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Prologue

The relativistic quantum field theory, or quantum field theory (QFT)
for short, is the theoretical edifice of the standard model of elemen-
tary particle physics. One might go so far as to say that the standard
model is the quantum field theory. Having said that as the opening
statement of this book, we must be mindful that both quantum field
theory and the standard model of elementary particle physics are
topics that are not necessarily familiar to many individuals. They
are subject areas that are certainly not familiar to those outside the
specialty of elementary particle physics, and in some cases not too
well grasped even by those in the specialty.

The Standard Model of elementary particle physics is a term that
has come into prominence as it became the paradigm of particle
physics for the last three decades. In brief, the standard model aims
to understand and explain three of the four fundamental forces —
the electromagnetic, strong nuclear and weak nuclear — that define
the dynamics of the basic constituents of all known matter in the
universe.! As such, it consists of two interrelated parts: the part

!The fourth force of nature, gravity, does not come into play in the scale of the
mass of elementary particles and is not included in the standard model. Attempts
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that deals with the question of what are the basic building blocks
of matter and the second part concerned with the question of what
is the theoretical framework for describing the interactions among
these fundamental constituents of matter.

A century after the original discovery of quantum of light by
Max Planck in 1900 and its subsequent metamorphosis into photon,
the zero-mass particle of light, by Albert Einstein in 1905, we have
come to identify the basic constituents of matter to be quarks and
leptons — the up, down, strange, charm, top and bottom, for quarks,
and the electron, muon, tauon, electron-type neutrino, muon-type
neutrino, and tauon-type neutrino, for leptons. The three forces are
understood as the exchange of “quanta” of each force — photons for
the electromagnetic force, weak bosons for the weak nuclear force,
and gluons for the strong nuclear force. These particles, some old,
such as photons and electrons and some relatively new, such as the
top and bottom quarks or the tauons and their associated neutrinos,
represent our latest understanding of what are the basic constituents
of known matter in the universe.

There are scores of books available which discuss the basic parti-
cles of matter, at every level of expertise. For a general readership, we
can mention two books that contain no or very little mathematics,
Quarks and Gluons by myself and Facts and Mysteries in Elementary
Particle Physics by Martinus Veltman.?

The theoretical framework for the three forces or interactions is
quantum field theory, that is, the relativistic quantum field theory.
Each force has its own form, and again, some old and some new.
Quantum electrodynamics, QED for short, was fully developed by
the end of the 1940s and is the oldest — and more significantly, the
only truly successful quantum field theory to date — of the family.
Quantum chromodynamics, QCD, is the framework for the strong
nuclear force that is mediated by exchanges of gluons. It was initiated

to merge gravity with the standard model have spawned such ideas as the grand
unified theory, supersymmetry, and supersting, the so-called theory of everything.
These topics are not discussed in this book.

2Quarks and Gluons by M. Y. Han, World Scientific (1999); Facts and Mysteries
in Elementary Particle Physics by Martinus Veltman, World Scientific (2003).
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in the 1960s and has been continually developed since, but it is far
from becoming a completely successful quantum field theory yet. The
theory for the weak nuclear force, in its modern form, was also started
in the 1960s, and in the 1970s and 1980s, it was merged with quantum
electrodynamics to form a unified quantum field theory in which the
two forces — the electromagnetic and weak nuclear — were “unified”
into a single force referred to as the electroweak force. Often this new
unified theory is referred to as the quantum flavor dynamics, QFD.
Thus, the quantum field theory of the standard model consists of two
independent components — quantum chromodynamics and quantum
flavor dynamics, the latter subsuming quantum electrodynamics.

Despite the abundant availability of books, at all levels, on basic
building blocks of matter, when it comes to the subject of relativistic
quantum field theory, while there are several excellent textbooks at
the graduate level, few resources are available at an undergraduate
level. The reason for this paucity is not difficult to understand. The
subject of quantum field theory is a rather difficult one even for
graduate students in physics. Unless a graduate student is interested
in specializing into elementary particle physics, in fact, most graduate
students are not required to take a course in quantum field theory. It
is definitely a highly specialized course. Quantum field theory thus
remains, while a familiar term, a distant topic. Many have not had the
opportunity to grasp what the subject is all about, and for those with
some rudimentary knowledge of physics at an undergraduate level
beyond the general physics, the subject lies well beyond their reach.

The main purpose of this book is to try to fill this gap by bringing
out the conceptual understanding of the relativistic quantum field
theory, with minimum of mathematical complexities. This book is
not at all intended to be a graduate level textbook, but represents
my attempt to discuss the essential aspects of quantum field theory
requiring only some rudimentary knowledge of the Lagrangian and
Hamiltonian formulation of Newtonian mechanics, special theory of
relativity and quantum mechanics.

There is another theme in this book and it is this. Throughout
the course of development of quantum field theory, from the origi-
nal quantum electrodynamics in which the Planck—Einstein photon
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is deemed as the natural consequence of field quantization to the
present-day development of the gauge field theory for quarks and
leptons, the theories of electromagnetic field have been — and con-
tinue to be — a consistently useful model for other forces to emulate.
In this process of emulating theories of electromagnetic field, the con-
cept of particles and fields would go through three distinct phases
of evolution: separate and distinct concepts in classical physics, the
particle-wave duality in quantum mechanics, and finally, particles as
the quanta of quantized field in quantum field theory. As we elaborate
on this three-stage evolution, we will see that the photon has been —
and continues to be — the guiding light for the entire field of rela-
tivistic quantum field theory, the theoretical edifice of the standard
model of elementary particle physics.



Particles and Fields I:
Dichotomy

One may have wondered when first learning Newtonian mechanics,
also called the classical mechanics, why the concept of a field,
the force field of gravity in this case, is hardly mentioned. One
usually starts out with the description of motion under constant
acceleration — the downward pull of gravity with the value of
9.81 m/sQ. Even when the universal law of gravity is discussed, for
example, to explain the Kepler’s laws, we do not really get into any
detailed analyses of the force field of gravity.

In classical mechanics the primary definition of matter is the point
mass, and the emphasis is on the laws of motion for point masses
under the influence of force. The focus is on the laws of motion rather
than the nature of force field, which is not really surprising when we
consider the simplicity of the terrestrial gravitational force field —
uniform and in one parallel direction, straight down toward the
ground. A point mass is an abstraction of matter that carries mass
and occupies one position at one moment of time and this notion of a
point mass is diagonally opposite from the notion of a field, which, by
definition, is an extended concept, spread out over a region of space.

As we proceed from the study of classical mechanics to that of
classical electromagnetism, we immediately notice a big change; from
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day one it is all about fields. First the electric field, then the magnetic
field, and then the single combined entity, the electromagnetic field.
No sooner than the Coulomb’s law is written down, one defines the
electric field and its spatial dependence is determined by Gauss’ Law.
Likewise, Ampere’s Law determines the magnetic field and finally the
laws of Faraday and Maxwell lead to the spatial as well as temporal
dependence of electromagnetic field.

This dichotomy of the concept of point particle and that of field
is in fact as old as the history of physics. From the very beginning,
back in the 17*" century, there were two distinct views of the phys-
ical nature of light. Newton advocated the particle picture — the
corpuscular theory of light — whereas Christian Huygens advanced
the wave theory of light. For some time — for almost a century and
half — these two opposing views remained compatible with what
was then known about light — refraction, reflection, lenses, etc. Only
when in 1801 Thomas Young demonstrated the wave nature of light
by the classic double-slit interference experiment, with alternating
constructive and destructive interference patterns, the wave theory
triumphed over the particle theory of light.

One might have wondered why the notion of field did not play
a prominent role in the initial formulation of Newtonian mechanics,
especially since both the gravitational force law and the Coulomb’s
law obey the identical inverse square force law:

F= Gmlgm for gravity
r
and
F = l{:ql—g2 for Coulomb’s law
r

where G and k are the respective force constants, m is mass and ¢ is
the electric charge.

The disparity is simply a practical matter of scale. At the ter-
restrial level, in our everyday world, the inverse square law really
does not come into play; the curvature of the surface of the earth
is approximated by a flat ground and the gravitational force lines
directed toward the center of the earth become, in this approxima-
tion, parallel lines pointing downward. In this scale of things, the
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field aspect of gravity is just too simple to be taken into account.
There is no need to bring in any analyses of the gravitational field in
the flat surface approximation.

On the contrary, with electric and magnetic forces, we notice and
measure in the scale of tabletop experiments the spatial and temporal
variations of these fields. The gradients, divergences and curls, to
use the language of differential vector calculus, of the electric and
magnetic fields come into play in the scale of the human-sized world
and this is why the study of electromagnetism always starts off with
the definition of electric and magnetic fields.

This well-defined dichotomy of particles and fields, diagonally
opposite concepts in classical physics, would evolve through many
twists and turns in the twentieth century physics of relativity and
quantum mechanics, ending up eventually with the primacy of the
concept of field over that of particle in the framework of quantum
field theory.

The process of evolution of the concepts of particles and fields
have taken a quite disparate path. The Newtonian mechanics has
evolved through several steps, some quite drastic. First, there was
the Lagrangian and Hamiltonian formulation of mechanics. One of
the most important outcomes of this formalism is the definition of
what is called the canonically conjugate momentum and this would
pave the way for the transition from classical mechanics to quantum
mechanics. Quantum field theory could not have developed had it not
been the idea of canonically conjugate momentum defined within the
Lagrangian and Hamiltonian formalism. As quantum mechanics is
merged with special theory of relativity, the culmination of the par-
ticle view was reached in the form of relativistic quantum mechani-
cal wave equations, such as the Klein—-Gordon and Dirac equations,
wherein the wavefunction solutions of these equations provide the
relativistic quantum mechanical description of a particle. (More on
these equations in later chapters.)

In contradistinction to this development of particle theory, the
field view of classical electromagnetism remained almost totally
unmodified. The equation of motion for charged particles in an elec-
tromagnetic field is naturally accommodated in the Lagrangian and
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Hamiltonian formalism. In the Lagrangian formulation of classical
mechanics, Maxwell’s equations find a natural place by being one of
the few examples of what is called the velocity-dependent potentials
(more on this in the next chapter). The very definition of the canon-
ically conjugate momentum for charged particles to be the sum of
mechanical momentum and the vector potential of the electromag-
netic field, discovered back in the 19*" century, is in fact the founda-
tion for quantum electrodynamics of the 20" century.

The contrast between the mechanics of particles and the field
theory of electromagnetic fields becomes sharper when dealing with
the special theory of relativity. The errors of Newtonian mechan-
ics at speeds approaching the speed of light are quite dramatic, and
of course, the very foundation of mechanics had to be drastically
modified by the relativity of Einstein. Maxwell’s equations for the
electromagnetic field, on the other hand, required no modifications
whatsoever at high speeds; the equations are valid for all ranges of
speeds involved, from zero to all the way up to the speed of light. At
first, this may strike as quite surprising, but the fact of the matter
is that Maxwell’s equations lead directly to the wave equations for
propagating electromagnetic radiation — light itself. Maxwell’s the-
ory of the electromagnetic field is already fully relativistic and hence
need no modifications at all.

The development of relativistic quantum mechanics demonstrates
quite dramatically the primacy of the classical field concept over that
of particles. To cite an important example, in relativistic quantum
mechanics, the first and foremost wave equation obeyed by particles
of any spin, both fermions of half-integer spin and bosons of integer
spin, is the Klein—-Gordon equation. Fermions must also satisfy the
Dirac equation in addition to the Klein-Gordon equation (more on
this in later chapters).

For a vector field ¢, (z) [© =0, 1,2, 3] for spin one particles with

mass m, the Klein-Gordon equation is'

(020 + m?) ¢, (x) =0

!'Notations and the natural unit system are given in Appendices 1 and 2.
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where
"ot = — — V2

For the special case of mass zero particles, of spin one, the Klein—
Gordon equation reduces to

N pu(x) = 0.

The classical wave equation for the electromagnetic four-vector
potential A,(x), on the other hand, in the source-free region is

N A, (z) = 0.

An equation for a zero-mass particle of spin one (photon) in relativis-
tic quantum mechanics turns out to be none other than the classical
wave equation for the electromagnetic field of the 19" century that
predates both relativity and quantum physics!



Lagrangian and Hamiltonian
Dynamics

Lagrange’s equations were formulated by the 18" century mathe-
matician Joseph Louis Lagrange (1736-1813) in his book Mathema-
tigue Analytique published in 1788. In its original form Lagrange’s
equations made it possible to set up Newton’s equations of motion,
F = dp/dt, easily in terms of any set of generalized coordinates,
that is, any set of variables capable of specifying the positions of
all particles in the system. The generalized coordinates subsume the
rectangular Cartesian coordinates, of course, but also include angu-
lar coordinates such as those in the plane polar or spherical polar
coordinates. The generalized coordinates also allow us to deal easily
with constraints of motion, such as a ball constrained to move always
in contact with the interior surface of a hemisphere; the forces of con-
straints do not enter into the description of dynamics. As originally
proposed, the Lagrange’s equations provided a convenient way of
implementing Newton’s equations of motion.

Lagrange’s equations became much more than just a powerful
addition to the mathematical technique of mechanics when about
50 years later, in 1834, they became an integral part of Hamilton’s
principle of least action. Hamilton’s principle represents the mechan-
ical form of the calculus of variations that covers wide-ranging fields

10
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of physics. Lagrangian and Hamiltonian formulation of mechanics
that established the basic pair of dynamical variables — position
and momentum — is the precursor to the development of quantum
mechanics and when it comes to the development of quantum field
theory Lagrangian equations play an absolutely essential role.!

For a thorough discourse on the principle of least action in gen-
eral, and the Hamilton’s principle in particular, we will refer readers
to many other excellent books on the subject. For our purpose we
will focus on specific portions of the Lagrangian and Hamiltonian
dynamics that describe the charged particles under the influence of an
electromagnetic field. Not always fully appreciated, the Lagrangian
and Hamiltonian descriptions of the electromagnetic interaction of
the charged particles provide the foundation for quantum electrody-
namics, and by extension, for the formulation of the quantum field
theories of nuclear forces. The very origin of the field theoretical
treatment of electromagnetic interaction traces its root to the classi-
cal Lagrangian and Hamiltonian dynamics.

The simplest way to show the equivalence of Lagrange’s and
Newton’s equations is to use the rectangular coordinates, say, z; (i =
1,2,3 for more conventional z,y, z). Using the notation p = dp/dt
and & = dx/dt, Newton’s equations are

Fi=pi
. o (1 ., orT
; = mI; = —ma5 | =
bi T 0a, \2") T o
where T is the kinetic energy.
For a conservative system
ov
F = —
! &r,

lMany excellent standard textbooks on classical mechanics include rich discus-
sions on these subjects — Hamilton’s principle, Lagrange’s equations, and the
calculus of variations. At the graduate level, the de facto standard on the subject
is Classical Mechanics by Herbert Goldstein, Second edition, Addison-Wesley. At
an undergraduate level, see, for example, Classical Dynamics by Jerry B. Marion,
Second edition, Academic Press.
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and Newton’s equations are transcribed as

OV _dar
(%ci N dta.%

In rectangular coordinates (and only in rectangular coordinates)

or

and — this is an important point — for a conservative system

o

=0.
0x;

Newton’s equations can then be written as

oT _ ov d aoT _ oV
which is Lagrange’s equations, usually expressed as

d oL 0L
dt 8%’2 8.%1 N

where L = T — V is the all-important Lagrangian function. The
momentum p can be defined in terms of the Lagrangian function as

oL
Pi= 5z

In terms of the generalized coordinates, denoted by g¢;, that
involve angular coordinates in addition to rectangular coordinates,
the derivation of Lagrange’s equations is slightly more involved. The
terms 07T'/0q; are not zero, as in the case of rectangular coordinates,
but are fictitious forces that appear because of the curvature of gen-
eralized coordinates. For example, in plane polar coordinates, where
T = (m/2)(i% +1r20%), we have T /dr = mr?, the centrifugal force.
Lagrange’s equation in terms of generalized coordinates remain in
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the same form, that is,?

dor oL _
dt9q¢;  0g;

with L =T — V and momentum p is defined by
oL
pi = 67%

This definition of momentum p in terms of the Lagrangian repre-
sents a major extension of the original definition by Newton. In rect-
angular coordinates, it reduces to its original form, of course, but
for those generalized coordinates corresponding to angles the new
momentum corresponds to the angular momentum. In plane polar
coordinates where T' = (m/2) (2 + 126%), and dV/80 = 0,

_ oL _ 9T _
90 06

which is the angular momentum corresponding to the angular

Do mr20

coordinate.

This new definition of momentum is technically called the canon-
ically conjugate momentum, that is, p; being conjugate to the gener-
alized coordinate g;, and this pairing of (g;, p;) forms the very basis of
the development of quantum mechanics and, by extension, the quan-
tum field theory. Having thus become the standard basic dynamical
variables, they are simply referred to as coordinates (dropping “gen-
eralized”) and momenta (dropping “canonically conjugate”).

This new definition of the canonically conjugate momentum,
or simply momentum, has far-reaching consequences when the
Lagrangian formulation is adopted to the case of charged particles
interacting with the electromagnetic field. Often mentioned as a sup-
plement within the framework of classical mechanics, this casting of
Maxwell’s equations into the framework of Lagrangian formulation

2Usually, Lagrange’s equations are first derived from other physical principles —
D’Alembert’s principle or Hamilton’s principle — and their equivalence to
Newton’s equations is shown to follow from the former. Here we follow the deriva-
tion as given in Mechanics by J.C. Slater and N.H. Frank, McGraw-Hill, which
starts from Newton’s equation, and then derive Lagrange’s equations.
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leads to non-mechanical extension of momentum and, as we will fol-
low through in later chapters, provides the very foundation for the
development of quantum electrodynamics.

Almost all forces we consider in mechanics are conservative forces,
those that are functions only of positions, and certainly not functions
of velocities, that is, 9V/d¢; = 0. There is, however, one very impor-
tant case of a force that is velocity-dependent, namely, the Lorentz
force on charged particles in electric and magnetic fields. In an amaz-
ing manner, the velocity-dependent Lorentz force fits perfectly into
the Lagrangian formulation.

The Lagrangian equation can be written as

dor or oV doVv

oG Dg g i
For conservative systems, 0V/d¢; = 0. For non-conservative sys-
tems when forces, and their potentials, are velocity-dependent, it

is possible to retain Lagrange’s equations provided that the velocity-
dependent forces are derivable from velocity-dependent potentials —
also called the generalized potentials — in specific form as required by
Lagrange’s equations, namely, the force is derivable from its potential
by the recipe, expressed back in terms of the rectangular coordinates,

0 d 0

It is a rather stringent requirement and it turns out — very fortunate

for the development of quantum electrodynamics — that the Lorentz
force satisfies such requirement.

Putting ¢ = A = 1 in the natural unit system, the Lorentz force
on a charge ¢ in electric and magnetic fields, E and B, is given by

F =¢E + ¢q(v x B)

where

E:—Vqﬁ—%—? and B=VxA
and ¢ and A are the scalar and vector potentials, respectively, defin-

ing the four-vector potential A4, = (¢, A). After some algebra,® the

3See Appendix 3.
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Lorentz force can be expressed as

[ _GU N i@U
v 6301 dt 8.TZ
where
U=qp—qA-v.

The Lagrangian for a charged particle in an electromagnetic field is
thus

L=T—-qp+qA v

and, as a result, the momentum — the new canonically conjugate
momentum — becomes

p =mv +qA,

that is, mechanical Newtonian momentum plus an additional term
involving the vector potential.

The Lagrangian formulation of mechanics was then followed by
the Hamiltonian formulation based on treating the conjugate pairs
of coordinates and momenta on an equal footing. This then led to
the Poisson brackets for ¢’s and p’s and the Poisson brackets in turn
led directly to quantum mechanics when they were replaced by com-
mutators between the conjugate pairs of dynamical variables. For
our purpose, we again focus on the motion of charged particles in an
electromagnetic field.

In the Hamiltonian formulation, the total energy of a charged
particle in an electromagnetic field is given by

1
B =5 (i = aA))(pj — a4;) + a¢-

Comparing this expression to the total energy E for a free particle

1

E = Dip;j

(p; in each expression is the correct momentum for that case, that
is, for free particles mz; = p;, but for charged particles in an elec-
tromagnetic field md; = p; — qA;), we arrive at the all-important
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substitution rule: the electromagnetic interaction of charged parti-
cles is given by replacing

E=F—q¢
and
P=DP—qA.
In relativistic notations, this substitution rule becomes a compact
expression
P =pt—qA”
where

p'=(E,p) and A"=(A).

As we shall see later, this substitution rule, obtained when
Maxwell’s equations for the electromagnetic field are cast into the
framework of Lagrangian and Hamiltonian formulation of mechan-
ics, is the very foundation for the development of quantum electrody-
namics and, by extension, quantum field theory. It is that important.
One must also note that whereas the Newtonian dynamics for par-
ticles went through modifications and extensions by Lagrange and
Hamilton, the equations for the electromagnetic field not only remain
unmodified but also, in fact, yielded a hidden treasure of instructions
on how to incorporate the electromagnetic interaction.



Canonical Quantization

Transition from classical to quantum physics, together with the dis-
covery of relativity of space and time, represents the beginning of an
epoch in the history of physics, signaling the birth of modern physics
of the 20" century. Quantum physics consists, broadly, of three main
theories — non-relativistic quantum mechanics, relativistic quantum
mechanics, and the quantum theory of fields. In each case, the princi-
ple of quantization itself is the same and it is rooted in the canonical
formalism of the Lagrangian and Hamiltonian formulation of classi-
cal mechanics. In the Hamiltonian formulation, the coordinates and
momenta are accorded an equal status as independent variables to
describe a dynamical system, and this is the point of departure for
quantum physics.

The two most important quantities in the Hamiltonian formu-
lation is the Hamiltonian function and the Poisson bracket. The
Hamiltonian function H — or just Hamiltonian, for short — is
defined by

H(Qap>t) = QZpZ - L(Qv qat)

where L is the Lagrangian. In all cases that we consider, ¢;p; is equal
to twice the kinetic energy, T', and with the Lagrangian being equal to

17
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T —V, the Hamiltonian corresponds to the total energy of a system,
namely,

H=T+V.

The Poisson bracket of two functions u, v that are functions of
the canonical variables ¢ and p is defined as

{uv}_@ﬁv_au@
" 0giOpi Opi 0gi

When u and v are ¢’s and p’s themselves, the resulting Poisson brack-

ets are called the fundamental Poisson brackets and they are:

{QJaqk} = 07

{pj, o} =0,
and

{4j,pr} = djr-

In terms of the Poisson brackets, the equations of motion for any
functions of ¢ and p can be expressed in a compact form. For some
function u that is a function of the canonical variables and time,
we have

du ou
o H v
g~ HE

where {u,H} is the Poisson bracket of wu(gq,p,t) and the
Hamiltonian H.

The transition from the Poisson bracket formulation of classical
mechanics to the commutation relation version of quantum mechan-
ics is affected by the formal correspondence (% is set equal to 1):

{u,v} = %[u,v]

where [u, v] is the commutator defined by [u, v] = uv—vu, and on the
left u, v are classical functions and on the right they are quantum
mechanical operators. This transition from functions to operators
and from the Poisson brackets to commutators is the very essence of
quantization in a nut-shell.
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In quantum mechanics, the time dependence of a system can be
ascribed to either operators representing observables — momentum,
energy, angular momentum and so on — or to wavefunctions rep-
resenting the quantum state of a system. The former is called the
Heisenberg picture and the latter Schrédinger picture (the third
option is what is called the interaction picture in which both wave-
functions and operators are functions of time). In the Heisenberg
picture, the equations of motion for any observable U is given by an
exact counterpart of the classical equation in terms of the Poisson
brackets, but with the Poisson bracket replaced by commutator,
that is:

w_ l.[U, H]|+ a—U.
dt i ot

In the Schrodinger picture, operators representing observables
are built up from those representing (canonically conjugate) momen-
tum and energy by differential operators (expressed in rectangular

coordinates),
0
b= (91']'
and since time ¢ and —H are also canonically conjugate to each other
0
E=i—.
ot

The wave equations of quantum mechanics, both non-relativistic and
relativistic, are usually expressed in the Schrodinger picture and we
have in the case of the non-relativistic quantum mechanics the time-
dependent and time-independent Schrodinger’s equations,

ZW = F(x;,t) (time-dependent)

and from E = p?/(2m) +V
1
(—2mv2 + V) ¢(z;) = E¢(x;) (time-independent)

where ¢(x;) is the space-dependent part of the total wavefunction
¥(x;,t). There are several wave equations in the relativistic quan-
tum mechanics (Klein-Gordon, Dirac, Proca and other equations),
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but they must all first and foremost satisfy the relativistic energy—
momentum relations

E? = p® +m?

from which we obtain the Klein—Gordon equation

62
<6t2 -V 4+ m2> ¢(x) =0
or
(0 + mP)(z) =0

that was mentioned in Chapter 1. As will be seen later, the quantum
field theory is completely cast in the Heisenberg picture wherein the
quantum mechanical wavefunctions themselves become operators.
The canonical procedure of quantization, be it non-relativistic
quantum mechanics, relativistic quantum mechanics, or relativistic
quantum field theory, can thus be compactly summarized as follows.

(i) First, find the Lagrangian function L which yields the correct
equations of motion via the Lagrange’s equation

dor oL _
dtdq — dq;
In the case of mechanical systems, L = T'—V and the equations

of motion reduce to Newton’s equations of motion.
(ii) Define canonically conjugate momentum p with the help of L,

- 0L
" 90
(iii) Quantization is affected when we impose the basic commutation
relations
and

[qj, Pr] = P61
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(iv) The wave equations in quantum mechanics, both non-relativistic
and relativistic, are obtained, in the Schrodinger picture, by the
operator representation of momentum and energy (expressed in
rectangular coordinates) as

pj = —iaij and F = zaat
As will be seen later, in the quantum field theory the very quan-
tum mechanical wavefunctions themselves become operators for gen-
eralized coordinates and the corresponding canonically conjugate
momenta are defined by the same recipe via the Lagrangian. The

Lagrangian function thus is an absolutely essential element in any

quantum physics, be it quantum mechanics or quantum field theory.



Particles and Fields II: Duality

The departure of quantum mechanics from classical mechanics is
quite drastic, rather extreme in contemporary parlance. Ordinary
physical quantities are replaced by quantum mechanical opera-
tors that do not necessarily commute with each other and the
Heisenberg’s uncertainty principles between the canonically con-
jugate pairs of variables, between coordinates and momenta and
between time and energy, deny the complete determinability of clas-
sical physics.

The most basic and defining characteristic of quantum
mechanics — often called the central mystery of quantum
mechanics — is the uniquely dual nature of matter called the wave—
particle duality. In the microscopic scale of quantum world — of
atoms, nuclei and elementary particles — a physical object behaves
in such a way that exhibits the properties of both a wave and a
particle. Often the wave—particle duality of quantum world is pre-
sented as physical objects that are both a wave and a particle. To us,
with human intuition being nurtured in the macroscopic world, this
simplistic picture of wave—particle duality is, of course, completely
counterintuitive.

A quantum mechanical object is actually neither a wave in the
classical sense nor a particle in the classical sense, but rather it defines

22
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a totally new reality, the quantum reality, that in some circumstances
exhibits properties much like those of classical particles and in some
other circumstances displays properties much like those of classical
wave. The new quantum reality can be stated as being “neither a
wave nor a particle but is something that can act sometimes much
like a wave and at other times much like a particle.” The new quan-
tum reality, the wave—particle duality, thus combines the classical
dichotomy of particles and fields, waves being specific examples of a
field broadly defined as an entity with spatial extension.

Let us briefly recapitulate what is meant by a particle in the
classical sense. First, it has mass and occupies one geometric point
in space; that is, it has no spatial extension. When it moves, under the
influence of a force, it moves from one point at one time to another
point at another moment in time. The entire trace of its motion is
called its trajectory. Once the initial position and velocity are fixed,
Newton’s equations of motion determine completely its trajectory.
If the laws of motion dictate a particle to pass through a particular
position A at some time ¢, the particle will pass through that point.
There is no way the particle can be seen to be passing through any
other positions at that same time. It will pass through the position A
and nowhere else. Furthermore, without any force to alter its course,
a particle cannot simple decide to change its direction of motion and
can go to other positions. That is a no—no.

Another defining characteristic of a particle in the classical sense
is the way in which it impacts, that is, how it interacts with another
object. The classical particle interacts with others at a point of colli-
sion; some of its energy and momentum are transferred to others at
that point of impact. It is the point-to-point transfer of energy and
momentum that is the basic dynamical definition of what a particle
is in the classical sense.

We can easily contradistinguish the kinematical and dynamical
aspects of a classical wave from those of a classical particle. First
and foremost, a wave is certainly not something that is defined at a
geometrical point. On the contrary, a wave is definitely an extended
object — a wave train with certain wavelength and frequency — and
furthermore it does not travel along a point-to-point trajectory, but
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rather propagates in all directions. A sound or light wave propagates
from its source in expanding spheres in all directions. In a room
whose walls are shaped as the interior surface of a sphere, a wave
will hit all points of the wall at the same time.

As a wave also carries its own energy and momentum, the way it
propagates in all directions dictates the way it transfers energy and
momentum, everywhere in all directions as it comes into contact with
other matter. There is no point-to-point transfer as far as the wave
is concerned. The contrast between the classical particle and wave
could not have been more diagonally opposite, and this is what the
new quantum reality called wave—particle duality brings together!

Now, an important caveat is in order about a matter of terminol-
ogy in quantum physics. The new quantum reality, the wave—particle
duality, describes a quantum thing that is neither a particle in clas-
sical sense nor a wave in classical sense. We can shorten the name
to simply duality, that is, electrons, protons, neutrons and photons,
etc should all be called duality, certainly not particle nor wave. Our
reluctance or inability to part with the word “particle” is such that,
however, the objects in the quantum world — be they electrons,
photons, protons, neutrons, quarks and whatever — are continually
referred to as “particles,” as in unstable particles, elementary parti-
cle physics and so on. What has happened is that the meaning of the
word “particle” has gone through a metamorphosis: the word particle
when applied to entities in the quantum world actually means dual-
ity, the wave—particle duality. Terminologies have gone from classical
wave and classical particle to wave—particle duality, or just duality
for short, and the “duality” has morphed back into “particle.” We
will conform to this practice and from this point on in this book,
the word “particle” will stand for duality and the word “particle” in
classical sense will always be referred to as, “particle in the classical
sense.” This is a somewhat confusing story of the evolution in the
meaning of the word “particle.”

The properties of this (new quantum) particle are thus this. When
it impacts, that is, interacts with other particles, it behaves much as
the way a classical particle does, that is, a transfer of energy and
momentum occurs at a point. But it travels in all directions like a
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classical wave. Since the impact occurs at a point, the question then
arises as to what determines the particle to impact at one point at
some time and at a different point at another time. In other words,
what determines its preference to land at a particular point, and not
elsewhere, at one time and land at another point at another time.
This is the crux of the matter of quantum mechanics: the particle
carries with it the information that determines the probability of its
landing at a particular point.

Going back to the example of a room with the walls shaped like
the interior walls of a sphere, the (quantum) particle can strike any-
where on the wall, impacting a particular point as if it were a classical
particle (making a point mark on the wall). If you repeat the experi-
ment again and again, the particle will land at points (one at a time)
all over the wall, but with varying probabilities, at some points more
often than at some other points.

The defining properties of the (quantum) particle can thus be
summarized as:

(i) It spreads like a classical wave, in all directions.
(ii) However, it impacts like a classical particle.
(iii) It carries with it its own information on the probability of where
it is likely to impact.

The next logical question then is what determines its probability.
And this is what the equations of quantum mechanics, such as the
Schrodinger’s equation of non-relativistic quantum mechanics, pro-
vide as their solutions, namely, wavefunctions.

This is phase II in the evolution of particles and fields, first the
classical dichotomy and now the quantum duality.



Equations for Duality

The wavefunctions for a particle (in the new sense of wave—particle
duality) are to be determined as solutions of quantum mechanical
wave equations and these wavefunctions provide information on the
probability of the particle impacting at or near a particular posi-
tion. We have already mentioned the quantum mechanical differential
operators corresponding to momentum and energy and by substitut-
ing these operator expressions to either the non-relativistic formula
for total energy or the relativistic one, we obtain the corresponding
equations of quantum mechanics.

The Schrodinger’s Equation

In non-relativistic quantum mechanics, the equation in question
is the Schrodinger’s equation, which is the central and only wave
equation for non-relativistic quantum mechanics. As mentioned in
Chapter 3, the time-dependent Schrédinger’s equation is

i%(;t"’t) = E(as,t).

26
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Writing ¢ (x;,t) = ¢(x;)T(t), the function of time only has solutions
in the form of

T(t) = exp(—iFEt)

where E is the quantized values (eigenvalues) of energy determined
from the time-independent Schrodinger’s equation obtained from

-

The absolute square of the solutions |¢(x;)|?, for each allowed
values of F, is the probability distribution function of finding the
particle in question in a state with a particular value of energy, F, in
a small region between x and = + dx. The wavefunctions are referred
to as the probability amplitudes, or just amplitudes, and the absolute
square of wavefunctions as the probability density, or just probability.
This interpretation, the postulate of probabilistic interpretation of
wavefunctions, is one of the basic tenets of quantum mechanics and
is the “heart and soul” of wave—particle duality.

The Schrédinger’s equation and its solutions, however, fall short
of accommodating one of the basic attributes of particles, the spin of
a particle. Since the spin is an intrinsic property of a particle that is
not at all associated with the spatial and temporal coordinates of the
particle, it is one of the internal degrees of freedom of a particle — as
opposed to the spatial and temporal coordinates being the external
degrees of freedom — and the Schrodinger’s equation is not set up to
deal with any such internal degrees of freedom. The electric charge
of a particle is another example of internal degrees of freedom that
has nothing to do with the spatial and temporal coordinates.

In the case of electronic orbits of an atom, for example, the solu-
tions ¢(x;) successfully specify the radii of the orbits (the principal
quantum number), the angular momentum of an electron in an orbit
(the total angular momentum quantum number), and the tilts of the
planes of an orbit (the magnetic quantum number). The complete
knowledge of the structure and physical properties of atoms, how-
ever, requires specification of the electron spin and Pauli’s exclusion
principle, without which the physics of atoms, and by extension, all
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known matter in the universe, would not have been what it is. In
this sense, while it is the enormously successful central equation for
atomic physics, the Schrodinger’s equation falls short of completing
the story of atoms. The spin part of information is simply tacked
onto the wavefunctions as an add-on, in the case of electrons, by a
two-component (for spin-up and spin-down) one-column matrices.

The spin of a particle finds its rightful place only when we proceed
to relativistic quantum mechanics. Particles with half-integer spin —
generically called the fermions — such as electrons, protons and neu-
trons that constitute all known matter obey the relativistic wave
equation called the Dirac equation (see below), wherein only the total
angular momentum defined as the sum of orbital angular momentum
and spin is conserved, whereas in the non-relativistic case the con-
served quantity is the orbital angular momentum only. The wave
equations for relativistic quantum mechanics are obtained from the
relativistic energy momentum relation by an operator substitution

. .0 (0
pt =it = ’La—x“ = z<8t’ —V)

into

E?—p*=m? or p“p#:mZ.

The Klein—Gordon Equation

Particles with spin zero, those with no spin at all, are described by a
scalar amplitude, ¢(x), that is invariant under the Lorentz transfor-
mation, meaning that the amplitude remains the same as observed
in any inertial frame. For brevity, we will use the notation x for
space-time coordinate four-vector (Appendix 2, Notations). From

o, = m?2, we have the Klein-Gordon equation

(0"0,, + m*)¢(x) = 0.

The Schrodinger wavefuntion is also a scalar wavefunction; it does
not address the spin degrees of freedom. For particles of other values
of spin, spin one for vector bosons and spin one-half for fermions,
the wavefunctions are not scalars; they are four-vector wavefunctions
for spin one vector bosons and four-component spinors for fermions,
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and each satisfies its own set of equations over and beyond the Klein—
Gordon equation. But any relativistic wavefunction, regardless of the
spin of the particle, must first and foremost satisfy the Klein—Gordon
equation.

The Dirac Equation

The Dirac equation is the most significant achievement of relativistic
quantum mechanics. It successfully incorporated the spin of a particle
as the necessary part of the particle’s total angular momentum, and it
also predicted the existence of antiparticles — positrons, antiprotons,
antineutrons, and so forth. Since 99.9% of the known matter in the
universe is made up of electrons, protons and neutrons, all of which
are spin one-half fermions, the Dirac equation applies to the basic
particles that make up all known matter. One can go so far as to
claim that the Dirac equation and relativistic quantum mechanics
are virtually synonymous.

What originally prompted Dirac to search for and discover the
Dirac equation is simple and straightforward enough. The Klein—
Gordon equation is a second-order differential equation — second
derivatives with respect to both space and time — and as a rela-
tivistic equation for single particle, it encounters some difficulties;
the nature of second-order differential equations and the probabil-
ity interpretation of quantum mechanics clash. (We will not discuss
these difficulties here, but mention that difficulties do arise for the
Klein—Gordon equation as one-particle equation becomes resolved
when solutions of the Klein—-Gordon equation are treated as quan-
tized fields in quantum field theory.) Rather than a second-order
equation, Dirac wanted a first-order linear equation containing only
the first derivatives with respect to both space and time, that is,
linear with respect to four-vector derivates.

The process of going from a second-order expression to a first-
order one is a matter of factorization and let us dwell on this matter
here. The simplest algebraic factorization is, of course, the factoriza-
tion of 22 — y%:

2? —y? = (z+y)(z—y).
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Factorization of 2 + y?, however, cannot be done in terms of real
numbers but needs the help of complex numbers:

2 +y* = (z +iy)(x — iy).

Factorization of a three-term expression such as z? + y? + 22
requires much more than just numbers, real or complex; and we must
rely on matrices. Consider the three Pauli spin matrices o, given in
their standard representation as

/(0 1 (0 —i (1 0
9%2=\1 0) = \i o) 77 \o —1)°

satisfying the anticommutation relations
{O’j, O'k} =00 +0ko; = 25]’1«

For any two vectors A and B that commute with o, we have the
following identity

(0-A)(c-B)=A-B+io-(A xB).
When applied to only one vector, the identity reduces to
(c-A)(oc-A)=A-A

and this allows, in terms of 2 X 2 anticommuting matrices, factoriza-
tion of three-term expressions, such as

pi+ps+pi=p p=(c-p)o D)
Now we can factorize p*p, = E? — (p2 —i—pg +p?), a four-term expres-
sion is thus
P'pu = E> — (0} + vy +p2) = E> — (0 - p)(0 - P)
=(E+o0-p)(E—0-p).
This has led to the relativistic wave equation for massless fermions
in the form of
P'pupa = (E+0 -p)(E—0-plpa =0 witha=1,2,

where ¢, is a two-component wavefunction (since the Pauli matrices
are 2 x 2 matrices). This used to be the wave equation for two-
component zero-mass electron neutrinos (nowadays, the neutrinos
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are considered to have mass, however minute it may be). Factoriza-
tion by the use of three 2 X 2 matrices renders the amplitude ¢, (x)
to be a two-component column matrix, called a spinor.

This then brings us to the Dirac equation as a result of factorizing
the five-term expression of the Klein—Gordon equation, p*p,, — m2.
It cannot be brought to a linear equation even with the help of three
2 x 2 Pauli matrices. Dirac has shown that factorization is possible
but only with the help of four 4 x 4 matrices that are built up from
the 2 x 2 Pauli matrices. Such is the humble beginning of the Dirac
equation that came to govern the behavior of all particles of half-
integer spin. The five-term expression can be factorized thus

P'pu —m? = E* — (p3 +p, +p2) —m?
= (Y'pu+m)(¥py —m)
where the four v* matrices are required to satisfy the anticommuta-
tion relations

VY At = 29"
and by virtue of which
Y'Y Py = PPy
It is the four-dimensional analogue of the three-dimensional relations
(0-p)(c-P)=p" P

Of the many different matrix representations of four v matrices, the
most-often used is where

I 0 0 ok
0 _ E_
P=(o 5p)e ma = (0 D)

and the ¢’s are Pauli’s spin matrices and I is the 2 x 2 unit matrix.
The Dirac equation then becomes, replacing p,, by i9,,

(190 — m)ta(@) = 0.
The Dirac amplitude ¢,(z) with o = 1,2,3,4 is now a four-
component spinor which, in the standard representation, consists of
positive-energy solutions with spin up and down and negative-energy
solutions with spin up and down.
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It is clear from the factorization of the second-order relativistic
energy momentum relation that each component of the Dirac ampli-
tude must also independently satisfy the Klein—Gordon equation,
that is,

(0"0, +m*)ha(x) =0  for each a = 1,2,3, 4.

The Dirac equation imposes further conditions over and beyond the
Klein—-Gordon equation — very stringent interrelations among the
components and their first derivatives — among the four components
of the solution. This can be seen when the Dirac equation is fully
written out in 4 x 4 matrix format using an explicit representation
of y-matrices such as shown above.

The Dirac equation is the centerpiece of relativistic quantum
mechanics. All textbooks on the subject devote a substantial amount
of the contents to detailing all aspects of this equation — proof of
its relativistic covariance, the algebraic properties of Dirac matrices,
as v matrices are called, the bilinear covariants built from its four-
component solutions, and many others — and, in fact, virtually all
textbooks on quantum field theory also include extensive discussions
about the equation, before embarking on the subject of field quan-
tization. We will not discuss here the extensive properties of Dirac
equation, but suffice it to say that the equation is perhaps the most
important one in all of quantum mechanics. It is an absolutely essen-
tial tool in elementary particle physics. After all, it is the equation
for all particles that constitute the known matter in the universe —
all fermions of spin one-half which also includes all leptons, of which
the electron is the premier member, and all quarks, out of which such
particles as protons and neutrons are made. (More on leptons and
quarks in later chapters.)

At this point, let us briefly recap what we traced out in the pre-
vious five chapters, including this one. The evolution in our treat-
ment of material particles has come through several phases. The
abstract concept of a point mass in Newtonian mechanics remained
intact through the development of Lagrangian and Hamiltonian
dynamics. When quantum mechanics replaced the classical dynam-
ics of Newton, Lagrange and Hamilton, the concept of particle went
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through a fundamental revision, from that of a well-defined classi-
cal point mass to one of quantum-mechanical wave—particle duality
in which it is neither a particle in the classical sense nor a wave in
the classical sense, but a new reality in the quantum world that dis-
plays both particle-like and wave-like properties. In non-relativistic
quantum mechanics, the probability amplitude for this wave—particle
duality is to be determined as solutions of the Schrédinger’s equation
and in the fully relativistic case as solutions of the Dirac equation.
Prior to the development of quantum field theory, the evolution in the
concept of particle consisted essentially of two stages: first, Newton’s
point-mass and then the quantum-mechanical wave-particle duality.
This concept of particles would then go through a radical change
within the framework of quantum field theory.

One might notice at this point as to why not a single word has
been mentioned of the wave equations for electromagnetic fields,
which would lead to the equation for photons, the equation that
along with the Dirac equation for fundamental fermions completes
the founding pillars of quantum field theory. It has not been included
up to this point for a very good reason: the wave equation for the
electromagnetic field is an equation not of quantum mechanics but of
classical physics. The equation for the electromagnetic field predates
the advent of both relativity and quantum mechanics. One might go
so far as to say that the equation for wave, the electromagnetic wave,
has been “waiting” all this while for the equations for particles to
“catch up” with it! We will now turn to this classical wave equation
for the electromagnetic field in the next chapter.
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Electromagnetic Field

The classical theory of electromagnetism, as mentioned in Chapter 1,
developed along an entirely different path from that of Newton’s
classical mechanics. From day one, electromagnetism was based on
properties of force fields — the electric and magnetic fields that are
extended in space. An electric field due to a point charge, for example,
is defined over the entire three-dimensional space surrounding the
point charge. The works of Coulomb, Gauss, Biot—Savart, Ampere,
and Faraday led Maxwell to the great unification of electricity and
magnetism into a single theory of an electromagnetic field. Together
with Einstein’s theory of gravitational field, Maxwell’s theory of elec-
tromagnetic field is one of the most elegant of classical field theories.
Maxwell’s equations are given, in the natural unit system, as

OB

V-E=p, VxB-— i J, (inhomogeneous)
0B
V-B =0, V xE+ = 0. (homogeneous)

where E and B are the electric and magnetic fields and p and J are
the electric charge and current densities. The electric and magnetic
fields can be expressed in terms of a scalar potential ¢ and a vector

34
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potential A as

0A
B=VxA, E-—V(;S—ﬁ,
and the two homogeneous Maxwell’s equations are satisfied
identically.

The electric charge and current densities p and J are components
of a single four-vector J* = (p,J) and likewise the scalar and vector
potentials ¢ and A are components of a four-vector potential A* =
(¢, A). The electric and magnetic fields, E and B, correspond to
components of the antisymmetric electromagnetic field tensor F*
defined as

0 —-E, —E, —E.
E. 0 -B. B,
E, B. 0 =B,
E. -B, B, 0

FH = ghAY — 9V AF =

The electromagnetic field tensor is thus a four-dimensional “curl”
of the four-vector potential. In terms of the electromagnetic field
tensor, the inhomogeneous Maxwell’s equations become

D FM = JV.

We can now draw two very important conclusions about
Maxwell’s equations. First, the four-potential A* = (¢, A) is not
unique in the sense that the same electromagnetic field tensor F*¥
is obtained from the potential

AP 4 QRN = (¢+%12,A—VA),

where A(x) is an arbitrary function and its contribution to F*¥ is
identically zero (it is the four-dimensional analogue of the curl of gra-
dient being identically zero). This freedom to shift the four-potential
A¥ = (¢,A) by the four-gradient of an arbitrary function is called
gauge transformation and it forms the basis for the quantum field
theory for the standard model, sometimes also called the theory of
gauge fields.
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The second conclusion is no less important. The source-free
(J# = 0) inhomogeneous Maxwell’s equations are

0, ™ = 9,0" A" — 9”9, AM = 0.

Using the freedom of gauge transformation, we can set 9,A" = 0.
The choice of the arbitrary function A(z) to render 0,A" as always
being zero is referred to as the Lorentz gauge. With such an option,
Maxwell’s equations reduce to

90" A” = 0,

which, as mentioned in Chapter 1, is exactly the zero-mass case of
Klein—Gordon equation.

At the risk of being repetitive, let us emphasize this remark-
able point that Maxwell’s equations are classical wave equations for
the four-potential, and they predate both relativity and quantum
mechanics. In this amazing twist, a window has opened up for us to
look at the relativistic quantum mechanical wave equations, such as
the Klein—-Gordon and Dirac equations, in an entirely new light.



Emulation of Light I:
Matter Fields

We are now at the point, after the first six chapters, to look back
and compare where the equations of motion for the field and par-
ticles stand with respect to each other. As far as electromagnetic
fields are concerned, the equations remain intact in its original form,
as Maxwell had written down. As discussed in the last chapter,
Maxwell’s equations for the radiation field, that is, in the source-free
region, are of very compact expression. In terms of the four-vector
potential and for a particular choice of gauge called the Lorentz
gauge, the equations are expressed as

00" A” =0

which also coincided with the Klein—-Gordon equation for mass-zero
case. The equations for particles, on the other hand, evolved through
several phases — from Newton to Lagrange and Hamilton and
through relativity and quantum mechanics — and ended up in the
form of wave equations for non-interacting one-particle within the
framework of relativistic quantum mechanics, the Klein—-Gordon and
Dirac equations being prime examples.

Relativistic quantum mechanical equations as one-particle equa-
tions, however, suffer from some serious interpretative problems. For
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example, the Klein—-Gordon equation could not avoid the problem
of occurrence of negative probabilities while the Dirac equation suf-
fered from the appearance of negative-energy levels. A new insight
was definitely required to proceed to the next phase in the evolution
of theories of particles. Such insight would come from the quantiza-
tion of the electromagnetic field. We will discuss the formalism of
the quantization of classical fields in the next chapter. Suffice it to
say here that when the radiation field (the electromagnetic field in
the source-free region) was quantized, following the recipe for canon-
ical quantization the quantal structure of such quantized radiation
field corresponded to photons of Planck and Einstein, the particles
of light. This point needs to be repeated: When a classical field is
quantized (in the manner as will be discussed in the next chapter),
the quanta of the field are the particles represented by the classical
field equation. This relationship between the classical electromag-
netic field and photons, the discreet energy quanta of the radiation
field that correspond to particles of light with no mass, provided an
entirely new insight into the interpretation of particles. The concept
of particles would then go through another fundamental evolution,
from that of quantum-mechanical wave—particle duality to that of
the quanta of a quantized field.

For particles to be described by relativistic quantum fields, how-
ever, there were no corresponding classical fields. We know of only
two classical fields in nature, the electromagnetic and gravitational
fields. Where and how do we find the classical fields whose quanta
correspond to particles satisfying the Klein—-Gordon or the Dirac
equations? And it is here that we find one of the fundamental
conceptual shifts needed to proceed to the next level. Relativistic
quantum-mechanical wave equations such as the Klein—Gordon and
Dirac equations are to be reinterpreted as classical field equations at
the same level as Maxwell’s equation for the classical electromagnetic
field! This is definitely a leap of faith.

Overnight the wave amplitudes for particles (that is, the particle—
wave dualities) were turned into corresponding classical fields and
the wave equations of relativistic quantum mechanics were turned
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into corresponding “classical” equations for the classical fields. No
equations were modified and all notations remained intact. The
wave amplitude ¢(z) became the classical field ¢(x) and relativis-
tic quantum-mechanical equations became wave equations for clas-
sical fields. This turned out to be one of the most subtle conceptual
switches in the history of physics. This was the first instance — it
would not be the last — in which matter emulated radiation. This
is precisely how we arrived, in the early days of 1930s and 1940s, at
the very beginning of quantum field theory of matter — equations
for matter simply emulating those for radiation. So, at this point,
every wave equation for matter as well as radiation is a classical
wave equation for classical fields, some real (Maxwell’s equations)
and others “imitations” (relativistic quantum mechanical wave equa-
tions). We have the truly classical field of the electromagnetic field
satisfying

9,0 A” = 0,

and the “imitation” classical fields, which are the redressed relativis-
tic quantum-mechanical wave equations, satisfying equations such as
those of Klein—-Gordon and Dirac, but now viewed from this point
forward as classical field equations:

(0"0, +m*)p(z) =0
and
(t9%0, — m)ha(z) = 0.

Strictly speaking, the classical Klein—Gordon or Dirac field does
not exist in the macroscopic scale. No signals are transmitted by
these “fields” from one point to another in space in the same way
radio signals are carried by the classical radiation field. Reinterpre-
tation of these relativistic quantum-mechanical wave equations as
classical field equations is the first preliminary step toward estab-
lishing the quantum field theory of matter particles. Once these
“imitation” classical fields are quantized in exactly the same man-

ner as the electromagnetic field, the resulting theory of matter parti-
cles interacting with photons — quantum electrodynamics — turned
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out to be the most successful theory for elementary particles to
date. In this sense, the redressing of relativistic quantum-mechanical
wave equations into “imitation” classical field equations is one of
many examples of “the end justifying the means.” That is its
rationalization.



Road Map for Field
Quantization

We are now ready to proceed with the quantization of classical
fields — the classical electromagnetic, Klein—-Gordon and Dirac
fields — that were discussed in the last chapter. The quantization
of these fields is to be carried out following the rules of canonical
quantization, as discussed in Chapter 3. Before imposing canonical
quantization onto the classical fields, however, we need to extend
the Lagrangian formalism from that of point mechanics to one more
suitable for continuous classical field variables.

First and foremost is the question of generalized coordinates .
The generalized coordinates g;(t) with discrete index i = 1,2,...,n
for a system with n degrees of freedom is taken to the limit n — oo
and in that limit the values of a field at each point of space are
to be considered as independent generalized coordinates. Consider a
simple mechanical example of a continuous string: the vertical dis-
placement function, say, p(x,t), stands for the amplitude of displace-
ments of the continuous string at position x and at time ¢ and its
values at each position can be taken as independent generalized coor-
dinates. The discrete index ¢ of the generalized coordinates for point
mechanics is replaced by the continuous coordinate variable x, and
the fields themselves — A, (x) of the electromagnetic field, ¢(x) of
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the Klein-Gordon field, 1, (z) of the Dirac field, and so on — take
the place of generalized coordinates.

The canonical formalism for fields requires the canonically con-
jugate momenta that are to be paired with field variables, and
the momenta that canonically conjugate to fields can be defined in
terms of the Lagrangian that yields correct equations of motion via
Lagrange’s equations of motion. In Chapter 2, we took the simplest
approach to obtaining Lagrange’s equation, starting from Newton’s
equations of motion. There is another way of obtaining Lagrange’s
equations that is more formal than the direct approach we took in
Chapter 2, and that is to derive Lagrange’s equation from what is
called Hamilton’s principle of least action for particle mechanics. The
resulting solution of Hamilton’s principle is known mathematically
as the Euler equation and Lagrange’s equation is a specific example
of this more generic Euler equation adopted for particle mechanics.
Often, for this reason, Lagrange’s equations are also referred to as
the Euler-Lagrange equations. We will not get into the details of
this formalism here, especially since all that we really need is the
expression for Lagrangian that will help define expressions for the
momenta canonically conjugate to fields.

For classical fields, it is more convenient to use the Lagrangian
densities £ defined as

LE/OO d3x£<¢,$>

and the Euler-Lagrange equations in terms of the Lagrangian densi-
ties are given as

) oL oL
ozt D(8p/Dxr) D

=0.

Comparing the Euler-Lagrange equations above with the Lagrange’s
equations given in Chapter 2, we note that the only change is in the
leading term where derivatives with respect to time only are replaced
by derivatives with respect to all four space-time coordinates z*. The
momenta conjugate to a field are defined via the Lagrangian density
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in much the same way as for the case of particle mechanics, thus:

h_ L
0 = Gaea0)"

We can now state in one paragraph what the quantization of
classical fields is all about: (1) start with the classical field equa-
tions, Maxwell’s, Klein—Gordon, and Dirac equations for radiation
field and matter fields, respectively, (2) seek a Lagrangian density for
each field that reproduces the field equations via the Fuler—Lagrange
equations (this is about the only use of Euler-Lagrange equations in
this context), (3) with the help of these Lagrangian densities, define
momenta canonically conjugate to the fields, and (4) carry out the
quantization by imposing commutation relations on these canoni-
cally conjugate pairs. After imposing quantization, the fields and
their momenta become quantum mechanical operators. That sums
up in a nutshell what the quantum field theory is all about.

As the fields and their conjugate momenta are both functions of
time, as well as of space, they become, upon quantization, opera-
tors that are functions of time and this necessarily casts the whole
quantum field theory in the Heisenberg picture of quantum the-
ory. As mentioned briefly in Chapter 3, there are two equivalent
ways in which the time development of a system can be ascribed
to: either operators representing observables or states represented by
time-dependent wavefunctions. The former is called the Heisenberg
picture and the latter Schrodinger picture. In one-particle quantum
mechanics, both non-relativistic and relativistic, it is usually more
convenient to adopt the Schrédinger picture and the time develop-
ment of a system is given by the wavefunctions as functions of time.
In quantum field theory wherein the time-dependent fields and their
conjugate momenta become operators, the formalism is necessarily in
the Heisenberg picture. Let us spell out the bare essence of the rela-
tionship between the two pictures, as far as canonical quantization
rules are concerned.

In the Schrédinger picture, the wavefunction (t) carries the time
development information, that is, if the initial state at an arbitrary
time, say t = 0, is specified, the Schrédinger’s equation determines
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the state at all future times. The commutation relations for the
canonical pairs of operators are, as given before,

@7, Pr] = 101
l4;,qx) = [pj.pr] = 0.

In the Heisenberg picture, the wavefunction is time-independent and
is related to that of the Schrodinger picture by

Yr = 1s(0)
and the commutators between ¢ and p become, for an arbitrary
time t,
[q;(t), pr(t)] = 6
[9;(t), a()] = [p; (t), i ()] = 0.

In the continuum language of fields and conjugate momenta, they
become

[b(x, 1), 6(x', )] = [r(x, 1), (X, 1)] = 0
[b(x,1), m(x', )] = i6° (x — %)

where the Dirac delta function replaces d;, and is defined by

[ - x)16) = 7).

In sum, four items — field equations, the Lagrangian densities,
momenta conjugate to the fields, and the commutation relations
imposed on them — provide the basis of what is called the quan-
tum field theory.

The determination of the Lagrangian density thus plays the very
starting point for quantum field theory and Lagrangian densities are
so chosen such that the Euler—Lagrange equations reproduce the cor-
rect field equations for a given field. The choice, however, is not
unique since the Euler-Lagrange equations involve only the deriva-
tives of the Lagrangian densities. A Lagrangian density is chosen to
be the simplest choice possible that meets the requirement of repro-
ducing the field equations when substituted into the Euler-Lagrange
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equations. The Lagrangian densities are:
1
L= 5(8;@ O'p —m?p?)  for the Klein-Gordon field,

1
L= _ZFWFW for the electromagnetic field, and
L = (iv"0, —m)y for the Dirac-field

where ) is the four-component Dirac field (column) and ) is defined
as ¥ = ¢¥*4Y, an adjoint (row) multiplied by ~°, referred to as the
Dirac adjoint, which is simply a matter of notational convenience
that became a standard notation.

The canonical quantization procedure in terms of the commuta-
tors, as shown above, is rooted in the Poisson bracket formalism of
Hamilton’s formulation of mechanics, as discussed in Chapter 3. It
leads to a successful theory of quantized fields for the Klein—Gordon
and electromagnetic fields, that is, those that represent particles of
spin zero and one, in fact, of all integer values of spin. The particles of
half-integer spins, half, and one and half, and so on, must satisfy the
Pauli exclusion principle and the fields that represent these particles,
the Dirac field in particular, must be quantized not by commutators

[A,B] = AB — BA
but by anticommutators
{A, B} = AB + BA.

The choice of commutators versus anticommutators depending on
whether the spin has integer or half-integer value can be compactly
expressed as

AB - (-1)*BA

where s stands for either integer or half-integer. The anticommuta-
tors have no classical counterparts, that is, there are no such things
as Poisson antibrackets, but nevertheless the quantization by anti-
commutators is one of the fundamental requirements for quantizing
fields that correspond to particles of half-integer spins. In the case of
Dirac fields, the origin of the use of anticommutators can be traced
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back to v* matrices that are required, by definition, to satisfy anti-
commutation relations among them.

Another item to be mentioned here is concerned with the wide use
of the term “second quantization.” When referring to the quantiza-
tion of matter fields, the term accurately describes the situation. The
equations for matter fields — Klein—Gordon and Dirac fields — are
actually relativistic quantum mechanical wave equations. That is the
“first” quantization. The wave equations are then viewed as “classi-
cal” field equations, in an emulation of the classical electromagnetic
field, and then quantized again. That is the “second” quantization.
As far as the classical wave equations for electromagnetic fields are
concerned, however, this is not accurate. For the electromagnetic
field, the wave equation is a classical wave equation and its quan-
tization is its “first” quantization. The term “second quantization,”
however, picked up a life of its own and became synonymous with
quantum field theory and is widely used interchangeably with the
latter. Strictly speaking, such interchangeable use of the two terms
is not entirely accurate, especially where quantization of the classical
electromagnetic field is concerned.



9

Particles and Fields III:
Particles as Quanta of Fields

Quantum field theory presents the third and the latest stage in the
evolution of the concept of particles. This concept has evolved from
that of a localized point mass in classical physics to that of wave—
particle duality in quantum mechanics and, as shown in this chapter,
to that of a quantum of quantized field. As classical fields are quan-
tized, following the road map outlined in the last chapter, we will see
that the concept of particles has become secondary to that of quan-
tized fields. The quantal structure of fields, or more precisely the
quantal structure of energy and momentum of fields, defines parti-
cles as discrete units of the field carrying the energy and momentum
characteristics of each particle. In this sense, fields play the primary
physical role and particles only the secondary role as units of discrete
energy of a given field.

When the electromagnetic four-potential A,(x) is quantized,
according to standard procedure outlined in the previous chapter,
it becomes a field operator, much the same way that ¢’s and p’s, the
coordinates and momenta, turn into operators in quantum mechan-
ics. The field operator A, (x) consists of two parts — this is com-
mon property for all fields, whether Klein—-Gordon or Dirac — called
the positive frequency and negative frequency parts. The positive
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frequency part corresponds to raising the energy of an electromag-
netic system by one unit of quantum and this corresponds to the cre-
ation operator of a photon. Likewise, the negative energy frequency
part corresponds to lowering the energy of an electromagnetic sys-
tem by one unit of quantum and this is the annihilation operator
of a photon. The successful incorporation of photons, the zero-mass
particles of light, into the fold of quantized electromagnetic four-
potential was in fact the catalyst, as discussed in previous chapters,
for the reinterpretation of relativistic wave equations of particles as
“imitation” matter fields which started the whole ball rolling toward
today’s quantum field theory of particles.

The description of quantization of fields — electromagnetic,
Klein—Gordon, Dirac and others — is the first-order of business for
any graduate-level textbooks of quantum field theory and is usu-
ally featured in a substantial part of such textbooks. Quantization
of the Dirac field alone, for example, usually takes two to three long
chapters to discuss all the relevant details. We will refer to any one
of the standard textbooks for full details of field quantization® and
strive only to bring out its essential aspects in this chapter. In order
to illustrate the emergence of the creation and annihilation opera-
tors of the field operators, it is very helpful first to briefly review the
operator techniques involved in the case of simple harmonic oscillator
problem of non-relativistic quantum mechanics.

Consider a one-dimensional simple harmonic oscillator. Denote
the energy of the system by H (for Hamiltonian, which is equal to
the total energy) as

21
H = QP—m + §mw2x2
where m is the mass of the oscillating particle and w is the classical

frequency of oscillation. The expression above for energy can also be

'For example, such classics as An Introduction to Relativistic Quantum Field
Theory by S. Schweber (1961), Relativistic Quantum Fields by J. Bjorken and
S. Drell (1965), and Introduction to Quantum Field Theory by P. Roman (1969).
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1 1
H = (a*a+2)w— (aa*—z)w

where (recall that o =1 in the natural unit system)

denoted as

a= (ip + mwz)
2mw
* 1 .
a* = (—ip+ mwz).
2mw

The basic commutation relation between z and p
[z,p] =i
leads to the following commutation relations,
[a,a] = [a*,a*] =0
and
[a,a*] = 1.

As is well known from elementary non-relativistic quantum mechan-
ics, the lowest energy (the ground state) of the system is equal to
%w and the operators a* and a, respectively, increase or decrease
energy by the quantized amount equal to w. The quantized energy in
units of w represents the quantum of the system and the operators a*
and a, respectively, raise and lower the energy by the oscillator. For
this reason a* and a, are respectively called the raising and lowering
operators, for a simple harmonic oscillator.

When we quantize a field, an exactly analogous situation occurs:
the field operator consists of “raising” and “lowering” operators that
increase or decrease the energy of the system described by the field
and it is the “quantum” of that energy that corresponds to the par-
ticle described by the field. The “raising” and “lowering” operators
of the field are called creation and annihilation operators and the
“quantum” of energy corresponds to a particle described by the field.
Although it was the quantization of electromagnetic field that pre-
ceded that of matter fields, we will illustrate this procedure for the
simplest case: Klein-Gordon field which is a scalar field (spin zero)
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and real (complex fields describe charged spin zero particles). The
quantization of electromagnetic and Dirac fields has the added com-
plications of having to deal with spin indices for photons (polariza-
tions of photons) and half-integer spin particles such as electrons.

The case of Klein—-Gordon field is specified by, as discussed in
Chapter 8:

Field: o(x)
Field equation: (00, + m?)p(z) = 0

Lagrangian density: £ = %((%qﬁﬁuqb —m2¢?)
oL 0¢

Momenta ﬁeld: 7T(X, t) = W = 8t .

The field equation, that is, the Klein—-Gordon equation, allows plane-
wave solutions for the field ¢(x) and it can be written as

1 ikx
o(z) = R / b(k)e*® dk

where kx = k%20 —kr, dk = dkdk and b(k) is the Fourier transform
that specifies particular weight distribution of plane-waves with dif-
ferent k’s. As a solution of the field equation, there is a restriction
on the transform b(k), however. Substituting the plane-wave solution
into the field equation shows that b(k) has the form

in which ¢(k) is arbitrary. The delta function simply states that as
the solution of Klein—Gordon equation, the plane-wave solution must
obey Einstein’s energy-momentum relation, k2 — m? = 0.

The Einstein’s energy-momentum relation (k* —m? = 0) also
places a constraint on dk, and as we shall see, this constraint is one
of the basic ingredients of quantization of all fields. The integral over
dk is not all over the k* — k four-dimensional space, but rather only
over dk with k" restricted by the relation, (for notational convenience
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we switched from (k%) to k3)
k2 —k?—m?=0.
Introducing a new notation
wr = +Vk2+m?2 with only the + sign,

either kg = 4wp or kg = —wg. Integrating out kg, the plane-
wave solutions decompose into “positive frequency” and “negative
frequency” parts.? This decomposition, which is basic to all relativis-
tic fields, matter fields as well as the electromagnetic field, has noth-
ing to do with field quantization and is rooted in the quadratic nature
of Einstein’s energy—momentum formula. The plane-wave solutions
can be written in the form:

b(x) = / P(a(k) fu() + a* () f (2)

where

The integral is over d’k only and a(k) and a*(k) are the respective
Fourier transforms for “positive frequency” and “negative frequency”
parts. Two remarks about the standard practice of notations are
called for here: The star superscript (*) stands for complex conju-
gate in classical fields, but when they are quantized and become
non-commuting operators, the notation will stand for Hermitian
adjoint. After decomposition into “positive frequency” and “negative
ik stands as a shorthand
for 4wy, that is, after kg is integrated out, notation kg = +wy. For

frequency” parts, the notation kg, as in e~

2See Appendix 4 for more details.
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brevity, we often write

o(x) = o (@) + ()
with

o = [Era)i(e) and 6 @) = [ dka’(0fi o)

We now quantize the field by imposing the canonical quantization
rule, mentioned in Chapter 8, namely:

[6(x,1), p(x',1)] = [ (x, 1), m(x, )] = 0
[(x,1), m(x', £)] = id

where w(x,t) = 0L/0(0¢/0t) = 0¢/0t. These commutation rules
become commutation relations among a(k)’s and a*(k)’s, thus:

la(k), a(k)] = [a*(k), a”(K')] = 0
[a(k), a* (k)] = 6°(k — k).

These commutation relations are essentially identical to those for
raising and lowering operators of the simple harmonic oscillator. The

’(x —x)

quantal structure of the quantized field, and resulting new interpre-
tation of particles, is then exactly analogous to the case of raising
and lowering operators for a simple harmonic oscillator.

We define the vacuum state (no-particle state), ¥p, to be the
state with zero energy, zero momentum, zero electric charge, and so
on. When we operate on this vacuum state with operator a*(k), the
resulting state

U, = a*(k)¥g (one-particle state)

corresponds to that with one “quantum” of the field that has a
momentum k and energy wp = +vk?+m2. With £ = w and
p = k (A = 1), this quantum is none other than a relativistic particle
of mass m defined by
E? —p?=m?

A spin zero particle of mass m thus corresponds to the quantum of
Klein—Gordon field and is created by the operator a*(k). For this rea-
son, the operator a*(k) is called the creation operator. The operator
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a(k) does just the opposite,
a(k)\111 = \Ifo,

and the operator a(k) is called the annihilation operator. Repeated
application a*(k)’s leads to two, three, ..., n-particle state; likewise
repeated application of a(k)’s reduces the number of particles from
a given state. The quantized Klein—Gordon field operator hence con-
tains two parts, one that creates a particle and the other that anni-
hilates a particle: a field operator acting on the n-particle state gives
both (n+1)- and (n—1)-particle states. A relativistic particle of mass
m now corresponds to the quantum of the quantized field. This is the
third and, so far the final, evolution in our concept of a particle.

The quantization of an electromagnetic field is virtually identi-
cal to that discussed above for the Klein—Gordon field, except that
due to the polarization degrees of freedom (the spin of photons), the
field A, (x) requires a little more care. The polarization of the elec-
tromagnetic field has only two degrees of freedom, the right-handed
and left-handed circular polarizations, but the field A,(x) has four
indices (. = 0,1,2,3). This is usually taken care of by making a
judicial choice allowed by gauge transformation: we choose such a
gauge in which Ag = 0 and V - A = 0. This choice, called the radi-
ation gauge, renders A,(x) to have only two independent degrees of
freedom. Besides the added complications involved in the descrip-
tion of polarizations, the remaining procedures in the quantization
of electromagnetic field are identical to that of the Klein—Gordon
field and, after quantization, the electromagnetic field operator also
decomposes into creation and annihilation parts:

A, (x) = annihilation operator for a single photon
+ creation operator for a single photon

= AP (@) + AL (x).

As the quantum of electromagnetic field, the photon is a particle that
has zero mass and carries energy and momentum given by E = |p| =
wh=c=1).
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The quantization of Dirac field is more involved on several
accounts: first, the Dirac field ¢ is a four-component object, as dis-
cussed in Chapter 5, the Lagrangian density involves not only the
field v but also its Dirac adjoint ¢ = 1*~Y, and the canonical quan-
tization must be carried out in terms of anticommutators rather than
the usual commutators, as discussed in Chapter 8. When all is said
and done, the Dirac field operators decompose as follows (say, for the
electron):

d(a) = v (@) + v ()
w(+)(:n) annihilates an electron

() (z)  creates a positron (anti-electron)

and

Y(a) =P (2) + 9 (@)

¢ (x) annihilates a positron

q/_)(_)(x) creates an electron.

To sum up, when we quantize a field, it turns into a field operator
that consists of creation and annihilation operators of the quantum
of that field. In the case of an electromagnetic field, the classical field
of the four-vector potential turns into creation and annihilation oper-
ators for the quantum of that field, the photon. In the case of mat-
ter fields, we first reinterpret the one-particle relativistic quantum
mechanical wave equations as equations for classical matter fields and
then carry out the quantization. Matter particles, be they spin zero
scalar particles or spin half particles such as electrons, positrons, pro-
tons and neutrons, emerge as the quanta of quantized matter fields,
whether they are Klein—-Gordon or Dirac fields. Essentially, this is
what quantum field theory of particles is all about.



Emulation of Light II:
Interactions

The quantization of fields and the emergence of particles as quanta of
quantized fields discussed in Chapter 9 represent the very essence of
quantum field theory. The fields mentioned so far — Klein—Gordon,
electromagnetic as well as Dirac fields — are, however, only for the
non-interacting cases, that is, for free fields devoid of any interac-
tions, the forces. The theory of free fields by itself is devoid of any
physical content: there is no such thing in the real world as a free,
non-interacting electron that exerts no force on an adjacent electron.
The theory of free fields provides the foundation upon which one
can build the framework for introducing real physics, namely, the
interaction among particles.

We must now find ways to introduce interactions into the pro-
cedure of canonical quantization based on the Lagrangian and
Hamiltonian formalism. The question then is what is the clue
and prescription by which we can introduce interactions into the
Lagrangian densities. There are very few clues. In fact, there is only
one known prescription to introduce electromagnetic interactions and
it comes from the Hamiltonian formalism of classical physics, as
discussed in Chapter 2. Comparing the classical Hamiltonian (total
energy) for a free particle with that of the particle interacting with

55
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the electromagnetic field, the recipe for introducing the electromag-
netic interaction is the substitution rule (sometimes referred to as
the “minimal” substitution rule)

Pu = Pu — €A,

Replacing p,, by its quantum-mechanical operator i0,,, we have as the
only known prescription for introducing electromagnetic interaction:

10, — 10, — eA,.

We switched the notation for the charge from ¢ to e. This substitu-
tion is to be made only in the Lagrangian density of free matter fields
representing charged particles, but not to every differential operator
that appears in a given Lagrangian density, not, for example, to dif-
ferential operators in the Lagrangian density for a free electromag-
netic field.

In the last chapter, we used the simple scalar Klein—Gordon field
to illustrate the process of field quantization and the resulting emer-
gence of particles as quanta of the field. To illustrate the introduction
of interaction by substitution rule, we switch from Klein—Gordon to
the Dirac field. All particles of matter — electrons, protons, neutrons
that make up atoms, that is, all quarks and leptons (more on these
later) — are spin half particles satisfying the Dirac field equations
and the description of electromagnetic interactions of these parti-
cles, say, electron, requires the substitution rule to be applied to the
Lagrangian density for the Dirac field.

The Lagrangian density for charged particles, say, electrons, inter-
acting with the electromagnetic field is then given by applying the
substitution rule to the Lagrangian density for the free Dirac field,
and combining with the Lagrangian density for the electromagnetic
field, we have

L

- 1
V(10 — eA) = m) = 1 Fyu ™

_ 1 L
= ¢(Z'7Mau - m)w - ZF;WFM - €¢7“¢Au-
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For brevity, we omitted the functional arguments, (x), from all fields
in the above expression, i.e. £ = L(z), ¥ = ¥(x), A, = A,(z), etc.
The new Lagrangian describes the local interaction of electron and
photon fields at the same space—time point . Substituting this inter-
action Lagrangian into the Euler—Lagrange equation, we obtain the
field equations for interacting fields, which as expected, are different
from the equations for free Dirac and electromagnetic fields:

(i’y“@u —m)yY(r) = GW“AW(iU)
Oy FM = ep(x)y" ().

We need to make several important observations here about this
new interaction Lagrangian. First, the field equations for interacting
fields are highly nonlinear and they are also coupled; to solve one, the
other must be solved. The Dirac and electromagnetic fields, 1(z) and
A, (z), that appear in the interaction Lagrangian, although they have
the same notation, are not the same as the free Dirac and electro-
magnetic fields. Secondly, in order to proceed with the quantization
of interacting fields, as illustrated in the case of free fields in the
last chapter, the first thing we need are the solutions to the coupled
field equations given above. We could then presumably proceed to
decompose the solutions for interacting fields and perhaps even define
“interacting particle creation and annihilation operators.” Once we
have the exact and analytical solutions for fields satisfying the cou-
pled equations, we may have the emergence of real, physical particles
as quanta of interacting fields. Quantum field theory for interact-
ing particles would have been completely solved, and we could have
moved on beyond it. Well, not exactly. Not exactly, because no one
can solve the highly nonlinear coupled equations for interacting fields
that result from the interacting Lagrangian density obtained by the
substitution rule. Exact and analytical solutions for interacting fields
have never been obtained; we ended up with the Lagrangian that we
could not solve!

Just to illustrate one key point of departure from the quantization
of free fields, consider the requirement that each component of the
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free Dirac field must also satisfy, over and beyond the Dirac equation,
the Klein—-Gordon equation. The requirement that k:(z) —k>—m? =0,
that is, kg = +wy or kg = —wy with w, = +vk? + m?2, is what
allowed the decomposition of the free field into creation and annihi-
lation operators, that, in turn, led to particle interpretation. In the
case of interacting fields, this is no longer possible.

At this point, the quantum field theory of interacting particles
proceeded towards the only other alternative left: when so justified,
treat the interaction part of the Lagrangian as a small perturbation
to the free part of the Lagrangian. We write

L"(‘T) = Efree(CU) + Eint(l')

where

£ tree() = $() (i7", — m)d(x) — iF“V(CC)F,W(J})
Lint(z) = —etp(x)v"h(x) Au().

The perturbative approach with the Lagrangian above is the basis
for quantum field theory of charged particles interacting with the
electromagnetic field, to wit, the quantum electrodynamics, QED.
To this date, QED, with some further fine-tuning (more on this in
the next chapter), remains the most successful — and so far the only
truly successful — theory of interacting particles ever devised. The
perturbative approach of QED is well justified by the smallness of the
charge, e, renamed the coupling constant (the fine-structure constant
defined as a = e2/4r is approximately equal to 1/137), which ensures
that successive higher orders of approximation would be smaller and
smaller. In the zeroth-order, then, the total Lagrangian is equal to
free Lagrangian and by the same token, in the zeroth-order, the inter-
acting fields are equal to free fields, and successive orders in the
perturbation expansion in terms of the interaction Lagrangian add
“corrections” to this zeroth-order approximation, generically called
the radiative corrections.
The interaction Lagrangian,

Eint(x) = —61;($)’yuw($)Au(ZC),
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is thus the centerpiece of QED. It is a compact expression that con-
tains, interpreted in terms of the free fields, eight different terms
involving various creation and annihilation operators, for each index
u, for a total of 32 terms. For each u =0, 1, 2, 3, the expression

3 = (@) (@),

which is a four-element row matrix times a 4 x 4 matrix times a four-
element column matrix, expands to [creation of electron + annihila-
tion of positron] multiplied by [creation of positron + annihilation
of electron]. This j* = (x)y"(z) is then multiplied by [creation of
photon + annihilation of photon], three field operators being coupled
at the same space—time point x.

The success of QED, albeit by the perturbative approach, has cat-
apulted to the above form of interaction Lagrangian to much greater
significance and is more fundamental than originally perceived; it
became the mantra for all other interactions among elementary par-
ticles, namely, the weak and strong nuclear forces. The weak and
strong nuclear forces, as well as the electromagnetic force, are to be
written in the form

g (x)y"¥(2) By (x)

where ¢ is the generic notation for coupling constants, be it electro-
magnetic, weak nuclear or strong nuclear force, B, () is the generic
notation for the force field of each force, and the Dirac field opera-
tors for all spin half matter fields. This expression forms the basis
of our understanding of all three interactions at a local point and
hence, by extension, the microscopic nature of these forces — three
field operators — Dirac field, Dirac adjoint field, and the force field
operators — all come together at a space-time point x.

For nonelectromagnetic interactions, weak and strong nuclear
forces, the adoption of the interaction Lagrangian modeled after
the electromagnetic interaction Lagrangian is basically a matter of
faith and can be justified only by the success of just extension. We
assume the interactions to be derivable from Lagrangian density (this
assumption gets some degree of justification when viewed in terms of
the so-called “gauge” fields, as will be discussed in a later chapter)
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and to be just as local as the electromagnetic interaction. Lacking any
theoretical basis, such as the substitution rule in the case of electro-
magnetic interaction, the casting of non-electromagnetic interactions
in the form of the interaction Lagrangian density given above corre-
sponds to a grand emulation of the electromagnetic force, to wit, an
emulation of light indeed.



Triumph and Wane

The success of quantum electrodynamics in agreeing with and pre-
dicting some of the most exact measurements is nothing less than
spectacular. The quantitative agreements between calculations of
QED and experimental data for such atomic phenomena as the Lamb
shift, the hyperfine structure of hydrogen, and the line shape of emit-
ted radiation in atomic transitions are truly impeccable and has
helped to establish QED as the most successful theory of interacting
particles. As stated previously, this is what made QED the shining
example to emulate for other interactions.
To proceed from the interaction Lagrangian density

o 1 L -
L= ¢(Z7#au - mW - EF;UJF'LL - edyyluwAu

to the results of calculations that are in remarkable agreement with
observation, however, the theory had to be negotiated through some
tortuous paths — calculations that yield infinities, the need to rede-
fine some parameters that appear in the Lagrangian density, and
proof that all meaningless infinities that occur can be successfully
absorbed in the redefinition program. They are respectively called
the ultraviolet divergences, mass and charge renormalizations, and
renormalizability of QED.
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With the Lagrangian density, and the resulting highly coupled
field equations, that could not be solved exactly, there was only one
recourse left and that was to seek approximate solutions in which
the interaction term was treated as a perturbation to the free-field
Lagrangian. The smallness of the coupling constant e would seem
to ensure that such perturbation approach is amply justified. But
when calculations were carried out order by order in the perturbation
expansion in terms of the interaction Lagrangian, the results were
disastrous; calculations led to results that were infinite!

The origin of infinities is believed to be an inherent property of
the canonical formalism of field theory; within the Lagrangian frame-
work, the values of a field at every space—time point x is considered as
generalized coordinates and clearly there are infinite number of gen-
eralized coordinates. For example, consider a system consisting of
an infinite number of non-relativistic quantum mechanical harmonic
oscillators. The ground state energy of each oscillator is 1/2 w, but
the total energy of the system is, of course, infinite. As a system of
infinite number of generalized coordinates, appearance of infinities in
calculations is actually not surprising. The appearance of infinities is
called the problem of ultraviolet divergences. The way to get around
this near fatal situation is in what is called the mass and charge
renormalizations.

As discussed in the last chapter, the Lagrangian density breaks
up into two parts:

E(m) = ﬁfree(x) + ﬁint(x)
with

L teel®) = D)0y — m)p(a) — L P () o ()
Linle) = —edb(a)y(z) Ay (x).

In the perturbation approach, we imagine the interaction Lagrangian
to be switched off, in the zeroth-order approximation, and are then
left with the well-established free field theory. Of course, in reality
this cannot be true, no more than for us to claim that we have an elec-
tron without electromagnetic interaction! Now, there are two basic
parameters that enter into the total Lagrangian, the mass m and the
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charge e. Within the perturbation approach, they represent the mass
and charge of a totally hypothetical electron that has no electromag-
netic interaction. The mass and charge parameters in the Lagrangian
cannot be the actual, physically measured mass and charge of a real,
physical electron. They must be recalibrated so as to correspond to
the measured values of mass and charge. This need to recalibrate the
two fundamental parameters that appear in the Lagrangian density
is called renormalization, mass and charge renormalizations.

The requirements of mass and charge renormalizations, on the one
hand, and the inescapable appearance of infinities in perturbative
calculations, on the other hand, are actually quite separate issues;
they trace their origins to different sources. In practice, however, the
two become inseparably intertwined in that we utilize the procedures
to renormalize mass and charge to absorb, and thus get rid of, the
unwanted appearance of infinities in calculations. We refer to the
mass parameter that appear in the Lagrangian as the bare mass, of
an electron, and change its notation from m to mgand define the
physically observed mass, of an electron, as m. The physical mass is
then related to the bare mass by

m = mg — om.

Both mg and dm are unmeasurable and unphysical quantities. The
physically measured mass of an electron, 0.5 MeV, corresponds to
the physical mass m defined as the difference between the bare
mass and dm, sometimes called the mass counter term. In situ-
ations where no infinities appear, the mass counter term should
be, in principle, calculable from the interaction Lagrangian. It can
then be shown in the perturbation calculations that certain types
of infinities that occur can all be lumped into the mass counter
term. With the bare mass also taken to be of infinite value, the
two infinities — the infinities coming out of the perturbation cal-
culations and the infinity of the bare mass — cancel each other
out leaving us with a finite value for the actual, physical mass of
an electron. The difference between two different infinities can cer-
tainly be finite. This process, quite fancy indeed, is called mass
renormalization.
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The procedure for charge renormalization is a bit more involved
than that for mass renormalization, but the methodology is the same.
The physical charge is the finite quantity that results from the can-
cellation of two infinities — between the infinite bare charge and
certain other types of infinities that appear in the calculations, that
is, types other than those absorbed in mass renormalization.

The crucial test is to show that all types of infinites that occur
in the perturbation calculations can be absorbed by the recalibra-
tion procedure of physical parameters, that is, the mass and charge
renormalizations. Then, and only then, solutions obtained by the per-
turbation expansion can be accepted. This acid requirement is called
the renormalizability of a theory. The two critical requirements for a
quantum theory of interacting fields are thus:

(i) Perturbation expansion in terms of the interaction Lagrangian
must be justified in terms of the smallness of the coupling
constant.

(ii) Such expansion is proven to be renormalizable.

QED passes these two requirements with flying colors. The question
now is what about the non-electromagnetic interactions.

As discussed in the last chapter, the interaction Lagrangian for
the weak and strong nuclear forces was obtained simply by emu-
lating the format for the electromagnetic interaction. Lacking any
specific guide such as the substitution rule, which is deeply rooted in
the Lagrangian and Hamiltonian formalism of classical physics, all
we could do for these non-electromagnetic forces was to adopt the
interaction form given by

gV ()" (z) By ()

where g is the coupling constant signifying the strength of force, ¥(x)
is the relevant Dirac field — proton, neutron, electron and other
Dirac fields — and B, (z) is the spin one force field. We immediately
run into a brick wall when it comes to the strong nuclear interac-
tion: the coupling constant is too large for perturbation expansion
in terms of the interaction Lagrangian to be considered. In the same
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scale as the fine structure constant o = e?/4m of the electromag-
netic interaction being equal to 1/137, the coupling constant for the
strong nuclear interaction is approximately equal to 1. The question
of the perturbation expansion in terms of the coupling constant sim-
ply goes out the window for a strong nuclear force. For a weak nuclear
interaction, the problem is opposite. The coupling constant for the
weak nuclear force is small enough, much smaller in fact than the
fine structure constant, and this in itself would ensure the validity of
perturbation expansion. Rather, the problem was renormalizability.
The number of infinities that occur in the perturbation calculations
far exceeded the number of parameters that could absorb them by
renormalization. The theory as applied to the weak interaction was
simply non-renormalizable. Spectacular triumph was noted in the
case of the electromagnetic interaction on the one hand, and com-
plete failures in the case of weak and strong nuclear interactions on
the other hand. In the early 1950s, this was the situation.

Quantum field theory cast in the framework of canonical
quantization — often called the Lagrangian field theory — came
to its mixed ending, unassailable success of QED followed by non-
expandability in the case of strong nuclear force and by non-
renomalizability in the case of weak nuclear force. And thus ended
what might be called the first phase of quantum field theory, the era
of success of the Lagrangian field theory in the domain of electromag-
netic interaction with the attempt to emulate the success of QED for
the case of weak and strong nuclear forces ending up in total failure.

Starting from the 1950s, interest in the Lagrangian field theory
thus began to wane and the need to make a fresh start became
paramount. This was the beginning of what may be called the second
phase of quantum field theory. Discarding the doctrine of the canoni-
cal quantization within the Lagrangian and Hamiltonian framework,
new approaches were adopted to construct an entirely new frame-
work: building on basic sets of axioms and symmetry requirements,
constructing scattering matrices for incorporating interactions that
could relate to the observed results. There have been many branches
of approach in this second phase, often referred to as the axiomatic
quantum field theory, and they occupied a good part of two decades,
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1950s and 1960s. But in the end, the axiomatic quantum field the-
ory could not bring us any closer to analytic solutions for interacting
fields. By the end of 1960s, the hope for formulating a successful
quantum field theory for non-electromagnetic forces began to dim.

Beginning with the 1970s, however, a new life was injected for
the Lagrangain field theory — a new perspective on how to intro-
duce the electromagnetic interaction and a new rationale for emu-
lating it for non-electromagnetic interactions. It is called the “local
gauge field theory.” Coupled with the newly-gained knowledge of
what we consider to be the ultimate building blocks of matter, this
new local gauge field theory would come to define what we now call
the “standard model” of elementary particles. The advent of local
gauge Lagrangian field theory is the latest in the development of
quantum field theory and corresponds to what may be called its
third phase — canonical Lagrangian, axiomatic, and now the local
gauge Lagrangian field theory.



Emulation of Light III:
Gauge Field

As mentioned in the last chapter, the heyday of quantum electrody-
namics was over by the early 1950s and in the next two decades, the
1950s and 1960s, the canonical Lagrangian field theory was rarely
spoken of. The 50s and 60s were primarily occupied by the search for
patterns of symmetries in the world of elementary particles — such
discoveries as strangeness, charm, unitary symmetry, the eightfold
way, the introduction of quarks, and many others — and the pur-
suit of quantum field theory was carried out by those investigating
the formal framework of the theory, generally called the axiomatic
field theory, starting from scratch seeking new ways to deal with
weak and strong nuclear forces. During this period that may be
called the second phase of quantum field theory, the Lagrangian
field theory was almost completely sidelined and the emphasis was
on the formal and analytic properties of scattering matrix, the
so-called S-matrix theories and the axiomatic approaches to field
theory. These new axiomatic approaches, however, did not bring
solutions to quantum field theories any closer than the Lagrangian
field theories. Entering the 1970s, there was a powerful revival of the
Lagrangian field theory that continues to this day. This is what is
called the (Lagrangian) gauge field theory, and it starts — yes, once
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again — from electrodynamics! The gauge field theory represents the
third and current phase in the development of quantum field theory.

The Lagrangian density for QED, obtained by the substitution
rule,

L= G0y — e — [Fu F™ — et A,
is clearly invariant under a phase change of the field :
b — e ",

where « is a real constant independent of x, that is, having the same
value everywhere and for all time. The set of all such transformations,
phase change with a real constant, constitute a unitary group in one
dimension, a trivial group denoted as U(1) and we refer to it as the
global phase transformation. We say that the QED Lagrangian is
invariant under global phase transformation. It is a “big” name for
something so trivial, but the idea here is to set the language straight
and distinguish this trivial case from more complicated cases yet to
come when phase transformations are local, that is, dependent on x,
rather than global.

A few words on terminology might be in order here. Phase trans-
formation, whether global or local, are more often called “gauge”
transformation. To the extent that the original definition of gauge
transformation refers to the electromagnetic potential, as discussed
in Chapter 6, this may be a little confusing. There is a good rationale
to extend the definition of gauge transformation to include the local
phase transformation and this will be explained below. Until then,
we will stick to phase transformation (which is actually what it is).

Let us now consider phase transformations that are local, that
is, the phase « is a function of x. Since the fields at each x are con-
sidered as independent variables in the scheme of canonical quanti-
zation formalism, it is not unreasonable to consider different phase
transformations at different space—time points x. The question now
is whether or not the QED Lagrangian is invariant under such local
phase transformation. It is immediately clear by observation that the
QED Lagrangian is not invariant under local phase transformation;
all terms in the Lagrangian except one are trivially invariant, but the
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“kinetic energy” term involving the differential operator is not. We
have

DD (i 9, )e T = i) + Py ypdua(w)

and the QED Lagrangian picks up an extra term 1y, a(x),

L= ﬁ(i’y“@u —m) — iFWFW — eiﬁ’y“wAH + @7N¢aua(x).

At this point the gauge transformation of the electromagnetic poten-
tial A,(x) swings into action. As discussed in Chapter 6, A,(z) is
determined only up to four-divergence of an arbitrary function A(z),
that is,

AP QA = <¢+%§,A—VA),

which is the original gauge transformation of electromagnetism. If
we now choose the arbitrary function A(z) to be equal to the local
phase transformation of the Dirac field divided by the electromag-
netic coupling constant e, that is,

the interaction term of the Lagrangian yields another extra term that
exactly cancels out the unwanted term,

_ — 1
—ey'p A, — —eyHe (A# + e@a)
= _61}7#1@4# - @VHTZJC%OA

The interplay between the local phase transformation on the Dirac
field and the matching choice of the electromagnetic gauge trans-
formation “constructively conspires” to render the QED Lagrangian
invariant under local phase transformations.
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In sum, the QED Lagrangian
_ 1 _
L= w(Wuau —m)y — ZFWFW - e¢7u¢Au
is invariant under the local phase transformation

,¢ _ e—ia(:c) w

provided the gauge transformation of A,(x) is chosen to be
1
Au(z) = Aplz) + g('“)uoz(x).

With this choice, the local phase transformation on the Dirac field
becomes interwoven with the electromagnetic gauge transformation
and changes its name to local gauge transformation.

The freedom of gauge transformation of the electromagnetic
potential thus plays an indispensable role without which the invari-
ance under local gauge transformation cannot be upheld. This is not
the first time that the electromagnetic gauge transformation is play-
ing a critical role within the framework of the Lagrangian field theory.
The quanta of electromagnetic field are, of course, massless, but if
they were to have non-zero mass, say, x, the Lagrangian would have
had to contain a term x*A,(z)A*(z) which is clearly not invariant
under the gauge transformation. The gauge invariance requires A, (z)
to correspond to massless spin one particles, to wit, photons. Fur-
thermore, the proof of renormalizability of QED discussed in the last
chapter is also based on the gauge invariance of the Lagrangian. The
roles played by gauge transformation of A,(x) within the framework
of QED are absolutely indispensable.

The invariance of QED Lagrangian under the local gauge trans-
formation is now to be elevated to the lofty status of a new general
principle of quantum field theory, which can perhaps be extended
to interactions other than electromagnetic, namely, the weak and
strong interactions. To this end, we can now state the new principle,
christened the gauge principle, as follows: From the way in which the
freedom of gauge transformation of the electromagnetic field A, (z)
plays the crucial role, we can define a generic field, say By (x), with
just such property and call it the gauge field. A gauge field is defined
as a four-vector field with the freedom of gauge transformation, and
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it corresponds to massless particles of spin one. The gauge princi-
ple requires that the free Dirac Langrangian £ = @Z(muaﬂ —m)y be
invariant under the local gauge transformation 1 — e @), The
invariance is upheld when we invoke a gauge field B,,(z) such that

(i) Oy — 0, +igBu(x)
(i) B(x) — Bu(x) + ;a#a(m)

where g stands for the coupling constant of a particular interaction,
that is, the strength of a particular force. This new gauge princi-
ple then leads to a unique interaction term of the form gz%x“v,/}B#.
What the gauge principle does is that it reproduces the substitu-
tion rule as a consequence of the invariance of free Dirac Lagrangian
under the local gauge transformation, thereby bypassing the classi-
cal Hamiltonian formalism for charged particles in an electromag-
netic field.

Now as far as QED is concerned, however, while providing new
insight and perspective, the gauge principle does not provide any-
thing new except restating the known procedure of substitution rule.
The perturbation expansion, renormalization, and renormalizability
of QED work just fine without provoking such a lofty invariance
requirement. The significance of this new principle lies in the fact
that it provides an entirely new window through which to formulate
non-electromagnetic interactions within the framework of Lagrangian
field theory. Once again — for the third time in fact — the electro-
magnetic interaction provides a path of emulation for other inter-
actions to follow. The most critical element in this new approach
is the idea of gauge fields and this is how the gauge field theory,
or more fully gauge quantum field theory of interacting particles,
was born.

In the case of QED, there is one and only one gauge field, namely
the electromagnetic field, that is, one and only type of photons. Pho-
ton is in a class by itself and does not come in a multiplet of other
varieties. In the language of representation of a group, the photon is
a singlet. Local gauge transformation involves pure numbers that are
functions of z. The set of all such local gauge transformations form a
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one-dimensional trivial group U(1) which is by definition commuta-~
tive. Non-commutativity will involve matrices rather than pure num-
bers. There is another name for being commutative called Abelian,
non-commutative being non-Abelian. We refer to the local gauge
transformation as Abelian U(1) transformation.

In the case of weak and strong interactions the situation becomes
much more complex. The symmetries involved dictate the gauge
fields to come in multiplets. In the case of weak interactions, we need
three gauge fields to account for SU(2) symmetry and in strong inter-
actions, we need eight gauge fields for SU(3) symmetry. Applying the
gauge principle to these interactions is definitely more complicated
and we first need to discuss the symmetry structures of basic Dirac
field particles, namely, quarks and leptons, to which we now turn to
in the next chapter.



Quarks and Leptons

The elite group of particles that constitute elementary particles —
the basic building blocks of all known matter in the universe — are
divided into two distinct camps, a group of heavier particles called
hadrons and a group of relatively lighter ones called leptons. The pre-
mier member of hadrons, proton, for example, is about 1,874 times
more massive than electron, the premier member of leptons. The
names “hadrons” and “leptons” originate from Greek words meaning
“strong” and “small,” respectively, although this distinction becomes
blurred as the heaviest “lepton” turns out to be about twice as mas-
sive as proton. What really separates hadrons from leptons is more
dynamical in nature than the gaps in their masses: hadrons inter-
act via the strong nuclear force whereas leptons have nothing to do
with the strong nuclear force. All particles, both hadrons and leptons
interact via the weak nuclear force and electrically charged ones via
the electromagnetic force.

All hadrons are considered to be composites of quarks; the bary-
onic sector of hadrons, that includes protons and neutrons, is consid-
ered to be composites of three quarks and the mesonic sector, that
includes familiar pions, is considered to be composites of a quark
and an antiquark. It has been a little over four decades now since the
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original quark model came into being, but despite an overwhelming
indirect evidence pointing to its validity, the quark model still lacks
the definitive experimental evidence in that no isolated single quark
has ever been directly observed. In terms of quarks, the set of basic
elementary particles reduces from hadrons and leptons to quarks and
leptons, and that is where we have remained since the early 1960s.!

Now, quarks and leptons are all spin half particles and thus the
very starting point for their description in Lagrangian field theory is
the free Dirac Lagrangian density,

L =p(iy" 0y —m)y
where the Dirac field 1 stands for each member of the quark and lep-
ton group. In order to formulate a field theory of interacting quarks
and leptons, we can now invoke the lesson gleaned from quantum
electrodynamics, namely, the newly proclaimed gauge principle. As
stated in the last chapter, the gauge principle demands the invari-
ance of free Dirac Lagrangian under the local gauge transformation
P — e~(@)y) and the invariance is upheld by introducing a suitably

defined gauge field B, (x) such that two simultaneous transforma-
tions are executed:

(i) 0y — Oy +igB,(x)
(1) Bu(z) — By(x) + ;a<x>.

That an interaction is incorporated into Lagrangian this way is the
very essence of gauge principle. If we now introduce a gauge field
B,,(x) and a coupling constant g for each of the three interactions —
electromagnetic, weak nuclear and strong nuclear — we would then
have the gauge field theory for all three interactions, right? Well,
not exactly . ..not so fast: Things would get much more complicated
than that.

Over the years, we have accumulated enough data on quarks and
leptons that establish definite patterns of internal symmetries, that

'For a readable survey of the physics of quarks and leptons, see, for example,
The Ideas of Particle Physics, Second Edition, by G.D. Coughlan and J.E. Dodd,
Cambridge University Press (1991).



Quarks and Leptons 75

is, symmetries independent of space and time, but in the mathe-
matical spaces of internal quantum numbers such as the isotopic
spin space. It turns out that quarks and leptons both exhibit dou-
blet structures with respect to the weak nuclear force and quarks,
but not leptons, harbors additional triplet structures with respect
to the strong interactions. These internal symmetries define SU(2)
and SU(3) symmetries, respectively, for the weak and strong nuclear
interactions and they make gauge field theories a lot more compli-
cated than the trivial U(1) symmetry of electromagnetic interaction.
For one thing, whereas there is one and only one gauge field in the
case of electromagnetic interaction — the photon field — the num-
ber of gauge fields needed increases to three for weak nuclear inter-
action and eight for strong nuclear interaction. Another reason for
increased complexity — at times quite intractable — is the fact that,
whereas the elements of U(1) symmetry group are pure numbers and
trivially commutative, that is, Abelian, the elements of SU(2) and
SU(3) symmetry groups are matrices and hence non-commutative,
that is, non-Abelian. For this reason the gauge field theory for weak
and strong nuclear interactions is referred to as a non-Abelian gauge
field theory.

The doublet structure of quarks and leptons that defines an SU(2)
symmetry for the weak nuclear force springs from their behavior
with respect to weak decays, such as the well-known beta decays.
To begin with, electrons and muons have their own neutrinos, called
the electron-type and muon-type neutrinos and they form two pairs,
similar but distinctly different from each other. When the heavy lep-
ton, the tau, was discovered, it too was assigned its own associated
neutrino, called the tau-type neutrinos. The three doublets of leptons

() ) G

All neutrinos are chargeless while electrons, muons and taus carry

are hence

negative one unit of charges. Each doublet belongs to the fundamen-
tal representation of weak SU(2) symmetry. Taking cues from this
doublet structure of leptons, the quarks are also classified in terms
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of three distinct doublets:

(@) ) G)

The quarks are named up (u), down (d), charm (c), strange (s), top
(t), and bottom (b) quarks. The up, charm and top quarks carry
charges in the fractional amount of +2/3, and the down, strange
and bottom quarks carry charges in the amount of —1/3. The six
leptons and six quarks, so grouped in three distinct doublets, form
the basis of all known matter in the universe: quarks make up pro-
tons and neutrons that constitute atomic nuclei, the atomic nuclei
forms atoms with the help of electrons swirling around them, atoms
make up molecules, and so on. These twelve particles represent the
basic building block’s for all known matter in the universe; they
and their interactions constitute what has come to be called the
Standard Model of elementary particles. They are the actors of the
standard model and gauge field theory is the theoretical underpin-
ning of the model.

The masses of these quarks and leptons are not as well understood
as they ought to be. The masses of charged leptons are the best
known:

Mass of electron = 0.51 MeV
Mass of muon = 105.66 MeV
Mass of tau = 1777.1 MeV.

Until very recently, it has been assumed that all neutrinos are mass-
less. The Standard Model is built on this assumption of massless
neutrinos that must always travel with the speed of light. Recently,
however, several experimental evidences have been uncovered that
this assumption may not hold; that neutrinos may have mass, how-
ever small, and this allows conversion from one type to another
(called the neutrino oscillation). According to these latest measure-
ments (masses are inferred by the rate of one type converting into
another), one can set upper limits as follows:

Mass of electron neutrino be less than 0.0000015 MeV
Mass of muon neutrino be less than 0.17 MeV
Mass of tau neutrino be less than 24 MeV.
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The question of non-zero neutrino masses and the ensuing mixing
of types, conversion from one-type into another, represents a serious
challenge to the Standard Model that has yet to be resolved.

We referred to the doublet structures of quarks and leptons as the
weak SU(2) symmetry and since there are other types of SU(2)’s in
particle physics, a few words of differentiation might be in order. The
oldest and most familiar SU(2) is, of course, that of the mechanical
spin of particles. Then there is the SU(2) of isotopic spin of hadrons,
the charge symmetry of protons and neutrons. The isotopic spin sym-
metry of hadrons transcends to quarks, the up and down quarks
forming an isodoublet. This isotopic spin SU(2) does not, however,
extend to leptons and hence is called the strong isotopic spin. The
weak SU(2), is sometimes referred to as the weak isotopic spin, while
similar to the strong isotopic spin as far as quarks are concerned, is
a new SU(2) that encompasses both quarks and leptons.

SU(N) is generated by N?—1 generators and in the case of SU(2)
the three generators are 7//2 where 7¢ (i = 1,2,3) are the Pauli
matrices. In the free Dirac Lagrangian

E = &(Z’Y”au - m)¢)

the field ¥ (z) now stands for a two-component field corresponding
to the fundamental representation of the weak SU(2) group and the
local gauge transformation e *(*) is to be replaced by local weak
SU(2) gauge transformation of the form

exp(—it*a*(2)) summed over k = 1,2, 3.

Here, ak(x) are three weak isotopic spin components of the local
gauge and 7Fa¥ () is the required SU(2) scalar. Written out explicitly
in matrix form

( af@) al@) —ie¥()
rat@) = (al(w) Tialz)  —a(z) ) '

The simple U(1) local gauge transformation in the case of electro-
magnetic interaction in terms of a single function a(z),

exp(—ia(z)),
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is now replaced, in the case of weak nuclear interaction, by SU(2)
local gauge transformation in terms of three functions o (z),

o (<1 (s ey i),

The local gauge transformation of the form above applies univer-
sally to leptons and quarks, both being a two-component Dirac field
corresponding to the fundamental representation of weak SU(2) sym-
metry. The strong nuclear interactions, on the other hand, are the
exclusive domains only of quarks. Leptons have nothing to do with it.
Quarks carry their own signature charges, a tri-valued new attribute
that has come to be called the color charges labeled red, green and
blue.? These color charges are not related to any physically identifi-
able quantities, but they triple the number of quarks and provide the
basis for a new color SU(3) symmetry for strong nuclear interactions;
each of the quarks — u, d, ¢, s,t, and b — come in three distinct vari-
eties of red, green and blue color charges, as in red up, green up and
blue up quarks. Each set of three quarks form a three-component
Dirac field corresponding to the fundamental representation of the
color SU(3) symmetry group. SU(3) group is generated by eight gen-
erators \'/2 where \! (i = 1,2,...,8) are the Gell-Mann matrices.
The strong color SU(3) local gauge transformation becomes

exp(—iX*af(z)) summed over k =1,2,...,8.

The local gauge transformation in this case brings in eight different
phase functions at a space—time point x. Written out explicitly in
3x3 matrix form, suppressing the functional argument (z) for the
o (z) ’s, we have

oa®+a®/V3 al —ia? at —ia®
exp| —i| a'+ia® —a®+a8/VvV3 af—id”
at +ia® ol +ia” —2a8/V/3

2The need for such tri-valued new quantum numbers as well as how the ideas have
evolved to what we now call color charges is described in Appendix 5, Evolution
of Color Charges.
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Now, a few words about the “old” SU(3) symmetry of hadrons
from which this new color SU(3) symmetry is entirely different. In the
early days of the quark model, the symmetry of hadrons was based on
the now “old” unitary symmetry of SU(3). It was the eightfold way
of the octets of mesons and octets as well as decuplets of baryons.
There were only three quarks — up, down and strange — forming a
triplet with respect to this “old” SU(3). This “old” SU(3) has been
completely supplanted by the weak SU(2) symmetry of leptons and
quarks as discussed above and the only SU(3) symmetry of the strong
nuclear interaction refers to the color SU(3) symmetry.

@ with constant
phase (now called the global gauge transformation) has come a long
way under the doctrine of local gauge invariance. We have:

We see that the original simple phase factor e~

Abelian U(1) for the electromagnetic interaction

exp(-ia(ﬂ?)%

non-Abelian SU(2) for the weak nuclear interaction

o (1 (e ).

and non-Abelian color SU(3) for the strong nuclear interaction

a® 4+ a®/V3 al —ia? at —ia®
exp [ —i| al+ia? —a®+a¥/V3 af—id”
ot +ia® ab +ia” —20%/\/3

The imposition of the principle of local gauge invariance, derived
from the properties of QED Lagrangian, is clearly not going to be an
easy task. While there is one and only one gauge field in QED, the
electromagnetic field that defined the idea of gauge fields in the first
place, we must now deal with multiplets of gauge fields corresponding
to the regular representation of weak SU(2) and color SU(3) groups,
in particular, three gauge fields for weak SU(2) and eight gauge fields
for the case of color SU(3). From the matrix form of the local gauge
transformation, one can readily see the non-commutativity of alge-
bras. In the free Dirac Lagrnagian, the non-commutativity raises its
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head right away; the derivative terms become, using the example of
weak SU(2),

77Ze—i’rjoﬂ i,yuaueirkakw — &Z,yua‘uw + 1/_16_”]@] [_,}/u,rkaﬂak]ei’r"a"w'
In the second term, the factor e”"®" must be commuted through 7%
in the middle before the two phase factors can be collapsed. Clearly
more complicated than in QED, the need for multiplets of gauge fields
and the non-commutative (non-Abelian) algebra represent, however,
only the tip of an iceberg. The imposition of local gauge principle
on weak SU(2) and color SU(3) results in the Lagrangian gauge field
theory that is far more complicated than anything we have seen in

the evolving theories of quantum fields.



Non-Abelian Gauge Field
Theories

The non-Abelian gauge symmetry described in the last chapter is,
historically speaking, a combination of new and old. The weak SU(2)
and the color SU(3) symmetries of quarks and leptons are certainly
“new” ideas, having been developed in the 1960s and 1970s, but the
idea of a non-Abelian gauge field theory itself is an “old” one, having
been proposed in 1954 by C. N. Yang and R. L. Mills. The Yang—
Mills theory, as it is called, actually predates the idea of quarks by
about ten years. The gauge fields of the original Yang—Mills theory
had to be massless and the only known massless gauge field at that
time was the electromagnetic field. The force particles then known
for non-electromagnetic interactions — pions for the strong nuclear
force between protons and neutrons as well as W-bosons (sometimes
called the intermediate vector bosons, the IVBs) that mediated the
weak nuclear force — all had mass and Yang-Mills theory remained
an interesting but unrealistic idea for almost two decades. Then came
the weak SU(2) and the color SU(3) symmetries of quarks and leptons
and Yang—Mills formalism was accorded a powerful revival.

We can spell out the Yang-Mills formalism, the non-Abelian local
gauge field theory, for a generic SU(N) symmetry. An SU(N) group
is generated by N2 —1 generators 7% (a = 1,2,..., N2 —1) satisfying
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the defining commutation relations
[Ta’ Tb] — iwabcTc’

where w® are the structure constants of the SU(N) algebra. The
Dirac field ¢ in the SU(N) symmetry is an N-component column
matrix. We demand the free Dirac Lagrangian to be invariant under
SU(N) local gauge transformation of the form

¢ — Pexp(—iT*a’(z)).

As described in the last two chapters, this invariance requires intro-
duction of N2 — 1 number of gauge fields, say Wﬁ(w), with specific
prescriptions and this is where major departures from QED enter
into the theory — serious complications that result from the non-
Abelian nature of symmetries. The relatively “simple” recipe in the
case of QED, that is,

(i) 0y — Oy +igB,(x)
(ii) B, — B, + ;ﬁua(az)
is replaced by
(1) Op — Op +igT*W(z)
(il) Wy — Wi+ ;8Ma“(a;) + wa’ (z) Wy,

The term involving the structure constant of SU(N) algebra is new,
arising solely out of the non-Abelian properties. Another term involv-
ing the structure constant must also be introduced into the definition
of gauge field tensor and this is what introduces huge complications
into any non-Abelian gauge field theories. The antisymmetric elec-
tromagnetic field tensor of QED is defined as

Fu = 0,A, — 0,A,,
but the corresponding gauge field tensor must be defined as

G, = Wi — 0,W5 — gwabcwgw,f.
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The appearance of terms containing the structure constants of
SU(N) group is what sets the Yang-Mills theory apart from the
Abelian gauge theory of QED. In the case of the trivial U(1) group,
there are no commutation relations and hence no structure constants.
The new term in the gauge tensor field has far-reaching consequences.
In contradistinction to the case of QED wherein photons do not
carry electric charges and do not interact among themselves, the
particles of the gauge fields in the Yang—Mills theory interact with
each other, and they do so with the coupling constant g, the same
coupling constant with which they couple to the Dirac fields, that
is, quarks and leptons. This self-interaction within the gauge fields
themselves is a striking departure from QED and is the signature
hallmark of all non-Abelian gauge field theories. The imposition of
the local gauge principle originally derived from QED to the non-
Abelian symmetries results in a brand new type of interaction, the
self-interactions of the gauge fields among themselves!

The non-Abelian gauge theory of color SU(3) is now a matter
of transcribing the Yang—Mills formalism given above to the case of
N = 3. The color SU(3) is generated by eight generators T% = %)\“
where A\ are the eight Gell-Mann matrices. The structure constants
of SU(3) group are usually denoted by f%¢. The Dirac field 1 is a
three-component column matrix in the color SU(3) space, that is,

red

1 = | green
blue

for each quark species, u,d, c,s,t and b.

The eight gauge fields are called gluon fields and their quanta glu-
ons. Gluons are to the color force, strong nuclear interaction, what
photons are to the electromagnetic force, with one major difference:
the coupling constant g stands not only for the interaction between
quarks and gluons, but also for the self-interactions among the glu-
ons. The total Lagrangian for the non-Abelian color SU(3) symmetry
is thus:

1 oy
L= —ZGZ,,G‘”“’ + Y (iv* Dy — m)y
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where
A
D,=0,— zg;Ww
a a a abc c
G, = 0 W — Wi — gf " WIS,

The eight gauge fields W (a = 1,2,...,8) are the gluon fields. The
quark field 9 stands for a shorthand notation for space—time four-
component Dirac fields that are a three-component column matrix
in the color SU(3) space and the expression 1 (iy*D,, — m)i stands
for the sum over six species of quarks, u,d, ¢, s,t and b, that is,

Gy Dy —m)yp = D iy Dy — m).
u,d,c,s,t,b
This, in a nutshell, is quantum chromodynamics, QCD, the non-
Abelian gauge field theory of quark—gluon interaction that is consid-
ered the origin of strong nuclear force.

Clearly, QCD is much more complicated than QED and if we
could not solve the coupled equations of QED exactly, we are cer-
tainly not going to be able to find analytic solutions of QCD either.
In QED, as described in previous chapters, it was possible to find
approximate solutions by perturbation expansion in the electro-
magnetic coupling constants. The smallness of the electromagnetic
coupling constant, the fine structure constant, made perturbation
expansion possible. Such is, however, not the case, in general, for
strong nuclear interaction. The self-interactions among the gauge
fields, the gluons in this case, however, yields one very important
and useful property that is shared by all non-Abelian gauge theo-
ries. It is called the asymptotic freedom. According to this asymp-
totic freedom, at very short distances from each other, quarks behave
almost as free particles as a result of the coupling constant becoming
weaker. This carves out a domain of short distances in which per-
turbation expansion will be valid and makes it possible to carry
out some perturbative calculations in QCD. Such approach is called
the perturbative QCD' and while some calculations of quantities of

!For a comprehensive treatment of the perturbative QCD, see, for example, Foun-
dations of Quantum Chromodynamics, by T. Muta, World Scientific (1998).
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physical interest have yielded useful results, the perturbative QCD
is a subject that is still in progress. In sum, while QCD appears to
be promising — and it is certainly the only field theory for strong
nuclear interaction to date — the goal of constructing a successful
field theory for the strong interaction is still eluding us.

The situation with respect to weak nuclear interaction is even
more complicated than for the case of QCD. The group structure of
SU(2) is certainly simpler than that of SU(3), but the non-Abelian
gauge theory as applied to the weak nuclear force has a few grave
problems all its own. Transcription of the Yang—Mills formalism to
the case of weak SU(2) is, however, straightforward enough. The
three generators T are equal to %T“, the Pauli matrices, and the
structure constants are the familiar totally antisymmetric tensor 7€
The total Lagrangian for the non-Abelian weak SU(2) symmetry
is thus:

L= —%GZVGC””' + &(MNDM —m)y

where
Ta

D, =0,- ig?Wﬁ,

GY, = 0, W — 9, Wi — g WiWe.
The three gauge fields Wi (a = 1,2,3) would be the force particles
for weak nuclear interactions of quarks and leptons; they would be
for the weak force what photons are to the electromagnetic force.
Note the use of words “would be” rather than “are” (this will be
explained below). The Dirac field ¢ stands for a shorthand notation

for the sets of three doublets of quarks and three doublets of leptons
mentioned in the previous chapter, that is,

(@) ) 6)
) ) G

for leptons. The expression ¥ (iy*D,, —m) in the Lagrangian stands

for quarks and

for the sum over six doublets.
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The situation up to this point with respect to the weak nuclear
interaction is in exact parallel with the case for QCD. So what is
the problem? The problem is simply this. The spin one gauge parti-
cles, whether in QCD or in the case of weak SU(2), are by definition
massless. In the case of gluons of QCD, this does not present a prob-
lem since gluons are deemed unobservable by the dogma of quark
confinement that no color charges are to be physically observed. No
one would be concerned about the mass of unobservable particles and
their masses might as well be zero. In the case of weak nuclear interac-
tion, however, the masses of the physical spin one vector mesons that
mediate the weak interaction — the W-bosons — are anything but
zero. They are, in fact, very massive and there is no way that these
particles can correspond to the massless gauge fields Wj. On the
other hand, if we introduce explicitly a mass term into the Lagrangian
for these gauge fields, the resulting theory generates more types of
infinities that cannot be renormalized. The non-renormalizability of
all previous attempts to construct a field theory of weak interac-
tion can be traced back to the presence of the mass term in the
Lagrangian. The way out of this dilemma is a tortuous path called
“spontaneous symmetry breaking” of local gauge symmetry. First,
you adjoin the U(1) symmetry of QED to the weak SU(2) by mixing
up the third component of weak gauge fields, ij , with the Abelian
gauge field, By, of electromagnetism, thus:

A, = cos 0y, B, + sin HwWS
Z, = —sin 6, B, + cos GMWS

where the mixing angle ¢,, is called the Weinberg angle, A, is iden-
tified as the physical electromagnetic potential field, and Z,, is the
newly hypothesized neutral weak boson that forms the SU(2) triplet
of weak boson together with the original W-bosons,

1
Wi =—
V2

This is U(1) x SU(2) symmetry of combined electromagnetic and

1y 2
(W, £iW;).

weak interactions, the so-called unified theory of “electroweak” force.
The story of electroweak interaction does not end here but it is only
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the beginning. The masses of weak bosons are very heavy and the
photons, of course, must remain massless. The masses of the charged
W-bosons, W, check in at about 80 times that of a proton and the
neutral boson, Z, is about 91 times that of a proton. The idea is
then to invoke a mechanism by which the weak bosons can attain
non-zero masses, without explicitly bringing in the mass term into
the Lagrangian that would destroy the renormalizability of the the-
ory. This maneuver is called the mechanism of “spontaneous local
symmetry breaking” or sometimes referred to as the Higgs mecha-
nism. It is easily the fanciest maneuver in all of quantum field theory,
much fancier than even the cancellation of infinities by the mass and
charge renormatization.

It goes something like this. Start with the local gauge symmetric
SU(2) Lagrangian as given above, with massless gauge fields, intro-
duce a new spin zero field called the Higgs field — and hence the
Higgs particle — and break the local gauge symmetry in such a way
by a new interaction between the Higgs field and gauge fields so as
to generate terms in the Lagrangian that look like mass terms for
gauge fields. This is how the dilemma of mass problems is theoret-
ically solved. The full name for gauge field theory for weak nuclear
interaction is thus “spontaneously broken non-Abelian gauge field
theory.”? The Higgs particle that plays a crucial role in this theory
has so far eluded all attempts to discover it.

The non-Abelian gauge field theories have certainly made much
progress toward our understanding of strong and weak nuclear inter-
actions. But we are nowhere near coming close to the success of
Abelian gauge field theory of QED.

2For further discussions of this topic, see, for example, Gauge Theories of Weak
Interactions by J.C. Taylor, Cambridge University Press (1976).



Epilogue: Leaps of Faith

As stated in the opening paragraph of Prologue, relativistic quantum
field theory, or quantum field theory (QFT) for short, is the theo-
retical edifice of the Standard Model of elementary particle physics.
Looking back at its development over the past seven decades, from
the early 1930s till today, one cannot help but observe a single lineage
of evolution that is critically anchored in the emulation of electro-
dynamics. Having successfully formulated quantum electrodynamics,
the theory of electrons and photons in its basic form, we have been
attempting to expand the ideas of QED to other interactions within
atomic nuclei, namely, the strong and weak nuclear interactions. So
far, these attempts, while garnering some impressive successes, have
not yet attained the same level of completeness as the QED.

As pointed out in previous chapters, Emulation of Light I, IT and
IIT in Chapters 7, 10 and 12, there are three critical stages in which
the theory of electromagnetism has been emulated in order to extend
the framework of QED to two nuclear interactions. It may be worth-
while to recapitulate these emulations as a way of shedding some light
as to the direction of future developments. The three stages of emu-
lation of light are basically leaps of faith. Reasonable justifications
abound, but they are essentially leaps of faith.
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The first leap of faith is the introduction of the concept of matter
fields, as discussed in Chapter 7. The quantization of the electro-
magnetic field successfully incorporated photons as the quanta of
that field and — this is critical — the electromagnetic field (the
four-vector potential) satisfied a classical wave equation identical to
the Klein—Gordon equation for zero-mass case. A classical wave equa-
tion of the 19*" century turned out to be the same as the defining
wave equation of relativistic quantum mechanics of the 20" century!
This then led to the first leap of faith — the grandest emulation
of radiation by matter — that all matter particles, electrons and
positrons initially and now extended to all matter particles, quarks
and leptons, should be considered as quanta of their own quantized
fields, each to its own. The wavefunctions of the relativistic quantum
mechanics morphed into classical fields. This conceptual transition
from relativistic quantum mechanical wavefunctions to classical fields
was the first necessary step toward quantized matter fields. Whether
such emulation of radiation by matter is totally justifiable remains
an open question. It will remain an open question until we success-
fully achieve completely satisfactory quantum field theory of matter,
a goal not yet fully achieved.

The second leap of faith as far as the non-electromagnetic inter-
actions are concerned is the way we imitated the form of interaction
term in the Lagrangian, as discussed in Chapter 10. The particular,
and unique, form of electromagnetic interaction that defines QED
is firmly based on the Lagrangian and Hamiltonian formalism of
classical mechanics. The interaction term results from the substitu-
tion rule and the latter is derived from the Hamiltonian formula-
tion of charged particles in the electromagnetic field and that, in
turn, is based on the concept of the velocity-dependent potential in
the Lagrangian formalism. It is the substitution rule that gives us
the interaction term, the so-called trilinear form of interaction —
a Dirac field, a Dirac adjoint field and the photon field coupling
at a single space—time point. This trilinear coupling is then taken
to be a doctrine for all interactions and extended to strong and
weak interactions as well. The trilinear coupling form for the electro-
magnetic interaction is derived from the substitution rule; extending
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it to the cases of strong and weak interactions is simply an act of
emulation.

The third leap of faith comes into play when we extend the local
gauge principle to non-electromagnetic interactions, as discussed
in Chapter 12. Here again, the local gauge principle is a concept
abstracted from the QED Lagrangian. QED itself works fine with or
without the local gauge principle. In the case of QED, the local gauge
principle is simply an alternative to the substitution rule. When we
extend the local gauge principle to non-electromagnetic interactions,
we arrive at the non-Abelian gauge field theories, quantum chromo-
dynamics based on the color SU(3) symmetry and U(1) x SU(2)
spontaneously broken local gauge field theory for electroweak inter-
actions. They represent the current and latest stage in our formu-
lation of quantum field theory for non-electromagnetic interactions.
Extending the idea of the local gauge principle beyond QED, how-
ever, corresponds to another, the third, leap of faith.

The two of four basic forces, the electromagnetic force and gravity,
are accorded well-defined and successful theoretical framework, QED
and general relativity, respectively. The quest for similar successful
theories for strong and weak interactions, however, has yet to achieve
such lofty status. The relativistic quantum field theory for quarks and
leptons can be summarized as the successful QED and its emulation
for other interactions. Whether such an approach will eventually lead
to theories for non-electromagnetic interactions that are as successful
as QED remains an open question.



Appendix 1: The Natural
Unit System

Relativistic quantum field theory is an intricate infusion of the special
theory of relativity characterized by the constant ¢, the speed of light,
and quantum theory characterized by the constant A, the Planck’s
constant h divided by 27. It is convenient to use as the system of
units consisting of these two constants plus an arbitrary unit for
length, say, meters. Such a system is called the natural unit system.
In terms of the standard MKS system of units, they have the values:

c =3 x 10®m/sec
h=1.06 x 1073* Joule - sec or m? kg/sec
/e =0.35 x 107*2kg - m.

In the natural unit system, mass and time are expressed in terms of

L respectively, where m stands for meters.

m~ e h and me™

It is also customary in relativistic quantum field theory to set ¢ =
h = 1. Thus all physical quantities are expressed as powers of a length
unit, say, meters. With this choice of dimensions, energy, momentum
and mass become inverse lengths. The natural unit system with ¢ =
h = 1 provides convenience to theoretical expressions since the two
constants appear in virtually all formulas in relativistic quantum

field theory. When a result of a theoretical calculation needs to be
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compared with experimental data, however, one has to reinstate the
values of ¢ and h. In the world of elementary particles, masses as
well as energies and momenta are usually expressed in MeV or GeV
(mega-electron-volt or giga-electron-volt) and the length in terms of
fm (fermi) which is equal to 1071° meters. For example,

he ~ 197 MeV{im
2

£ ~ 1.44 MeVim.
4



Appendix 2: Notation

The coordinates in a three-dimensional space are denoted by r =
(x,7,2) or x = (z!, 2%, 23). Latin indices i, j, k, [ take on space values
1, 2, 3. The coordinates of an event in four-dimensional space-time
are denoted by the contravariant four-vector (¢ and A are set to be

equal to 1 in the natural unit system, Appendix 1)
:'U'LL = <x07 "L‘17 "'EQ’ xB) = (t7 :1:, y? Z)'

The coordinates in four-dimensional space-time are often
denoted, for brevity, simply by z = (20, 2!, 22, #3) without any Greek
indices, especially when used as arguments for functions, as in ¢(z).
Greek indices u,v, A,o take on the space—time values 0, 1, 2, 3.
The summation convention, according to which repeated indices are
summed, is used unless otherwise specified.

The covariant four-vector x, is obtained by changing the sign of

the space components:

Ly = (1’0,1’1,1’2,1‘3) = (t7 -, Y, _Z) = g,ul/xy
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with
10 0 0
lo-10 o
9w =10 0 -1 0
00 0 —1

The contravariant and covariant derivatives are similarly defined:
0 0
o <8t V) =
0 0
—=|=,-V | =0"
Oz, (875’ )

The momentum vectors and the electromagnetic four-potential are
defined by

and

P =(E,p)
and
Al = (¢, A),

respectively.



Appendix 3:
Velocity-Dependent Potential

The velocity-dependent potential within the Lagrangian formalism
for the case of charged particles in an electromagnetic field has far-
reaching consequences in the development of quantum field theory.
It is from this velocity-dependent potential that the substitution rule
for the electromagnetic interaction is derived. As such it is the very
foundation for the development of quantum electrodynamics, QED.
The principle of local gauge invariance of the QED Lagrangian is an
abstraction based on the substitution rule. The non-Abelian gauge
field theories come from applying this principle of local gauge invari-
ance to the cases of weak and strong nuclear interactions. The genesis
of the non-Abelian gauge field theories, therefore, can be traced all
the way back to the discovery of the velocity-dependent potential
in the 19*" century. Despite such paramount importance, the sub-
ject is treated often peripherally in textbooks on classical mechanics.
Here, we will briefly sketch out how the velocity-dependent potential
came about.

The electric and magnetic fields in vacuum can be expressed in
the form

B=VxA

95



96 A Story of Light

and
0A
E=-V¢— —
¢ ot
where A is the vector potential and ¢ the scalar potential
(¢ = 1 in the natural unit system). The Lorentz force formula,

F = ¢(E + v x B), can then be written as

F:q(—qu—aa?—va(VxA)).

Using the identity
vx(VxA)=V(v-A)—(v-V)A,

the Lorentz force equation can be further rewritten as
0A
F—q[—Vqﬁ—at—l—V(v-A)—(v-V)A} .
Combining the gradient terms, we have

F:q{—V(gﬁ—v.A)—(%?JF(V.V)A)].

The vector potential A is a function of z,y, z as well as of time ¢ and
the total derivative of A with respect to time is

dA  0A

ot _ Y VA

a o TVVA
and the force equation reduces to

dA
F=¢q|-V(p—Vv-A)——]|.
q|-V(¢ )=
Now, consider the derivative of (¢ —v-A) with respect to the velocity
v. Since the scalar potential is independent of velocity, we have

0 0
EW—V'A):—%(V'A):—A

and we have the last piece of the puzzle, namely,

dA d 0
‘dt:dt<av<¢“"A>>'
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The Lorentz force is derivable thus from the velocity-dependent
potential of the form (¢ — v - A) by the Lagrangian recipe

d
Feq|-V(o-v A+ 96y A)

and this leads to the all-important expression for the Lagrangian for
charged particles in an electromagnetic field

L=T—qp+qA - v.



Appendix 4: Fourier
Decomposition of Field

The Klein—-Gordon equation allows plane-wave solutions for the field
¢(x) and it can be written as

1 ikx
o(x) = W/b(k)ek dk

where kx = k2% — kr,dk = dk°dk and b(k) is the Fourier trans-
form that specifies particular weight distribution of plane-waves with
different k’s. Substituting the plane-wave solution into the Klein—
Gordon, we get

/b(kz)(—k2 +m?)e*dk =0
indicating b(k) to be of the form
b(k) = 6(k* — m?)c(k)

in which ¢(k) is arbitrary. The delta function simply states that as
the solution of Klein—-Gordon equation, the plane-wave solution must
obey the Einstein’s energy-momentum relation, k%> — m? = 0. The
integral over dk therefore is not all over the k — k four-dimensional
space, but rather only over dk with k° restricted by the relation [for
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notational convenience we switch from (k%)% to k3]
k2 —k?—m?=0.
Introducing a new notation
wr = +Vk?+m?2  with only the + sign,

we have k3 = w? and either kg = +wy or kg = —wy. Integrating out
ko, the plane-wave solutions decompose into “positive frequency” and
“negative frequency” parts. Using the identity
1
§(k* —m?) = —[6(ko — wi) + d(ko + wi)],
20.)k
the plane-wave solutions become
1 d3k ) .
- - LR () k)e~wkTo —1kx
x) = c wr, ke e
o) = s | g (e (10

+ ) (wp, k)eireog=ihkx)

Changing k to —k in the first term, we have the decomposition

¢@%j/fMMMh@HWWMﬁ@D

where
fel@) = e H and fi(2) = etk
(27)32wy, (27)32wy,
After the decomposition into “positive frequency” and “negative fre-

quency” parts, the notation ko, as in e~***, stands as a shorthand

for +wy, that is, after kg is integrated out, notation kg = +wy.



Appendix 5: Evolution of
Color Charges

It has been a little over four decades since the quark model of hadrons
was introduced into particle physics and during this period, and even
now, the scope of its success is truly impressive. The breath and depth
with which the quark model provides the basis for our understanding
of hadrons and the strong nuclear interaction are absolutely undis-
putable. That is not to say, however, that the quark model is with-
out a few disturbing shortcomings. From its earliest days, the quark
model had to struggle with two outstanding problems, namely, that
of fractional charge assignments and of what appeared to be violation
of Pauli’s exclusion principle.

According to the quark model, a proton is composed of two up
quarks and one down quark while a neutron is made up of one up
quark and two down quarks. In the units of absolute value of the
electronic charge, we have

Qp=1=2Qu+ Qq
Qn:OZQu+2Qd

where Qp, @Qn, Qu,Qq are the charges for proton, neutron, up and
down quarks, respectively. This fixes the charges for the up and down
quarks to be +2/3 and —1/3, respectively. Needless to say, this is
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rather bizarre. Over the past four decades, we have become so accus-
tomed to it that we accept it as a new “gospel” of physics, but the
fact remains that no particles of such bizarre charges have ever been
detected to date. We invoke the dogma of quark confinement that
no isolated quarks should ever be observed, but such confinement
has not been proven theoretically. As long as the quark confinement
remains more of a prayer than a proven theory, the issue of fractional
charges of quarks will remain an unerasable problem for the quark
model.

The problem of quark statistics that runs into a direct conflict
with Pauli’s exclusion principle could have been a serious flaw of
the quark model. In the same scheme that the quark contents of
proton and neutron are (u,u,d) and (u,d,d), respectively, we have
several other particles also composed of three quarks that are closely
related to protons and neutrons. Of these, two particles named N*T+
and N*~ present a serious problem with respect to Pauli’s exclusion
principle, one of the very basic principles of quantum physics that
has never been violated to date.

The quark contents of N**+ and N*~ are (u,u,u) and (d,d,d),
respectively, and according to the quark model all three up quarks
in N*** and all three down quarks in N*~ are completely identi-
cal to each other, respectively, in terms of all known attributes and
quantum numbers. This is to say, that the N*T+ and N*~ systems
are completely symmetric with respect to interchanges among their
quark constituents, a complete and direct violation of Pauli’s exclu-
sion principle which requires a system of spin half particles to be
completely antisymmetric with respect to interchanges.

Ideas proposed to overcome this dilemma can be classified into
two camps: in one camp, the apparent violation of the exclusion prin-
ciple was to be accepted, but quarks are allowed to obey new statis-
tics, all to its own, that up to three identical quarks can form a system
in a symmetrical manner. In other words, as far as quarks are con-
cerned, we would “change the rules.” This was the approach proposed
by O. W. Greenberg (University of Maryland) and is called the paras-
tatistics for quarks. In the second camp, the idea was to “keep the
rules,” but invoke a new set of quantum numbers by which quarks in a
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symmetric three-quark system could differ from each other. A three-
quark system can still be in an antisymmetric state — symmetric
with respect to all then known attributes, but antisymmetric with
respect to the altogether new attribute. The new attributes must nec-
essarily have at least three different values. Keeping Pauli’s exclusion
principle intact by invoking an entirely new tri-valued attribute was
the approach proposed by M. Y. Han (Duke University, the author of
this book) and Y. Nambu (University of Chicago, now retired). This
is the very origin of what has come to be called the “color” charge
of quarks.

In the second approach, a new SU(3) symmetry was introduced
to account for this new tri-valued attribute of quarks. The new
attributes were referred to simply as new SU(3) quantum numbers
and were not named in any specific way. In the original proposal by
Han and Nambu, the properties of these new attributes were utilized
to transform the charge assignments for quarks to the more conven-
tional values of 1, 0 and —1. The original charge assignments for the
up and down quarks, +2/3 and —1/3, can be shifted up by +1/3 to
values of 1 and 0 or can be shifted downward by —2/3 to values of 0
and —1, for example.

This “shifting” however meant that the new attributes introduced
to uphold Pauli’s exclusion principle could be related to electric
charges and hence had to be something that is physical and real,
something that could eventually be detected and measured. This pos-
sibility tended to make things quite complicated for various aspects
of quark physics and the idea of integer values for charges of quarks
gradually fell into disfavor. Until such time as if and when isolated
quarks can actually be observed and their charges measured, the idea
of new SU(3) symmetry being physically related to charges seemed
to be adding another layer of complexities without apparent benefit.

Several years had passed since the original proposal by Han
and Nambu when a much simpler way to deal with the tri-valued
attributes was put forward by M. Gell-Mann (Caltech, now retired).
According to this third proposal — and this is the current basis for
quark physics — the idea of a tri-valued new attribute defining a
new SU(3) symmetry for quarks is good (and later fully supported
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by experimental data), but the new attributes are not to be related
to any physically observable quantities. Insofar as quarks themselves
cannot be directly observed (the dogma of quark confinement), their
new attributes, the new degrees of freedom, cannot be related to
anything physical either.

In this expedient abstraction, the tri-valued attributes define an
SU(3) symmetry such that each species of quarks — u,d, ¢, s, t, and
b — comes in three distinct varieties; no physical properties are to be
directly associated with the attributes but now there are not 6 but 18
different quarks. The newly differentiated three types of each species
of quarks can be labeled in any set of three labels. Gell-Mann coined
a new name and called the tri-valued attributes “color,” as “red,”
“green,” and “blue.” Certainly a whimsical choice, but the name is
as good as any other set of three labels — “1, 2, and 3,” “alpha, beta,
and gamma,” or for that matter “vanilla, chocolate, and strawberry.”

Y

All that was needed was a name with three matching labels. The
name “color” stuck and the original SU(3) has since then been called
the color SU(3) symmetry and the new attributes became the color
charges of quarks. The color charges are to strong nuclear interaction
what the electric charges are to electromagnetic interaction; they are
the source charges for the strong nuclear force. In parallel to the label
QED, quantum electrodynamics for electromagnetic interaction, the
theory of strong nuclear interaction based on the color charges of
quarks was christened QCD, quantum chromodynamics. QED and
QCD are thus two of the three charter members of the Standard
Model, the third one being reserved for weak nuclear interaction.
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