxz = σzz = 0 for
z = 0, and leaving out the terms due to the incident wave on the right-hand side of (14.32), we find from
the left-hand side,

2ikκL AL − (k2 + κ2
T )AT = 0, (14.37)

(k2 + κ2
T )AL + 2ikκT AT = 0. (14.38)

Since i AL/AT = (k2 +κ2
T )/2kκL = 2kκT /(k

2 +κ2
T ), these equations only have a non-vanishing solution

for,

(k2 + κ2
T )

2 = 4k2κT κL . (14.39)

Defining the phase velocity along the surface c = ω/k, this condition turns into an equation for c,

(
2 − c2

c2
T

)2

= 4

√√√√(
1 − c2

c2
T

)(
1 − c2

c2
L

)
. (14.40)
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F i gu re 14. 6. R ayl ei gh waves. (a) P hase vel oci t y as a f unct i on of q = cT /c L . For al l possi bl e physi cal
va l u e s , q < 1/

√
2 ≈ 0. 7, the phase velocity is nearly equal t o t he phase velocity of transverse waves.

(b) R a t i o of l ongi t udi nal a nd t r ansver se ampl i t udes a s a f unct i on of q .

The simplest way to solve this equation is to square it and isolate the ratio q = cT /c L in terms of the ratio
ξ = c/cT ,

q =
√

16 − 24ξ 2 + 8ξ  4 − ξ  6
16( 1 − ξ  2) . ( 14. 41)

I n fi gur e 14. 6( a ) t he phase vel oci t y ξ of R a yl ei gh wave s has been pl ot t e d a s a f unct i on of q . T he maxi mal
va l u e ξ0 = 0. 955313 . . .  i s t he r eal r oot of t he pol ynomi a l i n t he numer at or under t he squar e r oot .

Typi cal va l ues of q ar e a r ound 0. 5, show i ng t hat t he va l ue of ξ i s cl ose t o uni t y i n al l pract i cal cases.
E xpandi ng ( 14. 41) t o l ow e st or der near ξ = 1 w e fi nd t he a ppr oxi mat i on

ξ = 1 − 1

2( 11 − 16q 2)

which for q = 0. 5 is better than 1%. The phase velocity of Rayleigh waves is thus normally just a little
bel ow t he phase vel oci t y of f r ee t r ansver s e waves.

S ei smi c waves creat ed deep i nsi de t he E art h’s crust are refl ect ed from t he surface. If t he angl e of
i nci dence i s l arge enough, t he t r a nsve r s e c omponent s w i l l exci t e R a yl ei gh wave s r unni ng al ong t he
surface. S i nce t hei r speed i s sl i ght l y l ower t han t he t r ansverse waves, t hey arrive even l at er t han
S - wave s a t a sei s momet e r ( i f t hey or i gi nat e i n t he same poi nt ) . D ur i ng t he passi ng of a R ayl e i gh A ugust us E dwar d H ough L ove

(1863–1940). British scholarly
physicist. Contributed to the
mathematical theory of elasticity,
and to the understanding and
analysis of the waves created by
earthquakes.
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Love waves may arise in a layer
of thickness h on top of a half-
space z < 0 of other material.

wave, the surface suffers a combination of compressional and vertical shear displacements, much
like a wave r olling across t he sea ( see fi gur es 14. 5 and 14. 1) . Hor izont al shear di splacements are
absent in a Rayleigh wave.

Love waves
One could think that there might be ‘supertransverse’ free surface waves, either at a free surface or at a
material interface, but neither of these types are in fact possible (see problem 14.3). Love found, however,
in 1911 that supertransverse free waves may be created if the surface material is heterogeneous with elastic
properties that change with height z.

The simplest geometry is obtained by placing a layer of material of thickness h situated on top of a
material filling the half-space z < 0. Under the conditions that cT > c′

T and ω/cT < k < ω/c′
T there

will be a solution which is exponentially damped in the lower half-space and has running waves in the
upper layer. Anticipating that the stress, σ ′

yz = µ′∇zu′
y , must vanish at the top of the layer, z = h, a

supertransverse field takes the following form in the two media,

uy = AeκT z , u′
y = A′ cos k′

T (h − z), (14.42)

where κT =
√

k2 − (ω/cT )
2 = k

√
1 − (c/cT )

2 and k′
T =

√
(ω/c′

T )
2 − k2 = k

√
(c/c′

T )
2 − 1. The

remaining boundary conditions are as before u′
y = uy and σ ′

yz = σyz at z = 0, leading to

A = A′ cos(k′
T h), µκT A = µ′k′

T A′ sin(k′
T h). (14.43)
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F i gu re 14. 7. L ove w a ve s f o r c′
T = 0. 5cT and µ′ = µ. (a) P hase vel oci t y c/c′

T as a f unct i on of ω h/c′
T .

For a given frequency t here is a fi nite number of possibl e phase velocities. (b) Amplitude ratio A/ A′ as a
function of phase velocity c/c′

T .

A non- t r ivi a l s ol ut i on can onl y exi st f or,

µκT = µ′ k′
T tan( k′

T h).  ( 14. 44)

I nt r oduci ng c = ω/  k we have κT = k
√

1 − ( c/cT )  
2 and k′

T = k
√
( c/c′

T ) 
2 − 1 . Solving the above

equat i on f or kh, w e obt ai n

kh = 1√
c 2

c′ 2
T

− 1
arct an

µ

√
1 − c 2

c 2T

µ′
√

c 2

c′ 2
T

− 1
. ( 14. 45)

For any value of the phase velocity in the interval c′
T < c < cT this permits us to calculate the value of

kh and— si nce h is assumed known—of ω = ck . C onve r s el y, f or a give n f r e quency ω one may s ol ve t hi s
equation for the allowed values of c . T he i nfi ni t y of br anches of i nve r s e t angent yi el ds an i nfi ni t e number
of possi bl e f r e quenci e s f or a given phase ve l oci t y. C onve r s el y, t her e a r e onl y a fi ni t e number of a l l ow e d
phase velocities for a given frequency. The solutions c/c′

T ar e pl ot t e d i n fi gur e 14. 7( a ) a s f unct i ons of
t he di mensi onl ess frequency paramet er ω h/c′

T f or a choi ce of mat e r i al par a met e r s . I n fi gur e 14. 7( b ) the
amplitude ratio A/ A′ is plotted as a function of the phase velocity parameter c/c′

T .
A surface layer thus acts like a wave guide for Love waves. Contrary to Rayleigh waves, Love waves

are dispersive, with phase velocity that depends on the wavelength (or frequency). Since c′
T < c < cT Love

waves move faster than Rayleigh waves in the surface layer, but slower than shear waves in the bulk. Love
wave s t hus ar r ive bef or e t he R ayl e i gh waves or i gi nat i ng i n t he same poi nt ( s ee fi gur e 14. 1) . I n ear t hquake s
Love waves are the most destructive because of the shearing motion of the surface layer which is not well
tolerated by buildings.

Problems
14.1 Derive the form of Navier’s equation of motion when the Lamé coefficients depend on position.

14.2 Show that the reflection amplitudes for a longitudinal incident wave on a free surface are,

AL = 4 cot θ cot θ ′ − (1 − cot2 θ ′)2
4 cot θ cot θ ′ + (1 − cot2 θ ′)2 , AT = − 4 cot θ(1 − cot2 θ ′)

4 cot θ cot θ ′ + (1 − cot2 θ ′)2 (14.46)

with cot θ ′ =
√

−1 + (q sin θ)−2.

14.3 Show that supertransverse Love waves cannot exist at an interface (or at a free surface).

∗ 14.4 Show that the eigenvalues ω2 of the amplitude equation for free waves (14.14) are real and positive
when the boundary conditions specify the vanishing of the displacement field or of the stress vector.
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∗ 14.5 (a) Show that an arbitrary vector field may be resolved into (not necessarily unique) longitudinal
and transverse components, and that the longitudinal component may be chosen to be a gradient. (b) Show
that the individual components of a mixed field (14.3) may always be chosen to satisfy Navier’s equation
of motion individually.
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T he r unning water i n a brook, the streaming w ind and the r olling sea are all examples of fl uids i n motion.
A waterfall is a vivid illustration of t he richness of fl uid motion. It is one of the wonders of nature that all
t hi s r i chness i s ‘ j ust ’ a c onsequence of N ew t on’s e quat i ons of mot i on a ppl i e d t o c ont i nuous mat t e r. E a sy t o
w r i t e dow n, t hese equat i ons onl y have a nal yt i c sol ut i ons i n a number of i deal i zed and hi ghl y c onst r ai ned
si t uat i ons. N ever t hel ess, such sol ut i ons off er val uabl e i nsi ght s i nt o fl ui d dynami cs w hi ch i s ot her w i se
accessi bl e onl y by experi ment s and comput er cal cul at i ons.

The motion of solids is generally less rich than fluid motion, and it is precisely for this reason that
sol i ds ar e used t o bui l d st r uct ur es l i ke houses, br i dges and machi nes. I t i s al s o t he r eason t hat t he s t udy
of cont i nuous syst ems i n t hi s book st ar t e d w i t h el ast i c i t y. F l ui ds a nd sol i ds a r e ext r emes i n t he wor l d of
continuous matter, and t here are many t ransition mater ials with properties i n between. I n t his chapter we
shal l a nal yse mat t e r i n m ot i on w i t hout di st i ngui shi ng bet w een par t i c ul ar t ypes of m at t e r, al t hough i n t he
back of our mi nds w e shal l m ost l y t hi nk of fl ui ds.

Two basi c mechani cal equat i ons gove r n t he m ot i on of c ont i nuous mat t e r. O ne c oncer ns conser va t i on
of mass and s t at es t hat t he onl y way t he m ass of a vol ume of mat t er can change i s t hr ough fl ow of m at er i al
acr oss i t s sur face. T he ot her i s Newt on’s s econd l aw appl i ed t o cont i nuous syst ems. Toget her wi t h sui t abl e
expr essi ons f or t he f or ces at pl ay i n t he m at er i a l , w e ar r ive at a c ompl et e s et of equat i ons of mot i on f or t he
mass densi t y and vel oci t y fi e l ds. I n t hi s chapt e r w e s hal l onl y a ppl y t hem t o t he w hol e unive r s e, and s how
that they lead to a surprisingly sensible cosmology. Later chapters will deal with much more earthly aspects
of fluid dynamics.

15.1 The velocity field
In trying to define a velocity field v(x, t) we are faced with the problem that the molecules, especially in
the gaseous state, move rapidly around among each other, even in matter ‘at rest’, and this motion must
somehow be averaged out. Newtonian particle mechanics tells us that the centre of mass of a collection of
particles moves as a single particle with mass equal to the total mass of all the particles and acted upon by
t he t ot al f orc e (see appendix A). The only meaningful definition of the velocity v of a material particle is,
therefore, that it should represent the centre of mass velocity of the collection of molecules contained in it,
for then the total momentum of a material particle of mass d M occupying a volume dV near the point x at
time t will be,

�
�
�
�
�

Streamlines of the velocity field
for rigid body translation.

d� = v(x, t) d M = v ρ dV . (15.1)

Identifying the velocity field with the centre of mass velocity of material particles permits us to apply
Newtonian particle mechanics to the material particles themselves without thinking too much about their
internal structure.
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Figure 15.1. Plots of little arrows for the incompressible flow v = (sin x cos y,− cos x sin y, 0) in the
region 0 ≤ x ≤ π and 0 ≤ y ≤ π (see also example 15.2.2). The whirl (and its mirror images) are repeated
periodically throughout the xy-plane. (a) Regular plot on a Cartesian (16×16) grid. The apparent skewness
is a graphical artifact. (b) Random plot of the field in 1000 points.

The velocity field is like the mass density a fluctuating quantity obtained from an average over nearly
random individual molecular contributions. In problem 1.4 on page 11 it was shown that, provided the
linear dimension of the material particle is larger than the micro scale (1.2), the fluctuation in centre of
mass velocity relative to the typical molecular velocity will be smaller than the measurement precision.

........
..........

.............
..........................................................................................................................

..........
.........
.... .........

.........
.........
...........

............
................

................................................................................................................................................................................................................................................
...............

...........
..........
.........
.........
........ .........

.........
.........
.........
..........

..........
...........

..............
................

...........................
..............................................................................................................................................................................................................................................................................................................................................

..................
..............

............
..........
..........
.........
.........
.........
.........
.. .........

.........
.........
.........
.........
..........

..........
...........

...........
.............

..............
.................

..........................
......................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................
................

.............
............

...........
..........
..........
..........
.........
.........
.........
.........
.... .........

.........

.........
.........
.........
.........
.........
..........

..........
...........

...........
............

.............
...............

..................
.......................


......................

.................
..............

.............
............

...........
...........
..........
..........
..........
.........
.........
.........
.........
.........
.........

�����

Streamlines for the velocity field
of rigid body rotation.

Example 15.1.1: The velocity field of a non-rotating rigid body moving with constant velocity U is
v(x, t) = U . If instead the body is rotating around the origin of the coordinate system with constant
angular velocity vector �, the velocity field is v(x, t) = � × x.

Methods of flow visualization
Wind and water currents are normally invisible unless polluted by foreign matter. A gentle breeze in the air
can be observed from the motion of dust particles dancing in the sunshine or the undulations of smoke from
a cigarette. Even a tornado first becomes visible when water vapour condenses near its centre or debris is
picked up and thrown around. Modern technology does, on the other hand, permit us indirectly to ‘see’
velocity fields. Doppler radar is used for tracking and visualizing damaging winds in violent storms, and
likewise, Doppler acoustics is used to visualize blood flow in the heart.

Little arrows: The instantaneous velocity field is often visualized by means of little arrows attached to
a regular grid of points, each of a length and direction proportional to the velocity field in the point (see
figure 15.1). Sometimes it is more illustrative and permits finer flow details to be seen if the arrows are
drawn from a random selection of points, because the density of arrows can be higher.

Streamlines: In section 3.2 we discussed how the gravitational field could be visualized by means of
field lines, defined to be curves that everywhere had the gravitational field at a fixed time as tangent. Similar
field lines, called streamlines, can be defined for the velocity field as curves that are everywhere tangent to
the velocity field at a fixed time. Such curves are solutions to the ordinary differential equation
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����4x0, t0

�!!/
x, t

v(x0, t0)

v(x, t0)

A streamline is everywhere tan-
gent to the velocity field at a
given time t0.

dx
dt

= v(x, t0), (15.2)

where the velocity field is calculated for a fixed value of time t0. Starting at any point x0 at t = t0 we
may use this equation to determine the path x = x(t, x0, t0) of a streamline. Because the velocity field is
evaluated at a fixed moment in time t0 there will be only one tangent and thus only one streamline through
every point of space. Streamlines depict the velocity field at a single instant in time and can never intersect.
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15.1. THE VELOCITY FIELD 191

Particle trajectories: Imagine you drop a tiny particle—a speck of dust—into a fluid, and watch how
it is carried along with the fluid in its motion. The speck of dust should be neutrally buoyant in the fluid,
and so small that its inertia and mass play no role but on the other hand so large that it is not buffeted
around much by collisions with individual molecules (i.e. by Brownian motion). The path x = x(t) which
it follows is called a particle trajectory or orbit and is determined by the differential equation,
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�!!/
x, t

v(x0, t0)

v(x, t)

A particle orbit is everywhere
parallel with the instantaneous
velocity field.

dx
dt

= v(x, t). (15.3)

Given a starting point x0 and a starting time t0, the path x(t, x0, t0) may be calculated from this equation
for all times t . There will be only one particle orbit going through each point in space at a fixed instant, but
different orbits may cross each other and even themselves as long as this occurs at different times.

Streaklines: A standard method for visualizing fluid flow in, for example, wind tunnels, is to inject
smoke (or dye) into the fluid at a constant rate. This leads to streaklines of smoke weaving through the fluid.
Since smoke particles are tiny and light they must follow particle orbits, so that a streakline is obtained from
the particle orbit x(t, x0, t0) by varying the start time t0 while keeping fixed the observation time t and the
point x0 from which the smoke emanates.

Relating the various flow lines

For a time-dependent velocity field the relationship between the three types of lines can be hard to visualize.
For steady flow, where the velocity field is independent of time, v(x, t) = v(x), the particle orbits evidently
coincide with the streamlines, and since the streamlines in this case can only depend on the time difference
t − t0, the streaklines will also coincide with them. One should always remember that streamlines are quite
misleading for unsteady flow.

Example 15.1.2 (Streamlines, streaklines, particle orbits): To illustrate the difference between the
three types of field lines consider a spatially uniform two-dimensional velocity field of the form

v(x, t) = (a, bt, 0) (15.4)

where the y-component everywhere grows linearly with t . The stream lines are in this case determined
by

dx
dt

= (a, bt0, 0), (15.5)

and are straight lines

x = x0 + a(t − t0), y = y0 + bt0(t − t0). (15.6)

The particle orbits are determined by

dx
dt

= (a, bt, 0), (15.7)

and are parabolas
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stream line

particle orbit

streak line

The three types of flow lines from
example 15.1.2.x = x0 + a(t − t0), y = y0 + 1

2 b(t2 − t2
0 ). (15.8)

Varying t0 in the interval −∞ < t0 < t the streak lines are seen also to be parabolas curving the
opposite way to the particle orbits.

Taking x0 = y0 = 0 and a = b = 1, the streamline at t0 = 0 runs along the x-axis,
y = 0, and the particle orbit becomes y = x2/2. At a given moment of time t , the corresponding
streakline, obtained by varying the start time in the interval 0 < t0 < t in (15.8), is described by
y = (1/2)(t2 − t2

0 ) = (1/2)(t2 − (t − x)2) = xt − (1/2)x2, a curve with maximum at x = t .
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1 5 . 2 I nco m pres s i ble flow
Most sol i ds and l i qui ds ar e fai r l y i ncompr essi bl e under or di nar y ci r cumst ances and, as w e shal l s ee l at er,
gases w i l l of t en be eff ect ivel y i ncompr essi bl e w hen fl ow speeds ar e much smal l er t han t he vel oci t y of
sound. One s hould, however, not forget that all materials are i n principle compressible. Incompressibility is
always an approximation, an d should be viewed as a condition on t he fl ow r ather t han an abs olute material
property. It is nevertheless such an important condition that we shall devote large parts of the remainder of
t hi s book t o t he s t udy of i ncompr e ssi bl e fl ow s.
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V V ′

Di spl acement of a vol ume of
material in a small time i nt erval.
T he c hange i n vol ume i s give n by
t he t hi n s urface l ayer bet ween t he
dashed and s ol i d curves.

Let V be a fi xed vol ume of matter with surface S . I n a smal l t i me i nt erval δ t , all the material particles
in V are s i m ul t aneousl y di spl aced by v( x, t) δt t o fi l l out anot her vol ume V ′ in the vicinity of the
ori gi nal vol ume. S i nce a s urface el ement d S i s di spl aced t hr ough t he vect or di st ance vδ t , i t s coops up
an infinitesimal volume vδ t · d S ( c ount ed w i t h si gn) , s o t hat t he t ot a l c hange i n vol ume becomes
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���

���

� � d S

�
555

556vδ t

A s urface el ement d S scoops up
t he vol ume vδ t · d S in a small
time i nt erval δ t .

δ V = V ′ − V =
∮

S
vδ t · d S.

D ivi di ng by δ t w e get t he so- cal l e d m at e ri al rat e of change of v ol um e,

DV

Dt
=

∮
S

v · d S. (15.9)

The reason for the special notation for the material time derivative, D/Dt , is that this is not an ordinary
time derivative1. It represents the would-be instantaneous rate of change of a volume following along with
the flow of matter, a so-called comoving volume. Here it is calculated using a fixed volume, but since the
integral only depends on the instantaneous shape of the volume, it does not matter whether afterwards it
w i l l move al ong w i t h t he m ove ment of mat t e r or not . I n c hapt er 22 w e shal l gener al i z e t he f or m al i s m t o
volumes that move in any way we desire.

By means of Gauss’ theorem (6.4) the surface integral may be converted to a volume integral,

DV

Dt
=

∫
V

∇ · v dV (15.10)

showing that a volume expands in a diverging velocity field with ∇ · v > 0, and contracts in a converging
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A comoving volume expands in
a diverging velocity field, and
contracts in a converging field.

field with ∇ · v < 0. Applied to the infinitesimal volume dV of a material particle, it follows that

D(dV )

Dt
= ∇ · v dV . (15.11)

The volume of a comoving material particle thus swells and shrinks according to the divergence or
convergence of the velocity field.

Example 15.2.1 (Radial expansion): Let v = κx be a radially expanding velocity field. The
comoving rate of change of the volume of a sphere of radius r centred at the origin becomes,

DV

Dt
=

∮
|x|=r

κx · d S = 4πκr3, (15.12)

because the surface area of the sphere is 4πr2 and its normal points along x. This could also have been
obtained by multiplying the volume (4/3)πr3 with the constant divergence ∇ · v = 3κ .

1There is no general agreement in the literature on how to denote the material time derivative. Some texts use the
ordinary differential operator d/dt and others use a notation like (d/dt)system, but it seems as if the notation D/Dt used
in this book is the most common.
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Incompressibility condi tion
Incompressibility means t hat any comovi ng volume of matter must be constant in time, DV/ Dt = 0, or∮

S
v · d S = 0, ( 15. 13)

f or al l cl osed sur faces. I ncompr essi bl e m at t er cannot accumul at e anywher e, and equal vol umes of
i ncompr essi bl e m at t er m ust m ove i n and out of any cl osed s ur face per uni t of t i m e. �

77778
8
8��� ��

��

A material particle is also de-
formed by t he fl ow because t he
velocity field varies from place to
place within it.

U s i ng G auss’ t heor e m on ( 15. 13) or equiva l e nt l y ( 15. 11) w e fi nd t hat t he di vergence of t he vel oci t y
fiel d m ust vani sh f or i ncom pressi bl e flow ,

∇ · v = 0. ( 15. 14)

A divergence-free fi eld i s sometimes called sol e noi dal . Note that in this local formulation the condition of
incompressibility does not refer t o any volume of matter, but onl y t o t he field itsel f.

E xamp l e 15. 2. 2: T he fl ow descr i bed by t he t i m e- i ndependent ve l oci t y fi e l d

v = (sin x cos y,− cos x sin y, 0) (15.15)

is incompressible, because

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= cos x cos y − cos x cos y = 0. (15.16)

Due to the periodicity in both x and y, the flow forms a regular array of stationary whirls, one of which
i s show n i n fi gur e 15. 1 on page 190. T her e i s pr obabl y no pr act i cal wa y of gener at i ng t hi s fl ow pat t e r n.

Leonardo da Vinci (1452–1519).
Italian renaissance artist, archi-
tect, scientist and engineer. A
universal genius who made fun-
damental contributions to almost
every field. Also a highly prac-
tical man who concerned himself
with the basic mechanical prin-
ciples behind everyday machines,
and sometimes also future ma-
chines, such as the helicopter.

Leonardo’s law
Leonardo da Vinci knew—and used—that the water speed decreases when a canal or river becomes wider
and increases when it becomes narrower [70]. He discovered the simple law that the product of the cross-
sectional area of a canal and the flow velocity in the canal is always the same.

Consider, for example, an aqueduct or canal and mark two fixed planar cross sections A1 and A2, both
orthogonal to the general direction of flow. Leonardo’s law then says that the water velocities v1 and v2
through these cross sections must obey the relation

A1v1 = A2v2. (15.17)

The law expresses the rather self-evident fact that the same volume of incompressible water has to pass any
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A2A1

Aqueduct with varying cross
section. The volume of water
passing through the cross section
A1 is the same as the amount
of water passing through A2, or
A1v1 = A2v2 where v1 and v2
are average flow velocities.

cross section of the canal per unit of time. We use it all the time when dealing with water.
Leonardo’s law follows from the global condition of incompressibility (15.13). Together with the sides

of the canal, the two cross sections define a volume to which the condition can be applied. Since no water
can flow through the sides of the canal, the surface integral only receives contributions from the two cross
sections, and consequently, taking both normals along the general direction of the canal, we get∮

v · d S =
∫

A2

v · d S −
∫

A1

v · d S = 0. (15.18)

The average flow velocity through a cross section A of the canal is

vA = 1

A

∫
A

v · d S. (15.19)

It then follows from (15.18) that the product A vA is the same everywhere along the canal. This modern
formulation of Leonardo’s law is valid independent of whether the flow is orderly or turbulent.

Example 15.2.3 (Hypodermic syringe): A hypodermic syringe contains a few cm3 of liquid in a
small chamber about 1 cm in diameter and a few centimetres long. The liquid is injected through a

Copyright © 2005 IOP Publishing Ltd.



194 15. FLUIDS IN MOTION

hollow needle with an inner diameter of about 1 mm in the course of a few seconds. Since the ratio
of cross sections is 100, Leonardo’s law tells us that the speed of the liquid in the needle is about 100
times larger than the speed with which the piston of the syringe is pushed, i.e. of the order of metres per
second. No surprise that it sometimes hurts to have an injection.
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The flow velocity in the thin
needle of a syringe is much
higher than in the liquid chamber.

Leondardo’s law is definitely not valid for compressible fluids. When you pump your bicycle by pushing a
piston into a cylindric chamber filled with air, the average flow velocity will decrease towards the end of the
chamber where it has to vanish, because no air can pass through there. But the cross section of the chamber
is constant, so the product of cross section and average velocity cannot be constant throughout the chamber.

15.3 Mass conservation
In Newtonian mechanics, mass is conserved. The mass of a collection of point particles (‘molecules’) can
only change by addition or removal of particles. Since all matter is made from molecules, this must mean
that the only way the mass in a given volume of continuous matter can change is by mass flowing in or out
of the volume through its surface. This almost trivial remark leads to the first of the two central equations
of continuum dynamics, the equation of continuity.

Mass flux
Consider a piece of a fixed open or closed surface, S. The (signed) amount of mass passing through a tiny
surface element d S in the time interval dt will be ρvdt ·d S. Integrating over the whole surface and dividing
by dt , we find the total amount of mass transported through S per unit of time,

Q =
∫

S
ρ v · d S, (15.20)

also called the flux of mass through the surface S. According to the definition of the velocity field (15.1) the
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Matter moves with velocity
v(x, t) through every surface
element d S near x.

quantity ρ v is the density of momentum, but now we learn that it also specifies how much mass that flows
through a unit area in a unit of time, a quantity called the current density of mass.

Example 15.3.1 (Water hose): Water is discharged from a fixed hose at a rate of Q = 1 kg s−1.
The hose has cross section A = 1 cm2, so that the average current density of mass at the exit of the
tube is 〈ρv〉 = Q/A = 10 000 kg m−2 s−1. Since the water density is constant, ρ = 1000 kg m−2,
the average flow speed is 〈v〉 = 10 m s−1. Ignoring air resistance, the water will reach a height of
h ≈ 〈v〉2/2g0 = 5 m, if directed vertically upwards.

Global mass conservation
Since mass can neither be created nor destroyed, the rate of gain of mass in a fixed volume, V , must equal
the flux of mass into the volume through its closed surface S (as usual oriented outwards),

...........................................................................................................................................................
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......................
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......................
.....................
......................
......................
......................

......................
..........................

..............................................
.............................................................................................................................................................................................................................................................................................................

��� ���

������

V S

The only way the amount of mass
can diminish in a fixed volume
V is by a net outflow through its
closed surface S.

d

dt

∫
V
ρ dV = −

∮
S
ρ v · d S. (15.21)

This is the global equation of mass conservation for an arbitrary fixed control volume. It expresses the
obvious fact that the mass you gain when you eat equals the mass of the food you pass into your mouth.

The material rate of change of mass is the sum of the rate of gain of mass in the fixed volume and the
rate at which mass would be incorporated through its surface, were it comoving,

DM

Dt
= d

dt

∫
V
ρ dV +

∮
S
ρ v · d S. (15.22)

Comparing with mass conservation (15.21) we find,

DM

Dt
= 0. (15.23)

The material rate of change of mass vanishes, expressing simply that the amount of mass in a comoving
volume does not change with time, as one would expect.

Copyright © 2005 IOP Publishing Ltd.



15.4. MOVING ALONG WITH THE FLOW 195

Local mass conservation
Since the control volume is fixed, we may move the time derivative inside the volume integral and use
Gauss’ theorem (6.4) on the surface integral, to obtain

DM

Dt
=

∫
V

(
∂ρ

∂t
+ ∇ · (ρv)

)
dV = 0.

As this has to be true for any volume V , we conclude that mass conservation requires,

∂ρ

∂t
+ ∇ · (ρv) = 0, (15.24)

for all points x in space and all times t . This is the equation of continuity, first obtained by Euler (1753).
Although derived from global mass conservation applied to a fixed volume, it is itself a local relation
completely without reference to macroscopic volumes.

The continuity equation applies to all locally conserved quantities, for example electric charge. In
general it relates the local rate of change of the density of a quantity, here ∂ρ/∂t , to the divergence of its
current density, here ∇ · (ρv).

Example 15.3.2 (Bicycle pump): A piston is pushed into an air-filled cylindric chamber with constant
cross section A. Let its distance from the end wall be x = a(t) at time t . If the piston moves
slowly enough (compared to the velocity of sound), the density is the same throughout the chamber,
ρ(t) = M/Aa(t), where M is the (constant) mass of the air in the chamber. It is reasonable to assume
that only the x-component of the velocity field is non-vanishing, and the equation of continuity becomes
(with a dot denoting the time derivative),

0 x

ρ(t)

a(t)

Bicycle pump. The velocity field
varies linearly with x .ρ̇(t)+ ρ(t) ∂vx (x, t)

∂x
= 0.

The solution to this differential equation, which vanishes for x = 0, is

vx (x, t) = −x
ρ̇(t)

ρ(t)
= x

ȧ(t)

a(t)
. (15.25)

When you pull at the piston, ȧ > 0, the velocity grows linearly with the position x along the chamber,
and conversely.

15.4 Moving along with the flow
How does the environment look from the point of view of a small object riding along with the motion of
the material? A speck of dust being sucked into a vacuum cleaner will find itself in a region with higher
air velocity and lower pressure and density than outside, even if the flow of air is completely steady with
air velocity, pressure and density being constant in time everywhere (because you have stopped moving the
head of the cleaner). The ambient flow of matter may thus contribute to changes in physical quantities in
the neighbourhood of comoving particles.

Local material rate of change of density

�����vdt

x, t

�x′, t ′

....................
.......................

...........................
...................................

...................................................................................................................................................................................................

..........................
.......................

.....................
...................
....................
.....................
...................
...................
.................
................
............

A particle may be swept along
with the flow into a region of
different density and velocity.

A particle near the point x at time t riding along with the flow will at time t ′ = t + δt have been displaced
to the point x′ = x + v(x, t)δt . Expanding to first order in δt we find the change in mass density

δρ = ρ(x + vδt, t + δt)− ρ(x, t)
= vxδt

∂ρ(x, t)
∂x

+ vyδt
∂ρ(x, t)
∂y

+ vzδt
∂ρ(x, t)
∂z

+ δt ∂ρ(x, t)
∂t

=
(
∂ρ

∂t
+ (v · ∇)ρ

)
δt .
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As before we shall introduce a special notation for this local material rate of change of the density,

Dρ

Dt
= ∂ρ

∂t
+ (v · ∇)ρ. (15.26)

Using the relation

∇ · (ρv) = (v · ∇)ρ + ρ∇ · v, (15.27)

we may write the equation of continuity (15.24) as

Dρ

Dt
= −ρ ∇ · v. (15.28)

Returning to the question of incompressibility, we see that setting ∇ · v = 0 forces the comoving rate of
change to vanish. The density must thus be constant in the neighbourhood of a particle that moves along
with the incompressible flow, even if the density should vary from place to place.

Rolling boulder: A rigid body, for example a boulder rolling down a mountainside, is by all
counts incompressible. Although its mass density may vary according to the mineral composition
of the rock, it stays—of course—the same in the neighbourhood of any particular mineral grain,
independent of how the boulder rolls.

Constant mass of material particle
The material rate of change of the mass d M of a material particle can be calculated from the material rate
of change (15.26) of the density and the material volume rate of change (15.11),

D(d M)

Dt
= D(ρ dV )

Dt
= Dρ

Dt
dV + ρ D(dV )

Dt
= −ρ∇ · v dV + ρ∇ · v dV = 0.

In the last step we used the equation of continuity in the form (15.28). Conversely, this calculation shows
that we could have arrived at the continuity equation by postulating the constancy of the mass for every
comoving material particle.

Material time derivative operator
The material rate of change of the density (15.26) is obtained by applying the differential operator,

D

Dt
= ∂

∂t
+ v(x, t) · ∇, (15.29)

to the density field. This operator, called the local material time derivative, is a mixed differential operator
in time and space which can be applied to any field. The first term ∂/∂t represents the local rate of change
of the field in a fixed point x whereas the second part v · ∇, called the advective part, represents the effect
of following the motion of the material in the environment of the point2.

For the trivial vector field x we find, for example,

Dx
Dt

= (v(x, t) · ∇)x = v(x, t). (15.30)

The material rate of change of position thus equals the velocity field.

2There appears to be no universally accepted name for the advective term which in some other texts is called the
convective or inertia term.
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∗ Eul eri an di spl a cement fiel d
I n pr i nci pl e w e m ay t r ace back any m at er i al par t i cl e t o i t s or i gi n at some i nst ant i n t i m e and speak about
i t s (E ul eri an) di spl acement u( x, t) as a function of its actual position x at time t . S i nce t he poi nt of or i gi n,
x0 = x − u( x, t) , i s fi xed f or any part i cl e t r aj ect ory, we have D x 0/ Dt = 0, a nd t hus f r om ( 15. 30)

v = D u
Dt

= ∂ u
∂ t

+ (v · ∇) u. ( 15. 31)

T he vel oci t y fi el d i s t hus t he m at eri al derivat ive of t he E ul eri an di spl acement fi el d, but not e t hat t hi s i s
an i m pl i ci t equat i on f or t he vel oci t y fi el d. T he di spl acement fi el d i s i mport ant for t he mechani cs of l arge
el ast i c def or m at i ons and f or gener a l vi scoelastic material s having bot h elastic and fl ui d properties. In this
book w e shal l not di scuss s uch m at er i a l s .

1 5 . 5 Co nt i nuum dy na m i cs
Newt on’s S econd L aw s t at es t hat ‘ mass t i mes accel erat i on equal s force’ for a poi nt part i cl e of fi xed mass.
C ont i nuum physi c s i s not concer ned w i t h poi nt par t i c l e s, but i nst ead w i t h vol umes of m at t e r of fi ni t e ext e nt .
The smallest such volumes are the material particles, and since a comoving material particle has constant
mass it comes closest to the concept of a fixed-mass point particle.

Material acceleration field
For a comoving particle, the material derivative of the velocity field defines the material acceleration field,

w = Dv

Dt
= ∂v

∂t
+ (v · ∇)v. (15.32)

The first term, the local acceleration ∂v/∂t , is most important for rapidly varying small-amplitude velocity
fi e l ds, such as sound wave s i n s ol i ds or fl ui ds ( s ee sect i on 16. 2) . T he second t e r m , t he advect i ve accel erat i on
(v · ∇)v, is most important for flows dominated by strong spatial variations in the velocity field.

If the flow is steady, such that the local acceleration vanishes, ∂v/∂t = 0, the advective term will
be the only cause of acceleration. We become acutely aware of the advective acceleration in a little boat
approaching the rapids in a narrowing river.

Newton’s Second Law for continuous matter
Applying Newton’s Second Law to an arbitrary comoving material particle with mass d M = ρ dV , we find

d Mw = d� , (15.33)

where w is the material acceleration (15.32) and d� is the total force acting on the particle. It was shown
in section 9.4 on page 116, that the total force on a material particle can be written as d� = f ∗ dV where

f ∗
i = fi +

∑
j

∇ jσi j , (15.34)

is the effective force density. Dividing (15.33) by dV and inserting the acceleration field (15.32) we arrive
at Cauchy’s equation (1827),

ρ
Dv

Dt
= ρ

(
∂v

∂t
+ (v · ∇)v

)
= f ∗. (15.35)

In conjunction with the continuity equation (15.24), this equation governs the dynamics of all continuous
matter.

Different types of materials, gases, liquids, solids etc, are characterized by different expressions for the
effective force density (15.34), in particular what concerns the part due to contact forces. The last two and
a half centuries of continuum physics have essentially ‘only’ been an exploration of the rich ramifications
of this dynamical equation.
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Field equations of motion
T he equation of continuity (15. 24) and C auchy’s dynamic equation may be written i n t he form of equat i ons
of motion f or t he f our fi e l d component s, ρ and t he t hr e e c omponent s of v ,

∂ρ

∂ t
= −∇ · (ρv),  ( 15. 36a)

∂v

∂ t
= −(v · ∇)v + 1

ρ
f ∗. ( 15. 36b)

K now i ng t he densi t y and vel oci t y fi e l ds a t a give n t i m e t oget her w i t h t he e ff ect ive body f or c e densi t y ( w hi ch
usual l y al so depends on t hese fi el ds) , t he a bove equat i ons al l ow us t o cal cul a t e t he r at e of c hange of t he
fi el ds. I f t he f or ces depend on non- mechani cal fi el ds, f or exampl e t he t emper at ur e, s peci al equat i ons of
mot i on ar e al so needed f or t hose fi el ds t o make t he s yst em compl et e ( see chapt er 30) .

∗ Global dynamics
C a uchy’s e quat i on ( 15. 35) has been der ive d by a ppl yi ng N ew t on’s s econd l aw t o m at er i a l par t i c l e s. I t mi ght
as w e l l have been obt ai ned by post ul a t i ng t he gl obal l aw t hat t he m at er i a l r at e of c hange of moment um of
any vol ume of m at t e r m ust e qual t he t ot a l f or ce act i ng on t hat vol ume,

D�

Dt
= � . ( 15. 37)

For a fi xed vol ume, t he mat e r i al r a t e of change i s as bef or e defi ned as t he nor mal r at e of c hange i n t he
vol ume pl us t he l oss of m oment um t hr ough t he s ur face. For t he i t h component of moment um w e have

D�i

Dt
= d

dt

∫
V
ρvi dV  +

∮
S
ρvi v · d S. ( 15. 38)

Passing the time derivat ive i nt o t he integral and using Gauss’ theorem, we obt ai n a volume integral with the
i nt egr and r esembl i ng t he cont i nui t y equat i on,

∂(ρvi )

∂ t
+ ∇ · (ρvi v) = vi

(
∂ρ

∂ t
+ ∇ · (ρv)

)
+ ρ

(
∂vi

∂ t
+ (v · ∇)vi

)
. ( 15. 39)

Here t he fi rst t erm vani s hes because of t he cont i nui t y equat i on f or mass, and t he second t erm becomes
f ∗i because of Cauchy’s equat i on, t hereby provi ng (15. 37). I n c hapt er 22 gl obal l aw s of t hi s ki nd w i l l be
derived systematically and used t o obt ai n approxi mate solutions to fluid mechanics probl ems.

15.6 B ig Bang
A c l oud of non- i nt e r act i ng par t i c l e s, gr ai ns or f r a gment s , i s per haps a poor model f or cont i nuous mat t e r, but
it is nevertheless of interest to study the equations of motion for the vel ocity field in this most simple case
w her e al l vol ume and cont act f or ces ar e absent . I t may even be used as a pr i m i t ive model f or t he expandi ng
universe with galaxies playing the role of grains. But the lack of interaction violates the continuum
conditions discussed i n chapter 1, and no dynamic s moothing of the fi el ds by collisions will occur. Given
a certain initial velocity any grain will like a ghost continue unhindered with the same velocity through the
cloud for all time, and thus have infinite mean free path. The model should definitely be taken with a grain
of salt.

�
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�
�
�
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�
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�
�
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In a cloud of free particles all
particles move in straight lines
with constant velocity forever.

Explosion field
Suppose that the cloud is created in an explosion where the fragments have stopped interacting immediately
after the event and now move freely away from each other. Since there are neither contact forces nor
body forces, we have f ∗ = 0, and every material particle is unaccelerated. Consequently, the comoving
acceleration (15.32) must vanish everywhere,

∂v

∂t
+ (v · ∇)v = 0. (15.40)

Copyright © 2005 IOP Publishing Ltd.



15.6. BIG BANG 199

I n spi t e of t hi s bei ng t he si mpl e st possi bl e dynami cal equat i on, i t l ooks compl i cat ed enough, and
i f pr esent e d w i t hout any ot her expl anat i on, we woul d have s ome di ffi c ul t y sol vi ng i t because of i t s
nonlinearity.

U nder neat h, how eve r, w e know t hat i t onl y i mpl e ment s t he l aw of i ner t i a , w i t h al l par t i c l e s m ovi ng
at const a nt ve l oci t y al ong st r a i ght l i nes. I f t he expl osi on happened a t t he poi nt x = 0 at time t = 0, t he
fragments were almost instantly given r andom velocities i n all directions. A fter the explosion t he fragments
will be separated according t o t heir velocities with the fastest fragments being farthest away. At time t , the
ve l oci t y of any f r a gment f ound at x must be

v( x, t) = x
t
, ( 15. 41)

i ndependent of how t he expl osi on s t a r t ed out . To s ee t hat t hi s i ndeed sat i s fi e s ( 15. 40) , w e cal cul a t e t he
x - c omponent

∂vx

∂ t
+ (v · ∇)vx = ∂(x/ t)

∂ t
+ x

t

∂(x/ t)

∂ x
+ y

t

∂(x/ t)

∂ y
+ z

t

∂(x/ t)

∂ z

= −  
x

t 2 
+ 

x

t 2

= 0,

and similarly for the y and z component s.
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E xpl osi on f r a gment s become
separated according t o i nitial
vel oci t y, because t hose fragment s
t hat acci dent al l y have t he l argest
initial velocity will ever after be
fart hest away from t he cent r e.

E dw i n P ow el l H ubbl e ( 1889–
1953) . A m eri c an ast ronom er. A l -
t hough ori gi nal l y obt ai ni ng a B S-
degree i n ast ronom y and m at h-
em at i c s, he cont i nued i n l aw
but onl y pract i ced i t f or a year
bef ore t urni ng back t o ast ron-
om y. D e m onst rat ed i n 1924 t hat
t he observed spi ral cl ouds w ere
gal axi e s, f ar out si de t he Mi l ky
Way. Di scovered t he di s t ance-
vel oci t y re l at i onshi p t hat now
carri es hi s nam e i n 1929.

Hubble’s law
T he expl osi on fi el d ( 15. 41) i s of t he s ame f or m a s H ubbl e’s l aw, w hi ch st at es t hat al l gal axi e s m ove away
from us ( and each other) with speeds t hat are proportional t o t heir distances, i n our notation w ritten as,

v = H0 x, ( 15. 42)

where H0 is called the H ubbl e c onst ant .
I n gener a l r el at ivi t y, t hi s l aw i s under s t ood as a c onsequence of a uni f or m expansi on of s pace i t s el f

since the initial Big Bang. In the primitive model used here, the Hubble constant equals the inverse age of
the universe H0 = 1/t . Although first determined in 1929, it has been very difficult for astronomy to settle
on a reliable experimental value for the Hubble constant. The latest value3 is 75 kilometres per second per
megaparsec or H0 ≈ 2.4 × 10−18 s−1 with an uncertainty of about 10%. The inverse comes to 1/H0 ≈ 13
billion years which agrees comfortably with the age of 12.5 billion years for the oldest stars4. The problem
i s , how ever, t hat t he age of t he unive r s e det er mi ned f r om c osmol ogy i s model - dependent ( s ee sect i on 15. 7) ,
and more conservative estimates places the age of the universe somewhere between 12 and 20 billion years.

∗ Evolution of the mass density
The shape of the localized mass distribution just before the explosion at t = 0 does not matter much for
what happens later. An explosion is a cataclysmic event where large unknown forces distribute essentially
random velocities to all the fragments of the ‘body’ of mass M0 that existed before the explosion.

After the explosion these fragments become separated according to their velocities, as described by the
explosion field (15.41). Let us, for example, assume that the probability that a fragment has a velocity v in a
small neighbourhood d3v = dvx dvydvx around v is f (v) d3v, where the probability density is normalized,∫

f (v) d3v = 1. (15.43)

3L. V. E. Koopmans, T. Trey, C. D. Fassnacht, R. D. Blandford and G. Surpi, The Hubble constant from the
gravitational lens B1608 + 656, The Astrophysical Journal 599, (2003) 70.

4R. Cayrel, V. Hill, T. C. Beers, B. Barbuy, M. Spite, F. Spite, B. Plez, J. Andersen, P. Bonifacio, P. François, P.
Molaro and B. Nordström, Measurement of stellar age from uranium decay, Nature 409, (2001) 691.
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The fragments given the velocity v in d3v will have mass d M = M0 f (v)d3v, and since they are found at
the position x = v t at time t , the mass is also d M = ρ dV = ρt3d3v. Solving for the mass density we
find,

ρ(x, t) = M0

t3
f
( x

t

)
. (15.44)

It is not hard to show (problem 15.7) that the total mass equals M0 and that this density satisfies the equation
of continuity (15.24) with the velocity field (15.41).

15.7 Newtonian cosmology
Continuing our investigation of the expanding universe, we now wish to include the gravitational field in
the dynamical equation (15.35), but still allow no contact forces, so that f ∗ = ρg. The equation of motion
then becomes

∂v

∂t
+ (v · ∇) v = g, (15.45)

instead of (15.40). Despite being non-relativistic, this model captures essential elements of cosmology,
although a proper understanding does require general relativity [78].

Cosmic democracy
In days of old, the Earth was thought to be at the centre of the universe. Since Copernicus, this thinking has
been increasingly replaced by the more ‘democratic’ view that the Earth, the Sun, the Galaxy are common
members of the universe of no particular distinction (except that we live here!). The end of this line of
thought is the extreme Copernican view that for cosmological considerations every place in the universe is
as good as any other. As we shall see, this ‘Cosmological Principle’ or ‘Principle of Cosmic Democracy’ is
quite useful.Nicolaus Copernicus (1473–

1543)). Polish astronomer.
Studied when young both
medicine and astronomy. Revolu-
tionized the understanding of the
solar system with his unauthored
booklet Little Commentary
from 1514, and especially with
his life’s work, the 200 page
book De revolutionibus orbium
coelestium, published in latin in
the year of his death (1543). His
views of the solar system were
widely criticized but supported
by both Kepler and Galileo.

Mass density: It immediately follows from this principle that at a particular instant of time t , the
(average) mass density cannot depend on where you are, and must thus be the same everywhere,

ρ(x, t) = ρ(t). (15.46)

Velocity field: The Hubble expansion of the universe,

v(x, t) = H(t) x, (15.47)

with a time-dependent Hubble ‘constant’, H(t), does not look ‘democratic’ because it seems to single out
the centre of the coordinate system. It is, in fact, completely democratic, because

v(x, t)− v( y, t) = H(t)(x − y). (15.48)

This means that an observer in a galaxy at point y will also see the other galaxies recede from him according
to the same Hubble law as ours.

Field of gravity: Can gravity be democratic? In Newtonian cosmology it is not possible to view the
universe as a homogeneous whole when it comes to gravity. What is gravity in an infinite universe?
Symmetry would seem to argue that it should vanish, because there is as much matter pulling from one
side as from the opposite, but is that right?

To overcome this problem, let us for a while think of the universe as a huge sphere with vacuum outside
and centred somewhere, perhaps right here, and let us put the origin of the coordinate system at the centre of
this sphere. In that case, we have seen in section 6.2 that the strength of gravity at a given point x depends
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only on the amount of mass, M(r) = (4/3)πr3ρ, inside the sphere with radius r = |x|, whereas one may
forget the mass outside this radius. In other words, the field of gravity is

g(x, t) = −4π

3
Gρ(t) x. (15.49)

Interestingly, by the same argument as for the velocity, an observer in another galaxy at y will see a similar
gravitational acceleration field around himself

g(x, t)− g( y, t) = −4

3
πGρ(t)(x − y), (15.50)

as if he/she/it were also at the centre of the universe. This observer may, however, not think of his universe
as a huge sphere centred on himself, but must concede that our galaxy is special, at least as long as he
subscribes to Newtonian physics. In general relativity, this problem happily goes away.

Cosmological equations
Using ∇ · x = 3, we obtain from (15.47) and the equation of continuity (15.24)

ρ̇ = −3Hρ, (15.51)

where as before a dot denotes differentiation with respect to time. Similarly, inserting (15.47) into (15.45)
and using (x · ∇)x = x, this equation becomes, after removal of a common factor x

Ḣ + H2 = −4π

3
Gρ. (15.52)

Newtonian cosmology thus reduces to just two coupled ordinary differential equations for the mass density
and the Hubble ‘constant’. Note that the reference to the centre of the universe has disappeared completely,
and we may from now on again think of a truly infinite universe with equal rights for all observers.

The cosmic scale factor
The simplest way to solve these equations is by introducing a new quantity with the dimension of length,
a(t), called the cosmic scale factor, satisfying

ȧ = Ha. (15.53)

From the equation of continuity (15.51) we get

d

dt
(ρa3) = −3Hρ a3 + ρ 3a2 Ha = 0, (15.54)

and this shows that the mass, M = (4/3)πρ(t)a(t)3, in an expanding sphere of radius a(t) is constant in
time. Eliminating H from (15.52), we obtain the following differential equation for cosmic scale factor,

ä = −G
M

a2
, (15.55)

which is identical to the equation of motion for a particle moving radially in the gravitational field of a point
mass M .
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Critical density
The ‘equation of motion’ (15.55) implies that the ‘energy’

E = 1

2
ȧ2 − G M

a
, (15.56)

must be conserved in the time evolution of the scale factor, i.e. Ė = 0, as may easily be verified. Eliminating
the mass, and using (15.53) to eliminate ȧ, it may be written in the form

E = 4

3
πGa2(ρc − ρ), (15.57)

where the critical density,

ρc = 3H2

8πG
, (15.58)

can be calculated from present-day observation of the Hubble ‘constant’. Using the latest value H0 =
75 km s−1 Mpc−1 one finds ρc ≈ 1.1 × 10−26 kg m−3, corresponding to about six protons per cubic
metre.

From the particle analogy, we know that the scale factor will ‘escape’ to infinity for E > 0, but turn
around and ‘fall back’ for E < 0. This means that the expansion will continue forever for ρ < ρc, but
eventually must turn around and become a contraction if ρ > ρc. The two types of universe are called open
or closed, respectively. For the critical case, ρ = ρc, the expansion also continues forever at the slowest
possible pace.

� t

�
a(t)

closed (ρ > ρc)

critical
open

(ρ < ρc)

Time evolution of the cosmic
scale factor depending on the ac-
tual average mass density com-
pared to the critical density.

Age of the universe
The energy equation (15.56) may be solved for ȧ with the result,

ȧ =
√

2
(

E + G M

a

)
.

Demanding that a = 0 for t = 0, the solution is given implicitly by

t =
∫ a

0

dr√
2

(
E + G M

r

) (15.59)

which must be the time elapsed since the scale factor was zero, i.e. since the Big Bang. For the critical case,
E = 0, the integral is easy to evaluate and we find

t = 2

3

a3/2
√

2G M
(15.60)

from which it follows that H = ȧ/a = 2/3t or t = 2/3H . With the present day value of H the age of the
universe comes to about 8 billion years, disagreeing strongly with the age of the oldest stars.

The cosmological constant
The problem is that the actual age of the universe determined from cosmology is model-dependent. If the
universe, for example, besides ordinary matter were filled with a ghostly ‘dark matter’ (or perhaps ‘dark
energy’) with a positive mass density, ρ0, constant in both space and time, then the ‘energy’ (15.57) should
be replaced by

E = 1

2
ȧ2 − G(M + M0)

a
= 4π

3
Ga2(ρc − (ρ + ρ0)), (15.61)

where M0 = (4/3)πρ0a3 and ρ as before is the density of ordinary matter still obeying the continuity
equation (15.51).
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The new dynamic equation is found by differentiating the energy E after time (remembering that ρc is
not constant),

Ė = 4π

3
G2aȧ(ρc − (ρ + ρ0))+ 4π

3
Ga2(ρ̇c − ρ̇)

= 4π

3
Ga2

(
2H(ρc − (ρ + ρ0))+ 3H Ḣ

4πG
+ 3Hρ

)
= a2 H

(
Ḣ + H2 + 4π

3
G(ρ − 2ρ0)

)
.

Since the energy must be constant, the new dynamic equation is,

Ḣ + H2 = −4π

3
G(ρ − 2ρ0). (15.62)

For sufficiently large ‘dark’ density, satisfying 2ρ0 > ρ, the gravitational attraction apparently turns into a
gravitational repulsion.

The real understanding of how a positive mass density ρ0 can give rise to an effective gravitational
repulsion can only be obtained from relativistic theory [78, p. 614], which correctly takes into account the
huge pressure accompanying ρ0. Einstein already introduced in 1917 the so-called cosmological constant
(which is proportional to ρ0) for the explicit purpose of permitting static solutions to the cosmological
equations of general relativity. Clearly, the new cosmological equations admit a non-expanding, static
solution having ρ = 2ρ0 and H = 0. Since that time we have learned that our universe is not static
but instead expands with a finite Hubble constant. For many years the case for the cosmological constant
seemed to be closed, but recent discoveries may have changed that.

In an open universe, the following peculiar scenario is possible when ρ0 < 1/3ρc . For 2ρ0 < ρ <

ρc − ρ0, the energy is positive and the effective gravity is attractive, so that the expansion will decelerate
with time, i.e. with ä = a(Ḣ + H2) < 0. But sooner or later, the expansion will make the density fall below
the critical value ρ = 2ρ0, and the effective gravity becomes repulsive. The expansion will then begin to
accelerate with ä > 0, and continue to do so forever thereafter. Recent observations seem to indicate that
the cosmic expansion is in fact accelerating and that it may have been decelerating in the past5.

Problems
15.1 Draw streamlines, particle orbits and streaklines for a rotating velocity field v = a(cosωt, sinωt, 0).
This resembles the velocity field of a pad sander, used to sand wooden surfaces.

15.2 The wind suddenly turns from south to west. Draw streamlines, particle orbits and streaklines before
and after the event.

15.3 A water pipe with diameter 1 inch branches into two pipes with diameters 3/4 inch and 1/2 inch.
Water is tapped from the largest branch at double the rate as from the other. What is the ratio of velocities
in the pipes?

15.4 Calculate the time-derivative of ρ(x(t), t) where x(t) is a particle orbit and show that it is identical
to the comoving derivative.

15.5 Consider an incompressible steady flow in a stream with constant depth, z = d , bounded on one side
by a straight line, y = 0, and on the other side by a curve y = h(x), which is slowly varying |dh/dx| � 1.
(a) Calculate the average flow velocity in the x-direction (for fixed x). (b) Approximately calculate the
comoving acceleration in the flow. (c) What should the shape of the curve be in order for the comoving
acceleration to be independent of x?

5See for example M. S. Turner and A. G. Riess, Do Type Ia supernovae provide direct evidence for past deceleration
of the universe?, The Astrophysical Journal 569, (2002) 18.
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15.6 Consider an incompressible steady flow in a circular tube along the x-axis with a slowly changing
radius r = a(x). (a) Calculate the average flow velocity in the x-direction. (b) Approximately calculate
the comoving acceleration in the tube, and (c) determine what shape of tube will lead to constant comoving
acceleration.

15.7 Show that the explosion density (15.44) satisfies the equation of continuity.

∗ 15.8 Prove (15.11) directly from the change of the infinitesimal volume of a material particle without
making use of Gauss’ theorem (hint: use the Jacobi determinant of the infinitesimal displacement).

∗ 15.9 Consider a universe in which matter is created everywhere at a constant rate, J , per unit of volume
and time (Bondi and Gold (1948), Hoyle (1949)). Show that this allows for a steady-state cosmological
solution with constant mass density and Hubble constant, and determine the rate of mass creation.
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T he m ost i mpor t a nt fl ui ds of our dai l y l i f e, ai r a nd wa t e r, ar e l ivel y a nd easi l y set i nt o i r r egul ar mot i on.
Getting out of a bat ht ub creat es vi sibl e t urbulence i n t he soapy wat er, whereas we have to imagine t he
unr ul y a i r behi nd us w hen w e j og. I nt e r nal f r i ct i on, or vi scosity, seems to play only a minor role in these
fl ui ds. O t her fl ui ds, l i ke honey a nd gr ease, ar e hi ghl y vi s cous, do not easi l y become t ur bul ent , and woul d
certainly be very hard to swim in.

Being l ively or sluggish is, how ever, not an absolute property of a fl uid, but rather a condition of t he
ci r cumst ances under w hi ch i t fl ow s . L ava m ay be ver y sl uggi sh i n smal l amount s, but w hen i t s t r eams dow n
a m ount ai nsi de i t appear s t o be qui t e l ivel y. We s hal l see l at er t hat t her e i s a way of char act er i zi ng fl ui d fl ow
by means of a r eal number, cal l ed t he R eynol ds num ber , which is typically large for lively flow and small
f or s l uggi sh fl ow.

T he earliest modern quantitative model of fl uid behaviour goes back to E uler about 250 years ago and
di d not i ncl ude vi scosi t y. A l t hough N ew t on i nt r oduced t he c oncept , vi scosi t y fi r st ent e r e d fl ui d m echani c s
in its modern formulation almost a century later. Fluids with no viscosity have been called ideal or perf ect ,
or even dry. An i deal fl ui d does not hang on t o sol i d surfaces but i s abl e t o s l i p al ong cont ai ner wal l s wi t h
finite velocity, whereas a real fluid has to adjust its velocity field so that it matches the surface speed of the
solid objects that are in contact with it.

A l t hough t r ul y i deal fl ui ds do not r eal l y exi s t , except f or a c omponent of super fl ui d hel i um c l ose t o zer o
ke l vi n, vi s cous fl ui ds m ay neve r t hel e ss fl ow w i t h such hi gh R eynol ds number t hat t hey behave a s near l y
i deal . B ei ng i deal i s t hus mor e a pr oper t y of t he fl ow c ondi t i ons t han of t he fl ui d i t s el f . I ndependent of
how l arge t he R eynol ds number of t he fl ow, t her e w i l l alwa ys be vi scous boundary l ayers ar ound sol i d
obst acl es and near t he wal l s of fl ui d condui t s . I n t hi s c hapt er w e f ocus on near l y i deal fl ow, and post pone
t he i nt r oduct i on of vi s cosi t y t o chapt e r 17 a nd of boundar y l a yer s t o chapt e r 28. L e onhar d E ul e r ( 1707–83) . Sw i s s

mathematician who made funda-
mental contributions to calculus,
geometry, number theory, and to
practical ways of solving math-
ematical problems. His books
on differential calculus (1755)
and integral calculus (1768–70)
have been especially useful for
physics.

16.1 The Euler equation
In 1755 Euler was the first to write down Newton’s second law of motion for fluids without viscosity. In
such a fluid the only forces at play are pressure and gravity, but in distinction to hydrostatics, where these
two forces are in balance, they now give rise to a non-vanishing effective density of force f ∗ = ρg − ∇ p.
Inserting this into the dynamic equation (15.35) and dividing by the density ρ, we obtain the Euler equation
for ideal fluids,

∂v

∂t
+ (v · ∇) v = g − 1

ρ
∇ p. (16.1)

Together with the equation of continuity (15.24) which we repeat here,

∂ρ

∂t
+ ∇ · (ρv) = 0, (16.2)
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and a barotropic equation of state p = p(ρ), w e have ar r ived at a cl osed set of five equat i ons f or t he five
fields, vx , v y , v z , ρ and p (assuming that g i s know n) . I f t he e quat i on of s t a t e al so depends on t e mper at ur e,
p = p(ρ,  T ) , a heat equat i on f or t he t emper at ur e fi el d must be added t o t he set ( see chapt er 30) .

��������

In an ideal fluid the tangential
component of the velocity field is
non-vanishing all the way to the
static boundary.

Boundary conditions
Partial differential equations need boundary conditions. As in hydrostatics, Newton’s third law demands
that the pressure must be continuous across any material interface (in the absence of surface tension).
Furthermore, since moving fluids are normally contained in tubes, pipes, or other kinds of conduits that are
impenetrable to the fluid, it follows that the velocity component normal to a containing surface at rest must
vanish,

v · n = 0. (16.3)

There are, however, no conditions on the tangential velocity in non-viscous flow. Ideal fluids are thus able
to slip along container surfaces with finite tangential velocity, whereas the omnipresent viscosity of real
fluids also demands that the tangential velocity must vanish at a containing surface at rest.

�
�
��

����

In a real fluid the tangential com-
ponent of the velocity field rises
linearly from a static boundary
and joins smoothly with the flow
at large.

Exploring the extremes
Although we are now in possession of the fundamental equations for ideal fluids, solving them is another
matter. The bad news about nonlinear partial differential equations is that they are very hard to solve
and that makes it imperative to explore their usually simpler extreme limits. One such limit is the linear
approximation in which the nonlinearities are dropped, another is incompressible flow in which the density
is taken to be a constant, and still another is steady flow where all fields are assumed to be time-independent.
In the following sections these limits will be discussed in detail.

16.2 Small-amplitude sound waves
When you clap your hands, you create momentarily a small disturbance in the air which propagates to
your ear and tells you that something happened. The diaphragm of the loudspeaker in your radio vibrates
in tune with the music carried by the radio waves and the electric currents in the radio and transfers its
vibrations to the air where they continue as sound. No significant bulk movement of air takes place over
longer distances, but locally the air oscillates back and forth with small spatial amplitude, and the velocity,
density and pressure fields oscillate along with it.

Wave equation
For simplicity we assume that there is no gravity (see however problem 16.17). Before the sound starts, the
fluid is assumed to be in hydrostatic equilibrium with constant density ρ0 and constant pressure p0. We now
disturb the equilibrium by setting the fluid into motion with a tiny velocity field v(x, t). The disturbance
generates a small change in the density, ρ = ρ0 +�ρ, and in the pressure p = p0 +�p. Inserting this into
the Euler equations we obtain to first order in the small quantities, v, �p, and �ρ,

∂v

∂t
= − 1

ρ0
∇�p,

∂�ρ

∂t
= −ρ0∇ · v. (16.4)

Differentiating the second equation and inserting the first, we obtain

∂2�ρ

∂t2
= ∇2�p. (16.5)

Provided the fluid obeys a barotropic equation of state p = p(ρ) we get a relation between the pressure and
density corrections. From the definition of the bulk modulus (4.33) on page 53 we get to first order,

�p = dp

dρ

∣∣∣∣
0
�ρ = K0

ρ0
�ρ, (16.6)
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where K0 is the bulk modulus in hydrostatic equilibrium. Multiplying (16.5) with K0/ρ0 we get a standard
wave equation for the pressure correction,

∂2�p

∂t2
= c2

0∇2�p, (16.7)

where we, for convenience, have introduced the constant,

c0 =
√

K0

ρ0
. (16.8)

It has the dimension of a velocity, and may as we shall see below be identified with the speed of sound. For
water with K0 ≈ 2.3 GPa and ρ0 ≈ 103 kg m−3 the sound speed comes to about c0 ≈ 1500 m s−1 ≈
5500 km h−1.

Fluid
T

[◦ C]
c0

[m s−1]

Glycerol 25 1920
Sea water 20 1521
Fresh water 20 1482
Lube Oil 25 1461
Mercury 25 1449
Ethanol 25 1145
Helium 0 973
Water
vapour 100 478
Neon 30 461
Humid air 20 345
Dry air 20 343
Oxygen 30 332
Argon 0 308
Nitrogen 29 268

Sound speeds in various fluids
(from [34]).

Isentropic sound speed in an ideal gas
Sound vibrations in air are normally so rapid that temperature equilibrium is never established, allowing
us to assume that the oscillations take place without heat conduction, i.e. adiabatically. The bulk modulus
(4.38) of an isentropic ideal gas is K0 = γ p0 where γ is the adiabatic index, and we obtain

c0 =
√
γ p0

ρ0
=

√
γ

RT0

Mmol
. (16.9)

In the last step we have used the ideal gas law p0 = ρ0 RT0/Mmol.

Example 16.2.1 (Sound speed in the atmosphere): For air at 20 ◦ C with γ = 7/5 and Mmol =
29 g mol−1, this comes to c0 ≈ 343 m s−1 ≈ 1235 km h−1. Since the temperature of the homentropic
atmosphere falls linearly with height according to (4.43), the speed of sound varies with height z above
the ground as

c = c0

√
1 − z

h2
, (16.10)

where c0 is the sound speed at sea level and h2 ≈ 30 km is the homentropic scale height (4.44). At the
flying altitude of modern jet aircraft, z ≈ 10 km, the sound speed has dropped to c ≈ 280 m s−1 ≈
1000 km h−1. At greater heights this expression begins to fail because the homentropic model of the
atmosphere fails.

Plane wave solution
An elementary plane pressure wave moving along the x-axis with wavelength λ, period τ and amplitude
p1 > 0 is described by a pressure correction of the form,

�p = p1 cos(kx − ωt), (16.11)

where k = 2π/λ is the wavenumber and ω = 2π/τ is the circular frequency. Inserting the plane wave into

�

λ λ λ λ λ

x

Plane pressure wave propagating
along the x-axis with wavelength
λ. There is constant pressure
in all planes orthogonal to the
direction of propagation.

the wave equation (16.7), we obtain ω2 = c2
0k2 or c0 = ω/k = λ/τ . The surfaces of constant pressure are

planes orthogonal to the direction of propagation, satisfying kx −ωt = const. Differentiating this equation
with respect to time, we see that the planes of constant pressure move with velocity dx/dt = ω/k = c0,
also called the phase velocity of the wave. This shows that c0 given by (16.8) may indeed be identified with
the speed of sound in the material.

Inserting the plane pressure wave into the x-component of the Euler equation (16.4), we find the velocity
field

vx = v1 cos(kx − ωt), v1 = p1

ρ0c0
= p1

K0
c0. (16.12)

Since vy = vz = 0, the velocity field of a sound wave is always longitudinal, i.e. parallel to the direction
of wave propagation. The corresponding spatial displacement field ux satisfying vx = ∂ux/∂t becomes
amplitude ux = −a1 sin(kx − ωt) with amplitude a1 = v1/ω.
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Validity of the approximation
I t onl y r emai ns t o check w het her t he appr oxi mat i on of di s r egar di ng t he nonl i near t e r m s i s val i d. T he act ual
rat i o bet w een t he m agni t udes of t he advect ive and l ocal accel erat i ons i s ,

|(v · ∇)v|
|∂v/∂ t | ≈ kv  21

ωv1
= v1

c0
. ( 16. 13)

The condition for the approximation is thus that the amplitude of the velocity oscillations should be m uch
sm al l e r t han t he s peed of sound, v1 � c0 , or equivalently that p1 � K 0 or a1 � λ/2π .

E xamp l e 16. 2. 2 ( L ou d s p e aker) : A cer t ai n l oudspeaker t r ansmi t s sound t o ai r at a f r equency
ω/2π = 1000 Hz with diaphragm displacement amplitude of a1 = 1 mm. The velocity amplitude
becomes v1 = a1ω ≈ 6 m s−1 , and si nce v1/c0 ≈ 1/57 t he a ppr oxi mat i on of l eavi ng out t he a dvect ive
accel erat i on i s w el l j ust i fi ed.

16.3 Steady incompressible flow
In many pract i cal uses of fl ui ds, t he fl ow does not change wi t h t i me, and i s s ai d t o be st eady or st at i onary.
In this section we shall for simplicity al so assume that the fl ui d i s i ncompressibl e with constant density.
S t eady fl ow i n compressi bl e fl ui ds wi l l be anal ysed i n sect i on 16. 4 w here we shal l l earn t hat a flui d i n
st eady flow i s eff ect i vel y i ncom pressi bl e w hen t he flow vel oci t y i s everyw here m uch sm al l er t han t he s peed
of sound.

Ta ki ng ∂v/∂ t = 0 and ρ = ρ0 i n E ul e r s equat i ons w e now fi nd,

(v · ∇) v = g − 1

ρ0
∇ p, ∇ · v = 0. ( 16. 14)

Truly steady fl ow is like true incompressibility an idealization, only valid to a certain approximation. A
river may fl ow s t eadi l y for days and weeks, whi l e over s everal mont hs seasonal changes i n r ai nfal l makes
i t s wat er l evel r i se and s ubsi de agai n. I f one empt i es a ci st er n fi l l ed w i t h wat er t hr ough a nar r ow pi pe, t he
flow is almost steady in the pipe for a time, except that the level of water in the cistern slowly goes down
and t her eby r educes t he fl ow speed i n t he pi pe. I n such cases, t he fl ow s houl d r at her be cal l ed nearl y st eady
or quasi - st at i onary.D a ni el B e r noul l i ( 1700–82) .

D ut ch born m at hem at i c i an w ho
m ade m aj or c ont ri but i ons t o
the theory of elasticity, fluid
m e chani cs and t he m echani cs of
musical instruments. Bernoulli
pointed out the relation between
pressure and velocity in the
world’s first book on hydrody-
namics, Hydrodynamica, which
he published in 1738. Actually
it was not Bernoulli who formu-
lated the quantitative theorem
which now bears his name, but
rather Lagrange in his famous
book on analytic mechanics from
1788 [70].

How steady flow is reached: This explanation begs the question of how a steady flow is ever
established, for example in a calm river downstream from a waterfall. Since all flows start out being
time-dependent, viscosity must be capable of removing the surplus energy from a lively flow to calm
i t dow n, but even w hen w e i ncl ude i t ( i n c hapt er 17) t her e i s no guar a nt ee t hat t he fl ow w i l l become
steady after a long time. You just have to open the water faucet wide and watch the persistent
turbulent splashing in the kitchen sink to realize that steady flow may not always be the result of
steady or even static conditions.

Bernoulli’s theorem for incompressible fluid
The negative sign of the pressure gradient in Euler’s steady-flow equation shows that in the absence of
gravity a flow accelerating in a certain direction must be accompanied by a drop in pressure in the same
direction. Regions of high flow velocity must generally have a lower pressure than regions of low velocity.
Bernoulli’s theorem makes this qualitative conclusion quantitative.

For an incompressible fluid with constant density ρ = ρ0, Bernoulli’s theorem (to be proved below)
states that the field,

H = 1

2
v2 +�+ p

ρ0
, (16.15)

is constant along streamlines. In the absence of gravity �, the constancy of the Bernoulli field H implies
as we foresaw that an increase in velocity along a streamline must be compensated by a similar decrease
in pressure, and conversely. The Bernoulli field may be viewed as an extension of the effective potential
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(4.21) to fluid in motion. Note that the first two terms in the Bernoulli field make up the total mechanical
(i.e. kinetic plus potential) energy of a unit mass particle, also called the specific mechanical energy. We
shall later discuss how the Bernoulli field is related to energy (section 22.9).
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����4x0

�!!/
x

H(x0)

H(x)

H is constant along a streamline
in steady flow, i.e. H(x) =
H(x0).

The proof of the theorem is straightforward. The material rate of change of H along a particle orbit is
given by the material derivative (15.29), and since all fields are time-independent in steady flow we get

DH

Dt
= v · Dv

Dt
+ D�

Dt
+ 1

ρ0

Dp

Dt

= v · (v · ∇)v + (v · ∇)�+ 1

ρ0
(v · ∇)p

= v ·
(
(v · ∇)v − g + 1

ρ0
∇ p

)
= 0,

where we used in the last step the steady-flow Euler equation (16.14). This shows that H is constant along
any particle orbit, and thus along any streamline since streamlines coincide with particle orbits in steady
flow. Bernoulli’s theorem for compressible fluids will be discussed in section 16.4.

Terminology
The importance of Bernoulli’s theorem for many practical hydrodynamical applications has led to several
different terminologies. Since ρ0 H has the dimension of pressure, the term (1/2)ρ0v2 is often called the
dynamic pressure as opposed to the static pressure p. The combination p + ρ0� is called the effective
pressure. A point where the fluid has zero velocity, v = 0, is called a stagnation point for the flow. In the
absence of gravity, the pressure at a stagnation point is p0 = ρ0 H , also called the stagnation pressure.

An often encountered engineering terminology is used in constant gravity, g = (0, 0,−g0), where the
Bernoulli field in flat-Earth coordinates becomes,

H = 1

2
v2 + g0z + p

ρ0
. (16.16)

The vertical height z of a point on the streamline above some fixed reference level z = 0 is called the
static head. Similarly p/ρ0g0 is called the pressure head, and v2/2g0 is called the velocity head. The
total head, H/g0, is the sum of these three terms, and is by Bernoulli’s theorem the same everywhere along
a streamline.

Uses of Bernoulli’s theorem
Bernoulli’s theorem is highly useful because most of the flows that we deal with in our daily lives are nearly
ideal and nearly incompressible. Bernoulli’s theorem often provides us with a first idea about the behaviour
of a flow in a given geometry. The drop in pressure accompanying an increase in flow velocity lies, for
example, at the root of lift generation for both animals and machines, whether they swim or fly.

The flow has to quicken around
an obstacle (here a half sphere)
on the bottom of a stream and
by Bernoulli’s theorem, there will
be a lower pressure above the
obstacle, i.e. a lift.

Example 16.3.1 (Life of a flatfish): Lift is usually thought of as beneficial, but that may not always
be the case. Some fish hide by burrowing superficially into the sandy bottom of a stream. The fish’s
curved upper surface forces the passing water to speed up, leading to a pressure drop above the fish that
grows with the square of the flow velocity. If the stream velocity increases, the fish may be lifted out of
the sand, whether it wants to or not. To avoid that may be why flatfish are indeed—flat. We shall return
to this example and calculate the lift on a half-buried spherical fish in example 16.9.1.

In many cases of practical interest (see, for example [24, 80]), fluids stream through a network of
ducts with inlets and outlets that are controlled externally. Assuming that there are well-defined streamlines
connecting inlets with outlets, Bernoulli’s theorem is typically used to relate the velocities and pressures at
inlets and outlets, even if nothing is known about details of the the internal flow in the system. Viscosity is,
however, never completely absent, but is mostly negligible well away from the boundaries and containers
that we use to handle fluids. Exploiting the constancy of H along a streamline is always an approximation,
and in any realistic problem there will be what the engineers call ‘head loss’ due to viscosity, to secondary
flow, and to turbulence generated by surface irregularities.
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Typi cally it is al so assumed t hat t he flow vel ocity U is the same all over t he duct cross-section A . Such
a pattern is called pl ug flow and t he vol ume fl ux i n t he duct i s s i m pl y Q = AU . I t i s by no m eans guarant eed
t o be correct , and engi neers oft en put i n a di scharge f act or C to take care of the lower velocities at the sides
of a duct, writing Q = C AU  where U i s now t he ve l oci t y of a cent r al st r eaml i ne ( see pr obl em 16. 7) .

The Venturi effect
........................ ...... ........... ... ........... .. ......... .... .. ........................... .. ..... .....................

.....

S ket ch of a Vent ur i exper i ment .
Water streams from the left
t hr ough a c onst r i c t i on i n t he hor-
i z ont al t ube w her e t he pr essur e i s
l ow e r t han i n t he t ube out si de t he
const r i ct i on because of t he Ven-
t uri effect , as shown by t he l ow er
water level in the second vertical
t ube.

A simple duct with slowly varying cross section carries a constant volume flux Q of i ncompr e ssi bl e fl ui d.
For s i m pl i c i t y w e assume t he duct i s hor i z ont al , s uch t hat gr avi t y can be di sr egar ded. Ta ki ng a s t r eaml i ne
running horizontally through the duct, we obtain from B ernoulli’s t heorem that,

H = 1

2
v 2 + 

p

ρ0
, ( 16. 17)

takes t he same value everywhere i n t he duct. Approxi mating t he velocity with its average U = Q/ A ove r
the cross-section A , t he pr essur e becomes,

G i ovanni B a t i s t a Ve nt ur i ( 1746–
1822) . I t al i an physi ci st and engi -
neer. St udi ed how flui ds behave
in a duct with a constriction.

p = ρ0

(
H − Q 2

2 A 2

)
. ( 16. 18)

This demonstrates the Vent uri eff ect : t he pressure fal l s when t he duct cross sect i on decreases, and ri ses
when i t i ncreases.

Torricelli’s Law
Consider a barrel of w ine w ith a little spout close t o t he bottom. If the plug i n t he spout is suddenly
r e move d, t he pr e ssur e causes t he w i ne t o st r eam out w i t h a c onsi der abl e speed. P r ovi ded t he spout i s
narrow compared to the size of the barrel, a nearly steady fl ow will soon establish itself. This is a case
where Bernoulli’s theorem readily yields an expression for the velocity of the outflow.

C onsi der a s t r eaml i ne s t a r t i ng near t he t op of t he bar r e l a nd r unni ng w i t h t he fl ow dow n t hr ough t he
mi ddl e of t he spout . N ear t he t op at a hei ght z = h over t he position of t he spout, t he fl uid is almost at rest,
i.e. v ≈ 0. The pressure is atmospheric, p = p0 , and the gravitational potential may be taken to be g0 h so
that

Htop = g0 h + p0

ρ0
. ( 16. 19)

Just out si de t he s pout t he fl ui d has some hor i z ont al ve l oci t y v , and the pressure is also atmospheric, p = p0 ,
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p0

p0

h

Wi ne r unni ng out of a bar r e l .
The wine emerges with the same
speed as i t woul d have obt ai ned
by falling freely t hrough the
hei ght h of t he fl ui d i n t he bar r e l .

wi t h no cont ri but i on from gravi t y, because t he pot ent i al has been chosen t o vani sh here. H ence

Hbottom = 
1

2
v 2 + 

p0

ρ0
. ( 16. 20)

E quat i ng t he va l ues of H at t he t op and t he bot t om w e fi nd

1

2
v2 + p0

ρ0
= p0

ρ0
+ g0h,

which has the solutionEvangelista Torricelli (1608–
1647). Italian physicist.
Constructed the first mercury
barometer and noted that the
barometric pressure varied from
day to day. Served as companion
and secretary for Galileo in the
last months of Galileo’s life.

v = √
2g0h. (16.21)

Surprisingly, this is exactly the same velocity as a drop of wine would have obtained by falling freely from
the top of the barrel to the spout. This result is called Torricelli’s Law (1644), and preceding Bernoulli’s
theorem by more than a century it was in its time a major step forward in the understanding of fluid
mechanics. We could, in fact, have come to the same conclusion simply by converting the potential energy
of a water particle into kinetic energy.

In a sense the barrel acts as a device for diverting the vertical momentum of the falling liquid into the
hor i zont al di r ect i on ( see chapt er 22) . A l l st r eaml i nes yi el d t he same r esul t , as l ong as w e avoi d choosi ng
a streamline running very near to the walls of the barrel and spout, where the unavoidable viscosity slows
down the flow in the boundary layers. Even if the spout is replaced by a pipe that is not even horizontal but
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may turn and twist, the exit velocity at the exit of the pipe will equal the free-fall velocity from the fluid
surface at the top of the barrel.

Example 16.3.2 (Wine barrel): A large cylindrical wine barrel has diameter 1 m and height 2 m.
According to Torricelli’s law the wine will emerge from the spout with the free-fall speed of about
6.3 m s−1. If the spout opening has diameter 5 cm, about 12.3 litres of wine will be spilled on the floor
per second. At this rate it would take 2 min to empty the barrel, but we shall see below that it actually
takes double because the level sinks.

Quasi-stationary emptying of a wine barrel
If the barrel has constant cross-section A0, Leonardo’s law (15.17) tells us that the average vertical flow
velocity in the barrel is v0 = vA/A0 where A � A0 is the cross section of the spout and v = √

2g0z
the average horizontal flow velocity through the spout when the water level is z. Since dz/dt = −v0, we
obtain the following differential equation for quasi-stationary emptying of the barrel,

dz

dt
= − A

A0

√
2g0z. (16.22)

Integrating this equation with initial value z = h for t = 0, we obtain the time it takes to empty the barrel
(see also problem 16.6),

T =
∫ 0

h

dt

dz
dz = −

∫ 0

h

A0

A

dz√
2g0z

= A0

A

√
2h

g0
. (16.23)

This time equals the free-fall time from height h multiplied by the usually huge ratio of the barrel and spout
cross sections. For the cylindrical wine barrel of example 16.3.2 the freefall time is 0.64 s and it takes 400
times longer, about 4 min, to empty the barrel.

The Pitot tube
Henri Pitot (1695–1771). French
mathematician, astronomer and
hydraulic engineer. Invented
the Pitot tube around 1732 to
measure the flow velocity in the
river Seine.

Fast aircraft often have a sharply pointed nose which on closer inspection is seen to end in a little open tube.
On other aircraft the tube may stick orthogonally out from the side and is bent forward into the oncoming
airstream. This device is called a Pitot tube, and is used in many variants to measure flow speeds in gases
and liquids. In its simplest and original form, the Pitot tube is just an open glass tube bent through a right
angle. The tube is lowered into a river streaming steadily with velocity U , with one end turned horizontally
towards the current and the other vertically in the air above. The flow will stem water up into the vertical
part of the tube, until the hydrostatic pressure of the water column balances the dynamic pressure from the
flow. After the flow has steadied, the water in the tube rises to a height h above the river surface.

.......................................
.................
...............................

..

h

��

�

�

�U

p p0

The principle of the Pitot tube.
The pressure increase along the
stagnating streamline must equal
the weight of the raised water
column.

In the steady state the water speed must vanish at the entrance to the horizontal part of the tube, and
a horizontal streamline arriving here from afar must come to an end in a so-called stagnation point. The
gravitational potential is constant everywhere along the horizontal streamline, and can be disregarded, so
that Bernoulli’s theorem for this streamline reads,

p0

ρ0
= 1

2
U2 + p

ρ0
, (16.24)

where p is the pressure at infinity, and p0 is the stagnation pressure. The excess stagnation pressure
�p = p0 − p = (1/2)ρ0U2 must also equal the extra hydrostatic pressure from the water column above
the water surface, �p = ρ0g0h, so that

U = √
2g0h. (16.25)

Again we find the simple and surprising result that the speed of the water is exactly the same as it would be
after a free-fall from the height h. At a typical flow speed of 1 m s−1 the water in the tube is raised 5 cm
above the river level.

Farmer’s wisdom: Farmers know better than to leave the barn door open towards the wind in
a storm, even if they do not know Bernoulli’s theorem. A gust of wind will not only decrease the
pressure above the barn roof because the wind has to move faster above the roof than at the ground,
but the Pitot effect will also increase the pressure inside, giving the roof a double reason to blow off.
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Figure 16.1. Numeric solution of (16.26) for a soft step b(x) = 0.15(1+ tanh(0.5x)) (thick line) in the bed
of a stream of initial depth din = 1 (dashed) for various values of the incoming Froude number Frin, shown
on the right. For Frin ≥ 1.69 . . ., the surface rises above the shape of the step, and for Frin → ∞ the bump
in the bottom is simply copied. For Frin ≤ 0.32 . . . the surface drops below the incoming level. There are
no acceptable real solutions to (16.26) in the interval 0.32 < Frin < 1.69.

Example 16.3.3 (Water scoop): Forest fires are sometimes combated by aircraft dropping large
amounts of sea or lake water. To avoid landing and take-off, the aircraft collects water by lowering
a scoop into the water while flying slowly at very low altitude. If the scoop turns directly forward and
the aircraft velocity is U , it can like the Pitot tube raise the water to a maximal height, h = U2/2g0.
Even for a speed as low as U = 120 km h−1 ≈ 33 m s−1, this comes to h = 55 m. In practice, the
height of the water tank over the lake surface is much smaller, so that the water should ideally arrive
in the tank with nearly maximal speed U . A scoop with an opening area of just A ≈ 300 cm2 can
deliver water at a rate of Q = U A ≈ 1 m3 s−1. Turbulence lowers this somewhat, but typically such
an aircraft can collect 6 m3 in just 12 s.

∗ Shallow river with slowly changing bed
The surface of a shallow river flowing steadily along reflects the underlying structure of the river bed, as
everybody has probably noted. It is, however, not so clear how the level of the water surface and the
average water speed react to a change in the shape of the river bed. Will these quantities rise or fall when
the otherwise horizontal river bed, for example, rises gently?
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�

� x

z

h0

0
b(x)

h(x)

d(x)�U

Does a rise in the river bed z =
b(x) generate a drop or a rise in
the height of the surface?

For simplicity we model the river as a very wide, essentially two-dimensional stream along x in
which the bottom height z = b(x) depends only on x . The depth is assumed to vary so slowly that its
derivative is small,

∣∣b′(x)
∣∣ � 1. In that case the flow will be dominated by the x-component of the

velocity, |vx | � |vz |, and it may be reasonable to assume that the river carries a plug flow characterized
by vx = U(x), independent of y and z. Denoting the local depth by d(x), the height of the open surface
is h(x) = b(x) + d(x). Mass conservation together with Bernoulli’s theorem applied to a streamline along
the surface (where the pressure is constant) imply that,

Q = U(x)d(x), (16.26a)

H = 1
2U(x)2 + g0(b(x) + d(x)), (16.26b)

are both independent of x . In principle these two equations can be solved for U(x) and d(x) in terms of
b(x). Unfortunately the resulting third degree polynomial equation has a rather messy solution.

As usual it is easier to understand the local structure. Differentiating both equations with respect to x
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we get

U ′
U

+ d ′
d

= 0, UU ′ + g0( b
′ + d ′) = 0. ( 16. 27)

Solving for d ′ w e obt ai n,

d ′ = g0 d

U 2 − g0 d 
b′, U ′

U
= −d ′

d
. ( 16. 28)

S i nce t he denomi nat or i s si ngul ar f or U = √
g0 d , i t i s usef ul t o i nt r oduce t he di mensi onl ess ( l ocal ) Froude

num ber , William F roude (1810–79). En-
gl i s h e ngi neer and naval archi -
t ect . D i s covered what are now
called scaling laws, allowing pre-
di ct i ons of shi p perf orm ance t o
be m ade f rom st udi es of m uch
sm al l e r m odel s hi ps.

Fr( x) = U( x)√
g0 d( x)

. ( 16. 29)

In chapt er 24 w e s hal l see t hat 
√

g0 d is the velocity of shallow-water surface waves. Intuitively one would
expect somet hi ng dr a mat i c t o happen w hen t he fl ow vel oci t y passes t hr ough t he s hal l ow wave s peed,
because t hi s i s aki n t o passi ng t hr ough t he s peed of sound i n t he a t m ospher e . E l i m i nat i ng t he ve l oci t y
i n favour of t he F r oude number w e obt ai n t he di ff er ent i a l e quat i ons,

d ′( x) = b′( x)
Fr( x)  2 − 1

, 
Fr′( x)
Fr( x)

= −3

2

d ′( x)
d( x)

. ( 16. 30)

T he behavi our of t he r iver depends cr uci a l l y on w het her t he l ocal F r oude number i s s mal l e r or gr eat er t han
the critical va l u e F r = 1.

A soft step in the river bed with b′( x) > 0 causes t he dept h t o decrease, d ′ < 0, i f t he i ncomi ng F r oude
number bef or e t he st ep i s smal l er t han uni t y, F rin < 1, and c onve r s el y t he dept h w i l l i ncr ease i f F rin > 1.
T he wat er surface hei ght , h = b + d , f ol l ow s t he s ame pat t e r n. T he l ocal F r oude number w i l l i t s el f i n bot h
cases come cl oser t o t he nonphysi cal si ngul ar val ue F r = 1. W het her t hi s val ue i s act ual l y reached depends
on the height of the s tep and the i ncoming F roude num ber. T here w ill, for a given step height, always be
an i nt e r val of i ncomi ng F r oude number s , F r1 < Frin < Fr2 with Fr1 < 1 and Fr2 > 1 in which the simple
model pr e sent ed her e br eaks dow n a nd no accept a bl e s ol ut i on can be f ound.

.......................................................
........................

......................
..............................

.............................................................................................................................................................................................................

.... .. ........................ ... .. ..............
.......................

...................... ... .
..... ... ......... .. .. .. ............. .. .. .. ................ .. ........... ..... ................................................ ......... ......... .. ....... .. ................ .. ... .... .... ........ .............. .. ...... ... ..... ...... ........ ........ ........ .............. 
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Fr > 1

Fr < 1

F l ow ove r a bump w i t h F r oude
number bel ow and a bove t he
cri t i cal val ue 1.

P hysi cal l y, t he smoot h wat er sur face w i l l br eak and f r ot h at t he s t e p i n t he f or bi dden F r oude number
i nt e r val . For al l ow e d val ues out si de t he f or bi dden i nt er va l t he l ocal F r oude number m ust s t a y on t he same
si de of t he s i ngul ar i t y ever yw her e al ong t he s t e p. A s moot h c r ossi ng t hr ough F r = 1 can onl y t ake pl ace at
a point where b′(x) = 0, i.e. at a soft bump in the river bed.

E xamp l e 16. 3. 4 ( S h al l ow r iver) : In figure 16. 1 a river of initial depth din = 1 m passes a soft step
of height bout − bin = 0.3 m. The forbidden incoming Froude number interval is 0.32 < Frin < 1.69,
corresponding to a forbidden incoming velocity interval 1.0 m s−1 < Uin < 5.3 m s−1. The allowed
changes in the height of the water surface lie in the intervals −8 cm < hout − hin < 0 for Frin < Fr1
and 30 cm < hout − hin < 72 cm for Frin > Fr2.

∗ 16.4 Steady compressible flow
In steady compressible flow, the velocity, pressure and density are independent of time. The Euler equation
and the continuity equation take the form,

(v · ∇) v = g − 1

ρ
∇ p, ∇ · (ρv) = 0. (16.31)

Here we shall, for simplicity, assume that the fluid is in a barotropic state, p = p(ρ) or ρ = ρ(p), such
that we again have a closed set of five field equations for the five fields, vx , vy , vz , ρ and p. In this section
gravity will mostly be ignored.
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Effective i ncompressibility
F i rst w e s hal l demonst r at e t he cl ai m m ade i n t he precedi ng s ect i on t hat i n st eady flow a flui d i s e ff ect i vel y
i ncom pressi bl e w hen t he flow speed i s everyw here m uch sm al l er t han t he l ocal speed of sound. T he ratio
of t he l ocal fl ow s peed v ( r e l a t ive t o a s t a t i c sol i d obj ect or boundar y wa l l ) and t he l ocal sound speed c is
cal l ed t he (l ocal ) Mach num ber ,

Ma = |v|
c
. ( 16. 32)

I n t er m s of t he Mach number, t he cl ai m i s t hat a s t eady fl ow i s eff ect ivel y i ncompr essi bl e w hen Ma � 1
ever yw her e . C onve r s el y, t he fl ow i s t r ul y c ompr essi bl e i f t he l ocal Mach number s omew her e i s compar abl e
to unity or larger, Ma � 1.E r nst Mach ( 1838–1916) . Aus -

trian positivist philosopher and
physi ci st . Made earl y advances
i n psycho- physi cs, t he physi cs of
sensations. His rejection of New-
t on’s absol ut e s pace and t i m e
prepared t he w ay f or E i nst ei n’s
t heory of rel at i vi t y. P roposed t he
principle that inertia results from
t he i nt eract i on bet w een a body
and al l ot her m at t e r i n t he uni -
verse.

The essential step in the proof is to relate the gradient of pressure to the gradient of density, ∇ p =
( dp/dρ)∇ρ = c 2 ∇ρ , where c = √

dp/dρ is the l ocal speed of sound. W r iting t he dive rgence condition i n
the form ∇ · (ρv) = ρ∇ · v + (v · ∇)ρ = 0 a nd maki ng use of t he E ul e r e quat i on w i t hout gr avi t y, w e fi nd
the exact result,

∇ · v = − 1

ρ
(v · ∇)ρ = −  

1

ρ c 2
(v · ∇) p = v · (v · ∇)v

c 2
. ( 16. 33)

Applying the S chwarz inequality to the numerator (see problem 16. 16) we get

|∇ · v| ≤ |v|2
c 2

|∇v| = Ma 2 |∇v| , ( 16. 34)

where |∇v| is the norm (2. 17) of the velocity gradient matrix. T his relation clearly demonstrates that for
Ma 2 � 1 t he divergence is much smaller t han t he local velocity gradient s, maki ng the i ncompressibility
condi t i on, ∇ · v = 0, a good appr oxi mat i on. Typi cal l y, a fl ow w i l l be t a ke n t o be i ncompr essi bl e w hen
Ma � 0. 3 everywhere  so  that  Ma2 � 0. 1. In the remai nder of t hi s section we assume that this condition i s
not fulfilled (everywhere).

E xamp l e 16. 4. 1 ( M ach n u mb ers) : Waving your hands in the air, you generate fl ow velocities at
most of t he or der of met r es per s econd, cor r e spondi ng t o Ma ≈ 0. 01. D r ivi ng a car at 120 km h−1 ≈
33 m s−1 corresponds to Ma ≈ 0.12. A passenger jet flying at a height of 10 km with velocity about
900 km h−1 ≈ 250 m s−1 has Ma ≈ 0.9 because the velocity of sound is only about 1000 km h−1

at this height (see example 16.2.1). Even if this speed is subsonic, considerable compression of the
air must occur especially at the front of the wings and body of the aircraft. The Concorde and modern
fighter aircraft operate at supersonic speeds at Mach 2–3, and the Space Shuttle enters the atmosphere at
the hypersonic speed of Mach 25. The strong compression of the air at the frontal parts of such aircraft
cr eat e s hock waves t hat appear t o us as a s oni c boom ( s ee chapt e r 25) .

Bernoulli’s theorem for barotropic fluids
For compressible fluids, Bernoulli’s theorem is still valid in a slightly modified form. If the fluid is in a
barotropic state with ρ = ρ(p), the Bernoulli field becomes,

H = 1
2v2 +�+ w(p), (16.35)

where

w(p) =
∫

dp

ρ(p)
(16.36)

is the pressure potential, previously defined in (4.35). The proof of the modified Bernoulli theorem is
elementary and follows the same lines as before, using Dw/Dt = (dw/dp)Dp/Dt = (1/ρ)(v · ∇)p.

The most interesting barotropic fluid is an ideal gas with adiabatic index γ , for which it has been shown
on page 55 that

w = γ

γ − 1

p

ρ
= cp T cp = γ

γ − 1

R

Mmol
. (16.37)

Thus, in the absence of gravity, a drop in velocity along a streamline in isentropic flow is accompanied by
a rise in temperature (as well as a rise in pressure and density).
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Isent ro pic st e a dy flow: T her e i s a concept ual subt l e t y i n under s t a ndi ng i s ent r opi c s t eady fl ow
because of t he unavoi dabl e heat conduct i on t hat t akes pl ace i n al l r eal fl ui ds. S i nce t r ul y st eady fl ow
l a st s ‘ f or eve r ’ , one mi ght t hi nk t hat t her e woul d be a mpl e t i m e f or a l ocal t e mper at ur e c hange t o
spr ead t hr oughout t he fl ui d, r egar dl e ss of how badl y i t conduct s heat . B ut r e member t hat st eady fl ow
i s not st at i c, and f r esh fl ui d i s bei ng compr essed or expanded adi abat i cal l y al l t he t i m e. S o, pr ovi ded
the flow is sufficiently fast, heat conduction will have little effect. The physics of heat and flow is
di scussed i n c hapt er 30.

Stagnation point temperature rise in an ideal gas
An object moving through a fluid has at least one stagnation point at the front where the fluid is at rest
relative to the object. There is also at least one stagnation point at the rear of a body, but vortex formation
and turbulence will generally disturb the flow so much in this region that the streamlines get tangled and we
cannot use Bernoulli’s theorem to relate velocity and pressure at the rear of the body.

.......................................................................................................................................................
...............................................................................................................................................................................................................................................................................................................................................................................................................

A static airfoil in an airstream
coming in horizontally from the
left. The pictured streamline
(dashed) ends at the forward
stagnation point.

At the forward stagnation point the gas is compressed and the temperature will always be higher than
in the fluid at large (and similarly at the rear stagnation point if it exists). In the frame of reference where
the object is at rest and the fluid asymptotically moves with constant speed U and temperature T , the flow
is steady, and we find from (16.35) and (16.37) in the absence of gravity,

1
2 U2 + cpT = cpT0,

where T0 is the stagnation point temperature. Accordingly the temperature rise due to adiabatic compression
becomes,

�T = T0 − T = U2

2cp
= 1

2
U2 γ − 1

γ

Mmol

R
. (16.38)

Note that the stagnation temperature rise depends only on the velocity difference between the body and the
fluid far from the body, and not on the pressure or density of the gas.

Example 16.4.2: Taking γ = 7/5 we obtain for a car moving at 100 km h−1 a stagnation point
temperature rise of merely 0.4 K. At the front of a passenger jet travelling at 900 km h−1 the stagnation
point rises a moderate 31 K, whereas a supersonic aircraft travelling at 2300 km h−1 suffers a stagnation
point temperature rise of about 200 K. When a re-entry vehicle hits the dense atmosphere with a speed of
3 km s−1 the stagnation point temperature rise becomes nearly 4500 K. At full orbital speed, 8 km s−1,
the stagnation point temperature would formally become 32 000 K, but the density of the air in the outer
reaches of the atmosphere is so small that the continuum assumption breaks down.

Whether the tip of a moving object actually attains the stagnation point temperature depends primarily on
how efficiently heat is conducted away from this region by the material of the object. The moving object is
usually solid with a vastly greater heat capacity than the air near the stagnation point. In addition to adiabatic
compression viscous friction also produces heat, and for extreme aircraft such as the Space Shuttle it has
been necessary to use special ceramic materials to withstand temperatures that are otherwise capable of
melting and burning metals. Freely falling meteors appear as shooting stars in the sky, mainly because of
viscous friction.

Stagnation point properties
It is often convenient to express the ratio of the stagnation point temperature and the local temperature in
terms of the local Mach number Ma = |v| /c where c = √

γ RT/Mmol is the local sound velocity. From
(16.38) we obtain

T0

T
= 1 + 1

2
(γ − 1)Ma2. (16.39)

Even if the streamline does not actually end in a stagnation point, T0 will be a constant for the streamline
because it represents the value of the Bernoulli function, H = cpT0, which is constant along the streamline.
The stagnation temperature may be thought of as the temperature that would be obtained if a tiny object
were inserted into the flow far downstream of the observation point.
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Figure 16.2. Flow in a slowly varying duct. Plot of the ratio of local to sonic values as a function of the
Mach number. The ratio A/A1 is a solid line, T/T1 has large dashes, ρ/ρ1 medium dashes, p/p1 small
dashes and U/U1 dotted.

The stagnation density ρ0 and pressure p0 are obtained from the isentropic conditions,

Tρ1−γ = T0ρ
1−γ
0 , T γ p1−γ = T γ0 p1−γ

0 ,

which may be written,

ρ0

ρ
=

(
T0

T

)1/(γ−1)
,

p0

p
=

(
T0

T

)γ /(γ−1)
. (16.40)

Again it follows that ρ0 and p0 are constants for any given streamline.

Sonic point properties
A point where the velocity of a steady flow passes through the local velocity of sound is called a sonic point.
The collection of sonic points typically form a sonic surface, for example in the duct flow to be discussed
below. The sonic point temperature may be calculated from the stagnation point temperature (16.39) by
setting Ma = 1,

T1

T0
= 2

γ + 1
. (16.41)

For γ = 7/5, the ratio is T1/T0 = 5/6. Multiplying (16.39) by T1/T0 and rearranging the expression, we
obtain the sonic temperature in terms of the local temperature and Mach number,

T1

T
= 1 + γ − 1

γ + 1

(
Ma2 − 1

)
. (16.42)

The sonic temperature T1 is, like the stagnation temperature T0, a constant for any streamline, independent
of whether the flow actually becomes sonic on this streamline. The sonic density ρ1 and pressure p1 may
similarly be obtained from stagnation values and related to the local Mach number by relations like (16.40).
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Flow in a slowly converging
duct. All parameters are assumed
constant on every planar cross
section A.

Ideal gas flow in duct with slowly varying cross section
Consider now an ideal gas flowing through a duct with a slowly varying cross section such that the
temperature T , density ρ, pressure p and normal velocity U may be assumed to be constant over any
given (but otherwise arbitrary) planar duct cross section of area A. We are interested in determining the
conditions under which the flow may become sonic in the duct.
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F i gu re 16. 3. Simple model of a constricted duct, A( x) = At h ro at + kx2 , with A throat = 1 and  k = 0. 1 (and
γ = 7/5) . (a) P l ot of t he Mach number Ma( x) as a f unct i on of t he duct c oor di nat e x . T he di ff er ent c ur ve s
are labelled with the ratio Athroat/ A 1 . (b) The pressure ratio p( x)/  p1 under t he same conditions. N ote t hat
the pressure is lowest in the t hroat (the Venturi effect ) for al l A1 < A throat , but dr ops t o much l ow e r val ues
for A1 = A t h ro at w hen t he fl ow becomes s uper s oni c.

T he c onst a ncy of t he mass fl ux a l ong t he duct ,

Q = ρ AU, ( 16. 43)

pr ovi des us w i t h a r el at i on bet w een t he duct a r e a a nd t he l ocal Mach number. A t t he s oni c poi nt w e have
ρ AU = ρ1 A 1 U1 , a nd usi ng U = Ma c and U1 = c1 where c and c1 are t he local and sonic sound velocities,
we fi nd

A

A1
= ρ1U1

ρU
= 1

Ma

ρ1

ρ

c1

c
= 1

Ma

ρ1

ρ

√
T1

T
= 1

Ma

(
T1

T

)(1/2)(γ+1)/(γ−1)
.

In the last step we also used ρ1/ρ = (T1/T )1/(γ−1). Inserting T1/T from (16.42), we arrive at the required
relation,

A

A1
= 1

Ma

(
1 + γ − 1

γ + 1

(
Ma2 − 1

))(1/2)(γ+1)/(γ−1)
. (16.44)

This function is shown (for γ = 7/5) as t he s ol i d cur ve i n fi g. 16. 2 t oget her w i t h t he c or r e spondi ng
temperature, density, pressure and velocity ratios.

The main observation to make from fig. 16.2 is that the local area A has a minimum at Ma = 1. This
shows that it is only possible to make a smooth transition from subsonic to supersonic flow by sending the
gas through a constriction in which the duct first converges and then diverges, forming a throat at the point
where its area is minimal. If the flow parameters are set up such that the sonic area A1 precisely equals
the physical area Athroat of the throat, the subsonic flow entering the converging part of the duct will travel
down the left-hand branch of the fully drawn curve in fig. 16.2, increasing in velocity until the Mach number
reaches unity exactly at the throat. Having passed the throat, the flow is now supersonic and travels up the
right-hand branch of the fully drawn curve while increasing in velocity further in the diverging part of the
constriction.
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� �

throat

subsonic supersonic
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A subsonic flow may become su-
personic in a duct with a constric-
tion where it changes from con-
verging to diverging. The tran-
sition happens at the narrowest
point, the throat, where the cross
section A(x) is minimal.

The sonic point is not always reached. After all, flutes and other musical instruments, including our
voices, have constrictions in the airflow that do not give rise to supersonic flow (which would surely destroy
the music). If the physical throat area is larger than the sonic area, Athroat > A1, the Mach number does
not reach unity at the throat. The maximal Mach number at the throat, Mathroat, is determined from (16.44)
by setting A = Athroat. Graphically, it may be read off from the left-hand branch of the solid curve in
figure 16.2 at the point it crosses through Athroat/A1. In figure 16.3 this is illustrated in a simple model.

Suppose now that the duct is carrying a subsonic flow through the throat with Athroat > A1, and that
we begin to throttle the flow by diminishing the throat area Athroat without changing the flow parameters
at the entry. Since the sonic area A1 is determined by the entry values, it will not change, so the throttling
may continue until Athroat = A1. At this point the flow becomes sonic at the throat. If we now continue
throttling, the entry parameters are at least forced to change in such a way that the the sonic area follows the
diminishing throat area, A1 = Athroat, and the flow stays sonic at the throat. A duct with a throat operating
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at the sonic point is said to be choked because there is no way you can increase the mass flow through the
throat by varying the entry parameters (for further details see [22, 80]).

16.5 Vorticity
The value of the Bernoulli field H(x) at a point x is only a function of the streamline going through this
point. Different streamlines will in general have different values of H . This can be illustrated by considering
the case of Newton’s rotating bucket which was discussed before on page 87.
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Unsteady Steady

A body moving at constant speed
through a fluid is physically
equivalent to the same body
being at rest in a steady flow
which is asymptotically uniform.

Bernoulli field in Newton’s bucket
In the corotating (bucket) coordinate system, the fluid is at rest and subject to both the force of gravity and
the centrifugal force. Since the velocity vanishes, the Bernoulli field becomes

H0 = g0z − 1

2
�2r2 + p

ρ0
, (16.45)

where the middle term is the centrifugal potential and r =
√

x2 + y2 is the distance from the axis of
rotation. Hydrostatic balance ensures that ∇H0 = 0 so that H0 is a true constant, independent of both r
and z. Solving for the pressure we obtain

p

ρ0
= H0 − g0z + 1

2
�2r2. (16.46)

The constancy of the pressure on the open surface determines its parabolic shape z = �2r2/2g0 + const.
In the non-rotating (laboratory) system, there is no centrifugal force, but the fluid moves steadily with

velocity v = r�, and the streamlines are concentric circles. The Bernoulli field becomes in this system,

H(r) = 1

2
�2r2 + g0z + p

ρ0
= �2r2 + H0 (16.47)

where in the last step we have made use of (16.45) to eliminate the pressure. The Bernoulli function depends
in this case on the radial distance from the axis, but is of course constant on the circular streamlines as
Bernoulli’s theorem assures us. H is evidently independent of z, and we shall see below that this also
follows from general rules.

...................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................

�

+

....................................................................................................................................................................................
...............
............
..........
.........
..........
............
..............
...........................

...................................................+

Closed streamlines may appear
when a fluid flows past an edge.

Asymptotically uniform flow
It is often possible to relate the values of H for different streamlines. A general and frequently occurring
example is a body moving with constant velocity through a fluid otherwise at rest, were it not for the
disturbance created by the body. The relativity of motion in Newtonian mechanics tells us that this unsteady
flow is physically equivalent to a steady flow around a stationary body in a fluid which, far away from the
body, moves with constant velocity under constant pressure. We tacitly used this equivalence before in
example 16.3.3 on page 212.

At great distances from the body the flow will have the same velocity U , and in hydrostatic balance in
the rest system it will also have a constant value of the effective pressure P∗ = p + ρ0�. Consequently,
the Bernoulli field must take the same value

H0 = 1

2
U2 + P∗

ρ0
(16.48)

for all streamlines coming in from afar. Thus, if one can be sure that all streamlines around the body
originate infinitely far away, then H must take the same value over all space, i.e. H(x) = H0.
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The vorticity field
The simple result that H is spatially constant for asymptotically uniform flow is spoilt by the possibility that
there may be streamlines forming closed curves unconnected with the flow at infinity. This was the case for
Newton’s bucket in the non-rotating coordinate system where the streamlines were concentric circles, but
common experience indicates that such circulating flow may occur in the wake of the disturbance created
by the shape of a container or a moving body. We are thus naturally led to the study of local circulation in
a fluid, and we shall see that H is in fact globally constant if there is no local circulation anywhere.

Using the Euler equation for steady incompressible non-viscous flow (16.14), the gradient of the
Bernoulli field becomes,

∇i H = 1

2
∇i v

2 + ∇i�+ 1

ρ0
∇i p = v · ∇iv − v · ∇vi = (v × (∇ × v))i .

This result, which is also valid for non-viscous, barotropic, compressible flow, allows us to write

∇H = v × ω, (16.49)

where we have defined a new field, the vorticity field, which is simply the curl of the velocity field

ω = ∇ × v. (16.50)

The vorticity field also goes back to Cauchy (1841) and is a quantitative measure of the local circulation in
the fluid. In any region where the vorticity field vanishes completely, we have ∇H = 0, so the Bernoulli
field must take one value only in that region, i.e. H(x) = H0. Flow completely free of vorticity is called
irrotational flow and leads to a particularly simple formalism which we shall present in section 16.7.

Example 16.5.1: The curl of the field v = (x2, 2xy, 0) is ω = (0, 0, 2y). The curl of v = (y2, 2xy, 0)
vanishes, so this velocity field is irrotational.

Vorticity and local rotation
A trivial example of a flow with vorticity is a steadily rotating rigid body, for example Newton’s bucket in
the laboratory system. If the rotation vector of the body is �, the velocity field becomes v = � × x, and
the vorticity

∇ × (� × x) = �(∇ · x)− (� · ∇)x = 3� − � = 2�. (16.51)

The vorticity is in this case constant and equal to twice the rotation vector. ...........
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The Bernoulli field is constant on
surfaces made from vortex lines
and streamlines.

The factor of 2 seems a bit strange but is a general result which may be verified by calculating the
gradient of H for Newton’s bucket. We find using (16.49)

∇H = (� × x)× 2� = 2�2(x, y, 0),

which agrees with the gradient of the Bernoulli field calculated from (16.47).

Vortex lines
The field lines of the vorticity field are called vortex lines, and are defined as curves that are always tangent
to the vorticity field. They are solutions to the ordinary differential equation

dx
ds

= ω(x, t0), (16.52)

where s is a running parameter of the curve. For streamlines we could identify the running parameter with
time, but this is not the case here, where s has the dimension of time multiplied by length. In steady flow
these lines are fixed curves in space, just like the streamlines.

Bernoulli’s theorem, (v · ∇)H = 0, follows immediately from (16.49) by dotting with v. Similarly, by
dotting with ω we obtain

(ω · ∇)H = 0, (16.53)
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showing that the Bernoulli field is also constant along vortex lines.
Together these results imply that the Bernoulli field is constant on the two-dimensional surfaces formed

by combining vortex lines and streamlines, sometimes called Lamb surfaces, and sometimes Bernoulli
surfaces. Since streamlines for circulating fluids tend to form closed curves, these surfaces will usually be
long tubes, called vortex tubes. For Newton’s bucket the vortex tubes are cylinders concentric with the axis
of rotation, and this explains why the Bernoulli field cannot depend on z, as we noted earlier.

Equation of motion for vorticity
The vorticity field is derived from the velocity field, so the equation of motion for the vorticity field must
follow from the equation of motion for the velocity field, (16.1). Eliminating the pressure by means of
the Bernoulli field (16.15) and retracing the steps leading to (16.49), the Euler equation for a non-viscous
incompressible fluid may be written,

∂v

∂t
= −(v · ∇)v − 1

ρ0
∇ p + g = v × ω − ∇H. (16.54)

The final result is also valid for any non-viscous compressible barotropic fluid. For steady flow where
∂v/∂t = 0, we recover of course (16.49). The equation of motion for vorticity is obtained by taking the
curl of both sides of this equation, and using that the curl of a gradient vanishes,
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A closed curve C encircling a
whirl. ∂ω

∂t
= ∇ × (v × ω). (16.55)

There is a major lesson to draw from this equation. If the vorticity vanishes identically, ω(x, t) = 0,
throughout a region V of space at an instant of time t , then we have ∂ω/∂t = 0 for all x in V at t . Thus,
the vorticity field will not change in the next instant, and continuing this argument, we conclude that if the
vorticity field vanishes in the volume V at time t , it will vanish in this volume forever after.
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A surface S with perimeter C .
The normal to the surface is
consistent with the orientation of
C (here using a right-hand rule).

In other words: in the absence of viscosity, vorticity cannot be generated by the flow of a non-viscous
fluid but must be present from the outset. Thus, if you accelerate a body from rest in a truly ideal fluid, the
flow will remain without vorticity, because ω = 0 at the beginning. The whirling air that trails a speeding
car or an airplane must for this reason somehow be caused by viscous forces, independent of how tiny the
viscosity is.

16.6 Circulation
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The flux of vorticity is the same
for any two surfaces with the
same bounding curve. The
normals to the surfaces are both
consistent with the orientation of
the curve.

Vorticity is a local property of a fluid, indicating how much the fluid rotates in the neighbourhood of a
point. The corresponding global concept is called circulation and is formally defined to be the integrated
projection of the velocity field on the line elements of a closed curve C ,

�(C, t) =
∮

C
v(x, t) · d�. (16.56)

If C encircles a region of whirling fluid, the projection of the velocity field onto the curve will tend to be
of the same sign all the way around. Whether it is positive or negative depends on whether the curve runs
with the whirling flow or against it. We emphasize that the circulation may be calculated for any curve, not
just a streamline encircling a whirl, although that might be the natural thing to do in some situations.

Stokes’ theorem
The most important theorem about circulation is due to Stokes. It is completely general and states that the
circulation of the velocity field around a closed curve is equal to the flux of the vorticity through any surface
bounded by the curve, ∮

C
v · d� =

∫
S

∇ × v · d S. (16.57)
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It does not matter which surface S the flux is calculated for, as long as it has C as the boundary, lies entirely
within the fluid, and is oriented consistently with the orientation of C . Stokes’ theorem is like Gauss’
theorem (6.4) valid for any vector field. The vorticity field ω = ∇ × v is thus a measure of local circulation
in the fluid.

Example 16.6.1 (Solid rotation): A fluid rotates steadily like a solid body with velocity v = �r .
In the non-rotating ‘laboratory’ system the circulation around a circle (which is also a streamline) with
radius r is obtained by multiplying the constant velocity with the circumference of the circle,

�(r) = 2πr �r = 2π�r2 = 2� πr2. (16.58)

The last expression confirms Stokes’ theorem because the circulation is the product of the constant
vorticity 2� of a solid rotation body and the area of the circle.
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x

y

Circulation around a small rect-
angle of dimensions a × b.

Proof of Stokes’ theorem: As before the relation between global and local quantities is established
by calculating the global quantity for an infinitesimal geometric figure, in this case a tiny rectangle in the
xy-plane with sides a and b. To first order in the sides we find the circulation (suppressing z and t)∮

a×b
v · d� =

∫ x+a

x
vx (x

′, y) dx ′ +
∫ y+b

y
vy(x + a, y′) dy′

−
∫ x+a

x
vx (x ′, y + b) dx ′ −

∫ y+b

y
vy(x, y′) dy′

≈ −
∫ x+a

x
b ∇yvx (x ′, y) dx ′ +

∫ y+b

y
a ∇xvy(x, y′) dy′

≈ ab
(∇xvy(x, y)− ∇yvx (x, y)

) = ab (∇ × v)z .

The last expression is indeed the projection (∇ × v) · d S of the vorticity field on the small vector surface
element of the rectangle, d S = (0, 0, ab). William Thomson, alias Lord

Kelvin (1824–1907). Scottish
mathematician and physicist. In-
strumental in the development
of thermodynamics, in particular
the relation between the Second
Law and irreversibility. Viewed
electromagnetic forces as elastic
strains in the ether.

Consider now a not necessarily planar open surface built up from little rectangles of this kind. Adding
together the circulation for each rectangle, the contributions from the inner common edges cancel and one
is left only with the circulation around the outer perimeter of the surface, which is Stokes theorem. The
proof also implies that the shape of the surface S does not matter (see problem 16.9).
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Adding rectangles together, the
circulation cancels along the
edges where two rectangles meet.
This is also valid if the rectangles
bend into the other coordinate
directions.

∗ Kelvin’s circulation theorem
Kelvin’s famous circulation theorem from 1868 states that in a non-viscous fluid the circulation around a
closed comoving curve is independent of time. In other words, if C(t) is a comoving closed curve, then

D�

Dt
≡ d�(C(t), t)

dt
= 0. (16.59)

A comoving closed curve is washed along with the fluid and may thus change shape dramatically without
a change in its circulation. In steady flow the circulation around any fixed closed curve is independent of
time, but the theorem concerns a curve following the material of the fluid whether the motion is steady or
not.

Kelvin’s theorem applies only to ideal or nearly ideal flow. In a viscous fluid the circulation will change
at a rate proportional to the viscosity, and viscosity will act both as dissipator and generator of vorticity. It
is as mentioned before impossible to generate vorticity—or to get rid of it—without the aid of viscosity.

Proof of Kelvin’s theorem: The proof of the theorem is straightforward. We shall carry it through for
an incompressible fluid, but the proof is easily extended to a barotropic compressible fluid (problem 16.11).
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Let C(t) be the comoving closed curve. In a small time interval δt the circulation along this curve
changes by

δ�(C(t), t) = �(C(t + δt), t + δt)− �(C(t), t)
=

∮
C(t+δt)

v(x, t + δt) · d� −
∮

C(t)
v(x, t) · d�

=
∮

C(t)
(v(x + v(x, t)δt, t + δt)− v(x, t)) · d�

= δt
∮

C(t)

(
∂v

∂t
+ (v · ∇)v

)
· d�

= δt
∮

C(t)

(
g − ∇ p

ρ0

)
· d�.

In the third step we have used that the point x at time t of a comoving curve is found at x +v(x, t)δt at time
t + δt , and this generates the comoving derivative in the fourth line. The Euler equation (16.1) is then used
in the fifth step. Finally, since gravity and the pressure term are both gradient fields, their integrals around
a closed curve vanish, and we arrive at Kelvin’s theorem.

16.7 Potential flow
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In ideal flow the circulation
around the comoving curve C(t)
is the same at t1 as at t2.

A flow that is irrotational in some region of space will in the absence of viscosity stay irrotational at all
times. From Stokes’ theorem it follows that the circulation must vanish around any closed curve, and from
the general result about vector fields with vanishing circulation (proven on page 39), we conclude that the
velocity field is a gradient,

v = ∇�. (16.60)

The scalar field� is called the flow potential or the velocity potential1. Potential flow obeys a much simpler
formalism than flow with vorticity, in particular when it is also incompressible. The results to be derived
below for non-viscous incompressible flow can be generalized to compressible flow, although much of the
simplicity is lost (see problem 16.12).

Incompressible potential flow
In an incompressible fluid, the vanishing of the divergence of the velocity field implies that the flow potential
must satisfy the Laplace equation,

∇2� = 0. (16.61)

Typically, the boundary conditions consist of requiring the normal velocity n · v = n · ∇� to vanish at all
impermeable solid walls. If the flow has constant velocity v(x) = U , the flow potential becomes� = U ·x,
which evidently satisfies the Laplace equation.

Inserting ω = 0 and v = ∇� into the Euler equation in the form (16.54) we immediately find
∇(H + ∂�/∂t) = 0. This means that H + ∂�/∂t can only depend on time. Inserting the Bernoulli
function (16.15) and solving for the pressure we obtain,

p = C − ρ0

(
1

2
v2 +�+ ∂�

∂t

)
(16.62)

where C is a possibly time-dependent ‘constant’ and v = ∇�. In steady flow the time derivative ∂�/∂t
is absent. Thus, for incompressible potential flow the pressure is simply obtained from the solution of the
linear Laplace equation (16.61) with suitable boundary conditions. All the original nonlinearity of the Euler
equation has thus been relegated to the expression for the pressure.

1There is no general agreement on the symbol for the velocity potential, although the preferred notation appears to
be φ. In this book we use � to avoid clashes with other uses.
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16.8 Potential flow for cylinder in cro ss-wind
A circular cylinder of radius a i s an i nfi ni t e l y ext e nded t hr ee- di mensi onal obj ect w hi c h i s i nvar i a nt under
t r ansl at i ons al ong as w e l l as r ot a t i ons ar ound i t s axi s . We c hoose a s usual a c oor di nat e syst em w i t h t he
z - a xi s c oi nci di ng w i t h t he cyl i nder ( see s ect i on B . 1 on page 531) . A n a sympt ot i cal l y uni f or m ‘ c r oss- w i nd’
U al ong t he x - a xi s does not br eak t he l ongi t udi nal s ymmet r y, w hi c h m akes i t nat ur a l t o l ook f or a ve l oci t y
potential, � = �(x, y) , t hat i s i ndependent of z . Alternatively, the potential may be expressed in plane
pol ar coor di nat e s � = �(r, φ). 
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�

x

y

�
�
�
�
�( x, y)
(r, φ)

φ

�
�
�
�
�
�
�U

a

Cylinder of radius a i n an asymp-
totically uni form cross-wind U .

Po tenti a l a nd vel o ci ty fiel d
A s ympt ot i cal l y, f or r → ∞, t he pot ent i a l m ust a ppr oach t he fi el d of a const a nt uni f or m cr oss- w i nd,
� → U x  = Ur  cos φ . T he l i near i t y of t he L apl ace equat i on ( 16. 61) demands t hat t he pot ent i a l eve r yw her e
is linear in the asymptotic field,

� = U cos φ f (r),  ( 16. 63)

where f (r) i s a s o far unknow n f unct i on of r whi ch behaves as f (r)→ r for r → ∞. F rom t he L apl aci an
i n cyl i ndr i cal coor di nat e s ( B . 9) , w e obt ai n

d 2 f

dr 2 
+ 

1

r

d f

dr
− f

r 2 
= 0. ( 16. 64)

Since all  three terms are of order  1/ r 2 , w e s houl d l ook f or pow er l aw s ol ut i ons of t he f or m, f ∼ rα  .
I nser t i ng t hi s i nt o t he equat i on w e fi nd α = ±1 s o t hat t he most gener a l s ol ut i on i s of t he f or m
f = Ar + B/r , where A and B are arbitrary constants. The asymptotic condition implies A = 1, and
B is determined by requiring the radial velocity field vr = ∇r� to vanish at the surface of the cylinder,
r = a. This leads to B = a2, so that the solution is

� = Ur cos φ

(
1 + a2

r2

)
. (16.65)

Calculating the gradient in cylindrical coordinates by means of (B.5) we finally obtain the velocity field

vr = ∇r� = U cos φ

(
1 − a2

r2

)
, (16.66a)

vφ = ∇φ� = −U sinφ

(
1 + a2

r2

)
. (16.66b)

T hi s fl ow i s pl ot t e d i n fi gur e 16. 4. T he r adi a l fl ow va ni shes at t he s ur face of t he cyl i nder a s i t s houl d,
whereas the tangential flow, vφ |r=a = −2U sinφ, only vanishes at the front and rear stagnation points
φ = 0, π .

..............

..............
..............
...............
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..................

.....................
............................

..................................................................................................................................................................................................................................... �

�

$
$.

�
��

φπ − φ
x

y

The projection of the pressure
force on the x-axis is equal and
opposite for φ and π − φ.

Pressure, lift and drag
The pressure is obtained from (16.62). In the absence of gravity and normalized to vanish at infinity, it
becomes

p = 1

2
ρ0

(
U2 − v2

)
= 1

2
ρ0U2 a2

r2

(
4 cos2 φ − 2 − a2

r2

)
, (16.67)

which on the surface of the cylinder simplifies to,

pa = p|r=a = 1

2
ρ0U2

(
4 cos2 φ − 3

)
. (16.68)

It is negative for 30 ◦ < φ < 150 ◦. The up/down invariance of the pressure (under φ → 2π − φ) shows
that the total force in the y-direction, called lift, must vanish. What is more surprising is that due to the
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224 16. NEARLY IDEAL FLOW

Figure 16.4. Potential flow around a cylinder with a = 1 and U = 1. Only the upper half is shown
here (the lower half is the mirror image). The pressure vanishes on the dashed lines. The streamlines have
been obtained by numeric integration of the differential equation for streamlines (15.2) with the velocity
field given by the solution (16.66) converted to Cartesian coordinates. The streamlines are initialized to be
equidistantly spaced by �y = 0.1 for x = −20.

forwards/backwards invariance of the pressure (under φ → π − φ) the total force along the x-direction,
called drag, must also vanish.

For the upper half of the cylinder the drag also vanishes, but there is a non-vanishing lift (on a stretch
of the cylinder of length L),

� = −
∫ π

φ=0
pad Sy = −

∫ π

φ=0
paaL sinφ dφ = 5

3
ρ0U2La. (16.69)

If the density of the cylinder is ρ1 > ρ0, the lift-to-weight ratio becomes

�

Mg0
= 5

3π

ρ0

ρ1 − ρ0

U2

ag0
, (16.70)

where we have also taken buoyancy into account. Evidently, there is a critical flow speed beyond which the
lift becomes larger than the weight.

16.9 Potential flow around a sphere in a stream
The natural coordinates for a sphere of radius a inserted into an asymptotically uniform flow are of course
spherical (section B.2 on page 533) with the z-axis along the asymptotic velocity U . The solution follows
along exactly the same lines as for the cylinder above. The symmetry of the problem implies that the
velocity potential cannot depend on the azimuthal angle, so that � = �(r, θ).
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Spherical coordinates and their
basis vectors. Potential and velocity field

Asymptotically, for r → ∞, the velocity potential has to approach the uniform flow � → Ur cos θ , and
the linearity of the Laplace equation (16.61) requires the velocity potential to be linear in the asymptotic
flow,

� = U cos θ f (r). (16.71)

Inserting this into the spherical Laplacian (B.16) one obtains an ordinary differential equation

d2 f

dr2
+ 2

r

d f

dr
− 2

r2
f = 0, (16.72)
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F i gu re 16. 5. P ot e nt i a l fl ow ar ound a s pher e w i t h a = 1 and U = 1. O nl y t he upper hal f i s s how n her e
( t he l ow e r hal f i s t he mi r r or i mage) . T he s t r eaml i nes have been obt ai ned by numer i c i nt egr at i on of t he
differential equation for streamlines (15. 2) with the velocity field given by the solution (16. 74) converted
t o C a r t esi a n c oor di nat e s ( z, s =

√
x2 + y2). The streamlines are initialized to be equidistantly spaced

by �s = 0.1 for z = −20. The field appears qualitatively different from the flow around a cylinder in
fi gur e 16. 4 a nd hugs much cl oser t o t he s ur face of t he s pher e . T he pr essur e va ni shes on t he dashed l i nes.

for which the most general solution is f = Ar + B/r2. The asymptotic condition implies that A = 1,
and the vanishing of the radial field vr = ∇r� at the surface of the sphere requires f ′(a) = 0, leading to
B = (1/2)a3. The velocity potential around a sphere is thus

� = Ur cos θ

(
1 + a3

2r3

)
, (16.73)

and the velocity field is calculated from the spherical representation of the gradient (B.13),

vr = ∇r� = U cos θ

(
1 − a3

r3

)
, (16.74a)

vθ = ∇θ� = −U sin θ

(
1 + a3

2r3

)
, (16.74b)

vφ = ∇φ� = 0. (16.74c)

The streamlines are shown in figure 16.5.

Pressure, lift and drag
The pressure is obtained from (16.62),

p = 1

2
ρ0U2 a3

r3

(
3 cos2 θ − 1 − 1

4
(1 + 3 cos2 θ)

a3

r3

)
. (16.75)

On the surface of the sphere the pressure becomes
..............
..............
..............
...............

................
.................

.....................
...........................

....................................................................................................................................................................................................................................... �

�

$
$.

�
��

θπ − θ
z

√
x2 + y2

There is no drag because the
projection of the pressure force
on the z-axis is equal and
opposite for θ and π − θ .

pa = p|r=a = 1

2
ρ0U2 9 cos2 θ − 5

4
. (16.76)

It is negative in the interval 42 ◦ � θ � 138 ◦. Again the symmetry φ → 2π − φ shows that there is no
lift on the sphere, and the symmetry θ → π − θ that there is no drag on the sphere (and not even on half a
sphere).
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Using t hat d Sy = sin θ sinφ d S = a 2 sin2 θ sinφ dθ dφ , t he l i f t on a hal f spher e becomes,

� = −
∫ π

φ=0
pa d Sy = −a 2

∫ π

0
dθ

∫ π

0
dφ pa sin 2 θ sinφ = 

11π

32
ρ0 U 2 a 2. ( 16. 77)

If the density of the sphere is ρ1 > ρ0 , t he lift-to-wei ght ratio becomes,

�

Mg0
= 33

128

ρ0

ρ1 − ρ  0

U 2

ag0
. ( 16. 78)

A s f or t he hal f cyl i nder, t her e i s a cr i t i cal st r eam vel oci t y beyond w hi ch t he l i f t i s gr eat er t han t he w ei ght .

E xamp l e 16. 9. 1 ( Hal f - bu r i e d fi sh ) : A s pher i cal fi s h w i t h r a di us a = 10 cm and ave r a ge densi t y 10%
hi gher t han wat er ( w i t h t he s w i m- bl adder defl at ed) l i es hal f bur i ed i n t he sand at t he bot t om of a st r eam.
The critical velocity for lift-off is merely U ≈ 0. 6 m  s−1 , s o t hi s fi sh woul d do m uch bet t e r by fl at t e ni ng
i t s shape or burrowi ng deeper.

16.10 D’Alembert’s paradox
Jean l e R ond d’ A l ember t ( 1717–
83) . French mathematician.
I nt roduced t he c oncept of part i al
di ff erent i al e quat i ons and w as t he
first t o sol v e s uch an e quat i on.

The absence of drag in steady potential fl ow which we have explicitly verified for the cylinder and sphere
may be f or mal l y show n t o be t r ue f or any body shape ( see page 454) . B ut si nce eve r yday exper i ence t e l l s
us t hat a s t eadi l y movi ng obj ect i s subj ect t o dr ag f r om t he fl ui d t hat sur r ounds i t , even i f t he vi s cosi t y i s
va ni shi ngl y s mal l , w e have exposed a pr obl em cal l e d d’ A l em bert ’s paradox.

Drag from the trailing wake
T he r esolution of t he paradox illustrates t he risk s i nherent in the assumption of potential fl ow. A lthough
a t i ny vi s cosi t y may not give r i se t o an appr eci abl e f r i ct i on f or ce bet w een body and fl ui d, i t w i l l gener a t e
vorticity close to the surface of the body. The vorticity will then spread into the fluid and produce a trailing
wake behind the moving body, carrying a non-vanishing kinetic energy, and this constant loss of kinetic
energy produces a drag on the body.

In potential flow around an object, the fluid does not create a wake but returns to its original state with
no loss of kinetic energy, implying that there is no resultant drag. Potential flow may be a mathematically
correct solution, but it misses in this case important aspects of the physics of real flow. We shall see in
chapt er 29 t hat d’ A l ember t ’s par adox may i n fact be vi ew ed posi t ivel y as a s t at ement about t he s mal l ness
of drag compared to lift for streamlined bodies in nearly ideal fluids, with important consequences for the
emergence of powered flight.

Effective mass in unsteady potential flow
Even if no kinetic energy is lost from the fluid in steady potential flow, there will be kinetic energy in the
flow around the body. In the reference frame where the fluid is asymptotically at rest and the sphere moves
with velocity −U , the total kinetic energy of a sphere and the fluid around it becomes (problem 16.14)

� = 1

2
MU2 +

∫
r≥a

1

2
ρ0(v − U)2 dV = 1

2

(
M + 2π

3
a3ρ0

)
U2, (16.79)

where M is the mass of the sphere and v is the potential flow velocity field (16.74). This shows that the
effective mass of the sphere plus fluid is M+1/2m where m = (4π/3)a3ρ0 is the mass of the fluid displaced
by the sphere. Apart from the factor of 1/2, Archimedes would have loved this result!

If the sphere moves steadily with constant velocity, the total kinetic energy is also constant, and no
external forces need to perform any work. If the sphere is accelerated by means of an external force � ,
the rate of work of this force is �U = �̇ = (M + m/2)UU̇ . The change in the flow pattern around an
accelerated sphere thus produces an apparent drag force of magnitude � = (1/2)mU̇ against the direction
of motion.
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Problems
16.1 Show that the ratio between the estimate of the molecular velocity obtained from (4.1) and the
velocity of sound in an ideal gas is v0/c0 ≈ √

3/γ . Calculate the ratio for air.

mercury

a

c�
�
�
�
�
�

h/2

h/2 �
g0

U0

U0

d

16.2 An ideal incompressible liquid (water) of density ρ0 streams through a horizontal tube of radius a.
To determine the average flow velocity U0 a small ring is welded into the tube. The ring has outer radius
a and inner radius b = a − c. As shown in the drawing a manometer is built into the system in the form
of a small bypass partially filled with mercury of density ρ1. The mercury surface lies a distance d below
the tube’s inner surface before the liquid is set into motion. The pressure in the liquid may everywhere be
assumed to be constant across the tube cross section.

The following numbers may be used: a = 15 cm, c = 1 cm, d = 5 cm, g0 = 981 cm2/s,
ρ0 = 1 g/cm3, ρ1 = 13.6 g/cm3, U0 = 5 m/s.
(a) Calculate the average velocity of the water when it passes the ring.
(b) Determine the pressure difference between the bypass openings.
(c) Calculate the difference h in the mercury levels in the bypass.
(d) Find the maximal velocity U0, which can be allowed under the condition that the mercury does not enter
the mainstream.

16.3 A common way of stealing gasoline from a car is by means of a siphon. A tube of diameter 1 cm
is inserted into the gasoline tank and sucked full of gasoline. The filled tube is quickly lowered into the
opening of a 10 litre canister which is about 20 cm below the level of gasoline in the tank. How long does
it take to fill the canister?

16.4 There is a small correction to the flow from the wine barrel (page 210) because the velocity of the
flow does not vanish exactly on the top of the barrel. Estimate this correction from the ratio of the barrel
cross section A0 and the spout cross section A.

16.5 A wine barrel has two spouts with different cross sections A1 and A2 at the same horizontal level.
Show that under steady flow conditions the wine emerges with the same speed from the two spouts.

16.6 Consider the quasi-stationary emptying of the wine barrel. Determine how the actual height z varies
as a function of time.

16.7 An incompressible non-viscous fluid flows out of a cistern with water level h through a small circular
drain with radius a. The flow through the drain is non-uniform with velocity at a radius r from the centre
given by

v(r) = U

(
1 − r2

a2

)κ
(16.80)
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where U > 0 is the central velocity and κ > 0 is a non-uniformity parameter. Calculate the total volume
flux through the drain. Assuming that Bernoulli’s theorem is valid for the central streamline, determine the
reduction factor in the volume flux (in relation to Torricelli’s law) due to the non-uniformity.

16.8 Assume (somewhat unrealistically) that air is an ideal gas with constant temperature T0.
(a) Calculate the relation between pressure and air velocity for a Pitot tube which is closed at one end.
(b) Estimate the pressure increase relative to outside pressure in the Pitot tube of a passenger jet with speed
250 m s−1 in air of temperature T0 = −50 ◦ C.

16.9 Show explicitly that Stokes’ theorem is independent of the shape of the surface.

16.10 Show that the vector area of a surface bounded by a closed curve C is given by∫
S

d S = 1

2

∮
C

x × d�. (16.81)

16.11 Show that Kelvin’s theorem is valid for a barotropic compressible fluid.

16.12 Show that for unsteady, compressible potential flow in a barotropic fluid with ρ = ρ(p), the
equations of motion may be chosen to be,

∂�

∂t
+ 1

2
v2 +�+w(p) = 0 (16.82)

∂ρ

∂t
+ (v · ∇)ρ = −ρ∇2� (16.83)

(16.84)

where v = ∇� and w(p) = ∫
dp/ρ(p).

16.13 A cylindrical worm with radius 3 mm lies half buried in sand at the bottom of the sea. Its density
is 10% higher than the density of water. Calculate the critical speed at which the worm is lifted out of the
water.

16.14 Carry out the integral of the effective mass in (16.79).

∗ 16.15 Incompressible fluid flows along x in an open channel along x . Show that if the horizontal flow
vx (x) is independent of z, the vertical flow will be

vz = vx
(h − z)b′ + (z − b)h′

h − b
(16.85)

where b(x) and h(x) are the bottom surface heights.

∗ 16.16 Use the Schwarz inequality ∣∣∣∣∣∑
n

An Bn

∣∣∣∣∣
2

≤
∑

n
A2

n

∑
m

B2
m (16.86)

to derive (16.34).

∗ 16.17 Consider a non-viscous barotropic fluid in an external time-independent gravitational field g(x)
with ∇ · g = 0. Let ρ0(x) and p0(x) be density and pressure in hydrostatic equilibrium. (a) Show that the
wave equation for small-amplitude pressure oscillations around hydrostatic equilibrium becomes,

∂2�p

∂t2
= c2

0∇2�p − c2
0(g · ∇)�p

c2
0

, (16.87)

where c2
0 is the local sound velocity in hydrostatic equilibrium. (b) Estimate under which conditions the

extra term can be disregarded in standard gravity for an atmospheric wave of wavelength λ.
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All fluids are viscous, except for a component of liquid helium close to absolute zero in temperature. Air,
water and oil all put up resistance to flow, and a part of the money we spend on transport by plane, ship or
car goes to overcome fluid friction, and eventually to heating the atmosphere and the sea.

It is primarily the interplay between the mechanical inertia of a moving fluid and its viscosity which
gives rise to all the interesting and beautiful phenomena, the whirling and the swirling that we are so familiar
with. If a volume of fluid is set into motion, inertia would dictate that it continue in its original motion, were
it not checked by the action of internal shear stresses. Viscosity acts as a brake on the free flow of a fluid and
will eventually make it come to rest in mechanical equilibrium, unless external driving forces continually
supply energy to keep it moving. In an Aristotelian sense the ‘natural’ state of a fluid is thus at rest with
pressure being the only stress component. Disturbing a fluid at rest slightly, setting it into motion with
spatially varying velocity field, will to first order of approximation generate stresses that depend linearly
on the spatial derivatives of the velocity field. Fluids with a linear relationship between stress and velocity
gradients are called Newtonian, and the coefficients in this linear relationship are material constants that
characterize the strength of viscosity.

In this largely theoretical chapter the formalism for Newtonian viscosity will be set up and we shall
derive the famous Navier–Stokes equations for fluids, the central theme for the remainder of the book.
Superficially simple, these nonlinear differential equations remain a formidable challenge to engineers,
physicists and mathematicians.

17.1 Shear viscosity � x

�
y

�

�

�

�

��−σxy� �
σxy

Laminar flow. If the fluid
moves faster above the dashed
line than below, it will exert a
positive shear stress σxy on the
material below in the direction
of flow. By Newton’s third
law the fluid below will exert
an opposite stress −σxy on the
material above.

Consider a fluid flowing steadily along the x-direction with a velocity field vx (y) which is independent of
x , but may change with y. Such a field could, for example, be created by enclosing a fluid between moving
plates, and is an elementary example of laminar or layered flow. If the velocity field has no y-dependence
there should not be any internal friction stresses, because the fluid is then in uniform motion along the
x-axis. If, on the other hand, the velocity grows with y, so that its gradient is positive dvx (y)/dy > 0,
we expect that the fluid immediately above a plane y = const. will drag along the fluid immediately below
because of friction and thus exert a positive shear stress, σxy(y) > 0, on this plane.

It also seems reasonable to expect that a larger velocity gradient will evoke stronger stress, and in
Newton’s law of viscosity the shear stress is simply made proportional to the gradient,

σxy(y) = η
dvx (y)

dy
. (17.1)

The constant of proportionality, η, is called the coefficient of shear viscosity, the dynamic viscosity, or
simply the viscosity. It is a measure of how strongly the moving layers of fluid are coupled by friction,
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Table 17.1. Table of density and dynamic and kinematic viscosity for common substances (at the indicated
temperature and at atmospheric pressure). Some of the values are only estimates. Note that air has greater
kinematic viscosity than water and hydrogen greater than olive oil. Glass is usually viewed as a solid, but
there are (not very well substantiated) claims that it flows very slowly like a liquid over long periods of
time, even at normal temperatures (estimates of its viscosity run even as high as 1027 Pa s).

T [ ◦C] ρ [kg m−3] η [Pa s] ν [m2s−1]
Hydrogen 20 0.084 8.80 × 10−6 1.05 × 10−4

Air 20 1.18 1.82 × 10−5 1.54 × 10−5

Water 20 1.00 × 103 1.00 × 10−3 1.00 × 10−6

Ethanol 25 0.79 × 103 1.08 × 10−3 1.37 × 10−6

Mercury 25 13.5 × 103 1.53 × 10−3 1.13 × 10−7

Whole blood 37 1.06 × 103 2.7 × 10−3 2.5 × 10−6

Olive oil 25 0.9 × 103 6.7 × 10−2 7.4 × 10−5

Castor oil 25 0.95 × 103 0.7 7.4 × 10−4

Glycerol 20 1.26 × 103 1.41 1.12 × 10−3

Honey(est) 25 1.4 × 103 14 1 × 10−2

Glass (est) 20 2.5 × 103 1018 − 1021 1015 − 1018

and a material constant of the same nature as the shear modulus for elastic materials. We shall see below
(section 17.5) that there is also a bulk coefficient of viscosity corresponding to the elastic bulk modulus, but
that turns out to be rather unimportant in ordinary applications.

The viscosities of naturally occurring fluids range over many orders of magnitude (see table 17.1).
Since dvx/dy has dimension of inverse time, the unit for viscosity η is Pa s (pascal seconds). Although this
unit is sometimes called Poiseuille, there is in fact no special name for it in the standard system of units
(SI). In the older cgs-system it used to be called poise = 0.1 Pa s.

Molecular origin of viscosity in gases
In gases where molecules are far apart, internal stresses are caused by the incessant molecular bombardment
of a boundary surface, transferring momentum in both directions across it. In liquids where molecules are in
closer contact, internal stress is caused partly by molecular motion as in gases, and partly by intermolecular
forces. The resultant stress in a liquid is a quite complicated combination of the two effects, and we shall
for this reason limit the following discussion to the molecular origin of shear stress in gases.

Gas molecules move nearly randomly in all directions at speeds much higher than the velocity field
v(x, t), which should be understood as the centre-of-mass velocity of a large collection of molecules, and
represents the average non-random component of the molecular motion. In steady laminar planar flow with
velocity vx (y) and positive velocity gradient dvx (y)/dy > 0, a molecule of mass m crossing a surface
element in the plane y = const from above will carry along an average excess of momentum mvx (y) in
the x-direction and therefore exert a force in the x-direction on the material below. Similarly, the material
below will exert an equal and opposite force on the material above.

Let the typical distance between molecular collisions in the gas be λ and the typical time between
collisions τ . The excess of momentum in the x-direction above an area element d Sy in a layer of thickness
λ is of the order of

� x

�
y

� vx (y + λ)

� vx (y − λ)

�
�
�
��

�
�� ��−σxyd Sy� �

σxyd Sy

Layers of fluid moving with dif-
ferent velocities give rise to shear
forces because they exchange
molecules with different average
velocities.

d�x ≈ 1

2
(vx (y + λ)− vx (y))ρλd Sy ≈ 1

2
ρλ2 dvx (y)

dy
d Sy.

This excess of momentum will be carried along by the fast molecular motion in all directions and about
half of it will cross the surface in time τ . The shear stress may be estimated from the momentum transfer
per unit of time and area, σxy = (1/2)d�x/τd Sy , and indeed takes the form of Newton’s law of viscosity
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( 17. 1) w i t h a r ough est i m at e of t he shear vi scosi t y,

η ≈ ρ
λ 2

4τ
. ( 17. 2)

Usi ng t he mean free pat h of gases (1. 3) and i dent i f yi ng vmo l ≈ λ/τ  as the average molecular velocity (4.1),
t hi s est i m at e i s of t he r i ght or der.

E xamp l e 17. 1. 1: Air at nor mal t emperature and pressure has ρ ≈ 1. 2 kg m−3 , λ ≈ 100 nm, a nd
vmo l ≈ 500 m s−1 , l eadi ng t o η ≈ 1. 5 × 10−5 Pa s i n decent agreement w i t h t he t abul at ed val ue.

Tempera ture dependence o f v i s co s i ty
T he vi s cosi t y of any m at er i a l depends on t e mper at ur e. C ommon exper i ence f r om ki t c hen a nd i ndust r y
t e l l s us t hat most l i qui ds become ‘ t hi nner ’ w hen heat ed, i ndi cat i ng t hat t he vi scosi t y fa l l s w i t h t e mper at ur e.
Gases on t he ot her hand become more vi scous at hi gher t emperat ures, si mpl y because t he mol ecul es move
fast er at r andom and t hus t r anspor t m oment um acr oss a sur face at a hi gher r at e.

For a gas, the mean free pat h bet ween collisions is given by (1. 3). According t o t hat expression λρ is a
combinations of constant s, so that the viscosity η ∼ λρ ·λ/τ  w i l l depend on t he t her m odynami c par amet er s
i n t he s ame way as t he m ol ecul ar vel oci t y vmo l = λ/τ  . F r om t he gas pr e ssur e est i m at e ( 4. 1) w e have
vmo l ≈ √

3 p/ρ = √
3 RT/ Mmo l f or an i deal gas. T hus, i f t he vi scosi t y i s η 0 at t emperat ure T0 , it will

simply be

η = η0

√
T

T0
( 17. 3)

at t emperat ure T , i ndependent of t he pr e ssur e . T he i deal gas vi s cosi t y depends onl y on t he absol ut e
temperature, not on the pressure.

Kinematic viscosity
The viscosity estimate (17.2) seems to point to another measure of viscosity, called the kinematic viscosity1,

ν = η

ρ
. (17.4)

Since the estimate, ν ∼ λ2/τ , does not depend on the unit of mass, this parameter is measured in purely
kinematic units of m2 s−1 (in the older cgs-system, the corresponding unit was called stokes = cm2 s−1 =
10−4 m2 s−1). In fluids with constant density, it is a material constant at equal footing with the dynamic
vi scosi t y η ( s ee t a bl e 17. 1) . I t s houl d be r emember e d t hat i n a n i deal gas w e have ρ ∝ p/ T , s o t hat t he
kinematic viscosity will depend on both temperature and pressure, ν ∝ T 3/2/p. In isentropic gases it
always decreases with temperature (problem 17.1).

It is as we shall see the kinematic viscosity which appears in the dynamic equations for the velocity
field, rather than the dynamic viscosity. Normally, we would think of air as less viscous than water
and hydrogen as less viscous than olive oil, but under suitable conditions it is really the other way
around. If a flow is driven by inflow of fluid with a certain velocity rather than being controlled by
external pressure, air behaves in fact as if it were 10–20 times more viscous than water. But subject
to a given pressure, air is much easier to set into motion than water because it is a thousand times
lighter, and that is what fools our intuition.

17.2 Velocity-driven planar flow
Before turning to the derivation of the Navier–Stokes equations for viscous flow, we shall explore the
concept of shear viscosity a bit further for the simple case of planar flow. Let us, as before, assume that the

1The use of ν for kinematic viscosity as well as for Poisson’s ratio should not cause confusion.
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232 17. VISCOSITY

fl ow i s l ami nar and pl a nar w i t h t he onl y non- va ni shi ng vel oci t y component bei ng vx = v x ( y, t) , now  also
al l owi ng for t i me dependence. It i s rat her cl ear t hat t here can be no advect ive accel erat i on i n s uch a fi el d,
and f ormal l y we al so fi nd (v · ∇)vx = v x∇  xv x = 0. In the absence of volume and pressure forces, t he
N ew t oni an shear st r e ss ( 17. 1) w i l l be t he onl y non- va ni shi ng c omponent of t he s t r ess t ensor, and C auchy’s
dynami cal equat i on ( 15. 35) r e duces t o

ρ
∂vx

∂ t
= f ∗x = ∇yσ x y  = η

∂  2v x

∂ y 2 
.

D ivi di ng by t he densi t y ( w hi ch i s assumed t o be c onst a nt ) w e get

∂vx

∂ t
= ν

∂ 2v x

∂ y 2 
, ( 17. 5)

where ν i s t he ki nemat i c vi scosi t y ( 17. 4) . T hi s i s a si mpl i fi ed ve r s i on of t he N avi er–S t oke s e quat i ons,
par t i cul ar l y w el l sui t ed f or t he di s cussi on of t he basi c physi cs of s hear vi scosi t y.

Stea dy pl a na r flow
L et us fi rst r et urn t o t he case of s t eady pl anar l ami nar fl ow w hi ch t hi s chapt er began wi t h. I n s t eady fl ow t he
l e f t - hand s i de of ( 17. 5) va ni shes, a nd f r om t he va ni shi ng of t he r i ght - hand s i de i t f ol l ow s t hat t he gener al
solution must be linear, vx = A + By, with arbitrary integration constants A and B . We shall imagine that
the fl ow is maintained between (in principle infinitely extended) solid plates, one kept at rest at y = 0 and
one movi ng w i t h const a nt ve l oci t y U at y = d . W here the fl ui d makes cont act with the plates, we requi re
it to assume the same speed as the plates, in ot her words vx ( 0) = 0 and v  x ( d) = U (this no- sl i p boundar y
condition w ill be discussed i n more detail l ater). S olving t hese conditions we fi nd A = 0 and  B = U/d
such t hat t he fi el d bet ween t he pl at es becomes

�

y

�
�
�
�
�
�

U �

x0

d

A Newtonian fluid with spatially
uni f or m pr oper t i e s bet w een mov-
ing parallel plates. The veloc-
ity field varies linearly between
the plates and satisfies the no-
slip boundary condition t hat t he
fluid is at rest relative to both
plates. T he stress must be the
same on any plane in the fl ui d
parallel with the plates (dashed).

vx ( y) = y

d 
U, ( 17. 6)

i ndependent of t he vi s cosi t y. F r om t hi s expr essi on w e obt ai n t he shear st r ess,

σxy  = η 
dv x

dy
= η 

U

d
, ( 17. 7)

w hi c h i s i ndependent of y , as one mi ght have expect ed because i n st at i onary fl ow t he bal ance of f orces
requires the stress on any plane parallel with the plates to be the same.

Vi scous fri cti o n
A t hi n l ayer of vi scous fl ui d may be used t o l ubr i cat e t he i nt er face bet w een sol i d obj ect s. F r om t he above
solution we may calculate the friction force, or drag, exe r t ed on t he body by t he l ayer of vi scous l ubr i cant
( s ee al so chapt e r 27) . L et t he woul d- be cont act ar ea bet w een t he body and t he sur face on w hi c h i t s l i des be
A , a nd l e t t he t hi c kness of t he fl ui d l ayer be d ever yw her e . I f t he l a yer i s t hi n, d � √

A , w e may di sregard
edge eff ect s and use t he pl anar st r ess ( 17. 7) t o cal cul at e t he dr ag f or ce,

����������������������������
������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� � U

A
d
�� � x

A solid object sliding on a plane
lubricated surface.

	 ≈ −σxy A = −ηU A

d
. (17.8)

The velocity-dependent viscous drag is quite different from the constant drag experienced in solid friction
(see section 9. 1 on page 111). T he decrease i n drag w ith falling velocity makes t he object seem to want to
slide ‘forever’, and this is presumably what makes ice sports such as skiing, skating, sledging and curling
interesting. A thin layer of liquid water acts here as the lubricant. Likewise, it is scary to brake a car on
ice or to aquaplane, because the fall in viscous friction as the speed drops makes the car appear to run away
from you.

The quasi-steady horizontal equation of motion for an object of mass M , not subject to forces other
than viscous drag, is

M
dU

dt
= −η A

d
U. (17.9)
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17.2. VELOCITY-DRIVEN PLANAR FLOW 233

Assuming that the thickness of the lubricant layer stays constant (and that is by no means evident) the
solution to (17.9) is

U = U0e−t/t0 , t0 = Md

ηA
, (17.10)

where U0 is the initial velocity and t0 is the characteristic exponential decay time for the velocity.
Integrating this expression we obtain the total stopping distance

L =
∫ ∞

0
U dt = U0t0 = U0Md

ηA
. (17.11)

Although it formally takes infinite time for the sliding object to come to a full stop, it does so in a finite
distance! The stopping length grows with the mass of the object which is quite unlike solid friction,
where the stopping length is independent of the mass. This effect is partially compensated by the dynamic
dependence of the layer thickness d ∼ 1/

√
M on the mass (problem 27.1).

Example 17.2.1 (Curling): In the ice sport of curling, a ‘stone’ with mass M ≈ 20 kg is set into
motion with the aim of bringing it to a full stop at the far end of an ice rink of length L ≈ 40 m. The
area of the highly polished contact surface to the ice is A ≈ 700 cm2 and the initial velocity about
U0 ≈ 3 m s−1. From (17.11) we obtain the thickness of the fluid layer d ≈ 43 µm which does not
seem unreasonable, and neither does the decay time t0 ≈ 13 s. The players’ intense sweeping of the ice
in front of the moving stone presumably serves to smooth out tiny irregularities in the surface, which
could otherwise slow down the stone.

Momentum diffusion
The dynamic equation (17.5) is a typical diffusion equation with diffusion constant equal to the kinematic
viscosity, ν, also called momentum diffusivity. In general, such an equation leads to a spreading of the
distribution of the diffused quantity, which in this case is the velocity field, or perhaps better, the momentum
density ρvx . The generic example of a flow with momentum diffusion is the Gaussian ‘river’,

vx (y, t) = U
a√

a2 + 4νt
exp

(
− y2

a2 + 4νt

)
, (17.12)

which may be verified to be a solution to (17.5) by direct insertion. This river starts out at t = 0 with

�

� x

y

�
�
�

�
�
�
�

�
�
�

Velocity distribution for a planar
Gaussian ‘river’ in an ‘ocean’ of
fluid.

y

vx

A Gaussian ‘river’ widens and
slows down in the course of time
because of viscosity.

Gaussian width a and maximum velocity U , and spreads with time so that at time t it has width
√

a2 + 4νt .
Although momentum diffuses away from the centre of the river, the total momentum must remain constant
because there are no external forces acting on the fluid. Kinetic energy is on the other hand dissipated and
ends up as heat (see problem 17.3).

For sufficiently large times, t � a2/4ν, the shape of the Gaussian becomes independent of the original
width a. This is, in fact, a general feature of any bounded ‘river’ flow: it eventually becomes proportional to
exp(−y2/4νt) (see problem 17.6). The Gaussian factor drops sharply to zero for y �

√
4νt and it appears

as if momentum diffusion has a fairly well-defined front, which for example may be taken to be y = 2
√
νt

where the Gaussian is e−1 = 37% of its central value. Depending on the application, it is sometimes
convenient to choose a more conservative estimate for the spread of momentum, for example y = k

√
νt ,

where for k = 3 the Gaussian factor is only 10% of its central value.
Momentum diffusion may equivalently be characterized by the time it takes for a velocity disturbance

to spread through a distance L by diffusion,

t ≈ L2

4ν
, (17.13)

or a correspondingly more conservative estimate. It must be emphasized that momentum diffusion (in
this case) takes place orthogonally to the general direction of motion of the fluid. In spite of the fact that
momentum diffuses away from the centre in the y-direction, there is no mass flow in the y-direction because
vy = 0. In less restricted flows there may be more direct competition between mass flow and diffusion. If
the velocity scale of a flow is |v| ∼ U , it would take the time tflow ∼ L/U for the fluid to move through the
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di st ance L , and the ratio of the the diffusion time scale tdiff ∼ L 2/ν t o t he mass fl ow t i me s cal e becomes a
di mensi onl ess number R e ≈ tdiff/ t flow ∼ U L/ν , fi r s t used by R eynol ds t o cl assi f y di ff er ent fl ow s. W hen
t hi s number i s l arge compar ed t o uni t y, m oment um di ff usi on t akes a much l onger t i m e t han m ass fl ow and
pl ays onl y a smal l r ol e, whereas when Re i s smal l moment um di ffusi on wi ns over mass fl ow and domi nat es
t he fl ow pat t e r n. T he R eynol ds number i s a ve r y usef ul par a met e r w hi ch w i l l be di scussed i n m or e det ai l i n
sect i on 17. 4.

Shea r s o und waves
Consider an infinitely extended plate in contact with an infinite sea of fl uid. Let the plate oscillate with
ci r c ul ar f r e quency ω , so that its instantaneous velocity in the x -direction is U( t) = U0 cosω t . T he motion
of the plate is transferred t o t he neighbouring fl uid because of the no-s lip condition and then spreads i nto
t he fl ui d a t l arge. H ow fa r does i t go? B y di r ect i nser t i on i nt o ( 17. 5) i t i s f ound t hat

vx ( y, t) = U0 e
−ky cos ( ky − ω t) ,  k =

√
ω

2ν
, ( 17. 14)

satisfi es t he planar fl ow equation ( 17. 5) as well as the no-slip boundary condition vx = U( t) for y = 0.
y

vx

T he s hape of a t r a nsve r s e wave.
Evidently, this is a damped wave spreading from the oscillating plate into the fl uid. Since the velocity
oscillations take place in the x -direction whereas the wave propagates in the y -direction it is a t ransverse
or shear wave . T he wave number k bot h det er mi nes t he wave l e ngt h λ = 2π/  k and t he decay l e ngt h of
t he exponent i a l , al so cal l e d t he penetration depth d = 1/ k = λ/2π . T he wave is critically damped and
penet r at es l e ss t han one wave l e ngt h i nt o t he fl ui d, s o i t i s r eal l y not much of a wave. A l t hough l ongi t udi nal
(pressure) waves are al s o at t enuat ed by vi s cosi t y, t hey propagat e over much great er di st ances (see sect i on
17. 6) .

E xamp l e 17. 2. 2: A s hear sound wave i n ai r of f r e quency 1000 H z has wavel engt h 0. 4 mm , whereas i n
wa t e r i t i s 0. 1 mm.

1 7 . 3 I nco m pres s ible Newt o nia n fluids
N umer ous ever yday fl ui ds obey N ew t on’s l aw of vi scosi t y ( 17. 1) , f or exampl e wat er, a i r, oi l , al cohol and
ant i f r eeze. A number of c ommon fl ui ds ar e onl y a ppr oxi mat ive l y Newt oni an, f or exampl e pai nt and bl ood,
and ot her s a r e st r ongl y non- N ew t oni an, f or exampl e t omat o ket chup, j e l l y and put t y. T her e al so exi s t
vi scoelastic material s t hat are bot h elastic and viscous, sometimes used in toys that can be deformed like
cl ay but al s o j ump l i ke a r ubber bal l .

In Newtonian fl uids t he shear stress σxy  i s di r ect l y pr opor t i onal t o t he ve l oci t y gr adi e nt ∇  yv x (also
called t he shear strain rate) w ith proportionality constant equal t o t he constant shear viscosity η .
Most non- N ew t oni an fl ui ds become t hi nner as t he shear st r ai n r at e i ncr eases, i mpl yi ng t hat t he shear
st r ess as a f unct i on of s hear st r ai n r at e gr ow s s l ow er t han l i near l y. E ven t he most N ew t oni an of
fl ui ds, wat er, becomes t hi nner at s hear st r ai n r at es above 1012 s−1 . O nl y f ew fl ui ds ( f or exampl e
some st arches st i rred i n wat er) appear t o t hi cken w i t h i ncreasi ng s t r ai n r at e. T he s ci ence of t he
general fl ow properties of materials is called rheology.�
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thin

thick

Newton

In Newtonian fluids the shear
stress σxy increases linearly with
the strain-rate ∇yvx , whereas
non-Newtonian fluids mostly be-
come thinner and only a few be-
come thicker.

Most everyday liquids are incompressible, and gases are effectively so when the flow velocities are
much smal l e r t han t he ve l oci t y of sound ( s ee sect i on 16. 4) . We s hal l i n t hi s sect i on onl y e st abl i s h t he gener a l
dynamical equations for the simpler case of incompressible, isotropic Newtonian fluids and postpone the
analysis of the slightly more complicated compressible fluids to section 17.5.

Isotropic viscous stress
Newton’s law of viscosity (17.1) is a linear relation between the stress and the velocity gradient, only valid
in a particular geometry. As for Hooke’s law for elasticity (page 137) we want a more general definition of
viscous stress which takes the same form for any geometry and in any Cartesian coordinate system, leaving
us free to choose our own reference frame.
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Most fl ui ds a r e not onl y N ew t oni an, but al so i s ot ropi c . L i qui d cryst al s are ani s ot ropi c, but s o s peci al
t hat w e shal l not consi der t hem her e. I n an i sot r opi c fl ui d at r est t her e ar e no i nt er nal di r ect i ons at al l and t he
stress tensor is determined by the pressure, σi j  = −p δi j  . W hen such a fluid is set in motion, the velocity
field vi ( x, t) defi nes a di r ect i on i n every poi nt of space, but as w e have argued before t he vel oci t y at a poi nt
cannot i t s el f pr ovoke st r ess i n t he fl ui d. I t i s t he var i at i on i n vel oci t y f r om poi nt t o poi nt t hat causes s t r ess.
Vi scous st r e ss i s i n ot her wor ds det e r m i ned by t he vel oci t y gr adi e nt t e nsor ∇iv j .

I n an i ncompr essi bl e fl ui d, t he t r ace of t he vel oci t y gr adi ent mat r i x vani shes,
∑

i ∇ivi = ∇ · v = 0, so
t he m ost gener al symmet r i c t e nsor one can const r uct f r om t he ve l oci t y gr adi e nt s i s of t he f or m ,

σi j  = −p δi j  + η (∇iv j + ∇ j vi ). ( 17. 15)

T hi s i s t he nat ur al gener a l i zat i on of N ew t on’s l aw of vi scosi t y ( 17. 1) f or i ncompr essi bl e fl ow i n ar bi t r ar y
C ar t esi an coor di nat e syst ems. I t may r eadi l y be ver i fi ed t hat t he coeffi ci ent η is indeed the shear viscosity
introduced in Newton’s law by inserting the field of a steady planar fl ow v = (vx ( y),  0, 0) , because for
such a fi el d t he onl y s hear st ress i s σxy  = σ yx  = η∇ yv x ( y) .

The N av i er– Sto kes equa ti o ns fo r i nco mpres s i bl e flui d
T he r i ght - hand s i de of C auchy’s gener al equat i on of m ot i on ( 15. 35) equal s t he e ff ect ive densi t y of f or c e
f ∗i = fi +

∑  
j ∇ jσ  i j  . I nser t i ng t he st r ess t ensor ( 17. 15) and usi ng agai n ∇ · v = 0, w e fi nd

∑
j

∇ jσ  i j  = −∇i p + η
(∑

j

∇i ∇  j v j +
∑

j

∇  2j vi

)
= −∇i p + η∇  2vi .

Here we have tacitly assumed t hat t he fluid is homogeneous such that the shear vi scosity (like t he density ρ )
does not depend on x . I f t he temperatur e or chemical composition of t he fl uid varies in space, the r ight -hand
si de must be modi fi e d. G e orge G a br i e l S t oke s ( 1819–

1903) . British mathematician
and physi ci st . C ont ri but ed t o t he
devel opm ent of flui d dynam i c s,
opt i c s and heat conduct i on. I n
m at hem at i c al physi cs a f am ous
t heore m bears hi s nam e ( page
220) .

I nser t i ng t hi s expr essi on i nt o C a uchy’s e quat i on of m ot i on a nd conver t i ng t o or di nar y vect or not at i on
w e fi nal l y obt ai n t he N avi er–St okes equat i on f or i ncompr essi bl e fl ui d ( N avi er ( 1822) , S t oke s ( 1845) )

∂v

∂ t
+ (v · ∇)v = g − 1

ρ0
∇ p + ν∇ 2v, ( 17. 16)

where ρ0 i s t he c onst a nt densi t y, ν = η/ρ0 is the kinematic viscosity and g = f /ρ 0 i s t he accel erat i on
fi e l d of t he vol ume f or ces ( nor mal l y due t o gr avi t y) . T he onl y di ff e r e nce f r om t he E ul e r e quat i on ( 16. 1)
is the last term on the right-hand side. Besides this equation, we have also the divergence condition for
incompressibility,

∇ · v = 0. (17.17)

Given the acceleration field g, we now have four equations for the four fields, vx , vy , vz , and p. Note,
however, that whereas the three velocity fields obey truly dynamic equations with each field having its
own time derivative, this is not the case for the pressure which is only determined indirectly through the
divergence condition.

Relatively simple to look at, the Navier–Stokes equations contain all the complexity of real fluid flow,
including that of Niagara Falls! It is therefore clear that one cannot in general expect to find simple
solutions. Exact solutions can only be found in strongly restricted geometries and under simplifying
assumptions concerning the nature of the flow, as in the planar laminar flow examples in the preceding
sect i on, and t he exampl es t o be st udi ed i n chapt e r 18.

Millenium Prize Problem: Among the seven Millenium Prize Problems set out by the Clay
Mathematics Institute of Cambridge, Massachusetts, one concerns the existence of smooth, non-
singular solutions to the Navier–Stokes equations (even for the simpler case of incompressible flow).
The prize money of one million dollars illustrates how little we know and how much we would like
to know about the general features of these equations which appear to defy the standard analytic
methods for solving partial differential equations.
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Bo unda ry co ndi ti o ns
Field equations that are fi rst order in time, like the Navier–S tokes equation (17. 16), need initial values of the
fi el ds ( and t hei r spat i al der ivat ives) i n or der t o pr edi ct t hei r val ues at l at er t i m es. B ut w hat about physi cal
boundar i es, t he cont ai ner s of fl ui ds, or even i nt e r nal boundar i es bet w een di ff er ent fl ui ds? H ow do t he fi el ds
behave t her e? L e t us di s cuss t he var i ous fi e l ds t hat w e have m et one by one.

Density : T he densi t y i s easy t o di s pose of , si nce i t i s a l l ow e d t o be di s cont i nuous and j ump a t a boundar y
between two materials, so this provides us with no condition at all. It is evident from the Navier–S tokes
equat i on t hat a j ump i n densi t y acr oss a fl ui d boundar y must somehow be accompani ed by a j ump i n t he
der iva t ive s of t he ot her fi el ds, but w e shal l not go i nt o t hi s quest i on her e.

P re ssure : N ew t on’s t hi r d l aw r equi r e s t he pr essur e t o be cont i nuous acr oss a ny boundar y. T hi s s i m pl e
pi ct ur e i s, how ever, compl i cat ed by sur face t ensi on, w hi ch can give r i se t o a di s cont i nuous j ump i n pr essur e
across an i nt erface bet w een t wo mat eri al s .

Ve l o c i t y : T he nor mal c omponent vn = v · n of t he vel oci t y fi e l d must be cont i nuous acr oss a ny boundar y,
f or t he si mpl e r eason t hat w hat goes i n on one si de must come out on t he ot her. I f t hi s w er e not t he case,
mat e r i al woul d c ol l ect at t he boundar y or hol es woul d devel op i n t he fl ui d. T he l at t e r ki nd of br eakdow n
can act ual l y happen i n ext r e me si t uat i ons ( c avi t a t i on) .

T he t angent i a l c omponent of ve l oci t y vt = n×(v× n) must al so be cont i nuous, but f or di ff er ent r easons.
The linear relationship (17. 1) between stress and velocity gradient implies that a tangential velocity field
whi ch changes r api dl y al ong t he di r ect i on normal t o a surface, must creat e very l arge and r api dl y varyi ng
shear st r ess. I n t he ext r eme case of a di scont i nuous j ump i n vel oci t y, t he shear st r ess woul d become i nfi ni t e.
Although large stresses may be cr eated, f or example by hitting a fl uid container w ith a hammer, they can
how eve r not be mai nt a i ned f or l ong, but a r e r a pi dl y s moot hed out by vi scous moment um di ff usi on. O nl y
i f t he c ont i nuum appr oxi mat i on br eaks dow n, shear sl i ppage may occur, f or exampl e i n ext r emel y r ar i fi ed
gases.
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S ket ch of r a pi dl y var yi ng ve l oc-
ity and shear stress in a region
of si ze a near a boundar y. For
a → 0 t he ve l oci t y deve l ops an
abr upt j ump and t he st r ess be-
comes s i ngul ar. T he decr ease i n
shear stress away from t he dis-
continuity leads to spreading of
t he s har p di scont i nui t y.

U s ual l y t he w hol e vel oci t y fi el d, nor mal as w el l as t angent i al component s, w i l l t her ef or e be assumed
t o be cont i nuous acr oss a ny boundar y bet w een N ew t oni an fl ui ds. S i nce a s ol i d wa l l may be vi ew e d a s a n
extreme Newtonian fluid with infinite viscosity, we recover the previously mentioned no-slip condition:
a fl uid has zero velocity relative to its containing walls. Viscous fluids never slip along the containing
boundar i es but a dher e t o t hem, a nd t hi s i s par t of t he r eason t hat vi scous fl ui ds a r e wet . A not her r eason f or
a fl ui d t o be abl e t o w et a s ol i d surface i s an acut e cont act angl e ( see chapt er 8).

∗ Vi scous dissipation
W hen you gently and steadily stir a pot of soup, the fl uid will after some time settle down into a nearly
steady fl ow. T he fact that you still have to perform work while you stir steadily, shows that there must be
vi scous f r i ct i on f or ces at pl ay i n t he s oup. T he f r i ct i on f or ces bet w een t he s i des of t he pot and t he soup
cannot perform any work because the fluid is at rest there, due to the no-slip condition. All the work you
perform must for this reason be spent against the internal friction forces, the shear stresses acting between
the moving layers of the fluid. If you stop stirring the kinetic energy of the soup is quickly dissipated into
heat . We s hal l r e t ur n t o di ssi pat i on i n c hapt er s 22 a nd 30.

To make a quick calculation of the dissipative rate of work, we turn back to the discussion of
deformation work on page 129. Since a fluid particle is displaced by δu = v δt in a small time
interval δt , fluid motion may be seen as a continuous sequence of infinitesimal deformations with strain
tensor, δui j = (1/2)(∇i δu j + ∇ j δui ) = (1/2)(∇iv j + ∇ j vi ) δt . The symmetrized velocity gradients
vi j ≡ δui j /δt = (1/2)(∇iv j +∇ j vi )may thus be understood as the rate of deformation or rate of strain of
the fluid material. The rate of work Ẇ = δW/δt performed against the internal stresses is correspondingly
given by (10.36),

Ẇint =
∫

V

∑
i j

σi j ∇ j vi dV =
∫

V

∑
i j

σi j vi j dV =
∫

V
2η

∑
i j

v2
i j dV, (17.18)
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w her e i n t he l ast st ep w e have i nser t ed t he N ew t oni an st r ess t ensor ( 17. 15) . E vi dent l y, t he r at e of wor k
agai nst i nt er nal s hear st r esses i s always posi t ive. I t always cost s wor k t o keep t hi ngs movi ng agai nst f r i ct i on
forces.

∗ Non-locality of pressure
For i ncompr essi bl e fl ui ds, t he pr essur e i s not give n by a n e quat i on of s t a t e , but r a t her det e r m i ned by t he
divergence condition, and that leads to special diffi culties. Calculating the divergence of both sides of
( 17. 16) , w e obt ai n a P oi sson e quat i on f or t he pr e ssur e ,

∇  2 p = ρ0
(−∇ · ((v · ∇)v)+ ∇ · g). ( 17. 19)

A s ol ut i on t o t he P oi sson e quat i on i s gener al l y of t he s ame f or m a s t he gr avi t a t i onal pot ent i a l f r om a mass
di st r i but i on ( 3. 24) and depends non- l ocal l y on t he fi el d ( t he s our ce) on t he r i ght - hand s i de. T he non- l ocal
pressure therefore instantly communicates any change in the velocity field to the rest of the fluid.

L i ke true rigidity, t rue i ncompressibility is an ideal which cannot be reached with real materials, where
the velocity of sound sets an upper limit to small-amplitude signal propagation speed. T he above result
neve r t hel e ss means t hat a ny l ocal change i n t he fl ow w i l l be communi cat ed by t he non- l ocal pr essur e t o
any ot her par t s of t he fl ui d at t he s peed of sound. T hi s phenomenon i s i n fact w e l l - know n f r om eve r yday
exper i ence w her e t he cl osi ng of a faucet can r esul t i n r at her vi ol ent s o- cal l ed ‘ wat er- hammer ’ r esponses
from t he house piping. T he non-locality of pressure is also a major problem in numerical simulations of the
N avi er–S t oke s e quat i ons f or i ncompr essi bl e fl ui ds ( s ee chapt e r 21) .

17.4 Classification of flows
T he most i nteresting phenomena i n fl ui d dynamics arise from t he competition between inertia and viscosity,
r e pr esent e d i n t he N avi er–S t oke s e quat i on ( 17. 16) by t he a dvect ive t er m (v·∇)v and t he vi scous t e r m ν∇ 2v .
Inertia attempts to continue the motion of a fluid once it is started whereas viscosity acts as a brake. If inertia
i s domi nant w e m ay l e ave out t he vi s cous t e r m , a r r ivi ng agai n a t E ul er ’s equat i on ( 16. 1) descr i bi ng l ive l y,
non- vi scous or ideal fl ow ( see c hapt er 16) . I f on t he ot her hand vi s cosi t y i s domi nant , w e may dr op t he
advect ive t er m, and obt ai n t he basi c e quat i ons f or s l uggi sh creepi ng fl ow ( see c hapt er 19) . O sbor ne R eynol ds ( 1842–1912) .

British engi neer and physici st.
C ont ri but e d t o flui d m echani cs i n
ge neral , and t o t he unders t andi ng
of l ubri c at i on, t urbul ence and
t i dal m ot i on i n part i c ul ar.

The R ey no l ds number
A s a m easur e of how much an act ual fl ow i s l ivel y or sl uggi sh, one may m ake a r ough est i m at e, cal l ed
the R eynol ds num ber , f or t he m agni t ude of t he r at i o of t he a dvect ive t o t he vi scous t e r m s. To get a si mpl e
expr essi on w e assume t hat t he vel oci t y i s of t ypi cal si ze |v| ≈ U and t hat i t c hanges by a si mi l a r a mount
ove r a r egi on of si ze L . T he or der of m agni t ude of t he fi r s t - or der s pat i a l der ivat ives of t he vel oci t y w i l l t hen

be of magnitude |∇v| ≈ U/L , and the second-order derivatives will be
∣∣∣∇2v

∣∣∣ ≈ U/L2. Consequently, the

Reynolds number becomes

Re ≈ |(v · ∇)v|
|ν∇2v| ≈ U2/L

νU/L2
= U L

ν
. (17.20)

For small values of the Reynolds number, Re � 1, advection plays no role and the flow creeps along,
whereas for large values, Re � 1, viscosity can be ignored and the flow tends to be lively. The streamline
pattern of creeping flow is orderly and layered, also called laminar, well known from the kitchen when
mixing cocoa into dough to make a chocolate cake (although dough is hardly Newtonian!). The laminar flow
pattern continues quite far beyond Re � 1, but depending on the flow geometry and other circumstances,
there will be a Reynolds number, typically in the region of thousands, where turbulence sets in with its
characteristic tumbling and chaotic behaviour.

It is often quite easy to estimate the Reynolds number from the geometry and boundary conditions of a
fl ow pat t e r n, a s i s done i n t he f ol l ow i ng exampl es and i n t abl e 17. 2.

Example 17.4.1 (Bathtub turbulence): Getting out of a bathtub you create flows with speeds of say
U ≈ 1 m s−1 over a distance of L ≈ 1 m. The Reynolds number becomes Re ≈ 106 and you are
definitely creating visible turbulence in the water. Similarly, when jogging you create air flows with
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Tab l e 17. 2. Ta bl e of R eynol ds number s f or s ome m ovi ng obj ect s cal cul a t e d on t he basi s of t ypi cal va l ues
of lengths and speeds. Vi scosities are taken from t able 17. 1 on page 230. It is perhaps surprising t hat a
submarine operates at a Reynolds number that is larger than that of a passenger jet at cruising speed, but
this is mostly due to the kinematic viscosity of air being larger than that of water.

Size Velocity Reynolds
Fluid L [m] U [ms−1] number

Submarine water 100 15 1.7 × 109

Airplane air 50 200 6.3 × 108

Blue whale water 30 10 3.4 × 108

Car air 5 30 9.4 × 106

Swimming human water 2 1 2.3 × 106

Running human air 2 3 3.8 × 105

Herring water 0.3 1 3.8 × 105

Golf ball air 0.043 40 2.2 × 105

Ping-pong ball air 0.040 10 5 × 104

Fly air 0.01 1 600
Flea air 0.001 3 190
Gnat air 0.001 0.1 6
Bacterium water 10−6 10−5 10−5

Bacterium blood 10−6 4 × 10−6 10−9

U ≈ 3 m s−1 and L ≈ 1 m, leading to a Reynolds number around 2 × 105, and you know that you
must leave all kinds of little invisible turbulent eddies in the air behind you. The fact that the Reynolds
number is smaller in air than in water despite the higher velocity is a consequence of the kinematic
viscosity being larger for air than for water.

Example 17.4.2 (Curling): For planar flow between two plates (section 17.1), the velocity scale is
set by the velocity difference U between the plates whereas the length scale is set by the distance d
between the plates. In the curling example 17.2.1 on page 233 we found U ≈ 3 m s−1 and d ≈ 43 µm,
leading to a Reynolds number Re = Ud/ν ≈ 140. Although not truly creeping flow, it is definitely
laminar and not turbulent.

Example 17.4.3 (Water pipe): A typical 1/2 inch water pipe has diameter d ≈ 1.25 cm and that sets
the length scale. If the volume flux of water is Q = 100 cm3 s−1, the average water speed becomes
U = Q/πa2 ≈ 0.8 m s−1 and we get a Reynolds number Re = Ud/ν ≈ 104 which brings the flow
well into the turbulent regime. For olive oil under otherwise identical conditions we get Re ≈ 0.15, and
the flow would be creeping.

Hydrodynamic similarity
What does it mean if two flows have the same Reynolds number? A stone of size L = 1 m sitting in a steady
water flow with velocity U = 2 m s−1 has the same Reynolds number as another stone of size L = 2 m in
a steady water flow with velocity U = 1 m s−1. It even has the same Reynolds number as a stone of size
L = 4 m in a steady airflow with velocity U = 8 m s−1, because the kinematic viscosity of air is about 16
times larger than of water (at normal temperature and pressure). We shall now see that provided the stones
are geometrically similar, i.e. have congruent geometrical shapes, flows with the same Reynolds numbers
are also hydrodynamically similar and only differ by their overall length and velocity scales, so that their
flow patterns visualized by streamlines will look identical.

In the absence of volume forces, steady incompressible flow is determined by (17.16) with g = 0 and
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∂v/∂t = 0, or

(v · ∇)v = − 1

ρ0
∇ p + ν∇2v. (17.21)

Let us rescale all the variables by means of the overall scales ρ0, U , and L , writing

v = U v̂, x = L x̂, p = ρ0U2 p̂, ∇ = 1

L
∇̂, (17.22)

where the hatted symbols are all dimensionless. Inserting these variables, the steady flow equation takes
the form,

(v̂ · ∇̂)v̂ = −∇̂ p̂ + 1

Re
∇̂2

v̂. (17.23)

The only parameter appearing in this equation is the Reynolds number which may be interpreted as the
inverse of the dimensionless kinematic viscosity. The pressure is as mentioned not an independent dynamic
variable and its scale is here fixed by the velocity scale, P = ρ0U2. If the flow instead is driven by external
pressure differences of magnitude P rather than by velocity, the equivalent flow velocity scale is given by
U = √

P/ρ0.
In congruent flow geometries, the no-slip boundary conditions will also be the same, so that any solution

of the dimensionless equation can be scaled back to a solution of the original equation by means of (17.22).
The three different flows around stones mentioned at the beginning of this subsection may thus all be
obtained from the same dimensionless solution if the stones are geometrically similar and the Reynolds
numbers identical.

Even if the flows are similar in air and water, the forces exerted on the stones will, however, not be
the same. The shear stress magnitude may be estimated as σ ≈ η |∇v| ∼ ηU/L , times a function of the
Reynolds number. The viscous drag on an object of size L will then be of magnitude 	 ≈ σ L2 ∼ ηU L =
ηνRe. Since the Reynolds numbers are assumed to be the same in the two cases, the ratio of the viscous
drag on the stone in air to that in water is about 	air/	water ≈ (ην)air/(ην)water ≈ 0.27.

Example 17.4.4 (Flight of the robofly): The similarity of flows in congruent geometries can be
exploited to study the flow around tiny insects by means of enlarged slower moving models, immersed
in another fluid. It is, for example, hard to study the air flow around the wing of a hovering fruit
fly, when the wing flaps f = 50 times per second. For a wing size of L ≈ 4 mm flapping through
180 ◦ the average velocity becomes U ≈ πL f ≈ 1.3 m s−1 and the corresponding Reynolds number
Re ≈ U L/ν ≈ 160. The same Reynolds number can be obtained (see J. M. Birch and M. H. Dickinson,
Nature 412, (2001) 729) from a 19 cm plastic wing of the same shape, flapping once every 6 s in mineral
oil with kinematic viscosity ν = 1.15 cm2 s−1, allowing for easy recording of the flow around the wing.

Example 17.4.5 (High-pressure wind tunnels): In the early days of flight, wind tunnels were
extensively used for empirical studies of lift and drag on scaled-down models of wings and aircraft.
Unfortunately, the smaller geometrical sizes of the models reduced the attainable Reynolds number
below that of real aircraft in flight. A solution to the problem was obtained by operating wind tunnels
at much higher than atmospheric pressure. Since the dynamic viscosity η is independent of pressure
(page 231), the Reynolds number Re = ρ0U L/η scales with the air density and thus with pressure.
The famous Variable Density Tunnel (VDT) built in 1922 by the US National Advisory Committee for
Aeronautics (NACA) operated on a pressure of 20 atm and was capable of attaining full-scale Reynolds
numbers for models only 1/20th of the size of real aircraft [3, p. 301]. The results obtained from the
VDT had great influence on aircraft design in the following 20 years.

In the presence of external volume forces, for example gravity, or for time-dependent inflow, the flow
patterns will depend on further dimensionless quantities besides the Reynolds number. We shall only
introduce such quantities when they arise naturally in particular cases. Flows in different geometries can
only be compared in a coarse sense, even if they have the same Reynolds number. A running man has
the same Reynolds number as a swimming herring, and a flying gnat the same Reynolds number as a
man swimming in castor oil (which cannot be recommended). In both cases the flow geometries are quite
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different, leading to different streamline patterns. Here the Reynolds number can only be used to indicate
the character of the flow which tends to be turbulent around the running man and laminar around the flying
gnat.

17.5 Compressible Newtonian fluids
When flow velocities become a finite fraction of the velocity of sound, it is no longer possible to maintain
the simplifying assumption of effective incompressibility. Whereas submarines and ships never come near
such velocities, passenger jets routinely operate at speeds up to 90% of the velocity of sound, and rockets,
military aircraft, the Concorde and the Space Shuttle, are all capable of flying at supersonic and even
hypersonic speeds. In these cases it is necessary to modify the Navier–Stokes equation.

Shear and bulk viscosity
In compressible fluids the divergence of the velocity field is non-vanishing. This opens up the possibility of
adding a term proportional to (∇ · v)δi j to the isotropic stress tensor (17.15),

σi j = −p δi j + η (∇iv j + ∇ j vi
) + a∇ · v δi j . (17.24)

Demanding as usual that the pressure is the average of the three normal stresses, p = −∑
i σii /3, the trace

of this expression becomes −3p = −3p + 2η∇ · v + 3a∇ · v = 0, so that we must have a = −(2/3)η. The
complete stress tensor thus takes the form,

σi j = −p δi j + η
(

∇iv j + ∇ jvi − 2

3
∇ · v δi j

)
. (17.25)

This stress tensor may be viewed as a first-order expansion in the velocity gradients. In the same
approximation the pressure may also depend linearly on the velocity gradients, but since the pressure is
a scalar it can only depend on the scalar divergence ∇ · v, so the most general form of the mechanical
pressure must be

p = pe − ζ∇ · v, (17.26)

with coefficients pe and ζ that may depend on the density ρ and temperature T . In mechanical equilibrium,
v = 0, we have p = pe = pe(ρ, T ), which must be the thermodynamic pressure given by the equation of
state.

The new parameter ζ is called the bulk viscosity or the expansion viscosity. Its presence implies that a
viscous fluid in motion exerts an extra dynamic pressure of size −ζ∇ · v. The dynamic pressure is negative
in regions where the fluid expands (∇ · v > 0), positive where it contracts (∇ · v < 0), and vanishes for
incompressible fluids. Bulk viscosity is hard to measure, because one must set up physical conditions such
that expansion and contraction become important, for example by means of high frequency sound waves.
In the following section we shall calculate the viscous attenuation of sound in fluids, and see that it depends
on the bulk modulus. The measurement of attenuation of sound is quite complicated and yields a rather
frequency-dependent bulk viscosity, although it is generally of the same magnitude as the coefficient of
shear viscosity.

The Navier–Stokes equation
Inserting the modified stress tensor (17.25) into Cauchy’s equation of motion we obtain the field equation,

ρ

(
∂v

∂t
+ (v · ∇)v

)
= f − ∇ p + η

(
∇2v + 1

3
∇(∇ · v)

)
. (17.27)

This is the most general form of the Navier–Stokes equation. Together with the equation of continuity
(15.24), which we repeat here for convenience,

∂ρ

∂t
+ ∇ · (ρv) = 0, (17.28)

Copyright © 2005 IOP Publishing Ltd.



17.6. VISCOUS ATTENUATION OF SOUND 241

we have obtained four dynamic equations for the four fields vx , vy , vz and ρ, and one constitutive relation
(17.26) for the pressure p as a function of the thermodynamic variables and the velocity field.

∗ Viscous dissipation
For compressible fluids the rate of work against internal stresses is slightly more complicated than for
incompressible fluids (17.18). Defining the traceless shear strain rate

vi j = 1

2

(
∇iv j + ∇ j vi − 2

3
∇ · v δi j

)
, (17.29)

the stress tensor (17.25) takes the form σi j = −pδi j + 2ηvi j . Using the symmetry and tracelessness of vi j

we have
∑

i j σi j ∇ j vi = −p∇ · v + 2η
∑

i j v
2
i j , and inserting the mechanical pressure from (17.26) we

obtain the total rate of work against internal stresses,

Ẇint =
∫

V

∑
i j

σi j ∇ j vi dV =
∫

V

−pe∇ · v + ζ(∇ · v)2 + 2η
∑
i j

v2
i j

 dV . (17.30)

This expression reduces of course to (17.18) for ∇ · v = 0. The first term represents the familiar
thermodynamic rate of work on the fluid. It is positive during compression (∇ · v < 0) and negative
during expansion, and may in principle be recovered completely under under adiabatic conditions. The last
two terms represent the work against internal viscous stresses and are always positive. In particular we note
that the second term due to the bulk viscosity is positive whether the flow expands or contracts. Both the
bulk and shear terms contribute to the attenuation of sound, as we shall see in the following section.

∗ 17.6 Viscous attenuation of sound
It has previously (on page 234) been shown that free shear waves do not propagate through more than
about one wavelength from their origin in any type of fluid. In nearly ideal fluids such as air and water, free
pressure waves are as everybody knows capable of propagating over many wavelengths. Viscous dissipation
(and many other effects) will nevertheless slowly sap their strength, and in the end all of the kinetic energy
of the waves will be converted into heat.

In this section we shall calculate the rate of attenuation from damped-wave small-amplitude solutions
to the Navier–Stokes equations. The attenuation may as well be calculated from the general expression for
the dissipative work (17.30).

The wave equation
As in the discussion of unattenuated pressure waves in section 16.2 on page 206 we assume to begin with
that a barotropic fluid is in hydrostatic equilibrium without gravity, v = 0, so that its density ρ = ρ0 and
pressure p = p(ρ0) are constant throughout. Consider now a disturbance in the form of a small-amplitude
motion of the fluid, described by a velocity field v which is so tiny that the nonlinear advective term
(v · ∇)v can be completely disregarded. This disturbance will be accompanied by tiny density corrections,
�ρ = ρ − ρ0, and pressure corrections �p = p − p0, which we assume to be of first order in the velocity.
Dropping all higher order terms, the linearized Navier–Stokes equations become (in the absence of gravity),

ρ0
∂v

∂t
= −∇�p + η

(
∇2v + 1

3
∇(∇ · v)

)
, (17.31a)

∂�ρ

∂t
= −ρ0∇ · v, (17.31b)

�p = c2
0�ρ − ζ∇ · v. (17.31c)

The last equation has been obtained from (17.26) by expanding to first order in the small quantities, and
using that the velocity of sound is c0 = √

dpe/dρ.
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Differentiating the second equation with respect to time and making use of the first, we obtain

∂2�ρ

∂t2
= ∇2�p − 4

3
η∇2∇ · v = ∇2�p + 4

3

η

ρ0
∇2 ∂�ρ

∂t
.

Now substituting the pressure correction (17.31c) we arrive at the following equation for the density
corrections (for the pressure corrections, see problem 17.5),

∂2�ρ

∂t2
= c2

0∇2�ρ + ζ + 4
3η

ρ0
∇2 ∂�ρ

∂t
. (17.32)

If the last term on the right-hand side were absent, this would be a standard wave equation of the form
(16.7) describing free density (or pressure) waves with phase velocity c0. It is the last term which causes
viscous attenuation.

The ratio of the coefficients of the first to the second terms has dimension of inverse time and defines a
circular frequency scale,

ω0 = c2
0ρ0

ζ + 4
3η
. (17.33)

Taking ζ ∼ η, the right-hand side is of the order of ω0 ≈ 3 × 109 s−1 in air and ω0 ≈ 1012 s−1 in water.
In terms of c0 and ω0, the wave equation may now be written more conveniently,

1

c2
0

∂2�ρ

∂t2
= ∇2�ρ + 1

ω0
∇2 ∂�ρ

∂t
. (17.34)

The time derivative in the last term is of order ω�ρ for a wave with circular frequency ω, and in view of
the huge values of the viscous frequency scale ω0, the ratio of the terms ω/ω0 will be small, implying that
attenuation is weak for normal sound, including ultrasound in the megahertz region.

Damped plane wave
Let us assume that a wave is created by an infinitely extended plane, a ‘loudspeaker’, situated at x = 0 and
oscillating in the x-direction with a small amplitude at a definite circular frequency ω. The fluid near the
plate has to follow the plate and will be alternately compressed and expanded, thereby generating a damped
density (or pressure) wave of the form,

�ρ = ρ1e−κx cos(kx − ωt), (17.35)

where ρ1 � ρ0 is the small density amplitude, k is the wavenumber, and κ is the viscous amplitude
Damped density wave. attenuation coefficient. In view of the weak attenuation of normal sound, we expect that κ/k � 1 and

ω/ω0 � 1. Inserting this wave into (17.34), we get to lowest order in both κ/k and ω/ω0,

−ω
2

c2
0

cos(kx − ωt) = −k2 cos(kx − ωt)+ 2κk sin(kx − ωt)− k2 ω

ω0
sin(kx − ωt).

This can only be fulfilled when the wavenumber has the usual free-wave relation to frequency, k = ω/c0,
and

κ = kω

2ω0
= ω2

2ω0c0
= ω2

2ρ0c3
0

(
ζ + 4

3
η

)
. (17.36)

The viscous amplitude attenuation coefficient grows quadratically with the frequency, causing high
frequency sound to be attenuated much more by viscosity than low frequency sound.

In air the viscous attenuation length determined by this expression is huge, about 1/κ ≈ 50 km, at a
frequency of 1000 Hz. At 1 MHz it is a million times shorter, about 1/κ ≈ 5 cm. Diagnostic imaging
typically uses ultrasound between 1 and 15 MHz, but since living tissue is mostly water with higher density
and sound velocity, the attenuation length is much longer than in air. The drastic reduction in attenuation
length 1/κ with increased frequency is also what makes measurements of the attenuation coefficient much
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easier at high frequencies. From the viscous attenuation coefficient one may in principle extract the value
of the bulk viscosity, but this is complicated by several other fundamental mechanisms that also attenuate
sound, such as thermal conductivity, and excitation of molecular rotations and vibrations.

In the real atmosphere, many other effects contribute to the attenuation of sound. First, sound is
mostly emitted from point sources rather than from infinitely extended vibrating planes, and that
introduces a quadratic drop in amplitude with distance. Other factors like humidity, dust, impurities
and turbulence also contribute, in fact much more than viscosity at the relatively low frequencies
that human activities generate (see for example [22, appendix] for a discussion of the basic physics
of sound waves in gases).

Problems
17.1 Calculate the temperature dependence of the kinematic viscosity for an isentropic gas. What is the
exponent of the temperature for monatomic, diatomic and multiatomic gases?

17.2 A car with M = 1000 kg moving at U0 = 100 km h−1 suddenly hits a patch of ice and begins to
slide. The total contact area between each wheel and the water is 800 cm2 and it is observed to slide to a
full stop in about 300 m. Calculate the thickness of the water layer and discuss whether it is a reasonable
value. What is the time scale for stopping the car?

17.3 Consider planar momentum diffusion (page 233). Assume that the flow of the incompressible ‘river’
vanishes fast at infinity, as in the Gaussian case. (a) Show that for any river flowing along x the total volume
flux per unit of length in the z-direction is independent of time. (b) Show that the total momentum per unit
of length in the z-direction is likewise constant. (c) For the Gaussian river, calculate the kinetic energy per
unit of length in the x and z directions as a function of time. What happens for t → ∞?

17.4 Estimate the Reynolds number for (a) an ocean current, (b) a water fall, (c) a weather cyclone, (d) a
hurricane, (e) a tornado, (f) lava running down a mountainside and (g) plate tectonic motion.

∗ 17.5 Show that the pressure correction �p also satisfies the wave equation for attenuated sound (17.34).

∗ 17.6 Show that the general solution to the momentum diffusion equation (17.5) is

vx (y, t) = 1

2
√
πνt

∫ ∞
−∞

exp

(
− (y − y′)2

4νt

)
vx (y

′, 0) dy′. (17.37)

Use this to show that any bounded initial velocity distribution which is non-vanishing only for |y| < a at
t = 0 is Gaussian for |y| → ∞ at any later time.
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Even the most common of fluid flows, the water coming out of the kitchen tap or the draught of air around
you, are so full of little eddies that their description seems totally beyond exact analysis. Fluid mechanics
is the story of coarse approximation, gross oversimplification, and if accurate results are required, numeric
computation.

Analytic solutions of the Navier–Stokes equations are few and hard to come by, even for steady flow.
They are always found in geometries characterized by a high degree of symmetry, for example planar,
cylindrical or spherical. Then again, even if the geometry of a problem—the containing boundaries—is
perfectly symmetric, there is no guarantee that the analytic solutions obeying these symmetries are the ones
that the actual fluid selects as its flow pattern.

Symmetry is only a guideline. In any geometry there may and will be flows that are not maximally
symmetric. At low Reynolds number one expects that the maximally symmetric solution might be stable
against disturbances, but at large Reynolds number this will not be the case. The simple laminar flow
pattern of the maximally symmetric steady flow is then broken spontaneously or by little irregularities in
the geometry, and replaced by time-dependent flow with less than maximal symmetry, or no symmetry at
all.

In this chapter we shall study steady laminar flow in the simplest of geometries: planar and cylindrical.
The exact solutions presented here are all effectively one-dimensional and thus lead to ordinary differential
equations that are easy to solve. Although the solutions are all of infinite extent they nevertheless provide
valuable insight into the behaviour of viscous fluids for moderate Reynolds number. Many flows of
interest are more complicated than these solutions, and we include in this chapter a discussion of the
phenomenology of turbulent pipe flow and secondary flow between rotating cylinders.

18.1 Steady, incompressible, viscous flow
Most of the fluids encountered in daily life, water, air, gasoline and oil, are effectively incompressible as
long as flow velocities are well below the speed of sound, and often they flow steadily through the channels
and pipes that we use to guide them. In looking for exact solutions for viscous flow, we shall therefore
make the simplifying assumptions that the flow is incompressible and steady, satisfying the Navier–Stokes
equation (17.16) and the divergence condition,

(v · ∇)v = g − 1

ρ0
∇ p + ν∇2v (18.1a)

∇ · v = 0 (18.1b)

where ρ0 is the constant density and ν is the kinematic viscosity (17.4). These four partial differential
equations determine in principle the four fields, vx , vy , vz and p, throughout a volume, when provided with
suitable boundary conditions that fix the values of the fields or their derivatives on the surface of the volume.
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In practice, however, we often solve these equations by making assumptions about the form of the
fields, based on the symmetries of the particular problem at hand. Symmetry assumptions limit the
possible boundary conditions that may be imposed on the fields. In the absence of gravity, the field
equations are, for example, always solved by the extremely ‘symmetric’ solution, v = 0 and p = 0,
but this assumption prevents us from selecting any non-zero values for the fields or their derivatives
on the boundaries. Symmetry assumptions also make the solution blind to the symmetry breakdown
that may happen in the real world of fluids. So it should never be forgotten that although symmetric
solutions can be beautiful, they may also be completely irrelevant!

18.2 Pressure-driven planar flow
In section 17.2 we analysed velocity-driven planar flow between infinitely extended parallel plates, where
one of the plates was moving at constant velocity with respect to the other. Here we shall solve the case
where the plates are fixed and fluid is driven between them by means of a pressure difference. For simplicity
we assume that there is no gravity; gravity-driven flow will be analysed in the following section.

The coordinate system is chosen with the x-axis pointing along the direction of flow and the y-axis
orthogonal to the plates. A velocity field respecting the planar symmetry is of the form,

v = (vx (y), 0, 0) = vx (y) ex . (18.2)

An infinitely extended flow like this is of course unphysical, but should nevertheless offer an approximation
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Planar flow between parallel
plates.

to the real flow between plates of finite extent, provided the dimensions of the plates are sufficiently large
compared to their mutual distance.

General solution
With the assumed form of the flow, the incompressibility condition (18.1b) is automatically fulfilled,
∇ · v = ∇xvx (y) = 0. The advective acceleration vanishes likewise, (v · ∇)v = vx (y)∇xvx (y)ex = 0.
The Navier–Stokes equation (18.1a) then takes the form,

∇ p = η ex∇2vx (y).

From the y and z components of this equation we get ∇y p = ∇z p = 0, implying that the pressure cannot
depend on y and z, or in other words p = p(x). The x-component then takes the form,

dp(x)

dx
= η

d2vx (y)

dy2
. (18.3)

The left-hand side depends only on x and the right-hand side only on y, and that is only possible, if both
sides take the same value independently of both x and y. Denoting the common value −G, we may
immediately solve each of the equations dp/dx = −G and ηd2vx/dy2 = −G with the result,

p = p0 − Gx, (18.4a)

vx = − G

2η
y2 + Ay + B, (18.4b)

where p0, A, and B are integration constants. The only freedom left in the planar flow problem lies in the
integration constants, and they will be fixed by the boundary conditions of the specific flow configuration.

Specific solution
Let the plates be positioned a distance d apart, for example at y = 0 and y = d . Applying the no-slip
boundary conditions, vx (0) = vx (d) = 0, to the general solution, we obtain A = Gd/2η and B = 0, so the
velocity field becomes,

vx = G

2η
y(d − y). (18.5)
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It has a characteristic parabolic shape with the maximal velocity vx |max = Gd2/8η in the middle of the
gap for y = d/2.

The velocity profile depends on the (negative) pressure gradient G in the direction of flow. It may be
calculated from the pressure drop between x = 0 where the pressure is p0 and x = L where the pressure
is p1, where �p = p0 − p1 is the magnitude of the pressure drop over the distance L in the direction of
flow. For finite plates of length L and width W with a small mutual distance, d � L ,W , the flow should
be reasonably well described by this solution.


 x

�
y

.......................
.......................

.......................
......................

.......................
.......................

.......................
.......................

.......................
......................

.......................
.......................
......................
.......................
.......................
......................
.......................
......................
.......................
......................
.......................

......................
......................

.......................
......................

......................
.......................

......................
......................

......................
.......................

......................
......................

.....................

�

�

�

�

0

d

Characteristic parabolic velocity
profile between the plates, driven
by a pressure which is higher to
the left than to the right.

p0 p1�

Pressure driven flow between
static plates. When p0 > p1, the
flow goes to the right.

G = �p

L
, (18.6)

Discharge rate and average velocity
The total volume of fluid passing between the plates per unit of time, also called the volumetric discharge
rate or simply the volume flux, is obtained by integrating the velocity field over the area d × W orthogonal
to the flow,

Q =
∫ d

0
vx (y)Wdy = GWd3

12η
. (18.7)

From the discharge rate we may calculate the average velocity of the flow,

U = 1

d

∫ d

0
vx (y) dy = Q

Wd
= Gd2

12η
. (18.8)

It is not surprising that the average velocity grows with d , because with increasing distance the friction from
the walls becomes less and less important.

Reynolds number
The Reynolds number (17.20) has been defined in general as the ratio between advective and viscous terms
in the Navier–Stokes equation, but since the advective acceleration (v · ∇)v always vanishes in planar flow,
the Reynolds number must strictly speaking be zero. How can that be?

The apparent paradox is resolved when we consider what happens when the driving pressure is
increased. Laminar flow is then replaced by irregular, time-dependent, turbulent flow with non-vanishing
advective acceleration. The Reynolds number should be understood as a dimensionless characterization of
the ratio of advective to viscous forces in terms of the speed and geometry of the general flow. Since the
velocity changes by about U across the gap, the Reynolds number for pressure driven flow between parallel
plates is conventionally defined as,

Re = Ud

ν
, (18.9)

independent of whether the flow is laminar or turbulent. Pressure-driven planar flow is stable1 towards
infinitesimal perturbations in the xy-plane for Re < 5772, but empirically the flow becomes turbulent for
Re � 1000–2000, accompanied by breakdown of the two-dimensionality of the flow. The phenomenology
of turbulent pressure-driven planar flow is quite similar to that of turbulent pressure-driven pipe flow
(section 18.5).

Example 18.2.1: Oil with η = 2 × 10−2 Pa s and ρ0 = 800 kg m−3 is driven between plates that
are d = 1 cm apart by a pressure drop �p = 103 Pa over a distance L = 1 m. The average velocity
becomes in this case U ≈ 0.4 m s−1 corresponding to a Reynolds number of Re ≈ 167. The discharge
rate per unit of length orthogonal to the flow Q/W ≈ 4 × 10−3 m2/s.

1S. A. Orzag, Accurate solution of the Orr–Sommerfeld stability equation, J. Fluid. Mech. 50, (1971) 689. See also
[43].
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Drag
The fluid exerts a friction force on the bounding walls which is determined by the wall shear stress

σwall = σxy
∣∣
y=0 = η ∇yvx

∣∣
y=0 = 1

2 Gd. (18.10)

The total friction force on the walls, also called the drag, is obtained by multiplying the wall shear stress by
the total wall area of both plates,

	 = σwall 2LW = GLWd = �p Wd. (18.11)

The last result shows that the drag equals the total pressure force on the fluid calculated from the pressure
drop times the inlet area Wd . That this must be so could have been foreseen because the only forces acting
on the non-accelerated volume of fluid between the plates are the pressure forces and friction, and they must
therefore balance each other.

Since the pressure is constant over the inlet area, the rate of work of the pressure forces on the fluid is
similarly obtained by multiplying the pressure force by the average velocity,

P = U�pWd = U	. (18.12)

Since no other forces perform work on the fluid, this must equal the rate at which viscous forces produce
heat in the fluid, also called dissipation.

18.3 Gravity-driven planar flow
Gravity may also drive the flow between parallel plates if they are inclined an angle θ to the horizon. We
choose again a coordinate system with the x-axis in the direction of flow and the y-axis orthogonal to the
plates. Assuming constant gravity, the gravitational field is in this coordinate system inclined an angle θ to
the negative y-axis, so that g = g0(sin θ,− cos θ, 0).
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The y, z-components of the Navier–Stokes equation (18.1a) take the form

∇y p = −ρ0g0 cos θ, ∇z p = 0. (18.13)

The solution is clearly p = p0(x) − ρ0g0 y cos θ where p0(x) is an arbitrary function of x . Inserting this
into the x-component of (18.1a) we get,

1

ρ0
∇x p0(x) = g0 sin θ + ν d2vx (y)

dy2
. (18.14)

As in the preceding section it follows that ∇x p0(x) is a constant, and assuming that there is no pressure
difference between the ends of the plates at x = 0 and x = Lx , the pressure itself must be constant,
p0(x) = p0. Applying the no-slip boundary conditions, vx (0) = vx (d) = 0, the complete solution
becomes,

vx = g0 sin θ

2ν
y(d − y), (18.15a)

p = p0 − ρ0g0y cos θ, (18.15b)

where p0 is the pressure on the bottom plate. The pressure is for all θ simply the hydrostatic pressure in a
constant field of gravity of strength g0 cos θ . This solution could have been trivially found from the solution
of the preceding section by including the gravitational field in the effective pressure p∗ = p + ρ0� such
that G = −dp∗/dx = ρ0gx = ρ0g0 sin θ , but we have refrained from doing so here because it obscures
the physics of the true pressure p (see problem 18.1).
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Flow with an open surface
A liquid layer of constant thickness h flowing down an inclined plate with an open surface is another
example of purely gravity-driven flow. On the inclined plate, y = 0, the no-slip condition again demands
vx (0) = 0, whereas on the open surface, y = h, the pressure must be constant and the shear stress must
vanish, dvx/dy = 0. Everything follows along the same lines as above, and we find

vx = g0 sin θ

2ν
y(2h − y), (18.16a)

p = p0 + ρ0g0(h − y) cos θ, (18.16b)

where p0 is the surface pressure. In retrospect we could have derived it from (18.15) by setting d = 2h,
because the shear stress vanishes for y = d/2 between parallel plates.

The profile is parabolic as before, but now has its maximum at the open surface. The average velocity
is,

U = 1

h

∫ h

0
vx (y) dy = g0h2 sin θ

3ν
. (18.17)

The Reynolds number is naturally defined in terms of the layer thickness,

Re = Uh

ν
. (18.18)

The maximal velocity is vx |max = (3/2)U , and the total flux in a swath of width W is Q = UhW .

Example 18.3.1 (Water film): A water film of thickness a = 0.1 mm flows down an inclined plate at
θ = 30 ◦. The average velocity becomes U = 16 mm s−1 and the Reynolds number Re = 1.6.

∗ Stability of open-surface flow
Most people are familiar with the unstable nature of a layer of liquid flowing down an inclined surface.
Here we shall make a simple estimate which nevertheless captures the correct form of the stability criterion.
The basic idea is to calculate the effective surface tension α created by the liquid layer and determine the
condition under which it is positive. As discussed in section 8.1 a negative real surface tension will make
the surface crumble up, and we shall assume that the same will be the case for the sheet of liquid, such that
the sheet can only be stable for α > 0.

In steady flow the potential energy gained by the downhill flow of the liquid is completely dissipated
into heat by viscous friction, and need not be discussed further. Apart from that, the mechanical energy of
an area A = L × W of the liquid layer is the sum of the kinetic and potential energies,

� = LWρ0

∫ h

0

(
1

2
v2

x + g0 y cos θ

)
dy =

(
3

5
U2 + 1

2
g0h cos θ

)
ρ0LWh, (18.19)

where the integral has been carried out by means of (18.15).
Using (18.17) this expression may be rewritten in terms of the volume flux Q = UhW and the Reynolds

number Re = Q/νW . After some algebra one arrives at the following expression for the energy

� = 3
10 QL( 1

3νg0 sin θ)1/3(5Re−1/3 cot θ + 2Re2/3), (18.20)

which is most easily verified by eliminating Q and Re.
dW

L �
�

W

Increasing the flow area by LdW
changes its energy by d� =
α LdW where α is the surface
tension.

To determine the effective surface tension we calculate the change in energy under a change of width
W with the volume flux Q and the length L held constant. In that case only the terms in parenthesis depend
on the width W of the liquid layer through the Reynolds number Re = Q/νW . In this way we obtain the
effective surface tension,

α = 1

L

∂�

∂W
= − Q

νW 2 L

∂�

∂Re
= K

(
5

3
Re−4/3 cot θ − 4

3
Re−1/3

)
, (18.21)
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where K is positive. T he condition for the surface tension to be positive is therefore that the expression in
par ent hesi s i s posi t ive, or 2

Re tan θ <  
5

4
. ( 18. 22)

I f t he R eynol ds number i s l arge, R e � 1, the angle of inclination must be tiny, θ � 1/Re , for the fl ow to
be st abl e , a nd si mi l a r l y, f or a give n a ngl e of i ncl i nat i on t he R eynol ds number m ust obey R e � cot θ . A
vert i cal fl ow (θ = 90 ◦ ) w i t h an open s ur face i s neve r s t a bl e. For t he t hi n wa t e r fi l m i n exampl e 18. 3. 1 w e
have R e t a n θ = 0. 94 and t he fi l m w i l l be st abl e .Jean-Loui s-Marie P oi seuille

( 1799–1869) . French physi ci an
w ho s t udi ed bl ood ci rc ul at i on
and perf orm ed experi m ent s on
flow i n t ubes. P resum abl y t he
first t o have m easure d bl ood
pressure by m e ans of a m ercury
m anom et er.

Gotthilf Heinrich Ludwig Hagen
( 1797–1884) . G e rm an hydraul i c
engi neer, s peci al i z ed i n wat er-
w orks, harbors and di kes.
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18.4 Pipe flow
C yl i ndr i cal pi pes car r yi ng e ff ect ivel y i ncompr essi bl e fl ui ds ar e ubi qui t ous, i n i ndust r y, i n t he home a nd
i n our ow n bodi es. H ousehol d wat er and a l m ost a l l ot her fl ui ds ar e t r a nspor t e d under pr e ssur e i n l ong
pi pes w i t h ci r c ul ar cr oss s ect i ons. T he quest i on of how much fl ui d a given pr essur e can dr ive t hr ough a
circular tube is one of the most basic problems in fl uid mechanics and was fi rst addressed quantitatively by
P oiseuille around 1841 (and unbeknown to the physics community at that time, independently by Hagen i n
1839)3. Today Poiseuille flow is often used to denote any pressure-driven laminar flow, for example also
the planar flow between fixed plates discussed in section 18.2.

An infinitely long circular cylindrical tube is invariant both under translations along its axis and
rotations around it. In a coordinate system with the z-axis running along the cylinder axis, a flow pattern
respecting this symmetry is,

v = (0, 0, vz(r)) = vz(r)ez , (18.23)

where r =
√

x 2 + y 2 i s t he r adi a l di s t a nce f r om t he cyl i nder a xi s ( see s ect i on B . 1 on page 531) . I n s ect i on
18.6, we shall analyse another maximally symmetric flow which instead circles around the cylinder axis.

General solution
The analysis follows along the same lines as for planar flow in section 18.2. The streamlines are all
parallel with the cylinder axis, implying that the assumed field (18.23) must be free of divergence,
∇ · v = ∇z(vz(r)ez) = 0. Similarly, the advective acceleration also vanishes for the same reason,
(v · ∇)v = vz (r)∇z(vz(r)ez) = 0. In the absence of gravity, the Navier–Stokes equation (18.1a) now
simplifies to,

∇ p = η ez∇2vz(r). (18.24)

From the x and y-components of this equation we get ∇x p = ∇y p = 0, and consequently the pressure can
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only depend on z, i.e. p = p(z). The Laplacian on the right-hand side is given by (B.9) and we find

dp(z)

dz
= η∇2vz (r) = η

(
d2vz (r)

dr2
+ 1

r

dvz(r)

dr

)
= η

1

r

d

dr

(
r

dvz(r)

dr

)
.

The left-hand side depends only on z whereas the right-hand side depends only on r , so neither side can
depend on r and z. Denoting the common constant value by −G, and solving the two resulting ordinary
differential equations, we obtain in the same way as in section 18.2,

p = p0 − Gz, (18.25a)

vz = − G

4η
r2 + A log r + B (18.25b)

where p0, A, and B are integration constants.

2D. J. Benney, Long waves in liquid films, J. Math. Phys. 45, (1966) 150.
3There is some confusion in the literature on the precise years. The original references are: G. H. L. Hagen, Über

die Bewegung des Wassers in engen cylindrischen Rohren, Poggendorfs Annalen der Physik und Chemie 16 (1839)
and J. L. Poiseuile, Recherches experimentales sur le mouvement des liquides dans les tubes de tres petits diametres,
Compte-rendus hebdomadaire des Seances de l’Academie des Sciences (1841).
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Poiseuille solution
C onsi der now a pi pe w i t h i nner r adi us a . T he fl ui d ve l oci t y cannot be i nfi ni t e at r = 0, and c onsequent l y w e
must have A = 0 i n t he general s olution ( 18. 25). T he no-slip boundary condition r equires t hat vz ( a) = 0,
and this fi xes the last integration constant to B = Ga2/4η , s o t hat t he ve l oci t y pr ofi l e becomes,

vz = G

4η
( a 2 − r 2). ( 18. 26)

It i s parabol i c as for pl anar fl ow and r eaches, as one woul d expect , i t s maxi mal val ue Umax = Ga2/4η at
t he cent r e of t he pi pe.

T he ( negat ive ) pr e ssur e gr adi e nt G may be r el at ed t o t he pr essur e dr op bet w een t he ends of a pi pe of
l e ngt h L � 2a . W hen the fluid flows in the positive z -direction, the pressure p0 at t he ent ry at z = 0 must
be hi gher t han t he pr essur e p1 at the exit, z = L , so that

G = � p

L 
( 18. 27)

where � p = p0 − p1 i s t he pr e ssur e dr op.
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Velocity profi le for laminar flow
t hr ough a c i r cul a r pi pe.The H agen–Poiseuille law

T he vol umet r i c di s charge r a t e , i . e . t he vol ume of fl ui d car r i ed t hr ough t he pi pe per uni t of t i m e, may
immediately be calculated by integrating the velocity field over the cross section of the pipe,

Q ≡
∫ a

0
vz(r) 2π r dr = π Ga4

8η
. ( 18. 28)

This is the famous Hagen–Poi seuille law ( s ee f oot not e on page 250) . A s c oul d have been expect ed, t he
t hr oughput gr ow s l i near l y w i t h t he pr e ssur e gr adi e nt , a nd i nve r s el y w i t h vi scosi t y. T he dr amat i c f our t h-
pow e r gr ow t h w i t h r a di us coul d of c our se have been deduced f r om di m ensi onal a rgument s si nce i t i s t he
onl y m i ssi ng fact or. I t expr esses t hat w i t h gr ow i ng r adi us t he f r i ct i on f r om t he wal l s becomes l ess and l ess
i m por t a nt i n hol di ng back t he fl ui d.

Rey no l ds number
The velocity of the flow averaged over the cross section of the pipe may be calculated from the rate of
discharge,

U = Q

πa2
= Ga2

8η
. (18.29)

It is exactly half the maximal velocity found at the centre of the pipe.
As for planar flow, there is a formal problem in defining the Reynolds number, because the advective

acceleration vanishes, but usually the Reynolds number is defined as,

Re = 2aU

ν
= ρ0Ga3

4η2
. (18.30)

The choice of the pipe diameter d = 2a as length scale is purely a matter of convention. Reynolds himself
actually used the radius [75, p. 85].

Empirically, pipe fl ow remains laminar until turbulence sets in (see section 18. 5). Typically the
transition happens at a Reynolds number between 2000 and 4000, with 2300 as a ‘nominal’ value for
smooth pipes. At that point the otherwise linear relationship between volume discharge Q and pressure
gradient G becomes nonlinear.

Example 18.4.1 (Aortic flow): Human blood is not a particularly Newtonian fluid, but its viscosity
may approximatively be taken to be η = 2.7 × 10−3 Pa s and its density near that of water. The
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blood flow rate in the aorta (averaged over a heartbeat) is about Q ≈ 70 cm3 s−1. Since the diameter
of the aorta is 2a ≈ 35 mm the average velocity becomes U ≈ 7.3 cm s−1 and the Reynolds
number Re ≈ 940, well below the turbulent region. The pressure gradient becomes G ≈ 5 Pa m−1,
showing that the pressure drop is negligible in the large arteries compared to systolic blood pressure,
p ≈ 120 mmHg ≈ 16 000 Pa.

Commercial Ostwald viscometer
(produced by Poulten Selfe &
Lee, Great Britain). One mea-
sures the time it takes the liquid
surface to pass between the marks
on the container on the right (on
its way to the container on the left
through the capillary pipe sec-
tion) and compares it with the
corresponding time for a calibra-
tion liquid of known viscosity.

Wilhelm Ostwald (1853–1932).
German scientist. Received
the Nobel prize in chemistry in
1909. Considered the father
of modern physical chemistry.
Invented the Ostwald process for
synthesizing nitrates still used in
the manufacture of explosives.

Example 18.4.2 (Water pipe): Household water supply has to reach the highest floor in apartment
buildings with pressure ‘to spare’. Pressures must therefore be of the order of bars when water is
not tapped. The typical discharge rate from a kitchen faucet is around Q ≈ 100 cm3 s−1, leading
to an average velocity in a half-inch pipe of about U ≈ 0.8 m s−1. The Reynolds number is about
Re ≈ 10 000 which is well inside the turbulent regime. The pressure gradient calculated from the
Hagen–Poiseuille law, G ≈ 160 Pa m−1, is for this reason untrustworthy.

Example 18.4.3 (Hypodermic syringe): A hypodermic syringe has a cylindrical chamber with a
diameter of about 2b = 1 cm and a hollow needle with an internal diameter of about 2a = 0.5 mm.
During an injection, about 5 cm3 of the liquid (here assumed to be water) is gently pressed through the
needle in a time of �t = 10 s, such that the volume rate is about Q = 0.5 cm3 s−1.

The average fluid velocity in the needle becomes U ≈ 2.5 m s−1, corresponding to a Reynolds
number Re ≈ 1300, which is in the laminar region somewhat below the onset of turbulence. One is
thus justified in using the Poiseuille solution for the flow through the needle. The pressure gradient
necessary to drive this flow is found from (18.29) and becomes rather large, G ≈ 3.3 bar m−1. For a
needle of length L ≈ 5 cm the pressure drop is �p ≈ 0.16 bar = 16 000 Pa. The pressure drop in the
fluid chamber can be completely ignored, because the chamber’s diameter is 20 times that of the needle.

Ostwald viscometer
The Hagen–Poiseuille law (18.28) may be used experimentally to determine the viscosity of a fluid from a
measurement of the pressure drop �p = GL and the total volume �V = Q�t of fluid discharged from
the pipe in the time interval �t . The simplest way to create a precisely defined effective pressure drop
is to place the pipe vertically in the gravitational field, such that the effective pressure gradient becomes
G = ρ0g0. Inserting this into (18.28) we find the kinematic viscosity

ν = η

ρ0
= πa4G

8ρ0 Q
= πa4g0�t

8�V
. (18.31)

The Ostwald viscometer is made entirely from glass with no moving parts, and one obtains the kinematic
viscosity of a liquid by measuring the passage time for a known volume of liquid through a narrow section
of pipe.

The viscosity determined in this way is only meaningful for laminar flow which requires the Reynolds
number to be smaller than about 2000. From (18.30) we obtain the Reynolds number for the viscometer,

Re = g0a3

4ν2
(18.32)

and this shows that for water-like liquids with ν ≈ 10−6 m2 s−1 the tube radius must be smaller than 1 mm
in order to avoid turbulence.

Pipe resistance
The pressure drop, �p = GL , necessary to drive a given mass flux ρ0 Q through a section of a pipe is
completely analogous to the voltage drop necessary to drive an electric current through a conducting wire.
In analogy with Ohm’s law, the pipe resistance is defined as,

R = �p

ρ0Q
= 8νL

πa4
. (18.33)
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I t depends onl y on t he ki nemat i c vi scosi t y ν of t he fl ui d a nd t he di m ensi ons of t he pi pe a nd i s measur ed i n
t he s t r ange uni t m−1 s−1 . L i ke el ect ri c r esi s t ance, pi pe resi st ance i s addi t ive for pi pes connect ed i n seri es
and r eci pr ocal l y addi t ive f or pi pes connect ed i n par a l l e l ( see pr obl em 18. 10) .

Drag
The fl uid only interacts with the pipe at its surface r = a and attempts to drag it along with a total force or
dr ag 	 al ong z . Using the P oi seuille velocity profi le (18. 26) the shear wall stress on the pipe becomes,

σwa l l = − σ zr |r=a = − η∇rv z(r)|r=a = 
1

2 
Ga = 4η 

U

a
. ( 18. 34)

Multiplying with the area 2π aL  of t he i nner pi pe s ur face t he dr a g becomes

	 = 2π aLσwa l l = 8πηU L . ( 18. 35)

T he l i near gr ow t h of dr ag w i t h ve l oci t y i s char act er i s t i c of l a mi nar fl ow at R eynol ds number s bel ow uni t y
( s ee chapt e r 19) . A t R eynol ds number s above uni t y t he nonl i near eff ect s of t he advect ive accel er at i on ought
to set i n, but due to the simpl e geometry of pipe fl ow the nonlinearity first shows up when t urbulence set s
in at Re � 2000.

I n st eady fl ow t he a mount of moment um of t he fl ui d i n t he pi pe i s const a nt , a nd consequent l y t he
t ot a l f or ce on t he vol ume m ust vani s h. B e si des t he dr ag −	 from t he i nner pi pe s urface, t he onl y ot her
force acting on the volume of fluid in the pipe is the external pressure force � = π a 2� p due to the
di ff er ence i n pr essur e bet w een t he e nds of t he vol ume, and t hi s f or ce must t her ef or e e qual t he dr ag,
� = 	. Using the P oi seuille relation ( 18. 29) we may verify t hat t he forces indeed balance each ot her:
� = π a 2� p = π a 2 LG  = 8πηU L  = 	.

Example 18.4.3 (Hypodermic syringe, continued): To ove r c ome t he pr essur e dr op i n t he hypoder m i c
needl e , one must act w i t h a f or ce of about � = π b 2� p ≈ 1. 3 N on t he pi s t on, cor r e spondi ng t o t he
w e i ght of about 130 g. To t hi s f or c e m ust be a dded t he f or c e a r i si ng f r om t he sol i d f r i ct i on bet w een t he
pi st on and t he wa l l of t he fl ui d c hamber.

Dissipation
T he r at e of work ( or power) of t he ext ernal pressure forces act i ng on t he fl ui d i s easi l y cal cul at ed because
the pressure is constant across the pipe. Multiplying � = π a 2� p by the average velocity U w e obt ai n,

Ẇ = π a 2� p U = Q� p = 8πηU 2 L . ( 18. 36)

T he shear stress of the fl uid on t he pipe wall perform s no work because the no-slip condition r equires t he
velocity field to vanish at the wall. In steady fl ow the kinetic energy of the fl uid in the pipe is constant, so
t he r at e of wor k of t he pr essur e f or ces must be exact l y equal t o t he r at e of ki net i c energy l oss t o i nt er nal
friction forces in the fluid, which is the same as the total power P = Ẇ dissipated into heat. A direct
calculation of the dissipated power (17.18) confirms this claim (see problem 18.23).

The average rate of dissipation per unit of fluid mass M = πa2 Lρ0 in the pipe is an important
parameter, called the average specific rate of dissipation, which may be calculated from the total rate of
dissipation P = Ẇ ,

ε = P

M
= 8ν

U2

a2
. (18.37)

Dissipation does not, however, take place uniformly across the pipe volume but is by far the largest at the
i nner pi pe s ur face w her e t he ve l oci t y gr adi e nt i s l a rgest ( see pr obl em 18. 23) . I n c hapt er 32 w e shal l s ee t hat
the specific rate of dissipation plays a major role in the theory of turbulence.

Example 18.4.3 (Hypodermic syringe, continued): In the hypodermic syringe, the piston velocity is
U0 = Q/πb2 ≈ 0.6 cm s−1 such that the rate of work on the piston is P = �U0 = Q�p ≈ 8 mW,
corresponding to an average specific rate of dissipation ε = 830 W kg−1. Assuming that the
fluid is heated uniformly (which it isn’t) and taking the specific heat capacity to be that of water
cp = 4.2 × 103 J K−1 kg−1, this dissipation would raise the temperature of the fluid passing through
the needle by merely �T ≈ P/(cpρU) ≈ 4 mK.
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∗ Entrance length
The P oiseuille velocity profi le is not established immediately at the entrance to a pipe of fi nite length. The
friction exerted on the fl uid from the pipe wall will take some time to slow the fluid near the wall, but
event ual l y t he i nfl uence of t he wa l l r eaches al l t he wa y t o t he cent r e of t he pi pe. A l t hough i t i s di ffi cul t t o
make an anal yt i c cal cul at i on, we may est i m at e how far dow n t he pi pe t he i nfl uence of t he ent r ance can be
felt. In chapter 21 we shall calculate the entrance length numerically for pressure-driven planar fl ow.
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Sketch of the expected shape of
the velocity profile at various
distances downstream from the
entrance. The influence of the
wall is indicated by the dashed
lines.

At the entrance proper the flow is assumed to be plug flow with the same velocity U over the pipe cross
section. Close to the pipe wall, where the velocity must vanish, momentum is removed from the fluid by
diffusion. As discussed on page 233 the diffusion front moves the distance 2

√
νt in the time t , so that in the

time t = a2/4ν the diffusion front will reach the centre of the pipe, and the average flow will have moved a
distance � = Ut = Ua2/4ν downstream from the entrance. Identifying � with the entrance length we find,

�

2a
≈ Re

16
≈ 0.06Re. (18.38)

At the transition to turbulence, say Re ≈ 2300, this formula yields an entrance length of about 140
diameters. In the creeping regime Re � 1 there are corrections to this estimate [79, p. 293], and in
the turbulent regime Re � 2300 a different formula is needed.

Laminar drain
Returning to Torricelli’s law for the draining of a cistern (page 210), we are now able to take into account
the slowing down of the flow due to viscosity. For simplicity we imagine that the liquid level in the cistern
is kept constant by replenishing the cistern with the same amount of fluid as exits from the pipe. In this case
we use energy conservation to calculate the average velocity.

h

� U
L

Viscous liquid streaming from a
cistern through a long pipe.

The rate at which work is performed against gravity in moving the fluid from the exit level to the cistern
level is,

Ẇ = ρ0g0h Q, (18.39)

where Q = Uπa2 is the volume flux. Assuming that the liquid exits with the Poiseuille velocity profile,
which we write as vz = 2U(1−r2/a2)where U is the average velocity, the flux of kinetic energy becomes,

�̇ =
∫ a

0

1

2
ρ0vz(r)

2 · vz(r) 2πr dr = ρ0U3πa2 = ρ0U2 Q. (18.40)

This is actually twice the rate (1/2)ρ0U2 Q that one would find in plug flow with the same velocity across
the exit, but such a result must be expected when the velocity varies.

Energy conservation implies that the work performed against gravity either goes to provide the fluid
with kinetic energy or is dissipated into heat,

Ẇ = �̇ + P, (18.41)

where P is the rate of dissipation. We now make the somewhat shaky assumption that the exit pipe is so
long that the entrance length can be disregarded, and that the cistern is so large that the dissipation in it
can be ignored. Then we may use (18.36) and find from energy conservation a quadratic equation for the
average velocity,

g0h = U2 + 8νL

a2
U, (18.42)

where ν is the kinematic viscosity. The solution is

U =
√

g0h +
(

4νL

a2

)2
− 4νL

a2
. (18.43)

For 4νL/a2 � √
g0h the solution becomes U ≈ √

g0h, which is a factor
√

2 smaller than the Torricelli
expression for nearly ideal flow (page 210), but that is only an apparent paradox. Rewriting the inequality
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as L/2a � Re/16 this is seen to imply that the length of the tube must be much smaller than the entrance
length (18.38), which invalidates the use of the Poiseuille velocity profile. The above formula is only valid
when the length of the exit pipe is somewhat greater than the entrance length, L � � or 4νL/a2 �

√
g0h.

For very long pipes, 4νL/a2 � √
g0h, we have approximatively U ≈ g0ha2/8νL .

18.5 Phenomenology of turbulent pipe flow
Osborne Reynolds was in 1883 the first to investigate the nature of turbulent pipe flow. Empirically, laminar
flow is only possible up to a certain value of the Reynolds number, beyond which turbulence sets in.
Before turbulence is fully developed there is, however, first a transition region characterized by intermittent
behaviour. After turbulence has become fully established the flow goes for increasing Reynolds number
through at least two distinct stages where different physical processes dominate the character of the flow.
Although to this day there is no established theory of turbulent pipe flow, there exist efficient semiempirical
expressions for the general behaviour as a function of the Reynolds number.

Average velocity and Reynolds number
In what is customarily called ‘fully developed turbulence’ the true velocity field varies rapidly in time as
well as from place to place throughout the tube. If dye is injected into the fluid, it quickly spreads through
the whole volume, quite different from laminar flow where it makes orderly streaks.

The volumetric discharge rate Q is nevertheless expected to be relatively steady in turbulent flow, albeit
with some fluctuations. The average velocity calculated from the discharge rate,

U = Q

πa2
, (18.44)

is thus a measure of the rate at which the turbulent fluid progresses down the pipe. As for laminar flow, the
Reynolds number is defined by

Re = 2aU

ν
, (18.45)

with a conventional factor 2. It is important to realize that independent of the character of the flow, the
discharge rate Q—and therefore U and Re—are experimentally easy to determine by measuring the volume
of fluid discharged from the pipe over a sufficiently long time interval.

Empirically, turbulence sets in around Re ≈ 2000–4000, depending on the conditions under which
this region is approached, with the ‘nominal’ value being 2300. For a smooth pipe under very carefully
controlled conditions, the transition to turbulence can in fact be delayed until a Reynolds number of the
order of 100 000. Above that value, the flow is so sensitive to disturbances that it becomes practically
impossible to avoid turbulence, even if the Poiseuille solution is believed to be stable towards infinitesimal
perturbations (in the r z-plane) for all Reynolds numbers4.

Friction factor
Intuitively, one expects that turbulence causes increased resistance to the flow and therefore requires a
larger pressure drop �p than laminar flow to obtain the same rate of discharge Q under steady conditions.
The drag is as before determined from the pressure drop by the balance of forces, 	 = πa2�p, and is
accordingly also expected to be larger than the laminar expression (18.35). Since the Reynolds number is
the only dimensionless quantity that may be constructed from the average velocity (problem 18.9), we may
always write the drag as the laminar expression times a dimensionless friction factor f (Re), depending
only on the Reynolds number,

	 = 8πηU L f (Re). (18.46)

The friction factor is evidently anchored with the value f (Re) = 1 in laminar flow, and as we shall see
below it grows monotonically with the Reynolds number in the turbulent region, although in the transition
to turbulence it is not too well defined because of intermittent shifts between laminar and turbulent flow.

4See for example B. Hof, A. Juel and T. Mullin, Scaling of the turbulence transition in a pipe, Phys. Rev. Lett. 91,
(2003) 244502-1.
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Figure 18.1. Schematic behaviour of the friction factor f (Re) as a function of Reynolds number Re for
a pipe with roughness parameter k/2a = 10−3 (where k is the average height of the irregularities in the
pipe wall). The transition from laminar to smooth-pipe turbulent flow happens around Re ≈ 2300 but the
friction factor is not too well-defined for 2000 � Re � 4000. The transition from smooth-pipe turbulence
to rough-pipe turbulence happens in this case for Re ≈ 63 000 and is quite soft. The dashed line is the
interpolation (18.53).

The friction factor can be directly determined from the measured average velocity U and the measured
average pressure gradient G = �p/L ,

f (Re) = a2G

8ηU
. (18.47)

In figure 18.1 this function is schematically plotted across the laminar and turbulent regions.

Friction coefficient
John Fanning. Not much is
available about him, except that
he apparently introduced the
friction coefficient in a treatise on
water supply in 1877.

Henri-Philibert-Gaspard Darcy
(1803–1858). French engineer.
Pioneered the understanding of
fluid flow through porous media
and established Darcy’s law
which is used in hydrogeology.

Like laminar drag, turbulent drag also arises from the interaction between the fluid and the pipe wall. In
terms of the friction factor the average shear stress on the inner pipe wall becomes,

σwall = 	

2πaL
= 4η

U

a
f (Re). (18.48)

Dividing by the dynamic pressure, (1/2)ρ0U2, we obtain a dimensionless measure of the wall stress, called
the friction coefficient,

C f (Re) = σwall

(1/2)ρ0U2
= 16

Re
f (Re). (18.49)

In the technical literature C f is sometimes called the Fanning friction factor, and often one also meets the
Darcy friction factor which equals 4C f .

It is a matter of taste whether to use the friction coefficient C f (Re) or the friction factor f (Re). For
fairly low Reynolds numbers the friction factor is the most natural choice, because it is anchored in the
laminar region. The friction coefficient on the other hand tends to become constant for infinite Reynolds
number, except for perfectly smooth pipes. It is thus anchored in the region of extremely turbulent flow, but
its limiting value C f (∞) depends on the roughness of the pipe surface.
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Smooth pipe case
For a perfect l y smoot h i nner pi pe s urface a decent s emi empi r i cal approxi mat i on was given by B l asi us i n
1911, i n w hi ch t he f r i ct i on coeffi ci ent decr eases sl ow l y as t he −1/4 pow er of t he R eynol ds number, w hi l e
t he fri ct i on fact or i ncreases as t he 3/4 power,

C f ≈ 0. 079R e−1/ 4, f ≈ 0. 0049R e 3/ 4. ( 18. 50)

Tur bul ence t heor y ( c hapt er 32) pr oduces a m or e c ompl i cat ed expr essi on f or C f whi ch agrees numeri cal l y
w i t h t he a bove expr essi on i n t he i nt er va l 4000 � Re � 100 000.

O ne m ay wonder w het her t he s moot h pi pe expr essi on has any r el evance except f or gl ass pi pes t hat ar e
i n fact qui t e smoot h. I ndust r i a l l y pr oduced pi pes a r e t ypi cal l y made f r om r ubber, pl ast i c , i r on or c oncr e t e
w i t h di ff er ent degr ees of i nner s ur face r oughness. B ut i t t ur ns out t hat any not t oo i r r egul ar sur face w i l l t e nd
t o behave appr oxi mat e l y l i ke a per f ect l y smoot h s ur face i n some r a nge of R eynol ds number s beyond t he
transition t o t urbulence. T he r eason is that when turbulence sets in, t he no-slip condition still requires t he
fluid velocity to vanish at a solid wall. This leads to the formation of viscous wall layers which screen the
bul k of t he fl ow f r om t he i nfl uence of t he s ur face r oughness, t hus maki ng t he s ur face appear t o be smoot h.
T he wal l l ayer s, how eve r, become t hi nner a nd t he s cr eeni ng l ess e ff ect ive f or ve r y hi gh R eynol ds number s .
A bove a cer t a i n r oughness- dependent va l ue, t ypi cal l y f or R e � 100 000, t he s moot h pi pe a ppr oxi mat i on
gener al l y l oses i t s usef ul ness.

E xamp l e 18. 5. 1 ( Wat e r p i p e) : A qui t e nor mal use of househol d wat er wa s s how n i n exampl e 18. 4. 2
t o l ead t o a R eynol ds number of a bout R e ≈ 10 000, w hi c h i s w el l i nsi de t he t ur bul ent r egi m e,
t hough not i n t he r ough pi pe r egi on. F r om t he s moot h pi pe f or mul a ( 18. 50) w e fi nd t he f r i ct i on fact or
f ( 10 000) = 5. The pressure gradient must therefore be 5 times larger than the Hagen–P oi seuille value
( w hi ch i s 160 Pa m−1 ), or G ≈ 800 Pa m−1 . D r ag and di ssi pat i on ar e si mi l ar l y augment ed.

Tur bul ence make s t he pi pes hi s s or ‘ si ng’ w hen you t a p wat er at f ul l speed, t hough most of t he
noi se pr obabl y c omes f r om t he nar r ow passages of t he fa ucet , w her e t he wat er speed and R eynol ds
number are hi ghest , and t he bi g drop from mai n t o at mospheri c pressure t akes pl ace.

Rough pipe limit
At suffi ciently high Reynolds number the irregular turbulent fl ow is caused by t he fl uid literally slamming
i nt o t he s mal l pr ot r usi ons of t he r ough pi pe sur face, r a t her t han by t he vi s cous f r i ct i on. I n t hi s l i m i t t he dr a g
becomes i ndependent of t he act ual vi s cosi t y, eve n i f i t i n t he end m ust ow e i t s ve r y exi s t e nce t o vi s cosi t y!
C or r e spondi ngl y, t he f r i ct i on c oeffi ci ent becomes a const a nt , C f (∞) = limRe→∞ C f ( Re) , w hi ch depends
on t he c har act er of t he r ough sur face.

k[m]

Glass 3 × 10−7

Steel 4.5 × 10−5

Rubber 1 × 10−5

Cast Iron 2.6 × 10−4

Concrete 1.5 × 10−3

Characteristic roughness con-
stants for various materials (from
[79]). Note that machining of a
surface (sawing, planing, milling,
grinding and polishing) will have
great influence on its roughness.

The surface roughness may be characterized by the average height k of the surface irregularities, a
parameter that depends on the material of the pipe and how it is produced. A decent semi-empirical
expression for the limiting friction coefficient is also given by a power law,

C f (∞) ≈ 0.028

(
k

2a

)1/4
. (18.51)

Again it must be remarked that turbulence theory yields a more complicated expression which however
agrees reasonably with the power law in the interval 10−4 � k/2a � 10−2. The deviations reach the 30%
level about an order of magnitude beyond this interval in both directions.

The smooth pipe expression crosses the rough pipe expression for

Re ≈ 63
2a

k
. (18.52)

The transition from smooth to rough pipe turbulence is rather soft, certainly not as sharp as the transition
f r om l ami nar t o t ur bul ent fl ow ( s ee fi gur e 18. 1) . A si mpl e i nt e r pol at i on w hi ch cove r s bot h r egi m es coul d
be,

C f = 0.028

(
63

Re
+ k

2a

)1/4
, (18.53)
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and yi e l ds a decent a pproxi mat i on f or 10−4 � k/2a � 10−2 and R e � 4 × 103 . More precise semi-
empi r i cal expr essi ons and di a gr ams usef ul f or engi neer i ng desi gn pur poses may be f ound i n t he t echni cal
literature [80, p. 348].

E xamp l e 18. 5. 2 ( R u bb er rou gh n e ss) : R ubber has k ≈ 0. 01 mm, so t hat f or a 10 mm r ubber hose w e
get k/2a ≈ 10−3 and C f (∞) ≈ 5 × 10−3 . T he smoot h a nd r ough pi pe expr essi ons cr oss each ot her a t

Re ≈ 63 000 w her e t he f r i ct i on c oeffi ci ent i s C f ≈ 6 × 10−3 .
� z

�
r

<<<<<<

======

�

�

�

�

A ssumed vel oci t y pr ofi l e f or
f ul l y deve l oped t ur bul e nt fl ow
t hr ough a c i r cul a r pi pe. A par t
f r om t hi n boundar y l a yer s ( w hi ch
w e i gnor e) , t he ve l oci t y fi e l d
i s appr oxi mat e l y const a nt acr oss
the pipe.

Turbul ent drai n
T he cal cul at i on of t he t urbul ent drai n vel oci t y proceeds i n m uch t he same way as f or l ami nar vi s cous fl ow
( page 254) , except t hat w e do not know t he act ual vel oci t y di st r i but i on i n t he pi pe. A l t hough t her e w i l l al so
be boundar y l a yer s i n t ur bul ent pi pe fl ow, w e s hal l f or s i m pl i c i t y assume t hat t he bul k of t he t ur bul ent fl ow
pr oceeds t hr ough t he pi pe a s a turbul ent plug w i t h r oughl y t he same aver age s peed acr oss t he pi pe.

The rate of loss of kinetic energy from the pipe exit is then �̇ = ( 1/2)ρ0 U 2 Q whereas t he work t o
r e pl eni s h t he ci st er n i s unchanged Ẇ = ρ0 g0 h Q. W riting t he di ssipative loss as P = 	U with	 give n by
( 18. 46) , e nergy c onser va t i on ( 18. 41) t a ke s t he f or m

g0 h = 
1

2 
U 2 + 

8ν U L

a 2
f

(
2aU

ν

)
. ( 18. 54)

Were it not for the second term on the right-hand side, we would indeed recover Torricelli’s law, U =√
2 g0 h . I n t he gener a l case t hi s e quat i on has t o be sol ved numer i cal l y ( s ee pr obl em 18. 16) .

In the limit of ν → 0 w e m ay use t he r ough pi pe f or m of t he f r i ct i on fact or f ( Re) ≈ C f (∞) Re/16 t o
obt ai n t he sol ut i on,

U =
√

2 g0 h

1 + 4C f (∞) L/2a
. ( 18. 55)

Clearly, Torricelli’s resul t i s onl y obt ai ned for suffi ci ently short pipes satisfying 4C f (∞) L/2a � 1. I n�

�

L/2a

U

..................................................................................................................................................................................................................................................... ..... .......................... ...................... ....... ... ... ... ..... ... ........ .............

√
2 g0 h

Turbul ent drai n speed as a f unc-
t i on of pi pe l engt h. For s uffi -
ci ent l y l ong pi pes t he fl ow be-
comes l ami nar.

t he r ubber t ube exampl e 18. 5. 2 w e have 4 C f (∞) ≈ 0. 02 and t he condition becomes L/2a � 50. For

l ong pi pes w i t h 4C f (∞) L/2a � 1, the terminal velocity falls as 1/
√

L .  If by some method  the pipe is
el ongat e d t hi s w i l l event ual l y br i ng t he R eynol ds number dow n i nt o t he smoot h pi pe a nd l a mi nar r egi ons.

Example 18.5.3 (Barrel of wine, continued): For the barrel of wine (example 16.3.2 on page 211)
which empties through a wooden spout of length L = 20 cm and diameter 2a = 5 cm the Reynolds
number is about 300 000, well into the rough pipe region. Disregarding entry corrections and assuming
a wood roughness of k ≈ 0.5 mm, corresponding to k/2a = 0.01, we find C f (∞) ≈ 10−2 and
4C f (∞)L/2a ≈ 0.16. The Toricelli value for the exit velocity is thus only reduced by about 8% by
turbulence.

18.6 Circulating cylindrical flow
In cylindrical geometry there is another exact solution with maximal symmetry, in which the fluid circles
around the cylinder axis with a velocity field of the form,

v = vφ(r)eφ, (18.56)

where eφ i s t he t angent i a l uni t vect or i n cyl i ndr i cal coor di nat e s ( see a ppendi x B ) . T he fi el d l i nes ar e
concentric circles, and the field is also in this case invariant under rotation around the cylinder axis and
translation along it.
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G eneral s ol uti o n
T he s i m pl est way t o handl e t hi s fi el d i s t o m ake use of t he gr a di ent i n cyl i ndr i cal coor di nat e s ( B . 6) t o
cal cul at e i t s ‘ t ensor pr oduct ’ w i t h t he vel oci t y,

∇v = ( er ∇r + eφ∇φ + e z∇ z)vφ(r) eφ = er eφ
dvφ
dr

− eφ er
vφ

r
. ( 18. 57)

Here we have used t hat t he basi s vect ors onl y depend on φ and t hat ∇φ eφ = −er/ r . T he trace of this tensor
yi el ds t he divergence, Tr[∇v] = ∇·v = 0, whi ch vani s hes because ∇v onl y has off - di a gonal c omponent s i n
the cylindrical basis. This is in agreement with the elementary observation that streamlines neither diverge
nor converge in this flow. Dotting from the left with v we fi nd t he advect ive accel erat i on,

� �

�

�
�
�
��

�
ez

x

y

z

�
���
���

		
	
�

rφ

er

eφ

..................................................................................
..............

.

Cylindrical coordinates and basis
vect or s ( see a ppendi x B ) .(v · ∇)v = v · (∇v) = −er

v2
φ

r
.

One should not be surprised: the centripetal acceleration in a circular motion with velocity vφ is indeed

directed radially inwards and of size v2
φ/r . Finally, using the cylindrical Laplacian (B.9) and ∂2eφ/∂φ2 =

−eφ , we obtain

∇2v = eφ
d2vφ

dr2
+ eφ

1

r

dvφ
dr

− eφ
vφ

r2
= eφ

d

dr

(
1

r

d(rvφ)

dr

)
, (18.58)

where the last rewriting is done for later convenience. The Navier–Stokes equation (18.1a) then becomes
(in the absence of gravity),

−ρ0er
v2
φ

r
= −∇ p + η eφ

d

dr

(
1

r

d(rvφ)

dr

)
. (18.59)

Projecting it on the three cylindrical basis vectors, er , eφ and ez , we obtain Maurice Frédéric Alfred Couette
(1858–1943). French physicist
from the provincial university of
Angers. Published only seven
papers, all from 1888 to 1900.
Invented what is now called the
Couette viscometer.
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General Couette flow geometry
in the xy-plane.

−ρ0
v2
φ

r
= −∂p

∂r
, (18.60a)

0 = −1

r

∂p

∂φ
+ η d

dr

(
1

r

d(rvφ)

dr

)
, (18.60b)

0 = −∂p

∂z
. (18.60c)

The last equation shows that the pressure is independent of z, and from the second equation we see by
differentiating after φ and using that vφ only depends on r , that ∂2 p/∂φ2 = 0, which means that p can at
most be linear in φ, i.e. of the form p = p0(r)+ p1(r)φ. But here we must require p1 = 0, for otherwise
the pressure would have different values for φ = 0 and φ = 2π , and that is impossible. For this reason the
pressure cannot depend on φ but only on r , and thus it disappears completely from (18.60b).

With the pressure out of the way, the integration of (18.60b) has become almost trivial. The general
solution is

vφ = Ar + B

r
, (18.61)

where A and B are integration constants. The first equation (18.60a) expresses that there is a positive radial
pressure gradient which supplies the centripetal force necessary to keep the fluid in its circular motion.
Inserting the general solution into (18.60a) and integrating over r , we find the pressure

p

ρ0
= C + 1

2
A2r2 − 1

2

B2

r2
+ 2AB log r, (18.62)

where C is a third integration constant.
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Couette flow between rotating cylinders
Suppose the fluid is contained between two long coaxial material cylinders with the innermost having radius
a and outermost radius b > a. This problem was solved by Couette (1890), but today Couette flow is often
used to denote any kind of motion-driven laminar flow, for example also laminar channel flow between
moving parallel plates (p. 232).

Here we shall for simplicity only study the case where the outer cylinder is held fixed and the inner
cylinder rotates like a spindle with constant angular velocity �. The boundary conditions, vφ(a) = a� and
vφ(b) = 0, then determine A and B, so the velocity profile becomes

vφ = � a2

r

b2 − r2

b2 − a2
. (18.63)

The velocity field decreases monotonically from its value a� at the inner cylinder to zero at the outer.
The pressure is found from (18.62)

p∗ = p0 + 1

2
ρ0

(
� a2

b2 − a2

)2 (
r2 − b4

r2
+ 4b2 log

b

r

)
, (18.64)

where p0 is its value at the outer cylinder. It increases monotonically towards p0.
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a b
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vφ

p

Sketch of the velocity and pres-
sure between cylinders in Couette
flow with the outer cylinder held
fixed.

Stress, torque and dissipation
From (18.57) it follows that the only non-vanishing shear stress component is

σφr = η(eφ · (∇v) · er + er · (∇v) · eφ) = η

(
dvφ
dr

− vφ

r

)
, (18.65)

which upon insertion of the Couette solution (18.63) becomes,

σφr = −2η�
a2b2

b2 − a2

1

r2
. (18.66)

It represents the friction between the layers of circulating fluid, and the sign is negative because the fluid
outside the radius r acts as a brake on the motion of the fluid inside (which has normal er ).
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r

σφr

The shear stress acts tangentially
on the cylinder surface at r .

In order to maintain the steady rotation of the inner cylinder it is necessary to act on it with a moment
of force or torque �z (and with an opposite moment at the outer cylinder). Multiplying the shear stress
with the moment arm r and the area 2πr L of the cylinder at r , we finally obtain the torque with which the
fluid inside r acts on the fluid outside,

�z = r (−σφr )2πr L = 4πη�L
a2b2

b2 − a2
. (18.67)

We could have foreseen that it would be independent of r from angular momentum conservation. In steady
flow the total angular momentum of the fluid between any two cylindrical surfaces is constant and there is
no transport through the cylindrical surfaces because they are orthogonal to the velocity. Consequently the
total moment of force has to vanish, implying that the moments of shear stress acting on the two cylindrical
surfaces must be equal.
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−�z

The angular momentum of the
fluid between the two cylinder
surfaces is constant, which im-
plies that the total moment of
force on the fluid must vanish.

The rate of work that must be done against the friction from the fluid to keep the inner cylinder rotating
is obtained by multiplying the stress −σφr with the velocity r� and the area of the cylinder,

P = (−σφr ) r� 2πr L = �z� = 4πη�2L
a2b2

b2 − a2
. (18.68)

Since the kinetic energy of the fluid is constant in steady flow and since no fluid enters or leaves the system,
this must equal the rate of energy dissipation in the fluid.
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Couette viscometer: I n t he C ouet t e vi scomet er t he vi s cosi t y of t he fl ui d i s det er mi ned f r om t he
ext r a m ot or pow e r necessar y t o dr ive t he i nner cyl i nder a t c onst a nt angul ar ve l oci t y. A mor e st abl e
ar r a ngement ( s ee page 264) consi s t s of hangi ng t he i nner cyl i nder by a t or s i on w i r e a nd r ot a t i ng
t he out er cyl i nder a t c onst a nt angul ar ve l oci t y. W hen t he chamber i s fi l l e d w i t h vi scous fl ui d t her e
w i l l ar i s e a t or que on t he i nner cyl i nder, w hi c h i s c ount er act ed by t he t or si on i n t he w i r e s o t hat
at equilibrium a certain deflection angle is obtained. Measuring the deflection angle then leads to
a val ue f or t he vi scosi t y ( pr obl em 18. 20) . T he t or s i onal r i gi di t y ( page 157) of t he w i r e m ay be
determined from t he period of free oscillations of the i nner cylinder when t he chamber i s empty.

Unloaded journal bearing
In a lubricated journal bearing a liquid, say oil, is trapped in a tiny gap between a rotating shaft (or journal)
and its bearing (or bushing). Normally such systems carry a load which brings the shaft off-centre (see
sect i on 27. 4) but her e w e s hal l assume t hat t he j our nal a nd i t s bushi ng a r e concent r i c cyl i nder s , s uch t hat
we may apply the Couette formalism in the limit of very small distance d = b − a � a between the
cylinders.

To lowest order in d and the distance s = r − a from the shaft, we find,

vφ = � a
(

1 − s

d

)
. (18.69)

The velocity field is linear in s, just as for planar Couette flow. This is not particularly surprising since the
tiny gap between the cylinders looks very much like the gap between parallel plates. The natural definition
of the Reynolds number is correspondingly,
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Sketch of torsion wire Couette
viscometer.Re = �ad

ν
, (18.70)

and we expect turbulence to arise for Re � 2000, as in the planar case.
The pressure is found from (18.64) by expanding the logarithm to third order in s and d , and it becomes

in the leading approximation,

p = p0 − 1

3
ad�2

(
1 − s

d

)3
. (18.71)

The pressure variation across the gap is proportional to the size d of the gap and thus normally tiny, unless
the quadratic growth with angular velocity overwhelms it. The dissipation becomes on the other hand (to
lowest order in d),

P = 2πη�2a3L

d
. (18.72)

It is inversely proportional to the thickness of the layer of fluid and grows, like the pressure variation,
quadratically with the angular velocity. This is why even a lubricated bearing may burst into flames at
sufficiently high rotation speed.

Example 18.6.1 (Burning bush): Consider a vertical wooden shaft in a wooden bushing with diameter
2a = 10 cm, such as could have been used in an old water mill. Let the gap be d = 1 mm and let the
lubricant be heavy grease with η ≈ 10 Pa s, corresponding to ν ≈ 0.01 m2 s−1. The power dissipated
per unit of lubricant volume is

P

2πaLd
= η�2a2

d2
. (18.73)

For a modest speed of one rotation per second, � ≈ 2π s−1 with a Reynolds number of Re ≈ 0.06, this
comes to about 1 J cm−3 s−1. If the mill rotates 10 times faster because of torrential rains, this number
becomes instead 100 J cm−3 s−1 with a Reynolds number of 0.6. Since wood is a bad heat conductor,
the grease may ignite in a matter of minutes even taking into account that its viscosity decreases with
temperature.
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Spi ndl e-driven vo rtex
S uppose a l ong cyl i ndr i cal spi ndl e of r adi us a is inserted into an infinite sea of fl uid, and that the spindle is
r ot a t e d s t eadi l y w i t h const a nt angul ar ve l oci t y �. P r ovi ded t he spi ndl e does not r ot at e so fast t hat i t cr eat es
t ur bul ence, t he fl ow w i l l event ual l y become st eady w i t h an azi mut hal vel oci t y fi el d t hat may be f ound f r om
the Couette solution with b → ∞,

vφ = � a 2

r
, p = −1

2
ρ 0
�2 a 4

r 2
, ( 18. 74)

w her e t he pr essur e i s nor mal i zed t o vani sh at i nfi ni t y. A si ngul ar vor t ex w i t h vφ = C/ r for all r is called a

line vortex, and in this case we have C = � a 2 .
�

�

................................................................................................................................................................................................................................................................ ............... ............... ............. ............. .......... ........................ ......... ............................................. .
r

vφ

a

Charact eri st i c 1/ r velocity pro-
fi l e of s pi ndl e- dr iven vor t ex.

In a gravitational fi eld g0 poi nt i ng dow nwar ds al ong t he cyl i nder a xi s w e m ust a dd t he hydr ost a t i c
pressure, t o get

p = −1

2
ρ 0
�2 a 4

r 2
− ρ0 g0 z. ( 18. 75)

I f t he fl ui d i s a near l y i deal l i qui d, t he t r ue pr essur e at an open s ur face must equal t he ( const ant ) ai r pr essur e
at t he i nt er face, j ust as i n hydr ost at i cs. C hoosi ng t he asympt ot i c l evel of fl ui d t o be z = 0, w e obt ai n t he
fol l owi ng shape of t he surface,

�

�

r

z

�
g0

0

z = h(r)

a

O pen l i qui d s ur face of a s pi ndl e-
dr iven vor t ex i n const a nt gr avi t y
varies like 1/ r 2 .

z = −�
2 a 4

2 g0 r 2
. ( 18. 76)

T hi s i s qui t e di ff er ent f r om t he par a bol i c shape of t he l i qui d s ur face i n a r ot at i ng bucke t ( page 87) .

E xamp l e 18. 6. 2: A s pi ndl e w i t h r a di us a = 1 c m m aki ng 10 t ur ns per s econd, cor r e spondi ng t o
� = 63 s−1 , woul d m ake a depressi on i n t he l i qui d s urface, d = L − h( a) ≈ 2 cm, at t he s pi ndl e.

T he r ul e a bout cont i nui t y of pr essur e acr oss a ny sur face i s onl y s t r i c t l y va l i d i n hydr ost a t i c s ( i n t he
absence of surface tension), whereas in hydrodynamics it is instead the full stress vector that has to vanish
at the open surface. For the spindle-driven vortex the non-vanishing stresses are

σφr = −2η
�a2

r2
, σrr = σzz = σφφ = −p. (18.77)

Whereas the diagonal stresses vanish at the surface (18.76), the shear stress is always non-zero. Strictly
speaking the above solution only describes a vortex with an open surface in the limit of vanishing viscosity.
Unfortunately we encounter another problem in this limit, because without viscosity it is impossible to
crank up the vortex from a fluid at rest. The structure of driven as well as free vortices will be analysed in
detail in chapter 26.

∗ 18.7 Secondary flow and Taylor vortices
Real machinery cannot be infinite in any direction. Suppose the cylinders are capped with plates fixed to the
outer non-rotating cylinder so that only the inner cylinder rotates. The no-slip condition forces the rotating
fluid to slow down and come to rest not only at the outer cylinder, but also at both the end caps, implying
that the assumption about a simple circulating flow (18.61) with its z-independent azimuthal velocity vφ(r)
cannot be right everywhere. In fact it cannot be right anywhere! Clean Couette flow is like clean Poiseuille
flow an idealization that can only be approximately realized far from the ends of the apparatus. Secondary
flow with non-vanishing radial and longitudinal velocity components, vr and vz , will have to arise near the
container walls in order to satisfy the no-slip boundary conditions at the end caps.

Direction of secondary flow
We shall begin with assuming that the length of the apparatus is comparable to the gap, say L ≈ 2d , and that
the gap is completely filled with fluid without open surfaces. In the bulk of the fluid, the Couette solution
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is still a good approximation, and the main job of the pressure here is to provide centripetal force for the
circulating fluid as shown by the radial gradient (18.60a).

The longitudinal pressure gradient ∇z p determines how rapidly the pressure can vary in the z-direction,
and from the z-component of the full Navier–Stokes equation (18.1a) we obtain (still disregarding gravity)

∇z p = −ρ0(v · ∇)vz + η∇2vz .

The right-hand side is expected to be small throughout the fluid because the longitudinal velocity vz must
nearly vanish in the Couette bulk flow in the middle of the apparatus and also has to vanish at the bottom
end cap (which the fluid cannot penetrate). The vertical variation in pressure near the bottom is therefore
not able to seriously challenge the large values of the centripetally dominated bulk pressure. The pressure
is for this reason rather ‘stiff’ as we approach the bottom and remains more or less equal to the pressure in
the bulk with only small corrections.
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Sketch of the secondary flows
that arise in a Couette apparatus
as a consequence of its finite
longitudinal size. Both at the
bottom and the top end caps
fluid is driven towards the central
region

Near the bottom, the still intact bulk pressure will have an inwards directed radial gradient, −∇r p,
capable of delivering the centripetal force to keep the rapidly rotating fluid in the bulk moving in a circle.
But the no-slip condition requires the azimuthal velocity to vanish at the bottom, vφ → 0 for z → 0, so that

the actually required centripetal acceleration −v2
φ/r is much smaller there than in the bulk. As a result, the

combination of the stiff pressure gradient and the smaller centripetal acceleration gives rise to a net force
directed towards the axis, and that force will in turn drive a radial flow inwards along the bottom. The same
argument shows that there must also be an inwards flow along the top and since the moving fluid has to go
somewhere, it tends to form two oppositely rotating ring-shaped (toroidal) vortices that encircle the axis.

If the axis is vertical and the liquid has an open surface, only a single vortex needs to be formed. It
is this kind of secondary flow that drives the tea leaves along the bottom towards the centre of a cup of
tea after stirring it. As the above argument shows the flow is independent of the direction of stirring. You
cannot, for example, make the tea leaves move out again by ‘unstirring’ your tea.
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The secondary flow responsible
for collecting tea-leaves at the
centre of the bottom of a stirred
cup. Note the parabolic shape of
the surface of the rotating liquid
(see page 87).

Rayleigh’s stability criterion
In the above discussion, the cylinder length was assumed to be comparable to the gap size. For a long
cylinder, the preceding argument seems to indicate that a secondary flow with two highly elongated
‘vortices’ should form which satisfy the boundary conditions on the end caps, or just one if there is an
open surface. Such elongated vortices are, however, unstable and tend to break up in a number of smaller
and more circular vortices.

The instability can be understood by an argument analogous to the discussion of atmospheric stability
on page 57. For simplicity we shall, as Rayleigh did, assume that there is no viscosity. Suppose now that
a unit mass fluid particle in the bulk of the rotating fluid is shifted outwards to a larger value of r by a tiny
amount. During the move the fluid particle will conserve its angular momentum and will in general arrive
in its new position with a speed which is different from the ambient speed of the fluid there. The angular
momentum of a unit mass particle in the ambient fluid is rvφ , and depending on how the fluid rotates, it
may grow or decrease with increasing distance. If it is constant, such that d(rvφ)/dr = 0, then the moved
particle fits snugly into its new home with just the right velocity. This is a marginal case, realized by the
spindle-driven vortex (page 262) which has rvφ = �a2.

In general, however, the angular momentum rvφ of a unit mass particle in the ambient fluid will not
be a constant. If it locally grows in magnitude with distance, then a fluid particle displaced to a slightly
larger radius will arrive with its original angular momentum and thus have a smaller velocity than its new
surroundings. The inward pressure gradient in the ambient fluid will therefore be larger than required to
keep the particle in a circular orbit with lower velocity, and it will be forced back to where it came from.
This is Rayleigh’s stability criterion,

d
∣∣rvφ ∣∣
dr

> 0. (18.78)

The stability criterion will trivially be fulfilled if the inner cylinder is held fixed and the outer rotated,
because then the azimuthal velocity

∣∣vφ ∣∣ and thus
∣∣rvφ ∣∣ must necessarily grow with the radial distance.

Such a situation is perfectly stable. Any little radial fluctuation in the flow is quickly ‘ironed out’ and the
flow remains well-ordered and laminar until turbulence sets in.
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Taylor vortices
Conversely, if the above inequality is not fulfilled everywhere, the flow will be unstable and reconfigure
itself at the first opportunity. For the Couette solution (18.63) we have

d
∣∣rvφ ∣∣
dr

= − 2a2�r

b2 − a2
, (18.79)

which is evidently negative, and more negative the faster the inner cylinder rotates and the narrower the gap.
Viscosity, which has been ignored so far, will delay the onset of instability, but it requires a more careful
analysis to determine the precise criterion (see for example [43, 1, 13, 19]).
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Taylor vortices are toroidal rings
of fluid encircling the axis of
rotation. In this case both end
caps are fixed and the secondary
flow must be directed inwards at
both top and bottom. That is
only possible if an even number
of counter-rotating vortices are
formed.

For sufficiently large angular driving velocity �, the Couette flow in a small gap between the rotating
inner and fixed outer cylinder becomes unstable and a string of ring-shaped vortices will arise in the
gap. They are called Taylor vortices in honour of G. I. Taylor who first analysed their properties, both
experimentally and theoretically. The Taylor vortices are all mutually counter-rotating and match up with
the sense of flow dictated by the boundary conditions on the ends (for pictures see [5]).

The formation of secondary flow and the instability leading to toroidal (ring-shaped) Taylor vortices
represents a breakdown of the longitudinal symmetry (along z) of the cylinder. The azimuthal symmetry (in
φ) is to begin with maintained but also breaks down with increasing speed of rotation. The regular Taylor
vortices are then replaced by wavy vortices that undulate up and down (in z) while they encircle the axis.
Increasing the speed further will increase the number of undulations until the flow finally, after an infinity
of such transitions, becomes chaotic and turbulent.

Problems
18.1 Define the effective pressure

p∗ = p + ρ0�, (18.80)

and show that the gravitational field can be eliminated from the Navier–Stokes equation.

18.2 Consider a pressure-driven laminar flow between infinitely extended plates moving with constant
velocity with respect to each other in the same direction as the pressure gradient. Determine under which
conditions the maximal flow velocity will be found between the plates.

18.3 Determine the planar flow field in the case that pressure gradient is orthogonal to the plate motion.

18.4 Why is it impossible to make a pressure-driven planar fluid sheet with an open surface?

18.5 A thin fluid sheet (water) of density ρ1, viscosity η1 and thickness d1 runs steadily down a plate
inclined at an angle θ to the horizon. Another plate with the same inclination is placed at a distance d1 +d2
from the first, and there is another fluid (air) in the gap with density ρ2, viscosity η2 and thickness d2.
Assuming laminar flow, calculate the pressure and velocity fields in the water and in the air between the
plates.

18.6 Calculate drag and dissipation for pressure driven planar flow in terms of the average velocity.

18.7 Calculate drag and dissipation for gravity driven planar flow with an open surface on an inclined
plate in terms of the average velocity.

18.8 Calculate laminar gravity driven flow through a vertical pipe. Determine the radius of the pipe as
a function of the Reynolds number when the fluid is water. Determine the largest radius before onset of
turbulence.

18.9 (a) Show that in pipe flow the only dimensionless combination of the parameters Q, a, ρ0, η is the
Reynolds number (up to trivial transformations). (b) Can you make another dimensionless parameter by
using G = �p/L instead of Q?
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18.10 Show that pipe resistance is additive for pipes connected in series and reciprocally additive for
pipes connected in parallel.

18.11 Show that for the Poiseuille profile,∫ a

0
vz(r)

n 2πr dr = 2n−1

n + 1
ρ0Unπa2 (18.81)

where U is the average velocity.

18.12 (a) Show that for a cylindrical tube with annular cross section with radii a < b, the solution is
given by the general Poiseuille solution (18.25) with

A = G

4η

b2 − a2

log b − log a

B = G

4η

a2 log b − b2 log a

log b − log a
.

(b) Determine the drag on the tube per unit of length when a fluid is pressed through the tube under a
pressure gradient G.

18.13 A pipe has elliptic cross section with major and minor semi-axes a and b. (a) Show that laminar
pressure driven flow of an incompressible fluid with pressure gradient G is given by,

vz = G

2η

a2b2

a2 + b2

(
1 − x2

a2
− y2

b2

)
, (18.82a)

p = p0 − Gz. (18.82b)

(b) Show that the fields of the circular pipe and the parallel plates are contained in this expression.
(c) Calculate the volume flux (Hint: use elliptic coordinates x = ar cos θ and y = br sin θ .) (d) Calculate
the average flow velocity. (e) Calculate the drag per unit of length.
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18.14 An electric lead consists of a metal wire covered with an insulating material. The insulation is
applied by pulling the wire vertically up through a tube standing in a bath of melted material. The wire
drags along some of the melt which quickly solidifies without volume change after the wire has emerged
from the tube.

The metal wire has radius a = 1 mm, the inner radius of the tube is b = 5 mm, and its length
L = 20 cm. The wire is concentric with the tube at the constant velocity U = 1 m/s. The melted insulation
is incompressible with mass density ρ0 = 1 g/cm3 and viscosity η = 0.1 Pa s.

The flow may be assumed to be cylindrical and laminar with a velocity profile that is independent of
z (in cylindrical coordinates). All end effects are disregarded. Gravity is also disregarded and the pressure
may be taken as p0 everywhere inside and outside the system.
(a) Determine the flow field.
(b) Calculate the volume discharge rate.
(c) Determine the radius c of the final insulation layer.
(d) Calculate the shear stress on the surface of the wire and the total friction that the liquid exerts on the
wire.
(e) Estimate if it was correct to disregard gravity.

18.15 A cylindrical water tank with radius b and initial water height h0 empties quasi-steadily through a
vertical cylindrical pipe of length L with radius a � b, L . (a) Assume Poiseuille flow in the pipe and write

h

L

2a

2b

Water tank with a pipe.a differential equation for the height h as a function of time. (b) Calculate the time it takes to empty the
tank.
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18.16 Show that for turbulent draining of a cistern (page 258), one obtains the following equation for the
Reynolds number

Re2 + 64kRe f (Re) = Re2
0 (18.83)

where k = L/2a, Re0 = 2aU0/ν and U0 = √
2g0h.

18.17 Show that the coefficients of the general solution to circulating flow may be written as

A = �bb2 −�aa2

b2 − a2
(18.84)

B = a2b2(�a −�b)

b2 − a2
(18.85)

where �a and �b are the angular velocities of the inner and outer cylinders.

18.18 (a) Show that the rotating volume flux in Couette flow with rotating inner cylinder and static outer
becomes

Q = 1

2
La2�

(
b2

b2 − a2
log

b2

a2
− 1

)
(18.86)

where L is the length of the cylinders. This is equivalent to the volumetric discharge rate for pipe flow,
although no fluid is actually discharged here. (b) Show that the kinetic energy of the fluid is

� = πρ0L
a4b2�2

b2 − a2

(
1

4

a2

b2
− 3

4
+ b2

b2 − a2
log

b

a

)
.

18.19 A permeable circular cylindrical pipe carrying fluid under pressure leaks fluid through its surface
into the surrounding ocean at a constant rate. Determine the steady state, maximally symmetric form of the
radial flow pattern outside the pipe.

18.20 Couette viscometer: Consider a torsion-wire Couette viscometer with radii a and b = a + d with
a narrow gap (d � a), and axial length L � d . Let the torque exerted by the torsion wire (from which the
inner cylinder hangs) be −τφ where φ is the deflection angle. Assume that the inner cylinder has total mass
M and is made from a very thin shell of homogeneous material. Let the cylinder perform damped torsion
oscillations in the presence of the fluid. (a) Show that the equation of motion for the torsion angle becomes

Ma2 d2φ

dt2
= −τφ − 2πηa3 L

d

dφ

dt
, (18.87)

under the assumption that the fluid flow may be considered quasi-steady at all times. (b) Find the solution
to the equation of motion and discuss it.

18.21 The drive shaft in a truck has a diameter of 15 cm and a bearing of length 10 cm with 1 mm
of lubricant of viscosity η = 0.01 Pa s. Calculate the rate of heat production when the shaft rotates 10
revolutions per second.

18.22 Show that the vorticity field of the spindle vortex (18.74) vanishes everywhere.

∗ 18.23 (a) Show that the local specific rate of dissipation is

ε(r) = G2

4ηρ0
r2 (18.88)

in laminar pipe flow. (b) Show the total dissipated power in a stretch of a circular tube is given by (18.36).
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Viscosity may be so large that a fluid only flows with difficulty. Heavy oils, honey, even tight crowds of
people, show insignificant effects of inertia, and are instead dominated by internal friction. Such fluids
do not make spinning vortices or become turbulent, but rather ooze or creep around obstacles. Fluid flow
which is dominated by viscosity is quite appropriately called creeping flow.

Since there is no absolute meaning to ‘large’ viscosity, creeping flow is more correctly characterized
by the Reynolds number being small, Re � 1. Creeping flow may occur in any fluid, as long as the typical
velocity and geometric extent of the flow combine to make a small Reynolds number. Blood flowing
through a microscopic capillary can be as sluggish as heavy oil. Tiny organisms like bacteria live in air
and water like ourselves, but theirs is a world of creeping and oozing rather than whirls and turbulence,
and movement requires special devices, for example oar-like cilia or whip-like flagella [75]. Some bacteria
have even mounted a rotating helical tail in a journal bearing (the only one known to biology), which like a
corkscrew allows them to advance through the thick fluid that they experience water to be. A spermatozoan
pushes forward like a slithering snake in the grass by undulating its tail.

In this chapter we shall study creeping flow around moving bodies far from containing boundaries.
For any creature in creeping flow, the most important quantity is the fluid’s resistance against motion, also
called drag. The drag on a body has two components of comparable magnitude in creeping flow, one being
skin drag from viscous friction between the fluid and the body, and the other form drag from the variations
in fluid pressure across the body. The contact forces may also produce lift orthogonally to the direction of
motion, but in creeping flow far from containing boundaries lift is of the same order of magnitude as drag.
A tiny creature that must already overcome a drag many times its weight in order to move freely has no
problem with flying. That’s why bacteria do not have wings.

19.1 Steady incompressible creeping flow
Leaving out the advective acceleration, we obtain from (18.1) the following equations for steady
incompressible creeping flow, also called Stokes flow,

∇ p = ρ0 g + η∇2v, (19.1a)

∇ · v = 0, (19.1b)

valid for Re � 1. The divergence of the first equation implies that in the absence of gravitational sources,
∇ · g = 0, the pressure must satisfy the Laplace equation,

∇2 p = 0. (19.2)

This is sometimes convenient in practical calculations.
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Creeping flow is mathematically (and numerically) much easier to handle than general flow because of
the absence of nonlinear terms that tend to spontaneously break the natural symmetry of the solutions in time
as well as space with turbulence as the extreme result. The linearity of the creeping flow equations allows
us to express solutions to more complicated flow problems as linear superpositions of simpler solutions. We
may for example eliminate the static field of gravity by subtracting the hydrostatic pressure −ρ0� from the
actual pressure. In the following we shall assume g = 0, but must at the same time not forget to subtract
the buoyancy force from the weight of an immersed body.

Drag and lift on a moving body
Consider a body moving with constant velocity U through a static fluid. Cruising along the body creates
a temporary disturbance in the fluid that disappears again some time after the body has passed a fixed
observation point. But seen from the body, the fluid appears to move in a steady pattern which at
sufficiently large distances has uniform magnitude U . Newtonian relativity guarantees that these situations
are physically equivalent, so we may use the creeping flow equations (19.1).

The only way the fluid can influence a solid body is through contact forces acting on its surface. In
all such cases it is convenient to resolve the total contact force from the fluid on the body, also called the
reaction force, into two components,

� ≡
∮

S
σσσ · d S = � +�. (19.3)

The first component� is called the drag and acts in the direction of the asymptotic flow, whereas the other
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The total reaction force � from
the fluid on the body is composed
of lift� and drag�.

is called the lift and acts orthogonally to the direction of asymptotic flow. Thus we have

� = 	eU , � · eU = 0, (19.4)

where eU = U/U is a unit vector in the direction of the asymptotic velocity.

Estimates
We shall think of the body as roughly potato-shaped with typical diameter L . Since (for g = 0) the pressure
only appears in (19.1) in the combination p/η, and since the no-slip boundary conditions on the surface
of the body do not involve the pressure, the velocity field cannot depend on η, but only on the asymptotic
velocity U and on the shape and orientation of the body. The linearity of creeping flow guarantees that the
velocity and pressure must both be proportional to the asymptotic velocity, such that |v| ∼ U and p/η ∼ U .

Skin drag is produced by the viscous shear stresses acting on the surface (skin) of a body. The velocity
gradients near the surface are of magnitude |∇v| ∼ U/L so the magnitude of the shear stress becomes
|σσσ | ∼ ηU/L . Multiplying by the surface area of the body which is of magnitude L2 we obtain an estimate,

	skin ≈ fskinηU L , (19.5)

with an unknown dimensionless prefactor fskin of order unity. This factor cannot depend on the Reynolds
number but only on the geometry of the body. We may similarly estimate the pressure gradient near the
surface from (19.1) to be |∇ p| ≈ ηU/L2, and multiplying with the length L of the body, the pressure
variations over the body become of the same size as the shear stresses, |�p| ∼ ηU/L . Multiplying by the
surface area L2, the estimate of the form drag takes the same form as skin drag,

	form ≈ fformηU L . (19.6)

In general, it has another geometric prefactor. The total drag is the sum of skin and form drag, and becomes
of order of magnitude

	 ≈ fdragηU L , (19.7)

with fdrag = fskin + fform.
Lift is produced by the same contact forces as drag and is therefore also of this magnitude,

|�| = fliftηU L . (19.8)
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T he l i f t vani s hes f or a s ymmet r i c body l i ke a s pher e or cyl i nder or t hogonal t o t he asympt ot i c fl ow, but f or
asymmet r i c bodi es t he geomet r i c pr efact or flift i s nor mal l y st r ongl y dependent on t he or i ent a t i on of t he
body w i t h r e spect t o t he di r ect i on of m ot i on.

Note that lift is not necessarily related to the direction of gravity, but can point in any direction
or t hogonal t o t he di r ect i on of m ot i on. N ear a s ol i d boundar y l i f t can be much l a rger t han dr ag and m ay i n
fact ser ve t o keep t he body away f r om t he boundar y. T hi s i s t he secr et behi nd l ubr i cat i on, w hi c h i s t aken
up i n chapt e r 27. L i f t i n near l y i deal fl ui ds ( aer odynami c l i f t ) may a l s o be m uch l arger t han dr a g a nd w i l l
be di scussed a t l engt h i n c hapt er 29.

19.2 Creeping flow around a s olid ba ll
A s ol i d spher i cal bal l movi ng at const ant speed t hr ough a vi s cous fl ui d i s t he cent er pi ece of st eady cr eepi ng
flow (Stokes, 1851). The solution may be worked out starting from the field equations (19.1) and the
boundary conditions (see problem 19.10), but even if deriving the solution is a bit complicated the result is
fairly simple.

The Stokes solution
In spherical coordinates with polar axis in the direction of the asymptotic flow U , the solution for a sphere
of r a di us a i s ( s ee fi gur e 19. 1) ,

vr =
(

1 − 3

2

a

r
+ 1

2

a3

r3

)
U cos θ, (19.9a)

vθ = −
(

1 − 3

4

a

r
− 1

4

a3

r3

)
U sin θ, (19.9b)

vφ = 0, (19.9c)

p = −3

2
η

a

r2
U cos θ. (19.9d)

Note that the fields are independent of the azimuthal angle φ and has vφ = 0 as one would expect from
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symmetry. The velocity field vanishes for r = a and thus fulfills the no-slip boundary condition on the
surface of the sphere. Asymptotically for r → ∞ it becomes vr → U cos θ and vθ → −U sin θ , which is
the expected homogeneous velocity field U = ezU .

The pressure is forward-backwards asymmetric, highest on the part of the sphere that turns towards the
incoming flow (at θ = π). This asymmetry is in marked contrast with the potential flow solution (16.74)
where the pressure is symmetric. The flow pattern is independent of the viscosity of the fluid, whereas the
pressure is proportional to η, as expected for creeping flow problems where the boundary conditions do not
involve the pressure.

Stokes law for drag on a sphere
For symmetry reasons the sphere can only be subject to drag. To find it we first calculate the normal and
shear stress tensor components. Using the standard Newtonian stress tensor, σi j = −pδi j +η(∇iv j +∇ j vi ),
we find the radial stress

σrr = er · σσσ · er = −p + 2η
∂vr

∂r
= 3

2

a

r2

(
3 − 2

a2

r2

)
ηU cos θ.

The only non-vanishing shear stress is,

σθr = eθ · σσσ · er = η ((∇θv) · er + (∇r v) · eθ )

= η

(
1

r

(
∂vr

∂θ
− vθ

)
+ ∂vθ

∂r

)
= η

1

r

(
2 − 3

a

r
− 1

2

a3

r3

)
U sin θ.
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F i gu re 19. 1. C r eepi ng fl ow ar ound a uni t s pher e w i t h onl y t he upper hal f s how n. S t r eaml i nes have been
obt ai ned by numer i c i nt egr at i on of e quat i on ( 15. 2) st ar t i ng e qui di st ant l y at z = −100 t o avoi d pr obl ems
of l ong- r a nge t e r m s ( see pr obl em 19. 7 f or how t o obt ai n t he st r eaml i nes i n an effi c i e nt wa y) . T he pr essur e
vanishes at the dashed line. Note how this pattern is qualitatively different from the potential flow pattern
show n i n fi gur e 16. 5 w i t h t he i nfl uence of t he spher e st r e t c hi ng much fa r t her.

At the surface of the sphere, r = a, the two stress components become

σrr |r=a = 3

2a
ηU cos θ, σθr |r=a = − 3

2a
ηU sin θ, (19.10a)

from which we get the stress vector

σ r |r=a = erσrr + eθ σθr = 3

2
η

U
a
. (19.11)

Surprisingly, it is of constant magnitude and across the entire surface points in the direction of the
asymptotic flow.

Due to this result, the total reaction force is simply obtained by multiplying the constant stress vector
by the area 4πa2 of the sphere. Since the force is proportional to U , it is a pure drag,

	 = 6πηaU. (19.12)

This is the famous Stokes law from 1851. The symmetry of the sphere could have told us in advance that
there would be no lift, because there is no other global direction than U defined for the problem. Taking
L = 2a to represent the size of the sphere, this form of the drag was already predicted in (19.7) with a
geometric prefactor fdrag = 3π . In problem 19.5 it is shown that 2/3 of the total is skin drag and 1/3 is
form drag.

Terminal velocity
Although Stokes law has been derived in the rest system of the sphere, it is also valid in the rest system
of the asymptotic fluid, because forces are invariant under translation with constant velocity. The terminal
velocity of a falling solid sphere may be obtained by equating the force of gravity (minus buoyancy) with
the Stokes drag,

�
�

U

Sphere falling through viscous
fluid at constant terminal speed
U .

(ρ1 − ρ0)
4

3
πa3g0 = 6πηaU, (19.13)

where g0 is the gravitational acceleration and ρ1 is the average density of the sphere. Solving for U we find

U = 2

9

(
ρ1

ρ0
− 1

)
a2g0

ν
(19.14)
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where ν = η/ρ0 is the kinematic viscosity.

Example 19.2.1 (Sedimentation): Sand grains of diameter 0.1 mm and density 2.5 times that of water
float towards the bottom of the sea with a terminal velocity of 0.8 cm s−1, as calculated from Stokes’
law. The corresponding Reynolds number is about 0.8, which is at the limit of the region of validity of
Stokes’ law.

Robert Andrews Millikan (1868–
1953). American experimental
physicist, prolific author and ex-
cellent teacher. Awarded the No-
bel prize in 1923 for the determi-
nation of the charge of the elec-
tron. Verified in 1916 Einstein’s
expressions for the photoelectric
effect, and investigated the prop-
erties of cosmic radiation.

Conversely, in the falling sphere viscometer, equation (19.14) may be used to determine the viscosity
ν from a measurement of the terminal velocity for a sphere of known radius and density. One may also,
as Millikan did in his famous electron charge experiments (1909–1913), determine the radius of a falling
sphere (an oil drop) from a measurement of the terminal velocity, provided the viscosity of the fluid is
known (it was actually necessary to include corrections to Stokes law for the internal motion of the oil in
the tiny drops). In Millikan’s experiment the oil drops were charged and could be made to hover, rise or fall
in the field of gravity as slowly as desired by means of an electric field of suitable strength. Knowing the
radius, the electric force on an oil drop could be compared to gravity, allowing the charge to be determined1.

Stokes law has been derived under the assumption of creeping flow, which can only be valid under the
condition that the Reynolds number

Re = ρ0 2aU

η
(19.15)

is small compared to unity, Re � 1. For a falling sphere where the terminal velocity is determined from
the balance of forces (19.13), the Reynolds number varies as the third power of the radius. As long as the
sphere is sufficiently small, the conditions for creeping flow can always be fulfilled.

Limits to Stokes flow
The Reynolds number (19.15) is, however, only a rough estimate for the ratio between advective and viscous
terms in the Navier–Stokes equations for a particular geometry. Having obtained an explicit solution we
may actually calculate this ratio throughout the fluid to see if it is indeed small.

Close to the sphere, the velocity is very small because of the no-slip condition. Problems are only
expected to arise at large distances, where the leading corrections to the uniform flow are provided by the
a/r terms in the solution (19.9). Disregarding the angular dependence, the leading advective terms are at
large distances,

|ρ0v · ∇v| ∼ ρ0U2 a

r2
, (19.16)

whereas the viscous terms become,

|η∇2v| ∼ ηU
a

r3
. (19.17)

The actual ratio between advective and viscous terms is then,

|ρ0v · ∇v|
|η∇2v| ∼ ρ0Ur

η
∼ r

a
Re (19.18)

where Re is the global Reynolds number (19.15). As this expression grows with r , we conclude that however
small the Reynolds number may be, there will always be a distance r � a/Re where the advective force
begins to dominate the viscous. This clearly illustrates that the global Reynolds number is just a guideline,
not a guarantee that creeping flow will occur everywhere in a system. Since any finite potato-like body at
sufficiently large distances looks like a sphere, this problem must in fact be present in all creeping flows.

The slowly decreasing a/r terms in the Stokes solution (19.9) also indicate the influence of the
containing vessel. The relative magnitude of these terms at the boundary of the vessel is estimated as
2a/D where D is the size (diameter) of the vessel. In the falling sphere viscometer a 1% measurement of
viscosity thus requires that the sphere diameter must be smaller than 1% of the vessel size. That can be hard
to fulfil in highly viscous fluids where a measurable terminal speed demands rather large and heavy spheres.

1The viscosity of air used in Millikan’s experiment was determined by Couette viscometer measurements (see p. 260).
At that time, there was actually a systematic error of about 0.5% in the viscosity of air deriving mainly from the failure
to take into account the end caps of the Couette viscometer, an error first corrected more than 20 years later (see, for
example J. A. Bearden, Phys. Rev. 56, (1939) 1023).
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F i gu re 19. 2. L a mi nar fl ow ar ound t wo s pher e s a t R e = 20. N ear l y i ndi st i ngui shabl e f r om t he fl ow i n
fi gure 19. 1, t hi s i s not creepi ng fl ow and t he fri ct i on fact or i s somewhat l arger t han uni t y. R eproduced from
S. Tanada J. Phys. Soc. Jpn 46 (1979) 1935–42.

19.3 Beyond Stokes’ law
Stokes law has been derived in the limit of vanishing Reynolds number (19.15), and is empirically valid
for Re � 1. For larger values of Re the simplicity of the problem nevertheless allows us to make a general
analysis, as we did for turbulent pipe flow (section 18.5 on page 255), even if we cannot solve the Navier–
Stokes equations explicitly.

Friction factor
Since the only parameters defining the problem are the radius a, the velocity U , the viscosity η and the
density of the fluid ρ, we may for any Reynolds number write the drag on the sphere in the form of the
Stokes law multiplied by a dimensionless factor f (Re),

	 = 6πηaU f (Re). (19.19)

This factor accounts for the deviations from Stokes law and is evidently anchored at unity for vanishing
Reynolds number, i.e. f (0) = 1. As for pipe flow we shall call it the friction factor, although as mentioned
above only 2/3 of the drag on the sphere is in fact due to friction and 1/3 to the front-to-back pressure
asymmetry (problem 19.5).

Drag coefficient
In the opposite limit at large Reynolds number Re � 1, far beyond the creeping flow region, the sphere
literally plows its way through the fluid, leaving a wake of highly disturbed and turbulent fluid. The
drag may, for example, be estimated from the rate of loss of momentum from the incoming fluid that
is disturbed by the sphere. The incoming fluid carries a momentum density ρ0U and since the sphere
presents a cross-sectional area πa2 to the flow, the rate at which momentum impinges on the sphere is
ρ0U ·πa2U = ρ0πa2U2. Alternatively, the scale of the drag may be obtained from the stagnation pressure
increase, �p = (1/2)ρ0U2, times the cross-section area πa2.

The drag at high Reynolds numbers is thus expected to grow with the square of the velocity (at subsonic
speeds). But the fluid in the wake trailing the sphere is not completely at rest, such that only a certain
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F i gu re 19. 3. D r ag coeffi c i e nt f or a smoot h bal l ( dat a ext r act ed f r om [ 61 , fi g. 1. 19] ) . T he dashed l i ne
cor r e sponds t o S t okes l aw CD = 24/R e and t he dashed cur ve i s t he i nt e r pol at i on ( 19. 22) . T he shar p dr op
(the ‘drag crisis’) at Re = 2. 5× 105 si gnal s t he onset of t ur bul ence i n t he boundar y l a yer on t he f r ont hal f of
the sphere and an accompanyi ng shift i n t he shape of t he trailing wake. After t he dr op the drag coeffi cient
r i ses a gai n. T he t e r m i nal va l ue of t he dr ag coeffi c i e nt and t he R eynol ds number f or t he onset of t he dr a g
cr i s i s bot h i ncr ease w i t h i ncr easi ng Mach number. For Mach number s above 0. 8 t her e i s no dr ag cr i s i s [ 61,
p. 12] .

f r act i on of t he i ncomi ng moment um w i l l be l ost . I t i s f or t hi s r eason cust omar y t o defi ne t he di m ensi onl ess
drag coeffici e nt

CD = 	

( 1/2)ρ0π a 2 U 2
, ( 19. 20)

w i t h a c onve nt i onal fact or 1/ 2 i n t he denomi nat or, per haps i nspi r ed by t he f or m of t he st agnat i on pr e ssur e .
E m pi r i cal l y, t he dr ag coeffi c i e nt f or a spher e i s CD ≈ 0. 5 in the interval 104 � Re � 2. 5 × 105 , i mplying
t hat about 25% of t he i ncomi ng fl ui d m oment um i s l ost t o dr a g.

Inserting the definition of the friction factor for a sphere (19. 19) we find

CD = 
24

Re
f ( Re) ( 19. 21)

f or a l l R eynol ds number s . I t i s a mat t e r of t ast e w het her one pr ef er s t o descr i be t he dr ag on a s pher e by
means of t he dr ag coeffi c i e nt or t he f r i ct i on fact or. A t s mal l R eynol ds number s , i t s eems a bi t poi nt l e ss
t o use t he dr ag coeffi ci ent , because i t i nt r oduces a s t r ong ar t i fi ci al var i at i on CD ≈ 24/Re for Re → 0
w i t hout a c or r e spondi ng st r ong va r i at i on i n t he physi c s ( w hi c h i s s i m pl y descr i bed by S t okes l aw ) . A t
large Reynolds numbers the drag coefficient becomes a constant, which is more convenient to use than the
linearly rising friction factor, although its value depends on the roughness of the ball surface.

Interpolation
One may join the regions of low and high Reynolds numbers by the simple interpolating expression

CD = 24

Re
+ 5√

Re
+ 0.3. (19.22)

The first term is Stokes’ result and the last is a constant terminal form drag. The middle term may be
under s t ood as due t o f r i ct i on i n a t hi n l a mi nar boundar y l a yer ( see c hapt er 28) on t he f or wa r d hal f of t he
sphere. There are a number of different formulae in the literature covering the same empirical data. As seen
in figure 19.3, this formula agrees decently with data for all Reynolds numbers up to Re ≈ 104, where the
drag coefficient first rises to about 0.5. Above Re ≈ 2.5 × 105 the drag coefficient drops sharply by more
than a factor 2, after which it begins to rise again, a phenomenon called the ‘drag crisis’.
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Figure 19.4. Turbulent boundary layer tripped by wire (‘seam’) on a sphere at Re = 30 000. The turbulent
layer separates on the rear of the sphere whereas the laminar boundary layer separates slightly before the
crest. ONERA photograph, H. Werle Rech. Aerospace 198-5 (1980) 35–49.

The drag crisis
The dramatic drag crisis at Re ≈ 2.5 × 105 was first carefully observed (and published) by Gustave Eiffel
in 1914 [3, p. 282]. The crisis is caused by a transition from laminar to turbulent flow in the boundaryAlexandre-Gustave Eiffel (1832–

1923). French structural engi-
neer. Famous for building the
Eiffel tower in Paris. Worked
on aerodynamics for the last 21
years of his life. Built wind
tunnels and performed numerous
studies of drag and lift.

layer of the forward-facing half of the sphere, accompanied by a front-to-back shift in the separation point
for the turbulent wake that trails the sphere. At a Reynolds number just beyond the drag crisis, the wake
is narrower than before, entailing a smaller loss of momentum, i.e. smaller drag. At still higher Reynolds
numbers the drag coefficient regains part of its former magnitude, while at supersonic speeds the drag crisis
disappears and the terminal drag rises to around unity.

The Reynolds number at which the boundary layer becomes turbulent depends on the surface properties
of the sphere. Roughness tends to facilitate the generation of a turbulent boundary layer and moves the onset
of turbulence to sometimes much lower Reynolds number. This is the deeper reason for manufacturing golf
balls with surface dimples. A golf ball flying at a typical speed of 30 m s−1 has Re ≈ 1.6 × 105 which is
below the drag crisis for a smooth ball, but not for a dimpled one. The lower drag on a dimpled ball permits
it to fly considerably longer for a given initial thrust. The seams of a tennis ball serve the same function,
whereas a ping-pong ball is quite smooth. A ping-pong ball flying at 10 m s−1 has Re ≈ 5 × 104, and even
if turbulence could be triggered seams or dimples would probably interfere with the game.

Terminal speed
The variation in drag with Reynolds number makes the calculation of the terminal speed of a spherical ball
somewhat more complicated than equation (19.14). Equating the force of gravity with the drag we obtain
instead of (19.13) for ρ1 > ρ0,

(ρ1 − ρ0)
4
3πa3g0 = 1

2 CDρ0πa2U2,

and solving for the terminal speed we get,

U =
√

8

3

(
ρ1

ρ0
− 1

)
ag0

CD
. (19.23)
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Since CD depends on the Reynolds number, this is an implicit equation for the terminal velocity except for
very large Reynolds numbers where CD is constant. The terminal velocity grows with the square root of the
density, implying that the terminal kinetic energy of a falling sphere grows with the square of the density.
This is why projectiles and bombs provided with heavy metal jackets (made, for example, from depleted
uranium) are used to penetrate concrete structures and rock.
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The ‘drag crisis’ denotes a pre-
cipitous drop in drag on a sphere
that happens when the laminar
boundary layer turns turbulent,
causing the point of separation
of the trailing wake (top) to shift
rearwards (bottom), thereby nar-
rowing the trailing wake.

Example 19.3.1 (Skydiver terminal speed): A skydiver weighing 70 kg curls up like a ball with
radius a = 50 cm and average density ρ1 ≈ 133 kg m−3. Taking CD ≈ 0.3 and ρ0 ≈ 1 kg m−3,
we obtain U = 76 m s−1 = 273 km h−1. The corresponding Reynolds number is Re = 4.7 × 106,
confirming the approximation used.

19.4 Beyond spherical shape
The general arguments given in section 19.1 showed that in creeping flow the drag on an arbitrary body is
proportional to viscosity, velocity, size and a shape-dependent dimensionless factor. Using the Stokes’ drag
(19.12) as a baseline, we may write the drag on an arbitrary body as

	 = 6πηaSU, (19.24)

where aS is a characteristic length, sometimes called the Stokes radius. The Stokes radius may be
determined from a measurement of the terminal speed of the falling object,

aS = m′g0

6πηU
, (19.25)

where m′ is the mass of the body corrected for buoyancy.
The Stokes radius may be calculated analytically for some simple bodies, for example a circular disk

of radius a. In the two major orientations of the disk, we have [79, p. 178],

aS

a
=


8

3π
≈ 0.85 disk orthogonal to flow

16

9π
≈ 0.57 disk parallel to flow.

(19.26)

In spite of the vast geometric difference between the two cases, the Stokes radii are of the same order of
magnitude. For general bodies of non-exceptional geometry, one may estimate the Stokes radius from the
surface area or the volume of the body.

At high Reynolds numbers, where viscosity plays a diminishing role, the drag coefficient may be
defined as

CD = 	

(1/2)ρ0 AU2
, (19.27)

where A is some area that the body presents to the flow. For blunt bodies the area may be taken to be the
‘shadow’ of the body on a plane orthogonal to the direction of motion. For a given shape, the drag force

	 = CD
1
2ρ0 AU2, (19.28)

exposes the dependence on the fluid (ρ0), the body size (A), and the state of motion (U ). Barring the
presence of a drag crisis, typical values for CD are of the order of unity for bodies of non-exceptional
geometry. A flat circular disk orthogonal to the flow has CD ≈ 1.17, whereas a circular cup with its
opening towards the flow has CD ≈ 1.4 [80, p. 460]. If on the other hand the disk is infinitely thin and
oriented parallel with the flow, there will be no asymptotic form drag, and the drag coefficient will vanish
(as 1/

√
Re) in the limit of infinite Reynolds number.

Streamlining
Drag reduction by streamlining is important in the construction of all kinds of moving vehicles, such as cars
and airplanes. Car manufacturers have over the years reduced the drag coefficient on a car to lower than 0.4,
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and there is still room for improvement. In modern times drag-reducing helmets have also appeared on the
heads of bicycle racers and speed skaters, giving the performers of these sports quite alien looks. Among
animals, drag reduction yields evolutionary advantages, which has led to the beautiful outlines of fast flyers
and swimmers, like falcons and sharks. The density of water is about a thousand times that of air, implying
a thousand times larger form drag (19.28) in water than in air, although this effect is partly offset by the
higher velocities necessary for flight. This has forced swimming animals towards extremes of streamlined
shapes. The mackerel has thus reduced the drag coefficient of its sleek form to the astonishingly low value
of 0.0043 at Re ≈ 105, an order of magnitude lower than for a swimming human [75, p. 143]. Since
muscular power is roughly the same, birds should typically be capable of moving about

√
1000 ≈ 30 times

faster than fish of the same size and shape, which seems quite reasonable.

Problems
19.1 Tiny unicellular animals in the sea die and their carcasses settle slowly towards the bottom. Assume
that an animal’s carcass is spherical with diameter 10 µm and average density 1.2 times that of water.
Calculate the time it takes for the carcass to settle to the bottom of the deep sea (depth 4 kilometres).

19.2 A microscopic spherical grain of vulcanic (or cosmic) dust of radius a enters the homentropic
atmosphere (section 4.6) at a height z. Determine the time t0 it takes for the grain to settle to the ground
under the assumption that the density of the grain is much larger than the density of air, and that Stokes law
is valid at any height with the actual density and viscosity of air at that height. Evaluate the settling time
numerically for reasonable values of the parameters.

19.3 A spherical particle begins to fall from rest in constant gravity. Determine how the particle reaches
terminal speed (19.14) under the assumption that the Reynolds number is always small.

19.4 An object with constant drag coefficient CD falls from rest in constant gravity. Determine how the
particle reaches terminal speed under the assumption that buoyancy can be disregarded.

19.5 Calculate the pressure contribution to the drag from Stokes solution for a sphere.

19.6 Consider Stokes flow around a sphere of radius a. (a) Calculate the volume discharge of fluid
passing a concentric annular disk of radius b > a placed orthogonally to the flow. (b) Calculate the volume
in relation to the volume that would pass through the same disk if the sphere were not present. (c) Justify
qualitatively why the ratio vanishes for b → a.

∗ 19.7 Consider spherical Stokes flow and

(a) show that the stream lines are determined by the solutions to

dr

dt
= vr = A(r)U cos θ

dθ

dt
= vθ

r
= −B(r)U sin θ

with

A(r) = 1 − 3

2

a

r
+ 1

2

a3

r3
=

(
1 − a

r

)2
(

1 + 1

2

a

r

)
B(r) = 1

r

(
1 − 3

4

a

r
− 1

4

a3

r3

)
= 1

r

(
1 − a

r

)(
1 + 1

4

a

r
+ 1

4

a2

r2

)
.

(b) Show that this leads to a solution of the form

sin θ = e− ∫
B/A dr = d

(r − a)
√

1 + a/2r
(19.29)

where d is an integration constant. This is the equation for the streamlines in polar coordinates.
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(c) Show that d is the asymptotic distance of the flow line from the polar axis (also called the impact
parameter).

(d) Find the relation between d and the point of closest approach of the flow line to the sphere.

∗ 19.8 Show that the rate of work of the contact forces exerted by a steadily moving body on the fluid
through which it moves is 	U , where 	 is the total drag.

∗ 19.9 (a) Show that the creeping flow solution around a fixed body in an asymptotically uniform steady
velocity field U must be of the form

v(x) = AAA(x) · U (19.30)

p(x) = ηQ(x) · U (19.31)

where AAA(x) is a tensor field and Q(x) is a vector field, both independent of U .
(b) Determine the field equations and the boundary conditions for AAA and Q.
(c) Calculate the total reaction force on the body.

∗ 19.10 Analytic solution of Stokes flow for a sphere

(a) Use the field equations and symmetry to show that the solution must be of the form (in spherical
coordinates)

v(x) = a(r)U + b(r)xU · x, (19.32a)

p(x) = ηc(r)U · x, (19.32b)

where a(r), b(r) and c(r) are functions only of r .

(b) Use the boundary conditions to show that a(r) and b(r) must vanish at r = a, and that at r → ∞
they satisfy a(r) → 1 and r2b(r) → 0.

(c) Show that the field equations lead to the ordinary differential equations

d2a

dr2
+ 2

r

da

dr
+ 2b = c, (19.33a)

d2b

dr2
+ 6

r

db

dr
= 1

r

dc

dr
, (19.33b)

1

r

da

dr
+ r

db

dr
+ 4b = 0. (19.33c)

(d) Show that these equations are homogeneous in r , and justify that one should look for power solutions

a = Arα, (19.34a)

b = Brβ, (19.34b)

c = Crγ . (19.34c)

(e) Show that

β = γ = α − 2 (19.35)

and

α(α + 1)A + 2B = C, (19.36a)

(α − 2)(α + 3)B = (α − 2)C, (19.36b)

αA + (α + 2)B = 0. (19.36c)
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(f) Show that a non-trivial solution requires

(α − 2)α(α + 1)(α + 3) = 0, (19.37)

such that the allowed powers are α = 2, 0,−1,−3.

(g) Show that the most general solution is

a(r) = Kr2 + L + M

r
+ N

r3
, (19.38a)

b(r) = −1

2
K + M

r3
− 3

N

r5
, (19.38b)

c(r) = 5K + 2
M

r3
, (19.38c)

where K , L , M , and N are the four integration constants.

(h) Show that the boundary conditions at infinity require K = 0 and L = 1, and that the boundary
conditions at r = a require M = −3/4a and N = −1/4a3, leading to the desired solution (19.9).
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The conductor of a carousel knows about fictitious forces. Moving from horse to horse while collecting
tickets, he not only has to fight the centrifugal force trying to kick him off, but also has to deal with the
dizzying sideways Coriolis force. On a fast carousel with a five metre radius and turning once every six
seconds, the centrifugal force is strongest at the rim where it amounts to about 50% of gravity. Walking
across the carousel at a normal speed of one metre per second, the conductor experiences a Coriolis force of
about 20% of gravity. Provided the carousel turns anticlockwise seen from above, as most carousels seem
to do, the Coriolis force always pulls the conductor off his course to the right. The conductor seems to
prefer to move from horse to horse against the rotation, and this is quite understandable, since the Coriolis
force then counteracts the centrifugal force.

The Earth’s rotation creates a centrifugal ‘antigravity’ field, reducing effective gravity at the equator
by 0.3%. This is hardly a worry, unless you have to adjust Olympic records for geographic latitude. The
Coriolis force is even less notable at the Olympics. You have to move as fast as a jet aircraft for it to amount
to 0.3% of a per cent of gravity. Weather systems and sea currents are so huge and move so slowly compared
to the Earth’s local rotation speed that the weak Coriolis force can become a major player in their dynamics.
The Coriolis force guarantees that low pressure weather cyclones on the northern half of the globe always
turn anticlockwise around low pressure regions, whereas high pressure cyclones turn clockwise.

In this chapter we shall investigate the strange behaviour of fluids in rotating containers, mainly due to
the Coriolis force. At the end we shall debunk the persistent ‘urban legend’ about the sense of rotation of
bathtub vortices.

20.1 Fictitious forces
When dealing with a moving object, for example a rotating planet, it is often convenient to give up the
inertial coordinate system and instead attach a fixed coordinate system to the moving object. In a non-
inertial, accelerated coordinate system, the laws of mechanics take a different form. The acceleration on
the left-hand side of Newton’s second law must be corrected by terms deriving from the motion of the
coordinate system, and when these terms are shifted to the right-hand side they can be interpreted as forces.
As these forces apparently have no objective cause, in contrast to forces caused by other bodies, they are
called fictitious. A better name might be inertial forces, since there is nothing fictitious about the jerk you
experience when the bus suddenly stops.

Velocity and acceleration in steady rotation
In this chapter we shall only be concerned with steadily rotating coordinate systems, such as those we use
on Earth. Consider a Cartesian coordinate system rotating with constant angular velocity � relative to an
inertial system. Without loss of generality we may take the z-axis to be the axis of rotation. The coordinates
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(x, y, z) of a point particle in the rotating system are then related to the coordinates (x ′, y′, z′) by a simple
rotation (2.36) through an angle φ = �t ,

x = x ′ cos�t + y′ sin�t, (20.1a)

y = −x ′ sin�t + y′ cos�t, (20.1b)

z = z′. (20.1c)

Differentiating once with respect to time t , we find the particle velocity v = dx/dt in the rotating system

� x ′

�
y′

�
�
�
�
�
��

x

�
�

�
�
�
��

y

�t
..........
...........

............
.....

�P
....
....
....
....
....
....
....
....
....
....

......
......

......
..

Transformation of coordinates of
a point particle P from a rotating
to an inertial coordinate system.

expressed in terms of its velocity v′ = dx′/dt in the inertial system, plus extra terms arising from
differentiation of the sines and cosines. For example

vx = v′x cos�t + v′y sin�t −�x ′ sin�t +�y′ cos�t .

The last two terms become �y, and treating the other velocity components in the same way we get,

vx = v′x cos�t + v′y sin�t +�y, (20.2a)

vy = −v′x sin�t + v′y cos�t −�x, (20.2b)

vz = v′x . (20.2c)

Differentiating once more after time, we obtain the particle acceleration w = dv/dt = d2x/dt2 in the
rotating system expressed in terms of its acceleration w′ = dv′/dt = d2x′/dt2 in the inertial system,

wx = w′
x cos�t + w′

y sin�t +�2x + 2�vy , (20.3a)

wy = −w′
x sin�t + w′

y cos�t +�2 y − 2�vx , (20.3b)

wz = w′
z . (20.3c)

The extra terms on the right-hand side arising from differentiation of the sines and cosines are the origin of
the ‘fictitious’ forces in Newton’s second law.

These results may be expressed in a more compact and transparent form by means of the rotation matrix
(2.42) for a simple rotation with angle φ = �t ,

x = AAA · x′, (20.4a)

v = AAA · v′ − � × x, (20.4b)

w = AAA · w′ − � × (� × x)− 2� × v. (20.4c)

Although the equations have been derived for a special choice of coordinates, they must in this form be
valid for arbitrary Cartesian coordinate systems with the common origin on the rotation axis, but where the
rotation vector � is not necessarily aligned with the z-axis.

Centrifugal and Coriolis forces
The force f ′ acting on a point particle in the inertial system depends in general on the position x′ and

velocity v′ = dx′/dt of the particle. Think, for example, of the force of gravity f ′ = −GmMx ′/
∣∣x′∣∣3

from a point particle of mass M which depends on x′ (but not on v′). In the rotating system the transformedGaspard-Gustave Coriolis
(1792–1843). French mathemati-
cian. Worked on friction and
hydraulics. Introduced the terms
‘work’ and ‘kinetic energy’ in the
form used today. Defined what is
now called the Coriolis force in
1835.

force is naturally defined to be

f = AAA · f ′. (20.5)

Since |x| = ∣∣x′∣∣, this definition makes the transformed gravitational force take the same form in the rotating

and inertial systems, f = −GmMx/ |x|3. If the velocity appears in the force, it must be transformed using
(20.4b).

Multiplying (20.4c) by m, Newton’s second law in the inertial system, mw′ = f ′, becomes in the
rotating system,

mw = f − m� × (� × x)− 2m� × v. (20.6)
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Writing this as an equation of motion for the particle trajectory x(t), it becomes

m
d2x

dt2
= f − m� × (� × x)− 2m� × dx

dt
. (20.7)

The extra terms on the right-hand side are the fictitious forces:

• the centrifugal force −m� × (� × x),

• the Coriolis force −2m� × dx
dt

.

Note that both of these forces are proportional to the mass of the particle and resemble in this respect
ordinary gravity. In a completely general moving coordinate system there will appear three further fictitious
terms on the right-hand side (see problem 20.3 and equation (20.41)).

Fictitious forces on Earth
The effect of the centrifugal force on Earth is primarily to flatten the spherical shape in such a way that
it conforms to an equipotential surface. It was shown in section 7.4 on page 91 that the direction of the
combined gravitational and centrifugal force is always orthogonal to the equipotential surface everywhere
on Earth, and thus by definition vertical. The magnitude of the centrifugal force is only a fraction
q = �2a/g0 ≈ 1/291 of standard gravity, and thus generally negligible. If precision is needed, one must
use the expression (7.31) for the effective surface gravity which properly takes into account the centrifugal
flattening.
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Local flat-Earth coordinate sys-
tem and its relation to the polar
angle.

The Coriolis force is different. Let us introduce a local flat-Earth coordinate system tangential to the
surface at a given point with the x-axis towards the east and the y-axis towards the north. In this reference
frame the Earth’s rotation vector is � = �(0, sin θ, cos θ) where θ is the polar angle. The components of
the Coriolis acceleration gC = −2� × v, expressed in terms of the velocity v = dx/dt then become,

gC
x = 2� cos θ vy − 2� sin θ vz , (20.8a)

gC
y = −2� cos θ vx , (20.8b)

gC
z = 2� sin θ vx . (20.8c)

At the poles θ = 0, 180 ◦ the Coriolis force is always horizontal, and at the equator θ = 90 ◦ it is always
vertical for horizontal motion with vz = 0.

�

�

x

y

EastWest

North

South

Flat-Earth local coordinate sys-
tem at a point on the surface.

The vertical Coriolis force gC
z is very small compared to gravity. Even for a modern jet aircraft flying

on an east-west course at middle latitudes at a speed close to the velocity of sound, it amounts to only
about 0.3% of gravity, which accidentally is of the same order of magnitude as the correction due to the
centrifugal force. So we may ordinarily ignore the vertical Coriolis force along with the centrifugal force
in most Earthly matters. We shall also ignore the Coriolis force due to the vertical component of velocity
vz . A jet plane experiences again only a Coriolis acceleration in a westerly direction of magnitude 0.3% of
gravity during upwards vertical flight at the speed of sound.

Jean-Bernard Léon Foucault
(1819–1868). French physicist.
Set up an enormous pendulum
on the Paris Panthéon in 1851.
Invented the gyroscope, the re-
flecting telescope, and measured
the velocity of light in absolute
units (km s−1).

The conclusion is that under normal circumstances only the first terms in gC
x and in gC

y need to be
considered, leading to a purely two-dimensional Coriolis acceleration which we write in the form,

gC
x = 2�⊥vy , gC

y = −2�⊥vx , gC
z = 0 (20.9)

where �⊥ is the local angular velocity

�⊥ = � cos θ. (20.10)

For all practical purposes, the Coriolis force in a local flat-Earth coordinate system looks as if the Earth
were indeed flat and rotated around the local vertical with the local angular velocity�⊥. A good number to
know is that at middle latitudes θ ≈ 45 ◦ we have 2�⊥ ≈ 10−4 s−1. At this latitude the period of rotation
of a Foucault pendulum is 2π/�⊥ ≈ 34 h, irrefutably proving that the Earth rotates under your feet.
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20.2 Flow in a rotating system
In a steadily rotating coordinate system, the Navier–S tokes equation must also include the fi ctitious forces.
For a n i ncompr essi bl e fl ui d w e fi nd i n a c oor di nat e syst em w i t h t he or i gi n on t he r ot a t i on a xi s,

∂v

∂ t
+ (v · ∇)v = g − � × (� × x)− 2� × v − ∇ p

ρ0
+ ν∇  2v. ( 20. 11)

For compressible fl ow (17. 27) the fi ctitious terms must similarly be added to the right-hand side.
As di scussed i n t he pr ecedi ng s ect i on, t he cent r i f ugal f or ce can gener al l y be i gnor ed at t he s ur face of

t he E ar t h, t hough not i n l a bor at or y exper i ment s w i t h r ot a t i ng c ont ai ner s , s uch a s N ew t on’s bucke t ( page
87) . For mal l y, t he gr avi t a t i onal a nd cent r i f ugal fi el ds may i n a n i ncompr essi bl e fl ui d be i ncl uded i n t he
eff ect i ve pressure,

p∗ = p + ρ0�− 1
2ρ 0(� × x)  2, ( 20. 12)

such that the Navier–Stokes equation simplifies to,

∂v

∂ t
+ (v · ∇)v = −2� × v − ∇ 

p∗
ρ0

+ ν∇  2v. ( 20. 13)

A t E a r t h’s s ur face t he C or i ol i s t e r m can t o a good appr oxi mat i on be cal cul a t e d usi ng onl y t he ve r t i cal l ocal
angul ar ve l oci t y vect or �⊥ .

The R o s s by number
C a r l - G ust av A r i l d R ossby ( 1898–
1957) . Swedi s h born m et eorol o-
gi st who mostly worked in the US.
C ont ri but e d t o t he unders t andi ng
of l arge- scal e m ot i on and ge neral
ci rc ul at i on of t he at m osphere.

L et us agai n charact eri ze t he fl ow by a l engt h s cal e L and a vel oci t y scal e U . For nearl y i deal st eady fl ow
w i t h l a rge R eynol ds number, R e = U L/ν � 1, t he advect ive t erm domi nat es t he vi s cous t erm (except
near boundaries). T he i nteresting quantity is therefore t he ratio between the advective acceleration and the
Cori ol i s accel erat i on, cal l ed t he R ossby num ber

Ro = |(v · ∇)v|
|2� × v| ≈ U 2/ L

2�U
= U

2� L
. ( 20. 14)

For nearl y i deal fl ow t he Cori ol i s force i s s i gni fi cant onl y i f R o � 1, i n ot her wor ds f or U � 2� L . T hus,
the general rule is that the Coriolis force only matters when the fl ow velocity U i s of t he s ame m agni t ude
or smal l e r t han t he t ypi cal va r i at i on � L in the local rotation velocity across the system.

Ocean current s and weat her cycl ones are rel at ivel y st eady phenomena. T he charact eri s t i c speeds are
metres per second for the ocean currents and tens of metres per second for winds over distances of the
order of a thousand kilometres. With a local angular velocity 2� ≈ 10−4 s−1 one gets a Rossby number
Ro ≈ 0.01 for ocean currents and Ro ≈ 0.1 for weather cyclones. Both of these phenomena are thus
dominated by the Coriolis force, but the ocean currents by far the most.

When you (of size L = 1 m) swim with a speed of U ≈ 1 m s−1, the Rossby number becomes
Ro ≈ 104, and the Coriolis force can be completely neglected. The water draining out of your bathtub
moves with similar speeds over similar distances, making the Rossby number just as large and the Coriolis
f or ce j ust as i nsi gni fi cant as f or sw i mmi ng ( s ee al so sect i on 20. 5) . I n s pace st at i ons desi gned f or l ong- t er m
habitation, gravity must for health reasons be simulated by rotation, and the large Coriolis force will play
havoc in ballistic games like Ping-Pong, football, and basket ball (see problem 20.1).

The Ekman number
Vagn Walfrid Ekman (1874–
1954). Swedish physical
oceanographer. Contributed
to the understanding of the
dynamics of ocean currents.

The ratio between viscous and Coriolis forces is called the Ekman number,

Ek = |ν∇2v|
|2� × v| ≈ νU/L2

2�U
= ν

2�L2
= Ro

Re
. (20.15)

When the Ekman number is small, the viscous force can be neglected relative to the Coriolis force. For large
Reynolds number and moderate Rossby number, the Ekman number is automatically small. In a natural
system on Earth, such as the sea and the atmosphere, the huge Reynolds number makes the Ekman number
extremely small. The Ekman number is normally only of order unity close to boundaries where viscosity
always comes to dominate over advection. Here the interplay between viscous and Coriolis forces gives
rise to a highly interesting boundary layer, called the Ekman layer which we shall analyse in section 20.4.
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20.3 Geostrophic flow
In natural large-scale systems, the Rossby number and Ekman numbers are so small, Ro,Ek � 1, that
one can in the first approximation ignore both the viscous and the advective terms in the Navier–Stokes
equations. Such a flow completely dominated by the Coriolis force is said to be geostrophic.

Dropping both advective and viscous terms in (20.11), we arrive at the remarkably simple Navier–
Stokes equation for steady geostrophic flow,

−2� × v − 1

ρ0
∇ p∗ = 0. (20.16)

Much like in hydrostatics, it states that the effective pressure gradient must always balance the Coriolis force
but because of the special form of the Coriolis force, this equation has strong and peculiar consequences.
The most spectacular is that geostrophic flow is essentially two-dimensional.

Water level in an open canal
The Coriolis force may tilt an otherwise horizontal surface of a moving fluid. Let, for example, a constant
water current flow with velocity U through a canal of width d . If the canal runs along the x-direction
and the angular rotation is � around the z-direction, the effective pressure will according to (20.16) satisfy
∇x p∗ = ∇z p∗ = 0 and thus be independent of both x and z. From the y-component of (20.16) we get,

1

ρ0

∂p∗
∂y

= −2�U. (20.17)

The solution is, apart from an unimportant constant, p∗ = −2ρ0�U y. For positive � and U , the Coriolis
force wants to turn the water towards the right, creating thereby an increasing effective pressure in the
negative y-direction. Intuitively this seems to indicate that the Coriolis force will also raise the water level
for negative y and lower it for positive.

� y
�

z

��x

�
�
�9

∇ p

.......................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................................................................................................................
.........................................

................................
...........................
........................
.....................
....................
..................
.................
................
....

..........................................................................................

The water level is tilted by the
Coriolis force, such that the
surface stays orthogonal to the
gradient of the true pressure.
Here the Earth’s rotation is
positive around z and water flows
out of the picture in the positive
x-direction.

In order to check our intuition we use (20.12) with a gravitational potential � = g0z and no centrifugal
force. Apart from an unimportant constant the true pressure is p = p∗ −ρ0g0z = −ρ0(2�U y + g0z). The
water level z = h(y) at the open surface is determined from the requirement that the true pressure p should
be constant at the free surface, so with the boundary condition h(0) = 0 we get,

h(y) = −2�U

g0
y. (20.18)

This confirms our intuition; on the northern half of the globe the Coriolis force always makes the water
level highest on the right-hand bank of a stream.

Example 20.3.1: For a 10 km wide strait and a current flowing at 1 m s−1, the difference in water
level at the two sides of the strait due to the Coriolis force is about 10 cm at middle latitudes. Although
Ro = U/2�d ≈ 1, the use of the geostrophic equation (20.16) is nevertheless justified, because the
advective term vanishes for an x-independent flow in the x-direction (like in Poiseuille flow), and the
Reynolds number, Re ≈ 1010 is so large that viscous forces can be ignored.

Isobaric flow and weather maps
An immediate consequence of the geostrophic equation (20.16) is that

v · ∇ p∗ = 0, (20.19)

which means that the effective pressure is constant along streamlines. In horizontal motion the gravitational
force plays no role and the effective pressure is the same as the hydrostatic pressure. This means that
streamlines and isobars coincide in geostrophic flow. This is also well known from weather maps where
wind directions can be read off from the isobars.

To read off the correct sign for the wind direction one must also use the fact that the Coriolis force
makes winds on the northern hemisphere turn anti-clockwise around low pressure regions (cyclones) and
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clockwise around regions with high pressure (anti-cyclones). Quantitatively we may invert the geostrophic
equation (20.16) to calculate the wind velocities from the pressure gradients. Using � · v = 0 we find
� × (� × v) = −�2v, and then

v = � × ∇ p∗
2�2ρ0

. (20.20)

Were it not for the Coriolis force, air masses would stream along the negative pressure gradient, from high
pressure towards low pressure regions. On the northern hemisphere, the Coriolis force generates cyclones
by making the air that begins to stream towards the low pressure veer to the right until it is aligned with the
isobars. Funnily enough, the same mechanism creates anticyclones.

Two-dimensionality of geostrophic flow
The geostrophic equation (20.16) is an extremely serious constraint on the flow. Forming the scalar product
with � we get

(� · ∇)p∗ = �
∂p∗
∂z

= 0. (20.21)

The effective pressure is evidently constant along the axis of rotation. In a constant gravitational field g0
anti-parallel with the axis of rotation, we may use (20.12) to obtain the hydrostatic pressure (ignoring again
the centrifugal contribution)

p = p∗(x, y)− ρ0g0z, (20.22)

just as we did in the case of the open canal.Geoffrey Ingram Taylor (1886–
1975). British physicist, mathe-
matician and engineer. Had great
impact on all aspects of 20th cen-
tury fluid mechanics from aircraft
to explosions. Devised a method
to determine the bulk viscosity of
compressible fluids. Studied the
movements of unicellular marine
creatures.

Joseph Proudman (1888–1975).
British mathematician and
oceanographer. First proved the
Taylor–Proudman theorem in
1915.

The invariance of the effective pressure under translations along the axis of rotation actually extends to
the whole flow. To verify this, we use that the curl of a gradient vanishes, and find from the geostrophic
equation (20.16) and the divergence condition ∇ · v = 0,

0 = ∇ × (� × v) = � ∇ · v − (� · ∇)v = −(� · ∇)v = −�∂v
∂z
.

The flow field v is also a function of x and y only, implying that the flow is essentially two-dimensional.
This result is the Taylor–Proudman theorem. To the extent that weather cyclones satisfy the conditions for
steady geostrophic flow, one may conclude that the same large-scale wind patterns are found all way up
through the atmosphere [55].

Taylor columns
The Taylor–Proudman theorem is a strange result, which predicts that if one disturbs the flow of a rotating
fluid at, say, z = 0, then the pattern of the disturbance will, after all time-dependence has died away, have
been copied to all other values of z. This is even true when the disturbance is caused by a three-dimensional
object with finite extent in the z-direction. A so-called Taylor column (of disturbed flow) is created in the
rotating fluid. Taylor columns are sometimes also called Proudman pillars.

In spite of the strangeness, many experiments beginning with Taylor’s own in 1923 have amply verified
the existence of Taylor columns. Even a body moving steadily along the axis of rotation, such as a falling
sphere, will push a long column of fluid in front of itself, and trail another behind it. The mechanics
underlying the formation of Taylor columns derives from a complicated interplay between the advective
and viscous terms left out in the geostrophic equation (20.16), and it is not easy to give an explanation in
simple physical terms [7].

20.4 The Ekman layer
Boundary layers arise around a body in nearly ideal flow, because viscous forces must necessarily come
into play to secure the no-slip boundary condition. Steady boundary layers are normally asymmetric with
respect to the direction of the ‘slip-flow’ outside the layer, being thinnest at the leading edge of a body
and thickening towards the rear. This happens even at an otherwise featureless body surface and may be
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under s t ood as a c umul at ive e ff ect of t he s l ow i ng dow n of t he fl ui d by t he cont act w i t h t he boundar y. T he
f ur t her dow nst r eam f r om t he l eadi ng e dge of a body, t he l onger t i m e w i l l t he fl ui d have been under t he
i nfl uence of shear f or ces f r om t he boundar y, a nd t he t hi cker t he boundar y l a yer w i l l be. I n c hapt er 28 w e
shal l anal yse boundar y l ayer s i n gener al , but i n t hi s s ect i on w e s hal l sol ve t he much si mpl er case of t he
E kman boundar y l ayer i n a r ot at i ng s yst em.

Ekman fl ow pattern in a vertical
box. N ot e how t he fl ui d cl ose t o
t he gr ound fl ow s t o t he l ef t of t he
geost r ophi c fl ow hi gher up. T he
angl e bet ween t he di r ect i on of
fl ow c l ose t o t he gr ound and t he
geost r ophi c fl ow i s i n fact 45 ◦ .

A fl ui d i n geost r ophi c fl ow must al so f or m boundar y l a yer s ar ound t he bodi es i mmer s ed i n i t . For s mal l
bodi es t he e ff ect of t he r ot at i on i s negl i gi bl e , but f or l arger bodi es w i t h fl ow vel oci t y of t he s ame s cal e
as t he l ocal rot at i on s peed, i . e. f or Ro = U/2 L� � 1, the Coriolis force comes to play a major role in
t he f or mat i on of boundar y l a yer s . A s t he fl ow vel oci t y r i ses f r om zer o a t t he boundar y t o i t s asympt ot i c
va l ue i n t he geost r ophi c s l i p- fl ow out si de t he boundar y, t he C or i ol i s f or c e becomes pr ogr essive l y st r onger,
maki ng t he fl ow veer mor e and m or e t o t he r i ght ( f or a nt i - cl ockw i s e r ot at i on) . T hi s geost r ophi c c r oss- w i nd
eff ect ivel y ‘ bl ow s awa y’ accumul a t e d fl ui d a nd pr event s t he dow nst r eam gr ow t h of t he boundar y l a yer.
S uch a boundar y l a yer, confi ned t o a fi ni t e t hi c kness by t he C or i ol i s f or ce, i s cal l e d a n E kman l ayer.

Ekman l ayer solution
O ut s i de t he E kman l ayer w e assume t hat t her e i s a st eady geost r ophi c fl ow i n t he x -direction with velocity
vx = U , accompani ed by an eff ect ive pressure p∗ = −2ρ  0�U y  in the y -di r ect i on, as for canal fl ow ( page
283) . I n l ooki ng f or a sol ut i on w hi ch i nt e r pol at es bet w een t he s t a t i c boundar y and t he geost r ophi c fl ow, w e
agai n expl oi t t he symmet r y of t he pr obl em. A s l ong as t he cent r i f ugal accel er at i on can be i gnor ed ( w hi ch
it can), the equations of motion as w ell as t he boundary conditions are i ndependent of the exact position i n
x and y , i . e. i nvar i ant under ar bi t r ar y t r ansl at i ons i n t hese coor di nat es. I t i s t hen nat ur al t o guess t hat t her e
may be a maximally symmetric solution v = v( z) w hi c h i s a l s o i ndependent of x and y and onl y depends
on t he hei ght z .

With this assumption, mass conservation ∇zv z = 0 i mpl i e s t hat t he ve r t i cal ve l oci t y component i s a
const a nt . S i nce i t has t o vani s h on t he non- per m eabl e boundar y z = 0 i t vani s hes everywhere, vz = 0. T he
flow in the transition layer is horizontal and independent of x and y , but va r i es w i t h hei ght z . S ince the
advective term vanishes, (v · ∇)v = (vx∇x + vy∇y)v(z) = 0, the Navier–Stokes equation including the
Coriolis force becomes,

0 = 2�vy − ∇x p∗/ρ0 + ν∇2
z vx , (20.23a)

0 = −2�vx − ∇y p∗/ρ0 + ν∇2
z vy , (20.23b)

0 = −∇z p∗/ρ0. (20.23c)

From the last equation it follows that the effective pressure is independent of height z and consequently for
all z equal to its value p∗ = −2ρ0�U y in the geostrophic flow outside the boundary layer. Inserting this
result, the equations of motion now simplify to

ν∇2
z vx = −2�vy ν∇2

z vy = −2�(U − vx ). (20.24)

This is a pair of coupled homogenous differential equations for U − vx and vy . From the first we get
vy = −(ν/2�)∇2

z vx and inserting this into the second, we get a single fourth-order equation

∇4
z (U − vx ) = −4�2

ν2
(U − vx ). (20.25)

The general solution to such a linear fourth-order differential equation is a linear combination of four terms
of the form ekz where k4 = −4�2/ν2. Defining

δ =
√
ν

�
, (20.26)

the roots of k4 = −4/δ4 are k = ±(1 ± i)/δ. The roots with positive real part are of no use, because
the solution ekz then grows exponentially for z → ∞. The most general acceptable solution is then of the
form,

U − vx = Ae−(1+i)z/δ + Be−(1−i)z/δ, (20.27)

vy = i
(

Ae−(1+i)z/δ − Be−(1−i)z/δ
)
, (20.28)
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Figure 20.1. Plot of Ekman layer velocity components. (a) The velocity components as a function of height
z. (b) Parametric plot of the velocities as a function of z leads to the characteristic Ekman spiral.

where A and B are integration constants and where the last expression is obtained from the first equation in
(20.24).

Applying the no-slip boundary condition, vx = vy = 0 for z = 0, we find A = B = U/2, and the final
solution becomes,

vx = U
(

1 − e−z/δ cos z/δ
)
,

vy = Ue−z/δ sin z/δ.
(20.29)

Evidently δ is a measure of the thickness of the Ekman layer. Note that δ is independent of U , so the Ekman
layer has the same thickness everywhere even if the velocity of the geostrophic flow should vary from place
to place.

In figure 20.1a the velocity components are plotted as a function of scaled height z/δ in units of the
asymptotic flow U . One notes that vx first overshoots its asymptotic value, and then quickly returns to
it. The y-component also oscillates but is 90◦ out of phase with the x-component. The direction of the
velocity close to z = 0 is 45◦ to the left of the asymptotic geostrophic flow. Plotted parametrically as a
function of height, the velocity components create a characteristic spiral, called the Ekman spiral, shown in
figure 20.1b. The damping is however so strong that only the very first turn in this spiral is visible.

The presence of an Ekman layer of the right thickness has been amply confirmed by laboratory
experiments. For the atmosphere at middle latitudes the thickness (20.26) becomes δ = 55 cm when
the diffusive viscosity ν = 1.54 × 10−5 m2 s−1 is used. This disagrees with the measured thickness of the
Ekman layer in the atmosphere which is more like a kilometre. The reason is that atmospheric flow tends
to be turbulent rather than laminar with an effective viscosity that can be up to a million times larger than
the diffusive viscosity [55]. We shall not go further into this question here.

∗ Ekman upwelling and suction
If the geostrophic flow does not run along the x-direction, but has components Ux and Uy , the Ekman flow
(20.29) becomes instead,

vx = Ux

(
1 − e−z/δ cos z/δ

)
− Uye−z/δ sin z/δ, (20.30a)

vy = Uy

(
1 − e−z/δ cos z/δ

)
+ Ux e−z/δ sin z/δ. (20.30b)

If furthermore the velocity components Ux (x, y) and Uy(x, y) change slowly with x and y on a large scale
L � δ, this expression should still be valid, because the thickness (20.26) is independent of the velocity of
the asymptotic geostrophic flow.

The presence of an Ekman layer underneath a slowly varying geostrophic flow generates in fact a non-
vanishing asymptotic flow Uz(x, y) in the z-direction. To find it we calculate the derivative of the vertical
flow component vz inside the Ekman layer using mass conservation ∇ · v = ∇xvx + ∇yvy + ∇zvz = 0,
and we find from (20.30)

∇zvz = −∇xvx − ∇yvy = (∇x Uy − ∇yUx
)
e−z/δ sin z/δ.
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Here we have used that geostrophic fl ow also has t o satisfy the divergence condition, ∇x U x + ∇y U y = 0.
We r ecogni ze t he fact or i n par e nt hesi s on t he r i ght - hand s i de a s t he geost r ophi c vor t i c i t y i n t he z -direction.
Integrating the above equation over z and usi ng t hat vz = 0 for  z = 0, w e obt ai n

vz =  1
2 δ

(∇ x U y − ∇y U x
)[ 1 − e− z/δ( cos z/δ + sin z/δ)], ( 20. 31)

an equation which is most easily verified by differentiation after z . E vidently, the vertical velocity is of size
Uδ/  L , w hi ch i s alwa ys smal l e r t han t he geost r ophi c fl ow U by a fact or δ/  L � 1.

For z � δ t he exponent i a l fal l s away, a nd t her e r emai ns a ver t i cal component i n t he a sympt ot i c
geost r ophi c fl ow

Uz = 1
2δ(∇ x U y − ∇y U x ). ( 20. 32)

S i nce i t i s i ndependent of z , i t i s not at va r i ance w i t h t he geost r ophi c nat ur e of t he ext e r i or fl ow or t he
Ta yl or–P r oudman ‘ ver t i cal copy’ t heor em.

I f t he geost r ophi c vor t i c i t y ωz = ∇x U y − ∇y U x i s posi t ive , i . e . of t he same si gn as t he gl obal r ot at i on,
fl ui d w e l l s up f r om t he E kman l ayer ( w i t hout changi ng i t s t hi c kness) . T hi s i s, f or exampl e , t he case f or
a l ow - pr essur e cycl one, w her e t he cr oss- i s obar i c fl ow i nsi de t he E kman l ayer t owar ds t he cent r e of t he
cyclone is accompanied by upwelling of fl uid. Conversely if the geostrophic vorticity is negative, as i n
hi gh- pr essur e ant i cycl ones, fl ui d i s sucked dow n i nt o t he E kman l a yer f r om t he geost r ophi c fl ow. B ot h of
t hese e ff ect s t end t o e qual i z e t he pr essur e bet w een t he cent r e a nd t he s ur r oundi ngs of t hese vast vor t i ces.

2 0 . 5 St e a dy ba t ht ub vo rt ex in ro t a t ing co nt a iner
In the laboratory, gravity-sustained vortices may be created by letting a liquid, typically water, run freely out
through a small drain-hole in the centre of a slowly rotating cylindrical container. The liquid lost through the
drain is constantly pumped back into the container. In the steady state the pump provides the kinetic energy
of the liquid falling out through the drain, and its angular momentum is provided by the motor rotating
the container. The container is drained through a very small hole and we shall for simplicity disregard the
influence of the outer container wall.

I n t he f ol l ow i ng w e shal l r epeat edl y r e f e r t o t he exper i ment 1 show n i n fi gure 20. 2 w i t h t he paramet ers
given in the figure caption. In this experiment, a steady flow pattern with a beautiful central vortex
is established after about half an hour. The vortex is remarkably stable and its flow can be studied
experimentally by modern imaging techniques. The needle-like central depression is accompanied by a
very rapid central rotation of more than 150 turns per second, or nearly 10 000 rpm, which is as fast as a
formula one car engine rotates at full throttle!

Experimentally, the bulk of the vortex outside the surface depression is found to take the shape of a line
vortex with azimuthal velocity, vφ = C/r in the rotating coordinate system of the container. The azimuthal
Reynolds number of the line vortex is independent of r ,

Reφ = rvφ
ν

= C

ν
, (20.33)

and in the experiment it has the value Reφ ≈ 1600, which is well below the onset of turbulence.

Rossby radius
The local Rossby number of the line vortex at a distance r from its axis is,

Ro = vφ

2� r
= C

2� r2
. (20.34)

It decreases rapidly with growing r and drops below unity for r � R where

R =
√

C

2�
. (20.35)

1A. Andersen, T. Bohr, B. Stenum, J. J. Rasmussen and B. Lautrup: Anatomy of a bathtub vortex, Phys. Rev. Lett.
91, (2003) 103402-1.
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(b) (c)(a)

F i gu re 20. 2. Wa t e r vor t ex i n a r ot a t i ng c ont ai ner a t 6, 12 a nd 18 r pm. T he upper par t i s t he r e fl ect i on of t he
vort ex i n t he wat er surface. T he r adi us of t he drai n-hol e i s 1 mm, t he asympt ot i c wat er l evel i s L = 11 cm
and t he cont ai ner r adi us 20 c m. A t 18 r pm t he cent r al di p i s 6 cm, a nd t he vol ume di s charge t hr ough t he
dr ai n i s 3. 16 cm 3 s−1 , c or r e spondi ng t o an aver age dr a i n ve l oci t y of 101 cm s−1 . T he ci r c ul at i on c onst a nt
i s measured t o be C = 16. 0 cm2 s−1 and t he i nner c or e rot at es about 150 t ur ns per second! A. Anderson et
al, Phys. Rev. Lett. 91 (2003) 103402-1.

We shal l cal l t hi s t he R ossby radi us , a nd i n t he exper i ment of fi gur e 20. 2 w e fi nd R = 2. 1 cm . Well inside
the Rossby radius for r � R , t he Cori ol i s force i s s mal l compared t o t he advect ive f orce, and t he vort ex
w i l l r e sembl e t he bat ht ub- l i ke vor t i ces to be di scussed i n c hapt er 26, except that there is marked upflow
from the Ekman layer at the bottom outside the drain. At the other extreme, well beyond the Rossby radius
for r � R, the flow will be purely geostrophic.

Cylindrical geostrophic flow
The Taylor–Proudman ‘copycat’ theorem guarantees that in the geostrophic regime the flow cannot depend
on the vertical height z well away from the boundaries. Assuming further that the flow is rotationally
invariant, it follows that the velocity components in cylindrical coordinates, vr,φ,z , are only functions of r .
The geostrophic equation (20.16) now decomposes into the three equations,

∇r p∗ = 2ρ0�vφ, ∇φ p∗ = −2ρ0�vr , ∇z p∗ = 0. (20.36)

By the usual argument, the uniqueness of the pressure forbids any φ-dependence, so the second equation
leads to vr = 0. The effective pressure can then be obtained by integrating the two other equations. Note
that whereas the radial flow always has to vanish, we find apparently no restrictions on the azimuthal flow
vφ or the upflow vz . In particular, it does not follow from this argument that the azimuthal flow must take
the form of a line vortex, vφ = C/r .

The main conclusion is that geostrophic flow can never carry any inflow towards the drain. This is, in
fact, equivalent to the previously derived result that flow lines and isobars coincide in geostrophic flow. The
only way inflow can occur is through deviations from clean geostrophic flow, and that happens primarily in
the Ekman layer close to the bottom of the container, and inside the Rossby radius.

The Ekman layer valve
The asymptotic upflow from the Ekman layer (20.32) is controlled by the vorticity of the geostrophic flow.
Since the Taylor–Proudman theorem guarantees that the upflow is independent of z, and since there can
be no geostrophic inflow, this upflow will reach unabated the nearly horizontal open surface at top of the
container. But there it has nowhere to go, so the only possibility that remains is for the upflow and thus the
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vor t i c i t y of t he geost r ophi c fl ow t o va ni sh, a nd t hi s i s onl y possi bl e f or vφ = C/ r ( s ee pr obl em 18. 22) . To
compl et e t he argument , one al so has t o ver i f y t hat t he E kman l ayer w hi ch w i l l al so f or m at t he upper open
surface is incapable of diverting any large upfl ow towards the drain. Therefore it is essentially the fi nite
vertical extent of the rotating fl uid that forces the fl ow to be that of a line vortex!

T he c onst a nt t hi c kness of t he E kman l a yer δ = √
ν/� is merely 0.7 mm in the experiment

( fi gur e 20. 2( c )). The E kman fields may be directly taken over from (20. 29) with the asymptotic azimuthal
velocity U = C/r ,

vφ = C

r

(
1 − e−z/δ cos z/δ

)
, vr = −C

r
e−z/δ sin z/δ. (20.37)

The total radial inflow rate can now be calculated from vr ,

Q =
∫ ∞

0
(−vr )2πr dz = πCδ. (20.38)

This is a fundamental result which connects the primary circulating flow with the secondary inflow towards
the drain. The Ekman layer in effect acts as a valve that only allows a certain amount of fluid to flow
towards the drain per unit of time. In the experiment of figure 20.2 the circulation constant was measured to
be C ≈ 16.0 cm2 s−1, leading to a total predicted inflow of Q ≈ 3.66 cm3 s−1. Since the whole inflow has
to go down the drain, this is in fair agreement with the measured drain flow of Q = 3.16 cm3 s−1, especially
in view of the difficulties in measuring the circulation constant. If at all significant, the discrepancy could
be caused by the finite radial size of the container which has been ignored here.

Inner vortex
� r

�
z
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Typical flowline for fluid stream-
ing in through the Ekman layer
outside the Rossby radius R,
welling up inside R and finally
falling through the drain.

Inside the Rossby radius the nonlinear advective forces take over, but there will still exist a thin—in fact
thinner—Ekman-like layer close to the bottom2. But even if the circulating primary flow is that of a line
vortex, the nonlinearities will now cause an upwelling of fluid from the bottom layer. The bulk flow is no
more geostrophic, so there is no injunction against the upflow turning into an inflow directed towards the
centre of the vortex. Thus, the general picture is that the secondary flow creeps inwards along the bottom
through the Ekman layer outside the Rossby radius, flares up vertically from the bottom inside, and then
turns towards the centre. Finally it dives sharply down into the drain.

20.6 Debunking an urban legend
Let us now turn to the ‘urban legend’ concerning the direction of rotation of real bathtub vortices and their
dependence on the Earth’s rotation. The legend originates in the correct physical theory of the Coriolis
force, amply confirmed by the everyday observation of weather cyclones. So the urban legend can only be
debunked by quantitative arguments, usually not given much attention in urban circles.

Suppose to begin with that our bathtub is essentially infinitely large and that the water level is
L = 50 cm. Bernoulli’s theorem tells us that the drain velocity is at most W = √

2g0L ≈ 300 cm s−1.
Taking the drain radius to be a = 2.5 cm, the maximal drain discharge rate becomes Q ≈ 6 litres per second.
This seems not unreasonable for bathtubs that typically contain hundreds of litres of water. Assuming
furthermore that the bulk of the flow is perfectly laminar, we find the Ekman thickness δ ≈ 14 cm due to
Earth’s rotation at middle latitudes. From (20.38) we get the vortex circulation constant, C ≈ 140 cm2 s−1,
corresponding to a Rossby radius of R = 12 m. Most bathtubs are not that big and this shows that the
Earth’s rotation can only have a little influence on a real bathtub vortex, in spite of the many claims to the
contrary. A swimming pool of Olympic dimensions is on the other hand of the right scale. What matters for
the man-sized bathtub is much more the bather’s accidental deposition of angular momentum in the water
while getting out.

There is, however, the objection that the effect of the Earth’s rotation could show up, if the water were
left to settle down for some time before the plug is pulled. For that to happen, the Rossby number (20.14)
would have to become comparable to unity. Taking the diameter of a real tub to be A ≈ 1 m, this implies
that the water velocity near the rim of the tub should not be larger than 2�A ≈ 0.1 mm s−1. This seems
terribly small, not much larger than the thickness of a human hair per second!

2This layer is analysed in A. Andersen, B. Lautrup and T. Bohr: Averaging method for nonlinear laminar Ekman
layers, J. Fluid. Mech. 487, (2003) 81.
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The following argument indicates what patience is needed to carry out a successful experiment. After
the initial turbulence from filling the tub has died out, the water settles into a laminar flow which is further
slowed down under the action of viscous forces (although the Reynolds number for a flow with velocity
0.1 mm s−1 is still about 100). Viscosity not only smoothes out local velocity differences but also secures
that the fluid eventually comes to rest with respect to the container. The typical viscous diffusion time over
a distance L is t ≈ L2/4ν, as we have seen for momentum diffusion on page 233. In a bathtub with a water
level of L = 50 cm, the time it takes for the bottom of the container to influence the water at the top is about
t ≈ 17 h at middle latitudes! To make the experiment work, you must not only let the water settle for a few
times 17 hours, but also secure that no heat is added to the water which may generate convection, and that
no air drafts are present in and around the container3.

Problems
20.1 A space station is built in the form of a wheel with diameter 100 m. (a) Calculate the revolution
time necessary to obtain standard gravity at the outer rim. (b) How and how much does the Coriolis force
influence the game of Ping Pong? (c) What about basket ball?

20.2 The Danish Great Belt is a strait with a width of 20 km and a typical current velocity of 1 m s−1.
There are two layers of water, a lower and slower saline layer with a lighter and faster brackish layer on top.
Assuming a density difference of about 4% and a velocity difference of about 25%, calculate the difference
in water levels for the separation surface between saline and brackish water.

∗ 20.3 In an inertial Cartesian system the coordinates of a point are denoted x′ whereas in an arbitrarily
moving Cartesian system the coordinates of the same point are denoted x. The relation between the
coordinates may be written

x = −c +
∑

i

ai x ′
i , (20.39)

where −c(t) are the coordinates of the origin of the inertial system and ai (t) its Cartesian basis (all seen
from the moving system). (a) Show that there exists a vector �(t) such that the time derivative of the basis
vectors takes the form (the choice of sign is for later convenience),

ȧi = −� × ai . (20.40)

(b) Calculate the velocity and acceleration in the moving coordinate system.
(c) Show that Newton’s second law in the moving system becomes

m ẍ = f − m c̈ − m� × ċ − m�̇ × x − 2m� × ẋ − m� × (� × x) (20.41)

where ċ and c̈ are the velocity and acceleration of the origin of the moving coordinate system (seen from
the moving system). The three first fictitious force terms vanish for a coordinate system in steady rotation.

3Some experimenters are patient and careful enough to observe the effect. See, for example, the very enjoyable
paper by L. M. Trefethen, R. W. Bilger, P. T. Fink, R. E. Luxton and R. I. Tanner, The bath-tub vortex in the southern
hemisphere, Nature 207, (1965) 1084-5.

Copyright © 2005 IOP Publishing Ltd.



��
�����	����	� ����
���	�
�

C omput at i onal fl ui d dynami cs ( C F D ) i s a w hol e fi el d i n i t s ow n r i ght [ 29, 2, 73 ] . S w i f t m oder n comput er s
have t o a l arge ext ent r epl aced wi nd t unnel s and wave t anks f or t he desi gn of ai r pl anes, shi ps, car s, br i dges
and i n fact any human const r uct i on t hat i s m eant t o oper a t e i n a fl ui d. T he s ame r i c hness of phenomena
which makes analytic solutions to the equations of fluid mechanics difficult to obtain also makes these
equations hard to handle by direct numerical methods. S econdary fl ows, i nstabilities, vortices of all sizes
and t urbul ence compl i cat e mat t ers and may requi re numeri cal preci si on t hat can be hard t o at t ai n. T he
i nfi ni t e speed of sound i n i ncompr essi bl e fl ui ds cr eat es i t s ow n pr obl ems, and on t op of t hat t her e ar e
intrinsic approxi mation errors and i nstabilities.

A s i n comput at i onal e l a st ost a t i c s ( chapt e r 13) t her e a r e a number of s t e ps t hat must be car r i ed out i n
any simul ation. First, it is necessary to cl arify whi ch equations one wishes to solve and even there make
simplifications to the problem or class of problems at hand. Secondly, continuous space must be discretized,
and here there are a variety of methods based on finite differences, finite elements or finite volumes. Thirdly,
a discrete dynamic process must be set up which guides the initial field configuration towards the desired
solution. Most often this process emulates the time evolution of fluid dynamics itself, as described by the
Navier–Stokes equations. Finally, convergence criteria and error estimates are needed to monitor and gain
confidence in the numerical solutions.

The methods presented in this chapter are applicable to a variety of steady and unsteady flow problems.
Here we shall only compute two-dimensional laminar flow in a channel of finite length between parallel
plates and determine how it turns into the well-known parabolic Poiseuille profile downstream from the
entrance, and how far the influence of the entrance reaches.

21.1 Unsteady, incompressible flow
In numeric elastostatics (chapter 13) we were able to set up an artificial dissipative dynamic, called gradient
descent, that guided the displacement field towards a static solution with minimal elastic energy. This
technique cannot be transferred to computational fluid dynamics, because a solution to the steady-state
equations does not correspond to an extremum of any bounded quantity (problem 21.1). Instead we shall
attempt to copy nature by simulating the complete set of time-dependent Navier–Stokes equations (17.27).
Appealing to the behaviour of real fluids, the natural viscous dissipation built into these equations should
hopefully guide the velocity field towards a steady-state solution.

There is, however, no guarantee—either from Nature or from the equations—that the flow will always
settle down and become steady, even when the boundary conditions are time-independent. We are all
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too familiar with the unsteady and sometimes turbulent flow that may spontaneously arise under even the
steadiest of circumstances, as for example a slow river narrowing down or even worse, coming to a water
fall. But this is actually not so bad, because a forced steady-state solution is completely uninteresting when
the real fluid refuses to end up up in that state. We do not, for example, care much for the Poiseuille solution
(18.26) to pipe flow at a Reynolds number beyond the transition to turbulence, or for that matter the laminar
flow around a sphere in an ideal fluid (section 16.7). If steady flow is desired, one must keep the Reynolds
number so low that there is a chance for it to become established.

Field equations
Not to complicate matters we shall only consider incompressible fluids with constant density ρ = ρ0, for
which the divergence vanishes at all times,

∇ · v = 0. (21.1)

The Navier–Stokes equation (17.16) is written as an equation of motion for the velocity field,

∂v

∂t
= F − ∇ p̃, (21.2)

with

F = −(v · ∇)v + ν∇2v + g, (21.3)

where ν = η/ρ0 is the kinematic viscosity, and p̃ = p/ρ0 might be called the ‘kinematic pressure’. For
convenience we have also introduced the special symbol F to denote the local acceleration arising from
inertia, viscosity and gravity, but not pressure. The gravitational field could in principle be included in an
effective pressure p∗ = p + ρ0�, although that would obscure the boundary conditions we might want to
impose on the real pressure. In the following we shall simply assume that the field of gravity is constant.

Poisson equation for pressure
In incompressible flow the pressure is determined indirectly through the vanishing of the divergence of
the velocity field, as discussed on page 237. Calculating the divergence of both sides of (21.2), we find a
Poisson equation for p̃,

∇2 p̃ = ∇ · F. (21.4)

This is the condition which must be fulfilled in order that the velocity field remains free of divergence
at all times. Knowing the velocity field v at a given time we can calculate the right-hand side and solve
this equation with suitable boundary conditions to determine the pressure everywhere in the fluid at that
particular instant of time.

Solutions to the Poisson equation are, however, non-local functions of the source, basically of the
same form as the gravitational potential (3.24). Any local change in the velocity field at a point x′ is
via the Poisson equation above instantaneously communicated to the pressure at any other point x in the
fluid, albeit damped by the 1/

∣∣x − x′∣∣ dependence on distance. The non-local changes in pressure are
then communicated back to the velocity field via the Navier–Stokes equation (21.2). The pressure thus
links the velocity field at any instant of time non-locally to its immediately preceding values, even for
infinitesimally small time intervals. Pressure instantly informs the world at large about the present state of
the incompressible velocity field.

Physically, unpleasant non-local behaviour is caused by the assumption of absolute incompressibility
(21.1), which is just as untenable in the real world of local interactions as absolute rigidity. So, we have
again come up against a physical limit arising from our simplifying assumptions. As pointed out before,
incompressibility should be viewed as a property of the flow rather than of the fluid itself. The unavoidable
compressibility of real matter will in fact limit the rate at which pressure changes can propagate through a
fluid to the speed of sound. Nevertheless, such a conclusion does not detract from the practical usefulness
of the divergence condition (21.1) for ‘normal’ flow speeds well below the speed of sound.
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Boundary conditions
In many fluid dynamics problems, fixed impermeable walls guide the fluid between openings where it
enters and leaves the system. At fixed walls the velocity field must vanish at all times, because of the
impermeability and no-slip conditions which respectively require the normal and tangential components to
vanish. Setting v = 0 on the left-hand side of the equation of motion (21.2) we obtain a boundary condition
for pressure: ∇ p̃ = F on any fixed boundary. The same is the case at a fluid inlet, where the velocity field
is typically fixed to an externally defined constant value, v = U . Outlet velocities are usually not controlled
externally, and as a boundary condition on the velocity field one may choose the vanishing of the normal
derivative, (n · ∇)v = 0. Alternatively, the stress vector may be required to vanish, but that is a bit harder
to implement.
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21.2 Temporal discretization
Suppose the current velocity field is v(x, t) and the current pressure field p̃(x, t). From these fields we
can calculate the current acceleration field F(x, t) and then use the equation of motion (21.2) to move the
velocity field forward in time through a small but finite time step �t ,

v(x, t +�t) = v(x, t)+ (
F(x, t)− ∇ p̃(x, t)

)
�t . (21.5)

Taylor expansion of the left-hand side shows that the error is �
(
�t2

)
, but less error-prone higher-order

schemes are also possible [2, 29]. Provided the velocity field is free of divergence and the pressure satisfies
(21.4), the new velocity field obtained from this equation will also be free of divergence.

Divergence suppression
But approximation errors cannot be avoided in any finite step algorithm. Since for this reason the current
velocity field may not be perfectly free of divergence, it is more appropriate to demand that the new velocity
field is free of divergence, i.e. ∇ · v(x, t +�t) = 0. Calculating the divergence of both sides of (21.5) we
obtain a modified Poisson equation for the pressure

∇2 p̃ = ∇ · F + ∇ · v

�t
. (21.6)

The factor 1/�t amplifies the divergence errors, so that this Poisson equation will primarily be concerned
with correction of divergence errors and only when they have been suppressed will the acceleration field
F gain influence on the pressure. In practice, the stepping algorithm (21.5) can get into trouble if the
divergence becomes too large. It is for this reason important to secure that the initial velocity field is
reasonably free of divergence. In a complicated flow geometry that can in fact be quite hard to attain.

Stability conditions
There are essentially only two possibilities for what can happen to the approximation errors in the course of
many time steps. Either the errors will become systematically larger, in which case the computation goes
straight to the land of meaningless results, or the errors will diminish or at least stay constant and ‘small’,
thereby keeping the computation on track. It takes careful mathematical analysis to determine a precise
value for the upper limit to the size of the time step. The result depends strongly on both the spatial and
temporal discretization (see for example [2, 59]), and may range from zero to infinity depending on the
particular algorithm that is implemented.

Here we shall present an intuitive argument for the stability conditions that apply to the straightforward
numerical simulation (21.5) on a spatial grid with typical coordinate spacings �x , �y and �z. The
conditions to be derived may be understood from the physical processes that compete in displacing fluid
particles in, say, the x-direction. One is momentum diffusion due to viscosity which effectively displaces
the particle by

√
ν�t in a time interval �t (see page 233). Another is advection with velocity vx which

displaces the particle a distance |vx |�t . Finally, there is the gravitational field which typically displaces
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the particle by gx�t2. Intuitively, it seems reasonable to demand that all these displacements be smaller
than the grid spacing,

√
ν�t � �x, |vx |�t � �x, gx�t2 � �x. (21.7)

Taking into account that the maximal velocity provides the most stringent advective condition, the global
condition may be taken to be

�t � min

(
�x2

ν
,
�x

|vx |max
,

√
�x

gx

)
, (21.8)

and similarly for the other coordinate directions. In practice trial-and-error may be used to determine where
in the neighbourhood of the smallest of these limits instability actually sets in.

The diffusive condition is most restrictive for large viscosity, the advective for high velocities, and the
gravitational in strong gravity. The allowed time step is generally largest for the coarsest spatial grid, which
on the other hand is blind to finer details of the flow. Thus, there is a payoff between the detail desired in
the simulation and its rate of progress. High detail entails slow progress, and thus a high cost in computer
time.

21.3 Spatial discretization
In the discussion of numeric elastostatics we described a method based on finite differences with errors of
only second order in the grid spacings (section 13.2 on page 166). Although it is possible to solve simple
flow problems using this method, most such problems will benefit from a somewhat more sophisticated
treatment. The method of staggered grids to be presented here comes at essentially no cost in computer
memory or time, but does complicate matters a bit. A number of applications of this method are given in
[29].

Restriction to two dimensions
For simplicity we shall limit the following discussion to two-dimensional flow in the xy-plane, as
exemplified by the flow in a channel between parallel plates (section 18.2 on page 246). The restriction
to two dimensions still leaves ample room for interesting applications. Generalization to three dimensions
is straightforward.

Two-dimensionality is taken to mean that the fields can only depend on x and y and that vz = 0. The
equations of motion now simplify to

∂vx

∂t
= Fx − ∇x p̃,

∂vy

∂t
= Fy − ∇y p̃, (21.9)

with
�

�

� � � � � � � �

((��>>
>��>>
>��>>

>��((

x

f (x)

The solid zigzag-curve f (x)
between the two straight lines
has constant central difference
(13.5) on the grid! Such
zigzag behaviour is typical of
the ‘leapfrog’ errors that may
arise when using the naive central
differencing scheme of section
13.2.

Fx = −vx∇xvx − vy∇yvx + ν
(
∇2

x + ∇2
y

)
vx + gx , (21.10a)

Fy = −vx∇xvy − vy∇yvy + ν
(
∇2

x + ∇2
y

)
vy + gy , (21.10b)

and the divergence condition becomes

∇xvx + ∇yvy = 0. (21.11)

The stresses may of course be calculated, but are not as important here as in numeric elastostatics, because
boundary conditions are most often specified directly in terms of the velocities.

Midpoint differences
The main objection to the central difference ∇̂x f (x) defined in (13.5) is that it spans twice the fixed interval
�x around the central point x to which it ‘belongs’. As was remarked there, this opens for ‘leap-frog’ or
‘flip-flop’ instabilities in which neighbouring grid points behave quite differently. The problem becomes
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par t i c ul ar l y acut e i n t he i nt er pl ay bet w een t he e quat i ons of mot i on a nd t he i nst a nt aneous P oi sson e quat i on
for pressure.

O ne way out i s t o r ecogni ze t hat t he di ff e r e nce i n fi el d val ues bet w een t wo nei ghbour i ng gr i d- poi nt s
pr oper l y ‘ bel ongs’ t o t he mi dpoi nt of t he l i ne t hat c onnect s t hem. I f w e denot e t he coor di nat e s of t he poi nt s
by x ± ( 1/2)�  x t he cent r al di ff er ence ar ound t he m i dpoi nt x ,

� x� �×
x x +  1

2� xx −  1
2� x

T he fi ni t e di ff erence bet w een t he
gr i d poi nt s x ± ( 1/2)�  x bel ongs
t o t he poi nt x .

∇̂x f ( x) = f ( x + ( 1/2)�  x) − f ( x − ( 1/2)�  x)

� x 
, ( 21. 12)

has e r r or s of onl y s econd or der i n t he gr i d spaci ng. T hi s i s w hat i s r eal l y meant by s ayi ng t hat t he di ff er ence
‘ bel ongs’ t o t he mi dpoi nt .

B ut t he mi dpoi nt s bet w een gr i d poi nt s a r e not t hemsel ves par t of t he gr i d. We coul d of c our se doubl e
t he gr i d a nd use ( 1/2)�  x as gr i d- s paci ng, t her eby i ncl udi ng t he m i dpoi nt s, but t hat woul d j ust br i ng us
back t o t he s i t uat i on w e s t a r t ed out t o cor r ect . I nst ead w e shal l t hi nk of t he m i dpoi nt va l ues of fi e l ds a nd
t hei r derivat ives as bei ng vi rt ual , m eani ng t hat t hey m ay ari s e duri ng a cal cul at i on but are not ret ai ned as
par t of t he i nf or mat i on kept a bout t he fi el ds on t he gr i d.

Staggered g rids
To see how this works out, l et us discretize t he dive rgence condition ( 21. 11) writing i t i n t erms of midpoint
di ff erences i n t he poi nt ( x, y)

∇̂xv x ( x, y)+ ∇̂  yv y( x, y) = 0. ( 21. 13)

Since ( x, y) has t o be t he common m i dpoi nt f or bot h c oor di nat e di r ect i ons, w e s houl d have di r ect access t o
vx in ( x ± ( 1/2)�  x, y) and v  y in ( x, y ± ( 1/2)�  y) , but not necessar i l y i n ( x, y) . R epeat i ng t hi s a rgument
t hr oughout space ( s ee fi gur e 21. 1) , w e c oncl ude t hat t he gr i ds f or t he fi e l ds vx and v y do not ove r l ap
anyw her e , but ar e s yst e mat i cal l y shi f t e d, or s t agge re d , w i t h respect t o each ot her.

In effect we have doubl ed t he gr i d i n bot h s pat i a l di r ect i ons, but t he new gr i d i s vi ew ed as composed
of four i nt erl aced gri ds of t he ori gi nal t ype, each carryi ng s ome of t he fi el ds and t hei r derivat ives.
Systematically, the coordinates of the four grids may be written

x = x0 + i x� x + j x
1

2
� x ( 21. 14a)

y = y0 + i y� y + j y
1

2
� y ( 21. 14b)

where ix , i y are i nt egers and j x , j y ar e bi nar y, t a ki ng onl y t he va l ues 0 or 1. T he gr i d of common m i dpoi nt s

×� �
�

�
( x, y)

(
x, y − 1

2� y
)

(
x, y + 1

2� y
)

(
x − 1

2� x, y
) (

x + 1
2� x, y

)vxvx

vy

vy

The grid for vx (full circles) and
the grid for vy (open ci r cl es) do
n o t ove r l a p bu t h ave c o m m o n
mi dpoi nt s ( cr osses) i n w hi ch
the divergence condition can be
i m posed.

used i n cal cul at i ng t he divergence i s arbi t r ari l y chosen t o be jx = j y = 0, so t hat w e may denot e t he f our
gr i ds by 00, 10, 01, and 11 ( mar ked w i t h di ff er ent s ymbol s i n fi gur e 21. 1) . T hus, vx i s defi ned on t he 10-
gr i d and vy on the 01-grid. We shall see bel ow that the pressure p nat ur a l l y bel ongs t o t he 00- gr i d, w her eas
t her e i s no f undament al fi e l d associ at ed w i t h t he 11- gr i d, onl y der ivat ives of t he fi el ds ( s ee how eve r pr obl em
21.3).

The four staggered grids create a tiling of the plane with rectangular cells numbered by ix and iy , each
cell containing four grid points numbered by jx and jy . Generalization of this scheme to three dimensions
is straightforward, though harder to visualize. In three dimensions there will be eight staggered grids
characterized by three integers and three binary variables.

Double differences
A double derivative, say ∇2

x , is particularly simple when represented by midpoint differences. Combining
t he t wo l eve l s of mi dpoi nt di ff er enci ng w e obt ai n ( see fi gur e 21. 2)

∇̂2
x f (x) = f (x +�x) + f (x −�x) − 2 f (x)

�x2
, (21.15)

and because of the symmetry in �x the errors are of second order only. Geometrically the two levels of
midpoint differences bring the double derivative back to the point it ‘originated in’, so that both ∇̂2

x vx and
∇̂2

yvx belong to the same grid as vx (i.e. the 10-grid).
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Figure 21.1. Staggered grids. Four rectangular grids with uniform coordinate spacings �x and �y are
shifted with respect to each other by half intervals. Three of the grids are naturally associated with the
fundamental fields: the 00-grid (crosses) carries p, the 01-grid (full circles) carries vx and the 10-grid
(open circles) carries vy . The 11-grid (asterisks) carries only derivatives of the fundamental fields. The
whole grid may be viewed as as a tiling of the plane with congruent cells of size �x × �y, numbered by
integers ix and iy , as shown.

Discretized equations of motion
The local acceleration fields Fx and Fy should be discretized on the same grids as vx and vy (i.e. on 10 and
01) for the equations of motion (21.9) to be fulfilled with fields and derivatives calculated in the same point.

× ×�
�

�

�

�

vy vy

vy vy

∇xvx∇xvx vx

∗

∗∇yvx

∇yvx

The differences ∇̂xvx and ∇̂yvx
in a 10-point (filled circle) may
be found as averages of the neigh-
bouring values on the 00- and
11-grids, respectively marked by
crosses and asterisks. The value
of vy on the 10-grid (filled cir-
cles) is obtained by averaging
over all four nearest neighbours
on the 01-grid (open circle).

The double derivatives in the viscous terms present in this respect no problems, and neither does the
gravitational acceleration nor the pressure gradient which automatically ends up on the right grids. In the
advective term, −vx∇xvx , there is the problem that ∇̂xvx belongs to the 00-grid and not to the 10-grid as
we would like it to. In order to keep errors to second order one must form the average of ∇̂xvx over the two
neighbouring 00-values. Similarly, in the advective term, −vy∇yvx , the derivative ∇̂yvx is naturally found
on the 11-grid, it must also be averaged over the two nearest neighbours to get its 10-value. The worst case
is vy for which the value on the 10-grid is obtained as the average over the four nearest neighbours on the
01-grid.

Marking the averaged quantities with brackets we may write the discretized acceleration fields in the
form (see problem 21.4 for the explicit expressions)

Fx = −vx
〈∇̂xvx

〉 − 〈
vy

〉 〈∇̂yvx
〉 + ν (

∇̂2
x + ∇̂2

y

)
vx + gx , (21.16a)

Fy = − 〈vx 〉 〈∇̂xvy
〉 − vy

〈∇̂yvy
〉 + ν (

∇̂2
x + ∇̂2

y

)
vy + gy . (21.16b)

It should be noted that there is more than one way of calculating the advective terms, even if errors are
required to be of second order only.

Finally, the discretized equations of motion (21.5) become

vx (x, y, t +�t) = vx (x, y, t)+ (
Fx (x, y, t)− ∇̂x p̃(x, y, t)

)
�t, (21.17a)

vy(x, y, t +�t) = vy(x, y, t)+ (
Fy(x, y, t)− ∇̂y p̃(x, y, t)

)
�t, (21.17b)

to be evaluated on the 10- and 01-grids, respectively.
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F i gu re 21. 2. A doubl e der ivat ive i s r epr e sent ed by t he m i dpoi nt di ff er ence of t he t wo nei ghbour i ng s i ngl e
der iva t ive s, t hemsel ves r e pr esent e d by m i dpoi nt di ff er ences. C onve ni ent l y, i t e nds up on t he s ame gr i d a s
the fi eld itself.

So l v i ng t he di s crete Po i s s o n equa ti o n
Duri ng an i t erat i on cycl e t he accel erat i ons (21. 16) are cal cul at ed from t he current val ues of t he di s cret e
fields at time t , a nd af t e r war ds t he c or r e spondi ng pr essur e at t i m e t is calculated by solving the discretized
version of the Poisson equation (21.6),(

∇̂2
x + ∇̂2

y

)
p̃ = ∇̂x Fx + ∇̂y Fy + ∇̂xvx + ∇̂yvy

�t
. (21.18)

The solution to this equation may be found by means of relaxation methods, for example gradient descent
( s ee sect i on 13. 1 on page 165) , i n w hi ch t he pr e ssur e p̃( x, y, t) undergoes s uccessive changes of t he f or m

δ p̃ = ε
((

∇̂2
x + ∇̂2

y

)
p̃ − s

)
, (21.19)

where ε > 0 is the step size and s(x, y, t) is the source (the right-hand side of (21.18)). The relaxation
algorithm converges towards a solution to ∇2 p̃ = s for sufficiently small ε because it descends along the
steepest downwards gradient towards the unique minimum of a quadratic ‘energy’-function (see problem
21.2).

Denoting the nth approximation to the solution by p̃n(x, y, t), the discretized relaxation process may
be written explicitly as

p̃n+1(x, y, t) = p̃n(x, y, t)+ ε
((

∇̂2
x + ∇̂2

y

)
p̃n(x, y, t)− s(x, y, t)

)
. (21.20)

Starting with some field configuration p̃0(x, y, t) and imposing boundary conditions after each step, this
process will eventually lead to the desired solution, p̃(x, y, t). The problem is, however, that simple gradient
descent is slow, too slow in fact to be applied inside every time step. Conjugate gradient descent [59, p.
420] offers considerable speed-up by calculating the optimal step-size directly, but as it turns out there are
still faster methods.

From the double difference operator (21.15) we see that the coefficient of p̃n in (21.20) is 1 −
2ε(1/�x2 + 1/�y2), and this suggests the following reparametrization of the step-size

ε = ω

2

(
1

�x2
+ 1

�y2

)−1
, (21.21)

where ω is the dimensionless convergence parameter. This choice allows a precise definition of what is
meant by underrelaxation (ω < 1) and overrelaxation (ω > 1). Straightforward gradient descent, in which
the new field ( p̃n+1) is calculated all over the grid before replacing the old ( p̃n), only converges when
underrelaxed.

In successive overrelaxation or SOR (see [2, p. 231] and [29, p. 35]), the new value p̃n+1(x, y, t) at
a grid point replaces the old value p̃n(x, y, t) as soon as it is calculated during a sweep of the grid. The
method converges for 1 < ω < 2 and in practice the best value for ω may be located by trial-and-error,
usually not far below the upper limit, say ω = 1.7–1.9. Since this algorithm sweeps sequentially through
the grid, one should be aware that it may create small asymmetry errors in an otherwise symmetric situation.
But fast it is, on small grids often converging in just a few iterations, after the initial phase has passed.
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21.4 Channel entrance flow
A simple and—from the look of it—well-behaved problem concerns the steady entrance flow pattern in a
channel between two parallel plates with gap width d . Directly at the entrance, the flow is thought to be
uniform with a flat velocity distribution which downstream smoothly turns into the characteristic parabolic
Poiseuille shape. The typical distance for this to happen is the so-called entrance length, L ′.

Momentum diffusion due to viscosity (page 233) tends to iron out all velocity gradients unless they
are maintained by external forces. Near the entrance to the channel where the fluid speed is uniformly U ,
the velocity gradients and stresses on the sides are very large but soften progressively as the fluid moves
downstream. The action of viscosity slows the fluid down near the sides of the channel, and since the
volume flux must be the same throughout the channel, it has to speed up in the centre.

Sketch of the expected shape of
the velocity profile at various
distances downstream from the
entrance.

Estimates
We have previously seen (page 233) that the diffusive momentum spread in a time interval t has a typical
95% range of δ ≈ 3.5

√
νt and reaches the middle of the channel from both sides for 3.5

√
νt ≈ d/2,

or t ≈ 0.02 d2/ν. Multiplying by the velocity U we obtain an estimate for the entrance length,
L ′ ≈ 0.02 Ud2/ν, and introducing the Reynolds number Re = Ud/ν, we get

L ′
d

≈ k Re, (21.22)

with k ≈ 0.02. For Re ≈ 100 which is squarely in the laminar region, the entrance length is thus estimated
to be about twice the channel width, and about 40 times the channel width for Re ≈ 2000. In the turbulent
regime the entrance length on the contrary decreases with growing Reynolds number. The influence of the
entrance is always expected to be notable at least for a length of the same size as the channel width d . For
smaller values of the Reynolds number, say for kRe � 1, we consequently expect that L ′/d becomes a
fixed constant, independent of the Reynolds number.

In the present numerical simulation we shall attempt to verify the linear growth with Reynolds number
in the laminar regime and determine the magnitude of the coefficient k as well as the constant value of L ′/d
for k Re � 1.

Boundary conditions
The channel is two-dimensional with the fluid coming in from the ‘west’ and leaving to the ‘east’ with
the plates to the ‘south’ and ‘north’. At the western entrance to the channel, x = 0, the velocity field is
uniform vx = U with no cross flow, vy = 0. The exit flow at x = L is determined by the dynamics,
and we shall just assume that the flow has stabilized in this region with longitudinally constant velocities,
∇xvx = ∇xvy = 0, as in ideal Poiseuille flow. On the impermeable southern and northern walls of the
channel we must of course have vy = 0, together with the no-slip condition, vx = 0. In velocity-driven
flow, the boundary conditions on pressure follow from the velocity conditions, and will be discussed below.

vx = vy = 0

vx = vy = 0

vx = U
vy = 0

∇xvx = 0
∇xvy = 0

Boundary conditions for channel
flow. Initial data

The equations of motion must be supplied with initial data that fulfill the spatial boundary conditions and the
condition of vanishing divergence. This is not nearly as simple as it sounds, even if there is great freedom
in the choice of initial data and even if the final steady state is supposed to be independent of this choice.
The problem becomes particularly acute if the boundaries are of irregular shape which they will always be
in any realistic flow problem.

Here we shall choose the initial velocity and pressure fields (at t = 0) to be

vx = U, vy = 0, p̃ = 0 (21.23)

everywhere inside the channel. This certainly fulfills the divergence condition, but has a discontinuous
jump on the sides of the channel due to the no-slip boundary conditions. The initial fields also fulfill the
Poisson equation for pressure (21.6).
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Figure 21.3. A rectangular region (solid line) is discretized using staggered grids, here with Nx = 5 and
Ny = 3. Boundary conditions necessitate one layer of data outside the region on all sides, requiring (7× 5)
basic cells. The velocity vx is defined on the 10-points (filled circles), vy on the 01-points (open circles)
and the pressure p̃ on the 00-points (crosses).

The grid
The rectangular region of size L × d is discretized using staggered grids with coordinate intervals
�x = L/Nx and�y = d/Ny , where Nx and Ny are integers. This requires an array of (Nx +2)×(Ny +2)
basic cells to cover the region of interest. In a computer program, any field value belonging to a basic cell
is represented by an array, f (x, y) ↔ f [ix , iy], indexed by the cell indices. At the eastern and northern
borders only half the cell data is needed, as indicated in figure 21.3.

The discrete boundary conditions have to reflect that not all field values are known precisely on the
border. At the entrance, the vx -condition remains vx = U because this field is known on the border, but
the vy -condition must be implemented as

〈
vy

〉 = 0, where the average is over the nearest points on both
sides of the border. On the northern and southern walls, the roles are reversed, and we have 〈vx 〉 = 0 and
vy = 0. At the eastern exit, the condition ∇xvy = 0 become ∇̂xvy = 0. Since there is no data on vx east of
the border, the condition ∇̂xvx = 0 can only be approximatively implemented as a backwards difference,
∇̂−

x vx = 0.

�
�

∗

∗

∗

×

×

×

×

�
�
�

�
�
�

vx

vx

vy vy

On the western boundary the
value of the velocity vx may
be implemented directly, whereas
the boundary value of the veloc-
ity vy is calculated as an average
over the two nearest neighbours
on both sides.

General theory of the Poisson equation tells us that we either need to know the pressure itself or its
normal derivative on the boundary. Since at all times vx = U on the western border, the time-step equation
(21.17) implies that ∇̂x p̃ = Fx there. The value of Fx on the western boundary (obtained from (21.16))
requires knowledge of vx further to the west, data that is not available on the grid. As it turns out, we do
not in fact need to know Fx on the border. To see this, the discretized Poisson equation (21.18) is written as

∇̂x
(∇̂x p̃ − Fx

) + ∇̂y
(∇̂y p̃ − Fy

) = ∇̂xvx + ∇̂yvy

�t
. (21.24)

Since ∇̂x p̃ = Fx on the border, the boundary value of ∇̂x p̃ − Fx is always zero wherever it appears in the
first term, independent of the boundary value of Fx . Thus, the value of Fx at the fluid inlet never appears in
the Poisson equation and has therefore no influence on the solution. In practice, it is convenient to choose
the boundary value Fx = 0, and correspondingly ∇̂x p̃ = 0.

On the solid walls y = 0, d , similar arguments lead to ∇̂y p̃ = 0. Finally, at x = L we only know that
∇̂xvx = 0 and consequently ∇̂2

x p̃ = ∇̂x Fx from the equation of motion (21.17). Again it follows from
analysis of the Poisson equation that the actual boundary value of Fx cannot influence the solution. In this
case one may either choose the pressure to be constant, 〈 p̃〉 = 0, or better require Fx = 0 and ∇̂x p̃ = 0 at
the exit.

Copyright © 2005 IOP Publishing Ltd.



300 21. COMPUTATIONAL FLUID DYNAMICS

Summarizing, the discrete boundary conditions are taken to be

vx = U,
〈
vy

〉 = 0, ∇̂x p̃ = 0, for x = 0, (21.25a)

∇̂xvx = 0, ∇̂xvy = 0, ∇̂x p̃ = 0, for x = L, (21.25b)

〈vx 〉 = 0, vy = 0, ∇̂y p̃ = 0, for y = 0, d. (21.25c)

In the second line the difference ∇̂xvx actually belongs to the points inside the channel with x = L −�x/2.

�
�
�

∗

∗

×

×

×

×

×

×

�
�
�
�

Fx
p̃ p̃

On the western boundary the
normal difference of the pressure
∇̂x p̃ is determined by Fx .

Monitoring the process
The most important quantity to monitor is the divergence, which ideally should vanish. A convenient
parameter is

χ =
√ ∑

(∇̂xvx + ∇̂yvy)2∑
(∇̂xvx )2 + (∇̂yvy)2

(21.26)

where the sum runs over all internal grid points. It is dimensionless, independent of the grid for
Nx , Ny → ∞, and measures how well the two differences cancel each other in the divergence.

The convergence of the Poisson relaxation process (21.20) may be monitored by a similar parameter

χ ′ = �t

√√√√ ∑
((∇̂2

x + ∇̂2
y ) p̃ − s)2∑

(∇̂xvx )2 + (∇̂yvy)2
, (21.27)

because this quantity is a dimensionless estimate of the average of the future divergence, ∇ · v(t +�t) =
−(∇2 p̃ − s)�t .

Iteration cycle
The grid arrays for all the fields, vx [ix , iy ], vy [ix , iy ], p̃[ix , iy ], Fx [ix , iy ] and Fy [ix , iy ] are first cleared
to zero, and then the velocity is initialized to vx [ix , iy] = U for ix = 0, . . . , Nx and iy = 1, . . . , Ny .

Assuming that we have obtained a current set of discrete fields at time t , the following iteration cycle
produces a new set of fields at t +�t .

1. Calculate the new velocities vx and vy at time t+�t from (21.17) in all internal points (i.e. not on the
boundary). Explicitly the internal grid points are given by ix = 1, . . . , Nx − 1 and iy = 1, . . . , Ny
for vx , and ix = 1, . . . , Nx and iy = 1, . . . , Ny − 1 for vy .

2. Use the boundary conditions (21.25) to determine boundary values of the velocities. Explicitly they
become

vx [0, iy ] = U, vx [Nx , iy] = vx [Nx − 1, iy], iy = 1, . . . , Ny ,

vy [0, iy ] = −vy [1, iy ], vy [Nx + 1, iy] = vy [Nx , iy], iy = 1, . . . , Ny − 1,

vx [ix , 0] = −vx [ix , 1], vx [ix , Ny + 1] = −vx [ix , Ny ], ix = 0, . . . , Nx ,

vy [ix , 0] = 0, vy [ix , Ny ] = 0, ix = 0, . . . , Nx + 1.

Note the care that is necessary in the specifications of index ranges.

3. Calculate the new acceleration fields, Fx and Fy , at all internal points (with the same index ranges
as for the velocities) from (21.16) using the new velocity fields. The boundary values of the
accelerations remain zero.

4. Calculate the source of the Poisson equation (21.18) from the new fields at all internal points.

5. Solve the Poisson equation iteratively by means of the following subcycle.

(a) Apply the boundary conditions to the pressure. Explicitly they are

p̃[0, iy ] = p̃[1, iy ], p̃[Nx + 1, iy ] = p̃[Nx , iy ], iy = 1, . . . , Ny ,

p̃[ix , 0] = p̃[ix , 1], p̃[ix , Ny + 1] = p̃[ix , Ny ], ix = 0, . . . , Nx + 1.
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F i gu re 21. 4. Transformation of t he steady vel ocity profi le from t he initial square shape t o t he parabolic
P oiseuille shape ( dashed) downstream from t he entrance. T he R eynolds number i s chosen to be Re = 100,
t he c hannel l engt h L = 10 and width d = 1, and t he curves are s eparat ed by � x = 1/ Nx (with N x = 40)
in the interval 0 ≤ x ≤ L/2.

( b) C al cul at e t he new pr essur e i n al l i nt er nal poi nt s usi ng successive over r el axat i on ( S O R ) .

(c) R epeat unt i l t he desi r ed preci si on (χ ′ ) or t he i t erat i on l i mi t i s reached.

6. Repeat unt i l t he r equi red t i me or i t erat i on l i mi t s are r eached.

At chosen interval s t he grid arrays may be displ ayed graphi cally or written out to a fi le for l at er treat ment .

Results
We shal l fi x t he mass scal e by choosi ng uni t densi t y ρ0 = 1, t he l engt h s cal e by c hoosi ng uni t pl a t e di st ance
d = 1, and the time scale by setting the entry velocity U = 1. With these units the only parameter left in
t he pr obl em ar e t he ( now di mensi onl ess) ki nemat i c vi scosi t y ν and t he ( al s o di m ensi onl ess) l engt h L of t he
channel . T he R eynol ds number i s, f or exampl e , t he r eci pr ocal vi scosi t y, R e = 1/ν . Here we shall mainly
present r esul t s for R e = 100. I n vi ew of t he e st i m at e ( 21. 22) w hi c h pr e di ct s t he ent r ance l e ngt h t o be 3 i n
t hi s case, w e choose L = 10. For R e � 20 t he l engt h i s c hosen t o be L = Re/10 whereas for R e � 20
it is chosen to be L = 2, because t he ent rance l engt h i s expect ed t o be const ant . T he gri d di mensi ons are
ever yw her e chosen t o be Nx = N y = 40.

I n fi gur e 21. 5( a ) the time evolution of the exit velocity is plotted together with the rise of the velocity
in the channel. Allowing for maximally 100 SOR iterations, the process converges to χ ′ = 1% i n about 50
t i m e s t e ps, c or r e spondi ng t o t = 0. 3. It reaches 95% of the P oi seuille maxi mal velocity 1. 5U in 400 time
st eps c or r e spondi ng t o t = 2. 48. T he s ame i s t he case f or t he dow nst r eam ri se of t he s t eady fl ow vel oci t y
plotted in figure 21.5(b) which reaches 95% of its maximum at x = 2.34. The downstream evolution of
the velocity profi le towards the parabolic Poiseuille shape is shown in figure 21. 4. In figure 21. 6(a ) the
pressure in the middle of the channel is plotted as a function of x , and it also reaches the Poiseuille form
with constant gradient for x ≈ 2.5.

Finally, in figure 21.6(b) the entrance length, defined as the point where vx has reached 95% of
maximum, has been plotted as a function of Reynolds number. It is remarkable that the same program
with identical convergence parameters covers a range of Reynolds numbers from nearly 0 to 5000. For
Re � 10 the entrance length becomes constant, L ′ = 0.43d , and this makes sense because the influence
of the entrance must always be notable at a distance compared to the channel width. At high Reynolds
numbers, Re � 200, the linearity of the estimate (21.22) is confirmed and we obtain k = 0.0197 in perfect
agreement with the rough estimate. There seems to be no sign of turbulence for Reynolds number between
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F i gu re 21. 5. Channel entrance fl ow at Reynolds number 100. Both curves approach the P oiseuille maximal
velocity of 1. 5 times the average velocity. (a) The rise of the exit velocity vx ( L , d/2, t) as a f unct i on of
time. (b) The rise of the steady state velocity along the middle of the channel vx ( x, d/2) as a f unct i on of x .

F i gu re 21. 6. ( a) The pressure as a function of distance x from t he ent r ance. It s gradi ent becomes const ant
at about x = 2. 5. (b) T he 95% ent r ance l e ngt h i s pl ot t e d a s a f unct i on of R eynol ds number on t he r i ght .
T he dashed l i ne c or r e sponds t o L ′/d = k Re with k = 0. 0197. For R e � 10 t he c ur ve appr oaches t he
const a nt va l ue 0. 43.

2000 and 5000, but a s m ent i oned on page 247 pl anar pr essur e - dr ive n fl ow i s i n fact st abl e t owa r ds s mal l
per t ur bat i ons f or R e < 5772.

Problems
∗ 21.1 Show that it is not possible to fi nd an integrated quantity F f or w hi ch t he e quat i on f or i ncompr e ssi bl e

st eady fl ow ( 18. 1) cor r esponds t o an ext r emum. H i nt : show t hat t her e i s no i nt egr al F for which the variation
is of the form

δ F =
∫

[(v · ∇)v − ν∇2v + ∇ p̃] · δv dV (21.28)

which vanishes for all v satisfying (18.1).

21.2 Show that the Poisson equation

∇2 p̃ = s (21.29)

is the minimum of the quadratic ‘energy’ function

� =
∫

V

(
1

2
(∇ p̃(x))2 + p̃(x)s(x)

)
dV, (21.30)

under suitable boundary conditions. Use this result to devise a gradient descent algorithm towards the
minimum.

21.3 I ndi cat e i n fi gur e 21. 1 w hi ch st agger e d gr i ds nat ur a l l y car r y t he var i ous st r e ss component s, σx x , σyy
and σxy .
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21.4 Verify that the various averages in Fx in terms of the grid arrays become

〈∇̂xvx
〉 [ix , iy] = vx [ix + 1, iy ] − vx [ix − 1, y]

2�x〈
vy

〉 [ix , iy] = vy [ix , iy ] + vy [ix + 1, iy ] + vy [ix , iy − 1] + vy[ix + 1, iy − 1]
4〈∇̂yvx

〉 [ix , iy] = vx [ix , iy + 1] − vx [ix , y − 1]
2�y

and in Fy

〈vx 〉 [ix , iy] = vx [ix , iy ] + vx [ix − 1, iy ] + vx [ix , iy + 1] + vx [ix − 1, iy + 1]
4〈∇̂xvy

〉 [ix , iy] = vy [ix + 1, iy ] − vy [ix − 1, y]
2�x〈∇̂yvy

〉 [ix , iy] = vy [ix , iy + 1] − vy [ix , y − 1]
2�y

.
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Momentum, angular moment um, and kinetic energy are purely mechanical quantities t hat, like mass, are
carried along with the movement of material. B esides these mechanical quantities, there are thermodynamic
quantities such as internal energy and entropy, also transported along with the material. The mechanical
and t hermodynamic quantities mentioned here are all extensive, m eani ng t hat t he amount i n a c omposi t e
body i s t he s um of t he a mount s i n t he par t s. O t her s o- cal l e d intensive quantities, for example pressure and
temperature, are not additive like the extensive quantities.

We have al r eady s een t hat mass i s t r anspor t ed w i t hout act ual l oss or gai n, as expr essed by t he l ocal
and global equations for mass conser vation. E xtensive quan tities are generally not conserved ( except under
speci al condi t i ons t o be di scussed) , but have sources t hat creat e and dest roy t hem. Forces creat e moment um,
moment s of f or ce cr eat e a ngul ar moment um, wor k c r eat es ki net i c energy. T he gl obal l aw s f or ext e nsive
quantities expr ess t he balance between creation and accumulation of a quantity, and basically state t he
obvi ous: in any volume of matter t he net amount of a quan tity produced by the sources is either accumulated
i n t he v ol um e or l eaves i t t hrough t he s urf ace .

In this chapter we shall derive the global laws of mechanical balance in a systematic form which
cl ear l y exposes t hei r r el at i on t o t he cor r espondi ng l aw s i n N ew t oni an par t i cl e mechani cs, and w hi ch i s
al so sui t abl e f or pr act i cal appl i cat i ons. For each of t he l aw s w e s hal l di scuss t he ci r cumst ances under w hi ch
the corresponding quantity is conserved. We shall see that mass, momentum and angular momentum are
in general conserved for isolated systems, whereas kinetic energy is not. Only when potential and internal
energies are included, do we arrive at a total energy which is conserved for isolated systems. This chapter
is mainly theoretical with onl y one key application for each quantity. In chapt er 23 we shall appl y t he laws
of balance to a number of generic examples.

22.1 Connected tubes
We shall begin with a simple example of the use of mechanical energy conservation to derive how water
moves in one of the most basic experiments in fluid dynamics, analysed by Newton himself in Principia
[53, proposition 44].

z

0

−z

�

g0
A

When the water is at rest, the
water level will be the same in
connected vertical tubes. The
tube may have any shape between
the two vertical sections.

Consider a long straight tube with cross section A, bent through 180 ◦ somewhere in the middle and
placed with the open sections vertically upwards. Water is poured into the system, and as everybody knows,
gravity will eventually make the levels of water equal in the two vertical tubes. Before reaching equilibrium
the water sloshes back and forth with diminishing amplitude. Basic physics knowledge tells us that the
energy originally given to the water oscillates between being kinetic and potential, while slowly draining
away because of internal friction in the water.

Even if we do not know the exact solution to the fluid flow problem, we are nevertheless able to make a
reasonable quantitative estimate of the behaviour of the water. When the water level in one vertical tube is
raised by z relative to the equilibrium level, mass conservation tells us that it is lowered by the same amount
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in the other vertical tube. Denoting the instantaneous velocity of the water in the tube by v and t he ful l
l e ngt h of t he wa t e r c ol umn by L , t he t ot a l m ass of t he wa t e r c ol umn w i l l be ρ0 AL , where ρ  0 is the constant
densi t y of wa t e r, and t he ki net i c energy becomes ( 1/2)ρ0 ALv  2 . S i nce a s mal l wa t e r c ol umn of hei ght z
and w ei ght g0ρ  0 Az has eff ect ivel y been moved from one vert i cal t ube t o t he ot her and t hereby rai s ed by
z relative to equilibrium, the potential energy becomes g0ρ  0 Az 2 . A ddi ng t hese c ont r i but i ons w e get t he
fol l owi ng est i m at e f or t he t ot al energy,

� = 1
2ρ 0 ALv  2 + g0ρ 0 Az 2. ( 22. 1)

For s i mpl i ci t y we assume t hat t here i s no fri ct i on t o eat away t he energy. T he t ot al energy must t herefore
be conser ved, so t hat i t s t i m e- der ivat ive has t o vani s h,

d�

dt
= ρ0 ALv 

dv

dt
+ 2 g0ρ 0 Az 

dz

dt
= 0. ( 22. 2)

Using t hat v = dz/dt  , we fi nd the differential equation,

d 2 z

dt  2 
= −2 g0

L
z. ( 22. 3)

T he s ol ut i on t o t hi s har moni c e quat i on i s of t he f or m

z = a cosω t, ( 22. 4)

with amplitude a and c i r cul a r f r e quency ω = √
2 g0/ L . A s not ed by N ew t on, t hi s i s t he f r e quency of t he

small-amplitude oscillati ons of a pendulum with length L/2, but i n c ont r a st t o t he pendul um t he m ot i on of
the water is purely harmonic, also for large amplitudes.

22.2 Overview of the global laws
Before going into detailed discussion of the global laws, we shall here outline the contents of these laws.
We shall see that in continuum mechanics, the global laws of balance take nearly the same form as the
gl obal l aw s of N ew t oni an par t i c l e mechani c s ( see a ppendi x A ) .

Mechanical quantities
There are four global mechanical quantities that may be calculated for the material contained in any volume
V : the total mass M , the total momentum � , the total angular momentum � and the total kinetic energy
� . These quantities are defined as integrals over densities of the form,

M =
∫

V
ρ dV, � =

∫
V
ρ v dV, (22.5a)

� =
∫

V
ρ x × v dV, � =

∫
V

1

2
ρ v2 dV . (22.5b)

Each of these definitions expresses that the quantity may be understood as the sum over the material particles
making up the body.

Mechanical laws of balance
Each of the mechanical quantities obeys a global law of balance completely analogous to the global laws
of Newtonian particle mechanics. In continuum physics the laws of balance of mass, momentum, angular
momentum and kinetic energy take the form,

DM

Dt
= 0,

D�

Dt
= � , (22.6a)

D�

Dt
=�,

D�

Dt
= P, (22.6b)
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where � is the total force (9.16),� the total moment of force and P the total power (rate of work). The
first two have already been derived in sections 15.3 and 15.5, whereas angular momentum balance and
kinetic energy balance will be derived below1.

The global laws all follow from Cauchy’s equation of motion for continuous matter (15.35), and are
for this reason automatically fulfilled for any solution to the field equations. Having found such a solution,
one should not worry about the balance of mass, momentum, angular momentum or kinetic energy. But
when one is unable to solve the field equations and has to guess a simplified form of the solution, the laws
of balance impose two scalar and two vector constraints on the solution, in many cases sufficient to make a
decent estimate of the system’s behaviour.

22.3 The control volume
In Newtonian particle mechanics, a ‘body’ is understood as a collection of a fixed number of particles. In
continuum mechanics the notion of a body is much more general: any volume—usually called a control
volume—may be viewed as a ‘body’ at a given time. Intuitively we think of bodies as made from different
materials, but the surface of the control volume does not have to correspond to an interface between
materials with different properties, although it often is convenient to choose it to coincide with such an
interface. In the course of time the control volume V (t) with surface S(t) may be moved around and
deformed any way we desire, which is why it is called a control volume.
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V (t) S(t)

A ‘body’ consists of all the matter
contained in an arbitrary time-
dependent control volume V (t)
with surface S(t).

One may wonder whether it is really necessary to consider bodies this generally. Previously, for
example in the discussion of mass conservation and momentum balance, we have only considered
arbitrary fixed volumes which do not change with time. A quick review of the example of
connected tubes in section 22.1 reveals, however, that the control volume we instinctively used there
encompasses all the water in the system and moves along with it. Not permitting arbitrarily moving
control volumes would in fact put unreasonable constraints on our freedom to analyse the physics of
continuous systems.

Specific quantities
Before proceeding to a discussion of the global laws of balance for mass, momentum, angular momentum
and kinetic energy, it is necessary to establish some general relations. For an arbitrary time-dependent
volume V (t) we let

Q(t) =
∫

V (t)
q(x, t) d M =

∫
V (t)

ρ(x, t)q(x, t) dV, (22.7)

denote any of the eight components of the global mechanical quantities M , �x , �y , �z , �x , �y , �z and
� . Since the densities of all of the global quantities are proportional to the mass density, it is convenient to
factor it out and instead introduce the specific quantity, q = d Q/d M , as the local amount per unit of mass.
Whereas the specific mass is trivially unity, the specific momentum is the velocity v, the specific angular
momentum x × v, and the specific kinetic energy (1/2)v2. One might even say that the specific volume is
1/ρ.
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V (t)

V (t + δt)

A moving volume changes with
time. The (signed) change in
volume is the region between the
dashed and solid surface outlines.

Rate of change of a quantity
The time dependence of a global quantity Q has two origins: the changing density ρq and the changing
control volume V . In a small time interval δt the control volume changes from V (t) to V (t+δt). Expanding

1There is an unfortunate clash in the use of the same symbol � for angular momentum and lift (page 268). Total
momentum� and total power P are distinguished by typography.
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to first order in the small quantities, we find

Q(t + δt)− Q(t) =
∫

V (t+δt)
ρq(x, t + δt) dV −

∫
V (t)

ρq(x, t) dV

≈ δt
∫

V (t)

∂(ρq(x, t))
∂t

dV +
∫

V (t+δt)−V (t)
ρq(x, t)dV

≈ δt
∫

V (t)

∂(ρq(x, t))
∂t

dV + δt
∮

S(t)
ρq(x, t) vS(x, t) · d S,

where vS(x, t) is the velocity of a surface element d S near the point x at time t . This velocity needs only
be defined on the surface itself and not all over space. It is not a field in the usual sense of the word.
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d S

V (t) S(t)

$
$
$.

vS

Every surface element d S of the
control volume may move with
a different velocity vS(x, t) and
scoops up the volume vSδt · d S
in a small time interval δt .

Dividing by δt and suppressing the explicit dependence on space and time, the rate of change of the
quantity in the moving control volume becomes,

d Q

dt
=

∫
V

∂(ρq)

∂t
dV +

∮
S
ρq vS · d S. (22.8)

The first term is the contribution from the local change in density, and the second is the signed amount of
mass which the surface of the moving control volume scoops up per unit of time.

Reynolds’ transport theorem
If the surface of the control volume always follows the material, vS = v, it is said to be comoving (in which
case it is actually not under our control!). We shall, as before, use the symbol D/Dt for the material time
derivative, defined as the rate of change of a quantity in a comoving volume, and find from (22.8) with
vS = v,

DQ

Dt
=

∫
V

∂(ρq)

∂t
dV +

∮
S
ρq v · d S. (22.9)

Combining this equation with the general expression (22.8) for the rate of change, we may for an arbitrary
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d S

S

$
$
$.

v


?vS

Matter moves with velocity v

through the surface element d S
which itself moves with velocity
vS . The velocity of the matter
relative to the moving surface is
v − vS .

control volume write
DQ

Dt
= d Q

dt
+

∮
S
ρ q (v − vS) · d S. (22.10)

This equation goes under the name of Reynolds’ transport theorem (1903) and is the general basis for global
analysis in continuum physics. It has a fairly clear intuitive content: independent of how the control volume
moves, the material rate of change of an extensive quantity equals the actual rate of change of the quantity
in the control volume plus its net rate of loss through the surface.

Local and global rates of change
Using Gauss’ theorem on the surface integral in (22.9) we obtain a single volume integral with the integrand,

∂(ρq)

∂t
+ ∇ · (ρqv) = q

(
∂ρ

∂t
+ ∇ · (ρv)

)
+ ρ

(
∂q

∂t
+ (v · ∇)q

)
.

Here the first parenthesis vanishes because of the continuity equation (15.24) and the second parenthesis is
recognized as the local material time derivative (15.29) of the specific quantity q. Putting it all together we
arrive at the important relation,

DQ

Dt
=

∫
V
ρ

Dq

Dt
dV . (22.11)

The material derivative of a global quantity equals the integral of the density times the local material
derivative Dq/Dt of the specific quantity. This result facilitates enormously the derivation of the global
laws of balance.
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22.4 Mass balance
Since the specific mass corresponds to q = 1 we immediately re-derive the equation of global mass balance,

DM

Dt
= d M

dt
+

∮
S
ρ(v − vS) · d S = 0. (22.12)

Since the source vanishes, mass is always conserved in a comoving volume. Previously this relation was
obtained for a fixed volume (page 194), but now we see that it may actually be applied in an arbitrary
moving control volume when Reynolds’ transport theorem is used to calculate the material rate of change.

Down the drain
Suppose a cistern filled with water is flushed through a short drain pipe in the bottom of the container. The
drain pipe has cross section A, and the cistern is vertical with cross section A0. We choose a control volume
encompassing all the water in the cistern but not the pipe. As the cistern drains the horizontal water surface
moves whereas the other parts of the control surface are fixed. This is an example of a control volume
which is neither fixed nor comoving.

When the water level is z, the total mass of the water is M = ρ0 A0z, and the rate of mass loss through
the drain is ρ0 Av where v is the average velocity of the drain flow. There is no mass flux through the
moving open surface of the cistern. Global mass balance (22.12) and Reynolds’ transport theorem (22.10)
with q = 1 now leads to,

�
v0

z
A0

A � v

The water leaves the container
through the drain. The con-
trol volume is bounded by the
fixed cistern walls, the moving
horizontal water surface, and the
fixed entrance surface to the pipe.

DM

Dt
= d M

dt
+ ρ0 Av = ρ0 A0

dz

dt
+ ρ0 Av = 0. (22.13)

Since dz/dt = −v0 where v0 is the average downwards velocity of the water in the cistern, this becomes
A0v0 = Av which is Leonardo’s law (15.18). Although this looks like a bit of an overkill to get a well-
known result, it illustrates the way the global law works for a non-trivial control volume.

22.5 Momentum balance
The total momentum in a control volume is obtained by integrating the momentum density ρv over the
volume,

� =
∫

V
ρ v dV . (22.14)

It represents as mentioned before the sum of the momenta of all the material particles in the control volume.

Total force
Using Cauchy’s equation, ρDv/Dt = f ∗, it follows from (22.11) with q → v that the global equation of
momentum balance is,

D�

Dt
= � , (22.15)

where

D�

Dt
= d�

dt
+

∮
S
ρv(v − vS) · d S, � =

∫
V

f ∗ dV . (22.16)

It has been previously shown (page 116) that

� =
∫

V
f dV +

∮
S
σσσ · d S. (22.17)

Momentum balance thus tells us that the total momentum of a comoving volume is conserved if and only if
the total force vanishes.
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Internal and external force
Whereas the contact forces acting on the surface of the control volume are always external, the body forces
acting in the volume V may be split into external and internal parts

f = f int + f ext, (22.18)

where f int is produced by the material inside the volume, and f ext by the material outside. Gravitational
and electromagnetic forces are two-particle body forces where a particle of volume dV ′ situated at x′ acts
on a particle of volume dV at x with a force d2� = f (x, x′)dV dV ′, such that

f int =
∫

V
f (x, x′) dV ′, f ext =

∫
V ′

f (x, x′) dV ′, (22.19)

where V ′ is the volume of the material outside.
Both gravitational and electrostatic forces obey Newton’s third law, f (x, x′) = − f (x′, x), and then

the total internal force vanishes,

� int =
∫

V
f int dV =

∫
V

∫
V

f (x, x′) dV dV ′ = 0, (22.20)

because of the antisymmetry of the integrand. Thus, only the external body forces contribute to the total
force (22.17), and in particular it follows that the total momentum is conserved if a system is not subject to
any external forces.

Launch of a small rocket
As a demonstration of how to use global momentum balance, we consider the launch of a small fireworks
rocket. The rocket accelerates vertically upwards by burning chemical fuel and spewing the hot reaction
gases downwards. The gases are emitted from the rocket through an opening (nozzle) with cross section A,
and we assume for simplicity that the density of the gas ρ and its velocity U relative to the rocket remain
unchanged during the burn. We also assume that the gas velocity is much smaller than the velocity of sound,
which it is in toy rockets, so that the pressure at the exit may be taken to be equal to the ambient atmospheric
pressure p0.
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Sketch of a rocket moving up-
wards with vertical velocity u
while emitting material of density
ρ and relative velocity U through
an opening of cross section A.
The control volume moves with
the rocket and follows the out-
side of the hull, cutting across the
exhaust opening. There is am-
bient air pressure p0 everywhere
around the rocket, also at the noz-
zle outlet. The small rise in pres-
sure �p at the front of the rocket
is the main cause of drag.

In this case it is most convenient to choose a control volume which follows the outside of the rocket,
cutting across the nozzle outlet. Such a control volume always moves with the instantaneous speed u of the
rocket. It contains at any moment all the material of the rocket, including the fuel and the burning gases,
but not the gases that have been exhausted through the nozzle. The rate of loss of mass through the nozzle,
Q ≈ ρU A, is constant by the assumptions we have made. This implies that the rocket mass must decrease
linearly from its initial value M0 at t = 0, so that its mass at time t is,

M = M0 − Q t . (22.21)

At the end of the burn, when all the fuel has been spent, a ‘payload’ mass M1 < M0 remains. The time it
takes to burn the fuel mass M0 − M1 is t1 = (M0 − M1)/Q. After the burn the rocket flies ballistically
like a cannon ball, subject only to the forces of gravity and air resistance. Here we are only interested in
establishing the equation of motion valid from lift-off to burn out.

The absolute vertical velocity (relative to the ground) of the exhaust gases is v = u − U , allowing us
to estimate the loss of vertical momentum (the surface integral in Reynolds’ transport theorem (22.10)) as
ρv(−U)(−A) = (u − U)Q. Assuming that the centre of gravity remains fixed relative to the rocket (and
that is by no means sure), the total momentum is � = Mu, and the material derivative becomes, according
to Reynolds theorem,

D(Mu)

Dt
= d(Mu)

dt
+ (u − U)Q = M

du

dt
− U Q. (22.22)

In the last step we have used the expression (22.21) for the rocket mass.
The total vertical force on the rocket is the sum of its weight −Mg0 and the resistance or drag caused by

the interaction of the rocket’s hull with the air. Air drag has two components: skin drag from viscous friction
between air and hull, and form drag from the changes in pressure at the hull caused by the rocket ‘punching’
through the atmosphere. Form drag can, for example, be estimated from the Bernoulli stagnation pressure
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Figure 22.1. Height (a) and velocity (b) as a function of time during vertical flight of a small fireworks
rocket with form drag (solid) and without (dashed). The cusp in the velocity happens at the end of the burn
and signals the transition to ballistic flight. The rocket has diameter 6 cm, total mass 1 kg, payload 0.2 kg
and form drag coefficient CD = 1. The rocket burns for 3 s, emitting gases at a speed of 50 m s−1. The
numeric solution of the rocket equation (22.24) shows that with form drag the rocket reaches a velocity of
45 m s−1 at the end of the burn and a height of 43 m. During the subsequent ballistic flight, it reaches a
maximum height of 103 m about 6 s after start, and finally it falls back and hits the ground again with a
speed of 30 m s−1 about 11.5 s after start. Without form drag the rocket would reach a maximum height of
178 m about 8 s after start, and it would hit the ground with a speed of 60 m s−1 after 14 s.

increase at the tip of the rocket, �p ≈ (1/2)ρ0u2, where ρ0 is the density of air. Multiplying by the cross
section of the rocket A0, the estimate of the form drag becomes −(1/2)ρ0u2 A0 (with opposite sign if u
is negative). Form drag thus grows quadratically with rocket speed, and at high velocity it dominates skin
drag which only grows linearly with velocity. Leaving out skin drag, the total vertical force on the control
volume may be written

� = −Mg0 − 1
2ρ0u2 A0CD (22.23)

where we have included a dimensionless factor CD, called the drag coefficient, which takes into account
the actual shape of the rocket.

Equating the material derivative (22.22) with the total force (22.23), and dividing by the mass (22.21),
we find the ‘rocket equation’ for vertical flight during the burn,

du

dt
= −g0 + U Q − 1/2ρ0u2 A0CD

M0 − Qt
. (22.24)

This shows that the rocket will take off from rest u = 0 at t = 0 provided the initial acceleration is positive,
i.e. U Q > M0g0. The differential equation can only be solved numerically (except in vacuum for CD = 0
where it can be solved analytically; see problem 22.2), and the results are shown for a typical fireworks
rocket in figure 22.1 with CD = 1. The figure also includes the period of ballistic flight which follows the
burn and brings the rocket to a maximal height before it turns around and falls back to earth. One notes how
the form drag reduces the maximum height for this rocket to a little more than half of what it would be in
vacuum (dashed curve). If the rocket shape were made highly streamlined, the form drag coefficient could
be made considerably smaller than unity, allowing it to attain greater heights for the same amount of fuel
(see page 449 for a general discussion of form drag).

∗ 22.6 Angular momentum balance
The angular momentum (sometimes called the moment of momentum) of the matter contained in a control
volume V is,

� =
∫

V
ρ x × v dV . (22.25)
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Angular momentum depends on the origin of the coordinate system. If we shift the origin by x → x + a,
the angular momentum shifts by�→ �+ a ×� , unless the total momentum vanishes which is generally
not the case in fluid systems. This definition is, however, not without subtlety (see problem 22.7).

Total moment of force
The material time derivative of the specific angular momentum x × v is

ρ
D(x × v)

Dt
= ρ

Dx
Dt

× v + ρx × Dv

Dt
= x × f ∗,

because Dx/Dt = v and ρDv/Dt = f ∗. Using (22.11) with q → x × v we arrive at the equation of
global angular momentum balance,

D�

Dt
=�, (22.26)

where

D�

Dt
= d�

dt
+

∮
S
ρ(x × v) · d S, � =

∫
V

x × f ∗ dV . (22.27)

The source � is the total moment of the effective forces acting on the material particles in the control
volume. Under a shift x → x + a the total moment transforms as�→�+ a ×� where� is the total
force. Combined with momentum balance (22.15), both sides of the angular momentum balance (22.26)
thus shift in the same way so that the form of this relation is independent of the choice of origin.

From angular momentum balance it follows immediately that the total angular momentum is conserved
if and only if the total moment of force vanishes. It is, however, a bit more complicated to derive the global
form of the total moment than it was for the total force. Inserting the effective force (9.18), we find the
identity

(x × f ∗)i − (x × f )i =
∑
j kl

εi j k x j ∇lσkl =
∑
j kl

εi j k∇l (x jσkl )−
∑
j k

εi j kσkj .

The first term on the right-hand side is a divergence which by Gauss’ theorem leads to a surface integral,
and the last term vanishes when the stress tensor is symmetric, which we assume it is. After integration the
total moment of force may be written,

� =
∫

V
x × f dV +

∮
S

x × σσσ · d S. (22.28)

In complete analogy with the total force, the total moment thus consists of the moment of the body forces
plus the moment of the contact forces acting on the surface of the volume.

Internal moment of force
Splitting the body force density into internal and external contributions (22.18), and assuming again that
we are dealing with two-particle body forces f (x, x′) obeying Newton’s third law, f (x, x′) = − f (x′, x),
the moment of the internal body forces may be written as

�int =
∫

V
x × f int dV

=
∫

V

∫
V

x × f (x, x′) dV dV ′ =
∫

V

∫
V

x′ × f (x′, x) dV dV ′

= 1

2

∫
V

∫
V
(x − x′)× f (x, x′) dV dV ′.

In the second line we interchanged x and x′ and in the third we used the antisymmetry of the two-particle
force. If the two-particle forces are furthermore central, f (x, x′) ∼ x − x′, which is the case for gravity
and electrostatics, the cross product vanishes, and we conclude that the internal moment of force vanishes,
�int = 0. Under these conditions, internal forces can simply be ignored in the calculation of the moment
of force, and we have shown that the angular momentum is conserved for a system not subject to an external
moment of force.
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Spinning a rotating lawn sprinkler
As an illustration of the use of angular momentum balance we now calculate how a rotating lawn sprinkler
spins after the pressure is turned on. Some rotating lawn sprinklers are constructed with two horizontal arms
of length R mounted on a common pivot. Each arm is a tube carrying water from the pivot towards a nozzle
that is bent by 90 ◦ with respect to the tube and elevated through an angle α against the azimuthal direction.
The nozzle outlet has cross section A and the water emerges with velocity U relative to the nozzle. When
the water is turned on, the sprinkler starts to rotate and reaches after a while a steady situation in which it
rotates with constant angular velocity, determined by the friction moment from the pivot.

We choose a control volume which follows the outer surface of the sprinkler, cutting across the nozzle
outlets and horizontally through the pivot. In cylindrical coordinates with the z-axis along the axis of
rotation, the angular momentum of the sprinkler around the z-axis is �z = I � where I is the moment of
inertia of the whole sprinkler plus water and � > 0 is the instantaneous angular velocity. The moment of
inertia should be calculated in the usual way from the mass distribution in the arms, the pivot and the water
contained in the system. For incompressible water the moment of inertia is time-independent.
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Arm of a lawn sprinkler. The
nozzle is at right angles to the
arm and has elevation angle α
against the azimuthal direction.
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the nozzle outlet and the pivot
inlet.

The water entering vertically through the pivot carries no angular momentum, so the pivot does not
contribute to the surface integral in Reynolds’ transport theorem (22.10) with q → x × v. In cylindrical
coordinates we have (x × v)z = rvφ , and since the azimuthal velocity of the water emerging from a nozzle
is vφ ≈ R�− U cos α, the material derivative of �z becomes (taking both arms into account),

D�z

Dt
≈ d(I�)

dt
+ 2ρ0 R(R�− U cos α)U A. (22.29)

Disregarding air resistance, the only moment of force acting on the sprinkler arises from the (deliberately
imposed) friction in the pivot. Since the friction moment must be negative, �z = −N , the angular
momentum balance becomes

I
d�

dt
+ R(R�− U cos α)Q = −N (22.30)

where Q = 2ρ0U A is the total mass flux through the system. With initial condition � = 0 at t = 0, and
assuming that the friction moment is constant, the solution to this linear differential equation is,

� = RU Q cos α − N

R2 Q

(
1 − e−λt

)
(22.31)

with time constant �
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λ = R2 Q

I
. (22.32)

Evidently, the condition for the angular velocity to be positive is that RU Q cos α > N , and the steady state
angular velocity is

�0 = RU Q cos α − N

R2 Q
, (22.33)

independent of the moment of inertia.

Example 22.6.1 (Lawn sprinkler): A lawn sprinkler with radius R = 20 cm, nozzle outlet diameter
d = 4 mm, and nozzle elevation α = 30 ◦, is designed to pass Q/ρ0 = 0.25 litre water per second
through its two arms and rotate once every 2 s in the steady state. The nozzle area becomes A =
1
4πd2 ≈ 12.5 mm2, the outlet velocity U = Q/2Aρ0 ≈ 10 m s−1, and the steady state angular velocity

�0 = π s−1. The required friction moment that the pivot must deliver, N = RU Q cos α − R2 Q�0 =
0.4 Nm. The horizontal velocity of the water relative to the lawn is vφ = R�0 − U cos α ≈ −8 m s−1,

and the vertical velocity of the water is vz = U sinα ≈ 5 m s−1. Assuming a ballistic orbit for the
water flying across the lawn (disregarding air resistance) the diameter of the sprinkled region comes
to about D ≈ 4

∣∣vφ ∣∣ vz/g0 ≈ 16 m. The sprinkled area, A0 = (1/4)πD2 ≈ 200 m2, receives about
Q/ρ0 A0 ≈ 4 mm rain per hour from the sprinkler.
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22.7 Kinetic energy balance
The total kinetic energy of the material in a control volume is defined to be,

� =
∫

V

1

2
ρv2 dV . (22.34)

It must be emphasized that this is only the kinetic energy of the mean flow of matter represented by the
velocity field v, and that there is a ‘hidden’ kinetic energy associated with the fast thermal motion of the
molecules relative to the mean flow. We shall return to this question in section 22.9 (see also problem 22.7).

Total power
The material derivative of the specific kinetic energy (1/2)v2 is calculated by means of the fundamental
dynamical equation of continuous matter (15.35),

ρ
D

(
(1/2)v2

)
Dt

= ρv · Dv

Dt
= v · f ∗.

Using (22.11) with q → (1/2)v2 we arrive at the global equation of kinetic energy balance

D�

Dt
= P, (22.35)

where

D�

Dt
= d�

dt
+

∮
S

1

2
ρv2(v − vS) · d S, P =

∫
V

v · f ∗ dV . (22.36)

The source of kinetic energy P is the total rate of work, or power, of the effective forces acting on the
material particles in the control volume. Formally, we may conclude that the kinetic energy is conserved
when the total power vanishes, but that is, as we shall see, not very useful, because the power rarely vanishes.

To derive a global expression for the power we use the expression (9.18) for the effective force density
to write,

v · f ∗ − v · f =
∑
i j

vi ∇ jσi j =
∑
i j

∇ j (viσi j )−
∑
i j

σi j ∇ j vi .

Converting the integral of the first term to a surface integral by means of Gauss’ theorem (6.4), we find,

P =
∫

V
v · f dV +

∮
S

v · σσσ · d S −
∫

V

∑
i j

σi j ∇ j vi dV . (22.37)

The total power thus consists of the power of the volume forces (external as well as internal), the power of
the external contact forces, plus a third contribution which we (including the sign) interpret as the power of
the internal stresses.

Internal rate of work
Although Newton’s third law guarantees that the contact forces between neighbouring material particles
cancel, the power of these forces does not cancel because neighbouring material particles have slightly
different velocities, as witnessed by the appearance of the velocity gradients ∇ jvi in the last term of (22.37).

�
v0

A0

A � v
L

h

.......................................... ...... ...... ...... ...... ...... ......

........................ ...... ...... ...... ...... ......

............... ..... ..... .....

The water first accelerates
through the pipe while pouring
out through the exit. The kinetic
energy of the water in the
transition region between cistern
and pipe (dashed flowlines) is
assumed to be negligible.

Given that the displacement of a comoving material particle in a small time interval δt is δui = vi δt ,
we may employ (10.36) on page 129 to obtain the rate of work against the internal stresses,

Ẇint =
∫

V

∑
i j

σi j ∇ j vi dV . (22.38)

Taking the sign into account, this is of course consistent with the interpretation of the last term in the
total power (22.37). We previously used this expression to calculate the rates of dissipative loss for
incompressible fluids (17.18), as well as for compressible fluids (17.30).
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Pulling the plug
As an illustration of the use of kinetic energy balance, we return to the familiar example of a cistern being
drained through a narrow pipe. When the plug is pulled at the bottom of the cistern, the fluid goes through
a short initial acceleration before steady flow is established. We shall now calculate how the water flow
becomes steady and how long it takes.

The drain is a horizontal pipe of length L and cross section A, and the cistern is vertical with large
cross section A0 � A, continuously being refilled to maintain a constant water level h. Initially the pipe is
full and all the water is assumed to be at rest. The control volume is fixed and contains all the water in the
system between the open surface, the pipe outlet and the walls of the cistern and pipe. Assuming that the
water is non-viscous and incompressible, the kinetic energy balance (22.35) in a fixed control volume takes
the form

d�

dt
+

∮
V

1

2
ρ0v

2v · d S =
∫

V
ρ0v · g dV −

∮
S

p v · d S. (22.39)

On the left-hand side we have the material time derivative D� /Dt expressed through Reynolds’ transport
theorem (22.10) with q → (1/2)v2. On the right-hand side we find the total power, consisting of the rate
of work of constant gravity and the rate of work of the contact forces, in this case only the pressure. For
non-viscous incompressible fluids, the rate of work of the internal contact forces vanishes according to
(17.18).

To estimate the various terms in this equation we shall again use the plug flow approximation in which
the flow is assumed to have the same vertical velocity throughout the cistern and the same horizontal
velocity throughout the pipe. In this approximation the average of a product of velocity fields equals the
product of the averages. We have previously seen (page 254) that for laminar viscous flow in pipes much
longer than the entrance length, such an approximation is rather poor, but for non-viscous or turbulent flow
it is not so bad.

Ignoring the transition region from the cistern to the pipe (see problem 22.5), the total kinetic energy
of the water in the system is approximatively given by the sum of the kinetic energies of the water moving
vertically down through the cistern with average velocity v0 and the water moving horizontally through the
pipe with average velocity v. Using mass conservation (Leonardo’s law), v0 A0 = vA, to eliminate v0 we
find,

� ≈ 1

2
ρ0 A0h v2

0 + 1

2
ρ0 ALv2 = 1

2
ρ0 Av2

(
L + h

A

A0

)
= 1

2
ρ0 AL0v

2, (22.40)

where

L0 = L + h
A

A0
(22.41)

is the effective total pipe length, including the kinetic energy of the descending water in the cistern. Even if
A/A0 � 1 the water level may be so high that there is a significant contribution from the cistern.

The time derivative of the kinetic energy is thus,

d�

dt
= ρ0 AL0v

dv

dt
. (22.42)

Kinetic energy is only lost through the outlet A and gained through the inlet A0, and in the same
approximation as above the net rate of loss of kinetic energy from the system is,∮

S

1

2
ρ0 v2 v · d S ≈ 1

2
ρ0 Av3 − 1

2
ρ0 A0v

3
0 = 1

2
ρ0 Av3

(
1 − A2

A2
0

)
≈ 1

2
ρ0 Av3,

where we in the last step have used A � A0.
Gravity only performs work on the descending water in the cistern at the rate,∫

V
ρ0v · g dV ≈ ρ0v0g0 A0h = ρ0g0vAh. (22.43)
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A t bot h t he open s ur face and a t t he pi pe out l e t , t her e i s a t m ospher i c pr e ssur e p0 , s uch t hat

−
∮

p v · d S = −p0(−v0) A 0 − p0v A = 0. ( 22. 44)

At mospheri c pressure performs no work, because of mass conservat i on.
Putting all four terms together in (22. 39), kinetic energy balance results in the differential equation for

the drain pipe velocity,

dv

dt
= 2 g0 h − v  2

2 L0
. ( 22. 45)

T he r i ght - hand s i de vani s hes f or v = √
2 g0 h , which is the well-known terminal velocity obtained from

Torricelli’s l aw (16. 21). S olving the differential equation with the i nitial condition v = 0 at  t = 0, w e fi nd

v(t) = √
2 g0 h tanh 

t

τ
, ( 22. 46)

where t he charact eristic rise time t owards terminal velocity is,

τ = 2 L0√
2 g0 h

. ( 22. 47)

Q ui t e r easonabl y, τ equal s t he t i m e i t t akes t he wat er t o pass t hr ough t he pi pe at hal f t he t er m i nal speed. A t
t = 2τ , t he wat er has reached 96% of t ermi nal speed.

�

�

τ t

v

U

Rise of the velocity in the drain
pi pe t owar ds t er mi nal vel oci t y
U = √

2 g0 h .
E xamp l e 22. 7. 1 ( B arrel of w i n e ) : For a cyl i ndr i cal bar r e l of w i ne ( exampl e 16. 3. 2) w i t h di amet er
1 m and hei ght 2 m , e mpt i e d t hr ough a s pout w i t h di amet er 5 c m a nd l e ngt h L = 20 cm , t he effect ive
l e ngt h becomes L0 = 20. 5 cm. T he t er mi nal s peed i s about 6 m s−1 , a nd t he wat er obt ai ns 96% of t hi s
speed af t er j ust 0. 13 s ! I f you t r y t o put back t he pl ug i n t he spout af t er m er el y hal f a second, t her e w i l l
nevertheless be about 5. 6 litres of wine on the fl oor (see problem 22. 3).

U nt i l now w e have c ompl et el y e scaped t he pr obl em of how t he pr essur e behave s i nsi de t he ci st er n a nd
in the pipe. Taking the x - a xi s a l ong t he pi pe, and usi ng t hat v does not depend on x , t her e w i l l be no
comovi ng accel erat i on i n t he pi pe, and t he x - c omponent of E ul e r ’s e quat i on ( 16. 1) si mpl y becomes

dv

dt
= − 1

ρ 0

∂ p

∂ x
. ( 22. 48)

Since dv/dt  t a ke s t he same va l ue t hr oughout t he pi pe, t he pr e ssur e gr adi e nt w i l l be i ndependent of x .

�
v0

A0

A � v
L

h

xp1 p0

Duri ng accel erat i on t here i s a
pressure drop �p = p1 − p0
between entry and exit to the
pipe.

Expressed in terms of the pressures p1 and p0 at the ends of the pipe, the gradient is ∂p/∂x = (p0 − p1)/L .
Finally, inserting the acceleration (22.45) and the solution (22.46) we obtain the pressure difference between
the pipe entry and the exit (or the cistern surface)

�p = p1 − p0 = 1

2
ρ0(2g0h − v2) = ρ0g0h

cosh2(t/τ)
. (22.49)

This shows that at t = 0 the entry pressure p1 equals the hydrostatic pressure of the water in the cistern, as
one would expect, and that it approaches atmospheric pressure p0 in the pipe in the characteristic rise time
τ . In reality there will remain a residual pressure drop in the pipe due to vi scous friction (see section 18. 4).

22.8 Mechanical energy balance
Even if kinetic energy is not conserved, kinetic energy balance can as shown in the preceding section be
very useful in obtaining an estimate of the solution to a fluid mechanics problem by calculating the rate
of work of the forces acting on the system. In numerous practical situations the body force is entirely due
to a static external field of gravity, f = ρg = −ρ∇�, and in that case it is, as in ordinary mechanics,
convenient to introduce the potential energy in the gravitational field,

� =
∫

V
ρ � dV . (22.50)
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F r om R eynol ds’ t r a nspor t t heor em ( 22. 10) w i t h q → � w e fi nd,

D�

Dt
=

∫
V
ρ 

D�

Dt
dV  =

∫
V
ρ(v · ∇)�  dV  = −

∫
V
ρv · g dV, ( 22. 51)

w her e w e have used t he fact t hat t he pot ent i a l i s t i m e- i ndependent ∂�/∂t = 0 and that  ∇� = −g .

To tal contact power
Since D�/ Dt i s t he opposi t e of t he body f or c e c ont r i but i on t o t he t ot a l pow er ( 22. 37) , i t i s c onve ni ent t o
defi ne t he t ot a l m echani cal energy as t he s um of t he ki net i c and pot ent i a l e nergi e s,

� = � + �. ( 22. 52)

It satisfies the gl obal equat i on of m echani cal e nergy bal ance ,

D�

Dt
= P̃, ( 22. 53)

w her e t he r i ght - hand s i de i s,

P̃ =
∮

S
v · σσσ · d S −

∫
V

∑
i j

σi j ∇  j vi dV . ( 22. 54)

T he fi r s t t er m i s t he pow e r of t he ex t e rnal and the last the power of the internal cont act f or ces. E vi dent l y, the
m e chani cal e nergy i s c onserved f or a com ovi ng vol um e w hen t he t ot al pow er of t he c ont act f orces vani shes .

For a non- vi scous, i ncompr essi bl e fl ui d w her e σi j  = −p δi j  , t he l a st t e r m i n ( 22. 54) va ni shes, s uch
t hat t he mechani cal energy wi l l be conserved i f t he pressure does no net work on t he s urface. T hi s was t he
pr i nci pl e used i nt ui t ive l y i n t he a nal ysi s of c onnect ed t ubes a t t he begi nni ng of t hi s chapt e r ( sect i on 22. 1) .
For a vi scous i ncompr e ssi bl e fl ui d, t he l ast t er m i s given by ( 17. 18) and i s a lways negat ive, show i ng t hat
vi scosi t y alwa ys eat s awa y t he mechani cal energy of a fl ui d.

∗ 22.9 E nerg y balance in elastic fluids
T he gl obal e quat i on of m echani cal energy bal a nce ( 22. 53) ar i s es— s o t o s peak— by ‘ movi ng ove r ’ t he r at e
of wor k of gr avi t y f r om t he r i ght - hand s i de of t he ki net i c energy bal a nce ( 22. 35) t o t he l ef t - hand si de as a
potential energy. In general, it is also possible to ‘move over’ the power of the internal contact forces, the
last term in the contact power (22.54), such that the total energy takes the form

� = � + � + �, (22.55)

where

� =
∫

V
ρ u dV, (22.56)

is called the total internal energy and u the specific internal energy. The specific internal energy contains
essentially all the information about the thermodynamics of the material in the control volume and is not
known in general. For particular types of matter, the most important being ideal gases, there are simple
expl i c i t expr essi ons f or t he speci fi c i nt e r nal energy ( s ee bel ow a nd appendi x C ) .

Specific internal energy for non-viscous barotropic fluids
Here we shall only carry through the analysis for non-viscous barotropic fluids, for which the internal
energy is analogous to the potential energy stored in a compressed spring. Such fluids are for this reason
often called elastic. In the absence of viscosity, σi j = −pδi j , the contact power (22.54) becomes,

P̃ = −
∮

S
p v · d S +

∫
V

p∇ · v dV . (22.57)
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T he t ask i s now t o fi nd an expressi on for t he speci fi c i nt ernal energy whi ch cancel s t he l ast t erm.
A fl ui d i n a bar ot r opi c s t a t e has a uni que r e l a t i onshi p bet w een densi t y and pr e ssur e , ρ = ρ(  p) , and  the

so-called pressure pot ent i al ,

w(  p) =
∫

dp

ρ(  p)
, ( 22. 58)

pl ays a n i mpor t a nt r ol e i n t he dynami cs ( s ee page 54) . U si ng t he c hai n r ul e w e obt ai n,

ρ
D

Dt

(
w − p

ρ

)
= ρ

(
1

ρ

Dp

Dt
− 1

ρ

Dp

Dt
+ p

ρ 2

Dρ

Dt

)
= p

ρ

Dρ

Dt
= −p ∇ · v,

where in the last step the continuity equation Dρ/  Dt = −ρ∇ · v i n t he f or m ( 15. 28) on page 196 wa s used.
S i nce t he fi nal r e sul t apar t f r om s i gn i s i dent i cal t o t he i nt egr a nd of t he l ast t er m i n ( 22. 57) , w e defi ne

the speci fic i nt e rnal energy of a non- vi scous barot ropi c flui d t o be ( a par t f r om a n a ddi t ive const a nt ) ,

u = w − p

ρ
. ( 22. 59)

A n i ncompr e ssi bl e non- vi scous fl ui d has c onst a nt densi t y and pr e ssur e pot ent i a l w = p/ρ , s uch t hat i t s
internal energy may formally be chosen to vanish. For such fluids, there is only mechanical energy.

For an isentropic ideal gas with pressure potential (16.37), the specific internal energy becomes (see
al so appendi x C ) ,

u = 1

γ − 1

p

ρ
= cvT, cv = 1

γ − 1

R T

Mmol
. (22.60)

Here γ is the adiabatic index and cv is the specific heat at constant volume (i.e. constant density).

Total energy balance
With the specific internal energy of an elastic fluid given by (22.59) the complete specific energy becomes,

ε = 1
2 v2 +�+ u. (22.61)

From (22.11) with q → ε we obtain the equation of global energy balance,

D�

Dt
= Ẇ , (22.62)

where

D�

Dt
= d�

dt
+

∮
S
ε(v − vS) · d S, Ẇ = −

∮
S

p v · d S. (22.63)

Since δV = vδt · d S is the (signed) volume swept out by a comoving surface element d S in the time δt ,
the expression for Ẇ is identical to the rate of the thermodynamic work −p δV performed on the surface
of the control volume.

.........................................................................................................................................................................................................................................
.................................................
...........................................
.............................................................

........................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................................................................................
.................................................................

...................................

...............................
.....................................

...................................................
................................................................................................................................................................................................................................................................................

..............

..............

..............

..............
..............
..............
...............
...............
...............
...............
.........

................
................
................
................
................
.................
.................
.................
.................
.................
.............

...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
.........

A1

A2

A stream tube consisting of all
the streamlines that enter the area
A1 and exit through A2.

Concluding, we have shown that for a barotropic non-viscous fluid the total energy � is conserved when
the pressure performs no work on the surface of the control volume. We shall not present any applications
of this result, because it is equivalent to Bernoulli’s theorem.

Bernoulli’s theorem and energy balance
To find the relationship between energy balance and Bernoulli’s theorem we assume that the flow is steady
and apply energy balance to a fixed control volume in the form of a tiny stream tube consisting of all the
streamlines that go into a tiny area A1 and leave through the equally tiny area A2. Denoting the average
entry and exit velocities by v1 and v2, the mass flux through the tube is,

Q = ρ1 A1v1 = ρ2 A2v2, (22.64)
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because no fluid passes through the sides of a tube consisting of streamlines.
The total energy of the fluid in the stream tube must be constant in steady flow, i.e. d�/dt = 0, such

that the material derivative obtained from Reynolds’ transport theorem (22.10) is entirely determined by the
rate of loss of energy through the surface of the tube. For a sufficiently narrow stream tube we have,

D�

Dt
= ρ2ε2v2 A2 − ρ1ε1v1 A1, (22.65)

and similarly the rate of work (22.63),

Ẇ = −p2v2 A2 + p1v1 A1. (22.66)

Again there is no contribution to the work integral from the sides of the stream tube, because v ·d S vanishes
there.

Energy balance (22.62) implies now in conjunction with mass conservation (22.64),

ε1 + p1

ρ1
= ε2 + p2

ρ2
. (22.67)

Since the specific energy (22.61) may be written

ε = H − p

ρ
(22.68)

where H is the Bernoulli function (16.35), this relation is Bernoulli’s theorem for a compressible fluid,
H1 = H2, applied to any streamline running through the stream tube. Bernoulli’s theorem is thus
completely equivalent to energy balance for steady flow in a non-viscous barotropic fluid. Under these
circumstances, we do not gain further information about the system from energy balance than from applying
Bernoulli’s theorem.

Problems
22.1 Before the advent of modern high precision positioning systems, standard height levels could be
transmitted across a strait by means of a long tube filled with water. (a) Calculate the oscillation time of
the water in the tube for a strait about 20 km wide when viscosity is disregarded. (b) Use energy balance
to calculate the influence of viscosity on the oscillations for a pipe of radius 1 cm (hint: use Poiseuille
dissipation). How long does it take for the water to come to rest? (c) Would it be better to use a wider tube?

22.2 Solve the rocket flight problem analytically in the absence of air resistance.

22.3 Calculate the volume of fluid that has emerged from the draining cistern (page 317) after time t .

22.4 Use mechanical energy balance (22.53) rather than kinetic energy balance to analyse the initial
acceleration of the water in a cistern, when the plug is pulled.

22.5 Consider a circular drain of radius a in the bottom of a large circular cistern of radius b � a. Assume
that the average velocity of the water at any half-sphere of radius r centred at the drain is v(r) = (a/r)2v
where v is the average velocity at the drain, so that the same amount of water passes through the half-sphere
for all r > a. Calculate the kinetic energy associated with this velocity distribution and compare it with the
kinetic energies of the water in the cistern and in the pipe.

22.6 A container with (constantly refilled) water level h and cross section A0 is drained through a very
long pipe of cross section A forming an angle α with the horizontal. A valve is placed a good distance L
down the pipe, but the pipe continues downwards with the same slope far beyond the valve. Initially there
is water in the pipe up to the valve. Find the equation of motion for the water front after the valve is opened
and it has progressed a distance x past the valve.
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∗ 22.7 Molecular model for a material particle. A volume V contains N point-like particles of mass mn
with instantaneous positions xn and velocities vn . The total mass is M = ∑

n mn and the centre of mass
is x = ∑

n mn xn/M . Define the relative positions x′
n = xn − x and the relative velocities v′

n = vn − v

where v = ∑
n mnvn/M is the centre-of-mass velocity.

Assume that the relative positions and velocities are random and average out to zero, such that

〈x ′
n〉 = 0 (22.69)

〈v′
n〉 = 0. (22.70)

Also assume that they are independent, uncorrelated and that the velocities are uniformly and spherically
distributed, such that

〈(x ′
n)i (v

′
m) j 〉 = 0 (22.71)

〈(v′
n)i (v

′
m) j 〉 = U2δi j δnm (22.72)

where U is a constant with dimension of velocity.
(a) Show that the total angular momentum of all the particles in the system is

� = Mx × v +
∑

n
mn x′

n × v′
n (22.73)

and calculate its average.
(b) Show that the total kinetic energy of all the particles is

� = 1

2
Mv2 + 1

2

∑
n

mn(v
′
n)

2 (22.74)

and calculate its average.
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A rocket accelerating in empty space while spewing hot gases in the opposite direction is at first sight rather
mysterious, because there are no external forces to account for its acceleration. On reflection we understand
from momentum conservation that the high-speed gas streaming out of the rocket nozzle carries momentum
away from the rocket and thereby adds momentum to the rocket itself. But why are rockets and jet aircraft
said to be ‘reaction-driven’? What is reacting to what?

Fluids flowing through tubes, pipes, ducts and conduits are important components in many of the
machines used in the home, in transport and industry. Everywhere in such a system the conduit walls
will act on the fluid with contact forces that confine and guide the fluid. By Newton’s third law the fluid
must respond with an equal and opposite reaction force. This definition is purely a matter of convention;
there is no deeper distinction between the agents in an action/reaction pair. With this convention one may
say that a rocket is driven by the reaction of the gas against the confining contact forces exerted on it by the
inner walls of the rocket engine.
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................................................................................................................................................................................................................................

�
�

The pressure from the burning
gases exerts a force � on the
inside of the rocket engine which
propels the rocket upwards in this
picture. Conventionally, � is
called a reaction force.

Lawn sprinklers, fans, windmills, hairdryers, propellers, pumps, water turbines, compressors and jet
engines are all examples of turbomachinery used everywhere today. In such machines the fluid will likewise
exert a reaction moment of force on the main rotating part, called the rotor. Depending on the sign of the
reaction moment energy is either taken out of the fluid as in a water turbine or put into it as in an air blower.

In this chapter we shall develop the formalism for reaction forces and moments, and apply it to a number
of generic examples. We shall see that it is sometimes quite a subtle task to unravel what is the true reaction
force on a given part of a machine, because forces may be transmitted to this part from far away through
stiff machine housing and supports.

23.1 Reaction forces
Formally, the cause of a rocket’s acceleration in empty space may be exposed by calculating the rate of
momentum change from momentum balance (22.15) and (22.16),

d�

dt
= � −

∮
S
ρv (v − vS) · d S. (23.1)

The integral on the right-hand side (including the sign) represents the net momentum flux into the control
volume through its surface. Although this term simulates the action of an external force, it is not a reaction
against another force, but more akin to the ‘fictitious’ centrifugal and Coriolis forces.
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Total force in steady flow
In steady flow, it is natural to choose a fixed control volume. Since the flow pattern always remains the
same, the total momentum of the material in the fixed control volume will be constant, d�/dt = 0, and
from momentum balance (23.1) it follows that the total external force on the control volume must be,

� =
∮

S
ρv v · d S. (23.2)

The total force is still given by the sum of the volume and contact forces (22.17), so this relation should be
seen as a constraint which necessarily must be satisfied by these forces to secure a steady flow. Contrary
to hydrostatics (v = 0) where the total force on any volume has to vanish, the environment is required to
exert a generally non-vanishing total force on the control volume, determined by the net flux of momentum
out of the control volume. Since the integrand vanishes at solid walls where v · d S = 0, it may always be
calculated from the flow through the openings where fluid is let in and out of the control volume.

From the total force, which is perfectly unambiguous, it is often fairly easy to determine the actual
reaction force according to one’s personal preferences concerning what acts and what reacts. We shall now
present some examples of how to use this method.

Reaction from a jet hitting a wall

� v��x

� x

A

A jet of water hitting a wall. The
control volume is limited by the
jet’s surface and by the dashed
lines.

A steady jet of water hits a fixed wall and produces no backsplash in the process, but just streams uniformly
away over the wall (when gravity is ignored). A fixed control volume is chosen to contain all of the water in
the jet with inlet far from the wall and the outlet far from the centre of the jet. The total force �x normal to
the wall equals the momentum flux in the x-direction through the inlet because the outflow is approximately
parallel with the wall and thus orthogonal to x . Let the inlet area be A, and let the magnitude of the average
inlet velocity be v, so that the total volume flux through the inlet in the x-direction becomes −vA. The
momentum density along x is similarly −ρ0v, leading to the following estimate of the total force on the
water,

�x ≈ ρ0v
2 A. (23.3)

This force can only be due to the contact force from the wall and may be viewed as the wall’s reaction to
the impact of the incoming fluid. Alternatively, −�x may be viewed as the fluid’s reaction to the confining
forces from the wall. The argument also shows that �x will be even larger, if there is backsplash from the
wall.

Example 23.1.1 (Water cannon): Police use water cannons to control crowds. With a jet diameter of
1.5 inch and volume flux of 20 litres (5 gallons) per second, the water speed becomes about 18 m s−1

and the jet reaction about 350 N, corresponding to the weight of 35 kg. You do not stay on your feet for
long after being hit by such a jet, although it will probably not hurt you seriously.

�
v0

h
A0

A

� v

� x
�
z � ���x

�z

Draining cistern. The loss of
momentum from the water leav-
ing the container through the
drain requires a horizontal reac-
tion force �x from the cistern.
There is also a much smaller ver-
tical reaction force Fz .

Reaction from draining cistern
A cistern with cross section A0 drains steadily with velocity v through a spout of cross section A � A0
while being continually refilled to maintain a constant water level h above the spout. Assuming nearly ideal
flow, we may use the Toricelli result (16.21) that the outlet speed equals the free-fall speed from height
h, i.e. v ≈ √

2g0h. In the steady state, the required horizontal force on the water is as in the preceding
example,

�x ≈ ρ0v
2 A ≈ 2ρ0g0 Ah. (23.4)

This force must be ultimately provided by clamps that hold the cistern into place, or by the static friction
between the cistern and the floor that supports it.

The water moving slowly down through the cistern with vertical velocity v0 = vA/A0 requires a much
smaller force,

�z ≈ ρ0v
2
0 A0 = A

A0
�x . (23.5)
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The positive sign can be understood from the fact that the water transports a negative volume flux −v0 A0
along the z-direction with a negative momentum density −ρ0v0. The true vertical reaction force from the
ground on the bottom of the cistern is in this case �z + Mg0 where M is the total mass of the cistern plus
water.

Example 23.1.2 (Barrel of wine): With the parameters of the wine barrel (example 16.3.2), i.e.
A ≈ 20 cm2, A0 ≈ 0.8 m2, and h ≈ 2 m, one finds �x ≈ 77 N, corresponding to the weight of almost
8 litres of wine. The vertical force becomes �z = 0.2 N which only amounts to the weight of a small
thimbleful of wine.

Around the bend
A pipe with cross section A bends horizontally through an angle θ , and incompressible fluid flows steadily
through the pipe with velocity v. The control volume is chosen to contain all the fluid between inlet and
outlet, leading to a total force

� ≈ (n2 − n1)ρ0v
2 A, (23.6)

where n1 and n2 are the inlet and outlet directions of the flow. In this case there is also an external force
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A pipe bending through an angle
θ . There is ambient pressure p0
outside the system and pressure p
in the fluid.

from the pressure p on the inlet and outlet, such that the true reaction force from the fluid on the inner pipe
surface is,

� = −� + (n1 − n2)pA = (n1 − n2)(p + ρ0v
2)A. (23.7)

The precise reasons for including the pressure are given in section 23.2.

Example 23.1.3: A 90 ◦ bend in a 1 inch pipe with water flowing at 3 m s−1 requires a total force of
magnitude |� | = 6.5 N.

Nozzle puzzle
Although it is always unambiguous what the required total force should be for a fixed control volume in
steady flow, it can sometimes be hard to decide how a piece of equipment will act on the external supports
that keep it in place.

...........................................................................................................................................................................................................................
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p p0
� �v1 v2

A1

A2

� x

A nozzle formed by narrowing
down a pipe from the inlet A1 to
the open outlet A2.

As an illustration we consider a nozzle—the metal device sitting at the end of a firehose—formed by
narrowing down the cross section of a straight pipe from A1 to A2 over a fairly short distance. Mass
conservation guarantees that the same volume flux of liquid goes in and out,

Q = v1 A1 = v2 A2, (23.8)

so that the total force in the downstream direction becomes

�x = ρ0v
2
2 A2 − ρ0v

2
1 A1 = ρ0Q2

(
1

A2
− 1

A1

)
. (23.9)

The required external force is positive for A2 < A1 and it follows that the fireman, as expected, must push
forward on the nozzle.
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A nozzled firehose with an un-
supported 90 ◦ bend. The ex-
tra force required by the bend is
transmitted down from the nozzle
through the soft but unstretchable
material of the hose.

For A1 = A2 the total force vanishes, and that seems to contradict the common gardening experience
that it is always necessary to hold firmly on to an open hose (even without nozzle) because it otherwise will
flail back and drench you. So what is the actual extra force that must be applied by the hands that hold a
nozzle when water is pouring out?

The puzzle is resolved when one realizes that a soft but unstretchable hose always meanders through
bends and turns upstream of the nozzle. If, for example, the hose has an unsupported 90 ◦ bend, we find by
including the bend in the control volume that the required total force along the nozzle equals the rate of loss
of momentum through the outlet without any contribution from the inlet,

�x = ρ0v
2
2 A2 = ρ0Q2

A2
. (23.10)

The required total force is always positive in agreement with common experience.
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The explanation is apparently that the moving fluid in the unsupported bend demands an external force
for the bend to remain in place, a force which in this case is transmitted down to the bend from the nozzle
through the unstretchable material of the hose. It is definitely better to use this value for the purpose of
calculating the required strength of the supports of the nozzle. In the following section we will determine
the true reaction force on the nozzle itself.

Example 23.1.4 (Firehose): Older firehoses with 2.5 inch diameter equipped with a 1.5 inch nozzle
can typically deliver 20–40 litres of water per second. At a rate of 20 litres per second, the required
nozzle force (with a bend) is 350 N which is just about manageable for a single firefighter. A modern
5 inch firehose can deliver up to 100 litres of water per second through a 3 inch nozzle, leading to a
required force of about 2200 N. This nozzle cannot even be handled by three firefighters, but should be
firmly anchored in a boat or truck.

23.2 Formal definition of reaction force
In most cases fluid flows in and out of the control volume through well-defined openings which together
constitute a piece �S of the control volume surface S. The closed surface is thus composed of two open
parts, S = S0 +�S, where S0 is chosen to follow the inside of the fluid conduits.

S0�S �S

�S

A control volume for a T-junction
containing all the fluid between
the inner conduit walls S0 and the
inlets and outlets �S.

Absolute reaction force
The absolute reaction force is defined to be the resultant of all the contact forces that the contents of the
control volume exert on S0,

� = −
∫

S0

σσσ · d S. (23.11)

The surface contribution to the total force (22.17) may now be split into the reaction force plus a part from
the openings �S. Using the momentum balance (23.1) we obtain an exact expression for the reaction force,

� = −d�

dt
+

∫
V

f dV +
∫
�S
σσσ · d S −

∫
�S
ρv (v − vS) · d S. (23.12)

The last term (including the sign) represents as before the net momentum flux into the control volume.
Although it in itself is not a true force, momentum balance makes it appear as a contribution to the reaction
force.

Finally, we are able quantitatively to clear up the question of why rockets are said to be reaction-driven.
Choosing the control volume to encompass only the chamber in which the gases burn, the reaction force
that these gases exert on the walls of the chamber is given by the above expression. In this case, the first two
terms are tiny because they are proportional to the mass m of the burning gasses, which is normally much
smaller than the mass M of the rocket. The third term can also be disregarded because there is essentially
no stress in the exhaust (at least at subsonic speeds). Thus, for the rocket in vacuum the true reaction force
may to a very good approximation be calculated from the last term in (23.12), representing the net gain of
momentum from the gases expelled through the exhaust nozzle.

...............

................

.................
....................
.........................
...................................

..................................................................................................................................................................................................................................
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M

m

The control volume encircles the
chamber in the rocket where the
fuel burns. The reaction force�
is the total force exerted on the
walls by the gas in the chamber.
It is this reaction force which lifts
the solid structure of the rocket.

Reaction force in steady flow
Several simplifications are possible in the above expression for the reaction force. In steady flow with
a fixed control volume, the first term vanishes, d�/dt = 0. Usually the only volume force is constant
gravity g0 = (0, 0,−g0), making the volume integral equal to the weight M g0 where M is the total mass
of the control volume. Although there may be shear stresses at play in the openings �S, they tend to be
small, so the stress tensor may be replaced by the pressure −p in the third term (at least for high Reynolds
number). With these simplifications the absolute steady-flow reaction force on a fixed control volume may
be written,

� ≈ M g0 −
∫
�S

p d S −
∫
�S
ρv v · d S. (23.13)
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The first term is the well-known weight reaction which for incompressible flow is independent of the
velocity and thus equal to the static weight of the fluid. For compressible flow the mass of the fluid could
depend on the velocity of the flow; if, for example, you increase the speed of the gas in a natural gas pipeline
by increasing the inlet pressure, the gas in the pipeline becomes denser and thus weighs more.

Role of the ambient atmosphere
Most machines are immersed in an ambient ‘atmosphere’ of air (or water), which for simplicity is assumed
to be at rest with a hydrostatic pressure distribution p0. If the fixed control volume were filled with ambient
fluid at rest, the absolute (and static) reaction force would be,

�0 = M0 g0 −
∫
�S

p0 d S, (23.14)

where M0 is the mass of the ambient fluid in the control volume.
Usually, we are interested in the change �R = � −�0 in the reaction force that occurs when the

ambient fluid is replaced with the intended moving fluid, for example when water enters the firehose. This
relative reaction force becomes,

�� ≈ (M − M0)g0 −
∫
�S
(p − p0) d S −

∫
�S
ρv v · d S. (23.15)

Evidently, the relative reaction force is obtained by reducing the mass of the fluid by the buoyancy of the
displaced ambient fluid and calculating all pressures relative to the ambient pressure. The difference p− p0
between absolute pressure and the ambient pressure is called the gauge (or gage) pressure, because that is
what you would read on a manometer gauge.

Example 23.2.1 (Gas pipeline): A natural gas pipeline at the bottom of the sea transports gas between
two islands. During construction the engineers allowed sea water to fill the pipeline which rested
comfortably at the bottom under its own weight. But when the system was filled with gas, the buoyancy
of the displaced water made the pipeline float to the surface. The engineers got fired for failing to
correctly calculate the relative reaction force.

Nozzle puzzle, continued
We are now in position to calculate the relative reaction force on the firehose nozzle discussed on page 325.
Disregarding gravity and taking the outlet pressure equal to the ambient pressure p0, the relative reaction
force becomes

��x = (p − p0)A1 − ρ0v
2
2 A2 + ρ0v

2
1 A1. (23.16)

For nearly ideal flow, Bernoulli’s theorem allows us to find the pressure difference between inlet and outlet,
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The true reaction force on a
nozzle points along the direction
of flow because there is a
higher pressure before and in the
constriction than at the outlet.

1

2
v2

1 + p

ρ0
= 1

2
v2

2 + p0

ρ0
. (23.17)

Together with mass conservation (23.8), everything can be expressed in terms of the inlet and outlet areas,
with the result,

��x = (A1 − A2)
2

2A1 A2

ρ0 Q2

A2
. (23.18)

Somewhat surprisingly the fluid appears to exert a positive reaction force on the nozzle along the direction
of flow.

On reflection this is in fact in agreement with our expectations because the pressure on the inside of the
nozzle constriction is larger than the ambient pressure surrounding the nozzle. The reaction force ��x is
the force that the fireman would have to oppose, should the hose suddenly break.

Example 23.1.4 (Firehose, continued): For the older firehose the required handle force will change
instantaneously from +350 N to −200 N if the hose breaks. Since these forces are rather large, there is
a real risk that the fireman will fly off together with the nozzle.
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∗ 23.3 Reaction moments
A rotating lawn sprinkler spins and gains angular momentum by expelling water from its nozzles. As for
reaction forces, this is clearly exposed by using angular momentum balance (22.26) and (22.27),

d�

dt
=�−

∮
S
ρ x × v (v − vS) · d S. (23.19)

The last term (including the sign) represents the net flux of angular momentum into the control volume
through its surface. It must be emphasized that this term is not a true moment of force acting on the system,
nor the reaction to another moment, but rather a ‘fictitious’ moment akin to the moment created by the
Coriolis force in a rotating frame of reference. As for reaction forces, this term may be shown to contribute
to the true reaction moment although we shall not carry out the analysis here.
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Sketch of a rotor on its shaft,
rotating steadily with angular
velocity � around the z-axis.

The rotor
In turbomachines there is always a solid rotating part, generically called the rotor, which diverts the flow
and either puts energy into the fluid or takes it away. The rotor is usually mounted on a rigid shaft, and the
energy is transmitted to or from the rotor through an external moment of force, or torque, applied to the
shaft. The rotor is carefully designed with a number of channels that guide the flow in and out, and mostly
the channels are constructed from thin blades that obstruct the flow as little as possible. Rotors essentially
only differ in the way their channels are designed. In an axial flow rotor, the channels run along the axis,
and in a radial flow rotor the channels are radial. Rotor design is a highly evolved engineering discipline
and most real turbomachines employ a mixture of axial and radial flow.......................................................
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A rotor channel with radial inflow
at 1 and axial outflow at 2.

Steady flow rotor physics
Even when the rotor spins steadily, the flow in the rotor will strictly speaking be unsteady seen from the
inertial ‘laboratory’ frame because of the moving blades. In the rotating frame of the rotor, the flow will
however be steady, apart from the turbulence that may arise in rapid flow. It is for this reason natural to
choose a rotating control volume which is fixed with respect to the rotor and contains all the fluid in the
rotor.

When the rotor spins with angular velocity� around the z-axis, the control volume rotates with velocity
vS = � r eφ in the laboratory frame (using cylindrical coordinates with z-axis along the rotor axis). The
flow velocity relative to the rotor is denoted

u = v − vS = v −� r eφ (23.20)

where v is the ‘absolute’ flow velocity in the non-rotating laboratory frame.
In steady operation the total angular momentum contained in the control volume must be constant,

d�/dt = 0, in spite of the fact that it rotates. Using that the specific angular momentum along the cylinder
axis is (x × v)z = rvφ , the total axial moment of force which has to be exerted by the environment on the
fluid in the rotor is obtained from angular momentum balance (23.19),

�z =
∮

S
rvφ ρ u · d S. (23.21)

The environment may contribute in several ways to this moment, for example through friction as we saw
for the lawn sprinkler, but if friction can be disregarded, �z will be the moment that must be applied to the
shaft to keep the rotor spinning steadily (and −�z is the reaction moment from the fluid). In the following
we shall for simplicity assume this is the case.

The total rate of work, or power, that the environment must supply to or take away from the solid shaft
is obtained by multiplying the moment �z with the angular velocity � (see problem 23.3),

P = ��z . (23.22)

If the shaft power is positive, the rotor takes energy from the shaft which is put into the flow, as for example
in a hair dryer. If on the other hand the shaft power is negative, the rotor produces energy and acts like a
turbine by taking energy out of the flow.
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Turbomachines running full of fluid, such as a lawn sprinklers, are driven by pressure differences
between inlets and outlets. Taking only into account the pseudo-gravitational potential −(1/2)�2r2 of the
centrifugal force (see equation (7.3)), the general Bernoulli function (16.35) becomes in the rotating frame,

H = 1
2 u2 − 1

2�
2r2 + w(p). (23.23)

Here w(p) is the pressure function (16.36), which for incompressible fluids is simply w = p/ρ0. The
constancy of H along a streamline in nearly ideal steady flow creates a relation between inlet and outlet
pressures. Bernoulli’s theorem should, however, be used with some caution and will not be fulfilled if a
significant amount of energy is dissipated into heat through turbulence.

Example 23.3.1 (Lawn sprinkler): Returning to the lawn sprinkler in example 22.6.1 on page 315
we now assume that the water feeds into the sprinkler pivot through a 1/2 inch tube. Ignoring the square
of the small inlet velocity (about 2 m s−1), Bernoulli’s theorem implies that in the steady state the inlet
pressure excess is

�p = p − p0 ≈ 1
2ρ0(U

2 −�2
0 R2) ≈ 0.5 bar. (23.24)

The total power consumed by the sprinkler is determined by the pressure excess (and thus paid for by
the waterworks). It is P0 = �p Q/ρ0 ≈ 12 W and mostly goes to supply kinetic energy to the sprinkled
water. The total shaft power (lost to friction) becomes P = −N�0 ≈ −1.3 W which is only a tenth of
the total power consumption.

Radial flow rotor
Radial flow rotors are mostly used in high-pressure turbomachinery, such as pumps, compressors and
hydraulic turbines. Although the following analysis concerns a turbine, it is also valid for a pump. We
assume that the flow is effectively incompressible and nearly ideal.
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Sketch of a radial flow turbine
rotating steadily with angular
velocity �. The z-axis comes
out of the paper. Fluid enters the
rotor at r = b, moves radially
inwards, and leaves at r = a
where it is diverted away along
the axis.

Let the rotor have inner radius a, outer radius b and axial length L . We shall for simplicity assume that
it is perfectly cylindrical with the same properties along the whole of its length 0 < z < L , such that the
channels have the same shape for all z. In a turbine, high-speed water is fed in at the outer perimeter r = b
with (negative) radial velocity ur (b) = vr (b) and removed at the inner perimeter r = a with (negative)
radial velocity ur (a) = vr (a). In a pump the radial velocities are positive. Disregarding the blocking from
the thin blades separating the otherwise identical channels, the total volume flux is approximately,

Q = 2πaLur (a) = 2πbLur (b). (23.25)

The integral in the shaft moment (23.21) only receives contributions from the radial surfaces at r = a, b.
Since vφ is approximatively independent of φ and z, we find from (23.22) the shaft power (Euler’s turbine
equation),

P = (b vφ(b)− a vφ(a))ρ0�Q. (23.26)

For a turbine where Q is negative, the shaft power will be negative as long as the angular momentum �
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Sketch of a curved blade with
slope αa at r = a and αb at
r = b relative to the radial
direction. Here αa is positive and
αb negative.

density is larger at the entry than at the exit, b vφ(b) > a vφ(a). The fluid understandably has to lose
angular momentum for the rotor to produce the work that may drive an electric generator. In a pump, it is
the other way around.

The rotor consists of a number of thin blades mounted radially on a hub like the spokes of a wheel.
Let the rotor blades be designed such that the geometric slopes with respect to the radial direction are αa at
r = a and αb at r = b. In smooth operation we assume that the steady flow enters and leaves tangentially
along the blades. Although a rotor can still operate if this condition is not fulfilled, it is much more liable
to generate turbulence and even cavitation accompanied by loss of power, because of the sudden change in
flow direction, especially at the entry. The smoothness condition provides the following relations between
the relative radial and azimuthal velocities,

uφ(a) = αaur (a), uφ(b) = αbur (b). (23.27)

Using that the absolute azimuthal velocity is vφ(r) = uφ(r)+�r , and eliminating the azimuthal velocities
by means of these equations and the radial velocities by means of mass conservation (23.25), we obtain

P =
((

b2 − a2)�+ Q

2πL
(αb − αa)

)
ρ0�Q. (23.28)
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Even if the blades have no curvature, αa = αb, the shaft power will be non-vanishing. If αb < αa , both
terms in parenthesis are positive for a turbine where Q < 0.

Applying Bernoulli’s theorem in the rotating frame to a streamline passing through a channel, it follows
from (23.23) that

1

2
u(a)2 − 1

2
�2a2 + p(a)

ρ0
= 1

2
u(b)2 − 1

2
�2b2 + p(b)

ρ0
.

Using u2 = u2
r + u2

φ we obtain after elimination of the velocities

�
�
�
�
�
�
�
�

ur

uφ
u

The relation between radial ve-
locity ur = vr and azimuthal ve-
locity uφ = vφ − �r in the rest
system of the rotor. The slope is
defined to be α = uφ/ur , and is
negative in this picture.

p(b)− p(a) = 1

2
ρ0

(
�2

(
b2 − a2

)
+ Q2

(2πL)2

(
1 + α2

a

a2
− 1 + α2

b

b2

))
. (23.29)

The first term is due to the centrifugal force and the second to the change in velocity through the rotor
channel. If the slopes are of nearly equal magnitudes, |αa | ≈ |αb| both terms will be positive, so the
pressure will always be largest at the outer rim of the rotor. This is the pressure head which drives a
hydraulic turbine powered by high-pressure water coming down from a reservoir. Conversely, this must
also be the pressure head created by the pump used to lift water up into a reservoir.

Example 23.3.2 (Hydraulic turbine): A large hydraulic turbine is driven by water piped down from
a reservoir h = 110 m above the turbine. The rotor axis is vertical and the inner and outer radii are
a = 2 m and b = 3 m. The axial length is L = 0.5 m, and the rotor rotates at 60 rpm, i.e. once per
second or � = 2π s−1. The blades are constructed with vanishing entry slope αb = 0, so that the
azimuthal inlet velocity is vφ(b) = �b ≈ 19 m s−1. At the exit the slope is chosen to be αa = 1/3,

and the flow is required to be purely radial, vφ(a) = 0, leading to ur (a) = −�a/αa ≈ −38 m s−1 and
ur (b) = aur (a)/b ≈ −25 m s−1. The absolute inlet velocity of the water becomes v(b) ≈ 31 m s−1,
corresponding to a free-fall from 50 m height. The flux of water may now be calculated from (23.25)
and becomes Q ≈ −237 m3 s−1. The total shaft power (23.28) is P ≈ −84 MW. The pressure drop

�

�

z

r

a

b

z1 z2

� vz � vz�vφ �vφ

Sketch of axial flow rotor. The
control volume is defined by
z1 < z < z2 and a < r < b. The
axial flow vz(r) is independent
of z, whereas the azimuthal flow
vφ(r, z) may depend on both r
and z.

through the turbine is about�p = p(b)−p(a) ≈ 5.7 bar which is a bit more than half the static pressure
head from the reservoir. The total rate of work of the excess pressure is P0 = �p Q ≈ 136 MW, so
the shaft work of the turbine is about P/P0 ≈ 62% of the total work of the water. The remainder is
found in the kinetic energy of the water coming out of the turbine at higher speed than it entered. In this
calculation we have disregarded losses due to friction and turbulence which can be quite significant.

Axial flow rotor
Axial flow rotors are typically used in high-volume turbomachinery, such as fans and low-pressure turbines.
The fluid is also in this case taken to be nearly ideal and effectively incompressible with constant density,
ρ = ρ0. Since there is no radial flow in this design, mass conservation guarantees that the axial velocity
vz = vz(r) is independent of z. The rotor is assumed to be cylindrical with inner and outer radii a and b,
and thin blades that do not significantly obstruct the flow. The fluid enters the rotor at z = z1 and leaves at
z = z2. We shall for simplicity assume that the axial flow is uniform vz = U , so that the total volume flux
through the rotor becomes

Q =
∫ b

a
vz(r) 2πr dr = U A, (23.30)

where A = π(b2 − a2) is the area of the axial rotor cross section.
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Rotor design with blades ar-
ranged like the spokes of a wheel.
The positive z-axis comes out of
the paper, and the indicated sense
of rotation is positive.

The rotor channels change the azimuthal velocity field vφ(r, z). The integral in the shaft moment
(23.21) only receives contributions from the inlet at z = z1 and the outlet at z = z2, so the shaft power
becomes

P = �

∫ b

a
ρ0r

(
vφ(r, z2)− vφ(r, z1)

)
vz(r) 2πr dr = 〈

r(vφ2 − vφ1)
〉
ρ0�Q. (23.31)

In the last step we have expressed the integral in terms of the area average 〈 f 〉 = (1/A)
∫ b

a f (r)2πr dr
over the cross section of the rotor. The shaft power is positive if the azimuthal speed generally increases
through the rotor, as one would expect.
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In steady operation we assume that the fl ow enters and l eaves t he spinni ng rotor t angentially al ong the
bl ades. T he r ot or bl ades ar e desi gned s uch t hat t he sl ope w i t h r espect t o t he z -axi s i s α1(r) at t he e nt r a nce
and α2(r) at the exit. Since the relative azimuthal rotor speed is uφ = vφ −� r , t he smoot hness condition
amount s t o,

uφ 1 = vφ 1 −�r = α 1 U, uφ 2 = vφ 2 −�r = α 2 U. ( 23. 32)

Using t hese relations to eliminat e t he azi muthal velocities, the shaft power may be written

P = 〈r(α2 − α 1)〉ρ  0 U� Q. ( 23. 33)

T he s l ope average 〈r(α2 − α  1)〉 i s a pur el y geomet r i c fact or w hi c h i s i ndependent of bot h U and �.
Note that this expression is only valid if the smoothness condition is actually fulfilled.
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α1
α2

z1 z 2
T he a xi al fl ow r ot or seen edge-
w i se, f ol ded out al ong a c onst a nt
r a di us r with the r - a xi s goi ng i nt o
t he paper. T he bl ades have sl ope
α1 relative to the z - a xi s a t t he en-
t r ance z = z1 and α 2 at t he exi t
z = z2 ; here shown with α 1 > 0
and α2 < 0.

I f t he i nl et and exi t s l opes a r e t he s ame α1 = α  2 , t he t ot a l s haf t pow e r a ppear s t o vani s h. T hi s seems
a bit puzzling, because it is well known that propellers with flat blades also require engine power
to turn steadily. The explanation is that for such devices the smoothness condition is not fulfilled,
and the fluid hits the propeller blades at an ‘angle of attack’, resulting in aerodynamic forces which
oppose the motion and thus require power in the steady state (aerodynamic forces are discussed at
l e ngt h i n c hapt er 29) .

The actual geometric design of the blades provides us with the slopes. Here we shall for simplicity only
consider the case in which the blades have slopes that grow proportionally with the radial distance r , i.e.
α1 = β1r and α2 = β2r . Under this assumption, the fluid will rotate like a solid body with vφ1 = �1r at
the entrance and vφ2 = �2r at the exit, where the smoothness condition determines the angular velocities,

�1 = �+ β1U, �2 = �+ β2U. (23.34)

Now the shaft power (23.33) can be calculated explicitly with the result

P = 1
2 (a

2 + b2)(β2 − β1)ρ0U�Q. (23.35)

If the blades are not designed with uniformly growing slopes, this expression may still be used for the
purpose of doing estimates.

Finally, the pressure change through the rotor is obtained from the Bernoulli function (23.23) in the rest
system of the rotor. For a streamline at constant r passing through an axial channel from inlet to outlet we
find

1

2
u2

1 − 1

2
�2r2 + p1

ρ0
= 1

2
u2

2 − 1

2
�2r2 + p2

ρ0
.

Using u2 = u2
φ + u2

z and uz = vz = U , we arrive at

p1 − p2 = 1

2
ρ0(α

2
2 − α2

1)U
2 = 1

2
ρ0(β

2
2 − β2

1 )r
2U2. (23.36)

The pressure difference between inlet and outlet grows in this case with the square of the distance of the
channel from the axis.

Axial flow turbines are often provided with upstream guide vanes to add an initial azimuthal spin �1
to the fluid before it enters the rotor. The guide vanes have basically the same function as the rotor blades,
but since they are solidly anchored to the housing of the machine the reaction moment from the fluid on
the guide vanes have no influence on the shaft power. For axial flow blowers, downstream guide vanes may
similarly be used to ‘straighten out’ the rotating fluid before it exits from the blower.

Example 23.3.3 (Air blower): In longer road tunnels axial flow air blowers are often used to create
an artificial draught along the tunnel in order to rid it of exhaust fumes, especially when traffic has
stalled. Suppose an air blower with outer diameter 2b = 60 cm and hub diameter 2a ≈ 20 cm operates
at � = 600 rpm = 10 × 2π s−1. The blades are constructed with radially increasing slopes, and
the maximal entrance angle at the tip of a blade is −45 ◦, corresponding to α1(b) = −1 and thus
β1 = α1(b)/b ≈ −3.33 m−1. At the entrance the air has no spin, �1 = 0, and the axial flow becomes
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U = −�/β1 ≈ 19 m s−1. At the exit, the blade slope vanishes, β2 = 0, so that �2 = �. The
total volume flow becomes Q ≈ 4.7 m3 s−1 and the total shaft power becomes P ≈ 1 kW. The
maximal pressure increase across the blower is found at the tip of the blades, r = b, and is merely
�p = p2 − p1 ≈ 195 Pa ≈ 2 mbar.
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The blades in the air blower of
example 23.3.3 folded out along
the rotor circumference. The
blades move upwards here.

Rotor scaling relations
Although one may estimate the overall behaviour of a rotor from angular momentum balance and
Bernoulli’s theorem, the details of the flow pattern through the actual rotor and the unavoidable viscosity
of the fluid will give rise to important corrections to the shaft power and the pressure jump across the rotor,
corrections that may not be easily calculable from theory. Model studies of scaled down versions of the
rotor may, however, be feasible and the measured values of shaft power and pressure jump can afterwards
be scaled up to yield a prediction for the actual machinery. So we need to know the scaling relations for
these quantities.

A rotor of a given design is characterized by a single length scale D, the ‘diameter’ of the system. The
fluid itself is characterized by its density ρ at some point, say at the inlet. We shall furthermore assume
that the viscosity is so small that it can be disregarded. During steady operation of the rotor, the controlling
parameters are the angular velocity � and volume flux Q. Since D controls the length scale, � the time
scale, the only dimensionless parameter which can be constructed is,

q = Q

�D3
. (23.37)

It may be viewed as a dimensionless representation of the volume flux and is usually called the flow
coefficient. It also represents the ratio q ∼ u/v between the relative flow velocity u ∼ Q/D2 and the
absolute velocity v ∼ �D.

From (23.21) and (23.22) it follows that the shaft power scales like P ∼ �Dvρ0 Q ∼ �2 D2ρ0Q.
Similarly, it follows from (23.23) that the pressure head scales like �p ∼ (1/2)ρ0�

2 D2. The exact
equations of fluid mechanics (without viscosity) must therefore provide relationships of the form

P

�2 D2ρ0Q
= f (q),

�p

(1/2)ρ0�
2 D2

= g(q), (23.38)

where f (q) and g(q) are—generally unknown—dimensionless functions of the dimensionless control
variable q. For a radial rotor with nearly ideal incompressible flow, we take D = b and find from (23.28)
and (23.29),

f = 1 − a2

b2
+ q

b

2πL
(αb − αa), g = 1 − a2

b2
+ q2 b4

(2πL)2

(
1 + α2

a

a2
− 1 + α2

b

b2

)
.

If viscosity is important, f and g will also depend on the Reynolds number.

Example 23.3.4 (Model turbine): For the hydraulic turbine of example 23.3.2 we take D = b and
find q = 1.4. A model turbine scaled down by a factor of 10, i.e. with D → 0.1D, but operated
at the same angular velocity � and the same value of q has a thousand times smaller volume flux
Q → 10−3 Q. The scaling relations now imply that P → 10−5 P and�p → 10−2�p, independent of
the form of the generally unknown functions f and g. Measuring the values of P and �p in the model
turbine immediately allows us to infer the values for the full-scale turbine (the Reynolds numbers will,
however, be different for turbine and model).

Problems
23.1 A horizontal 1 inch water pipe bends horizontally 180 ◦. Estimate the magnitude of the force that
the water exerts on the pipe, when the water speed is 1 m s−1.
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23.2 A firefighter bends a water hose through 90 ◦ close to the nozzle where the pressure is nearly
atmospheric. The hose diameter is 5 cm and it discharges 40 litres per second. Calculate the magnitude of
the force that the firefighter has to exert on the hose to bend it. Will he be able to hold the hose without
using equipment?

23.3 Consider a solid body rotating with angular velocity � around the z-axis under the action of a
moment of force �z . Show that the total power is P = ��z .
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S urface waves i n t he sea are creat ed by t he i nt eract i on of w i nd and wat er w hi ch somehow t ransforms t he
steady motion of the streaming air into the nearly periodic swelling and subsiding of the water. The waves
appear t o r ol l t owar ds t he coast i n fai r l y or der l y sequence of cr est s and t r oughs t hat i s t r ansl at ed i nt o t he
qui ck ebb and fl ow of wat er at t he beach, s o w el l known t o al l of us. On t op of t hat t here i s , of course, t he
sl ow ebb and fl ow of t he t i des.

I n const a nt ‘ fl at - E ar t h’ gr avi t y, t he i nt e r face bet w een t wo fl ui ds at r e st i s alwa ys hor i z ont al . I n m ovi ng
fl ui ds t he i nt e r face can t a ke a ver y c ompl ex i nst ant a neous shape under t he si mul t a neous i nfl uence of i ner t i a ,
pr essur e , gr avi t y, c ont ai ner s hape, s ur face t e nsi on a nd vi scosi t y. Waves cont r ol l e d by pr e ssur e and gr avi t y
are nat ural l y cal l ed gravi t y w aves , w hereas waves cont rol l ed by pressure and surface t ensi on are cal l ed
capillary waves. If the fluids have vastly different densities, as is the case for the sea and the atmosphere,
one may of t en di sr egar d t he l i ght er fl ui d and i nst ead consi der t he open s ur face of t he heavi er fl ui d agai nst
vacuum. For fl ui ds of nearl y equal densi t y, f or exampl e a s al i ne bot t om l ayer i n t he s ea overl ayed wi t h a
bracki s h l ayer, i nt e rnal gravi t y w aves driven by pressure and buoyancy may ari s e i n t he i nt erface.

T hi s chapt e r i s devot ed t o t he var i ous t ypes of s mal l - ampl i t ude sur face wave s a nd t he c ondi t i ons under
w hi ch t hey occur ( see [ 42, 67 , 1 , 22 , 36 ] f or ext ended di s cussi ons of sur face waves) . Mat hemat i cal l y, s mal l -
ampl i t ude waves ar e by far t he easi est t o deal w i t h. Mor e i nt er est i ng and unusual wave t ypes ar i se w hen
ampl i t udes grow s o l arge t hat t he nonl i near aspect s of fl ui d m echani cs come i nt o pl ay. Nonl i near waves
are common everyday occurrences, from t he familiar r un- up of waves on a beach to the l ess familiar soni c
boom f r om a n a i r cr af t ove r head, but t he s ubj ect of t r ul y nonl i near wave s i s unf or t unat e l y so mat hemat i cal l y
chal l engi ng t hat we shal l onl y t reat i t s si mpl er aspect s here ( chapt er 25).

24.1 B asic physics o f s urface waves
T he shape of an interface between two fl uids in hydros tatic equilibrium is determined by the balance
bet w een t he pr e ssur e gr adi e nt and gr avi t y t hr oughout t he i nt er i or of t he fl ui ds ( chapt e r 7) . S ur face t e nsi on
may a l s o have pr of ound i nfl uence on t he s hape of smal l fl ui d vol umes, f or exampl e a r a i ndr op ( c hapt er 8) .
What we shall call waves in this chapter are time-dependent disturbances of a fluid interface originally in
hydrostatic equilibrium.

Although surface waves may occur wherever material properties change, we shall mostly think of
gravity waves. In constant gravity, the hydrostatic interface between the sea and the air is flat and horizontal,
usually taken to be z = 0 in a flat-Earth coordinate system. A wave will disturb the surface so that its

Copyright © 2005 IOP Publishing Ltd.



336 24. SMALL-AMPLITUDE SURFACE WAVES

instantaneous height becomes a function of the horizontal coordinates and time,

z = h(x, y, t). (24.1)

Our interest will mainly focus on trains of waves that progress periodically and in a regular pattern across�
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A surface wave in the flat-Earth
coordinate system.

the horizontal surface of the sea, although everyday experience tells us that waves can be much more
complicated. In a breaking wave, the surface height is not even a single-valued function of position.

Waves can be created in many ways. The splash you make when you jump bottom-first into a swimming
pool creates first a single large ring-shaped wave, perhaps followed by several smaller waves. When these
waves hit the edge of the pool they are reflected and interfere with themselves to create quite chaotic
patterns. In this chapter we shall, however, not be concerned much with the mechanisms by which waves
are created, but rather with their internal dynamics after they have somehow been brought into existence.

Wave parameters
Any non-breaking surface wave consists locally of mounds and hollows of roughly the same size in the
otherwise smooth equilibrium surface. Although a general wave can be very complex, it is convenient to
describe these local features in terms of parameters that are normally reserved for harmonic waves:
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A general wave consists of
mounds and hollows. Locally,
the amplitude a is related to the
vertical distance between max-
ima and minima, the wavelength
λ to the horizontal size of a
mound or hollow, and the pe-
riod τ to the time scale for ma-
jor changes in the local pattern.
The depth d is the average verti-
cal distance to the bottom.

• a—amplitude. It sets the scale for vertical variations in the height of the wave. Mostly it is taken to
be the height of a mound above the equilibrium level, or equivalently the depth of a hollow below.

• λ—wavelength. This is the horizontal length scale of the wave, typically related to the width of a
mound or a hollow.

• τ—period. A measure of the time scale for major changes in the wave pattern, for example the time
it takes for a mound to become a hollow.

• d—depth. The vertical distance to a solid boundary, the ‘bottom’.

The ratio c = λ/τ is called the celerity or phase velocity of the wave, and characterizes the speed with
which the waveform changes shape.

If the wavelength is much greater than the depth, λ � d , we shall speak about long waves or more
graphically shallow-water waves. Similarly, waves with wavelength much smaller than the depth, λ � d ,
are called short waves or deep-water waves. Waves with amplitude much smaller than both wavelength and
depth, a � λ, d , are called small-amplitude waves.

The dispersion law
In a gravity wave the force of gravity pulls the water of a mound downwards and sets it into motion, and
this motion may in turn make the water rise again. Whereas the potential energy of the wave only depends
on its shape, the kinetic energy also depends on the flow velocities in the wave, and thus on the period.
Therefore, if no energy is lost to friction, this continual conversion of potential energy into kinetic energy
and back must provide a relation between the period of a wave and the other parameters,

τ = τ(a, λ, d, . . .). (24.2)

The precise form of this dispersion law for a particular type of wave is normally obtained from careful
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A ‘waterberg’ of height a and
width λ rising out of a sea of
depth d . When the waterberg
collapses vertically, all the water
in it has to disperse in the
horizontal directions.

analysis of the wave dynamics, several examples of which will be given later. Here we shall only make a
coarse estimate of the general form of the dispersion law using that potential and kinetic energies must be
of comparable magnitudes.

Collapse of a ‘waterberg’
Suppose we have somehow created a mound of water, instantaneously at rest, for example by pulling an
inverted water-filled bucket up through the flat surface of the sea. Common experience tells us that such a
‘waterberg’ will quickly collapse into the sea, creating instead a smaller and wider hollow which may later
rise again to make an even smaller mound that in turn collapses, and so on. Eventually all traces of the
initial mound will have disappeared into secondary waves running away over the surface.
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Let the initial mound have height a and width λ so that its volume is of magnitude λ2a. During the first
collapse all the water in the mound will move vertically downwards and reach the sea level in characteristic
time τ . Since water is incompressible, an equal volume has to move horizontally away from the collapse
region with a typical speed U . For long waves with λ � d , the proximity of the bottom forces all the water
underneath the mound to move away horizontally. Mass conservation tells us that the volume of the mound
equals the volume that streams away over a period, or λ2a ∼ λd Uτ . Solving for U we find,

U ∼ aλ

τd
. (24.3)

Since the typical vertical speed is a/τ , the horizontal flow velocity U in a shallow sea will be much greater
than the vertical by a factor λ/d � 1. For short waves with λ � d , there is no bottom to divert the water
flow so that the horizontal velocity tends to be of same order of magnitude as the vertical, i.e. U ∼ a/τ near
the surface. From the expression for U , one may thus conclude that the deep sea may be characterized by
an effective depth of the same magnitude as the wavelength, d ∼ λ. These claims will be confirmed later
by precise calculations, showing in fact that the effective depth of the deep sea is d ≈ λ/2π .

The potential energy of the initial mound relative to the general level of the sea is of magnitude,

� ∼ ρ0λ
2a · g0 a = ρ0g0a2λ2. (24.4)

Interestingly, a hollow of depth a and width λ would have a potential energy of the same magnitude, for the
simple reason that buoyancy presses the surface upward, like the hull of a ship.

The kinetic energy in the horizontal motion of the collapsing water mound becomes of magnitude

� ∼ ρ0λ
2d · U2 ∼ ρ0

λ4a2

τ2d
. (24.5)

In the absence of dissipation, the kinetic energy must be comparable to the potential energy, � ∼ � , and
solving for τ we obtain the estimate of the dispersion law,

τ ∼ λ√
g0d

. (24.6)

Note that the amplitude fell out of this expression. The dispersion law is merely a coarse estimate of
the overall magnitude of the collapse time. It may still be multiplied by an unknown factor of order unity
which can depend on the dimensionless ratios a/λ and d/λ, and possibly on other dimensionless parameters
characterizing the actual shape of the wave.

From the dispersion law we immediately get the phase velocity

c = λ

τ
∼ √

g0d. (24.7)

Like an echo of Toricelli’s law (page 210) it is of the same order of magnitude as the free-fall velocity√
2g0d from height d . In shallow water where d is the true depth of the sea, the phase velocity is

independent of wavelength. In deep water where the true depth is infinite, the effective depth may as
pointed out above be taken to be d ≈ λ/2π .

Example 24.1.1 (Inverted bucket): A little ‘waterberg’ created by lifting an inverted bucket of height
a = 30 cm and width λ = 50 cm out of water of depth d = 1 m collapses in just τ ∼ 0.15 s.

Gravity waves are nearly ideal
The shape of a surface wave is only a manifestation of the underlying hydrodynamics, governed by the
Navier–Stokes equations. From the estimate (24.3) of the horizontal flow velocity we estimate the Reynolds
number in shallow water to be,

Re = |(v · ∇)v|
ν

∣∣∣∇2v

∣∣∣ ∼ U2/λ

νU/d2
= ad

ντ
. (24.8)
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Here we have assumed t hat t he advect ive accel erat i on i s domi nat ed by fast hori zont al mot i on over a l engt h
scal e λ , w hereas t he vi s cous accel erat i on i s domi nat ed by t he vert i cal vari at i on i n t he hori zont al fl ow over
the depth d . For deep-wat er waves d may as before be r epl aced by λ/2π .

T he t ypi cal sea waves w e encount er w hen sw i mmi ng cl ose t o t he shor e at a dept h of a coupl e of
met r es have ampl i t udes up t o a met r e and per i ods of some seconds. Wi t h ν ≈ 10−6 m2 s−1 for wat er, t he
Reynolds number w ill be in the millions, and viscosity plays essentially no role for such waves. I n daily life
we are otherwise quite familiar with vi scous waves, for example while stirring porridge, but they are not
so interesting because they quickly die out. N early ideal gravity waves i n water simply keep rolling along.
E vent ual l y vi scosi t y wi l l al so make t hese waves di e away i f l eft on t hei r ow n, but t hat probl em can be deal t
with separately (see section 24. 6).

Small-amplitude waves are nearly linear
T he nonl i near i t y of t he e quat i ons of fl ui d mechani c s m akes sur face wave s m uch m or e c ompl ex t han,
f or exampl e, el ect r omagnet i c waves gover ned by t he l i near Maxw el l equat i ons. T he nonl i near advect ive
accel erat i on of t he fl ui d (v ·∇)v can however oft en be di sregarded i n compari son w i t h t he l ocal accel erat i on
∂v/∂ t , s o t hat t he N avi er–S t oke s e quat i ons al so become l i near. For shal l ow - wa t e r waves w e obt ai n t he r a t i o
of advect ive t o l ocal accel erat i on,

|(v · ∇)v|
|∂v/∂t | ≈ U2/λ

U/τ
≈ U

c
≈ a

d
. (24.9)

Quite generally we can conclude that the advective term plays no role for small-amplitude waves with
a � d (and d ≈ λ/2π in deep water). In short: the Navier–Stokes equations become linear in the small-
amplitude limit.

The most general solution to a set of linear field equations with constant coefficients is a linear
superposition of elementary harmonic solutions (possibly damped). We have seen this for small-amplitude
vi br at i ons i n sol i ds ( chapt e r 14) as w e l l as f or s mal l - ampl i t ude pr essur e wave s i n fl ui ds ( s ect i on 17. 6) . I n
these cases the three-dimensional waves are superpositions of elementary plane waves, each of which at
any given time has constant physical properties in any plane orthogonal to its direction of propagation. The
same will be the case for the flow (literally) underlying small-amplitude surface waves.

24.2 Harmonic line waves
Three-dimensional plane waves have identical physical properties in every plane orthogonal to the direction
of propagation. Surface waves are two-dimensional, and elementary harmonic surface waves have the same
physical properties on any line orthogonal to the direction of propagation. A harmonic line wave is of the
form

h = a cos(kx x + ky y − ωt + χ) (24.10)

where k = (kx , ky, 0) is the wave vector, k = |k| = 2π/λ the wavenumber, ω = 2π/τ the circular
frequency and χ the phase shift. The argument of the cosine, φ = kx x + ky y − ωt + χ , is called the
phase of the wave. The phase shift can for a single wave always be absorbed in the choice of origin of
the coordinate system or of time, but differences between phase shifts may become of physical importance
when waves are superposed.

�

�

�
�
�
�
�
�
�
�
��

x

y n

θ

A periodic line wave on the
surface. The crests are parallel
lines orthogonal to the vector n =
(cos θ, sin θ, 0), forming an angle
θ with the x-axis.

The maxima or minima, or crests and troughs as they are called for surface waves, move steadily along
in the direction n = k/k = (cos θ, sin θ, 0) with the phase velocity,

c = λ

τ
= ω

k
. (24.11)

For small-amplitude shallow-water waves where the dispersion law is linear, the phase velocity is
independent of the wavenumber k. In general, however, the dispersion law will be nonlinear, τ = τ(λ)

or equivalently ω = ω(k), as we saw for deep-water waves, and the phase velocity will depend on the
wavenumber.
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Figure 24.1. Superposition of two harmonic line waves with nearly equal wavenumbers, here at t = 0 for
k = 8�k, �k = 2π , a = 1 and χ = 0. The rapid oscillation of the ‘carrier’ wave is modulated and broken
into a ‘beat pattern’ of wave packets of length 2π/�k = 1 centred at x = n for all integer n.

Group velocity
Consider now two harmonic line waves which for simplicity are chosen to run along the x-axis with the
same amplitudes. Their phases are φ1 = k1x − ω1t + χ1 and φ2 = k2x − ω2t + χ2, and using the
trigonometric relation,

cos φ1 + cos φ2 = 2 cos
φ1 + φ2

2
cos

φ1 − φ2

2
, (24.12)

the superposition h = h1 + h2 may be written,

h = 2a cos(kx − ωt + χ) cos
1

2
(�k x −�ω t +�χ), (24.13)

where k = (k1 + k2)/2 etc are the average quantities for the two waves, and �k = k1 − k2 etc are the
differences. The first oscillating factor evidently describes a line wave moving along the x-axis with the
average values of the wavenumbers, frequencies and phase shifts, but the amplitude of this wave is now
modulated by the second factor.

If the differences are much smaller than the averages, |�k| � |k|, |�ω| � |ω|, and |�χ | � |χ |, the
second cosine factor will only slowly modulate the rapid oscillations of the first. Since the second cosine
vanishes when its arguments pass through (1/2)π + nπ where n is an arbitrary integer, it will chop the
average wave up into a string of wave packets of typical length L = 2π/ |�k|, as pictured in figure 24.1.
Inside each wave packet, the crests will move with the phase velocity c = ω/k, whereas the centre of each
wave packet will move with the speed�ω/�k = (ω(k1)−ω(k2))/�k ≈ dω(k)/dk. Thus, the propagation
speed of a wave packet is given by the derivative of the dispersion law,

cg = dω

dk
, (24.14)

also called the group velocity.
A single Gaussian wave packet.Any superposition of waves with nearly equal wave vectors will in fact form one or more wave packets

moving with the group velocity (see problem 24.7). If the dispersion law is linear, the group and phase
velocities are equal, but if the dispersion law is nonlinear they will be different, and the waves are said to
be dispersive. If the group velocity is smaller than the phase velocity, cg < c, the wave crests will move
forward inside a wave packet as it proceeds across the surface, and conversely if it is larger.

Energy transport and group velocity
In a single wave packet, the velocity field is only non-zero in the region covered by the wave packet, so that
the energy of the wave must be concentrated here and transported along the surface with the group velocity,
rather than with the phase velocity. The same must be true for any superposition of single wave packets
with wavenumbers taken from a narrow band of width �k around k, such as the one shown in figure 24.1.
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In the limit where the bandwidth �k narrows down to nothing, the energy must still be transported with the
gr oup ve l oci t y, s o i n t he end w e r each t he s l i ght l y st r a nge concl usi on t hat even i n a pur el y m onof r e quent
l i ne wave t he energy must be t r anspor t e d w i t h t he gr oup ve l oci t y ( s ee page 356) .

24.3 Gravity waves
S m al l - ampl i t ude, i nvi s ci d gr avi t y wave s i n i ncompr essi bl e wat er obey t he l i near i zed E ul e r e quat i on w i t hout
t he advect ive t erm,

∂v

∂ t
= −  

1

ρ0
∇ p + g, ∇ · v = 0, ( 24. 15)

where g = ( 0, 0,− g0) . T hese equations do not explicitly involve the surface height, which will only come
in via t he boundary conditions.

Bo unda ry co ndi ti o ns
At t he open s urface, z = h , t here are t wo boundary conditions which must be f ulfi lled. T he fi rst i s purely
kinematic and expresses t hat a fl uid particle sitting on t he surface should f ollow t he surface motion. Under
the assumption of small amplitudes, a � d, λ, t he sur face i s near l y hor i z ont al ever yw her e , s o t hat t he
ve r t i cal ve l oci t y of t he fl ui d j ust bel ow t he s ur face shoul d e qual t he ve r t i cal ve l oci t y of t he s ur face i t s el f ,

∂h

∂t
= vz for z = h. (24.16)

The second boundary condition is dynamic and expresses the continuity of the pressure across the surface.
Assuming that there is air or vacuum with constant pressure p0 above the surface, the condition becomes

p = p0 for z = h. (24.17)

H e r e w e have di sr egar ded s ur face t e nsi on w hi ch woul d a dd a c ont r i but i on t o t he r i ght - hand s i de ( see s ect i on
24. 4) .

...............
...............

..................
....................

.......................
...............................

...............................................................................................................................................................................................................................................................

�

∂h
∂t = vz

� x

�
z

h(x, t)

p0
p = p0

Boundary conditions for a small-
amplitude wave.

Besides these, there will be further boundary conditions depending on the shape of the container.

Velocity potential
The linearized Euler equation (24.15) shows that the time derivative of the velocity field ∂v/∂t is a gradient
field. Thus, if the velocity field is initially a gradient field, it will keep on being one. In view of the linearity,
the most general solution to the field equations is an irrotational (gradient) field superposed with a time-
independent field, possibly containing vorticity. Such a field is of no interest for the study of wave motion,
and we shall from now on focus on the time-dependent irrotational component and write it as the gradient
of the velocity potential �,

v = ∇� (24.18)

which, due to the divergence condition, has to satisfy Laplace’s equation,

∇2� = 0. (24.19)

Inserting the gradient field into the field equation and solving for the pressure, we find the general solution,

p = p0 − ρ0

(
g0z + ∂�

∂t

)
. (24.20)

We might, in principle, add an arbitrary function of time to the right-hand side, but such a function could,
without loss of generality, be absorbed into �. Taking z = h we now obtain the open surface boundary
conditions,

∂h

∂t
= ∇z�, g0h = −∂�

∂t
for z = h. (24.21)

Applied to the solutions of the Laplace equation (24.19), these conditions determine both �(x, t) and
h(x, y, t), and from (24.20) the pressure may be found. Since all terms of higher order in h have been left
out, one may in this approximation take z = 0 rather than z = h on the right-hand sides of these conditions.
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F i gu re 24. 2. Phase and group velocities of deep-water waves as a function of wavelength. This figure
cor r e sponds t o t he s mal l - wave l e ngt h par t of fi gur e 24. 3. Typi cal ocean swel l s have wave l e ngt hs of
λ ≈ 150 m, phase velocity c ≈ 15 m s−1 ≈ 55 km h−1 and group velocity equal to half of this. Closer to
the coast the waves slow down because the water gets shallower (see figure 24.3).

Harmonic line wave solution
Suppose now that the surface wave is an elementary harmonic line wave,

h = a cos(kx − ωt) (24.22)

and that the flow underneath is independent of y. From the first of the conditions (24.21), it follows that
∇z� = aω sin(kx − ωt) for z = h, and this suggests that the velocity potential at all depths will be of the
form,

� = f (z) sin(kx − ωt), (24.23)

where f (z) is a so far unknown function of z. The Laplace equation (24.18) takes here the form
∇2

z� = −∇2
x� and leads immediately to f ′′ = k2 f . The most general solution to this equation is

f (z) = Aekz + Be−kz (24.24)

where A and B are constants to be determined from the boundary conditions.

Deep-water waves
In deep water the velocity field must be finite for z → −∞, implying that B = 0 so that f (z) = Aekz . The
open surface boundary conditions (24.21) now lead to,

aω sin(kx − ωt) = k Aekh sin(kx − ωt),

g0a cos(kx − ωt) = ωAekh cos(kx − ωt).

In a small-amplitude wave, the wave height is small compared to the wavelength, k |h| � 1, so that ekh ≈ 1
on the right-hand side (a result obtained directly if one uses z = 0 instead of z = h). Solving both equations
for A we get

A = aω

k
= ag0

ω
, (24.25)

and solving the last equality for ω we obtain the dispersion law for deep-water waves,

ω = √
g0k. (24.26)
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In terms of period and wavelength we have τ = √
2πλ/g0 w hi c h i s of t he same f or m as t he pr evi ous

est i m at e ( 24. 6) , except t hat now t he numer i cal const ant has al s o been det er m i ned t o be
√

2π . The
corresponding deep-water phase and group velocities become

c =
√

g0

k
=

√
g0λ

2π
, cg = 1

2
c. (24.27)

and a r e pl ot t e d i n fi gur e 24. 2. S i nce t he phase ve l oci t y i s doubl e t he gr oup ve l oci t y, t he wave cr est s w i l l
always move forward inside a wave packet with double the speed of the wave packet.

The dispersive nature of deep-water waves have important consequences. A local surface disturbance
in deep water—for example created by a storm far out at sea—usually contains more than one
wavelength. The long-wave components are faster and will run ahead to arrive at the beach maybe
a day or so before the slower short-wave components. The separation of wavelengths over long
distances also causes the waves that arrive on the beach to be nearly monofrequent, rolling in at
regular time intervals which slowly become shorter as the smaller wavelengths take over.

The complete deep-water solution for all the fields in the wave is,

� = acekz sin(kx − ωt), (24.28a)

vx = aωekz cos(kx − ωt), (24.28b)

vz = aωekz sin(kx − ωt), (24.28c)

p = p0 − ρ0g0

(
z − aekz cos(kx − ωt)

)
. (24.28d)

The horizontal and vertical velocity components have the same scale, aω = 2πa/τ , but are 90 ◦ out of
phase. The fluid particles move through orbits that are approximatively circles of radius aekz at depth z.

Due to the exponential, a deep-water surface wave only influences the flow to a depth |z| ≈ 1/k =
λ/2π . What happens at the bottom has no influence on the surface waves, as long as the wavelength
satisfies λ� 2πd .

Harmonic line waves at finite depth
When wavelengths become comparable to the depth of the ocean, we must take into account the shape of
the bottom. For a horizontally infinite ocean with a perfectly flat impermeable bottom at constant depth
z = −d , the only extra condition is that the vertical velocity should vanish at the bottom,

vz = 0 for z = −d . (24.29)

In the absence of viscosity, we are not at liberty to impose a no-slip condition on the horizontal velocities.
The flat-bottom boundary condition implies that f ′(−d) = 0, or Ae−kd = Bekd , so that we have

f (z) = C cosh k(z + d) (24.30)

where C is another constant. As for deep-water waves, it is determined by the open surface boundary
conditions (24.21), and we find for |h| � d ,

C = aω

k sinh kd
= ag0

ω cosh kd
. (24.31)

The last equality yields the dispersion law,

ω = √
g0k tanh kd, (24.32)

with the corresponding phase and group velocities,

c =
√

g0

k
tanh kd, cg = 1

2
c

(
1 + 2kd

sinh 2kd

)
. (24.33)
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F i gu re 24. 3. Phase and group velocities of fl at-bottom gravity waves as functions of λ/2π d . Both
velocities l evel out and become equal for large wavel engt hs, approaching t he common shallow-water val ue,
c = cg = √

g0 d for λ � 2π d . T he influence of the fi nite depth is clearly notable in the group velocity for
λ/2π d � 0. 5.

T hey ar e pl ot t e d i n fi gur e 24. 3 i n a di mensi onl ess f or m. T he phase ve l oci t y appear s t o c ur ve dow nwa r ds f or
al l wavel engt hs, w her eas t he gr oup ve l oci t y changes c ur va t ur e t w i ce. G e ner a l l y, t he fi ni t e dept h becomes
i m por t a nt f r om λ � π d . For l a rge wavel engt hs, λ � 2π d , bot h vel ocities approach the common shallow-
wa t e r va l u e c = cg = √

g0 d .
T he complete solution f or al l t he fi elds underneath a small-amplitude harmonic line wave h =

a cos( kx  − ω t) at any dept h d � a is finally,

� = ac 
cosh k( z + d)

sinh kd
sin( kx  − ω t),  ( 24. 34a)

vx = aω 
cosh k( z + d)

sinh kd
cos( kx  − ω t),  ( 24. 34b)

vz = aω 
sinh k( z + d)

sinh kd
sin(kx − ωt), (24.34c)

p = p0 − ρ0g0

(
z − a

cosh k(z + d)

cosh kd
cos(kx − ωt)

)
. (24.34d)

It must be emphasized that this solution is only valid in the limit of a � λ, d , and that all terms of higher
or der i n a have been left out. T he solution is strictly speaking only valid in the interval −d ≤ z ≤ 0 (see
sect i on 24. 8) .

The corresponding (Lagrangian) displacement field is obtained by integrating the velocities with respect
to time,

ux = −a
cosh k(z + d)

sinh kd
sin(kx − ωt), (24.35a)

uz = a
sinh k(z + d)

sinh kd
cos(kx − ωt). (24.35b)

This shows that the fluid particle orbits are ellipses of general magnitude a, which become progressively
flatter as the bottom is approached for z → −d . Evidently, there is no net mass transport in the direction of
motion of the wave. Note that for z = 0 we get uz = h, as we should.
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Shallow-water limit
For waves with wavelength much greater than the depth, i.e. for λ� 2πd or equivalently kd � 1, we have
tanh kd ≈ kd and thus obtain the shallow-water dispersion law,

ω = √
g0d k, (24.36)

in agreement with the estimate (24.6). Shallow-water waves are non-dispersive with common phase and
group velocities

c = cg = √
g0d. (24.37)

The leading terms in the solution become in the shallow wave limit, kd � 1,

� = ag0

ω

(
1 + k2(z + d)2

2

)
sin(kx − ωt), (24.38a)

vx ≈ ca

d
cos(kx − ωt), (24.38b)

vz ≈ aω
(

1 + z

d

)
sin(kx − ωt), (24.38c)

p ≈ p0 − ρ0g0 (z − a cos(kx − ωt)) . (24.38d)

The horizontal velocity is the same for all z, so that all the water underneath sloshes back and forth in
unison as the wave proceeds. The vertical velocity decreases and reaches zero at the bottom, as it must (this
is the reason for keeping the second-order terms in �). At any depth z, the pressure is just the hydrostatic
pressure from the water column above, including the height of the wave.

The horizontal velocity scale, c a/d = λa/τd , equals precisely the previously estimated shallow-water
value (24.3) which is larger than the vertical velocity scale aω = 2πa/τ by a factor λ/2πd . This also
confirms the estimates made in section 24.1.

Example 24.3.1 (Tsunami): Huge shallow-water wave trains, tsunamis (meaning harbour waves), with
wavelengths up to 500 km can be generated by underwater earthquakes, landslides, volcanic eruptions
or large meteorite impacts. The average depth of the oceans is about 4000 m so tsunamis move with
typical speeds of a passenger jet plane, c ≈ 200 m s−1 ≈ 710 km h−1, at that depth, and faster at
greater depths. For λ = 500 km the period becomes τ = λ/c ≈ 2500 s ≈ 42 min, but since the
amplitude is small, say a ≈ 1 m, a tsunami will be completely imperceptible to a ship at sea (today
the precision of GPS positioning should make it notable). When the tsunami approaches the coastline,
the water depth decreases and the wave slows down while increasing its amplitude with sometimes
devastating effect on the shore.

24.4 Capillary surface waves
Surface tension is characterized by a material constant α, representing the attractive force per unit of length
of the surface, or equivalently the extra energy per unit of surface area (from the missing molecular bonds).
Surface tension generates a pressure jump (8.5) across any interface between two fluids, expressed through
the principal radii of curvature of the surface. We saw in section 8.1 that the relative influence of surface
tension and gravity in a liquid/air interface is characterized by a length (8.4), called the capillary constant,
which is Rc = √

α/ρ0g0 ≈ 2.7 mm for the water/air interface. Surface tension only plays a major role for
length scales smaller than the capillary constant.

Pressure jump across a nearly flat surface��
����

................................................................................................................
....................
.......................

...............................
......................................................................................................................................................................................................................................

�x

�y

The small rectangle in the xy-
plane defines a piece of the wave
surface of area A = �x�y.

To calculate the pressure jump over a nearly flat surface, z = h(x, y) with |∂h/∂x| , |∂h/∂y| � 1, we
consider a tiny piece of the surface situated above a small rectangle between (x, y) and (x +�x, y +�y).
All four sides of this piece of surface are subject to tension from the surrounding surface, and we wish to
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Figure 24.4. Chilean tsunami on July 30, 1995. The tsunami spread from the epicentre of an earthquake on
the Chilean pacific coast.

calculate the resultant vertical force. Since the slope of the surface is small, we may disregard the slight
misalignment between the vertical force and the pressure force which strictly speaking must be orthogonal
to the surface. The slope of the surface at (x, y) is ∂h/∂x along x , and it follows from the geometry that
the surface tension acting on the two �y-sides of the rectangle generates a ‘vertical’ force,

��z ≈ −α�y
∂h(x, y)

∂x
+ α�y

∂h(x +�x, y)

∂x
≈ α�x�y

∂2h(x, y)

∂x2
.

Adding the forces acting on the two �x-sides and dividing by the area A = �x�y, we see that in order to

.....................
.........................

.................................
.............................................................................................................................� �

��
��

� x

�
z

x x +�x

−α�y

α�y

z = h(x, y, t)

The total vertical force on the
small piece of surface is deter-
mined by projecting the forces
due to surface tension on the ver-
tical.

balance the vertical force from surface tension, the pressure just below the surface must be higher by,

�p = −α(∇2
x + ∇2

y )h. (24.39)

If the surface curves downwards in all directions at a given point, we have (∇2
x + ∇2

y )h < 0, and the extra
pressure will be positive below the surface.

The curvature of a small-amplitude surface wave thus generates a pressure jump �p at the surface.
Whereas the Euler equation (24.15) is unchanged, the value of the pressure just below the surface is p0+�p
rather than p0, so that the dynamic boundary condition (24.17) is replaced by,

p = p0 +�p for z = h. (24.40)

Since �p given by (24.39) is positive at a wave crest and negative at a trough, surface tension collaborates
with gravity in attempting to flatten the water surface. Waves completely dominated by surface tension are
called capillary waves.

Deep-water capillary gravity waves
Surface tension is only expected to become important for waves of very small wavelength, which except
for special situations may be assumed to be deep-water waves. The velocity potential is in that case
� = Aekz sin(kx − ωt), and from the kinematic boundary condition (24.16) and the modified dynamic
boundary condition (24.40) we obtain in the usual way,

A = a
ω

k
= a

ρ0g0 + αk2

ρ0ω
. (24.41)
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F i gu re 24. 5. Capillary waves i n front of ordinary gravity waves. P hotograph by Fabri ce Neyret, r eproduced
w i t h per m i ssi on.

T hi s show s t hat t he onl y eff ect of surface t ensi on i s t o i ncrease t he gravi t at i onal accel erat i on from g0 to,

g = g0 + α k 2

ρ0
= g0( 1 + k 2 R 2c ),  ( 24. 42)

where Rc = √
α/ρ0 g0 is the capillary constant. As foreseen, surface tension collaborates with gravity and

becomes m or e i mpor t a nt t han gr avi t y f or k Rc � 1 or λ � 2π Rc which in water  is 1. 7 cm.
R e pl aci ng g0 by g i n t he deep- wat er di sper si on l aw ( 24. 26) , w e fi nd

ω =
√

g0 k + α

ρ0
k 3 =

√
g0 k

(
1 + k 2 R 2c

)
. (24.43)

This dispersion law agrees very well with experiments1.
The phase and group velocities become,

c =
√

g0

k

(
1 + k2 R2

c

)
, cg = 1

2
c

1 + 3k2 R2
c

1 + k2 R2
c
, (24.44)

and a r e pl ot t e d f or wa t e r i n fi gur e 24. 6. N ot e t hat t he phase ve l oci t y has a mi ni mum f or k Rc = 1 (i.e.
λ = λc) where the group velocity also equals the phase velocity (see problem 24.2). The minimum of the
group velocity occurs at a somewhat larger wavelength, λ/λc = 2.54 . . ..

For very small wavelengths, λ � λc or k Rc � 1, surface tension dominates completely, and we find
the dispersion law for purely capillary waves,

ω =
√
αk3

ρ0
, c =

√
αk

ρ0
, cg = 3

2
c. (24.45)

In purely capillary waves the phase velocity is only 2/3 of the group velocity, and the wave crests appear to
move backwards inside a wave packet!

1See for example B. Christiansen, P. Alstrøm and M. T. Levinsen, Dissipation and ordering in capillary waves at high
aspect ratios, J. Fluid Mech. 291, (1995) 323.
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Figure 24.6. Phase and group velocities in units of
√

g0 Rc for deep-water capillary gravity waves as
functions of the wavelength in units of λc = 2πRc . In water

√
g0 Rc ≈ 16 cm s−1 and λc ≈ 1.7 cm. Phase

and group velocities cross each other at λ = λc, where the phase velocity is minimal. The group velocity
has a minimum at λ ≈ 2.54λc (see problem 24.2).

24.5 Internal waves
In the ocean a heavier saline layer of water may often be found below a lighter more brackish layer, allowing
so-called internal waves to arise at the interface. Even if the difference in density between the fluids is
small, the equilibrium interface will always be horizontal with the lighter liquid situated above the heavier
(as discussed previously in section 7.1). Were it somehow possible to invert the ocean so that the lighter
fluid came to lie below the heavier, instability would surely arise, and the liquids would after some time find
their way back to ‘natural’ order. As we shall see, surface tension can in fact stabilize the inverted situation
in sufficiently small containers.

Boundary conditions

.............................................
....................
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............
...........
..........
...........
...............
.................
...................
........................
.....................................
.................................................................................................................................................................................................................................................................................................................................................................................

...................
...............

............
............
..........
..........
............
.............
................
.....................
............................................................................................................................................................................................................................................................................................

....

�
z

ρ1

ρ2

Internal waves at an interface
with a heavier liquid below and a
lighter above (ρ1 > ρ2).

Let the lower layer have density ρ1 and the upper layer ρ2 with a separating interface z = h(x, y, t) between
the two fluids, for which the velocity potentials are �1 and �2. The kinematic boundary conditions for
small-amplitude waves express that both fluids and the separating surface must move together in the vertical
direction,

v1z = v2z = ∂h

∂t
for z = h. (24.46)

Including surface tension (24.39), the dynamic boundary condition becomes,

p1 +�p = p2 for z = h (24.47)

where �p is given by (24.39), and the pressures are expressed like (24.20) in each of the fluids.

Dispersion law
Suppose again that the interface takes the form of a pure line wave, h = a cos(kx − ωt). We shall
only consider deep-water waves in which the wave flow is required to vanish far below and far above
the interface. The velocity potentials are then of the form,

�1 = A1e+kz sin(kx − ωt), �2 = A2e−kz sin(kx − ωt),
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with a notable change of sign in the exponential factors. The boundary conditions (24.46) and (24.47) imply
for k |h| � 1 that

k A1 = −k A2 = a ω, ρ1(g0a − ωA1)+ αk2a = ρ2(g0a − ωA2). (24.48)

Solving these we find that

A1 = −A2 = a
ω

k
= a

ω

g0(ρ1 − ρ2)+ αk2

ρ1 + ρ2
. (24.49)

Solving the last equality for ω we obtain the dispersion law for deep-water internal waves,

ω =
√

g0k(ρ1 − ρ2)+ αk3

ρ1 + ρ2
. (24.50)

If the upper density is much smaller than the lower, ρ2 � ρ1, these waves become ordinary deep-water
capillary gravity waves, but when the densities are nearly equal, ρ2 � ρ1, the internal waves have much
lower frequencies (and velocities) than waves of the same wavelength at the surface.

The capillary constant is as before defined as the length scale where the gravity contribution to the
frequency is of the same magnitude as the surface tension contribution,

Rc =
√

α

|ρ1 − ρ2| g0
. (24.51)

It diverges when the densities become equal. In this limit gravity plays no role, and the internal waves have
become purely capillary waves, described by (24.45) with ρ0 = 2ρ1 = 2ρ2.

Example 24.5.1 (Brackish–saline interface in the sea): If a brackish surface layer lies above
a saline layer with 4% higher density, the capillary wavelength for internal waves becomes λc =
2πRc = 8.6 cm. A wave with this wavelength has period τ = 1.2 s and moves with phase velocity
c = 7.2 cm s−1.

The Rayleigh–Taylor instability
When the heavier fluid lies below the lighter, ρ1 > ρ2, the frequency ω of an internal wave is always real,
but if the container is quickly turned upside down, such that ρ1 < ρ2, the heavier fluid will be on top and
the dispersion law may be written as,

ω =
√

g0
ρ2 − ρ1

ρ1 + ρ2
k(k2 R2

c − 1), (24.52)

The argument of the square root will be negative for k Rc < 1, or λ > λc = 2πRc . In that case, ω becomes
imaginary, and the otherwise sinusoidal form, the line wave, is replaced by an exponential growth e|ω|t in
time. This signals an instability, called the Rayleigh–Taylor instability.

In an infinitely extended ocean, there is room for waves with wavelengths of any size, and the inverted
situation will always be unstable. It can only be maintained for a very short while, because the smallest
perturbation of the surface will lead to a run-away process that ends with the heavier liquid again arranged
below the lighter.

�

�

..........
..........
..........
............
............
.............
.............
..............
................
..................

...................
........................

.................................
................................................................................................................................................................................................................................................................................................................................... x

vx

0 L
Any flow in a box of length L
must obey vx = 0 for x = 0 and
x = L .

In a finite container, there is an upper limit to the allowed wavelengths, because the boundary conditions
require the horizontal velocities to vanish at the vertical walls surrounding the fluids. Any flow in a finite
box-shaped container of horizontal length L must obey the boundary conditions vx = 0 for both x = 0
and x = L . Linear Euler flow in a box can, like the flows we are studying here, always be resolved into
a superposition of standing waves with horizontal velocity vx ∼ sin kx cosωt . The boundary conditions
select the allowed wavenumbers to be k = nπ/L where n = 1, 2, . . . is an arbitrary integer. For n = 1 we
obtain the largest wavelength, λ = 2π/k = 2L , and this shows that as long as

L <
1

2
λc = πRc = π

√
α

(ρ2 − ρ1)g0
, (24.53)
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Figure 24.7. Plot of U/Uc as a function of λ/λc . For the water–air interface the capillary wavelength is
λc = 1.7 cm and the critical velocity is Uc = 7.4 m s−1. For a given velocity U , one can read off the range
of unstable wavelengths from this figure.

unstable wave modes with λ > λc cannot occur. If you invert a container with horizontal size smaller than
half the capillary wavelength, the heavier liquid will remain stably on top of the lighter.

Example 24.5.2 (Home experiment): Air against water has as we have seen before a capillary
wavelength of λc = 1.7 cm, so we require that L < 0.85 cm. Try it yourself with a glass tube of, for
example, 5 mm diameter. It works!

The Kelvin–Helmholtz instability
Layers of inviscid fluids are capable of sliding past each other with a finite slip-velocity, if we disregard the
viscous boundary layers that otherwise will soften the sharp discontinuity in velocity. When waves arise
in the interface between the fluids, they will so to speak ‘get in the way’ of the smooth flow, leading us to
expect instability at a sufficiently high slip-velocity.

Suppose the upper layer is moving with velocity U in the rest frame of the lower layer. Taking into
account the slope ∇x h of the interface, the horizontal flow in the upper layer will add U∇x h to the vertical
velocity, such that the kinematic boundary conditions are replaced by,

v1z = ∂h

∂t
, v2z = ∂h

∂t
+ U∇x h for z = h. (24.54)

The same is the case for the pressure which becomes

p2 = p0 − ρ0

(
g0h + ∂�2

∂t
+ U∇x�2

)
. (24.55)

Putting it all together we find the boundary conditions,

k A1 = aω, −k A2 = a(ω − kU),

ρ1(g0a − ωA1)+ αk2a = ρ2(g0a − (ω − kU)A2).

When combined these lead to a quadratic equation for the frequency

(ρ1 + ρ2)ω
2 − 2ρ2kUω + ρ2k2U2 = k((ρ1 − ρ2)g0 + αk2). (24.56)

Given the wavenumber k, the roots are real for

U2 <

(
1

ρ1
+ 1

ρ2

)
(ρ1 − ρ2)g0 + αk2

k
. (24.57)
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For ρ1 > ρ2 , t he r i ght - hand s i de has an absol ut e mi ni mum w hen k Rc = 1, w her e R c is the capillary radius
for i nt ernal waves (24. 51). S el ecting t he mini mum of t he right -hand side by setting k = 1/ Rc , the condition
for absol ut e stability becomes

U < Uc =
√

2 g0 R c

(
ρ1

ρ2
− ρ2

ρ1

)
. ( 24. 58)

For air flowing over water the critical velocity is Uc = 7. 4 m s−1 .
I n fi gur e 24. 7 t he r a t i o

U

Uc
=

√
1

2

(
λ

λc
+ λc

λ

)
( 24. 59)

is plotted as a function of λ/λc . For U > Uc there w ill be a r ange of wavelengths around the capillary
wave l e ngt h λ = λc f or w hi ch smal l di s t ur bances w i l l diverge exponent i al l y w i t h t i m e. T hi s i s t he Kelvin–
Helmholtz instability which permits us at least i n principle to understand how t he steadily streaming w ind
is able to generate waves from tiny disturbances.

W hat actually happens to the unstable waves with their exponentially grow ing amplitudes, for example
how t hey gr ow i nt o t he l arger waves cr eat ed by a s t or m , cannot be pr edi ct ed f r om l i near t heor y. I t i s,
however, possible to say something about the statistics of wind-generated ocean waves without going into
too much nonlinear theory (see section 24. 7).

∗ 24.6 Energy and attenuation
Surface waves contain both potential and kinetic energy, and this energy is attenuated by several effects.
First, there is viscous attenuation due to internal friction in the fluid. Secondly, there is attenuation
from dissipative losses in the boundary layer that necessarily forms near the bottom, and thirdly there is
dissipation due to deviations of the value of surface tension from its equilibrium value, an effect that plays
a role when oil is poured on troubled waters. In this section we shall focus only on viscous attenuation.

Total energy
The first goal is to calculate the total energy in a wave. Consider a thin column of water in a gravity wave
of width�x along x and length �y along y, so that its ‘footprint’ area is A = �x�y. Relative to the static
water level z = 0, its potential energy is (apart from an additive constant),

�

�

x

z

................................
.........................................................................................................................................................................................................................................................................................................................................................

�x

h

d
x

A thin water column of ‘foot-
print’ area A = L�x and height
h in a sea of depth d .

� =
∫

V
ρ0g0z dV =

∫ h

−d
ρ0g0z Adz = 1

2
ρ0g0(h

2 − d2)A. (24.60)

We shall fix the arbitrary constant by requiring the potential energy to vanish for the undisturbed surface
h = 0, so that

� = 1
2ρ0g0h2 A. (24.61)

The potential energy is always positive, and rises and falls in tune with the square of the wave height
h = a cos(kx − ωt). Note that this is an exact result, also valid when the amplitude is large. In the
linearized approximation where h = a cos(kx −ωt), we find the average of the potential energy over a full
period,

〈�〉 = 1

τ

∫ τ

0
� dt = 1

4
ρ0g0a2 A, (24.62)

because the average over a squared cosine is 1/2.
The kinetic energy of the water in the column is similarly

� =
∫

V

1

2
ρ0v

2 dV =
∫ h

−d

1

2
ρ0(v

2
x + v2

z ) Adz ≈
∫ 0

−d

1

2
ρ0(v

2
x + v2

z ) Adz. (24.63)
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In the last step we have assumed that the amplitude is small, |h| � d , and replaced h by 0 in the upper
limit of the integral. It would in fact be wrong to keep the upper limit h because it contributes only to the
higher order terms. Inserting the explicit gravity wave solution (24.34), we obtain the time average of the
integrand, 〈

v2
x + v2

z

〉
= 1

2

( aω

sinh kd

)2 (
cosh2 k(z + d)+ sinh2 k(z + d)

)
.

Finally, using the relation cosh2 φ + sinh2 φ = cosh 2φ, the integral over z can be carried out, and we find
after some rearrangement,

〈� 〉 = 1

4
ρ0 A

( aω

sinh kd

)2 sinh 2kd

2k
= 1

4
ρ0g0a2 A. (24.64)

As expected in the general estimates of section 24.1, we have 〈� 〉 = 〈�〉. This is also a consequence of the
much more general virial theorem (see problem 24.4).

The average of the total mechanical energy over a full period thus becomes

〈�〉 = 〈� 〉 + 〈�〉 = 1
2ρ0g0a2 A. (24.65)

Surprisingly, the average energy per unit of surface area, 〈�〉 /A, only depends on the amplitude and not
on the depth or wavelength. Furthermore, since the average energy is independent of both x and y, this
expression is valid for a region of any size with ‘footprint’ area A.

Example 24.6.1 (Surface energy): A small-amplitude harmonic surface wave in water with amplitude
a = 10 cm contains a wave energy per unit of surface area of about 〈�〉 /A ≈ 50 J m−2.

Rate of viscous dissipation
For an incompressible liquid the rate of mechanical energy loss due to viscous dissipation is given by
(17.18), which for a thin vertical column of liquid with area A = �x�y, simplifies to,

Ẇint = 2η
∫ h

−d

∑
i j

v2
i j Adz ≈ 2η

∫ 0

−d

∑
i j

v2
i j Adz, (24.66)

where vi j = (1/2)(∇iv j + ∇ j vi ) and η is the viscosity. Evaluating it for a standard line wave running
along x the integrand may be recast as∑

i j

v2
i j = (∇xvx )

2 + (∇zvz)
2 + 1

2
(∇xvz + ∇zvx )

2 = 2(∇xvx )
2 + 2(∇xvz)

2.

In the last step have used mass conservation ∇zvz = −∇x vx and irrotationality ∇zvx = ∇xvz . For a
harmonic wave (24.34) we may replace ∇x by k in the time average, so that it becomes〈∑

i j

v2
i j

〉
= 2k2

〈
v2

x + v2
z

〉
. (24.67)

This is proportional to the integrand in the kinetic energy (24.63) and taking over the result (24.64) this
leads to 〈

Ẇint
〉 = 8νk2 〈� 〉 , (24.68)

where ν = η/ρ0 is the kinematic viscosity. Relative to the average of the total energy, 〈�〉 = 2 〈� 〉 the rate
of dissipation finally becomes, 〈

Ẇint
〉

〈�〉 = 4νk2. (24.69)
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Figure 24.8. The viscous amplitude attenuation length ξ for water plotted as a function of wavelength
λ. The viscosity is ν = 10−6 m2 s−1 and the surface tension α = 0.073 N m−1. Viscous attenuation
essentially only plays a role for very small wavelengths.

The dissipative energy loss grows quadratically with the wavenumber and is most important for small
wavelengths, i.e. for capillary waves. These may as before be included by replacing g0 by the effective
gravity (24.42), but that does not change the above result.

The loss of energy over a wave period τ = 2π/ω is Ẇint τ and relative to the average energy of the
wave (24.65), it becomes 〈

Ẇint
〉
τ

〈�〉 = 4νk2τ = 8πν
k2

ω
= 16π2 ντ

λ2
, (24.70)

where ν is the kinematic viscosity. The condition for our calculation to be valid is that the relative
attenuation should be small, or λ2/τ � 16π2ν. In deep water with ν ≈ 10−6 m2 s−1, this is fulfilled
for λ � 40 µm, so that the condition should be satisfied under ordinary circumstances.

Energy and amplitude attenuation coefficients
The energy propagates, as we have argued on page 339, with the group velocity cg rather than the phase
velocity c. Dividing the energy dissipation rate (24.69) by cg from (24.45), we obtain the spatial energy
attenuation coefficient 2κ , defined as the fractional loss of energy per unit of length,

2κ = 4νk2

cg
. (24.71)

As the energy is quadratic in the amplitude, the energy attenuation coefficient is twice the spatial amplitude
attenuation coefficient κ . The inverse amplitude attenuation coefficient ξ = 1/κ is called the amplitude
attenuation length and indicates the distance over which the surface wave amplitude falls to about
e−1 ≈ 37% of its initial value. The amplitude attenuation length is plotted for water in figure 24.8 as
a function of wavelength.

Example 24.6.2: In water for λ = 1 m one finds ξ ≈ 8 km whereas for λ = λc = 1.7 cm one gets
ξ ≈ 86 cm. A raindrop hitting a lake surface thus creates a disturbance that dies out after propagating
through a metre or less whereas a big object, like the human body, will make waves with much longer
wavelength that continues essentially unattenuated right across the lake. In both these cases, however,
the amplitude of the ring-shaped surface waves will also diminish for purely geometric reasons.
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∗ 24.7 Statistics of wind-generated ocean waves
Waves may arise spontaneously from tiny perturbations at the wind/water interface when the wind speed
surpasses the Kelvin–Helmholtz instability threshold (page 349). The continued action of the wind and
nonlinear wave interactions raise the waves further, until a kind of dynamic equilibrium is reached in
which the surface may be viewed as a statistical ensemble of harmonic waves with a spectrum of periods,
wavelengths and amplitudes. Even if we do not understand the mechanism at play, it is nevertheless possible
to draw some quite general conclusions about the wave statistics and compare with observations.

Surface height observations
A ship or buoy bobbing at a fixed position (x, y) of the ocean surface reflects the local surface height,
h(t) = h(x, y, t). The variations in surface height may be determined by many different techniques, for
example based on accelerometers, radar or sattelites. While the wind blows steadily, a long record of
N � 1 measurements hn = h(tn) can be collected at discrete times, tn = nε (n = 1, 2, . . . , N), which for
simplicity are assumed to be evenly spaced.

The underlying wave structure of the surface creates strong correlations between successive
measurements of the local height. Short waves are carried on top of larger waves and so on. To get rid
of such correlations, we shall for odd N = 2M + 1 write the record as a superposition of simple harmonics
(see problem 24.8 for the precise theory of discrete Fourier transformations),

hn = a0 +
M∑

m=1

am cos(ωmtn − χm) (24.72)

where ωm = 2πm/Nε is the circular frequency, am the amplitude, and χm the phase shift of the mth
harmonic. Given the N = 2M + 1 measured values hn these equations may be solved for the 2M + 1
unknowns, consisting of amplitudes and phase shifts plus the constant a0. Note that the highest frequency
that can be resolved by N observations is ωM = 2πM/Nε ≈ π/ε.

From the data record we may calculate various averages that can be related to the parameters of the
harmonic expansion. Thus, we find the average height 〈h〉 = 1

N
∑N

n=1 hn = a0 because all the cosines
average out to zero. This shows that without any loss of generality we may always subtract the average
water level a0 from the measured heights. Assuming from now on that 〈h〉 = a0 = 0, the variance of the
height becomes

〈
h2

〉
= 1

N

N∑
n=1

h2
n = 1

2

M∑
m=1

a2
m . (24.73)

In the last step we have used that the harmonics are uncorrelated so that the average of the product of
different harmonics vanishes, whereas the average of the square of any of the cosines is 1/2 (see problem
24.8).

For large N the frequencies constitute almost a continuum and since the energy is proportional to the
square of the amplitude, the power spectrum of the observed waves may be defined to be

S(ωm) = Nε

4π
a2

m . (24.74)

The coefficient in front has been chosen such that for large N we may write the sum over m as an integral

〈
h2

〉
= 1

2

M∑
m=1

a2
m ≈

∫ ωM

0
S(ω) dω, (24.75)

where dω = 2π/Nε is the distance between neighbouring frequencies.

The ‘canonical’ form of the spectrum
The empirical spectra have a single peak at a certain frequency ωp with a long tail towards higher
frequencies and a sharp drop-off below. The position of the peak depends strongly on the wind velocity U

Copyright © 2005 IOP Publishing Ltd.



354 24. SMALL-AMPLITUDE SURFACE WAVES

Figure 24.9. Pierson–Moskowitz wave spectrum S as a function of circular frequency ω for three different
wind speeds U = 12, 15, 20 m s−1. Note that the high-frequency tail is independent of U .

whereas the high-frequency tail appears to be the same for all U (see figure 24.9). We shall now see that it
is possible to understand the general form of the spectrum using the methods of statistical mechanics.

The wind speed U sets the level of excitation of the ocean surface at large, but cannot control what
happens locally so that the local wave energy E in a small neighbourhood of a fixed point in principle
can take any value. But because the energy has to come from the huge reservoir of wave energy in
the surrounding ocean, the probability that the local energy actually has the value E is suppressed by a
canonical Boltzmann factor e−βE , where the ‘inverse temperature’ β is a measure of the level of excitation
of the ocean. Multiplying by the energy per unit of frequency d E/dω the energy spectrum becomes

S ∼ e−βE d E

dω
. (24.76)

Provided the nonlinearity is not excessive, the local energy is proportional to the square of the amplitude
E ∼ a2. Since the local energy cannot depend on U , the amplitude must be of magnitude a ∼ g0/ω

2,
because that is the only length scale which may be constructed from g0 and ω. Taking E ∼ g2

0/ω
4 and

normalizing the frequency in the exponent by g0/U , we get the following model for the spectrum (after
redefining β),

S(ω) = α
g2

0

ω5
exp

[
−β

( g0

Uω

)4
]
, (24.77)

where α and β are dimensionless parameters. This spectrum has indeed a sharp low-frequency cut-off, a
single peak and a high-frequency tail that is independent of U (when α is independent of U ).

The root-mean-square amplitude and the peak frequency are easily evaluated,√〈
h2

〉 =
√
α

β

U2

2g0
, ωp =

(
4β

5

)1/4 g0

U
. (24.78)

Note that these quantities are scaled by the only possible combinations of U and g0 that have the right
dimensions.

The Pierson–Moskowitz empirical spectrum
Assuming that the statistical equilibrium is the same everywhere on the ocean surface, the dimensionless
parameters α and β can only depend on U and g0, but since there is no dimensionless combination of U
and g0, both α and β must be constants, independent of U . Pierson and Moskowitz2 fitted empirical spectra

2W. J. Pierson and L. Moskowitz, J. Geophysical Research 69, (1964) 5181; L. Moskowitz, ibid p. 5161;W. J. Pierson,
ibid p. 5191.
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for a range of wind veloc ities and found the values

α = 8. 1 × 10−3, β = 0. 74. ( 24. 79)

The root-mean-square amplitude and spectrum peak position are then,√〈
h 2

〉 = 0. 11
U 2

2 g0
, ωp = 0. 88 

g0

U
. ( 24. 80)

T he act ual s pect rum i s qui t e sensi t ive t o t he hei ght at whi ch t he wi nd speed i s det ermi ned because of ai r
t ur bul ence cl ose t o t he sur face. I n t he dat a used i n t he fi t , t he wi nd speed was m easur ed about 20 m above
the average surface level.

I n fi gur e 24. 9 t he P i er son–Moskow i t z spect r um i s s how n f or t hr ee di ff er ent w i nd s peeds. O ne not es
how the high-frequency tails coincide, and how the low-frequency cut-off becomes sharper as the wind
speed increases.

Example 24.7.1: At a wind speed of U = 15 m s−1 the period at peak is about τp = 11 s,
corresponding to a deep-water wavelength of λp = 186 m and a phase velocity of cp = 17 m s−1.

The average amplitude of the waves raised by this wind is
√〈

h2
〉 = 1.2 m. As a measure of the

nonlinearity one may take k p

√〈
h2

〉 = 0.04 where k p = ω2
p/g0 = 0.03 m−1 is the peak wavenumber,

determined from the deep-water dispersion relation (24.26). According to this estimate, the average
nonlinearity at play at this wind speed is indeed quite small.

The assumed dynamic equilibrium of the ocean surface takes a long time to develop, and more so the
higher the wind speed. A wind with velocity U lasting time t must have travelled over an upwind distance
L = Ut , called the fetch. Even for a moderate wind at 15 m s−1 the sea takes about 8 h to develop, so the
fetch is about 500 km. Empirically the fetch grows roughly like U3, so that a strong wind at 30 m s−1 has
a fetch of 4000 km. Such winds rarely manage to fully develop the equilibrium power spectrum of the sea
because of the finite distance to the lee shore and the finite size of weather systems.

∗ 24.8 Global wave properties
Waves contain mass, momentum and energy, and the movement of fluid also transports these quantities
around. To calculate the flux of these quantities for gravity waves at finite depth we shall use the flat-
bottom fields (24.34), remembering that they represent only the lowest order of approximation. Since we
do not know the nonlinear corrections to these fields, it is imperative to systematically keep only the leading
order in the amplitude a in all expressions.

Mass flux
The mass flux through a vertical cut S through the wave of length L in the y-direction is,

�

�

x

z

................................
.........................................................................................................................................................................................................................................................................................................................................................

h

d

x

S

A vertical cut S through the wave
(dashed). Its length is L in the y-
direction.

Ṁ =
∫

S
ρ0v · d S =

∫ h

−d
ρ0vx Ldz ≈

∫ 0

−d
ρ0vx Ldz. (24.81)

The velocity field is of first order in a and for consistency we have in the last step replaced h by 0. Carrying
out the integral by means of (24.34b) we find,

Ṁ = ρ0acL cos(kx − ωt). (24.82)

The average of the flux over a full period evidently vanishes, 〈Ṁ〉 = 0, showing that the water merely
sloshes back and forth. The actual volume of water that is displaced during half a period of forward motion
is Q = aLλ/π .

Example 24.8.1: The amount of sloshing water in a deep-water wave with amplitude 1 m and
wavelength 100 m is nearly 32 m3 per metre of transverse crest length.
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Momentum flux
The total horizontal momentum transport through the vertical cut is similarly,

�̇x =
∫

S
ρ0vxv · d S =

∫ h

−d
ρ0v

2
x Ldz ≈

∫ 0

−d
ρ0v

2
x Ldz. (24.83)

Averaging over a full period we get,〈
v2

x

〉
= 1

2

( aω

sinh kd

)2
cosh2 k(z + d), (24.84)

and find upon integration, 〈
�̇x

〉 = 1

2
ρ0g0a2L

cg

c
, (24.85)

where c and cg are the phase and group velocities (24.33).
The average momentum flux is a measure of the average force of a wave hitting an obstacle, although

the true force is strongly complicated by the shape of the obstacle and by reflected waves [47].

Example 24.8.2: Wading near the shore in water to your waist, you are hit by harmonic waves of
amplitude a = 10 cm. If you are L = 50 cm wide, a deep-water wave with cg/c = 1/2 will act on you
with an average landwards force of (1/4)ρ0g0La2 = 12 N. That will not topple you, but a wave with
five times higher amplitude could easily.

Wave power
Waves are able to do work and many ingenious schemes have been thought up for the exploitation of wave
power. The power of a wave may be calculated from the rate of work performed by the pressure on a vertical
cut S through the wave,

P =
∫

S
p v · d S =

∫ h

−d
p vx Ldz ≈

∫ 0

−d
p vx Ldz. (24.86)

Writing the pressure (24.34d) as p = p0 − ρ0g0z + ρ0cvx and using 〈vx 〉 = 0, we find the average

〈p vx 〉 = ρ0c
〈
v2

x

〉
, and thus the average power

〈P〉 = 〈
�̇x

〉
c = 1

2ρ0g0a2 Lcg, (24.87)

where the group velocity is given by (24.33). According to (24.65), the factor in front of cg is the average
wave energy d 〈�〉 /dx per unit of length. Interpreting 〈P〉 as the average energy flux along x , this result is
usually taken to confirm that the energy in a harmonic wave also propagates with the group velocity.

Example 24.8.3: The tsunami of example 24.3.1 with λ = 500 km, c = cg = 200 m s−1, and a = 1 m
carries an average power per unit of transverse length of 〈P〉 /L ≈ 106 W m−1. Such a Tsunami can
really wreak havoc when it hits a coast.

Problems
24.1 Check whether the shallow-wave solution (24.38) actually satisfies the field equations (24.15).
Discuss what is wrong, if not.

24.2 (a) Determine where the phase and group velocities (24.27) for deep-water waves cross each other
(use α = 0.073 N m−1), and determine the common value at the crossing. (b) Determine the minimal value
of the phase velocity and the corresponding wavelength. (c) Where is the minimum of the group velocity?
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24.3 Consider a small-amplitude gravity line wave and

(a) show that

v2
x + v2

z = ∇x (�vx )+ ∇z(�vz ). (24.88)

(b) Show that the time average satisfies 〈
v2

x + v2
z

〉
= ∇z 〈�vz 〉 . (24.89)

(c) Use this to calculate the kinetic energy (24.64).

24.4 Prove the virial theorem

〈� 〉 = n

2
〈�〉 (24.90)

for a single particle in periodic motion in a power potential � = krn .

24.5 Justify qualitatively the common observation that waves rolling towards a beach tend to straighten
out so that the wave crests become parallel to the beach.

24.6 A square jar is half filled with water of density 1 g cm−3 lying below oil of density 0.8 g cm−3. The
interface has surface tension 0.3 N m−1. Determine the largest horizontal size of the jar which permits the
jar to be turned around with the oil stably below the water.

∗ 24.7 Gaussian wave packet: Calculate explicitly the form of a superposition of harmonic waves

h =
∫ ∞
−∞

a(k) cos[kx − ω(k)t + χ(k)] dk, (24.91)

where

a(k) = 1

�k
√
π

exp

(
− (k − k0)

2

�k2

)
(24.92a)

ω(k) = ω0 + cg(k − k0) (24.92b)

χ(k) = χ0 − x0(k − k0). (24.92c)

Describe its form and determine what x0 represents. Hint: write the wave as the real part of a complex
wave and use the known Gaussian integrals.

∗ 24.8 Discrete Fourier transformation.
Let hn be a set of N generally complex numbers numbered n = 0, 1, 2, . . . , N − 1. Define the Fourier

coefficients

ĥm = 1√
N

N−1∑
n=0

hn exp
[
2πi

nm

N

]
. (24.93)

(a) Show that

N−1∑
m=0

exp
[
2πi

nm

N

]
=

{
N for n = 0

0 for 1 < n < N .
(24.94)

(b) Show the reciprocity theorem

hn = 1√
N

N−1∑
m=0

ĥm exp
[
−2πi

nm

N

]
. (24.95)
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(c) Show Parseval’s theorem

N−1∑
n=0

|hn |2 =
N−1∑
m=0

∣∣∣ĥm

∣∣∣2 . (24.96)

(d) Assume from now on that that hn is real. Show that

ĥ×
m = ĥ−m (24.97)

where ĥ−m means ĥ N−1−m .

(e) Put

ĥ0 = √
N a0 ĥm = 1

2

√
N am eiχm (24.98)

where an and χn are real. Show that a−n = an and χ−n = −χn . Show that for odd N = 2M + 1

hn = a0 +
M∑

m=1

am cos(ωmtn − χm) (24.99)

where tn = nε, and ωm = 2πm/Nε.

(f) Show that

1

N

N−1∑
n=0

(hn − a0)
2 = 1

2

M∑
m=1

a2
m . (24.100)
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Wa di ng i n t he wat er near a beach and fi ght i ng t o s t a y upr i ght i n t he s ur f , you ar e evi dent l y under t he
i nfl uence of nonl i near dynami cs, s i m pl y because t he br eaki ng waves l ook so di ff er ent t o t he smoot h s wel l s
i n t he open s ea t hat gave r i se t o t hem. E qual l y nonl i near ar e t he dynami cs behi nd t he hydr aul i c j umps
observed every day i n t he ki t chen s i nk or on t he beach, and t he cl osel y rel at ed dramat i c river bores creat ed
by the rising tide at the mouth of a river and rolling far upstream.
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S ket ch of t he hydr aul i c j ump i n a
ki t c hen s i nk. T he wat er comi ng
dow n f r om t he t a p s pl ays out i n a
sheet w hi ch s uddenl y t hi ckens.
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U
U ′

h

p

h′

p′

S t at i onar y st r a i ght - l i ne hydr aul i c
j ump ( dashed) . I ncompr essi bl e
fluid enters from t he left at
velocity U and hei ght h and exits
on the right at a lower velocity U ′
and great er hei ght h′ . The entry
and exit pressures, p and p′ , are
hydr ost a t i c . R i ght at t he f r ont t he
fl ow pat t ern i s compl i cat ed, oft en
t ur bul ent . T he c ont r ol vol ume
encompasses t he w hol e dr aw i ng
between the dotted lines.

Nonlinear dynamics also lie behind the familiar sonic boom caused by a high- speed airplane passing
overhead, and the hopefully less familiar short-range s hock wave created by an exploding grenade. At much
l a rger scal es one encount er s t he huge at mospher i c s hock waves r e l eased by a t her m onucl ear expl osi on, or
t he e nor mous shock waves f r om s uper nova expl osi ons t hat may t r i gger s t a r f or mat i on i n t he t e nuous cl ouds
of interstellar matter in the galaxy, a phenomenon to which we may ultimately owe our own existence.

T he beaut y of fl ui d mechani cs l i es i n t he knowl edge t hat al l t hese effect s s t em from t he same nonl i near
aspect s of t he N avi er–S t oke s e quat i ons. I n t hi s c hapt er t he gl obal l aw s of bal ance der ive d i n c hapt er 22 ar e
used to analyse the physics of fluids in the extreme limit where the nonlinearity may create discontinuities,
or near discontinuities, in the properties of the fluid. There are two major classes of such phenomena.
In an incompressible fluid, a hydraulic jump is signalled by an abrupt rise in the height of the open fluid
surface of a fast stream. When compressibility is taken into account, a sufficiently violent event may create
a shock wave in a fluid, where the flow speed abruptly drops from supersonic to subsonic. For ideal gases
the analysis is, as usual, particularly simple.

25.1 Hydraulic jumps
A stationary hydraul i c j um p or step i s easi l y obser ve d i n a ki t c hen s i nk ( see fi gur e 25. 2) . T he col umn of
water coming down from the tap splays out from the impact region in a roughly circular flow pattern, and
at a certain radius the thin sheet of water abruptly thickens and stays thick beyond. The transition region
behind the front appears to have a narrow width and contain quite complicated flow. Strongly turbulent
stationary hydraulic jumps may also arise in spillways, channelling surplus water from a dam into the river
downstream.

Stationary jump in planar horizontal flow
We shall begin with an analysis of a stationary jump along a straight line orthogonal to the direction of a
uniform flow over a horizontal planar surface. Although stationary jumps like the one in the kitchen sink
often have curved fronts, the abruptness of the jump allows us in the leading approximation to view it as
locally straight. The flow is assumed to be steady before and after the jump, whereas in the transition region
there may be intermittency and turbulence. The Reynolds number is assumed to be so large that viscous
friction can be ignored outside the transition region.
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Figure 25.1. (a) The Froude numbers Fr = U/c before and Fr′ = U ′/c′ after the jump, plotted as a
function of the jump strength σ = (h′ − h)/h. (b) The fraction of the incoming kinetic energy (25.15)
dissipated in the stationary jump as a function of the Froude number.

Let the liquid flow towards the jump with constant uniform velocity U and constant water level h.
Downstream from the jump the flow has a different velocity U ′ and a different water level h′. The
dimensionless strength of the jump is defined to be the relative change in height,

σ = h′ − h

h
= h′

h
− 1. (25.1)

Energy balance will later show that the downstream water level must necessarily be the higher, such that
the strength is always positive, σ > 0. A jump is said to be weak when σ � 1 and strong when σ � 1.

All properties of the jump may, as we shall see, be expressed in terms of the inflow parameters U , h
and the strength σ . Let us choose a control volume with vertical sides and width L orthogonal to the flow.
The upstream and downstream sides of the control volume are chosen orthogonal to the direction of flow
and placed so far away from the transition region that both inflow and outflow are steady and uniform with
velocities U and U ′. Mass conservation then guarantees that the total volume flux at the outlet is the same
as at the inlet,

Q = LhU = Lh′U ′. (25.2)

From this we get the ratio of velocities

U ′
U

= h

h′ = 1

1 + σ . (25.3)

Evidently, since σ > 0, the downstream velocity is always the smaller one.
Momentum balance (22.15) similarly guarantees that the net outflow of momentum from the control

volume equals the total external force acting on the control volume in the direction of the flow. For an
inviscid fluid the horizontal force is entirely due to the pressure acting on the two vertical sides of the
control volume where the liquid enters or leaves. The pressure in the uniform planar flow that reigns in
these regions is hydrostatic, given by p = p0 + ρ0g0(h − z) at the inlet and p′ = p0 + ρ0g0(h

′ − z)
at the outlet, where p0 is the constant (atmospheric) pressure on the open liquid surface. Carrying out the
integrals over the inlet and outlet as in example 4.1.2 on page 47, momentum balance becomes,

ρ0 QU ′ − ρ0QU = 1
2ρ0g0Lh2 − 1

2ρ0g0Lh′2. (25.4)

On the left-hand side one finds the difference between the momentum fluxes through the outlet and inlet of
the control volume, and on the right the difference between the total pressure forces acting on the inlet and
the outlet. Eliminating U ′ and h′ using (25.1) and (25.3) the resulting equation may be solved for the entry
velocity, to get

U = √
g0h

√
(1 + σ)(1 + (1/2)σ ). (25.5)

Using again (25.3) we obtain the outlet velocity

U ′ = √
g0h

√
1 + (1/2)σ

1 + σ . (25.6)
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I n bot h of t hese expr essi ons t he vel oci t y scal e i s s et by c = √
g0 h , w hi ch w e r ecogni ze as t he s mal l -

amplitude shallow-water wave speed (24. 37) in the infl ow region. Similarly, the shallow-water wave speed
in the outflow region is c′ = √

g0 h′ = c
√

1 + σ . Since σ > 0, i t f ol l ow s i mmedi at el y t hat t he va r i ous
velocities obey the inequalities U > c′ > c > U ′ . N ot e t hat t he smal l e st out fl ow vel oci t y i s obt ai ned i n t he
strong jump limit, U ′ → c/

√
2 for σ → ∞.

The dimensionless ratio between the infl ow velocity U and t he shal l ow-wat er wave s peed at t he i nl et i s
called the Froude num ber ( pl ot t e d i n fi gur e 25. 1( a) ),

Fr = U√
g0 h 

= √
( 1 + σ)(1 + ( 1/2)σ ).  ( 25. 7)

Solving this equation for σ we obtain t he strength as a function of t he F r oude number, i. e. of the i nput William F roude (1810–79). En-
gl i s h e ngi neer and naval archi -
t ect . D i s covered what are now
called scaling laws, allowing pre-
di ct i ons of shi p perf orm ance t o
be m ade f rom st udi es of m uch
sm al l e r m odel s hi ps.

va l u e s h and U ,

σ =
√

1 + 8F r2 − 3

2
≈ √

2 Fr − 3

2
. ( 25. 8)

T he l i near appr oxi mat i on i s bet t e r t han 3. 3% f or F r > 2 ( pr obl em 25. 1) . T he F r oude number a t t he out l e t
is similarly defi ned as

Fr′ = U ′√
g0 h′ = Fr

( 1 + σ)3/ 2 
=

√
1 + ( 1/2)σ

1 + σ , ( 25. 9)

which is also plotted in fi gure 25. 1( a) . Since σ > 0, w e have F r > 1 > Fr′ , and the fl ow is said to be
supercritical bef or e t he j ump, and subcritical aft er.

Sta ti o na ry ci rcul a r jump
T he near l y ci r cul ar st at i onar y hydr aul i c j ump i n t he ki t chen s i nk m ay be vi ew ed as bei ng l ocal l y st r ai ght .
The position of t he jump is di ffi cult to predict because it depends on the shape of the particul ar kitchen sink
( s ee page 363) . H er e w e s hal l si mpl y pl ace t he j ump a t a cer t a i n r a di us r = R from t he cent r e and cal cul at e
t he s hape of t he fl ow bef or e and a f t er.

In accordance wi t h what we di d f or t he pl anar j ump, we shal l al s o here assume t hat t he s t eady, radi al ,
i nvi sci d fl ow ove r t he ki t c hen s i nk bot t om i s i ndependent of z , i .e. of t he form vr = u(r) . Apart from t he
j ump r egi on, t he dynami cs ar e gover ned by t he const ancy of t he mass fl ux Q and of t he B e r noul l i f unct i on
H f or a st r eaml i ne r unni ng al ong t he s ur face,

Q = 2π r h(r) u(r),  ( 25. 10a)

H =  1
2 u(r)  

2 + g0 h(r).  ( 25. 10b)

In t he general case t hi s becomes a t hi r d degree equat i on f or u (or h ) with a rat her messy solution.
I n a t ypi cal ki t c hen s i nk exper i ment , a s f or exampl e t he one descr i bed bel ow, t he j ump i s usual l y qui t e

st r ong w i t h σ � 1. T hi s i m pl i e s t hat t he l ocal F r oude number F r(r) = u(r)/
√

g0h(r) will be large in front
of the jump and from the constancy of H it follows that u(r) will be nearly constant. Behind the jump the
local Froude number will instead be small, which again due to the constancy of H implies that the height
h(r) will be nearly constant. Thus, we have approximately,

u(r) = U, h(r) = Q

2πrU
, for r < R.

u(r) = Q

2πrh′ , h(r) = h′, for r > R.
(25.11)

Because of mass conservation across the jump, Uh = U ′h′, the Reynolds number Re = Uh/ν = Q/2πrν
is continuous and decreases everywhere inversely with the radius. To test whether the assumption of inviscid
flow is justified, one may compare the water level h(r) with a thickness estimate of the boundary layer, for
example δ(r) = 3

√
ν r/u(r) (see chapt er 28).

In a kitchen sink experiment it is fairly easy to determine the volume discharge rate Q by collecting
water in a standard household measure for a little while. From the radius a of the water jet just before it
splays out at the bottom one may determine the average velocity U = Q/πa2 which by Bernoulli’s theorem
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F i gu re 25. 2. H ydr aul i c j ump i n t he ki t c hen s i nk. P hot ogr aph by P hi l i ppe B e l l e udy, U nive r s i t é Joseph
Four i e r, r e pr oduced w i t h per m i ssi on.

shoul d be near l y t he s ame a s t he r a di al ve l oci t y al ong t he bot t om of t he si nk. F r om Q , U and R al l t he j ump
parameters may t hen be cal culated.

Example 25.1.1 (A kitchen sink experiment): In a casual home-made kitchen sink experiment (see
fi gur e 25. 2 a nd 25. 3) t he di s charge r a t e wa s obser ve d t o be Q = 100 cm3 s−1 , t he r a di us of t he
water jet a = 0.5 cm, and the radius of the jump R = 7 cm. The velocity before the jump is
U = Q/πa2 = 127 cm s−1, and using (25.11) we calculate the height just before the jump to be
merely h = h(R) = Q/2πRU = 0.018 cm. The corresponding Froude number is fairly large,
Fr = U/

√
g0h = 30, and using (25.8) we determine the jump strength to be σ = 42. The height

after the jump h′ = (1 + σ)h = 0.76 cm which appears to be a bit larger than the observed height.
The velocity after the jump is U ′ = U/(1 + σ) = 3 cm s−1, corresponding to a Froude number of
Fr′ = 0.11. The Reynolds number at the jump is moderate, Re = Uh/ν = 264, but the estimated
boundary layer thickness at the jump, δ(R) = 0.065 cm, is almost four times the water level before
the jump. Viscosity must for this reason play an important role for this experiment, in particular in the
region just before the jump, casting some doubt on the validity of the theory in this case.

Energy loss in the stationary jump
It would be tempting to make use of Bernoulli’s theorem along a streamline going across the stationary
hydraulic jump, but that is impossible because of the unruly fluid in the transition region which messes up
streamlines and generates a dissipative (viscous) loss of mechanical energy.

We may nevertheless use mechanical energy balance (22.53) to calculate the rate of loss of energy from
the system by keeping track of what mechanical energy goes into the control volume and what comes out.
Mechanical energy balance takes the form,

ρ0Q

(
1

2
U ′2 + 1

2
g0h′

)
− ρ0Q

(
1

2
U2 + 1

2
g0h

)
= 1

2
ρ0g0Lh2U − 1

2
ρ0g0Lh′2U ′ − P. (25.12)
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F i gu re 25. 3. Outline of t he hydraulic jump in the kitchen s ink discussed i n t he text and i n example 25. 1. 1.
N ot e t hat t he hei ght i s enl a rged by a fact or 4 r el at ive t o t he r a di us. T he sol i d l i ne i s t he wa t e r l evel give n by
t he m odel ( 25. 11) w her eas t he dashed l i ne i s t he est i m at ed t hi c kness of t he boundar y l a yer. T he t hi ckness
of t he j ump i s t aken f r om t he est i m at e on page 364.

On t he l eft - hand si de we have t he di fference bet ween t he r at es of out fl ow and i nfl ow of mechani cal energy
from t he cont rol vol ume, cal cul at ed from t he speci fi c mechani cal energy densi t y, 1/2v 2 + g0 z , integrated
ove r t he out l e t a nd i nl e t . O n t he r i ght t her e i s fi r s t t he di ff er ence i n r a t e s of wor k of t he pr essur e f or ces
integrated over the inlet and outlet, and fi nally P , t he r a t e of l oss of energy due t o t he wor k of i nt er nal
f r i ct i on given by ( 17. 18) .

Solving for P we may write,

P = ρ0 Q

(
1

2 
U 2 + g0 h

)
− ρ0 Q

(
1

2 
U ′2 + g0 h

′
)

= ρ0 Q( H − H ′) ( 25. 13)

where H and H ′ ar e t he va l ues of t he B er noul l i f unct i on ( 16. 15) at t he s ur face of t he wat er bef or e and
after t he jump. T his clearly demonstrates that Bernoulli’s t heorem cannot be fulfi lled w hen P i s non- zer o.
Substituting the downstream quantities using (25.3) we find

P = ρ0Qg0h
σ 3

4(1 + σ) . (25.14)

Since the rate of viscous energy loss necessarily must be positive (page 236), we conclude as promised that
a stationary hydraulic jump will always have positive strength, σ > 0. Relative to the rate of kinetic energy
inflow, �̇ = (1/2)ρ0 QU 2 , the  f ract i onal di ssi pat i v e l oss of ki net i c energy becomes ( see fi gur e 25. 1( b) ),

P

�̇
= σ 3

(1 + σ)2(2 + σ) . (25.15)

It converges as expected to unity for σ → ∞. For σ = 1, corresponding to Fr = 1.73, only 8.3% of the
kinetic energy is lost, whereas for σ = 10 corresponding to Fr = 8.1, the fractional loss is 69%. Strong
hydraulic jumps are efficient dissipators of kinetic energy, and this is in fact their function in dam spillways
where high speed surplus water must be slowed down before it is released into the river downstream of the
dam.

Moving hydraulic jumps
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U − U ′

A river bore moving in from
the right in water initially at
rest. The water behind the
front moves slower than the front
itself. The velocities are obtained
by subtracting U from all the
velocities of the stationary jump.

Moving hydraulic jumps are seen on the beach when waves roll in, sometimes in several layers on top of
each other. More dramatic river bores may be formed by the rising tide near the mouth of a river. When the
circumstances are right such waves can roll far up the river with a nearly vertical foaming turbulent front.
In the laboratory an ideal river bore can be created in a long canal with water initially at rest. When the wall
in one end of the canal is set into motion with constant velocity, a bore will form and move down the canal
with constant speed and constant water level.

The only difference between a river bore and a stationary hydraulic jump lies in the frame of reference.
The ideal river bore is obtained in the frame where the fluid in front of the jump is at rest. Subtracting
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Figure 25.4. The Qiantang tidal river bore is the largest in the world. Its height can be 4 m, its width 3 km,
and its speed above 30 km h−1. Photograph courtesy Eric Jones, Proudman Oceanographic Laboratory.

U from all velocities (and reversing their directions), the front itself will move with velocity U , and the
fluid behind the jump will move in the same direction with velocity U − U ′, which is smaller than the
shallow-water velocity c′ = √

g0h′ behind the jump for σ < 2.21........................
........................
..........................

..............................
.....................................

...............................................
............................................................................................................

�U − U ′
�U

′

A reflection bore in a closed
canal is obtained by subtracting
U ′ from all velocities of the
stationary jump.

There is also the possibility of choosing a reference frame in which the fluid behind the jump is at rest.
Subtracting U ′ from the velocities of the stationary jump, this describes a stationary flow being reflected in
a closed canal. Such a reflection bore moves with velocity U ′ out of the canal while the flow into the canal
has velocity U − U ′.

The reflection bore has in fact some bearing on the stationary jump in the kitchen sink. The
layer of fluid spreads initially over the bottom of the sink with a high Froude number, and thus
a roughly constant velocity and decreasing thickness. The spreading layer of fluid encounters
resistance against the free flow from the sides of the sink, or from the slight slope and curvature
of its bottom1. This creates a reflection bore with small Froude number, which moves inwards with
roughly constant height and increasing velocity, until it stops when it encounters an outflow with
velocity and thickness that fits a stationary jump. One may also observe that when the faucet is
closed the stationary jump in the kitchen sink immediately turns into a river bore moving towards
the centre.

Thickness of a hydraulic jump
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A river bore is ‘pumped up’ by
small-amplitude surface waves
of sufficiently long wavelength.
Short waves move too slowly to
catch up with the jump.

A river bore is created by the rising tide at the river mouth, and as long as the tide keeps rising, it will
continue to pour more water in. The additional water supplied by the rising tide in a small time interval
may be thought of as a small-amplitude surface wave riding upriver on top of the already existing bore.
Although this mechanism is most obvious for the river bore, both the reflection bore and the stationary
hydraulic jump must also be built up ‘from behind’ by small-amplitude waves.

Any small-amplitude surface wave may be resolved into a superposition of harmonic waves with a
spectrum of wavelengths. Consider now a harmonic wave with wavelength λ on its way upstream towards a
stationary hydraulic jump. In the rest frame of the outflow, the energy in a harmonic wave with wavenumber

1The viscous friction in the thinning layer of fluid may also trigger the jump; see T. Bohr, V. Putkaradze and S.
Watanabe, Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flows, Phys. Rev.
Lett. 79, (1997) 1038.
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Figure 25.5. (a) The solution ψ(σ) to equation (25.17). For σ → 0 the ratio behaves as
√
σ , while for

σ → ∞ it increases as σ/2. (b) The ratio λ0/h of the minimal wavelength in units of the height h before
the jump as a function of Froude number Fr. For Fr → ∞ the ratio becomes constant, λ0/h → 4π (dashed
line).

k = 2π/λmoves with the group velocity of a gravity wave (24.33). For liquid of depth h′ the group velocity
becomes,

c′
g = 1

2

√
g0

k
tanh kh′

(
1 + 2kh′

sinh 2kh′
)
. (25.16)

In the rest frame of the jump, the wave propagates towards the jump with velocity c′
g − U ′ which must
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λ0
A small-amplitude gravity wave
moving upstream towards the
jump must have wavelength
greater than λ0, and its front
cannot be sharper than that.

be positive if the wave is ever to reach the jump. Since c′
g → √

g0h′ for k → 0 and U ′ <
√

g0h′,
the condition c′

g > U ′ may always be fulfilled provided the wavenumber k is sufficiently small, i.e. the
wavelength exceeds a certain minimum value, λ > λ0. The minimal wavelength λ0 is found by solving the
equation c′

g = U ′, which after division by
√

g0h′ takes the form,

1

2

√
tanhψ

ψ

(
1 + 2ψ

sinh 2ψ

)
= Fr′ =

√
1 + 1/2σ

1 + σ , (25.17)

where ψ = kh′ = 2πh′/λ0. This transcendental equation may be solved for ψ and the result is shown in
figure 25.5(a) as a function of the jump strength σ . In figure 25.5(b) this is converted to a plot of the ratio
λ0/h of the minimal wavelength to the upstream height h as a function of the Froude number Fr.

The hydraulic jump effectively acts as a high-pass filter on backflow wavelengths, only letting waves
with sufficiently large wavelength, λ > λ0, through to ‘feed’ it. The smooth part of a hydraulic jump cannot
contain details much smaller than the waves that maintain it, so the minimal wavelength λ0 may be used as
a measure of the minimal thickness of the transition region.

Example 25.1.2: A river bore with front height h′ − h = 1 m moves up a river of depth h = 0.5 m.
The jump strength is σ = (h′ − h)/h = 2, corresponding to Fr = 2.45, and the front velocity
becomes U = 5.4 m s−1 while the velocity of the flow behind the front is U − U ′ = 3.6 m s−1.
From figure 25.5(b) we find λ0/h = 11.6, so that the minimal wavelength and thus the thickness
becomes λ0 = 6.7 m.

25.2 Shocks in ideal gases
An explosion in a fluid at rest creates an expanding fireball of hot gases and debris which pushes the fluid
in front of it. If the velocity imparted to the fluid by the explosion is smaller than the velocity of sound in
the fluid, an ordinary sound wave will run ahead of the debris and with a loud bang inform you that the
explosion took place. If the initial expansion velocity of the fireball is larger than the sound velocity in the
fluid, the first sign of the explosion will be the arrival of a supersonic front (here we disregard the flash
of light which will arrive much earlier). The sudden jump in the properties of a fluid at the passage of a
supersonic front is called a shock. Stationary shocks may also arise downstream from a constriction in a duct
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where the flow under suitable conditions discussed in section 16.4 will be supersonic. The understanding
of shocks is of great importance for the design of supersonic aircraft, and of jet and rocket engines.

Stationary planar normal shocks
We shall begin by analysing stationary planar shocks, which like plane sound waves are normal to the
direction of the flow. We shall later see that shocks are in fact not much thicker than the molecular length
scale, allowing us to view all shocks as truly singular and locally plane. In the rest system of the shock we
choose a narrow control volume just containing an area A of the shock front. Upstream from the shock the
gas has velocity U , temperature T , pressure p and density ρ; downstream it has velocity U ′, temperature
T ′, pressure p′ and density ρ′.

There is a strong analogy between a hydraulic jump and a shock, although the strength of the shock is
defined as the relative pressure increase,

σ = p′ − p

p
= p′

p
− 1. (25.18)

We shall see below that the Second Law of Thermodynamics requires that σ > 0. A shock is said to be
weak when σ � 1 and strong when σ � 1.
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Since the shock is so narrow there will be essentially no room for dissipation of energy, allowing us to
apply Bernoulli’s theorem. Using the pressure function (16.37) for an ideal gas with adiabatic index γ , we
obtain three basic equations, called the Rankine–Hugoniot relations,

Pierre Henri Hugoniot (1851–
1887). French engineer; worked
mainly in the marine artillery ser-
vice. Wrote only one (long) arti-
cle, published in the year of his
untimely death, on ‘the propaga-
tion of movement in bodies, par-
ticularly in perfect gases’ [33].

ρU = ρ′U ′, (25.19a)

ρU2 + p = ρ′U ′2 + p′, (25.19b)

1

2
U2 + γ

γ − 1

p

ρ
= 1

2
U ′2 + γ

γ − 1

p′
ρ′ . (25.19c)

These relations are simple rearrangements of mass, momentum and energy balance across the shock. They
may be solved explicitly for the downstream parameters in terms of the upstream ones (see problem 25.3),
but it is much more convenient to express the solution in terms of the strength of the shock.

Using (25.19a) to eliminate U ′ in (25.19b), we obtain,

U2 = ρ′
ρ

· p′ − p

ρ′ − ρ , U ′2 = ρ

ρ′ · p′ − p

ρ′ − ρ , (25.20)

where the second equation is obtained from the first by swapping primed and unprimed variables. Inserting
this into (25.19c) we find the ratio of densities,

ρ′
ρ

= γ (p + p′)+ p′ − p

γ (p + p′)− p′ + p
, (25.21)

and expressing the right-hand side in terms of the strength (25.18) we get

ρ′
ρ

= U

U ′ = 2γ + (γ + 1)σ

2γ + (γ − 1)σ
. (25.22)

The temperature ratio may now be obtained from the ideal gas law, T ′/T = (p′/ρ′)/(p/ρ) =
(p′/p)(ρ/ρ′).

Since we are interested in supersonic flow, it is most convenient to express the velocities in terms of the
dimensionless Mach numbers, Ma = U/c and Ma′ = U ′/c′, where c = √

γ p/ρ and c′ = √
γ p′/ρ′ are the

sound velocities before and after the shock. Using (25.20) we find,

Ma =
√

1 + γ + 1

2γ
σ , Ma′ =

√
1 − γ + 1

2γ

σ

1 + σ . (25.23)

Here the second equation is obtained from the first by swapping primed and unprimed variables, which
according to the definition (25.18) amounts to replacing σ by −σ/(1 + σ).
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Figure 25.6. The dimensionless Rankine–Hugoniot parameters as a function of the inflow Mach number
for γ = 7/5. The fully drawn curves are the ratios of pressure, density and temperature. The dashed curve
is the outflow Mach number Ma′, and the dotted curve is the specific entropy jump at the shock, �s/cV
given in (25.24).

Up to this point, the strength may in principle range over both negative and positive values in the interval
−1 < σ < ∞. The physical asymmetry between positive and negative strength becomes apparent when
we calculate the change in specific entropy �s = s′ − s across the shock. Using (C.21c) we find,

�s

cV
= log

[
p′
p

(
ρ′
ρ

)−γ ]
= log(1 + σ)− γ log

2γ + (γ + 1)σ

2γ + (γ − 1)σ
, (25.24)

where cV is the specific heat constant of the gas (C.18). The right-hand side is a monotonically increasing
function of σ which vanishes for σ = 0 and is thus negative for −1 < σ < 0 (see problem 25.5 and
figure 25.6). However, by the Second Law of thermodynamics the specific entropy change is not permitted
to be negative, and consequently we require that σ ≥ 0. We have thus reached the promised conclusion
that in a stationary shock the velocity must go from supersonic (Ma > 1) to subsonic (Ma′ < 1) in the
downstream direction. The various dimensionless quantities are plotted in figure 25.6 as functions of the
inflow Mach number Ma.
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moving frame are Ũ and Ũ ′ with
angles of incidence φ and φ′.

An oblique planar shock front may be obtained in a reference frame moving tangentially to the stationary
normal shock with constant velocity V . In the moving frame the flow velocities are denoted Ũ and Ũ ′ with
angle of incidence φ and transmission angle φ′. Using that the tangential velocity is the same on both sides
of the shock, V = U cot φ = U ′ cot φ′, we obtain a relation between incidence and strength,

tanφ′
tanφ

= U ′
U

= 2γ + (γ − 1)σ

2γ + (γ + 1)σ
. (25.25)

Since σ > 0, the right-hand side is always smaller than unity, implying that the transmission angle is always
smaller than the angle of incidence φ′ < φ.

The geometry shows that the angle of incidence is given by sinφ = U/Ũ , and since U → c for σ → 0,
the incidence angle for a weak oblique shock obeys sinφ0 = c/Ũ = 1/M̃a, where M̃a = Ũ/c is the Mach
number of the inflow. The angle φ0 is called the Mach angle,

φ0 = arcsin
1

M̃a
. (25.26)
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Figure 25.7. Shock waves created by a half-inch sphere moving at Ma = 1.53. One notes the detached
bow wave which would not be there with a pointed object. The turbulence behind the sphere generates
secondary weak shock fronts. Photograph by A. C. Charters.

What we perceive as a sonic boom is a weak shock cone with half opening angle φ0 trailing a supersonic
aircraft. A simple geometric construction due to Mach permits us to view the cone as the envelope of all
the spherical sound waves emitted earlier from the nose of the aircraft.

Example 25.2.1: For an aircraft at M̃a = 2, the Mach angle is φ0 = 30 ◦, so when you hear
the sonic boom of the aircraft passing overhead at h = 20 km altitude, it is already a distance
d = h cot φ0 ≈ 35 km beyond your position.

Moving normal shock
A stationary planar normal shock may be converted to a normal shock moving through a gas at rest by
choosing a reference frame moving with velocity U . In this frame, the previously incoming gas will now be
at rest, whereas the shock front itself moves in the opposite direction with velocity U , and the gas behind
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the front moves in the same direction with velocity U − U ′ which may or may not be supersonic. Locally,
this describes a blast wave arising from a violent explosion, to be discussed in the following section.

Front thickness
Since the gas is completely at rest before the passage of the moving front, it is clear that a moving shock
must be ‘fed from behind’, like a hydraulic jump, but because air is non-dispersive all small-amplitude
waves move upstream at the same speed, c′ = √

γ p′/ρ′. Consequently there will be no lower limit to the
wavelength of disturbances running upstream towards the front, and from a macroscopic point of view the
shock front has vanishing thickness, as long as viscosity can be disregarded.

The only quantity with the dimension of length that may naturally be constructed from the front velocity
U and the kinematic viscosity ν is,

δ ∼ ν

U
. (25.27)

For a weak shock in the atmosphere under normal conditions we have ν ≈ 1.6 × 10−5 m2 s−1 and
U ≈ c ≈ 340 m s−1, leading to δ ∼ 45 nm, so that the viscous thickness of the front is comparable
to the mean free path in the gas. This conclusion actually invalidates the calculation, but for all practical
purposes a shock front may be assumed to have zero thickness.
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Strong shock limit
In the limit of large shock strength σ � 1, the density ratio ρ′/ρ, the velocity ratio U ′/U , the ratio p′/ρU2

and Ma′ all approach constant values,

ρ′
ρ

= U

U ′ → γ + 1

γ − 1
,

p′
ρU2

→ 2

γ + 1
, Ma′ →

√
γ − 1

2γ
. (25.28)

For a diatomic gas with γ = 7/5 we find ρ′/ρ → 6 and Ma′ → 1/
√

7 ≈ 0.38. The actual Mach number
of the flow behind a moving shock in a stationary gas is (U − U ′)/c′ → 1/

√
2γ (γ − 1) which becomes

5/2
√

7 ≈ 0.94 for γ = 7/5. The flow behind the front is only marginally subsonic in a diatomic gas,
whereas in a multi-atomic gas with γ = 4/3 the flow is marginally supersonic.

25.3 Atmospheric blast wave
A large explosion in the atmosphere generates a blast wave bounded by a spherical supersonic shock front.
Such blast waves are mostly invisible, but films of nuclear or thermonuclear bomb explosions show that the
physical conditions can become so extreme that the blast wave can be seen as a rapidly expanding spherical
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A planar shock moving towards
the left with supersonic velocity
U into a gas at rest. The fluid
behind the front moves to the left
with velocity U − U ′ which may
or may not be supersonic.

fireball, appearing right after the initial flash but before the mushroom cloud erupts. In this section we shall
investigate the time evolution of such blast waves in the atmosphere, following the road laid out by G. I.
Taylor in the 1940s2.

Radius of the strong shock front
Let the atmosphere initially be at rest with density ρ0 and pressure p0. The blast deposits almost instantly
a huge amount of energy E0 within a tiny region of radius a, which initially contains the possibly ionized
gases produced in the blast, as well as the solid remains of the bomb if there are any. The huge pressure in
the initial fireball creates a shock front expanding at supersonic speed. After some time t , the shock front
has become nearly spherical with a radius R(t) that is very large compared to the initial size a. The volume
inside the front contains essentially all of the initial energy E0 in the form of ‘shocked’ air with only little
contamination from the bomb itself. At this stage the shock has become a purely atmospheric phenomenon
and all details about its origin in any particular explosion have been ‘forgotten’.
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A spherical shock front in the
atmosphere some time t after
the detonation of a bomb (black
circle). Its current radius is
R(t), which is much larger than
the initial blast region. The
atmosphere is initially at rest with
density ρ0 and pressure p0. The
volume of the sphere consists
almost entirely of air.

Under these conditions the radius of the shock front R(t) will be determined by the equations of gas
dynamics, and can only depend on time t , the total energy E0, and the atmospheric parameters ρ0 and p0.
In a strong shock the ambient pressure p0 is negligible compared to the pressures inside, implying that R(t)
should be finite in the limit of p0 → 0, and thus only depend on t , E0 and ρ0. Since E0/ρ0 is measured in
units of of J kg−1 m−3 = m5 s−2, the only possible form of the relationship between size and time is

R(t) = A

(
E0t2

ρ0

)1/5

, (25.29)

where A is a numerical constant which as we shall see below is very close to unity.
It is remarkable that a phenomenon as violent as an atomic explosion can be captured in such a simple

relationship. Taylor used it in 1947 to estimate the yield of the first nuclear bomb to be about 1014 J from
a time-lapse sequence of recently released photographs, a feat which created some embarrassment with the
security authorities and earned him a mild admonishment, although he had done nothing wrong [8].

2G. I. Taylor, The formation of a blast wave by a very intense explosion (I. Theoretical discussion, II. The atomic
explosion of 1945), Proc. Roy. Soc. A201, (1950) 159–186. Taylor actually formulated the theory in 1941, but first
published it in 1950. Photographs of the first atomic test were declassified by the US Atomic Energy Commission in
1947, although its yield remained classified.
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Figure 25.8. Trinity fireball 16 milliseconds after detonation. The sharp outline of the fireball indicates that
it coincides with the shock front. Later the shock front will detach from the fireball. Source: White Sands
Missile Range.

Physical parameters in the strong shock limit
In the strong shock limit we may use the strong shock results (25.28) to determine the physical quantities
just inside the front,

ρ1

ρ0
= γ + 1

γ − 1
,

v1

U
= 2

γ + 1
,

p1

ρ0U2
= 2

γ + 1
, (25.30)

where U = d R/dt = (2/5)R/t is the shock front velocity and v1 = U − U ′ = (1 − U ′/U)U is the radial
flow velocity just behind the front. The temperature is obtained from the ideal gas law,

T1 = p1

ρ1

Mmol

Rmol
= 2(γ − 1)

(γ + 1)2
MmolU

2

Rmol
(25.31)

where Rmol is the molar gas constant and Mmol is the molar weight of the gas. Note that none of these
quantities depend on the ambient pressure p0. In the following we shall use the value γ = 7/5 for diatomic
gas, although the violent initial shock may dissociate a fraction of the molecules.

Example 25.3.1 (Trinity): The first atomic bomb test, codenamed Trinity, was carried out at
Alamogordo, New Mexico on July 16, 1945. Its yield was E0 ≈ 8.5 × 1013 J which is roughly
equivalent to 17 000 tons of the high explosive TNT. Taking A = 1 and γ = 7/5 we find that after
t = 15 ms the fireball has expanded to a radius R ≈ 110 m with the front moving at a speed of
U ≈ 2900 m s−1. The pressure just inside the front is p1 ≈ 85 atm, the density ρ1 ≈ 7.2 kg m−3, and
the temperature T1 ≈ 4200 K.

Isentropic radial gas dynamics
A spherically invariant isentropic flow in an ideal gas is described by a purely radial velocity field v =
v(r, t)er , a density field ρ(r, t), a pressure field p(r, t) and the field of specific entropy s = cV log(pρ−γ ).
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In the absence of gravity and viscosity, the fields obey the dynamic equations,

∂v

∂t
+ v ∂v

∂r
= − 1

ρ

∂p

∂r
, (25.32a)

∂ρ

∂t
+ 1

r2

∂
(

r2ρv
)

∂r
= 0, (25.32b)

∂s

∂t
+ v ∂s

∂r
= 0. (25.32c)

The first is the Euler equation, the second the continuity equation on radial form, and the last expresses
that the flow is isentropic, meaning that the specific entropy is constant along a comoving (particle) orbit.
The last equation also shows that if the initial state is homentropic with spatially constant specific entropy
∂s/∂r = 0, it will remain so forever. In a strong blast entropy is only produced right at the front, and that
does not lead to a homentropic state of the air behind the front.

Strong self-similar shock
In the strong shock limit, σ → ∞ and p0 → 0, the only parameter with dimension of length is the radius of
the shock front R(t), which we for a moment pretend not to know explicitly. The proper non-dimensional
radial variable for all the fields is therefore,

ξ = r

R(t)
. (25.33)

Including suitable dimensional coefficients depending only on R(t) and ρ0, the fields are assumed to be of
the form,

v = Ṙ(t)u(ξ), (25.34a)

ρ = ρ0 f (ξ), (25.34b)

p = ρ0 Ṙ(t)2q(ξ), (25.34c)

where a dot indicates differentiation after time. With this assumption, the spatial variation of the fields is
self-similar at all times.

Inserting these fields into the equations of motion (25.32) we obtain three coupled ordinary first-order
differential equations, and using a prime to denote differentiation after ξ , we find

αu + (u − ξ)u′ = −q′
f
, (25.35a)

(u − ξ) f ′ = − f u′ − 2u f

ξ
, (25.35b)

2α + (u − ξ)
(

q′
q

− γ f ′
f

)
= 0, (25.35c)

where

α = R R̈

Ṙ2
. (25.36)

The α-terms on the left-hand side of (25.35) stem from the explicitly time-dependent prefactors of the fields.
Since α only depends on t and the other functions only on ξ , it follows from these equations that α must be
a constant, independent of time. The solution to (25.36) is then a power law

R(t) ∼ t1/(1−α). (25.37)

The value of α cannot be determined from the dynamic equations alone but depends on the boundary
conditions imposed on the solution, in particular the condition that the radial velocity u must vanish at
ξ = 0. We shall determine it below by requiring that the excess energy E0 is constant.
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Figure 25.9. (a) The numeric solution to the dynamic equations (25.35) for γ = 7/5. All quantities are
normalized to their maximal values at ξ = 1. (b) The dimensionless coefficients A in the blast radius
(25.29) as a function of γ .

Numerical solution
The three ordinary first-order differential equations (25.35) need three boundary conditions which may be
determined at ξ = 1 from the strong shock properties (25.30),

f1 = γ + 1

γ − 1
, u1 = 2

γ + 1
, q1 = 2

γ + 1
. (25.38)

Although it is possible to find an analytic solution [62], it turns out to be quite complicated, and it is much
easier to integrate the differential equations numerically. The numeric solution is plotted in figure 25.9(a)
for γ = 7/5 with the functions normalized by their values at ξ = 1. Evidently there are two distinct regions
in a strong shock, a core for ξ < 0.7 where the pressure is nearly constant with q0/q1 ≈ 0.37 and the
velocity increases linearly, and a shell for ξ > 0.7 where the velocity and pressure rise rapidly to meet the
required values at the front.

Excess energy
The total energy of the gas in the volume inside the shock front consists of the kinetic energy of the moving
gas plus its internal energy. Subtracting the internal energy of the gas before the explosion we find from
(22.60) on page 320 the excess of energy inside the shock front,

E0 =
∫ R(t)

0

(
1

2
ρ(r, t)v(r, t)2 + p(r, t)− p0

γ − 1

)
4πr2 dr. (25.39)

Barring radiative losses, this energy must be constant and equal to the extra energy added to the atmosphere
in the point-like explosion. It takes quite a bit of algebraic work to demonstrate explicitly from the dynamics
(25.32) and the strong shock properties (25.30) that the time derivative of this expression indeed vanishes.

Inserting the self-similar fields (25.34), the excess energy (25.39) becomes in the limit of p0 → 0,

E0 = ρ0 R3 Ṙ2 K (γ ), (25.40)

where K (γ ) is the dimensionless integral,

K (γ ) = 4π
∫ 1

0

(
1

2
f (ξ)u(ξ)2 + q(ξ)

γ − 1

)
ξ2 dξ. (25.41)

It is immediately clear from (25.40) that E0 ∼ R3 Ṙ2 ∼ t (3+2α)/(1−α), so for the power law (25.37) to lead
to a constant energy, the exponent must be α = −3/2, and thus R ∼ t2/5. This confirms the dimensional
analysis (25.29), and inserting Ṙ = (2/5)R/t in (25.40) we also obtain an expression for the dimensionless
constant,

A =
(

4

25
K (γ )

)−1/5
. (25.42)

In figure 25.9(b) the numeric solution is plotted for a range of γ values. For γ = 7/5 we have A = 1.03,
which justifies taking A ≈ 1 in our earlier estimates.
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The weakening shock
As the shock front expands, it decreases in strength until it no longer satisfies the conditions for the
strong shock approximation used above. The characteristic strength for the breakdown of the strong shock
approximation may be chosen to be σs = 2γ /(γ −1)where the two terms in the denominator of the density
ratio (25.22) become equal. For γ = 7/5 we have σs = 7 and thus p1 = (1 + σs)p0 = 8 atm. Using the
strong shock formalism in the Trinity example 25.3.1 this is estimated to happen at time t ≈ 110 ms when
the front radius is R ≈ 240 m and its velocity U ≈ 900 m s−1.

Continuing the expansion beyond this point, the core pressure will decrease until it reaches the ambient
pressure p0. At this point the core can no longer perform work on the surrounding atmosphere and will
stop expanding. The core is very hot due to its large entropy with a correspondingly low density, and the
buoyancy of the low-density core will make it rise like a thermal bubble, creating thereby the stalk of the
mushroom cloud. We may estimate the time when the core expansion ceases by equating the core pressure
p = ρ0U2q0 with atmospheric pressure p0. This is probably a rather bad approximation, but in lieu of a
better one we find in the Trinity example 25.3.1 that it happens at time t ≈ 260 ms when the front radius is
R ≈ 340 m and its velocity has dropped to U ≈ 525 m s−1.

After this point the shock continues as a spherical wave in the form of a thin shell. When such a front
passes a given point, the pressure first rises above atmospheric pressure, followed by a characteristic suction
phase where the pressure drops below atmospheric pressure.

Problems
25.1 Show that the linear approximation in (25.8) is better than 3.3% for Fr > 2.

25.2 Discuss mass conservation for the river bore and the reflection bore.

25.3 Verify that the solution of the Rankine–Hugoniot relation (25.19) is

U ′ = γ − 1

γ + 1
U + 2γ

γ + 1

p

ρU
, (25.43a)

1

ρ′ = γ − 1

γ + 1

1

ρ
+ 2γ

γ + 1

p

ρ2U2
, (25.43b)

p′ = −γ − 1

γ + 1
p + 2

γ + 1
ρU2. (25.43c)

25.4 In a general material, the third Rankine–Hugoniot relation (25.19c) becomes

1

2
U2 + p

ρ
+ u = 1

2
U ′2 + p′

ρ′ + u′, (25.44)

where u and u′ are the specific internal energies before and after the shock front.
Show that it follows from the Rankine–Hugoniot relations that,

u′ − u = (p + p′)(ρ′ − ρ)
2ρρ′ . (25.45)

This identity goes under the name of Hugoniot’s equation.

25.5 Show that the entropy change (25.24) is a growing function of σ for σ > −1.

25.6 The largest Hydrogen bomb ever detonated in the atmosphere had a yield of 50 megatons of TNT
(about 2.5×1017 J). Estimate the radius and velocity of the shock front 1 s after the explosion, and estimate
the pressure, density and temperature just behind the shock front. Show that the strong shock approximation
is valid at this time.
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W hi r l s and vort i ces are common f eat ures of real fl ui ds. S t i r r i ng t he c off ee, you cr eat e a ci r c ul at i ng m ot i on,
a w hi r l t hat di es out af t e r s ome t i m e w hen you st op st i r r i ng. A fast s pi nni ng vor t ex may f or m a t t he dr ai n
of a bat ht ub w hen i t i s empt i e d, and can r e mai n quasi - s t a bl e a s l ong as t her e i s e nough wa t e r i n t he t ub.
N or m al l y, w hi r l s a nd vor t i ces ar e i nvi s i bl e fa r awa y f r om f r e e boundar i es, but i n t he bat ht ub t he dr a i n vor t ex
i s made vi si bl e by s oap r emai ns cl oudi ng the wat er and t he depr essi on i t cr eat es at t he s ur face. I t may even
become audible, because water falling t hr ough the drain sucks air down from t he surface.

I n t he a t m ospher e above heated gr ound, w hi r l s and vor t i ces ar i s e a l l t he t i m e. Most l y t hey ar e s mal l and
i nvi si bl e, but s omet i m es t hey pi ck up dust a nd debr i s and a ppear as dust devi l s . L arger dust devi l s , i n s ome
count r i es cal l e d s ky- pumps, a r e know n t o pi ck up hayst acks a nd scat t e r t hem, or t o t hr ow t abl e s a r ound i n
si dewal k caf es. W hen t he heat - dr iven ai r vor t i ces gr ow r eal l y bi g and nast y, t hey become t or nadoes. T he
f or c e pow er i ng heat - dr ive n vor t ices is fundamentally the same as the force that maintains a bathtub vortex,
namely gravity. Whereas a bathtub vortex is driven by gravity acting on the water going down the drain, a
tornado is maintained by the buoyancy of hot air draining skywards.

Vortices are al s o f ound i n t he wakes of movi ng obj ect s. F r om t he t i ps of t he w i ngs of ai r c r a f t t her e
w i l l always t r ai l l ong i nvi si bl e vor t i ces ( t o be di s cussed i n chapt er 29) . L arge passenger ai r cr af t t aki ng off
or l a ndi ng cr eat e strong and fairly stable vortices, capable of overturning smaller planes following after.
‘Beware of vortex’ is a common warning issued by flight controllers to small aircraft when taking off or
landing behind heavy passenger planes.

The chapter sets the stage with a discussion of the structure of free cylindrical vortices in an
incompressible fluid, and continues with a presentation of the basic vortex dynamics in non-viscous fluids.
The remainder of the chapter is devoted to models for non-singular laminar vortices driven by secondary
flow. Extensive treatment of vortex structure and dynamics may be found in [60, 45].

26.1 Free cylindrical vortices
The spindle-driven vortex discussed on page 262 was powered by a rotating cylindrical spindle, which
delivered the work necessary to overcome viscous friction in the fluid. Although the flow pattern (18.74)
did not depend explicitly on the viscosity of the fluid, a finite viscosity was nevertheless necessary for the
spindle to be able to ‘crank up’ the vortex, starting from fluid at rest.

In a truly inviscid fluid, we would not be able to crank up the vortex, but once it had somehow been
established there would be no viscous losses and the vortex would keep spinning forever. The solid spindle
could then with impunity be replaced by a core made from the same fluid as the vortex and, for example,
rotating as a solid body with the same angular velocity � as the spindle.
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The R a nki ne vo rtex
The R anki ne v ort ex with core radi us c is constructed in precisely this way,William John Macquorn R ankine

( 1820–72) . Scottish civil engi-
neer and physi ci st . Worked on
thermodynamics (with Kelvin), in
part i c ul ar st eam e ngi ne t heory.
C reat e d a now def unct absol ut e
t e m perat ure based on Fahrenhei t
degrees.

�

�

�
�
�
�
�

............................................................................................................................................................. .............................................................................. ........

vφ

rc

C

Sketch of the velocity field for the
R a nki ne vor t ex. I n a vi scous fl ui d
t he c usp a t t he cor e boundar y
r = c indicates a discontinuity
i n shear st r ess w hi ch i s physi cal l y
unaccept a bl e.

vφ =
� r 0 ≤ r ≤ c

� c 2

r 
c ≤ r < ∞

. ( 26. 1)

T he vor t i c i t y va ni shes out si de t he c or e a nd i s const a nt i nsi de ( s ee pr obl em 18. 22) .
I n t he a bsence of gr avi t y, t he pr essur e p = p(r) can onl y depend on r , and the radial pressure gradient

must accordi ng t o ( 18. 60a) provi de t he cent r i pet al force necessary t o mai nt ai n t he ci r cul ar fl ui d mot i on,

dp

dr
= ρ0

v 2φ

r
, (26.2)

sometimes called cyclostrophic balance. Integrating this equation with the Rankine vortex we obtain,

p = −ρ0

∫ ∞
r

v2
φ

r
dr = −1

2
ρ0�

2c2


2 − r2

c2
r < c

c2

r2
r > c

(26.3)

where the pressure has been normalized to vanish at infinity. The shape of the pressure is shown as the
dashed cur ve i n fi gur e 26. 1( b ).

The shear stress calculated from (18.65) becomes

σφr =


0 r < c

−2η�
c2

r2
r > c

. (26.4)

The cusp in the Rankine vortex at the core boundary creates a finite jump in stress at r = c, which is
physically unacceptable because it violates Newton’s third law. The Rankine vortex is only meaningful in
the limit of a truly inviscid fluid.

Interpolating vortex
It is possible to find a smooth interpolating function which coincides with the Rankine vortex for r � c
and r � c, for example the Lamb vortex,Horace Lamb (1849–1934).

British physicist. Contributed
mainly to acoustics and fluid me-
chanics. His textbooks remained
for many years the standard in
these fields.

vφ = � c2

r

(
1 − e−r2/c2

)
, (26.5)

which approaches the Rankine vortex for both r � c and for r � c. The shear stress is continuous
everywhere and the problem with Newton’s third law has disappeared. The velocity field is shown in
figure 26.1(a).

Integrating (26.2) with the interpolating vortex and requiring the pressure to vanish at infinity one gets,

p = −1

2
ρ0�

2c2 F

(
r2

c2

)
, (26.6)

where F(ξ) is a purely mathematical function,

F(ξ) =
∫ ∞
ξ

(
1 − e−x )2 dx

x2
. (26.7)

With pressure normalized to vanish at infinity and using that F(0) = 2 log 2, the central pressure becomes

p0 = −1

2
ρ0�

2c2 F(0) = −ρ0�
2c2 log 2. (26.8)
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F i gu re 26. 1. T he i nt er pol at i ng vor t ex ( sol i d l i ne) and t he R a nki ne vor t ex ( dashed) f or c = � = ρ0 = 1
(a) The velocity field. (b) The pressure field, whi ch is somewhat shallower i n t he interpol ating vortex t han
i n t he R anki ne vor t ex.

F i gu re 26. 2. Ti me evol ut i on of t he O s een–L amb vor t ex ( 26. 10) f or c = � = ρ0 = 1 and ν = 0. 1 at
sel ect ed t i m es. T he cor e gr ow s l arger w i t h t i m e w hi l e t he cent r al angul ar vel oci t y ( i . e. t he sl ope of vφ at
r = 0) becomes s maller. (a) A z i m ut hal vel oci t y. (b) P r essure.

The pressure is, of course, lower at the centre than at infinity (see figure 26.1(b)), and for a liquid vortex in
const ant gr avi t y t hi s woul d cr eat e a cent r al depr essi on i n t he open s ur face of t he s ame s hape ( s ee sect i on
26. 6) .

The resolution of the stress problem comes at a price, because the interpolating vortex cannot be stable
on its own in a viscous fluid. The shear stress will cause dissipation of kinetic energy everywhere in the
fluid and make the vortex spin down. The largest shear stress is found just outside the core and will slow
down the core’s rotation while expanding its radius to conserve angular momentum. We shall now see that
the Lamb vortex with a time-dependent core radius is an exact solution to the Navier–Stokes equations.

Diffusive spin-down of vortex
Carl Wilhelm Oseen (1879–
1944). Swedish mathematical
physicist. Worked on relativity.
Influential member of the Nobel
committee, he was instrumental
in awarding Einstein the prize in
1921 for the photoelectric effect,
rather than for relativity.

Assuming that the azimuthal velocity field retains its purely cylindrical form vφ(r, t) at all times, we may
go through the same steps as lead to (18.60) and derive the time-dependent Navier–Stokes equation in
cylindrical coordinates,

∂vφ

∂t
= ν

∂

∂r

(
1

r

∂(rvφ)

∂r

)
, (26.9)

with the pressure given by (26.2). This equation is quite analogous to the momentum diffusion equation
(17.5), and given any initial field vφ(r, 0) it will always produce a solution.

By insertion one may directly verify that the solution which for t = 0 starts out as the interpolating
vortex (26.5) is,

vφ(r, t) = C

r

(
1 − exp

(
− r2

c2 + 4νt

))
, (26.10)
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F i gu re 26. 3. Tor nado near L a P l at a, Mar yl a nd, on A pr i l 28, 2002. O ne of t he l a rgest t or nados ever t o hi t
the eastern part of the US.

where C is a constant. It is called the O s een–L am b v ort ex and its time evolution is plotted in fi gure 26. 2.

Whereas the asymptotic circulation is constant, the core radius, c(t) =
√

c2 + 4νt , grows with time, while
the angular velocity of the core, �(t) = ∂vφ/∂r |r=0 = C/(c2 + 4νt), decreases. The time it takes for the
vortex to double its original core radius is t = 3c2/4ν, and the core overtakes any point r , well outside the
original core, in a time t � r2/4ν. These times are recognized as typical momentum diffusion time scales
(see page 233), but in this case the quantity that diffuses is actually angular momentum.Hermann Ludwig Ferdinand von

Helmholtz (1821–94). German
physician and physicist. In-
vented in 1851 the ophthalmo-
scope (for studying the eye) and
published an influential Hand-
book of physiological optics. Was
deeply engaged in the physiology
of perception and the physiolog-
ical basis for the theory of mu-
sic. In physics his main contribu-
tion was in vortex theory. Worked
as professor of physics in Berlin
from 1871.

Finally, it should be mentioned that there are many other exact solutions to (26.9), some of which are
found in problems 26.9 and 26.10.

Example 26.1.1 (Bathtub vortex): A water vortex with core radius c = 3 cm doubles the radius of
its viscous core in the time 3c2/4ν = 675 s, a little more than 11 min. This is surprisingly large, but it
should be remembered that the estimate is only valid for laminar flow. Turbulence make most real-life
bathtub vortices spin down faster, unless they are fed by inflow.

26.2 Ideal vortex dynamics
Vortex lines were defined (on page 219) to be curves that always follow the instantaneous vorticity field,
ω = ∇ × v. Like streamlines, vortex lines cannot cross each other, and since the vorticity field is a ‘curl’,
it is rigorously divergence-free, ∇ · ω = 0. This implies that vortex lines cannot emerge from anywhere,
but must form closed curves, or curves coming from and going to the boundaries of the flow (which may be
spatial infinity). Vortex dynamics can be quite complicated, and we shall here only present a few general
results mainly due to Helmholtz.
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Vortex tubes
The set of vortex lines that pass through the points of a closed curve at a given time form together a
vortex tube which may curve and bend in space. We shall now prove that whatever shape it takes, it will
nevertheless have the same total flux of vorticity through every cross section. To prove this we just use
Gauss’ theorem on the closed surface formed by a stretch of vortex tube between two cross sections, S1 and
S2. Since the divergence of the vorticity field vanishes, the closed surface integral over this stretch of tube
must vanish, ∮

S
ω · d S =

∫
S2

ω · d S −
∫

S1

ω · d S = 0. (26.11)

The sides of the tube do not contribute to the integral, because the normals to the surface elements are
orthogonal to the vortex lines, i.e. to the vorticity field.
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The flux of vorticity is the same
in every cross section of a vortex
tube.

The common flux through any cross section of a vortex tube is called the strength of the tube, and by
Stokes theorem (16.57) this flux equals the circulation around any curve circumnavigating the tube along
its surface. From Kelvin’s circulation theorem (16.59) we know that in an ideal fluid the circulation around
a comoving curve is constant in time. A comoving vortex tube thus retains its strength in the course of time,
allowing us to view a vortex tube (and even a single vortex line) as an individual material ‘object’ that is
advected, ‘blown along’, with the ambient flow.

The vortex core �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A tornado funnel is a vortex con-
necting the ground and the thun-
dercloud. Wind speed differ-
ences at different altitudes usu-
ally make the tornado turn and
twist.

Vortices often have a central vortex tube, called the core of the vortex, containing almost all of the vorticity,
with the flow being nearly irrotational outside, like in the Rankine vortex (26.1). From Stokes’ theorem it
then follows that the circulation is the same along any closed curve that circumnavigates the core. Since the
core region is a vortex tube, it cannot disappear but only move around, and a vortex in an ideal fluid thus
acquires an identity of its own. It may connect to the boundaries (possibly at infinity), but often it will take
the form of a closed loop, which like a smoke ring drifts in the wind created by itself.

In the extreme and singular limit, where the vortex core becomes infinitely thin and its vorticity field
infinitely high while the strength remains finite, it is called a vortex filament. A vortex filament is entirely
characterized by its strength and the curve that describes the whereabouts of the core. In the preceding
section we saw that viscosity will make the core of a free vortex expand and eventually cause the whole
vortex to disappear, but if the core radius is small compared to the radius of curvature of the filament and
other length scales in the flow, a real vortex may in fact behave as a vortex filament over long periods of
time.

The indestructibility of vortex filaments in ideal flow inspired Lord Kelvin in 1867 to suggest that
atoms could be microscopic ring vortices in the ideal ether, and that vortex theory could be the
foundation for what today would be called a ‘theory of everything’. This early ‘string theory’ of
matter was quickly abandoned but inspired instead the development of mathematical knot theory.

The line vortex
The simplest vortex filament is a line vortex in which the core is a straight line. In either cylindrical or
Cartesian coordinates the velocity field becomes,

v = C

r
eφ = C

(−y, x, 0)

x2 + y2
. (26.12)

Comparing with the Rankine vortex (26.1) we see that the constant C is obtained in the limit where� → ∞
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Irrotational flow outside the core
of a line vortex. The circulation is
the same around any streamline.

and c → 0 such that �c2 remains finite. Integrating around the vortex along a streamline of radius r , we
find the circulation � = 2πrvφ = 2πC . The circulation is thus independent of r as expected from Stokes’
theorem and the irrotational character of the flow.

Outside the singular core the velocity field of a line vortex has vanishing vorticity and must therefore
be a gradient field, v = ∇�, where � is the velocity potential. From the gradient operator expressed
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i n cyl i ndr i cal coor di nat e s ( B . 6) i t f ol l ow s i mmedi at el y t hat t he gr adi e nt of t he azi mut hal angl e φ is
∇φ = eφ/ r , such that the velocity potential of a line vortex must be,

� = Cφ = C arct an
y

x
. ( 26. 13)

T he azi mut hal angl e φ is a multivalued function which increases by 2π each t i m e a c ur ve ci r c l e s a r ound
t he vor t ex c or e, r e fl ect i ng of c our se t he non- va ni shi ng val ue of t he c i r cul a t i on � = 2π C arising from t he
i nfi ni t e vor t i c i t y i n t he s i ngul ar cor e .
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T he m ul t iva l ued angul ar depen-
dence of t he ve l oci t y pot ent i a l of
an el ement ary vort ex fi l ament r e-
fl ect s t he non- va ni shi ng vor t i c i t y
carri ed i n i t s core.

A l t hough t he fi el d of a l i ne vor t ex i s t he gr adi e nt of a s i ngl e- va l ued ve l oci t y pot ent i a l i n a ny si mpl y
connect ed r egi on of space, t he s i ngul ar cor e car r yi ng t he vor t i c i t y make s t he space ar ound a l i ne
vortex multiple-connected. E very closed curve may topologically be characteri zed by its winding
number, t he number of t i m es i t ci r c l e s t he cor e . T he w i ndi ng number s t a ys t he s ame r egar dl ess of
how t he cur ve i s def or med a s l ong as i t does not cr oss t he cor e .

26.3 Parallel line vortices
Vor t i ces ar e not alwa ys l oner s l i ke t he bat ht ub vor t ex or t he t or nado. T he a dvect i on of one vor t ex fi l ament
i n t he fl ow cr eat ed by al l t he ot her s and even by di ff er ent par t s of i t s el f gives r i se t o a number of i nt er est i ng,
beaut i f ul and of t en qui t e count er- i nt ui t ive phenomena. A l t hough t he l i near i t y of pot ent i a l fl ow al l ow s us
t o add t he cont ri but i ons from each fi l ament , t he end resul t can become qui t e compl ex. For paral l el l i ne
vortices the analysis is much simpler.
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Two l i ne vor t i ces of equal but
opposi t e st r e ngt h bl ow each ot her
in the same direction with the
same speed, here t owards t he
r i ght . T he same pi ct ur e c oul d
also describe a cross section
t hr ough t he cent r e of a smoke
r i ng.
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Two parallel line vortices of
equal s t r engt h f orce each ot her
to move with their cores on a
common ci r cl e. Up t o si x vort ex
fi l ament s may part i ci pat e i n t he
dance.

A c ol l ect i on of par al l e l l i ne vor t i ces i s essent i a l l y t wo- di mensi onal a nd t wo- di mensi onal pr obl ems a r e of t e n
facilitated by using complex notation. If we define the complex position and velocity fields,

z = x + i y, w = vx − ivy , (26.14)

it follows from the Cartesian form of the line vortex (26.12) that the complex velocity field of a vortex
centred at the origin is a simple pole,

w = C
−y − i x

x2 + y2
= −iC

1

x + i y
= −i

C

z
. (26.15)

The field of a vortex centred in another point is obtained by shifting the origin to that point.
Consider now two counter rotating parallel line vortices of strength C and −C , a distance 2b apart.

Each vortex will blow the other along with the common velocity C/2b, and thus keep a constant distance
2b between their centers. If they are positioned at y = ±b, the instantaneous complex velocity field
becomes,

w = −i
C

z − ib
+ i

C

z + ib
= 2Cb

z2 + b2
. (26.16)

The usual velocity fields vx and vy may be calculated from the real and imaginary parts of this expression
( pr obl em 26. 3) , a nd t he s t r eaml i nes of t hi s fi e l d ar e s how n i n fi gur e 26. 4( a ). At the origin the velocity is
2C/b which is four times the drift velocity, whereas at long distance from the vortices, r � b, the velocity
field vanishes as 1/r2.

The instantaneous field of a pair of corotating vortices of strength C a distance 2b apart will instead
blow each other in opposite directions, making the two vortex cores dance around on a circle of radius
b with angular velocity satisfying � b = C/2b, or � = C/2b2. If they are positioned at y = ±b the
instantaneous field is,

w = −i
C

z − ib
− i

C

z + ib
= −i

2Cz

z2 + b2
. (26.17)

The streamlines of this field are shown in figure 26.4(b). At the origin the velocity field vanishes, whereas
at long distances from the vortices it becomes the field of a single vortex with strength 2C .
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F i gu re 26. 4. S t r eaml i nes ar ound a pai r of par al l el l i ne vor t i ces i n a fl ui d asympt ot i cal l y at r est .
(a) C ount er- r ot a t i ng vor t i ces. T he cor e s m ove hor i z ont al l y at t he s ame s peed. (b) Corotating vortices.
T he c or es move i n a c i r cl e a r ound t he cent r e of t he fi gur e.

The equations of motion for an arbitrary collection of line vortices may easily be written down (problem
26. 5) and sol ved for many symmetric initial confi gurations, but even if the vortices move in a regul ar
fashi on, t hei r or bi t s ar e not necessar i l y st abl e t owar ds s mal l per t ur bat i ons. For exampl e, onl y t wo t o si x
line vortices on a ring form a stable pattern.

∗ The von K a rman vo rtex street

..............
...............
.................

...........................
...................................................................................................................................................................................... .......... ..... . ...........................................
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The von Karman vortex street
creat ed by a cyl i nder m ovi ng
t hr ough a fl ui d a t r est w i t h
velocity U . T he vort ex chai ns
follow t he cylinder at a somewhat
l ower s peed.

�
��� �� �� �� �� x

y

A chain of corotating vortices of
equal s t r engt h pl aced at regul ar
intervals along the x -axi s.

C onsi der a l ong obj ect , f or exampl e a cyl i nder, movi ng t hr ough a fl ui d a t r est w i t h const a nt ve l oci t y and
w i t h i t s axi s or t hogonal t o t he di r ect i on of m ot i on. A t fa i r l y l ow R eynol ds number s ( w el l a bove uni t y)
t he vi s cous boundar y l a yer s w i l l det ach and f or m t wo count er- r ot a t i ng e ddi es behi nd t he obj ect . A t hi gher
R eynol ds number s ar ound 100 t he fl ow behi nd t he obj ect becomes unst a bl e, causi ng t he e ddi es al t e r nat el y
t o det ach at r egul ar t i m e i nt er va l s . T hus, i n t he wa ke of t he m ovi ng obj ect one may i n a r egi on of R eynol ds
number s obser ve a beaut i f ul al t e r nat i ng pat t e r n of f r e e c ount er- r ot a t i ng vor t i ces shed by t he obj ect . T hi s
pattern is called the von K arman vort ex s t reet . At still higher R eynolds numbers the i nstabilities become
chaot i c and l ead t o t urbul ence.

F i rst w e consi der an i nfi ni t e col l ect i on of corot at i ng vort i ces of uni t s t r engt h s paced regul arl y wi t h
interval � x = π al ong t he x -axi s. T he s ymmet r y of t he chai n guarant ees t hat t hese vort i ces are not
mutually advected by each other, and the complex velocity field becomes,

w = −i
∞∑

n=−∞
1

z − nπ
= −i cot z. (26.18)

The proof that the sum equals the cotangent only requires complex function theory at a fairly elementary
level (problem 26.6).

The von Karman vortex street is now modelled by two vortex chains of strength −C at y = −b and +C
at y = b. In each chain the vortices are spaced regularly with interval 2a, but one of the chains is shifted
by a with respect to the other. The total field becomes

w = iC
∑

n

1

z − 2na + ib
− iC

∑
n

1

z − (2n + 1)a − ib
. (26.19)

Using cot(z + π/2) = − tan z we find the total field,

w = i
Cπ

2a

(
cot
π(z + ib)

2a
+ tan

π(z − ib)

2a

)
. (26.20)

The streamlines of this field are plotted in fi gure 26.6 for aspect ratio b/a = 0. 28 ( s ee bel ow ) .
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Figure 26.5. Instantaneous picture of vortex street behind circular cylinder at Re = 105. Photograph by
Sadatoshi Taneda.

Figure 26.6. Streamlines for the von Karman vortex street in a fluid asymptotically at rest with b/a = 0.28.
The whole pattern blows itself horizontally at constant speed.

Evaluating the velocity field of the upper chain on the positions z = na − ib of the vortices of the lower
chain, we obtain the velocity of the lower chain,

W = Cπ

2a
tanh

πb

a
. (26.21)

This is also the velocity of the upper chain, so that in a fluid at rest the whole vortex system propagates
horizontally with this speed. If the object creating the vortex street is moving with velocity U along x
through the fluid, the velocity of the vortex street becomes U − W relative to the object. The frequency of
vortex shedding from the object becomes,

�

��� �� �� �� ���� �� �� �� ��
x

y

Modelling the von Karman vor-
tex street as two vortex chains of
opposite strength.

f = U − W

2a
= U

2a

(
1 − πC

2Ua
tanh

πb

a

)
. (26.22)

The expression in parenthesis is in fact independent of the velocity U of the object because the eddies giving
rise to the detached vortices have a size comparable b and thus a strength of the order of C ∼ Ub.

A closer analysis of the equations of motion for the vortex street reveals that it is unstable to
infinitesimal perturbations of the vortex positions for all values of the aspect ratio b/a, except one [60,
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F i gu re 26. 7. A r ct i c vor t ex st r eet capt ur e d on J une 6, 2001. T he 300 km l ong nor t h–sout h vor t ex s t r eet
i s f or m ed dow nw i nd f r om t he i s l a nd Jan Mayen si t uat ed 650 km nor t heast of I cel and. T he vor t ex s t r eet
i s cr eat ed by t he 2. 2 km hi gh B eer enberg vol cano on t he i s l a nd. I m age C r e di t : NA S A / G S F C / L aR C / JP L ,
MIS R Team.

p. 133]

sinh
π b

a
= 1, ( 26. 23)

or b/a = 0. 2805 . . ., cl ose t o t he observed aspect rat i os. T hi s i s i n fact expect ed t o hol d f or a l arge cl ass of
similar vortex streets1 .

Vi bra t i o ns driven by peri o di c vo rtex s heddi ng
T he vor t i ces per i odi cal l y shed f r om a movi ng obj ect , or a st at i onar y obj ect i n a uni f or m fl ow, act back on
the object with a force of alternating sign. Such a force is capable of driving sustained vibrations in the
obj ect as w e l l as i n t he fl ui d s ur r oundi ng i t . W hen t he dr ivi ng f r e quency i s c l ose t o a nat ur al vi br at i on
f r e quency of t he obj ect , s t r ong vi br at i ons may be r esonant l y exci t e d, a phenomenon w e l l know n f r om t he
‘ s i ngi ng’ of a t aut w i r e i n c r oss w i nd. T heodor e von K a r m an ( 1881–

1963) . I nfluent i al H ungari an-
A m eri c an engi neer. L i ved f rom
1930 i n t he U S, and becam e i n
1944 cof ounder of t he Je t P ropul -
sion L aborator y at t he Califor-
nia I nstitute of Technology. Made
m aj or c ont ri but i ons t o t he un-
ders t andi ng of flui d m echani cs,
ai rc raf t st ruct ures, rocke t propul -
si on, and soi l erosi on. A c rat e r
on t he M oon bears hi s nam e t o-
day.

Vi ncez S t r ouhal ( 1850–1922) .
C z ech m at hem at i cal physi ci st .

The St rouhal num ber i s a di m ensi onl ess m easur e of t he vor t ex sheddi ng f r e quency, defi ned f r om t he
velocity U of t he obj ect and i t s effect ive di amet er d ,

Sr = f d

U
. ( 26. 24)

For t he von K àrm àn vort ex st reet wi t h aspect rat i o b/a = 0. 28, d ≈ 2b and C ≈ Ub  we fi nd S r ≈ 0. 2 from
( 26. 22) , w hi ch i s a t ypi cal va l ue.

Example 26.3.1 (Piano wire): A piano wire of diameter d = 1 mm in a cross wind of U = 3 m s−1

has a Reynolds number Re ≈ 200. Taking Sr ≈ 0.2 the vortex shredding frequency becomes
f = 600 Hz which will become audible if it is close to the natural frequency of the piano wire.

A spectacular case of large-amplitude wind-driven vibrations caused the collapse of the Tacoma
Narrows bridge (Puget Sound, Washington, USA) on November 7, 1940. Although the vibrations were
originally attributed to resonant vortex shedding, it was later realized that this could not be the case. The
collapse happened when the amplitude of a torsional mode of the bridge grew beyond the limit of the
st r uct ur al t ol e r a nce ( see fi gur e 26. 8) . O n t he day of t he col l a pse t he w i nd speed wa s U ≈ 20 m s−1 . With
a span thickness of d ≈ 4 m and a Strouhal number 0.2, this leads to a vortex shedding period of about
1/ f = 1 s, which is too far from the observed 5 s period of the torsional mode to be involved in the collapse.
The mechanism actually driving the amplitude of the torsional oscillation towards collapse was later shown
to be a kind of aerodynamic flutter2.

1J. Jimenez, On the linear stability of the inviscid Kàrmàn vortex street, J. Fluid. Mech. 178, (1987) 177.
2A fairly recent account of the underlying physics may be found in K. Y. Billah and R. H. Scanlan, Resonance,
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F i gu re 26. 8. Tacoma Narrows bridge in torsional oscillation. Image Credit: University of Washingt on
L i br ar i e s, S peci al C ol l ect i ons, P H C ol l 290- 31.

2 6 . 4 St e a dy vo r t e x s us t a ined by s eco nda ry flow
I nt ui t ive l y, i t s eems a s i f t he nat ur a l t endency f or t he f r e e vor t ex c or e t o expand under t he i nfl uence of
vi scosi t y coul d be c ount er act ed by a s uffi c i e nt l y st r ong st eady r adi a l i nfl ow, vr . S ince the radial infl ow of
fl ui d cannot accumul at e at t he cent r e of t he vor t ex, t her e must al so be a s t eady axi al out fl ow, vz .

T he basi c mechani s m s hapi ng a s t eady vor t ex i n t he pr esence of r a di al i nfl ow i s c onser va t i on of a ngul ar
moment um. A fl ui d par t i cl e of const ant mass d M  movi ng r a di al l y i nwa r ds a t s uffi c i e nt l y hi gh speed w i l l
conser ve i t s angul ar moment um d�z = rvφ d M , s uch t hat i t ar r ives at a r adi al di st ance r with a velocity
vφ ∼ 1/ r . P r ovi ded t he r a di al i nfl ow i s s uffi c i e nt l y st r ong, i t w i l l be abl e t o mai nt a i n a c onst a nt azi mut hal
fl ow i n t he gener a l s hape of a l i ne vor t ex, vφ ∼ 1/r , at least far from the core where the influence of
viscosity is small.

Vortex equations
In the presence of secondary flow, the azimuthal equation for steady flow contains non-vanishing advective
terms on the left-hand side. We shall again assume that the azimuthal velocity, vφ = vφ(r), only depends
on r , but that vr = vr (r, z) and v z = v z(r, z) i n pr i nci pl e m ay al so depend on z . Using the by now
familiar methods of appendix B it is seen that the advective part of t he azimuthal equation only has two
non-vanishing terms,

eφ · (v · ∇)v = vr ∇rvφ + vφ

r
vr = vr

r

d(rvφ)

dr
,

such that the azimuthal equation may now be written,

vr

r

d(rvφ)

dr
= ν

d

dr

(
1

r

d(rvφ)

dr

)
. (26.25)

Since vφ only depends on r , it follows immediately from this equation that the radial flow must also be
independent of z, i.e. vr = vr (r).

Tacoma Narrows bridge failure, and undergraduate physics textbooks, Am. J. Phys. 59, (1991) 118. Photographs and a
dramatic film clip of the collapse are readily available at many sites on the internet.
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The relation between radial and axial flow is given by the equation of continuity, which in cylindrical
coordinates takes the form

1

r

∂(rvr )

∂r
+ ∂vz

∂z
= 0. (26.26)

Solving for vz we obtain,

vz(r, z) = w(r)− z

r

d(rvr (r))

dr
, (26.27)

where w(r) is an arbitrary function which specifies the axial flow at z = 0. The second term represents the
accumulated radial inflow.

The Burgers vortex
The vortex equation (26.25) allows us to find the radial inflow necessary to maintain any azimuthal flow
vφ(r). Inserting your favorite vortex vφ(r) into (26.25), you immediately find the radial flow vr (r), and
afterwards you can calculate the axial flow vz from (26.27), given your favourite choice of w(r).

The complete flow field which maintains the interpolating vortex (26.5) is (for w = 0),

vφ = �c2

r
(1 − e−r2/c2

), (26.28a)

vr = −2ν

c2
r, (26.28b)

vz = 4ν

c2
z. (26.28c)

It is called the Burgers vortex [54] and is in fact an exact solution to the full set of steady-flow Navier–Stokes Johannes Martinus Burgers
(1895–1981). Dutch physicist.
Worked on turbulence, vortex
theory, sedimentation, gas
dynamics, shock waves and
plasma physics. The Burgers
equation, the Burgers vortex and
the Burgers vector are today
standard terms in the physics
vocabulary [54].

equations (see problem 26.7). The pressure is

p = −1

2
ρ0�

2c2 F

(
r2

c2

)
− 2ν2

c4

(
r2 + 4z2

)
(26.29)

with F(ξ) given in (26.7).
The scale of the secondary flow is set by the inverse of the viscous core expansion time, 4ν/c2, but

that is not particularly surprising, since the purpose of the secondary flow is precisely to counteract core
expansion.

Vortex with localized axial jet
In the Burgers vortex, the axial flow vz is independent of r , and that makes it very different from naturally
born vortices, such as the bathtub vortex, where the axial downflow must converge upon a narrow drain hole,
or the tornado where the upflow primarily takes place inside a narrow funnel. Here we shall consider the
extreme case of a vortex with a localized axial jet at r = 0. This vortex may be viewed as a generalization
of the line vortex (26.12) to include a steady inflow.

Demanding that vz = 0 outside the vortex core r > 0, it follows from (26.27) that w = 0 and
d(rvr )/dr = 0, such that the radial inflow must be of the form3,

vr = −q

r
, (26.30)

where q is a positive number. The total flux of fluid coming in through a stretch of the vortex of length L is
Q = 2πr L(−vr ) = 2πLq.

Solving the vortex equation (26.25) with this radial inflow, we obtain

vφ = C

r
+ A r1−2α, (26.31)

3A number of exact and approximative solutions of this general family are analysed in V. Shtern, A. Borissov and F.
Hussain, Vortex sinks with axial flow: Solution and applications, Phys. Fluids 9, (1997) 2941.
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Figure 26.9. Vortex with extended axial jet (26.33) for α = 2, 4, 8, 16. The parameters are a = 1, ν = 0.01
and C = 1. (a) Azimuthal flow vφ . (b) Pressure p, normalized to vanish at infinity.

where C and A are constants, and

α = q

2ν
, (26.32)

is a dimensionless measure of the inflow, related to the radial Reynolds number, Rer = r |vr | /ν = q/ν =
2α.

The second term in (26.31) decays faster than the first at infinity only for α > 1, and this confirms that
the radial inflow must be larger than a certain minimum to maintain a flow in the shape of a line vortex at
large distances. In the following we assume this to be the case.

Extended axial jet
A vortex with an extended axial jet, a ‘drain pipe’, may be created by choosing a radial flow that interpolates
smoothly between the singular jet and the Burgers vortex, for example,

vr = −q

r
(1 − e−r2/a2

). (26.33)

The axial flow now follows from (26.27) with w = 0,

�
z

� r

�

�

�

�

Sketch of the general structure of
the secondary flow pattern in a
vortex with a soft axial jet.

vz = z
2q

a2
exp

(
− r2

a2

)
, (26.34)

which vanishes rapidly for r > a, as it should. The azimuthal field and the pressure can only be calculated
numerically and is pictured in figure 26.9 for a selection of values of α.

There is, as usual, a price to be paid for the construction. Although the solution interpolates perfectly
between two exact steady-flow solutions to the Navier–Stokes equation, it is itself not an exact solution in
the transition region near the edge of the ‘drain pipe’ at r = a.

26.5 Advective spin-up of a vortex
It is a common observation that a vortex can be ‘spun up’ by draining fluid from its central region at a steady
rate. We shall now analyse this process for a vortex with a localized axial jet and a steady radial inflow and
no vertical flow for r > 0,

vr = −q

r
, vz = 0. (26.35)

Such a flow may be approximately realized in a bathtub far from the drain hole, r � a, when water is
continually being resupplied to keep a constant asymptotic water level L . The total volume influx is then
Q = 2πLq which must equal the flux through the drain hole. In the following section we shall study what
happens to the bathtub vortex when the surface shape near the drain hole is taken into account.
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Figure 26.10. ‘Movie’ of advective spin-up of a vortex with a singular axial jet. The specific angular
momentum rvφ is plotted as a function of radial distance for selected times (shown above the curves),
starting with t = 0. The initial shape is progressively flattened and eventually, for t = 128, it has completely
gone down the drain at the left.

Inflow of angular momentum
Assuming that the radial Reynolds number is large Rer = q/ν � 1, the time-dependent Euler equation for
the azimuthal velocity field becomes

∂vφ

∂t
+ vr

r

∂(rvφ)

∂r
= 0. (26.36)

With the given radial inflow (26.35) the most general solution is,

vφ(r, t) =
C

(√
r2 + 2qt

)
r

, (26.37)

where C(·) is an arbitrary function, representing the initial distribution of specific angular momentum
C(r) = rvφ(r, 0) well away from the drain, r � a.

At any sufficiently late time t � a2/2q, the specific angular momentum is nearly independent of r
in the central region a � r � √

2q t , where the velocity field to a good approximation is that of a line
vortex, vφ ≈ C

(√
2qt

)
/r . As time goes by, the line vortex shape thus spreads out from the central region

of the vortex, albeit with a time-dependent circulation ‘constant’ C
(√

2qt
)
, and the initial velocity profile

is probed to farther and farther distances. The size of the region of line vortex shape grows as
√

2qt ,
reminiscent of a diffusive process although it has nothing to do with that.

A steady vortex is never reached unless the initial specific angular momentum distribution C(r)
approaches a constant for r → ∞. These arguments show that it is in fact impossible to spin-up a
truly steady vortex by means of steady radial inflow, for the simple reason that it requires infinite angular
momentum to be present in the flow to begin with. If the angular momentum is initially finite, all of it will
sooner or later go down the drain in a non-rotating container. In a rotating container angular momentum
may be continually supplied from the moment of force exerted on the fluid by the container walls, resulting
eventually in a steady flow. This case was discussed in some detail in section 20.5.

Needle-like bathtub vortex cre-
ated in the laboratory (see foot-
note 1 on page 287).

Bathtub vortex: The process of getting out of a real bathtub cannot avoid leaving a certain amount
of angular momentum in the water. It is this angular momentum that the inflow picks up and sends
down the drain as a spinning vortex while the bathtub is being emptied (see problem 26.12). A real
bathtub vortex may change speed and even stop-up and reverse its sense of rotation depending on
the details of how you got out of the water. In a bathtub of ordinary size the incidental initial angular
momentum distribution is normally much greater than that provided by the slowly rotating Earth.
The question of the Earth’s influence on the sense of rotation of a real bathtub vortex was discussed
in section 20.6.
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∗ 26.6 B atht ub- like vortices
A bat ht ub vort ex i s an i s ol at ed l i qui d vort ex w i t h an open s urface, sust ai ned by r adi al i nfl ow and pow ered by
gravity4 . T he most conspi cuous f eat ur e of s uch a vor t ex i s t he cent r al depr essi on w hi ch m ay even penet r at e
the drain and make audible sounds. In the laboratory such vortices can be created in rotating containers (see
sect i on 20. 5) , but i n t hi s sect i on w e s hal l i gnor e t he compl i cat i on of c ont ai ner r ot at i on a nd si mpl y assume
that the primary flow in the vortex is infinitely extended with the shape of a line vortex, rvφ → C , at large
distances. This guarantees an unlimited supply of mass and angular momentum, such that the vortex may
be truly steady and not disappear down the drain as in real bathtubs.
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Bathtub-like liquid vortex with
open surface. At z = 0 there
is a drain-hole of radius a, and
the ‘tub’ has essentially infinite
extension in the radial direction.
There is a central depression of
height h0 and the asymptotic
liquid level is z = L .

Bathtub equations
In a flat-Earth coordinate system with gravity directed towards negative z, the vortex is drained through a
circular region, a ‘drain hole’ of radius r = a situated at z = 0. The open liquid surface of the vortex
is assumed to be rotationally invariant, z = h(r), and we shall again assume that the primary flow is
cylindrical, vφ = vφ(r), at least well above the bottom of the container. It follows as before that the
azimuthal flow must obey the azimuthal equation (26.25), implying that the radial flow is cylindrical,
vr = vr (r), and the axial flow is given by (26.27) with w(r) being the drain flow. Besides these equations
there are two boundary conditions on the open surface, one kinematic and one dynamic.

The open liquid surface with a depression at the centre forces the radial inflow into a region of smaller
height and thereby speeds it up in comparison with flow in the axial jet vortex. Consequently, there must
exist a relation between the height of the surface, h(r), and the radial inflow vr (r). The quantitative form
of this relation is derived from the fact that the streamlines must follow the surface,

vz (r, h(r)) = vr (r)
dh(r)

dr
. (26.38)

Using (26.27) with z = h this c relation may be written,

1

r

d(rvr h)

dr
= w. (26.39)

This kinematic condition is exact in the cylindrical approximation used here.
For ‘sufficiently small’ secondary flow the pressure gradient will be the only term in the Navier–Stokes

equation that can balance gravity and deliver the centripetal force necessary for the circulating flow,

∂p

∂z
= −ρ0g0,

∂p

∂r
= ρ0

v2
φ

r
. (26.40)

On the right-hand sides of both of these equations we have dropped all terms that depend on the radial and
axial flow. Given that the pressure is constant p = p0 at the open surface z = h(r), it follows from the
first of these equations that the hydrostatic pressure takes the form, p(r, z) = p0 + ρ0g0(h(r) − z). This
expression can only be valid well above the drain hole where the secondary velocities are small. Inserting
this into the second equation we find,

dh

dr
=
v2
φ

g0r
. (26.41)

A simple geometrical construction reveals the meaning of this dynamic condition: the tangential component
of gravity balances the tangential component of the centrifugal force acting on a fluid particle sitting on the
rotating surface.
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vz

vr

h′

The streamlines must have the
same slope h′ = dh/dr as the
free surface.

Choice of drain flow
The three bathtub equations (26.25), (26.39) and (26.41) connect the four fields, vφ , vr , w and h. Although
the Navier–Stokes equation in principle could also provide a fourth equation (see problem 26.7), it is in view

4The analysis in this section is inspired by T. S. Lundgren, The vortical flow above the drain-hole in a rotating vessel,
J. Fluid Mech. 155, (1985) 381.
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of t he m any a ppr oxi mat i ons most conveni e nt t o i m pose a r easonabl e c hoi ce f or t he dr ai n fl ow w(r) , and
t hen sol ve t he bat ht ub e quat i ons f or t he r e mai ni ng t hr ee fi e l ds. T hi s has t he adva nt age t hat t he ki nemat i c
condition (26. 39) can be integrated,

rvr h =
∫ r

0
s w(s) ds. ( 26. 42)

Here we have used that vr and h must bot h be fi ni t e f or r = 0.
To simulate a drain hol e of radius a w e shal l c hoose a ‘ s of t pl ug fl ow ’

w = −We−r 2/ a 2, ( 26. 43)

where W i s t he out fl ow vel oci t y at t he cent r e of t he dr ai n. S i nce t he t ot a l fl ux t hr ough t he dr a i n i s
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v 2φ

r

z = h(r)

θ

A fl uid particle sitting on the ro-
tating surface of the vortex is
subject to gravity and centrifu-
gal f or ce. T he pr oj ect i ons of
t hese f orces on t he s urface t an-
gent (dashed) cancel i n t he l ead-
i ng a ppr oxi mat i on, g0 sin θ =
(v2
φ/r) cos θ , where tan θ =

dh/dr .

Q = −
∫ ∞

0
w(r) 2πrdr = πa2W, (26.44)

the average drain velocity is also W . Integrating (26.42) we find,

rvr h = − 1
2 Wa2(1 − e−r2/a2

). (26.45)

In a rotating frame it will also be necessary to include an upflow from the Ekman layer at the bottom (see
sect i on 20. 5) .

Estimating the depth of the central depression
The core of the bathtub vortex is assumed to rotate as a solid body with angular velocity �, whereas far
from the core the flow is assumed to be that of a line vortex with circulation constant C , approximately a
Rankine vortex,

vφ ≈


� r r � c

C

r
r � c

. (26.46)

The core radius c is estimated by matching these expressions,

c ≈
√

C

�
, (26.47)

and is assumed to lie inside the drain radius, c < a.
From (26.41) it then follows that

h ≈


h0 + �2

2g0
r2 r � c

L − C2

2g0

1

r2
r � c

. (26.48)

At the match point r = c we obtain vortex height at the core radius in two ways
�
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r
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c

hc

h0
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L

Estimated shape of the bathtub
vortex.hc ≈ h0 + �2c2

2g0
≈ L − C2

2g0 c2
,

and using the core radius estimate (26.47) we find the depth of the depression and the height at the core
radius,

L − h0 ≈ C2

g0c2
, hc ≈ L + h0

2
. (26.49)

This makes the estimate of the vortex shape (26.48) as well as its derivative continuous at the match point.
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390 26. WHIRLS AND VORTICES

Figure 26.11. Bathtub vortex for β = 0.0217 and α = 2, 4, 8, 16. The core radius corresponds roughly to
the top in vφ and shrinks with growing secondary flow (α) whereas the depression deepens. (a) Azimuthal
velocity. (b) Vortex surface height.

Knowing h we may obtain vr from (26.45) and insert it into (26.25). Quite generally the transition
between the core and the outer vortex happens when rvr ≈ −2ν, as was the case for the Burgers vortex
(26.28). Taking r = c in (26.45) and expanding the exponential to lowest order, we find

c2 ≈ 4νhc

W
≈ 2ν(L + h0)

W
. (26.50)

Inserting this result in the expression for the depth of the depression, we get

L − h0 ≈ C2

g0

W

2ν(L + h0)
, (26.51)

and solving for h0, we finally arrive at,

h0 ≈
√

L2 − C2W

2g0ν
. (26.52)

If the argument of the square root becomes negative, there is no solution because the central dip in the
surface has plunged right through the drain, thereby violating the basic assumptions behind the model (see
also problem 26.16).

Example 26.6.1 (Bathtub vortex): A bathtub is filled with water to a height L = 50 cm. On
exiting, the bather accidentally imparts a small rotation to the water, corresponding to an average
specific angular momentum of C ≈ 20 cm2 s−1. When the plug of radius a = 2 cm is pulled, the
water is found to drain at a rate of Q ≈ 1 litre per second. A needle-like vortex forms which according
to the above expression is L − h0 ≈ 20 cm deep. The core diameter becomes c ≈ 3 mm and the core
is estimated to rotate about 160 turns per second!

Numeric integration
To solve the coupled equations numerically, it is most convenient to use a non-dimensional formalism. Let
us define the dimensionless spatial variable,

ξ = r2

a2
, (26.53)

and the dimensionless height and azimuthal variables,

h = Lg(ξ), rvφ = Cu(ξ), (26.54)

where L is the asymptotic level of liquid and C the asymptotic circulation constant. Eliminating vr by
means of (26.45) we obtain from the azimuthal vortex equation (26.25) and the centrifugal condition (26.41)
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t he c oupl ed di ff er ent i a l e quat i ons,

u′′ = −α u′ 1 − e−ξ
ξ g

, g′ = β 
u 2

ξ  2
, ( 26. 55)

where

α = Wa2

4 Lν
, β = C 2

2 g0 La2
, ( 26. 56)

ar e di m ensi onl ess c onst a nt s. A l t hough t he vor t ex i s defi ned by f our par a met e r s , W , C , a and L , i t s dynami cs
ar e c ont r ol l e d by onl y t wo di mens i onl ess paramet ers. W hereas α i s r e l a t e d t o t he r a di al R eynol ds number,
Rer = 2α , t he const a nt β i s r e l a t e d t o t he F r oude number i n t he azi mut hal fl ow a t t he edge of t he dr a i n.

T he coupled diff erential equa tions (26. 55) must be solved with the boundary conditions u = 0 for
ξ = 0 and  g, u → 1 for ξ → ∞. T he r e sul t s ar e s how n i n fi gur e 26. 11 f or a par t i c ul ar choi ce of β and a
sel ect i on of r adi a l R eynol ds number s . I n i t s gr oss f eat ur es t he s hape i s vi r t ual l y i ndi st i ngui shabl e f r om t he
vortex with extended axial jet i n fi gure 26. 9. T he c ondition f or the vortex not to plunge through the drain
i n ( 26. 52) becomes αβ � 0. 25, but t he numeri cal cal cul at i on i ndi cat es t hat i t i s act ual l y αβ � 0. 36 ( s ee
pr obl em 26. 16) .

Problems
26.1 (a) C a l c ul at e t he angul ar moment um and ki net i c energy of t he c or e of t he R a nki ne vor t ex per uni t
of axi a l l engt h. (b) Calcul at e t he same quantities out side the core for c < r < R .

26.2 (a) F i nd t he s ur face shape of a l i qui d R anki ne vor t ex i n const a nt gr avi t y. (b) What is the depth of
the depression? (c) C a l c ul at e t he dept h f or a R anki ne vor t ex w i t h cor e r a di us c = 1 cm, rotating 10 times a
second.

26.3 Calculate the real velocity fields vx and vy of the counter- and corotating vortex pairs, (26.16) and
(26.17).

∗ 26.4 T he s t r eaml i ne pl ot s i n fi gur e 26. 4 a r e made as cont our pl ot s of t he st r eam f unct i on ψ , defi ned s uch
that

vx = ∇yψ, vy = −∇xψ. (26.57)

Find the stream function for counter- and corotating vortex pairs of equal strength (use the answer to
problem 26.3).

26.5 Consider a collection of parallel vortices enumerated by n with constant strengths Cn and the cores
moving along individual orbits z = zn(t). (a) Show that the equations of motion of the centers are,

dz×
n (t)

dt
= −i

∑
m �=n

Cm

zn(t)− zm (t)
, (26.58)

where × stands for complex conjugation. (b) Verify that the orbits of a pair of vortices of opposite strength
satisfy these equations of motion. (c) The same for a pair of the same strength.

∗ 26.6 Define the function

fN (z) = cot z −
N∑

n=−N

1

z − πn
(26.59)

and show that f (z) = limN→∞ fN (z) vanishes everywhere in the complex plane. Hints: (a) Show that f
is antisymmetric, f (−z) = − f (z). (b) Show that f (z) is periodic with period�x = π . (c) Show that f (z)
is holomorphic in the strip −π/2 < x < π/2. (d) Show that f (z) vanishes at the boundaries of the strip.
Finally, a general theorem of complex analysis states that a function which is holomorphic in a region and
vanishes on the boundaries vanishes identically. By periodicity it also vanishes in all other strips.
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∗ 26.7 Assume that the velocity fields vr,φ,z in cylindrical coordinates only depend on r and z. Show that
the Navier–Stokes equations for incompressible flow with ρ0 = 1 and no gravity become

∂vφ

∂t
+ vr

∂vφ

∂r
+ vrvφ

r
+ vz

∂vφ

∂z
= ν

(
∂2vφ

∂r2
+ 1

r

∂vφ

∂r
− vφ

r2
+ ∂2vφ

∂z2

)
, (26.60a)

∂vr

∂t
+ vr

∂vr

∂r
−
v2
φ

r
+ vz

∂vr

∂z
= ν

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2
+ ∂2vr

∂z2

)
− ∂p

∂r
, (26.60b)

∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z
= ν

(
∂2vz

∂r2
+ 1

r

∂vz

∂r
+ ∂2vz

∂z2

)
− ∂p

∂z
, (26.60c)

∂vr

∂r
+ vr

r
+ ∂vz

∂z
= 0. (26.60d)

Verify that the Burgers vortex (26.28) and the vortex with a localized axial jet (page 385) are exact solutions.

26.8 Calculate the streamlines for the Burgers vortex.

26.9 (a) Show that the so-called Taylor vortex

vφ(r, t) = τ
r

t2
e−r2/4νt , (26.61)

is a solution to (26.9) where τ is a constant with dimension of time. (b) Calculate the total angular
momentum per unit of axial length of the Taylor vortex and show that it is constant in time.

26.10 Assume that a free cylindrical vortex only depends on the dimensionless variable

ξ = r2

4νt
(26.62)

and assume that

vφ(r, t) = F(t)

r
f (ξ), (26.63)

where F(t) is a time-dependent factor.

(a) Find a differential equation for f (ξ).

(b) Show that F(t) ∼ t−α where α is a dimensionless parameter.

(c) Show that the solution is

fα(ξ) =
∞∑

n=0

(n + α)!
n!α! (−1)n

ξn+1

(n + 1)! . (26.64)

(d) Find a closed form for α = 0, 1, 2 and draw the vortex shapes.

26.11 Assume that a vortex at t = 0 has the shape of an interpolating vortex (26.5) with radius b, and that
there is a radial inflow identical to that of the Burgers vortex (26.28) corresponding to a radius a. Determine
how the azimuthal flow of the original vortex converges upon the interpolating function of radius a.

26.12 Assume that the water in a bathtub originally rotates like a solid body, vφ = �r , far from the drain.
Determine the far field at a later time and the rate at which angular momentum flows in towards the drain.

26.13 Show that the vortex equation (26.25) may be solved explicitly by quadrature when vr (r) is given.

26.14 Match the Burgers vortex and the singular vortex directly at r = a and determine the fields as a
function of α = q/2ν when the azimuthal field and its derivative must be continuous.
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26.15 (a) Show that the divergence condition (26.60d) can be solved by means of a stream function
ψ(r, z) satisfying

∂ψ

∂z
= rvr ,

∂ψ

∂r
= −rvz . (26.65)

(b) Show that the streamlines satisfy

ψ(r, z) = const. (26.66)

(c) Show that the stream function for a cylindrically invariant vortex is

ψ(r, z) = rvr (r)z −
∫

rw(r)dr. (26.67)

26.16 Show that the depth of the depression is

L − h0 =
∫ ∞

0

v2
φ

g0r
dr = k

C2

g0c2
(26.68)

and determine a value for k from the interpolating vortex. How does this change the estimate (26.52) for
the central height of the vortex?
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T he m ost i mpor t a nt t echnol ogi cal i nve nt i on of a l l t i m e m ust be t he w heel and i t s bear i ng. F r om t he ear l i e st
times it was realized that friction in the bearing was considerably lowered by lubricating it with viscous
fl ui d. Wooden bear i ngs mi ght even cat ch fi r e i f not l ubr i cat ed. Fat f r om pi gs, ol ive oi l and m i ner al oi l
t urned out t o work much bet t er t han wat er.

W hen you deal a pack of cards on a t abl e wi t h a s moot h s urface, i t i s easy t o overest i m at e t he speed t he
car ds must be t hr ow n w i t h. S uddenl y, sever al car ds i n a r ow sl i de easi l y over t he sur face and l and on t he
fl oor. T he reason i s t hat a l ubri cat i ng l ayer of ai r has formed bet w een t he card and t he s urface of t he t abl e,
and has caused t he fri ct i on you expect ed when t hrowi ng t he card t o drop nearl y away. A i r al so l ubri cat es
t he t i ny gap bet w een t he m agnet i c pi ckup heads a nd t he r api dl y spi nni ng har d- di s k i n your comput er and
prevent s t he heads from crashi ng i nt o t he surface. Wat er i s used t o l ubri cat e chi l dren’s s l i des i n amusement
parks, and sports like ice skating or curling depend crucially on a thin lubricating fi lm of water.

I n t he fl ui d- fi l l e d gap bet w een a m ovi ng obj ect and a near by sol i d wa l l , vi scosi t y pl ays a domi nant
rol e because t he vel oci t y gradi ent s normal t o t he surface grow l arge compared t o t he gradi ent s paral l el t o
t he s urface. W hen t he gap wi dens t owards t he front of t he m ovi ng obj ect , as i s normal l y t he case, vi scous
friction will drag fluid into the gap, creating a pressure that can become surprisingly high. As the gap
narrows, t hi s pressure wi l l i n t he end become suffi ci ent t o keep t he obj ect afl oat i n t he l ubri cant , t hereby
secur i ng a s moot h r i de.

I n t hi s chapt e r w e s hal l anal yse i ncompr essi bl e fl ow i n nar r ow gaps i n t he cr eepi ng fl ow appr oxi mat i on,
first making general estimates and afterwards solving the equations for creeping flow along the lines laid
out by Reynolds already in 1886.

27.1 Physics of lubrication
Far from any boundaries, the flow around an object of size L moving with velocity U through an otherwise
stationary fluid of density ρ and viscosity η is characterized by the Reynolds number

Re ≈ ρU L

η
. (27.1)

In many everyday situations—running, swimming, driving, washing dishes or babies—the Reynolds
number i s ver y l arge, R e � 1, and t he fl ow m ay be consi dered nearl y i deal (see chapt er 16).

The situation is completely different when the body moves with velocity U close to a stationary solid
boundary. If the gap width is of size d � L , the no-slip condition forces the flow velocity to change rapidly
from 0 to U over this distance, and the Reynolds number in the gap becomes,

Regap ≈ |ρ(v · ∇)v|
|η∇2v| ≈ ρU2/L

ηU/d2
=

(
d

L

)2
Re, (27.2)
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because t he advect ive accel erat i on i n t he numerat or i s domi nat ed by t he fl ow vari at i on al ong t he gap,
whereas t he L apl aci an i n t he denomi nat or i s domi nat ed by t he fl ow vari at i on across t he gap.

E ven i f t he f r ee- fl ow R eynol ds number ( 27. 1) i s l a rge, vi scous f or ces w i l l domi nat e t he fl ow i n t he gap
when the distance d becomes so smal l t hat Regap � 1, or

d � δ = L√
Re
. ( 27. 3)

In chapt er 28 w e s hal l see t hat δ i s a m easur e of t he t hi c kness of t he boundar y l a yer s ur r oundi ng a m ovi ng
body. T he conditions for creeping fl ow will thus be fulfi lled w hen t he gap lies w ell i nside t he boundary
layer. In the following we shal l assume this to be the case.
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L

� U

Obj ect movi ng cl ose t o a nearl y
flat wall. The gap is assumed to
be so nar r ow t hat cr eepi ng fl ow
condi t i ons pr evai l .
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L

�
U

In t he r eference frame where t he
boundar y move s w i t h ve l oci t y U ,
t he obj ect i s st at i onar y and t he
flow is steady.

Example 27.1.1 (Playing card): A typical playing card has size 7 cm × 10 cm, and since we do not
know how it moves we shall take L ≈ 8 cm. Skimming through the air above a horizontal table at
U ≈ 1 m s−1, it has Re ≈ 5 × 103 and thus δ ≈ 1 mm. The condition for creeping flow is fulfilled
when the distance to the table is somewhat less than δ, say d = 0.3 mm.

When the solid boundary is (nearly) flat, the flow will be steady in the rest frame of the body where the
wall moves with velocity U . We may then use the equations for steady incompressible creeping flow (19.1)
without gravity

∇ p = η∇2v, ∇ · v = 0. (27.4)

Contrary to creeping flow far from the boundaries, where lift and drag are of roughly the same magnitude
(section 19.1), we shall now see that the flow in a narrow gap will generate a pressure that is much larger
than the shear stress. This is in fact the secret behind lubrication: the lift will balance the weight of the body
so that it floats in the fluid without generating a drag of comparable magnitude.

Estimate of lift
The magnitude of the pressure in the gap can be estimated from the equation for creeping flow (27.4).
Since the double derivative across the gap dominates the Laplacian, we estimate the pressure gradient to be
|∇ p| ≈ ηU/d2. Multiplying by the length of the gap L , we obtain the magnitude of the pressure variations
along the gap, |�p| ≈ ηU L/d2. Finally multiplying by the gap area A, we get an estimate for the lift,

� ≈ f
ηU L A

d2
. (27.5)

Here we have put in a dimensionless prefactor f of order unity, which depends on the geometry and
orientation of the body. The flow around the upper part of the body will also contribute an aerodynamic lift
(see page 446). It is, however, independent of d and will in the limit of d → 0 always be dominated by the
lift from the gap.

For simplicity we shall assume that the underside of the body is reasonably flat, such that it makes sense
to speak about an angle of attack α with the boundary (in section 27.2 we shall deal with the general case
of an angle of attack that varies along the body). The sign of this angle is chosen to be positive when the
gap widens towards the front of the body, and intuitively one expects in this case a positive lift that drives
the body away from the boundary. For vanishing angle of attack, the flow will essentially become planar
velocity-driven Couette flow (see page 232), which does not generate a lift. For negative angle of attack the
lift is also expected to be negative, causing the body to be sucked towards the boundary rather than pushed
away from it.

����������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������α

�
U

d
1
2 L

Body with relatively flat under-
side and a small positive angle of
attack α. In this case the lift will
be upwards. The rear of the body
will touch the ground at the rear if
αL/2 ≈ d where d is the average
width.

These arguments indicate that the prefactor in the leading approximation should be proportional to the
angle of attack, f ∼ α. Taking into account that the magnitude of this angle is limited by the requirement
that the ends of the body should not touch the ground, |α| � 2d/L , and since f is at most of order unity
we estimate that

f ≈ α
L

2d
. (27.6)

The calculations in section 27.3 shall confirm that this is a reasonable estimate for small angles of attack,
|α| � 2d/L .
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Example 27.1.1 (Playing card, continued): If the playing card has mass M ≈ 2 g, and provided
the table surface is smooth, the card will sink into the boundary layer. If the shape factor is taken to
be f ≈ 0.4, the lift equals the weight for d ≈ 0.4 mm. The corresponding angle of attack becomes a
miniscule α ≈ 0.25 ◦. The card probably has to bend slightly upwards at both ends for steady lift to be
generated. Professional card players avoid bending their cards and also cover the table with rough green
felt cloth. You never see a card skimming the table surface and landing on the floor in their company.

Estimate of skin drag
In the gap the normal velocity gradient is U/d , such that the shear stress becomes of magnitude ηU/d .
Multiplying with the area A of the gap, we obtain an estimate for the skin drag on the body from fluid
friction in the gap,

	skin ≈ ηU A

d
. (27.7)

As for lift, there will also be drag from the flow around the body outside the gap, but the drag from the fluid
in the gap will always dominate in the limit of d → 0.

Both lift and skin drag grow with decreasing gap size, but the lift grows faster than the drag and
eventually comes to dominate it. The ratio of lift to skin drag is estimated to be,

�

	skin
≈ f

L

d
≈ 1

2
α

(
L

d

)2
. (27.8)

The drag can only dominate the lift if the angle of attack is very small, α � 2(d/L)2, but that will require
careful tuning of the angle of attack, which is usually not possible.

Example 27.1.1 (Playing card, continued): For the playing card the actual ratio of lift to skin drag
is �/	skin ≈ 70 for f = 0.4. Lift would equal skin drag for f ≈ d/L , and from the balance of lift to
weight we get the corresponding flying height d ≈ 6 µm. No tables are that smooth and the card will
touch down long before this level is reached.

    
    

   

�

�

�

	form = α�α

�U

The pressure force acts orthogo-
nally to the surface and gives rise
to normal lift as well as tangential
form drag.

Form drag
Besides frictional skin drag there is also a form drag from the pressure variations in the gap. Since the
pressure force is orthogonal to the body surface, the form drag may be estimated from the angle of attack
and the lift,

	form ≈ α�. (27.9)

The form drag will always be positive, independent of the sign of α, because lift is proportional to α. Drag
forces should, of course, never be able to accelerate a body.

!!!!!
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###

"" ""

�
slider

actuator arm

platter

head

�

Sketch of the head-to-disk inter-
face in a hard disk. The platter
rotates towards the left and drags
air into the gap between the slider
and the surface, and thereby pre-
vents the slider from touching the
platter. The elastic actuator arm
counteracts the lift force from the
air in the gap. The head itself is
here positioned at the rear end of
the slider.

Contrary to the skin drag, which (to leading order) is independent of the angle of attack, the form drag
is quadratic in α and vanishes for α = 0. Using the estimates above we obtain the ratio of form to skin drag

	form

	skin
≈ f α

L

d
≈ 2 f 2. (27.10)

Since this is at most of order unity, we conclude that although the form drag (and lift) for fixed α varies like
1/d3, it can never really win over skin drag because of the geometrical constraint, | f | � 1.

Example 27.1.2 (Magnetic read/write heads): The continued sophistication in the design of
read/write heads and platter surfaces has been a major cause for the enormous improvement in hard
disk performance over the last 30 years. A typical modern (2002) hard disk has a platter diameter
of about 9 cm and runs at a speed of about 7000 rpm, leading to average platter surface speeds of
U ≈ 16 m s−1 ≈ 60 km h−1. The read/write heads sit on the tip of an actuator arm that can roam
over the rotating platters and exchange data with the magnetic surfaces. A typical read/write head is
formed as a flat wing or ‘slider’ with size L ≈ 1 mm, for which the Reynolds number comes to about
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Re ≈ 1000, and t he maxi mal gap si ze f or cr eepi ng fl ow comes t o δ ≈ 30 µm. T he need for i ncreased
data density demands smaller and smaller fl yi ng height for t he act ual read/write devi ce sitting on t he
r ear of t he s l i der. Today ( 2002) i t i s about 0. 15 µm (and even smaller), implying that the slider flies
deepl y i nsi de t he boundar y l a yer. Ta ki ng t he ave r a ge sl i der gap hei ght t o be a c onser va t ive d = 1 µm
t he R eynol ds number i n t he gap becomes R egap = 10−3 which i s far within the creeping fl ow regi me.
T he geomet r y m akes t he angl e of at t ack α = 0. 1 degrees and t he geomet ri c prefact or f = 0. 85. T he
average excess pressure i n t he gap becomes s urpri s i ngl y hi gh, � p ≈ �/ A ≈ 2. 5 bar , i mplying a
lubrication lift force on the slider of � ≈ 0. 25 N. The ratio of lift to skin plus form drag becomes
�/	 ≈ 350. T he l i f t f or ce cor r e sponds t o a w ei ght of 25 g, w hi c h m ust be pr ovi ded by t he el ast i c
act uat or a r m t o keep t he fl yi ng hei ght const a nt . I f t he t ot a l m ass of t he act uat or a r m and s l i der i s of
t he or der of gr ams, such a l arge act uat or f or ce expl ai ns w hy m oder n har d di sks can t ol er at e r at her l arge
accel er at i ons, i n t hi s exampl e per haps 10–20 t i m es t he accel er at i on of gr avi t y.

27.2 Creeping flow in a long narrow gap�
�
�
�
�
�
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�
U

A t wo-dimensional wing with
chor d l engt h L and s pan S . The
w i ng i s st at i onar y above a fl at
gr ound w hi c h m ove s w i t h speed
U .

C r eepi ng fl ow near a s ol i d boundar y i s much mor e amenabl e t o anal yt i c cal cul at i ons t han r eal aer odynami cs
( chapt er 29) . For si mpl i ci t y w e shal l consi der t he essent i al l y t wo- di mensi onal case of a st at i onar y ‘ w i ng’
of const a nt shape a nd ‘ c hor d l engt h’ L al ong t he x - a xi s. T he w i ng ‘ span’ a l ong z i s denot ed S such t hat t he
total wing area is A = L S. T he ‘ gr ound’ i s chosen t o be per f ect l y fl a t a t y = 0, and m ove s w i t h const a nt
velocity U al ong t he x - a xi s. T he hei ght of t he w i ng a bove t he gr ound i s give n by a f unct i on y = h( x)
for all z, which is assumed to be slowly varying

∣∣h′(x)
∣∣ � 1. The free-flow Reynolds number (27.1)

is furthermore assumed to be so large and the height so small that the creeping approximation is valid,
h(x) � δ � L .

Under these conditions we need only to retain the dominant derivatives after y in the Laplacian of
(27.4). Dropping all second derivatives after x we get a simplified set of equations for the flow in the gap,

∂p

∂x
= η

∂2vx

∂y2
,

∂p

∂y
= η

∂2vy

∂y2
,

∂vy

∂y
= −∂vx

∂x
. (27.11)

We shall now see that the right-hand side of the second equation is so small in the creeping flow
approximation that the pressure to leading order is independent of y, a conclusion allowing us to solve
the gap equations analytically.

Solving the gap equations
Replacing the derivatives by ratios of suitable scales in the first gap equation, we estimate the pressure
variation along the gap to be �x p ∼ ηU L/d2 where d is the average value of h(x). From the continuity
equation we get

∣∣vy
∣∣ ∼ Ud/L , and from the second gap equation we find the pressure variation across

the gap, �y p ∼ η
∣∣vy

∣∣ /d ∼ ηU/L . This shows that the ratio of the pressure variations across and along

the gap is �y p/�x p ∼ (d/L)2, which by assumption is tiny. The conclusion is that to this order of
approximation we may take the pressure in the gap to be only a function of x .
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� x

�
y

�
U

h(x)

x

α(x)

Local geometry of creeping
‘flight’ in the xy-plane. The
‘ground’ moves with velocity U
relative to the ‘wing’ which flies
at height y = h(x). The local
angle of attack is α(x) = −h′(x).

Inserting p = p(x) in the first gap equation it may immediately be integrated with the boundary
conditions vx = U at y = 0 and vx = 0 at y = h(x), yielding

vx = U

(
1 − y

h(x)

)
− p′(x)

2η
y(h(x)− y), (27.12)

where p′(x) is the pressure gradient. The solution is a superposition of velocity-driven planar flow (17.6)
and pressure-driven planar flow (18.5), with a variable plate distance h(x) and pressure gradient p′(x).

The moving ground at y = 0 drags fluid along in the direction of positive x . The rate at which the fluid
is dragged along becomes (per unit of length in the z-direction),

Q =
∫ h(x)

0
vx (x, y) dy = 1

2
Uh(x)− p′(x)h(x)3

12η
. (27.13)

Since the fluid is incompressible, Q is independent of x , and solving for the pressure gradient we find,

p′(x) = 6η

(
U

h(x)2
− 2Q

h(x)3

)
, (27.14)
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from which the pressure may be obtained by straightforward integration.
Eliminating the pressure gradient in the velocity (27.12), we find

vx = U
(h − y)(h − 3y)

h2
+ Q

6y(h − y)

h3
(27.15)

where we for clarity have suppressed the explicit dependence on x , now entirely due to the slowly varying
gap height h(x). Finally, we insert vx into the continuity equation and integrate over y with the condition
vy = 0 for y = 0, and get

vy = −2h′ Uh − 3Q

h4
y2(h − y), (27.16)

where h′(x) is the local derivative of the height. The appearance of the tiny height derivative h′ confirms
that

∣∣vy
∣∣ � |vx |.

Effective gap width
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Sketch of the gap pressure p(x)
in relation to d for a wing with
positive angle of attack.

The pressure change along the gap is calculated from the pressure gradient,

�p =
∫

L
p′(x) dx = 6η

(
U

∫
L

dx

h(x)2
− 2Q

∫
L

dx

h(x)3

)
. (27.17)

The wing is supposed to move in a fluid which would have constant pressure, were it not for the disturbance
created by the wing itself. Assuming that the pressure p(x) is (nearly) the same at both ends of the wing,
�p ≈ 0, we obtain from (27.17) a relation between the discharge rate and the velocity,

Q = 1

2
Ud0, d0 =

〈
h−2

〉
〈
h−3

〉 , (27.18)

where 〈F〉 = (1/L)
∫

L F(x)dx denotes the average of a function F(x) along the gap. The relation between
Q and U depends on the shape of the gap only through the parameter d0, with dimension of length. We
shall call d0 the effective gap width. For flat plates with constant gap height, h(x) = h0, we get d0 = h0,
and this shows that d0 represents the width of a gap between parallel plates, carrying the same discharge
rate as the actual gap.

The pressure gradient (27.14) may now be written

p′ = 6ηU
h − d0

h3
. (27.19)

Thus, in regions where h(x) > d0 the pressure will rise, whereas it will fall in regions where h(x) < d0.
The pressure always has an extremum in the gap.

Pattern of flow reversal under
a Gaussian bump h = 1 +
3 exp(−x2) in the interval −2 <
x < 2. The effective height is
d0 ≈ 1.38 (dashed line). The
pressure first drops, then rises
under the bump and finally drops
again.

The velocity field may also be written

vx = U
(

1 − y

h

)(
1 − 3y(h − d0)

h2

)
. (27.20)

Whereas the first factor is always positive, the last may have either sign.

Flow reversal
Evidently the last factor is positive for small y, but may for a given x vanish and become negative for
y > h2/3(h − d0). When this point lies inside the gap, 0 < y < h, the fluid close to the wing will flow
against the direction of ground motion. Evidently this is only possible for h < 3(h − d0), or

h(x) >
3

2
d0. (27.21)

In regions where this condition is fulfilled, ‘rollers’ of counter-rotating fluid will appear. Typically, this
happens when the gap widens locally, because the discharge rate is mainly determined by the narrow parts
of the gap, making the effective gap width d0 considerably lower than the maximal height of the bump.
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27.3 Flat wing
Up to this point, everything has been valid for an arbitrary wing shape. We shall now specialize to the case
of a fl at w i ng w i t h const a nt angl e of a t t ack α and ave r a ge hei ght d ( t he pr ot ot ype sl i der bear i ng of exampl e
27. 1. 2)

h = d − α x, ( 27. 22)

with − L/2 ≤ x ≤ L/2. Inst ead of t he paramet ers α and h0 , i t i s m or e c onve ni ent t o s peci f y t he ext r e me

�����������������������������������������������������������������������������������������������������������α

� x

�
y

d ��
− 12 L

1
2 L

h1 h2

0

Geometry of flat wing with
const a nt angl e of a t t ack α and
average hei ght d . Var yi ng
α r ot a t e s t he w i ng ar ound i t s
mi dpoi nt .

hei ght s, h1 and h 2 , a t t he f r ont and back of t he w i ng. T he ave r a ge hei ght i s t hen d = ( h 1 + h 2)/2 and the
angl e of a t t ack α = ( h1 − h 2)/  L . I t i s al s o conveni ent t o defi ne t he di m ensi onl ess paramet er

γ = α L

2d
= h1 − h 2

h1 + h 2
, ( 27. 23)

which ranges over the interval, −1 < γ < 1. C onver sel y, w e have

h1 = ( 1 + γ )d, h 2 = ( 1 − γ )d. ( 27. 24)

A l l a ve r a g e s ove r p ow e r s o f h may be eval uat ed once and f or al l ,

〈
h n

〉 = h n+1
1 − h n+1

2
( n + 1)α  L

,
〈
h−1

〉
= 1

α L 
log 

h 1
h2
. ( 27. 25)

Usi ng t hi s t he effect ive gap wi dt h becomes,

d0 = 2h1 h 2
h1 + h 2

= ( 1 − γ  2) d. ( 27. 26)

I t i s neve r l arger t han d , and the discharge rate Q = Ud0/2 vani s hes as expect ed, i f ei t her end of t he wi ng
t ouches t he gr ound f or γ = ±1.

F l ow r eve r s al under fl at w i ng f or
γ = 0. 6 and  L/2d = 10.
T he dashed l i ne i ndi cat es t he
effect ive w i dt h d0 . T he scal e of
the ordinate is exaggerated by a
fact or 10.

For posi t ive angl e of a t t ack γ > 0, the condition for flow reversal (27. 21) is easiest to fulfill at the front
of the wing, where the left-hand side is largest. S olving the inequality for x = −L/2 we  find γ > 1/3. A
suffi ci ent l y l arge posi t ive angl e of at t ack w i l l always cause fl ow r ever sal at t he f r ont of t he w i ng. L i kew i se,
for sufficiently large negative angle of attack, γ < −1/3, t here w i l l i nst ead be fl ow r eversal at t he rear of
the wing. In between for −1/3 < γ < 1/3 there is no flow reversal.

Pressure and lift
In view of the linearity of the height function (27.22), the pressure gradient (27.19) may now be integrated
to yield,

p = 3ηU(2h − d0)

αh2
− 3ηU

αd
, (27.27)

where the constant secures that the pressure vanishes at both ends of the wing.
The total lift from the pressure in the gap becomes,

� =
∫ L/2

−L/2
p(x) Sdx = ηU L A

d2
· 3

2γ 2

(
log

1 + γ
1 − γ − 2γ

)
. (27.28)

The γ -dependent factor on the right represents the influence of the orientation of the wing which we called
f in the estimate (27.5), and for |γ | � 1 we have f ≈ γ in agreement with the estimate. It is plotted in
fi gur e 27. 1 a s a f unct i on of γ . T he l i near r egi on w her e f ≈ γ extends over the interval −0. 7 < γ < 0. 7
and is a very good approximation in most cases of interest.
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Figure 27.1. Orientation-dependent shape factors for lift , drag and moment for a flat wing as a function of
γ = αL/2d . All quantities diverge logarithmically for |γ | → 1.

Drag and power
As discussed in section 27.1 the drag on the wing has two components, skin drag arising from viscous
friction and form drag arising from pressure forces projected on the direction of motion. The ‘ground’
also experiences a skin drag, but no form drag because the ground is aligned with the direction of motion.
Newton’s third law tells us that the drag forces on the wing and on the ground must be equal and opposite,
and this allows us to calculate the total drag on the wing, 	 = 	skin +	form, from the skin drag alone on
the ground.

The shear stress on the flat ground is

σxy
∣∣
y=0 = η

[
∂vx

∂y
+ ∂vy

∂x

]
y=0

≈ η
∂vx

∂y
= −ηU

4h − 3d0

h2
. (27.29)

Integrating the shear stress over the ground surface, and changing sign in accordance with Newton’s third
law, we obtain the total drag on the wing,

��������������������������������������������������������������������������������������� �skin+form

�� skin

The drag on the wing is com-
posed of skin and form drag,
whereas the drag on the ground
is only skin drag. By Newton’s
third law the total drag on the
wing is equal and opposite the
drag on the ground.

	 = −
∫ L/2

−L/2
σxy

∣∣
y=0 Sdx = ηU A

d
· 1

γ

(
2 log

1 + γ
1 − γ − 3γ

)
. (27.30)

The leading part of this expression agrees with the estimate (27.7). The drag estimate is modified by a γ -
dependent factor which converges to unity for γ → 0 and like the lift diverges logarithmically for |γ | → 1
(see figure 27.1).

The external forces that keep the ground moving with constant velocity U must be equal to the drag.
Their rate of work is

P = 	U. (27.31)

Since the wing is at rest, no other external forces perform work on the system, so this must also equal the
total rate of dissipation into heat. In figure 27.1 the shape factor for the rate of dissipation as a function of
γ is the same as the shape factor for the drag.

Moment
The pressure forces also create a turning moment around the centre of the wing,

�z =
∫ L/2

−L/2
xp(x) Sdx = ηU L2 A

d2
· 3

8γ 3

(
(3 − γ 2) log

1 + γ
1 − γ − 6γ

)
. (27.32)
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The γ - dependent fact or i s al so pl ot t e d i n fi gur e 27. 1. I t i s alwa ys posi t ive , but most l y ve r y smal l a nd
vanishes like (1/5)γ 2 for γ → 0. If the angle of attack α is positive, the positive moment tends to rotate
the wing towards the horizontal, whereas for negative α the moment tends to turn the wing further into the
ground, destabilizing the flight.

Example 27.3.1 (Playing card): A completely flat unbent playing card thrown with a positive angle
of attack will slowly sink further and further towards the table surface while the tiny moment rotates
it towards the horizontal and the lift becomes still smaller (here we ignore again any forces acting on
the upper side of the card). Thrown with a negative angle of attack, the playing card will get sucked
towards the table at an increasing rate because the positive moment makes the angle of attack still more
negative. Eventually, the card may catch on surface irregularities and turn over, showing its value, to
the dismay of the players.

27.4 Loaded journal bearing
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Geometry of off-centre journal
bearing. The inner cylinder has
radius a and the outer b. The
outer cylinder is shifted to the
left by an amount c. The inner
cylinder rotates with constant
angular velocity� in the counter-
clockwise direction.
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‘Flattened’ gap between the
cylinders. The inner cylinder
replaces the flat boundary along
the x-axis with x → aφ, and the
space between the cylinders is
described by y → s = r − a.
The velocity of the inner cylinder
is U = a�

In section 18.6 we discussed the case of laminar flow between two concentric rotating cylinders—the
prototypical journal bearing. If the inner shaft or the outer sleeve (bushing) carries a load orthogonal
to the shaft, the cylinders will no more be concentric, although we shall assume that they are still parallel
with respect to each other.

In a non-rotating journal bearing the lubricating fluid will be squeezed out and the shaft will come into
direct contact with the sleeve at a point opposite the direction of the load. When the shaft (or the sleeve)
is brought into rotation, fluid will be dragged along due to the no-slip condition and forced into the narrow
part of the gap, thereby creating a pressure that tends to lift the shaft away from the sleeve. As we shall see,
the lift will not be directed orthogonally to the point of contact at rest.

In this section we only discuss laminar flow in the gap. A rotating journal bearing is also prone to the
centrifugal instabilities discussed in section 18.7 on page 262 with formation of Taylor vortices and more
complicated structures.

Narrow gap approximation
Let the inner cylinder have radius a and the outer radius b > a with a difference d = b − a that is assumed
to be tiny, d � a. In a coordinate system with the z-axis coinciding with the axis of the inner cylinder, we
may without loss of generality assume that the point of closest approach takes place on the positive x-axis.
Denoting the centre of the outer cylinder x = −c, the points of the outer cylinder are determined by the
equation (x + c)2 + y2 = b2. In standard cylindrical coordinates this becomes r2 + c2 + 2rc cos φ = b2,
which to first order in the small quantity c has the solution r = b − c cos φ, and the width of the gap
h = r − a between the cylinders becomes

h = d − c cos φ. (27.33)

It is convenient to introduce the dimensionless eccentricity parameter,

γ = c

d
(27.34)

which must lie in the interval −1 ≤ γ ≤ 1.
The shaft has length S, area A = 2πaS, and rotates at constant angular velocity� with surface velocity

U = a�. Disregarding the possibility that lubricant may be squeezed out along the z-axis (a non-trivial
technical detail), the problem is essentially two-dimensional. We shall assume that the longitudinal field
vanishes, vz = 0, and the azimuthal and radial fields, vφ and vr , depend only on r and φ. In this
approximation, the general theory of flow in a narrow gap (section 27.2) may be brought into play, replacing
x by aφ and y by s = r − a. The narrow gap between the cylinders has essentially been converted to a
flat-wall gap of length L = 2πa with strictly periodic boundary conditions.

The effective gap width defined in (27.18) may now be evaluated by averaging over φ, with the result
(see problem 27.6),

d0 = d
2(1 − γ 2)

2 + γ 2
. (27.35)
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Figure 27.2. Orientation-dependent shape factors for lift and dissipated power in a journal bearing as a
function of the eccentricity γ . Both quantities diverge as the inverse square root for |γ | → 1.

As for the flat plate the volume discharge is Q = Ud0/2 and it vanishes as expected for γ = ±1 when the
two cylinders come into contact.

Pressure and lift
The pressure derivative is as before given by (27.19), and integrating over φ one obtains the expression
(most easily checked by differentiation with respect to φ),

p = −6ηUa

d2
γ (2 − γ cos φ) sinφ

(2 + γ 2)(1 − γ cos φ)2
. (27.36)

Evidently the pressure vanishes at the point of closest approach φ = 0 and at the opposite point φ = π .
If γ > 0, the pressure is positive in the lower half of the gap and negative in the upper. The up-down
antisymmetry of the pressure under φ → −φ implies that the average pressure is zero, 〈p〉 = 0.
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The pressure generated by the
shaft’s rotation is asymmetric
with respect to the point of
closest approach. The total lift
� on the shaft is always parallel
with the direction of motion at the
point of closest approach.

In Cartesian coordinates the surface element of the inner cylinder is d S = (cosφ, sinφ, 0) adφ dz. The
up-down antisymmetry of p shows that the lift along x vanishes,

�x =
∮

r=a
(−p)d Sx = − A

2π

∫ 2π

0
p cos φ dφ = 0. (27.37)

Replacing the cosine by a sine the lift on the shaft along y becomes (problem 27.6),

�y =
∮

r=a
(−p)d Sy = ηU L A

d2
· 3γ

π(2 + γ 2)
√

1 − γ 2
, (27.38)

where L = 2πa, A = L S and U = �a. The γ -dependent expression represents the shape factor f in our
estimate (27.5). The behaviour of the shape factor is shown in figure 27.2. It is nearly linear in the interval
−0.9 < γ < 0.9, outside which it diverges rapidly. The divergence permits, in principle, the bearing to
carry any load by adjusting γ to be sufficiently close to unity.

It is perhaps a bit counterintuitive that the lift is always parallel with the direction of motion at the
point of closest approach, rather than orthogonal to it. This is, as we have seen, a consequence of the
antisymmetry of the pressure with respect to the radial direction at closest approach. When the shaft
just starts to rotate from rest, the direction of lift will thus be orthogonal to the direction of load,
and with no other forces at play, this lift will tend to shift the point of closest approach sideways in
the direction of motion of the shaft surface. As the point of closest approach moves away the lift
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changes direction, until it reaches a point where radial direction is orthogonal to the direction of the
load. The actual distance at closest approach d(1 − γ ) is determined by the balance between load
and lift, and the larger the load the closer the value of γ must be to unity.

Moment of drag and power
The shear stress σφr at the surface of the shaft is given by the general expression (27.29). In this case it
makes no sense to speak about a drag force, but rather the moment of the shear stress around the centre of
the shaft becomes (problem 27.6)

�z = A

2π

∫ 2π

0
aσφr dφ = −ηU A a

d
· 2(1 + 2γ 2)√

1 − γ 2 (2 + γ 2)
. (27.39)

It is negative, as one would expect, and the rate of work performed by the external moment that keeps the
shaft turning against viscosity is obtained by multiplying with −�,

P = ηU A� a

d
· 2(1 + 2γ 2)√

1 − γ 2 (2 + γ 2)
. (27.40)

For γ → 0 the dissipated power approaches the result for the unloaded bearing (18.72), whereas for
|γ | → 1 it diverges (like lift) as an inverse square root. The large dissipation in heavily loaded journal
bearings can be reduced by employing rollers or balls that keep the shaft centred in its bushing.

The ratio of dissipated power to lift,

P

�y
= 1 + 2γ 2

3γ
�d, (27.41)

is finite for |γ | → 1. Since a heavily loaded bearing has |γ | ≈ 1, the ratio becomes P/�y ≈ �d in this
limit, and since the lift must equal the load, this makes it easy to calculate the dissipated power.

Flow reversal
The narrow gap between the cylinders looks like a flat gap with a bump opposite the point of closest contact.
The discussion on page 399 indicates that a stationary flow-reversed ‘roller’ may arise at this point. The
reversal condition (27.21) becomes,

1 − γ cos φ > 3
1 − γ 2

2 + γ 2
. (27.42)

Taking φ = π the roller will appear when γ 2 + 3γ − 1 > 0. Solving the quadratic inequality this is the
case for |γ | > (√13 − 3)/2 ≈ 0.303.

Creeping flow pattern in loaded
journal bearing with d/a = 0.4
and γ = 0.6. The flow is
reversed and forms a counter-
rotating patch of fluid opposite
the point of closest approach.

Problems
27.1 Estimate the gap height for creeping horizontal flight in constant gravity when the angle of attack is
α and the body has mass M .

27.2 Show explicitly that the fluid discharge rate Q (equation (27.13)) is independent of x .

27.3 Find the conditions under which the velocity (27.15) has an extremum in the gap for a given x .

27.4 Define the gap average

〈F〉 = 1

L

∫
L

F(x) dx, (27.43)

and express all dynamic gap quantities in terms of averages.
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27.5 Consider a nearly flat gap with h(x) = d(1 + χ(ξ)) where d = 〈h〉 is the average height, and
ξ = x/L . (a) Using the results of problem 27.4, calculate for |χ | � 1 the leading non-trivial approximation
to all the dynamic quantities. (b) Compare with the exact flat wing results.

∗ 27.6 Show that for a > |b|
1

2π

∫ 2π

0

dφ

a − b cos φ
= 1√

a2 − b2
, (27.44)

and use this to derive the integrals∫ 2π

0

1

1 − γ cos φ

dφ

2π
= 1√

1 − γ 2
,

∫ 2π

0

1

(1 − γ cos φ)2
dφ

2π
= 1

(1 − γ 2)3/2
,

∫ 2π

0

1

(1 − γ cos φ)3
dφ

2π
= 2 + γ 2

2(1 − γ 2)5/2
,

∫ 2π

0

cos φ

(1 − γ cos φ)2
dφ

2π
= γ

(1 − γ 2)3/2
,

∫ 2π

0

cos φ

(1 − γ cos φ)3
dφ

2π
= 3γ

2(1 − γ 2)5/2
.
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Between the two extremes of sluggish creeping flow at low Reynolds number and lively ideal flow at high,
there is a regime in which neither is dominant. At large Reynolds number, the flow will be nearly ideal
almost everywhere, except near solid boundaries where the no-slip condition requires the speed of the fluid
to match the speed of the boundary wall. Here transition layers will arise in which the flow velocity changes
rapidly from the velocity of the wall to the velocity of the flow in the fluid at large. Boundary layers are
typically thin compared to the radii of curvature of the solid walls, and that simplifies the basic equations.

In a boundary layer the character of the flow thus changes from creeping near the boundary to ideal well
outside. The most interesting and also most difficult physics characteristically takes place in such transition
regions. But humans live out their lives in nearly ideal flows of air and water at Reynolds numbers in the
millions with boundary layers only millimetres thick, and are normally not conscious of them. Smaller
animals eking out an existence at the surface of a stone in a river may be much more aware of the vagaries
of boundary layer physics which may influence their body shapes and internal layout of organs. Ludwig Prandtl (1875–1953).

German physicist, often called
the father of aerodynamics.
Contributed to wing theory,
streamlining, compressible
subsonic airflow and turbulence.

Boundary layers serve to insulate bodies from the ideal flow that surrounds them. They have a
‘life of their own’ and may separate from the solid walls and wander into regions containing only fluid.
Detached layers may again split up, creating complicated unsteady patterns of whirls and eddies. Advanced
understanding of fluid mechanics begins with an understanding of boundary layers. Systematic boundary
layer theory was initiated by Prandtl in 1904 and has in the twentieth century become a major subtopic of
fluid mechanics [61, 64, 79].

In this chapter we shall mainly focus on the theory of incompressible laminar boundary layers without
heat flow. A semi-empirical discussion of turbulent boundary layers is also included.

28.1 Physics of boundary layers ������������������������������������������������������������������������������������������������������������������������
............................

..............................................................................................
U

........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........

.......
.......
.......
...

δ

The transition from zero velocity
at the wall to the mainstream
velocity U mostly takes place in
a layer of finite thickness δ.

The no-slip condition forces the velocity of a fluid to vanish at a static solid wall. Under many—but not
all—circumstances, the transition between the rapid flow at high Reynolds number in the fluid at large and
the stagnation at the wall will take place in a thin boundary layer hugging the wall. Close to the wall, the
velocity field is so small that the flow pattern will always be laminar, in fact creeping, with the velocity field
rising linearly from zero. The laminar flow may extend all the way to the edge of the boundary layer, or it
may become turbulent if the Reynolds number is sufficiently large.

Laminar boundary layer thickness
Denoting the typical velocity of the mainstream flow by U , the Reynolds number is as usual Re ≈ U L/ν
where L is the length scale for significant changes in the flow, determined by the geometry of bodies and
containers. We shall always assume that it is large, Re � 1. The effective Reynolds number in a steady
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laminar boundary layer of thickness δ can be estimated from the ratio of advective to viscous terms in the
Navier–Stokes equation,

|(v · ∇)v|∣∣∣ν∇2v
∣∣∣ ∼ U2/L

νU/δ2
= δ2

L2
Re. (28.1)

Here the numerator is estimated from the change in mainstream velocity along the wall over a distance L ,
using that the flow in a laminar layer must follow the geometry of the body. The denominator is estimated
from the rapid change in velocity across the thickness δ of the boundary layer.

Since the boundary layer represents the transition region from essentially non-viscous flow at large with
Re � 1 to creeping flow near the wall with Re � 1, the boundary layer thickness for steady laminar flow
may be estimated by requiring the effective Reynolds number (28.1) to be around unity, leading to����������������������������������������������������������������������������������������������������������������������������������
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Sketch of the flow in a laminar
boundary layer with constant
mainstream flow. The velocity
rises linearly close to the solid
wall but veers off to match the
mainstream flow velocity U at a
characteristic distance δ from the
wall. The precise layer thickness
depends on what one means by
‘matching’ the mainstream flow.

δ ∼
√
νL

U
= L√

Re
. (28.2)

This estimate is valid up to a coefficient of order unity which will be discussed later (section 28.4). For
large mainstream Reynolds number, Re � 1, the thickness of the boundary layer will thus be considerably
smaller than the typical length scale of the mainstream flow.

Example 28.1.1: The Reynolds numbers for flows we encounter in daily life easily reach into the
millions, making the laminar boundary layer thickness smaller than a thousandth of the scale of the flow.
Jogging or swimming, one hardly notes the existence of boundary layers that are only millimetres thick.
The pleasant tingling skin sensation you experience from streaming air or water comes presumably from
the complex and turbulent flow at larger scale generated by the irregular shape of your body.

Wall shear stress
In the laminar boundary layer, the velocity rises linearly with the distance from the boundary in the same
way as in planar velocity-driven flow. The normal velocity gradient at the wall is approximately U/δ, and
multiplying by the viscosity we obtain an estimate of the shear stress on the wall,

σwall ≈ η
U

δ
∼ ρ0U2

√
Re
. (28.3)

The wall stress thus increases as U3/2 with increasing mainstream velocity U and as
√
ν with increasing
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U

δ
λ

The stress on the wall of a lami-
nar boundary layer is determined
by the slope λ ≈ U/δ of the
linearly rising velocity near the
wall.

viscosity ν.

Initial viscous growth
When a body at rest is suddenly set into motion at t = 0 with velocity U , the fluid in its immediate vicinity
will have to follow along to satisfy the no-slip boundary condition. Large velocity gradients and therefore
large stresses will arise in the fluid next to the body, and these stresses will cause fluid layers farther out
also to be dragged along. Eventually this process may come to an end and the flow will become steady. In
the beginning the newly created boundary layer is extremely thin, so that the general geometry of the flow
and the shape of the body cannot matter. This indicates that suddenly created boundary layers always start
out their growth in the same universal way.

To estimate the universal growth of the boundary layer thickness δ(t), we use that at time t the fluid at
the edge of the boundary layer will have changed its velocity from 0 to U , making the local acceleration of
order U/t . The ratio between the local and advective acceleration then becomes,
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..................................................................................... U
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.......
.......
.......
...

δ(t)

The wall is suddenly set into
motion. After a time t , the
velocity of the fluid at the edge of
the growing boundary layer has
changed from 0 to U .

|∂v/∂t |
|(v · ∇)v| ∼ U/t

U2/L
= L

Ut
. (28.4)

The time the fluid takes to pass the body is L/U . For times much shorter than this, t � L/U , the local
acceleration dominates the advective acceleration term, and the boundary layer will continue to grow. In a
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‘young’ boundary layer the advective acceleration can thus be disregarded, and the physics is controlled by
the ratio of local to viscous acceleration,

|∂v/∂t |∣∣∣ν∇2v

∣∣∣ ≈ U/t

νU/δ2
= δ2

νt
. (28.5)

Requiring this to be of order unity, we find for t � L/U ,
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Initial growth of a laminar bound-
ary layer. The three velocity
profiles correspond to increasing
times t1 < t2 < t3 and increasing
thicknesses δ1 < δ2 < δ3.

δ ∼ √
νt . (28.6)

A suddenly created boundary layer always starts out like this, growing with the square root of time. This
behaviour is typical of viscous diffusion processes (page 233).

After the initial universal growth, the boundary layer comes to depend on the general geometry of the
flow for t ≈ L/U , when the estimate reaches the steady layer thickness (28.2). It takes more careful
analysis to see whether the flow eventually ‘goes steady’, or whether instabilities arise, leading to a radical
change in the character of the flow, such as boundary layer separation or turbulence.

Influence of body geometry
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δ(x)

A semi-infinite plate in an other-
wise uniform flow. The dashed
curve is the estimated parabolic
boundary layer shape.

The simplest geometry in which a steady boundary layer can be studied is a semi-infinite plate with its
edge orthogonal to a uniform mainstream flow (solved analytically in section 28.4). Here the only possible
length scale is the distance x from the leading edge, so we must have

δ ∼
√
νx

U
. (28.7)

This shows that the boundary layer grows thicker downstream, even if the mainstream flow is completely
uniform and independent of x . Disregarding sound waves, the time t = x/U it takes the flow to pass
through the distance x is also the earliest moment that the leading edge can causally influence the flow
near x . Intuitively one might say that the universal viscous growth of the boundary layer is curtailed by the
encounter with the blast of undisturbed fluid coming in from afar.
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Sketch of the boundary layer
around a bluff body in steady
uniform flow. On the windward
side the boundary layer is thin,
whereas it widens and tends to
separate on the lee side. In the
channel formed by the separated
boundary layer, unsteady flow
patterns may arise.

Boundary layers have a natural tendency towards downstream thickening, because they build up along a
body in a cumulative fashion. Having reached a certain thickness, a boundary layer acts as a not-quite-solid
‘wall’ on which another boundary layer will form. The thickness of a steady boundary layer is also strongly
dependent on whether the mainstream flow is accelerating or decelerating along the body, behaviour which
in turn is determined by the geometry. If the mainstream flow accelerates, i.e. grows with x , the boundary
layer tends to remain thin. This happens at the front of a moving body, where the fluid must speed up to
get out of the way. Conversely, towards the rear of the body, where the mainstream flow again decelerates
in order to ‘fill up the hole’ left by the passing body, the boundary layer becomes rapidly thicker, and may
even separate from the body, creating an unsteady, even turbulent, trailing wake. The von Kàrmàn vortex
street (page 381) is an example of periodic unsteady flow in the wake of a body.

Merging boundary layers
The increase of a boundary layer’s thickness with downstream distance implies that the boundary layer
around an infinite body must become infinitely thick or at least so thick that it fills out all the available
space. In steady planar flow between moving plates (section 17.1), we saw that the velocity profile of the
fluid interpolates linearly between the plate velocities, and there is nothing like a boundary layer with finite
thickness near the plates. Likewise, in pressure-driven steady planar flow or pipe flow (sections 18.2 and
18.4), the exact shape of the velocity profile is parabolic (as long as the flow is laminar), whatever the
viscosity of the fluid. Again we see no trace of a finite boundary layer in the exact solutions. Completely
merged boundary layers are, however, only found in infinite systems. In a pipe of finite length the boundary
layers grow out from the walls, starting at the entrance to the pipe and eventually merge at a distance, called
the entrance length, which we estimated on page 254.
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Figure 28.1. Laminar and turbulent boundary layers. The laminar layer (top) separates on the crest while the
turbulent boundary layer separates further downstream. This is the phenomenon behind the drag crisis (page
274). Reproduced from M. R. Head, in Flow Visualisation II ed W. Merzkirch, Hemisphere, Washington
1982, pp 399–403.

Upwelling and downwash
Inside a boundary layer, at a fixed distance from a flat solid wall with a uniform mainstream velocity
U , the flow decelerates downstream as the boundary layer thickens due to the action of viscosity. Mass
conservation requires a compensating upwelling of fluid into the fluid at large. If, on the other hand, the
boundary is permeable and fluid is sucked down through it at a constant rate, the upflow can be avoided,
and a steady boundary layer of constant thickness may be created (problem 28.1)...............
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The thickening of a boundary
layer decelerates the flow and
leads to upwelling of fluid from
the boundary.
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Mainstream acceleration in a
converging channel produces a
downwash of fluid, and con-
versely in a diverging channel.

The mainstream flow is determined by bodies and containers that guide the fluid and will generally
not be uniform but rather accelerate or decelerate along the boundaries. An accelerating mainstream flow
will counteract the natural deceleration in the boundary layer and may even overwhelm it, leading to a
downwash towards the boundary. Mainstream acceleration thus tends to stabilize a boundary layer so that
it has less tendency to thicken, and may lead to constant or even diminishing thickness. Conversely, if the
mainstream flow decelerates, this will add to the natural deceleration in the boundary layer and increase its
thickness as well as the upwelling.

Separation
Even at very moderate mainstream deceleration, the upwelling can become so strong that at some point the
fluid flowing in the mainstream direction cannot feed it. Some of the fluid in the boundary layer will then
have to flow against the mainstream flow. Between the forward and reversed flows there will be a separation
line ending in a stagnation point on the wall. Such flow reversal was also noted in lubrication (page 399),
although there are no boundary layers in creeping flow.

In the region of reversed flow, the velocity still has to vanish right at the boundary. Moving up from the
boundary wall, the flow first moves backwards with respect to the mainstream, but farther from the wall it
must again turn back to join up with the mainstream. The velocity gradient must accordingly be negative
right at the boundary in the reversal region, corresponding to a negative wall stress σwall. At the separation
point the wall stress must necessarily vanish, but flow reversal can in principle take place entirely within
the boundary layer without proper separation, for example at a dent in the wall.
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Turbul ence
B oundar y l a yer s can al so become t ur bul ent . Tur bul ence effi c i e nt l y mi xe s fl ui d i n a l l di r ect i ons. T he or der l y
layers of fluid that otherwise isolate the wall from the mainstream flow all but disappear, and on average,
the mainstream velocity will press much closer to the wall. Turbulence typically sets in downstream from
t he f r ont of body w hen t he l ami nar boundar y l a yer has gr ow n s o t hi ck t hat t he l ocal R ey nol ds num ber (for
t ypi cal fl ow var i at i ons of si ze δ ),

Reδ = 
Uδ

ν
, ( 28. 8)

becomes l arge enough, say i n t he t housands. I n a l a mi nar boundar y l a yer, t he e st i m at e ( 28. 2) show s t hat
Re ∼ Re2

δ  , s o t hat t ur bul e nce w i l l not ar i s e i n t he boundar y l a yer unt i l t he m ai nst r eam R eynol ds number
reaches a million or more, which i ncidentally is just about the r ange in which humans and many of their
machi nes operat e.

����������������������������������������������������������������������
��������������������������������������������������
�����������������������������������������
����������������

........................................................................................................................
................ . .... . .................. ...........

............ ................ ...........
................. ................

............................
...........................

.......................
.......................

....................
....................

...................
..................

..................
.................

................
................

................
..

..................................................................................................................
...............................................

.....................................
..............................
...........................
.........................
......................
.....................

...................
...................

.................
.................

.................
.............

.............. 

..............
.

.............

............
.

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........

�
F l ow r eve r s al and boundar y l a yer
separ a t i on i n a dive rgi ng c hannel
wi t h decel erat i ng fl ow.
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δ

turbulent

laminar

I n a t ur bul e nt boundar y l a yer
t her e w i l l alwa ys be a t hi n
nearl y l ami nar s ubl ayer, i n w hi ch
the velocity profi le rises linearly
from the wall.

A l t hough t he t ur bul e nt ve l oci t y fl uct uat i ons pr ess c l ose t o t he wal l , t her e w i l l alwa ys r e mai n a t hi n
vi scous, near l y l a mi nar, subl ayer cl ose t o t he wa l l , i n w hi c h t he aver age vel oci t y gr adi e nt nor mal t o t he
wal l ri ses l i nearl y wi t h di st ance. S i nce t he mai nst ream vel oci t y on average comes much cl oser t o t he wal l ,
t he aver age wal l st r ess w i l l be much l arger t han i n a compl et el y l ami nar boundar y l ayer. T he s ki n dr ag
on a body i s consequent l y expect ed t o i ncr ease w hen t he boundar y l a yer becomes t ur bul e nt , t hough ot her
changes i n t he fl ow may i nt erfere and i nst ead cause an even l arger drop i n t he f orm drag at a part i cul ar
va l ue of t he R eynol ds number, as w e saw i n t he di scussi on of t he ‘ dr ag cr i s i s ’ ( page 274) .

28.2 T he Stokes layer
T he i nitial growth of t he bounda ry layer at a fl at plate suddenly set into motion ( S t okes fi r st problem) must
al so f ol l ow t he unive r s al l aw ( 28. 6) . I n t hi s case t her e i s no i nt r i nsi c l engt h s cal e f or t he geomet r y, and
the t ransition t o geometry-dependent steady fl ow ca nnot take place. T he planar boundary layer, called t he
St okes l ayer , can f or t hi s r eason be expect ed t o pr ovi de a cl ean model f or t he unive r s al vi scous gr ow t h.

Analytic solution
As usual i t i s best t o view t he system from t he reference frame in which t he pl at e and the fl ui d i nitially
move with the same velocity U and t he pl at e i s s uddenl y s t opped a t t = 0. Assuming that the fl ow is
pl anar wi t h vx = v  x ( y, t) and v  y = 0, t he N avi e r–S t okes equat i on f or i ncompr e ssi bl e fl ow r e duces t o t he
momentum-diffusion equation (17.5), which is repeated here for convenience

∂vx

∂t
= ν

∂2vx

∂y2
. (28.9)

The linearity of this equation guarantees that the velocity everywhere must be proportional to U , and since
there is no intrinsic length or time scale in the definition of the problem, the velocity field must be of the
form,

vx (y, t) = U f (s), s = y

2
√
νt
. (28.10)

The so far unknown function f (s) should obey the boundary conditions f (0) = 0 and f (∞) = 1. The
factor two in the denominator is just a convenient choice.

Upon insertion of (28.10) into (28.9) we are led to an ordinary second-order differential equation for
f (s),

f ′′(s)+ 2s f ′(s) = 0. (28.11)

Viewed as a first-order equation for f ′(s), it has the unique solution f ′(s) ∼ exp(−s2). Integrating this
expression once more over s and applying the boundary conditions, the final result becomes

f (s) = 2√
π

∫ s

0
e−u2

du = erf(s), (28.12)

where erf(·) i s t he w el l - know n er r or f unct i on, show n i n fi gur e 28. 2( a ).
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412 28. BOUNDARY LAYERS

Figure 28.2. (a) The Stokes layer shape function f (s). The sloping dashed line is tangent at s = 0 with
inclination f ′(0) = 2/

√
π . (b) Detail near f (s) = 1 in %.

Gaussian tail
For large values the error function approaches unity with a Gaussian tail, 1 − f (s) ∼ exp(−s2) =
exp(−y2/4νt), typical of momentum diffusion. The Gaussian tail extends all the way to spatial infinity
for any positive time, t > 0, but how can that be, when the plate was only brought to stop at time t = 0?
Will it take a finite time for this event to propagate to spatial infinity? The short answer is that we have
assumed the fluid to be incompressible, and this—fundamentally untenable—assumption will in itself entail
infinite signal speeds. At a deeper level, a diffusion equation like (28.9) is the statistical continuum limit of
the dynamics of random molecular motion in the fluid, and although extremely high molecular speeds are
strongly damped, they may in principle occur. The effective limit to diffusion speed is, as discussed before,
always set by the finite speed of sound.

Vorticity
The vorticity field has only one component

ωz(y, t) = −∂vx (y, t)

∂y
= −U f ′(s)

2
√
νt

= − U√
πνt

e−y2/4νt . (28.13)

When the plate was still moving for t < 0, stopped, the flow was everywhere irrotational. Afterwards there
is evidently vorticity everywhere in the boundary layer. Where did that come from?

Consider a (nearly) infinite rectangle with support of length L on the plate. By Stokes’ theorem the
total flux of vorticity (or circulation) through the rectangle is � = ∫

ω · d S = ∮
v · d�. The fluid velocity

always vanishes on the plate, is orthogonal to the sides and approaches the constant U at infinity, so that we
obtain � = −U L . Since the circulation is constant in time, vorticity is not generated inside the boundary

�
U

L
�

�

�

�

The circulation around an in-
finitely tall rectangle with side L
against the moving wall is � =∮

v · d� = −U L .

layer itself during its growth, but rather at the plate surface during the instantaneous deceleration to zero
velocity. If the plate did not stop with infinite deceleration, but followed a gentler road U(t) from U to 0,
the circulation �(t) = (U(t)− U)L would also have decreased gently from 0 to −U L . The conclusion is
that vorticity is generated at the plate surface during the deceleration, and afterwards it diffuses away from
the plate and into the fluid at large without changing the total circulation.

Thickness
The velocity field is self-similar because it only depends on the dimensionless variable s = y/2

√
νt . At

different times the velocity profiles only differ by the ‘vertical’ length scale 2
√
νt . There is no cut-off in

the infinitely extended Gaussian tail and therefore no ‘true’ thickness δ. Conventionally, one defines the
boundary layer thickness to be the distance where the velocity has reached 99% of the terminal velocity.
The solution to f (s) = 0.99 is s = 1.82 . . . (see figure 28.2(b)), such that

δ99 = 1.82 . . . ∗ 2
√
νt ≈ 3.64

√
νt . (28.14)

In section 28.7 we shall meet other more physical definitions of boundary layer thickness.
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28.3 Boundary layer theory
When Prandtl introduced the concept of boundary layers he pointed out that there were simplifying features,
allowing for less complicated equations. The greater simplicity comes from the assumption of nearly ideal
mainstream flow with Re � 1, which according to the estimate (28.2) implies that boundary layers are thin,
i.e. δ � L where L is the length scale for variations in the mainstream flow.

We shall—as Prandtl did—consider only the two-dimensional case with an infinitely extended planar
boundary wall at y = 0 and a unidirectional mainstream flow along x . In the absence of viscosity, the
incompressible fluid would slip along the boundary, y = 0, with a slowly varying slip-velocity, vx = U(x).
Leaving out gravity, it follows from Bernoulli’s theorem (16.15) that there must be an associated slip-flow
pressure at the boundary,

P(x) = P0 − 1
2ρ0U(x)2, (28.15)

where P0 is a constant. The slip-flow pressure simply reflects the variation in slip-velocity along the
boundary.

� x

�
y

.............................................................................................................................................................
....................................................................

....................................................
.......................

....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... .......

U(x)

δ(x)

mainstream flow

L

Geometry of two-dimensional
planar boundary flow. In the ab-
sence of viscosity there would be
a slowly varying slip-flow U(x)
along the boundary. Viscosity in-
terposes a thin boundary layer of
thickness δ(x) between the slip-
flow and the boundary.

The Prandtl equations
In viscous flow the no-slip condition demands that the true velocity must change rapidly from vx = 0 right
at the boundary y = 0 to vx = U(x) outside the boundary layer y � δ. Formulated more carefully, the
slip-flow velocity U(x) and boundary pressure P(x) should now be understood as describing the flow in the
region δ � y � L , well outside the boundary layer but still so close to the boundary that the mainstream
flow depends mainly on x . In the mainstream proper, for y � L , flow and pressure come to depend on the
general flow geometry with other length scales for major flow variations along both x and y.

The continuity equation,

∂vx

∂x
+ ∂vy

∂y
= 0 (28.16)

determines the upflow vy both inside and outside the boundary layer. Integrating over y, and using the
boundary condition vy = 0 for y = 0, we obtain the exact relation,

vy(x, y) = − ∂

∂x

∫ y

0
vx (x, y′) dy′. (28.17)

Since major flow variations take place on the length scales L along x and δ along y, this equation permits
us to estimate the upflow to be of magnitude vy ∼ U δ/L ∼ U/

√
Re. The upflow inside the boundary layer

will thus for Re � 1 be much smaller than the slip-flow.
Mass conservation implies that the upflow inside the boundary layer continues into the slip-flow region

δ � y � L . Writing vx = U − (U − vx ) in (28.17) we obtain,

vy(x, y) ≈ −y
dU(x)

dx
+ d Q(x)

dx
for δ � y � L, (28.18)

where

Q(x) =
∫ y

0
(U(x)− vx (x, y)) dy ≈

∫ L

0
(U(x)− vx (x, y)) dy. (28.19)

In the last step we have replaced the upper limit y by L under the assumption that U − vx vanishes rapidly
outside the boundary layer for y � δ.

The quantity Q(x) represents the volume of the slip-flow displaced by the boundary layer per unit of
time (and per unit of length along z). The upflow (28.18) in the slip-flow region thus has two contributions,
one from the variations in slip-flow and one from the boundary layer itself. The latter represents the natural
upwelling in the boundary layer discussed on page 410.
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In two dimensions the steady-flow Navier–Stokes equations (18.1) become

vx
∂vx

∂x
+ vy

∂vx

∂y
= − 1

ρ0

∂p

∂x
+ ν

(
∂2vx

∂x2
+ ∂2vx

∂y2

)
, (28.20a)

vx
∂vy

∂x
+ vy

∂vy

∂y
= − 1

ρ0

∂p

∂y
+ ν

(
∂2vy

∂x2
+ ∂2vy

∂y2

)
. (28.20b)

In either of these equations, the double derivative after y is proportional to 1/δ2, whereas the double
derivative after x is proportional to 1/L2, making it a factor 1/Re smaller and thus negligible for Re � 1.
Setting vx ≈ U and vy ≈ Uδ/L we estimate from any of the remaining terms in the second equation that
the normal pressure gradient is ∂p/∂y ≈ ρ0U2δ/L2. Finally, multiplying this expression with δ we obtain
the pressure variation across the boundary layer �y p ≈ δ ∂p/∂y ≈ ρ0U2δ2/L2 ∼ ρ0U2/Re. For Re � 1
this is much smaller than the typical variation in slip-flow pressure �P ≈ ρ0U2 and may be disregarded.
In this approximation the true pressure in the boundary layer equals the slip-flow pressure everywhere,
p(x, y) ≈ P(x). The slip-flow pressure appears to be ‘stiff’, and penetrates the boundary layer to act
directly on the boundary.

Inserting p = P in (28.20a) and dropping the second order derivative after x , we arrive at Prandtl’s
momentum equation,

vx
∂vx

∂x
+ vy

∂vx

∂y
= U

dU

dx
+ ν ∂

2vx

∂y2
. (28.21)

Since vy is given in terms of vx by (28.17), we have obtained a single integro-differential equation which
for any given U(x) determines vx , subject to the boundary conditions vx = 0 for y = 0 and vx → U
for y → ∞. The preceding analysis shows that the correction terms to this equation are of order 1/Re.
The Prandtl approximation, however, breaks down near a separation point, where the upflow becomes
comparable to the mainflow.

28.4 The Blasius layer
The generic example of a steady laminar boundary layer is furnished by a semi-infinite plate with its edge
orthogonal to a uniform flow with constant velocity U , a problem first solved by Blasius in 1908.Paul Richard Heinrich Blasius

(1883–1970). German physicist,
a student of Prandtl’s. Worked
on boundary-layer drag and on
smooth pipe resistance.

Self-similarity
As the main variation in vx happens across the boundary layer, it may be convenient to measure y in units
of the thickness of the boundary layer, estimated to be of order δ ∼ √

νx/U in (28.7). Let us for this reason
write the velocity in dimensionless self-similar form,

vx (x, y) = U f (s), s = y

√
U

2νx
, (28.22)

where f (s) must satisfy the boundary conditions, f (0) = 0 and f (∞) = 1. The factor of two in the
square root is conventional. In principle, the function could also depend on the dimensionless variable
Rex = U x/ν, but the correctness of the above assumption will be justified by finding a solution satisfying
the boundary conditions.

Upflow
From the equation of continuity (28.17) we obtain

vy(x, y) = − ∂

∂x

∫ y

0
vx (x, y′) dy′ = − ∂

∂x

[√
2Uνx g(s)

]
.

Here we have for convenience defined the integral

g(s) =
∫ s

0
f (s′) ds′ (28.23)
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F i gu re 28. 3. S t r eaml i nes ar ound a s emi - i nfi ni t e t hi n pl at e w i t h fl ui d fl ow i ng uni f or m l y i n f r om t he l e f t ( s ee
pr obl em 28. 4) . U ni t s ar e c hosen so t hat U = ν = 1. T he t hi n dashed s t r eaml i ne t er mi nat es i n a st agnat i on
poi nt . T he heavy dashed c ur ve i ndi cat es t he 99% t hi c kness, y = δ = 5

√
x . T he kink in the streamlines at

x = 0 s i gnal s br eakdow n of t he P r a ndt l a ppr oxi mat i on i n t hi s r egi on.

such t hat f ( s) = g′( s) . C ar r yi ng out t he di ff e r e nt i a t i on, w e obt ai n t he upfl ow f r om t he l a yer,

vy( x, y) = h( s)

√
Uν

2 x
, ( 28. 24)

with

h( s) = s f ( s)− g( s).  ( 28. 25)

The asymptotic value h(∞) = lims→∞( s − g( s))  determines the total upfl ow injected into the mainstream
by t he boundar y l a yer.

Bl asius’ equation
Finally, vy is inserted into the P randtl equation (28. 21) and using that in this case U i s const a nt , w e obt ai n
a single third-order ordinary differential equation, called the Blasius equation,

g′′′(s)+ g(s)g′′(s) = 0, (28.26)

which must be solved w ith the boundary conditions g( 0) = 0, g′( 0) = f ( 0) = 0, and g′(∞) = f (∞) = 1.
N umer i c i nt egr a t i on yi e l ds t he r e sul t s show n i n fi gur e 28. 3 a nd 28. 4.

Numeric trick: The condition g′(∞) = 1 seems at first a bit troublesome to implement
numerically. The trick is first to find the solution g̃(s) which satisfies the Blasius equation with
with g̃′′(0) = 1. This solution converges at infinity to a value a2 ≡ g̃′(∞) = 1.65519 . . . instead of
unity. The correct solution is finally obtained by the transformation,

g(s) = 1

a
g̃
( s

a

)
. (28.27)

It is a simple matter to verify that this function also satisfies the Blasius equation.
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Figure 28.4. (a) The self-similar Blasius shape function f (s) from (28.22). The dashed line in pane (a) has
slope f ′(0) = 0.46960 . . . and is tangent at s = 0. It crosses unity at s = 2.1295. (b) The function h(s)
from (28.24). The dashed line indicates the asymptotic value h(∞) = 1.21678 . . . which determines the
upwelling of fluid from the boundary layer into the mainstream flow.

Thickness and local Reynolds number
As for the Stokes layer (section 28.2) the conventional thickness of the Blasius layer is defined to be the
distance y = δ where the velocity has reached 99% of the slip-flow velocity. The solution of f (s) = 0.99
is s = 3.4719 . . ., so the thickness becomes,

δ99 = 3.4719 . . . ∗
√

2νx

U
≈ 4.91

√
νx

U
. (28.28)

Typically, one uses δ ≈ 5
√
νx/U for estimates. In dimensionless form, this may be expressed in terms of

�
vx

� y
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............
.............
..............

...............
.................

..................
....................

.........................
...............................

................................................................
.............U

0.99U

δ99

Definition of conventional thick-
ness δ99 as the distance from
the wall where the velocity has
reached 99% of the mainstream
velocity U .

the local Reynolds number,

Reδ = Uδ

ν
≈ 5

√
Rex , (28.29)

where as before Rex = U x/ν is the ‘downstream’ Reynolds number. Turbulence typically sets in around
Rex ≈ 5 × 105, corresponding to Reδ ≈ 3500.

Wall shear stress and friction coefficient
The wall shear stress becomes

σwall = η
∂vx

∂y

∣∣∣∣
y=0

= ηU

√
U

2νx
f ′(0). (28.30)

It is customary also to make the wall stress dimensionless by dividing with (1/2)ρ0U2 to get the so-called
local friction coefficient,

"
"
"
"
"
"
"�

�
�
�
�
�
�

L

S�

�

�

U

A flat, thin wing aligned with the
flow only experiences skin drag.

C f ≡ σwall

(1/2)ρ0U2
= f ′(0)

√
2

Rex
≈ 0.664√

Rex
. (28.31)

In a turbulent boundary layer (section 28.5), this expression is replaced by a semi-empirical power law of
the same general form but with a different power and coefficient. Note the singularity at x = 0, which
signals breakdown of the boundary layer approximation at the leading edge of the plate.

Laminar skin drag on a flat wing
Consider now an infinitely thin rectangular ‘wing’ with ‘chord’ L in the direction of flow, and a ‘span’
S orthogonal to the flow (in the z-direction). Such an object generates no form drag, when it is aligned
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w i t h t he fl ow, a nd di sr egar di ng t he i nfl uence of t he r ear and s i de e dges of t he w i ng, t he t ot al ( s ki n) dr ag i s
obt ai ned by i nt egr a t i ng σwa l l = ( 1/2)ρ  0 U 2 C f ( x) over both sides of the plate,

	 = 2
∫ L

0
σwa l l( x) Sd x  = 2η U S f ′( 0)

∫ L

0

√
U

2ν x
dx  = 4η U S f ′( 0)

√
U L

2ν
.

T hi s becomes m or e t r anspar ent w hen expr essed i n t er ms of t he di m ensi onl ess drag coeffici e nt f or t he w i ng,

C� = 	

( 1/2)ρ0 U 2 A
= 8 f ′( 0)√

2R e
≈ 2. 6565√

Re
, ( 28. 32)

where A = L S  is the wing’s area and Re = U L/ν i s i t s R eynol ds number. T he s ki n dr a g c oeffi ci ent
decreases with the s quare root of the R eynolds num ber, and i s of little importance i n m ost everyday
situations with Reynolds number i n t he millions. Mos tly the skin drag i s overwhelmed by the f orm drag
coeffi c i e nt w hi c h does not decr ease but r a t her st ays c onst a nt f or R e → ∞.

E xamp l e 28. 4. 1 ( We at h e r van e) : A little rectangular metal weather vane w ith sides L = 30 cm and
S = 20 cm i n a U = 10 m s−1 w i nd has R e = U L/ν ≈ 2 × 105 , w el l bel ow t he onset of t urbul ence.
T he drag coeffi ci ent becomes C� ≈ 6 × 10−3 , a nd t he t ot al ski n dr ag 	 ≈ 0. 02 N, when the vane i s
al i gned w i t h t he w i nd. T hi s dr ag cor r e sponds t o a w ei ght of mer e l y 2 g, w her eas t he f or m dr a g a nd t he
ot her aer odynami c f or ces t hat al i gn t he va ne ar e m uch s t r onger. O ne s houl d cer t a i nl y not di mensi on t he
suppor t of t he va ne on t he basi s of t he l ami nar ski n dr ag!

2 8 . 5 Turbulent bo unda ry la yer in unifo rm flow
S uffi ci ent l y fa r dow nst r eam f r om t he l eadi ng e dge, t he R eynol ds number, R ex = U x/ν , will eventually
grow so large t hat t he boundary layer becomes t urbulent. E mpirically, t he transition happens for 5 × 105 �
Rex � 3 × 106 , dependi ng on t he c i r cumst a nces, f or exampl e t he uni f or m i t y of t he m ai nst r eam fl ow a nd
t he r oughness of t he pl at e sur face. We shal l i n t he f ol l owi ng di scussi on t ake R ex = 5 × 105 as the nominal
transition point.

...................................
.......................................

..................................... .. ....
.. .. ................... ...... . .. .... .............

...................... ... ....... ......... ... ..... . .. ..... . 
.. .. . .. ......................

...................
...................
...................
...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
..........

.................................................................... ..... ...... ...... ...... ...... .. .. ... 
.. .......... ............ .. ................................................................... ....... ......

. ....... ...... ... ... .. ... .. ... .. ... .. ... ... .. .. .. .....................................

l a mi nar t ur bul e nt

vi scous

S ket ch of t he t hi ckness of t he
boundar y l a yer f r om t he l eadi ng
edge through the t ransition r e-
gi on. At the t ransition (dashed
l i ne), t he t urbul ent l ayer grow s
r a pi dl y w her eas t he vi s cous sub-
l ayer onl y gr ow s sl ow l y.

The line of transition across the plate is not a straight line parallel with the z - axi s, but r at her an i r r egul ar,
t i m e- dependent , j agged, even f r act al i nt e r face bet w een t he l ami nar and t ur bul e nt r egi ons. T hi s i s a l s o t he
case f or t he ext ended, near l y ‘ hor i z ont al ’ i nt er face bet w een t he t ur bul e nt boundar y l a yer a nd t he fl ui d a t
large. Such intermittent and fractal behaviour is common to the onset of turbulence in all systems.

Fri cti on coeffici ent
I n a t ur bul e nt boundar y l a yer, t he t r ue vel oci t y fi e l d v fl uct uat e s i n a l l di r ect i ons and i n t i m e a r ound
some mean value. Even very close to the wall, there will be notable fluctuations. The no-slip condition
nevertheless has to be fulfilled and a thin sublayer dominated by viscous stresses must exist close to
the wall. In this viscous sublayer the average velocity v̄x rises linearly from the surface with a slope,
∂v̄x/∂y|y=0 = σ̄wall/η that can be determined from drag measurements.

A decent semi-empirical expression for the friction coefficient of a turbulent boundary layer was already
given by Prandtl (see for example [80, 79] for details)

C f ≡ σ̄wall

1/2ρ0U2
≈ 0.027

Re1/7
x

. (28.33)

The turbulent friction coefficient thus decreases much slower than the corresponding laminar friction
coefficient (28.31). The two expressions cross each other at Rex ≈ 7800 which is far below the transition
to turbulence, implying a jump from C f ≈ 9.4 × 10−4 to C f ≈ 4.1 × 10−3 at Rex ≈ 5 × 105. Turbulent
boundary layers thus cause much more skin drag than laminar boundary layers (by a factor of more than
four at the nominal transition point).

In figure 28. 5 the friction coeffi cient is plotted across the laminar and turbulent regimes. T he transition
from laminar to turbulent is in reality not nearly as sharp as shown here, partly because of the average over
the jagged transition line. Eventually, for sufficiently large Rex , the roughness of the plate surface makes
the friction coefficient nearly independent of viscosity and thus of Rex .
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Figure 28.5. Schematic plot of the local friction coefficient C f = σ̄wall(x)/(1/2)ρ0U2 across the laminar
and turbulent regions as a function of the downstream Reynolds number Rex = U x/ν. The transitions at
the nominal points Rex = 5 × 105 and at Rex = 109 are in reality softer than shown here. The position of
the second transition and the terminal value of C f depend on the roughness of the plate surface (see [80]
for details).

Drag on a flat wing
Let us again consider a finite ‘wing’ of size A = L×S. For sufficiently large Reynolds number Re = U L/ν,
the boundary layer will always become turbulent some distance downstream from the the leading edge, and
the drag will in general be dominated by the turbulent boundary layer’s larger friction coefficient. Assuming
a fully turbulent boundary layer, the dimensionless turbulent drag coefficient becomes (including both sides
of the plate)

C� = 2

1/2ρ0U2 A

∫ L

0
σ̄wall(x) Sdx = 0.063

Re1/7
. (28.34)

If the leading laminar boundary layer cannot be disregarded, this expression is somewhat modified.

Example 28.5.1 (Flag blowing in the wind): A A = 2 × 2 m2 flag in a U = 10 m s−1 wind has a
Reynolds number of Re ≈ 1.3×106, well inside the turbulent region. The laminar skin drag coefficient
is C� ≈ 2.3 × 10−3 whereas the turbulent skin drag coefficient is C� ≈ 8.4 × 10−3. The turbulent
skin drag is only 	 ≈ 1.68 N which seems much too small to keep the flag straight. But flags tend
to flap irregularly in the wind, thereby adding a much larger average form drag to the total drag, and
giving them even in a moderate wind the nearly straight form that we admire so much.

Local drag and momentum balance
x1 x2

The drag on the plate between
x1 and x2 must equal the rate of
loss of momentum from the fluid
between the dashed lines.

Momentum balance guarantees that the drag on any section of the plate, say for x1 < x < x2, must equal the
rate of momentum loss from the slice of fluid above this interval, independent of whether the fluid is laminar
or turbulent. Formally, we may use the Prandtl equations to derive such a relation for an infinitesimal slice
of the boundary layer, as was first done by von Karman in 1921.

For constant slip-flow it follows trivially from (28.16) and (28.21) that

−ν ∂
2vx

∂y2
= ∂((U − vx )vx )

∂x
+ ∂(vy(U − vx ))

∂y
. (28.35)
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Figure 28.6. Schematic plot of the dimensionless ‘true’ thickness, represented by Reδ = Uδ/ν, as a
function of downstream distance x , represented by Rex = U x/ν. Also shown is the thickness of the
viscous sublayer δν . The momentum thickness δmom is obtained from the refined expression (28.42) and is
everywhere roughly a factor 10 smaller than the ‘true’ thickness δ. The real transition at the nominal value,
Rex = 5 × 105, is even softer than shown here. The transition from smooth to rough plate at Re = 109 is
barely visible.

Integrating over all y and using the boundary conditions, we see that the second term on the right-hand side
does not contribute, and we obtain

ν
∂vx

∂y

∣∣∣∣
y=0

= d

dx

∫ ∞
0
(U − vx )vx dy. (28.36)

The quantity on the left-hand side is simply σwall/ρ0, and the integral on the right-hand side is the flux of
lost momentum. In section 28.7 we shall make a more systematic study of such relations.
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The turbulent velocity profile is
approximately a power v̄x ∼ yγ

with γ ≈ 1/7. The vertical
tangent at y = 0 is unphysical,
because it implies infinite wall
stress. A finite wall stress
is provided by a thin viscous
sublayer.

Turbulent velocity profile and thickness
Empirically, the flat-plate turbulent boundary layer profile outside the thin viscous sublayer is decently
described by the simple model (due to Prandtl [79]),

vx

U
=

( y

δ

)1/7
, (0 � y < δ). (28.37)

Ignoring the sublayer which cannot contribute much to the integral, we obtain∫ δ

0
(U − vx )vx dy = 7

72
U2δ. (28.38)

Although the thickness δ is not known at this stage, we may use the von Karman relation (28.36) to relate it
to the friction coefficient, for which we have the semi-empirical expression (28.33). In this way we obtain
an ordinary differential equation for the thickness,

dδ

dx
= 36

7
C f . (28.39)

In a fully turbulent boundary layer, we may integrate this equation using (28.33) with the initial value δ = 0
at x = 0, to get

δ = 36

7

∫ x

0
C f dx ≈ 0.16

ν

U
Re6/7

x . (28.40)
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E xpr essi ng t he t hi ckness i n di mensi onl ess f or m by m eans of t he l ocal R eynol ds number, w e fi nal l y have

Reδ ≡ 
Uδ

ν
= 0. 16 R e 6/ 7x . ( 28. 41)

T he j ump i n t he local Reynolds number at t he nominal transition point x = x0 where R e x 0 = 5 × 105 ,
i s onl y a ppar e nt . A mor e pr eci se expr essi on f or t he l ocal R eynol ds number m ay be obt ai ned by usi ng t he
Bl asi us r esul t f or 0 ≤ x ≤ x0 , a nd i nt egr at i ng t he t ur bul ent expr essi on onl y f or x > x 0 ,

Reδ =


5
√

Rex x < x0

5
√

Rex0 + 0.16
(

Re6/7
x − Re6/7

x0

)
x > x0.

(28.42)

By construction, this expression is continuous across t he nominal transition point (see fi gure 28. 6).
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δν δwall

The ‘true’ thickness δν of the vis-
cous sublayer is obtained from
the intercept between Prandtl’s
power profile (28.37) and the lin-
early rising velocity in the sub-
layer. The kink at y = δν
is unphysical, because it gives
rise to a small jump in shear
stress that violates Newton’s third
law (slightly). The real transi-
tion from viscous sublayer to tur-
bulent main layer is softer than
shown here.

The viscous sublayer
It is also possible to get an estimate of the thickness δν of the viscous sublayer from the intercept between
the linearly rising field, vx = yσ̄wall/η, in the sublayer and the power law (28.37). Demanding continuity
at y = δν , we get

σ̄wall

η
δν = U

(
δν

δ

)1/7
.

Solving this equation for δν and inserting σwall from (28.33) and δ from (28.41) we obtain the remarkable
expression,

Uδν
ν

= 206Re1/42
x . (28.43)

At the nominal transition point Rex = 5 × 105, this becomes 282, which grows to 337 at Rex = 109. The
sublayer thickness is also plotted in figure 28.6 and its variation with Rex is barely perceptible.

It is now also possible to calculate what fraction of the terminal velocity the fluid has achieved at the
‘edge’ of the sublayer,

vx |y=δν
U

= 2.8Re−5/42
x . (28.44)

At the nominal transition point it is 0.59 and falls by roughly a factor 2 to 0.24 at Rex = 109.

∗ 28.6 Self-similar boundary layers
In the two preceding sections we have only discussed the case of constant slip-flow, but now we turn to the
study of slip-flows that vary with x . In this section we shall focus on the generalization of the self-similar
laminar Blasius solution to non-constant flat-plate slip-flow U(x). The assumption of self-similarity has
before allowed us to convert the partial differential equations of fluid mechanics into ordinary differential
equations. We shall now see that self-similarity implies that the Prandtl equations essentially only permit
power law slip-flows of the form U ∼ xm . The class of such slip-flows is on the other hand sufficiently
general to illustrate what happens when a slip-flow accelerates (m > 0) or decelerates (m < 0), although it
cannot handle the separation phenomenon.

The Falkner–Skan equation
A self-similar flow is defined to be of the form,

vx = U(x) f (s), s = y

δ(x)
, (28.45)
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where f ( s) i s a di m ensi onl ess f unct i on of t he di mensi onl ess var i abl e. T he vel oci t y scal e i s s et by U( x)
and t he scal e of t he boundar y l a yer t hi ckness by δ(x) . A s f or t he B l a si us l a yer w e c hoose t he boundar y
condi t i ons t o be f ( 0) = 0 and  f (∞) = 1. I n t he f ol l ow i ng w e suppr ess t he x - dependence w her eve r
possi bl e.

I t f ol l ow s i mmedi at el y f r om t he equat i on of c ont i nui t y ( 28. 17) t hat

vy = − ∂

∂ x
(Uδ g),  ( 28. 46)

where g( s) is again given by (28. 23). S ubstituting vx and v y i nt o t he P r a ndl equat i on ( 28. 21) w e obt ai n
after a little algebra t he coupled ordinary differential equations,

f ′′ + α g f ′ + β(1 − f 2) = 0, g′ = f, ( 28. 47)

where a pri me i ndi cat es t he derivat ive w i t h respect t o s . U si ng a dot t o denot e t he der iva t ive af t e r x , the
purel y numeri cal coeffi ci ent s become,

α = δδ̇ U + δ  2 U̇

ν
, β = δ  2 U̇

ν
, ( 28. 48)

and m ay by const r uct i on be x - dependent . T he cr uci a l poi nt i s now t hat s i nce f ( s) and g( s) onl y depend on
s , i t f ol l ow s f r om t he di ff er ent i a l e quat i on ( 28. 47) t hat bot h α and β must i n fact be i ndependent of x .

T he defi ni t i ons ( 28. 48) may t hus be vi ew ed as t wo c oupl ed or di nar y di ff er ent i a l e quat i ons f or δ and U
with constant values of α and β . To s ol ve t hem w e fi r st not e t hat t hey i mpl y d(δ  2 U)/dx  = ( 2α − β)ν.
For α > 0 w e may without loss of generality rescale δ such t hat we get α = 1. I nt egr at i ng w e now obt ai n
δ  2 U = ( 2 − β)ν  x where f or β �= 2 w e c hoose t he or i gi n of x such that integration constant vani shes.
I nser t i ng t hi s i nt o t he second equat i on i n ( 28. 48) , i t f ol l ow s t hat β = ( 2−β)x U̇/ U , i mplying t hat U ∼ x m

with m = β/(2 − β). Putting it all together, the allowed class is given by,

U(x) = Axm , δ(x) =
√

2νx

(1 + m)U(x)
, (28.49)

where A > 0 is a constant. For m = 0 this reduces to the Blasius case with δ = √
2νx/U .

The resulting nonlinear third-order differential equation,

g′′′ + gg′′ + β(1 − g′2) = 0, (28.50)

with β = 2m/(1 + m) was introduced in 1931 by Falkner and Skan1, and the one-parameter family of
sol ut i ons has s i nce been ext e nsivel y s t udi ed [ 61 , 64 ] . A s el ect i on of pr ofi l es ar e s how n i n fi gur e 28. 7 f or a
few values of m. We leave it as an exercise to discuss the other families of solutions with α ≤ 0 or β = 2.

Upflow
A non-constant inviscid slip-flow vx = U(x) generates by itself (and mass conservation) an upflow
vy = −yU̇ (x). The part of the upflow due to the presence of a boundary layer is consequently vy + yU̇ ,
which may be written in the form

vy + yU̇(x) = ν

δ
h(s), (28.51)

h(s) = s f (s)− g(s)+ βs(1 − f (s)). (28.52)

This reduces to the Blasius result (28.24) for β = 0. Since for s → ∞ we expect that f (s) → 1 with an
exponential tail, this function converges for s → ∞ to a finite value, h(∞) = lims→∞(s − g(s)).

1V. M. Falkner and S.W.Skan, Some approximate solutions of the boundary layer equations, Phil. Mag. 12, (1931)
865.
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F i gu re 28. 7. Self-similar Falkner–Skan velocity profi les f ( s) for s el ect val ues of mc < m < ∞ where
mc = −0. 0904286. T he B l a si us pr ofi l e i s obt ai ned f or m = 0. Not e t hat t here are t wo s ol ut i ons for each
va l u e o f m in the interval mc < m < 0, one of which has reversed flow close to the wall. The critical profi le
with m = mc i s show n dashed.

Numeri c m ethod a nd resul ts
Numeric integration of the Falkner–Skan equation is reasonably straightforward using a ‘ballistic’ method
of integration. The integration process is initiated with g( 0) = f ( 0) = 0 and  f ′( 0) = µ, and a s earch i s
made f or t he va l ue of t he sl ope µ t hat yi el ds f (∞) = 1. In the same way as there are two elevation angles
t hat may be used t o hi t a t arget w i t h a cannon bal l , t her e m ay be mor e t han one sol ut i on t o t he Fal kner–S kan
equation for certain values of m.

I n fi gur e 28. 7 t he ve l oci t y pr ofi l e i s show n f or a s el ect i on of m - val ues a nd i n fi gur e 28. 8 t he wa l l sl ope
f ′(0) and asymptotic upflow h(∞) are plotted as a function of m in the interval −0.1 < m < 0.2. The
most conspicuous feature of the figures is the existence of two solutions in the interval mc < m < 0 where
mc = −0.0904286 . . .. One solution has positive slope and the other negative, indicating backflow in the
boundary layer. The slope vanishes at the critical point m = mc , where the positive solution joins with the
negative with vertical tangent.

Accelerating and decelerating slip-flow
In the region 0 < m < ∞ the slip-velocity increases downstream. The solutions are unique and all resemble
the Blasius solutions, except that the thickness scale

δ(x) ∼ x(1−m)/2 (28.53)

grows slower than
√

x . For m > 1 the layer is even suppressed by the accelerating flow and gets thinner
with x .

For −1 < m < 0 the slip-flow decelerates and the thickness grows faster than
√

x . There are, as
mentioned, precisely two solutions in the interval mc < m < 0. Just below the critical point, in the interval
−1/3 < m < mc , there are no solutions at all, but for any m in the interval −1 < m < −1/3 there
appears to be from one to three distinct solutions with different values of the slope [64]. These solutions
oscillate and overshoot while converging upon f (∞) = 1. They are of no interest in the context of flat
plate boundary layers.
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F i gu re 28. 8. ( a) T he wal l s l ope f ′( 0) as a f unct i on of m in the interval −0. 1 ≤ m ≤ 0. 2. I t i s doubl e- va l ued
for negative m , a nd t he negat ive s ol ut i on ( dot t e d) j oi ns c ont i nuousl y w i t h ve r t i cal t a ngent t o t he posi t ive
solution at the critical point mc = −0. 0904286 . . .. (b) The limiting upfl ow h(∞) as a f unct i on of m . It is
al so doubl e- val ued f or negat ive m and t akes t he val ue h(∞) = 2. 35885 . . .  for m = mc .

Sepa ra ti o n?
S el f-si mi l ar fl ow s can st ri ct l y speaki ng not be used t o model s eparat i on, because t he vel oci t y profi l e by
const r uct i on has t he s ame general shape f or al l x . If we let m slide down towards the critical value mc , it
never t hel ess l ooks ver y much as i f separ at i on does t ake pl ace ( al l over t he x - axi s at t he same t i m e) . A t t he
critical point, where the positive solution joins with the backflowing negative solution, there is a singularity
with infinite slope derivative f ′′( m c) . S uch singularities are generic f or the P rantdl equations (see section
28. 8) .

∗ 28.7 Exact results for varying slip-flow
A varying slip-flow U(x) will strongly influence the flow in the boundary layer. Accelerating flow with
dU/dx > 0 tends to suppress the boundary layer, so that its downstream thickness grows slower than the√

x of the Blasius layer. Sufficiently strong acceleration may even make the boundary layer become thinner
downstream. Conversely, if the slip-flow decelerates, dU/dx < 0, the thickness will grow faster than

√
x ,

and sufficiently strong deceleration may lift the boundary layer off the plate and make it wander into the
mainstream as a separated boundary layer.

In this section we shall establish some relations that are valid for any exact solution to Prandtl’s
equations. These relations will be useful for the discussion of the separation phenomenon to be taken
up in section 28.8. Although we shall always think of a flat plate boundary layer, the following discussion
is also valid for slowly curving walls, such as the much-studied flow around a cylinder.
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In accelerating flow, dU/dx >

0, the wall curvature is negative,
whereas in decelerating flow the
curvature is positive. The dashed
curve sketches the velocity pro-
file for vanishing wall curvature.

Exact wall derivatives
At the wall, y = 0, we know that both vx and vy must vanish, and that the derivative of the velocity at the
wall,

λ = ∂vx

∂y

∣∣∣∣
y=0

(28.54)

is in general non-vanishing, except at a separation point, where it has to vanish. The wall vorticity is
ωz = −λ.

Setting y = 0 in the Prandtl equation (28.21) we immediately get the double derivative, also called the
wall curvature,

ν
∂2vx

∂y2

∣∣∣∣∣
y=0

= −U
dU

dx
. (28.55)

Its direct relation to the slip-flow opens up a qualitative discussion of the shape of the velocity profile. If
the slip-flow accelerates (dU/dx > 0), the wall curvature will be negative and favor the approach of the
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velocity towards its terminal value, U . Conversely, if the slip-velocity decreases (dU/dx < 0), the wall
curvature will be positive and adversely affect the approach to terminal velocity. This forces an inflection
point into the velocity profile and raises the need for including higher derivatives to secure the turn-over
towards the asymptotic slip-flow. For constant slip-flow, i.e. the Blasius case, we have dU/dx = 0, and the
wall curvature vanishes.

The higher order wall derivatives may be calculated by differentiating the Prandtl equation repeatedly
with respect to y. Differentiating once, we find

ν
∂3vx

∂y3

∣∣∣∣∣
y=0

= 0, (28.56)

and once more

ν
∂4vx

∂y4

∣∣∣∣∣
y=0

= λ
dλ

dx
. (28.57)

Clearly, this process can be continued indefinitely to obtain all wall derivatives of vx depending only on U ,
λ and their derivatives.

Exact integral relations
We have already derived a relation (28.36) from momentum balance in uniform flow. For general varying
slip-flow we first rewrite the Prandtl equation (28.21) in the form,

−ν ∂
2vx

∂y2
= (U − vx )

dU

dx
+ ∂[vx (U − vx )]

∂x
+ ∂[vy(U − vx )]

∂y
. (28.58)

Integrating this equation over y from 0 to ∞, and using the boundary values vy → 0 for y → 0 and
U − vx → 0 for y → ∞, we obtain the general von Karman relation

ν
∂vx

∂y

∣∣∣∣
y=0

= dU

dx

∫ ∞
0
(U − vx ) dy + d

dx

∫ ∞
0
(U − vx )vx dy. (28.59)

It states that the drag on any infinitesimal interval of the plate equals the rate of momentum loss from the
slice of fluid above the interval.

We may similarly derive a relation expressing kinetic energy balance by multiplying the Prandtl
equation with vx , and rewriting it in the form,

ν

(
∂vx

∂y

)2
= 1

2
ν
∂2(v2

x )

∂y2
+ 1

2

∂((U2 − v2
x )vx )

∂x
+ 1

2

∂(vy(U2 − v2
x ))

∂y
. (28.60)

Integrating this over all y and using the boundary conditions, we get

ν

∫ ∞
0

(
∂vx

∂y

)2
dy = 1

2

d

dx

∫ ∞
0
(U2 − v2

x )vx dy. (28.61)

This relation states that the rate of heat dissipation in any infinitesimal slice equals the rate of loss of kinetic
energy from the fluid. It is also possible to derive further relations for angular momentum balance and
thermal energy balance [79, 61].

The integrands in the momentum and energy balance equations, (28.59) and (28.61), may be interpreted
physically in terms of flow properties. The expression U − vx is the volume flux of fluid displaced by the
plate, the expression ρ0(U − vx )vx is the flux of ‘lost momentum’ caused by the presence of the plate,
1/2ρ0(U

2 − v2
x )vx is the flux of ‘lost kinetic energy’, and η(∂vx/∂y)2 is the density of heat dissipation.
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Dynamic thicknesses
It is convenient to introduce dynamic length scales (or thicknesses) related to each of these quantities (and
the wall stress),

1

δ wall
= 1

U

∂vx

∂y

∣∣∣∣
y=0

, (28.62a)

δdisp = 1

U

∫ ∞
0
(U − vx ) dy, (28.62b)

δmom = 1

U2

∫ ∞
0
(U − vx )vx dy, (28.62c)

δener = 1

U3

∫ ∞
0
(U2 − v2

x )vx dy, (28.62d)

1

δ heat
= 1

U2

∫ ∞
0

(
∂vx

∂y

)2
dy. (28.62e)

In terms of these thicknesses, the momentum and energy balance equations now take the compact and quite
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useful forms,

νU

δwall
= U

dU

dx
δdisp +

d
(

U2δmom

)
dx

, (28.63a)

νU2

δheat
= 1

2

d(U3δener)

dx
(28.63b)

We emphasize that these relations, like the wall derivatives (28.55)–(28.57), are fulfilled for any exact
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δmom

Definition of momentum thick-
ness from the integral of the flux
of momentum loss, (U − vx )vx .

solution to the boundary layer equations.

The Blasius thicknesses

For the Blasius layer, self-similarity make all thicknesses proportional to the same basic scale, δ =√
2νx/U . Numeric integration yields,

δwall ≈ 2.129 δ, δdisp ≈ 1.217 δ, δmom ≈ 0.470 δ,

δener ≈ 0.738 δ, δheat ≈ 2.708 δ, δ99 ≈ 3.472 δ.
(28.64)

The self-similarity thus guarantees that the ratios between any thicknesses are pure numbers independent
of x . The integral relations (28.63) simplify in this case to,

2δwallδmom = δheatδener = 2δ2. (28.65)

These relations are of course fulfilled for the numeric values above.

28.8 Laminar boundary layer separation
When a separating boundary layer takes off into a decelerating mainstream, the character of the mainstream
flow is profoundly changed, thereby actually invalidating the Prandtl approximation. Careful analysis has
revealed that this is a generic problem, to which the boundary layer equations respond by developing an
unphysical singularity at the point of separation. This so-called Goldstein singularity [64] prevents us in
general from using boundary layer theory to connect the regions before and after separation.

Although Prandtl’s boundary layer theory for this reason is useless for separation problems, the
existence of a singularity is nevertheless believed to be an indicator of boundary layer separation in the
general vicinity of the point where the singularity occurs. During the twentieth century the problem of
predicting the singular separation point for boundary layers around variously shaped objects has been of
great importance to fluid mechanics, for fundamental as well as technological reasons. It has proven to be
a challenging problem, to say the least [61, 64]. A number of approximative schemes have been proposed
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F i gu re 28. 9. L ami nar boundar y l ayer s epar at i on f r om a spher e at R e = 15 000. N ot e how t he boundar y
l a yer s epar at es at t he f or wa r d faci ng hal f of t he s pher e . O N E R A phot ogr aph, H . We r l e R ech. A erospace
198- 5 ( 1980) 35–49.

and t r i ed out , a nd w i t h sui t a bl e e mpi r i cal i nput , t hey c ompar e r easonabl y w el l w i t h anal yt i c or numer i c
cal cul at i ons [79 ] .

T he G ol dst e i n si ngul ar i t y i s unavoi dabl e as l ong as w e per s i s t i n t he bel i e f t hat w e can empl oy P r andt l ’s
equat i ons and a l s o s peci f y t he s l i p- fl ow ve l oci t y as w e w i sh. T he pr i c e t o pay f or avoi di ng t he si ngul ar i t y
i s t hat t he P randt l equat i ons must be repl aced by t he N avi er–S t okes equat i ons and t hat t he mai nst ream fl ow
cannot be f ul l y speci fi e d i n a dvance, but has t o be al l ow e d t o be i nfl uenced by w hat happens deep i nsi de t he
boundar y l a yer. S i nce s epar at i on or i gi nat e s i n t he i nner m ost vi s cous ‘ deck’ of t he boundar y l a yer, vi scosi t y
t hus t akes a deci sive par t i n sel ect i ng t he pr esumed i nvi sci d fl ow at l arge, agai n emphasi zi ng t hat i nvi sci d
fl ow s ol ut i ons ar e not uni que, a nd t hat i nvi sci d fl ow i s i ndeed an i deal .......................................................................................................... ..... ..... ...
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S chemat i c pi ct ur e of how sepa-
r a t i on i s t hought t o t a ke pl ace
i n a decel erat i ng fl ow. T he
mai nst r eam fl ow i s pr of oundl y
changed by t he separ a t i on bot h
upst r eam and dow nst r eam from
t he s eparat i on poi nt .

S ydney G ol dst e i n ( 1903–89) .
British mat hematical physici st.
Worked on num eri c al sol ut i ons
t o t he s t e ady- flow l am i nar
boundary l ayer equat i ons.

I n t he l ast hal f of t he t w ent i et h cent ur y, i t has been concl usivel y demonst r at ed t hr ough t heor et i cal
anal ysi s and numer i cal si mul a t i on t hat t he N avi er–S t oke s e quat i ons do not l ead t o any boundar y l a yer
singularities and do in fact smoothly c onnect the r egions before and after separation. T he most s uccessful
method is in fact a natural extension of Prandtl’s idea of dividing the flow into two ‘decks’, a viscous
transition layer and an inviscid slip-flow layer, that in the end are ‘stitched together’ to form a complete
boundary layer. In the ‘triple deck’ approach the transition layer is further subdivided into a near-
wall viscous sublayer and a second viscous layer interpolating between the sublayer and the slip-flow.
Unfortunately, there does not seem to be any simple way of presenting this modern ‘interactive’ boundary
layer theory [61, 64, 68].

In this section we shall first justify that the Goldstein singularity exists, and make a primitive attempt to
determine its position in a number of cases where the exact position is known (table 28. 1). In the remainder
of the section we shall see that it is possible to predict the position of the singularity to an accuracy better
than 1% from momentum and energy balance alone without any empirical input. A simplified version of
this model yields an accuracy better than 3%.

The wall-anchored model
The simplest model of boundary layer flow is obtained by approximating the velocity profile with a fourth-
order polynomial in y constructed from the exact wall derivatives (page 423)

vx = λ y − UU̇

2ν
y2 + λλ̇

24ν
y4, (28.66)
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where a dot is used to denote differentiation with respect to x . E vi dent l y, t hi s expr essi on i s exact f or
y → 0, but f or y → ∞ where al l t hree t erms diverge, t here i s of course a probl em. I n decel erat i ng
slip-flow ( U̇ < 0) , t he second- or der t er m i s a lways posi t ive , a nd t he f our t h- or der t e r m i s alwa ys negat ive
j ust upst r eam from t he separat i on poi nt , because t he s l ope λ i s posi t ive and decreasi ng t owards zero at
separation. After an i nitial r ise gove rned by the fi rst- and s econd-order t erms, t he fourth-order term must
event ual l y pul l dow n t he pr ofi l e t o mi nus i nfi ni t y, unl ess w e ‘ cat ch’ i t a t t he t op.
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δ

Wa l l - anchor ed f our t h- or der pol y-
nomi a l j oi ns cont i nuousl y w i t h
vx = U at its maximum y = δ .
T he c ont i nuat i on beyond δ dr ops
to −∞ i n a decel erat i ng sl i p-fl ow
and i s unphysi cal .

We ‘catch’ the profi le by requiring the velocity to join smoothly at maximum with the given slip-flow
U( x) , i.e. vx = U( x) and ∂vx/∂ y = 0 at  y = δ , r esulting i n t he conditions,

λ δ − U U̇

2ν
δ  2 + λλ̇

24ν
δ  4 = U, ( 28. 67a)

λ− U U̇

ν
δ + λλ̇

6ν
δ 3 = 0. ( 28. 67b)

Eliminating λλ̇ between these equations we obtain an algebraic relation between λ and δ ,

λ = 4U

3δ

(
1 + U̇δ 2

4ν

)
. ( 28. 68)

T hi s show s t hat t here i s i n fact onl y one free paramet er i n t he probl em, s ay δ , satisfying a first-order
di ff er ent i a l e quat i on ( see pr obl em 28. 6) . I t a l s o f ol l ow s f r om t hi s r el at i on t hat s i nce λ = 0 at a separation
poi nt t he t hi ckness δc = δ(x c) will be finite here,

δc = 2
√

− ν

U̇c
, ( 28. 69)

where U̇c = U̇ ( x c) i s t he ‘ decel erat i on’ at t he s eparat i on poi nt ( U̇c < 0) .
F r om the s econd c ondition ( 28. 67b) the behaviour of λλ̇ can be now det er mi ned i n t he vi ci ni t y of t he

separ a t i on poi nt , w her e

2λλ̇ ≈ −3 
Uc U̇ 2c
ν

. ( 28. 70)

Integrating over x usi ng λ = 0 for  x = xc we arrive at,

λ ≈ κ
√

xc − x, κ = −U̇c

√
3Uc

ν
, ( 28. 71)

w hi ch cl ear l y demonst r at es t he exi st ence of t he G ol dst ei n si ngul ar i t y.
N ear t he wal l j ust upst r eam f r om t he separ at i on poi nt , t he vel oci t y pr ofi l e becomes,

vx ≈ λ y ≈ κ y
√

xc − x, (28.72)

and from mass conservation (28.17) we determine the corresponding upflow

vy ≈ −1

2

dλ

dx
y2 ≈ κ

4

y2
√

xc − x
. (28.73)

Evidently, the upflow diverges for all y at the separation point. Apart from being totally unphysical, this
shows that it is not possible to solve the separation problem within the Prandtl approximation itself, because
one of the conditions for this approximation,

∣∣vy
∣∣ � |vx |, fails miserably near the separation point.

The model is analysed further in problem 28.6. The separation points obtained from numeric integration
of t hi s model are l i s t ed i n t he t hi r d col umn ( marked ‘wal l ’ ) i n t abl e 28. 1 f or ni ne decel erat i ng s l i p-fl ow s.
They agree rather poorly with the exact results (second column), overshooting by up to 50%. The poor
performance of the model must be ascribed to the much too solid anchoring of the boundary layer to the
wall, which tends to generate errors in the shape of the velocity profile in the bulk of the boundary layer.
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Tab l e 28. 1. Table of decelerating slip-fl ow s and the positions of their G oldstein singularities (‘separation
poi nt s’ ) cal cul a t e d i n var i ous model s di scussed i n t he t ext . T he exact va l ues xc in the second column
ar e t aken f r om [ 79 ] . T he s epar at i on poi nt s det er mi ned by t he wa l l - anchor ed f our t h- or der pol ynomi a l
( 28. 66) ar e l i s t e d i n t he t hi r d c ol umn, and have t ypi cal er r or s of 40%. T he f our t h col umn i s obt ai ned by
P ohl hausen’s met hod ( 28. 99) . I t has er r or s l e ss t han 25% and i s i n a l l cases bet t e r t han t he wa l l - anchor ed
appr oxi mat i on. I n t he fi f t h c ol umn t he separ a t i on poi nt s a r e det e r m i ned f r om bot h m oment um a nd energy
bal a nce ( 28. 63) w i t h t ypi cal er r or s smal l e r t han 1%. F i nal l y, i n t he l a st col umn, t he separ a t i on poi nt s a r e
der ive d f r om t he si mpl e appr oxi mat i on ( 28. 85) w i t h t he t ypi cal er r or bei ng l e ss t han 3%.

U( x) xc wa l l wa l l+mom m om+ener appr oxi mat i on

1. 1 − x 0. 120 0. 176 0. 157 0. 121 0. 123
2.

√
1 − x 0. 218 0. 314 0. 277 0. 219 0. 221

3. ( 1 − x)  2 0. 064 0. 094 0. 084 0. 064 0. 065
4. ( 1 + x)−1 0. 151 0. 230 0. 214 0. 154 0. 158
5. ( 1 + x)−2 0. 071 0. 107 0. 098 0. 072 0. 074
6. 1 − x 2 0. 271 0. 365 0. 312 0. 270 0. 268
7. 1 − x 4 0. 462 0. 565 0. 491 0. 460 0. 449
8. 1 − x 8 0. 640 0. 729 0. 652 0. 643 0. 621
9. cos x 0. 389 0. 523 0. 447 0. 386 0. 383

The Pohlhausen family of profiles
T he wal l - anchor ed appr oxi mat i on ( 28. 66) suff er s f r om a n unnat ur a l j ump i n t he cur vat ur e ∂ 2v x/∂ y 2 at t he
edge of t he boundar y l a yer a t y = δ . A smoot her f our t h- or der pol ynomi a l was i nt r oduced by P ohl hausen
i n 1921, i n w hi c h t he coeffi c i e nt s a r e fi xed by demandi ng t he fi el d t o a ppr oach vx = U at y = δ with
vani shing fi rst- and second- or der der ivat ives,

vx

U
= µ 

y

δ
+ 3( 2 − µ)

( y

δ

)2 − ( 8 − 3µ)
( y

δ

)3 + ( 3 − µ)
( y

δ

)4
. ( 28. 74)

I t cont ai ns t wo unknow n f unct i ons: t he di mensi onl ess s l ope at t he wal l µ(  x) and t he l a yer t hi ckness δ(x) .

One may readily verify that this is indeed �
(
( y − δ)3

)
for y → δ .

�
vx

� y

U
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δ

The fourth-order polynomial
joins smoothly with vx = U with
a horizontal inflection point at
y = δ. The continuation beyond
y = δ which diverges to +∞ for
µ < 3 is not used.

Note that for µ < 2, the second- and fourth-order terms are always positive. It is the negative third-
or der t er m, w hi c h s ecur e s t he smoot h t ur n- ove r t owar ds t he s l i p- fl ow at y = δ . A selection of this family
of pr ofi l e s i s s how n i n fi gur e 28. 10. T he pr ofi l es ar e w el l defi ned f or al l µ, bot h bef or e t he separ a t i on poi nt
(µ > 0) and after (µ < 0). After separation they exhibit backflow, as one would expect, but the Goldstein
singularity prevents us from connecting these two regions of solutions.

Pohlhausen solved the model by imposing the wall-curvature condition (28.55) together with the von
Karman relation (28.63a). The details are given in problem 28.7, and the separation point predictions are
tabulated in the fourth column (marked ‘wall+mom’) of table 28.1. The agreement is still rather poor with
typical errors of 25%.

Momentum and energy balance
The nearly self-similar form of the Pohlhausen family (28.74) implies that all thicknesses are polynomials
in µ scaled by δ. The wall, displacement and momentum thicknesses become

δ

δwall
= µ,

δdisp

δ
= 2

5

(
1 − µ

8

)
,

δmom

δ
= 4

35

(
1 + µ

12
− 5µ2

144

)
, (28.75)

and the energy and heat thicknesses,

δener

δ
= 876

5005

(
1 + µ

12
− 253µ2

10512
− 7µ3

3504

)
,

δ

δheat
= 48

35

(
1 − µ

12
+ µ2

16

)
. (28.76)
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F i gu re 28. 10. P r ofi l e s of t he P ohl hausen fa mi l y f or i nt eger va l ues of µ from −5 to +5. T he dashed c ur ve
i s t he pr ofi l e a t s epar at i on, cor r e spondi ng t o µ = 0, and t he pr ofi l e s w i t h µ < 0 have backfl ow.

I nser t i ng t hese i nt o t he i nt egr a l r el at i ons ( 28. 63) , one ar r ive s a t t wo r a t her hor r i bl e c oupl ed fi r st - or der
di ff er ent i a l e quat i ons f or δ and µ. T hese di ff er ent i a l e quat i ons ar e der ived i n pr obl em 28. 8 a nd sol ved
numerically with the results shown i n t he column marked ‘mom+ener’ of t abl e 28. 1. T hey agree w i t h t he
exact singularities t o better t han 1% i n nearly all cases, demonstrating t hat t ogether momentum and energy
balance do predict the position of t he Goldstein singular ity with acceptable precision.

Approximative solution
We now turn to the question of whether it is possible to simplify the model and still retain a reasonable
predictive ability. The approximation is based on the observation that the dimensionless ratios δmom/δener
and δen er/δh eat are nearl y const ant because t he t erms l i near i n µ cancel in the ratios (see also fi gure 28. 11).

Multiplying the energy relation (28.63b) with 4U3δener, we may rewrite it as

d(U6δ2
ener)

dx
= 4νU5 δener

δheat
. (28.77)

Approximating the ratio by a constant, we may integrate the equation to get,

U6δ2
ener ≈ 4ν

δener

δheat

∫ x

0
U(x)5 dx. (28.78)

The integral defines a slip-flow length scale

L(x) = 1

U(x)5

∫ x

0
U(x)5 dx, (28.79)

and the energy relation may now be expressed as

δheatδener = 4
νL(x)

U(x)
, (28.80)

which is of the same general form as the Blasius result (28.65), corresponding to L(x) = x .
The momentum equation (28.63a) is analogously multiplied with 2U4δmom, and rewritten in the form,

2νU5 δmom

δwall
= 2U5U̇

(
δdisp

δmom
− 1

)
δ2

mom + d(U6δ2
mom)

dx
. (28.81)
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F i gu re 28. 11. N ear l y const ant t hi ckness r at i os i n t he P ohl hausen fami l y. (a) The ratio δmo m/δen er va r i e s
by about 1. 3% ar ound i t s mean va l ue bet w een µ = 0 and µ = 2. (b) The ratio δen er/δheat va r i es by about
6. 6% ar ound i t s mean val ue i n t he same i nt er val .

Writing δ  2mo m = δ  2en er(δ  
2
mo m/δ 

2
en er) and a ppr oxi mat i ng t he r a t i o δ  2mo m/δ 

2
en er by a c onst a nt , w e m ay use

( 28. 77) t o get t he f ol l ow i ng al gebr ai c r el at i on bet w een t he var i ous t hi c knesses

2ν
δmo m

δwa l l
= 2 U̇

(
δdisp

δmo m
− 1

)
δ  2mo m + 4ν

δ 2mo m
δen erδheat

. ( 28. 82)

Rewriting t hi s expression by means of (28. 80) it becomes a di mensionl ess rel ation,

U̇ L

U
= δen erδheat − 2δmo mδwa l l

4δwa l l(δdisp − δmo m)
≡ R(µ). ( 28. 83)

S i nce t he l e f t - hand s i de depends onl y on t he give n vel oci t y U( x) , a nd t he r i ght - hand s i de i s a know n r a t i onal
f unct i on of µ(  x) i n t he P ohl hausen model ( see pr obl em 28. 9) , t hi s e quat i on m ay be sol ved f or µ(  x) . Having
obt ai ned µ(  x) one may t hen s ear ch f or a separ at i on poi nt w her e µ(  x) = 0. For t he Bl asi us l ayer where
t her e i s no s epar at i on poi nt , t he l e f t - hand s i de vani s hes a nd w e obt ai n i nst ead f r om t he r i ght - hand s i de
δheatδen er = 2δwa l lδmo m , a rel at i on w hi ch we have al ready derived i n (28. 65).

At t he s eparat i on poi nt µ → 0 t he wal l t hi ckness diverges, δwall → ∞, while the other thicknesses
remain finite, such that

U̇ L

U
→ −1

2

δmom

δdisp − δmom

∣∣∣∣∣
µ=0

= −1

5
, (28.84)

where on the right-hand side we have used the Pohlhausen family value δdisp/δmom = 7/2 for µ = 0.
Inserting (28.80) we obtain an equation that the separation point x = xc must satisfy,

U̇(xc)

U(xc)6

∫ xc

0
U(x)5 dx = −1

5
. (28.85)

Solving t hi s equation for the usual test cases we find t he results shown i n t he last column of tabl e 28. 1.
The errors are typically less than 3% which is as good as the semi-empirical methods [79]. The model also
predicts µ(x) via (28.83) and thus all the thickness ratios (28.75) and (28.76). The absolute thickness scale
δ(x) is finally obtained from (28.80).
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Sketch of the much-studied sepa-
ration flow around a cylinder (of
which only half is shown here).
The separating streamline is dot-
ted.

Separation from cylinder
Some of the more interesting slip-flows first accelerate and then decelerate. Among them the notorious
cylinder in a uniform cross-wind, which has been the favourite target for boundary layer research for nearly
a hundred years. The cylinder presents two difficulties, as does in fact every realistic separation problem.
The first is the question of what is the correct slip-flow. Since separation interacts with the mainstream flow,
this is not so simple. The second is the technical question of calculating a precise value for the separation
point in a slip-flow that may not be purely decelerating.
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I f t he ext er nal fl ow ar ound t he cyl i nder i s t aken t o be t he pot ent i a l fl ow, t he sl i p- fl ow i s give n by
( 16. 66b) , i . e . U( x) = 2U0 sin x where U0 i s t he s t r engt h of t he uni f or m cr oss- w i nd and x is the angle of
obser va t i on ( t he upw i nd di r ect i on c or r e sponds t o x = 0) . T he appr oxi mat ive equat i on ( 28. 85) i mmedi at el y
yi el ds xc = 1. 800 = 103 ◦ . T he exact separ a t i on poi nt f or t hi s s l i p- fl ow ( obt ai ned by numer i cal cal cul a t i on)
i s know n t o be xc = 1. 823 ≈ 104 ◦ ( s ee [ 79 ] ) , so i n t hi s case t he appr oxi mat i on wor ks t o a pr eci si on onl y
slightly worse t han 1%.

T he r eal fl ow a r ound t he cyl i nder i s, howeve r, not pot ent i a l fl ow because of t he vor t i c i t y i nduced i nt o
t he m ai n fl ow by t he boundar y l a yer, especi al l y i n t he s epar at i on r egi on a nd beyond. H i emenz ( 1911)
det e r m i ned exper i ment al l y t hat t he s l i p- fl ow at a R eynol ds number R e = U0 a/ν = 9500 was w el l descr i bed
by t he odd pol ynomi a l [ 79 , p. 272] ,

U = U0( 1. 814 x − 0. 271 x 3 − 0. 0471 x 5).  ( 28. 86)

N ow t he appr oxi mat ive equat i on ( 28. 85) pr edi c t s separ a t i on a t xc = 1. 372 = 78. 6 ◦ w hi c h i s onl y a bout
2% away f r om t he va l ue xc = 80. 5 ◦ measur ed by H i menz. E ve n i f a gr eement i s obt ai ned, t hi s i s not ve r y
i mpressive, because t he s l i p-fl ow i t s el f has not been cal cul at ed from fi rst pri nci pl es. Most of t he i nformat i on
about t he s epar at i on f r om t he cyl i nder l i es i n fact i n t he empi r i cal sl i p- fl ow.

Problems
28.1 (a) S how t hat f or c onst a nt sl i p- fl ow ve l oci t y i t i s possi bl e t o obt ai n a boundar y l a yer of c onst a nt
thickness on an infinitely extended plate, if fluid is sucked through the plate at a constant rate. (b) Discuss
what happens if fluid is pushed through instead.

∗ 28.2 Show that the planar flow generated by a plate at rest for t < 0 and moving with velocity U(t) for
t > 0, is

vx (y, t) =
∫ t

0

(
1 − erf

(
y

2
√
ν(t − t ′)

))
U̇ (t ′) dt ′, (28.87)

where U̇(t) = dU(t)/dt . Hint: Show that it satisfies the equation of motion and the boundary conditions.

28.3 Show that the Blasius solution satisfies∫ ∞
0
(1 − f (s)) ds = h(∞) (28.88a)∫ ∞

0
f (s)(1 − f (s)) ds = 2 f ′(0). (28.88b)

28.4 T he s t r eaml i nes i n fi gur e 28. 3 m ay be obt ai ned di r ect l y f r om t he B l asi us s ol ut i on.

(a) Show that the streamlines are solutions to (with s given by (28.22))

dy

dx
=

√
ν

U x

(
s − g(s)

f (s)

)
. (28.89)

(b) Show that this may be written

ds

dx
= − 1

2x

g(s)

f (s)
. (28.90)

(c) Show that a streamline satisfies

g(s) = C√
x

(28.91)

where C is a constant.
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(d) Show that the explicit solution is

y =
√
ν x

U
g−1

(
y0

√
U

ν x

)
( 28. 92)

where g−1 is the inverse function of g and y0 is the intercept with the y - a xi s f or x = 0.

∗ 28.5 Assume that a t wo-dimensional fl ow is of the form

vx = U( x) ( 28. 93)

vy = −y 
dU( x)

dx  
( 28. 94)

al l ove r s pace and not j ust near a boundar y. D er ive a t hi r d- or der di ff er ent i a l e quat i on f or U and discuss its
possi bl e s ol ut i ons.

C a n one choose U( x) f r eel y i f one adds V ( x) to vy ?

∗ 28.6 C onsi der t he wal l - anchor ed model ( 28. 66) . Par amet r i ze t he m odel w i t h a di m ensi onl ess s l ope µ,

λ = µ 
U

δ
, δ =

√
ν(3µ − 4)

U̇
. ( 28. 95)

(a) Show that µ must satisfy the differential equation

µ̇ = 24

µ

2 − µ
8 − 3µ

U̇

U
− µ 

4 − 3µ

8 − 3µ

(
2

U̇

U
+ Ü

U̇

)
( 28. 96)

and t hat t he initial condition i s µ(0) = 4/3.

(b) Show that in the interval 0 < µ < 4/3 the equation may be approximated by

µ̇ = 6

µ

U̇

U
(28.97)

and solve it.

(c) Obtain an equation for the separation point and (d) compare the resulting values for the nine cases in
t a bl e 28. 1.

∗ 28.7 Consider the Pohlhausen family of velocity profiles (28.74).

(a) Show that the wall-curvature condition implies that

δ =
√

6ν(µ − 2)

U̇
. (28.98)

(b) Show that the von Karman relation leads to the differential equation

µ̇ = 42
48 − 20µ + 3µ2

(4 − µ)(24 + 25µ)

U̇

U
− (2 − µ) 144 + 12µ − 5µ2

(4 − µ)(24 + 25µ)

(
Ü

U̇
− 4

U̇

U

)
, (28.99)

and integrate this equation numerically to obtain the separation points in the fourth column of table
28.1.

(c) Is there a Goldstein singularity in this model?
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F i gu re 28. 12. S ol ut i ons t o t he c oupl ed equat i ons ( 28. 101) f or t he ni ne fi e l ds i n t abl e 28. 1. (a) T he s l ope µ
as a function of x . All curves have vertical tangent at the separation point, indicating a singularity. (b) The
parameter γ defined in (28.100) as a function of x . The linear envelope γ ≈ 32 x corresponds to the Blasius
thickness δ ∼ √

x .

28.8 Consider the Pohlhausen family of velocity profiles (28.74) and introduce the auxiliary variable

γ = δ2U

ν
, (28.100)

which has the dimension of length. For x = 0 we assume δ(0) = γ (0) = 0.

(a) Show that the energy and momentum relations (28.63) become,

4(6 − 5µ)γ µ̇+ (144 + 12µ− 5µ2)γ̇ + 15(96 − 6µ− µ2)γ
U̇

U
= 2520µ, (28.101a)

2(876 − 506µ − 63µ2)γ µ̇+ (10512 + 876µ − 253µ2 − 21µ3)

(
γ̇ + 5γ

U̇

U

)
= 6864(48 − 4µ + 3µ2) (28.101b)

where a dot means differentiation with respect to x .

(b) Show that the derivative γ̇ (0) satisfies the two relations,

γ̇ (0) = 2520µ

144 + 12µ − 5µ2
= 6864(48 − 4µ+ 3µ2)

10512 + 876µ − 253µ2 − 21µ3
(28.102)

where µ = µ(0) is the starting value of µ.

(c) Show that this fourth-order algebraic equation for µ has four real roots, with the one closest to zero
being

µ(0) = 1.85685 . . . , γ̇ (0) = 31.3955 . . . . (28.103)

(d) Solve the coupled differential equations numerically with these initial values and produce
figure 28.12 for the velocities in table 28.1 as a function of x .

∗ 28.9 Show that the right-hand side of (28.83) is the rational function,

R = −1976832 + 1103760µ+ 50796µ2 − 42581µ3 + 2085µ4

2860
(
72 − 15µ+ µ2

) (
48 − 4µ+ 3µ2

) . (28.104)

Show that the lowest root in the numerator is µ = 1.85685 . . ..
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The take off of a large airplane never fails to impress passengers and bystanders alike. After building up
speed during a brief half-minute run, gravity lets go and the plane marvellously lifts off. For this to happen,
it is obvious that the engines and the airflow must together generate a vertical force which is larger than
the weight of the aircraft. After becoming airborne the airplane accelerates further for a while, and then
goes into a fairly steep steady climb until it levels off at its cruising altitude. Aloft in level flight at constant
speed, the aerodynamic lift must nearly balance the weight, whereas the engine thrust almost entirely goes
to oppose the drag. What is not obvious to most passengers is how the lift depends on the forward speed,
the angle of attack and the shape of the airframe, especially the wings.

The explanation of aerodynamic lift is in fact quite simple, even if it was only in the beginning of
the twentieth century—about the same time as the first generation of airplanes were built—that the details
became understood. In nearly ideal flow, pressure is the dominant stress acting on any surface, so to get lift
the pressure must on average be higher underneath the wing than above. Bernoulli’s theorem then implies
that the airspeed must be higher above the wing than below, effectively creating a circulation around the
wing, a kind of bound vortex superimposed on the general airflow. Without this circulation, caused by the
shape and flying attitude of the wing, there can be no lift.

In this chapter we shall only study the most basic theory for subsonic flight with an emphasis on
concepts and estimates. Aerodynamics is a huge subject (see for example [4, 23]) of importance for all
objects moving through the air, such as rifle bullets, rockets, airplanes, cars, birds and sailing ships, and
to some extent for submarines moving through water. The potential for triumphant rise and tragic fall
unavoidably associated with flying machines makes aerodynamics different from most other branches of
science.

29.1 Aircraft controls
Historically aircraft design went through many phases with sometimes weird shapes emerging, especially
during the nineteenth century. In the twentieth century, where sustained powered flight was finally attained,
most of the design problems were solved through systematic application of theory and experiment. The
history of the evolution of aerodynamics, the courageous men and their wonderful flying machines, is
dramatic to say the least (see for example [3]).

Control surfaces
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The symmetry plane and wing
plane of normal winged aircraft.

The majority of all winged aircraft that have ever been built are symmetric under reflection in a midplane.
The wings are typically placed in a plane orthogonal to the midplane, but often swept somewhat backwards
and a bit upwards. On the wings, and also on the horizontal and vertical stabilizing wing-like surfaces
found at the tail-end of most aircraft, there are smaller movable control surfaces, connected physically or
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electronically to the ‘stick’ and the ‘pedals’ in the cockpit. Still smaller movable sections of the control
surfaces allow the pilot to trim the aircraft. When an aircraft is trimmed for steady flight, the cockpit
controls are relaxed and do not require constant application of force to keep the airplane steady. At cruising
speed the aircraft is typically handled with quite small movements of the controls, often carried out by the
autopilot, whereas at low speeds, for example during take off and landing, much larger moves are necessary.

Main aircraft axes.....................................
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roll

yaw

pitch

The three axes of a normal
winged airplane. The aircraft
rolls around the longitudinal axis,
pitches around the lateral axis,
and yaws around the directional
axis. The nose lies at the
end of the longitudinal axis and
the wings in the plane of the
longitudinal and lateral axes.

Wilbur and Orwille Wright
(1867–1912, 1871–1948).
American flight pioneers. From
their bicycle shop in Dayton,
Ohio, the inseparable brothers
carried out systematic empirical
investigations of the conditions
for flight, beginning in 1896.
Built gliders and airfoil models,
wind tunnels, engines and pro-
pellers. They finally succeeded
in performing the first heavier-
than-air, manned, powered flight
on December 17, 1903, at Kitty
Hawk, North Carolina.

The symmetry plane and the wing plane of normal aircraft define three orthogonal axes. The first is the
longitudinal axis, running along the body of the aircraft in the intersection of the midplane and the wing
plane. Rotation around this axis is called roll, and is controlled by the ailerons usually found at the trailing
edge of the wings near the wing tips. When the pilot moves the stick from side to side the ailerons move
oppositely to each other and create a rolling moment around the longitudinal axis. The second is the lateral
axis which lies in the wing plane and is orthogonal to the midplane. Rotation around this axis is called pitch
and is normally controlled by the elevator, usually found in the tail of the aircraft. The pilot moves the
stick forward and backward to create a pitching moment around the lateral axis. The third is the directional
axis which is orthogonal to both the wings and the body, and thus vertical in straight level flight. Rotation
around this axis is called yaw and normally controlled by the rudder, usually also placed in the tail end. In
conventional aircraft, the pilot presses foot pedals to move the rudder and create a yawing moment around
the directional axis. The Wright brothers were the first to introduce controls for all three axes of their
aircraft [3, p. 243].

Take off, cruise and landing
The take off of a normal passenger aircraft begins with a run typically lasting half a minute. In modern
aircraft with a nose wheel, the body stays horizontal during the whole run, whereas in older aircraft with a
tail wheel or slider, the tail would lift up well into the run first and then make the body nearly horizontal.
Having reached sufficient speed for flight, about 250–300 km h−1 for large passenger jet planes, the pilot
gently pulls the stick back and thereby raises the elevator, creating a pitching moment that lifts the nose
wheel off the runway while the main undercarriage stays in contact with it. After a bit of acceleration in this
attitude the undercarriage also leaves the runway, and the aircraft is airborne. For safety reasons the aircraft
should not lift-off until the speed is somewhat above the minimal speed for flight. In older airplanes, the
actual lift-off was almost imperceptible, whereas the powerful engines of modern aircraft make the lift-off
much more notable through the rather steep climb angle that the aircraft is capable of assuming immediately
afterwards. The climb normally lasts until the aircraft has reached cruising altitude, typically 10 000 m, at
which point it levels off and accelerates further until it reaches cruising speed, around 800–900 km h−1 for
a modern jet. At normal temperature and pressure the sound speed is about 1200 km h−1 but at cruising
altitude the fall in temperature has reduced it by about 10%—as can be seen from equation (16.9). The
airspeed is thus about 85% of sound speed, also called Mach 0.85.

Landing is by far the hardest part of flying. The aircraft has to be brought down to the ground and the
speed must be reduced. At low speed the aircraft controls need to be worked harder than at high speed, and
random winds and turbulence influence the aircraft much more. Keeping the air speed above stall speed
is uppermost in the pilot’s mind, because a stall at low altitude makes the airplane crash into the ground.
Landing speeds are comparable to take off speeds, but the aircraft has to be maneuvered into the narrow
space that the runway presents, and in all kinds of weather. Landing lengths can be made shorter than take
off lengths by diverting jet exhaust into the forward direction or reversing propeller blades, in addition to
the application of wheel brakes.

Example 29.1.1 (Boeing 747-200): Jet engines develop nearly constant thrust (force) at a given altitude
such that their power (energy output per unit of time) increases proportionally with airspeed, all other
factors being equal. Propeller engines yield instead roughly constant power so that the thrust decreases
inversely with airspeed. Ignoring air resistance (drag), the constant thrust from jet engines translates
into nearly constant acceleration during the take off run. A typical large passenger jet airliner (Boeing
747-200) has a maximal weight of 374 000 kg and four engines that together yield a maximum thrust of
973 000 N, corresponding to a runway acceleration of 2.6 m s−2 when fully loaded. At this acceleration
the plane reaches take off speed of 290 km h−1 in 31 s after a run of about 1250 m. Actual take off
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length is somewhat larger because of drag and rolling friction. For safety reasons, runways are required
to be at least twice that length, typically between 3 and 4 km.

Extreme flying
An aircraft can in principle move through the air in any attitude—and some pilots enjoy making their
planes do exactly that—but there is an intended normal flying attitude with the wings nearly horizontal and
orthogonal to the airflow. In this attitude, the aircraft is designed such that the flow of air over the wings and
body of the aircraft is as laminar as possible, because laminar flow yields the largest lift force and smallest
drag. Otto Lilienthal (1848–1896).

German engineer. One of the
great pioneers of manned flight.
Over more than two decades he
carried out systematic studies
of lift and drag for many types
of wing surfaces and demon-
strated among other things the
superiority of cambered airfoils.
Constructed (and exported!)
manned gliders, and also took
out patents on such flyers in
1893. Stalled and crashed
from a height of about 17 m
outside Berlin on August 9, 1896.
Whether he would actually have
invented powered flight before
the Wright brothers did in 1903
is not clear [3]

In other attitudes, steep climb, dive, roll, loop, tight turn, spin, tail-glide, sideways crabbing etc, the
airflow over the wings may become turbulent resulting in almost complete loss of lift. When that happens,
the aircraft is said to have stalled. Stalling an aircraft in level flight at sufficient altitude is a common–and
fun–training exercise. First, the engine power is cut to make the aircraft slow down. While the airspeed
is falling the pilot slowly pulls back the stick to pitch the nose upwards so that the aircraft keeps constant
altitude. This can of course not continue, and at a critical point the laminar flow over the wings is lost and
replaced by turbulence. The aircraft suddenly and seemingly by its own volition pitches its nose downwards
and begins to pick up speed in a dive. A modern aircraft normally recovers all by itself and goes into a steady
glide at a somewhat lower altitude. A stall close to the ground can be catastrophic, as the many hang-glider
accidents can confirm (the first fatal one happened in 1896 and cost the life of flight pioneer Otto Lilienthal).

Most aircraft are today equipped with mechanical stall detection devices near the leading edge of the
wings, and audible stall warnings are frequently heard in aircraft cockpits during landing, just before
touchdown. The warnings indicate that a stall in the wing flow is imminent, although the aircraft
will usually not go into a proper stall before touching down.

Other situations may arise in which only a part of the lifting surfaces stall. In a tight turn at low speed,
the inner wing may stall whereas the outer wing keeps flying, and the aircraft goes into a vertical spin. In the
early days of flight it was nearly impossible to recover from such a situation which could easily arise if the
aircraft was damaged, for example in air combat. In those days pilots were not equipped with parachutes,
and they often saw no other way out than jumping from the airplane, rather than burn with it. Today’s
passenger aircraft are not cleared for spin, but it can be fun to take a modern small aircraft that is cleared
for aerobatics into a spin at sufficient altitude, for example by pulling hard back and sideways at the stick
just before it otherwise would go into a normal stall, as described above. Most people find the experience
quite unpleasant and disorienting, especially due to the weightlessness that is felt while the aircraft slowly
tumbles over before it goes into a proper spin. Again, modern aircraft are so stable that they tend to slip out
of a spin by themselves if the controls are left free.

29.2 Aerodynamic forces and moments
There are several stages in the process of getting to understand flight. The first of these concerns the global
forces and moments that act on a moving body completely immersed in a nearly ideal fluid such as air.
Initially we put no constraints on the shape of the object or on the motion of the air relative to the object,
although mostly we shall think of an aircraft under normal flight conditions, and discuss only the forces
acting on it. Apart from scattered comments we leave the discussion of moments to more specialized
treatments [4].

Total force
The total force � acting on a body determines the acceleration of its centre of mass. The only way a fluid
can act on an immersed body is through contact forces, described by the stress tensor σσσ = {σi j }. Including
the weight M g0 and engine thrust T the total force becomes,

� = T + M g0 +� (29.1)
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where

� =
∮

body
σσσ · d S, ( 29. 2)

i s t he r esul t a nt of al l c ont act f or ces act i ng on t he body, a l s o cal l e d t he re act i on f orce ( c hapt er 23) . I n
pr i nci pl e t hi s i ncl udes hydr ost a t i c buoyancy f or ces ( c hapt er 5) , w hi ch ser ve t o di m i ni s h t he eff ect ive
gravitational mass of a body. For heavier-than-air flying, buoyancy can normally be disregarded.

.............................................................................................................................................................................................................................................................................................................................................................................
..........................

...................
.................
........................

................................
......................................................................................................................................................................................................................................................................................................................................................................

.........

.........

..........

...........

...........

............

.............

...............

.................

.....................
....................................................................................................................................�

�
M g0

��
T

�
C
�
�
�
��4

�

G

			� U

�
�
�
��
�

		
		

�

Sketch of the forces acting on
a body moving with instanta-
neous centre-of-mass velocity U .
The thrust T propels the object
forward, gravity M g0 pulls it
down, and the aerodynamic re-
action force � may be resolved
into lift � and drag �. Note
that the reaction � and its com-
ponents are plotted as acting on a
single point C , called the aerody-
namic centre, although this con-
cept may not always be meaning-
ful. For stability the centre of
thrust should lie forward of the
aerodynamic centre.

Lift and drag
It is convenient to resolve the reaction force into two components, the lift which is orthogonal to the
instantaneous centre-of-mass velocity U of the aircraft, and the drag which is parallel with it,

� = �+�. (29.3)

Lift and drag thus satisfy

� · U = 0, � × U = 0. (29.4)

The drag always acts in the opposite direction of the centre-of-mass velocity whereas the lift may take any
direction orthogonal to it.

Lift may even point directly downwards. It is for this reason dangerous to fly an aircraft inverted
close to the ground, because the gut reaction of pulling the stick towards you to get away from the
ground will generate an extra lift which sends you directly into the ground. During banked turns an
airplane also generates lift away from the vertical, creating in this way the centripetal force necessary
to change its direction.

∗ Total moment of force
The total moment of all forces acting on the body is

� =�T + xG × M g0 +�R, (29.5)

where �T is the moment of thrust, xG the centre of gravity of the body, and the moment of the contact
forces is,

�R =
∮

body
x × σσσ · d S. (29.6)

The total moment depends on the choice of origin for the coordinate system, but if the total force � on the
body vanishes, the total moment becomes independent of the origin. In that case one may calculate the total
moment around any convenient point, for example the centre of gravity. The individual contributions to the
total moment will depend on the choice of origin, even if their sum is independent.

29.3 Steady flight..............................................................................................................................................................................................................
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The two situations above are
physically equivalent. In the
upper drawing the centre-of-mass
moves with velocity U to the
left. In the lower, the centre-
of-mass does not move, but
the surrounding air moves with
velocity U to the right at great
distances from the object.

In steady flight the aircraft moves with constant centre-of-mass velocity in a non-accelerated frame of
reference, so that the sum of all forces must vanish

T + M g0 +�+� = 0. (29.7)

Even if passenger comfort demands that the pilot tries to achieve nearly vanishing total force on an
airplane, irregular motion of the air may buffet the plane around. In extreme cases, unannounced clear air
turbulence may suddenly cause unfettered passengers to fly around inside the cabin. We shall disregard such
phenomena and assume that the aircraft is capable of flying with a steady velocity through an atmosphere
that would have been at rest were it not for the moving aircraft. Since forces in Newtonian mechanics are
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the same in all inertial reference frames, we are free to work in the rest-frame of the aircraft where the air
asymptotically moves at constant speed.

The orientation of an aircraft with respect to the direction of flight (and the vertical) is called its flying
attitude. The main attitude parameter responsible for lift is the angle of attack α, also called the angle of
incidence, between the airflow and the plane of the aircraft, formed by the longitudinal and lateral axes. In
normal flight at high speed the angle of attack is usually quite small, typically a couple of degrees.
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................................................................................................................................................................................
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The angle of attack α is the angle
between airflow U and the plane
of the aircraft.

In the same way as floating bodies, ships and icebergs, should be in stable hydrostatic equilibrium,
aircraft should preferably also be dynamically stable in steady flight, meaning that a small perturbation of
the aircraft’s steady flying attitude should generate a moment counteracting the perturbation. In general this
requires the centre of thrust to lie forward of the aerodynamic centre.

Most modern aircraft are dynamically stable when properly trimmed, and that is very good
for amateur pilots, but in military fighter planes, dynamic stability is sometimes traded for
maneuverability. Certain modern fighter planes can in fact only maintain a stable attitude through
corrections continually applied to the control surfaces by a fast computer.

Steady climb
After acceleration and take off a powered aircraft normally goes into a steady climb forming a constant
positive climb angle (or angle of ascent) θ with the horizon. Cockpit instruments usually indicate the
vertical velocity, called the rate of ascent or climb rate U sin θ , rather than the climb angle. Having reached
cruising altitude the pilot reduces power to a fuel-economic setting and the aircraft levels off with θ = 0
and a tiny angle of attack consistent with steady flight. In this phase of flight lift must nearly balance weight
and thrust must nearly balance drag. Approaching its destination, the power is reduced, though usually not
cut completely off, and the aircraft goes into a powered descent with negative θ . Just before landing, power
is lowered to near zero, the aircraft flares out almost horizontally with θ ≈ 0 and nose up under a fairly
large angle of attack before the final touchdown.
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Sketch of forces in steady hori-
zontal powered flight with a small
angle of attack. Lift balances
weight and drag balances thrust.

Assuming that the thrust is directed along the longitudinal axis, as is normally the case for fixed-wing
aircraft1, we obtain the following expressions for lift and drag by projecting the equation of force balance
(29.7) on the direction of motion and the direction orthogonal to it,

	 = T cos α − Mg0 sin θ, � = −T sinα + Mg0 cos θ. (29.8)

Given the values of all the parameters on the right-hand sides, we may calculate the values of lift and drag
that are required to keep the aircraft in steady flight.
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Forces acting on an aircraft in
powered steady climb at an angle
θ with angle of attack α. All the
forces are assumed to lie in the
symmetry plane of the aircraft.
For convenience we have moved
all forces to the centre of gravity.

This is, however, not really the way a pilot operates an aircraft. Typically, the pilot selects a power
setting for the engine(s) and a certain rate of climb, and then waits until the aircraft steadies on a
certain airspeed, angle of attack and angle of climb. This procedure, of course, presupposes that
there are such solutions within the aircraft’s flight envelope for the specified values of power and
climb rate (if not, the aircraft will stall). We shall see later that aerodynamic theory allows us to
calculate lift and drag for a given aircraft in terms of the airspeed, the angle of attack and the air
density. The steady flight equations (29.8) may then be solved for the airspeed U and the angle of
attack α, given the air density, the weight, the engine power, and the climb rate. There is the further
complication that for a given engine setting the thrust T tends to fall inversely with airspeed for
propeller engines whereas it stays more or less constant for jets. On top of that, the air temperature,
pressure and density all vary with altitude.

During steady climb with a small angle of attack, α � 1, the steady flight equations (29.8) may be
written

sin θ ≈ T −	0

Mg0
, � ≈ Mg0 cos θ, (29.9)

where 	0 is the residual drag at zero angle of attack. Thus, the ratio of the excess of power T −	0 to the
weight of the aircraft Mg0 determines the climb angle. To get a finite positive angle of climb, the thrust

1In other types of aircraft the engine thrust can also have a component orthogonal to the longitudinal axis which also
contributes to lift. In the extreme case of a VTOL (vertical take-off and landing) aircraft, for example a helicopter, there
is almost no other lift, and the engine thrust balances by itself both drag and weight.
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must not only overcome the drag but also part of the weight of the airplane. From the climb angle one
can afterwards calculate the lift that the airflow over the wings and body of the aircraft necessarily must
generate to obtain a steady climb.

Example 29.3.1: During initial climb, speed is fairly low, and if the residual drag can be ignored
relative to thrust it follows that sin θ � T/Mg0. For the fully loaded Boeing 747-200 of example
29.1.1 we find T/Mg0 ≈ 0.27 and thus θ � 15 ◦.

Unpowered steady descent
Most freely falling objects quickly reach a constant terminal velocity. Stones fall vertically, whereas aircraft,
paper gliders, paragliders and parachutists in free fall will attain sometimes large horizontal speeds. An
aircraft in unpowered flight is able to glide towards the ground with constant velocity and constant rate of
descent. It is part of early training for pilots to learn how to handle their craft in unpowered steady descent,
and usually the aircraft is so dynamically stable that it by itself ends up in a steady glide if the engine power
is cut and the controls are left free. Paper gliders on the other hand often go through a series of swooping
dives broken by stalls, or spiral towards the ground in a spin.
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Sketch of forces in unpowered
steady descent at a glide angle
γ . Lift and drag collaborate to
balance the weight. The airplane
can glide with many different
angles of attack (here shown with
α = γ ) but there is a best angle of
attack which yields the smallest
glide angle, or equivalently the
highest glide ratio.

During steady unpowered descent the air hits the aircraft from below at an angle γ with the horizontal,
called the glide angle, corresponding to a glide slope tan γ . The ratio of horizontal to vertical air speed is
called the glide ratio, and equals the inverse of the glide slope, i.e. cot γ . An aircraft can glide steadily with
different airspeeds for a large range of angles of attack. The angle of attack that yields maximal glide ratio
determines how far an aircraft at best can reach by gliding down from a given altitude h, also called its glide
range, x = h cot γ .

Typical commercial aircraft have best glide ratios of 10–20 with 17 for the Boeing 747 and 8 for
Concorde. So, if the engines cut out at an altitude of 10 km, the pilot has to look for a place to land
inside 100–200 km, depending on the aircraft. These glide ratios are comparable to those of gliding
birds like the swift with glide ratio 10 and soaring birds like the albatross with glide ratio 20. Modern
sailplanes may reach glide ratios around 30–55 and in extreme cases even higher. The space shuttle
with its stubbed wings and large weight is a rather bad glider, and approaches the runway at a glide
angle γ = 19 ◦, corresponding to a glide ratio of around 3, comparable to that of a sparrow. The
human body is even worse, with a best glide ratio of about unity.
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Sketch of forces during bird wing
downstroke (top) and upstroke
(bottom) in forward flight. The
total force does not vanish but
accelerates the bird. The lift
provides forward thrust in both
cases when the drag is not too
large.

In steady unpowered descent the aerodynamic reaction force must be equal and opposite to the weight
of the aircraft, or in size � = Mg0. Resolving the reaction force into lift and drag we find,

� = Mg0 cos γ, 	 = Mg0 sin γ. (29.10)

These equations could also have been obtained from the steady flight equations (29.8) with T = 0 and
θ = −γ . From the glide angle and the weight of an aircraft, we may thus determine both the lift and drag
that acts on it in this flight condition. The glide ratio evidently equals the ratio of lift to drag in unpowered
descent,

cot γ = �

	
. (29.11)

Aerodynamics tells us (see the following section) that the ratio of lift to drag essentially only depends on
the angle of attack, so the best glide ratio is obtained by choosing that angle of attack which maximizes
�/	.

Note that neither lift nor drag are horizontal in unpowered descent. The lift is tilted forward and the
drag backwards.

The forward tilt of the lift also allows us to understand broadly how birds and insects generate thrust
in level flight by flapping their wings straight up and down. In this unsteady flight mode there is no
instantaneous balance of aerodynamic forces and gravity, but during the downstroke the air will hit
the wing from below and generate a tilted lift, propelling the bird forward (and upwards), provided
the drag is not too large. During upstroke the picture is inverted, and air hits the wing from above,
but the lift is still tilted forwards and thus again propels the bird forwards, provided drag does not

Copyright © 2005 IOP Publishing Ltd.



29.4. ESTIMATING LIFT 441

overwhelm it. Insects and birds that hover instead of flying horizontally get lift by interacting with
vortices created at the leading edge of the wings during the downstroke and by other mechanisms2.

Horizontal banked turn
Consider an aircraft flying steadily under power with velocity U in a horizontal circle of radius R. From the
(rotating) rest frame of the aircraft, the air again flows steadily past with velocity U , but now there is also
a centrifugal force MU2/R directed away from the centre of the circle. The engine thrust is assumed to
balance the drag, and the lift must therefore balance the vector sum of the weight and the centrifugal force.

Denoting by β the angle between the vertical and the lift vector, and projecting the lift on the horizontal
as well as the vertical directions, we obtain the equations,
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Sketch of forces in the transverse
plane during a steady horizontal
banked turn, here with tilt angle
β ≈ 45 ◦.

� cos β = Mg0 � sinβ = MU2

R
. (29.12)

The lift divides out in the ratio of these equations, and we get

tanβ = U2

g0 R
. (29.13)

Airplanes are normally tilted (banked) through precisely this angle β during turns, such that the floor of
the aircraft remains orthogonal to the lift. In such a clean turn, the effective gravity experienced inside the
airplane is (in units of standard gravity)

geff

g0
= �

Mg0
= 1

cos β
, (29.14)

also called the load factor or the g-factor.

Example 29.3.2: In a clean 60◦ banked turn, one pulls a g-factor of 2. Fighter jets may generate
g-factors up towards 10, corresponding to bank angles β � 84 ◦. To avoid passenger discomfort, most
commercial aircraft rarely bank beyond 15◦ with a nearly imperceptible increase in load factor of about
4%. At a speed of about 900 km h−1 and β ≈ 15 ◦, the clean turn diameter is 2R = 2U2 cotβ/g0 ≈
48 km, and a full turn at this speed takes 2πR/U ≈ 10 min.

29.4 Estimating lift
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The angle of attack for an airfoil
is conventionally defined to be
the angle between the airflow and
chord line.

Aerodynamic lift in nearly ideal flow is almost entirely caused by pressure differences between the upper
and lower wing surfaces. In this section we shall describe the basic physics of lift and estimate its properties
from relatively simple physical arguments, and in the following section we shall make similar estimates of
the various contributions to drag. It should, however, be borne in mind that we would rather want to
calculate lift and drag from fluid mechanics, in terms of the angle of attack, velocity, air density and the
shape of the wing. Such theoretical knowledge makes it possible to predict which parameter intervals allow
an aircraft to become airborne and sustain steady flight. In section 29.7 we explicitly calculate the lift for
thin airfoils.

Wing and airfoil geometry
An airplane wing may be characterized by three different length scales: the tip-to-tip length or span L , the
transverse width or chord c and the thickness d . A wing can only in the coarsest of approximations be
viewed as a rectangular box. Typical wings are both thin and long, d � c � L . Many wings taper towards
the tip and are swept back towards the rear. Other wing shapes are also found, for example the delta-wing
of supersonic aircraft such as Concorde. For a rectangular wing, the dimensionless number L/c is called
the aspect ratio. For tapering and unusually shaped wings where the true cord length may be ill-defined,
one may instead use the average cord length c = A/L , where A is the planiform area of the wing (the area

2See for example R. B. Srygley and A. L. R. Thomas, Unconventional lift-generating mechanisms in free-flying
butterflies, Nature 420, (2002) 660 and references therein. See also [20, 69].
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Figure 29.1. NASA’s Helios prototype electrically powered flying wing. Image Credit: NASA Dryden
flight research center, photo by Carla Thomas.

of the wing’s ‘shadow’ on the wing plane), so that the aspect ratio becomes L/c = L2/A. The wing may
furthermore twist slightly along the span leading to a varying angle of attack. This is, in particular, true for
propellers that basically are wings mounted on a rotating shaft.

The transverse wing profile, also called the airfoil, is normally slightly curved, or cambered, along the
cord, with a soft leading edge and a sharp trailing edge. The angle of attack of an airfoil is defined to be the
angle between the asymptotic airflow and the chord line which is a straight line of length c connecting the
leading and trailing edges. Depending on how the wings are attached to the aircraft there may be a small
difference between the angles of attack of the wing and the aircraft.

Example 29.4.1: The Boeing 747-400 has a wing span of L ≈ 64 m and a wing area A ≈ 520 m2,
leading to an average cord length of c ≈ 8 m and an aspect ratio of L/c ≈ 8. For comparison, the
albatross with its narrow long wings has an aspect ratio of about 20, at par with modern sailplanes. At
the extreme end one finds NASAs solar-cell powered flyer Helios which has an aspect ratio of nearly
31. Incidentally, a man with his arms stretched out as wings has an aspect ratio of about 20, so aspect
ratio is not everything.

Wing loading
Suppose an aircraft with thin and almost planar wings flies horizontally under a small angle of attack. The
chordwise Reynolds number,

Rec = Uc

ν
, (29.15)

is a dimensionless combination of the asymptotic flow speed U , the chord c and the kinematic viscosity of
air, ν = η/ρ which characterizes the airflow around the wing. It will always be assumed to be very large,
of the order of many millions, so that the slip-flow pattern around the wings just outside the omnipresent
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F i gu re 29. 2. T he famous C e ssna 150 f r om t he F i r s t P r oduct i on i n 1959. R e pr oduced w i t h per m i ssi on f r om
t he C essna 150–152 C l ub.

boundar y l ayer s may be t aken t o be ver y near l y i deal . I n s ect i on 28. 3 i t was show n t hat t he sl i p- fl ow
pr essur e t hen penet r at es t he boundar y l ayer and act s di r ect l y on t he upper and l ower w i ng s ur faces.

.................................................
........................................................................

................................................................................................ ................ .. ................. .. .. .. . . . ... ........... ... .................................... .. ................................................. ...................... ... .. ....

a b ove

bel ow

+ + +

− − −
pa

pb

T he pressure i s on average l ow er
above the wing than below. T his
i s what carri es t he ai r craft .

In this situation the only way to obtain lift is by the slip-flow pressure pa immedi at el y above the wing
being generally lower than the slip-flow pressure pb i mmedi at el y bel ow t he w i ng ( see fi gur e 29. 3) . T he
di ff erence i n average pressures above and bel ow t he w i ng may be est i mat ed from t he t ot al l i f t per uni t of
wi ng area �/ A , also called the w i ng l oadi ng,

� pab ≡ 〈 pa〉 − 〈 pb〉 ≈ −�
A
, ( 29. 16)

wher e t he br acket s i ndi cat e aver agi ng over t he upper or l ow er wi ng sur faces. I n s t eady l evel fl i ght , l i f t
equal s w e i ght � = Mg0 , and wing loading i s easy t o calculate from t he aircraft parameters.

E xamp l e 29. 4. 2 ( C e ssn a 150) : T he popul ar C essna 150 t wo- seat er has a w i ng span of L = 10. 2 m,
wi ng area A = 14. 8 m2 , a nd t hus an aver age c hor d of c ≈ 1. 45 m, and an aspect rat i o of L/c ≈ 7. 0.
With a maximum take off mass of M = 681 kg, t he w i ng l oadi ng becomes �/ A ≈ 451 Pa w hi c h i s
mer el y 0. 45% of at mospher i c pr essur e at sea l evel . C r ui s i ng w i t h U = 180 km h−1 at sea l evel , t he
Mach number i s Ma ≈ 0. 15 and t he R eynol ds number R ec ≈ 5 × 106 . T he appr oxi mat i on of near l y
ideal fl ow i s very well fulfi lled with boundary layers only millimetres t hick.

E xamp l e 29. 4. 3 ( B oei n g 747- 400) : T he c r ui s i ng s peed f or t he B oei ng 747- 400 i s U ≈ 900 km h−1 ≈
250 m s−1 at the normal cruising altitude of z = 10 km. Wi t h an aver age chor d l engt h of c ≈ 8 m, the
chordwise Reynolds number becomes Rec ≈ 6 × 107 when we take ν ≈ 3.4 × 10−5 m2 s−1 at the
cruising altitude. The maximal take off mass is M ≈ 400 000 kg distributed over a wing area of about
A ≈ 520 m2, leading to a wing loading of about �/ A ≈ 7500 Pa, w hi ch i s onl y 7. 5% of at mospher i c
pressure at sea l evel, but about 25% of the actual pressure at the normal cruising altitude (see section
4. 6) .

Velocity differences
In nearly ideal flow Bernoulli’s theorem may be used to relate the pressure and flow velocity well outside
the boundary layers. As previously discussed (section 16.4 on page 213) air is effectively incompressible
at speeds much lower than the speed of sound cS , i.e. for small Mach number Ma = U/cS , say Ma � 0.3.
The following analysis of lift in incompressible flow with constant density ρ0 thus excludes passenger jets
cruising at Ma ≈ 0.8–0.9 but we shall return to this question towards the end of the section.
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Figure 29.3. Pressure distribution around an airfoil at Reynolds number Rec = 10 000 and angle of attack
α ≈ 6 ◦, obtained by numeric simulation. Note the higher stagnation pressure (light) at the leading edge
and the lower lifting pressure (dark) above the wing. It typically acts about one quarter of the chord length
downstream from the leading edge of the wing. The pressure below the wing is not much higher than the
pressure at infinity.

Any streamline coming in from afar will start out with the same velocity U and pressure P, and
Bernoulli’s theorem (16.15) relates these values to the velocity and pressure along the streamline. For a
streamline passing immediately above the wing well outside the boundary layer we find,
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Sketch of streamlines around a
wing with positive lift. The wing
profile and angle of attack ac-
celerates the flow across the top
of the wing and retards it below,
and thus creates a lower pres-
sure above than below. Note the
presence of front and rear stag-
nation points with vanishing air-
speed. Note also the downwash
behind the wing.

1

2
U2 + P

ρ0
= 1

2
v2

a + pa

ρ0
, (29.17)

where va is the flow velocity. A thin wing will not change the flow velocity much, and using va ≈ U we
find to leading order in va − U ,

pa − P = 1
2ρ0(U

2 − v2
a) = 1

2ρ0(U + va)(U − va) ≈ ρ0U(U − va).

The assumption |va − U | � U must necessarily break down near the leading and trailing ends of the wing,
where there are stagnation points with vanishing flow speed, but for a sufficiently thin planar wing these end
effects can be disregarded. Averaging this relation over the upper wing surface, and subtracting a similar
expression for a streamline running immediately below the wing, we get

〈pa〉 − 〈pb〉 ≈ −ρ0U(〈va〉 − 〈vb〉). (29.18)

Combining this result with (29.16) we obtain an estimate of the difference in average flow velocities above
and below the wing in units of the mainstream flow,

�vab ≡ 〈va〉 − 〈vb〉 ≈ −�pab

ρ0U
≈ �

ρ0U A
. (29.19)

For the Cessna 150 of example 29.4.2 we find �vab ≈ 7 m s−1 which is well below the cruising speed
U ≈ 54 m s−1.

........................................................................................................................................................................................................................................................................................................................................
...................

...................
...................

...................
...................

...................
................

.....................
......................

.....................
......................

.....................
......................

................
.................................

...........................................................................................................................

.........

..........

..........

............
..............
.................

.......................
..................................

........................................................................................................................................................................................................................................................................................................... C

The integration contour for wing
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Circulation and lift
The difference in average flow velocities above and below the wing may also be estimated from the
circulation around the wing along a contour C which encircles the wing in the direction of the asymptotic
airflow on top and against it below (just outside the boundary layers),

� =
∮

C
v · d� ≈ c 〈va〉 − c 〈vb〉 = c�vab. (29.20)

Using (29.19) with A = cL we finally obtain the relation,

� ≈ ρ0U L�. (29.21)
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F i gu re 29. 4. Trailing wing tip vortices at Re = 100 000. R e pr oduced f r om M. R . H ead, i n Flow
Vi sualisation II ed W. Mer z ki r c h, H e mi spher e , Washi ngt on, 1982, pp 399–403.

This is the famous Kut t a–Joukow sky t heor e m f r om t he begi nni ng of t he t w e nt i e t h cent ur y. H er e der ived
f r om est i m at es, w e s hal l see i n s ect i on 29. 6 ( page 456) t hat i n near l y i deal and near l y i r r ot at i onal fl ow t hi s
rel at i on i s i n fact exact when � i s repl aced by t he average ci rcul at i on 〈�〉 al ong t he w i ng.

The realization that lift and circulation are two sides of the same coin, was probably t he s i ngl e m ost
i m port ant i nsi ght i nt o t he m echani cs of fli ght . With this in hand, the road was opened for calculating the
lift produced by any specific airfoil for which the circulation could be evaluated in asymptotically uniform,
irrotational ideal flow.
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S ket ch of vor t ex bound t o t he
(left) wing of an aircraft. T he
ci r cul at i on i s t he same f or t he t wo
curves C and C ′ , pr ovi ded t her e
i s no fl ux of vor t i c i t y t hr ough t he
sur face bounded by t hese cur ves.
Note how C ′ can be sl i d off
the tip of the wing and shrunk
to a point if the fl ow is truly
irrotational (which i t t herefore
cannot be) .

I n near l y i deal i r r ot at i onal fl ow, t he ci r cul at i on i s t he same ar ound any cur ve enci r cl i ng t he wi ng, because
S t okes’ t heor em r e l a t e s t he di ff er ence i n ci r c ul at i on bet w een t wo s uch c ur ve s t o t he fl ux of vor t i c i t y ( w hi ch
i s assumed t o vani s h) t hr ough t he s ur face bounded by t he t wo c ur ve s. T he l i f t - gener a t i ng c i r cul a t i on t hus
forms a bound vort ex t hat i deal l y cannot l e ave t he w i ng. For a n i nfi ni t e l y l ong w i ng t hi s cr eat es no pr obl em,
but f or a w i ng of fi ni t e span, t he assumpt i on of vani s hi ng vort i ci t y has t o break down, because one of t he
curves may be ‘slid over’ the tip of the wing and shrunk to a point with no circulation. The inescapable
conclusion is that since lift requires non-zero circulation, vorticity must come off somewhere along the
finite span of a real wing.

The shedding of vorticity from a wing of finite span depends strongly on its shape. A wing that tapers
towards the tip will shed vorticity everywhere along its trailing edge, though most near the tip. If the wing
is rectangular with constant chord, the vorticity will tend to appear very close to the tip. In any case, the
vorticity coming off the wing is blown backwards with respect to the direction of flight, forming a trailing
vortex in continuation of the bound vortex. Alternatively one may see the trailing vortex as created by the
flow around the tip seeking to equalize the higher pressure underneath the wing with the lower pressure
above. Together with the bound vortex the two trailing vortices coming off the wing tips form a horseshoe-
shaped vortex system accompanying all winged aircraft in flight.
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Lift coefficient
A wing’s ability to produce lift is characterized by the dimensionless lift coefficient,

CL = �

(1/2)ρ0U2 A
. (29.22)

The denominator is proportional to the momentum flux ρ0U · U A through an area A orthogonal to the
mainstream direction, and thus sets the scale for the total force that the incoming airstream can exert on this
area. The factor 1/2 in the denominator is conventional. Knowing the lift coefficient, we can immediately
determine the average velocity difference (29.19) �vab = 1/2CLU .

Being dimensionless, the lift coefficient can only depend on dimensionless quantities, such as the angle
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The momentum flux through the
area A from the uniform flow
with velocity U is the product of
the momentum density ρ0U and
the volume flux U A.

of attack α, the Reynolds number Rec = Uc/ν, the aspect ratio L/c, and other dimensionless quantities
characterizing the shape of the wing. The mainly empirical studies of wing behaviour by scientists and
engineers in the last half of the nineteenth century, up to and including the Wright brothers, led to the
understanding that the angle of attack was the most important parameter in the lift coefficient. The
dependence on the other dimensionless parameters was found to be weaker, in fact so weak that it was
mostly ignored before 1900.
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Sketch of a lift curve rising lin-
early until it veers off rather
sharply at an angle of typically
15–20 ◦, signalling stall. Be-
yond this angle, lift drops precip-
itously, and so does the airplane.

The weak dependence of the lift coefficient on the Reynolds number and wing shape parameters allows
us to conclude that the lift itself,

� = 1
2ρ0 U2 A CL , (29.23)

is directly proportional to the air density, the wing area and to the square of the velocity. At take off and
especially during approach to landing, where speeds are low, the pilot can increase the wing area by means
of flaps. Since lift always nearly equals the constant weight of the aircraft, it follows from this expression
that the increase in area will be compensated by a decrease in required airspeed (for a fixed angle of attack).
Fully extended flaps also have a considerably larger angle of attack than the wing itself, increasing thereby
the lift coefficient and leading to a further reduction in the required landing speed.

Dependence on angle of attack
Empirically, the lift coefficient is surprisingly linear in the angle of attack,

CL ≈ λ (α − α0), (29.24)

where λ = dCL/dα is called the lift slope, and α0 is the angle of attack at which the lift vanishes. In section
29.7 we shall see theoretically that for thin airfoils the slope is universally λ = 2π (with the angle of attack
measured in radians). The zero-lift angle α0 depends mainly on the shape of the airfoil, and is usually small
and negative, for example α0 ≈ −2 ◦ for the Cessna 150 of example 29.4.2.

It follows from the above equations and the constancy of required lift (equal to the weight of the aircraft)
that the relative angle of attack α−α0 must vary inversely with the square of the velocity, α−α0 ∼ 1/U2.
With decreasing airspeed the required angle of attack rises rapidly until at some critical value boundary
layer separation no longer takes place at the trailing edge of the wing but instead suddenly moves forward
towards the leading edge, accompanied by turbulence over nearly all of the upper wing surface. The end
result is a dramatic loss of lift and a large increase in drag, a phenomenon called stall, which was described
on page 437.

Stall typically happens at a critical angle of attack, called the stall angle, of the order of αstall ≈ 15◦–
20 ◦ for normal aircraft. Whereas the lift slope and zero-lift angle are essentially independent of the
Reynolds number in the linear regime, the stall angle increases a bit with the increasing Reynolds number.
For special aircraft the stall angle can be fairly high, for example 35 ◦ for delta-winged aircraft such as the
space-shuttle or Concorde. In such aircraft the higher stall angle is offset by a smaller lift slope, say λ ≈ 3
(per radian) rather than 2π . In order to get sufficient lift, these aircraft are forced to take off and land under
remarkably high angles of attack.
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Dependence on aspect ratio
The shedding of vorticity from finite wings makes the lift slope depend on the aspect ratio L/c. An
expression useful for estimating this effect for thin airfoils is [4, p. 380]

λ ≈ 2π

1 + 2
c

L

, (29.25)

which in the limit of the infinite aspect ratio, L/c → ∞, converges upon 2π .
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Sketch of the flow around an air-
foil at large angle of attack. The
boundary layer separates near the
leading edge and replaces the
previously laminar flow above
the wing with turbulent flow
yielding small lift and large drag.
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Sketch of the variation of the lift
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Example 29.4.4 (Cessna 150): For the Cessna 150 (page 443) at cruising speed U = 180 km h−1 we
have �vab/U = 0.15, implying a lift coefficient CL = 0.34. With aspect ratio L/c ≈ 7 the lift slope
is λ = 4.9, and the relative angle of attack becomes α− α0 = 4.0 ◦. For this airfoil α0 = −2 ◦, and the
true angle of attack becomes α = 2 ◦. This airfoil has a stall angle of αstall = 16 ◦, corresponding to a
stall velocity Ustall ≈ 80 km h−1, although stall can be delayed somewhat by enlarging the wing area
by means of flaps.

∗ Dependence on Mach number
Even if modern passenger jets fly below the speed of sound, their Mach number Ma = U/cS is so close to
unity at cruising speed that there will be major corrections to the lift. To find these corrections we go back
to the expression for the divergence of the velocity field (16.33) on page 214 in compressible Euler flow.
Inserting v = U +�v and expanding to first order in the presumed small velocity �v we find,

∇ · �v ≈ U · (U · ∇)�v

c2
S

= U2

c2
S

∇x�vx , (29.26)

where in the last step we used U = U ex . In ideal, irrotational flow the velocity field is the gradient of the
velocity potential, �v = ∇�. Inserting this in the above equation we arrive at,

(1 − Ma2)∇2
x� + ∇2

y� + ∇2
z� = 0. (29.27)

This shows that � is a solution to the incompressible Laplace equation (16.61), provided the x-coordinate

is replaced by x → x ′ = x/
√

1 − Ma2.
Since lift stems from an integral of the pressure over x along the chord this rule immediately yields the

lift in subsonic compressible flow,

� = �0√
1 − Ma2

, (29.28)

where �0 is the lift in incompressible flow for Ma → 0. This Prandtl–Glauert rule is valid up to a critical Hermann Glauert (1892–1934).
Leading British aerodynamicist.
Worked at the Royal Aircraft
Establishment on airfoil and
propeller theory, and on the
autogyro. Derived the Mach
number correction in 1927 in the
way done here, independent of
Prandtl who had discussed such
a rule in the early 1920s.

Mach number of about 0.7 where the flow over part of the airfoil may become sonic [4, 3]. Applying it
nevertheless to the Boeing 747 of example 29.4.3 we find � ≈ 2.2�0 at cruising speed, a quite sizeable
increase in lift which at a fixed velocity can be offset by diminishing the angle of attack.

29.5 Estimating drag
Whereas lift has one cause, namely the pressure difference between the upper and lower wing surfaces,
drag has several. First, there is skin friction from the air flowing over the wing. Second, there is form drag
due to the wing obstructing the free air flow and leaving a trail of turbulent air behind, and third there is
induced drag from the vortices that always trail the wing tips. For real aircraft, the body shape and various
protrusions (radio antenna, Pitot tube, rivet heads, etc) also add to drag.

As for lift, it is convenient and customary to discuss drag in terms of the dimensionless drag coefficient

CD = 	

(1/2)ρ0U2 A
, (29.29)

which has the same denominator as the lift coefficient (29.22).
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F i gu re 29. 5. P r andt l –G l auer t c ondensat i on a r ound a B 1 bomber passi ng t he s ound bar r i er. C r ossi ng t he
P r andt l –G l auer t ‘ si ngul ar i t y’ a t Mach 1, t he pr e ssur e dr ops shar pl y a nd cr eat es t hi s condensat i on c l oud i n
humi d ai r. P hot ogr aph by G r egg S t ansber y.

T he denomi nat or can be under s t ood i n t he f ol l ow i ng wa y. A t t he l eadi ng e dge of a w i ng t her e i s
alwa ys a s t r eaml i ne t hat e nds w i t h va ni shi ng a i r speed ( s t a gnat i on) . T he pr essur e i ncr ease a t t he
stagnation point relative to infinity is � p = ( 1/2)ρ0 U 2 , according t o B ernoulli’s t heorem. I f t he
wing were raised squarely into the oncoming airflow, it would present an area A to this pressure,
and assuming that the t urbulent ‘dead’ air behi nd the wing exerts essentially no extra pressure on the
back of t he w i ng, t he t ot al dr ag f or c e woul d be � p A = ( 1/2)ρ0 U 2 A , w hi ch i s t he denomi nat or.
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α0 stall

S ket ch of a t ypi cal drag curve f or
a cambered airfoil as a function
of t he a ngl e of a t t ack. N ot e t hat
the drag of  such an airfoil actu-
al l y decreases for s mal l angl es of
at t ack. B eyond t he s t al l angl e, t he
drag coeffi ci ent ri ses st eepl y.

I f t hi s argument i s r i ght , w e pr edi ct CD ≈ 1 for a thin fl at plate with its face into the wind, and
t hat agr ees i n fact qui t e r easonabl y w i t h bot h t heor y and exper i ment . For a ci r cul ar di s c w e have
CD = 1. 17 ( s ee sect i on 19. 4 on page 275) .

Skin friction
C l ose t o t he wi ng sur faces t her e a r e t hi n boundar y l a yer s ( s ee chapt e r 28 on page 407) , i n w hi ch t he fl ow
velocity changes rapidly from zero right at the skin of the wing to the mainstream airspeed just outside. The
maximal thickness of the boundary layer on a wing may be estimated from the flat plate laminar Blasius
solution (28.28) or from semi-empirical turbulent expression (28.41),

δ

c
≈

{
5Re−1/2

c laminar

0.16Re−1/7
c turbulent

. (29.30)

Boundary layers do not have the same thickness over the wing surface, but are generally thinnest at the
leading edge of the wing and become thicker towards the rear. Usually, the Reynolds number is so high that
the boundary layers also develop turbulence somewhere downstream from the leading edge. For aircraft
with chordwise Reynolds numbers in the millions and chords of the order of metres, a fully laminar
boundary layer is only millimetres thick whereas a fully turbulent layer is an order of magnitude thicker.

To estimate the skin friction we again use flat-plate Blasius’ result (28.32) in the laminar regime and
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t he s emi - empi r i cal expr essi on ( 28. 34) i n t he t ur bul e nt ,

C skin
D = 	skin

( 1/2)ρ0 U 2 A
≈

{
2. 65 R e−1/ 2

c laminar

0. 063 R e−1/ 7
c turbulent

. ( 29. 31)

T he s ki n dr ag coeffi ci ent always decr eases w i t h i ncr easi ng R eynol ds number, but l i ke t he t hi ckness i t var i es
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The stagnating streamline at the
leading edge terminates in a
point with zero fl ow velocity.
Bernoulli’s theorem implies that
t he pressure i ncrease at t he
f or war d s t a gnat i on poi nt i s� p =
1/2ρ0 U 2 .
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B oundar y l a yer s t hi c ke n a nd be-
come t urbul ent t owards t he r ear
of the wing and leave a trailing
t ur bul ent wake behi nd. T he i ni -
tial thickness of the trailing wake
i s compar abl e t o t he boundar y
l a yer t hi ckness ( her e s t r ongl y ex-
agger a t e d) .

much more slowly in the turbulent region than in the laminar. Turbulent drag is considerably larger than
l ami nar drag, but preci se t heoret i cal predi ct i on of s ki n drag i s qui t e hard because i t i s di ffi cul t t o predi ct t he
l i ne a l ong t he s pan w her e t he boundar y l a yer becomes t ur bul e nt . T hi s i s one of t he r easons w hy w i nd t unnel
experiment s, and i n mor e r ecent times numeric (CF D) simul ations, have been and still are so i mpor tant for
aer odynami cs engi neer i ng.

E xamp l e 29. 5. 1 ( C e ssn a 150) : For t he C e ssna 150 of exampl e 29. 4. 2 a t c r ui s i ng s peed w i t h R ec ≈
5 × 106 , t he est i m at e of t he maxi mal l ami nar boundar y l ayer t hi ckness becomes δ ≈ 3. 4 mm w hereas
t he est i m at e of t he maxi mal t ur bul ent t hi ckness becomes δ ≈ 26 mm . T he cor r e spondi ng l a mi nar s ki n
drag coeffi ci ent i s C skin

D ≈ 0. 0012 w her eas t he t ur bul e nt one i s about si x t i m es l a rger, C skin
D ≈ 0. 0070.

The true skin drag is probably closest to this value.

Fo r m d r a g
T he fl ow around a highly streamlined body, such as a thin wing narrowing down into a sharp trailing edge,
w i l l be near l y i deal ever yw her e , except i n t he boundar y l a yer s . I t has been poi nt ed out bef or e ( a nd w e shal l
pr ove i t i n t he f ol l ow i ng sect i on) t hat a body i n a t r ul y i deal , i r r ot a t i onal fl ow does not exper i ence any dr a g
at al l , i ndependent of i t s shape. B ot h ski n f r i ct i on and f or m dr ag t her ef or e ow e t hei r exi st ence t o vi scosi t y,
but w her e ski n f r i ct i on i s due t o shear st r esses i n t he boundar y l ayer, f or m dr ag ar i s es f r om changes i n t he
pr essur e di st r i but i on ove r t he body caused by t he pr esence of boundar y l a yer s .

A i r f oi l boundar y l a yer s t e nd t o become t ur bul ent a t s ome poi nt dow nst r eam f r om t he l eadi ng e dge of
the w ing. At the sharp trailing edge the boundary layers separate from t he wing and continue as a trailing
wake (see fi gures 29. 6 a nd 29. 7). T he uns teady t urbulent wake found imme diately behind t he trailing edge
of a w i ng expands sl ow l y and event ual l y cal ms dow n and becomes s t eady and l ami nar at s ome dow nst r eam
di st ance f r om t he w i ng. F ur t her dow nst r eam t he l ami nar wa ke cont i nues t o expand by vi scous di ff usi on a t
a considerably faster rate than the turbulent wake. In section 29.8 we shall determine the general form of
the field in the distant laminar wake.

Inside the trailing wake immediately behind the body, the pressure will be lower than the stagnation
pressure �p = 1/2ρ0 U 2 at t he l eadi ng e dge ( s ee fi gur e 29. 3) , a nd t hi s pr essur e di ff er ence i s t he cause of
drag. The thickness of the turbulent wake immediately after the trailing edge of the wing may be estimated
from the boundary layer thickness δ, leading to the form drag estimate 	form ∼ �pLδ. In terms of the
drag coefficient we thus find for the turbulent case, ...............................
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Sketch of the flow around an air-
foil at large angle of attack. The
boundary layer separates near the
leading edge and replaces the
previously laminar flow above
the wing with turbulent flow
yielding small lift and large drag.

Cform
D ∼ δ

c
∼ Re−1/7

c . (29.32)

Form drag usually amounts to a finite fraction of skin friction for streamlined objects where the boundary
layers are thin everywhere.

With growing angle of attack, flow separation may occur on the upper side of the wing at some point
before the trailing edge of the airfoil, thereby increasing form drag and diminishing lift. At a certain angle
of attack, the point of separation for the turbulent boundary layer on the top side of the wing may suddenly
shift forward from the trailing edge, creating a highly turbulent region above the wing. This leads to loss of
almost all of the lift and at the same time an increased drag. The wing and the aircraft are then said to have
stalled.

The efforts of aircraft designers between the world wars in the twentieth century were mainly directed
towards form drag reduction by streamlining. A smaller drag generally implies higher top speed, greater
payload capacity and better fuel economy. Besides streamlining of lift surfaces, drag reduction was also
accomplished by internalizing the wing support structure and the undercarriage, and providing the engines
with carefully designed cowlings.
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Figure 29.6. Horizontal velocity distribution (vx ) around an airfoil at Reynolds number Rec = 10 000 and
α ≈ 1 ◦, obtained by numeric simulation. Note the faster flow above the wing (light), the stagnating flow at
the leading edge (dark), and the strong slowdown of the flow in the boundary layers and the trailing wake
(very dark). The boundary layers are thin and laminar and thicken towards the rear especially on the upper
surface where the initial acceleration of the air is followed by deceleration. There is no turbulence in the
boundary layers at a Reynolds number as low as this. At more realistic Reynolds numbers in the millions,
the boundary layers are mostly turbulent and about an order of magnitude thinner than here. Well behind
the airfoil the wake has a thickness comparable to the boundary layers. The slow viscous expansion of the
laminar wake is not visible at the scale of this figure.

Induced drag
The two vortices trailing from the wing tips of an aircraft rotate in opposite directions and carry roughly the
same circulation � as the vortex bound to the wing. They are created at a rate determined by the speed U
of the airplane and persist indefinitely in a truly ideal fluid. In a viscous fluid they spin down and dissolve
after a certain time.

The process of ‘spinning up’ and ‘feeding out’ the trailing vortices from the wing-tips of the aircraft is
accompanied by a continuous loss of energy, which causes an extra drag on the aircraft. We can estimate the
order of magnitude of this drag from the kinetic energy contained in the core of a vortex with circulation
� and core radius a. Since the maximal flow speed is of order vφ ∼ �/2πa, the kinetic energy of two

vortex segments of length�x becomes of magnitude �� ∼ ρ0v
2
φπa2�x ∼ ρ0�

2�x (dropping all simple
numeric factors). This loss of energy must cause a drag on the aircraft of magnitude

	induced = ��

�x
∼ ρ0�

2 ∼ ρ0U2c2C2
L ,

where we in the last estimate have used � = 1/2Uc CL , obtained from the relation between lift and
circulation (29.21) and the definition of the lift coefficient (29.22). The estimate of the induced drag
coefficient thus becomes

C induced
D = 	induced

1/2ρ0U2 A
∼ c

L
C2

L . (29.33)

Classical wing theory (for example [4, p. 369]) yields an expression of precisely this form but roughly a
factor π smaller. Since induced drag is a byproduct of the lift-generating flow around a finite wing, it is
also called drag due to lift. It is the unavoidable price we have to pay for wings of finite span.

Induced drag is normally smaller than skin drag, but grows rapidly with increased angle of attack and
may win over skin drag at low speeds. This happens, for example, at take off and landing where the angle of
attack is large and the skin friction small. Most importantly, induced drag decreases with increasing aspect
ratio L/c, explaining why large aspect ratios are preferable, up to the point where the sheer length of the
wing begins to compromise the strength of the wing structure.
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Example 29.5.2 (Cessna 150): For the Cessna 150 of example 29.5.1 cruising in level flight with
CL ≈ 0.3 and aspect ratio 7 we find Cinduced = 0.004 (including the factor 1/π). The induced drag
is thus about half of the turbulent skin drag. At half this speed the relative angle of attack is four times
bigger, so that the induced drag coefficient becomes 16 times bigger whereas the turbulent skin drag
coefficient stays roughly constant.

Lift-to-drag ratio
The total drag coefficient CD is the sum of all the contributions from various sources: skin drag, form drag,
induced drag, etc. The lift-to-drag ratio, in French called the finesse,

�

	
= CL

CD
, (29.34)

is a measure of the aerodynamic efficiency of an airplane. Like lift and drag, the lift-to-drag ratio is strongly

�

�

α

�/	

............
............

............
............

............
............
............
............
............
............
............
............
............
...............
...........................

.............................................................................................................................................................................................................................

α0 stall

max

Sketch of a typical lift-to-drag
curve for an airplane. The
maximal value of lift to drag
determines the best glide ratio
and the best glide speed.

dependent on the angle of attack and less on the Reynolds number and aspect ratio. The quadratic growth
of induced drag as a function of angle of attack normally overcomes the linear rise in lift and creates a
maximum in �/D for a certain angle of attack, typically at about half the stall angle. In view of the
difficulty in making theoretical estimates of drag on the airframe, empirical lift-to-drag curves are usually
provided for a particular aircraft to document its performance.

Example 29.5.3 (Cessna 150): For the Cessna 150 the quoted maximal lift-to-drag ratio is 8.4 at
a speed Uglide ≈ 110 km h−1. According to (29.11) the corresponding best glide angle is about
γ ≈ 6.8 ◦. From the known lift � ≈ Mg0 cos γ it then follows that the lift coefficient is CL ≈ 0.78,
and using the known lift slope λ = 4.9, the angle of attack becomes α ≈ 7.2 ◦, making the aircraft
nearly horizontal in the glide. Cruising in level flight with U = 180 km h−1, the lift coefficient is
instead CL ≈ 0.34, and the lift-to-drag ratio is reduced to about 4.5.

Louis-Charles Breguet (1880–
1955). French engineer. First
to recognize the importance of
the lift-to-drag ratio for airplane
performance. He built an
airplane assembly factory which
manufactured the famous Breguet
14 bomber for the French forces
during World War I. In 1919 he
founded the airline company that
later became Air France.

∗ Breguet’s range equation
Given an amount of fuel, the endurance and range of an aircraft depend on the aerodynamic efficiency of the
airframe and the engine efficiency. The latter is usually measured by the specific fuel consumption, defined
as the rate of fuel consumption (by weight) per unit of produced thrust T ,

f = − 1

T

d(Mg0)

dt
, (29.35)

where M is the mass of the aircraft. We shall assume that f , which has dimension of inverse time, is a
constant characterizing the engine performance, independent of the thrust it delivers.

Since � ≈ Mg0 and 	 ≈ T in level flight, the thrust can be determined from the lift-to-drag ratio
T = Mg0/(�/D), and inserting this expression, we find

f ≈ −�
	

1

M

d M

dt
. (29.36)

As the fuel is spent, the mass of the aircraft decreases and with it the required lift. If the angle of attack is
kept constant, the velocity has to decrease, but the lift-to-drag ratio will be constant. Integrating the above
equation from t = 0, where the fuel tank is full and the mass of the aircraft is M0, to time t , where the tank
is empty and the mass is M0 −�M , we obtain the aircraft’s endurance, i.e. the length of time it can fly on
a given amount of fuel,

t = 1

f

�

	
log

M0

M0 −�M
. (29.37)

The gentle growth of the logarithm shows that the endurance is not increased significantly even if the fuel
is a sizable fraction of the aircraft’s total mass.

Similarly, writing d M/dt = Ud M/dx in (29.36) and integrating, we obtain an equation for the distance
an aircraft can fly on a given amount of fuel, called Breguet’s range equation,

x = U

f

�

	
log

M0

M0 −�M
. (29.38)
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I n der ivi ng t hi s equat i on w e have a ssumed c onst a ncy of U�/	 as t he f uel i s bei ng spent , such t hat U and
�/	 may be taken to be the initial values for the fully loaded aircraft.

E xamp l e 29. 5. 4 ( C e ssn a 150) : T he C essna 150 has a usabl e fuel capaci t y of� M = 61 kg and m axi m al
mass of M = 681 kg . C r ui s i ng a t U = 180 km h−1 t he f ul l y l oaded ai r cr af t uses f uel at a r at e of about
16 kg h−1 . Taking �/	 ≈ 5, the t ot al thrust is T ≈ Mg0/(�/	) ≈ 1300 N , and t he speci fi c f uel
consumpt i on becomes f ≈ 3. 2 × 10−5 s−1 . T he pr edi c t e d e ndur ance becomes t ≈ 4 h and t he r a nge
x ≈ 720 km, i n decent agreement w i t h known val ues.

The s o und ba rri er
We have pr evi ousl y der ive d t he P r andt l –G l auer t r ul e ( 29. 28) f or t he dependence of t he l i f t on t he Mach
number. T hat r e sul t wa s based on t he a ssumpt i on of i deal fl ow a nd does not appl y t o s ki n a nd f or m dr ag
whi ch as w e have di s cussed i s always caused by vi s cosi t y.
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c Ma

CD

1

S ket ch of t he drag coeffi ci ent as
a f unct i on of Mach number. T he
drag is essentially constant up to
the critical point Mac aft er w hi ch
it rises dramatically towards t he
‘ s ound bar r i er ’ a t Ma = 1.

E m pi r i cal l y, t he dr ag coeffi c i e nt i s const a nt up t o t he c r i t i cal Mach number Mac ≈ 0. 7 w her e par t of t he
fl ow ove r t he w i ng becomes s oni c. A f t e r t hi s poi nt t he dr a g begi ns t o i ncr ease r api dl y w i t h i ncr easi ng s peed.
At t he t i m e of t he S econd Wor l d War and j ust af t er, ai r cr af t came cl ose t o t he s peed of sound and became
exposed t o t he vi ol e nt st r e sses t hat r ei gn her e , s t r esses t hat c oul d l ead t o br eakup i n t he a i r. A l t hough
common s ense t ol d t he e ngi neer s t hat t he dr ag coul d not act ual l y dive rge w hen t he ai r c r a f t r eached sound
speed, i t was not cl ear w het her i t c oul d m ount t o such hi gh va l ues t hat sound ve l oci t y woul d become a
barrier, i n practice i mpenetrabl e with the engi nes and airframes availabl e at t hat time. Histor y of cour se
t e l l s us t hat t he ‘ sound bar r i er ’ was passed on O ct ober 14, 1947 w i t h a r ocke t - pr opel l e d exper i ment al
aircraft (see [4] f or more details).

∗ 29.6 L ift, drag and t he trailing wake
A n of t en r ecur r i ng quest i on t hat can l ead t o heat ed di scussi ons i s w het her an ai r pl ane s t ays al of t i n s t eady
fl i ght because of t he pr essur e di ff er ences bet w een t he upper and l ower w i ng s ur faces, or w het her i t get s
l i f t f r om diver t i ng m oment um dow nwar ds. T he gener a l t r eat ment of moment um bal a nce i n s ect i on 22. 5 on
page 311 i ndi cat es t hat t he t ot al cont act f or c e on t he ai r pl a ne shoul d be bal anced by an opposi t e moment um
flux at great distances, where all stresses have died away. Either position is in fact tenable in a discussion,
but as w e s hal l see t he cor r ect answ er i s mor e subt l e t han mi ght be guessed at fi r s t gl ance.

Momentum balance in a box

...........................................................................................................................
........................................................................................................................................................................................................................................................................................................................body

S

�����
���� �S

Streamlined body and enclosing
box S. The box does not need to
be rectangular as it is here but can
be a volume of any shape. The
reaction forces on body and box
are for illustration purposes set
to act on arbitrarily chosen points
on the surfaces.

Let the steadily moving body—an aircraft or wing—be surrounded with a huge imagined ‘box’ of any
shape S, and let the volume of air between the body surface and the box be our control volume. As can be
seen from fi gure 29. 7 t his box will cut t hrough the t railing wake s omew here behind the body. D isregarding
gravity, the total force acting on the control volume of air consists of the contact forces on the two bounding
surfaces,

� = −� +
∮

S
σσσ · d S, (29.39)

where� is the air’s reaction force (29.2) on the body. For the moment we do not split up the reaction force
into lift and drag.

In steady flow the total momentum of the air contained in the control volume remains constant,
d�/dt = 0, apart from small time-dependent contributions from the fluctuating velocity field in the
turbulent wake (which we shall ignore here). Since there can be no momentum flux through the
impermeable surface of the body, it follows from momentum balance (23.2) that the total force on the
air in the control volume must equal the flux of momentum out of the box � = ∮

S ρvv · d S. Solving for
the reaction force and assuming for simplicity that the air is effectively incompressible, ρ = ρ0, we find,

� = −ρ0

∮
S

v v · d S +
∮

S
σσσ · d S, (29.40)
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F i gu re 29. 7. S ketch of a body (airfoil) and its trailing wake. Initially the t railing wake i s t urbulent, but
expands sl ow l y and becomes l ami nar some di st ance downst ream. T he t hi ckness of t he wake i s great l y
exagger a t e d c ompar e d t o t he di st ance f r om t he body. T he dashed box sur r oundi ng t he s yst e m ( but c r ossi ng
through the t railing wake) is used in the t ext t o defi ne a control volume of air between the surfaces of the
body and t he box.

where σσσ = {σi j } i s t he i ncompr essi bl e s t r ess t ensor σi j  = −pδi j +η(∇iv j +∇  j vi ) . T he f ol l ow i ng anal ysi s
can al so be car r i ed t hr ough f or bar ot r opi c c ompr essi bl e a i r ( pr obl em 29. 5) .

T he t ot al r eact i on f or ce on t he body can t hus be cal cul a t e d f r om t he pr essur e and vel oci t y fi e l ds, al l
eval uat e d a t t he sur face of any box sur r oundi ng t he body. I t m ust be e mphasi zed t hat t hi s r e sul t i s exact ,
va l i d f or a ny shape a nd si ze of body and box.

Bo x a t s pa ti a l i nfini ty
N ow l et t he box expand t o huge di st ances i n al l di r ect i ons such t hat t he vel oci t y fi e l d on i t s sur face
approaches the asymptotic value, v → U . S etting v = U +�v i n t he fi r s t ( moment um) t er m of ( 29. 40) , i t
becomes t o fi rst order i n �v ,

−ρ0

∮
S
( UU  + U�v +�v U) · d S.

G iven t hat t he t ot al vect or ar ea of a cl osed s ur face always vani shes,
∮

d S = 0, together with global mass
conservation,

∮
�v · d S = 0, the first two terms in the integrand do not contribute to the integral.

If we think of the ‘box’ as a huge sphere with radius r and surface area 4πr2, the velocity field
correction must decay like |�v| ∼ 1/r2 at great distances outside the trailing wake for any contribution
to survive in the limit. Inside the wake the velocity field behaves differently (see section 29. 8) but the
general conclusions remain valid. The velocity derivatives in the stress tensor must consequently vanish
like |∇�v| ∼ 1/r3, and cannot contribute to the second term in (29.40). Pressure is thus the only stress
component that has a possibility of surviving in this limit, and the reaction force on the body may be written,

� = −ρ0

∮
S
�v U · d S −

∮
S
�p d S. (29.41)

Since a constant pressure yields no contribution, we have replaced the pressure by the residual pressure
�p = p − p0 where p0 is the constant asymptotic pressure. The residual pressure can only contribute to
the integral if it decays as �p ∼ 1/r2 outside the trailing wake, which we shall see that it does.

We are now in a position to answer the question of whether there remains a pressure contribution to
lift far from the moving body. Although the derivation of the above equation shows that the sum of the
momentum flow and pressure contributions is independent of the choice of the box shape, each term by
itself may (and will) depend on it. The limiting value of the pressure contribution may depend on how the
box is taken to infinity.
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454 29. SUBSONIC FLIGHT

I f , f or exampl e , w e c hoose a cube or spher e and l et i t expand uni f or m l y i n al l di r ect i ons, t her e w i l l
usually be a residual pressure contribution to lift, even in the limit of an infinite box (see section 29. 8 for an
explicit calculation). Alternatively, one may choose a box in the form of a huge cylinder with radius R and
length L , oriented with its axis parallel to the asymptotic flow U . The pressure integral over the end caps
cannot contribute to lift, because they are orthogonal to the velocity. If we now let the radius R become
infinite, before the end caps are moved off to infinity, the pressure integral over the cylinder surface will
behave like the area 2πL R times the pressure p ∼ 1/R2. It thus vanishes like L/R for R → ∞, leaving
no pressure contribution to lift in the limit (see [38]).
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R

L

�U

Box in the shape of a cylinder
of radius R and length L with
axis parallel to the asymptotic
velocity U .

Lift and drag
Let us rearrange (29.41) in the form

� = −ρ0

∮
S

U × (�v × d S)−
∮

S
(�p + ρ0�v · U) d S. (29.42)

The first integral is orthogonal to the asymptotic velocity and represents the lift,

� = −ρ0

∮
S

U × (v × d S). (29.43)

Here we have also replaced �v by v, using
∮

d S = 0.
In regions where the flow is non-viscous and all streamlines connect to spatial infinity, the pressure

excess is determined by Bernoulli’s theorem,

�p = 1
2ρ0(U

2 − v2) ≈ −ρ0U ·�v. (29.44)

The contributions to the second term in (29.42) can only come from the region W , where the box cuts
through the wake. Choosing W to be planar and orthogonal to U , its surface element d S will be parallel
with U , and the second term becomes a pure drag,

........................ ...... ...... ...... ...... ....... ....... ....... ....... ....... ......................
..................
................

........................
...................................................................................... W

S

The downstream face of the box
cuts the wake in a region W
chosen to be orthogonal to the
asymptotic flow U .

	 = −
∫

W
(�p + ρ0�v · U) d S, (29.45)

where d S is the area element of W . If we lift the restriction that W is a planar part of S orthogonal to U , the
formulae for lift and drag become slightly different (problem 29.6). Otherwise they are valid for all kinds
of bodies moving steadily through an incompressible fluid at subsonic speed.

d’Alembert’s paradox: a gift to powered flight
We have previously (page 226) shown that a cylinder or sphere in irrotational (potential) flow experiences
no drag. In irrotational flow, Bernoulli’s theorem is fulfilled everywhere, such that the drag (29.45) must
vanish. D’Alembert’s paradox must therefore be valid in full generality: there is no drag on a body of
arbitrary shape in completely irrotational flow. But bodies moving through viscous fluid cannot help
leaving a narrow trailing wake containing vorticity, and equation (29.45) immediately resolves the paradox:
the drag on a body stems entirely from the trailing wake.

In general, the narrower the wake the smaller the drag will be. As we have seen in the estimates of the
preceding section, drag is typically an order of magnitude smaller than lift for properly streamlined bodies,
such as airfoils. This indicates that one should rather treat d’Alembert’s ‘paradox’ as a theorem about the
near vanishing of drag for streamlined bodies at high Reynolds number. This theorem is in fact what makes
flying technically possible with engines producing a thrust much smaller than the weight of the aircraft.
Without d’Alembert’s theorem, the Wright brothers would never have had a chance of flying at Kitty Hawk
in December 1903, given the puny engine power then available to them.
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Lift and vorticity
The box S used in the lift integral (29.43) is assumed to be of essentially infinite size. Now let S′ be another
closed surface surrounding the body somewhere inside the box S. From Gauss’ theorem we obtain(∮

S
−

∮
S ′

)
U × (v × d S) = −

∫
V

U × (∇ × v) dV = −
∫

V
U × ω dV,

where V is the region between the two surfaces, and ω = ∇×v is the vorticity field. In the extreme case we
may take S′ to be the body surface itself, where the velocity and thus the integral over S′ vanishes because
of the no-slip condition. It then follows from the above equation that the lift (29.43) is also given by the
integral of the vorticity field over all of the air space,

� = ρ0U ×
∫

air
ω dV . (29.46)

This integral can only receive contributions from the regions of non-vanishing vorticity, i.e. from the
boundary layers and the trailing wake. Again we conclude that without vorticity created by friction, there
can be no lift!

More generally, if there is no vorticity found in V , the integral over the box S equals the integral over
S′. The original box may in other words be deformed into any other closed surface as long as it crosses
no region containing vorticity. The box at infinity has now served its purpose and may be forgotten. In the
following the surface S in (29.43) may be taken to be simply any surface surrounding the body, as long as
there is no vorticity outside S.
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S

C(z)

W

z2
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��d�

���ds

�
d S

The surface S may always be
sliced into a sequence of oriented
planar curves C(z) parallel with
the xy-plane for z1 ≤ z ≤ z2.
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C

C ′
A

The contours C and C ′ cross
the trailing wake along the same
curve (at infinity) and have the
same circulation as long as the
area A between the curves carries
no flux or vorticity.

Lift and circulation
It is useful to introduce a ‘natural’ coordinate system with the x-axis along the direction of the asymptotic
velocity U = U ex and the y-axis along the lift � = �ey . Working out the cross products, the lift (29.43)
becomes

� = ρ0U
∮

S
(v × d S)z = ρ0U

∮
S
vx d Sy − vyd Sx , (29.47)

together with the condition ∮
S
vx d Sz − vzd Sx = 0, (29.48)

expressing that there should be no lift along the z-direction. For a symmetric aircraft in normal horizontal
flight, this condition is automatically fulfilled.

The closed surface S may always be sliced into a set of planar closed contours C(z) parallel with the xy-
plane, and parametrized by the z-coordinate in some interval z1 ≤ z ≤ z2. The contours are given negative
orientation in the xy-plane, i.e. clockwise as seen from positive z-values. Let now d� = (dx, dy, 0) be a line
element on a point of the curve C(z); it is evidently a tangent vector to the surface S. Let ds = (0, dy, dz)
be another tangent vector to the surface in the yz-plane with the same y-coordinate dy. Then the outward
pointing surface element becomes d S = ds × d� = (−dydz, dzdx,−dxdy) and thus

vx d Sy − vyd Sx = (vx dx + vydy) dz = v · d� dz.

This shows that the lift (29.47) may be written as an integral over z

� = ρ0U
∫ z2

z1

�(z) dz, (29.49)

with an integrand given by the circulation around C(z),

�(z) =
∮

C(z)
v · d�. (29.50)
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If the contour is deformed, Stokes’ theorem (16.57) tells us that the circulation is unchanged provided the
contour is swept through an area A devoid of vorticity. Since we have assumed that vorticity is only found
in the boundary layers and the trailing wake, the contour may be freely deformed, as long as the piece of
the contour that crosses the wake is kept fixed, and the new contour does not pass through the wake or into
the boundary layers. This is of course the same conclusion as was reached in the preceding subsection.

Again it should be emphasized that no approximations have been made, and that this result is exactly
valid, as long as the wake-crossing takes place at great distance from the body along a line parallel with the
y-axis.
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The dashed contour C hugs the
wing profile closely, but is still
attached to the distant part where
it crosses the wake (top). For
nearly infinite Reynolds number,
the velocity is very nearly the
same above and below the wake,
allowing us to cut off the tail
(bottom).

The general Kutta–Joukowsky theorem
The lift integral (29.49) may be written in the form of a generalized version of the Kutta–Joukowsky theorem
(29.21),

� = ρ0U L 〈�〉 , (29.51)

where

〈�〉 = 1

L

∫ z2

z1

�(z) dz, (29.52)

is the circulation along z averaged over the wing span L = z2−z1. The only difference is that the integration
contour C(z) used to calculate �(z) in (29.50) has to cross the wake far away from the airfoil, whereas in
the original Kutta–Joukowsky theorem it is supposed to hug the airfoil tightly all the way around. We shall
now see how to get rid of the ‘tail’ of the contour when the chordwise Reynolds number, Rec = Uc/ν and
the aspect ratio L/c are very large.Martin Wilhelm Kutta (1867–

1944). German mathematician.
Probably best known for his ex-
tension of a method developed by
Runge for numeric solutions to
differential equations. Obtained
the first analytic result for lift,
and effectively discovered the re-
lation between lift and circula-
tion in 1902

Nikolai Yegorovich Joukowsky
(1847–1921). Russian math-
ematician and physicist (also
spelled Zhukovskii). Constructed
the first Russian wind tunnel in
1902 and many others early in
the twentieth century. Found and
used the relation between lift and
circulation in 1906

In this limit the flow around the wing becomes nearly ideal and irrotational, and the boundary layers turn
into a ‘skin’ of vorticity covering the airfoil with nearly vanishing thickness δ ∼ c/

√
Rec . Downstream

from the airfoil, the skin continues into the trailing wake which forms a horizontal sheet, also of nearly
vanishing thickness δ. Physically, the flow velocity in the wake cannot become infinite, so that the
downstream volume flux in the wake, which per unit of span is of order vxδ, must itself vanish in the
limit of infinite Reynolds number. It then follows from mass conservation that the orthogonal velocity vy
must be the same above and below the sheet, for otherwise fluid would accumulate in the wake.

The pressure must also be the same above and below the trailing wake sheet because of Newton’s third
law. Combining these two results with Bernoulli’s theorem, which states that p + 1/2ρ0(v

2
x + v2

y + v2
z )

takes the same value everywhere outside the wake, we conclude that v2
x + v2

z must be the same just above
and below the wake. The span-wise induced flow vz is connected to the shedding of vorticity along the
span, especially the wing-tip vortices. When the aspect ratio is large, this flow will be tiny compared
to the downstream flow, i.e. |vz | ∼ vx c/L � vx , so that it may be ignored in the Bernoulli function.
Consequently, vx itself takes the same value just above and below the trailing sheet. The two oppositely
directed contributions to the integral (29.50) running along the tail of C thus tend to cancel each other for
large Reynolds number and aspect ratio.

Since the orthogonal velocity vy may not be infinite inside the wake, the part of the integral from the
contour passing through the sheet will be of order of magnitude vyδ and thus vanish in the limit. The
contribution from the tail of the integration contour can thus be ignored in the leading approximation and
we may let it circle the wing while tightly hugging the airfoil profile. Finally, we have arrived at the
(generalized) Kutta–Joukowsky theorem.

∗ 29.7 Two-dimensional airfoil theory
Most wings have fairly large aspect ratios in the vicinity of L/c ≈ 7–20 with airfoil cross sections that taper
gently towards the wing tips. For nearly infinite aspect ratio and nearly constant cross section, there is very
little induced flow along z towards the wing tips, so that the flow becomes essentially two-dimensional,

v = (vx (x, y), vy(x, y), 0). (29.53)

For such an airfoil, the circulation will be independent of z. Although it would be possible to simplify
the following calculations using complex notation as in section 26.3, we shall use the physically more
transparent real notation.
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Figure 29.8. The irrotational velocity field of the wing is viewed as a superposition of elementary line
vortices with singular cores arranged around the outline A of the airfoil. On the top of the airfoil, the
vortices tend to increase the local velocity above the asymptotic flow U , and conversely at the bottom. The
airfoil is positioned with the chord-line on the x-axis and the y-axis at the leading edge. Its geometry is
described by two functions y±(x) with 0 ≤ x ≤ c where c is the chord length. The asymptotic flow is
U = U(cos α, sinα), where α is the angle of attack. The trailing wake, indicated by the dashed line, also
forms an angle α with the x-axis. The z-axis comes out of the plane.

The field of the vortex sheet
In the limit of nearly infinite Reynolds number, vorticity only exists in the infinitesimally thin boundary
skins of the airfoil. Outside these skins and outside the infinitesimal sheet of the trailing wake, we assume
that the flow is irrotational, described by a velocity potential � that satisfies Laplace’s equation ∇2� = 0.
Being a linear equation, its solutions may be superposed. All the nonlinearity of the original Euler equation
has been collected in the Bernoulli pressure p = 1/2ρ0(U

2 − v2). The additivity of potential flows makes
it possible to view the irrotational flow outside the boundary layers as arising from a superposition of the
asymptotic flow U and the field generated by the sheet of vorticity covering the wing surface. � .........
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Outside the singular core of a
line vortex the flow is irrotational
with circular streamlines. The
field around any collection of line
vortices is obtained by adding
their individual fields together.

Due to the two-dimensional nature of the flow, the vortex sheet making up the skin may be understood
as a collection of elementary line vortex cores running parallel with the z-axis (see figure 29.8). The
contribution from the velocity field of a line vortex passing through the origin of the coordinate system with
the core parallel with the z-axis is of the well-known form (26.12),

v = �

2π

(−y, x)

x2 + y2
, (29.54)

where � is its circulation.
Denoting the infinitesimal strength of the vortex passing through the point (x ′, y′) on the airfoil outline

A by d�′, the complete velocity field at an arbitrary point (x, y) becomes a curve integral around the airfoil
outline A,

v(x, y) = U +
∮

A

(−y + y′, x − x ′)
(x − x ′)2 + (y − y′)2

d�′
2π
. (29.55)

Mathematically, the points of the airfoil outline should be parametrized as a pair of functions, (x, y) = .................................................................................................................................
..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................................................................
θ = θ1

θ = θ2


..........................................

The airfoil outline may be
parametrized with a parameter
θ running over the interval
θ1 ≤ θ ≤ θ2.

( fx (θ), fy(θ)), of a running parameter θ in some interval, say θ1 ≤ θ ≤ θ2, beginning and ending at the
cusp. The circulation element then becomes d� = γ (θ) dθ where γ (θ) is the circulation density. Wherever
possible we shall suppress this elaborate, but mathematically more concise, notation.

The Kutta condition
Near the front and rear ends of the airfoil there are stagnation points where the velocity field vanishes. In
ideal flow there may be more than one velocity field solution satisfying the Euler equation (16.1) and the
boundary conditions. Such solutions may have different stagnation points and thus different circulation.
It is even possible to find a solution with vanishing circulation (and lift). We shall see below that if the
rear stagnation point is not situated right at the cusp of the trailing edge, unacceptable infinite velocity
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field values will arise at the cusp. T he Kutta condition (1902) enforces that the t railing edge cusp ( c in
figure 29. 8) is actually a stagnation point. T he condition thus repairs a mathematical problem in truly ideal
flow by selecting a particular solution. In the real world, a streamlined airfoil under a small angle of attack
in nearly ideal flow will, in fact, fulfill the Kutta condition because of viscous friction in the boundary layers
which selects a unique laminar solution.
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Separating flow pattern near the
trailing end of an airfoil with
stagnation point before the cusp.
Such a flow may have vanishing
lift.
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Highly laminar flow near the
trailing end of an airfoil with
stagnation point at the cusp.

The problem arises when we attempt to calculate the velocity field at a point (x, y) on the airfoil outline
itself, because the integrand of (29.55) is formally infinite for (x ′, y′) = (x, y). At any point where the
airfoil is smoothly varying, there is in fact no problem and the integral is finite. To see this we cut out a
small parameter interval θ − ε < θ ′ < θ + ε around the singularity in the integrand. Assuming smoothness
in this interval we may expand x − x ′ ≈ (θ − θ ′)ẋ and y − y′ = (θ − θ ′) ẏ where ẋ = d fx (θ)/dθ and
ẏ = d fy(θ)/dθ . The leading contribution to the integral from this interval then becomes

�v ≈ γ (θ)
(−ẏ, ẋ)

ẋ2 + ẏ2

∫ θ+ε
θ−ε

1

θ − θ ′
dθ ′
2π
. (29.56)

Here the integral vanishes because of symmetry around the singularity (mathematically it is a principal-
value integral).

The argument fails, however, at the trailing edge for θ = θ1,2 where the airfoil has a sharp cusp. Here
we find instead the contributions,

%%%%%%&&&&&&
�

�

x

y

c

λ1

λ2

The cusp consists of two straight
lines with different slopes
dy/dx = λ1 = ẏ1/ẋ1 and
dy/dx = λ2 = ẏ2/ẋ2.

�v ≈ γ1
(−ẏ1, ẋ1)

ẋ2
1 + ẏ2

1

∫ θ1+ε
θ1

1

θ1 − θ ′
dθ ′
2π

+ γ2
(−ẏ2, ẋ2)

ẋ2
2 + ẏ2

2

∫ θ2

θ2−ε
1

θ2 − θ ′
dθ ′
2π
,

where the coefficients are evaluated at θ = θ1,2. Since the slopes (ẋ1, ẏ1) and (ẋ2, ẏ2) are different, the
divergent integrals will in general not cancel. Only if the vortex density vanishes from both sides of the
cusp, γ1 = γ2 = 0, will the singular contribution disappear.

Given that in ideal flow the velocity must be tangential to the airfoil outline A, the circulation becomes

� =
∮

A
v(x, y) · d� =

∮
A

|v| d�. (29.57)

Locally each little line element d� of A contributes the infinitesimal amount,

d� = γ dθ = |v| d�, (29.58)

to the circulation. Since d�/dθ is regular on each side of the cusp, the vanishing of the vortex density γ is
equivalent to the vanishing of the velocity field v at the cusp, which is the Kutta condition.

The fundamental airfoil equation

.....................
......................
.......................
.........................

...........................
............................

...............................
...................................

..........................................
......................................................

.................................................

x

y

�
�
�
��-

.........

.........
.........
.........
.........
..........

....

0
0
0
00@

n
...........................................................

β

β

t

A

θ

At any point (x, y) =
( fx (θ), fy(θ)) of the airfoil
outline, the tangent angle
is denoted β and the slope
λ = tanβ = ẏ/ẋ . The tangent
vector may be chosen to be
t = (ẋ, ẏ) and the normal
n = (−ẏ, ẋ).

The vortex density γ (θ) must be chosen such that the streamlines follow the airfoil outline. This is
equivalent to requiring the normal component of the velocity field to vanish on the impermeable airfoil
surface,

v · n = 0, (29.59)

where v = v(x, y) is the slip-velocity and n = n(x, y) is the normal at the point (x, y) on A. For every
point on A we thus get one scalar condition, and together with the Kutta condition this is sufficient to
determine the vortex density γ (θ).

We are not at liberty to impose a no-slip condition on the field, because the Euler equation (16.1) is
only of first order in spatial derivatives. Although the field (29.55) exists both inside and outside the
airfoil outline, the outside solution now fulfills the Euler equation and obeys the correct boundary
conditions for inviscid flow around a solid body. Consequently, we may with impunity replace the
region inside the airfoil outline with a solid body.

For convenience, the airfoil is positioned with its chord-line on the x-axis such that the asymptotic
velocity becomes U = U(cos α, sinα) (see figure 29.8). In the θ-parametrization, the tangent vector to the
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29.7. TWO-DIMENSIONAL AIRFOIL THEORY 459

Figure 29.9. A thin airfoil is represented by a single layer of vorticity γ (x) = γ+(x) + γ−(x) along the
camber line y(x) = 1/2(y+(x)+ y−(x)).

airfoil outline at the point θ is t = (ẋ, ẏ) = d(x, y)/dθ , and the normal may be taken to be n = (−ẏ, ẋ).
The boundary condition (29.59) then takes the explicit form

U(−ẋ sinα + ẏ cos α) =
∮

A

ẋ(x − x ′)+ ẏ(y − y′)
(x − x ′)2 + (y − y′)2

d�′
2π
, (29.60)

where now both (x, y) = ( fx (θ), fy(θ)) and (x ′, y′) = ( fx (θ
′), fy(θ

′)) are points on A and d�′ =
γ (θ ′)dθ ′.

Marvellously this equation can be integrated over θ . Using that for θ = θ1 we must have x = c and
y = 0, it may be verified by differentiation after θ that the following expression is the correct integral,

U((c − x) sinα + y cos α) = 1

2

∮
A

log
(x − x ′)2 + (y − y′)2
(c − x ′)2 + y′2

d�′
2π
. (29.61)

This is the fundamental equation of two-dimensional airfoil theory. Given the parametrized airfoil geometry
through the functions (x, y) = ( fx (θ), fy(θ)), this integral equation should be solved for the vortex density
γ (θ) = d�/dθ .

Having done that, the total circulation may afterwards be obtained by integrating the result, � =∫ θ2
θ1
γ (θ) dθ . Finally, inserting this into the Kutta–Joukowsky theorem (29.51), we obtain the lift. We

have thus established a precise analytic or numeric procedure which for ideal flow will yield the lift as a
function of the geometry of the airfoil.

Thin airfoil approximation
Even if modern airfoils are much thicker than the airfoils of the early airplanes, the ratio d/c of thickness
to chord is rarely more than 10–15%. Using x as the parameter, a decent approximation for thin airfoils is
obtained by replacing the double layer of circulation density γ±(x) on the two halves of the airfoil outline
by a single layer with circulation density γ (x) distributed along a camber line y(x), where

γ (x) = γ+(x)+ γ−(x), y(x) = 1
2 (y+(x) + y−(x)). (29.62)

For a thin airfoil with d/c � 1 we always have
∣∣y(x)− y(x ′)

∣∣ � ∣∣x − x ′∣∣, so that the fundamental airfoil
equation (29.61) reduces to the much simpler equation,

U((c − x) sinα + y(x) cos α) = 1

2π

∫ c

0
log

∣∣x − x ′∣∣
c − x ′ γ (x ′) dx ′. (29.63)

Given the camber line y(x), this linear integral equation must be solved for γ (x).
The circulation can be obtained directly by using the relation,∫ c

0

c

(c − x)
√

x(c − x)
log

∣∣x − x ′∣∣
c − x ′ dx = −2π, (29.64)
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which is true for all c > 0 and all x ′ between 0 and c. It takes a fair bit of complex analysis to prove this (see
problem 29.8), but it may easily be checked numerically. Using this result in (29.63) we get the circulation

� =
∫ c

0
γ (x ′)dx ′ = −Uc

∫ c

0

(c − x) sinα + y(x) cos α

(c − x)
√

x(c − x)
dx. (29.65)

Since
∫ c

0 dx/
√

x(c − x) = π , we finally obtain

� = −Uc

(
π sinα + cos α

∫ c

0

y(x)

(c − x)
√

x(c − x)
dx

)
. (29.66)

The integral converges because y(x) ∼ c − x for x → c.
Taking into account that the contour of integration in the Kutta–Joukowsky theorem (29.51) is

clockwise and not counterclockwise as assumed in the above calculation, the lift is � = −ρ0U L�. The lift
coefficient may now be written,

CL = �

1/2ρ0U2cL
= 2π

sin(α − α0)

cos α0
, (29.67)

where the zero-lift angle α0 is defined from the integral,

tanα0 = − 1

π

∫ c

0

y(x)

(c − x)
√

x(c − x)
dx. (29.68)

Normally, airfoils have positive camber, y(x) > 0, so that α0 < 0. For a flat plate we evidently have α0 = 0
because y(x) = 0. For small angles of attack, |α| , |α0| � 1, the lift coefficient takes the form (29.24) with
lift slope λ = 2π . In problem 29.9 the integral is worked out for a simple non-trivial case.

∗ 29.8 The distant laminar wake
At short distances the velocity field is strongly dependent on the shape and attitude of a moving body, but
far from the body such details are lost. It is, as we shall now see, possible to determine the general form
of the laminar velocity field at large distances from the body in terms of the lift and drag that the body
produces (see also [38, p. 67]). The analysis in this section should be viewed as the natural continuation
of d’Alembert’s theorem to fluids that are not perfectly inviscid. Such fluids will not ‘close up’ behind the
moving body, but instead—as we have discussed above—leave a trailing wake, a disturbance that never
dies completely out even at huge distance behind the body. In the real unruly and turbulent atmosphere, the
trailing wake from a passing airplane will of course only be notable for a finite distance.

Oseen’s approximation
Sufficiently far from the body, the velocity field is laminar and approximatively equal to the asymptotic
value U both inside and outside the trailing wake. Inserting v = U + �v into the steady flow Navier–
Stokes equation without gravity,

(v · ∇)v = − 1

ρ0
∇ p + ν∇2v, (29.69)

we obtain to first order in �v,

(U · ∇)�v = − 1

ρ0
∇�p + ν∇2�v. (29.70)

The linearity of this equation allows us to superpose its solutions. Let us write the velocity difference as a
sum,

�v = u + ∇�, (29.71)
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where � is a generalized velocity potential and u is the contribution from the vorticity in the trailing wake.
Choosing � as a solution to

(U · ∇)� = −�p

ρ0
+ ν∇2�, (29.72)

and using this equation to eliminate p in (29.70), it follows that the field u must satisfy

(U · ∇)u = ν∇2u. (29.73)

The incompressibility condition, ∇ ·�v = 0, yields a further relation,

∇2� = −∇ · u. (29.74)

This equation determines �, given a solution u to (29.73), and then the pressure is obtained from (29.72).

Flow inside the wake
The trailing wake is assumed to be narrow compared to the distance to the body. In a coordinate system
with the x-axis along the asymptotic velocity, U = U ex , we may assume that x � |y| , |z|, inside the
wake. In the now familiar way, it follows that the double x-derivative in the Laplacian of (29.73) is small
compared with the y, z-derivatives, and the equation for u becomes

U
∂u
∂x

= ν

(
∂2

∂y2
+ ∂2

∂z2

)
u. (29.75)

This is a standard diffusion equation of the same form as the momentum diffusion equation (17.5) with two
transverse dimensions and ‘time’ t = x/U . Note that t is also the time it takes for the asymptotic flow to
reach the position x downstream from the body.

At distances much larger than the body size, x � L , the body appears as a point particle with no
discernable shape, situated at the origin of the coordinate system. By insertion into the above equation one
may verify that the following expression is an exact ‘shapeless’ solution,

u = A
x

exp

(
−U

y2 + z2

4νx

)
, (29.76)

where A = (Ax , Ay, Az) is a constant vector. It is in fact also the most general solution at large downstream
distance x (see problem 29.10). Evidently, the distant wake has a Gaussian shape in the transverse directions
with a narrow width δ = √

4νx/U . The width of the laminar wake is, however, the same in both transverse
directions, confirming that there is no imprint of the original shape of the object on the Gaussian form of
the distant wake. For |y| , |z| � δ, the solution decays as x−1 along the wake, rather than the expected
r−2 ≈ x−2. This is consistent with the area of the wake being of order δ2 ∼ x such that the volume flux,
i.e. the integral of u over the cross section of the wake, remains finite for x → ∞. The terms that have been
left out in the above solution by dropping the x-derivatives in the Laplacian are a further factor x−1 smaller
than the above solution and cannot contribute in the limit.

The generalized potential is determined by solving (29.74). Consistently leaving out the double
derivatives with respect to the Laplacian, it becomes(

∂2

∂y2
+ ∂2

∂z2

)
� = −∇ · u. (29.77)

On the right-hand side one cannot leave out the ∇x ux contribution to the divergence because it is only a
factor x−1/2 smaller than the others. It may—with some effort—be verified by insertion that the following
potential is an exact solution to this equation inside the wake,

� = 2ν

U

(
− Ay y + Azz

y2 + z2
+ Ax

2x

)(
1 − exp

(
−U

y2 + z2

4νx

))
. (29.78)
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Here the first term in the first parenthesis is of order x−1/2 and the second of order x−1. The leading
corrections from leaving out the double x-derivatives in the Laplacian are of order x−3/2. Only the
exponential in the second parenthesis represents a true solution to the inhomogeneous equation (29.77),
to which one may add an arbitrary solution to Laplace’s equation ∇2� = 0. Here we have added the
solution which makes the potential non-singular for y, z → 0.

Drag and lift
The pressure is obtained in the same approximation from (29.72),

�p = −ρ0U
∂�

∂x
+ ρ0ν

(
∂2

∂y2
+ ∂2

∂z2

)
� = ρ0ν

Ax

x2
. (29.79)

Since it decays like x−2 and the area of the wake is δ2 ∼ x , it cannot contribute to drag for x → ∞, so that
the leading contribution to the integrand of (29.45) becomes

�p + ρ0U�vx ≈ ρ0Uux . (29.80)

In the last step we have dropped the pressure and the potential derivative ∇x� ∼ x−3/2 which are both
negligible compared to ux ∼ x−1. Integrating over all y, z, we find from (29.45)

	 = −ρ0U
∫∫

ux dydz = −4πρ0νAx (29.81)

which fixes the coefficient Ax . The errors committed in extending the integral over the wake to all values
of y and z are exponentially small.

The lift is obtained from the complete circulation integral (29.50),

�(z) =
∮

C(z)
(u + ∇�) · d� =

∮
C(z)

u · d� = −
∫

uydy.

In the second step we have used that � is single-valued so that
∮ ∇� · d� = 0, and in the third that u

vanishes outside the wake. The minus sign stems from the contour running through the wake against the
direction of the y-axis. Inserting this result into (29.49) we find

� = −ρ0U
∫∫

uy dydz = −4πνρ0 Ay, (29.82)

which fixes Ay . Similarly, since there is no lift in the z-direction, we must have Az = 0.
The complete three-dimensional field configuration inside the wake has now been obtained in terms of

the lift and drag that the body generates,

u = − (	,�, 0)
4πρ0νx

exp

(
−U

y2 + z2

4νx

)
,

� = 1

4πρ0U x

(
2xy

y2 + z2
�−	

)(
1 − exp

(
−U

y2 + z2

4νx

))
.

(29.83)

The correction terms are all of order x−1 relative to the leading terms.

Flow outside the wake

� .........
.........
.........
.........
.........
.........
..........

..........
...........

...........
...........

............
.............

...............
..................

........................


.....................
.................

...............
.............

...........
............

...........
..........
..........
..........
.........
.........
.........
.........
.........
........� x

�
y

�
�
��

z

.................................................................................................................................................................................................................................................

.............
.............

...............
................

.................
....................

........................
...................................

...................................................................

		
		

		


E
E
E

φ

θ
r �'
''F

���
er

eφ

eθ

Spherical coordinates and their
tangent vectors for the far field
outside the wake.

Outside the wake, the flow is assumed to be irrotational with �v = ∇� and ∇2� = 0. We have
before argued that �v ∼ 1/r2 at large distances, and consequently we must have � ∼ 1/r . In spherical
coordinates with the polar axis in the x-direction and the null-meridian in the xy-plane, we may thus write

� = F(θ, φ)

r
. (29.84)
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The spherical Laplacian (B.16) implies that F has to satisfy(
sin2 θ

∂2

∂θ2
+ cos θ sin θ

∂

∂θ
+ ∂2

∂φ2

)
F = 0. (29.85)

In view of the periodicity in φ, the complete solution may be written as a Fourier series

F = A0(θ)+
∞∑

n=1

An(θ) cos nφ + Bn(θ) sin nφ, (29.86)

where the coefficients An and Bn satisfy the equation(
sin2 θ

d2

dθ2
+ cos θ sin θ

d

dθ
− n2

)
An = 0. (29.87)

Surprisingly, this equation has a complete set of exact solutions (tan(θ/2))±n (see problem 29.11). Since
F has to be regular at θ = π , where the tangent diverges, the exponents must be non-positive, n ≤ 0.
Furthermore, for θ → 0, where An ∼ θ−n , this solution has to join continuously with the inside solution
(29.83), which for δ � y, z � x behaves like

� ≈ 1

4πρ0U x

(
2xy

y2 + z2
�−	

)
≈ �

2πρ0U

cos φ

r θ
− 	

4πρ0Ur
. (29.88)

This shows that the only possible exponents are n = 0, 1 with A0 = −	/4πρ0U , A1 = �/4πρ0U and
B1 = 0. Thus, the potential far from the body outside the wake becomes

� = � cos φ cot(θ/2)−	

4πρ0Ur
. (29.89)

It joins continuously with the field inside the wake.

Pressure and lift
Since the leading contribution to pressure vanishes far downstream inside the wake, it plays no role in the
drag which as shown by (29.81) is entirely due to a loss of fluid momentum in the trailing wake. The lift
contribution from pressure stems on the other hand entirely from the outside solution. Using Bernoulli’s
theorem and the spherical derivatives (B.14), the outside pressure becomes, �p = −ρ0U∇x� =
−ρ0U(cos θ∇r − sin θ∇θ )�. After a bit of algebra this reduces to,

�p = −	 + � sin θ cos φ

4πr2
. (29.90)

It is immediately clear that the spherically symmetric first term cannot contribute to the total pressure force.
Also since d Sx = cos θ · r2 sin θdθdφ, the second term, which is linear in cos φ, cannot produce a force in
the x-direction, i.e. a drag.

Due to its φ-dependence the second term is, however, negative for y > 0 and positive for y < 0, and
must therefore produce a lift. Using d Sy = sin θ cos φ · r2 sin θdθdφ, we find

−
∮
�p d Sy = �

4π

∫∫
sin3 θ cos2 φ dθdφ = 1

3
�. (29.91)

Pressure thus produces one third of the lift, even for an infinite sphere. The remaining two thirds of lift
stems from momentum flux in the trailing wake. As discussed before (page 452), the partition of lift
between pressure and momentum flux depends on the choice of integration surface at infinity.

Problems
29.1 The Concorde airliner has a powerplant of four engines that together develop 677 kN with
afterburner. It maximal take off mass is 185 000 kg and its take off speed 360 km h−1. Ignore drag and
estimate the runway (a) acceleration, (b) time, and (c) length.
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29.2 Show that the tangent to the bank angle in a horizontal banked turn is 2π times the ratio between
the time it takes to fall freely from rest to velocity U (with no air resistance) divided by the time T it takes
to make a complete turn.

29.3 Show that the induced drag is smaller if the single trailing vortex is divided into a number of smaller
vortices coming off the wing.

29.4 The quoted take off speed for the Cessna 150 with mass 681 kg is about 120 km h−1, and the take
off length is 225 m in about 20 s. Assuming that the engine power is maximal and a constant 75 kW,
calculate the fraction of this power that is converted into thrust. Calculate the take off time and compare
with the quoted value. Any comments?

29.5 Determine how the calculations in section 29.6 are modified when air is assumed to be a barotropic
compressible fluid which asymptotically has constant density ρ0.

29.6 Calculate lift and drag when it is not assumed that the wake is cut orthogonally to the asymptotic
velocity.

∗ 29.7 Show explicitly that the sheet vortex field (29.55) has circulation

� =
∮

C
v · d� =

∮
A

d� (29.92)

where C is an arbitrary curve completely surrounding the airfoil A.

∗ 29.8 Show that ∫ 1

0

1

(1 − t)
√

t (1 − t)
log

|t − x|
1 − x

dt = −2π, (29.93)

for 0 < x < 1.

∗ 29.9 Assume that the chord line beginning in x = 0 has vertical tangent. (a) Show that if the airfoil is
smooth near x = 0 then

y±(x) = ±a
√

x + 2λx +�
(

x3/2
)

(29.94)

where a and λ are constants. (b) The simplest example of a thin wing camber function fulfilling the various
conditions is therefore,

y(x) = 2
λ

c
x(c − x). (29.95)

Calculate the zero-lift angle α0 for this airfoil as a function of λ.

∗ 29.10 Consider the N-dimensional diffusion equation in the variables x = (x1, . . . , xN )

∂F

∂t
=

N∑
n=1

∂2 F

∂x2
n
. (29.96)

(a) Show that with initial data F(x, 0) = F0(x), the solution at time t is

F(x, t) = (4π t)−N/2
∫

F0(y) exp

(
− (x − y)2

4t

)
d N y (29.97)

where (x − y)2 = ∑
n(xn − yn)

2.

(b) Show that if F0(y) is bounded or decreases at least as rapidly as a Gaussian for |y| → ∞, the the
solution for t → ∞ is

F(x, y) = (4π t)−N/2 exp

(
− x2

4t

)∫
F0(y) d N y. (29.98)
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∗ 29.11 Find all solutions to (
sin2 θ

d2

dθ2
+ cos θ sin θ

d

dθ
− n2

)
f = 0. (29.99)
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T he conser vat i on of energy i s one of t he m ost f undament al l aw s of physi cs. I t fi r st ar ose as an al m ost t r ivi al
consequence of N ew t on’s e quat i ons of mot i on but wa s l at er expanded i nt o t he pr esent a l l - embr aci ng not i on
dur i ng t he deve l opment of t her m odynami cs by C a r not , J oul e, Ke l vi n, C l a usi us a nd ot her s i n t he m i ddl e of
t he ni net eent h cent ur y. T her m odynami cs has t ur ned out t o be one of t he m ost dur abl e physi cal t heor i es ever
const r uct ed. A l t hough t he basi c l aw s ar e ext r emel y si mpl e, t he f undament al concept s ar e abst r act and of t en
hard to connect with the complex reality of physics and chemistry, and t hermodynamics is often perceived
as ve r y di ffi cul t at t he fi r s t e ncount er.

The Fi rs t L aw of T herm odynam i c s states that there exists an abstract quantity, called energy , which
i s i ndependent of t he pr evi ous hi st or y of t he syst em, a nd w hi c h does not change w i t h t i m e f or an i s ol at ed
syst em. E nergy i s abst r act i n t he s ense t hat w e cannot af t er war ds t el l how i t was put i nt o t he s yst em, w het her
by heat , by work or by ot her means. T he Second L aw of T herm odynam i c s st at es t hat t here i s anot her abst r act
quantity, called ent ropy , w hi ch i s l i kew i s e i ndependent of t he pr e hi st or y of t he syst em, a nd w hi c h cannot
di mi ni sh w i t h t i m e f or a s yst e m i n i sol a t i on. E nt r opy i s per haps best under s t ood as a m easur e of di sorder ,
informing us about the par tition of t he stored en ergy between the r andom motion of molecules t hat w e call
heat and other forms of energy more directly convertible to work. T he inexorable growth of entropy with
t i m e par al l e l s t he i nt ui t ive not i on t hat di s or der s pont aneousl y i ncr eases f or a syst em i n i s ol at i on.

I n t hi s chapt e r onl y t he F i r s t L aw of T her modynami cs f or c ont i nuous syst ems i s di s cussed, compl e t i ng
t her eby t he anal ysi s of l aw s of bal a nce begun i n chapt e r 22. For m or e c ompl et e pr e sent at i ons of cont i nuum
thermodynamics and the Second Law, see [7, 14, 37, 24, 72]. Convection, the dynamic interplay of flow
and heat , w i l l be t r eat ed i n chapt e r 31.

30.1 Energy balance
The First Law of Thermodynamics postulates (1) that the energy � of a physical system is only a function
of the instantaneous state, i.e. of the macroscopic fields which characterize the state of the system, and (2)
that energy is conserved in a system that is isolated from its environment. For a non-isolated system, any
change in energy can therefore be accounted for by the actions of the environment. In terms of the heat Q
transferred to the system and the work W performed on the system, the First Law takes the form,

�� = Q + W. (30.1)

Whereas heat and work may depend on the history of how the environment interacted with the system, their
sum does not, because energy is only a function of the instantaneous state. If the environment can influence
the system in other ways, for example through chemical reactions, further terms have to be included on the
right-hand side.
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F i rs t La w i n co nti nuum phy s i cs
C ont i nuous syst ems ar e of cour se al so physi cal syst ems, so t he F i r st L aw m ust by defaul t be val i d i n
continuum physics, provided the po ssibility of material fl ow t hrough the s urface of the control volume i s
t a ke n pr oper l y i nt o account . I n a n a r bi t r ar y m ovi ng c ont r ol vol ume, t he F i r st L aw t ur ns i nt o an equat i on of
bal a nce f or t he m at er i a l r at e of c hange of t he t ot al energy,

D�

Dt
= Q̇ + Ẇ , ( 30. 2)

where Q̇ is the rate at which the environment transfers heat to the system, and Ẇ is the rate of work
per f or m ed on t he s yst e m by t he envi r onment .

It is a basic assumption i n continuum physics t hat energy i s an extensive quantity, t ransported by
material particles. The energy of a control volume is as any other extensive quantity an integral,

� =
∫

V
ρ ε dV, ( 30. 3)

w her e t he energy densi t y ρ ε = d�/dV  i s t he pr oduct of t he mass densi t y ρ and t he speci fic energy
ε = d�/d M . T he mat e r i al t i m e der ivat ive of t he energy t hen obeys R eynol ds t heor e m ( 22. 10) w i t h q → ε ,

D�

Dt
= d�

dt
+

∮
S
ρ ε (v − vS) · d S. ( 30. 4)

T he l ast t er m r epr e sent s t he net out fl ow of e nergy f r om t he cont r ol vol ume.

Rate of wo rk
T he e nvi r onment can per f or m wor k on a s yst e m t hr ough l ong- r a nge body f or ces such as gr avi t y and
el ect r omagnet i s m, and t hr ough cont act f or ces act i ng on t he sur face of t he cont r ol vol ume. T he r at e of
work of the contact forces is,

Ẇ =
∮

S
v · σσσ · d S, (30.5)

where σσσ = {σi j } is the stress field. If external body forces, for example gravity, also act on the material
in the control volume, their rate of work must be added to the right-hand side. Alternatively, a static
ext e r nal gr avi t a t i onal fi el d can be i ncl uded a s a pot ent i a l e nergy t er m i n t he t ot a l e nergy ( see s ect i on 22. 8 on
page 318), and the same is possible for external electrostatic forces. When all body forces are ‘internalized’
as potential energy, we only need to account for the environment’s work on the system through contact
forces, as given by the above expression. We shall assume this to be the case in the following.

Rate of heat transfer
The everyday experience of handling a hot potato tells us that heat can be carried along with the movement
of matter, but that possibility is already taken care of in the equation of energy balance (30.2) through the
use of the material derivative, effectively turning the arbitrary control volume into a comoving volume.
When we heat water to make tea, it becomes equally clear that heat can also be conducted through the
solid bottom of the kettle. Heat transfer by conduction is not an advective transport phenomenon tied to the
motion of material particles, but is rather a diffusion process by which the warmer material particles of the
wall ‘infect’ the colder particles of the water with heat.

Macroscopically we describe the flow of heat through a surface by a current density (vector) field
q(x, t), defined such that the amount of heat which flows through a surface element d S in the time interval
δt is δQ = qδt · d S. The total rate of heat transfer into the system thus becomes,

Q̇ = −
∮

S
q · d S +

∫
V

h dV, (30.6)

where we have also allowed for the possibility that heat may be produced at a rate h(x, t) per unit of volume
by chemical, nuclear or other processes.
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Example 30.1.1 (Geothermal heat flow): The Earth produces heat in the interior by radioactivity, and
the average geothermal heat current is qc ≈ 0.06 W m−2 for the continents and qs ≈ 0.10 W m−2

for the seas [34, p. 192]. Given that the Earth’s mean radius is a = 6371 km, and that the
continents cover a fraction f ≈ 29% of the surface, the total rate of heat flow out of the Earth is∮

S q · d S = 4πa2( f qc + (1 − f )qs) ≈ 45 × 1012 W. For comparison, the present world power

consumption is about 13 × 1012 W.

Internal energy and heat equation
Separating out the kinetic energy � and the potential energy � , we shall write the total energy as,

� = � + � + �, (30.7)

where the remainder � is called the internal energy. Since energy is an extensive quantity, the internal
energy must also be an integral over a density,

� =
∫

V
ρ u dV, (30.8)

where u = d�/d M is the specific internal energy. Using the usual expressions for the kinetic energy
(22.34) and the potential energy (22.50) the specific total energy becomes

ε = 1

2
v2 +�+ u. (30.9)

At this point we do not know the nature of the system and cannot be more explicit about the precise form
of the specific internal energy.

Using energy balance (30.2) and mechanical energy balance (22.53) we obtain

D�

Dt
= D�

Dt
− D�

Dt
− D�

Dt
= Ẇ + Q̇ − P̃,

where P̃ is the reduced power, i.e. the total power (22.37) without the contribution due to the rate of work
of gravity. Assuming as before that there are no other volume forces at play than static gravity, this reduces
to the global equation of internal energy balance,

D�

Dt
= Q̇ + Ẇint, (30.10)

where Wint is the rate of work against internal stresses (22.38). It represents the rate at which kinetic energy
is converted into internal energy by internal stresses, also called dissipation.

Transforming the surface integral in (30.6) into a volume integral by means of Gauss’ theorem, and
making use of (22.11) with q → u, it follows that the specific internal energy must obey the local equation,

ρ
Du

Dt
= −∇ · q + h +

∑
i j

σi j ∇ j vi , (30.11)

where the last term is the density of dissipation. Given explicit expressions for the specific internal energy
u, the current of heat conduction q, the rate of heat production per unit of volume h, and the internal stress
field σσσ , this equation becomes a dynamic equation for the temperature field, called the heat equation. Jean Baptiste Joseph Fourier

(1768–1830). French scientist
who made fundamental contribu-
tions to mathematics (Fourier se-
ries) and to the theory of heat.

30.2 Heat equation for isotropic matter at rest
The Second Law of Thermodynamics implies that in an isolated system heat will spontaneously stream
from regions of higher to regions of lower temperatures (and conversely: this general rule is equivalent
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to the Second Law). We expect for this reason that the heat flow q is locally related to the gradient of the
temperature field ∇T . In isotropic matter, the simplest local relationship is Fourier’s law of heat conduction,

q = −k∇T, (30.12)

where the sign has been chosen so that heat is conducted from hot to cold. The positive constant k is called
the thermal conductivity of the material, and is measured in units of watts per kelvin per metre. For water it

is k ≈ 0.6 W K−1 m
−1

and for air k ≈ 0.025 W K−1 m−1.
In the following we shall always assume Fourier’s law to be valid.

Example 30.2.1 (Geothermal gradient): The average continental geothermal heat flow is qc ≈
0.06 W m−2 [34]. Taking the thermal conductivity of bedrock to be k ≈ 2 W K−1 m−1 [41], the
average geothermal temperature gradient in the upper crust becomes |∇T | ≈ qc/k ≈ 0.03 K m−1, or
30 kelvin per kilometre. It must be emphasized that the geothermal gradient varies strongly from place
to place because of variations in the composition of the upper crust.

Fourier’s equation
The simplest of all materials is an incompressible homogeneous isotropic fluid (or solid) at rest with
constant mass density field, ρ = ρ0. In such a material there is only one free thermodynamic variable,
which may be taken to be the temperature field T = T (x, t), and any other local thermodynamic quantity,
for example the specific energy u = u(T ), becomes a local function of the temperature. We shall for
simplicity assume that the specific energy is linear in the temperature, u = c0T , or at least linear in a
certain temperature range. The constant c0 is the specific heat capacity of the material, defined as the
amount of heat necessary to raise a unit of mass by one unit of temperature1.

Inserting u = c0T and v = 0 into the equation of local internal energy balance (30.11), and using
Fourier’s law of heat conduction (30.12), we obtain the heat equation for isotropic matter at rest,

ρ0c0
∂T

∂t
= k∇2T + h. (30.13)

Dividing by ρ0c0 it takes (for h = 0) the form of a standard diffusion equation, called Fourier’s equation

∂T

∂t
= κ∇2T, (30.14)

with heat diffusivity,

κ = k

ρ0c0
. (30.15)

For water we have κ ≈ 1.4 × 10−7 m2 s−1 which is about 6 times smaller than the momentum diffusivity
(kinematic viscosity) ν. Somewhat surprisingly, the heat diffusivity of air turns out to be 140 times larger
than for water (see page 475).

Why is it then that we use air for insulation in thermoglass windows, bed covers and winter coats—
rather than sleeping and walking in wetsuits? The explanation is that although heat diffuses about
140 times quicker in air than in water, the actual heat current (30.12) is for a given temperature
gradient not determined by the diffusivity but by the thermal conductivity, k, which is about 25 times
larger in water than in air. Consequently, you lose less heat in a fur coat than in a wetsuit even if
the cold penetrates the fur coat much faster. The role of a fur coat or wetsuit is mainly to prevent
advection of heat by air or water currents which will rapidly remove the warm fluid adjacent to your
skin, increasing thereby the temperature gradient at the skin and thus the heat flow from your body.

1There is a small ambiguity of language when we use the verb ‘heat’ to mean both to ‘raise the temperature’ and
to ‘add heat’. It is perfectly possible to add heat to a system without raising its temperature, for example when boiling
water. Conversely, the temperature may rise without heat transfer when you pump your bicycle tyre.
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H eat diffusion time
T he a nal ogy bet w een Four i e r ’s e quat i on ( 30. 14) and t he pl anar moment um di ff usi on e quat i on ( 17. 5) on
page 232 al l ow s us i mmedi at el y t o t ake t he sol ut i on ( 17. 12) and a dapt i t t o a uni f or m pl anar G a ussi an
temperat ure distribution i n t he yz-plane. L et the planar temperature field initially at t = 0 be G aussi an,
T = T0 + � ex p(− x 2/a 2) , where � is the temperature excess at x = 0. At a l at er t i me t he t emperat ure
field will then be,

T ( x, t) = T0 +� a√
a 2 + 4κ t

ex p

(
− x 2

a 2 + 4κ t

)
. ( 30. 16)

I t may of c our se be ve r i fi e d by di r ect i nser t i on t hat t hi s s ol ut i on i ndeed sat i s fi e s Four i e r ’s e quat i on. T he x

T

Heat di ff usi on makes a G aussi an
temperature distribution widen
and diminish i n hei ght as time
goes by.

temperat ure distribution t hus remains Gaussian at al l times with a width that grows like
√

a 2 + 4κ t with
t i me. S i nce t he envi ronment t ransfers no heat t o t he s yst em and performs no work on i t ( because t he mat eri al
is everywhere at rest), the t ot al internal energy in the heat ed material must remain constant while it spreads
away f r om t he cent r al r egi on ( pr obl em 30. 1) .

At large times, t � a 2/4κ , t he Gaussi an fact or exp(− x 2/4κ t) becomes unive r s al f or a l l bounded
t emper at ur e di s t r i but i ons. T he st r ong fal l - off of t he G aussi an makes i t appear as i f t he t emper at ur e excess
� T = T − T0 expands w i t h a w el l - defi ned f r ont . A t t he di st ance x = 2

√
κ t t he G aussi an has fal l en t o

e−1 ≈ 37% of i t s cent r al va l ue. D e pendi ng on t he a ppl i cat i on i t m ay be mor e conveni e nt t o choose a mor e
conser va t ive f r ont , f or exampl e x = 3. 5

√
κ t w her e t he G a ussi an i s onl y a bout 5% of i t s cent r al va l ue.

Conversel y, one may al s o charact eri ze heat di ff us i on by t he charact eri s t i c t i me i t t akes for t he front t o
reach a di s t ance x = L � a . At t he 37% level, this time becomes,

t ≈ L 2

4κ
. ( 30. 17)

For a more conservative defi nition of t he front, a correspondingly smaller estimate may be used, f or example
t ≈ L 2/12κ for t he 5% l evel . S uch est i mat es are i n fact very general and may be used t o get an i dea of t he
heat di ff usi on t i m e i n any syst em.

E xamp l e 30. 2. 2 ( Hot p orri d ge) : E ver ybody has pai nf ul l y l ear nt ear l y i n l i f e t hat t he cent r e of a bow l
of hot por r i dge may r emai n hot f or a l ong t i m e, even as t he per i pher y gr ow s c ol d. Ta ki ng t he heat
di ff usivi t y of por r i dge t o be equal t o t hat of wat er, t he t i m e i t t akes f or a spher i cal bal l of hot por r i dge
of r a di us a ≈ 5 c m t o r each r oom t e mper at ur e i s e st i m at ed f r om ( 30. 17) t o be 4500 s, or about an hour
and a quar t er. Par ent s have f ound a s ol ut i on t o t hi s pr obl em ( s ee exampl e 30. 3. 1 bel ow ) .

Planar heat wave
S i milarly, we may adapt the plane wave solution ( 17. 14). S uppose t he temperature i s f orced to oscillate
sinusoidally in the plane z = 0 w i t h per i od τ and amplitude � ar ound t he m ean t emper at ur e T0, such
that T = T0 + � cos(2π t/τ) at z = 0. Recasting the solution (17.14) in terms of these variables, with
ω → 2π/τ and k → 1/d , it becomes a damped heat wave in which the temperature at depth z is,

T = T0 +� e−z/d cos

(
2π

t

τ
− z

d

)
, d =

√
κτ

π
, (30.18)

where d is the penetration depth. The corresponding wavelength is λ = 2πd , and at a depth of one
wavelength the damping factor is e−2π = 1.8 × 10−3.

Example 30.2.3 (Annual soil temperature variation): The surface temperature of soil follows the
annual variations in atmospheric temperature with period τ = 1 year = 3.2 × 107 s. The thermal
conductivity of soil consisting of sand, stones, and clay, is probably not unlike that of water with, say,
k ≈ 0.5 W K−1 m−1, density ρ ≈ 2 g cm−3, and specific heat capacity about c0 ≈ 2 J g−1 K−1,
implying a heat diffusivity of around κ ≈ 1.3 × 10−7 m2 s−1, which is nearly identical to that of
wat er. T he s oi l penet rat i on dept h becomes d = 1. 1 m , m eani ng t hat t he ampl i t ude of t he t emper a t ur e
variations at this depth has fallen to e−1 = 37% of t he s ur face ampl i t ude ( s ee fi gur e 30. 1) . S i nce t he
wavelength is 2π ≈ 6 times the penetration depth, the surface temperatures will be delayed by about 2
months at z = d .
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Figure 30.1. Calculated ground penetration of mean summer and winter temperatures in Denmark as a
function of depth z (example 30.2.3). It takes nearly two months to penetrate one metre of depth, and
beyond z = 5 m there is no yearly variation.

Denmark for example, has a temperate Northern climate with mean temperature T0 ≈ 8 ◦ C and a
yearly variation of � ≈ 8 ◦ C. Freezing temperatures occur often in winter, even if the average barely
gets below 0 ◦ C, but a freezing spell will have to last more than 2 months to penetrate to a depth of
one metre, and that is highly improbable. Frost-free depth is accordingly defined to be 90 cm for water
mains and the foundations of houses.

Steady planar heat flow
Suppose a slab of isotropic material at rest is enclosed between two infinitely extended flat plates held at
different temperatures, T0 and T1 = T0 +�. The planar symmetry suggests that the temperature field only
depends on the transverse coordinate, T = T (x). Inserting this into Fourier’s equation we obtain ∇2

x T = 0
which has the solution

� x
0 d

T0 T1

�
�
�
�
�

Steady heat flow between parallel
plates at different temperatures.
The plates continue far above and
below the section shown here.
The fluid is at rest and there is no
gravity.

T (x) = T0 +� x

d
, (30.19)

where d is the distance between the plates. Although heat conduction is necessary for establishing a flow
of heat, the final distribution does not depend on the value of the coefficient of thermal conductivity. As we
shall now see, thermal conductivity determines instead the time scale for the appearance of a steady flow
pattern. This is completely analogous to velocity-driven planar flow between moving plates which does not
depend on the viscosity (section 17.2 on page 231), although viscosity does determine the time scale for the
flow to settle down into a steady pattern.

Steady heat production
If heat is produced at a constant rate h per unit of volume and if the environment has constant properties, an
equilibrium will eventually be attained in which the heat produced in a volume equals the amount of heat
that leaves the volume. The temperature field will then become time-independent and obey the steady heat
equation (30.13),

k∇2T + h = 0. (30.20)

Given the heat production and suitable boundary conditions this equation determines the temperature
distribution. Often h will itself vary with temperature because the heat producing processes are temperature-
dependent.

Suppose nevertheless that heat is produced at a fixed rate h(x, t) = h0 inside a sphere of radius a,
making the total heat rate Q̇ = (4/3)πa3h0. The spherical solution to the steady heat equation (30.20) then
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becomes,

T = Ts + h0

6k
(a2 − r2), (30.21)

where Ts is the (constant) surface temperature. The temperature is (naturally) highest in the centre for
h0 > 0. Averaging over the sphere, the mean temperature becomes (see problem 30.3),

〈T 〉 = Ts + h0

15k
a2. (30.22)

The average temperature excess in the sphere is thus 2/5 of the temperature difference between the centre
and the surface.

Example 30.2.4 (Geothermal heat production): The total geothermal heat output of the Earth
is Q̇ ≈ 45 × 1012 W (see example 30.1.1), implying an average (radioactive) heat production rate
h0 ≈ 4 × 10−8 W m−3. If the Earth were made from uniform material with k ≈ 2 W K−1 m−1, the
central temperature excess would be Tc − Ts ≈ 140 000 K. This estimate fails miserably in comparison
with geophysical models which place the central temperature at 4000–6000 K, demonstrating that the
Earth is a highly non-uniform object with respect to heat transfer. In the liquid mantle rapid convection
rather than slow conduction is the dominant mechanism of heat transfer, although thermal conductivity
also increases with depth.

Example 30.2.5 (Human skin temperature): The average heat output from a human being is
Q̇ ≈ 100 W (for example used for dimensioning cooling systems for concert halls). With a typical mass
of M ≈ 70 kg and density equal to that of water ρ0 ≈ 1000 kg m−3 the volume becomes V = 0.07 m3,
implying an average heat production density rate h0 ≈ 1.4 kW m−3. In the ‘spherical approximation’ a
human body of this mass would have radius a ≈ 0.25 m, and using (30.22) with k = 0.6 W K−1 m−1

we obtain the difference between the average temperature and the skin temperature 〈T 〉 − Ts ≈ 10 K.
Taking 〈T 〉 = 37 ◦ C, the skin temperature is predicted to be 27 ◦ C. The conclusion is that a naked
human being should be able to survive ‘indefinitely’ in water of this temperature, a result which agrees
decently with common experience (see also problem 30.6).

30.3 Heat equation for fluids in motion
The dominant effect of the velocity of a moving fluid is advective transport of internal energy, expressed
through the material derivative on the left-hand side of the equation of local internal energy balance (30.11).
The last term on the right-hand side also depends on the velocity but it only plays a role for compressible
or viscous fluids. Even then, dissipative heating will only be important under extreme circumstances, for
example at the leading edges of a supersonic aircraft or a spacecraft re-entering the atmosphere.

Incompressible inviscid fluid
For an incompressible inviscid fluid the heat equation takes (in the absence of heat production) almost the
same form as Fourier’s equation (30.14),

∂T

∂t
+ (v · ∇)T = κ∇2T . (30.23)

The extra advective term on the left-hand side expresses that heat moves along with the flow of matter,
whereas the right-hand side expresses that it also streams down temperature gradients as for a fluid at rest.
We shall see below that this heat equation can essentially always be maintained when the fluid is nearly
inviscid and the flow speed is small compared to the velocity of sound.
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The P écl et number
The time it takes for heat to be advected by the fl ow of fluid with velocity U t hr ough a di s t a nce L
is tad v ∼ L/ U w her eas t he t i m e i t t akes f or i t t o di ff use t hr ough t he s ame di s t ance i s t diff ∼ L 2/κ ,
di sr egar di ng al l pur el y numer i c fact or s. T he r at i o of t he t i m e s cal es f or di ff usi on and fl ow i s an i m por t ant
dimensionless quantity, called the Pécl et number , Pe ∼ tdiff/ t ad v ∼ U L/κ .

Mor e f or m al l y, a nd i n anal ogy w i t h t he R eynol ds number, t he P écl et number i s defi ned t o be t he r at i o
of t he a dvect ive t o di ff usive t e r m s i n t he heat equat i on,Jean- C l a ude E ugene P écl et

( 1793–1857) . French physi ci st .
O ne of t he first schol ars of E col e
N orm al e ( Pari s) ; know n f or hi s
cl ari t y of st yl e, sharp- m i nded
vi ew s and w el l - perf orm ed
experi m ent s.

Pe = |(v · ∇) T |∣∣∣κ∇  2 T
∣∣∣ ≈ U L

κ
. ( 30. 24)

T he val ue of t he P écl et number det ermi nes w het her heat fl ow i n a fl ui d i s domi nat ed by advect i on or by
conduct i on. For l arge P écl et number s t he r i ght - hand s i de of t he heat equat i on ( 30. 23) can be di sr egar ded,
and t he heat equat i on now si mpl y says t hat t he t emper at ur e i s const ant ar ound any comovi ng m at er i al
particle. T he smallness of t he heat di ffusivity in most material s usually makes t he P écl et number qui t e
l a rge f or fl ow s of or di nar y di mensi ons and fl ow speeds. For s mal l P écl et number, t he advect ive t erm can be
di sr egar ded, and t he heat equat i on r ever t s t o t hat of a fl ui d at r est .

E xamp l e 30. 3. 1 ( C ool i n g h ot p orri d ge) : T he par ent a l s ol ut i on t o t he pr obl em of t he hot por r i dge ( s ee
exampl e 30. 2. 2) i s t o st i r i t a f ew t i m es w i t h a s poon. S t i r r i ng set s t he por r i dge i nt o mot i on a nd t he heat
( or r at her t he i nt e r nal energy) i s car r i ed al ong w i t h t he por r i dge by advect i on. Mi xi ng t he hot and c ol d
regions increases the local temperature gradients, resulting in a large diffusive heat flow which quickly
evens out t he t emper a t ur e di ff er ences and m akes t he por r i dge eat abl e . D ur i ng s t i r r i ng, l a yer s of hot and
cold porridge are interwoven with each other, lowering the typical distance scale to perhaps L = 1 cm.
Taking U = 10 cm s−1 and the diffusivity to be approximatively that of water, κ ≈ 1.4×10−7 m2 s−1,
we find a Péclet number of Pe ≈ 7000, showing that heat conduction can safely be ignored while you
stir. Diffusive cooling due to the larger temperature gradients mainly takes place when you stop stirring
after a few seconds. The heat diffusion time (30.17) in the stirred porridge is now estimated to be of the
order of minutes.

Compressible ideal gas
In section 22.9 on page 319 we calculated the specific internal energy (22.60) of a compressible ideal gas
with adiabatic index γ ( s ee al so appendi x C ) . A s f or i ncompr essi bl e fl ui d, t he s peci fi c energy densi t y was
found to be linear in the absolute temperature2,

u = cvT, cv = 1

γ − 1

R

Mmol
, (30.25)

where the constant cv is the specific heat at constant density (i.e. volume). It represents—as the first equation
shows—the amount of energy that is necessary to raise a unit of mass of the gas by one unit of temperature.
If the density (volume) is held constant, so that no work is performed on the gas, this is the same as the
amount of heat that must be transferred to a unit mass of the gas to raise its temperature by one unit.

If on the other hand the pressure is held constant, the amount of heat that must be transferred to a unit
mass of the gas to raise its temperature by one unit is instead,

cp = cv + R

Mmol
= γ

γ − 1

R

Mmol
, (30.26)

called the specific heat at constant pressure or the isobaric specific heat.
Disregarding viscous friction and heat production, local internal energy balance (30.11) becomes,

ρcv

(
∂T

∂t
+ (v · ∇)T

)
= k∇2T − p∇ · v, (30.27)

2Although this expression was derived under the assumption of adiabatic (isentropic) processes, it must be correct in
general because energy is only a function of the final state and not of the particular road that leads to this state, whether
adiabatic or not.
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w her e t he pr essur e i s give n by t he i deal gas l aw, p = ( R/ Mmo l)ρ  T . T he fi r st sour ce t e r m on t he r i ght -
hand si de r epr esent s t he l ocal i nfl ow of heat by conduct i on w her eas t he l ast r epr esent s t he wor k of l ocal
compressi on (because i t i s posi t ive when ∇ ·v < 0). We shall justify below that if the fl ow velocity is much
smal l er t han t he speed of sound, t he l ocal compr essi on sour ce can be ‘ m oved over ’ t o t he l ef t - hand si de,
r epl aci ng t he s peci fi c heat at const ant vol ume by t he s peci fi c heat at const ant pr essur e,

ρ cp

(
∂ T

∂ t
+ (v · ∇) T

)
= k ∇  2 T . ( 30. 28)

I t i s of t he s ame f or m a s f or an i ncompr e ssi bl e fl ui d, except f or t he use of t he s peci fi c heat at const a nt
pr essur e, but i t shoul d be r emember ed t hat t hi s i s onl y an appr oxi mat i on ( val i d at smal l fl ow speeds) t o t he
cor r ect equat i on ( 30. 27) .

T he heat di ff usivi t y i s now defi ned as,

κ = k

ρ cp
. ( 30. 29)

For air at nor mal t emperature and pressure, we have κ ≈ 2 × 10−5 m2 s−1 w hi c h a s m ent i oned bef or e i s
about 140 t i m es l a rger t han t hat of wa t e r.

Deriva tion of the heat equa tion (30.28)

Using the equation of state p = ( R/ Mmo l)ρ  T we get,

Dp

Dt
= R

Mmo l

(
Dρ

Dt 
T + ρ 

DT

Dt

)
= −p ∇ · v + ( cp − cv)ρ  

DT

Dt
.

I n t he l ast s t e p w e have used t he equat i on of c ont i nui t y ( 15. 28) t o el i m i nat e t he densi t y der iva t ive . T he heat
equation (30. 27) may now be written

ρ cp
DT

Dt
− Dp

Dt
= k ∇ 2 T . ( 30. 30)

For steady nearly ideal flow and in the absence of gravity, Bernoulli’s theorem (16. 15) relates a change in
pr essur e t o a c hange i n fl ow vel oci t y, � p ≈ −1/2ρ�(v2) . A change in the absolute temperature is related
to a change in the velocity of sound (16.9), from which we get �T ∼ �(c2

s )Mmol/Rγ . The ratio of the
two terms on the left-hand side of the heat equation may thus be estimated as,∣∣∣∣ Dp

Dt

∣∣∣∣∣∣∣∣ρcp
DT

Dt

∣∣∣∣ ≈ �p

ρcp�T
∼ �(v2)

�(c2
S)

∼ v2

c2
S

. (30.31)

In the last steps we have disregarded all factors of order unity. This argument suggests that the material
pressure derivative can be disregarded in steady flow at high Reynolds number as long as the flow speed is
much smal l er t han t he speed of sound ( w hi ch al so makes t he fl ow eff ect ivel y i ncompr essi bl e; see s ect i on
16. 4 on page 213). For general unsteady fl ow there w ill be further conditions on the r ate of change of the
pressure, ∂p/∂t , and on the field of gravity (see [7] for a more careful discussion).

General isotropic fluid
In a general isotropic fluid, the specific internal energy will depend on both the temperature and the mass
density, u = u(T, ρ), and derivation of the heat equation becomes considerably more involved, requiring
the full apparatus of thermodynamics. An account close in spirit to the presentation in this chapter is found
in [7]. The end result is that for nearly inviscid and nearly incompressible flows the heat equation again
takes the form (30.28) with heat diffusivity determined from the isobaric specific heat of the fluid (30.29). In
liquids there is not a great difference between the specific heats at constant volume and at constant pressure.

The internal friction caused by the stresses in a viscous fluid leads to a loss of kinetic energy which
reappears as source of internal energy (i.e. internal work) in the last term in the equation of internal energy
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bal a nce ( 17. 30) . I ncl udi ng t he di ssi pat ive pow e r densi t y ( 17. 18) f or gener al N ew t oni an fl ui ds, t he heat
equat i on becomes,

ρ cp

(
∂ T

∂ t
+ (v · ∇) T

)
= k ∇  2 T + h + 2η

∑
i j

v 2i j  + ζ(∇ · v)  2 ( 30. 32)

where h i s t he l ocal r a t e of heat pr oduct i on, vi j  the symmetric strain rate (17. 29), η t he s hear vi scosi t y and
ζ is the bulk viscosity.

I n most ever yday fl ow s heat pr oduct i on by di ssi pat i on w i l l be negl i gi bl e i n compar i s on w i t h advect i on
and conduct i on. I n ext r eme s i t uat i ons w i t h st r ong compr essi on and s hear, t emper at ur es can become
ext r emel y hi gh. A hyper s oni c obj ect l i ke a ‘ s hoot i ng s t a r ’ may eve n bur n up c ompl et el y w hen e nt er i ng
t he a t m ospher e at mor e t han 10 km s−1 .

30.4 Advective cooling o r heating
W hen you t a ke a wal k on a col d day, your heat l oss i s ampl i fi ed by w i nd w hi c h r emove s t he wa r m ai r
near your body and creates a l arge temperature gradient at t he surface of the skin, resulting i n a larger
conduct ive heat t r ansf er f r om your body t o t he a i r. I n m et eor ol ogy t hi s i s know n as wind chill, a nd t he l ocal
‘ w i nd c hi l l t e mper at ur e’ i s of t e n a nnounced by weat her f or ecast e r s dur i ng w i nt e r. A s i m i l a r phenomenon
must of cour se occur i n a hot deser t w i nd, al t hough t he l ocal ‘ w i nd bur n’ i s not a r egul ar par t of a s ummer
weat her f orecast . In a s auna wi t h ai r at 120 ◦ C , i t i s w e l l know n t hat one shoul d not move ar ound t oo fast .

Water chill is even more important . A cold water current movi ng with the same speed and t emperature
as a c ol d w i nd r esul t s i n much st r onger c ool i ng because of t he 25 t i m es hi gher t her m al conduct ivi t y of
wa t e r. T hi s i s w hy you ar e onl y a bl e t o s ur vive nake d f or mi nut es i n st r eami ng wat er at 0 ◦  C w her eas you
may survive for hours in a wind of that temperature. Similarly, hot water scalds you much faster than hot
air of the same temperature.

In this section we shall discuss the limit where the temperature does not influence the motion of the fluid.
In that case the flow of heat takes place against the background of a mass flow, completely controlled by
the external forces that drive the fluid. This limit is often called the limit of forced convection to distinguish
it from the opposite limit, free convection, where the motion of the fluid is entirely caused by temperature
di ff erences (t o be di s cussed at l engt h i n chapt er 31).
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Pr � 1

Pr � 1

�

Advective cooling of a plate with
wind coming in from the left.
The boundary for the mass flow
(solid line) and the heat fronts
(dashed) for large and small
Prandtl numbers.

Advective cooling (or heating) of the surface of a body involves both momentum and heat diffusion along
the normal to the surface. In a time t after the start of the flow, momentum diffusion reaches a characteristic
distance δmass ∼ √

νt from the surface whereas heat diffusion reaches δheat ∼ √
κ t . The ratio between

momentum and heat diffusivities is for this reason an important dimensionless quantity, called the Prandtl
number,

Pr = ν

κ
. (30.33)

When the Prandtl number is large, temperature variations will take place well inside the usual boundary
layer, whereas if the Prandtl number is small, the temperature distribution spreads well beyond the boundary
layer.

In contrast to other dimensionless numbers, for example the Reynolds or Péclet numbers, the Prandtl
number is a property of the fluid rather than of the flow. In gases it is of order unity, for example
Pr = 0.73 for air at normal temperature and pressure. In liquids it may take a wide range of values:
in water it is about 6, whereas in liquid metals it is quite small, for example 0.025 for mercury. For
isolating liquids like oil it may be quite large, of the order of 1000.

Wind chill estimate
In a steady flow with velocity scale U boundary layers will stop growing after the time t ∼ L/U it takes
for the fluid to move across the downstream length L of the body. The scale of the heat boundary layer
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t hi ckness t hus becomes δh eat ∼ √
κ L/ U , and t he t emperat ure gradi ent at t he s urface i s expect ed t o be

|∇ T | ≈ �/δh eat , where � i s t he t emper a t ur e excess of t he body r e l a t ive t o t he fl ui d a t l arge. F r om
Four i e r ’s l aw ( 30. 12) w e est i m at e t hat t he r a t e of l oss of heat f r om a body sur face of ar ea A is,

Q̇ ∼ k
�

δheat
A ∼ k� A

√
U

κ L
. ( 30. 34)

We shal l s how bel ow i n an exact cal cul at i on t hat t hi s i s i ndeed of t he r i ght form.
T he m ai n c onsequence of t he above est i m at e i s t hat t he heat l oss gr ow s w i t h t he s quar e r oot of t he

vel oci t y, t hus confi r m i ng t he obser vat i on t hat a hi gher vel oci t y has t he same eff ect as a l arger t emper at ur e
excess. L et t he act ual t emperat ure excess be � = T1 − T0 where T1 i s t he t emper a t ur e of t he exposed
surface and T0 is the wind temperature, and let the actual wind velocity be U . T hen t he heat l oss w i l l be t he
same for a t emperat ure excess �∗ = T1 − T ∗

0 and a wi nd speed U∗ , satisfying �∗√
U∗ = �

√
U . S ol vi ng

for t he (fi ct ive) wi nd t emperat ure T ∗
0 w e fi nd, Paul A l l e n S i pl e ( 1908–68) .

American Antarctic explorer.
A ccom pani ed ( as an E agl e
Scout ) t he first B y rd ex pedi -
t i on t o A nt arct i c a i n 1928–30.
Participated in Byrd’s second
expedition 1933–35 as a chief
biologist. Coined the term ‘wind
chill’ in 1939.

T ∗
0 = T1 − ( T1 − T0)

√
U

U∗ . ( 30. 35)

Apart from corrections for high wind speeds, this is essentially identical to the fi rst wind chill formula
by S i pl e a nd Passel ( 1945) , w ho— af t e r m easur i ng c ool i ng r at es of wa t e r i n pl a st i c cont ai ner s — c hose t he
nominal values T1 ≈ 33 ◦ C and  U∗ ≈ 5 m s−1 . T he S i pl e–Passel f or mul a wa s used by t he U S N at i onal
Weat her Servi ce f r om 1973 but was i n 2001 r e pl aced by a m or e c onser va t ive expr essi on based on m oder n
t heor y and exper i ment s.

E xamp l e 30. 4. 1: At 0 ◦ C a w i nd speed of U = 10 m s−1 cor r e sponds t o a fi ct ive w i nd t emper a t ur e of
T ∗

0 ≈ −14 ◦ C accordi ng t o ( 30. 35). T he modern formul a yi el ds i nst ead T ∗
0 ≈ −7 ◦ C.

H e a t flow i n t he Bl a s i us bo unda ry l a yer
T he s i m pl est m odel of a dvect ive c ool i ng i s f ur ni shed by t he s t eady- fl ow B l a si us boundar y l a yer di s cussed
in section 28. 4 on page 414, with the added condition t hat t he plate i s held at a constant temperature
T = T0 +� which i s different from t he ambi ent t emperature T0 . S i nce by assumpt i on t he mass fl ow i s not
influenced by the heat flow we may take the exact Blasius solution and insert it into the steady fl ow heat
equation,

(v · ∇)T = κ∇2T . (30.36)

In the boundary layer approximation the double derivative ∇2
x can be disregarded in the Laplacian, so that

the equation takes the same form as the Prandtl equation (28.21)

vx
∂T

∂x
+ vy

∂T

∂y
= κ

∂2T

∂y2
. (30.37)

Assuming that the temperature only depends on the scaling variable s = y
√

U/2νx , we may write (a
general discussion of heat flow in boundary layers is found in [61]),

T (s) = T0 +� F(s), (30.38)

where F(s) is a dimensionless function. In the same way as for Blasius’ equation (28.26) it follows that,

F ′′(s)+ Pr g(s)F ′(s) = 0, (30.39)

where g(s) is the Blasius solution (28.23). Solving it with the boundary conditions F(0) = 0 and
F(∞) = 1, we find

F(s) = 1 − H(s)

H(∞) , (30.40)

where

H(s) =
∫ s

0
e−Pr G(u) du, G(s) =

∫ s

0
g(u) du. (30.41)

T he f unct i on F( s) i s pl ot t e d i n fi gur e 30. 2a for three different values of the Prandtl number and illustrates
clearly how the heat front depends on this number. Note that for Pr = 1 we have 1 − F(s) = g′(s) = f (s)
according to (28.26).
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Figure 30.2. (a) The function F(s) for three different values of the Prandtl number. (b) The slope F ′(0) as
a function of Pr. The dashed lines indicate the asymptotic power law behaviours (see problem 30.7).

Total rate of heat loss
The gradient of the temperature field on the plate

∇y T
∣∣
y=0 = �F ′(0)

√
U

2νx
, (30.42)

determines the heat flow qy = −k∇y T according to Fourier’s law. Integrating qy along an area A of the
plate of length L in the x-direction and width A/L in the z-direction, we find the total rate of heat loss,

Q̇ = A

L

∫ L

0
qy(x)dx = −F ′(0)k�A

√
2U

νL
. (30.43)

The slope −F ′(0) = 1/H(∞) is plotted as a function of the Prandtl number in figure 30.2b. Note that
this is not quite of the same form as the previous estimate (30.34) because it has ν instead of κ in the
denominator of the square root. The explanation is that for Pr � 1 the slope varies like the square root
of the Prandtl number, −F ′(0) ≈ 0.8

√
Pr, bringing the estimate into agreement with the exact calculation

(see problem 30.7).

Example 30.4.2 (Human heat loss): The grown-up human body has a skin surface area of about
A ≈ 2 m2. A naked human standing with shoulders aligned with the wind will roughly present a (two-
sided) plate area with L ≈ 0.5 m and A/L ≈ 4 m. For air with Pr = 0.73 we have −F ′(0) = 0.42, so
that in a wind with U = 1 m s−1 and a temperature � = 10 K below the skin temperature we find the
heat loss rate Q̇ ≈ 100 W. Since the human body produces heat at this rate, a skin temperature of 27 ◦ C
can thus be maintained essentially indefinitely in a gentle breeze with velocity 1 m s−1 and temperature
17 ◦ C, not unlike what you find on a Scandinavian beach on a summer day. In this calculation we have
ignored natural convection and evaporative heat losses.

Under the same conditions in water where −F ′(0) = 0.87 the rate of heat loss becomes enormous,
Q̇ ≈ 23 kW, and will almost instantly cool the skin to the temperature of the water. Everybody is
familiar with the (relatively mild) skin shock that is experienced when one jumps into water as warm as
17 ◦ C. At this temperature the loss of heat will eventually lead to severe hypothermia and death in the
course of some hours, depending on what you wear and how you behave.

Problems
30.1 Show that the total internal energy is conserved for planar heat diffusion (30.16).

30.2 Show that the spherical temperature distribution

T (r) = T0 +�
(

a2

a2 + 4κ t

)3/2

exp

(
− r2

a2 + 4κ t

)
(30.44)

is a solution to Fourier’s equation (30.14).
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30.3 Show that the average of rn over a sphere of radius a is,

〈
rn 〉 = 3

n + 3
an . (30.45)

30.4 Consider two plates at y = y1 and y = y2 and fixed temperatures T1 and T2. Show that if there is
incompressible fluid at rest between the plates, the temperature in the fluid is,

T = T1 + (T2 − T1)
y − y1

y2 − y1
. (30.46)

Show that this is also a solution if the fluid is inviscid and moves steadily along x .

30.5 Consider two coaxial cylinders with radii a1 and a2 and incompressible fluid at rest between. Show
that the temperature distribution between the cylinders is

T = T1 + (T2 − T1)
log(r/a1)

log(a2/a1)
. (30.47)

Show that this is also true if the fluid is inviscid and moves steadily along z.

30.6 The blood circulation in the human body actively attempts to maintain constant temperature
everywhere in the body. Consider a ‘spherical human’ of radius a and mass M with constant heat production
h0 everywhere in the body (example 30.2.5). The circulation maintains constant temperature Tc in the core
of the body of radius c < a. Calculate the temperature drop � = Tc − Ts in the skin and estimate its value
for an average ‘skin thickness’ of a − c = 5 cm.

30.7 Show (for heat flow in the Blasius layer) that the asymptotic behaviour of −F ′(0) = 1/H(∞) is

−F ′(0) ≈
{

0.80Pr1/2 Pr → 0

0.48Pr1/3 Pr → ∞. (30.48)
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Convection is a major driving agent behind most of the weather phenomena in the atmosphere, from
ordinary cyclones to hurricanes, thunderstorms and tornadoes. Continental drift on Earth as well as transport
of heat from the centre of a planet or star to the surface are also mainly driven by convection. On a smaller
scale, we use heat convection in the home to create a natural circulation which transports heat around the
rooms from the radiators of the central heating system. The circulation of water in the central heating
system also used to be driven by convection, but is today mostly driven by pumps.

The mechanism behind convection rests on a combination of material properties and gravity. Most
fluids, even those we call incompressible, tend to expand when the temperature is raised, leading to a slight
decrease in density. Were it not for gravity, the minuscule changes in density caused by local temperature
variations would be of very little consequence, but gravity makes the warmer and lighter fluid buoyant
relative to the colder and heavier, and the buoyancy forces will attempt to set the fluid into motion. Such
heat-driven motion is called convection, and will in fact arise naturally in the presence of gravity wherever
there are sufficiently large local variations in the temperature of a fluid.

In this chapter we shall first discuss some examples of steady laminar convection flows driven by
time-independent temperature differences on the container boundaries. Afterwards we shall address the
thermal instabilities characterizing the onset of convection. Of particular interest are the Rayleigh–Bénard
instabilities in a horizontal layer of fluid heated from below.

31.1 Convection
Convection is caused by buoyancy forces in combination with the tendency for most materials to expand
when heated1. The coupled partial differential equations controlling the interplay of heat and motion are
generally so complex that exact solutions are completely out of the question. Numeric simulations are,
however, possible and used wherever practical problems have to be solved. Analytic insight into convection
is mainly obtained from an approximation developed by Boussinesq in 1902.

1Concentration gradients in mixed fluids can also cause convective flow. In this book we reserve the word ‘convection’
to denote a flow that is mainly driven by temperature differences in conjunction with buoyancy, whereas ‘advection’ is
used to denote heat transport in a flow mainly driven by other forces. In practice both mechanisms are at play, and
sometimes it is useful instead to distinguish between free and forced convection.
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Thermal expansion coefficient
The (isobaric) coefficient of thermal expansion is for all kinds of isotropic matter defined as the relative
decrease in density per unit of temperature rise (at constant pressure),

α = − 1

ρ

(
∂ρ

∂T

)
p
. (31.1)

It is a material ‘constant’ and for ideal gases where ρ ∝ p/T one finds α = 1/T , i.e. about α ≈
3 × 10−3 K−1 at room temperature. For most liquids it is also of this magnitude, the exception being
water which has α ≈ 2.5 × 10−4 K−1 at 25 ◦ C. Water is in many respects exceptional with a negative
expansion coefficient between 0 and 4 ◦ C, and a solid phase (ice) that is lighter than the liquid.

Turning the above definition around we may calculate the change in density,

�ρ = −α�Tρ, (31.2)

due to a small change in temperature satisfying |α�T | � 1. In a constant field of gravity g0, this density
change causes an extra gravitational force density, a buoyancy term �ρg0 for �T > 0, to appear on the
right-hand side of the Navier–Stokes equation.

In a flow with velocity scale U , length scale L and temperature variation scale �, the dimensionless
ratio of the buoyancy term to the advective term becomes,

Ri =
∣∣�ρg0

∣∣
|ρ(v · ∇)v| ≈ α�

g0L

U2
. (31.3)

It is called the Richardson number, and when this number is small, advection will dominate over convection.Lewis Fry Richardson (1881–
1953). British physicist. The
first to apply the method of finite
differences to predict weather.

Conversely, when it becomes of order unity the flow will be driven by convection with a typical speed
U ∼ √

α�
√

g0L, which is the product of the small quantity
√
α� � 1 and the free-fall velocity

√
g0L

from height L/2.

The Boussinesq approximation
Valentin Joseph Boussinesq
(1842–1929). French physicist
and mathematician. Contributed
to many aspects of hydrodynam-
ics: whirlpools, solitary waves,
drag, advective cooling and
turbulence.

Suppose an effectively incompressible fluid is initially at rest in constant gravity g0 = (0, 0,−g0) with
constant density ρ0, temperature T0 and hydrostatic pressure p = p0 − ρ0g0z. At a certain time the
boundary temperatures are changed, and the resulting flow of heat changes the temperature in the fluid and
thereby its density, eventually resulting in a convective flow with velocity field v.

The main assumption behind the Boussinesq approximation is that the temperature variations are
small on the scale set by the thermal expansion coefficient, i.e. |α�T | � 1 where �T = T − T0,
and the change in density is to first order given by (31.2) with ρ = ρ0. Adding the buoyancy term
�ρg0 = −ρ0α�T g0 to the Navier–Stokes equation, and cancelling out the normal hydrostatic pressure by
writing p = p0 − ρ0g0z +�p, the Boussinesq equations for an effectively incompressible fluid become,

∂�T

∂t
+ (v · ∇)�T = κ∇2�T, (31.4a)

∂v

∂t
+ (v · ∇)v = −∇�p

ρ0
+ ν∇2v − α�T g0, (31.4b)

∇ · v = 0. (31.4c)

The complete and correct derivation of the Boussinesq approximation is however not without subtlety (see
for example [72, p. 188]).

Steady convection in open vertical slot heated on one side
We have previously (page 472) discussed the steady heat flow in a fluid at rest between two plates, one
of which was situated at x = 0 with temperature T0 and the other at x = d with higher temperature
T1 = T0 + �. The result was that the temperature rises linearly across the slot. If the plates are vertical,
buoyancy forces will act on the heated fluid and unavoidably set it into motion. For definiteness, the plates
are assumed to be large but finite with the openings at the top and bottom connected to a reservoir of the
same fluid at the same temperature T0 as the cold plate. This provides the correct hydrostatic pressure at the
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top and bottom of the slot, a pressure which is necessary to prevent the fluid in the slot from ‘falling out’
under its own weight, even before it is heated. Heating will cause the fluid in the slot to rise and merge with
the fluid in the reservoir, and it seems reasonable to expect that a steady flow of heat and fluid may come
about, in which the fluid rises fastest near the warm plate. The reservoir is assumed to be so large that it
never changes its temperature, except near the exit from the slot.

�

� x

z

0 d

T0 T1�
�

Steady convection between verti-
cal parallel plates held at differ-
ent temperatures. The plates con-
tinue far above and below the sec-
tion shown here.

From the planar symmetry of the configuration we expect that the velocity field is vertical everywhere,
and that it and the temperature field depend only on x ,

v = (0, 0, vz(x)), T = T (x). (31.5)

Under these assumptions, there will be no advective contribution to the heat equation (31.4a), which
becomes ∇2

x�T = 0. The temperature thus varies linearly with x across the slot, and using the boundary
conditions we get,

�T = �
x

d
, (31.6)

just as in the static case (30.19).
From the assumed form of the velocity field it also follows that the advective term in (31.4b) vanishes,

and from the x, y-components of this equation we conclude that ∇x�p = ∇y�p = 0, such that the pressure
can only depend on z. From the z-component we then get

1

ρ0
∇z�p(z) = ν∇2

x vz(x)+ α� x

d
g0.

Since the left-hand side depends only on z and the right-hand side only on x , both sides of this equation
are constant, and since the pressure excess �p must vanish at the top and bottom of the slot, it must vanish
everywhere, �p = 0. Using the no-slip boundary conditions on the plates the solution becomes,

vz = α�g0d2

6ν

x

d

(
1 − x2

d2

)
. (31.7)

Note that the steady flow pattern is independent of the heat diffusivity κ as it would be in forced convection.

Convective velocity profile in
units of the width of the slot and
the average velocity. Its shape
is reminiscent of the pressure-
driven planar flow (18.5) al-
though skewed a bit towards the
right i.e. the hot plate.

The maximal velocity in the slot is found a bit to the right of the middle, at x = d/
√

3. The average
velocity in the slot becomes

U = 1

d

∫ d

0
vz(x) dx = α�g0d2

24ν
. (31.8)

Due to the spurious absence of advection the velocity field scale is set by viscosity rather than by advection.
It disagrees with our earlier estimate

√
α�g0L and is a factor (1/2)α� smaller than the average steady fall

velocity through the slot, calculated from (18.8) by setting G = ρ0g0. The Reynolds number corresponding
to this velocity is

Re = Ud

ν
= 1

24
· α�g0d3

ν2
. (31.9)

The second factor on the right is called the Grashof number and denoted Gr. Formally, the Richardson
number (3.13) becomes Ri = 24/Re. Franz Grashof (1826–93). Ger-

man engineer who sought to
transform machine building into
a proper science.

Example 31.1.1: For water with d ≈ 1 cm, � ≈ 10 K we find U ≈ 12 cm s−1. The corresponding
Reynolds number is Re ≈ 1400, indicating that the flow should be laminar, as was assumed implicitly
in the above calculation. For air the velocity is U ≈ 8 cm s−1 and the Reynolds number is Re ≈ 50.

Entrance length for heat
The rate at which heat is transported by convection from the slot into the reservoir may be calculated from
the extra internal energy carried by the fluid as it exits the slot,

Q̇ =
∫ d

0
ρ0cp�T vz Ldx = ρ0cpα�

2g0d3L

45ν
, (31.10)
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where L is the size of the slot in the y-direction. This raises a puzzle because the temperature gradient is
constant, ∇x�T = �/d , across the slot, and Fourier’s law (30.12) then implies that the same amount of
heat is added to the fluid at the warm plate as is removed at the cold. Consequently, no net heat is added to
the fluid from the plates, in blatant contradiction with the above calculation and common experience.

What is wrong is the assumption that the solutions (31.6) and (31.7) are valid at the bottom of the slot
where the fluid enters. Here the temperature gradient cannot be constant, because mass conservation in the
steady state forces the cold fluid to enter with the same average velocity U given by (31.8). Since it takes
a certain amount of time, t ≈ d2/4κ , for the heat supplied by the warm plate to diffuse across the slot (see
equation (30.17)), the fluid will have moved through a vertical distance

� ≈ Ut = α�g0d4

96κν
, (31.11)

before the heat comes into contact with the cold plate. For consistency we should compare the heat loss
at the exit (31.10) with the total rate of heat transferred into the fluid in the entrance region. It may be
estimated from Fourier’s law (30.12) applied to the entrance area L�. In this region the heated fluid only
extends about halfway across the slot leading to a heat flow estimate Q̇ ∼ �L · k�/d , and this is indeed of
the same size as the heat loss (31.10) at the exit.
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The heat front (dashed) at the
entrance to the vertical slot. The
heat transferred to the fluid at the
warm plate must diffuse across
the slot but is at the same time
advected upwards with average
velocity U . It makes contact with
the cold plate after having moved
a vertical distance �, called the
entrance length for heat.

The entrance length may also be written,

� ≈ Ra

96
d, (31.12)

where the dimensionless quantity,

Ra = α�g0d3

νκ
, (31.13)

is the famous Rayleigh number. In units of the slot width the entrance length for heat �/d is about 1% of
the Rayleigh number whereas the viscous entrance length (21.22) in units of the slot width is estimated to
be about 2% of the Reynolds number.

Example 31.1.2: In the preceding example 31.1.1 the Rayleigh number for water becomes Ra =
2 × 105, and we get an enormous entrance length � ≈ 21 m, whereas for air we find Ra ≈ 900 and a
much more manageable � ≈ 10 cm. For comparison the viscous entrance length is 27 cm in water and
1 cm in air.

∗ Thermal boundary layer
If the entrance length is much greater than the height of the slot, �� h, the heated fluid will never reach the
cold plate before it exits from the slot. In this limit, the cold plate can be ignored, and the appropriate model
is instead that of a warm vertical plate with constant temperature placed in a sea of cold fluid. The heated
fluid rising along the plate then forms a thermal boundary layer, and we shall now determine the steady
laminar flow pattern in such a boundary layer by combining the Boussinesq approximation with Prandtl’s
boundary layer approximation (section 28.3 on page 413).
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Outline of thermal boundary
layers forming on both sides
of a thin plate with constant
temperature T1 = T0 + �,
placed vertically in an infinite sea
of fluid originally at rest with
temperature T0. The layer has a
z-dependent thickness δ(z).

The coordinate system is chosen with the positive z-axis along the plate. Replacing � by z and d by
δ(z) in the estimate of the heat entrance length (31.11) we obtain an estimate of the z-dependent thickness
of the boundary layer (apart from a dimensionless numerical factor),

δ(z) ∼
(
κνz

α�g0

)1/4
. (31.14)

Since for z → ∞ we have δ/z ∝ z−3/4 the boundary layer may indeed be viewed as thin, except for a
region near the leading edge of the plate.

Under these circumstances we may apply the Prandtl formalism to the Boussinesq equations (31.4) and
discard the double derivative after z in the Laplace operators together with the pressure excess �p. These
simplifications lead to the following (Boussinesq–Prandtl) equations for the velocity field, v = (vx , 0, vz),
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Figure 31.1. Structure of the self-similar thermal boundary layer for Pr = 1. (a) Plot of the functions
F(s), G(s), and H(s). Note that asymptotically for s → ∞ there is a horizontal flow towards the plate
which feeds the convective upflow. (b) Doubly logarithmic plot of the heat slope at the plate, −F ′(0), as a
function of the Prandtl number.

and the temperature excess, �T = T − T0,

(vx∇x + vz∇z)�T = κ∇2
x�T, (31.15a)

(vx∇x + vz∇z)vz = ν∇2
x vz + α�T g0, (31.15b)

∇xvx + ∇zvz = 0. (31.15c)

These equations must be solved with the boundary conditions that �T = � and vx = vz = 0 for x = 0,
and �T, vz → 0 for x → ∞.

Photograph of isotherms around
a thermal boundary layer in air.
The Grashof number is about
Gr ≈ 5×106 some distance from
the end of the plate. Reproduced
from E. R. G. Eckert and E.
Soehngen US Air Force Tech.
Report 5747.

Since there is no other possible length scale for x than δ(z) we shall assume that the fields only depend
on x through the variable x/δ(z), or

s =
(
α�g0

κνz

)1/4
x. (31.16)

Apart from dimensional prefactors, the fields are parametrized with dimensionless functions of this
dimensionless variable,

�T = �F(s), vz = √
α�g0z G(s), vx =

(
α�κνg0

z

)1/4
H(s), (31.17)

and the field equations become coupled differential equations in s alone,

4√
Pr

F ′′ + (sG − 4H)F ′ = 0, (31.18)

4
√

PrG′′ + (sG − 4H)G′ + 4F − 2G2 = 0, (31.19)

4H ′ + 2G − sG′ = 0, (31.20)

where Pr = ν/κ is the Prandtl number. These equations can be solved numerically with the boundary
conditions F(0) = 1, G(0) = H(0) = 0, and F(∞) = G(∞) = 0. The result is shown in figure 31.1(a)
for Pr = 1. Interestingly, the solution has an asymptotic horizontal flow towards the plate (represented by
H(∞) = −1.10941 . . . for Pr = 1), rather than a vertical upflow from below, as might have been expected.
The divergence of the horizontal velocity for z → 0 is a spurious consequence of the Prandtl approximation.

The rate of heat flow out of one side of a plate of dimensions L × h is obtained from Fourier’s Law
(30.12),

Q̇ = −
∫

L×h
k
∂�T

∂x

∣∣∣∣
x=0

dydz = −4

3
F ′(0)

(
α�g0h3

κν

)1/4

k�L . (31.21)

The slope −F ′(0) is shown in figure 31.1b as a function of the Prandtl number. The quantity in parenthesis
is the Rayleigh number for the height of the plate. Note that the heat loss, Q̇ ∼ �5/4, grows a little faster
than linearly.
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E xamp l e 31. 1. 3 ( Heat rad i at or) : A heat r a di at or consi s t i ng of a si ngl e pl a t e of hei ght h = 70 cm
and width L = 1 m is kept  at  T = 65 ◦ C a nd pl aced i n a r oom at T0 = 20 ◦ C. For air we have
Pr = 0. 73 and F ′( 0) = −0. 388 leading to a total heat flow Q̇ = 235 W f r om t he r a di at or ( i ncl udi ng
both sides). The maximal vertical velocity U = max vz is quite naturally found at the top of the radiator,
z = h , a nd i nspect i on of fi gur e 31. 1( a) yi el ds U = maxx vz (x, h) ≈ 0.5

√
α�g0h ≈ 50 cm s−1 at

s = 1.5 corresponding to a boundary layer width δ ≈ 1 cm. The horizontal Reynolds number becomes
Reδ = Uδ/ν ≈ 340, so there should be no turbulence in this boundary layer. The asymptotic horizontal
inflow is merely vx |x→∞ ≈ −1 cm s−1 at z = 5 cm above the bottom of the radiator.

Example 31.1.4 (Human heat loss): For a naked grown-up human the skin surface area is A ≈ 2 m2,
and standing up the height h ≈ 2 m and L ≈ 1 m. Taking � = 10 K we find the heat loss Q̇ ≈ 40 W.
Since this is less than half the heat production of 100 W, a human being should easily be able to maintain
a skin temperature of 27 ◦ C in calm air at 17 ◦ C, perhaps even by sweating a little (see example 30.2.5).
As soon as there is even a very gentle wind, the heat loss grows and rapidly begins to chill the body (see
example 30.4.2).

31.2 Convective instability
Fluids with horizontal temperature variations, such as the vertical slot discussed above, cannot remain in
hydrostatic equilibrium but must immediately start to convect (see problem 31.1). The situation is, however,
quite different if the fluid is only subject to vertical temperature variations T = T (z). In the following
argument we assume that the fluid is incompressible, so that we do not run into problems with the natural
temperature lapse of the ‘atmospheric’ kind, discussed in section 4.6.

If the ambient vertical temperature rises with height (dT/dz > 0), hydrostatic equilibrium is stable
because a blob of fluid that is quickly displaced upwards will arrive with lower temperature and higher
density than its new surroundings, and thus experience a downwards buoyancy force, tending to bring
it down again. Hydrostatic equilibrium may, however, not be stable if the temperature falls with height
(dT/dz < 0) because a blob that is suddenly displaced upwards into a region of lower temperature will
arrive with lower density than its new surroundings and thus experience an upwards buoyancy force which
tends to drive it further upwards.

Were it not for drag and heat loss, the displaced blob would rise with ever-increasing velocity. Drag
from the surrounding fluid grows with the upwards blob velocity, linearly to begin with. Conductive
heat loss lowers the excess temperature of the blob and thereby its buoyancy. Both of these effects are
proportional to the surface area of the blob whereas buoyancy is proportional to the volume. Consequently,
we expect that large blobs of fluid tend to be more unstable and rise faster than small. This indicates that
there is a critical blob size below which blobs are not capable of rising at all.

In this section we shall estimate the critical blob size, and see that it may be expressed as a critical
Rayleigh number. In the following sections we shall calculate the critical value of the Rayleigh number for
the onset of instability in a horizontal slot.

Stability estimate for spherical blob of fluid
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A spherical blob of fluid moving
upwards with constant velocity
U . If the temperature gradient
is negative (dT/dz < 0)
the temperature of the moving
blob will be larger than its
surroundings (�T > 0). The
pressure is assumed to be the
same inside and outside the blob.

For simplicity we begin with an incompressible fluid at rest in constant gravity g0 with a constant negative
vertical temperature gradient, dT/dz = −G, so that the temperature field is of the form T (z) = T0 −Gz. A
constant gradient could, as we have seen, be created in a horizontal slot with a fixed temperature difference
between the lower and upper plates.

Imagine now that a spherical blob of fluid with radius a is set into upwards motion with a small
steady velocity U > 0. This is, of course, a thought experiment, and we do not speculate on the
technological difficulties in creating and maintaining such a blob. While it slowly rises towards lower
and lower temperatures, the warmer blob will transfer its excess heat to the colder environment over a
typical diffusion time t ∼ a2/4κ (see equation (30.17)). In this time the blob rises through the height
�z ≈ Ut ∼ Ua2/4κ , and the environment cools by �T ∼ G�z ∼ GUa2/4κ . In the steady state the
competition between the falling temperature of the environment and the loss of heat from the blob should
lead to a time-independent temperature excess of size �T , which in turn determines the buoyancy force.

Unfortunately the estimate of �T is a bit weak because the Péclet number Pe = 2aU/κ vanishes in
the limit of vanishing U . This implies that for sufficiently small U advection of heat will be negligible
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compared to diffusion, and that the heat escaping from the blob will spread far beyond the blob radius and
thereby raise the temperature of the environment. The rising sphere thus finds itself surrounded by a large
‘cocoon’ of fluid (of its own making) that is warmer than the environment and therefore provides smaller
buoyancy than would be the case if the temperature of the environment reigned all the way to the surface of
the sphere. In order to calculate the buoyancy force we must know the temperature distribution inside the
blob relative to the temperature at its surface.
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The heat front reaches far beyond
the blob radius when the blob
velocity is tiny. Here the blob is
viewed in its rest frame, where
asymptotically there is a uniform
downwards wind −U carrying a
consistently lower temperature.

It is most convenient to go to the rest frame of the blob where the flow outside the blob is steady with
the temperature of the environment dropping at a constant rate. The true temperature field inside the blob
must then be of the form,

T ′ = T0 − G (z + Ut)+�T, (31.22)

where by assumption the temperature excess field �T is time-independent. Inside the blob, T ′ must obey
Fourier’s heat equation for at fluid at rest (30.14), which under the given assumptions becomes

−GU = κ∇2�T . (31.23)

Seeking a spherical solution, we find �T = −(GU/6κ)r2 + const, and the difference between the
temperature inside the blob and on its surface becomes

δT = �T − �T |r=a = GU

6κ
(a2 − r2). (31.24)

This is indeed of the same order of magnitude as the previous estimate�T ∼ GUa2/κ . The total upwards
buoyancy force is obtained from the density change δρ = −αδTρ0 inside the blob,

�B =
∫

V
δρ(−g0)dV = ρ0g0α

∫ a

0
δT (r)4πr2 dr = 4πρ0g0αGa5U

45κ
. (31.25)

Evidently, the buoyancy grows like the fifth power of the radius because its volume grows like the third
power and the diffusion time like the second.

The viscous drag on a solid sphere in slow steady motion is given by Stokes Law (19.12). Disregarding
the internal flow in the blob we estimate that

�D = 6πηaU. (31.26)

This is valid for small Reynolds number Re = 2aU/ν � 1, a condition which is always fulfilled in the
limit of vanishing U .

If the buoyancy is smaller than the drag, �B < �D , the sphere cannot continue to rise on its own. In
dimensionless form, the stability condition becomes

�B

�D
= 2

135

g0αGa4

κν
< 1, (31.27)

where ν = η/ρ0 is the kinematic viscosity (momentum diffusivity) of the fluid. Evidently, this inequality
puts an upper limit on the size of stable blobs.

The critical Rayleigh number
In terms of the blob diameter d = 2a, the stability condition (31.27) may be written as a condition on the
Rayleigh number,

Ra ≡ g0αGd4

κν
< 1080. (31.28)

Tracing back over the preceding calculation, we see that the large critical value Rac = 1080 on the right-
hand side is mainly due to the ‘cocoon’ of warm fluid carried along with the blob and diminishing its
buoyancy. The critical Rayleigh number for blobs of general globular shape may presumably always be
taken to be around 1000, whereas blobs with radically different shapes, for example long cylinders, will
have quite different critical Rayleigh numbers, although typically they will be large.
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Example 31.2.1 (Pot of water): Consider a pot of water with depth h = 10 cm on a warm plate held
at 50◦ C in a room with temperature 20 ◦ C. The temperature difference is � ≈ 30 K and the gradient
G = �/h = 300 K m−1. The stability limit for spherical blobs is then obtained from (31.28) and
becomes d � 3.7 mm. Convective currents are thus expected to arise spontaneously everywhere in the
pot. If instead there is heavy porridge in the pot with heat properties like water but kinematic viscosity,
say ν ≈ 1 m2 s−1, the critical diameter becomes d ≈ 12 cm. Such blobs cannot find room in the
container, and only a little convection is expected.

If the geometry of a fluid container cannot accommodate blobs larger than a certain diameter d , and if
the Rayleigh number for this diameter is below the critical value, the fluid in the container will be stable
with the given negative temperature gradient. The critical Rayleigh number depends, however, strongly on
the geometry of the container, and cannot in general be calculated analytically. In the following section we
shall determine it for the simplest of all geometries, the horizontal slot.

Estimate of terminal blob speed
If the Rayleigh number for a blob is larger than the critical value, Ra > Rac, the blob will accelerate upwards
with larger and larger speed. For large Reynolds numbers, form drag on a sphere, �D ≈ (1/4)ρ0πa2U2

(see page 272), grows quadratically with velocity, and will eventually balance the buoyancy force �B . The
terminal speed determined by solving �D = �B becomes for Ra � Rac,

U ≈ 2

45

g0αGd3

κ
, (31.29)

where d is the blob diameter. The shape of a rising blob is, however, strongly influenced by the high speeds,
so this is only a coarse estimate.

Example 31.2.2: In example 31.2.1 a water blob with d = 1 cm will reach a terminal speed of
U ≈ 23 cm s−1, in reasonable agreement with daily experience.

∗ 31.3 Linear stability analysis of convection
The onset of instability in dynamical systems is usually determined by linearizing the dynamical equations
around a particular ‘baseline’ state that may or may not be unstable. The solutions to the linearized
dynamics represent the possible fluctuations around the baseline state, and if no fluctuation can grow
indefinitely with time, the baseline state is said to be stable. The existence of a single run-away fluctuation
mode indicates on the other hand that the baseline state is unstable. In the space of parameters that control
the system, the condition that all fluctuations are damped leads to an inequality like (31.28), which in the
limit of equality defines a critical surface, separating the stable region in parameter space from the unstable.

�

�

d

G
...........................................................................................................................................................................................................................................................................................................................................................................................................................................................stable

unstable

Sketch of the stability plot for
heat convection in a system with
negative temperature gradient G
and size d . The critical surface is
G ∼ d−4.

Linearized dynamics of flow and heat
In the present case the baseline state is simply an incompressible fluid at rest in hydrodynamic equilibrium
with a vertical temperature distribution of constant negative gradient, T = T0 − Gz. The pressure
must obey the equations of hydrodynamic equilibrium (4.20) on page 50 with the modified density
ρ = ρ0(1 − α(T − T0)) of the heated fluid. Solving the hydrostatic equilibrium equations we find
p = p0 − ρ0g0z − 1/2ρ0g0αGz2 where p0 is the pressure at z = 0.

A small velocity perturbation v will generate small corrections to the fields, �T and �p, so that the
true temperature and pressure fields become,

T = T0 − Gz +�T, p = p0 − ρ0g0z − 1
2ρ0g0αGz2 +�p. (31.30)

To first order in the small quantities �T , �p and v, the heat equation (30.23) becomes,

∂�T

∂t
− Gvz = κ∇2�T . (31.31)
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Dissipation does not contribute because it is of second order in v. Adding the buoyancy term −α�T g0 =
α�T g0ez to the incompressible Navier–Stokes equation (17.16) we obtain to first order in the small
quantities,

∂v

∂t
= −∇�p

ρ0
+ ν∇2v + α�T g0ez . (31.32)

The advective acceleration is absent because it is of second order in v. Finally the velocity field must satisfy
the divergence condition,

∇ · v = 0. (31.33)

These five coupled partial linear differential equations should now be solved for the five fluctuation fields,
�T , �p and v, with the appropriate boundary conditions for the particular geometry under study.

Fourier transformation
Fourier transformation is the method of choice for solving homogeneous linear partial differential equations
with constant coefficients. All fields are assumed to be superpositions of elementary harmonic waves of the
form exp(λt + i k · x) where k is a real wave vector and λ may be a complex number. For a single harmonic
wave, we obtain from the linearized dynamics,

λ�T̃ − Gṽz = −κk2�T̃ , (31.34a)

λ̃v = − i k
ρ0
� p̃ − νk2ṽ + α�T̃ g0ez , (31.34b)

k · ṽ = 0 (31.34c)

where now �T̃ , � p̃ and ṽ denote the amplitudes of the harmonic waves. Solving the first equation for ṽz ,
and dotting the second equation with k (using the third), we obtain,

ṽz = λ+ κk2

G
�T̃ ,

� p̃

ρ0
= −α�T̃ g0

ikz

k2
.

Inserting this into the z-component of (31.34b), we find a linear equation for �T̃ , which only has a non-
trivial solution for

(λ+ νk2)(λ+ κk2) = αGg0

(
1 − k2

z

k2

)
. (31.35)

This equation expresses that the determinant of the system of five linear algebraic equations (31.34) must
vanish.

Being a quadratic equation in λ it always has two roots,

λ = −1

2
(ν + κ)k2 ± 1

2

√√√√(ν − κ)2
(

k2
)2 + 4αGg0

(
1 − k2

z

k2

)
. (31.36)

Both roots are real and one of the roots is evidently negative whereas the other may be positive. For stability
this root should also be negative, which means that

(ν + κ)k2 >

√√√√(ν − κ)2
(

k2
)2 + 4αGg0

(
1 − k2

z

k2

)
.

Squaring this inequality and rearranging, it may be written,

αGg0

κν
<

(
k2

)3

k2 − k2
z
. (31.37)

The right-hand side depends on the geometry of the fluid container. If d is the typical length scale for the
geometry, the right-hand side scales as |k|4 ∼ d−4. If there is no intrinsic length scale (d = ∞), the
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minimum of the right-hand side is zero, and there can be no stability, just as we concluded for the rising
blobs.

For finite d we multiply both sides by d4. The inequality now becomes a condition on the dimensionless
Rayleigh number of the same form as (31.28),

Ra ≡ g0αGd4

κν
<
(k2

x + k2
y + k2

z )
3

k2
x + k2

y
d4. (31.38)

The finite geometry imposes constraints on the possible wave vectors k on the right-hand side. Among all
the allowed fluctuations, the one that leads to the smallest value of the right-hand side is called the critical
fluctuation, and the corresponding value of the right-hand side is called critical Rayleigh number Rac. It
defines the upper limit to the convective stability of the baseline state.

Critical fluctuations
When the stability condition (31.38) is fulfilled with a non-vanishing right-hand side, all fluctuations
are exponentially damped in time, and the fluid will essentially stay at rest if perturbed slightly. If a
fluctuation violates the stability condition its amplitude will grow exponentially with time, resulting in
more complicated flow patterns, even turbulence, about which linear stability analysis has nothing to say.

Right at the critical point where the inequality becomes an equality the largest of the two stability
exponents (31.36) must vanish, λ = 0. This indicates that the critical fluctuations are time-independent
(for a rigorous proof of this assertion see [37]). In this case it is better to revert to ordinary space where
the critical fluctuations must obey the steady-flow versions of the linearized dynamic equations (31.31)–
(31.33),

−Gvz = κ∇2�T, (31.39a)

∇�p

ρ0
= ν∇2v + α�T g0ez , (31.39b)

∇ · v = 0. (31.39c)

These equations may in fact be combined into a single equation for the temperature excess �T . Taking the
divergence of the second equation we first get,

1

ρ0
∇2�p = αg0∇z�T, (31.40)

and using this equation and (31.39a), vz and �p can be eliminated from the z-component of the second
equation, and we obtain,

(∇2)3�T = αGg0

κν
(∇2 − ∇2

z )�T . (31.41)

This equation is equivalent to the condition of the vanishing determinant (31.35) for λ = 0, and should be
solved with the boundary conditions for the geometry of the system. Being a kind of eigenvalue equation,
each solution determines a value of the coefficient αGg0/κν, and the one that yields the smallest value
determines the point where convection first begins, i.e. the critical Rayleigh number.Henri Bénard (1874–1939).

French physicist. Discovered
hexagonal convection patterns
in thin layers of whale oil in
1900. Such cellular convective
structures have later been named
Bénard cells.

A critical fluctuation is apparently another steady solution to the combined heat and mass flow
problem. It must, however, be kept in mind that an essential assumption behind linear stability
analysis is that the fluctuation amplitudes are infinitesimal so that nonlinear terms can be disregarded.
Nonlinear terms tend in fact to be beneficial and exert a stabilizing influence on the critical fluctuation
such that it is able to persist somewhat above the critical value without diverging exponentially. This
is why critical fluctuations can be observed at all.

∗ 31.4 Rayleigh–Bénard convection
Warming a horizontal layer of fluid from below is a common task in the kitchen as well as in industry. It was
first investigated experimentally by Bénard in 1900 and later analysed theoretically by Rayleigh in 1916.
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Figure 31.2. Bénard–Marangoni convection pattern. Image courtesy Manuel G. Velarde, Universidade
Complutense, Madrid.

The most conspicuous feature of the heated fluid is that convection breaks the original planar symmetry,
thereby creating characteristic convection patterns. That the symmetry must break is fairly clear, because
it is impossible for all the fluid in the layer to start to rise simultaneously. A localized fluctuation current
which begins to rise will have to veer off into the horizontal direction because of the horizontal boundaries.
We shall see below that at the onset of convection the flow breaks up into an infinite set of ‘rollers’ with
alternating sense of rotation.
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A rising flow in a horizontal
layer of fluid has to veer off
horizontally both at the top and
the bottom.

Much later, in 1956, it was understood that the beautiful hexagonal surface tessellation observed by
Bénard in a thin layer of heated whale oil was not caused by buoyancy alone but was driven by the
interplay between buoyancy and temperature-dependent surface tension, a phenomenon now called Bénard–
Marangoni convection. Here we shall only discuss clean Rayleigh–Bénard convection in layers of fluid so
thick that the Marangoni effect can be disregarded.

Carlo Marangoni (1840–1925).
Italian physicist. Investigated
surface tension effects using oil
drops spread on water.

General solution
Let the horizontal layer of incompressible fluid have thickness d and be subject to a constant negative
temperature gradient G. The boundaries are chosen symmetrically at z = ±d/2, for reasons that will
become clear in the following. Since the flow has to veer off at the boundaries, the fields must depend on
z, implying that kz �= 0 in the stability condition (31.38). The wavenumbers kx and ky can in principle
take any real values because of the infinitely extended planar symmetry, but since the right-hand side of the
stability condition diverges for both k2

x + k2
y → 0 and k2

x + k2
y → ∞, the minimum must occur at a finite

value of k2
x + k2

y . This argument demonstrates that the critical solution must have a periodic horizontal
structure.

�

�

z

x

The plates are placed symmetri-
cally at z = ±d/2.

For given kx and ky we may without loss of generality rotate the coordinate system to obtain ky = 0
and kx > 0, implying that the fields only depend on x and z but not on y. Since there is no geometric
constraint in the x-direction, we are still free to Fourier transform along x , such that the most general form
of the temperature excess takes the form,

�T = � cos kx x f (z) (31.42)

where � is a constant, and f (z) is a (so far unknown) dimensionless function of z. From (31.39a) we find
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the vertical velocity,

vz = −κ�
G

cos kx x(∇  2z − k 2x ) f ( z),  ( 31. 43)

and from the divergence condition (31. 39c) we get the horizontal velocity,

vx = κ�

Gkx
sin kx x(∇  2z − k 2x ) f 

′( z),  ( 31. 44)

where f ′( z) = d f ( z)/dz. T he t hi r d vel oci t y component v y does not par t i c i pat e, and i t can be show n
( pr obl em 31. 3) t hat i t must va ni sh, vy = 0.

Inserting � T i nt o t he det er mi nant equat i on ( 31. 41) w e get a si xt h- or der or di nar y di ff e r e nt i a l e quat i on
f or t hi s f unct i on, (

∇ 2z − k 2x
)3

f ( z) = −α Gg0

κν
k 2x f ( z).  ( 31. 45)

U s i ng t hi s r el at i on one may ver i f y t hat t he pr essur e excess,

� p

ρ0
= −κν�

Gk2
x

cos kx x(∇  2z − k 2x ) 
2 f ′( z),  ( 31. 46)

sat i s fi e s ( 31. 40) .
In a given physical context t he act ual s olution depends on the boundary conditions imposed on the

fi el ds. We shal l always assume t hat t he boundar i es ar e per f ect conduct or s of heat such t hat � T = 0 for
z = ±d/2. For t he velocity fi elds t he boundary conditions depend on whether t he boundaries are s olid
pl at es or f r e e open s ur faces. We s hal l ( a s R ayl e i gh di d i n 1916) fi r st anal yse t he l a t t e r case w hi ch i s by fa r
the simplest.

Two f ree bo unda ri es
T he simplest choice which satisfi es t he temperature boundary conditions � T = 0 for  z = ±d/2 is,

f ( z) = cos kz z, k z = ( 1 + 2n)π

d 
( 31. 47)

where n = 0, 1, 2, . . .  i s an i nt eger. I nser t i ng t hi s i nt o ( 31. 45) and s ol vi ng f or t he R a yl ei gh number w e
obt ai n

Ra ≡ α Gg0 d 4

κν
= ( k 2z + k 2x ) 

3

k 2x
d 4. ( 31. 48)

T he m i ni m um of t he r i ght - hand s i de i s f ound f or kx = kz/
√

2 and n = 0, such that the critical Rayleigh1 2 3 4 5
kxd

500

1000

1500

2000
Ra

unstable

stable

Plot of Ra versus kx d for n = 0.
The minimum Ra = 27π4/4 ≈
658 is found at kx d = π/

√
2 ≈

2.22.

number is,

Rac = 27

4
π4 ≈ 657.511 . . . . (31.49)

The complete critical solution becomes (with kx = π/d
√

2 and kz = π/d),

�T = � cos kx x cos kzz, (31.50a)

vx = √
2U sin kx x sin kzz, (31.50b)

vy = 0, (31.50c)

vz = U cos kx x cos kzz, (31.50d)

where U = 3π2κ�/2Gd2.
T he s ol ut i on i s pi c t ur e d i n t he t hr e e panel s of fi gur e 31. 3. T he fl ow pat t e r n ( m i ddl e panel ) c onsi s t s of

an infinite sequence of nearly elliptic ‘rollers’ with aspect ratio
√

2. The temperature pattern (top panel)
is 90 ◦ out of phase with the flow pattern. This confirms the intuition that the central temperature should
be higher when fluid transports heat from the warm lower boundary towards the cold upper boundary, and
conversely.
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Figure 31.3. Critical fields in the horizontal layer of fluid with free boundaries (equation (31.50)). The
steady flow pattern consists of an infinity of approximatively elliptical rolls of rotating fluid with aspect
ratio

√
2 and alternating sense of rotation and temperature excess. (a) Contour plot of the temperature

field�T with high temperature indicated by white. (b) Streamlines for the steady flow (vx , vz) with white
indicating clockwise rotation. (c) Deformation of the originally parallel boundaries (strongly exaggerated).

From the above solution we immediately obtain the shear stress,

σxz = η(∇xvz + ∇zvx ) = πUη√
2d

sin kx x cos kzz. (31.51)

It evidently vanishes for z = ±d/2, and since we trivially have σyz = 0, both boundaries are completely
free of shear. There is no practical problem in arranging the upper boundary to be shear-free; that is in fact
what we do when we cook. A shear-free lower boundary is on the contrary rather unphysical, so the main
virtue of the shear-free model is that it is easy to solve.

The pressure excess in the critical solution may be calculated from (31.46),

�p = 2

3π
α�ρ0g0d cos kx x sin kzz, (31.52)

so the excess in the normal stress becomes

�σzz = −�p + 2η∇zvz = − 10

9π
α�ρ0g0d cos kx x sin kzz. (31.53)

It does not vanish at the boundaries, showing the solution is not perfect. The non-vanishing normal
stress can, however, be compensated by hydrostatic pressure if the layer thickness is allowed to vary a
bit. Dividing by ρ0g0 we find the required shift at the two boundaries,

�z = − �σzz

ρ0g0

∣∣∣∣
z=±d/2

= ± 10

9π
α�d cos kx x. (31.54)

The shape of the deformed layer is shown in the bottom panel of figure 31.3.

Two solid boundaries
A horizontal slot bounded by two solid plates is easy to set up experimentally. Numerous experiments have
been carried out in the twentieth century and agree very well with the theoretical results [13].

For simplicity we choose the plate distance d = 1 in the following analysis. The fundamental equation
(31.45) is an ordinary sixth-order differential equation with constant coefficients, implying that the solution
is a superposition of exponentials eλz where λ is a root of the sixth-order algebraic equation,

(λ2 − k2
x )

3 = −Ra k2
x . (31.55)
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Figure 31.4. Solution for horizontal slot with solid boundaries. (a) The value of the determinant as a
function of µ = Ra1/4 for ξ = 0.75. One notes the regularly spaced solutions where the determinant
crosses zero. (b) Stability plot for the lowest branch as a function of ξ . The minimum µc = 6.42846 . . .
for ξc = 0.785559 . . . determines the critical Rayleigh number.

The six roots are evidently,

λ = ±
√

k2
x + Ra1/3k2/3

x
3√−1, (31.56)

where 3√−1 = −1, (1 ± i
√

3)/2 is any one of the three third roots of −1. Parametrizing kx = µξ3 with

µ = Ra1/4, the roots may be written λ = ±µξ
√
ξ4 + 3√−1. Writing the roots in the form λ = ±iµ0 and

λ = ±µ1 ± iµ2, we find,

µ0 = µξ

√
1 − ξ4, (31.57a)

µ1 = 1

2
µξ

√
1 + 2ξ4 + 2

√
1 + ξ4 + ξ8, (31.57b)

µ2 = 1

2
µξ

√
−1 − 2ξ4 + 2

√
1 + ξ4 + ξ8. (31.57c)

These quantities are all real for 0 < ξ < 1.
The boundary conditions are as before �T = 0 together with vx = vz = 0 at z = ±1/2. Since the

boundary conditions as well as the fundamental equation (31.45) are invariant under a change of sign of z,
it follows that the solutions are either symmetric (even) or antisymmetric (odd) in z. In the even case we
have,

f (z) = A cosµ0z + B coshµ1z cosµ2z + C sinhµ1z sinµ2z, (31.58)

where A, B and C are constants. From the general solution (31.42), (31.43) and (31.44) we see that f (z),
f ′′(z), and f ′′′(z)− k2

x f ′(z) must vanish for z = 1/2.
These conditions provide three homogenous equations for the determination of A, B and C . Such

equations only have a non-trivial solution if their (3 × 3) determinant vanishes. It takes a bit of algebra to
show that the determinant is proportional to,

det(µ, ξ) ∝ µ0(coshµ1 + cosµ2) sin
µ0

2

+ ((µ1 + √
3µ2) sinhµ1 + (µ2 − √

3µ1) sinµ2) cos
µ0

2
. (31.59)

Solving the transcendental equation, det(µ, ξ) = 0, yields a family of solutions µ = µ(ξ), as shown in

figure 31.4(a). The minimum of the lowest branch determines the critical values µc = Ra1/4
c = 6.42846 . . .

and ξc = 0.785559 . . . (see figure 31.4(b)). The critical Rayleigh number becomes (see also problem 31.4
for an approximative calculation)

Rac = 1707.76 . . . (31.60)
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F i gu re 31. 5. C r i t i cal fi e l ds i n a hor i z ont al l a yer w i t h sol i d boundar i es. T he st eady fl ow pat t e r n consi s t s of an
infinity of approximately circular cylindrical rolls of fluid with alternating sense of rotation and alternating
t emperat ure excess. (a) C ont our pl ot of t he t emper a t ur e fi e l d � T w i t h hi gh t e mper at ur e i ndi cat ed by
white. (b) S t reaml i nes for t he st eady fl ow (vx , vz) with white indicating clockwise rotation. Note how the
streamlines ‘shy away’ from t he solid wa lls because of the no-slip conditions.

and t he cor r e spondi ng wave number s ,

µ0 = 3. 9737 . . . µ1 = 5. 19439 . . . µ2 = 2. 12587 . . . .  ( 31. 61)

F i nally, solving the boundary conditions at the critical point, t he coeffi c ients become (apart from an overall
fact or),

A = 1 B = 0. 120754 . . .  C = 0. 00132946 . . . .  ( 31. 62)

F r om t hese val ues t he act ual fi el ds � T , vz and v  x may be det er mi ned. A s can be seen f r om fi gur e 31. 5 t he
cr i t i cal fl ow pat t e r n consi s t s of an i nfi ni t y of r oughl y c i r cul a r cyl i ndr i cal r ol l s , w hi ch because of t he no- sl i p
condi t i ons appear t o ‘ s hy away’ f r om t he boundar i es.

I t shoul d be m ent i oned t hat i n t he ant i s ymmet r i c case,

f ( z) = D sinµ0 z + E coshµ1 z sinµ2 z + F sinhµ1 z cosµ2 z, ( 31. 63)

i s t r eat ed i n t he s ame way and l eads t o a cri t i cal Rayl ei gh number of R ac ≈ 17610. 4 . . .  which i s
uni nt erest i ng because i t i s (much) l arger t han t he even s ol ut i on.

Solid bottom a nd free top
T his is the situation most often found in the household and industry. S i nce t he boundary conditions are
asymmetric, t he solution i s a superposition of all six possibilities,

f ( z) = A cosµ0 z + B coshµ1 z cosµ2 z + C sinhµ1 z sinµ2 z

+ D sinµ0 z + E coshµ1 z sinµ2 z + F sinhµ1 z cosµ2 z. ( 31. 64)

Although more complicated, t he solution i s f ound in the same way as before, and the critical values are
µc = 5.75986 . . . and ξc = 0.775115 . . ., and thus the Rayleigh number is,

Ra = 1100.65 . . . . (31.65)

This value is probably by accident nearly the same value as the estimate for a rising bubble (31.28). The
wavenumbers for this solution are

µ0 = 3.56895 . . . , µ1 = 4.55531 . . . , µ2 = 1.8947 . . . , (31.66)

and the coefficients,

A = 1, B = 0.086726 . . . , C = −0.00956513 . . . ,

D = 0.216993 . . . , E = 0.00778275 . . . , F = −0.08632 . . . , (31.67)

agai n a par t f r om a n ove r a l l fact or. T he fl ow pat t e r n i s show n i n fi gur e 31. 6.
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Figure 31.6. Critical fields in the horizontal layer of fluid with solid bottom and free top. (a) Contour plot
of the temperature field �T with high temperature indicated by white. (b) Streamlines for the steady flow
with white indicating clockwise rotation. Note how the no-slip condition makes the streamlines ‘shy away’
from the bottom while it ‘hugs’ the free surface at the top. (c) Deformation of the originally flat upper
boundary (strongly exaggerated).

Energy balance?
Where does the energy to drive the rolls come from? The steadily rotating fluid could in principle be set to
do useful work, and according to the First Law of Thermodynamics this work must be taken from the heat
flowing between the plates. In effect the plates act as heat reservoirs and the convection as a heat engine
converting heat to work by means of the buoyancy of warm fluid. In the present setup all the work done by
the rotating fluid is actually dissipated back into heat by internal viscous forces, so in the steady state the
energy of the fluid is constant, and no steady inflow of heat into the system is required. The local heat flow
through the boundaries will, however, be uneven because of the local variations in the temperature gradient.

Convective pattern formation
The spontaneous formation of convection patterns in otherwise featureless geometries is a common
occurrence. The nonlinear terms which have been left out in the linear approximation will exert a stabilizing
influence on the patterns such that they are able to persist at Rayleigh numbers somewhat larger than
the critical one. At still larger Rayleigh numbers, the rolls of the critical pattern will develop further
instabilities and eventually turbulent convection may result (for an account of convection patterns with
numerous photographs see [72, 21, 5]).

Problems
31.1 Show that there cannot be hydrostatic equilibrium in vertical gravity with horizontal temperature
differences. Estimate the speed with which the fluid rises.

31.2 Calculate the ratio between the exit heat flow Q̇ and the heat flow Q̇0 out of the warm plate in a
vertical slot as a function of the plate dimensions. Show that this ratio is

Nu = Q̇

Q̇0
= 1

45
· d

h
· Ra (31.68)

where Ra is the Rayleigh number. This number is called the Nusselt number.

Copyright © 2005 IOP Publishing Ltd.



PROBLEMS 497

31.3 Show that vy = 0 in the Rayleigh–Bénard solution.

∗ 31.4 Show that an approximate solution to the vanishing determinant (31.59) for Rayleigh–Bénard flow
in a horizontal slot is given by the equation,

µ = 2
µ

µ0

(
π − arctan

µ1 + √
3µ2

µ0

)
, (31.69)

where the right-hand side is only a function of ξ . Numerical minimization of this function leads to
µ = 6.44397 . . . for ξ = 0.787942 . . ., corresponding to a critical Rayleigh number Rac = 1724.
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Turbulence is so commonplace that we hardly notice it in our daily lives. The size of humans and their
speed of locomotion in air or water bring the typical Reynolds numbers into the millions, whether running
or swimming, but most of us never think of the trail of turbulent air we leave in our wake. Our vehicles
move at much higher speeds and generate more turbulence, although great efforts have been made to limit
the extent of the turbulent wake by streamlining cars, airplanes, ships and submarines. In strong winds
the lower part of the atmosphere may become strongly turbulent, but patches of turbulent air can in fact
be found at any altitude, normally in connection with cloud formations, although also in clear air. Most
people have experienced the quite unpleasant buffeting in an airplane exposed to atmospheric turbulence,
particularly at the approach to an airport in heavy weather.

Even under the steadiest of conditions, for example the draining of a large water cistern through a
long open pipe, turbulence will completely fill the pipe when the Reynolds number becomes sufficiently
large. The actual road from laminar flow to turbulence as a function of a slowly increasing Reynolds
number is complex and goes through many stages of sometimes intermittent flow patterns, not yet fully
understood. Eventually, at sufficiently high Reynolds number, the turbulent flow seems to settle down into
a homogeneous and isotropic state where the small-scale fluctuations in the flow appear to be of the same
nature throughout the pipe, except for a stretch near the entrance and a thin layer very close to the wall.
Such featureless fully developed turbulence is much more amenable to analysis than the flow stages leading
up to it.

In this closing chapter of the book we shall only touch on the most basic and most successful aspects
of turbulence, a subject which for a long time has been and still is an important topic of basic research. The
many modern textbooks on the subject may be consulted to obtain a deeper insight than can be provided
here [6, 71, 72, 40, 25, 39, 61, 58].
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Velocity profile for fully de-
veloped turbulent pipe flow
compared with the parabolic
Poiseuille profile (dashed). Apart
from thin boundary layers (and
a region downstream from the
entrance), the mean velocity field
is approximately constant across
the pipe.

32.1 Fully developed turbulence
Turbulence typically appears as a fluctuating velocity component on top of a mainstream flow with high
Reynolds number. In the discussion of the phenomenology of stationary turbulent pipe flow (section 18.5 on
page 255), it was pointed out that when turbulence has become fully developed some distance downstream
from the pipe entrance, it proceeds plug-like down the pipe with a fairly uniform mainstream velocity
distribution across the pipe, apart from a thin layer near the wall where the velocity drops to zero. In the
reference frame of the mainstream flow and at length scales much smaller than the diameter of the pipe, the
bulk of the fluid appears to be in a state of uniform agitation. In the following section we shall estimate the
general statistical properties of this state.
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Specific rate of dissipation
A stationary flow can only be maintained if the environment continually performs work on the fluid to
balance the unavoidable viscous dissipation. In pipe flow the external work is performed by the pressure
drop �p maintained between its ends, and if the pipe carries a volume flux Q, the rate of work (power) of
the pressure drop is P = �p Q (see page 253). Dividing by the total mass M of the fluid in the pipe, the
specific rate of dissipation averaged over the whole pipe becomes,

ε = P

M
= �p Q

M
= U3

a
C f (Re). (32.1)

In the last step we have used that M = πa2Lρ0, �p = σwall2L/a and Q = πa2U where a is the pipe
radius, σwall the wall stress, and U the average velocity of the flow. The Reynolds number is Re = 2aU/ν
and from the definition of the dimensionless friction coefficient (18.49) the last expression follows.

In the smooth-pipe turbulent region, 4 × 103 � Re � 105, we have seen (page 257) that the friction
coefficient decreases slowly as Re−1/4 with increasing Reynolds number. Beyond this region, the friction
coefficient becomes constant, although its actual value depends on the roughness of the pipe surface. The
astonishing conclusion following from (32.1) is that the specific dissipation rate is independent of the
viscosity for sufficiently large Reynolds number. Although ultimately caused by viscous friction, the specific
rate of dissipation is finite in the limit of vanishing viscosity!

Example 32.1.1 (Concrete water pipe): A large concrete pipe with diameter 2a = 1 m carries water
at a discharge rate of Q ≈ 10 m3 s−1. The average velocity is U ≈ 13 m s−1, corresponding to a
Reynolds number of Re = 1.3 × 107 well into the rough pipe region. With a roughness scale of 1 mm,
the friction coefficient calculated from (18.51) is C f (∞) ≈ 5 × 10−3, leading to a specific dissipation

ε ≈ 21 W kg−1. Perhaps it does not sound much, but the dissipation rate (per unit of pipe length)
is ρ0πa2ε ≈ 16 kW m−1, which is about 4000 times larger than it would have been had the flow
remained laminar with a friction coefficient C f ≈ 16/Re ≈ 1.3 × 10−6.

32.2 The energy cascade
In the model we shall use here the fluctuating velocity component is viewed as composed of fairly localized
flow structures, generically called ‘eddies’, covering a wide range of sizes. The nonlinearity of fluid
mechanics is assumed to transform (‘break up’) the eddies into smaller eddies, while conserving mass
and kinetic energy, until they become so small that they are wiped out by viscous friction, and their energy
dissipated into heat (a picture owed to L. F. Richardson, 1922).

In an isolated patch of turbulence the kinetic energy will in this way be continually sapped ‘from below’
until the turbulence dies away and the flow becomes laminar and in the end will stop completely. We have all
seen this happen after filling a bucket with water from a wide-open tap. Under steady external conditions
the kinetic energy that is lost to heat will instead be continually re-supplied by the work of the external
forces.
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Naive sketch of the energy cas-
cade. A large eddy is thought
to break up into smaller eddies
while conserving both mass and
energy. The break-up stops at the
dissipation scale.

Scaling laws
The energy cascade plays out in an interval of eddy sizes, λd � λ � L , where the upper cutoff L is related
to the flow geometry (for example the pipe diameter), and the lower cut-off λd represents the dissipation
length scale where viscosity ‘kicks in’. Far above the dissipation cut-off, λ � λd , the eddy dynamics
should be independent of the viscosity, whereas far below the geometry cut-off, λ � L , the actual flow
geometry should not matter for the eddy dynamics.

In the so-called inertial range satisfying both conditions, λd � λ � L , the only parameters that can
be at play in the eddy dynamics are the size λ of an eddy and the time τ it takes for an eddy of this size to
transform into smaller eddies. In the inertial range the magnitude of any other quantity must be related to
these parameters, essentially by dimensional arguments. The ‘break-up’ of an eddy is, for example, bound
to move some fluid a distance of magnitude λ in time τ , leading to an estimate of the velocity variation in
an eddy, u ∼ λ/τ .

The energy-cascade model yields a relation between the time scale τ and the length scale λ by way of
the specific dissipation rate ε. To see this we focus on a collection of eddies of size λ with total mass d M
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and total kinetic energy d� ∼ d Mu2. In a time interval τ all these eddies break up into smaller eddies,
making the rate of energy turn-over d�̇ ∼ d� /τ ∼ d Mu2/τ . Since both mass and energy are assumed to
be conserved in the cascade that follows, the energy turn-over rate must be the same all the way down to
the smallest scales, and thus in the end nearly equal to the viscous dissipation rate in the original amount of
fluid, d P = εd M . Using u ∼ λ/τ and d P ≈ d�̇ we find,

ε = d P

d M
≈ d�̇

d M
∼ u2

τ
∼ λ2

τ3
. (32.2)

Since ε has dimension [ε] = W kg−1 = m2 s−3, one might think that this estimate could have been derived
from a dimensional argument alone, but that would be wrong. The crucial input from the energy-cascade
model is that the terminal rate of dissipation d P may be set equal to the kinetic energy turn-over rate d�̇
for any collection of eddies, independent of their size scale λ.

Solving (32.2) for the time scale, we find the λ-dependent result,

τ ∼ ε−1/3λ2/3, (32.3)

and from this we obtain the velocity scale,

u ∼ λ

τ
∼ (ελ)1/3, (32.4)

also known as Kolmogorov’s scaling law.
A basic assumption in the energy-cascade model is that the turbulence is homogeneous and isotropic in

the rest frame of the mainstream flow. Even if ultimately maintained by the work of steady external forces,
the physics in the inertial range only depends on the background velocity U through the specific dissipation
rate ε, which for pipe flow is given by (32.1). At the scale L of the geometry, it follows from the scaling law
that the velocity of the largest eddies is uL ∼ (εL)1/3. This is, however, not necessarily the same as the

mainstream velocity U . Inserting the pipe flow expression (32.1) with a ∼ L , we find uL/U ∼ C1/3
f . In

example 32.1.1 we have C f = 5 × 10−3, such that uL in that case is nearly an order of magnitude smaller
than U .

Statistics
The fundamental concept necessary for establishing a statistical model of turbulence is the fraction
d F = d M/M of the total fluid mass (or volume) residing in eddies with sizes in a small interval dλ
around λ. The eddy distribution over sizes, d F/dλ, will in general depend on λ as well as on the system
scale L and the viscosity ν, but in the inertial range, λd � λ� L , the eddy distribution should only depend
on the basic scale parameters, λ and τ . Since d F/dλ has dimension of inverse length, it must be of the
form,

d F

dλ
∼ 1

λ
(λd � λ � L). (32.5)

The integral of this distribution diverges for both λ → 0 and λ → ∞. So although this eddy distribution
looks universal, it cannot be properly normalized without introducing a (slowly varying) non-universal
normalization factor depending logarithmically on the limits of the inertial range1. We shall ignore such
factors here (see, however, problem 32.2).

Energy spectrum
The kinetic energy residing in the eddies with size λ may now be estimated as d� ∼ u2d M . Using
d M = Md F , and dividing d� by Mdλ we obtain the distribution of the specific kinetic energy according

1Non-universal logarithmic factors have been introduced phenomenologically by Y. Gagnes and B. Castaing, A
universal representation without global scaling invariance of energy spectra in developed turbulence, C. R. Acad. Sci.
Paris 212, (1991) 441.
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Figure 32.1. The logarithm of the turbulent energy spectrum E as a function of the logarithm of the
wavenumber k (suitably normalized). Data extracted from the classical experiment carried out by towing
a probe after a ship through the Discovery Passage of Western Canada under sometimes quite difficult
conditions (footnote 2 on page 502). The largest Reynolds number is about 3 × 108 yielding more than
three decades in the inertial range. The data agrees very well with Kolmogorov’s −5/3 law (solid line) up
to the beginning of the dissipation range at abscissa −1.

to eddy size,

1

M

d�

dλ
∼ u2

λ
∼ λ

τ2
∼ ε2/3λ−1/3. (32.6)

To find the total kinetic energy, we must integrate this expression over all λ. Since the integral of this
expression is convergent for λ → 0 and diverges for λ → ∞, we cut it off at the system scale L and find
the total kinetic energy per unit of mass,

�

M
∼ (εL)2/3 ∼ u2

L . (32.7)

where uL is the eddy velocity for λ = L . The dependence on the system scale shows that in spite of the fact
that the distribution function (32.6) decreases slowly with wavelength most of the turbulent kinetic energy
resides in the largest eddies near the system scale cut-off, rather than in the small eddies near the dissipation
cut-off.Andrei Nikolaevich Kol-

mogorov (1903–1987). Russian
mathematician. Made major
contributions to a wide range
of subjects: Markov processes,
Lebesgue measure theory,
axiomatic foundation of prob-
ability theory, turbulence, and
dynamical systems.

This is even better seen by expressing the kinetic energy distribution in terms of the inverse length scale,
the ‘wavenumber’ k = 2π/λ. Using dλ ∼ dk/k2 we obtain the specific energy spectrum of turbulence as
a function of wavenumber,

E(k) ≡ 1

M

d�

dk
∼ ε2/3k−5/3. (32.8)

This is Kolmogorov’s famous −5/3 power law from 1941. The negative exponent shows that the spectrum
is indeed dominated by the smallest wavenumbers, k ∼ 1/L , corresponding to the largest length scales,
λ ≈ L .

The left-out purely numeric constant in front of the spectrum is called the Kolmogorov constant and
empirically determined to be about 1.5. Many experiments have confirmed the validity of the Kolmogorov
spectrum in the inertial range, for example the one plotted in figure 32.12.

2 H. L. Grant, R. W. Stewart and A. Moilliet, Turbulent spectra from a tidal channel, J. Fluid Mech. 12, (1962)
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The dissipation scale
T he r at e of vi s cous di ssi pat i on i s cal cul a t e d f r om t he ve l oci t y gr adi e nt s i n t he fl ow i n e quat i on ( 17. 18) on
page 236. E s t i m at i ng t he di ssi pat i on r at e i n a col l ect i on of e ddi es of mass d M  and s i z e λ w e fi nd,

d P ∼ η |∇v| 2 dV  = ν |∇v|2 d M  ∼ ν
(u

λ

)2
M 

dλ

λ
∼ M

ν

λτ  2 
dλ.

D ivi di ng by Mdλ w e fi nd t he speci fi c di ssi pat i on s pect r um ( per uni t of s i ze) ,

1

M

d P

dλ
∼ ν

λτ  2 
∼ ν ε2/ 3λ−7/ 3. ( 32. 9)

T he l argest di ssi pat i on evi dent l y t akes pl ace at t he s mal l est scal es. To get t he t ot al speci fi c di ssi pat i on ε we
must integrat e over λ , and si nce t he i nt egr al diverges at t he s mal l est scal es, w e cut i t off at λd and get ,

ε = P

M
≈

∫ ∞
λd

1

M

d P

dλ
dλ ∼ νε2/ 3λ

−4/ 3
d . ( 32. 10)

Solving for λd we arrive at the Kol m ogorov di ssi pat i on s cal e,

λd ∼ ε−1/ 4ν 3/ 4. ( 32. 11)

I n pr act i c e t he i ner t i a l s cal i ng l aw s m ay be assumed t o be val i d about an or der of m agni t ude i nsi de i ner t i a l
r a nge cut - off s , i . e . f or 10λd � λ � 0. 1 L .

A t t he di ssi pat i on s cal e t he cor r espondi ng t i m e and vel oci t y scal es become,

τd ∼ ε−1/ 2ν 1/ 2, u d ∼ ε  1/ 4ν 1/ 4. ( 32. 12)

A t t hi s scal e, ever yt hi ng can be expr essed i n t er ms of t he s peci fi c r at e of di ssi pat i on ε and t he vi scosi t y ν .
For the pipe flow in example 32.1.1 we find λd ∼ 15 µm, τd ∼ 220 µs and ud ∼ 7 cm s−1. The

geometric scale is L ≈ 1 m, implying that the inertial range should be 1 mm � λ � 100 mm, covering
a factor 100, or two full decades. This illustrates that it may be necessary to go to very large Reynolds
numbers to get three or more decades of length scales in the inertial range. The broadest inertial ranges
have i n fact been reached i n l arge nat ural syst ems, such as t he ocean and t he at mosphere (see fi gure 32. 1).

Eddy viscosity
The random turbulent motion also transfers momentum between adjacent regions of fluid in a way which
resembles molecular momentum diffusion, estimated in equation (17.2). This naturally leads to the idea
that turbulent diffusion at a length scale λ likewise might be described by a kind of effective eddy viscosity
νλ, which in the inertial range is determined by the eddy length and time scales,

νλ ∼ λ2

τ
∼ uλ ∼ ε1/3λ4/3. (32.13)

The eddy viscosity grows monotonically with the size of the eddies and is maximal at the system scale,
νL ∼ ε1/3L1/3, a value which must also characterize the average eddy viscosity. The smallest eddy
viscosity νλ ∼ ν is obtained for λ ∼ λd , showing that at the dissipation scale momentum diffusion due to
eddies is of the same magnitude as molecular momentum diffusion.

Non-dimensional formulation
It is sometimes useful to convert to a dimensionless formalism by introducing the Reynolds number for
eddies of size λ,

Reλ = uλ

ν
∼ νλ

ν
∼ ε1/3λ4/3

ν
. (32.14)

241. This classical paper contains a delightful account of the difficulties encountered while attempting experimentally to
verify a simple theoretical prediction in the real world of ships at sea.
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At the dissipation scale λ ∼ λd we find as expected Reλ ∼ 1, such that the ratios between the scale
parameters and the dissipation scales may be written,

λ

λd
∼ Re3/4

λ ,
τ

τd
∼ Re1/2

λ ,
u

ud
∼ Re1/4

λ . (32.15)

These results are valid in the inertial range 1 � Reλ � ReL = uL L/ν.

Numerical simulation of turbulence
In a numerical simulation of a turbulent flow the grid should be so fine-grained that the dissipation scale
can be resolved in all directions. Consequently, the number N of grid points must obey

N �

(
L

λd

)3
∼ Re9/4

L . (32.16)

In the pipe flow example 32.1.1 we have ReL ≈ 2.7 × 106, implying that to simulate the turbulent flow in
the pipe one would have to use at least 3 × 1014 grid points. Even with a computer executing 1012 floating
point operations per second, it would still take of the order of hours to do a single update of the whole
grid, because each grid point requires quite a few operations. A complete simulation probing all time scales
would require at least τL/τd = √

ReL ≈ 1600 updates, and might easily take a full year of computation.
Direct numeric simulation of realistic turbulent flows belongs among the hardest computational

problems. Fortunately the need to find practical solutions to the technical problems presented by cars,
ships and airplanes have led to a number of more or less ad hoc approximations that yield quite decent
results.

Critique of Kolmogorov’s theory
The derivation of the energy spectrum from scaling considerations depends only on the existence of a
process by which the energy of turbulent motion at a given length scale is continually redistributed over
smaller length scales until it is, in the end, dissipated by viscous forces. The detailed mechanism underlying
this process is not known for sure, although more than 50 years of intense research has produced a
wealth of ideas and results [6, 72, 40, 25, 39]. Numerical simulations have revealed that fully developed
turbulence contains vortex filaments, and it is believed that stretching of these vortices plays a central role
in transferring the vortex energy to smaller length scales.

Many objections, both mathematical and physical, have been raised against the energy-cascade model
[25]. One physical objection is that fully developed turbulent flow is not as featureless as assumed here,
but is observed experimentally to contain large-scale coherent structures, not included in the Kolmogorov
model [32]. Another is that the Kolmogorov theory fails to take into account the conspicuous intermittency
of turbulence, especially in the unstable regime near the transition from laminar to turbulent flow.

In view of the numerous experimental verifications of the Kolmogorov energy spectrum, one is,
however, driven to conclude that the law must contain an element of truth, whatever its origin.

32.3 Mean flow and fluctuations
In this section we shall formalize the analysis of turbulence, and for simplicity we continue to assume that
the turbulent flow is driven by steady boundary conditions, necessary for obtaining a statistically stationary
state. In the preceding scaling analysis it was tacitly assumed that the mainstream flow did not influence the
fluctuating component of the velocity field. We shall now see that the fluctuations do in fact exert a decisive
influence on the mainstream field, although mathematically it is fraught with difficulties.

Mean values
The mainstream field is defined as a suitable average of the true velocity field, for example over a large time
interval T starting at any time t ,

〈v(x, t)〉 = lim
T →∞

1

T

∫ T

0
v(x, t + s) ds. (32.17)
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All other fields may similarly be averaged over time, for example the pressure,

〈 p( x, t)〉 = lim
T →∞

1

T

∫ T

0
p( x, t + s) ds. ( 32. 18)

T hese l i m i t s ar e a ssumed t o exi st and be t i m e- i ndependent , a l t hough t hat i s by no means a f or egone
conclusion. Defined in this way, the mean value of any field can in principle be determined experimentally
wi t h any desi r ed preci si on from t he average of a su ffi ci ent l y l arge number of m easurement s of t he
instantaneous field value near the point x over a suffi ci ently long time i nt erval T . T he meani ng of ‘ near’
and ‘ suffi ci ent l y’ depends on t he m easurement preci si on, as was di s cussed i n chapt er 1.

The fl uctuating part of a field is defined as the difference between the fi eld and its mean value. For the
ve l oci t y and pr e ssur e fi e l ds w e i nt r oduce s peci al symbol s f or t he fl uct uat i ons,

u( x, t) = v( x, t)− 〈v( x, t)〉 , ( 32. 19a)

q(x, t) = p(x, t)− 〈p(x, t)〉 . (32.19b)

By definition these fluctuations have vanishing means, 〈u〉 = 0 and 〈q〉 = 0.
As in statistical mechanics, it is often convenient for more formal analysis to replace the time average

of a field by the average of the field over a suitable statistical ensemble of fields. That this leads to the
same mean values as time averages is a deep result which we shall not discuss here. In the following
we only assume that there is a well-defined statistical procedure for calculating mean values, denoted by
angular brackets 〈· · · 〉. The system is said to be in statistical equilibrium when all mean values are time-
independent.

Mean field equations
Even if quite different from laminar flow, turbulent flow is also assumed to be governed by the usual Navier–
Stokes equations. To avoid cumbersome notation we shall in the following shift the fluctuations out of the
basic fields, v → v + u and p → p + q, such that the incompressible Navier–Stokes equations become (in
the absence of gravity),

∂(v + u)
∂t

+ (v + u) · ∇(v + u) = − 1

ρ0
∇(p + q)+ ν∇2(v + u), (32.20a)

∇ · (v + u) = 0. (32.20b)

It must be emphasized that in these equations v and p now denote the mean fields whereas u and q denote
time-dependent fluctuations with vanishing means. For generality we here also allow the mean fields to be
time-dependent.

Taking the mean of the second equation and using 〈v〉 = v and 〈u〉 = 0 we get ∇ · v = 0. This
shows that the mean of an incompressible flow is also incompressible, a consequence of the linearity of
the divergence condition. Using this result in (32.20b) it follows in turn that the fluctuation field is itself
incompressible, ∇ · u = 0. From the mean of the first equation, we get similarly,

∂v

∂t
+ (v · ∇)v + 〈(u · ∇)u〉 = − 1

ρ0
∇ p + ν∇2v. (32.21)

The last term on the left-hand side stems from the nonlinear advective acceleration, and creates a coupling
between the fluctuations and the mean fields. Using ∇ · u = 0, it may be rewritten as a tensor divergence,

(u · ∇)ui =
∑

j

u j ∇ j ui =
∑

j

∇ j (ui u j ), (32.22)

and moving the mean of this term to the right-hand side of (32.21), we arrive at the mean field equations
(or Reynolds equations) for turbulent flow,

∂v

∂t
+ (v · ∇)v = − 1

ρ0
∇ p + ν∇2v − ∇ · 〈uu〉 .

∇ · v = 0.
(32.23)
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The fluctuation field itself satisfies an equation which may be derived from the Navier–Stokes equation
(32.20a) by subtracting the first mean field equation. Rewriting the advective term using (32.22) we obtain
the fluctuation equations,

∂u
∂t

+ (v · ∇)u + (u · ∇)v + ∇ · (uu − 〈uu〉) = − 1

ρ0
∇q + ν∇2u, (32.24a)

∇ · u = 0. (32.24b)

The split of the fields into means and fluctuations has thus led to two sets of coupled differential equations
rather than one. They are of course together equivalent to the original Navier–Stokes equations so nothing
has really been gained, except increased complexity!

The closure problem
The mean field equations (32.23) would by themselves form a closed system of dynamic equations, if only
we could somehow express the second-order fluctuation moment

〈
ui u j

〉
in terms of the mean field and its

derivatives. Unfortunately, as we shall now see, that is in general not possible.
One might, for example, attempt to determine the second-order moment

〈
ui u j

〉
from first principles by

using the above fluctuation field equations (32.24) to calculate ∂(ui u j )/∂t , and afterwards take the mean.
But such a procedure would introduce an unknown third-order moment of the form

〈
ui u j uk

〉
through the

nonlinear fluctuation term ∇ · (uu) (see problem 32.3 for details). Again one could use (32.24) to get an
equation for the third-order moment, only to find that it involves a fourth-order moment, and so on. Even
if in this way an infinite set of equations can in principle be written down for the moments, each equation
will refer to a moment of higher order than the one it is meant to determine. The set of moment equations
does not close.

The closure problem is inherent in the statistical treatment of nonlinear systems of equations, and a large
part of the theoretical studies of turbulence have focused on modelling the moments of the fluctuations to
obtain closure. Sometimes symmetries and dimensional considerations permit general conclusions to be
drawn in simple flow geometries where the symmetry is high and the number of parameters small, but a
fundamental theory of turbulence allowing for effective closure in any geometry is yet to be discovered.

Reynolds stresses
The first Reynolds equation takes the same form as the Navier–Stokes equation with an effective stress
tensor,

σ ∗
i j = −p δi j + η(∇iv j + ∇ jvi )− ρ0

〈
ui u j

〉
. (32.25)

The last term was introduced by Reynolds in 1894 and is appropriately called the Reynolds stress tensor.
Apart from the fact that we cannot in general calculate the Reynolds stresses, they appear in the

Reynolds equation for the mean velocity field on equal footing with the mean pressure and the mean viscous
stresses. Since the Reynolds equation in analogy with the Navier–Stokes equation may be understood as
expressing local momentum balance, the Reynolds stresses also act as forces by transferring momentum
across internal surfaces cutting through the fluid. The only difference is that the Reynolds stresses must
vanish at solid boundaries due to the no-slip condition for the fluctuations u = 0, and that prevents us from
measuring them directly. There are, however, many ways of measuring the velocity fluctuations over a long
time interval, and from such data the mean values

〈
ui u j

〉
, as well as the mean value of any other product,

can be obtained.

Velocity defect
It has been mentioned before that in fully developed turbulent flow, the mean velocity does not vary much
across the geometry, except very close to the walls where the no-slip condition has to be fulfilled. If U is a
typical mean velocity in the bulk of the turbulent flow, the quantity

�v = v − U, (32.26)

is called the velocity defect. In the bulk of the turbulent flow it is expected to be small, �v � U , while it
will be large near a solid wall where the no-slip condition requires v = 0. The magnitude of the velocity
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def ect t her ef or e det er mi nes t he magni t ude of t he vel oci t y gr adi ent s, |∇v| ∼ �v/ L , i n t he bul k of t he
turbulent fl ow.

F r om t he Kol mogor ov scal i ng a nal ysi s i n t he pr ecedi ng s ect i on w e know t hat ave r a ge eddy ve l oci t y
must be of t he s ame or der of magni t ude as t he m axi m al eddy ve l oci t y uL such t hat |〈  uu〉| ∼ u 2L . The
eff ect ive t ur bul ent vi scosi t y νturb can now be e st i m at ed f r om t he r a t i o of t he R eynol ds st r e sses t o t he vi scous
stresses,

νturb ∼ |〈 uu〉|
|∇v| ∼ u 2L

�v/ L
= u 2L L

�v
. ( 32. 27)

S i nce t he eddy vi scosi t y ( 32. 13) gr ow s r api dl y w i t h t he e ddy scal e, t he l argest eddi es w i l l domi nat e t he
turbulent viscosity. S etting νturb ∼ ν L = Lu  L in the above estimate we conclude that �v ∼ u L .

T hese a rgument s suppor t t hat t he vel oci t y def ect i n t he bul k of t he t urbul ent flow i s of roughl y t he sam e
m agni t ude as t he t urbul e nt vel oci t y fluct uat i ons . I n t he di scussi on of si mpl e t ur bul ent fl ow s i n s ect i ons 32. 7
and 32. 8 we shall verify this cl ai m.

Effective R eynol ds number for turbul ence
T he condition f or turbulent viscosity to dominate over t he molecular viscosity is that the R eynolds number
of the system-scale eddies is large, ReL = u L L/ν ∼ νturb/ν � 1. T here i s i n fact no t urbul ence unl ess
this condition is fulfilled.

We are now also in a position t o estimate t he effect ive t urbulent Reynolds number, defi ned as the r atio
bet w een t he a dvect ive m ean fi e l d cont r i but i on a nd t he domi nant R eynol ds st r e ss cont r i but i on,

Returb = |(v · ∇)v|
|∇ · 〈 uu〉| ∼ U�v/ L

u 2L/ L
∼ U

uL
= Re

ReL
, ( 32. 28)

where as before R e = U L/ν . I n t he f ol l ow i ng w e shal l s ee t hat t he r i ght - hand s i de i s not usual l y ve r y
l arge, i n r eal i s t i c syst ems s omew her e bet w een 10 and 40. T hi s i s comf or t i ng, si nce i t woul d be compl et el y
meani ngl ess i f R eturb were t o become so l arge t hat t he mean fi el d equat i ons became unst abl e and t hemsel ves
deve l oped t ur bul e nce!

32.4 Turbulence near a smooth s olid wall
Turbul ent fl ow al ong a s ol i d wal l appears at fi rst s i ght t o be rat her uni form and r each al l t he way t o t he wal l ,
but t hat cannot be compl et el y t r ue. Vi s cosi t y demands t hat t he m ean vel oci t y fi el d as w el l as t he fl uct uat i on
field must vanish exactly on the wall. The confl ict between viscosity’s insistence on a no-slip condition
and t urbul ence’s t endency t o even out mean vel oci t y di ff erences l eads t o t he format i on of a t wo-decked
boundar y l a yer s t r uct ur e . T hus, i n a ny t ur bul ent boundar y fl ow t her e w i l l be an i nner l ayer whi ch s ecures
t he f ul fi l l m ent of t he no- sl i p condi t i on, and a n out er l ayer t hat i mpl ement s t he i nt erface t o t he mai nst r eam
fl ow. T hese m ai n l ayer s m ay be f ur t her s ubdivi ded i nt o s ubl ayer s.

�

� x

y

i nner l ayer

out er l a yer

overlap regi on

mai nst ream fl ow

0

δ

Sketch of the turbulent boundary
layer structure near a solid wall.
The inner layer interfaces to the
wall whereas the outer layer in-
terfaces to the mainstream flow.
The inner and outer layers over-
lap in a finite region between the
dashed lines. There is no clear
break between the inner and outer
layers.

The inner and outer layers must overlap in a finite region, because in a viscous flow there cannot be a
sharp break anywhere in the true velocity field or in any of its derivatives. It is the requirement of a finite
overlap region that connects the inner and outer layers, and thereby the main flow with the stresses that
the fluid exerts on the wall. It must be emphasized that due to the finite overlap, there will be no clearly
discernable break between the inner and outer layers. There is, as we shall see, instead a fairly well-defined
transition between the two sublayers of the inner layer.

In the following analysis we shall make the same basic assumptions about the boundary flow as in
t he l ami nar case ( chapt er 28). T he t ot al t hi ckness δ of t he boundar y l a yer w i l l alwa ys be assumed t o be
much smaller than the mainstream geometry scale δ � L . We may then take the wall to be locally flat,
coinciding with the xz-plane, y = 0, in a Cartesian coordinate system. We shall also choose the x-axis
along the mainstream mean flow direction such that vz = 0 throughout the boundary layer. The non-
vanishing velocity components vx and vy depend mainly on y, but may change slowly with x (and z) over
the mainstream geometry scale L .
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32.5 I nner layer structure
T he f undamental dynamic quantity that controls the flow very near the wall i s t he mean wall shear stress,

σwa l l =
〈
σ x y

〉
y=0 = η ∇ yv x

∣∣
y=0 ≡ ρ 0 u 20. ( 32. 29)

Here we have for conveni ence i nt r oduced a paramet er u0 , called the friction velocity, and it is al so
conveni e nt t o defi ne a t hi r d l e ngt h s cal e,

δ0 = ν

u0
, ( 32. 30)

called the vi scous l e ngt h s cal e . A t t hi s poi nt w e do not know w hat u0 and δ0 mean, except t hat given ρ  0 and
ν t hey cont ai n exact l y t he s ame i nformat i on as t he wal l st ress. L i ke t he wal l s t r ess t hey may al so change
slowly with x over di s t ances on t he mai nst r eam scal e L . We s hal l soon see t hat u0 sets the scale for the
velocity and δ0 t he s cal e f or t he t hi ckness of an ext r emel y t hi n vi s cous and near l y l ami nar i nner s ubl ayer
that is always present closest to the wall.

T he r at i o of i nner a nd out er l e ngt h s cal es i s an i m por t a nt di mensi onl ess number, cal l e d t he wall
R eynol ds num ber 3 ,

Re0 = δ

δ0
= u0δ

ν
. ( 32. 31)

I t i s qui t e di ff er ent f r om t he convent i onal R eynol ds number of a boundar y l a yer ( see page 411) ,

Reδ = 
Uδδ

ν
, ( 32. 32)

where Uδ  i s t he s cal e of t he st r eamw i se vel oci t y at t he ‘ edge’ of t he out er boundar y l ayer y ∼ δ . I n t ur bul e nt
fl ow s t he wal l R eynol ds number i s a lways l arge, t ypi cal l y R e0 � 100, w her eas t he out er R eynol ds number
Reδ typically is between 20 and 40 times larger, i.e. in the thousands.

Viscous linear sublayer
The finiteness of the mean velocity gradient at the wall,

∇yvx
∣∣
y=0 = u2

0
ν

= u0

δ0
, (32.33)

ensures that very near the wall the streamwise velocity will grow linearly with y. In units of u0 this linear
law of the wall may be written,

vx

u0
= y

δ0
. (32.34)

E m pi r i cal l y, t he l i near l aw of t he wa l l i s f ound t o be qui t e accur a t e f or 0 ≤ y/δ0 � 5, as may be seen in
fi gur e 32. 2. T he ave r a ge ve l oci t y i n t hi s r egi on i s 2. 5u0, and this demonstrates that the friction velocity u0
sets the scale of the velocity in the viscous sublayer, and δ0 the scale of its thickness.

Example 32.1.1 (Concrete water pipe, continued): In this example (page 500) the wall stress is
σwall = (1/2)ρ0U2C f ≈ 400 Pa and thus u0 ≈ 0.6 m s−1 which is only about 5% of the mainstream

flow velocity U = 13 m s−1. The wall length scale becomes δ0 = 1.6 µm, and taking δ = a = 0.5 m,
we get Re0 = 318 000 for this highly turbulent flow. The viscous length scale is much smaller than the
1 mm roughness scale assumed for concrete and this shows that the idea of a clean viscous sublayer
cannot hold up in this case. Rough walls require a slight modification of the theory which will not be
discussed here [61, p. 526].

3The wall Reynolds number may in the Kolmogorov picture be interpreted as the Reynolds number of the largest
eddies at the edge of the boundary layer, and is often used to characterize experiments and numerical simulations. In the
literature it is also frequently denoted Reτ .
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F i gu re 32. 2. P l ot of vx/u 0 agai nst y/δ0 in the near-wall region 0 ≤ y/δ0 � 100 at R e0 = 590. T he
dat a poi nt s a r e obt ai ned f r om di r ect numer i cal si mul a t i on of c hannel fl ow by Moser, K i m a nd Mansour
( s ee f oot not e 4 on page 509) . T he dashed st r a i ght l i ne i s t he ve l oci t y i n t he l i near subl ayer ( 32. 34) , a nd
the dashed curve is a fi t to the velocity in the logarithmic sublayer (32. 36) with A = 2. 42 and B = 5. 42.
T he t wo appr oxi mat i ons cr oss a t y/δ0 ≈ 11, indicated by the vertical dotted line. The solid line is the
interpolation (32.46) with A = 2.42, B = 5.57, α = 9.92 × 10−4 and β = 4.02 × 10−4. One notes that
t he fi t i s not per f ect . T he i m per f ect i ons can be seen mor e cl ear l y i n fi gur e 32. 4.

Turbulent logarithmic sublayer
Deeply inside the boundary layer but well beyond the linear region, i.e. for δ0 � y � δ, the flow will be
turbulent but because of the proximity of the wall, the wall friction velocity u0 still sets the velocity scale.
In keeping with the discussion in the preceding sections we expect that the mean velocity slope ∇yvx in
this region is quite small and essentially independent of the viscosity. It can then only depend on u0 and y,
and must for dimensional reasons be of the form,

∇yvx = A
u0

y
, (32.35)

where A is a dimensionless constant. Integrating this expression we obtain the logarithmic law of the wall,

vx

u0
= A log

y

δ0
+ B, (32.36)

where B is another dimensionless constant, and where we have normalized the logarithm by the viscous
length scale δ0 = ν/u0 to make its argument dimensionless. The logarithmic law of the wall goes back to
von Karman and Prandtl in the early 1930s, and the inverse κ = 1/A is called the Karman constant.

The received wisdom is that the logarithmic law of the wall is reasonably accurate for y/δ0 � 30
with A ≈ 2.4 and B ≈ 5 in all wall-bounded flows. In figure 32.2 the logarithmic law is compared
with numerical channel flow simulation data4 at Re0 = 590, and a reasonable fit is obtained in the region
30 � y/δ0 � 100 with A = 2.42 and B = 5.42. In recent years this wisdom has, however, been
challenged. Highly precise compressed air pipe flow experiments5 indicate that the strict logarithmic law
first sets in for y/δ0 � 500, and that the constants are A = 2.29 and B = 6.13. In the intermediate region

4 R. D. Moser, J. Kim and N. N. Mansour, Direct numerical simulation of turbulent channel flow up to Reτ = 590,
Phys. Fluids 11, (1999) 943. The authors are thanked for making their data files publicly available on the internet.

5M. V. Zagarola and A. J. Smits, Scaling of the mean velocity profile for turbulent pipe flow, Phys. Rev. Lett. 78,
(1997) 239. The authors are thanked for making their data from the Princeton SuperPipe experimental facility publicly
available on the internet.
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F i gu re 32. 3. Semilogarithmic plot of vx/u 0 agai nst y/δ0 at hi gh R eynol ds number. T he dat a poi nt s a r e
obtained from the experiments by Z agarola and Smits on the P rinceton SuperPipe facility at 26 different
wa l l R eynol ds number s r a ngi ng f r om R e0 ≈ 851 t o R e 0 ≈ 529 000 ( s ee f oot not e 5 on page 509) . T he
‘ bumps’ r epr e sent t he wake f unct i on f or pi pe fl ow ( see fi gur e 32. 7 a nd sect i on 32. 8) . T he sol i d cur ve i s
the interpolation (32.47) with A = 2.29, B = 6.13, α = −0.0189, β = 0.0214. The dashed curve is the
velocity in the linear sublayer (32.34), and the dashed straight line the velocity in the logarithmic sublayer
(32.36) with A = 2.29 and B = 6.13. The dotted curve is the power law approximation (32.37). Note
that the data points (and the fitted interpolation) overshoot the linear rise in the outer part of the viscous
sublayer.

30 � y/δ0 � 500 it is found that the velocity profile may be approximated by a power law,

vx

u0
= 8.70

(
y

δ0

)0.137
. (32.37)

Alternatively this region may be modelled with slowly sliding values of A and B. Older experiments
typically took place at such low wall Reynolds numbers that the truly logarithmic region was never reached,
and this explains perhaps the discrepancies between the values of A and B found in different experiments.
The SuperPipe data and the various approximations to it are plotted in figure 32.3.

Complete inner law of the wall
In the whole inner layer 0 ≤ y � δ the flow should not depend on δ, so that we may express the streamwise
mean velocity vx in terms of the friction velocity u0 and the dimensionless parameter y/δ0,

vx

u0
= f

(
y

δ0

)
, (32.38)

where f (s) is a purely numeric function of its variable s = y/δ0 in the interval 0 ≤ s � Re0. Since
Re0 > 100 in all turbulent flows, and mostly much larger, this should leave sufficient room for the
logarithmic sublayer to be realized in the interval 30 � s � Re0 = δ/δ0.

From the preceding analysis we already know the asymptotic behaviour of f (s) for small and not too
large s,

f (s) =
s (0 ≤ s � 5)

A log s + B (30 � s � Re0)

. (32.39)
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As discussed above, A and B may change slightly in the region 30 � s � 500, but f or A ≈ 2. 5 and  B ≈ 5
t hese expressi ons cross each ot her at s ≈ 11. A l t hough w e do not know t he exact shape of t he f unct i on i n
t h e c r o s s ove r r eg i o n , 5 � s � 30, this anchoring in the extremes does not leave much liberty for variation
i n bet w een. B el ow w e shal l pr esent t he s i m pl est possi bl e i nt er pol at i on w hi ch connect s t he t wo ext r eme
behavi our s.

The mean field in the y -direction is determined by the divergence condition ∇xv x + ∇yv y = 0, and
may i n t he i nner wal l l ayer easi l y be veri fi ed t o be,

vy = −y f

(
y

δ0

)
∇x u 0. ( 32. 40)

The ratio of the two velocities is consequently

vy

vx
= − y∇  x u 0

u0
. ( 32. 41)

Since ∇x u 0 ∼ u 0/ L , t he magni t ude of t he r at i o i s v y/v x ∼ y/ L which is negligible in the whole inner
wa l l r egi on 0 ≤ y � δ .

Rey no l ds s hea r s tres s i n the i nner l a yer
In t he precedi ng anal ysi s w e have onl y used di m ensi onal argument s and m ass conservat i on, and compl et el y
i gnor ed t he R eynol ds equat i ons ( 32. 23) w hi c h a f t er al l c ont r ol t he dynami cs. S i nce al l t he x - dependence
in the inner wall layer stems from the wall friction velocity u0 , any  x - der ivat ive m ust be of m agni t ude
∇x ∼ 1/ L . S imilarly, all y - dependence i s gove r ned by δ0 such t hat ∇ y ∼ 1/δ0 . In the limit of L → ∞ we
may drop all x -derivat ives (and t herefore al so vy ) i n t he fi r st R eynol ds equat i on ( 32. 23) , a nd get

0 = ν∇  2yv x − ∇y
〈
ux u y

〉
, ( 32. 42a)

∇y p = −ρ  0∇ y

〈
u 2y

〉
. ( 32. 42b)

I nt egr at i ng t hese equat i ons ove r y and using the boundary condition given by the wall shear stress (32. 29),
t hey become

�

�
........................................... ..... .. ............. ................................................................................................................................................................................................................................................................. ........ .............................. ..... ........... ... .. .... .. ........... . .. .. ......... . ....

s

f ′( s)

1

1

S ket ch of t he s l ope f ′( s) .
u 20 = ν∇  yv x −

〈
u x u y

〉
, ( 32. 43a)

p = p0 − ρ  0

〈
u 2y

〉
, ( 32. 43b)

where p0 is the pressure on the wall. The last equation shows that in distinction to the laminar case,
turbul ence causes a (small) drop in the pressure as we move away from t he wall.
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.............
............
...........
..........
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..................
...................

.....................
........................

.......................... ...
........... .............. ....... ... ... .. 

............. ..... .. ... ................................

y/δ0

− 〈 
u x u y

〉

1

u 20

S ket ch of − 〈 
u x u y

〉
as a f unct i on

of y/δ0 .

F i nal l y, i nser t i ng t he mean fi e l d ( 32. 38) i nt o ( 32. 43a) , w e get ,

〈
ux u y

〉 = −u 20

(
1 − f ′

(
y

δ0

))
. ( 32. 44)

T he s l ope f ′( s) decreases from f ′ = 1 at s = 0 to  f ′ = 0 for  s = ∞, so for δ0 � y � δ the
fl uct uat i on m oment i s c onst a nt

〈
ux u y

〉 ≈ −u 20 . Due to the negative sign, the fl uctuations u x and u y are
always statistically anti-correlated, meaning that if ux > 0 then uy < 0, and conversely.

How fast does
〈
ux uy

〉
vanish in the viscous sublayer? For physical reasons all velocity derivatives must

be finite at the wall, so that all components of the fluctuation field (ux , uy , uz) must vanish at least as fast
as y. Combined with the divergence condition ∇ ·u = ∇x ux +∇yuy +∇zuz = 0, it follows that ∇yuy ∼ y
and therefore uy ∼ y2, whereas ux ∼ y and uz ∼ y. From this we get

〈
ux uy

〉 ∼ y3, and putting in the
dimensional factors this may be written,

〈
ux uy

〉 ≈ −α u2
0

(
y

δ0

)3
, (32.45)

where α is a numerical constant. In terms of the dimensionless shape function f (s) this translates into
f ′( s) ≈ 1 − α s 3 and f ( s) = s − ( 1/4)α  s 4 . U sually, i t i s assumed t hat α is positive, but the overshooting
of t he pi pe fl ow dat a i n fi gur e 32. 3 r el at ive t o t he l i near r i se i n t he vi s cous subl ayer i ndi cat es t hat α mi ght
in fact be negative (if the experimental values can be trusted this close to the wall).
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Interpolation between linear a nd logarithmic subl ayers
T her e a r e many wa ys of gener a t i ng a n i nt er pol at i ng f unct i on f ( s) connect i ng t he ext r emes s � 1 and
s � 1. A ‘ mi ni mal ’ i nt e r pol at i on f or t he s l ope w hi c h t akes i nt o account t hat bot h f ′ = 1 − α s 3 for s � 1
and f ′ = A/s for s � 1 is, for  example,

f ′( s) = 1

1 + (α + β)  s 3 
+ 

Aβ s 3

A + β s 4
, ( 32. 46)

where β i s anot her numer i c const a nt . O ne may ver i f y t hat i t s i nt egr al i s ,

f ( s) = 1

4 
A log

(
1 + β

A 
s 4

)
+ 1

18γ

(
π

√
3 − 6

√
3 arctan  

1 − 2γ s√
3

+ 3 log
( 1 + γ s)  2

1 − γ s + γ  2 s 2

)
, ( 32. 47)

where γ = (α + β)1/ 3 . For s → ∞ t hi s appr oaches t he l ogar i t hmi c l aw of t he wal l ( 32. 36) w i t h

B = 2π

3
√

3
(α + β)−1/ 3 − 

1

4 
A log 

A

β
. ( 32. 48)

A ny c hoi ce of const a nt s A , B , α and β must satisfy this relation.
Ol der dat a i ndi cat ed t hat t he const ant s w ere A = 2. 44, B = 5. 00, α = 0. 61 × 10−3 and

β = 1. 43 × 10−3 [ 61, p. 523] . I n fi gur e 32. 2 t he pr eci se numer i cal si mul a t i ons yi el d a good fi t f or
A = 2. 42, B = 5. 57, α = 9. 92 × 10−4 and β = 4. 02 × 10−4 . T he recent hi gh preci si on experi ment s on
pi pe fl ow pl ot t e d i n fi gur e 32. 3 l ead i nst ead t o A = 2. 29, B = 6. 13, α = −0. 0189, and β = 0. 0214. T he
interpolation is in this case very precise for all s and as good as the power law approximation (32.37) in the
region 30 � s � 500.

Turbulent viscosity
The local turbulent shear viscosity νturb is defined by writing,

− 〈
ux uy

〉 = νturb∇yvx . (32.49)

Inserting this into (32.43a) and making use of (32.44) we find

νturb

ν
= 1

f ′(y/δ0)
− 1 ≈


α

(
y

δ0

)3
(y � δ0)

1

A

y

δ0
(y � δ0)

. (32.50)

In accordance with intuition, the turbulent viscosity in the inner layer thus vanishes rapidly for y → 0 and
diverges linearly for y → ∞.

32.6 Outer layer structure
Eventually, at a scale set by the boundary layer thickness δ, the logarithmic growth of the mean velocity
field vx will come under the influence of the mainstream flow, causing deviations from the universal inner
law of the wall (32.38). It is for obvious reasons not possible to give a general description of all mainstream
flows, but as long as the boundary layer is thin compared to the mainstream geometry, δ � L , it is possible
to analyse the flow in the outer layer.
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Wake function
It was previously (page 506) pointed out that in a fully developed turbulent flow the mean velocity only
varies slowly across the geometry, and that the velocity defect is of the same order of magnitude as the
turbulent fluctuations. In the outer layer δ0 � y � δ we shall interpret this to mean that the difference
vx − u0 f (y/δ0) between the velocity and the universal inner law (32.38) is itself of magnitude u0. Thus,
we may in the whole boundary layer 0 ≤ y � δ write,

vx

u0
= f

(
y

δ0

)
+ w

( y

δ

)
, (32.51)

where the so-called wake function w(s) is a dimensionless function of the dimensionless variable s = y/δ.
Since the first term ensures that the logarithmic law f = A log(y/δ0)+ B is fulfilled for y � δ0, and since
there must be a finite overlap between the inner and outer layers, the wake function has to vanish for s → 0.

The wake function is assumed to be independent of the viscosity, but may depend on the streamwise
coordinate x , either explicitly or implicitly through the x-dependence of the thickness δ = δ(x) (we
suppress this dependence whenever it is safe to do so).

Friction law
Suppose that we somehow know the velocity vx = Uδ for y = δ. Taking y = δ in (32.51) and using
Re0 = δ/δ0 = u0δ/ν � 1 we obtain the so-called friction law (originally due to Prandtl),

Uδ
u0

= f (Re0)+ C ≈ A log Re0 + B + C, (32.52)

where C = w(1) is a dimensionless ‘constant’ that in general depends on the flow geometry. Turbulent
flows typically have Re0 � 100 such that Uδ/u0 � 17 for A = 2.5, B = 5.0 and C = 0. The ratio Uδ/u0
grows very slowly with Re0 and normally takes values between 20 and 40.

Velocity defect
Subtracting the friction law (32.52) from the velocity (32.51) we obtain an exact expression for the velocity
defect in units of the friction velocity,

vx − Uδ
u0

= f

(
y

δ0

)
− f (Re0)− C + w

( y

δ

)
. (32.53)

In the outer layer where δ0 � y � δ, we may replace f by the logarithmic law of the wall and get the
simple result, called the velocity defect function,

vx − Uδ
u0

≈ A log
y

δ
− C + w

( y

δ

)
. (32.54)

It should be noted that this expression only depends on y/δ and vanishes for y = δ because C = w(1).
The constant B has fallen out here and thus has no influence on the velocity defect in the whole outer
layer. Different flow geometries only differ in their outer layers, and unless high precision data exist for the
viscous inner layers, it is the velocity defect that is usually compared with experiments.

32.7 Planar turbulent flows
Symmetry and dimensional arguments play an especially important role in the analysis of stationary
turbulence in simple flow geometries where the symmetry is high and the number of parameters small.
In this section we shall apply the theory of turbulent wall flows to model the turbulent flow profile in planar
pressure-driven (channel Poiseuille) flow and velocity-driven (channel Couette) flow. The laminar solutions
for these geometries have previously been obtained in sections 18.2 and 17.2.
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F i gu re 32. 4. The wake function for planar pressure-driven (Poiseuille) fl ow as a function of y/d for
Re0 = 587. 19. T he dat a poi nt s a r e obt ai ned f r om t he same sour ce as i n fi gur e 32. 2, usi ng ( 32. 56)
w i t h par a met e r s det e r m i ned by t he fi t i n fi gur e 32. 2, i . e. A = 2. 42, B = 5. 57, α = 9. 92 × 10−4 and
β = 4. 02× 10−4 . T he solid curve i sw = C sin 2(π  y/d) with C = 1. 95. T he w i ggl e on t he l e f t cor r e sponds
t o t he near l y i nvi si bl e i mper f ect i ons i n t he fi t s of fi gur es 32. 2 a nd 32. 5.

Both planar geometries are infinitely extended along the flow direction and orthogonally to it, so that
formally we may take L = ∞. The infinite longitudinal extent allows us to assume that the outer boundary
layers have expanded to completely fill the interior of the geometry with a turbulent core, smoothly
connecting the outer layer of one wall with that of the opposite wall.

Pressure-driven planar flow
In the planar Poiseuille or channel flow set up both plates are fixed at distance d , and the fluid is driven
between them by a constant pressure gradient. In this case we take δ = d/2, so that the defect velocity
scale equals the maximal flow velocity in the midplane between the plates, Uδ = Umax. We shall soon
relate this velocity to the average velocity between the plates. The two plates are completely equivalent and
must satisfy,

vx (d − y) = vx (y), (32.55)

because the channel flow set up is symmetric around the midplane.
A representation of the same nature as (32.51) which respects this symmetry and has the correct near-

wall behaviour at both plates is

vx

u0
= f

(
y(d − y)

δ0d

)
+ w

( y

d

)
. (32.56)

The wake function is symmetric, w(1 − y/d) = w(y/d), and must vanish on the plates, w(0) = w(1) = 0.
A convenient choice that fits with data is, for example, w = C sin2(πy/d).

Taking y = δ = d/2 and using the logarithmic law of the wall (32.36), we find the friction law,

Umax

u0
= f

(
Re0

2

)
+ w

(
1

2

)
≈ A log

Re0

2
+ B + C, (32.57)

where Re0 = δ/δ0 = d/2δ0 and C = w(1/2). Subtracting this from (32.56) we obtain the defect function
in the turbulent core (y � δ0 and d − y � δ0),

vx − Umax

u0
≈ A log

4y(d − y)

d2
− C + w

( y

d

)
. (32.58)
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F i gu re 32. 5. The mean velocity field for planar pressure-driven (Poiseuille) fl ow in units of the average
velocity as a function of the y - c oor di nat e f or R e0 = 587. 19. T he dat a poi nt s a r e sel ect ed f r om hi gh
pr eci si on numer i cal si mul a t i on r esul t s ( s ee f oot not e 4 on page 509) . T he sol i d cur ve i s obt ai ned f r om t he
procedure described in the text, and the resulting fi t is excellent. T he dashed curve is the laminar solution
vx/ U = 6 y( 1 − y) with the same average velocity.

I t shoul d be not ed t hat t hi s f unct i on i s s ymmet r i c and onl y depends on t he var i a bl e y/d , a nd t hat t he c onst a nt
B has fal l e n out .

I n fi gur e 32. 4 t he wa ke f unct i on i s cal cul a t e d f r om ( 32. 56) and t he hi gh pr eci si on si mul a t i on dat a a t
Re0 = 587. 19 ( f oot not e 4 on page 509) w i t h t he par amet er s det er mi ned i n t he fi t show n i n fi gur e 32. 2 ( i . e.
A = 2. 42, B = 5. 57, α = 9. 92× 10−4 and β = 4. 02× 10−4 ) . T he r esul t compar es w el l w i t h t he expr essi on
w = C sin2(π  y/d) for C = 1. 95. From the friction law it follows that Umax/u0 = 21. 26,  and in view  of
the small value of u0/ Umax ≈ 0. 05 t he wake f unct i on has onl y a bout 10% i nfl uence on t he vel oci t y pr ofi l e
in the centre. Small deviations such as the small wiggle close to the wall in figure 32.4 become essentially
i nvi si bl e i n t he ve l oci t y pr ofi l e pl ot t e d i n fi gur es 32. 2 a nd 32. 5. T he wake f unct i on exposes i n by fa r t he
best way the inadequacy of the wall interpolation function (32.46).

In planar channel flow the controlling parameter is customarily chosen to be the average velocity (rather
than the maximal),

U = 1

d

∫ d

0
vx (y) dy. (32.59)

Inserting the velocity from (32.56) we find

U

u0
=

∫ 1

0

(
f (2Re0s(1 − s))+ w(s)) ds, (32.60)

and dividing this into (32.56) we find the curve for vx/U shown in figure 32.5. A precise value of this
integral must be obtained numerically.

An approximate value can be found using the logarithmic law f (s) = A log s + B, for which the
integral becomes

U

u0
≈ A log(2Re0)− 2A + B + 1

2
C. (32.61)

Inserting the values A = 2.42, B = 5.57 and C = 1.95 we get for Re0 = 587.19 the value U/u0 = 18.79
whereas numeric integration yields U/u0 = 18.67, differing by merely half a per cent.
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F i gu re 32. 6. T he vel oci t y def ect f unct i on i n pl anar vel oci t y- dr iven ( C ouet t e) fl ow as a f unct i on of y/d .
Withw = 0, A = 2. 44 and C = 0. 56, t her e i s good agr eement bet w een ( 32. 66) and ol der dat a at R e0 = 733
( ext r act ed f r om [ 61 , fi g. 17. 2] ) . T he c onst a nt B cannot be det er m i ned because of t he l ack of near- wal l dat a.

Velocity-driven planar flow
In the planar Couette flow set up one plate is fixed at y = 0 and the other moves along the x-axis with
velocity U at a fixed distance y = d . The two plates are completely equivalent in their respective rest
systems, implying that the mean velocity field must satisfy the symmetry relation,

vx (d − y) = U − vx (y). (32.62)

The boundary layer thickness is for symmetry reasons chosen as δ = d/2, making the defect velocity equal
to the central velocity Uδ = U/2.

A wake function representation which respects this symmetry and has the correct near-wall behaviour
at both plates is quite complicated,

vx

u0
= U

u0

y

d
+ f

(
y

δ0

)
− f

(
d − y

δ0

)
+

(
1 − 2y

d

)
f

(
d

δ0

)
+ w

( y

d

)
. (32.63)

The first term is identical to the laminar velocity profile and the fourth secures that the no-slip condition is
fulfilled at both plates. The wake function is antisymmetric, w(1 − y/d) = −w(y/d), and must vanish in
the centre and the limits, w(0) = w(1/2) = w(1) = 0. The simplest choice is w(s) = 0 for all s.

In this case we cannot obtain the friction law by setting y = δ = d/2, because both sides of the equation
automatically vanish at the centre. The friction law follows instead from the observation that the central
velocity gradient ∇yvx should be independent of the viscous length δ0, and that is only possible when the
gradients of the first and fourth terms cancel, so that

U

2u0
= f (2Re0)+ C ≈ A log(2Re0)+ B + C, (32.64)

where Re0 = δ/δ0 = d/2δ0 and C is an arbitrary constant. The defect function now becomes,

vx − 1
2 U

u0
= f

(
y

δ0

)
− f

(
d − y

δ0

)
−

(
1 − 2y

d

)
C + w

( y

d

)
. (32.65)

In the turbulent core (y � δ0 and d − y � δ0) this simplifies to,

vx − U/2

u0
≈ A log

y

d − y
−

(
1 − 2y

d

)
C + w

( y

d

)
, (32.66)

which is perfectly symmetric and depends only on y/d . The constant B has again fallen out.
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F i gu re 32. 7. P i pe wa ke f unct i on f or R e0 = 851 cor r e spondi ng t o R e = 31 577. T he dat a i s t aken f r om
Z a gar ol a and S mi t s ( s ee f oot not e 5 on page 509) . T he wa ke f unct i on dat a i s cal cul a t e d usi ng ( 32. 68) w i t h
t he paramet ers det ermi ned i n fi gure 32. 3, i . e. A = 2. 29, B = 6. 13, α = −0. 0189, β = 0. 0214. T he s ol i d
pr ofi l e i s w(s) = C cos 2(π  r/2a) with C = 3. 07. The fi t is excellent, except close to the wall at r = a .

I n fi gur e 32. 6 a compar i s on has been made w i t h ol der exper i ment al dat a on t he vel oci t y def ect at
Re0 = 733 ( ext r act ed f r om [ 61 , fi g. 17. 2] ) . Wi t h w(s) = 0 a good fi t can be obt ai ned f or A = 2. 44 and
C = 0.56. Since the data does not cover the wall region, the constant B cannot be determined.

32.8 Turbulent pipe flow
In a pipe of radius a, the longitudinal extent of the flow is infinite, whereas the orthogonal extent 2πa is
finite. Provided the viscous sublayer is much thinner than the radius δ0 � a, the flat-wall theory should
also apply to this case. A pipe carrying turbulent fluid looks in the r z-plane very much like planar pressure-
driven flow with d = 2a when the coordinate y is replaced by a − r , the velocity vx (y) replaced by vz(r),
and the range of the r -coordinate is extended to the full interval −a ≤ r ≤ a. As defect scales we choose
the radius, δ = a, and the central velocity Uδ = Umax. We shall impose reflection symmetry on the field,

vz (−r) = vz(r), (32.67)

to make it continue smoothly across the centerline at r = 0.

Wake function representation
A representation that obeys this symmetry and has the right behaviour at the walls r = ±a is quite analogous
to the channel flow expression (32.56),

vx

u0
= f

(
a2 − r2

2aδ0

)
+ w

( r

a

)
(32.68)

where the wake function must vanish at the wall, w(±1) = 0. The friction law is obtained for r = 0,

Umax

u0
= f

(
Re0

2

)
+w(1) ≈ A log

Re0

2
+ B + C (32.69)

with C = w(0) and Re0 = a/δ0. Subtracting we obtain the defect function,

vx − Umax

u0
≈ A log

(
1 − r2

a2

)
− C + w

( r

a

)
, (32.70)
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F i gu re 32. 8. P i pe fl ow vel oci t y pr ofi l e f or R e0 = 851 cor r e spondi ng t o R e = 31 577. T he dat a i s t aken
f r om Z agar ol a a nd S m i t s ( s ee f oot not e 5 on page 509) . T he sol i d pr ofi l e i s cal cul a t e d f r om ( 32. 68) w i t h
par a met e r s det e r m i ned i n fi gur e 32. 3 i . e . A = 2. 29, B = 6. 13, α = −0. 0189, β = 0. 0214. T he dashed
cur ve i s t he l ami nar pr ofi l e car r yi ng t he same vol ume di scharge.

where the approximation is valid in the turbulent core for a − r � δ0 and a + r � δ0 . A gai n w e not e t hat
i t i s i ndependent of t he vi s cosi t y.

I n fi gur e 32. 7 t he wa ke f unct i on i s det er mi ned f r om t he P r i ncet on S uper P i pe dat a a t R e0 = 851,
cor r e spondi ng t o R e = 31 577 ( s ee f oot not e 5 on page 509) . T he f unct i on w = C cos 2(π  r/2a) with
C = 3. 07 fi t s ver y w el l . T he val ue of C i s sl i ght l y R eynol ds number dependent .

Veloci ty profile
I n pi pe fl ow t he cont r ol par amet er i s usual l y t a ke n t o be t he easi l y measurabl e average vel oci t y,

U = 1

π a 2

∫ a

0
vz(r) 2π r dr. ( 32. 71)

I nser t i ng ( 32. 68) w e obt ai n,

U

u0
=

∫ 1

0

(
f
(

1
2 Re0( 1 − s 2)

)
+ w(s)

)
2s ds. ( 32. 72)

T he i nt egr a l i s best done numer i cal l y, but a usef ul a ppr oxi mat i on i s obt ai ned by usi ng t he l ogar i t hmi c l aw
of the wall, f (s) = A log s + B, and w(s) = C cos2(πr/2a),

U

u0
≈ A log

Re0

2
− A + B + π2 − 4

2π2
C. (32.73)

As for pressure-driven planar flow, this expression must be expected to differ from the true value, because
the integral depends on the flow profile near the wall. In figure 32.8 the velocity profile is shown with the
same par a met e r s as i n fi gur e 32. 7. T he val ue obt ai ned by numer i cal i nt egr at i on i s U/u0 = 18.505 whereas
the approximation above yields U/u0 ≈ 18.636, with a difference of less than one per cent.
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F i gu re 32. 9. T he f r i ct i on c oeffi ci ent f or smoot h- pi pe fl ow a s a f unct i on of t he R eynol ds number. T he s ol i d
st r ai ght l i ne i s t he l ami nar r esul t C f = 16/Re , and the solid curve i s t he parametric solution obt ai ned
f r om ( 32. 74a) w i t h A = 2. 29 and E = 3. 03. T he dashed l i ne i s t he B l asi us s moot h- pi pe expr essi on
C f = 0. 079R e−1/ 4 ( page 257) . T he dat a poi nt s a r e ext r act ed f r om [ 61 , fi g. 1. 4] ( t r i angl es) a nd f r om t he
t a bl es of Z a gar ol a and S mi t s ( f oot not e 5 on page 509) .

Rey no l ds number a nd fri cti o n co effici ent
T he t r a di t i onal pi pe fl ow R eynol ds number R e = 2aU/ν = 2R e0 U/u 0 and fri ct i on coeffi ci ent C f =
σwa l l/( 1/2)ρ  0 U 2 = 2( u 0/ U)  

2 may now be expr essed i n t er ms of R e 0 ,

Re = 2R e0( A log Re0 + E),  ( 32. 74a)

C f = 2

( A log Re0 + E) 2 
( 32. 74b)

where t he value U/u0 = 18. 505 cor r e sponds t o E ≈ 3. 03. Together these equations constitute a parametric
represent at i on of t he fri ct i on coeffi ci ent C f as a f unct i on of t he R eynol ds number R e.

I n fi gur e 32. 9 t he par a met e r val ues A = 2. 29 and E = 3. 03 det ermi ned above are used t o cal cul at e t he
friction coeffi cient. The agreement with data is best from Re = 4 × 103 to Re = 3 × 107 , w hereas t he
B l asi us pow er l aw ( 18. 50) onl y fi t s w e l l up t o R e = 105 . A very ni ce cl osed empi ri cal approxi mat i on t o
t he dat a i s a ff or ded by t he expr essi on,

C f = 0. 416

( log Re − 1. 98)  2
, ( 32. 75)

w hi c h i s vi r t ual l y i ndi st i ngui shabl e f r om t he dat a i n t he i nt er va l 104 � Re � 108 .

∗ 3 2 . 9 Turbulent bo unda ry la yer in unifo rm flow
B oundar y l ayer s always ar i s e bet w een a near l y i deal l ami nar m ai nst r eam fl ow and any s ol i d wal l t hat bounds
it. At sufficiently high Reynolds number the flow in a boundary layer inevitably turns turbulent while the
mainstream flow remains laminar and nearly ideal. The turbulent boundary layer thickness is defined by the
transition in the mean velocity from turbulence back to laminar mainstream flow, although this transition is
associated with strong intermittency w hich we ignore here ( see fi gure 32. 10). We shall also ignore t he thin
viscous superlayer in which the final transition to the true slip-flow takes place.

In section 28.4 we analysed the beautiful laminar Blasius solution, and in this section we shall extend
the analysis to the turbulent case in the light of our new understanding of the near-wall flow structure.
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Figure 32.10. Turbulent boundary layer in a wind tunnel at Reδ = 4000, showing the strong irregularity of
the instantaneous interface to the laminar mainstream flow. Reproduced from R. E. Falco Phys. Fluids 20
(1977) 5124–32.

The analysis goes along the same lines as in the preceding section but turns out to be somewhat more
complicated because of x-dependence.

The uniform flow set up
In the uniform (Blasius) set up a flow v = U ex impinges upon the edge of a semi-infinite plate at zero angle
of incidence. The boundary layer is characterized by three different Reynolds numbers.

Rex = U x

ν
, Reδ = Uδ

ν
, Re0 = u0δ

ν
. (32.76)

The first and largest is the traditional mainstream Reynolds number, the second the local Reynolds number,
and the third and smallest the wall Reynolds number.

The friction law (32.52) may be written as a relation,

Reδ = Re0(A log Re0 + B + C), (32.77)

between the local Reynolds number and the wall Reynolds number. Traditionally the local friction
coefficient is defined as,

C f = σwall

(1/2)ρ0U2
= 2

(u0

U

)2
, (32.78)

and inserting the friction law it also becomes a function of the wall Reynolds number,

C f = 2

(A log Re0 + B + C)2
. (32.79)

Together (32.77) and (32.79) constitute a parametric representation of the friction coefficient C f as a
function of the local Reynolds number Reδ , basically of the same form as for pipe flow. This function
depends only implicitly on x through the still unknown thickness δ = δ(x). To connect Reδ and C f with
the mainstream Reynolds number Rex we need yet another relation.

Momentum balance
The theory of two-dimensional laminar boundary layers with thickness δ(x) and slip-flow U(x) was
developed in section 28.3. The mean flow in a turbulent boundary layer must likewise satisfy a set of
simplified boundary layer equations, derived from the Reynolds equations (32.23) by leaving out all x-
derivatives of the mean field and fluctuations in comparison with y-derivatives. Under these conditions we
find that the turbulent version of Prandtl’s momentum equation (28.21) on page 414 only differs from the
laminar version by an extra term −∇y

〈
ux uy

〉
on the right-hand side.
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Figure 32.11. The local smooth-plate friction coefficient (solid line) in uniform flow as a function of the
Reynolds number Rex = U x/ν. The straight line on the left is the Blasius laminar result (28.31). The
vertical straight line at Rex = 5 × 105 indicates the transition between the laminar and turbulent regimes,
but the transition is in fact softer than shown here. The fully drawn curve on the right is the numerical
solution of (32.79) and (32.82). The dashed curve that nearly coincides with the fully drawn curve is the
approximation (32.83). The dotted straight line is the power law approximation (28.33) which fits well for
Rex � 109.

The Reynolds stresses are only non-vanishing in the turbulent region of the boundary layer. In the
viscous sublayer as well as in the viscous superlayer interfacing to the slip-flow, we have

〈
ux uy

〉 = 0.
In deriving the von Karman integral relation (28.35) for the mean flow by integration of the modified
momentum equation over all y there will, for this reason, be no contribution from the extra term, and the
relation takes in uniform flow in exactly the same form as before,

ν
∂vx

∂y

∣∣∣∣
y=0

= d

dx

∫ ∞
0
(U − vx )vx dy. (32.80)

Here we may cut off the integral at y = δ because vx = U for y � δ.
The left-hand side of this equation equals u2

0, whereas the right-hand side is more complicated. To
get an idea about its structure we disregard the viscous sublayer and ignore the wake function by setting
w = C = 0, such that vx = U + u0 A log(y/δ). The integral is now elementary, and the momentum
equation takes the form

u2
0 = d

(
Au0δ(U − 2Au0)

)
dx

.

Since u0δ = νRe0, and since the friction law (32.52) for C = 0 yields U/u0 = f (Re0) where
f (s) = A log Re0 + B, the right-hand side depends only on Re0. Differentiating through Re0 and
introducing Rex = U x/ν in place of x , the above differential equation may be written,

dRex

dRe0
= A

(
f (Re0)

2 − 2A f (Re0)+ 2A2). (32.81)

Integrating this over Re0 we obtain the desired relation,

Rex = ARe0
(

f (Re0)
2 − 4A f (Re0)+ 6A2), (32.82)

apart from an undetermined additive constant. From this relation the local Reynolds number (32.77) and
the friction coefficient (32.79) may be determined as functions of Rex . It is, of course, possible to include
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F i gu re 32. 12. T he dr a g c oeffi ci ent f or a fl at w i ng ( i ncl udi ng bot h s i des) a s a f unct i on of t he R eynol ds
number. T he f ul l y dr aw n c ur ve i s obt ai ned by i nt egr a t i ng t he f r i ct i on c oeffi ci ent i n fi gur e 32. 11. T he
straight line on the left is the laminar result (28.32). The cusp indicates the nominal transition point
at Re = 5 × 105. The dashed curve is the turbulent drag approximation (32.85). The data points are
extracted from [61, fig. 1.3]. There is some ‘hysteresis’ in the data, indicating that the transition point is not
particularly well defined.

the constant C and take into account the viscous sublayer and the wake function to derive a more refined
and more complicated relation.

In figure 32.11 the friction coefficient is plotted as a function of Rex . In the region 5 × 105 � Rex �
1012 it is very well approximated by the asymptotic expression [79, p. 432]

C f = 0.455

(log Rex − 2.81)2
. (32.83)

The power law (28.31) is marked as a dashed straight line, and only fits up to Rex � 109.

Plate drag coefficient
The drag coefficient for a flat ‘wing’ of downstream length L and cross-stream width W is obtained by
averaging the friction coefficient over the plate (including a factor 2 for both sides),

CD = 	

(1/2)ρ0U2LW
= 2

L

∫ L

0
C f (x) dx = 2

Re

∫ Re

0
C f (Rex )dRex . (32.84)

In the last step we have introduced the Reynolds number of the plate Re = U L/ν and converted the integral
over x into an integral over Rex .

The integral can be carried out numerically using the friction coefficient plotted in figure 32.11. The
result is shown in figure 32.12 and compared with data. A nice asymptotic approximation is (see [79, p.
433]),

CD = 1.046

(log Re − 2.81)2
. (32.85)

It is shown as the dashed curve in figure 32.12. Surprisingly, it continues to fit the data some distance below
the critical point. One may interpret this phenomenon as a kind of ‘hysteresis’ in the transition back to
laminar flow when the Reynolds number decreases.
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32.10 Turbulence modelling
In the preceding sections we have analysed a few systems so simple that their behaviour in the turbulent
regime is severely constrained by symmetry and dimensional arguments. It must be emphasized that
this approach is not fundamental but rather semi-empirical, as witnessed by the appearance of numerical
constants that have to be determined from comparison with data. Some of these constants are justifiably
believed to be universal, whereas others depend on the general flow configuration.

Ideally, we would like to calculate these constants from first principles. Since we have at hand the
fundamental Navier–Stokes equations governing all Newtonian fluids, it is ‘just’ a question of solving them
for any particular flow geometry. Direct numerical simulation of turbulent flow is indeed possible and
yields believable results with high precision as in the case of channel flow (page 514). Combined with
symmetry and dimensional analysis the numerical constants may in this sense be determined from first
principles without any recourse to real experiments. Unfortunately, the hoped-for universality is not perfect
and different numerical and real experiments disagree somewhat on the precise values of the constants.

Theoretically, the closure problem is the real obstacle to solving the Navier–Stokes equations with
turbulence. Barring direct numerical simulation and cheaper variants thereof such as large eddy simulation,
the only way out of this conundrum seems to be to break off the otherwise infinite set of fluctuation
equations, and thereby enforce closure. There are, however, many ways of doing so, and in the last 100
years numerous closure modelling schemes have appeared, sometimes introducing many new adjustable
parameters. It is not the intention here to review this enormous field, which is well represented in the
excellent modern textbooks on turbulence [58, 40, 25, 39]

Problems
32.1 Investigate the conditions under which the mean value of the time derivative vanishes 〈∂v/∂t〉 = 0.

32.2 Try to normalize the eddy probability distribution (32.5) in the inertial range. How does it change
the Kolmogorov law and the microscopic scale?

32.3 Show that the following equation is satisfied by the second-order fluctuation moment tensor
〈
ui u j

〉
,

∂
〈
ui u j

〉
∂t

+ (v · ∇) 〈ui u j
〉 + 〈ui u〉 · ∇v j + 〈

u j u
〉 · ∇vi + ∇ · 〈uui u j

〉
= − 1

ρ0

(〈
ui ∇ j q

〉 + 〈
u j ∇i q

〉) + ν
(
∇2 〈

ui u j
〉 − 2

〈∇ui · ∇u j
〉)
. (32.86)

Discuss the closure problem.

32.4 Investigate the convergence of the following iteration scheme for the friction law (32.52)

�n = A log Reδ + B + C − A log�n−1, �0 = 1, (32.87)

where �n is the nth approximant to � = Uδ/u0. Find the approximant sequence for A = 2.44, B = 5,
C = 0 and Reδ = 105.

Copyright © 2005 IOP Publishing Ltd.





�������	� �	���
��
�
�	��
�

The equations of continuum mechanics are derived by a systematic application of Newton’s laws to systems
that nearly behave as if they consisted of idealized point particles. It is for this reason useful here to
recapitulate the basic mechanics of point particles, and to derive the global laws that so often are found to
be useful.

The global laws state for any collection of point particles that

• the rate of change of momentum equals force

• the rate of change of angular momentum equals the moment of force

• the rate of change of kinetic energy equals power

Even if these laws are not sufficient to determine the dynamics of a physical system, they represent seven
individual constraints on the motion of any system of point particles, independent of how complex it is.
They are equally valid for continuous systems when it is properly taken into account that the number of
particles in a body may change with time.

In the main text a certain familiarity with Newtonian mechanics is assumed throughout. This appendix
only serves as a reminder and as a refresher. It can in no way substitute for a proper course in Newtonian
mechanics.

A.1 Dynamic equations
In Newtonian mechanics, a physical system or body is understood as a collection of a certain number N of
point particles numbered n = 1, 2, . . . , N . Each particle obeys Newton’s second law,

mn
d2xn

dt2
= f n, (A.1)

where mn denotes the (constant) mass of the nth particle, xn its instantaneous position, and f n the
instantaneous force acting on the particle. Due to the mutual interactions between the particles, the forces
may depend on the instantaneous positions and velocities of all the particles, including themselves,

f n = f n

(
x1, . . . , xN ,

dx1

dt
, . . . ,

dx N

dt
, t

)
. (A.2)
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The forces will in general also depend on parameters describing the external influences from the system’s
environment, for example the Earth’s gravity. The explicit dependence on t in the last argument of the
force usually derives from such time-dependent external influences. It is, however, often possible to view
the environment as just another collection of particles and include it in a larger isolated body without any
influences from the environment.

The dynamics of a collection of particles thus becomes a web of coupled second-order differential
equations in time. In principle, these equations may be solved numerically for all values of t , given initial
positions and velocities for all particles at a definite instant of time, say t = t0. Unfortunately, the large
number of molecules in any macroscopic body usually presents an insurmountable obstacle to such an
endeavor. Even for smaller numbers of particles, deterministic chaos may effectively prevent any long-term
numeric integration of the equations of motion.

A.2 Force and momentum
A number of quantities describe the system as a whole. The total mass of the system is defined to be

M =
∑

n
mn , (A.3)

and the total force

� =
∑

n
f n . (A.4)

Note that these are true definitions. Nothing in Newton’s laws tells us that it is physically meaningful to
add masses of different particles, or worse, forces acting on different particles. As shown in problem A.1,
there is no obstacle to making a different definition of total force.

The choice made here is particularly convenient for particles moving in a constant field of gravity,
such as we find on the surface of the Earth, because the gravitational force on a particle is directly
proportional to the mass of the particle. With the above definitions, the total gravitational force, the
weight, becomes proportional to the total mass. This additivity of weights, the observation that a
volume of flour balances an equal volume of flour, independent of how it is subdivided into smaller
volumes, goes back to the dawn of history.

Having made these definitions, the form of the equations of motion (A.1) tells us that we should also
define the average of the particle positions weighted by the corresponding masses

x M = 1

M

∑
n

mn xn . (A.5)

For then the equations of motion imply that

M
d2x M

dt2
= � . (A.6)

Formally, this equation is of the same form as Newton’s second law for a single particle, so the centre
of mass moves like a point particle under the influence of the total force. But before we get completely
carried away, it should be remembered that the total force depends on the positions and velocities of all the
particles, not just on the centre of mass position xM and its velocity dx M/dt . The above equation is in
general not a solvable equation of motion for the centre of mass.

There are, however, important exceptions. The state of a stiff body is characterized by the position
and velocity of its centre of mass, together with the body’s orientation and its rate of change. If
the total force on the body does not depend on the orientation, the above equation truly becomes an
equation of motion for the centre of mass. It is fairly easy to show that for a collection of spherically
symmetric stiff bodies, the gravitational forces can only depend on the positions of the centers of
mass, even if the bodies rotate. It was Newton’s good fortune that planets and stars to a good
approximation behave like point particles.
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It is convenient to reformulate the above equation by defining the total momentum of the body,

� =
∑

n
mn

dxn

dt
= M

dx M

dt
. (A.7)

Like the total force it is a purely kinematic quantity, depending only on the particle velocities, calculated
as the sum over the individual momenta mndxn/dt of each particle. The equation of motion (A.6) implies
that the total momentum obeys the equation

d�

dt
= � . (A.8)

Again it should be noted that this equation cannot be taken as an equation of motion, except in very special
circumstances. It should rather be viewed as a constraint (or rather three since it is a vector equation) that
follows from the true equations of motion, independent of what form the forces take. This constraint is
particularly useful if the total momentum is known to be constant, or equivalently the centre of mass has
constant velocity, because then the total force must vanish.

A.3 Moment of force and angular momentum
Similarly, the total moment of force acting on the system is defined as

� =
∑

n
xn × f n . (A.9)

Like the total force, it is a dynamic quantity calculated from the sum of the individual moments of force
acting on the particles.

The corresponding kinematic quantity is the total angular momentum,

� =
∑

n
xn × mn

dxn

dt
. (A.10)

Differentiating with respect to time we find

d�

dt
=

∑
n

mn

(
dxn

dt
× dxn

dt
+ xn × d2xn

dt2

)
.

The first term in parenthesis vanishes because the cross product of a vector with itself always vanishes, and
using the equations of motion in the second term, we obtain

d�

dt
=�. (A.11)

Like the equation for total momentum and total force, (A.8), this equation is also a constraint that must be
fulfilled, independent of the nature of the forces acting on the particles. Angular momentum has to do with
the state of rotation of the body as a whole. If the total angular momentum is known to be constant, as for a
non-rotating body, the total moment of force must vanish. This is also what lies behind the lever principle.

From the earliest times levers have been used to lift and move heavy weights, such as the stones
found in stone-age monuments. A primitive lever is simply a long stick with one end wedged under
a heavy stone. Applying a small ‘man-sized’ force orthogonal to the other end of the stick, the
product of the long arm and the small force translates into a much larger force at the end of the small
arm wedged under the stone. The total moment vanishes, when the stick is not moving.

The moment of force and the angular momentum both depend explicitly on the choice of origin of the
coordinate system. These quantities might as well have been calculated around any other fixed point c,
leading to

�(c) =
∑

n
(xn − c)× f n =�− c ×� , (A.12)

�(c) =
∑

n
(xn − c)× mn

d(xn − c)
dt

= �− c ×� . (A.13)
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This shows that if the total force vanishes, the total moment of force becomes independent of the choice of
origin, and similarly if the total momentum vanishes, the total angular momentum will be independent of
the choice of origin.

If a point c exists such that�(c) = 0 we get� = c×� . In this case, the point c is called the centre
of action or point of attack for the total force � . In general, there is no guarantee that a centre of action
exists, since it requires the total force � to be orthogonal to the total moment �. Even if the centre of
action exists, it is not unique because any other point c+k� with arbitrary k is as good a centre of action as
c. In constant gravity where f n = mn g0, it follows immediately that the centre of mass is also the centre
of action for gravity, or as it is usually called, the centre of gravity.

A.4 Power and kinetic energy
Forces generally perform work on the particles they act on. The total rate of work or power performed by
the forces acting on all the particles making up a body is

P =
∑

n
f n · dxn

dt
. (A.14)

Note that there is a dot-product between the force and the velocity. In non-Anglo-Saxon countries this is
called effect rather than power.

The corresponding kinematic quantity is the total kinetic energy,

� = 1

2

∑
n

mn

(
dxn

dt

)2
, (A.15)

which is the sum of individual kinetic energies of each particle. Differentiating with respect to time and
using the equations of motion (A.1), we find

d�

dt
= P. (A.16)

The rate of change of the kinetic energy equals the power.

A.5 Internal and external forces
The force acting on a particle may often be split into an internal part due to the other particles in the system
and an external part due to the system’s environment,

f n = f int
n + f ext

n . (A.17)

The internal forces, in particular gravitational forces, are often two-particle forces with f n,n′ denoting the
force that particle n′ exerts on particle n. The total internal force on particle n thus becomes

f int
n =

∑
n′

f n,n′ . (A.18)

Most two-particle forces also obey Newton’s third law, which states that the force from n′ on n is equal and
opposite to the force from n on n′,

f n,n′ = − f n′,n . (A.19)

Although the external forces may themselves stem from two-particle forces of this kind, this is ignored as
long as the nature of the environment is unknown.

Strong theorems follow from the above assumptions about the form of the internal forces. The first is
that the total internal force vanishes,

�
int =

∑
n

f int
n =

∑
n,n′

f n,n′ = 0 (A.20)
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where we have used the antisymmetry (A.19). This expresses the simple fact that you cannot lift yourself
up by your bootstraps; Baron Münchausen notwithstanding.

The momentum rate equation (A.8) thus takes the form

d�

dt
= �ext, (A.21)

showing that it is sufficient to know the total external force acting on a system in order to calculate its
rate of change of momentum. The details of the internal forces can be ignored as long as they are of the
two-particle kind and obey Newton’s third law.

Under the same assumptions, the internal moment of force becomes

� =
∑
n,n′

xn × f n,n′ = 1

2

∑
n,n′
(xn − xn′ )× f n,n′ . (A.22)

This does not in general vanish, except for the case of central forces where

f n,n′ ∼ xn − xn′ . (A.23)

Gravitational forces (and others) are of this type. Provided the internal forces stem from central two-particle
forces, the total moment of force equals the external moment, such that

d�

dt
=�ext. (A.24)

This rule is, however, not on nearly the same sure footing as the corresponding equation for the momentum
rate (A.21).

Finally, there is not much to be said about the kinetic energy rate (A.16), which in general has non-
vanishing internal and external contributions.

A.6 Hierarchies of particle interactions
Under what circumstances can a collection of point particles be viewed as a point particle? The dynamics
of the solar system may to a good approximation be described by a system of interacting point particles,
although the planets and the Sun are in no way pointlike in our own scale. In the scale of the whole universe,
even galaxies are sometimes treated as point particles.

A point particle approximation may be in place as long as the internal cohesive forces that keep the
interacting bodies together are much stronger than the external forces. In addition to mass and momentum,
such a point particle may also have to be endowed with an intrinsic angular momentum (spin), and
an intrinsic energy. The material world appears in this way as a hierarchy of approximately point-like
interacting particles, from atoms to galaxies, at each level behaving as if they had no detailed internal
structure. Corrections to the ideal point-likeness can later be applied to add more detail to this overall
picture. Over the centuries this extremely reductionist method has shown itself to be very fruitful, but it is
an open (scientific) question whether it can continue indefinitely.

Problems
A.1 Try to define the total force as � ′ = ∑

n mn f n rather than (A.4), and investigate what this entails
for the global properties of a system. Can you build consistent mechanics on this definition?

A.2 Show that the total momentum is � = Mdx M/dt where xM is the centre of mass position.
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The distance between two points in Euclidean space takes the simplest form in Cartesian coordinates. The
geometry of concrete physical problems may, however, make non-Cartesian coordinates more suitable as
a basis for analysis, even if the distance becomes more complicated in the new coordinates. Since the
new coordinates are nonlinear functions of the Cartesian coordinates, they define three sets of intersecting
curves, and are for this reason called curvilinear coordinates.

At a deeper level, it is often the symmetry of a physical problem that points to the most convenient
choice of coordinates. Cartesian coordinates are well suited to problems with translational invariance,
cylindrical coordinates for problems that are invariant under rotations around a fixed axis, and spherical
coordinates for problems that are invariant or partially invariant under arbitrary rotations. Elliptic and
hyperbolic coordinates are also of importance but will not be discussed here (see [7, p. 455]).

B.1 Cylindrical coordinates
The relation between Cartesian coordinates x, y, z and cylindrical coordinates r, φ, z is given by

x = r cos φ, (B.1a)

y = r sinφ, (B.1b)

z = z (B.1c)

with the range of variation 0 ≤ r < ∞ and 0 ≤ φ < 2π . The two first equations simply define polar

� �

�

�
�
�
��

�
ez

x

y

z

�
���
���

		
	
�

rφ

er

eφ

..................................................................................
...............

x

Cylindrical coordinates and basis
vectors.

coordinates in the xy-plane1. The last is rather trivial but included to emphasize that this is a transformation
in three-dimensional space.

Curvilinear basis
The curvilinear basis vectors are defined from the tangent vectors, obtained by differentiating the Cartesian
position after the cylindrical coordinates,

er = ∂x
∂r

= (cos φ, sinφ, 0), (B.2a)

eφ = 1

r

∂x
∂φ

= (− sinφ, cos φ, 0), (B.2b)

ez = ∂x
∂z

= (0, 0, 1). (B.2c)

1Some texts use � instead of φ as the conventional name for the polar angle in the plane. Various arguments can be
given one way or the other by comparing with spherical coordinates. But what’s in a name? A polar angle by any name
still works as sweet.
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As may be directly verified, they are orthogonal and normalized everywhere, and thus define a local
curvilinear basis with an orientation that changes from place to place. An arbitrary vector field may
therefore be resolved in this basis

V = er Vr + eφVφ + ez Vz , (B.3)

where the vector coordinates

Vr = V · er , Vφ = V · eφ, Vz = V · ez , (B.4)

are the projections of V on the local basis vectors.

Resolution of the gradient
The derivatives after cylindrical coordinates are found by differentiation through the Cartesian coordinates

∂

∂r
= ∂x

∂r

∂

∂x
+ ∂y

∂r

∂

∂y
= cos φ

∂

∂x
+ sinφ

∂

∂y
,

∂

∂φ
= ∂x

∂φ

∂

∂x
+ ∂y

∂φ

∂

∂y
= −r sinφ

∂

∂x
+ r cos φ

∂

∂y
.

From these relations we may calculate the projections of the gradient operator ∇ = (∂x , ∂y , ∂z) on the
cylindrical basis, and we obtain

∇r = er · ∇ = ∂

∂r
, (B.5a)

∇φ = eφ · ∇ = 1

r

∂

∂φ
, (B.5b)

∇z = ez · ∇ = ∂

∂z
. (B.5c)

Conversely, the gradient may be resolved on the basis

∇ = er∇r + eφ∇φ + ez∇z = er
∂

∂r
+ eφ

1

r

∂

∂φ
+ ez

∂

∂z
. (B.6)

Together with the only non-vanishing derivatives of the basis vectors

∂er

∂φ
= eφ, (B.7a)

∂eφ
∂φ

= −er , (B.7b)

we are now in possession of all the necessary tools for calculating in cylindric coordinates.

The Laplacian
An operator which often occurs in differential equations is the Laplace operator or Laplacian,

∇2 = ∇2
x + ∇2

y + ∇2
z = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (B.8)

In cylindrical coordinates this operator takes a different form, which may be found by squaring the
resolution of the gradient (B.6). Keeping track of the order of the operators and basis vectors we get

∇2 = (er ∇r + eφ∇φ + ez∇z) · (er∇r + eφ∇φ + ez∇z )

= (er ∇r + eφ∇φ + ez∇z) · er ∇r

+ (er ∇r + eφ∇φ + ez∇z) · eφ∇φ
+ (er ∇r + eφ∇φ + ez∇z) · ez∇z

= ∇2
r + 1

r
∇r + ∇2

φ + ∇2
z .
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In the second line we have distributed the first factor on the terms of the second, and in going to the last line
we have furthermore distributed the terms of the first factor, using the orthogonality of the basis and taking
into account that differentiation with respect to φ may change the basis vectors according to (B.7).

Finally, using (B.5) we arrive at the cylindrical Laplacian,

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂φ2
+ ∂2

∂z2
, (B.9)

expressed in terms of the usual partial derivatives.

B.2 Spherical coordinates
The treatment of spherical coordinates follows much the same pattern as cylindrical coordinates. Spherical
or polar coordinates consist of the radial distance r , the polar angle θ and the azimuthal angle φ. If the
z-axis is chosen as the polar axis and the x-axis as the origin for the azimuthal angle, the transformation
from spherical to Cartesian coordinates becomes,

x = r sin θ cos φ, (B.10a)

y = r sin θ sinφ, (B.10b)

z = r cos θ. (B.10c)

The domain of variation for the spherical coordinates is 0 ≤ r < ∞, 0 ≤ θ ≤ π and 0 ≤ φ < 2π .

Curvilinear basis
The normalized tangent vectors along the directions of the spherical coordinate are,

er = ∂x
∂r

= (sin θ cos φ, sin θ sinφ, cos θ), (B.11a)

eθ = 1

r

∂x
∂θ

= (cos θ cos φ, cos θ sinφ,− sin θ), (B.11b)

eφ = 1

r sin θ

∂x
∂φ

= (− sinφ, cos φ, 0). (B.11c)

They are orthogonal, such that an arbitrary vector field may be resolved in these directions,

V = er Vr + eθVθ + eφVφ (B.12)

with Va = ea · V for a = r, θ, φ.
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basis vectors.Resolution of the gradient

The gradient operator may also be resolved on the basis,

∇ = er ∇r + eθ∇θ + eφ∇φ, (B.13)

where

∇r = er · ∇ = ∂

∂r
, (B.14a)

∇θ = eθ · ∇ = 1

r

∂

∂θ
, (B.14b)

∇φ = eφ · ∇ = 1

r sin θ

∂

∂φ
. (B.14c)
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The non-vanishing derivatives of the basis vectors are

∂er

∂θ
= eθ ,

∂er

∂φ
= sin θ eφ, (B.15a)

∂eθ
∂θ

= −er ,
∂eθ
∂φ

= cos θeφ, (B.15b)

∂eφ
∂φ

= − sin θ er − cos θ eθ . (B.15c)

These are all the relations necessary for calculations in spherical coordinates.

The Laplacian
The Laplacian (B.8) becomes in this case

∇2 = (er ∇r + eθ∇θ + eφ∇φ) · (er ∇r + eθ∇θ + eφ∇φ)
= (er ∇r + eθ∇θ + eφ∇φ) · er ∇r

+ (er∇r + eθ∇θ + eφ∇φ) · eθ∇θ
+ (er∇r + eθ∇θ + eφ∇φ) · eφ∇φ
=

(
∇2

r + 1

r
∇r + sin θ

r sin θ
∇r

)
+

(
∇2
θ + cos θ

r sin θ
∇θ

)
+ ∇2

φ.

In the last step we have used the orthogonality and the derivatives (B.15). Finally, using (B.14) this becomes

∇2 = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ cos θ

r2 sin θ

∂

∂θ
+ 1

r2 sin2 θ

∂2

∂φ2
(B.16)

in standard notation.
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An ideal gas is a nice ‘laboratory’ for understanding the thermodynamics of a fluid with a non-trivial
equation of state. In this section we shall recapitulate the conventional thermodynamics of an ideal gas with
constant heat capacity. For more extensive treatments, see for example [35, 12].

C.1 Internal energy
In section 4.1 we analysed Bernoulli’s model of a gas consisting of essentially non-interacting point-like
molecules, and found the pressure p = (1/3)ρ v2 where v is the root-mean-square average molecular
speed. Using the ideal gas law (4.26) the total molecular kinetic energy contained in an amount M = ρV
of the gas becomes,

1
2 Mv2 = 3

2 pV = 3
2 n RT, (C.1)

where n = M/Mmol is the number of moles in the gas. The derivation in section 4.1 shows that the factor
3 stems from the three independent translational degrees of freedom available to point-like molecules. The
above formula thus expresses that in a mole of a gas there is an internal kinetic energy (1/2)RT associated
with each translational degree of freedom of the point-like molecules.

Whereas monatomic gases like argon have spherical molecules and thus only three translational degrees
of freedom, diatomic gases like nitrogen and oxygen have stick-like molecules with two extra rotational
degrees of freedom orthogonal to the bridge connecting the atoms, and multiatomic gases like carbon
dioxide and methane have three extra rotational degrees of freedom. According to the equipartition theorem
of statistical mechanics these degrees of freedom will also carry a kinetic energy (1/2)RT per mole.
Molecules also possess vibrational degrees of freedom that may become excited at high temperatures, but
we shall disregard them here.

The internal energy of n moles of an ideal gas is defined to be,

� = k

2
n RT, (C.2)

where k is the number of molecular degrees of freedom. A general result of thermodynamics (Helmholtz’
theorem [35, p. 154]) guarantees that for an ideal gas � cannot depend on the volume but only on the
temperature. Physically a gas may dissociate or even ionize when heated, and thereby change its value of k,
but we shall for simplicity assume that k is in fact constant with k = 3 for monatomic, k = 5 for diatomic
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and k = 6 for multiatomic gases. For mixtures of gases the number of degrees of freedom is the molar
average of the degrees of freedom of the pure components (see problem C.1).

C.2 Heat capacity
Suppose that we raise the temperature of the gas by δT without changing its volume. Since no work is
performed, and since energy is conserved, the necessary amount of heat is δQ = δ� = CV δT where the
constant,

CV = k

2
n R, (C.3)

is naturally called the heat capacity at constant volume.
If instead the pressure of the gas is kept constant while the temperature is raised by δT , we must

also take into account that the volume expands by a certain amount δV and thereby performs work on its
surroundings. The necessary amount of heat is now larger by this work, δQ = δU + pδV . Using the ideal
gas law (4.26) we have for constant pressure pδV = δ(pV ) = n RδT . Consequently, the amount of heat
which must be added per unit of increase in temperature at constant pressure is

C p = CV + n R, (C.4)

called the heat capacity at constant pressure. It is always larger than CV because it includes the work of
expansion.

The adiabatic index
The dimensionless ratio of the heat capacities,

γ = C p

CV
= 1 + 2

k
, (C.5)

is for reasons that will become clear in the following called the adiabatic index. It is customary to express
the heat capacities in terms of γ rather than k,

CV = 1

γ − 1
n R, C p = γ

γ − 1
n R. (C.6)

Given the adiabatic index, all thermodynamic quantities for n moles of an ideal gas are completely
determined. The value of the adiabatic index is γ = 5/3 for monatomic gases, γ = 7/5 for diatomic
gases and γ = 4/3 for multiatomic gases.

C.3 Entropy
When neither the volume nor the pressure are kept constant, the heat that must be added to the system in an
infinitesimal process is,

δQ = δU + pδV = CV δT + n RT
δV

V
. (C.7)

It is a mathematical fact that there exists no function, Q(T, V ), which has this expression as differential
(see problem C.2). It may on the other hand be directly verified (by insertion) that

δ = δQ

T
= CV

δT

T
+ n R

δV

V
, (C.8)

can be integrated to yield a function,

 = CV log T + n R log V + const. (C.9)

called the entropy of the amount of ideal gas. Being an integral the entropy is only defined up to an arbitrary
constant. The entropy of the gas is, like its energy, an abstract quantity which cannot be directly measured.
But since both quantities depend on the measurable thermodynamic quantities, ρ, p and T , that characterize
the state of the gas, we can calculate the value of energy and entropy in any state. But why bother to do so?
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The two fundamental laws of thermodynamics
The reason is that the two fundamental laws of thermodynamics are formulated in terms of the energy and
the entropy. Both laws concern processes that may take place in an isolated system which is not allowed to
exchange heat with or perform work on the environment.

The First Law states that the energy is unchanged under any process in an isolated system. This implies
that the energy of an open system can only change by exchange of heat or work with the environment. We
actually use this law implicitly in deriving heat capacities and entropy.

The Second Law states that the entropy cannot decrease. In the real world, the entropy of an isolated
system must in fact grow. Only if all the processes taking place in the system are completely reversible at all
times, will the entropy stay constant. Reversibility is an ideal which can only be approached by very slow
quasi-static processes, consisting of infinitely many infinitesimal reversible steps. Essentially all real-world
processes are irreversible to some degree.

V0

V

........................................................................

............................................
....................

............

A compartment of volume V0 in-
side an isolated box of volume V .
Initially, the compartment con-
tains an ideal gas with vacuum in
the remainder of the box. When
the wall breaks, the gas expands
by itself to fill the whole box. The
reverse process would entail a de-
crease in entropy and never hap-
pens by itself.

James Prescott Joule (1818–
1889). English physicist. Gifted
experimenter who was the first
to demonstrate the equivalence
of mechanical work and heat,
a necessary step on the road to
the First Law. Demonstrated (in
continuation of earlier experi-
ments by Gay-Lussac) that the
irreversible expansion of a gas
into vacuum does not change its
temperature.

Example C.3.1 (Joule’s expansion experiment): An isolated box of volume V contains an ideal gas
in a walled-off compartment of volume V0. When the wall is opened, the gas expands into vacuum and
fills the full volume V . The box is completely isolated from the environment, and since the internal
energy only depends on the temperature, it follows from the First Law that the temperature must be the
same before and after the event. The change in entropy then becomes

� = (CV log T + n R log V )− (CV log T + n R log V0) = n R log(V/V0)

which is evidently positive (because V/V0 > 1). This result agrees with the Second Law, which thus
appears to be unnecessary.

The strength of the Second Law becomes apparent when we ask the question of whether the air in
the box could ever—perhaps by an unknown process to be discovered in the far future—by itself enter
the compartment of volume V0, leaving vacuum in the box around it. Since such an event would entail
a negative change in entropy which is forbidden by the Second Law, it never happens.

Isentropic processes
Any process in an open system which does not exchange heat with the environment is said to be adiabatic.
If the process is furthermore reversible, it follows that δQ = 0 in each infinitesimal step, so that
δ = δQ/T = 0. The entropy (C.9) must in other words stay constant in any reversible, adiabatic process.
Such a process is for this reason called isentropic.

By means of the adiabatic index (C.5) we may write the entropy (C.9) as,

 = CV log
(

T V γ−1
)

+ const. (C.10)

From this it follows that

T V γ−1 = const, (C.11)

for any isentropic process in an ideal gas. Using the ideal gas law to eliminate V ∼ T/p, this may be
written equivalently as,

T γ p1−γ = const. (C.12)

Eliminating instead T ∼ pV , the isentropic condition takes its most common form,

p V γ = const. (C.13)

Note that the constants are different in these three equations.

Example C.3.2: When the air in a bicycle pump is compressed from V0 to V1 (while you block the
valve with your finger), the adiabatic law implies that p1V γ1 = p0V γ0 . For p0 = 1 atm and V1 = V0/2
we find p1 = 2.6 atm. The temperature simultaneously rises about 100 degrees, but the hot air quickly
becomes cold again during the backstroke. One may wonder why the fairly rapid compression stroke
may be assumed to be reversible, but as long as the speed of the piston is much smaller than the velocity
of sound, this is in fact a reasonable assumption. Conversely, we may conclude that the air expands
with a velocity close to the speed of sound when the wall is opened in example C.3.1.
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Isothermal versus i s entropi c bul k modul us
T he bul k m odul us of a s t r i c t l y i s ot her m al i deal gas w i t h p = ρ RT0/ Mmo l i s equal t o t he pr essur e ,

KT = ρ

(
∂ p

∂ρ

)
T

= p. ( C . 14)

H e r e t he i ndex T (in t he usual t hermodynamic way of writing derivatives) signals that the t emperature must
be held constant while we differentiate.

I n t er m s of t he mass densi t y ρ = M/ V , the isentropic condition may be written in any of three different
ways (with three different constants),

p ρ−γ = const, Tρ 1−γ = const, T γ p 1−γ = const. ( C . 15)

U s i ng t he fi r st w e fi nd t he i s ent r opi c bul k m odul us of an i deal gas,

KS = ρ

(
∂ p

∂ρ

)
�

= γ p, ( C . 16)

w her e t he i ndex S now s i gnal s t hat t he e nt r opy must be hel d const a nt . T he di st i nct i on bet w een t he
i s ot her m al and i sent r opi c bul k m odul us i s necessar y i n al l m at er i a l s , but f or near l y i ncompr e ssi bl e l i qui ds
t here i s not a great di ff erence bet w een KS and K T .

A m ong I s aac N ew t on’s gr eat achi eve ment s was t he fi r s t cal cul a t i on of t he speed of sound i n ai r,
usi ng t he i deal gas l aw wi t h const ant t emperat ure. Hi s r esul t di d not agree w i t h experi ment , because
normal sound waves oscillate so rapidly t hat compression and expansion are essentially isentropic
pr ocesses. I n sect i on 16. 2 w e fi nd t hat t he s peed of sound i s c = √

K/ρ , s uch t hat t he r a t i o bet w een
the i sentropic and isothermal sound velocities i s c�/cT = √

γ . For air with γ ≈ 1. 4 t hi s a mount s
t o an 18% er r or i n t he sound ve l oci t y. Much l at er, i n 1799, L a pl ace der ive d t he cor r ect va l ue f or t he
speed of sound.

C.4 Specific qua nt it ies
I n cl assi cal t her modynami cs w e always t hi nk of a macr oscopi c vol ume of m at t er w i t h t he s ame
t her modynami c pr oper t i e s t hr oughout t he vol ume. Vol ume, m ass, energy, e nt r opy and t he speci fi c heat s
are all extensive quantities, meaning that the amount of any such quantity in a composite system is the
sum of the amounts in the parts. Pressure, temperature and density are in contrast intensive quantities, that
cannot be added when a system is put together from its parts.

In continuum physics, an intensive quantity becomes a field that may vary from place to place, whereas
an extensive quantity becomes an integral over the density of the quantity. Since a material particle with
a fi xed number of m ol ecul es has a fi xed m ass ( subj ect t o t he r eser vat i ons set dow n i n chapt er 1) , t he
natural field to introduce to describe an extensive quantity like the energy is the specific internal energy,
u = d�/d M , which is the amount of energy per unit of mass in the neighbourhood of a given point. The
actual energy density becomes d�/dV = ρ u, and the total energy in a volume

� =
∫

V
ρ u dV . (C.17)

The specific energy is an intensive quantity like temperature, pressure or density.
Similarly, we define the specific heat as the local heat capacity per unit of mass. Since the heat capacities

(C.6) of an ideal gas are directly proportional to the mass M = nMmol, the specific heats of an ideal gas
become,

cV = 1

γ − 1

R

Mmol
, cp = γ

γ − 1

R

Mmol
. (C.18)

They are constants which only depend on the properties of the gas. For air we have cV = 718 J K−1 kg−1

and cp = 1005 J K−1 kg−1. From (C.2) we obtain after dividing by M ,

u = cV T . (C.19)
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The specific energy of an ideal gas is the specific heat times the absolute temperature.
Finally, we define the specific entropy, s = d/d M , from which the total entropy may be calculated as

an integral,

 =
∫

V
ρ s dV . (C.20)

For an ideal gas, the specific entropy is obtained by dividing (C.10) by M = nMmol. It may be written in
three different forms related by the ideal gas law,

s = cV log
(

Tρ1−γ ) + const (C.21a)

= cV log
(

T γ p1−γ ) + const (C.21b)

= cV log
(

p ρ−γ ) + const. (C.21c)

Note, however, that the constants are different in the three cases.

Problems
C.1 An ideal gas mixture contains n = ∑

i ni moles.

(a) Show that the mixture obeys the equation of state (4.27) when the molar mass of the mixture is
defined as

Mmol =
∑

i

ci Mmol,i (C.22)

where ci = ni/n of the molar fraction of the i th component.

(b) Show that the number of degrees of freedom of a mixture is

k =
∑

i

ci ki , (C.23)

where ki is the degrees of freedom of the i th component.

C.2 (a) Show that for a function Q = Q(T, V ) the differential takes the form d Q = AdT + BdV where
∂A/∂V = ∂B/∂T . (b) Prove that this is not fulfilled for (C.7).
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An answer may not represent an explicit or complete solution to a problem, but only some useful hints on
how to get there. Some problems have not been answered, either because it is too easy or because the result
is already contained in the formulation of the problem.

1 Continuous matter
1.1

(a) This is the usual binomial distribution

�M (n) =
(

M
n

)
pn(1 − p)M−n

(b) The average of n is

〈n〉 =
M∑

n=0

n�M (n) = pM
M∑

n=1

�M−1(n − 1) = pM
M−1∑
n=0

�M−1(n) = pM

(c) Similarly we get

〈n(n − 1)〉 =
M∑

n=0

n(n − 1)�M (n) = pM
M∑

n=1

(n − 1)�M−1(n − 1) = p2 M(M − 1)

from which we get

〈(n − 〈n〉)2〉 = 〈n(n − 1)〉 + 〈n〉 − 〈n〉2 = p(1 − p)M

1.2 The surface is the difference between the cube and an inner cube of side length M −2, such that K =
M2 − (M −2)3. For large M we have�N ≈ √

6M = √
6N1/3 so that�N/N ≈ √

6N−2/3 ≈ 2.5N−2/3.

1.3 If the sphere has radius R the number of molecules in the volume is N = 4
3πR3/L3

mol whereas the

number of molecules at the surface is NS = 4πR2/L2
mol = 4π(3N/4π)2/3. For N � 1 we have NS � N .

If the surface molecules are randomly in or out of the volume, one gets �N ≈ √
NS = √

4π(3N/4π)1/3

and thus �N/N � (36π)1/6 N−2/3 � 2.2N−2/3.
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1.4 The CMS-velocity is

vc = 1

N

∑
n

vn = v + 1

N

∑
n

un

The average is obviously v and its fluctuation is

�v2
c = 〈(vc − v)2〉 = 1

N2

∑
n,n′

〈un · un′ 〉 = 1

N2

∑
n

〈u2
n〉 = 1

N
v2

0

where in the second step it has been used that the velocities are uncorrelated.

1.5 Solving the equation Lmicro = λ we get

ε = (π
√

2)3/2
d3

L3
mol

≈ 10
d3

L3
mol

. (1.A1)

Under normal conditions with ρ ≈ 1.2 kg m−3 we have Lmol ≈ 10d so that ε = 10−2. A 100 times
smaller density requires a 100 times better precision or ε = 10−4.

2 Space and time
2.1 a, b) Trivial. c) Follows from the definition that the distance between a and b is the smallest number
of steps. Any path going through a point c cannot be shorter.

2.2

(a) |a| = 7, |b| = 5

(b) a · b = −6

(c) a × b = (−24,−18,−17)

(d) ab =
 6 −8 0

9 −12 0
−18 24 0


2.3 Yes, a − b + c = 0.

2.4 In an Earth-centred Cartesian coordinate system with z-axis towards the North pole at latitude δ = 90◦
and x-axis towards Greenwich at longitude α = 0 we have x = (a + h) cos α cos δ, y = (a + h) sinα cos δ,
and z = (a + h) sin δ where a is the sea-level radius of the Earth. Using the invariance of the distance the
square of the distance function becomes d2 = (x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2 which may be recast
into d2 = (a + h1)

2 + (a + h2)
2 − 2(a + h1)(a + h2)(cos δ1 cos δ2 cos(α1 − α2)+ sin δ1 sin δ2).

2.5

(a) Use that 0 ≤ |a + sb|2 = |a|2 + s2 |b|2 + 2sa · b. The minimum of the right-hand side is obtained
for s = −a · b/b2, and the inequality follows.

(b) Using the preceding result we have (a + b)2 = a2 + b2 +2a · b ≤ a2 + b2 +2 |a| |b| = (|a|+ |b|)2,
and the inequality follows.

2.6 Use that the determinant is unchanged under transposition and that the determinant of a product of
matrices equals the product of the determinant.
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2.10 Assume first that the vectors a, b and c are linearly independent. In that case the cross products on
the right-hand side will also be linearly independent, so that d can be written as a linear combination of
these cross products. Check that coefficients are given by the dot products of d with a, b and c. Finally,
one must discuss the cases where a, b og c are linearly dependent.

2.14 Replace the six vectors in problem 2.6 by a → ei , b → e j , c → ek , and d → el , e → em , and
f → en .

2.16 Under a general transformation x ′
i = ∑

j ai j x j , we use the chain rule for differentiation,

∇ j = ∂

∂x j
=

∑
k

∂x ′
k

∂x j

∂

∂x ′
k

=
∑

k

akj ∇′
k . (2.A1)

Multiplying by ai j and summing we get∑
j

ai j ∇ j =
∑
j k

ai j akj ∇′
k = ∇′

i (2.A2)

where the orthogonality of the transformation matrix has been used in the last step.

2.17 The transformed trace is
∑

i T ′
ii = ∑

i j k ai j aik Tjk = ∑
j k δ j k Tjk = ∑

j Tj j , showing that the
trace is invariant.

2.18 The transformed tensor is, δ′i j = ∑
kl aik a j lδkl = ∑

k aik a jk = δi j .

2.20 The transformed relation is W ′
i = ∑

j T ′
i j V ′

j . Using that W and V are vectors we have
∑

k aik Wk =∑
j l T ′

i j a j l Vl , or
∑

kl aik Tkl Vl = ∑
j l T ′

i j a j l Vl . Since it is valid for all V , we can remove Vl and get∑
kl aik Tkl = ∑

j l T ′
i j a j l . Finally multiplying with a jl and summing over l we get from the orthogonality

of the transformation matrix, T ′
i j = ∑

kl aik a j l Tkl , which proves that TTT is a tensor.

2.21 Differentiate (x − y)2 = ( f (x) − f ( y))2 after x to obtain x − y = ( f (x) − f ( y)) · AAA(x) with
AAA(x) = {ai j (x)} and ai j = ∂ fi/∂x j . Differentiate again after y to obtain −111 = −AAA( y) · AAA(x). This

means that AAA(x) −1 = AAA( y). The left-hand side depends only on x and the right-hand side only on y
which implies that both sides are independent of x and y, i.e. the matrix AAA is a constant, and orthogonal.
Integrating ai j = ∂ fi/∂x j one gets f (x) = AAA · x + b.

2.22 Let AAAz(φ) be the matrix of the simple rotation (2.36) through an angle φ around the z-axis. Then
the three Euler angles φ, θ and ψ determine any rotation matrix as a product AAA = AAAz(ψ) · AAAy(θ) · AAAz(φ).

3 Gravity

3.2 The centripetal acceleration in a circular orbit must equal the force of gravity, v2/r = G M/r2 leading
to v = √

G M/r = √−� =
√

g0a2/r . At ground level the velocity becomes v = vesc/
√

2 = 7.9 km s−1

where vesc = 11.2 km s−1 is the escape velocity.

3.3 Earth’s true rotation period T = T0 ∗ 365/366 is a bit shorter than T0 = 24 hours because the orbital
motion adds one full revolution in one year. Taking v = �r where � = 2π/T we find from the equality of
centripetal acceleration and gravity that

r�2 = g0
a2

r2
. (3.A1)
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which solved for r/a yields

r

a
=

(
g0

a�2

)1/3
≈ 6.613. (3.A2)

The orbit height is h = r − a ≈ 5.613a ≈ 35, 800 km.

3.4 At the height z above the ground the force on a small piece dz of the line is

d� =
(

−g0
a2

(a + z)2
+ (a + z)�2

)
ρA dz (3.A3)

where � is the angular velocity in the stationary orbit and the second term represents the centrifugal force.
Since this only vanishes for z = h, the total force is maximal at the satellite. Integrating the force from 0 to
h, we find the maximal force

� =
∫ h

0
d�(z) = ρAh

(
−g0

a

a + h
+�2

(
a + 1

2
h

))
. (3.A4)

The absolute value of the tension-to-density ratio becomes,

σ

ρ
= h

(
g0

a

a + h
−�2

(
a + 1

2
h

))
≈ 4.8 × 107 m2 s−2 (3.A5)

The tensile strength of a beryllium–copper alloy of density ρ = 8230 kg m−3 can go as high as
σ ≈ 1.4 GPa, leading to σ/ρ ≈ 1.7 × 105 m2 s−2, a factor nearly 300 below the required value. Ropes
based on carbon fibers are expected to approach this value.

3.5

(a) Minimal kinetic energy: 1
2v

2
esc ≈ 63 (km s)−2 = 63 × 106 J kg−1.

(b) Melting, heating and evaporating ice about ≈ 3.6 × 106 J kg−1.

3.6 Energy conservation: 1
2 ṙ2 +�(r) = �(a). Use (3.31).

(a) v0 = − ṙ |r=0 = a
√

2(�(a) −�(0)) = a
√

4
3πρ0G = √

g0a = 7.9 km s−1.

(b) t0 = ∫ a
0

dr√
2(�(a) −�(r)) = ∫ a

0
dr√

4
3πρ0G(a2 − r2)

= πa

2v0
= 1267 s.

3.7 (a) From (3.17) we get

g(r) = −4

3
πG



rρ1 r ≤ a1

a3
1

r2
ρ1 +

(
r − a3

1

r2

)
ρ2 a1 < r ≤ a

a3
1ρ1 + (a3 − a3

1)ρ2

r2
r > a.

(3.A6)

and from (3.28)

�(r) = −2

3
πG



(3a2
1 − r2)ρ1 + 3(a2 − a2

1)ρ2 r ≤ a1

2
a3

1
r
ρ1 +

(
3a2 − r2 − 2

a3
1
r

)
ρ2 a1 ≤ r ≤ a

2
a3

1
r
ρ1 + 2

a3 − a3
1

r
ρ2 r ≥ a.

(3.A7)

(b) It follows from |g(a1)| > |g(a)|, that a1ρ1 > (a
3
1ρ1 + (a3 − a3

1)ρ2)/a
2 which may be rewritten in the

form of the inequality (3.44). For the Earth the left-hand side becomes 1.42 and the right-hand side 1.18,
so the inequality is fulfilled.
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3.8 Cut out a small sphere |x ′ − x| ≤ a around the point x. Let a be so small that ρ(x′) does not vary
appreciably within this sphere. Then we get the contribution to gravity from the small sphere

�g(x) = −G
∫
|x′−x|≤a

x − x′
|x − x′|3 ρ(x

′) dv′ ≈ −Gρ(x)
∫
|x′−x|≤a

x − x′
|x − x′|3 dv′ = 0.

The last integral vanishes because of the spherical symmetry (it is a vector with no direction to point in).

3.9 A small volume is invariant under a rotation dV ′ = dV and so is the amount of mass contained in
it, d M ′ = d M . By the definition (3.1) we have d M ′ = ρ′(x′)dV ′ and d M = ρ(x)dV and from that
ρ′(x′) = ρ(x).

3.10 By the definition (3.5) we have d� ′ = g′(x′) d M ′ and d� = g(x)d M . The force on a small
volume is a vector and transforms according to d� ′ = AAA · d� where AAA is the rotation matrix, and the mass
element is invariant d M ′ = d M . From this we get g′(x′) = AAA · g(x).

3.11 Multiplying (3.13) by er = x/r and using (3.16) one gets

g(r) = −G
∫
|x′|≤a

x · (x − x′)
r
∣∣x − x′∣∣3 ρ(x′) dv′.

Introducing s = ∣∣x′∣∣ and the angle θ between x and x′, so that dv′ = 2π sin θdθs2ds, this becomes

g(r) = −2πG
∫ a

0
ρ(s)s2ds

∫ 1

−1
d cos θ

r − s cos θ

(r2 + s2 − 2rs cos θ)
3
2

.

Integrating over u = cos θ one obtains∫ 1

−1
du

r − su

(r2 + s2 − 2rsu)
3
2

= − ∂

∂r

∫ 1

−1
du

1√
r2 + s2 − 2rsu

= ∂

∂r

[√
r2 + s2 − 2rsu

rs

]1

u=−1

= ∂

∂r

|r − s| − (r + s)

rs

= − 2
∂

∂r


1

r
r > s

1

s
r < s

=


2

r2
r > s

0 r < s

which leads to the desired result (3.17).

3.12

(a) g(r) = −4πG
A

3 + α r1+α , �(r) = 4πG
A

2 + α

(
r2+α
3 + α − a2+α

)
.

(b) α > −3.

(c) −3 < α < −1.

3.13 Use equation (3.17). Setting u = r/a one gets

M(r) =
∫ r

0
ρ(s)4πs2 ds = 4πρ0

∫ r

0
e−s/as2 ds = 4πρ0a3(2 − (2 + 2u + u2)e−u ).

Similarly, using (3.30) one finds∫ ∞
r

sρ(s) ds = ρ0

∫ ∞
r

se−s/a ds = ρ0a2(1 + u)e−u

and from this

� = −4πGρ0a3

r
(2(1 − e−u )− ue−u ).
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3.14 Line distribution ρdv = λdz along the z-axis. Put r =
√

x2 + y2.

(a) Substitute z′ = z − r sinhψ

� = −G
∫ a

−a

λdz′√
r2 + (z − z′)2

= −Gλ(sinh−1 z + a

r
− sinh−1 z − a

r
)

where sinh−1 u = log(u +
√

u2 + 1) is the inverse hyperbolic sine. Then one gets

gz = −∂�
∂z

= Gλ

(
1√

(r2 + (z + a)2
− 1√

(r2 + (z − a)2

)

gr = −∂�
∂r

= −Gλ
1

r

(
z + a√

(r2 + (z + a)2
− z − a√

(r2 + (z − a)2

)
.

(b) For r → ∞: � → −G
2aλ

r
, gz → −G2aλ

z

r2
, gr → −G

2aλ

r2
.

(c) For a → ∞: � → −2Gλ log
a

r
, gz → −2Gλ

z

a2
, gr → −2Gλ

r
.

3.15 Use cylindrical coordinates (r, φ, z).

(a)

� = −Gσ
∫ a

0
sds

∫ 2π

0
dφ

1√
z2 + r2 + s2 − 2rs cos φ

.

(b) � = −2πGσ(
√

z2 + a2 − |z|).

(c) � → −G
σπa2

|z| .

(d) � → −2πG(a − |z|) for a → ∞.

4 Fluids at rest
4.1 Put h1 = 9 m, h2 = 6 m and a = 12 m. Atmospheric pressure is p0.

(a) On one side p1 = p0 + ρ0g0(h1 − z), on the other p2 = p0 + ρ0g0(h2 − z).

(b) �1 = ∫ h1
0 (p1 − p0)a dz = 1

2 h2
1aρ0g0. � = �1 −�2 ≈ 2.7 × 106 N.

(c) �1 = ∫ h1
0 z(p1 − p0)a dz = 1

6 h3
1aρ0g0. � = �1 −�2 ≈ 107 Nm.

(d) z = �/� = 3.8 m.

4.2 Put h = 3 m and d = 2a = 30 cm. The horizontal pressure force on the hemisphere is equal to the
pressure force on the vertical plane through the centre of the sphere. The linear rise of pressure with depth
makes the pressure act with its average value at the centre. So the force becomes ρ0g0hπd2/4 ≈ 2100 N,
corresponding to the weight of 210 kg.

If you do not like this argument, it is also possible with some effort to integrate the pressure force
directly in spherical coordinates

� = −
∫

half−sphere
(p − p0) d S = −

∫
half−sphere

(p − p0)er d S

= −a2
∫ π

0
dθ

∫ π/2

−π/2
dφ sin θ (p − p0) er .
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Using

p = p0 + ρ0g0(h − a cos θ)

where h is the depth of the centre of the lamp, we obtain for the x-component

�x = −a2
∫ π

0
dθ

∫ π/2

−π/2
dφ sin θ ρ0g0(h − a cos θ) sin θ cos φ

= −2a2ρ0g0

∫ π

0
dθ sin2 θ(h − a cos θ)

= −ρ0g0hπa2.

4.3 Put h1 = 6 m, p1 = 1.6 atm and h2 = 3 m, p2 = 2.8 atm. From p1 − p2 = −ρ0g0(h1 − h2) we
get ρ0 ≈ 4100 kg m−3, and from p1 − p0 = −(h1 − h0)ρ0g0 we get h0 = 7.5 m.

4.4 (a) The surface inside the tube will be at the same level h1 + h2 as in the jar. (b) The heavy liquid
in the tube must initially rise to the same level h1 as in the jar. When the light liquid is poured in, the
surface of the heavy liquid in the tube must rise further to balance the weight of the light and rise to a height
h1 + h2ρ2/ρ1 < h1 + h2.

4.5 Solving for the pressure we find

P = n RT

V − nb
− n2a

V 2
. (4.A1)

(a) Differentiating we get

KT = −V

(
∂p

∂V

)
T

= n RT V

(V − nb)2
− 2an2

V 2
. (4.A2)

(b) It can become negative for

n RT <
2an2(V − nb)2

V 3
. (4.A3)

When K < 0 the gas must condense.

4.6

(a) K = n(p + B).

(b) Put h = n

n − 1

p0 + B

ρ0g0
= 35 km.

Then ρ = ρ0(1 − z/h)1/(n−1) and p + B = (p0 + B)(1 − z/h)n/(n−1).

(c) p ≈ 1100 bar and (ρ − ρ0)/ρ0 ≈ 4.5% at z = −10.924 km.

4.7 When K is constant it follows from (4.33) that p = K log ρ + const. Inserting this into the local
hydrostatic equation (4.20c), it may be solved with the result,

ρ = ρ0

1 + z

h1

, (4.A4)

p = p0 − K log

(
1 + z

h1

)
, (4.A5)

where

h1 = K

ρ0g0
= K

p0
h0. (4.A6)

The pressure and density become singular for z = −h1, which for water is h1 ≈ 237 km.
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4.8

(a) p(z) = ρ0g0z.

(b) 0 ≤ 1

A

∫
A
(z − I1)

2 d S = I2 − I 2
1 .

(c) � =
∫

A
p(z) d S = ρ0g0 I1.

(d) � =
∫

A
p(z)z d S = ρ0g0 I2.

(e) z P = �

�
= I2

I1
≥ I1 = zM .

(f) Since the width of the triangle is bz/h at depth z, the area of the triangle is A =
∫ h

0
b

z

h
dz = 1

2
hb

(which is of course well known). It then follows that I1 = 2
3 h and I2 = 1

2 h2, and thus zM = 2
3 h

and z P = 3
4 h. Clearly z P > zM .

4.9 The pressure must be continuous across the boundary and thus of the form

p = pb

{
(ρ/ρ1)

γ in the core

(ρ/ρ2)
γ in the mantle

(4.A7)

where ρ1 is the density in the core and ρ2 the density at the mantle at the boundary. The common pressure
on both sides of the boundary is pb.

5 Buoyancy

5.1 Volume 0.04 m3. Density 2500 kg m−3.

5.2 The same mass displaces two different volumes M = ρ1V1 = ρ2V2. The difference in volumes is
only due to the stem, πa2d = V2 − V1 = M(1/ρ2 − 1/ρ1). The result is d = 20 mm.

5.3 (a) Displacement M1 + M2 = ρ0((1 − f )V1 + V2) with M1 = ρ1V1 and M2 = ρ2V2. Then

M1

M2
=

1 − ρ0

ρ2

(1 − f )
ρ0

ρ1
− 1

= 2.36

(b) f ≤ 1 − ρ1/ρ0 = 0.35.

5.4 The half upper side is b = h tanα. We define a = L/2 and let d be the draught.

(a) The origin of the coordinates is chosen at the peak with area function

A(z) = 2Lz tanα (0 < z < h). (5.A1)

The total volume is V = ∫ h
0 A(z)dz = Lhb = Lh2 tanα, and the centre of gravity zG =

1
V

∫ h
0 z A(z)dz = 2

3 h. Putting h = d the submerged volume becomes V0 = Ld2 tanα and the

centre of buoyancy becomes zB = 2
3 d . The second-order moment is I0 = 2

3 L(d tanα)3 according

to (5.29), and the metacentric height zM = 2
3 d + 2

3 d tan2 α = 2
3 d/ cos2 α. The stability condition

(5.33) takes the form d/h > cos2 α. Archimedes’ Law yields ρ1V = ρ0V ′ or ρ1/ρ0 = (d/h)2.
The condition on the density ratio is ρ1/ρ0 > cos4 α.
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(b) The origin of coordinates is again chosen at the peak of the cone. The area function is now −A(z)
in the interval −h < z < 0. The parameter d is for convenience chosen to be the ‘antidraught’
such that the true draught is h − d . The total volume is again V = Lh2 tanα, and the centre of
gravity zG = − 2

3 h. The submerged volume is V0 = L(h2 − d2) tanα and the centre of buoyancy

zB = − 2
3 (h

3 − d3)/(h2 − d2). The waterline integral is the same as before, and the metacentric

height zM = − 2
3 (h

3 −d3/ cos2 α)/(h2 −d2). The stability condition becomes again d/h > cos2 α

but since ρ1/ρ0 = V0/V = 1 − (d/h)2 the density condition becomes ρ1/ρ0 < 1 − cos4 α.

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

h

αα
d

Triangle with the peak vertically
upwards. Note that d is not the
draft in this case.

(c) Combining the two conditions we get cos4 α < ρ1/ρ0 < 1 − cos4 α. This is only possible for
cos α < 2−1/4 or α > 33 ◦.

5.5 Using the same method as in problem 5.4 we find (a) ρ1/ρ0 > cos6 α, (b) ρ1/ρ0 < 1 − cos6 α, and
(c) α > 27 ◦.

5.6 (a) The effective potential H = g0z + w(p) is constant before the body enters. Afterwards
H + �H = g0z + �� + w(p + �p) is constant. Expanding w to lowest order, it follows that
�H = �� + �p/ρ is constant. At large distances �� → 0 and �p → 0 so that �H = 0. This
proves the claim. (b) On the surface of a spherical body we have �� = −g1a according to (3.30). Since
the density ρ(z) falls with increasing z,�p will be smaller on the top of the sphere than on the bottom, and
thus increase the buoyancy force.

5.7 (a) The extra pressure �p(x) created by the field of the spheres is determined by

w(p0 +�p)+�1 +�2 = w(p0), (5.A2)

with the potentials of the two spheres

�1 = − g1a2√
x2 + y2 + z2

, �2 = − g1a2√
x2 + y2 + (D − z)2

, (5.A3)

where g1 = G M/a2 is the surface gravity of the spheres. Expanding to first order in �p, we obtain

�p = −ρ0(�1 +�2) (5.A4)

where ρ0 = ρ(p0) is the density in the absence of the spheres. At the surface of sphere 1, r = a, we obtain
the extra pressure

�p1 = ρ0ag1

(
1 + a

D
+

( a

D

)2
cos θ

)
, (5.A5)

where we have expanded to leading non-trivial order in a/D, and where θ is the polar angle of the point
at the surface of sphere 1. Integrating over the surface of sphere 1, we obtain the extra bouyancy in the
z-direction

�1 =
∫

r=a
(−�p1)d Sz = −2πa2

∫ π

0
�p1(θ) cos θ sin θ dθ = −4π

3
ρ0g1

a5

D2
, (5.A6)

which is a repulsion.

(b) The gravitational attraction from sphere 2 on sphere 1 is

�1 = G M2

D2
= 4π

3
ρ1g1

a5

D2
(5.A7)

and the ratio becomes �1/�1 = −ρ0/ρ1.

(c) If ρ1 = ρ0, then the total force becomes �1 + �1 = 0, as one would expect.
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5.8 Using Gauss’ theorem, the moment of buoyancy is

(�B )i = −
∫

S

∑
j k

εi j k x j p d Sk = −
∫

V

∑
j k

εi j k∇k (x j p) dV

= −
∫

V

∑
j k

εi j k x j ∇k p dV = −
∫

V
(x × ∇ p)i dV .

Using local hydrostatic equilibrium (4.19) we get,

�B = −
∫

V
x × ρfluidg dV . (5.A8)

5.9 The total force � = (Mbody − Mfluid)g0. The total moment is � = xG × Mbody g0 − x B ×
Mfluid g0 = x0 ×� where

x0 = MbodyxG − Mfluidx B

Mbody − Mfluid
. (5.A9)

5.10 Use a Lagrange multiplier λ to handle the normalization condition, and find the extrema of the
unconstrained form Ix x n2

x+2Ixynx ny+Iyyn2
y−λ(n2

x+n2
y). The extremum conditions are Ix x nx+Ixyny =

λnx and Ixynx + Iyyny = λny , which is the eigenvalue equation.

5.11 Let the small angle of tilt around the principal axis be α. The angular momentum along the tilt axis
is J α̇ and using (5.32) the equation of motion becomes a harmonic equation,

J α̈ = −α(zM − zG )Mg0 (5.A10)

from which we read off the oscillation frequency.

5.12 Under a rotation of the coordinate system by φ, the coordinates transform according to (2.36). The
components of the area moment tensor transform as

Ix ′x ′ = Ix x cos2 φ + Iyy sin2 φ + 2Ixy sinφ cos φ (5.A11)

Iy′ y′ = Ix x sin2 φ + Iyy cos2 φ − 2Ixy sinφ cos φ (5.A12)

Ix ′ y′ = (Iyy − Ix x ) sinφ cos φ + Ixy(cos2 φ − sin2 φ). (5.A13)

If the area has a discrete symmetry such there will be at least one angle φ �= 0, π such that Ix ′x ′ = Ix x ,
Iy′ y′ = Iyy and Ix ′ y′ = Ixy . For this angle we thus have

(Iyy − Ix x ) sin2 φ + 2Ixy sinφ cos φ = 0 (5.A14)

(Ix x − Iyy) sin2 φ − 2Ixy sinφ cos φ = 0 (5.A15)

(Iyy − Ix x ) sinφ cos φ − 2Ixy sin2 φ = 0. (5.A16)

The two first equations are the same, and the last two can only be satisfied if Ix x = Iyy and Ixy = 0 when
φ �= 0, π .

5.13 The centre of gravity is at the centre of the cube zG = 0 and the submerged volume is V0 = 1/2 in
all orientations. For symmetry reasons the centre of buoyancy is vertically below the centre of gravity in all
three cases:

�
1

1
2

1
2

Here the cube floats with two
faces horizontal and four vertical.
This configuration is unstable.
The x-axis goes into the paper.

(a) The block is floating with two faces horizontal and the other faces vertical. Here we use (5.35) with
a = b = c = d = 1/2 so that zB = − 1

4 and find the metacentric height zM = −(1/12) which is
below the centre of gravity. This configuration is manifestly unstable.
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(b) The block is floating with one horizontal edge below the water, one above the water, and two in the
waterline. In this configuration the waterline area is a rectangle with sides 1 and

√
2. Taking the

x-axis along the horizontal edges, we find the moments

Ix x =
∫ 1

2

− 1
2

dx
∫ 1

2

√
2

− 1
2

√
2

dy y2 = 1

6

√
2 (5.A17)

Iyy =
∫ 1

2

− 1
2

dx
∫ 1

2

√
2

− 1
2

√
2

dy x2 = 1

12

√
2 (5.A18)

Ixy = 0. (5.A19)

The centre of buoyancy is given by (5.21) with A(z) = √
2 + 2z at depth z,

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

1
2

√
2 1

2

√
2

1

Here the cube floats with one
edge horizontal and two edges in
the waterline. This configuration
is marginally stable (or unstable).
The x-axis goes into the paper.

zB = 2
∫ 0

− 1
2

√
2

z(
√

2 + 2z) dz = −1

6

√
2. (5.A20)

Thus, the metacentre (or the smallest moment) is at

zM = zB + Iyy

V0
= 0. (5.A21)

This floating configuration is thus marginally stable for rotations around the y-axis which lower a
corner and raise another. That brings us to the last configuration.

�
�
�
�
�

'''''

'''''

�
�
�
�
�

�

Here the cube floats with the
lower left corner vertically below
the centre of gravity (gravity
points downwards to the left in
this picture). The waterline area
is a regular hexagon (dashed).

�
		
		
	

��
��

�					

�����

1
2

√
2

1
2

√
2

1
4

√
6

x

y

Hexagonal waterline area.

(c) The block is floating with one corner vertically below the centre of the cube. In this case the waterline
area is a hexagon with sides of length (1/2)

√
2. Because of the symmetry we may calculate the area

moment around any axis we choose, for example one that connects two opposite corners of the
hexagon, with length

√
2. Integrating over the first quadrant we have we have from the geometry of

the hexagon

I0 = 4
∫ 1

4

√
6

0
dy

∫ 1
2

√
2−y 1

3

√
3

0
dx y2 (5.A22)

= 4
∫ 1

4

√
6

0
y2

(
1

2

√
2 − y

1

3

√
3

)
dy = 5

√
3

64
. (5.A23)

The centre of buoyancy is of the same form as before given by (5.21), but in this case it is a bit
harder to determine the area A(z) at depth z because the shape of the area changes from a triangle
to a hexagon at z = −(1/6)√3. For −(1/2)√3 < z < −(1/6)√3 the shape is an equilateral
triangle. Since its side length must vary linearly with z from s = 0 at z = −(1/2)√3 to s = √

2 for
z = −(1/6)√3, we have s = (3/2)

√
2+z

√
6 and area A(z) = (1/4)

√
3 s2. For −(1/6)√3 < z < 0

the (irregular) hexagon can be obtained from this triangle by removing smaller equilateral triangles
from the corners. Since their side length must vary linearly with z from t = (1/2)

√
2 for z = 0 to

t = 0 for z = −(1/6)√3, it must be t = (1/2)
√

2+z
√

6. The area is thus A(z) = (1/4)
√

3(s2−3t2)

for −(1/6)√3 < z < 0. One may verify that the two area functions reproduce the volume correctly.
The centre of buoyancy becomes zB = −(13/96)

√
3 and the metacentre

zM = zB + I0

V0
= 1

48

√
3. (5.A24)

Thus, the metacentre is above the centre of gravity (zG = 0) and the cube floats stably in this
configuration.

6 Planets and stars
6.1 Put g(x) = a p(x) where a is an arbitrary constant vector. Then ∇ · g = a · ∇ p and (4.22) follows
from (6.4). Conversely from (4.22) with p → gx we get

∮
S gx d Sx = ∫

V ∇x gx dV and adding the two
other directions we obtain (6.4).
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6.2 The equation follows from ∇w = (1/ρ)∇ p. It also follows from the constancy of H = � + w,
proven on page 54.

6.3 Integrate (6.16) using the field (3.A6), and we find�
G
G
G
G
G
G
G
G�

�
�
�
�
�
�
�

The general hexagon is an equi-
lateral triangle with small equilat-
eral triangles cut off at the cor-
ners.

p(r) =



pc − 2
3πGρ2

1r2 for r ≤ a1,

pc − 2
3πGρ2

1a2
1 − 2

3πGρ2
2 (r

2 − a2
1 )

−Gρ0(ρ1 − ρ2)a
3
1

(
1

a1
− 1

r

)
for a1 ≤ r ≤ a.

(6.A1)

Apart from an additive constant and overall normalization, this is exactly the same as the minus the
gravitational potential (see problem 6. 3 and figure 3.4). Setting r = a , t he cent r al pressure becomes

pc = 2

3
πGρ2

1a2
1 + 2

3
πGρ2

2 (a
2 − a2

1)+
4

3
πGρ2(ρ1 − ρ2)a

3
1

(
1

a1
− 1

a

)
. (6.A2)

Again the total mass may be used to establish a relation between the densities and the radii, M0 =
4
3π(a

3
1ρ1 + (a3 − a3

1 )ρ2). For the Earth the central pressure becomes pc = 3.2 MBar.

6.4 Eliminate ρ0 in (6.20) by means of M0 = (4/3)πρ0a3.

6.5 Use that T ∼ p1−1/γ in an adiabatic process.

6.6

(a) The density is ρ ∼ T 1/(γ−1) ∼ rα/(γ−1) and from (6.22) one gets α − 2 = α

γ − 1
, which implies

α = 2
γ − 1

γ − 2
. Thus α < 0 for 1 < γ < 2.

(b) M ∼ ∫
r2ρ dr ∼ r3+α/(γ−1) ∼ r (3γ−4)/(γ−2). The exponent is negative for 1 < γ < 2 so that

the mass is never finite.

6.7 Use the approximation (6.23).

6.8

(a) Insert into (6.29).

(b) p ∼ (1 + ξ2/3)−3, ρ ∼ (1 + ξ2/3)−5/2.

(c) M ∼ ∫
ρr2 dr ∼ ∫

(1 + ξ2/3)−5/2ξ2 dξ ≈ ∫
ξ−3dξ converges for ξ → ∞.

6.9 The gravitational energy is −Egrav/M ≈ 25 000 J g−1. Heating and melting iron takes only about
8000 J g−1. The Earth definitely melted while its bulk accumulated.

6.10 Inside the planet we find from (6.40) with M(r) = 4
3πr2ρ0,

E1 = −1

2
G

∫ a

0

M(r)2

r2
dr = − 1

10

G M2
0

a
. (6.A3)

Outside we get

E2 = −1

2
G

∫ ∞
a

M2
0

r2
dr = −1

2

G M2
0

a
. (6.A4)

The ratio is E1/E2 = 1/5 so 5/6 = 84% of the gravitational energy is found outside the planet.
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6.11 Put g = −x/|x|3 = ∇(1/ |x|), corresponding to M = G = 1 in (6.2), and use Gauss’ theorem
(6.4), ∮

S
∇ 1

|x| · d S =
∫

V
∇2 1

|x| =
{

−4π (x ∈ V )

0 (x /∈ V ).
(6.A5)

Show that ∇2|x|−1 = 0 for x = 0 to complete the proof.

7 Hydrostatic shapes

7.1 The centrifugal acceleration is a�2 = g0 so that � = √
g0/a. The potential is � = − 1

2 a2�2 at the

cylinder. Use (3.36) to get vesc = √
ag0 ≈ 313 m s−1.

7.2 Let �h be the change in sea level due to �p. Use the constancy of (4.21) in the water close to the
surface to get H = �p/ρ0 + g0�h = 0. Then �h = −�p/ρ0g0 ≈ −20 cm.

7.3 Equipotential surfaces and isobars always rise and fall with the Moon’s position. (a) No change in
surface pressure, because the sea level follows along (in the static approximation). (b) The maximal change
in pressure is �p ≈ ρ0�� = ρ0g0 H0 ≈ 6 Pa where ρ0 is the atmospheric density at sea level and H0 is
the tidal range (7.15).

7.4 Range of tidal bulge (1/
√

3) ≤ cos θ ≤ 1, or 0 ≤ θ ≤ θ0 ≈ 55 ◦. The volume of tidal bulge∫ θ0
0 h(θ)2πa sin θ adθ = 2πa2 ∫ 1

1/
√

3
h(θ)d cos θ = 4πa2

9
√

3
H0 ≈ 17.7 × 103 km3.

7.5 Use (7.15) to get msatt/mMoon = (Dsatt/DMoon)
3 ≈ 1.33 × 10−3 or msatt ≈ 9.76 × 1019 kg.

7.6 Use h = (cos2 θ − (1/3))H0 such that 〈h〉 = (〈
cos2 θ

〉
− (1/3))H0. Averaging over a period we get〈

cos2 θ
〉
= sin2 δ sin2 δ0 + (1/2) cos2 δ cos2 δ0 from (7.16).

7.7 Without loss of generality we may place the Moon’s orbit in the xz-plane. Then the centrifugal
potential becomes �centrifugal = − 1

2�
2(x2 + (z − d)2) = − 1

2�
2(x2 + z2 − 2zd + d2) where

d = Dm/(m + M) is the distance to the centre-of-mass. Neither the constant nor the linear term in z
can raise the water, so we may effectively take �centrifugal = −(1/2)�2(x2 + z2) = −(1/2)�2(a2 − y2).

Including this potential, the y2-term yields an extra range, �H0 = (1/2)�2a2/g0 ≈ 14 m, on top of the
already calculated range.

7.8 Write f (r)(3 cos2 θ − 1) = f (r)

r2
(2z2 − x2 − y2) and use ∇2(uv) = u∇2v + v∇2u + 2∇u · ∇v.

Result g = d2 f

dr2
+ 2

r

d f

dr
− 6

f

r2
.

8 Surface tension
8.1 The pressure jump across the bubble surface is �p = 4α/a ≈ 20 Pa. The capillary length is as for
massive spheres defined by the length scale where the hydrostatic pressure change inside the bubble matches
the pressure jump, Rc = √

2α/ρ0g0, where ρ0 is the density of air. Numerically it becomes Rc = 16 cm.
The bubble radius a = 3 cm is much smaller than this, and the bubble should be quite spherical.
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8.2 In cylindrical coordinates the radial perturbation is of the form r = a − b cos φ with φ = 2πz/λ for
b � a and b � λ. (a) The volume of a period becomes

V =
∫ λ

0
πr2 dz = πλ

(
a2 + 1

2
b2

)
. (8.A1)

The area becomes to lowest significant order in b/λ,

A =
∫ λ

0
2πr

√
1 +

(
dr

dz

)2
dz ≈ 2πaλ

(
1 + π2b2

λ2

)
. (8.A2)

(b) To keep the volume constant we must vary a together with b. Defining the constant volume V = πa2
0λ,

we find

a =
√

a2
0 − 1

2
b2 ≈ a0

(
1 − b2

4a2
0

)
. (8.A3)

Inserting this in the area we get

A = 2πa0λ

(
1 + π2b2

λ2
− b2

4a2
0

)
. (8.A4)

For λ < 2πa0 the area grows with b because of the perturbation.

8.3 (a) Put x = r cos φ and y = r sinφ. A circle with radius R and centre at z = R has in the r z-plane the
equation R2 = r2 + (z − R)2 ≈ r2 + R2 −2z R for r � R, or z = r2/2R. Comparing with the polynomial
one finds 1/R = ∂2z/∂r2 = 2(a cos2 φ + b sin2 φ + 2c cos φ sinφ). (b) The extrema are determined from
the vanishing of ∂(1/R)/∂φ = 2(−(a − b) sin 2φ + 2c cos 2φ), or tan 2φ = (a − b)/2c. The solutions are
φ = φ0 and φ = φ0 + π/2 where φ0 = 1

2 arctan[(a − b)/2c].

8.4 Expanding to second order around (x, y, z) = (x0, 0, z0) we find

�z = α�x + 1

2
β�x2 + α

2x0
y2, (8.A5)

where �z = z − z0, �x = x − x0, α = f ′(x0) = tan θ , and β = f ′′(x0). Introduce a local coordinate
system with coordinates ξ and η in (x0, 0, z0)

�x = ξ cos θ + η sin θ (8.A6)

�z = −ξ sin θ + η cos θ. (8.A7)

Substituting and solving for η keeping up to second-order terms,

η = 1

2
β cos3 θ ξ2 + sin θ

2x0
y2. (8.A8)

Hence

1

R1
= ∂2η

∂ξ2
= β cos3 θ,

1

R2
= ∂2η

∂y2
= sin θ

x0
. (8.A9)

But

β = d2z

dx2
= d tan θ

dx
= 1

cos2 θ

dθ

dx
= 1

cos2 θ

ds

dx

dθ

ds
= 1

cos3 θ

dθ

ds
(8.A10)

proving that 1/R1 = dθ/ds.
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8.5 Differentiating after s we get

dV

ds
= 2πr

dr

ds

(
2

sin θ

r
+ z − 2

R0

)
+ πr2

(
2

cos θ

r

dθ

ds
− 2

sin θ

r2

dr

ds
+ dz

ds

)
= πr2 dz

ds
.

Integrating from 0 to s and using that V (0) = 0 we get

V (s) =
∫ s

0
πr(s′)2 dz

ds′ ds′ (8.A11)

which is indeed the volume.

9 Stress
9.1 The normal reaction is the weight N and the tangential reaction is T = µN . The angle is given by
tanα = T/N = µ.

9.2 The kinetic energy of the car is � = 1
2 mv2 and the maximal friction without skidding is� = µ0mg0.

Since the force is constant the braking distance is d0 = � /� = v2/2µ0g0 ≈ 44 m. Skidding we have
� = µmg0, so the distance becomes d = d0µ0/µ ≈ 56 m.

9.3 (a) σ = F/N A = 391 Pa. (b) σ = 80 000 Pa = 0.8 bar.

9.4 The pressure at the bottom in the middle of the mountain where it is highest is p ≈ ρg0h where h is
its height. Consequently, the maximal value of h is σ/ρg0 = 10 km. On Mars the maximal height is 27 km.

9.5 The characteristic equation is −λ3 + 3τλ2 = 0. Eigenvalues λ = 3τ and λ = 0 (doubly degenerate).
Eigenvectors e1 = (1, 1, 1)/

√
3, e2 = (−2, 1, 1)/

√
6 and e3 = (0,−1, 1)/

√
2, or any linear combination

of the last two.

9.6 Let the stress tensor be diagonal in a given coordinate system. Under a small rotation through an
angle φ

x ′ = x − φy y′ = y + φx (9.A1)

we find

σ ′
yx = φσx x − φσyy = φ(σx x − σyy). (9.A2)

Since that has to vanish, we must have σx x = σyy and similarly for the other components.

9.7

σσσ ′ = AAA · σσσ · AAA =
 91/5 −6 −12/5

−6 5 −8
−12/5 −8 84/5

 .
9.8 (a) The average of 〈ni n j 〉 over all directions of n does not itself depend on any direction, so that it
must be proportional to Kronecker’s delta, 〈ni n j 〉 = kδi j . The constant k is determined by taking the trace

of both sides, 1 = 〈n2〉 = 3k. (b) The average of the normal stress is
〈∑

i j σi j ni n j

〉
= 1

3
∑

k σii = −p.
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9.9

(a) The body starts to move when the elastic force equals the maximal static friction, that is for
ks = µ0mg0 or s = µ0mg0/k.

(b) When the body is at the point x at time t , the actual stretch is s + vt − x . The equation of motion
becomes

mẍ = k(s + vt − x)− µmg0.

(c) Define y = x − vt − s + µmg0/k = x − vt − (1 − r)s. Then ÿ = −ω2 y which has the solution
y = A cosωt + B sinωt + Ct + D. The particular solution follows from the initial conditions
x = ẋ = 0 for t = 0.

(d) The velocity is

ẋ = v(1 − cosωt)+ (1 − r)sω sinωt = 2v sin2 ωt

2
+ 2(1 − r)sω sin

ωt

2
cos

ωt

2
,

which vanishes for the first time after start when

tan
ωt

2
= − (1 − r)sω

v
,

so that ωt0 = 2π − 2α where

α = arctan
(1 − r)sω

v
.

The other possibility is sin(ωt/2) = 0 happens later, for ωt = 2π .

(e) The stretch is

s + vt − x = rs + v

ω
sinωt + (1 − r)s cosωt

= rs + v

ω cos α
sin(ωt + α)

The minimum stretch is s1 = rs−v/ω cos α = s(r −(1−r)/ sinα) at t = t1 where ωt1+α = 3π/2.
For the minimum stretch to be positive, one must require that r > (1−r)/ sinα, and since sinα < 1
this inequality can only be fulfilled for r > 1 − r or r > 1/2. Notice that ω(t1 − t0) = α− π/2 and
α < π/2, so that the minimum always happens before the block stops.

(f) When the block stops at t = t0 the stretch is s0 = s(2r − 1). The stretch grows to s0 + v�t
a time �t after the body stops. The body starts to move again when the stretch becomes s, or
v�t = s − s0 = 2(1 − r)s, which is positive as expected. The circular frequency of the jumping
motion is

� = 2π

t0 +�t
= ω

1 + (tanα − α)/π .

When v → 0 we have α → π/2 and � → 0, in accordance with intuition.

9.10 Writing out the six terms of the determinant, the characteristic equation becomes det[σσσ − λ111] =
−λ3 + I1λ

2 − I2λ+ I3. An asymmetric stress tensor also has the invariant I4 = ∑
i j σi j (σi j − σ j i ) which

vanishes for a symmetric stress tensor.

10 Strain
10.1

{∇ j ui } = α

 5 −1 3
1 8 0

−3 4 5

 , ui j = α

5 0 0
0 8 2
0 2 5

 .
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10.2

∇ · u = 3α + 2β(x + y + z)

∇ × u = (−2α,−2α,−2α)

and

{ui j } =
α + 2βx α α

α α + 2βy α

α α α + 2βz

 = α

1 1 1
1 1 1
1 1 1

 + 2β

x 0 0
0 y 0
0 0 z

 .
10.3

{ui j } =
A C 0

C −B 0
0 0 0

 .
For the volume to be unchanged we must have ∇ · u = ∑

i uii = 0 or A = B.

10.4 The strain tensor becomes

ui j = α

0 1 0
1 0 0
0 0 0

 . (10.A1)

The characteristic polynomial is det(uuu −λ111) = −λ(λ2 −α2). The eigenvalues are λ = ±α and λ = 0. The
(unnormalized) eigenvectors are (1, 1, 0), (1,−1, 0) and (0, 0, 1). The eigenvalues are the relative changes
in length along these directions.

10.5 (a) The strain gradients become

{∇ j ui } = α

0 2y 0
y x 0
0 0 0

 , (10.A2)

and are small for |α| � 1/L . Cauchy’s strain tensor becomes in the same approximation

{ui j } = α

 0 3
2 y 0

3
2 y x 0
0 0 0

 . (10.A3)

(b) The eigenvalue equation becomes λ2−xλ−9/4y2 = 0, and has the solution λ = (1/2)(x±
√

x2 + 9y2).
The corresponding (unnormalized) eigenvectors are (3y, x ±

√
x2 + 9y2, 0) and (0, 0, 1).

10.6 Let c = a + b. Then 2a · b = c2 − a2 − b2 and thus

δ(ab) = |c| δ |c| − |a| δ |a| − |b| δ |b| = c2ucc − a2uaa − b2ubb. (10.A4)

10.7 We have

a′
i = ai +

∑
j

∇ j ui a j

= ai +
∑

j

1

2
(∇ j ui − ∇i u j )a j +

∑
j

1

2
(∇ j ui + ∇i u j )a j

= ai +
∑
j k

ε j ikφka j +
∑

j

ui j a j

= (a + φ × a + UUU · a)i .

The second term corresponds to a rotation by |φ| around the axis φ/ |φ|.
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10.8 We must solve

∇x ux = ∇yuy = ∇zuz = 0

∇yuz + ∇zuy = ∇zux + ∇zuz = ∇x uy + ∇yux = 0.

From the first we get that ux can only depend on y and z, and for the second derivatives we get

∇2
y ux = −∇y∇x uy = −∇x∇yuy = 0

∇2
z ux = −∇z∇x uz = −∇x∇zuz = 0

∇y∇zux = −∇y∇x uz = −∇x∇yuz = ∇x∇zuy = ∇z∇x uy = −∇z∇yux .

From the last equation we get ∇y∇zux = 0. Consequently, we must have ux = A + Dy + Ez and similar
results for uy and uz . The vanishing of the shear strains relates some of the constants.

10.9 Successive needle transformations

a′′
i =

∑
j

(δi j + ∇′
j u′

i )a
′
j =

∑
j k

(δi j + ∇′
j u′

i )(δ j k + ∇ku j )ak .

This shows that to lowest order the displacement gradients are simply added

∇ j u′′
i = ∇ j u′

i + ∇ j ui (10.A5)

and the same is the case for the strain tensor,

u′′
i j = u′

i j + ui j . (10.A6)

10.11 Use that the determinant of a product of matrices is the product of the determinant to get
det δi j + 2ui j = det |δi j + ∇ j ui |2.

10.12 Define the Jacobian,

Ji j = ∂x ′
i

∂x j
. (10.A7)

The condition for vanishing strain is that the metric is the identity,∑
k

Jik J jk =
∑

k

Jki Jkj = δi j . (10.A8)

Thus JJJ is everywhere an orthogonal matrix. Differentiating after xl we get∑
k

∂ Jik

∂xl
J jk +

∑
k

Jik
∂ J jk

∂xl
= 0 (10.A9)

or after multiplying with J jm and summing

∂ Jim

∂xl
= −

∑
j k

Jik J jm
∂ J jk

∂xl
. (10.A10)

Now we use that

∂ J jk

∂xl
=

∂2x ′
j

∂xk∂xl
= ∂ J j l

∂xk
(10.A11)
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and by repeated applications of the rules we find

∂ Jim

∂xl
= −

∑
j k

Jik J jm
∂ J j l

∂xk
=

∑
j k

Jik J j l
∂ J jm

∂xk

=
∑
j k

Jik J j l
∂ J jk

∂xm
= −

∑
j k

Jik J jk
∂ J j l

∂xm

= − ∂ Jil

∂xm
= −∂ Jim

∂xl
.

Consequently, all the derivatives of Jim must vanish, so that it is a constant orthogonal matrix, i.e. a rotation
(here excluding reflections). The only other possible transformation is a bodily translation which may be
added to the rotation.

11 Elasticity
11.1 Expanding to first order around an equilibrium configuration r = a, we find for r close to a

�(r) = �(a) + (r − a)� ′(a).

In equilibrium �(a) = 0 and thus � = (r − a)� ′(a) which is Hooke’s law with k = � ′(a).

11.2 (a) Trivial rewriting using (11.15). (b) The trace of the first term vanishes.

11.3 (a) Divergence and curl

∇ · u = ∇x ux + ∇yuy + ∇zuz = 3α + 2β(x + y + z)

∇ × u = (−2α,−2α,−2α) = −2α(1, 1, 1)

(b) Displacement gradient

{∇i u j } =
α + 2βx 0 2α

2α α + 2βy 0
0 2α α + 2βz

 (11.A1)

Strain tensor

{ui j } =
α + 2βx α α

α α + 2βy α

α α α + 2βz

 = α

1 1 1
1 1 1
1 1 1

 + 2β

x 0 0
0 y 0
0 0 z

 (11.A2)

(c) Stress tensor

{σi j } = 2µα

1 1 1
1 1 1
1 1 1

 + 3αλ

1 0 0
0 1 0
0 0 1

 (11.A3)

11.4 Assuming that there is no transverse or shear deformation, and taking the x-axis along the beam
axis, the only component of strain is ux x . Inserting this into (11.9) one gets σx x = (2µ + λ)ux x = P and
σyy = σzz = λux x = λP/(2µ + λ). The displacement field is u = x P/(2µ + λ) and uy = uz = 0. Since
it satisfies the equilibrium equation and the boundary conditions, it is the right solution.

11.5 The boundary conditions are fulfilled with the constant values σx x = P, uyy = 0, and σzz = 0.
Inserting this into (11.18b) we get σyy = νP, and using (11.18a,c) we get ux x = (1 − ν2)P/E , and
uzz = −ν(1 + ν)P/E . The displacement field becomes ux = xux x and uz = zuzz . Since it satisfies the
boundary conditions and the equilibrium equations, it is the right solution.
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11.6

(a) Use that

ux x = ∇x ux , uyy = ∇yuy , uxy = 1
2 (∇x uy + ∇yux ) (11.A4)

(b) The equilibrium equations become,

∇xσx x + ∇yσxy = 0, ∇xσyx + ∇yσyy = 0. (11.A5)

(c) Solution follows by insertion.

(d) The strain tensor becomes

Eux x = σx x − νσyy = ∇2
yφ − ν∇2

xφ, (11.A6)

Euyy = σyy − νσx x = ∇2
xφ − ν∇2

yφ, (11.A7)

Euzz = −ν(σx x + σyy) = −ν(∇2
xφ + ∇2

yφ), (11.A8)

Euxy = (1 + ν)σxy = −(1 + ν)∇x ∇yφ, (11.A9)

The equation now follows by insertion into (11.35).

(e) The equations to be solved are,

ux x = 2x, uyy = −2νx, uzz = −2νx, (11.A10)

uxy = −2(1 + ν)y, uxz = 0, uyz = 0. (11.A11)

First the diagonal elements are solved on their own,

ux = x2, uy = −2νxy, uz = −2νxz. (11.A12)

Here uyz = 0 automatically. To fulfill uxz = 0 an extra term is necessary in ux , so that

ux = x2 + νz2, uy = −2νxy, uz = −2νxz, (11.A13)

Finally add another term to ux to obtain the correct expression for uxy ,

ux = x2 + νz2 − (2 + ν)y2, uy = −2νxy, uz = −2νxz, (11.A14)

To this may be added an arbitrary solid translation or rotation.

11.7 The absolute minimum of the coefficient of the first term happens for α = 1/3.

11.9 (a) Follows from the symmetry of σi j and ui j . (b) In order for  i j δui j σi j =  i j klδui j λi j kl ukl to
become a total differential δ((1/2) i j klλi j kl ui j ukl ), the (9 × 9)-matrix λ(i j )(kl) must be symmetric in its
index pairs.

12 Solids at rest
12.2 Insert the displacement field into the Navier–Cauchy equation (12.2) and obtain the equations

2µA + 2(λ+ µ)(A + B + C) = 0 (12.A1)

2µB + 2(λ+ µ)(A + B + C) = 0 (12.A2)

k + 2µC + 2(λ+ µ)(A + B + C) = 0 (12.A3)

Since the determinant is non-vanishing, this set of three equations has a unique solution for A, B, and C .
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12.3 (a) Let the rear end of the bullet be flat and moving according to x = x(t) with x = 0 for t = 0
reckoned from the back end x = 0 of the barrel. The volume is V = Ax where A = πa2 is the cross
section of the barrel. The equation of motion for the bullet is mẍ = pA. The isentropic expansion obeys
pV γ = const. or pxγ = p0xγ0 where p0 is the initial pressure. The equation of motion takes the form

mẍ = p0 A
( x0

x

)γ
. (12.A4)

Multiplying by ẋ and integrating we get

ẋ2 = 2p0 Ax0

(γ − 1)m

(
1 −

( x0

x

)γ−1
)
, (12.A5)

where the constant has been determined such that ẋ = 0 for x = x0.

(b) For x = L we have ẋ = U , leading to

p0 = (γ − 1)mU2

2Ax0

(
1 −

( x0

L

)γ−1
)−1

. (12.A6)

Numerically this becomes p0 ≈ 9700 bar. The exit pressure is p1 = p0(x0/L)γ ≈ 15 bar.

(c) The initial temperature is T0 = p0 Mmol/Rρ0 ≈ 3500 K and the final temperature T1 ≈ 550 K.

(d) The strains are for r = a, b = a + d , P = p0, E = 205 GPa and ν = 29%,

urr = a2

b2 − a2

(
1 − ν − (1 + ν)b2

a2

)
P

E
≈ −5300 bar, (12.A7a)

uφφ = a2

b2 − a2

(
1 − ν + (1 + ν)b2

a2

)
P

E
≈ 7000 bar, (12.A7b)

uzz = −2ν
a2

b2 − a2

P

E
≈ − 690 bar. (12.A7c)

The tensile strength of steel is 5500 bar. Since uφφ is just above this value, the barrel may blow up.

12.4 We use that uzz is linear in x and y, of the form

uzz = ∇zuz = α − βx x − βy y

and consequently

uz = az − φy x + φx y + αz − βx xz − βy yz

where the coefficients are all constants. Using this result, we find ∇x ux = ∇yuy = −ν(α − βx x − βy y).
Integrating and demanding that uxy = uxz = uzy = 0, we obtain the most general form

ux = ax − φz y + φyz − ανx + 1

2
βx (z

2 − ν(x2 − y2))− βyνxy, (12.A8a)

uy = ay + φz x − φx z − ανy + 1

2
βy(z

2 − ν(y2 − x2))− βxνxy, (12.A8b)

uz = az − φy x + φx y + αz − βx xz − βy yz. (12.A8c)

Here (ax , ay , az) represents simple translations of the body, and (φx , φy , φz) simple rotations around
the coordinate axes. The coefficient α corresponds to a uniform stretching, and only (βx , βy) represents
bending into the coordinate directions.
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12.5 Same general solution as for the pressurized tube but with a and b interchanged

A = − 1

2(λ+ µ)
b2

b2 − a2
P = −(1 + σ)(1 − 2σ)

b2

b2 − a2
P

E
,

B = − 1

2µ

a2b2

b2 − a2
P = −(1 + σ) a2b2

b2 − a2

P

E
.

The rest is straightforward.

12.6 (a) The centrifugal force density is radial and given by fr = ρ0�
2r . (b) The general solution to

(12.59) is

ur = Ar + B

r
− 1

8

ρ0�
2

λ+ 2µ
r3 (12.A9)

where A and B are integration constants. Use that ur must be finite for r = 0 and σrr = 0 for r = a. The
final solution becomes

ur = 1

8

ρ0�
2a2

λ+ 2µ
r

(
3 − 2ν − r2

a2

)
. (12.A10)

(c) The strains are

urr = 1

8

ρ0�
2a2

λ+ 2µ

(
3 − 2ν − 3

r2

a2

)
, uφφ = 1

8

ρ0�
2a2

λ+ 2µ

(
3 − 2ν − r2

a2

)
. (12.A11)

The radial strain is positive for r = 0, vanishes for r = a
√

1 − 2ν/3, and is negative for r = a. (d)

�

�

strain

r

..........................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................

uφφ

urr

R

Sketch of strains in the massive
rotating cylinder.

Breakdown happens for r = 0 where the extension and tension is maximal.

12.7 Letting x → x − α in (12.20), we get

ux = ν

2R
α2 − ν

R
αx + 1

2R
(z2 + ν(x2 − y2)),

uy = − ν
R
αy + ν

R
xy,

uz = 1

R
αz − 1

R
xz.

The first column represents a simple translation and the second a uniform stretching of the form (11.25).

13 Computational elastostatics
13.1 We assume a linear combination

∇+
x f (x) = a f (x) + bf (x +�x) + c f (x + 2�x).

Expand to second order and require the coefficient of f (x) and ∇2
x f (x) to vanish and the coefficient of

∇x f (x) to be 1, to get

a + b + c = 0

1

2
b + 2c = 0

b + 2c = 1.

The solution is a = −3/2, b = 2, and c = −1/2.
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14 Vibrations
14.1 When the Lamé coefficients depend on position we get three extra terms involving their gradients

ρ
∂2ui

∂t2
= fi + µ∇2ui + (λ+ µ)∇i ∇ · u + (∇ · u)∇iλ+ (∇i u) · ∇µ+ (∇µ · ∇)ui .

14.2 The total wave is

u = (k, 0, kL )e
ikL z + AT (kT , 0, k)e−ikT z + AL(k, 0,−kL )e

−ikL z, (14.A1)

from which one derives

σxz = 1

2
iµ(2k(1 − AL )kL + (k2 − k2

T )AT , (14.A2)

σzz = −iµ((k2 − k2
T )(1 + AL)+ 2kkT AT . (14.A3)

They vanish for

AL = 4k2kLkT − (k2 − k2
T )

2

4k2kLkT + (k2 − k2
T )

2
, AT = − 4kkT (k

2 − k2
T )

4k2kL kT + (k2 − k2
T )

2
. (14.A4)

Next one puts kL = k cot θ , kT = k cot θ ′ and use Snell’s law sin θ ′/ sin θ = cT /cL = q.

14.3 The fields have the form

uy = AeκT z , (14.A5a)

u′
y = A′e−κ ′

T z . (14.A5b)

The boundary conditions u′
y = uy and σ ′

yz = σyz at z = 0 lead to the equations,

A′ = A, µ′κ ′
T A′ = −µκT A. (14.A6)

In view of κT and κ ′
T being positive these equations do not have a solution. Thus, there are no interface

waves of this kind. At a free surface, we would instead have A′ = 0, but can only require σyz = 0 which
leads to A = 0.

14.4 It is easiest to reintroduce the stress tensor and write (14.14) as

ρ0ω
2ui = −

∑
j

∇ jσi j . (14.A7)

Multiplying it with the complex conjugate field u×
i and summing over i we get

ρ0ω
2 |u|2 = −

∑
i j

u×
i ∇ jσi j = −

∑
i j

∇ j (u
×
i σi j )+

∑
i j

∇ j u×
i σi j .

Integrating over the body this becomes

ρ0ω
2
∫

V
|u|2 dV = −

∮
S

∑
i j

u×
i σi j d S j +

∫
V

u×
i j σi j dV, (14.A8)

where we have used in the last term the symmetry of the stress tensor. The surface integral vanishes because
u = 0 or σσσ · n = 0 at the surface. The integral on the right-hand side is essentially equal to the elastic
energy which is real and positive definite. Hence ω2 is real and positive.
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14.5 (a) For an arbitrary vector field u we first find a solution ψ to the equation

∇2ψ = ∇ · u. (14.A9)

Then we put

uL = ∇ψ (14.A10)

uT = u − uL . (14.A11)

Clearly, ∇ × uL = 0 and ∇ · uT = 0.
(b) Inserting the mixed field (14.3) into (14.2) we obtain

F = ρ
∂2uL

∂t2
− (λ+ 2µ)∇2uL = −ρ ∂

2uT

∂t2
+ µ∇2uT . (14.A12)

This field has no curl and no divergence, ∇ × F = 0, ∇ · F = 0. From the double-cross rule (2.67)
it must satisfy ∇2 F = 0. Determine a field G satisfying ρ∂2G/∂2t = F together with ∇ × G = 0 and
∇ · G = 0. Such a field can always be found by integrating F twice over time. Then define new longitudinal
and transverse fields

u′
L = uL − G, u′

T = uT + G. (14.A13)

These fields also have ∇ × u′
L = 0 and ∇ · u′

T = 0, satisfy (14.2) and yield the same solution as the others:
u = uL + uT = u′

L + u′
T .

15 Fluids in motion
15.3 Leonardo’s law tells us that Av = A1v1 + A2v2. The ratio of the rates in the two pipes is
A1v1/A2v2 = 2, and since A1/A2 = 9/4 we get v1/v2 = 8/9. The total rate is Av = 3A2v2 so that
v2/v = 4/3 and v1/v = 32/27.

15.4 Differentiating through all the time-dependence, one gets

dρ(x(t), t)
dt

= dx(t)
dt

· ∂ρ(x, t)
∂x

+ ∂ρ(x, t)

∂t
= v(x, t) · ∇ρ(x, t)+ ∂ρ(x, t)

∂t
= Dρ

Dt
.

15.5 (a) Let Q be the total volume of flow in the stream. Then the average velocity in the x-direction is
vx (x) = Q/h(x)d . (b) The advective acceleration is estimated as w = (v ·∇)v ≈ vx dvx/dx . (c) Constant
acceleration w implies vx ≈ √

2wx for a suitable choice of origin and orientation of the x-axis. Hence
h(x) ∼ 1/

√
x is the shape of the curve.

15.6 (a) Let Q be the total volume of flow in the stream. Then the average velocity in the x-direction
is vx (x) = Q/πa(x)2. (b) The advective acceleration is estimated as w ≈ vx dvx/dx . (c) Constant
acceleration w implies vx ≈ √

2wx for a suitable choice of origin and orientation of the x-axis. Hence
a(x) ∼ 1/x1/4 is the shape of the tube.

15.7 Define the vector field

f ′(v) = ∂ f (v)

∂v
. (15.A1)

Then

∂ρ

∂t
= −3

t
ρ − M0

t3
x

t2
· f ′ ( x

t

)
, (15.A2)

ρ∇ · v = 3

t
ρ, (15.A3)

(v · ∇)ρ = M0

t3

x

t2
· f ′ ( x

t

)
. (15.A4)

The sum of the three right-hand sides vanishes which means that the equation of continuity (15.24) is
satisfied.
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15.8 In a small interval of time, δt , a material particle with a small volume dV is displaced to fill out
another volume dV ′, the size of which may be calculated from the Jacobi determinant of the infinitesimal
mapping x′ = x + vδt ,

dV ′
dV

=
∣∣∣∣∂x′
∂x

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂x ′
∂x

∂y′
∂x

∂z′
∂x

∂x ′
∂y

∂y′
∂y

∂z′
∂y

∂x ′
∂z

∂y′
∂z

∂z′
∂z

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 + ∇xvx δt ∇xvyδt ∇xvzδt

∇yvx δt 1 + ∇yvyδt ∇yvzδt
∇zvx δt ∇zvyδt 1 + ∇xvzδt

∣∣∣∣∣∣ .
To first order in δt , only the diagonal elements contribute to the determinant, and we find

dV ′
dV

≈ (1 + ∇xvx δt)(1 + ∇yvyδt)(1 + ∇zvzδt) (15.A5)

≈ 1 + ∇xvx δt + ∇yvyδt + ∇zvzδt = 1 + ∇ · v δt . (15.A6)

The change in volume is δ(dV ) = dV ′−dV , and after dividing by δt the rate of change of such a comoving
volume becomes

D(dV )

Dt
= ∇ · v dV . (15.A7)

15.9 The local ‘continuity equations’ for mass and momentum are

∂ρ

∂t
+ ∇ · (ρv) = J,

∂(ρvi )

∂t
+ ∇ · (ρvi v) = ρgi .

The cosmological equations then become

ρ̇ = −3Hρ + J (15.A8a)

Ḣ + H2 = J
H

ρ
− 4π

3
Gρ. (15.A8b)

Clearly there is a steady-state solution

J = 3Hρ (15.A9a)

ρ = 9H2

4πG
= 6ρc. (15.A9b)

From H = H0 = 75 km s−1 Mpc−1 = 2.4 × 10−18 s−1 one gets ρ = 6.3 × 10−26 kg m−3 and
J = 4.6 × 10−43 kg m−3 s−1, corresponding to the creation of nine protons per cubic kilometre per year.
Not much!

16 Nearly ideal flow

16.1 Use that v0 ≈ √
3p0/ρ0 and c0 = √

γ RT0/Mmol, and the ideal gas law. For air γ ≈ 7/5 so that
v0/c0 ≈ √

15/7 ≈ 1.46.

16.2

(a) Leonardo’s law says πa2U0 = πb2U1, so that

U1 = a2

b2
U0 = 5.74 m/s. (16.A1)
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(b) Bernoulli’s theorem applied to a streamline through the center leads to,

1

2
U2

0 + p0

ρ0
= 1

2
U2

1 + p1

ρ0
. (16.A2)

Consequently the pressure drop in the center becomes,

�p = p0 − p1 = 1

2
ρ0

(
a4

b4
− 1

)
U2

0 = 3973 Pa. (16.A3)

(c) The pressure difference must balance the weight of the mercury minus its buoyancy, �p =
(ρ1 − ρ0)g0h, so that

h = �p

(ρ1 − ρ0)g0
= 3.2 cm. (16.A4)

(d) The mercury level is h/2 over the initial level. The condition becomes h < 2(c + d), or

U0 < 2

√
b4(c + d)g0

b4 − a2

ρ1 − ρ0

ρ0
= 9.7 m/s. (16.A5)

16.3 The exit speed is given by Torricelli’s law U = √
2g0h = 2 m s−1. The total volume rate is

Q = πa2U = 0.16 l s−1 so that the time it takes to fill V = 10 litre is t = V/Q = 64 s.

16.4 Leonardo’s law tells us that the average velocity at the top of the barrel is v0 = (A/A0)v, where v
is the average velocity in the spout. Bernoulli’s theorem now says

1

2
v2

0 + p0

ρ0
+ g0h = 1

2
v2 + p0

ρ0
(16.A6)

so that with κ = A/A0

v =
√

2g0h

1 − κ2
. (16.A7)

The speed is slightly higher than the speed of free fall.

16.5 Take two streamlines that pass from the surface in the barrel through the two spouts. Then we have

p0

ρ0
+ g0h = 1

2
v2

1 + p0

ρ0
= 1

2
v2

2 + p0

ρ0
(16.A8)

or v1 = v2.

16.6 The solution to the differential equation (16.22) with initial condition z = h at t = 0 is

z =
(√

h − 1

2
t

A

A0

√
2g0

)2
= h

(
1 − t

T

)2
(16.A9)

where T is the total time (16.23) for emptying the barrel.

16.7 (a) The volume flux is

Q =
∫ a

0
v(r)2πr dr = πa2U

1 + κ . (16.A10)

Since U = √
2g0h the reduction factor is 1/(1 + κ).
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16.8 For an ideal gas ρ = p/C where C = RT0/Mmol and thus w = C log p.
(a) Bernoulli’s theorem becomes

1

2
U2 + C log p = C log p0, (16.A11)

where p is the ambient pressure and p0 the stagnation pressure in the tube,

p0 = p exp

(
MmolU

2

2RT0

)
. (16.A12)

(b) Taking T0 = 223 K and Mmol = 29 g mol−1, we obtain (p0 − p)/p = 63%.

16.9 Consider the difference between two surfaces S1 and S2, both having the curve C as perimeter and
oriented consistently,∫

S1

∇ × v · d S −
∫

S2

∇ × v · d S =
∮

S
∇ × v · d S =

∫
V

∇ · (∇ × v) dV = 0.

Here S = S1 −S2 is the closed surface formed by the two open surfaces with an extra minus sign because of
the requirement that the closed surface should have an outwardly oriented normal. In the last step, Gauss’
theorem has been used to convert the integral over S to an integral over the volume V contained in S.

16.10 Using that ∇ × (� × x) = 2� it follows from Stokes theorem that for all �∮
C

� · x × d� =
∮

C
� × x · d� =

∫
S

2� · d S. (16.A13)

16.11 The proof is trivial because for a barotropic fluid ∇ p = ρ∇w where w is the pressure potential.

16.12 The proof is straightforward because from (16.54) we get ∇(∂�/∂t + H) = 0 where H is given
by (16.35).

16.13 From (16.70) we get the critical velocity

U =
√

3π

5

(
ρ1

ρ0
− 1

)
ag0, (16.A14)

which becomes merely U ≈ 7 cm s−1 for the worm.

16.14 In spherical coordinates the integral becomes∫
r≥a

(v − U)2 dV =
∫

r≥a

(
(vr − Ur )

2 + (vθ − Uθ )
2
)

dV

=
∫ ∞

a
dr

∫ π

0
rdθ

∫ 2π

0
r sin θdφU2 a6

4r6

(
1 + 3 cos2 θ

)
= 2

3
πa3U2.

16.15 From Lenoardo’s law we have

vx = Q

h(x)− b(x)
(16.A15)

where Q is a constant. From mass conservation, ∇zvz = −∇xvx it follows that vz = f (x) − z∇xvx . At
the bottom z = b we have the boundary condition vz = vx b′ and at the surface z = h we have vz = vx h′.
Either of these determine f (x).
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16.16 Writing out the double sum,

v · (v · ∇)v =
∑
i j

viv j ∇ j vi (16.A16)

we find

|v · (v · ∇)v|2 ≤
∑
i j

(viv j )
2
∑
kl

(∇lvk)
2 = |v|4 |∇v|2 . (16.A17)

16.17 (a) Define ρ = ρ0 + �ρ and p = p0 + �p. Using that ∇ p0 = ρ0 g, the Euler and continuity
equations become to first order in the small quantities,

ρ0
∂v

∂t
= g�ρ − ∇�p, (16.A18a)

∂�ρ

∂t
= −∇ · (ρ0v). (16.A18b)

Using �p = c2
0�ρ we get

∂2�p

∂t2
= c2

0
∂2�ρ

∂t2
= −c2

0∇ ·
(
ρ0
∂v

∂t

)
= c2

0∇2�p − c2
0∇ · (g�ρ) (16.A19)

and using ∇ · g = 0 the wave equation follows.

(b) The ratio of the two terms on the right-hand side of the wave equation becomes for a wave of wavelength
λ ∣∣∣c2

0∇2�p
∣∣∣∣∣∣c2

0(g · ∇)(�p/c2
0)

∣∣∣ ≈ c2
0 |�p| /λ2

g0 |�p| /λ ≈ c2
0

g0λ
. (16.A20)

The condition for ignoring gravity is that g0λ � c2
0 or λ � c2

0/g0. In the atmosphere this becomes
λ � 12 km which is quite reasonable in view of the height of the atmosphere.

17 Viscosity

17.1 In an isentropic gas we have p ∼ ργ and p ∼ ρT , so that ρ ∼ T 1/(γ−1) and ν ∼ T 1/2−1/(γ−1).
For monatomic gases γ = 5/3 and ν ∼ T −1, for diatomic γ = 7/5 and ν ∼ T −2, and for multiatomic
γ = 4/3 and ν ∼ T −5/2.

17.2 One finds from (17.10) and (17.11) d ≈ 3 µm and t0 ≈ 11 s. The layer seems a bit thin compared
to, for example curling (example 17.2.1). The tire pattern probably influences the ‘ice grip’ considerably.

17.3 (a) The total flux along x per unit of length along z is

Q(t) =
∫ ∞
−∞

vx (y, t) dy. (17.A1)

From (17.5) we get by integrating over y

d Q

dt
= ν

∫ ∞
−∞

∂2vx

∂y2
dy = 0, (17.A2)

because ∂vx/∂y vanishes at infinity.
(b) The total momentum per unit of length is

� =
∫ ∞
−∞

ρ0vx (y, t) dy = ρ0 Q (17.A3)
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and is constant because Q is.
(c) The kinetic energy per unit of length in both x and z is

� = 1

2
ρ0

∫ ∞
−∞

vx (y, t)
2 dy. (17.A4)

In the Gaussian case this becomes

� = 1

2
ρ0U2 a2

a2 + 2νt

∫ ∞
−∞

exp

(
−2

y2

a2 + 2νt

)
dy (17.A5)

= 1

2
ρ0U2

√
π

2

a2√
a2 + 2νt

. (17.A6)

It vanishes like t−1/2 for t → ∞.

17.4 (a) L ≈ 10 km, U ≈ 1 m/s, Re ≈ 1010.
(b) L ≈ 30 m, U ≈ 30 m/s, Re ≈ ×109.
(c) L ≈ 1000 km, U ≈ 10 m/s, Re ≈ 1012.
(d) L ≈ 500 km, U ≈ 50 m/s, Re ≈ 3 × 1012.
(e) L ≈ 1 km, U ≈ 100 m/s, Re ≈ 1010.
(f) L ≈ 50 m, U ≈ 10 m/s, ν ≈ 1 m2/s, Re ≈ 500.
(g) L ≈ 103 km, U ≈ 10 cm/y, ν ≈ 106 m2/s, Re ≈ 3 × 10−6.

17.5 Write the pressure correction (17.31) in the form

�p =
(

c2
0 + ζ

ρ0

∂

∂t

)
�ρ (17.A7)

and apply the operator in parenthesis to (17.34), using that this operator commutes with both spatial and
time derivatives.

17.6 One verifies explicitly that the given expression satisfies the equation of motion (17.5). The constant
in front is determined by requiring∫ ∞

−∞
vx (y, t) dy =

∫ ∞
−∞

vx (y, 0) dy.

For t → 0 the Gaussian becomes infinitely narrow (a δ-function) and thus vx (y, t) → vx (y, 0). Finally,
assuming that vx (y, 0) = 0 for |y| ≤ a one gets for |y| → ∞ and 4νt � a2

vx (y, t) ≈ 1

2
√
πνt

exp

(
− y2

4νt

)∫ ∞
−∞

vx (y
′, 0) dy′. (17.A8)

18 Plates and pipes
18.1 The Navier–Stokes equation becomes

(v · ∇)v = − 1

ρ0
∇ p∗ + ν∇2v. (18.A1)

18.2 Use the general solution (18.4) and the no-slip conditions to get

vx = G

2η
y(d − y)+ U

y

d

The maximum happens at y = d

2
+ Uη

Gd
and lies between the plates for 2Uη < Gd2.
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18.3 Let the pressure gradient be G along the x-direction and the relative plate velocity U along the z-
direction. Assume that the field is of the form v = (vx (y), 0, vz (y)). Then the Navier–Stokes equations
imply that p and vx are identical to the planar pressure driven flow, whereas vz is identical to the velocity
driven flow.

18.4 If pressure were used to drive the planar sheet, there would have to be a linearly falling pressure
along the open surface. But that is impossible because the open surface requires constant pressure.

18.5 Using the same method as in section 18.3 we find in the two layers the equations,

∇y p = −ρ1g0 cos θ, ∇z p = 0, (18.A2)

∇y p = −ρ2g0 cos θ, ∇z p = 0. (18.A3)

from which we get the pressure (using continuity)

p =
{

p0 − ρ1g0 y cos θ (0 < y < d1)

p0 − (ρ1d1 + ρ2(y − d1))g0 cos θ (d1 < y < d1 + d2)
. (18.A4)

Similarly, for the velocity field one gets in general

vx (y) =
{

−K1y2 + A1 y + B1 (0 < y < d1)

−K2y2 + A2 y + B2 (d1 < y < d1 + d2)
(18.A5)

where K1 = g0 sin θ/2ν1 and K2 = g0 sin θ/2ν2. Demanding no-slip at the solid boundaries and continuity
of vx and σyx = η∇yvx at the interface one finds

vx (y) =
{
(K1(d1 − y)+ Ad2)y (0 < y < d1)

(K2(d1 − y)+ Ad1)(d1 + d2 − y) (d1 < y < d1 + d2)
(18.A6)

where A = (K1d1 − K2d2)/(d1 + d2).

18.6 Drag and dissipation are

	 = �pLd = GLWd = 12ηU
LW

d
(18.A7)

P = U	 = 12ηU2 LW

d
. (18.A8)

18.7 On the plate the shear stress is

σxy = η ∇yvx
∣∣
y=0 = ρ0g0 sin θh. (18.A9)

The drag is obtained by multiplying with the plate area

	 = σxy LW = ρ0g0 sin θLWd = Mg0 sin θ (18.A10)

where M = LWh is the mass of the fluid. The dissipation is P = Mg0U sin θ = U	.

18.8 The effective pressure gradient is G = ρ0g0 and the Reynolds number (18.30) becomes

Re = g0a3

4ν2
. (18.A11)

Solving for a we find

a =
(

4ν2

g0
Re

)1/3

≈ 74 µm × Re1/3. (18.A12)

For Re = 2300 one finds a = 1 mm.
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18.9 (a) The simplest way is to recognize that the mass dimension (kg) contained in ρ and η can only be
removed by forming the ratio ν = η/ρ of dimension m2 s−1. Since Q has dimension of m3 s−1, the time
unit can only be removed by forming the ratio Q/ν which has dimension of m. Finally, dividing by a, we
get the dimensionless number Q/νa which is proportional to the Reynolds number. (b) Since the dimension
of the pressure gradient is [G] = Pa m−1 = kg s−2 m−2 we get rid of the mass dimension by dividing
by the mass density to get [G/ρ] = m s−2. Then [G/ρν2] = m−3 and Ga3/ρν2 is dimensionless. For
laminar pipe flow this is also proportional with the Reynolds number (18.30).

18.10 Since pressure differences�p = ρ0 Q R are additive when put in series whereas Q is the same, R is
additive in series. Since the mass flux Q = �p/ρ0 R is additive over the branches of a parallel connection,
whereas �p is the same, reciprocal resistance is additive in parallel connections.

18.12 (a) Use the no-slip boundary conditions on (18.25). (b) The shear stress is

σzr (r) = η
dvz

dr
= −1

2
Gr + ηA

r
.

The total drag per unit of length on the two inner surfaces becomes σzr (a)2πa−σzr (b)2πb = πG(b2−a2).

18.13 (a) Insert the fields into the steady-flow equations and verify that they are fulfilled and that the
boundary conditions are fulfilled. (b) For a = b we get the circular pipe field and for b → ∞ we get the
planar field. (c) Using the area element in elliptic coordinates the flux becomes

Q =
∫ 1

0
dr

∫ 2π

0
dθabrvz (r) = πGa3b3

4η(a2 + b2)
. (18.A13)

(d) U = Q/πab. (e) The drag is 	 = GLπab.

18.14 (a) Use the general solution (18.25) with G = 0 and boundary conditions vz = U for r = a and
vz = 0 for r = b, to get

vz = U
log

b

r

log
b

a

,

(b) The discharge rate is

Q =
∫ b

a
vz2πr dr = 2π

U

log(b/a)

∫ b

a
(log b − log r)r dr

= π(b2 − a2)

2 log b
a

U − πa2U.

Numerically this is Q = 20.3 cm3/s.
(c) Since Q = π(c2 − a2)U we get

c =
√√√√b2 − a2

2 log b
a

= 2.7 mm (18.A14)

(d) The longitudinal stress from the liquid on the surface of the wire becomes

σzr = η ∇rvz |r=a = − ηU

a log b
a

≈ −62 Pa. (18.A15)

The total friction force

�z = 2πaLσzr = − ηU L

log b
a

≈ −0.08 N. (18.A16)

Copyright © 2005 IOP Publishing Ltd.



572 ANSWERS TO PROBLEMS

(e) There are many ways to answer this question, for example by calculating the ratio between the friction
force and the weight of a cylinder of the liquid of radius a

|�z |
ρ0g0πa2 L

≈ ηU

ρ0g0πa2 log b
a

≈ 2 (18.A17)

It was only marginally correct to disregard gravity.

18.15 (a) Under the same assumptions used to derive (18.43) with h replaced by z+L and U1 = 4νL/a2,
one has U(z) = √

g0(z + L)+ c2 − c with c = 4νL/a2. Using Leonardo’s law the differential equation
becomes

dz

dt
= −a2

b2
U(z). (18.A18)

(b) It has the solution

T = b2

a2

∫ h

0

dz

U(z)
= 2b2

a2g0

(
U(h)− U(0)+ c log

U(h)

U(0)

)
(18.A19)

as may be verified by differentiation after h.

18.19 In cylindrical coordinates assume that the flow field is radial, v = vr (r) er outside the pipe. Volume
conservation implies that vr 2πr L is the same for all r . Hence vr (r) = Q/2πr where Q is the volume flow
through the pipe wall per unit of pipe length.

18.20 (a) The moment of force on the cylinder is the sum of the torque exerted by the wire and by the
fluid, i.e. for d � a,

Mz = −τφ − 2πηφ̇a3 L

d
. (18.A20)

The moment of inertia is Ma2 and the angular momentum of the inner cylinder �z = Ma2φ̇. The equation
of motion then becomes d�z/dt = �z . (b) Insert φ ∼ eλt to get

Ma2λ2 = −τ − 2πηa3 L

d
λ, (18.A21)

which has the solutions

λ = −γ ±
√
γ 2 − τ

Ma2
, γ = πηaL

Md
. (18.A22)

For γ < τ/Ma2 the solutions are oscillating but decay with the rate γ . For γ > τ/Ma2 the solutions are
exponentially damped with the leading exponent λ = −γ +

√
γ 2 − τ/Ma2. Critical damping occurs for

γ = τ/Ma2.

18.21 P = 2πη�2a3L/d ≈ 10 W.

18.22 The vorticity field is

ω = ∇ × v = (er∇r + eφ∇φ)× vφ(r)eφ =
(

dvφ
dr

+ vφ

r

)
ez = 0.

18.23 (a) Using (18.26) and (17.18) we obtain the density of dissipation,

2η
∑
i j

v2
i j = 2η(v2

rz + v2
zr ) = η(∇rvz)

2 = G2

4η
r2 (18.A23)

and dividing by ρ0 the local specific rate of dissipation.
(b) Integrating we get the total rate of dissipation

P = 2η
∫

V

∑
i j

v2
i j 2πr L dr = πG2a4L

8η
= QGL = Q�p.
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19 Creeping flow

19.1 Velocity U = 11 µm s−1, Reynolds number Re = 10−4, settling time t = 12 years.

19.2 From (19.14) we get for ρ1 � ρ0

−dz

dt
= 2

9
ρ1

a2g0

η(z)
, (19.A1)

where the height-dependent viscosity η(z) is found from (17.3) and (4.43),

η(z) = η0

√
1 − z

h2
. (19.A2)

From the differential equation we get

t0 =
∫ z

0

9

2

η0

ρ1a2g0

√
1 − z′

h2
dz′ = 3η0h2

ρ1a2g0

(
1 −

(
1 − z

h2

)3/2
)
. (19.A3)

Taking 2a = 1 µm, z = 10 km and ρ1 = 2.5 g cm−3 we get t0 ≈ 4 years.

19.3 The equation of motion for a particle of mass m1 and radius a is

m1 z̈ = −(m1 − m0)g0 − 6πηaż (19.A4)

where z is a vertical coordinate, m1 = 4/3πa3ρ1 and m0 = 4/3πa3ρ0. The solution is

ż = −U(1 − e−t/τ ) (19.A5)

where U is the terminal velocity (19.14) and the time constant,

τ = 2

9

a2

ν

ρ1

ρ0
= U

g0

ρ1

ρ1 − ρ0
. (19.A6)

19.4 The equation of motion for a particle of mass m1 and radius a is

m1 z̈ = −m1g0 + 1
2 CDρ0 Aż2 (19.A7)

where z is a vertical coordinate, m1 = 4/3πa3ρ1. For the downwards velocity v = −ż we get

v̇ = g0

(
1 − v2

U2

)
, (19.A8)

where U is given by (19.23). The solution is

v = U tanh
g0t

U
, (19.A9)

with an exponential time constant of τ = U/2g0.

19.5 The pressure contribution to Stokes drag is

	p = −
∫

r=a
p d Sz = −

∫ π

0
p cos θ 2πa2 sin θ dθ = 2πηUa (19.A10)

which is 1/3 of the total drag.
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19.6 (a) The discharge is at θ = π/2

Q =
∫ b

a
(−vθ )2πr dr = π(b − a)2

(
1 + a

2b

)
U.

(b) The ratio is

Q

π(b2 − a2)U
= b − a

a + b

(
1 + a

2b

)
.

(c) The ratio vanishes because of the no-slip condition which requires the velocity to vanish at the surface
of the sphere.

19.7

(a) Write x = r er and use (B.15) to obtain

dx
dt

= dr

dt
er + r

dθ

dt
eθ .

(b) Combine the differential equations to obtain

dθ

dr
= − B

A
tan θ

which is a solvable first-order equation. The integral over r is carried out by means of partial fractions

B

A
= r2 + 1

4 ar + 1
4 a2

r(r − a)(r + 1
2 a)

= − 1

2r
+ 1

r − a
+ 1

2r + a
.

(c) For r → ∞ we get d → r sin θ =
√

x2 + y2.

(d) Put θ = π/2 to get d = (r − a)
√

1 + a/2r where r is the point of closest approach.

19.8 Let v be the velocity field in the rest frame of the body. The total work of the body on the fluid is in
the rest frame of the asymptotic fluid∮

�

∑
i j

(vi − Ui )(−σi j ) d S j =
∑

i

Ui

∮
�

∑
j

σi j d S j = U ·� = U	 (19.A11)

because vi = 0 at the surface of the body.

19.9 (a) Follows from linearity of the field equations and the pressure independence of the boundary
conditions.
(b) The field equations are

∇2 Ai j = ∇i Q j (19.A12)∑
i

∇i Ai j = 0. (19.A13)

The boundary conditions are for |x| → ∞
Ai j (x) → δi j (19.A14)

Qi (x) → 0. (19.A15)

At the surface of the body the velocity field must vanish, n · AAA(x) = 0.
(c) The stress tensor is

σi j = −pδi j + η(∇iv j + ∇ j vi ) = η
∑

k

τi j k Uk (19.A16)
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where

τi j k = −δi j Qk + ∇i A jk + ∇ j Aik . (19.A17)

The total reaction force on the body with surface  is

�i =
∮
�

∑
j

σi j d S j = η
∑

k

Uk

∮
�

τi j k d S j . (19.A18)

This shows that the tensor,

Sik =
∮
�

τi j k d S j (19.A19)

may be understood as a form factor, such that

�i = η
∑

k

SikUk . (19.A20)

20 Rotating fluids

20.1 (a) The centrifugal acceleration is g0 = a�2 so � = √
g0/a ≈ 0.44 s−1 and τ = 2π/� ≈ 14 s.

(b) For a horizontally moving ball the Coriolis force is vertical, if the table is aligned with the ring and
vanishes if the table is orthogonal to the ring. At typical velocity of v ≈ 4 m s−1 the Coriolis acceleration
is gc = 2�v ≈ 3.6 m s−2 which is 1/3 of standard gravity. It does not make the ball deviate to the side,
but changes the vertical acceleration considerably, depending on whether the ball flies along the direction
of motion of the ring or against it. (c) With the basket plate mounted orthogonally to the ring, the game is
influenced in the same way as for Ping Pong. With the basket plate parallel with the ring, the Coriolis force
makes the ball deviate sideways in its upwards motion.

20.2 The pressure becomes according to (20.16)

p =
{

p0 − 2�U0ρ0 y − ρ0g0z (upper)

p1 − 2�U1ρ1 y − ρ1g1z (lower)
, (20.A1)

where p0 and p1 are integration constants determined by the thickness of the layers (demanding continuity
at, say, y = 0). The pressures must be equal at both sides of the interface for all y, so that the interface
obeys the equation,

z = p1 − p0 − 2�(U1ρ1 − U0ρ0)y

(ρ1 − ρ0)g0
. (20.A2)

The difference between the shore levels at y = ±d/2 is

�z = −2�(U1ρ1 − U0ρ0)d

(ρ1 − ρ0)g0
≈ +107 cm (20.A3)

which is opposite and five times bigger than the difference (20 cm) at the open surface.

20.3 (a) The transformation matrix ai j = (ai ) j is orthogonal
∑

k aik a jk = ∑
k aki akj = δi j .

Differentiating the last after time we get
∑

k ȧki akj +∑
k aki ȧkj = 0. This shows that�i j = ∑

k ȧki akj is
antisymmetric �i j = −� j i so that we may put �i j = ∑

k εi j k�k . Using orthogonality we have trivially
(ȧi ) j = ȧi j = ∑

mk ȧmj amkaik = ∑
l ε j kl�l aik = (ai × �) j = −(� × ai ) j .

(b) Differentiating after time the velocity becomes

ẋ = −ċ +
∑

i

ȧi x ′
i +

∑
i

ai ẋ ′
i = −ċ − � × x +

∑
i

ai ẋ ′
i . (20.A4)
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Differentiating once more the acceleration becomes

ẍ = −c̈ − �̇ × x − � × ẋ +
∑

i

ȧi ẋ ′
i +

∑
i

ai ẍ ′
i

= −c̈ − �̇ × x − � × ẋ − � ×
∑

i

ai ẋ ′
i +

∑
i

ai ẍ ′
i

= −c̈ − �̇ × x − � × ẋ − � × (ẋ + ċ + � × x)+
∑

i

ai ẍ ′
i

or

ẍ = −c̈ − � × ċ − �̇ × x − 2� × ẋ − � × (� × x)+
∑

i

ai ẍ ′
i . (20.A5)

(c) Using m ẍ′ = f ′ and f = ∑
i ai f ′

i we get (20.41).

21 Computational fluid dynamics
21.1 The last term is easily integrated, because

δ

∫
v · ∇ p̃ dV =

∫
dV [δv · ∇ p̃ + v · ∇δ p̃] =

∫
dV δv · ∇ p̃

where we have used Gauss’ theorem in the last step, and dropped the surface terms.
The middle term is also easily integrated, because

δ

∫
dV

1

2

∑
i j

(∇iv j )
2 =

∫
dV

∑
i j

∇iv j ∇i δv j =
∫

dV [−∇2v] · δv

where we again have used Gauss’ theorem and discarded boundary terms.
The problem arises from the inertia term δv · (v · ∇)v = ∑

i j δviv j ∇ j vi . Assume that the integral
is an expression of the form

∑
i j kl ai j klviv j ∇kvl with suitable coefficients ai jkl satisfying ai jkl = a j ikl .

Varying the velocity and again dropping boundary terms we get (suppressing the integral as well as the
sums over repeated indices)

δ(ai jklviv j ∇kvl ) = 2ai jkl δviv j ∇kvl + ai jklviv j ∇kδvl

= 2ai jkl δviv j ∇kvl − 2ai jkl δvlv j ∇kvi

= 2(ai jkl − al jki )δviv j ∇kvl .

In order for this to reproduce the desired result δviv j ∇ j vi we must have

ai jkl − al jki = 1
2 δilδkj (21.A1)

but that is impossible because the left-hand side is antisymmetric under interchange of i and l whereas the
right-hand side is symmetric.

21.2 Under a small variation δp(x) we find

δ� =
∫

V
(∇ p̃ · ∇δ p̃ + sδ p̃) dV =

∫
V

(
−∇2 p + s

)
δ p̃ dV (21.A2)

where the surface terms in the integral have been dropped (assuming either p̃ = 0 or n · ∇ p̃ = 0 on the
surface). This vanishes only for arbitrary variations when the Poisson equation is fulfilled. Choosing

δ p̃ = ε(∇2 p̃ − s) (21.A3)

will make δ� negative and thus make the field converge towards the desired solution.

21.3 In the pressure stress σx x = −p + 2η∇x vx both terms belong to the 00-grid, and similarly for σyy .
The shear stress σxy = η(∇xvy + ∇yvx ) belongs to the 11-grid.
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22 Global laws of balance
22.1 (a) Use the result of section 22.1 to get ω = 0.03 s−1 and thus T = 2π/ω ≈ 200 s. (b) Using the
dissipation rate from Poiseuille flow (18.36) the energy balance becomes,

d�

dt
= −8πηv2 L , (22.A1)

leading to the equation of motion

d2z

dt2
= −2g0

L
z − 8ν

a2

dz

dt
. (22.A2)

Inserting z ∼ eλt , the solution to the characteristic equation is

λ = −γ ±
√
γ 2 − ω2 (22.A3)

where γ = 4ν/a2 ≈ 0.04 s−1. The slowest decay rate λ = −0.015 s−1, so the water will not oscillate at
all but come to rest exponentially fast in a characteristic time 1/γ ≈ 66 s. (c) Yes.

22.2 With initial conditions v = 0 for t = 0, the solution to (22.24) becomes

u = −g0t − U log

(
1 − Qt

M0

)
. (22.A4)

Integrating u = dz/dt with initial condition z = 0 at t = 0, the attained height becomes

z = −1

2
g0t2 + Ut + U M0

Q

(
1 − Qt

M0

)
log

(
1 − Qt

M0

)
. (22.A5)

At the end of the burn at t = t1 = (M0 − M1)/Q, the velocity and height are

u1 = −g0t1 − U log
M1

M0
, z1 = −1

2
g0t2

1 + Ut1 + U M1

Q
log

M1

M0
. (22.A6)

After this moment, the ballistic orbit becomes

z = z1 + u1(t − t1)− 1

2
g0(t − t1)

2. (22.A7)

The height is maximal at

t2 = t1 + u1

g0
, z2 = z1 + u2

1
2g0

. (22.A8)

After t2 the orbit is

z = z2 − 1
2 g0(t − t2)

2 (22.A9)

so that the rocket reaches the ground again at

t3 = t2 +
√

2z2

g0
. (22.A10)

22.3 Integrating (22.46) one gets the total volume,

V (t) =
∫ t

0
A v(t) dt = √

2g0h Aτ log cosh
t

τ
. (22.A11)
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22.4 The total mechanical energy of the water in the cistern is

� ≈ 1

2
ρ0 A0h v2

0 + 1

2
ρ0 ALv2 + 1

2
ρ0 A0g0h2 ≈ 1

2
ρ0 AL0v

2 + 1

2
ρ0 A0g0h2. (22.A12)

Evidently the potential energy is constant. Choosing the gravitational potential to vanish at the exit, the flux
of energy out of the control volume becomes∮

S
ρ0εmech v · d S ≈ ρ0

(
1

2
v3 A − 1

2
v3

0 A0 − g0 A0hv0

)
≈ ρ0 Av

(
1

2
v2 − g0h

)
. (22.A13)

Since the atmospheric pressure performs no net work on the fluid, A0 p0v0 = Avp0 the mechanical energy
must be conserved, and we find

ρ0 AL0v
dv

dt
+ ρ0 Av

(
1

2
v2 − g0h

)
= 0 (22.A14)

which is the correct equation of motion (22.45).

22.5 Integrating over the half space, the kinetic energy of the transition region is

� ′ =
∫ ∞

a

1

2
ρ0v(r)

2 2πr2 dr = πρ0a3v2. (22.A15)

The ratio of this kinetic energy to the kinetic energy in the cistern, �0 = 1
2ρ0 A0hv2

0 = ρ0 A2hv2/2A0, is

� ′
�0

= 2
b2

ah
(22.A16)

which can be large or small depending on h. The ratio to the kinetic energy in the pipe �1 =
(1/2)πa2 Lρ0v

2 is

� ′
�1

= 2a

L
(22.A17)

which is generally small.

22.6 Choose a control volume consisting of all the water in the system between the two open surfaces.
The open surface in the cistern is fixed whereas the open surface in the pipe is moving. The total kinetic
energy in the system is (under the usual assumptions),

� = 1

2
ρ0 A0hv2

0 + 1

2
ρ0 A(L + x)v2. (22.A18)

Using Reynolds’ transport theorem the material derivative of the kinetic energy is

D�

Dt
= d�

dt
− 1

2
ρ0 A0v

3
0 (22.A19)

because the system only gains kinetic energy through the open water surface of the cistern. The total power
of gravity is,

P = ρ0g0 A0hv0 + ρ1g1 A(L + x)v, (22.A20)

where g1 = g0 sinα is the projection of gravity on the pipe slope. The total power of the pressure on the
open surfaces vanishes because of Leonardo’s law, A0v0 = Av.

Kinetic energy balance now leads to the differential equation

d2x

dt2
= 2g0(h + (L + x) sinα)− (dx/dt)2

2(L0 + x)
, (22.A21)

which can be solved numerically.
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22.7 (a) Putting xn = x + x′
n and vn = v + v′

n we get

� =
∑

n
mn xn × vn = Mx × v +

∑
n

mn x′
n × v′

n . (22.A22)

The average of the second term vanishes because of the lack of correlation between x′
n and v′

n , so that

〈�〉 = Mx × v. (22.A23)

(b) The total kinetic energy is

� =
∑

n

1

2
mnv2

n = 1

2
Mv2 +

∑
n

1

2
mnv′2

n . (22.A24)

Its average becomes

〈� 〉 = 1

2
Mv2 +

∑
n

1

2
mn

〈
v′2

n

〉
= 1

2
Mv2 + 3

2
MU2. (22.A25)

The last term represents the internal energy.

23 Reaction forces and moments
23.1 The force is found from (23.6)

� = 2ρ0v
2 A. (23.A1)

The cross section of the pipe is A ≈ 5 cm2, so we get � ≈ 1 N.

23.2 The cross section is A = πd2/4 = 2 × 10−3 m2 and the average velocity U ≈ Q/A = 20m s−1.
The reaction force becomes |�| = √

2ρ0 AU2 ≈ 1150 N which is equivalent to a weight of 115 kg. Unless
he is very strong, the firefighter certainly needs equipment.

23.3 Write the total moment as

� =
∫

V
x × f ∗ dV (23.A2)

where f ∗ is the effective density of force, including all contact forces. Then

��z = � ·� =
∫

V
� · (x × f ∗) dV =

∫
V
(� × x) · f ∗ dV =

∫
V

v · f ∗ dV = P

where we have used v = � × x for a solidly rotating body.

24 Surface waves
24.1 From the solution (24.38) we find

∂vz

∂t
+ 1

ρ0
∇z p + g0 = −aω2

(
1 + z

d

)
cos(kx − ωt) (24.A1)

which ought to vanish. Since the finite-depth solution does satisfy the field equations, the problem must lie
in the higher-order terms in kz we have dropped in the shallow-water limit.
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24.2 (a) The waves cross for c = cg or k Rc = 1, i.e. for λ = λc = 1.7 cm in water. The common
velocity is c = cg = √

2g0 Rc = 23 cm s−1. (b) The minimum of the phase velocity is obtained for

dc

dk
∼ (k Rc)

2 − 1 = 0 (24.A2)

which also occurs for k Rc = 1. (c) The minimum of the group velocity is obtained from

dcg

dk
∼ 3(k Rc)

4 + 6(k Rc)
2 − 1 = 0, (24.A3)

or k Rc =
√

−1 + 2/
√

3 = 0.39 . . . or λ/2πRc ≈ 2.54 . . ..

24.3

(a) Use mass conservation ∇xvx + ∇zvz = 0 to get

∇x (�vx )+ ∇z (�vz) = vx∇x� + ψ∇xvx + vz∇z� +�∇zvz = v2
x + v2

z .

(b) Since �vx is a periodic function of x − ct we have

〈∇x (�vx )〉 = 1

τ

∫ τ

0
∇x (�vx ) dt = 1

λ

∫ λ

0
∇x (�vx ) dx = [

�vx
]λ
0 = 0.

(c) Integrate over z to get∫ 0

−d

〈
v2

x + v2
z

〉
dz =

∫ 0

−d
∇z 〈�vz 〉 dz = 〈�vz〉z=0 = 1

2
ac coth kd aω = 1

2
a2g0.

Multiplying with (1/2)ρ0 A we obtain (24.64).

24.4 The kinetic energy averaged over a period is

〈� 〉 = 1

τ

∫ τ

0

1

2
m ẋ2 dt = − 1

τ

∫ τ

0

1

2
mx · ẍ dt (24.A4)

= 1

2τ

∫ τ

0
x · ∂�
∂x

dt = n

2
〈�〉 (24.A5)

where we have integrated partially, used the periodicity of the orbit, and Newton’s second law.

24.5 Consider a wave rolling in at an angle towards the beach. Since for shallow-water waves we have
c ∼ √

d , the phase velocity of the part of a wave farther from the beach is greatest, causing the part of the
crest that is farther out to approach the coastline faster than the crest closer to the beach.

24.6 Using (24.53) we get L < 3.9 cm.

24.7 The wave becomes

h = �e
∫ ∞
−∞

a(k) exp[i(kx − ω(k)t + χ(k))] dk

= 1

�k
√
π
�e

∫ ∞
−∞

exp

(
i(k0x − ω0t + χ0)+ i(k − k0)(x − cgt − x0)− (k − k0)

2

�k2

)
dk

= 1√
π
�e

∫ ∞
−∞

exp
(

i(k0x − ω0t + χ0)+ iu�k(x − cgt − x0)− u2
)

du

= 1√
π
�e

∫ ∞
−∞

exp

[
i(k0x − ω0t + χ0)−

(
u − i

2
�k(x − cgt − x0)

)2
− 1

4
�k2(x − cgt − x0)

2

]
du

= 1√
π
�e

∫ ∞
−∞

exp

[
i(k0x − ω0t + χ0)− u2 − 1

4
�k2(x − cgt − x0)

2
]

du

= cos(k0x − ω0t + χ0) exp

[
−1

4
�k2(x − cgt − x0)

2
]
.
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In the second line we have substituted k = k0 + u�k and in the third we have rearranged the resulting
quadratic form. In the fourth we shift u → u + (i/2)�k(x − cgt − x0) and in the fifth we use that∫ ∞
−∞ exp(−u2) du = √

π .
The wave contains a single wave packet with a Gaussian envelope of width ∼ 1/�k with the centre

moving along x = x0 + cgt . The phase shift derivative x0 = −dχ/dk determines the position of the centre
at t = 0.

24.8

(a) For n = 0 it is trivial. For n �= 0, the sum is geometric with progression factor F = exp(2πin/N)

N−1∑
m=0

exp
[
2πi

nm

N

]
=

N−1∑
m=0

Fm = 1 − F N

1 − F
= 0 (24.A6)

because F �= 1 but F N = 1.

(b) Write the last expression as a double sum

hn = 1

N

N−1∑
m=0

N−1∑
k=0

hk exp
[

2πi
(k − n)m

N

]
(24.A7)

and do the m-sum first.

(c) Do the triple sum ∑
n

|hn |2 = 1

N

∑
n,m,k

ĥmĥ×
k exp

[
2πi

(k − m)n

N

]
. (24.A8)

Do the sum over n first.

25 Jumps and shocks

25.1 Expand the equation to first order in 1/Fr2

σ =
√

1 + 8Fr2 − 3

2
≈ √

2Fr − 3

2
+

√
2

16Fr
+ · · · , (25.A1)

the last term is 3.3% of the leading terms for Fr = 2.

25.2 For the river bore mass conservation takes the form

U(h′ − h) = (U − U ′)h′. (25.A2)

This demonstrates that the amount of water flowing in the front itself equals the amount of water flowing in
the bore.

Similarly for a reflection bore we have

(U − U ′)h = U ′(h′ − h). (25.A3)

This demonstrates that the amount of water flowing towards the wall equals the amount of water flowing
away from it in the front.

25.5 The derivative

d(�s/cV )

dσ
= (γ 2 − 1)σ 2

(1 + σ)(γ 2(σ + 2)2 − σ 2)
(25.A4)

has singularities for σ = −1,−2γ /(γ + 1),−2γ /(γ − 1). The last two are always smaller than −1, so the
entropy change is a growing function for σ > −1.
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25.6 R = 2900 m, U = 1160 m s−1, p1 = 13 atm, ρ1 = 7.2 kg m−3, T1 = 650 K. Since p1 > 8p0,
the strong shock approximation is still valid.

26 Whirls and vortices
26.1 (a) Inside the core the angular momentum becomes per unit of axial length

d�z

dz
=

∫ c

0
ρ0rvφ 2πrdr = 1

2
πρ0�c4. (26.A1)

The kinetic energy becomes per unit of length

d�

dz
=

∫ c

0

1

2
ρ0v

2
φ 2πrdr = 1

4
πρ0�

2c4. (26.A2)

(b) Outside the core the angular momentum becomes

d�z

dz
=

∫ R

c
ρ0rvφ 2πrdr = πρ0�c2(R2 − c2). (26.A3)

The kinetic energy becomes,

d�

dz
=

∫ R

c

1

2
ρ0v

2
φ 2πrdr = πρ0�

2c4 log
R

c
. (26.A4)

26.2 (a) In the presence of gravity the pressure is p = pR − ρ0g0z where pR is the Rankine pressure
(26.3). Requiring it to be constant for z = h(r), we get h(r) = L + pR(r)/ρ0g0 where L is the asymptotic
height. (b) The depth of the depression is d = L −h(0) = �2c2/g0. (c) For� = 63 s−1 we get d = 4 cm.

26.3 The fields are

v = C
(−y + d, x, 0)

x2 + (y − d)2
− C

(−y − d, x, 0)

x2 + (y + d)2
. (26.A5)

v = C
(−y + d, x, 0)

x2 + (y − d)2
+ C

(−y − d, x, 0)

x2 + (y + d)2
. (26.A6)

26.4 For counter-rotating and corotating vortices we have respectively,

ψ = − 1
2 C

(
log(x2 + (y − d)2)− log(x2 + (y + d)2)

)
(26.A7)

ψ = − 1
2 C

(
log(x2 + (y − d)2)+ log(x2 + (y + d)2)

)
(26.A8)

26.5 (a) The instantaneous complex velocity field of all the vortices becomes,

w = −i
∑

n

Cn

z − zn(t)
. (26.A9)

Each vortex is advected with the velocity field created by all the others, and using that dz/dt = vx + ivy =
w×, we find the desired result. (b) For the counter-rotating vortices the orbits must satisfy

dz×+
dt

= i
C

z+ − z−
,

dz×−
dt

= −i
C

z− − z+
. (26.A10)

This is fulfilled for z± = Ut ± ib with U = C/2b. (c) The corotating vortices satisfy the equations

dz×+
dt

= −i
C

z+ − z−
,

dz×−
dt

= −i
C

z− − z+
. (26.A11)

This is fulfilled for z± = ±ibei�t with � = C/2b2.
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26.6 (a) Changing n → −n in the sum we get

fN (−z)+ fN (z) =
N∑

n=−N

1

−z − πn
−

N∑
n=−N

1

−z + πn
= 0 . (26.A12)

(b) Shifting the sum one gets

fN (z + π)− fN (z) =
N∑

n=−N

(
1

z + π − πn
− 1

z − πn

)
= 1

z + π(N + 1)
− 1

z − πN
.

For fixed z, the right-hand side vanishes for N → ∞. (c) In the strip the only singularities are the pole
1/z of the cotangent and the pole −1/z from the sum, and they cancel. (d) We know from periodicity and
antisymmetry that f (π/2) = f (−π/2) = − f (π/2) and thus f (π/2) = 0. For arbitrary fixed x in the
strip, the leading behaviour for fixed |y| � 1 is

fN (x + i y) ≈ cot(i y)+
N∑

n=1

2i y

y2 + π2n2
≈ ∓i + 2i y

∫ N

0

dn

y2 + π2n2

≈ ∓i + 2i y

π |y| arctan
Nπ

|y| ≈ ∓i ± i
2

π
arctan

Nπ

|y|
which converges to 0 for N → ∞.

26.8 The streamlines are obtained by solving (15.2) in cylindrical coordinates,

r φ̇ = vφ, ṙ = vr , ż = vz . (26.A13)

The last two are elementary to integrate with the result

r = r0e−t/2ta , z = z0et/ta , (26.A14)

which after elimination of t becomes

z = z0

(r0

r

)2
. (26.A15)

26.9 (a) Insert and verify. (b)

d�z

dz
=

∫ ∞
0

rρ0vφ(r, t)2πr dr = 16πτν2ρ0. (26.A16)

26.10

(a) Insert vφ into (26.9) to obtain

d2 f (ξ)

dξ2
+ d f (ξ)

dξ
= t

F(t)

d F(t)

dt

1

ξ
f (ξ). (26.A17)

(b) The t-dependent factor must be a constant, −α, so F(t) ∼ t−α .

(c) Insert and verify that the series expansion satisfies

d2 f (ξ)

dξ2
+ d f (ξ)

dξ
+ α

ξ
f (ξ) = 0. (26.A18)

The expansion is a confluent hypergeometric function.

(d) For integer α the functions are Laguerre polynomials multiplied with e−ξ . The first few such
solutions are

Family of self-similar vortex
shapes fα(ξ) with α in steps of
0.5 from 0 (top) to 3 (bottom).

f0(ξ) = 1 − e−ξ , (26.A19a)

f1(ξ) = ξe−ξ , (26.A19b)

f2(ξ) = ξ(1 − ξ/2)e−ξ . (26.A19c)

The Oseen–Lamb vortex corresponds to f0(ξ) and the Taylor vortex (problem 26.9) to f1(ξ).
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26.11 The equation of motion is

∂vφ

∂t
+ vr

r

∂(rvφ)

∂r
= ν

∂

∂r

(
1

r

∂(rvφ)

∂r

)
. (26.A20)

Assume that the azimuthal flow is of the form

rvφ = C(1 − e−r2/λ(t)). (26.A21)

Then λ must satisfy

λ̇+ 4ν

a2
λ = 4ν. (26.A22)

Solving this with the boundary condition λ(0) = b2 we find

λ(t) = a2 + (b2 − a2)e−4νt/a2
. (26.A23)

26.12 Using (26.37) we obtain

vφ = �

(
r + 2qt

r

)
. (26.A24)

The rate of angular momentum flowing through a cylinder of radius r and length L is

rvφ 2πrvr L = −Q(2qt + r2) (26.A25)

where Q = 2πqL is the volume discharge of water through the drain.

26.13 Integrating the vortex equation (26.25) once one gets,

1

r

d(rvφ)

dr
= 2� exp

[
1

ν

∫ r

0
vr (r

′) dr ′
]

(26.A26)

where the normalization has been fixed by vφ/r → � for r → 0. Integrating once more, using vφ = 0 for
r = 0, one gets

vφ = �

r

∫ r

0
exp

[
1

ν

∫ r2

0
vr (r1) dr1

]
2r2dr2. (26.A27)

26.14 The continuity of the radial field requires

c = a√
α
. (26.A28)

The azimuthal field becomes

vφ =


C

r

(
1 − e−r2/c2

)
, (r < a)

C

r

(
1 + e−α

α−1

(
1 − α

(
a2

r2

)α−1
))

, (r > a)

(26.A29)

where C = �c2.

26.15 (a) Trivial. (b) The streamlines obey dx/dt = v. Write x = r er + zez and differentiate to get,

dr

dt
= vr , r

dφ

dt
= vφ,

dz

dt
= vz . (26.A30)

Then

dψ

dt
= ∂ψ

∂r

dr

dt
+ ∂ψ

∂z

dz

dt
= 0. (26.A31)

(c) Calculate the derivatives of ψ .
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26.16 Inserting (26.5) we find

k =
∫ ∞

0

(
1 − e−s2

)2

s3
ds = log 2. (26.A32)

This changes the estimate of the central depression to

h0 ≈
√

L2 − k
C2W

2g0ν
, (26.A33)

or αβ < 0.25/k = 0.36 in dimensionless variables.

27 Lubrication
27.1 Equate lift and weight

α
L

2d

ηU L A

d2
= Mg0. (27.A1)

Solve for d

d =
(
αηU L2 A

2Mg0

)1/3

. (27.A2)

27.2 Differentiate the integral in (27.13) after x

d Q

dx
= h′vx |y=h +

∫ h

0

∂vx

∂x
dy = −

∫ h

0

∂vy

∂y
dy = 0.

27.3 The extremum of vx as a function of y is found at

y = h(4h − 3d0)

6(h − d0)

which must be in the interval 0 < y < h. This is only the case when h < 3d0/4 or h > 3d0/2.

27.4 One finds

d0 =
〈
h−2

〉
〈
h−3

〉 , (27.A3)

� = A 〈p〉 = −A
〈
xp′〉 = −6ηU A

〈
x(h − d0)

h3

〉
, (27.A4)

	 = −A
〈
σxy

∣∣
y=0

〉
= ηU A

〈
4h − 3d0

h2

〉
, (27.A5)

�z = A 〈xp〉 = −1

2
A

〈
x2 p′〉 = −3ηU A

〈
x2(h − d0)

h3

〉
. (27.A6)

27.5 (a) They become

d0 ≈ d
(

1 − 3
〈
χ2

〉)
, (27.A7)

� ≈ −6
ηU AL

d2
〈ξχ〉 , (27.A8)

	 ≈ ηU A

d

(
1 + 4

〈
χ2

〉)
, (27.A9)

�z ≈ −3
ηU AL2

d2

〈
ξ2

(
χ − 3

(
χ2 −

〈
χ2

〉))〉
. (27.A10)
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(b) For the flat wing we have χ = −2γ ξ with −1/2 < ξ < 1/2,〈
ξ2

〉
= 1

12
,

〈
ξ3

〉
= 0,

〈
ξ4

〉
= 1

80
. (27.A11)

Then it follows that〈
χ2

〉
= 1

3
γ 2, 〈ξχ〉 = −1

6
γ,

〈
ξ2χ

〉
= 0,

〈
ξ2χ2

〉
= 1

20
γ 2, (27.A12)

and from these the leading approximations are obtained.

27.6 Use the complex variable z = eiφ and write for arbitrary real a > |b|∫ 2π

0

1

a − b cos φ

dφ

2π
=

∮
dz

2πi

2

2az − b(1 + z2)

with the integration contour along the unit circle in the complex plane. The roots of the denominator are

z = (a ±
√

a2 − b2)/b. The root with the negative sign lies inside the contour and we obtain the result∫ 2π

0

1

a − b cos φ

dφ

2π
= 1√

a2 − b2
(27.A13)

from the residue at the pole.The other integrals are obtained by differentiation of both sides of this
expression after a or b, and afterwards taking a = 1 and b = γ .

28 Boundary layers
28.1 (a) Assume that vx (y) and vy(y) only depend on y, not on x . The boundary conditions are
vx (0) = 0, vx (∞) = U and vy(0) = −V . The continuity equation shows that dvy(y)/dy = 0 so
vy(y) = −V everywhere. The Prandtl equation for vx becomes

−V
dvx

dy
= ν

d2vx

dy2

with the solution

vx (y) = U(1 − e−V y/ν).

(b) For V < 0 the vx grows exponentially y → ∞ which is impossible, since it has to converge to U .

28.2 Since erf(0) = 0 we have vx (0, t) = ∫ t
0 U̇ (t ′) dt ′ = U(t). Use erf(∞) = 1 and the Stokes solution

to derive (
∂

∂t
− ν ∂

2

∂y2

)
vx = −

∫ t

0

(
∂

∂t
− ν ∂

2

∂y2

)
erf

(
y

2
√
ν(t − t ′)

)
U̇(t ′) dt ′ = 0.

28.3 (a) Just use the definition of h(s)∫ ∞
0
(1 − f (s)) ds = lim

s→∞(s − g(s)) = lim
s→∞(s f (s)− g(s)) = h(∞). (28.A1)

(b) Use f (s) = g′(s), carry out the partial integration and use Blasius’ equation (28.26)∫ ∞
0

f (s)(1 − f (s)) ds =
∫ ∞

0
(1 − f (s)) dg(s) =

∫ ∞
0

g(s)g′′(s) ds

= −2
∫ ∞

0
g′′′(s) ds = 2g′′(0) = 2 f ′(0).
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28.5 Insert the field in the Navier–Stokes equations (28.20) to get (take ρ0 = 1)

∂p

∂x
= −U

dU

dx
+ ν d2U

dx2
(28.A2)

∂p

∂y
= y

(
U

d2U

dx2
−

(
dU

dx

)2
− ν d3U

dx3

)
. (28.A3)

Use the cross derivative ∂2 p/∂x∂y = ∂2 p/∂y∂x to obtain

d

dx

(
U

d2U

dx2
−

(
dU

dx

)2
− ν d3U

dx3

)
= 0 (28.A4)

leading to

ν
d3U

dx3
= U

d2U

dx2
−

(
dU

dx

)2
+ K (28.A5)

where K is a constant. This is not generally solvable, except for special cases, such as U = a − bx or
U ∼ 1/x .

If you put vy = V (x)− yU(x) then ∂p/∂y is still linear in y and you just get an extra equation for V .

28.6 (a) Insert the parametrizations into (28.67). (b) Retain the leading terms for µ → 0. The solution is
(with U(0) = 1 and µ(0) = 4/3)

µ2 = 16

9
+ 12 log U. (28.A6)

(c) At separation x = xc we have µ = 0, leading to Uc = exp(−4/27) = 0.862303. (d) Solving this
equation for the nine cases one obtains xc = 0.138, 0.256, 0.071, 0.160, 0.077, 0.371, 0.609, 0.780, 0.531.
The average deviation from the exact values is only about 20% but that must be fortuitous.

29 Subsonic flight

29.1 (a) 3.7 m s−2, (b) 27 s, (c) 1400 m.

29.2 Write (29.13) as

tanβ = U

g0

U

R
(29.A1)

and use that U/R = 2π/T .

29.3 Imagine that there are N small vortices, each carrying �/N of the total bound vorticity. The total
drag becomes 	N ≈ Nρ0(�/N)2/4π ≈ 	1/N .

29.4 From Newton’s second law we get MdU/dt = T = P/U , where P is the thrust power. Dividing
with U = dx/dt we find MdU/dx = P/U2. Integrating the solution becomes x = MU3/3P. Inserting
the given values one gets P = 37 kW which is 50% of the engine power. The computed take off time is
similarly t = MU2/2P ≈ 10 s. This is only half the quoted value, so the engine power is not converted
into thrust at a constant rate during the run.
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29.5 Instead of (29.40) we have

� = −
∮

S
ρv v · d S +

∮
S
σσσ · d S. (29.A2)

At large distances where ρ = ρ0 +�ρ and v = U +�v we get to first order,

� = −
∮

S
�ρUU · d S − ρ0

∮
S

U�v · d S − ρ0

∫
S
�vU · d S −

∮
S
�p d S.

Mass conservation becomes in the same approximation

∇ · (ρv) = ρ0∇ ·�v + (U · ∇)�ρ = 0. (29.A3)

This makes the two first terms in � cancel and we arrive at the incompressible result (29.41). At
great distances from the body where the velocity corrections are tiny, barotropic fluids are effectively
incompressible and Bernoulli’s theorem takes the usual form.

29.6 Let eU = U/U be a unit vector in the direction of the asymptotic flow. Projecting on (29.42) we
find

	 =
∮

S
(p + ρ0�v · U)eU · d S. (29.A4)

Using that� =�− eU (eU ·�) = −eU × (eU ×�) the lift takes the form

� = −ρ0

∮
S

U × (�v × d S)+
∮

S
(�p + ρ0�v · u) eU × (eU × d S). (29.A5)

The last term evidently vanishes if S cuts the wake in a planar region orthogonal to the asymptotic velocity,
so that d� ∼ eU .

29.7 The circulation becomes

� = 1

2π

∮
C
(dx, dy) ·

∮
A

(−y + y′, x − x ′)
(x − x ′)2 + (y − y′)2 d�(x ′, y′)

=
∮

A
d�(x ′, y′) 1

2π

∮
C

(x − x ′)dy − (y − y′)dx

(x − x ′)2 + (y − y′)2 .

Using complex notation, z = x + i y, the integrand becomes

1

2π

∮
C

(x − x ′)dy − (y − y′)dx

(x − x ′)2 + (y − y′)2 =
∮

C

x − x ′ − i(y − y′)
(x − x ′)2 + (y − y′)2

dx + idy

2πi
= �e

∮
C

1

z − z′
dz

2πi
= 1

where we in the last step have used Cauchy’s residue theorem for the pole z′ inside C .

29.8 Replace x by complex z = x + i y, so that the integral is the real part of

I (z) =
∫ 1

0

1

(1 − t)
√

t (1 − t)
log

t − z

1 − z
dt (29.A6)

for y → 0 and 0 < x < 1. Perform a partial integration to get

I = −2
∫ 1

0

√
t

1 − t

dt

t − z
= −2

∫ 1

0

(
1 + z

t − z

)
dt√

t (1 − t)

= −2π − 2z
∫ 1

0

1

t − z

dt√
t (1 − t)

.

We must now show that the real part of the last integral vanishes for y → 0 and 0 < x < 1.
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From Cauchy’s theorem we have

1√
z(z − 1)

=
∮

z

1√
t (t − 1)

1

t − z

dt

2πi

=
(∫ 1+iε

0+iε
−

∫ 1−iε

0−iε

)
1√

t (t − 1)

1

t − z

dt

2πi

because there is a cut along 0 < t < 1 on the real axis. Using that
√

t (t − 1 + iε) = ±i
√

t (1 − t), we get
the desired integral, ∫ 1

0

1

t − z

dt√
t (1 − t)

= − π√
z(z − 1)

. (29.A7)

Now letting y → 0 ± iε for 0 < x < 1 the right-hand side becomes purely imaginary.

29.9 (a) The smoothness guarantees that x is a polynomial of y near x = 0,

x = y2

a2
+ by3 +�

(
y4

)
. (29.A8)

Solving for y to third order in ±√
x one gets the desired result with λ = −(1/4)a4b. (b) The integral

becomes

tanα0 = − 2λ

πc

∫ c

0

√
x

c − x
dx = −λ. (29.A9)

29.10

(a) Direct insertion confirms that the diffusion equation is satisfied. For t → 0, the Gaussian becomes
very sharply peaked at y = x , so that

F(x, t) ≈ (4π t)−N/2 F0(x)
∫

exp

(
− (x − y)2

4t

)
d N y. (29.A10)

The integral is now standard and leads to F(x, t) = F0(x) in the limit of t → 0.

(b) First write the solution as

F(x, t) = (4π t)−N/2e−x2/4t
∫

F0(y)e
−x ·y/2t−y2/4t d N y. (29.A11)

The first exponential shows that the solution is only non-vanishing for |x| < √
t . Assume that F0(y)

is only non-vanishing for |y| < a. Then for |x| < √
t and t � a2 the exponential inside the integral

can be disregarded.

29.11 First write the equation as(
sin θ

d

dθ

(
sin θ

d

dθ

)
− n2

)
f = 0. (29.A12)

Define ξ = log tan(θ/2) which has dξ = dθ/ sin θ . Then the equation becomes(
d2

dξ2
− n2

)
f = 0 (29.A13)

which has the solutions

f = e±nξ = (tan(θ/2))±n . (29.A14)
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30 Heat
30.1 The total internal energy contained in an infinite column of material along x with area A in the
yz-plane is,

� =
∫

V
ρ0u dV = ρ0c0 A

∫ ∞
−∞

T (x, t) dx = ρ0c0 AaT0
√
π.

As expected, its value is independent of time.

30.4 The temperature does not depend on x (or z) because of symmetry so that Fourier’s equation
becomes

d2T

dy2
= 0 (30.A1)

which has the solution T = A + By. The constants A and B are determined by the boundary conditions. If
the fluid moves steadily with velocity vx (y), the advective term vanishes, (v · ∇)T = 0.

30.5 The temperature does not depend on x (or z) because of symmetry so that Fourier’s equation
becomes

1

r

d

dr

(
r

dT

dr

)
= 0 (30.A2)

which has the solution T = A+ B log r . The constants A and B are determined by the boundary conditions.
If the fluid moves steadily with velocity vz(r), the advective term vanishes, (v · ∇)T = 0.

30.6 Using the notation of example 30.2.5, the temperature in the sphere is given by (30.21) and thus,

� = Tc − Ts = h0

6k
(a2 − c2) (30.A3)

where k is the thermal conductivity of water. Numerically this comes to � ≈ 9 K.

30.7 We have

H(∞) =
∫ ∞

0
exp(−Pr G(s)) ds, G(s) =

∫ s

0
g(u) du. (30.A4)

For Pr → 0 the integrand is dominated by large values of G(s) which in turn is dominated by large values
of g(s). Since g(s) ≈ s for s → ∞ we have G(s) ≈ 1/2s2 and thus

H(∞) ≈
∫ ∞

0
e− 1

2 Pr s2 =
√
π

2Pr
. (30.A5)

For Pr → ∞ the small values of G(s) dominate. Since for s → 0 we have g(s) ≈ 1/2 f ′(0)s2 and
G(s) ≈ 1/6 f ′(0)s3 thus

H(∞) ≈
∫ ∞

0
e− 1

6 f ′(0)Pr s3
ds =

(
6

f ′(0)Pr

)1/3
�

(
4

3

)
(30.A6)

where � is the gamma-function.

31 Convection
31.1 Use the Boussinesq equations for zero velocity. The buoyancy term varies in the horizontal direction,
implying that the pressure excess also has a horizontal variation. Thus, the isobars are not horizontal, which
they have to be for any hydrostatic solution in constant gravity. The balance between buoyancy and friction
forces for the heated fluid between the plates may be estimated as,

α�ρ0g0 Ad ∼ η
U

d
A, (31.A1)

where A is the plate area. Apart from numerical factors this is of the same form as (31.8).
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31.2 The flow out of the warm plate is

Q̇0 = Lh · k
�

d
, (31.A2)

where h is the height of the plate. Dividing (31.10) by this we find

Q̇

Q̇0
= α�g0d4

45κνh
= 1

45
· d

h
· Ra. (31.A3)

31.3 From the y-component of (31.39b) it follows that (∇2
z −k2)vy = 0 such that vy ∝ exp(±kz). Since

k is fixed by the solution of the other fields, the boundary conditions on vy cannot be fulfilled except for
vy = 0.

31.4 From the exact solution we have coshµ1 ≈ sinhµ1 ≈ 90 so that to a precision of about 1% the
determinant (31.59) becomes,

det (µ, ξ) ∝ µ0 sin
µ0

2
+ (µ1 + √

3µ2) cos
µ0

2
. (31.A4)

The determinant vanishes for

tan
µ0

2
= −µ1 + √

3µ2

µ0
(31.A5)

which has the solution

µ0 = 2

(
π − arctan

µ1 + √
3µ2

µ0

)
. (31.A6)

Numerical minimization leads to the quoted results.

32 Turbulence
32.1 From definition (32.17) we find〈

∂v

∂t

〉
= lim

T →∞
1

T

∫ T

0

∂v

∂t
(x, t + s) ds = lim

T →∞
1

T

∫ T

0

∂v(x, t + s)

∂s
ds

= lim
T →∞

v(x, t + T )− v(x, t)
T

= 0

when |v(x, t)| is bounded for all x and t . This condition is normally fulfilled for physical systems of finite
size.

32.2 If the distribution is maintained to the limits of the inertial range, the normalized distribution
becomes

d F

dλ
= N

λ
,

1

N
= log

L

λd
. (32.A1)

This clearly destroys the universality of the Kolmogorov law because the Kolmogorov ‘constant’ becomes
dependent on the ratio of the macroscopic and microscopic scales.
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32.3 From (32.24) one finds〈
∂(ui u j )

∂t

〉
+ 〈

ui (v · ∇)u j + u j (v · ∇)ui
〉

+ 〈
ui (u · ∇)v j + u j (u · ∇)vi

〉 + 〈
ui (u · ∇)u j + u j (u · ∇)ui

〉
= − 1

ρ0

〈
ui ∇ j q + u j ∇i q

〉 + ν 〈
ui∇2u j + u j ∇2ui

〉
.

Rearranging this equation it becomes the desired equation (32.86), which does not close because of the
third-order fluctuation moment

〈
ui u j uk

〉
occurring in the last term on the left-hand side. There is also

a problem in the terms
〈
ui∇ j q

〉 + 〈
u j ∇i q

〉
and

〈∇kui ∇ku j
〉

which is not caused by lack of closure
in the moments. Such terms can, in principle, be handled by calculating the more general moments
〈ui (x1, t)q(x2, t)〉 and

〈
ui (x1, t)u j (x2, t)

〉
, and afterwards taking the limit of x2 → x1.

32.4 Write �n = �(1 + δn) and expand to first order in the precision δn to get

δn = − A

�
δn−1. (32.A2)

This shows that the approximate sequence converges rapidly for � � A. With the given values one finds

�n = 1, 33.0915, 24.5533, 25.2815, 25.2102, 25.2171, 25.2164, 25.2165, 25.2164 . . .

after which point it stays constant to within this precision.

A Newtonian particle mechanics

A.1 Defining the alternative total mass to be M ′ = ∑
n m2

n and the alternative ‘centre of mass’ to be
X ′ = ∑

n m2
n xn/

∑
n m2

n , the global equation becomes of the same form as before, M ′(d2 X ′/dt2) = � ′.
Since the fundamental equations (A.1) are unchanged, all the physical consequences must be unchanged
and cannot depend on definitions.

B Curvilinear coordinates

C Thermodynamics of ideal gases
C.1 (a) The total mass is M = nMmol = ∑

i Mi = ∑
i ni Mmol,i = n

∑
i ci Mmol,i . Using V = M/ρ in

(4.26) we get the result. (b) The total energy is � = ∑
i Ui = ∑

i (1/2)ki ni RT = (1/2)kn RT .

C.2 (a) The differential of a function is

d Q = ∂Q

∂T
dT + ∂Q

∂V
dV (C.A1)

so that A = ∂Q/∂T and B = ∂Q/∂B, then ∂A/∂V = ∂B/∂T = ∂2 Q/∂V ∂T .

(b) We have A = CV and B = n RT/V , and thus ∂A/∂V = 0 and ∂B/∂T = n R/V �= 0.
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