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Preface

This book introduces quantum mechanics to scientists and engineers. It can be used as a text
for junior undergraduates onwards through to graduate students and professionals. The level
and approach are aimed at anyone with a reasonable scientific or technical background looking
for a solid but accessible introduction to the subject. The coverage and depth are substantial
enough for a first quantum mechanics course for physicists. At the same time, the level of
required background in physics and mathematics has been kept to a minimum to suit those also
from other science and engineering backgrounds.

Quantum mechanics has long been essential for all physicists and in other physical science
subjects such as chemistry. With the growing interest in nanotechnology, quantum mechanics
has recently become increasingly important for an ever-widening range of engineering
disciplines, such as electrical and mechanical engineering, and for subjects such as materials
science that underlie many modern devices. Many physics students also find that they are
increasingly motivated in the subject as the everyday applications become clear.

Non-physicists have a particular problem in finding a suitable introduction to the subject. The
typical physics quantum mechanics course or text deals with many topics that, though
fundamentally interesting, are useful primarily to physicists doing physics; that choice of
topics also means omitting many others that are just as truly quantum mechanics, but have
more practical applications. Too often, the result is that engineers or applied scientists cannot
afford the time or cannot sustain the motivation to follow such a physics-oriented sequence. As
a result, they never have a proper grounding in the subject. Instead, they pick up bits and
pieces in other courses or texts. Learning quantum mechanics in such a piecemeal approach is
especially difficult; the student then never properly confronts the many fundamentally
counterintuitive concepts of the subject. Those concepts need to be understood quite deeply if
the student is ever going to apply the subject with any reliability in any novel situation. Too
often also, even after working hard in a quantum mechanics class, and even after passing the
exams, the student is still left with the depressing feeling that they do not understand the
subject at all.

To address the needs of its broad intended readership, this book differs from most others in
three ways. First, it presumes as little as possible in prior knowledge of physics. Specifically, it
does not presume the advanced classical mechanics (including concepts such as Hamiltonians
and Lagrangians) that is often a prerequisite in physics quantum mechanics texts and courses.
Second, in two background appendices, it summarizes all of the key physics and mathematics
beyond the high-school level that the reader needs to start the subject. Third, it introduces the
quantum mechanics that underlies many important areas of application, including
semiconductor physics, optics, and optoelectronics. Such areas are usually omitted from
quantum mechanics texts, but this book introduces many of the quantum mechanical principles
and models that are exploited in those subjects.

It is also my belief and experience that using quantum mechanics in several different and
practical areas of application removes many of the difficulties in understanding the subject. If
quantum mechanics is only illustrated through examples that are found in the more esoteric
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branches of physics, the subject itself can seem irrelevant and obscure. There is nothing like
designing a real device with quantum mechanics to make the subject tangible and meaningful.

Even with its deliberately limited prerequisites and its increased discussion of applications, this
book offers a solid foundation in the subject. That foundation should prepare the reader well
for the quantum mechanics in either advanced physics or in deeper study of practical
applications in other scientific and engineering fields. The emphasis in the book is on
understanding the ideas and techniques of quantum mechanics rather than attempting to cover
all possible examples of their use. A key goal of this book is that the reader should
subsequently be able to pick up texts in a broad range of areas, including, for example,
advanced quantum mechanics for physicists, solid state and semiconductor physics and
devices, optoelectronics, quantum information, and quantum optics, and find they already have
all the necessary basic tools and conceptual background in quantum mechanics to make rapid
progress.

It is possible to teach quantum mechanics in many different ways, though most sequences will
start with Schrédinger’s wave equation and work forward from there. Even though the final
emphasis in this book may be different from some other quantum mechanics courses, I have
deliberately chosen not to take a radical approach here. This is for three reasons: first, most
college and university teachers will be most comfortable with a relatively standard approach
since that is the one they have most probably experienced themselves; second, taking a core
approach that is relatively conventional will make it easier for readers (and teachers) to
connect with the many other good physics quantum mechanics books; third, this book should
also be accessible and useful to professionals who have previously studied quantum mechanics
to some degree, but need to update their knowledge or connect to the modern applications in
engineering or applied sciences.

The background requirements for the reader are relatively modest, and should represent little
problem for students or professionals in engineering, applied sciences, physics, or other
physical sciences. This material has been taught with apparent success to students in applied
physics, electrical engineering, mechanical engineering, materials science, and other science
and engineering disciplines, from 3™ year undergraduate level up to graduate students. In
mathematics, the reader should have a basic knowledge in calculus, complex numbers,
elementary matrix algebra, geometrical vectors, and simple and partial differential equations.
In physics, the reader should be familiar with ordinary Newtonian classical mechanics and
elementary electricity and magnetism. The key requirements are summarized in two
background appendices in case the reader wants to refresh some background knowledge or fill
in gaps. A few other pieces of physics and mathematics are introduced as needed in the main
body of the text. It is helpful if the student has had some prior exposure to elementary modern
physics, such as the ideas of electrons, photons, and the Bohr model of the atom, but no
particular results are presumed here. The necessary parts of Hamiltonian classical mechanics
will be introduced briefly when required in later Chapters.

This book goes deeper into certain subjects, such as the quantum mechanics of light, than most
introductory physics texts. For the later Chapters on the quantum mechanics of light, additional
knowledge of vector calculus and electromagnetism to the level of Maxwell’s equations are
presumed, though again these are summarized in appendices.

One intent of the book is for the student to acquire a strong understanding of the concepts of
quantum mechanics at the level beyond mere mathematical description. As a result, I have
chosen to try to explain concepts with limited use of mathematics wherever possible. With the
ready availability of computers and appropriate software for numerical calculations and
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simulations, it is progressively easier to teach principles of quantum mechanics without as
heavy an emphasis on analytical techniques. Such numerical approaches are also closer to the
methods that an engineer will likely use for calculations in real problems anyway, and access
to some form of computer and high-level software package is assumed for some of the
problems. This approach substantially increases the range of problems that can be examined
both for tutorial examples and for applications.

Finally, I will make one personal statement on handling the conceptual difficulties of quantum
mechanics in texts and courses. Some texts are guilty of stating quantum mechanical
postulates, concepts and assumptions as if they should be obvious, or at least obviously
acceptable, when in fact they are far from obvious even to experienced practitioners or
teachers. In many cases, these are subjects of continuing debate at the highest level. I try
throughout to be honest about those concepts and assumptions that are genuinely unclear as to
their obviousness or even correctness. | believe it is a particularly heinous sin to pretend that
some concept should be clear to the student when it is, in fact, not even clear to the professor
(an overused technique that preserves professorial ego at the expense of the student’s!).

It is a pleasure to acknowledge the many teaching assistants who have provided much useful
feedback and correction of my errors in this material as I have taught it at Stanford, including
Aparna Bhatnagar, Julien Boudet, Eleni Diamanti, Onur Fidaner, Martina Gerken, Noah
Helman, Ekin Kocabas, Bianca Nelson, Tomas Sarmiento, and Scott Sharpe. I would like to
thank Ingrid Tarien for much help in preparing many parts of the course material, and Marjorie
Ford for many helpful comments on writing.

I am also pleased to acknowledge my many professorial colleagues at Stanford, including
Steve Harris, Walt Harrison, Jelena Vuckovic, and Yoshi Yamamoto in particular, for many
stimulating, informative, and provocative discussions about quantum mechanics. I would
especially like to thank Jelena Vuckovic, who successfully taught the subject to many students
despite having to use much of this material as a course reader, and who consequently corrected
numerous errors and clarified many points. All remaining errors and shortcomings are, of
course, my sole responsibility, and any further corrections and suggestions are most welcome.

David A. B. Miller
Stanford, California, September 2007



How to use this book

For teachers

The entire material in this book could be taught in a one-year course. More likely, depending
on the interests and goals of the teacher and students, and the length of time available, only
some of the more advanced topics will be covered in detail. In a two-quarter course sequence
for senior undergraduates and for engineering graduate students at Stanford, the majority of the
material here will be covered, with a few topics omitted and some covered in lesser depth.

The core material (Chapters 1 — 5) on Schrodinger’s equation and on the mathematics behind
quantum mechanics should be taught in any course. Chapter 4 gives a more explicit
introduction to the ideas of linear operators than is found in most texts. Chapter 4 also explains
and introduces Dirac notation, which is used from that point onwards in the book. This
introduction of Dirac notation is earlier than in many older texts, but it saves considerable time
thereafter in describing quantum mechanics. Experience teaching engineering students in
particular, most of whom are quite familiar with linear algebra and matrices from other
applications in engineering, shows that they have no difficulties with this concept.

Aside from that core there are many possible choices about the sequence of material and on
what material needs to be included in a course. The prerequisites for each Chapter are clearly
stated at the beginning of the Chapter. There are also some Sections in several of the Chapters
that are optional, or that may only need to be read through when first encountered. These
Sections are clearly marked. The discussion of methods for one-dimensional problems in
Chapter 11 can come at any point after the material on Schrodinger’s equations (Chapters 2
and 3). The core transfer matrix part could even be taught directly after the time-independent
equation (Chapter 2). The material is optional in that it is not central to later topics, but in my
experience students usually find it stimulating and empowering to be able to do calculations
with simple computer programs based on these methods. This can make the student
comfortable with the subject, and begin to give them some intuitive feel for many quantum
mechanical phenomena. (These methods are also used in practice for the design of real
optoelectronic devices.)

For a broad range of applications, the approximation methods of quantum mechanics (Chapter
6 and 7) are probably the next most important after Chapters 1 - 5. The specific topic of the
quantum mechanics of crystalline materials (Chapter 8) is a particularly important topic for
many applications, and can be introduced at any point after Chapter 7; it is not, however,
required for subsequent Chapters (except for a few examples, and some optional parts at the
end of Chapter 11), so the teacher can choose how far he or she wants to progress through this
Chapter. For fundamentals, angular momentum (Chapter 9) and the hydrogen atom (Chapter
10) are the next most central topics, both of which can be taught directly after Chapter 5 if
desired. After these, the next most important fundamental topics are spin (Chapter 12) and
identical particles (Chapter 13), and these should probably be included in the second quarter or
semester if not before.
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Chapter 14 introduces the important technique of the density matrix for connecting to
statistical mechanics, and it can be introduced at any point after Chapter 5; preferably the
student would also have covered Chapters 6 and 7 so they are familiar with perturbation
theory, though that is not required. The density matrix material is not required for subsequent
Chapters, so this Chapter is optional.

The sequence of Chapters 15 — 17 introduces the quantum mechanics of electromagnetic fields
and light, and also the important technique of second quantization in general, including
fermion operators (a technique that is also used extensively in more advanced solid state
physics). The inclusion of this material on the quantum mechanics of light is the largest
departure from typical introductory quantum mechanics texts. It does however redress a
balance in material that is important from a practical point of view; we cannot describe even
the simplest light emitter (including an ordinary light bulb.) or light detector without it, for
example. This material is also very substantial quantum mechanics at the next level of the
subject. These Chapters do require almost all of the preceding material, with the possible
exceptions of Chapters 8, 11, and 14.

The final two Chapters, Chapter 18 on a brief introduction to quantum information concepts
and Chapter 19 on the interpretation of quantum mechanics, could conceivably be presented
with only Chapters 1 — 5 as prerequisites. Preferably also Chapters 9, 10, 12, and 13 would
have been covered, and it is probably a good idea that the student has been working with
quantum mechanics successfully for some time before attempting to grapple with the tricky
conceptual and philosophical aspects in these final Chapters. The material in these Chapters is
well suited to the end of a course, when it is often unreasonable to include any further new
material in a final exam, but yet one wants to keep the students’ interest with stimulating ideas.

Problems are introduced directly after the earliest possible Sections rather than being deferred
to the ends of the Chapters, thus giving the greatest flexibility in assigning homework. Some
problems can be used as substantial assignments, and all such problems are clearly marked.
These can be used as “take-home” problems or exams, or as extended exercises coupled with
tutorial “question and answer” sessions. These assignments may necessarily involve some
more work, such as significant amounts of (relatively straightforward) algebra or calculations
with a computer. I have found, though, that students gain a much greater confidence in the
subject once they have used it for something beyond elementary exercises, exercises that are
necessarily often artificial. At least, these assignments tend to approach the subject from the
point of view of a problem to be solved rather than an exercise that just uses the last technique
that was studied. Some of these larger assignments deal with quite realistic uses of quantum
mechanics.

At the very end of the book, I also include a suggested list of simple formulae to be memorized
in each Chapter. These lists could also be used as the basis of simple quizzes, or as required
learning for “closed-book” exams.

For students

Necessary background

Students will come to this book with very different backgrounds. You may recently have
studied a lot of physics and mathematics at college level. If so, then you are ready to start. I
suggest you have a quick look at Appendices A and B just to see the notations used in this
book before starting Chapter 2.
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For others, your mathematical or physics background may be less complete, or it may be some
time since you have seen or used some of the relevant parts of these subjects. Rest assured,
first of all, that in writing this book I have presumed the least possible knowledge of
mathematics and physics consistent with teaching quantum mechanics, and much less than the
typical quantum mechanics text requires. Ideally, I expect you have had the physics and
mathematics typical of first or second year college level for general engineering or physical
science students. You do absolutely have to know elementary algebra, calculus, and physics to
a good pre-college level, however. I suggest you read the Background Mathematics Appendix
A and the Background Physics Appendix B to see if you understand most of that. If not too
much of that is new to you, then you should be able to proceed into the main body of this
book. If you find some new topics in these Appendices, there is in principle enough material
there to “patch over” those holes in knowledge temporarily so that you can use the
mathematics and physics needed to start quantum mechanics; these Appendices are not,
however, meant to be a substitute for learning these topics in greater depth..

Study aids in this book

Lists of concepts introduced

Because there are many concepts that the student needs to understand in quantum mechanics, |
have summarized the most important ones at the end of the Chapters in which they are
introduced. These summaries should help both in following the “plot” of the book, and in
revising the material.

Appendices

The book is as reasonably self-contained as I can make it. In addition to the background
Appendices A and B covering the overall prerequisite mathematics and physics, additional
background material needed later on is introduced in Appendices C and D (vector calculus and
electromagnetism), and one specific detailed derivation is given in Appendix E. Appendix F
summarizes the early history of quantum mechanics, Appendix G collects and summarizes
most of the mathematical formulae that will be needed in the book, including the most useful
ones from elementary algebra, trigonometric functions, and calculus. Appendix H gives the
Greek alphabet (every single letter of it is used somewhere in quantum mechanics), and
Appendix I lists all the relevant fundamental constants.

Problems

There are about 160 problems and assignments, collected at the ends of the earliest possible
Sections rather than at the ends of the Chapters.

Memorization list

Quantum mechanics, like many aspects of physics, is not primarily about learning large
numbers of formulae, but rather understanding the key concepts clearly and deeply. It will,
however, save a lot of time (including in exams!) to learn a few basic formulae by heart, and
certainly if you also understand these well, you should have a good command of the subject.

At the very end of the book, there is a list of formulae worth memorizing in each Chapter of
the book. None of these formulae is particularly complicated — the most complicated ones are
the Schrodinger wave equation in its two forms. Many of the formulae are simply short
definitions of key mathematical concepts. If you learn these formulae chapter by chapter as
you work through the book, there are not very many formulae to learn at any one time.
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The list here is not of the formulae themselves, but rather is of descriptions of them so you can
use this list as an exercise to test how successfully you have learned these key results.

Self-teaching

If you are teaching yourself quantum mechanics using this book, first of all, congratulations to
you for having the courage to tackle what most people typically regard as a daunting subject.
For someone with elementary college level physics and mathematics, I believe it is quite an
accessible subject in fact. But, the most important point is that you must not start learning
quantum mechanics “on the fly” by picking and choosing just the bits you need from this book
or any other. Trying to learn quantum mechanics like that would be like trying to learn a
language by reading a dictionary. You cannot treat quantum mechanics as just a set of
formulae to be substituted into problems, just as you cannot translate a sentence from one
language to another just by looking up the individual words in a dictionary and writing down
their translations. There are just so many counterintuitive aspects about quantum mechanics
that you will never understand it in that piecemeal way, and most likely you would not use the
formulae correctly anyway. Make yourself work on all of the first several Chapters, through at
least Chapter 5; that will get you to a first plateau of understanding. You can be somewhat
more selective after that. For the next level of understanding, you need to study angular
momentum, spin and identical particles (Chapters 9, 12, and 13). Which other Chapters you
use will depend on your interests or needs. Of course, it is worthwhile studying all of them if
you have the time!

Especially if you have no tutor of whom you can ask questions, then I also expect that you
should be looking at other quantum mechanics books as well. Use this one as your core, and
when I have just not managed to explain something clearly enough or to get it to “click” for
you, look at some of the others, such as the ones listed in the Bibliography. My personal
experience is that a difficult topic finally becomes clear to me once I have five books on it
open on my desk. One hope I have for this book is that it enables readers to access the more
specialized physics texts if necessary. Their alternative presentations may well succeed where
mine fail, and those other books can certainly cover a range of specific topics impossible to
include here.






Chapter 1

Introduction

1.1 Quantum mechanics and real life

Quantum mechanics, we might think, is a strange subject, one that does not matter for daily
life. Only a few people, therefore, should need to worry about its difficult details. These few,
we might imagine, run about in the small dark corners of science, at the edge of human
knowledge. In this unusual group, we would expect to find only physicists making ever larger
machines to look at ever smaller objects, chemists examining the last details of tiny atoms and
molecules, and perhaps a few philosophers absently looking out of windows as they wonder
about free will. Surely quantum mechanics therefore should not matter for our everyday
experience. It could not be important for designing and making real things that make real
money and change real lives. Of course, we would be wrong.

Quantum mechanics is everywhere. We do not have to look far to find it. We only have to
open our eyes. Look at some object, say a flower pot or a tennis ball. Why is the flower pot a
soothing terra-cotta orange color and the tennis ball a glaring fluorescent yellow? We could
say each object contains some appropriately colored pigment or dye, based on a material with
an intrinsic color, but we are not much further forward in understanding. (Our color technology
would also be stuck in medieval times, when artists had to find all their pigments in the colors
in natural objects, sometimes at great cost'.) The particularly bright yellow of our modern
tennis ball would also be quite impossible if we restricted our pigments to naturally occurring
materials.

Why does each such pigment have its color? We have no answer from the “classical” physics
and chemistry developed before 1900. But quantum mechanics answers such questions
precisely and completely”. Indeed, the beginning of quantum mechanics comes from one

! They had to pay particularly dearly for their ultramarine blue, a pigment made by grinding up the
gemstone lapis lazuli. The Spanish word for blue, azul, and the English word azure both derive from this
root. The word ultramarine refers to the fact that the material had to be brought from “beyond (ultra) the
sea (marine)” — i.e., imported, presumably also at some additional cost. Modern blue coloring is more
typically based on copper phthalocyanine, a relatively cheap, man-made chemical.

2 In quantum mechanics, photons, the quantum mechanical particles of light, have different colors
depending on their tiny energies; materials have energy levels determined by the quantum mechanics of
electrons, energy levels separated by similarly tiny amounts. We can change the electrons from one
energy level to another by absorbing or emitting photons. The specific color of an object comes from the
specific separations of the energy levels in the material. A few aspects of color can be explained without
quantum mechanics. Color can be sometimes result from scattering (such as the blue of the sky or the
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particular aspect of color. Classical physics famously failed to explain the color of hot objects’,
such as the warm yellow of the filament in a light bulb or the glowing red of hot metal in a
blacksmith’s shop. Max Planck realized in 1900 that if the energy in light existed only in
discrete steps, or quanta, he could get the right answer for these colors. And so quantum
mechanics was born.

The impact of quantum mechanics in explaining our world does not end with color. We have
to use quantum mechanics in explaining most properties of materials. Why are some materials
hard and others soft? For example, why can a diamond scratch almost anything, but a pencil
lead will slide smoothly, leaving a black line behind it?* Why do metals conduct electricity and
heat easily, but glass does not? Why is glass transparent? Why do metals reflect light? Why is
one substance heavy and another light? Why is one material strong and another brittle? Why
are some metals magnetic and others are not? We need, of course, a good deal of other science,
such as chemistry, materials science, and other branches of physics, to answer such questions
in any detail; but in doing so all of these sciences will rely on our quantum mechanical view of
how materials are put together.

So, we might now believe, the consequences of quantum mechanics are essential for
understanding the ordinary world around us. But is quantum mechanics useful? If we devote
our precious time to learning it, will it let us make things we could not make before? One
science in which the quantum mechanical view is obviously essential is chemistry, the science
that enables most of our modern materials. No-one could deny that chemistry is useful.

Suppose even that we set chemistry and materials themselves aside, and ask a harder question:
do we need quantum mechanics when we design devices — objects intended to perform some
worthwhile function? After all, the washing machines, eye-glasses, staplers, and automobiles
of everyday life need only 19™ century physics for their basic mechanical design, even if we
employ the latest alloys, plastics or paints to make them. Perhaps we can concede such
macroscopic mechanisms to the classical world. But when, for example, we look at the
technology to communicate and process information, we have simply been forced to move to
quantum mechanics. Without quantum theory as a practical technique, we would not be able to
design the devices that run our computers and our internet connections.

The mathematical ideas of computing and information had begun to take their modern shape in
the 1930’s, 1940’s and 1950’s. By the 1950’s, telephones and broadcast communication were
well established, and the first primitive electronic computers had been demonstrated. The
transistor and integrated circuit were the next key breakthroughs. These devices made complex
computers and information switching and processing practical. These devices relied heavily on
the quantum mechanical physics of crystalline materials.

white of some paints), diffraction (for example by a finely ruled grating or a hologram), or interference
(such as the varied colors of a thin layer of oil on the surface of water), all of which can be explained by
classical wave effects. All such classical wave effects are also explained as limiting cases of quantum
mechanics, of course.

* This problem was known as the “ultraviolet catastrophe”, because classical thermal and statistical
physics predicted that any warm object would emit ever increasing amounts of light at ever shorter
wavelengths. The colors associated with such wavelengths would necessarily extend past the blue, into
the ultraviolet — hence the name.

* Even more surprising here is that diamond and pencil lead are both made from exactly the same
element, carbon.



1.1 Quantum mechanics and real life 3

A well-informed devil’s advocate could still argue, though, that the design of transistors and
integrated circuits themselves was initially still an activity using classical physics. Designers
would still use the idea of resistance from 19™ century electricity, even if they added the ideas
of charged electrons as particles carrying the current, and would add various electrical barriers
(or “potentials”) to persuade electrons to go one way or another. No modern transistor designer
can ignore quantum mechanics, however. For example, when we make small transistors, we
must also make very thin electrical insulators. Electrons can manage to penetrate through the
insulators because of a purely quantum mechanical process known as tunneling. At the very
least, we have to account for that tunneling current as an undesired, parasitic process in our
design.

As we try to shrink transistors to ever smaller sizes, quantum mechanical effects become
progressively more important. Naively extrapolating the historical trend in miniaturization
would lead to devices the size of small molecules in the first few decades of the 21* century.
Of course, the shrinkage of electronic devices as we know them cannot continue to that point.
But as we make ever-tinier devices, quantum mechanical processes become ever more
important. Eventually, we may need new device concepts beyond the semi-classical transistor;
it is difficult to imagine how such devices would not involve yet more quantum mechanics.

We might argue, at least historically, about the importance of quantum mechanics in the design
of transistors. We could have no comparable debate when we consider two other technologies
crucial for handling information — optical communications and magnetic data storage.

Today nearly all the information we send over long distances is carried on optical fibers —
strands of glass about the thickness of a human hair. We very carefully put a very small light
just at one end of that fiber. We send the “ones” and “zeros” of digital signals by rapidly
turning that light on and off and looking for the pattern of flashes at the fiber’s other end. To
send and receive these flashes, we need optoelectronic devices — devices that will change
electrical signals into optical pulses and vice versa. All of these optoelectronic devices are
quantum mechanical on many different levels. First, they mostly are made of crystalline
semiconductor materials, just like transistors, and hence rely on the same underlying quantum
mechanics of such materials. Second, they send and receive photons, the particles of light
Einstein proposed to expand upon Planck’s original idea of quanta. Here these devices are
exploiting one of the first of many strange phenomena of quantum mechanics, the photo-
electric effect. Third, most modern semiconductor optoelectronic devices used in
telecommunications employ very thin layers of material, layers called quantum wells. The
properties of these thin layers depend exquisitely on their thicknesses through a text-book
piece of quantum mechanics known as the “particle-in-a-box” problem. That physics allows us
to optimize some of the physical processes we already had in thicker layers of material and
also to create some new mechanisms only seen in thin layers. For such devices, engineering
using quantum mechanics is both essential and very useful.

When we try pack more information onto the magnetic hard disk drives in our computers, we
first have to understand exactly how the magnetism of materials works. That magnetism is
almost entirely based on a quantum mechanical attribute called “spin” — a phenomenon with
no real classical analog. The sensors that read the information off the drives are also often now
based on sophisticated structures with multiple thin layers that are designed completely with
quantum mechanics.

Quantum mechanics is, then, a subject increasingly necessary for engineering devices,
especially as we make small devices or exploit quantum mechanical properties that only occur
in small structures. The examples given above are only a few from a broad and growing field
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that can be called nanotechnology. Nanotechnology exploits our expanding abilities to make
very small structures or patterns. The benefits of nanotechnology come from the new
properties that appear at these very small scales. We get most of those new properties from
quantum mechanical effects of one kind or another. Quantum mechanics is therefore essential
for nanotechnology.

1.2 Quantum mechanics as an intellectual achievement

Any new scientific theory has to give the same answers as the old theories everywhere these
previous models worked, and yet successfully describe phenomena that previously we could
not understand. The prior theories of mechanics, Newton’s Laws, worked very well in a broad
range of situations. Our models for light similarly were quite deep and had achieved a
remarkable unification of electricity and magnetism (in Maxwell’s equations). But when we
would try to make a model of the atom, for example, with electrons circling round some
charged nucleus like satellites in orbit round the earth, we would meet major contradictions.
Existing mechanics and electromagnetic theory would predict that any such orbiting electron
would constantly be emitting light; but atoms simply do not do that.

The challenge for quantum mechanics was not an easy one. To resolve these problems of light
and the structure of matter we actually had to tear down much of our view of the way the
world works, to a degree never seen since the introduction of natural philosophy and the
modern scientific method in the Renaissance. We were forced to construct a completely new
set of principles for the physical world. These were, and still are in many cases, completely
bizarre and certainly different from our intuition. Many of these principles simply have no
analogs in our normal view of reality.

We mentioned above one of the bizarre aspects of quantum mechanics: the process of
“tunneling” allows particles to penetrate barriers that are classically too high for them to
overcome. This process is, however, actually nothing like the act of digging a tunnel; we are
confronting here the common difficulty in quantum mechanics of finding words or analogies
from everyday experience to describe quantum mechanical ideas. We will often fail.

There are many other surprising aspects of quantum mechanics. The typical student starting
quantum mechanics is confused when told, as he or she often will be, that some question
simply does not have an answer. The student will, for example, think it perfectly reasonable to
ask what are the position and momentum (or, more loosely, speed) of some particle, such as an
electron. Quantum mechanics (or in practice its human oracle, the professor) will enigmatically
reply that there is no answer to that question. We can know one or the other precisely, but not
both at once. This particular enigma is an example of Heisenberg’s uncertainty principle.

Quantum mechanics does raise more than its share of deep questions, and it is arguable that we
still do not understand quantum mechanics. In particular, there are still major questions about
what a measurement really is in the quantum world. Erwin Schrédinger famously dramatized
the difficulty with the paradox of his cat. According to quantum mechanics, an object may
exist in a superposition state, in which it is, for example, neither definitely on the left, nor on
the right. Such superposition states are not at all unusual — in fact they occur all the time for
electrons in any atom or molecule. Though a particle might be in a superposition state, when
we try to measure it, we always find that the object is at some specific position, e.g., definitely
on the left or on the right. This mystical phenomenon is known as “collapse of the
wavefunction”. We might find that a bizarre idea, but one that, for something really tiny like
an electron, we could perhaps accept.
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But now Schrddinger proposes that we think not about an electron, but instead about his cat.
We are likely to care much more about the welfare of this “object” than we did about some
electron. An electron is, after all, easily replaced with another just the same’; there are plenty
of them, in fact something like 10** electrons in every cubic centimeter of any solid material.
And Schrodinger constructs a dramatic scenario. His cat is sealed in a box with a lethal
mechanism that may go off as a result of, e.g., radioactive decay. Before we open the box to
check on it, is the cat alive, dead, or, as quantum mechanics might seem to suggest, in some
“superposition” of the two?

The superposition hypothesis now seems absurd. In truth, we cannot check it here; we do not
know how to set up an experiment to test such quantum mechanical notions with macroscopic
objects. In trying to repeat such an experiment we cannot set up the same starting state exactly
enough for something as complex as a cat. Physicists disagree about the resolution of this
paradox. It is an example of a core problem of quantum mechanics: the process of
measurement, with its mysterious “collapse of the wavefunction”, cannot be explained by
quantum mechanics.® The proposed solutions to this measurement problem can be extremely
bizarre; in the “many worlds” hypothesis, for example, the world is supposed continually to
split into multiple realities, one for each possible outcome of each possible measurement.

Another important discussion centers round whether quantum mechanics is complete. When
we measure a quantum mechanical system, there is at least in practice some randomness in the
result. If, for example, we tried to measure the position of an electron in an atom, we would
keep getting different results. Or if we measured how long it took a radioactive nucleus to
decay, we would get different numbers each time. Quantum mechanics would correctly predict
the average position we would measure for the electron and the average decay time of the
nucleus, but it would not tell us the specific position or time yielded by any particular
measurement.

We are, of course, quite used to randomness in our ordinary classical world. The outcome of
many lotteries is decided by which numbered ball appears out of a chute in a machine. The
various different balls are all bouncing around inside the machine, driven probably by some air
blower. The process is sufficiently complicated that we cannot practically predict which ball
will emerge, and all have equal chance. But we do tend to believe classically that, if we knew
the initial positions and velocities of all the air molecules and the balls in the machine, we
could in principle predict which ball would emerge. Those variables are in practice hidden
from us, but we do believe they exist. Behind the apparent randomness of quantum mechanics,
then, are there just similarly some hidden variables? Could we actually predict outcomes
precisely if we knew what those hidden variables were? Is the apparent randomness of
quantum mechanics just because of our lack of understanding of some deeper theory and its
starting conditions, some “complete” theory that would supersede quantum mechanics?

Einstein believed that indeed quantum mechanics was not complete, that there were some
hidden variables that, once we understood them, would resolve and remove its apparent
randomness. Relatively recent work, centered round a set of relations called Bell’s inequalities,
shows rather surprisingly that there are no such hidden variables (or at least, not local ones that

5 Indeed, in quantum mechanics electrons can be absolutely identical, much more identical than the so-
called “identical” toys from an assembly line or “identical” twins in a baby carriage.

S If at this point the reader raises an objection that there is an inconsistency in saying that quantum
mechanics will only answer questions about things we can measure but quantum mechanics cannot
explain the process of measurement, the reader would be quite justified in doing so!
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propagate with the particles), and that, despite its apparent absurdities, quantum mechanics
may well be a complete theory in this sense.

It also appears that quantum mechanics is “non-local”: two particles can be so “entangled”
quantum mechanically that measuring one of them can apparently instantaneously change the
state of the other one, no matter how far away it is (though it is not apparently possible to use
such a phenomenon to communicate information faster than the velocity of light).”

Despite all its absurdities and contradictions of common sense, and despite the initial disbelief
and astonishment of each new generation of students, quantum mechanics works. As far as we
know, it is never wrong; we have made no experimental measurement that is known to
contradict quantum mechanics, and there have been many exacting tests. Quantum mechanics
is both stunningly radical and remarkably right. It is an astonishing intellectual achievement.

The story of quantum mechanics itself is far from over. We are still trying to understand
exactly what are all the elementary particles and just what are the implications of such theories
for the nature of the universe.® Many researchers are working on the possibility of using some
of the strange possibilities of quantum mechanics for applications in handling information
transmission. One example would send messages whose secrecy was protected the laws of
quantum physics, not just the practical difficulty of cracking classical codes. Another example
is the field of quantum computing, in which quantum mechanics might allow us to solve
problems that would be too hard ever to be solved by any conventional machine.

1.3 Using quantum mechanics

At this point, the poor student may be about to give up in despair. How can one ever
understand such a bizarre theory? And if one cannot understand it, how can one even think of
using it? Here is the good news: whether we think we understand quantum mechanics or not,
and whether there is yet more to discover about how it works, quantum mechanics is
surprisingly easy to use.

The prescriptions for using quantum mechanics in a broad range of practical problems and
engineering designs are relatively straightforward. They use the same mathematical techniques
most engineering and science students will already have mastered to deal with the “classical”
world’. Because of a particular elegance in its mathematics'®, quantum mechanical calculations
can actually be easier than those in many other fields.

The main difficulty the beginning student has with quantum mechanics lies in knowing which
of our classical notions of the world have to be discarded, and what new notions we have to

7 This non-locality is often known through the original “EPR” thought experiment or paradox proposed
by Einstein, Podolsky and Rosen.

¥ Such theories require relativistic approaches that are unfortunately beyond the scope of this book.

° In the end, most calculations require performing integrals or manipulating matrices. Many of the
underlying mathematical concepts are ones that are quite familiar to engineers used to Fourier analysis,
for example, or other linear transforms.

1 Quantum mechanics is based entirely and exactly on linear algebra. Unlike most other uses of linear
algebra, the fundamental linearity of quantum mechanics is apparently not an approximation.
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use to replace them.'' The student should expect to spend some time in disbelief and conflict
with what is being asserted in quantum mechanics — that is entirely normal! In fact, a good
fight with these propositions is perhaps psychologically necessary, like the clarifying catharsis
of an old-fashioned bar-room brawl.

And there is a key point that simplifies all the absurdities and apparent contradictions:
provided we only ask questions about quantities that can be measured, there are no
philosophical problems that need worry us, or at least that would prevent us from calculating
anything that we could measure.”> As we use quantum mechanical principles in tangible
applications, such as electronic or optical devices and systems, the apparently bizarre aspects
become simply commonplace and routine. The student may soon stop worrying about quantum
mechanical tunneling and Heisenberg’s uncertainty principle. In the foreseeable future, such
routine comprehension and acceptance may also extend to concepts such as non-locality and
entanglement as we press them increasingly into practical use.

Understanding quantum mechanics does certainly mark a qualitative change in one’s view of
how the world actually works."* That understanding gives the student the opportunity to apply
this knowledge in ways that others cannot begin to comprehend'®. Whether the goal is basic
understanding or practical exploitation, learning quantum mechanics is, in this author’s
opinion, certainly one of the most fascinating things one can do with one’s brain.

! The associated teaching technique of breaking down the student’s beliefs and replacing them with the

LT

professor’s “correct” answers has a lot in common with brainwashing!

"2 This philosophical approach of only dealing with questions that can be answered by measurement (or
that are purely logical questions within some formal system of logic), and regarding all other questions as
meaningless, is essentially what is known in the philosophical world as “logical positivism”. It is the
most common approach taken in dealing with quantum mechanics, at least at the elementary
philosophical level, and, by allowing university professors to dismiss most student questions as
meaningless, saves a lot of time in teaching the subject!

3 1t is undoubtedly true that, if one does not understand quantum mechanics, one does not understand
how the world actually works. It may also, however, be true that, even if one does understand quantum
mechanics, one still may not understand how the world works.

' Despite the inherent sense of superiority such an understanding may give the student, it is, however, as
many physicists have already regrettably found, not particularly useful to point this out at parties.



Chapter 2

Waves and quantum mechanics -
Schrodinger’s equation

Prerequisites: Appendix A Background mathematics. Appendix B Background physics.

If the world of quantum mechanics is so different from everything we have been taught before,
how can we even begin to understand it? Miniscule electrons seem so remote from what we
see in the world around us that we do not know what concepts from our everyday experience
we could use to get started. There is, however, one lever from our existing intellectual toolkit
that we can use to pry open this apparently impenetrable subject, and that lever is the idea of
waves. If we just allow ourselves to suppose that electrons might be describable as waves, and
follow the consequences of that radical idea, the subject can open up before us. Astonishingly,
we will find we can then understand a large fraction of those aspects of our everyday
experience that can only be explained by quantum mechanics, such as color and the properties
of materials. We will also be able to engineer novel phenomena and devices for quite practical
applications.

On the face of it, proposing that we describe particles as waves is a strange intellectual leap in
the dark. There is apparently nothing in our everyday view of the world to suggest we should
do so. Nevertheless, it was exactly such a proposal historically (de Broglie’s hypothesis) that
opened up much of quantum mechanics. That proposal was made before there was direct
experimental evidence of wave behavior of electrons. Once that hypothesis was embodied in
the precise mathematical form of Schrédinger’s wave equation, quantum mechanics took off.

Schrodinger’s equation remains to the present day one of the most useful relations in quantum
mechanics. Its most basic application is to model simple particles that have mass, such as a
single electron, though the extensions of it go much further than that. It is also a good example
of quantum mechanics, exposing many of the more general concepts. We will use these
concepts as we go on to more complicated systems, such as atoms, or to other quite different
kinds of particles and applications, such as photons and the quantum mechanics of light.
Understanding Schrodinger’s equation is therefore a very good way to start understanding
quantum mechanics. In this Chapter, we introduce the simplest version of Schrodinger’s
equation — the time-independent form — and explore some of the remarkable consequences of
this wave view of matter.

2.1 Rationalization of Schrodinger’s equation

Why do we have to propose wave behavior and Schrédinger equation for particles such as
electrons? After all, we are quite sure electrons are particles, because we know that they have
definite mass and charge. And we do not see directly any wave-like behavior of matter in our
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everyday experience. It is, however, now a simple and incontrovertible experimental fact that
electrons can behave like waves, or at least in some way are “guided” by waves. We know this
for the same reasons we know that light is a wave — we can see the interference and diffraction
that are so characteristic of waves. At least in the laboratory, we see this behavior routinely.

We can, for example, make a beam of electrons by applying a large electric field in a vacuum
to a metal, pulling electrons out of the metal to create a monoenergetic electron beam (i.e., all
with the same energy). We can then see the wave-like character of electrons by looking for the
effects of diffraction and interference, especially the patterns that can result from waves
interacting with particular kinds or shapes of objects.

One common situation in the laboratory is, for example, to shine such a beam of electrons at a
crystal in a vacuum. Davisson and Germer did exactly this in their famous experiment in 1927,
diffracting electrons off a crystal of nickel. We can see the resulting diffraction if, for example,
we let the scattered electrons land on a phosphor screen as in a television tube (cathode ray
tube); we will see a pattern of dots on the screen. We would find that this diffraction pattern
behaved rather similarly to the diffraction pattern we might get in some optical experiment; we
could shine a monochromatic (i.e., single frequency) light beam at some periodic structure'
whose periodicity was of a scale comparable to the wavelength of the waves (e.g., a diffraction
grating). The fact that electrons behave both as particles (they have a specific mass and a
specific charge, for example) and as waves is known as a “wave-particle duality.”

The electrons in such wave diffraction experiments behave as if they have a wavelength

A=— @.1)
p

where p is the electron momentum, and h is Planck’s constant

h = 6.626x107* Joule - seconds .

(This relation, Eq. (2.1), is known as de Broglie’s hypothesis). For example, the electron can
behave as if it were a plane wave, with a “wavefunction” y, propagating in the z direction, and
of the form’

w o exp(27iz/ 1), 2.2)

If it is a wave, or is behaving as such, we need a wave equation to describe the electron. We
find empirically* that the electron behaves like a simple scalar wave (i.e., not like a vector
wave, such as electric field, E, but like a simple acoustic (sound) wave with a scalar amplitude;
in acoustics the scalar amplitude could be the air pressure). We therefore propose that the
electron wave obeys a scalar wave equation, and we choose the simplest one we know, the

'Ie., a structure whose shape repeats itself in space, with some spatial “period” or length.

% This wave-particle duality is the first, and one of the most profound, of the apparently bizarre aspects of
quantum mechanics that we will encounter.

> We have chosen a complex wave here, exp(2ziz/A), rather than a simpler real wave, such as
sin(2zz/A) or cos(2zwz/ ), because the mathematics of quantum mechanics is set up to require the use
of complex numbers. The choice does also make the algebra easier.

* At least in the absence of magnetic fields or other magnetic effects.
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“Helmholtz” wave equation for a monochromatic wave. In one dimension, the Helmholtz
equation is

d
# - Ky 2.3)

This equation has solutions such as sin(kz), cos(kz), and exp(ikz) (and sin(-kz), cos(-kz), and
exp(-ikz)), that all describe the spatial variation in a simple wave. In three dimensions, we can
write this as

Vi =Ky (2.4)

where the symbol V? (known variously as the Laplacian operator, “del squared”, and “nabla”,
and sometimes written A ) means

o0 o &

Vie—t+—+—:,
ox> oy* oz

2.5)

where X, Y, and z are the usual Cartesian coordinates, all at right angles to one another. This has
solutions such as sin(k.r), cos(k.r), and exp(ik.r) (and sin(-k.r), cos(-k.r), and exp(-ik.r)),
where k and r are vectors. The wavevector magnitude, K, is defined as

k=27/1 (2.6)

or, equivalently, given the empirical wavelength exhibited by the electrons (de Broglie’s
hypothesis, Eq. (2.1))

k=p/h 2.7
where
hi=h/27 =1.055x10"*Joule -seconds
(a quantity referred to as “h bar”). With our expression for k (Eq. (2.7)), we can rewrite our
simple wave equation (Eq. (2.4)) as
—1n'Viy = ply (2.8)

We can now choose to divide both sides by 2m,, where, for the case of the electron, m, is the
free electron rest mass

m, =9.11x10"" kg
to obtain

o p
— Viy=-—t_ 2.9
rRAAET N4 (2.9)

o] 0

But we know for Newtonian classical mechanics, where p =m,v (with Vv as the velocity), that

2

P

[

= kinetic energy of an electron (2.10)

and, in general,

Total energy (E)=Kinetic energy + Potential energy (V (r)) (2.11)
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Note that this potential energy V(r) is the energy that results from the physical position (the
vector r in the usual coordinate space) of the particle.’

Hence, we can postulate that we can rewrite our wave equation (Eq. (2.9)) as
hz
2m

0

Vi =(E-V(r))y (2.12)

or, in a slightly more standard way of writing this,

o, B
(— o, V> +V (r)j(// =Ey (2.13)

which is the time-independent Schrédinger equation for a particle of mass m, .

Note that we have not “derived” Schrédinger’s equation. We have merely suggested it as an
equation that agrees with at least one experiment. There is in fact no way to derive
Schrodinger’s equation from first principles; there are no “first principles” in the physics that
precedes quantum mechanics that predict anything like such wave behavior for the electron.
Schrodinger’s equation has to be postulated, just like Newton’s laws of motion were originally
postulated. The only justification for making such a postulate is that it works.®

2.2 Probability densities

We find in practice that the probability P(r) of finding the electron near any specific point r
in space is proportional to the modulus squared, |y (r)|*, of the wave w(r) . The fact that we
work with the squared modulus for such a probability is not so surprising. First of all, it assures
that we always have a positive quantity (we would not know how to interpret a negative
probability). Second, we are already aware of the usefulness of squared amplitudes with
waves. The squared amplitude typically tells us the intensity (power per unit area) or energy
density in a wave motion such as a sound wave or an electromagnetic wave. Given that we
know that the intensity of electromagnetic waves also corresponds to the number of photons
arriving per unit area per second, we would also find in the electromagnetic case that the
probability of finding a photon at a specific point was proportional to the squared wave
amplitude; if we chose to use complex notation to describe an electromagnetic wave, we would
find that we would use the modulus squared of the wave amplitude to describe the wave
intensity, and hence also the probability of finding a photon at a given point in space.”

5 Though the symbol V is used, it does not refer to a voltage, despite the fact that the potential energy can
be (and often is) an electrostatic potential. It (and other energies in quantum mechanical problems) is
often expressed in electron-volts, this being a convenient unit of energy, but it is always an energy, not a
voltage.

% The reader should get used to this statement. Again and again, we will simply postulate things in
quantum mechanics, with the only justification being that it works.

7 Though the analogy between electromagnetic waves and quantum mechanical wave amplitudes may be
helpful here, the reader is cautioned not to take this too far. The wave amplitude in a classical wave, such
as an acoustic wave or the classical description of electromagnetic waves, is a measurable and
meaningful quantity, such as air pressure or electric field (which in turn describes the actual force that
would be experienced by a charge). The wave amplitude of a quantum mechanical wave does not
describe any real quantity, and it is actually highly doubtful that it has any meaning at all other than as a
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The fact that the probability is given by the modulus squared of some quantity, in this case the
wavefunction y, leads us also to call that quantity the “probability amplitude” or “quantum
mechanical amplitude.” Note that this probability amplitude is quite distinct from the
probability itself; to repeat, the probability is proportional to the modulus squared of the
probability amplitude. The probability amplitude is one of those new concepts that is
introduced in quantum mechanics that has little or no precedent in classical physics or, for that
matter, classical statistics. For the moment, we think of that probability amplitude as being the
amplitude of a wave of some kind; we will find later that the concept of probability amplitudes
extends into quite different descriptions, well beyond the idea of quantum mechanical waves,
while still retaining the concept of the modulus squared representing a probability.

This use of probability amplitudes in quantum mechanics is an absolutely central concept, and
a crucial but subtle one for the student to absorb. In quantum mechanics, we always first
calculate this amplitude (here a wave amplitude) by adding up all contributions to it (e.g., all
the different scattered waves in a diffraction experiment), and then take the squared modulus
of the result to come up with some measurable quantity. We do not add the measurable
quantities directly. The effect of adding the amplitudes is what gives us interference, allowing
cancellation between two or more amplitudes, for example. We will not see such a cancellation
phenomenon if we add the measurable quantities or probabilities from two or more sources
(e.g., electron densities) directly. A good example to understand this point is the diffraction of
electrons by two slits.

2.3 Diffraction by two slits

With our postulation of Schrédinger’s equation, Eq. (2.13), and our interpretation of | (r)
as proportional to the probability of find the electron at position r, we are now in a position to
calculate a simple electron diffraction problem, that of an electron wave being diffracted by a
pair of slits®. We need some algebra and wave mechanics to set up this problem, but it is well
worth the effort. This behavior is not only one we can use relatively directly to see and verify
the wave nature of electrons; it is also a conceptually important “thought experiment” in
understanding some of the most bizarre aspects of quantum mechanics, and we will keep
coming back to it.

We consider two open slits, separated by a distance S, in an otherwise opaque screen (see Fig.
2.1). We are shining a monochromatic electron beam of wavevector Kk at the screen, in the

way of calculating other quantities. A second very important difference is that, whereas a classical wave
with higher intensity would be described by a larger amplitude of wave, in general the states of quantum
mechanical systems with many electrons (or with many photons) cannot be described by quantum
mechanical waves simply with larger amplitudes. Instead, the description of multiparticle systems
involves products of the wave amplitudes of the waves corresponding to the individual particles, and
sums of those products, in a much richer set of possibilities than a simple increase of the amplitude of a
single wave. A third problem is that, in a proper quantum mechanical description of optics, there are
many situations possible in which we have photons, but in which there is not anything very like the
classical electromagnetic wave. Electromagnetic waves are not then actually analogous in a rigorous
sense to the quantum mechanical wave that describes electron behavior.

¥ In optics, this apparatus is known as Young’s slits, demonstrated by Thomas Young in about 1803. It is
a remarkable experiment that enables us both to see the wave nature directly, and also to measure the
wavelength without having to have some object at the same size scale as the wavelength itself. An
instrument on a size scale of the wavelength of light (less than one micron) would have been
unimaginable in 1803.
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direction normal to the screen. For simplicity, we presume the slits to be very narrow
compared to both the wavelength 4 =27/k and the separation s. We also presume the screen
is far away from the slits for simplicity, i.e., z, >> S, where z, is the position of the screen
relative to the slits.

For simplicity of analysis, we will regard the slits as essentially point sources’ of expanding
waves, in the spirit of Huygens’ principle. We write could write these waves in the form
exp(ikr) , where r is the radius from the source point'®. We have therefore one source (slit) at
X =5/2, and another at X =—5/2. The net wave should be the sum of the waves from these two
sources. Remembering that in the X-z plane the equation of a circle of radius r centered about a
point x=a and z=0 is r? =(X—a)? + z2?, the net wave at the screen is

(%) oc exp|:ik (x-s/2)’ +Z§}+exp[ik (x+5/2)" + zj} (2.14)

where the first term corresponds to a wave expanding from the upper slit, and the second
corresponds similarly with the wave from the lower slit. Note that we are adding the wave
amplitudes here. If we presume we are only interested in the pattern on the screen for relatively
small angles, i.e., X << z,, then'!

2 2 2
\/(x—s/z) +2; =zo\/l+(X—S/2) /73 =2,+(x=5/2) /22, (2.15)

=z,+X" /22, +5" /82, —sx/2z,

and similarly for the other exponent (though with opposite sign for the term in S). Hence, using
2 cos(6) = exp(i0) + exp(—if) , we obtain

w, (X) o exp(ig)cos(ksx/2z,) = exp(ig)cos(7sx/ Az, ) (2.16)

where ¢ is a real number (¢ =k(z, +X* /22, +5*/82,)), so exp(ig) is simply a phase factor.
Hence, on the screen,

|1,z/S (X)|2 o cos” (75X / Az,) = %[1 +cos(275X/ A2,) | (2.17)

So, if we shine a beam of monoenergetic electrons at the slits, and put some phosphorescent
screen (like our cathode ray tube screen) some distance behind the slits, we should expect to
see a (co)sinusoidal interference pattern, or “fringes”, on the screen, with the fringes separated
by a distance d, =1z,/s.'? This simple fringe pattern is somewhat idealized; with a more

 To be strictly correct, we should actually consider them as line sources since they extend in the

direction out of the paper in Fig. 2.1. To consider such line sources rigorously that would complicate our
mathematics to no real benefit in this explanation, however.

1% More rigorously, for spherically expanding waves, we ought to write them in the form exp(ikr)/r
because they must get weaker with distance, but since we are considering essentially one large distance
for the position of the screen, and we can neglect the r in the denominator.

' Remember the power series expansion +/1+a=1+a/2+... for small a, which can be proved by
Taylor (or Maclaurin) expansion.

12 Note, incidentally, that because the distance z, is much greater than the slit separation, we can
effectively measure the wavelength in such an experiment without ever having a measuring device that is
the size of the wavelength, which is one of the other beauties of this experiment.
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sophisticated diffraction model, and with finite width for the slits, the intensity of the fringes
falls off for larger X, but the basic interference fringes we predict here will be observed near the
axis as long as the slit separation is much larger than the slit width.

. screen 4 X
slits

electron
beam
— s I |

I

A

7 brightness
on screen

Fig. 2.1 A top view of diffraction from two slits, showing the form of the brightness of the
interference pattern on a phosphorescent screen.

The existence of these interference effects for the quantum mechanical amplitudes has some
bizarre consequences that we simply cannot understand classically. For example, suppose that
we block one of the slits so the electrons can only go through one slit. Then we would not see
the interference fringes. Near the axis we would see a broad featureless band" that is readily
understood from wave diffraction from a single slit. Such a broad band is already difficult to
explain based on a classical model of a particle; in a classical model, with the electron particles
all traveling from left to right in straight lines, we would expect to see a relatively sharp spot
on the screen. If we were determined to explain this broad band classically we might come up
with some explanation, involving electrons bouncing off the edges of the slit, that would at
least be qualitatively plausible (if ultimately incorrect). If we now uncover the second slit,
however, we see something that cannot be explained by a classical particle picture — parts of
the screen that were formerly bright now become dark (the minima of the (co)sinusoidal
interference pattern described above). How can we explain that opening a second source of
particles actually reduces the number of particles arriving at some point in the screen?

We might try to argue that the particles from the second slit were somehow bouncing off the
ones from the first slit, and hence avoiding some particular part of the screen because of these
collisions. If we repeat the experiment with extremely low electron currents so that there are
never two electrons in the apparatus at a given time, and take a time-exposure picture of the
phosphorescent screen, we will, however, see exactly the same interference pattern emerge,
and we cannot now invoke some explanation that involves particles colliding with one

'3 The actual intensity diffraction pattern from a single slit of width w is, in this simple Huygens
diffraction model, of the form {[2z,/kx][sin(kxw/2z,)]}?, which has a central “bright” band of width
47z, /kw , and progressively weaker bands each half this width. This band will be much larger in size
than the interference fringe separation in the two slit interference experiment as long as the slit width is
much less than the slit separation. Note, incidentally, that the function (sinX)/X is equal to 1 for x=0.
If the reader is not familiar with this function, also often known as the “sinc” function, now would be a
good time to graph it and understand how it behaves (it will come up again later).
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another.'* Hence we are forced even qualitatively to describe the behavior of the electrons in
terms of some process involving interference of amplitudes, and we also find that the wave
description postulated above does explain the behavior quantitatively.

Though a “two-slit” diffraction experiment of exactly the form described here might be quite
difficult to perform in practice with electrons, diffraction phenomena such as this can be seen
quite readily with electrons. Such diffraction is routinely used as a diagnostic and
measurement tool. Electrons can be accelerated by electric fields and, if necessary, focused
using magnetic and electric techniques. The wavelength associated with such accelerated
electrons can be very small (e.g., an Angstrom (1 A), which is 0.1 nm). Diffractive effects are
particularly strong when the wavelength is comparable to the size of an object (e.g.,
comparable to the slit spacing, S, above). Electrons can diffract quite strongly off crystal
surfaces, for example, where the spacings between the atoms are on the order of Angstroms or
fractions of a nanometer.

One diagnostic technique, reflection high-energy electron diffraction (RHEED), for example,
monitors the form of a crystal surface during the growth of crystalline layers; an electron beam
incident at a shallow angle relative to the surface (i.e., nearly parallel with the crystal surface)
is reflected and diffracted onto a phosphorescent screen to give a diffraction pattern
characteristic of the precise form of the surface. Electron diffraction is also intrinsic to the
operation of some kinds of electron microscope. In general, the fact that the electron
wavelength can be so small means that electron microscopes can be used to view very small
objects; it is practically difficult to image objects much smaller than a wavelength with any
optical or wave-based technique because of diffractive effects, but the small wavelength
possible in electron beams means that small objects or features can be seen.

Problems

2.3.1 Suppose we have a screen that is opaque to electrons except for two thin slits separated by 5 nm.
(We might imagine a plane of atoms with two missing rows of atoms, 5 nm apart, for example, as one
way we might make such a structure.) We accelerate electrons, which are initially stationary, through
1 V of potential. These electrons arrive at the back of the screen perpendicular to the surface. A
phosphorescent surface (e.g., like a cathode ray tube screen) is placed 10 cm away from the other side
of the screen and parallel to it.

(i) What is the spatial period of the bright and dark stripes seen on the phosphorescent surface
(i.e., the distance between the centers of the bright stripes)?

(i) What is the period of the stripes if we use protons (hydrogen nuclei) instead of electrons?
(The mass of a proton is ~ 1.67 x 107 kg.)

2.3.2 In an electron diffraction experiment, consider a screen with a single vertical slit of finite width, d,
in the x direction, “illuminated” from behind by a plane monochromatic electron wave of wavelength
A, with the wave fronts parallel to the plane of the slit (i.e., the wave is propagating perpendicularly
to the screen). Presume that we take the simple “Huygens’ principle” model of diffraction, and, as
above model the slit as a source of a spherically expanding (complex) wave (and hence each vertical
line in the slit is a source of a circularly expanding wave).

' Such experiments with single electrons and two slits raise other very interesting questions that probe
the heart of the bizarre nature of quantum mechanics. Classically, we are tempted to ask, for any given
electron passing through the slits to give one of the flashes on our screen that goes to make up the
interference pattern over time on our photographic plate, which slit did the electron go through? In
quantum mechanics that is apparently a meaningless question. Any attempt to measure which slit the
electron goes through apparently destroys the interference pattern, so there is no measurable situation that
corresponds to the question we wish to ask, and hence the question can be thrown out!
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(a) Find an approximate analytic expression for the form of the wave amplitude (by “form” we
mean here that you may neglect any constant factor multiplying the wave amplitude) at a plane a
distance z, from the screen (assuming z, >>d ).

(b) For a slit of width d = 1 pum, with an electron wavelength of A = 50 nm, plot the magnitude of
the light intensity we would see on a phosphorescent screen placed 10 cm in front of the slit, as a
function of the lateral distance in the X direction. Continue your plot sufficiently far in X to
illustrate all of the characteristic behavior of this intensity.

(c) Consider now two such slits in the screen, positioned symmetrically a distance 5 um apart in the
X direction, but with all other parameters identical to part (b) above. Plot the intensity pattern on
the phosphorescent screen for this case.

[Notes: You may presume that, in the denominator, the distance r from a slit to a point on the screen
is approximately constant at = z, (though you must not make this assumption for the numerator in
the calculation of the phase). You may also presume that for all X of interest on the screen, X <<z, , a
so-called paraxial approximation. You will probably want to use a computer program or high-level
mathematical computer package to plot the required functions. With this particular problem, you may
find that you may want to avoid asking the program to calculate the amplitude or brightness at
exactly Xx=0 since there may be a formal (though not actual) problem with evaluating the function
there.]

2.4 Linearity of qgquantum mechanics: multiplying by a

constant

Note that, in Schrédinger’s equation (2.15), we could multiply both sides by a constant a and
the equation would still hold. In other words, if i is a solution of Schrodinger’s equation, so
also is ay. This may seem a trivial property to point out, but the reason why this is possible is
because Schrodinger’s equation is linear. The wavefunction only appears in first order (i.e., to
the power one) in the equation; there are no second-order terms, such as w?, or any other
terms that are higher order in y. The linearity (in this particular sense) of equations in quantum
mechanics is of profound importance and generality. As far as we understand it, all quantum
mechanical equations are linear in this sense (i.e., linear in the quantum mechanical amplitude
for which the equation is being solved).

With classical fields, we often use linear equations, such as the differential equations that allow
us to solve for small oscillatory motion of, say, a pendulum. In such a classical case, the linear
equation is an approximation; a pendulum with twice the amplitude of oscillation will not
oscillate at exactly the same frequency, for example. Hence we cannot take the solution
derived at one amplitude of oscillation of the pendulum and merely scale it up for larger
amplitudes of oscillation, except as a first approximation. We should emphasize right away,
however, that, in quantum mechanics, this linearity of the equations with respect to the
quantum mechanical amplitude is not an approximation of any kind; it is apparently an
absolute property. Among other things, this linearity allows us to use the full power of linear
algebra to handle the mathematics of quantum mechanics, a point to which we shall return later
in some detail.

Problems

2.4.1 Which of the following differential equations is linear, in the sense that, if some function y(z) is a
solution (and this may well be a different function for each equation below), so also is the function

#(z) =ay(z),where a is an arbitrary constant? Justify your answers.
dy(z
(i) z% +0(z)y(z)=0 where g(z) is some specific function
z
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.. dy(z
(i) w(z) l/;g )+z//(z):0

2
(iif) ZEZ)‘*de;(Z) =cy(z) where b and c are constants.

z z
d’y(z)
=1

(iv) o

2
v) d (giIIZgZ)Jr(H‘y/(Z)‘Z)d‘/;iEZ):gV,(Z) where g is a constant

[Note: you do not need to solve these equations for the function y(z) . Merely show that if y(z) isa
solution, then ay(z) is or is not also a solution. Hint: is the equation for ¢(z) identical to the
equation for w(z), or does a unavoidably appear in the equation for ¢(z), meaning @(z) is
necessarily a solution of a different equation if we insist on arbitrary a?]

2.5 Normalization of the wavefunction

We have postulated above that the probability P(r) of finding a particle near a point r in space
is o (r)|>. So that we can use the concept of probability in its exact statistical sense, we
should be more precise about this definition. Specifically, let us define P(r) as the probability
per unit volume of finding the particle near the point r; P(r) can then rigorously be viewed
as a “probability density”. Then, for some very small (infinitesimal) volume d3r around r,"
the probability of finding the particle in that volume is P(r)d3r o« |w(r)|* d3r . Presumably,
we know that the particle is somewhere in the total volume of interest. Hence, the sum of such
probabilities, considering all possible such infinitesimal volumes, should equal unity, i.e.,

[P(r)d’r=1 (2.18)

where the integral is over the whole volume of interest. In general, unless we have been very
cunning or very lucky, we will find that our first attempt at solving Schrodinger’s equation will
lead to a solution y for which [|w(r)|* d’r # 1. This integral will, however, be real (because it
is an integral of a real quantity, | w(r) ), so we will in general have

[l () d'r =é (2.19)

where a is some number (possibly complex).'® But we know from the discussion above on
linearity that, if ¥ is a solution, so also is ¥ = ay , and we now have

[l (r) dr =1 (2.20)

15 Here d°r is just a shorthand for the volume element dxdydz (in conventional Cartesian coordinates X, Y,
and z)

' Functions that can be normalized in this way, i.e., that give a finite answer for an integral of their
squared modulus, are sometimes referred to as “square integrable”, or, slightly more specifically in
mathematical language, as being L? functions. Here the “L” refers to the name Lebesgue, and the
superscript “2” refers to the fact that we are talking about an integral of the square of the function. The
“Lebesgue” in turn refers to a formal method of integration that is more tolerant to some kinds of badly
behaved functions than the “Riemann” integration that we normally perform, though gives the same
answers for all normal situations. These details will not concern us here, and we mention these various
terms just in case the reader comes across them in other contexts. See Appendix A.
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This wavefunction solution y is referred to as a “normalized” wavefunction, and now there
is a direct correspondence between probability density and the modulus squared of the
wavefunction, i.e., P(r)=wy()[*. The use of such normalized wavefunctions is quite
convenient in the algebra of quantum mechanics.

Note, incidentally, that our plane wave, Eq. (2.2), cannot always be normalized in this way if
we take the space of interest to be infinite. There is no way we can normalize a plane wave
over an infinite space, for example, using this definition of normalization. Such problems can
often be removed by considering that the particle is confined to some finite box, even if we
take that box to be very large."”

2.6 Particle in an infinitely deep potential well (“particle

in a box™)

Now that we have introduced the (time-independent) Schrodinger equation and some basic
concepts like probability density and wavefunction normalization, we can proceed to solve
some simple problems, starting with the so-called “particle in a box”. In following Sections,
we will look at solutions for waves incident on steps, the particle in a box of finite depth, the
harmonic oscillator, and various problems related to linearly varying potentials. These
problems, and the hydrogen atom problem to which we will return in Chapter 10, are some of
the main, exactly solvable problems in quantum mechanics. There are, unfortunately, relatively
few other useful problems that can be solved exactly. Nearly all other practical problems have
to be solved by approximation techniques, to which we will return in Chapter 6."®

The exactly solvable problems do give us much insight into quantum mechanics in general,
and we will use these problems to illustrate a number of basic concepts in quantum mechanics.
These problems are also at the root of the solution of many other actual practical problems.
The particle-in-a-box problem is used routinely to design the so-called “quantum well”
optoelectronic structures that are at the core of a large fraction of modern semiconductor
optoelectronic devices, for example. The harmonic oscillator problem allows us to understand
vibrating systems of many kinds, including, for example, acoustic vibrations in solids, and also
electromagnetic waves, where it leads to the concept of photons (Chapter 15). The linearly
varying potential is important for understanding the quantum mechanics of accelerating
particles in fields, and has direct practical uses in semiconductor optical modulators and biased
semiconductor devices generally.

We consider the simple problem of a particle, of mass m, with a spatially-varying potential
V(z) in the z direction. We will not consider yet the fact that in a real structure the particle may
also be able to move in the X and y directions. In fact, for a simple problem like a particle in a
cubic box (or, more generally, a cuboidal box, i.e, one with rectangular faces), that motion can
be considered separately and its consequences added in later."”

17 We will return to another way of normalizing functions like the plane wave in Section 5.4.

'8 The fact that there are only a few problems that are exactly solvable in quantum mechanics is more a
statement about the limitations of mathematics than about the limitations of quantum mechanics. There
are also relatively few problems that can be solved exactly in classical mechanics.

1% Strictly, such a simple quantum-mechanical problem is "separable" mathematically in the three
directions.
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The (time-independent) Schrédinger equation for the particle’s motion in the z-direction in our
“one-dimensional” box is, then, the simple differential equation

R 8

p—— +V (2)y(z)=Ey(2) (2.21)

where E is the energy of the particle and w(z) is the wavefunction.

We are particularly interested in the case where the potential is a simple “rectangular” potential
well (sometimes known also as a “square” potential well), i.e., one in which the potential
energy is constant inside the well and rises abruptly at the walls. We choose the thickness of
the well to be L,. We can choose the value of V in the well to be zero for simplicity (this is
only a choice of energy origin, and makes no difference to the physical meaning of the final
results).

On either side of the well (i.e., for z<0 or z>L,), the potential, V, for this first problem, is
presumed infinitely high. (Such a structure is sometimes called an infinite potential well.)
Because these potentials are infinitely high, but the particle’s energy E is presumably finite, we
presume there can be no possibility of finding the particle in these regions outside the well.
Hence the wavefunction y must be zero inside the walls of the well, and, to avoid a
discontinuity in the wavefunction, we therefore reasonably ask that the wavefunction must also
go to zero inside the well at the walls®. Formally putting this "infinite well" potential into
Eq. (2.21), we have

n dy(z)
_2m—dzz _E,//(z) (2.22)

within the well, subject to the boundary conditions

w=0;, z=0,L (2.23)

Z

The solution to Eq. (2.22) is very simple. The reader may well recognize the form of the
equation (2.22). The general solution to this equation can be written

w(z) = Asin(kz)+ Bcos(kz) (2.24)

where A and B are constants, and k =~+/2mE/#? . The requirement that the wavefunction
goes to zero at Z =0 means that B =0. Because we are now left only with the sine part of
(2.24), the requirement that the wavefunction goes to zero also at z=1L, then means that
k =nz/L,, where n is an integer. Hence, we find that the solutions to this equation are, for the
wave,

v, (2)=A, sin[ j (2.25)

nzz
LZ

where A, is a constant that can be any real or complex number, with associated energies

20 1f the reader is bothered by the arguments here to justify these boundary conditions based on infinities
(and is perhaps mathematically troubled by the discontinuities we are introducing in the wavefunction
derivative), the reader can be assured that, if we take a well of finite depth, and solve that problem with
boundary conditions that are more mathematically reasonable, the present “infinite well” results are
recovered in the limit as the walls of the well are made arbitrarily high.



20

Chapter 2 Waves and quantum mechanics — Schrédinger’s equation

i (”—”] (2.26)

T

We can restrict n to being a positive integer, i.e.,

n=12, ... (2.27)

for the following reasons. Since sin(—a)=—sin(a) for any real number a, the solutions with
negative n are actually the same solutions as those with positive n; all we would have to do to
turn one into the other is change the sign of the constant A,, and the sign of that is arbitrary
anyway. The solution with n =0 is a trivial case; the wavefunction would be zero everywhere.
If the wavefunction is zero everywhere, the particle is simply not anywhere, so the n=0
solution can be discarded. The resulting energy levels and wavefunctions are sketched in Fig.
2.2.

Solutions such as these, with a specific set of allowed values of a parameter (here energy) and
with a particular function solution associated with each such value, are called eigen solutions;
the parameter value is called the eigenvalue, the equation that gives rise to such solutions (here
Eq. (2.21)) is called the eigenequation and the function is called the eigenfunction. It is
possible to have more than one eigenfunction associated with a given eigenvalue, a
phenomenon known as degeneracy. The number of such states with the same eigenvalue is
sometimes called the degeneracy. Here, since the parameter is an energy, we can also call these
eigenvalues the eigenenergies, and can refer to the eigenfunctions as the energy
eigenfunctions.

Incidentally, we can see that the eigenfunctions in Fig. 2.2 have a very definite symmetry with
respect to the middle of the well. The lowest (n = 1) eigenfunction is the same on the right as
on the left. Such a function is sometimes called an “even” function, or, equivalently, is said to
have “even parity”. The second (n = 2) eigenfunction is an exact inverted image, with the
value at any point to the right of the center being exactly minus the value of the mirror image
point on the left of the center. Such a function is correspondingly called an “odd” function or
has “odd parity”. For this particular problem, the functions alternate between being even and
odd, and all of the solutions are either even or odd, i.e., all the solutions have a definite parity.
It is quite possible for solutions of quantum mechanical problems not to have either odd or
even behavior; such a situation could arise if the form of the potential was not itself symmetric.
In situations where the potential is symmetric, however, such odd and even behavior is very
common, and can be quite useful since it can enable us to conclude that certain integrals and
other quantum mechanical calculated properties will vanish exactly, for example.

energy wavefunction
........ n=3 [.\7[.\
n=2 R W,
n=1 PN
-
L

Fig. 2.2. Sketch of the energy levels in an infinitely deep potential well and the associated
wavefunctions.
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For completeness in this solution, we can normalize the eigenfunctions. We have

LI
[IA [ sin’ (E]dz —|APL (2.28)
0 I_Z 2
To have this integral equal one for a normalized wavefunction, we therefore should choose
|An| =(2/L,)"*. Note that A, can in general be complex, and it should be noted that the
eigenfunctions are arbitrary within a constant complex factor; i.e., even the normalized
eigenfunction can be arbitrarily multiplied by any factor exp(if) (where 6 is real). By
convention, here we choose these eigenfunctions to be real quantities for simplicity, so the

normalized wavefunctions become
2 nrzz
Z)= |—sin| — 2.29
)= [Fan[ 22 22

Now we have mathematically solved this problem. The question is, what does this solution
mean physically? We started out here by considering the known fact that electrons behave in
some ways like propagating waves, as shown by electron diffraction effects. We constructed a
simple wave equation that could describe such effects for monochromatic (and hence
monoenergetic) electrons. What we have now found is that, if we continue with this equation
that assumes the particle has a well-defined energy and put that particle in a box, there are only
discrete values of that energy possible, with specific wavefunctions associated with each such
value of energy. We are now going beyond the wave-particle duality we discussed before. This
problem is showing us our first truly “quantum” behavior in the sense of the discreteness (or
“quantization”) of the solutions and the “quantum” steps in energy between the different
allowed states.

There are several basic points about quantum confinement that emerge from this "particle-in-a-
box" behavior that are qualitatively generally characteristic of such systems where we confine
a particle in some region, and are very different from what we expect classically.

First, there is only a discrete set of possible values for the energy (Eq. (2.26)).

Second, there is a minimum possible energy for the particle, which is above the energy of
the classical "bottom" of the box. In this problem, the lowest energy corresponds to n =1,
with the corresponding energy being E; = (% /2m)(z/L,)? . This kind of minimum energy
is sometimes called a "zero point" energy.

Third, the particle, as described by the modulus squared, |1//n|2 , of the appropriate
eigenfunction, is not uniformly distributed over the box, and its distribution is different for
different energies. It is never found very near to the walls of the box. In general, the
probability of finding the electron at a particular point in the box obeys a kind of standing
wave pattern. In the lowest state (n=1), it is most likely to be found near the center of the
box. In higher states, there are points inside the box, away from the walls and
corresponding to the other zeros of the sinusoidal eigenfunctions, where the particle will
never be found.

All of these behaviors are very unlike the classical behavior of a classical particle (e.g., a
billiard ball) inside a box.

We can also note that each successively higher energy state has one more “zero” in the
eigenfunction (i.e., one more point where the function changes sign from positive to negative
or vice versa). This is a very common behavior in quantum mechanics.
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We can use this simple example to get some sense of orders of magnitude in quantum
mechanics. Suppose we confine an electron in a box that is 5 A (0.5 nm) thick, a characteristic
size for an atom or a unit cell in a crystal. Then the first allowed level for the electron is found
at B =(72/2my)(m/5%x10710)2 =2.4x10719].

In practice in quantum mechanics, it is usually inconvenient to work with energies in Joules. A
more useful practical unit is the electron-Volt (eV). An electron-Volt is the amount of energy
acquired by an electron in moving through an electric potential change of 1 V. Since the
magnitude of the electronic charge is

ex1.602x107" C

and the energy associated with moving such a charge through an electrostatic potential change
of U is exU , then one electron-volt (1 eV) corresponds to an energy =1.602x10-19J. With
this practical choice of energy units, the first allowed level in our 5 A wide well is
2.4x101°J =1.5 eV above the energy of the bottom of the well. The separation between the
first and second allowed energies ( E, — E; =3E; ) is ~ 4.5 eV, which is of the same magnitude
as major energy separations between levels in an atom. (Of course, this one dimensional
particle-in-a-box model is hardly a good one for an atom, but it does give a sense of energy
and size scales.)

Problems

2.6.1 An electron is in a potential well of thickness 1 nm, with infinitely high potential barriers on either
side. It is in the lowest possible energy state in this well. What would be the probability of finding the
electron between 0.1 and 0.2 nm from one side of the well?

2.6.2 Which of the following functions have a definite parity relative to the point x=0 (i.e., we are
interested in their symmetry relative to X =0)? For those that have a definite parity, state whether it
is even or odd.

(i) sin(x)

(ii) exp(ix)

(iii) (x—a)(x+a)

(iv) exp(ix) +exp(—ix)
(v) x(x2-1)

2.6.3 Consider the problem of an electron in a one-dimensional “infinite” potential well of width L, in
the z direction (i.e., the potential energy is infinite for z <0 and for z > L,, and, for simplicity, zero
for other values of z ). For each of the following functions, in exactly the form stated, is this function
a solution of the time-independent Schrodinger equation?

(a) sin(77z/L,)

(b) cos(27zz/L,)

(c¢) 0.5sin(37z/L,)+0.2sin(7z/L,)
(d) exp(—0.4i)sin(27z/L,)

2.6.4 Consider an electron in a three-dimensional cubic box of side length L, . The walls of the box are
presumed to correspond to infinitely high potentials.

(i) Find an expression for the allowed energies of the electron in this box. Express your result in
terms of the lowest allowed energy, E{*, of a particle in a one-dimensional box.

(i1) State the energies and describe the form of the wavefunctions for the 4 lowest energy states.

(iii) Are any of these states degenerate? If so, say which, and also give the degeneracy associated
with any of the eigenenergies you have found that are degenerate.
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[Note: This problem can be formally separated into three uncoupled one-dimensional equations, one
for each direction, with the resulting wavefunction being the product of the three solutions, and the
total energy being the sum of the three energies. This is easily verified by presuming this separation
does work and finding that the product wavefunction is indeed a solution of the full three-
dimensional equation. ]

2.7 Properties of sets of eigenfunctions

Completeness of sets — Fourier series

As we can see from Eq. (2.29), the set of eigenfunctions for this problem is the set of sine
waves that includes all the harmonics of a sine wave that has exactly one half period within the
well (i.e., sine waves with two half periods (one full period), three half periods, etc.). This set
of functions has a very important property, very common in the sets of functions that arise in
quantum mechanics, called “completeness”. We will discuss completeness in greater detail
later, but we can illustrate it now through the relation of this particular set of functions to
Fourier series.

The reader may well be aware that we could describe, for example, the movement of the
loudspeaker in an audio system either in terms of the actual displacements of the loudspeaker
cone at each successive instant in time, or, equivalently, in terms of the amplitudes (and
phases) of the various frequency components that make up the music being played. These two
descriptions are entirely equivalent, and both are “complete”; any conceivable motion can be
described by the list of actual positions in time (so that approach is ‘“complete”), or
equivalently by the list of the amplitudes and phases of the frequency components.

The calculation of the frequency components required to describe the motion from the actual
displacements in time is called Fourier analysis, and the resulting way of representing the
motion in terms of these frequency components is called a Fourier series.

There are a few specific forms of Fourier series®'. For a situation where we are interested in the
behavior from time zero to time t,, an appropriate Fourier series to represent the loudspeaker
displacement, f(t) would be

()= a, sin(ntit] (2.30)

where the a, are the relevant amplitudes.”

We can see now that we could similarly represent any function f(z) between the positions
z=0 and z=L, as what we will now call, using a more general notation, an “expansion in
the set of (eigen)functions”, y,(z) from Eq. (2.29),

21 . . . . . . . . . .

Fourier series can be constructed with combinations of sine functions, combinations of cosine
functions, combinations of sine and cosine functions, and combinations of complex exponential
functions.

2 Strictly, with this choice of sine Fourier series, we have to exclude the end points t =0 and t =t,,
because there the function would have to be zero if we use this expansion. We can use this expansion to
deal with functions that have finite values at any finite distance from these end points, however, so if we
exclude the end points, this expansion is complete.
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Za sm( J Zb v, ( (2.31)

where b, =./L,/2 a, to account for our formal normalization of the w, . The coefficients a,
are the so-called “expansion coefficients” in the expansion of the function f(z) in the
functions sin(nzz/L,). Similarly the coefficients b, are the expansion coefficients of f(z) in
the functions ,,(2) .

Z

Thus we have found that we can express any function between positions z=0 and z=1L, as
an expansion in terms of the eigenfunctions of this quantum mechanical problem. We justified
this expansion through our understanding of Fourier analysis. There are many other sets of
functions that are also complete, and we will return to generalize these concepts later.

A set of functions such as the w, that can be used to represent an arbitrary function f(z) is
referred to as a “basis set of functions” or, more simply, a “basis”. The set of coefficients
(amplitudes), b,, would then be referred to as the “representation” of f(z) in the basis w, .
Because of the completeness of the set of basis functions y,, this representation is just as
good a one as the set of the amplitudes at every point z between zero and L, required to
specify or “represent” the function f(z) in ordinary space.

The eigenfunctions of differential equations are very often complete sets of functions. We will
find quite generally that the sets of eigenfunctions we encounter in solving quantum
mechanical problems are complete sets, a fact that turns out to be mathematically very useful,
as we will see in later Chapters.

Orthogonality of eigenfunctions

The set of functions ,(z) have another important property, which is that they are
“orthogonal”. In this context, two functions g(z) and h(z) are orthogonal® (formally, on the
interval 0 to L, ) if**

LZ

!g*(z)h(z)dz=0 (2.32)

It is easy to show for the specific , sine functions (Eq. (2.29)) that

LZ

[vi(2)y, (2)dz=0 for n=m (2.33)

and hence that the different eigenfunctions are orthogonal to one another. Indeed, it is obvious
from parity considerations, without performing the integral algebraically, that this integral will
vanish if y, and y, have opposite parity; in such a case, the product function will have odd
parity with respect to the center of the well, and the net integral of any odd function is zero.
Hence all the cases where n is an even number and m is an odd number, or where n is an odd
number and m is an even number, lead to a net zero integral. The other cases are not quite so

2 We formally presume that neither of these functions is zero everywhere (which would have made this
orthogonality integral trivial).

2 g*(2) is the complex conjugate of g(z). This explicit use of the complex conjugate may seem

redundant given that the specific eigenfunctions we have considered so far have all been real, but this
gives a more general statement of the orthogonality condition.
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obvious, but performing the actual integration shows zero net integral for all cases where
n=m.> For n = m, the integral reduces to the normalization integral already performed (Eq.
(2.28)). Introducing the notation known as the Kronecker delta

O =0, NZM

234
5”” :1 ( )

we can therefore write

LZ

jy/;(z)y/m(z)dzzanm (2.35)

0

The relation Eq. (2.35) expresses both the fact that all different eigenfunctions are orthogonal
to one another, and that the eigenfunctions are also normalized. A set of functions obeying a
relation like Eq. (2.35) is said to be “orthonormal”, i.e., both orthogonal and normalized, and
Eq. (2.35) is sometimes described as the orthonormality condition. Orthonormal sets turn out
to be particularly convenient mathematically, so most basis sets are chosen to be orthonormal.

The property of the orthogonality of different eigenfunctions is again a very common one in
quantum mechanics, and is not at all restricted to this specific simple problem where the
eigenfunctions are sine waves.

Expansion coefficients

The orthogonality (and orthonormality) of a set of functions makes it very easy to evaluate the
expansion coefficients. Suppose we want to write the function f (X) in terms of a complete set
of orthonormal functions i, (X) ,i.e.,

f(x)=> cw,(x) (2.36)

In general, incidentally, it is simple to evaluate the expansion coefficients ¢, in Eq. (2.36).
Explicitly, multiplying Eq. (2.36) on the left by (X) and integrating, we have

jw; (x) f(x)dx = Iw; (X)|:Zn:Cnl//n (x)}dx
= ZCnIW; (X, (X)dx =>"c, 0, (2.37)

= Cm
Problems
2.7.1 Which of the following pairs of functions are orthogonal on the interval —1 to +1?
1) x, x2
(i) x, x3

(iii)X, sin X

2 Note that sin(n@)sin(mé) = (1/2)[cos(n —m)& —cos(n+ m)& |. With &= rz/L,, the integration limits
for 6 become 0 to 7. For a function cos pd, except for p = 0, the function is either “odd” round about the
middle of the integration interval (i.e., round about 77/2), so its integral is zero, or the integration is over a
complete number of periods of the cosine functions, so its integral is again zero. p = 0 occurs only for n
= m in the first cosine term, and then the integration reduces to the normalization integral already
performed.



26 Chapter 2 Waves and quantum mechanics — Schrédinger’s equation

(iv)x, exp(izx/2)
(v) exp(—27ix), exp(27ix)

2.7.2 Suppose we wish to construct a set of orthonormal functions so that we can use them as a basis set.
We wish to use them to represent any function of X on the interval between —1 and +1. We know
that the functions fo(x)=1, fi(X)=x, f,(X)=x2, ..., f,(X)=x", ... are all independent, that is,
we cannot represent one as a combination of the others, and in this problem we will form
combinations of them that can be used as this desired orthonormal basis.

(1) Show that not all of these functions are orthogonal on this interval. (You may prove this by
finding a counter example.)
(i) Construct a set of orthogonal functions by the following procedure:

a) Choose fy(x) as the (unnormalized) first member of this set, and normalize it to obtain the
resulting normalized first member, go(X) .

b) Find an (unnormalized) linear combination of g,(X) and f,(x) of the form f,(X)+ a,09¢(X)
that is orthogonal to go(X) on this interval (this is actually trivial for this particular case),
and normalize it to give the second member, ¢;(X), of this set.

¢) Find a linear combination of the form f,(X)+ @0o(X)+a,,0;(Xx) that is orthogonal to

Jo(X), and g;(X) on this interval, and normalize it to obtain the third member, g,(X) of

this set.

d) Write a general formula for the coefficient ajj in the i+1th unnormalized member of this
set.

e) Find the normalized fourth member, g;(X), of this set, orthogonal to all the previous
members.

f) Is this the only set of orthogonal functions for this interval that can be constructed from the
powers of x? Justify your answer.

[Note: The above kind of procedure is known as Gram-Schmidt orthogonalization, and you should
succeed in constructing a version of the Legendre polynomials by this procedure.]

2.8 Particles and barriers of finite heights

Boundary conditions

Thus far, we have only considered a potential V that is either zero or infinite, which led to very
simple boundary conditions for the problem (the wavefunction was forced to be zero at the
boundary with the infinite potential). We would like to consider problems with more realistic,
finite potentials, though for simplicity of mathematical modeling we would still like to be able
to deal with abrupt changes in potential, such as a finite potential step.”®

In particular, we would like to know what the boundary conditions should be on the
wavefunction, w, and its derivative, dy /dz, at such a step. We know from the basic theory of
second-order differential equations that, if we know both of these quantities on the boundaries,

% Any abrupt change in potential should really be regarded as unphysical. It is, however, practically
useful to set up problems with such abrupt steps, essentially as simple models of more realistic systems
with relatively steep changes in potential. We then, however, have to find mathematical constructions
that get us out of the mathematical problems we have created by this abruptness, and these boundary
conditions are such a construction. The choice of boundary conditions is really one that appears not to
create any physical problems (such as losing particles or particle current), and would be a limiting case as
a potential was made progressively more abrupt. The boundary conditions given here are not quite as
absolute as one might presume, however. For example, if the mass of the particle varies in space (as does
happen in some semiconductor problems), the boundary condition given here on the derivative of the
wavefunction is not correct. The boundary condition of continuity of (1/m)(dy/dz) is then often
substituted instead of continuity of dy/dz.
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we can solve the equation. We are interested in solutions of Schrodinger’s equation, Eq. (2.21),
for situations where V is presumably finite everywhere, and where the eigenenergy E is also a
finite number. If E and V are to be finite, then, for w(z) to be a solution to the equation,
d2y /dz? must also be finite everywhere. For d?y /dz? to be finite,

dy /dz must be continuous (2.38)

(if there were a jump in dy /dz, d?y /dz? would be infinite at the position of the jump), and
dy /dz must be finite (otherwise d2y /dz? could also be infinite, being a limit of a difference
involving an infinite quantity). For dy /dz to be finite,

w must be continuous (2.39)

These two conditions, Egs. (2.38) and (2.39), will be the boundary conditions we will use to
solve problems with finite steps in the potential.

Reflection from barriers of finite height

Let us first remind ourselves of what a classical particle, such as a ball, does when it
encounters a finite potential barrier. If the barrier is abrupt, like a wall, the ball is quite likely
to reflect off the wall, even if the kinetic energy of the ball is more than the potential energy it
would have at the top of the wall. (We loosely refer to the potential energy the ball or particle
would have at the top of the barrier as the “height” of the barrier, hence expressing this
“height” in energy units (usually electron-volts) rather than distance units.) If the barrier is a
smoothly rising one, such as a gentle slope, the ball will probably continue over the barrier if
its kinetic energy exceeds the (potential energy) height of the barrier. We certainly would not
expect that the ball could get to the other side of the barrier if its kinetic energy was less than
the barrier height. We also would never expect that the ball could be found inside the barrier
region in that case. The behavior of a quantum mechanical particle at a potential barrier is
quite different. As we shall see, it both can be found within the barrier and can get to the other
side of the barrier, even if its energy is less than the height of the potential barrier.

We start by considering a barrier of finite height, V,, but of infinite thickness, as shown in Fig.
2.3. For convenience, we choose the potential to be zero in the region to the left of the barrier
(it would not matter if we chose it to be something different, since only energy differences
actually matter in these kinds of quantum mechanical calculations).

V,

0o

Energy

z=0 z
Fig. 2.3 Potential barrier of finite height, but infinite thickness.

We presume that a quantum mechanical wave is incident from the left on the barrier, and we
presume that the energy, E, associated with this wave, is positive (i.e., E>0). We are not
going to be looking for eigenfunction solutions in this problem; we are merely considering
what will happen to a monoenergetic particle wave as it interacts with the barrier, presuming
that that the energy E that we will consider is a valid one for the system overall.

We will also allow for possible reflection of the wave from the barrier into the region on the
left. We can allow for both of these possibilities by allowing the wave on the left hand side to
be the general solution of the wave equation in this region. That equation is the same as the Eq.
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(2.22) we used above for the region inside the potential well, because in both cases the
potential is presumed to be zero in this region. The general solution could be written as in Eq.
(2.24), but here we choose instead to write the solution, wie , for z <0 in terms of complex
exponential waves

Wi (2) = Cexp(ikz)+ Dexp(—ikz) (2.40)

where we have, as before, k =+/2mE /%2 . Such a way of writing the solution can, of course,
be exactly equivalent mathematically to that of Eq. (2.24).” The complex exponential form is
conventionally used to represent running waves. In the convention we will use, exp(ikz)
represents a wave traveling to the right (i.e., in the positive z direction), and exp(—ikz)
represents a wave traveling to the left (i.e., in the negative z direction). The right traveling
wave, C exp(ikz) , is the incident wave, and the left-traveling wave, Dexp(—ikz) , Tepresents
the wave reflected from the barrier.

Now let us presume that E <V, , i.e., we are presuming that the particle represented by the
wave does not have enough energy classically to get over this barrier. Inside the barrier, the
wave equation therefore becomes

Hdy_
2m dz*

~(V,—E)y (2.41)

The mathematical solution of this equation is straightforward, being, for the wave, wrign , on
the right (i.e., for z > 0) in the general form,

Wagn (2) = Fexp(x2)+Gexp(-k2) (2.42)

where & =(2m(V, —E)/n2)"2.

We presume that F =0 . Otherwise the wave amplitude would increase exponentially to the
right for ever, which does not appear to correspond to any classical or quantum mechanical
behavior we see for particles incident from the left. (Also, the particle would never be found on
the left because all of the probability amplitude would be arbitrarily far to the right because of
the growing exponential.) Hence we are left with

Vg (2) = Gexp(—x2) (2.43)

Even this solution is strange. It proposes that the wave inside the barrier is not identically zero,
but rather falls off exponentially as we move inside the barrier. Let us formally complete the
mathematical solution here by using the boundary conditions (2.38) and (2.39). Continuity of
the wavefunction, (2.39), gives us

C+D=G (2.44)

and continuity of the derivative, (2.38), gives us

C—Dz%G (2.45)

Addition of Egs. (2.44) and (2.45) gives us

" Formally B=C + D, A=- i(C— D).
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2k o _2Kk(k-ix) . E-iJV,-E)E . 2.46)

“ktix K+ K Vv

Subtraction of Egs. (2.44) and (2.45) gives us

_ k—iKC:2E—Vo—2i (Vv,-E)E
K+ix V,

0

D

c (2.47)

Just as a check here, we find from Eq. (2.47) that |D/C|2 =1, so any incident particle is
completely reflected. D/C is, however, complex, which means that there is a phase shift on
reflection from the barrier, an effect with no classical precedent or meaning.

The most unusual aspect of this solution is the exponential decay of the wavefunction into the
barrier. The fact that this exponential decay exists means that there must be some probability
of finding the particle inside the barrier. This kind of behavior is sometimes called “tunneling”
or “tunneling penetration”, by loose analogy with the classical idea that we could get inside or
through a barrier that was too high simply by digging a tunnel. There is, however, little or no
mathematical connection between the classical idea of a tunnel and this quantum mechanical
process™.

The wavefunction has fallen off to 1/e of its initial amplitude” in a distance 1/x . That
distance is short when E <<V, , becoming longer as E approaches V, ; the less is the energy
deficit, V, — E , the longer is the tunneling penetration into the barrier.

Let as look at some example numbers. Suppose that the barrier is V, =2 eV high and that we
are considering incident electrons with 1 eV energy. Then

K= \/2x9.1095x10'3‘ x(2-1)x1.602x10™ /(1.055x10™ )" = 5x10° m”"

In other words, the attenuation length of the wave amplitude into the barrier (i.c., the length to
fall to 1/e of its initial value) is 1/x = 0.2 nm =2 A. Note that the probability density falls off
twice as fast, i.e., |w(2)[>«c exp(-2xZ), so the penetration depth of the electron into the

2 Note, incidentally, that, though tunneling penetration is not a concept that has any meaning or
precedent in the classical mechanics of classical particles, the phenomenon of tunneling is quite common
when dealing with waves in general, including classical waves. Perhaps the best-known example is found
in total internal reflection in optics. A wave inside a high refractive index medium, such as water or glass,
at a sufficiently steep angle of incidence at the interface to the outside air (past the so-called critical
angle), is totally reflected, just as the wave here is totally reflected by the barrier for energies below the
barrier height. This phenomenon is well known to any swimmer who opens his or her eyes under water,
with the water surface looking quite “silvery” and reflective for directions off at some angle. Though the
reflection is total, there is an exponentially decaying field amplitude inside the air. Just as there is a phase
shift here in reflecting the quantum mechanical wave from the barrier, so also is there a phase shift in this
optical reflection. In optics, that phase shift leads to an effective sideways shift in the beam on reflection
from this surface, known as the Goos-Hénchen shift. This optical tunneling is a routine part of the design
and operation of optical waveguides, such as optical fibers. Once the mathematical equations are
separated formally, leaving the forward waveguide propagation in another equation, the remaining
equation for the wave in transverse direction is of the same form as we are discussing in this Section,
with exactly analogous types of behavior. The propagating bound modes of an optical fiber are
essentially the same concept as the bound states in a quantum potential well of finite depth, for example.

% @ here is the base of the natural logarithms, not, obviously, the electronic charge.
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barrier is ~1/2x =1A. This calculation also gives a sense of why the units of electron-volts
and Angstroms are commonly used in quantum mechanics for electrons.

Fig. 2.4 shows wavefunctions, y/(z), for an electron incident on such a barrier, and Fig. 2.5
shows the corresponding probability amplitudes, | /(z) [*. (The real part of the wavefunction is
shown in Fig. 2.4.”) Note in Fig. 2.4 and Fig. 2.5 that the reflection from the barrier (which is
a total reflection in this case) leads to a standing wave pattern in the electron wavefunction and
probability density. The position of the standing wave pattern depends on the phase change on
reflection from the barrier, and this changes as the electron energy changes. For example, for a
barrier that is very high compared to the electron energy, the phase change on reflection is 7
(i.e., 180°, or, equivalently, phase reversal), and when the electron energy approaches the
barrier energy, the phase change becomes ~ 0.

N

Fig. 2.4. Real part of the wavefunction y/(z) for electrons with 1 eV of energy when incident on a
barrier that is 2 eV high.

z (Angstroms)

Fig. 2.5. Probability density o \;//(z)\2 for electrons with the 1 eV of energy when incident on a
barrier that is 2 eV high.

3% For a solution of the time-independent Schrodinger equation, the complex conjugate of any solution
w(2) is also a solution, as can be seen by taking the complex conjugate of both sides. Hence the sum of a
solution and its complex conjugate is also a solution, so the real part of any solution is also a solution.
This works because the terms that multiply or operate on the wavefunction y/(z) are themselves real in
the time-independent Schrodinger equation.
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Problems

2.8.1 An electron of energy 1 eV is incident perpendicularly from the left on an infinitely high potential
barrier. Sketch the form of the probability density for the electron, calculating a value for any
characteristic distance you find in your result.

2.8.2 An electron wave of energy 0.5 eV is incident on an infinitely thick potential barrier of height 1
eV. Is the electron more likely to be found (a) within the first 1 Angstrom of the barrier, or (b)
somewhere further into the barrier?

2.8.3 Consider the one-dimensional problem, in the z direction, of an infinitely thick barrier of height V,,
at z = 0, beside an infinitely thick region with potential V = 0. We are interested in the behavior of an
electron wave with electron energy E, where E > V,,.

(1) For the case where the barrier is to the right, i.e., the barrier is for z > 0, as shown below

V=0

z2=0
and the electron wave is incident from the left,
(a) solve for the wavefunction everywhere, within one arbitrary constant for the overall
wavefunction amplitude
(b) sketch the resulting probability density, giving explicit expressions for any key distances in
your sketch, and being explicit about the phase of any standing wave patterns you find.

V=0

z=0
(i1) Repeat (i) but for the case where the barrier is on the left, i.e., for z <0, the potential is V,, and for
z > 0 the potential is V = 0, as shown in the second figure. The electron is still “incident” from
the left (i.e., from within the barrier region in this case).

2.8.4 Graph the (relative) probability density as a function of distance for an electron wave of energy 1.5
eV incident from the left on a barrier of height 1 eV. Continue your graph far enough in distance on
both sides of the barrier to show the characteristic behavior of this probability density.

2.8.5 Electrons with energy E are incident, in the direction perpendicular to the barrier, on an infinitely
thick potential barrier of height V, where E >V, . Show that the fraction of electrons reflected from

this barrier is
R=[(1-a)/(1+a)]
where a=./(E-V,)/E .

2.8.6 An electron wave of unit amplitude is incident from the left on the potential structure shown in the
figure below. In this structure, the potential barrier at z=0 is infinitely high, and there is a potential
step of height V, and width b just to the left of the infinite potential barrier. The potential may be
taken to be zero elsewhere on the left. For the purposes of this problem, we will only consider
electron energies E >V, .
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(1) Show that the wavefunction in Region 2 may be
written in the form (z) = Csin(fz) where C is
a complex constant and f is a real constant.

(i) What is the magnitude of the wave amplitude of
the reflected wave (i.e., the wave propagating to

the left)? [
0

Region 1 Region 2

(iii) Find an expression for C in terms of E, V,, and b.

(iv) Taking Vo= 1 eV, and b= 10 A, sketch |C|? b
as a function of energy from 1.1 eV to 3 eV. _

(v) Sketch the (relative) probability density in the 2=
structure at E = 1.356 eV.

(vi) Provide an explanation for the form of the curve in part (iv).

2.8.7 Consider an electron in the infinitely deep one-dimensional “stepped” oo 00
potential well shown in the figure. The potential step is of height Vs
and is located in the middle of the well, which has total width L, . Vg
is substantially less than (%2/2m,)(7z/L;)?.

(1) Presuming that this problem can be solved, and that it results in a
solution for some specific eigenenergy Es, state the functional
form of the eigenfunction solutions in each half of the well, being 1
explicit about the values of any propagation constants or decay  <«—»
constants in terms of the eigenenergy Es, the step height Vs , and L /2 L /2
the well width L, . [Note: do not attempt a full solution of this problem — it does not have simple
closed-form solutions for the eigenenergies. Merely state what the form of the solutions in each
half would be if we had found an eigenenergy Es .]

(i) Sketch the form of the eigenfunctions (presuming we have chosen to make them real functions)
for each of the first two states of this well. In your sketch, be explicit about whether any zeros in
these functions are in the left half, the right half, or exactly in the middle. [You may exaggerate
differences between these wavefunctions and those of a simply infinitely deep well for clarity.]

(iii) State whether each of these first two eigenfunctions have definite parity with respect to the
middle of the structure, and, if so, whether that parity is even or odd.

(iv) Sketch the form of the probability density for each of the two states.

(v) State, for each of these eigenfunctions, whether the electron is more likely to be found in the left
or the right half of the well.

2.9 Particle in a finite potential well

Now that we have understood the interaction of a quantum mechanical wave with a finite
barrier, we can consider a particle in a “square” potential well of finite depth. This is a more
realistic problem than the “infinite” (i.e., infinitely deep or with infinitely high barriers) square
potential well. We presume a potential structure as shown in Fig. 2.6.

Here we have chosen the origin for the z position to be in the middle of the potential well (in
contrast to the infinite well above where we chose one edge of the well). Such a choice makes
no difference to the final results, but is mathematically more convenient now.

Such a problem is relatively straightforward to solve. Indeed, it is one of the few non-trivial
quantum mechanical problems that can be solved analytically with relatively simple algebra
and elementary functions, so it is a useful example to go through completely. It also has a close
correspondence with actual problems in the design of semiconductor quantum well structures.

We consider for the moment to the case where E <V, . Such solutions are known as bound
states. For such energies, the particle is in some sense “bound” to the well. It certainly does not
have enough energy classically to be found outside the well.
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V,

o]

Energy

z -L/2 +L,/2
Fig. 2.6. A finite square potential well.

We know the nature of the solutions in the barriers (exponential decays away from the
potential well) and in the well (sinusoidal), and we know the boundary conditions that link
these solutions. We first need to find the values of the energy for which there are solutions to
the Schrodinger equation, then deduce the corresponding wavefunctions.

The form of Schrédinger’s equation in the potential well is the same as we had for the infinite
well (i.e., Eq. (2.22), and the solutions are of the same form (i.e., Eq. (2.24)), though the valid
energies E and the corresponding values of k (=+/2mE/#? ) will be different from the infinite
well case. The form of the solution in the barrier is an exponential one as discussed above,
except that the solution in the left barrier will be exponentially decaying to the left so that it
does not grow as we move further away from the well. Hence, formally, the solutions are of
the form

w(z)=Gexp(xz), z<-L,/2
l//(z):AsinkZ—i-BcoskZ, -L,/2<z<L,/2 (2.48)
w(z)=Fexp(-«z), z>L,/2

where the amplitudes A, B, F, G, and the energy E (and consequently k, and
k=(2m(\, —E)/%?)"2) are constants to be determined. For simplicity of notation, we choose
to write

X, =exp(-«L,/2), S =sin(kL,/2), C_=cos(kL,/2)
so the boundary conditions give, from continuity of the wavefunction
GX, =-AS, +BC, (2.49)
FX_=AS +BC, (2.50)

and from continuity of the derivative of the wavefunction

EGXL = AC, +BS, (2.51)
K
X FX_=AC,-BS, (2.52)
Adding Egs. (2.49) and (2.50) gives
2BC, =(F+G)X, (2.53)

Subtracting Eq. (2.52) from Eq. (2.51) gives
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28BS, :E(F +G) X, (2.54)

As long as F # -G, we can divide Eq. (2.54) by Eq. (2.53) to obtain

tan(kL, /2)=x/k (2.59)
Alternatively, subtracting Eq. (2.49) from Eq. (2.50) gives

2AS =(F-G)X_ (2.56)

and adding Eqs. (2.51) and (2.52) gives
2AC, :—E(F—G)XL 2.57)

Hence, as long as F # G, we can divide Eq. (2.57) by Eq. (2.56) to obtain
—cot(kLZ/Z):K/k (2.58)

For any situation other than F =G (which leaves Eq. (2.55) applicable but Eq. (2.58) not) or
F =—-G (which leaves Eq. (2.58) applicable but Eq. (2.55) not), the two relations (2.55) and
(2.58) would contradict each other, so the only possibilities are (i) F =G with relation (2.55),
and (ii)) F = -G with relation (2.58).

For F =G, we see from Egs. (2.56) and (2.57) that A=0," so we are left with only the
cosine wavefunction in the well, and the overall wavefunction is symmetrical from left to right
(i.e., has even parity). Similarly, for F=-G, B=0, we are left only with the sine
wavefunction in the well, and the overall wavefunction is antisymmetric from left to right (i.e.,
has odd parity). Hence, we are left with two sets of solutions.

To write these solutions more conveniently, we change notation. We define a useful energy
unit, the energy of the first level in the infinite potential well of the same width L,

(Y

() e

and define a dimensionless energy
e=E/E’ (2.60)

and a dimensionless barrier height
v, =V, /E (2.61)

Consequently,

f: V‘EE - V°€_5 (2.62)

31 Note formally that C_ and S cannot both be zero at the same time, so the only way of satisfying both
of these equations is for A to be zero.
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L 7B _ 7 (2.63)
2 2\E 2

xL, =~ V-E =«
Z:— 0 =—./V.— & 264
2 2\ EF  2VT (2.64)

We can also conveniently define two quantities that will appear in the wavefunctions

_C. cos(kL, /2) ~ 005(”\/2/2)

c =—L = = (2.65)
L X, exp(—KLZ /2) exp(—ﬂ A —6/2)
s, sin(k,/2)  sin(ze/2)
5, =—L = - (2.66)
X, eXP(—KLz /2) exp(—ﬁ vV, —& /2)
and it will be convenient to define a dimensionless distance
¢=1z/L, (2.67)
We can therefore write the two sets of solutions as follows.
Symmetric solution
The allowed energies satisfy
Je tan (%JEJ =, —¢ (2.68)

The wavefunctions are
w(<)= BCLexp(ﬂ,lvo—gg',’), £<-1/2
(//(Q’)zBCOS(ﬂ\/E{),—1/2<§<1/2 (2.69)
v($)= BCLexp(—m/VO—gé’), £>1/2

Antisymmetric solution

The allowed energies satisfy

_ gcot(%«/;j:JVO—g (2.70)
The wavefunctions are
v (¢)=—As exp(my, —5¢), ¢ <-1/2
v (¢) = Asin(ze¢), ~1/2<¢ <1/2 @.71)

w($)=As, exp(—m/vo —gg), £>1/2
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Here A and B are normalization coefficients that will in general be different for each different
solution.

The relations (2.68) and (2.70) do not give simple formulae for the allowed energies; these
relations have to be solved to deduce the allowed energies, though this is straightforward in
practice. A graphical illustration of the solutions of Egs. (2.68) and (2.70) is shown in Fig. 2.7.
Allowed energies ¢ correspond to the points where the appropriate solid curve (corresponding
to the right hand side of these relations) intersects with one of the broken curves
(corresponding to the left hand sides of these relations). Intersections with the dashed curves
are solutions of Eq. (2.68) (corresponding to a symmetric solution), and intersections with the
dot-dashed curves are solutions of Eq. (2.70) (corresponding to an antisymmetric solution).
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Fig. 2.7. Graphical solutions for equations (2.68) and (2.70) for the allowed energies in a finite
potential well. The solid curves correspond to different values of the height of the potential
barrier. The simple dashed lines correspond to Eq. (2.68), the symmetrical solutions, and the lines
with alternating short and long dashes correspond to Eq. (2.70), the antisymmetric solutions.
Allowed energy solutions correspond to the intersections of the solid and the various dashed
curves.

We can see, for example, that for v, =8, there are three possible solutions: (i) a symmetric
solution at £=0.663; (ii) an antisymmetric solution at & =2.603; and (iii) a symmetric
solution at & =5.609 . These three solutions are shown in Fig. 2.8.

Note that these solutions for E <V have two important characteristics. First, there are
solutions of the time-independent Schrédinger equation only for specific discrete energies. We
already saw such behavior for the infinite potential well, and here we have found this kind of
behavior for a finite number of states in this finite well.*> A second characteristic of these
bound states is that the particle is indeed still largely found in the vicinity of the potential well,
in correspondence with the classical expectation, though there is some probability of finding
the particle in the barriers near the well. (Note the penetration of the wavefunction into the

321t is not generally true that there are only finite numbers of bound states in problems with bound states.
The hydrogen atom, for example, has an infinite number of bound states, though each of those has a
specific eigenenergy, and there are separations between the different eigenenergies for these bound states.
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barrier rises for the higher energy states, as we would have expected from the behavior with
the single barrier discussed in the previous Section.)

Fig. 2.8. First three solutions for a finite potential well of depth 8 units (the energy unit is the first
confinement energy of an infinitely deep potential well of the same width). The dotted lines
indicate the energies corresponding the three states. For convenience, these are used as the zeros
for plotting the three eigenfunctions. Note the first and third levels have symmetric
wavefunctions, and the second has an antisymmetric wavefunction.

We have considered only solutions to this problem for energies below the top of the potential
well, i.e., for E <V, . This problem can also be solved for energies above the top of the barrier,
though we will omit this here. In that case, there are solutions possible for all energies, a so-
called continuum of energy eigenstates, just as there are solutions possible for all energies in
the simple problem where V is a constant everywhere (the well-known plane waves we have
been using to discuss diffraction and waves reflecting from single barriers).

Problems

2.9.1 Consider a one-dimensional problem with a potential barrier as shown below. A particle wave is
incident from the left, but no wave is incident from the right. The energy, E, of the particle is less
than the height, V,, of the barrier.

\

o

Energy

0

z

(1) Describe and sketch the form of the probability density in all three regions (i.e., on the left, in
the barrier, and on the right). (Presume that the situation is one in which the transmission
probability of the particle through the barrier is sufficiently large that the consequences of
this finite transmission are obvious in the sketched probability density.)

(ii) Show qualitatively how the probability density on the right of the barrier can be increased
without changing the energy of the particle or the amplitude of the incident wave, solely by
increasing the potential in some region to the left of the barrier. (This may require some
creative thought!)

2.9.2 A one-dimensional potential well has a barrier of height 1.5 eV (relative to the energy of the bottom
of the well) on the right hand side, and a barrier higher than this on the left hand side. We happen to
know that this potential well has an energy eigenstate for an electron at 1.3 eV (also relative to the
energy at the bottom of the well).
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State the general form of the wavefunction solution (i.e., within a normalizing constant that you need
not attempt to determine) in each of the following two cases, giving actual values for any wavevector
magnitude k and/or decay constant x in these wavefunctions

(a) within the well

(b) in the barrier on the right hand side

2.9.3 Consider a barrier, 10 A thick and 1 eV high. An electron wave is incident on this barrier from the
left (perpendicular to the barrier).

(i) Plot the probability of the transmission of an electron from one side of this barrier to the other as
a function of energy from 0 eV to 3 eV.

(ii) Plot the probability density for the electron from 1 A to the left of the barrier to 1 A to the right
of the barrier at an energy corresponding to the first maximum in the transmission for energies
above the barrier.

(iii) Attempt to provide a physical explanation for the form of the transmission as a function of
energy for energies above the top of the barrier.

Hints:

(1) The probability of transmission of the electron can be taken to be ‘l//RF ‘2 / “//LF ’ , where
w1k (2) c exp(ikz) is the forward-going wave (i.e., the wave propagating to the right) on the left
of the barrier, and wgr (2) oc exp(ikz) is the forward-going wave on the right of the barrier.

(2) Presume that there is a specific amplitude for the forward-going wave on the right, and no
backward-going wave on the right (there is no wave incident from the right). This enables you to
work the problem mathematically “backwards” from the right.

(3) You may wish to use a computer program or high-level mathematical programming package to
deal with this problem, or at least a programmable calculator. This problem can be done by
hand, though it is somewhat tedious to do that.

2.9.4 In semiconductors, it is possible to make actual potential wells, quite similar to the finite potential
well discussed above, by sandwiching a “well” layer of one semiconductor material (such as InGaAs)
between two “barrier” layers of another semiconductor material (such as InP). In this structure, the
electron has lower energy in the “well” material, and sees some potential barrier height V, at the
interface to the “barrier” materials. This kind of structure is used extensively in, for example, the
lasers for telecommunications with optical fibers. In semiconductors, such potential wells are called
“quantum wells”. In these semiconductors, the electrons in the conduction band behave as if they had
an effective mass, m*, that is different from the free electron mass, m,, and this mass is different in
the two materials, e.g., my, in the well and m{ in the barrier. Because the electron effective mass
differs in the two materials, the boundary condition that is used at the interface between the two
materials for the derivative of the wavefunction is not continuity of the derivative dy /dz ; instead, a
common choice is continuity of (1/m)(dy /dz) where m is different for the materials in the well and
in the barrier. (Without such a change in boundary conditions, there would not be conservation of
electrons in the system as they moved in and out of the regions of different mass.) The wavefunction
itself is still taken to be continuous across the boundary.

(1) Rederive the relations for the allowed energies of states in this potential well (treating it like the
one-dimensional well analyzed above), i.e., relations like (2.68) and (2.70) above, using this
different boundary condition.

(i) InGaAs has a so-called “bandgap” energy of ~ 750 meV. The bandgap energy is approximately
the photon energy of light that is emitted in a semiconductor laser. This energy corresponds to a
wavelength that is too long for optimum use with optical fibers. (The relation between photon
energy, Ephoton, in electron-volts and wavelength, A, in meters is Ephoton = hc/eA, which
becomes, for wavelengths in microns, Ephoton =1.24/ A(microns), a very useful relation to
memorize.) For use with optical fibers we would prefer light with wavelength ~ 1.55 microns.
We wish to change the photon energy of emission from the InGaAs by making a quantum well
structure with InGaAs between InP barriers. The confinement of electrons in this structure will
raise the lowest possible energy for an electron in the conduction band by the “zero-point”
energy of the electron (i.e. the energy of the first allowed state in the quantum well). Assuming
for simplicity in this problem that the entire change in the bandgap is to come from this zero-
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point energy of the electron, what thickness should the InGaAs layer be made? (For InGaAs, the
electron effective mass is Migaas = 0.041M,, and for InP it is mj,p = 0.08m,. The potential
barrier seen by the electrons in the InGaAs at the interface with InP is V, = 260 meV.)

2.10 Harmonic oscillator

The second, relatively simple quantum mechanical problem that we will solve exactly is the
harmonic oscillator. This system is one of the most useful in quantum mechanics, being the
first approximation to nearly all oscillating systems. One of its most useful applications is in
describing photons, and we will return to this point in Chapter 15. For the moment we will
consider a simple mechanical oscillator.

Classical harmonic oscillators are ones that give a simple, sinusoidal oscillation in time. Such
behavior results, for example, from linear springs whose (restoring) force, F, is proportional to
distance, z, with some spring constant, S, i.e., F =-5z. With a mass m, we obtain from
Newton’s second law ( F = ma where a is acceleration, d2z/dt?)

d’z
mF =-SzZ (2.72)

The solutions to such a classical motion are sinusoidal with angular frequency

w=A~s/m (2.73)

(e.g., of the form sinwt). To analyze such an oscillator quantum mechanically using
Schrodinger’s equation, we need to cast the problem in terms of potential energy. The potential
energy, V (2), is the integral of force exerted on the spring (i.e., —F ) times distance, i.e.,

V(z)= jOZ—F dz =%sz2 =%ma)2z2 (2.74)

Hence, for a quantum mechanical oscillator, we have a Schrodinger equation

Pdy 1,
- +—Mmew 27y =E 2.75
2m dz* 2 V=RV @75)

To make this more manageable mathematically, we define a dimensionless unit of distance

E= \/m%"z (2.76)

Changing to this variable, and dividing by —#@ , we obtain
d’y 2E
_ —_= 277
az SY=— -V 2.77)

The reader might be astute enough to spot™ that one specific solution to this equation is of the
form  oc exp(—& /2) (with a corresponding energy E =#ha@/2 ). This suggests that we make
a choice of form of function

3 Tt is, in fact, quite unlikely that any normal reader could possibly be astute enough to spot this. The
reason why the author is astute enough to spot this is, of course, because he knows the answer already.
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v, (€)= Aexp(-£/2)H, (¢) (2.78)

where H, (&) is some set of functions still to be determined. Substituting this form in the
Schrédinger equation (2.77), we obtain, after some algebra, the equation

dan(g)_zg dHn(é-‘:)_i_(E_
dé&? dé he

The solutions to this equation are known. This equation turns out to be the defining differential
equation for the Hermite polynomials. Solutions exist provided
2E

——-1=2n,n=0,1,2, ... (2.80)
ho

1) H,(£)=0 (2.79)

1e.,
1
E:(n+5jha) (2.81)

(Note that here n starts from zero, not 1.) Here we see the first remarkable property of the
harmonic oscillator — the allowed energy levels are equally spaced, separated by an amount
hw, where @ is the classical oscillation frequency. Like the potential well, there is also a
“zero point energy” — the first allowed state is not at zero energy, but instead here at i@w/2
compared to the classical minimum energy.

The first few Hermite polynomials are as follows.

H, =1 (2.82)
H, (&)=2¢ (2.83)
H,(5)=4&" -2 (2.84)

H, (&) =88 —12¢ (2.85)
H, (&) =165 488> +12 (2.86)

Note that the functions are either entirely odd or entirely even, i.e., they have a definite parity.

The polynomials have some other useful properties. In particular, they satisfy a recurrence
relation

Hn(5)22§Hn—1(§)_2(n_1)Hn—2 (5) (287)
which means that the successive Hermite polynomials can be calculated from the previous two.
The normalization coefficient, Ay, in the wavefunction (2.78) is

1
A= Jz2"n!

and the wavefunction can be written explicitly in the original coordinate system as

1 ma mo _, ma
Z)=,|— /— exp| ——2z° |H —1 2.89
W"( ) 2"n!\ zh p[ 2h J n[ h J (2.89)

(2.88)
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The first several harmonic oscillator eigenfunctions are shown in Fig. 2.9, together with the
parabolic potential V (= &* /2 in the dimensionless units).

E,V 47

14 ho

-4 2 0 2 4

Fig. 2.9. Illustration of the eigenfunctions of a harmonic oscillator. Each eigenfunction is plotted
relative to an origin that corresponds to the eigenenergy (i.e., ia/2, 3hia/2, etc.). The parabolic
harmonic oscillator potential is also shown.

The reader may be content that we have found the solution to Schrodinger’s time-independent
wave equation for the case of the harmonic oscillator, just as we did for the infinite and finite
potential wells. But on reflection the reader may well now be perplexed. Surely this is meant to
be an oscillator; then why is it not oscillating? We have calculated stationary states for this
oscillator, including stationary states in which the oscillator has energy much greater than zero.
This would appear to be meaningless classically; an oscillator that has energy ought to
oscillate. To understand how we recover oscillating behavior, and indeed to understand the
true meaning of the stationary eigenstates we have calculated, we need first to understand the
time-dependent Schrédinger equation, which is the subject of the next Chapter.

Problem

2.10.1 Suppose we have a “half harmonic oscillator” potential, e.g., exactly half of a parabolic potential
on the right of the “center” and an infinitely high potential barrier to the left of the center. Compared
to the normal harmonic oscillator, what are the (normalized) energy eigenfunctions and eigenvalues?
[Hint: there is very little you have to solve here — this problem mostly requires thought, not
mathematics. ]
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2.11 Particle in a linearly varying potential

(This topic can be omitted on a first reading, though it does give some very useful insights into
wave mechanics, and is useful for several practical problems.)

Another situation that occurs frequently in quantum mechanics is that we have applied a
uniform electric field, E, in some direction, say the z direction. For a charged particle, this
leads to a potential that varies linearly in distance. For example, an electron, which is
negatively charged with a charge of magnitude e, will see a potential energy, relative to that at
z2=0,of

V =eEz (2.90)

In practice, we find this kind of potential in many semiconductor devices. We use it when we
are calculating the quantum mechanical penetration (tunneling) through the gate oxide in
Metal-Oxide-Semiconductor (MOS) transistors, for example. We see it in semiconductor
optical modulators,** which use optical absorption changes that result from electric fields. It is
of basic interest also if we want to understand how an electron is accelerated by a field, a point
to which we will return in the next Chapter.

The technique for solving for the electron states is just the same as before; we merely have to
put this potential into the Schrodinger equation and solve the equation. The Schrodinger
equation then becomes
n* dy(z

—%dw—zg)+eEzy/(z): Ew(z) (2.91)
The solutions to this equation are not obvious combinations of well-known functions. When
one finds an equation such as this, the most productive practical technique for solving it is to
look up a mathematical reference book> to see if someone has solved this kind of equation
before. This particular kind of equation, with a linearly varying potential, has solutions that are
so-called “Airy” functions. The standard form of differential equation that defines Airy
functions is

d*f (<) _
i -¢f(£)=0 (2.92)

The solutions of this equation are formally the Airy functions Ai(¢) and Bi(¢), i.e., the general
solution to this equation is

f(.{):aAi(g”)+bBi(§) (2.93)
To get Eq. (2.91) into the form of Eq. (2.92), we make a change of variable to
2mee )" E
- == 7—— 2.94
d ( n ] [ eEJ @94)

** There are two closely related electroabsorption mechanisms used in semiconductors. The Franz-
Keldysh effect in bulk semiconductors, and the quantum-confined Stark effect in quantum wells, both of
which rely on this underlying physics.

3 A very comprehensive reference is M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
Functions" (National Bureau of Standards, Washington, 1972)



2.11 Particle in a linearly varying potential

43

The reader can verify this change of variable does work by substituting the right hand side of
Eq. (2.94) each time for 'in Eq. (2.92), which will give Eq. (2.91) after minor manipulations.

2
T T T T 7
'
'
'
:.
1.5 T
’
'
.
.
,
1 ST
/
B
.
.
L
05
.\ ,"0~ I' .
. \ ’ N
. .
/ \ K Y Vv *
0 4 \ L \ ’ Y
D
'/ Al ’ Y ’ \
! \ . ) \ .
. Y N \ . N ,
‘ ) ’l Y /'
- 7,
-05 —
-1 | | ] ]
~10 ~8 -6 —4 -2 0 2

Fig. 2.10. Airy functions Ai(¢) (solid line) and Bi(¢) (dashed line).

The functions Ai and Bi are plotted in Fig. 2.10. Though they are not very common functions,
they are usually available in advanced mathematics programs as built-in functions.*® Note that

(1) both functions are oscillatory for negative arguments, with a shorter and shorter period
as the argument becomes more negative.

(ii) The Ai function decays in an exponential-like fashion for positive arguments.
(iii) The Bi function diverges for positive arguments.
Now let us examine solutions to some specific problems.

Linear potential without boundaries

The simplest situation mathematically is just a potential that varies linearly without any
additional boundaries or walls. This is somewhat unphysical since it presumes some source of
potential, such as an electric field, that continues forever in some direction, but it is a simple
idealization when we are far from any boundary. The mathematics allows for two possible
solutions, one based on the Ai function, and the other based on the Bi function. Physically, we
discard the Bi solution here because it diverges for positive arguments, becoming larger and
larger. Any attempt at normalizing this function would fail, and the particle would have
increasing probability of being found at arbitrarily large positive z. This is the same argument
we used to ignore the exponentially growing solution when considering penetration into an
infinitely thick barrier. We are left only with the Ai function in this case. Substituting back

from the change of variable, Eq. (2.94), the Ai(¢) solution becomes explicitly

36 The Airy functions are also related to Bessel functions of 1/3 fractional order.
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ve (2) = Ai [(2;1§EJ”3 [Z _i)} (2.95)

This solution is sketched, for a specific eigenenergy E,, together with the potential energy, in
Fig. 2.11.

Fig. 2.11. Sketch of a linearly varying potential, and the Airy function solution of the resulting
Schrdédinger equation.

There are several interesting aspects about this solution.

(i) Since we have introduced no additional boundary conditions, there are mathematical
solutions for any possible value of the eigenenergy E. This behavior reminds us of the
simple case of a uniform zero potential (i.e., V = 0 everywhere), which leads to plane wave
solutions for any positive energy. In the present case also, the allowed values of the
eigenenergies are continuous, not discrete. Like the case of a uniform potential, the
eigenstates are not bound within some finite region (at least for negative z).

(i1) The solution is oscillatory when the eigenenergy is greater than the potential energy,
which occurs on the left of the point z=E,/eE, and it decays to the right of this point.
This point is known as the classical turning point, because it is the furthest to the right that
a classical particle of energy E, could go.

(iii) The eigenfunction solutions for different energies are the same except they are shifted
sideways (i.e., shifted in z).

(iv) Unlike the uniform potential case, the solutions here are not running waves; rather,
they are standing waves, which is more like the case of the particle in a box.

We again find, just like the harmonic oscillator case, that we have been able to derive
eigenstates, i.e., states that are stable in time. Just as in the harmonic oscillator case, where
classically we would have expected to get an oscillation if we have finite energy, here we
would have expected classically to get states that correspond to the electron being accelerated.
Simply put, we have put an electron in an electric field, and the electron is not moving. Again,
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to resolve this paradox, we need to consider the time-dependent Schrodinger equation, which
we will cover in the next Chapter.

How is it that we could even have a standing wave in this case? In the case of a particle in a
box, we can easily rationalize that the particle is reflecting off the walls. In the present case, we
could presumably readily accept that the particle should bounce off the increasing potential
seen at or near the classical turning point, so it is relatively easy to see why there is a reflection
at the right. There is also here reflection from the left; the reason for this reflection is that, from
the point of view in general of wave mechanics, any change in potential (or change of
impedance in the case of acoustic or electromagnetic waves), even if it is smooth rather than
abrupt, leads to reflections. Effectively, there is a distributed reflection on the left from the
continuously changing potential there. The fact that there is such a distributed reflection
explains why the wave amplitude decreases progressively as we go to the left. The fact that we
have a standing wave is apparently because, integrated up, that reflection does eventually add
up to 100%.

Why does the period of the oscillations in the wave decrease (i.e., the oscillations become
faster) as we move to the left? Suppose in Schrodinger’s equation we divide both sides by ;
then we have

2 2
M1V v(r)=E (2.96)
2m y dz
For any eigenstate of the Schrodinger equation, E is a constant (the eigenenergy). In such a
state, if V decreases, then -(1/w)(d%y/dz?) (which we can visualize as the degree of
curvature of the wavefunction) must increase. If we imagine that we have an oscillating wave,
which we presume is locally approximately sinusoidal, of the form ~ sin(kz+ &) for some
phase angle 6,

_ 2
sz:w (2.97)
v dz

Hence, if V decreases, the wavevector k must increase, i.e., the period must decrease. Viewed
from the perspective of the particle, we could imagine that the particle is going increasingly
fast as it goes towards the left, being accelerated by the field, or equivalently, is going
increasingly slowly as it goes towards the right, being decelerated by the field, either of which
is consistent with smaller periods as we go to the left. This view of particle motion is not very
rigorous, though there is a kernel of truth to it, but for a full understanding in terms of particle
motion, we need the time-dependent Schrodinger equation of the next Chapter.

Triangular potential well

If we put a hard barrier on the left, we again get a discrete set of eigenenergies. Formally, we
can consider an electron, still in a uniform electric field E, with an infinitely high potential
barrier at z =0 (i.e., the potential is infinite for all negative z ) as shown in Fig. 2.12, with the
potential taken to be zero at z =0 (or at least just to the right of z=10).

For all z> 0, we have the same potential as we considered above. Again we can discard the Bi
solution because it diverges, so we are left with the Ai solution. Now we have the additional
boundary condition imposed by the infinitely high potential at z=0, which means the
wavefunction must go to zero there. This is easily achieved with the Ai function if we position
it laterally so that one of its zeros is found at z=0. The Ai({) function will have zeros for a
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set of values ¢;. These can be found in mathematical tables, or are relatively easily calculated
numerically in advanced mathematics programs.

V(2)
V=0
z2=10 z —*
Fig. 2.12 Triangular potential well.
The first few of these zeros are

¢, =-2.338
¢, =—4.088
¢, =-5.521 (2.98)
¢, =-6.787
¢, =-7.944

To get the solution Eq. (2.95) to be zero at z =0 means therefore that

Ai {(zm—ij (0 —EB =0 (2.99)
h eE

i.e., the argument of this function must be one of the zeros of the Ai function,

omeE’( E
( . j [—EJ—Q (2.100)

or, equivalently, the possible energy eigenvalues are

/5 v 2/3
E, [2mj (eE)" " ¢ (2.101)
Fig. 2.13 shows the results of a specific calculation, for the case of an electric field of 1 V/A
(10" V/m). As can be seen, the wavefunctions for the different levels are simple shifted
versions of one another, with the wavefunction being truncated at the infinitely high potential
barrier at position 0, at which point each wavefunction is zero in amplitude. As in the simple
rectangular potential wells, the lowest energy function has no zeros (other than at the left and
right ends), and each successive, higher-energy solution has one more zero.

Infinite potential well with field

We can take the triangular well one step further, by including also an infinitely high barrier on
the right. This makes the potential structure into an infinite potential well with field (or a
skewed infinite potential well).

The equations remain the same, except we have the additional boundary condition that the
potential is infinite, and hence the wavefunction is zero, at z = L, . Now we cannot discard the
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Bi solution; the potential forces the wavefunction to zero at the right wall, so there will be no
wavefunction amplitude to the right of this wall, and so the divergence of the Bi function no
longer matters for normalization (we would only be normalizing inside the box). Hence we
have to work with the general solution, Eq. (2.93), with both Ai and Bi functions.

107
8,,
>
oo
= I
sl 4% e S
2,,
0 2 4 6 3 10

Distance (Angstroms)

Fig. 2.13. Graphs of wavefunctions and energy levels for the first three levels in a triangular
potential well, for a field of 1V/A.

This solution requires some more mathematical work, but is ultimately straightforward. The
two boundary conditions are that the wavefunction must be zero at z=0 and at z=1L,, or
equivalently at £ =¢, and { =¢ | , where

1/3
2m
goz_[hze—zEz] E (2.102)
2meE )"’ E
=== L= 2.103
N o

These boundary conditions will establish what the possible values of E are, i.e., the energy
eigenvalues. The conditions result in two equations

aAi(£,)+bBi(¢,)=0 (2.104)
aAi(¢ )+bBi(¢)=0 (2.105)

or, in matrix form

AN

The usual condition for a solution of such equations is
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Ai(¢,) Bi(<,)
=0 2.107
AI(Z) BI(S) (2107
or, equivalently,
Ai(&,)Bi(<,)—-Ai(£)Bi(S,)=0 (2.108)

The next mathematical step is to find for what values of £ Eq. (2.108) can be satisfied. This
can be done numerically.

First, we will change to appropriate dimensionless units. In this problem, there are two relevant
energies. One is the natural unit for discussing potential well energies, which is the energy of
the lowest state in an infinitely deep potential well, (42 /2m)(xz/L;)? (as in Eq. (2.26)), which
here we will call E” to avoid confusion with the final energy eigenstates for this problem; we
will use this as the energy unit. Hence we will use the dimensionless “energy”

e=E/E"

The second energy in the problem is the potential drop from one side of the well to the other
resulting from the electric field, which is

V, =eEL, (2.109)
or, in dimensionless form
v, =V /E (2.110)

With these definitions, we can rewrite Egs. (2.102) and (2.103) as, respectively,

OE—(ij P @.111)

- =[£] (v, —¢) (2.112)

Now we choose a specific 1, which corresponds to choosing the electric field for a given well
width. Suppose, for example, that we consider a 6 A wide well with a field of 1 V/A. Then
E =1.0455¢eV, and v =5.739 (i.e., the potential change from one side of the well to the
other is =5.739E"). Next we numerically find the values of ¢ that make the determinant
function from Eq. (2.108),

D(¢)=Ai(¢, (£))Bi(SL (¢)) - Ai(SL(¢))Bi(S, (¢)) (2.113)

equal to zero. One way to do this is to graph this function from & =0 upwards to find the
approximate position of the zero crossings, and use a numerical root finder to find more
accurate estimates. With these eigenvalues of ¢ it is now straightforward also to evaluate the
wavefunctions. From Eq. (2.104), we have for the coefficients a and b of the general solution,
Eq. (2.93), for each eigenenergy &,

b __Asol&)) (2.114)
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Given that we know the ratio by/a;, we can normalize the wavefunction by integrating from 0 to
L, to find the specific values of both a; and b; for each i if we wish. The resulting wavefunction
is therefore, for a given energy eigenstate, using the same notation as for Eqs. (2.111) and
(2.112) with the dimensionless energies

v, (2)=aAi [[f)m (VL Liz—g]} b,Bi {[%}m (VL Liz—g]] (2.115)

For the example numbers here, we have

& Ei(eV) | b/a

First level (i=1) 3.53 3.69 | -0.04

Second level (i=2) | 6.95 727 | -2.48
Third level i=3) | 11.93 | 1247 | -0.12

14

121

107

Energy (eV)

o 1 2 3 4 5 6
Distance (Angstroms)

Fig. 2.14. First three eigenstates in a 6 A potential well with infinitely high barriers at each side,
for an electron in a field of 1 V/A. The potential is also sketched.

The resulting solutions are plotted in Fig. 2.14. Note that

(1) All the wavefunctions go to zero at both sides of the well, as required by the infinitely
high potential energies there.

(1) The lowest solution is almost identical in energy and wavefunction to that of the lowest
state in the triangular well. (The fraction of the Bi Airy function is very small, -0.04). The
energy is actually slightly higher because the wavefunction is slightly more confined.

(iii) The second solution is now quite strongly influenced by the potential barrier at the
right, with a significantly higher energy than in the triangular well.
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(iv) The third solution is very close in form to that of the third level of a simple rectangular
well. To the eye, it looks to be approximately sinusoidal, though the period is slightly
shorter on the left hand side, consistent with our previous discussion of the effect on the
wavefunction oscillation period from changes in potential.

We can see in the lowest state that the electron has been pulled closer to the left hand side,
which is what we would expect classically from such an electric field. Note, though, that our
classical intuition does not work for the higher levels. In fact, in the second level, a detailed
calculation shows that the electron is actually substantially more likely to be in the right half (~
64%) of the well than in the left half (~ 36%).”

Problems

2.11.1 Give actual energy levels in electron volts to three significant figures for the first three levels in

the triangular well as in Fig. 2.13 (i.e., with a field of 1 V/A).

2.11.2 Repeat the calculation of problem 2.11.1 for electrons in the semiconductor GaAs, for specific

electric fields of 1 V/um and 10 V/pm. Instead of using the free electron mass, use the effective mass
of an electron in GaAs, mer = 0.07m, . Also, calculate the distance from the interface to the classical
turning point in each case.

2.11.3 For the following two fields, calculate the first three energy levels (in electron-volts) for an

electron in a 100 A GaAs potential well with infinitely high barriers, and plot the probability
densities in units of A™ for each of the three states. State the energies relative to the energy of the
center of the well (not relative to the lower corner). Presume that the electron can be treated as having
an effective mass of Mg = 0.07m, . (For this problem, mathematical software will be required. You
need to be able to find roots numerically, evaluate the Airy functions, and perform numerical
integration for normalization.)

(1) zero field

(i) 20 V/um

2.12 Summary of concepts

This Chapter has seen the introduction, mostly by example, of various of the unusual concepts
in quantum mechanics, and of some key results and equations. We list these briefly here. (See
also the memorization list at the end of the book for those formulae particularly worth learning
by heart.)

Wave-particle duality

The idea that particles, such as electrons, also behave in some ways as if they were waves (e.g.,
showing diffraction).

Time-independent Schrodinger wave equation

Single particles with mass, such as a non-relativistic electron in the absence of a magnetic
field, often obey the (time-independent) Schrodinger wave equation

37 The reader is likely surprised at the large difference in probabilities between the right and left halves of
the well; by eye, the wavefunction perhaps does not look so unbalanced between the two halves.
Remember, though, that it is the modulus squared of the wavefunction that gives the probability. The left
half contains the zero crossing, and there is little contribution to the square from the region near the zero
crossing. The small difference in the magnitude of the peak of the wavefunction in the two halves is also
magnified by taking the square.
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no_, B
[— o, V2 +V (r)jy/ =Ey (2.13)

Probability density and probability amplitude (or quantum
mechanical amplitude)

For a particle with wave behavior y(r) , the probability of finding a particle near a given point
r in space is proportional to | w/(r) [>, which can then be described as a probability density, and
l,zl(r) can be called a probability amplitude or quantum mechanical amplitude. Such
probability amplitudes or quantum mechanical amplitudes occur throughout quantum
mechanics, not merely as wave amplitudes in Schrodinger wave equations. Quantum
mechanical calculations proceed by first adding all possible contributions to the quantum
mechanical amplitude, and then taking the modulus squared to calculate probabilities. There is
no analogous concept of probability amplitude in classical probability.

Normalization

A wavefunction w(r) is normalized if j|1//(r)|2d3r:1, meaning the sum of all the
probabilities adds to 1.

Linearity of quantum mechanics and probability amplitude

Quantum mechanics is apparently exactly linear in the addition of probability amplitudes for a
given particle, which allows linear algebra to be used as a rigorous mathematical foundation
for quantum mechanics.

Eigenfunctions and eigenvalues

Solutions of some equations in quantum mechanics, including in particular the time-
independent Schrodinger equation, lead to functions (eigenfunctions) each associated with a
particular value of some parameter (the eigenvalue). For the case of the time-independent
Schrodinger equation, the parameter (eigenenergy) is the energy corresponding to the
eigenfunction.

Discrete energy states

Often, solutions of the time-independent Schrédinger equation are associated with discrete
energy values or “states”, with solutions possible only for those discrete values.

Parity and odd and even functions

Often in quantum mechanics, functions are encountered that are either even, i.e.,
symmetrically the same on either side of some point in space, or odd, i.e., exactly
antisymmetric on either side of some point in space so that they have exactly the opposite
value at such symmetric points. Functions with such even or odd character are described as
having even or odd parity.

Zero point energy

The lowest energy solution in quantum mechanical problems often has an energy higher than
the energy at the bottom of the potential. Such an energy is called a zero point energy, and has
no classical analog.
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Solutions for a particle in an infinitely deep potential well (“particle
in a box”)

2 2
L 1L B (2.26)
2m{ L,

v, (2)= \E sin [%J (2.29)

A Dbasis set is a set of functions that can be used, by taking appropriate combinations, to
represent other functions in the same space.

Basis set

Representation

The coefficients of the basis functions required to represent some other specific function would
be the representation of that specific function in this basis.

Orthogonality

A mathematically useful property of two functions g(z) and h(z), in which their “overlap”
integral [g*(2)h(z)dz is zero. It can also be applied as a condition for a set of functions, in
which case any pair of different functions in the set is found to be orthogonal.

Completeness

The condition that a basis set of functions can be used to represent any function in the same
space.

Orthonormality

The condition that a set of functions both is orthogonal and the functions in the set are also
normalized.

Expansion coefficients

In representing a function f (Z) in a complete orthonormal basis set of functions, (X) ,le.,
f(x)=>cw,(x) (2.36)

the expansion coefficient Cy, is given by
C., :_[://;(x) f (x)dx (2.37)

Degeneracy

The condition where two or more orthogonal states have the same eigenvalue (usually energy).
The number of such states with the same eigenvalue is sometimes called the degeneracy.

Bound states

Bound states are states with energy less than the energy classically required to “escape” from
the potential. They usually also have discrete allowed energies, with finite energy separations
between any two (non-degenerate) bound states.
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Unbound states

States with energy greater than the energy classically required to “escape” from the potential.
They commonly have continuous ranges of allowed energies.



Chapter 3

The time-dependent Schrodinger
equation

Prerequisites: Chapter 2.

Thus far with Schrodinger’s equation, we have considered only situations where the spatial
probability distribution was steady in time. In our rationalization of the time-independent
Schrodinger equation, we imagined we had, for example, a steady electron beam, where the
electrons had a definite energy; this beam was diffracting off some object, such as a crystal or
through a pair of slits. The result was some steady diffraction pattern (at least the probability
distribution did not vary in time). We then went on to use this equation to examine some other
specific problems, including potential wells, where this requirement of definite energy led to
the unusual behavior that only specific, “quantized” energies were allowed.

In particular, we analyzed the problem of the harmonic oscillator, and found stationary states
of that oscillator. On the face of it, stationary states of an oscillator (other than the trivial one
of the oscillator having zero energy) make little sense given our classical experience with
oscillators — a classical oscillator with energy oscillates.

Clearly, we must expect quantum mechanics to model situations that are not stationary. The
world about us changes, and if quantum mechanics is to be a complete theory, it must handle
such changes. To understand such changes, at least for the kinds of systems where
Schrodinger’s equation might be expected to be valid, we need a time-dependent extension of
Schrodinger’s equation.

We start off this Chapter by rationalizing such an equation. The equation we find is somewhat
different from the ones we know from classical waves, though it is still straightforward. We
then introduce a very important concept in quantum mechanics, superposition states.
Superposition states allows us to handle the time evolution of quantum mechanical systems
rather easily. Then we examine some specific examples of time evolution.

We will also be able to use this discussion of Schrédinger’s time-dependent equation to
illustrate many core concepts in quantum mechanics, concepts we will be able to generalize
and extend later, and to introduce intriguing topics such the uncertainty principle, and the issue
of measurement in quantum mechanics. By the end of this Chapter, we will have quite a
complete view of quantum mechanics as illustrated by this wave equation approach for
particles.
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3.1 Rationalization of the time-dependent Schrodinger
equation

The key to understanding time-dependence and Schrddinger’s equation is to understand the
relation between frequency and energy in quantum mechanics. One very well known example
of a relation between frequency and energy is the case of electromagnetic waves and photons.
We can imagine doing a simple pair of experiments with a monochromatic electromagnetic
wave. In one experiment, we would measure the frequency of the oscillation in the wave.' In a
second experiment, we would measure the power in the wave, and also count the number of
photons per second. At optical frequencies, a simple photodiode can count the photons; it is
relatively easy to make a photodetector that will generate one electron per absorbed photon,
and we can count electrons (and hence photons) by measuring current. Hence we can count
how many photons per second correspond to a particular power at this frequency. We would
find in such an experiment that the energy per photon was

E=hv=ho 3.1

i.e., the photon energy, E, is proportional to the frequency, v, with proportionality constant h,
or equivalently, it is proportional to the angular frequency, @ =27zv, with proportionality
constant 7=h/2rx.

Of course, this discussion above is for photons, not the electrons or other particles with mass”
for which the Schrédinger equation supposedly applies. Entities such as hydrogen atoms emit
photons as they transition between allowed energy levels, however, and we might reasonably
expect there is therefore some oscillation in the electrons at the corresponding frequency
during the emission of the photon, which in turn might lead us to expect that there is a similar
relation between energy and frequency associated with the separation of electron levels. Our
question now is how to construct a wave equation that both has this kind of relation between
energy and frequency (Eq. (3.1)), yet still allows, for example, a simple wave of the form
expli (kz —a)t)] , to be a solution in a uniform potential (i.e., for constant V (r)). The answer
that Schrodinger postulated to this question is the equation

hz

_n i oY (r,t)
2m

V¥ (r,t)+V (r,t) ¥ (r,t) =i p (3.2)

which is the time-dependent Schrodinger equation. It is easy to check, for example, that waves

of the form
exp {—i (% + kzﬂ = exp[—i %j exp(Fikz)

with E =%w and k =~/2mE /%% , would be solutions when V =0 everywhere.

' At optical frequencies, this can be tricky, but is essentially straightforward; alternatively we could
always measure the wavelength, which is relatively easy to do in an optical experiment, and deduce the
frequency from the known relation between frequency and wavelength for an electromagnetic wave.

? Particles with mass, such as electrons, are sometimes referred to as massive particles even though their
mass may be ~ 10" kg! Even at that mass they are much more massive than photons, which have zero
mass.
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Schrodinger also made a specific choice of sign for the imaginary part on the right hand side,
which means that a wave with a spatial part o« exp(ikz) is quite definitely a wave propagating
in the positive z direction for all positive energies E (i.e., the wave, including its time-
dependence, would be of the form® exp[i(kz — Et/#)]).

The time-dependent Schrodinger equation is a different kind of wave equation from a more
common wave equation encountered in classical physics, which is typically of the form

Kot

Vif =
w* o’

(3.3)

and for which f oc exp[i(kz —a)t)] would also be solution. This equation (3.3) has a second
derivative with respect to time, as opposed to the first derivative in the time-dependent
Schroédinger equation (3.2).

Note, incidentally, that the choice by Schrodinger to use complex notation here means that the
wavefunction is required to be a complex entity. Unlike the use of complex notation with
classical waves, it is not the case that the “actual” wave is taken at the end of the calculation to
be the real part of the calculated “complex” wave.

Problems

3.1.1 Consider Schrodinger’s time-dependent equation for an electron, with a potential that is uniform
and constant at a value V,, with a solution of the form exp[i(kz —a)t)]. Deduce the relationship
giving K in terms of @ and V,, and deduce under what conditions there is a solution for real k .

3.1.2 Presuming that the potential is constant in time and space, and has a zero value, which of the
following are possible solutions of the time-dependent Schrodinger equation for some positive (non-
zero) real values of k and @ ?

(i) sin(kz — wt)

(ii) exp(ikz)

(iif) exp[ —i (et + kz) |
(@iv) exp[i(wt - kZ)]

3.1.3 Consider the problem of an electron in a one-dimensional “infinite” potential well of width L, in

the z direction (i.e., the potential energy is infinite for z <0 and for z > L,, and, for simplicity, zero for

other values of z). For each of the following functions, in exactly the form stated, state whether the
function is a solution of the time-dependent Schrodinger equation (with time variable t).

. hr? .7z
a) exp| —I t |sin| —
@ p[ mﬁ] [Lj
. 4hr? . [ 27z
b) exp| i t |sin| —
® p[ZmoLij [LJ

3 Unfortunately for engineers, and especially electrical engineers, the choice made by Schrédinger is the
opposite of that commonly used by engineers. Schrodinger’s choice means that a forward propagating
wave is (and has to be) represented as exp[i(Kz — wt)], whereas in engineering it is much more common
to have exp[i(wt—kz)] represent a forward wave (or to write exp[j(wt—kz)]with j= J-1). In
engineering, it does not matter which convention one uses since the quantities finally calculated are only
the real part of such complex representations of waves, but in quantum mechanics we have to keep the
full complex wave.
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(c) exp| —i A’ t+2Z | |cos ”—Z-rz
P ZmDLZZ 2 L, 2
. hi? 7z . On’x? 3rz
d) 2exp| —i t |sin| — [—iexp| —I t |sin| —
@ p( o, J (L] "[ 2,z ] [Lz j

3.2 Relation to the time-independent Schrodinger equation

Suppose that we had a solution where the spatial behavior of the wavefunction did not change
its form with time (and in which, of necessity, the potential V did not change in time). In such
a case, we could allow for some time-varying multiplying factor, A(t), in front of the spatial
part of the wavefunction, i.e., we could write

Y(r,t)=A(t)y(r) (3.4)

where, explicitly, we are presuming that w(r)is not changing in time. In our previous
discussions on the time-independent Schrodinger equation, we had asserted that solutions
whose spatial behavior was steady in time should satisfy the time-independent equation (Eq.
(2.13))
hZ

—%sz/(r)+v (r)y(r)=Ew(r) (3.5)
Merely adding the factor A(t) in front of w(r) makes no difference in Eq. (3.5); Y¥(r,t)
would also be a solution of Eq. (3.5), regardless of what function we chose for A(t) . L.e., we
would have

A(t)[_%vzw(r)w (r)(//(r)} —EA(t)y (1) (3.6)

Now let us see what happens if we also want to make the kind of solution in Eq. (3.4) work for
the time-dependent Schrodinger equation. Substituting the form (3.4) into the time-dependent
Schrodinger equation (3.2) (presuming the potential V is constant in time) then gives

A(t){—%vzw(rﬁV(r)ly(r)}=ihy/(r)aA7(t) 3.7)

which therefore means that, if we want the same solution to work for both the time-
independent and the time-dependent Schrédinger equation,

. 6A(t)
BA(t) =in—= (3.8)
ie.,
A(t) =A exp(—iEt/h) (3.9)

where A, is a constant. Hence, for any situation in which the spatial part of the wavefunction
is steady in time (and for which the potential V does not vary in time), the full time-dependent
wavefunction can be written in the form

W (r,t)=A exp(—iEt/n)y(r) (3.10)
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In other words, if we have a solution /(r) of the time-independent Schrédinger equation, with
corresponding eigenenergy E, then multiplying by the factor exp(—iEt/#) will give us a
solution of the time-dependent Schrédinger equation.

The reader might be worried that we have a time-dependent part to the wavefunction when we
are supposed to be considering a situation that is stable in time. If, however, we consider a
meaningful quantity, such as the probability density, we will find it is stable in time. Explicitly,

|‘{’(r,t)|2 = [exp(+iEt /n)y* (r)] x [exp(—iEt /h)y (r)] = |1//(r)|2 (3.11)

Again we see that the wavefunction itself is not necessarily a meaningful quantity —
introducing the factor exp(—iEt/#%) has given us an apparent time dependence in a time-
independent problem; the wavefunction is merely a means to calculate other quantities that do
have meaning, such as the probability density.

3.3 Solutions of the time-dependent Schrodinger equation

The time-dependent Schrodinger equation, Eq. (3.2), unlike the time-independent one, is not
an eigenvalue equation; it is not an equation that only has solutions for a particular set of
values of some parameter. In fact, it is quite possible to have any spatial function as a solution
of the time-dependent Schrédinger equation at a given time (as long as it is a mathematically
well-behaved function whose second derivative is defined and finite). That spatial function
also determines exactly how the wavefunction will subsequently evolve in time (presuming we
also know the potential V as a function of space and time). This ability to predict the future
behavior of the wave from its current spatial form is a rather important property of the time-
dependent Schrodinger equation.

In general, we can see that, if we knew the wavefunction at every point in space at some time
t,, i.e., if we knew W¥(r,t,) for all r, we could evaluate the left hand side of Eq. (3.2) at that
time for all r. We would know 0¥(r,t)/ot for all r, and could in principle integrate the
equation to deduce W(r,t) at all times. Explicitly, we would have for some small advance in
time by an amount ot

‘I’(r,t0+5t);‘lf(r,to)+%P st (3.12)

r.ty

Because Schrodinger’s equation tells us 0¥ /ot at time t, if we know W(r,t,), we have
everything we need to know to calculate ¥(r,t, +Jt). In other words, the whole subsequent
evolution of the wavefunction could be deduced from its spatial form at some given time.

Some physicists view this ability to deduce the wavefunction at all future times as being the
reason why this equation has only a first derivative in time (as opposed to the second
derivative in the more common wave equations in classical physics). In the ordinary classical
wave equation, like Eq. (3.3), taking a snapshot of a wave on a string at some time allows us to
know the second spatial derivative, from which we can deduce the second time derivative; the
ordinary wave equation is simply a relation between the second spatial derivative and the
second time derivative. But that is not enough to tell us what will happen next. Specifically,
this snapshot does not tell us in which direction the wave is moving. By contrast, with the
time-dependent Schrodinger equation, if we know the full complex form of the wavefunction
in space at some point in time, we can know exactly what is going to happen next, and at all
subsequent times (at least if we know the potential V everywhere for all subsequent times
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also). Hence we can view the wavefunction w(r) at some time as being a complete
description of the particle being modeled for all situations for which the Schrédinger equation
is appropriate; this is a core idea in quantum mechanics — the wavefunction or, as we will
generalize it later, the quantum mechanical state, contains all the information required about
the particle for the calculation of any observable quantity.

Note, of course, that if the spatial wavefunction is in an eigenstate, there is no subsequent
variation in time of the wavefunction, other than the oscillation exp(—iEt/#) that, on its own,
leads to no variation of the measurable properties of the system in time.

Problem

3.3.1 Consider the problem of an electron in a one-dimensional “infinite” potential well of width L, in the
z direction (i.e., the potential energy is infinite for z <0 and for z > L,, and, for simplicity, zero for
other values of z). [In the functions below, t refers to time.]

(a) For each of the following functions, state whether it could be a solution to the time-independent
Schrddinger equation for this problem.

1) sin(37rz/ L, )

2m L

2 2
(i) exp(—thJsin(TSﬂZ/Lz)

(iii) Asin(zz/L,)+Bsin(47z/L,) where A and B are arbitrary complex constants.

2 2
(iv) Aexp(—i Zh”Lz tjsin(ﬂz/LZ)+ Bexp(—ighfztjsin(47r2/ L,) where A and B are arbitrary
m m

0~z 0~z
complex constants.
(b) For each of the above functions, state whether it could be a solution of the time-dependent

Schrddinger equation for this problem

3.4 Linearity of guantum mechanics: linear superposition

The time-dependent Schrodinger equation is also linear in the wavefunction ¥, just as the
time-independent Schrodinger equation was. Again, no higher powers of W appear anywhere
in the equation. In the time-independent equation, this allowed us to say that, if y was a
solution, then so also was Ay, where A is any constant, and the same kind of behavior holds
here for the solutions ¥ of the time-dependent Schrédinger equation. Another consequence of
linearity is the possibility of linear superposition of solutions, which we can state as follows.

If ¥, (r,t) and W, (r,t) are solutions,
thenso alsois W, (r,t) =Y, (r,t)+%¥,(r,t). (3.13)

This is easily verified by substitution into the time-dependent Schrédinger equation”.

* This kind of superposition property also formally applies to the time-independent Schrédinger equation,
but it is much less useful there, essentially only being helpful for the case when a state is degenerate (i.e.,
where there is more than one eigenfunction possible for a given eigenvalue). Then superpositions of those
different degenerate states are also solutions of the same equation, i.e., corresponding to the same value
of energy E. We cannot, however, superpose solutions corresponding to different values of E in the case
of the time-independent Schrédinger equation; such solutions are solutions to what are actually different
equations (different values of E on the right hand side). In the case of the time-independent Schrodinger
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We can also multiply the individual solutions by arbitrary constants and still have a solution to
the equation, i.e.,

Y (rt)=c, ¥, (r.t)+c,¥, (r,t) (3.14)

where C, and C, are (complex) constants, is also a solution.

The concept of linear superposition solutions is, at first sight, a very strange one from a
classical point of view. There is no classical precedent for saying that a particle or a system is
in a linear superposition of two or more possible states. In classical mechanics, a particle
simply has a “state” that is defined by its position and momentum, for example. Here we are
saying that a particle may exist in a superposition of states each of which may have different
energies (or possibly positions or momenta). Actually, however, it will turn out that, to recover
the kind of behavior we expect from particles in the classical picture of the world, we need to
use linear superpositions, as we will illustrate below.

3.5 Time dependence and expansion in the energy

eigenstates

A particularly interesting and useful way to look at the time-evolution of the wavefunction,
especially for the case where the potential V is constant in time, is to expand it in the energy
eigenfunction basis. If V is constant in time, each of the energy eigenstates is separately a
solution of the time-dependent Schrodinger equation (with different values of energy E if the
solutions are not degenerate). Explicitly, the n-th energy eigenfunction can be written,
following Eq. (3.10) above

W, (r,t)=exp(-Et/ )y, (r) (3.15)

where E, is the nth energy eigenvalue, and now we presume that the w, (and consequently
the W,) are normalized. This function is a solution of the time-dependent Schrédinger
equation. Because of the linear superposition defined above, any sum of such solutions is also
a solution.

Suppose that we had expanded the original spatial solution at time t=0 in energy
eigenfunctions, i.e.,

w(r)= Zn:ant//n (r) (3.16)

where the a, are the expansion coefficients (the a, are simply fixed complex numbers). We
know that any spatial function (//(r) can be expanded this way because the set of
eigenfunctions y, (r) is believed to be complete for describing any spatial solution. We can
now write a corresponding time-dependent function

equation, if there is only one spatial form of solution, y/(r), for a given energy E, then the only different
possible solutions correspond to multiples of that one solution. Hence then linear superposition is the
same as multiplying by a constant, i.e.,

Vaun(7) = (0) v (1) = Ay (1) + By () = (A+ By (r).
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Y(rt)=> a ¥, (r.t)=> a exp(-iEt/ )y, (r) (3.17)

We know that this function is a solution to the time-dependent Schrédinger equation because it
is constructed from a linear combination of solutions to the equation. At t=0 it correctly
gives the known spatial form of the solution. Hence Eq. (3.17) is the solution to the time-
dependent Schrédinger equation with the initial condition

‘P(r,O):y/(r):Zn:anl//n (r) (3.18)

for the case where the potential V does not vary in time.

Hence, if we expand the spatial wavefunction in terms of the energy eigenstates at t =0, as in
Eq. (3.16), we have solved for the time evolution of the state thereafter; we have no further
integration to do, merely a calculation of the sum (3.17) at each time of interest to us. This is a
remarkable result, and enables us immediately to start examining the time dependence of
quantum-mechanical solutions for potentials V that are fixed in time.

3.6 Time evolution of infinite potential well and harmonic

oscillator

Now we will look at the time evolution of a number of simple examples for cases where the
potential is fixed in time (i.e., V (r,t) =V (r) ) and the system is in a superposition state.

4 T T T T
t=0,27/3,4rn/3, ... t=xn/3, n,57/3...
3 - -
/ \
g /0
a / \
>
£ / \ 7
- e\
= , SN T
1 I/'t=7z/6,7r/2,-" \‘\‘ \ T
52/6... ) O\
/ 2\
=T~ A | | 2
0 0.2 0.4 0.6 0.8 1

Position in Well

Fig. 3.1. Illustration of the oscillation resulting from the linear superposition of the first and
second levels in a potential well with infinitely high barriers. For this illustration, the well is
taken to have unit thickness, and the unit of time is taken to be #/E;. The oscillation angular
frequency, @, is 3 per unit time because the energy separation of the first and second levels is
3E,. The probability density therefore oscillates back and forwards three times in 27 units of
time.
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Simple linear superposition in an infinite potential well

Let us consider a very simple physical case where the mathematics is also very simple. We
suppose that we have an infinite potential well (i.e., one with infinitely high barriers), and that
the particle within that well is in a linear superposition state with equal parts of the first and
second states of the well, i.e.,

¥(z,t)= f{exp(—i %tjsin(t—zj + exp(—i %tjsin (%H (3.19)

where the well is of thickness L,, and E; and E, are the energies of the first and second states
respectively. (We have chosen this linear combination so that it is normalized.) Then the
probability density is given by

¥ (z.t) =

1] .,z . .| 27z E,-E (xz) . (2xz (3.20)
—|sin”| — [+sin"| —— |+ 2cos t |sin| — |sin| —
L, L, L, n L, L,

Here we see that the probability density has a part that oscillates at an angular
frequency w,, = (E, —E,)/% =3E, /% . Notice, incidentally, that the absolute energy origin does
not matter here because the oscillation frequency only depends on the separation of energy
levels. We could have added an arbitrary amount to both of the two energies E, and E, without
making any difference to the resulting oscillation. Changing the energy origin in this way
would have changed the oscillatory factors in the wavefunctions, but it would have made no
difference to anything measurable, another illustration that the wavefunction itself is not
necessarily meaningful. The oscillatory behavior of this particular system is illustrated in Fig.
3.1
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Fig. 3.2. Time evolution of an equal linear superposition of the first and second eigenstates of a
harmonic oscillator. Here the probability density is plotted against position in dimensionless units
(i.e., distance units of (7i/ Mw)"2 where m is the particle’s mass) at (i) the beginning of each
period (solid line), (ii) ¥4 and % of the way through each period (dotted line), and (iii) half way
through each period (dashed line)..
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Harmonic oscillator example

We can construct a linear superposition state for the harmonic oscillator to see what kind of
time behavior we obtain. For example, we could construct a superposition with equal parts of
the first and second states, just like we did above for the potential well. Quite generally, if we
make a linear superposition of two energy eigenstates with energies E, and Ey, the resulting
probability distribution will oscillate at the frequency @y, = |Ea - Eb|/h. Le., if we have a
superposition wavefunction

Y, (r,t)=c,exp(—iEt/ 7))y, (r)+c, exp(—iEt/n)y, (r) (3.21)

then the probability distribution will be
[ (1) = (e jwa () +[euf | ()]

— 3.22
cvs (r)es (r)|cos|:w_9ab:| N

+2

where Gy = arg(Caya (r)Cy; (1)) .

Fig. 3.2 shows the resulting probability density for such an equal linear superposition of the
first and second states of the harmonic oscillator. The probability density of this superposition
oscillates at the (angular) frequency, @, of the classical harmonic oscillator because the energy
separation between the first and second states is 7@ .

Now we are beginning to get a correspondence with the classical case; at least now we have
the quantum mechanical oscillator actually oscillating, and with the frequency we expect
classically.

Coherent state

It turns out for the harmonic oscillator that the linear superpositions that correspond best to our
classical understanding of harmonic oscillators are well known. They are known as “coherent
states”. We will not look here in any mathematical detail at why these correspond to the
classical behavior, and where this particular linear combination comes from. For our purposes
here, it is simply some specific superposition of the all the harmonic oscillator eigenstates, one
that happens, for large total energies at least, to give a behavior that corresponds quite closely
to what we expect a harmonic oscillator to do from our classical experience. We will simply
show some of the properties of this coherent state by example calculation, specifically what
happens to the probability density if we let this particular linear combination evolve in time.

The coherent state for a harmonic oscillator of frequency w is, using the notation from Chapter
2,

v, (E0)=Yc, exp{—i(n +%jwt}yn (&) (3.23)

n=0

Cpp = 1/—N n eX:'(_N) (3.24)

Incidentally, the reader may notice that

where
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N"exp(—N)

(3.25)
n!

2
el =
is the well-known Poisson distribution from statistics, with mean N (and also standard
deviation VN )°. The parameter N is, in a way that will become clearer later, a measure of the
amount of energy in the system overall — larger N corresponds to larger energy.
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Fig. 3.3. Probability distribution (not to scale vertically) for a coherent state of a harmonic
oscillator with N = 1 at time t = 0. Also shown is the parabolic potential energy in this case.

We can calculate the resulting probability density, for example numerically, by simply
including a finite but sufficient number of terms in the series (3.23). Fig. 3.3 illustrates the
probability density at time t=0 for N =1, and Fig. 3.4 and Fig. 3.5 illustrate this for N =10
and N =100 respectively. In each case, for subsequent times the probability distribution
essentially oscillates back and forth from one side of the potential to the other, with angular
frequency o, retaining essentially the same shape as it does so. For higher N, the spatial width
of the probability distribution becomes a smaller fraction of the size of the overall oscillation.
Hence, as we move to the classical scale of large oscillations, the probability distribution will
appear to be very localized (compared to the size of the oscillation), and so we can recover the
classical idea of oscillation.

Now we have explicitly demonstrated that at least some particular quantum mechanical
superposition state for a harmonic oscillator shows the kind of behavior we expected
classically such an oscillator should have, with an object (here an electron “wavepacket”)

3 For those who are exasperated by their curiosity about where this coherent state superposition comes
from and what it means, we give one real example. A laser under ideal conditions, operating in a single
mode, will have the light field in a coherent state, and N here will be the average number of photons in
the mode in question. The quantity that is oscillating in that case is the magnetic field amplitude, rather
than the position of some electron. Though an oscillating particle and an oscillating magnetic field seem
very different at this point, the equations that govern both of these can turn out to be the same, a point to
which we return in Chapter 15. It is also quite true, and easily checked experimentally, that the measured
number of photons in such a light beam does have a Poissonian statistical distribution, in accord with the
Poissonian distribution here.



3.6 Time evolution of infinite potential well and harmonic oscillator 65

oscillating back and forward, apparently sinusoidally, at the frequency we would expect
classically. Quantum mechanics, though it works in a very different way, can reproduce the
dynamics we have come to expect for objects in the classical world.

107

Energy

Position

Fig. 3.4 Probability distribution (not to scale vertically) for a coherent state of a harmonic
oscillator with N = 10 at time t = 0. Also shown is the parabolic potential energy in this case.
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Fig. 3.5 Probability distribution (not to scale vertically) for a coherent state of a harmonic
oscillator with N = 100 at time t = 0. Also shown is the parabolic potential energy in this case.

It is important to note, however, that, in general, a system in a linear superposition of multiple
energy eigenstates does not execute a simple harmonic motion like this harmonic oscillator
does. That harmonic motion is a special consequence of the fact that all the energy levels are
equally spaced in the harmonic oscillator case. Fig. 3.6 shows the probability density at
different times for the equal linear superposition of the first three bound levels of the finite
well of Fig. 2.8. Because the energy separations between the levels are not in integer ratios, the

resulting probability density does not repeat in time.
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Fig. 3.6. Probability density at three different times for an equal linear superposition of the first
three levels of a finite potential well as in Fig. 2.8. (i) t =0 (solid line); (ii) t = /2 (dotted line);
(iii) t = 7z (dashed line). The time units are 7/E® where E[° is the energy of the first level in a
well of the same width but with infinitely high barriers.

Problems

3.6.1 An electron in an infinitely deep potential well of thickness 4 A is placed in a linear superposition
of the first and third states. What is the frequency of oscillation of the electron probability density?

3.6.2 A one-dimensional harmonic oscillator with a potential energy of the form V(z)=az’ in its
classical limit (i.e., in a coherent state with a large expectation value of the energy) would have a
frequency of oscillation of f cycles per second.

(1) What is the energy separation between the first and second energy eigenstates in this harmonic
oscillator?

(i1) If the potential energy was changed to V (Z) =0.5az’ , would the energy separation between
these states increase or decrease?

3.6.3 Consider an electron in an infinitely deep one-dimensional potential well of width L, =1nm . This
electron is prepared in a state that is an equal linear superposition of the first three states. Presuming
that oscillations in wavefunction amplitude lead to oscillations at the same frequency in the charge
density, and that the charge density at any point in the structure give rise to radiated electromagnetic
radiation at the same frequency, list all of frequencies (in Hertz) of radiation that will be emitted by

this system.

3.6.4 Consider an electron in a one-dimensional potential well of width L, in the z direction, with
infinitely high potential barriers on either side (i.e., at z=0 and z =L, ). For simplicity, we assume
the potential energy is zero inside the well. Suppose that at time t=0 the electron is in an equal
linear superposition of its lowest two energy eigenstates, with equal real amplitudes for those two
components of the superposition.

(1) Write down the wavefunction at time t =0 such that it is normalized.

(i) Starting with the normalized wavefunction at time t=0, write down an expression for the
wavefunction valid for all times t.

(ii) Show explicitly whether this wavefunction is normalized for all such times t.

3.6.5 Consider an electron in a potential well of width L,, with infinitely high potential barriers on either
side. Suppose that the electron is in an equal linear superposition of the lowest two energy eigenstates
of this potential well. Find an expression for the expectation value, as a function of time, of the
position z of the electron in terms of L, and fundamental constants.

Note: you may need the expressions
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Isinz(nx)dX:z
o 2

—4nm =, forn+m odd

l(x—z/Z)sin(nx)sin(mX)dX :m

=0, forn+m even

3.7 Time evolution of wavepackets

In looking at time evolution so far, we have explicitly considered the harmonic oscillator, and
found that, at least with a particular choice of linear superposition, we can recover the kind of
behavior we associate with a classical harmonic oscillator. Another important example is the
propagation of wave packets to emulate the propagation of classical particles.

Imagine, for example, that the potential energy, V, is constant everywhere. For simplicity, we
could take V to be zero. In such a situation, we know there is a solution of the time-
independent Schrodinger equation possible for every energy E (greater than zero). In fact there
are two such solutions for every energy, a “right-propagating” one

Ve (2) = exp(ikz) (3.26)
and a “left-propagating” one
ve (2) =exp(-ikz) (3.27)
where k =+2mE /7> as usual’.
The corresponding solutions of the time-dependent Schrodinger equation are
Wen (2,1) = exp[ i (ot —kz) ] (3.28)
and
e (2,t)=exp[-i(at+kz)] (3.29)
where o =E/#.

We want to understand the correspondence between the movement of such a “free” particle in
the quantum mechanical description and in the classical one. We might at first be tempted to
ask for the so-called “phase velocity” of the wave represented by either of Egs. (3.28) or (3.29)

, which would be
2
=2 E M _JE (3.30)
k n\2mE 2m

That would lead to a relation between the particle’s energy and this velocity v, of E=2mv},
which does not correspond with the classical relation between kinetic energy and velocity of

® We have deliberately not attempted to normalize these solutions. That is mathematically somewhat
problematic for a uniform wave in an infinite space, though there is a solution to this problem
(normalization to a delta function) to which we will return in Chapter 5. This lack of normalization will
not matter for the situations we will examine here.
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E =(1/2)mv2. If we examine the |We (z,t)" or |Wer (z,t)]" associated with either of these
waves, we will, however, find that they are uniform in space and time, and it is not meaningful
to ask if there is any movement associated with them. To understand movement, we are going
to have to construct a “wave-packet” — a linear superposition of waves that adds up to give a
“packet” that is approximately localized in space at any given time. To understand what
behavior we expect from such packets, we have to introduce the concept of group velocity.

Group velocity

Elementary wave theory, based on examining the behavior of linear superpositions of waves,
says that the velocity of the center of a wave packet or pulse is the “group velocity”

_do

=— 3.31
0= K (3.31)
where @ is the frequency and k is the wavevector.

To understand this, consider a total wave made up out of a superposition of two waves, both
propagating to the right, one at frequency @+ dw, with a wavevector K+ 6K, and one at a
frequency @—Sw and a wavevector k — Sk . Then the total wave is

f (Z,t) = exp{—i [(a)-i-&o)t—(k +é'k)z]} +exp{—i [(a)—é'a))t—(k —5k)z]} (3.32)
We can rewrite this as
f (2,t) =2 cos(Swt — Skz) exp[ —i (ot —kz) | (3.33)

which can be viewed as an underlying wave exp[—i(wt—kz)] modulated by an envelope
cos(dwt — 6kz), as illustrated in Fig. 3.7.

We know in general that some entity of the form cos(at —bz) is itself a wave that is moving at
a velocity a/b. Hence we see here that the envelope is moving at the “group velocity”

ow

v, = 3.34
by (3.34)

or, in the limit of very small dw and ok, the expression Eq. (3.31).

Fig. 3.7. Illustration of the “beating” between two waves in space (here showing only the real
part), leading to an envelope that propagates at the group velocity.

We could extend this argument to some more complicated superposition of more than two
waves, which would give some other form of the “envelope”. We would find similarly, as long
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asdw/dk is approximately constant over the frequency or wavevector range we use to form
this superposition, that this envelope would move at the group velocity of Eq. (3.31).

If the reader is new to the concept of group velocity, he or she might regard it as being some
obscure phenomenon. After all, for waves such as light waves in free space, or sound waves in
ordinary air in a room, the velocity of the waves does not depend on the frequency, or at least
not to any substantial degree, so dw/dk = @/k and phase and group velocities are equal.
There are many possible situations in which @ is not proportional to k, and we refer to this lack
of proportionality as “dispersion”. For example, near to the center frequency of some optical
absorption line, such as in an atomic vapor, the refractive index changes quite rapidly with
frequency, the variation of refractive index with frequency (known as material dispersion) is
not negligible, and the group and phase velocities are no longer the same. It is also true that in
waveguides the different modes propagate with different velocities, so there is dispersion there
also, this time from the geometry of the structure (an example of structural dispersion). In long
optical fibers, for example, the effects of dispersion and of group velocity are far from
negligible. Also, any structure whose physical properties, such as refractive index, change on a
scale comparable to the wavelength will show structural dispersion.

In contrast to the normal optical or acoustic cases, for a particle such as an electron, the phase
velocity and group velocity of quantum mechanical waves are almost never the same. For the
simple free electron we have been considering, the frequency @ is not proportional to the
wavevector magnitude k. For zero potential energy, the time-independent Schrodinger equation
(for example, in one dimension) tells us that, for any wave component, y/(z) o« exp(£ikz) . In
fact (for zero potential energy),

-n* d’y
——=E 3.35
2m, dz’ (3.35)
1e.,
21,2
AL (3.36)
2m,
So
2
w=E=K, ie., ook’ (3.37)
n2m

0

We see then that the propagation of the electron wave is always highly dispersive. Hence, for
our present quantum mechanical case, we would have a velocity for a wavepacket made up out
of a linear superposition of waves of energies near E,

1
v, = __ 1 _J2E (3.38)
dk/dew hdk/dE m
Fortunately, we now find that, using this group velocity, we can write, using Eq. (3.37)
1
E= 5 mv; (3.39)
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Hence, the quantum mechanical description in terms of propagation as a superposition of
waves does correspond to the same velocity as we would have expected from a classical
particle of the same energy, as long as we correctly consider group velocity’.

Examples of motion of wavepackets

A real wavepacket that corresponds to a particle localized approximately in some region of
space at a given time needs to be somewhat more complex than the simple sum of two
propagating waves. There are many forms that could give a wavepacket. A common one used
as an example is a Gaussian wavepacket.

Freely propagating wave packet
A Gaussian wavepacket propagating in the positive z direction in free space could be written as

Y. (z,t) o ;exp _[ﬂJz exp{-i[ o(k)t—kz ]} (3.40)

2Ak

where k is the value at the center of the distribution of k values, and the parameter Ak is a
width parameter for the Gaussian function. The sum here runs over all possible values of k,
which we presume to be evenly spaced.”
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Fig. 3.8. Illustration of a wavepacket propagating in free space. The wavepacket is a Gaussian
wavepacket in k-space, centered round a wavevector K = 0.5 A, which corresponds to an
energy of ~ 0.953 eV, with a Gaussian width parameter Ak of 0.14 A'. The units of time are
n/e=0.66fs.

At this point, it is useful to introduce the idea of integration rather than summation when we
are dealing with parameters that are continuous’. Instead of (3.40) above, we can choose to

write

7 Incidentally, situations can arise in quantum mechanics, such as with electrons in the valence band of
semiconductors, in which the phase velocity and group velocity are even in opposite directions; this is not
some bizarre and exceptional situation, but is in fact a routine part of the operation of approximately half
of all the transistors (the PMOS transistors that complement the NMOS transistors in complementary
metal-oxide-semiconductor (CMOS) technology) in modern integrated circuits.

¥ In practice for calculations, we will work with a sum over an evenly spaced set of values of k, taking the
spacings to be sufficiently close so that no substantial difference results in the calculations by choosing
the spacing to be finer. In many real situations with finite space, the allowed K values are equally spaced
(e.g., particles in large boxes or in crystals).



3.7 Time evolution of wavepackets 71

‘I’G(Z,t)oc!exp —[%I exp{—i[w(k)t—kz]}dk (3.41)

Though this is now an integral rather than a sum, it is still just a linear combination of
eigenfunctions of the time-dependent Schrodinger equation.

The motion of a Gaussian wavepacket for our free electron wave is illustrated in Fig. 3.8. We
see first of all that the wavepacket does move to the right as we expect, with the center moving
linearly in time (at the group velocity). We also see that the wavepacket gets broader in time.
This increase in width is because the group velocity itself is not even the same for different
wave components in the wave packet, a dispersive phenomenon called group-velocity
dispersion. Clearly, there will be group velocity dispersion if dw/dk is not a constant over the
region of wavevectors of interest, i.e., if d°@/dk* # 0, which is certainly the case for our free
electron, for which

== (3.42)

Wavepacket hitting a barrier

A more complex example of wavepacket propagation is that of a wavepacket hitting a finite
barrier. To analyze this problem, we can start by solving for the wavefunction of the time-
independent Schrodinger equation in the presence of a finite barrier for the situation where
there is no wave incident from the right.

We find that there are solutions for every energy. Each of these solutions contains a forward
(right) propagating wave on the left of the barrier (as well as a reflected wave there), forward
and backward waves within the barrier (which may be exponentially growing and decaying for
energies below the top of the barrier), and a forward wave on the right. We can then form a
linear superposition of these solutions with Gaussian weightings. The procedure is identical to
that of (3.40) except the waves are these more complicated solutions. The results are shown in
Fig. 3.9.

Here we see first the wavepacket approaching the barrier at times t =-10 and t = -5. Near t =0,
we see strong interference effects. These effects result from the incoming wave interfering
with the wave reflected off the barrier, and show “standing wave” phenomena. At times t=5
and t=10, we see a pulse propagating to the right on the right side of the barrier,
corresponding to a pulse that has propagated through the barrier (in this case mostly by
tunneling)'®, as well as a reflected pulse propagating backwards. It is important to emphasize
here that all of these phenomena in the time dependent behavior arise from the interference of
the various energy eigenstates of the problem, with the time dependence itself arising from the
change in phase in time between the various components as the exp(—iEt/#%) phase factors
evolve in time. With the energy eigenstates already calculated for the problem, the time

? See Section 5.3 below for a more complete introduction to the transition from sums to integrals

' The Gaussian distribution we have chosen does necessarily mean that there are some components of
the wavepacket that have energies above the top of the barrier, and these likely do contribute to the small
oscillatory component seen inside the barrier region in the simulation at t =5 and t = 10. It is important to
emphasize, however, that the penetration of the wavepacket through the barrier is substantially due to
tunneling through the barrier in this case, not to propagation for energies above the barrier.
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behavior arises simply from a linear sum of these different components with their time-
dependent phase factors.

40 730 20 ~10 0 10 20 30 40
Position (Angstroms)

Fig. 3.9. Simulation of an electron wavepacket hitting a barrier. The barrier is 1 eV high and 10 A
thick, and is centered around the zero position. The wavepacket is a Gaussian wavepacket in k-
space, centered round a wavevector k =0.5 A", which corresponds to an energy of ~ 0.953 eV,
with a Gaussian width parameter Ak of 0.14 A™". The units of time are #/e = 0.66 fs.

Simulating at a higher energy, such as the one corresponding to the first resonance above the
barrier at an energy ~ 1.37 ¢V, shows similar kinds of behaviors, but has a larger transmission
and a smaller reflection.

Problems

3.7.1 Suppose that in some semiconductor material, the relation between the electron eigenenergies E and
the effective wavevector K in the z direction is given by
n’k?
2b

for some positive real constant b. If we consider a wavepacket made from waves with wavevectors in
a small range around a given value of k, in what direction is the wavepacket moving

(i) for a positive value of k

(ii) for a negative value of k.

3.7.2 In a crystalline solid material, the energy E of the electron energy eigenstates can be expressed as a
function of an effective wavevector k, for waves propagating in the z direction as shown in the figure
below.

Consider now the motion of a wavepacket formed from states in the immediate vicinity of the

particular points A, B, C, and D marked on the figure. State for each of these points

(i) the direction of the group velocity (i.e., is the electron moving in a positive or negative Z
direction), and



3.8 Quantum mechanical measurement and expectation values 73

(i1) the sign of the parameter, Mg, known as the effective mass, where

o
n dk?

eff

Energy E

AN

3.7.3 [This problem can be used as a substantial assignment] (Notes:
(i) See Section 2.11 before attempting this problem; (ii) some
mathematical and/or numerical software will be required.)
Consider the one-dimensional problem of an electron in a uniform  V{(2)
electric field F , and in which there is an infinitely high potential
barrier at z=0 (i.e., the potential is infinite for all negative z) as
sketched below, with the potential taken to be zero at z=0 (orat | =
least just to the right of z=0). The field is in the +ve z direction,
and consequently the potential energy associated with the electron
in that field is taken to be, for z >0,V (z) =eFz

v

Wavevector k,

(A positive field pushes the electron in the negative z direction, so the negative z direction is
“down hill” for the electron, so the electron has increasing potential energy in the positive z
direction.)

(i) For an applied electric field of 10" V/m, solve for the lowest twenty energy eigenvalues of
the electron (in electron-volts), and graph, and state the explicit functional form of, the first
three energy eigenfunctions. (You need not normalize the eigenfunctions for this graph.)

(i1) Consider a wavepacket made up out of a linear superposition of such energy eigenfunctions.
In particular, choose a wavepacket corresponding to an energy expectation value of about 17
eV, with a characteristic energy distribution width much less than 17 eV. [One convenient
form is a wavepacket with a Gaussian distribution, in energy, of the weights of the
(normalized) energy eigenfunctions.] Calculate and graph the time evolution of the resulting
probability density, showing sufficiently many different times to show the characteristic
behavior of this wavepacket. Also describe in words the main features of the time evolution
of this wavepacket. State explicitly whether the behavior of this system is exactly cyclic in
time, and justify your answer.

(iii)Compare the quantum mechanical behavior to what one would expect classically, on the
assumption that the electron would bounce perfectly off the barrier. In what ways is the
behavior the same? In what ways is it different? [Note: approximate numerical calculations
and comparisons should be sufficient here.]

3.8 Quantum mechanical measurement and expectation
values

When a normalized wavefunction is expanded in an orthonormal set, e.g.,
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Y(rt)=>c, (t)w,(r) (3.43)

then the normalization integral requires that
j [ (r,t) d'r = j [Zc;‘ (t)y, (r)}{ZCm QA (r)}d% =1 (3.44)

If we look at the integral over the sums, we see that because of the orthogonality of the basis
functions, the only terms that will survive after integration will be for n=m, and because of
the orthonormality of the basis functions, the result from any such term in the integration will
simply be |c, (1)|" . Hence, we have

>le) =1 (3.45)

n

In quantum mechanics, when we make a measurement on a small system with a large
measuring apparatus, of some quantity such as energy, we find the following behavior, which
is sometimes elevated to a postulate or hypothesis in quantum mechanics: "’

On measurement, the system collapses into an eigenstate of the quantity being measured,
with probability
2
P, =lc,| (3.46)
where C, is the expansion coefficient in the (orthonormal) eigenfunctions of the quantity
being measured.

We see, though, that our conclusion (3.45) is certainly consistent with using the |c.|" as
probabilities, since they add up to 1.

Suppose now that we measure the energy of our system in such an experiment. We could
repeat the experiment many times, and get a statistical distribution of results. Given the
probabilities, we would find in the usual way that the average value of energy E that we would
measure would be

<E>:zEnPn :zEn |Cn|2 (3.47)

where we are using the notation (E) to denote the average value of E, a quantity we call the
“expectation value of E” in quantum mechanics. (In (3.47), the E, are the energy eigenvalues.)

For example, for the coherent state discussed above with parameter N, we have

" There are many problems connected with this statement, especially if we try to consider it as anything
other than an empirical observation for measurements by large systems on small ones. We will postpone
discussion of these difficulties until Chapter 19. The core difficulty is that it is not clear that we can
explain the measurement process itself by quantum mechanics, at least in any way that is not apparently
quite bizarre. Resolving these difficulties, has, however, been a major activity in quantum mechanics up
to the present day, and the modern pictures of these resolutions are much different from those originally
envisaged in the early days of quantum mechanics. The branch of quantum mechanics that deals with
these problems is known as measurement theory, and the core problem is known as the measurement
problem.
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z _ N"exp(-N)

(E)=2E—

- ha{inw}+lha) (3.48)

n=o n! 2

=(N +ljha)
2

We can show that having an energy =~ N7® for the large N implicit in a classical situation
corresponds very well to our notions of energy, frequency and oscillation amplitude in a
classical oscillator. Note that N is not restricted to being an integer — it can take on any real
value. Quite generally, the expectation value of the energy or any other quantum-mechanically
measurable quantity is not restricted to being one of a discrete set of values — it can take on any
real value within the physically possible range of the quantity in question.

Stern-Gerlach experiment

The measurement hypothesis is very strange, possibly even stranger than it already appears. It
is important in quantum mechanics not to move past this point too lightly, and we should
confront its true strangeness here. The Stern-Gerlach experiment is the first and the most
classic experiment that shows just how strange it is.

An electron has another property, in addition to having a mass and a charge — it has a “spin”.
We will return to discuss spin in much greater depth later, in Chapter 12. For the moment, we
can think of the electron spin as making the electron behave like a very small bar magnet. The
strength of this magnet is exactly the same for all electrons.

If we pass a bar magnet through a region of space that has a uniform magnetic field, nothing
will happen to the position of the bar, because the North and South poles of the bar magnet are
pulled with equal and opposite force.'”

But, if the field is not uniform, then the pole that is in the stronger part of the field will
experience more force, and the bar magnet will be deflected as it passes through the field. A
magnet that would give such a non-uniform field is sketched in Fig. 3.10." Because the shape
of the North pole is “sharpened” so that one part of it is closer to the South pole than other
parts, there will be greater magnetic field concentration near the “sharp” part, thereby giving us
a non-uniform magnetic field.

Hence, we could imagine various situations with ordinary classical bar magnets fired, all at the
same velocity, through this field horizontally. If the bar magnet started out oriented with the

"2 It might be that the bar magnet could be aligned by the field — i.e., twisted by the field to line up its
South pole towards the North pole of the magnet producing the magnetic field — but it would not move up
or down. In fact, we can presume in this experiment that there is negligible twisting, and it anyway could
not lead to the actual result of the experiment. In the experiment, both possible extreme orientations
appear to occur in the experiment — the South pole of the bar magnet aligned to the North pole of the
external magnet (which we could rationalize by the magnet twisting in the field), and also the North pole
of the bar magnet aligned to the North pole of the external magnet (which could not be explained by the
twisting in the field, because the magnetic field will not twist North to align with North) — with
apparently equal probability.

13 The top end of the North pole is connected magnetically to the bottom end of the South pole, but we
have omitted that connection for simplicity in the diagram.
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South pole facing up (Fig. 3.10(a)), there would be more force pulling the South pole up than
is pulling the North pole down, because the South pole is in a region of larger magnetic field.
Hence the magnet would be deflected upwards, and would hit the screen at a point above the
middle. If the bar magnet started out in the opposite orientation, it would instead be deflected
downwards (Fig. 3.10(b)). If the bar magnet started out oriented in the horizontal plane (in any
direction), it would not be deflected at all (Fig. 3.10(c)). In any other orientation of the bar
magnet, it would be deflected by some intermediate amount.

(d)

Pattern on screen
- classical magnets

Pattern on screen
- electrons

e

Fig. 3.10 Sketch of Stern-Gerlach experiment. A non-uniform magnetic field is imagined
deflecting small bar magnets, entering horizontally from the left, in different orientations: (a)
South pole up, (b) North pole up, and (c) both poles in a horizontal plane. For random initial
orientations of the bar magnets, a solid line is expected for the accumulated arrival points on the
screen, (d), for the arrival points of the magnets, but electrons in the same experiment, (e), show
only two distinct arrival spots.

Now let us repeat this experiment again and again with bar magnets prepared in no particular
orientation, each time marking where the bar magnet hits the screen. Then we would expect to
see a fairly continuous line of points, as in Fig. 3.10(d). When we do this experiment with
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electrons,'* however, we see that all the electrons land only at an upper position, or at a lower
position (Fig. 3.10(e)). This is very surprising. Remember that the electrons were not prepared
in any way that always aligned their spins in the “up” or “down” directions. It also does not
matter if we change the direction of the magnets — the pattern of two dots just rotates as we
rotate the external magnets.

The quantum mechanical explanation is that this apparatus “measures” the vertical component
of the electron spin. There are only two eigenfunctions of vertical electron spin, namely “spin
up” and “spin down”. When we make a measurement, according to the measurement
hypothesis, we “collapse” the state of the system into one of the eigen states of the quantity
being measured (here the vertical electron spin component), and hence we see only the two
dots on the screen, corresponding respectively to “spin up” and “spin down” states.. Again, if
the reader thinks this is bizarre, then the reader is exactly correct — this measurement behavior
is truly strange, and totally counter to our classical intuition.

Problem

3.8.1 As in Problem 3.6.4, consider an electron in a one-dimensional potential well of width L, in the z
direction, with infinitely high potential barriers on either side (i.e., at z=0 and z=L,). For
simplicity, we assume the potential energy is zero inside the well. Suppose that, at time t=0, the
electron is in an equal linear superposition of its lowest two energy eigenstates, with equal real
amplitudes for those two components of the superposition. What is the expectation value of the
energy for an electron in this state? Does it depend on time t?

3.9 The Hamiltonian

Classical mechanics was put on a more sophisticated mathematical foundation in the late 18"
and the 19™ century. One particular important concept was the notion of the Hamiltonian, a
function, usually of positions and momenta, essentially representing the total energy in the
system. The Hamiltonian and some of the concepts surrounding it were important in the
development of quantum mechanics, and continue to be important in analyzing various topics.
There are many formal links and correspondences between the Hamiltonian of classical
mechanics and quantum mechanics. We will avoid discussing these here except to make one
definition. In quantum mechanics that can be analyzed by Schrddinger’s equation, we can
define the entity

H=-——V>+V(rt) (3.49)

so that we can write the time-dependent Schrodinger equation in the form

i oY (r,t)

R (r,t) = ih—— (3.50)

or the time-independent Schrodinger equation as
Hy (r)=Ey/(r) (3.51)

(where w(r) is now restricted to being an eigenfunction with associated eigenenergy E).

' Stern and Gerlach actually did this experiment with silver atoms, which turn out to have the same spin
properties as electrons as far as this experiment is concerned.
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We can regard this way of writing the equations as merely a shorthand notation, though this
kind of approach turns out to be very useful in quantum mechanics. The entity H is not a
number, and it is not a function. It is instead an “operator”, just like the entity d/dz is a spatial
derivative operator. We will return to discuss operators in greater detail in Chapter 4. We use
the notation with a “hat” above the letter here to distinguish operators from functions and
numbers. The most general definition of an operator is an entity that turns one function into
another.

The particular operator H is called the Hamiltonian operator because it is related to the total
energy of the system. The idea of the Hamiltonian operator extends beyond the specific
definition here that applies to single, non-magnetic particles; in general in non-relativistic
quantum mechanics, the Hamiltonian operator is the operator related to the total energy of the
system.

3.10 Operators and expectation values

We can now show an important but simple relation between the Hamiltonian operator, the
wavefunction, and the expectation value of the energy. Consider the integral

|—j\1/ t)HY (r,t)d’r (3.52)

where W(r,t) is the wavefunction of some system of interest. We can expand this
wavefunction in energy eigenstates, as in Eq. (3.43). We know that, with y (r) as the energy
eigenstates (of the time-independent Schrodinger equation)

2

A (r,t) = {_f_vz ny (r,t)}p(r,t) _ {_%vz Ny (r,t)}ch (). (r)

m " (3.53)

_ZC El//n

and so

0

j\y t)H¥ (r,t)d r—J[ZC }{Zc )E,w, (r }Pr (3.54)

Given the orthonormality of the y, (r), we have
[w (r,t)H (r,t)d r—ZE|c| (3.55)

But comparing to the result (3.47) we therefore have

j\y JH¥ (r,t)d’r (3.56)

This kind of relation between the operator (here H ), the quantum mechanical state
(here W(r,1) ), and the expected value of the quantity associated with the operator (here E) is

quite general in quantum mechanics.
The reader might ask, but if we already knew how to calculate <E> from Eq. (3.47), what is

the benefit of this new relation, Eq. (3.56)? One major benefit is that we do not have to solve
for the eigenfunctions of the operator (here H) to calculate the result. We used the
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decomposition into eigenfunctions to prove the result (3.56), but we do not have to do that
decomposition to evaluate (E) from (3.56). All we need is the quantum mechanical state (here
the wavefunction ‘¥ (r,t) ), and the operator associated with the quantity <E> (here H).

Problem

3.10.1 A particle in a potential V (Z) =7%/2 has a wavefunction at a given instant in time of

w(z)= \/;ﬁ(l +2 Z)exp(—z2 /2)

What is the expectation value of the energy for the particle in this state. (You may use numerical
integration to get a result if you wish.)

3.11 Time evolution and the Hamiltonian operator

Let us look at Schrédinger’s time-dependent equation in the form as in Eq. (3.50) and rewrite
it slightly as
o¥(r.t) iH
— = ¥(r,t), 3.57
p - (r.t) (3.57)
If we presume that H does not depend on time (i.e., the potential V (r) is constant in time), it is
tempting to wonder if it is “legal” and meaningful to integrate this equation directly to obtain

iH (t, —t
¥(rt)= exp(—¥}y(r,to) (3.58)
Certainly if H were replaced by a constant number (a rather trivial case of an operator) we
could perform such an integration. If it were legal and meaningful to do this for an actual time-
independent Hamiltonian, we would have an operator (exp[—iH (t; —ty)/#]) that, in one
operation, gave us the state of the system at time t; directly from its state at time t, .

It is certainly not obvious that such an expression (3.58) is meaningful — what do we mean by
the exponential of an operator? We can show, however, that provided we are careful to define
what we mean here, this expression is meaningful. Understanding this expression will be a
useful exercise, introducing some of the concepts associated with operators that we will
examine in more detail later. To think about this, first we note that, because H is a linear
operator, for any number a,

H[a¥(r,t)|=aH¥(r,t) (3.59)

We say that the operator H “commutes” with the scalar quantity (i.e., the number) a.
Because this relation holds for any function ¥ (r,t) , we can write, as a short-hand,

Ha = aH (3.60)

(Note that any time we have such an equation relating the operators themselves on either side,
we are implicitly saying that this relation holds for these operators operating on any function in
the space. L.e., the relation

A=B (3.61)

for any two operators A and B is really a shorthand for the statement
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AY = BY (3.62)
where W is any arbitrary function in the space in question.)

Next we have to define what we mean by an operator raised to a power. By H? we mean
H2W (r,t) = H[H¥ (r,1)] (3.63)

(i.e., H operating on the function that is itself the result of operating on ‘I’(r,t) with H ).
Specifically, for example, for the energy eigenfunction v, (r)

H?y, (r)=H [I:It//n (r)] =H[Ew,(r)]=E,Hy, (r)=Ew,(r) (3.64)

We can proceed by an inductive process to define the meaning of all higher powers of an
operator, i.c.,

H™ = H[H"] (3.65)
which will give, for the case of an energy eigenfunction
H"y, (r)=Ew,(r) (3.66)

Now let us look at the time evolution of some wavefunction W(r,t) between times t, and t;.
Suppose the wavefunction at time t, is w(r), which we can expand in the energy
eigenfunctions y,(r) as

w(r)=> aw,(r) (3.67)

Then we know (see Eq. (3.17), for example) that

LI’(r,tl):znlan exp{—w}//n(r) (3.68)

7

We can if we wish write the exponential factors as power series, noting that

2 3

x> X
exp(x):1+x+;+;+~-- (3.69)

s0 (3.68) can be written as

‘{’(r,tl)zZﬂ:an[1+(—wJ+%[—w]z+"']l//n(l‘) (370

Because of Eq. (3.66), everywhere we have Efy, (r), we can substitute H ™y, (r), and so
we have

Y(r,t)=>a, 1+[_MT_%)}+%£_MT_%)]Z+W v, (r) (3.71)

Because the operator H , and all its powers as defined above, commute with scalar quantities
(numbers), we can rewrite (3.71) as
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¥(rt)= 1{_%}%[_WJ r | Saw,(r)

- - (3.72)

i (t, -t i (t -t,))

i - i -

=1+ _M +i _M 4. \I—’(r’to)
h 2! h

So, provided we define the exponential of the operator in terms of a power series, i.e.,

exp{_ H (¢ _to):| 1+[—“:| (t _to)}r 1 [_“:'(tl—_to)]z ‘.. (3.73)

h h 21 h

with powers of operators as given by (3.63) and (3.65), we can indeed write Eq. (3.58). Hence
we have established that there is a well-defined operator that, given the quantum mechanical
wavefunction or “state” at time t,, will tell us what the state is at a time t; . The importance
here is not so much that we have derived the form of the operator — this is not likely to be
something that we use often for actual numerical calculations — but that we have deduced that
there is such an operator, and we have understood how we can approach forming new
operators that are “functions” of other operators.

The particular operator we have derived here is valid for situations where the Hamiltonian is
not explicitly dependent on time (which usually means that the potential V does not depend on
time). It is possible to derive operators that deal with more complex situations, though we will
not consider those here."”

Problem

3.11.1 If the eigenenergies of the Hamiltonian H are E, and the eigenfunctions are y, (r) , what are
the eigenvalues and eigenfunctions of the operator H:-H?

3.12 Momentum and position operators

Thus far, the only operator we have considered has been the Hamiltonian H associated with
the energy E. In quantum mechanics, we can construct operators associated with many other
measurable quantities. For the momentum operator, which we will write as f, we postulate
the operator

p=-ihv (3.74)
with
Vzi£+ji+ki (3.75)
ox "oy oz

where i, j, and k are unit vectors in the X, y, and z directions.

With this postulated form, (3.74), we find that

' See, for example, J. J. Sakurai, Modern Quantum Mechanics (Revised Edition) (Addison Wesley,
1994), pp 72-73, for a discussion of such operators for time-dependent Hamiltonians.
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—=-—V (3.76)
and we have a correspondence between the classical notion of the energy E as

E-P v (3.77)
2m

and the corresponding Hamiltonian operator of the Schrodinger equation

R hZ ﬁ2
He-l vrivoP Ly (3.78)
2m 2m
The plane waves exp(ik -r) are the eigenfunctions of the operator p with eigenvalues 7k,
since

pexp(ik-r)=rkexp(ik-r) (3.79)

(The eigenvalues in this case are vectors, which is quite acceptable mathematically.) We can
therefore make the identification for these eigenstates that the momentum is

p =7k (3.80)

Note that the p in Eq. (3.80) is a vector, with three components with scalar values, not an
operator.

For the position operator, the postulated operator is almost trivial when we are working with
functions of position. It is simply the position vector, r, itself.'® At least when we are working
in a representation that is in terms of position, we therefore typically do not write r, though
rigorously perhaps we should. The operator for the z-component of position would be, for
example, also simply be z itself.

Problems

3.12.1 Consider the equal linear superposition of the first two states of an infinitely deep potential well.
(a) Show by explicit substitution that this state is a solution of the time-dependent Schrédinger
equation for a particle in such a well.
(b) For this state, what are the expectation values of
(1) the energy
(ii) the momentum
(iii) the position
(Note: take the expectation value of position as being given by the expression <Z> =[¥*z¥dz).

3.12.2 We perform an experiment in which we prepare a particle in a given quantum mechanical state,
and then measure the momentum of the particle. We repeat this experiment many times, and obtain
an average result for the momentum <p> (the expectation value of the momentum). For each of the
following quantum mechanical states, give the (vector) value of <p> , or, if appropriate, <p (t)> where
t is the time after the preparation of the state.

(i) w(r)ocexp(ik-r)

(i) a particle of mass m in an infinitely deep quantum well of thickness L, (here you need only
give <pz> or <pZ (t)> , the z-component of the value, where z is the direction perpendicular to
the walls of the well), in the lowest energy state.

' We will return in Chapter 5 to consider the eigenfunctions of position. These are actually Dirac delta
functions, when expressed in terms of position.
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(iii) Offer an explanation for the result of part (ii) based on the result from part (i).

3.12.3 Suppose that a particle of mass m is in a one-dimensional potential well with infinitely high
barriers and thickness L, in the z direction. Suppose also that it is in a state that is an equal linear
superposition of the first and second states of the well.

[Note that [sin(€)cos(20)d0=—2/3, [sin(20)cos(0)d0=4/3 ]
0 0

(i) At what frequency is this system oscillating in time?

(i) Evaluate the expectation value of the z component of the momentum (i.e., < P, (t)> ) as a
function of time.

(iii) Suppose instead that the particle is in an equal linear superposition of the first and third states of
the well. Deduce what now is <pZ (t)> . (Hint: this should not need much additional algebra, and
may involve consideration of the consequences of odd functions in integrals.)

3.12.4 In an experiment, an electron is prepared in the state described by the wavefunction ‘P(r,t),
where t is the time from the start of each run of the experiment. In this experiment, the momentum is
measured at a specific time t, after the start of the experiment. This experiment is then repeated
multiple times. Give an expression, in terms of differential operators, fundamental constants and this
wavefunction, for the average value of momentum that would be measured in this set of experiments.

3.12.5 Suppose an electron is sitting in the lowest energy state of some potential, such as a one-
dimensional potential well with finite potential depth (i.e., finite height of the potential barriers on
either side). Suppose next we measure the momentum of the electron. What will have happened to
the expectation value of the energy? l.e., if we now measure the energy of the electron again, what
will have happened to the average value of the result we now get? Has it increased, decreased, or
stayed the same compared to what it was originally? Explain your answer.

3.13 Uncertainty principle

One of the most perplexing aspects of quantum mechanics from a classical viewpoint is the
uncertainty principle. (There are actually several uncertainty principles with similar character.)
The most commonly quoted form is to say that we cannot simultaneously know both the
position and momentum of a particle. This runs quite counter to our classical notion. Classical
mechanics implicitly assumes that knowing both position and momentum is possible. In a
practical sense for large objects, it is possible to know both at once; but more fundamentally
according to quantum mechanics it is not, a fact that has profound philosophical implications
for any discussion of, for example, determinism.

We will postpone a more formal discussion of uncertainty principles. Here we will simply
illustrate the position-momentum uncertainty principle by example. We defined a Gaussian
wavepacket above in Eq. (3.41) as an integral over a set of waves with Gaussian weightings on

their amplitudes about some central k value, k . Indeed, we could rewrite Eq. (3.41) at time

t=0as
W (2,0) = [¥, (k) exp(ikz) dk (3.81)
k
where
k—k

We can regard ‘I’k(k)as being the representation of the wavefunction in “K space”.
Specifically, we can regard |‘I’k(k)|2 as being the probability Py (or more strictly, the
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probability density) that, if we measured the momentum of the particle (actually in this case
the z component of the momentum), it was found to have value 7k . This probability would
have a statistical distribution

P =|w (k) (k-k) 3.83
k_| k( )| oc €Xp _2(Ak)2 (3.83)

The Gaussian in Eq. (3.83) corresponds to the standard statistical expression for a Gaussian
probability distribution, with standard deviation Ak .

We also note that Eq. (3.81) is simply the Fourier transform of ¥, (k) The result of this
transform is well known. The Fourier transform of a Gaussian is a Gaussian'’. Explicitly, if we
were to formally perform the integral Eq. (3.81), we would find

¥ (2,0) o< exp| ~(AK)' 2 | (3.84)

Now considering the probability (or again, strictly, the probability density) of finding the
particle at point z at time t = 0 as |¥(z,0)[", we have

|‘I’(Z,O)|2 o exp[—Z(Ak)2 zzJ = exp[— 2(2;2)2 } (3.85)

where we have chosen to define the quantity Az so that it corresponds to the standard deviation
of the probability distribution in real space. From Eq. (3.85), we find the relation

AkAz = 1 (3.86)
2
or, with momentum (here strictly the z component of momentum) p =7k,
h
ApAz = 3 (3.87)

where Ap = 7AK .

We saw when we propagated the wavepacket in time that it got wider, that is, Az became
larger, though Ak had not changed; the same Gaussian distribution of magnitudes of
amplitudes of k components remained, though their relative phases had now changed with
time, leading to a broadening of the wavepacket, so we can also certainly have ApAz > 7/2. It
turns out that the Gaussian distribution and its Fourier transform have the minimum product
AkAz of any distribution (though we will not prove that here), and so we find the “uncertainty
principle”

APAZ>1/2 (3.88)

Though demonstrated here only for a specific example, this uncertainty principle turns out to
be quite general. It expresses the non-classical notion that, if we know the position of a particle
very accurately, we cannot know its momentum very accurately. For objects of everyday
human scale and mass, this uncertainty is so small it falls below our other measurement
accuracies, but for very light objects such as electrons, this uncertainty is not negligible.

'" This is a very special (and very useful) property of Gaussian functions.
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It is important to emphasize, too, that the modern understanding of quantum mechanics
appears to say that it is not merely that we cannot simultaneously measure these two quantities,
or that quantum mechanics is only some incomplete statistical theory that does not tell us both
momentum and position simultaneously even though they both exist to arbitrary accuracy.
Quantum mechanics is apparently a complete theory, not merely a statistical “image” of some
underlying deterministic theory; a particle simply does not have simultaneously both a well-
defined position and a well-defined momentum in this view'.

Uncertainty principles are well known to those who have done Fourier analysis of temporal
functions. There one finds that one cannot simultaneously have both a well-defined frequency
and a well-defined time for a signal. If a signal is a short pulse, it is necessarily made up out of
a range of frequencies. The shorter the pulse is, the larger the range of frequencies that must be
used to make it up, i.e.,

AwAt > % (3.89)

The mathematics of this well-known Fourier analysis result is identical to that for the
uncertainty principle discussed above.

Another common example of an uncertainty principle is found in the diffraction angle of a
beam, propagating, for example in the X direction, emerging from a finite slit with some width
in the z direction. Smaller slits correspond to more tightly defined position in the z direction,
and give rise to larger diffraction angles. The diffraction angle corresponds to the uncertainty
in the z component of the wavevector. If we think of light propagation as being due to
momentum of photons, diffraction is understood as the uncertainty principle giving momentum
uncertainty in the z direction for this example. The diffraction of an electron beam from a
single slit shows exactly the same diffraction phenomenon; we can regard the fact that the
beam gets wider as it propagates as being because it is made up out of a range of beams of
different momenta, each going in somewhat different directions. The propagation of Gaussian
light beams, commonly encountered with laser beams, corresponds exactly to the above
analysis if we define the beams with the correct parameters that correspond to the statistical
definition of Gaussian distributions for the beam intensity.

We can see, therefore, that, though the uncertainty principle seems at first a very strange
notion, consequences of this kind of relation may actually be quite well known to us from
classical situations with waves and time-varying functions. The unusual aspect is that it applies
to properties of material particles also.

Problem

3.13.1 Suppose we have a 1g mass, whose position we know to a precision of 1 A.
(i) What would be the minimum uncertainty in its velocity in a given direction?
(i) What would be the corresponding uncertainty in velocity if the particle was an electron
instead of a 1g mass?

'8 This point is not absolutely settled, however. See the discussion in Chapter 19.
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3.14 Particle current

Additional prerequisite: understanding of the divergence of a vector (see Appendix C).

Our classical intuition leads us to expect that particles with kinetic energy must be moving,
and hence there will be particle currents or current densities (i.e., particles crossing unit area
per unit time). We have, however, apparently deduced that there are stationary states (energy
eigenstates) in quantum mechanics where the particle may have energy that exceeds the
potential energy, and we are now expecting that there may well be no current associated with
such energy eigenstates. We need a meaningful way of calculating particle current in quantum
mechanics so that we can check these notions.

In general, if we are to conserve particles, we expect that we will have a relation of the form

0s .
ot Vi, (3.90)
where S is the particle density and j, is the particle current density (not the electrical current in
this case, though if s was the charge density, this would be the form of the relation for
conservation of charge with a charge current density). The reader may remember that this kind
of vector calculus relation is justified by considering a small box, and looking at the difference
of particle currents in and out of the opposite faces of the box.

In our quantum mechanical case, the particle density for a particle in a state with wavefunction
W(r,b) is | W(r,t)]%, so we are looking for a relation of the form of Eq. (3.90) but with | ¥(r,t)*
instead of S. To do this requires a little algebra, and a clever substitution.

We know that
oW(rt) 1 .,
———==—HWY(r,t 3.91
ot in (r.t) 391
which is simply Schrodinger’s equation. We can also take the complex conjugate of both sides,
1e.,
o¥” (r,t) 1 -
—— = =——H"?"(r,t 3.92
ot in (r.1) (3.92)
Hence, we can write
a * i 1] T+ )
E[‘P \11]7(\11 HY - wH'¥ )_o (3.93)

If the potential is real (it is hard to imagine how it could not be) and does not depend on time,
then we can rewrite Eq. (3.93) as

8 * Ih *y72 2\ *
—|YY|-——(VYVYVY-PYVVY =0 3.94
L] ) (3.94)
Now we use an algebraic “trick” to rearrange this, i.e.,
YV VY =PV P +VPVY —VIVY' - P'VY

= v.(\wly* —‘P*V‘P) (3.95)

Hence we have
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M:—i—hv-(‘wqﬂ ~¥'VY) (3.96)
ot 2m

which is an equation of the form of Eq. (3.90) if we identify
in
j =—(PVY' -¥'VY¥Y 3.97
as the particle current. Hence we have found an expression for particle currents for situations
where the potential does not depend on time.

Now we can use this to examine stationary states (energy eigenstates) to see what particle
currents can be associated with them. The expression Eq. (3.97) above for particle current
applies regardless of whether the system is in an energy eigenstate. Explicitly presuming we
are in the nth energy eigenstate, we have

. ih * *

Jon (r,t):%(‘l’n (r,t)V¥; (r,t)-¥, (r,t)VY, (r,t)) (3.98)

We can write out Wn(r,t) explicitly as
. E,
W, (r,t)=exp —|7t w, (r) (3.99)

The gradient operator V has no effect on the exponential time factor, so the time factors in
each term can be factored to the front of the expression, and anyway multiply to unity because
of the complex conjugation, i.e.,

i (1) = 2 <1 eso 12 v, ()90 (1) ()90, ()

:;_?n(wn (1) (1) -y ()Y, (r))

(3.100)

Hence jp, does not depend on time, i.e., we can write for any energy eigenstate n
Jon (1,8) = (1) (3.101)
Therefore particle current is constant in any stationary state (i.e., energy eigenstate).

For a particle such as an electron, the electrical current density is simply €j, . A steady current
does not radiate any electromagnetic radiation. This means that an electron in an energy
eigenstate does not radiate electromagnetic radiation.

Hence, we have the quantum mechanical answer to the question, for example, about whether a
hydrogen atom in an energy eigenstate, including any of the excited energy eigenstates, should
be radiating. Classically, the electron orbiting round the nucleus would have a time-varying
current; the electron in a classical orbit is continually being accelerated (and hence the
associated current is being changed) because its direction is changing all the time to keep it in
its circular or elliptical classical orbit, and so it would have to radiate electromagnetic energy.
Regardless of the details of the energy eigenfunction solutions for a hydrogen atom, this
quantum mechanical result says that the atom in such a state does not radiate electromagnetic
energy because there is no changing current. The quantum mechanical picture agrees with
reality for hydrogen atoms in states, and the classical picture does not.
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For the common case where the spatial part of the energy eigenstate (i.e., y(r)) is real, or can
be written as a real function multiplied by a complex constant, the right hand side of Eq.
(3.100) is zero, and there is zero particle current. Hence, for example, the energy eigenstates in
a potential well or a harmonic oscillator have no particle current associated with them.

Problems

3.14.1 Suppose we have a particle in a wavepacket, where the spatial wavefunction at some time t is
w(r)=A(r)exp(ik-r). Here, A(r) is a function that varies very slowly in space compared to the
function exp(ik -r) , describing the “envelope” of the wavepacket.

(i) Given that the particle current density is given by j, = (i7/2m)(WV¥" —¥'VW¥) , show that
jp= ‘l/l(l‘)‘z p/m where p is the (vector) expectation value of the momentum.

(i) With similar approximations, evaluate the expectation value of the energy, on the assumption
that the potential energy is constant in space.

(iii) Hence show that the velocity of the probability density corresponds to the velocity we would
expect classically.

3.14.2 There are situations in quantum mechanics where the mass is not constant in space. This occurs
specifically in analysis of semiconductor heterostructures where the effective mass is different in
different materials. For the case where mass m(z) varies with z, we can postulate the Hamiltonian

- nd 1 d
H :_ZdZ(rn(Z)dZ]_'—V(Z)

(For the sake of simplicity, we consider here only a one-dimensional case.)

(i) Show that this Hamiltonian leads to conservation of particle density if we postulate that the
particle current (for the z direction) is given by

_in dy*  .dy

) 2m(Z){ dz }

Vo a7 4
(actually the same expression as in the situation where mass did not depend on position). (Hint:
follow through the argument above for the particle current, but with the new form of the
Hamiltonian given here.)

(i) Show that the boundary conditions that should be used at a potential step with this new

I . 1 .
Hamiltonian are continuity of —(fj—w and continuity of y. (These are commonly used boundary
m dz

conditions for analyzing such problems.) (Hint: follow through the argument leading up to Egs.
(2.38) and (2.39) with the new Hamiltonian.)

3.15 Quantum mechanics and Schroédinger’s equation

Thus far, all the quantum mechanics we have studied has been associated with Schrodinger’s
equation, in its time-independent and time-dependent forms. This has introduced a very large
number of the features of quantum mechanics to us. We have seen the emergence of
“quantum” behavior, the idea of discrete states, with very specific energies associated with
them. Though quantum mechanics operates in very different ways from classical mechanics,
we have seen how quantum mechanics can describe moving particles, in ways that can
correspond to classical motion, such as particles moving at a constant velocity, oscillating
particles or accelerating particles. We have introduced a large number of the concepts of the
mathematical approach to quantum mechanics, such as complete sets of eigenfunctions, states
represented as linear superpositions of these states, and the general idea of linear algebra and
quantum mechanics, including operators such as the Hamiltonian (for energy) and the
momentum operator. We have also introduced quantum mechanical ideas like the uncertainty
principle and wave-particle duality.
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We introduced, too, the idea of quantum-mechanical amplitudes, of which the “wave”
amplitude in Schrodinger’s equation is an example. We have mentioned at various points that
the wavefunction (and, indeed any other quantum mechanical amplitude) is not necessarily a
meaningful quantity on its own. In fact, it would actually cause us considerable problems if it
were a measurable quantity; we would have solutions for measurable quantities that did not
have the underlying symmetry of the problem, as in antisymmetric wavefunction solutions to
symmetric problems (e.g., the second state in a square potential well), or had time dependence
even when there was no real time dependence in the problem (as in any energy eigenstate).
The wavefunction (or other quantum mechanical amplitude we will encounter later) is
arguably just a mathematical device that makes calculations more convenient. That might seem
an odd concept, but another common example of a mathematical device of possibly no direct
physical meaning is complex numbers themselves. The use of complex numbers makes many
calculations in engineering and classical physics easier, but the imaginary numbers themselves
arguably have no direct physical meaning.

The reader will also have noticed that we use complex numbers extensively in the quantum
mechanics with Schrédinger’s equation that we have discussed so far. This complex nature is
retained as we go further in quantum mechanics. Quantum-mechanical amplitudes in general
are complex quantities.

The Schrodinger equation is a very powerful and important relation in quantum mechanics, but
it is far from all of quantum mechanics. It is the equation that describes the behavior of a single
particle with mass, under non-relativistic conditions (i.e., everything moving much slower than
the velocity of light), and in the absence of magnetic effects. Essentially, the Schrodinger
equation describes the Hamiltonian of such a non-relativistic particle in the absence of
magnetic fields. We can extend it to cover some other situations, by adding further terms to it,
and we will look at some of these situations below, but there is also important quantum
mechanics, such as that describing light, in which we need to go beyond the ideas of
Schrodinger’s equation. The reader can be assured, however, that the underlying concepts we
have already illustrated carry all the way through this additional quantum mechanics,
especially the linear algebra aspects. Indeed, looking at quantum mechanics more generally in
terms of linear algebra, rather than only the mathematics of a differential equation such as
Schrodinger’s equation, can be very liberating intellectually in understanding quantum
mechanics, and can also save us a lot of time. It is to that linear algebra description that we
turn in the next Chapter.

3.16 Summary of concepts

Relation between energy and frequency

In quantum mechanics, we find we can quite generally associate an energy E with a frequency
v or an angular frequency @ through the relation

E=hv=rho 3.1
Time-dependent Schrédinger equation

The time-dependent Schrédinger equation is not an eigenequation. Knowing the solution in
space at a given time (and any time dependence of the potential) is sufficient to calculate the
solution at any subsequent (or, for that matter, previous) time.
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K> " oY (r,t)

—%V Y (r,t)+V (r,t)¥(rt)=i " (3.2)

Superposition state

Because of the linearity of Schrodinger’s time-dependent equation, if W(r,t) and Wy(r,t) are
separately solutions of the equation, then so also is the sum Wy(r,t) + Wy(r,t). This can be
inductively extended to any linear superposition of an arbitrary number of solutions.

Group velocity and dispersion

Dispersion is the phenomenon in which the frequency @ and the magnitude of the wavevector
k for some type of wave are not simply proportional to one another. The group velocity is the
velocity at which some wavepacket, constructed from some superposition of waves, will move,
and it is defined as

_do

=— 331
0T K (3.31)

Group velocity dispersion is the phenomenon where the group velocity itself changes with @
or k. Such group velocity dispersion typically leads to a change in the width of the wavepacket
as it propagates.

Quantum mechanical measurement and collapse of the
wavefunction

When a small quantum mechanical system is measured by a large measuring apparatus, the
system is always measured to be in one of the eigenstates of the quantity being measured, even
if it was in a linear superposition of eigenstates before measurement. This is sometimes known
as “collapse of the wavefunction”. (If viewed as a fundamental postulate of quantum
mechanics, rather than an empirical behavior of small systems measured by large ones, it has
various philosophical problems.)

The probability of finding the system in a particular eigenstate on measurement is proportional
to the modulus squared of the expansion coefficient of that state in the original superposition,
i.e., if the expansion of the state in the (normalized) eigenstates of the quantity being measured
is W(r,t) =2 ,C,(t)w,(r), then the probability of finding the system in eigenstate y, (r) is

P, =c,|’ (3.46)

Operators

An operator is an entity that changes one function into another. Operators are of central
importance to the mathematical foundation of quantum mechanics. Operators are often
indicated by having a “hat” over the corresponding letter, e.g., H for the Hamiltonian operator
(we adopt this notation consistently here).

Hamiltonian operator

The Hamiltonian operator is the operator that is associated with the energy of a quantum
mechanical system. There is a very close link between Schrodinger’s equation and the
Hamiltonian operator (for those systems for which Schrddinger’s equation is a good
description). Quite generally, we write
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. " oY (r,t)

R (r,t) = ih—— (3.50)

even when the system is more complex than that described by the simple Schrdodinger
equations discussed so far. We also write, quite generally, for Hamiltonians that do not depend
on time,

Hy (r)=Ey/(r) (3.51)

Time evolution of a quantum mechanical state

The way in which a quantum mechanical state evolves in time is a key concept in quantum
mechanics, and is fundamentally unlike the time-evolution of classical systems.

The evolution of a quantum mechanical system in time can be viewed as proceeding by the
coherent addition of quantum mechanical amplitudes, each of which is evolving in time. This
coherent addition is like the interference of different waves, and, when the quantum
mechanical amplitude we are considering is a wavefunction, there is an exact analogy here.
Probability densities and other measurable quantities (such as expectation values of energy or
momentum) can be deduced from the resulting sum of amplitudes at any particular time.

We have illustrated above that the interference of quantum mechanical amplitudes can lead to
the kind of behavior we see in the classical world, as in the harmonic oscillator with large
energies and the propagation of wave packets.

We can, of course, always simply integrate Schrodinger’s time-dependent equation in time if
we know the initial wavefunction, and hence deduce everything that happens subsequently.

There are also two specific methods for calculating the time-evolution of quantum mechanical
system, for the case where the potential is constant in time, that give useful insight into
quantum mechanical evolution of a system.

(1) If we express the initial spatial wavefunction as a linear superposition of the energy
eigenstates,

LI’(r,O):y/(r):;anl//n (r) (3.18)

then the evolution of the wavefunction in time is given by a simple linear superposition of
these eigenstates with their oscillating prefactors (exp (—iEnt / h) ), i.e.,

Y(rt)=>a ¥, (r.t)=> a exp(-iEt/ )y, (r) (3.17)
(i1) Alternatively, and equivalently, we can define a time-evolution operator exp(—il-]t/h)

which enables us to deduce the state at time t;, W(r,t;), from that at time t, , W(r,t;),
simply by applying this operator, i.e.,

LI’(r,tl):exp(—wj‘{’(r,to) (3.58)

Momentum operator

It is possible also to define an operator associated with momentum,
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p=-inv (3.74)
which has associated eigenfunctions exp(ik -r) and eigenvalues 7k .

Position operator

The position operator, at least when functions are expressed in terms of position, is simply the
position vector itself, r.

Expectation values

For quantum mechanical states that are not eigenstates corresponding to some measurable
quantity (such as energy or momentum), it is still possible to define the average value of the
quantity of interest. This is known as the expectation value. It is the average value that would
be obtained after repeated measurements on the system if it were prepared in the same state
each time.

The expectation value of a physical quantity, such as energy E , can be evaluated

(1) from the known expansion of the state (here the wavefunction W(r,t) ) in the (normalized)
eigenfunctions of the corresponding operator, e.g., the Hamiltonian H for the energy E with
eigenfunctions y,(r) and eigenvalues E, leads to the expansion

r,t)=>c, (t)w,(r) (3.43)
and the corresponding expectation value

<E>:ZEnPn :ZEn |Cn|2 (3.47)

or

(i1) directly from the known state of the system using the operator in the appropriate
expression, e.g., for the example case of energy and the Hamiltonian operator, through an
expression of the form

j\}f )Y (r,t)d’r (3.56)

Uncertainty principle

We find that quantum mechanics imposes a limit on the relative precision with which certain
attributes of a particle can be defined. The best known such relation is the Heisenberg
uncertainty principle between position and momentum for a particle, which is a relationship
between the standard deviations of the probability distributions for position Az in a given
direction and momentum Ap in the same direction

ApPAZ>h/2 (3.88)

This uncertainty principle is exactly analogous to the well-known relation
AwAt > % (3.89)

between angular frequency and time in Fourier analysis of temporal functions, and to the
phenomenon of diffraction of waves.
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Particle current
We find that, for a potential that is constant in time, we can identify the quantity
in
i =—(¥YVY -¥'VY 3.97
Js =3 ) (397
with particle current.

The particle current associated with an energy eigenstate is constant, and that associated with
an eigenstate with a real wavefunction (or a real function multiplied by a complex constant) is
ZEeTo.

Meaninglessness of wavefunction

It is not clear that the wavefunction we have introduced has any meaning in itself; it is
apparently not a measurable quantity. Like complex numbers themselves, however, the
wavefunction is a very useful device for calculating other quite meaningful, mathematically
real quantities. It is also a good example of a quantum mechanical amplitude, a concept that
will recur many times in other aspects of quantum mechanics.



Chapter 4

Functions and operators

Prerequisites: Chapters 2 and 3.

So far, we have introduced quantum mechanics through the example of the Schrodinger
equation and the spatial and temporal wavefunctions that are solutions to it. This has allowed
us to solve some simple but important problems, and to introduce many quantum mechanical
concepts by example. Quantum mechanics does, however, go considerably beyond the
Schrédinger equation. For example, photons are not described by the kind of Schrédinger
equation we have considered so far, though they are undoubtedly very much quantum
mechanical.'

To prepare for other aspects of quantum mechanics, and to make the subject easier to deal with
in more complex problems, we need to introduce a more general and extended mathematical
formalism. This formalism is actually mostly linear algebra. Readers will probably have
encountered many of the basic concepts already in subjects such as matrix algebra, Fourier
transforms, solutions of differential equations, possibly (though less likely) integral equations,
or analysis of linear systems in general. For this book, we assume that the reader is familiar
with at least the matrix version of linear algebra — the other examples are not necessary
prerequisites. The fact that the formalism is based on linear algebra is because of the basic
observation that quantum mechanics is apparently absolutely linear in certain specific ways as
we discussed above.

Thus far, we have dealt with the state of the quantum mechanical system as the wavefunction
Y(r,t) of a single particle. More complex systems will have more complex states to describe,
but in general any quantum mechanical state can simply be written as a list (possibly infinitely
long) of numbers. This list can be written as a vector, which is, after all, simply a list of
numbers. The operators of quantum mechanics can then be written as matrices (also possibly
infinitely large), and the operation of the operator on the function corresponds to the
multiplication of the state vector by the operator matrix. It is this generalized linear algebra
approach that we will discuss and develop in this section.

The linear algebra formalism is more generalized in quantum mechanics than in most of the
other subjects mentioned above, and it is often presented in a rather abstract way. The
shorthand notations that are introduced in these more abstract presentations are quite useful
and worth learning, but the reader should be assured that the concepts are fundamentally the
same as other manifestations of linear algebra. Here we will try to explain the concepts in a
tangible and, hopefully, intelligible way. The mathematical approach here is deliberately

"' In fact, arguably the first quantum mechanics was concerned with the photon, through Planck’s solution
of the problem of the spectral distribution of thermal radiation.
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informal, with the emphasis being on grasping the core concepts and ways of visualizing the
mathematical operations rather than on the more rigorous mathematical detail. The
justification for this informality is that, once the essence of the concepts is understood, the
reader can come back to understand the detail in a more rigorous treatment, but the opposite
approach is generally much less successful.

The discussion here so far of quantum mechanics has largely been one of breaking down
classical beliefs, and replacing them with a specific approach (Schrodinger’s equation) that
works for certain problems. A major goal of introducing this mathematical approach is to show
a way of visualizing quantum mechanics, giving the reader an intuitive understanding quantum
mechanics that extends to a broad range of problems.

4.1 Functions as vectors

First, we look at functions as particular kinds of vectors. A function, e.g., f(X), is essentially a
mapping from one set of numbers (the “argument”, X, of the function) to another (the “result”
or “value”, f(x), of the function). The fundamentals of this concept are not changed for
functions of multiple variables, or for functions with complex number results or geometrical
vector results (such as a position or momentum vector). We can imagine that the set of
possible values of the argument is a list of numbers, and the corresponding set of values of the
function is another list.

One kind of list of arguments would be the list of all real numbers, which we could write in
order as Xi, Xp, X3 ... and so on. Of course that is an infinitely long list, and the adjacent values
in the list are infinitesimally close together, but we will regard these infinities as details, and
for the moment we ask the reader to assume that these details can be handled successfully from
a more rigorous mathematical viewpoint.

If we presume that we know this list of possible arguments of the function, we can write out
the function as the corresponding list of results or values, and we choose to write this list as a
column vector, i.e.,

We can certainly imagine, for example, that, as a reasonable approximation to an actual
continuous function of a continuous variable, we could specify the function at a discrete set of
points spaced by some small amount dX, with X, = X; + X, X3 =X, + X and so on; we would
do this for sufficiently many values of x and over a sufficient range of x so that we would have
useful representation of the function for the purposes of some calculation we wished to
perform. For example, such an approximation to the function would be sufficient to calculate
any integral of any reasonably well-behaved function to any desired degree of accuracy simply
by taking Jx sufficiently small. The integral of | f(x)|* could then be written as

f(x)

[IFCof ax=[f(x) £ (x) f(x) -] :Ei; 5x @.1)



96

Chapter 4 Functions and operators
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7 T, axis

T, axis
(a) (b)

Fig. 4.1 (a) Representation of a function f(X) approximately as a set of values at a discrete set of
points, X;, X5, and X3. (b) Illustration of how the function can be represented as a vector, at least
for the case where there are only three points of interest, X;, X,, and X3, and where the function is
always real.

The fact that we can usefully write the function as a vector suggests that we might be able to
visualize it as a “geometrical” vector. For example, in Fig. 4.1, the function f(X) is
approximated by its values at three points, X, X;, and X;, and is represented as a vector

f(x)

f=|f(x,)

f(x)
in a three-dimensional space. We will return below to discuss the mathematical space in which
such vectors exist, but for the moment we merely note that we can visualize a function as a
vector. Of course, since there are many elements in the vector (possibly an infinite number),
we may need a space with a very large (possibly infinite) number of dimensions, but we will

still visualize the function (and, more generally, the quantum mechanical state) as a vector in a
space.

Dirac bra-ket notation

Since we will be working with such vectors extensively, it will be useful to introduce a
shorthand notation. In quantum mechanics, we use the Dirac “bra-ket” notation; this notation is
a convenient way to represent linear algebra quite generally, though its main use is in quantum
mechanics. In this notation the expression | f (x)) , called a “ket”, represents the column vector
corresponding to the function f(x). For the case of our function f(X), we can define the “ket” as

f(x)ox
f(x,)/ox

1OV o 5

(4.2)

or, more strictly, the limit of this as dx — 0. We have incorporated the factor ~/oX into the
vector so that we can handle normalization of the function, but this does not change the
fundamental concept that we are writing the function as a vector list of numbers.
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We can similarly define the “bra” (f(x)| to refer to an appropriate form of our row vector, in
this case

(F()[=[ £ (x)Vox 1 (e)Vox £ (x)Vox -] 4.3)

where again we more strictly mean the limit of this as ox — 0.

Let us pause for a moment to consider the relation between “bra” and “ket” vectors. Note that,
in our row vector, we have taken the complex conjugate of all the values. Quite generally, the
vector

|:al* a; a; :|

is what is called, variously, the Hermitian adjoint, the Hermitian transpose, the Hermitian
conjugate, or, sometimes, simply the adjoint, of the vector

A common notation used to indicate the Hermitian adjoint is to use the “dagger” character “
as a superscript, i.e.,

a, z[al" a al } 4.4)

We can view the operation of forming the Hermitian adjoint as a reflection of the vector about
a -45° line, coupled with taking the complex conjugate of all the elements, as shown below.

We see with this operation that the “bra” is the Hermitian adjoint of the “ket” and vice versa.
Note the Hermitian adjoint of a Hermitian adjoint takes us back to where we started, i.e.,

NI (45)

We will return later to consider the same kind of adjoint manipulation with matrices rather
than vectors.

Returning to the discussion of f(X) as a vector, with the definitions (4.1), (4.2), and (4.3) we
find
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f (x,)Vox

) dx =] £ (x X “(x X *(x X e f(XZ)m
JIE OO de=[ 1 (x)Nox 1 (0)Vox £ (x)Vox ]f(XM_X

=17 (x, )VOx T (x,)Vox | (4.6)
E<f (x)| f (x)>

where again the strict equality applies in the limit when X — 0. Writing this as a vector
multiplication eliminates the need to write a summation or integral since that is implicit in the
vector multiplication. The reader will note that we have written the vector product of the “bra”
and “ket” in a specific shorthand way as

(9]x[ f)=(q| ) (4.7)

Of course, as suggested by Eq. (4.7), this notation is also useful when we are dealing with
integrals of two different functions, i.e.,

f(x)Vox

Jor (1 (de=[ 0" (VoX " (e)Vox " (e)Vox -] :E;g

=>"9" (%, )Voxf (x,)Vox (4.8)
={g ()| f (x))

In general this kind of “product” of two vectors is called an inner product in linear algebra. The
geometric vector dot product is an inner product, the bra-ket “product” is an inner product, and
the “overlap integral” on the left of Eq. (4.8) is an inner product. It is “inner” because it takes
two vectors and turns them into a number, a “smaller” entity. The bra-ket notation can also be
considered to give an inner “look” to this multiplication with the special parentheses at either
end giving a “closed” look to the expression.

We could also consider situations in which a function is not represented directly as a set of
values for each point in ordinary geometrical space, but is instead represented as an expansion
in some complete orthonormal basis set, ¥, (X), in which case we would write

W0=§%%U) (4.9)

(An example of such an expansion would be a Fourier series.) In this case, we could also write
the function as a vector or “ket” (which would also in general have an infinite number of
elements)

|f(x))= (4.10)
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This is just as valid a description of the function as is the list of values at successive points in
space. In this case, the “bra” becomes

(f()|=[c o ¢ -] (4.11)

When we write the function in this different form, as a vector containing these expansion
coefficients, we say we have changed its “representation”. The function f(X) is still the same
function as it was before, and we visualize the vector | f(X)) as being the same vector in our
space. We have merely changed the axes in that space that we use to represent the function,
and hence the coordinates in our new representation of the vector have changed (now they are
the numbers ¢;, C,, Cs... ).2 (This idea that the function is the same vector independent of how
it is represented is an important one in this mathematics.)

Just as before, we could evaluate

I Oof = £ 1 (0000 = ]| S ()| S 00

= Zc;‘cmjw: (X)W (X)dx =108 = D Jcal (4.12)
Cl
* * C
=fo o ¢ |0 |=(r00l (o)
3
Similarly, with
9(x) =2 dwa (x) (4.13)
we have
c

d'd; dy ] zz =(g(x)| f (x)) (4.14)

with similar intermediate algebraic steps to those of Eq. (4.12).

Note that the result of a bra-ket expression like (f(x)| f(x)) or (g(x)| f(X)> is simply a
number (in general a complex one), which is easy to see if we think of this as a vector-vector
multiplication. Note too that this number (inner product) is not changed as we change the
representation, as we would expect by analogy with the dot product of two vectors, which is
independent of the coordinate system. Again, this fact that the inner product does not depend
on the representation is very important in this mathematics.

% The reader might ask — what are the new coordinate axes? The answer is that they are simply the
functions y,(X) , drawn as unit vectors in the same space, as we will discuss below.
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Expansion coefficients

Just as we did in Section 2.7, it is simple to evaluate the expansion coefficients ¢, in Eq. (4.9)
(or d, in Eq. (4.13)) because we choose the set of functions w, (X) to be orthonormal. Since
Wn (X) is just another function, we can also write it as a ket. In the bra-ket notation, to evaluate
the coefficient Cy,, we premultiply by the bra <1//m |

<z//m(x)|f(x)>:;cn <1//m(x)|://n(x)>:cm (4.15)

(Here remember that the different functions |1//n(x)> are all orthogonal to one another in such
an orthonormal basis, and hence (1//m (x)|1//n(x)> = [yn (W, (X)dXx = Sy .) Note that ¢, is just
a number, so it can be moved about in the product. Using the bra-ket notation, we can write
Eq. (4.9) as

1) = e v ()= Xl )
=S (0} o (0] ()

Again, because C, is just a number, it can be moved about in the product (formally,
multiplication of a vector and a number is commutative, though, of course, multiplication of
vectors or matrices generally is not.)

(4.16)

Often in using the bra-ket notation, we may drop arguments like X. Then we can write Eq.
(4.16) as

[)=2lva)yal ) (4.17)

Here we see a key reason for introducing the Dirac bra-ket notation; it is a generalized
shorthand way of writing the underlying linear algebra operations we need to perform, and can
be used whether we are thinking about representing functions as continuous functions in some
space, or as summations over basis sets. It will also continue to be useful as we consider
quantum mechanical attributes that are not represented as functions in normal geometric space;
an example (to which we will return much later) is the “spin” of an electron, a magnetic
property of the electron.

State vectors

In the quantum mechanical context where the function f represents the state of the quantum
mechanical system (for example, it might be the wavefunction), we think of the set of numbers
represented by the bra ((f |) or ket (| f)) vector as representing the state of the system, and
hence we refer to the ket vector that represents f as the “state vector” of the system, and the
corresponding bra vector as the (Hermitian) adjoint of that state vector.

In quantum mechanics, the bra or ket always represents either the quantum mechanical state of
the system (such as the spatial wavefunction (X)), or some state that the system could be in
(such as one of the basis states ¥, (X) ). The convention for what symbols we put inside the bra
or ket is rather loose, and usually one deduces from the context what exactly is being meant.
For example, if it was quite obvious what basis we were working with, we might use the
notation |n) to represent the nth basis function (or basis “state”) rather than the notation
|wn(X)) or |wn). In general, what symbols we put inside the bra or ket should be enough to
make it clear what state we are discussing in a given context; beyond that, there are essentially
no rules for the notation inside the bra or ket; the symbols inside the bra or ket are simply
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labels to remind us what quantum mechanical state is being represented. We could if we
wanted write

The state where the electron has the lowest

possible energy in a harmonic oscillator with

potential energy 0.375%

but since we presumably already know we are discussing such a harmonic oscillator, it will
save us time and space simply to write

10)

with the zero representing the quantum number of that state. Either would be correct
mathematically.

Problems

4.1.1 Suppose we adopt a notation

/ 2 . (nxz
‘ n> = [— sm[}
LZ LZ

to label the states of a particle in a one-dimensional potential well of thickness L,. Write the bra-ket
notation form that is equivalent to each of the following integrals (do not evaluate the integrals — just
change the notation).

L
@) iJsm 372 sin Srz dz
LZ 0 LZ LZ

L 2G% :
(ii) —G.fsm 3zz sin 3z dz , where G is some constant
L 3 L, L

Z

r Srz Srz
(iii) j sin| === |sin| 2= |dz
0 LZ Lz

4.1.2 Suppose that there are two quantum—mechamcally measurable quantities, ¢ with associated operator
C , and d with associated operator D.In particular, operator C has two eigenvectors ‘qﬁl) and ‘¢2>
and similarly operator D has two eigenvectors ‘1,//1> and ‘y/z>. The relation between the
eigenvectors is

8=+ (3lva) +4lw))
) =5 (4lv) -3lv)

Suppose a measurement is made of the quantity C, and the system is measured to be in state ‘qﬁl) .
Then a measurement is made of quantity d, and following that the quantity ¢ is again measured. What
is the probability (expressed as a fraction) that the system will be found in state ‘¢]> on this second
measurement of C? [Note: this is really a problem in quantum mechanical measurement discussed in
the previous Chapter, but is a good exercise in the use of the Dirac notation. ]

4.2 Vector space

Now we should try to understand more about the space in which the vectors representing
functions exist. For a vector with three components
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we can obviously imagine a conventional three-dimensional Cartesian space. The vector can
be visualized as a line in that space, starting from the origin, with projected lengths a,, a,, and
a; along the three Cartesian axes respectively (with each of these axes being at right angles to
each other axis), just as we did in Fig. 4.1.

In the case of a function expressed as its values at a set of points, instead of 3 axes labeled X,
X, , and X;, we have more commonly an infinite number of different axes all orthogonal to
one another. If we were only ever interested in functions expressed in terms of position X, we
would create one axis for each possible position X and we would label the axes accordingly
with those positions.

More generally, we represent a function as an expansion on a basis set, as in Eq. (4.16). In this
generalized case, we have one axis for each element in the basis set of functions. We now label
each axis with the name of the basis function with which it is associated, e.g., v, . Just as we
may formally label the axes in conventional space with unit vectors in the directions of the
axes (e.g., one notation is X, y, and z for the unit vectors), so also here we can label the axes
with the kets associated with the basis functions, |1//n> ; either notation is acceptable. Note that
a basis function is itself a vector in this space, and, if normalized, the basis function vectors are
simply the unit vectors along the corresponding axis.

The geometrical space has a vector dot product that defines both the orthogonality of the axes,
e.g., with X, ¥, and Z as the unit vectors in the coordinate directions’

X-y=0 (4.18)
and defines the components of a vector along those axes, e.g., for
f=fx+fy+fz (4.19)
with
f,=f-x (4.20)
and similarly for the other components.

Our vector space has an inner product that defines both the orthogonality of the basis functions
(Wnlva) =6 (4.21)

as well as the components
Cn =W f) (4.22)

Note that the fact that the basis functions are mathematically orthogonal, as given by Eq.
(4.21), corresponds with the fact that we can draw them as orthogonal axes in the space.

? Note that here we have used the “” ” to indicate geometrical unit vectors, but we will otherwise reserve
the “  ” to indicate an operator.



4.2 Vector space 103

The geometrical space and our vector space share a number of elementary mathematical
properties that seem so obvious they are almost trivial. With respect to addition of vectors,
both spaces are commutative

a+b=b+a (4.23)
[)+lg)=[g)+[f) (4.24)
and associative

a+(b+c)=(a+b)+c (4.25)
[F)+(g)+[n)=(f)+[g))+[m) (4.26)

and linear with respect to multiplying by constants, e.g.,
c(a+b)=ca+ch (4.27)
c(|)+[9)=c|f)+clg) (428)

(The constants in our vector space case are certainly allowed to be complex.)

The inner product is linear both in multiplying by constants, e.g.,

a.(cb)=c(ab) (4.29)
(fleg)=c(flg) (4.30)
and in superposition of vectors
a(b+c)=ab+ac 4.31)
(f1(jg)+[M)=(flg)+(F[h) (4.32)

There is a well-defined “length” to a vector in both cases (formally, a norm), which we can
write in a formal mathematical notation as

lal| =vaa (4.33)
If]=(f|f) (4.34)

In both cases, any vector in the space can be represented to an arbitrary degree of accuracy as a
linear combination of the basis vectors (this is essentially the completeness requirement on the
basis set).

There is a slight difference between the geometrical space and our vector space in the inner
product. Usually in geometrical space the lengths a,, a,, and a; of a vector are real, which
would lead us to believe that the inner product (vector dot product) was commutative, i.e.,

ab=ba (4.35)

In working with complex coefficients rather than real lengths, it is more useful to have an inner
product (as we do) that has a complex conjugate relation

(fla)=((alf)) (4.36)
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Such a relation ensures that <f | f> is real, as required for it to be a useful norm. (The
existence of a norm is formally required to prove properties like completeness by showing that
the norm of the difference of two vectors can be as small as desired.)

These kinds of requirements, plus a few others (the existence of a null or “zero” vector, and the
existence of an “antivector” that added to the vector gives the null vector) are sufficient to
define these two spaces as “linear vector spaces”, and specifically, with the properties of the
inner product, what are called “Hilbert spaces”. The Hilbert space is the space in which the
vector representation of the function exists, just as normal Cartesian geometrical space is the
space in which a geometrical vector exists".

The main differences between our vector space and the geometrical space are that (i) our
components can be complex numbers rather than only real ones, and (ii) we can have more
dimensions (possibly an infinite number). However, these differences are not so strong that we
cannot use the idea of a geometrical space as a starting point for visualizing our vector space.
In practice, we can carry over most of the intuition from our understanding of geometrical
space and use it in visualizing the vector space in which we are representing functions.

Our vector space can also be called a function space. A vector in this space is a representation
of a function. The set of basis vectors (basis functions) that can be used to represent vectors in
this space is said in linear algebra to “span” the space.

Problems

4.2.1 We will consider the function space that corresponds to all linear functions of a single variable, i.e.,
functions of the form,

f(x)=ax+b
defined over the range —1<Xx<1.

(i) Show that the functions y, (x)=1/ V2 and v, (x)= \/gx are orthonormal

(i) By showing that any arbitrary function f(X)=ax+b can be represented as the linear
combination f(X) =y (X)+ Cow,(X), show that the functions y,(X) and y,(X) constitute a
complete basis set for representing such functions.

(iii) Represent the function 2x+3 as a vector in a two-dimensional function space by drawing that
vector in a two-dimensional diagram with orthogonal axes corresponding to the functions y/;(X)
and w,(X) , stating the values of appropriate coefficients or components.

4.3 Operators

A function turns one number (the argument) into another (the result). Most broadly stated,
an operator turns one function into another.

In the vector space representation of a function, an operator turns one vector into another.
Operators are central to quantum mechanics, and are encountered frequently in many forms in
the mathematics that underlies much of science and engineering.

4 Note that, if we extended our notions of geometrical space to allow for complex lengths in the
coordinate directions, and if we defined (a-b)*=b-a then our geometrical space would also be,
mathematically, a Hilbert space.
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Suppose that we are constructing the new function g(y) from the function f(x) by acting on
f(x) with the operator A. The variables x and y might actually be the same kind of variable,
as in the case where the operator corresponds to differentiation of the function, e.g.,

g(x)= [%j f(x) 437)

or they might be quite different, as in the case of a Fourier transform operation where x might
represent time and y might represent frequency, e.g.,

1% .
g(y)=—=1 f(x)exp(—iyx)dx (4.38)
(== | (el
A standard notation for writing such an operation on a function is

g(y)=Af (x) (4.39)

Note that this is not a multiplication of f(x) by A in the normal algebraic sense, but should
be read as A operating on f(x).

For A to be the most general operation we could imagine, it should be possible for the value
of g(y), for example at some particular value of y =Y, to depend on the values of f(x) for
all values of the argument x. This is the case, for example, in the Fourier transform operation
of Eq. (4.38).

4.4 Linear operators

We will be interested here solely in what are called linear operators. We only care about linear
operators because they are essentially the only ones we will use in quantum mechanics, again
because of the fundamental linearity of quantum mechanics. A linear operator has the
following characteristics:

A[ f(x)+h(x)]= Af (x)+Ah(x) (4.40)
Al cf (x)]=CcAf (x) (4.41)
for any complex number € and for any two functions f(x) and h(x).

To understand what this linearity implies about how we can represent A, let us consider how,
in the most general way, we could have g(y;) related to the values of f(x) and still retain the
linearity implied by Eqs. (4.40) and (4.41). Let us now go back to thinking of the function
f(X) as being represented by a list of values, f(x), f(X), f(X3), ..., just as we did when
considering f(X) as a vector. Again, we can take the values of X to be as closely spaced as we
want, and we believe that this representation can give us as accurate a representation of f(x)
as we need for any calculation we need to perform. Then we propose that, for a linear
operation represented by the operator A, the value of g(y;) might be related to the values of
f(X) by a relation of the form

a(y,)=a,f(x)+a,f(x)+a;f(x)+.. (4.42)

where the @; are complex constants. This form certainly has the linearity of the type required
by Egs. (4.40) and (4.41), i.e., if we were to replace f(x) by f(x)+h(X), then we would have
some other resulting function value
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g(vi)=a,[F(x)+n0x)]+a,[f(x)+h(x)]+
a, [ f(%)+h(x)]+...

(4.43)
=a, f(x)+a,f(x)+a,f(x)+..

+a,h(x)+a,h(x,)+a;h(x)+...

which is just the sum as required by Eq. (4.40), and similarly if we were to replace f(X) by
cf(x), we would have for yet some other resulting function value

a(y,)=a,cf (x)+a,cf (x,)+a,cf (x)+...
=cla, f(x)+a,f(x)+a,f(x)+..]

as required by Eq. (4.41). Now let us consider whether the form Eq. (4.42) is the most general
it could be. We can see this by trying to add other powers and “cross terms” of f(X). Any
more complicated function relating g(y;) to f(x) could presumably be written as a power
series in f(X), possibly involving f(x) for different values of X (i.e., cross terms). If we were
to add higher powers of f(x), such as [f(X)]?, or cross terms such as f(X)f(x;) into the
series (4.42), it would, however, no longer have the required linear behavior of Eqgs. (4.43) and
(4.44). We also cannot add a constant term (i.e., one not dependent on f (X)) to the series
(4.42); that would violate the second linearity condition, (4.41), since the additive constant
would not be multiplied by c. Hence we conclude that the form Eq. (4.42) is the most general
one possible for the relation between g(y;) and f(X) if this relation is to correspond to a
linear operator.

(4.44)

To construct the entire function g(Y), we should construct series like Eq. (4.42) for each other
value of y, i.e., ¥, Vs, ... . It is now clear that, if we write the functions f(x) and g(y) as
vectors, then this general linear operation that relates the function g(y) to the function f(x)
can be written as a matrix-vector multiplication,

g(y1) a, a, a; - f(xl)
g(yz) _ a &, a, | f (XZ) (4.45)
g(Y3) 8 & Ay f(x3)
with the operator
8, a, 4a;
A= 8y 8y 8y (4.46)

a} 1 a’32 a33

It is important to emphasize that any linear operator can be represented this way. At least in so
far as we presume functions can be represented as vectors, then linear operators can be
represented by matrices. This now gives us a conceptual way of understanding what linear
operators are and what they can do.

In bra-ket notation, we can write Eq. (4.39) as

|g)=A|f) (4.47)
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Again, in so far as we regard the ket as a vector, we now regard the (linear) operator A as a
matrix. In the language of vector (function) spaces, the operator takes one vector (function)
and turns it into another. Now have a very general way of thinking about linear transformations
of functions. All of the following linear mathematical operations can be described in this way:
differentiation, rotation (and dilatation) of a vector, all linear transforms (Fourier, Laplace,
Hankel, z-transform, ... ), Green’s functions in integral equations, and linear integral equations
generally.

In quantum mechanics, such linear operators are used as operators associated with measurable
variables (such as the Hamiltonian operator for energy, and the momentum operator for
momentum), as operators corresponding to changing the representation of a function (changing
the basis), and for a few other specific purposes, with the associated vectors representing
quantum mechanical states.

A very important consequence is that the algebra for such operators is identical to that of
matrices. In particular, operators do not in general commute, i.e.,

Aé| f> is not in general equal to éA| f> (4.48)

for any arbitrary | f) . If we understand that we are considering the operators to be operating
on an arbitrary vector in the space, we can drop the vector itself, and write relations between
operators, e.g., we can say, instead of Eq. (4.48)

AB is not in general equal to BA (4.49)
which we would regard as an obvious statement if we are thinking of the operators as matrices.

There are specific operators that do commute, just as there as specific matrices that do
commute. Whether or not operators commute is also of central importance in quantum
mechanics.

Of course, although we presented the argument above for functions nominally of a variable X
or Y, it would have made no difference if we had been talking about expansion coefficients on
basis sets. For example, we had expanded f(X) on a basis set in Eq. (4.9), which gives a set of
coefficients c, that we can write as a vector. We similarly had expanded g(X) on a basis set in
Eq. (4.13) to get a vector of coefficients d,. In that case we had chosen the same basis for
both expansions, but it would make no difference to the argument if g(x) had been expanded
on a different set. We could follow an argument identical to the one above, requiring that each
expansion coefficient d; depend linearly on all the expansion coefficients c,. The specific
matrix we obtain for representing A depends on the choice of basis functions sets for the
expansions of f(X) and g(X), but we still obtain a matrix vector statement of the same form,
ie.,

d1 Au A12 A13 G

dz _ A21 Azz Az3 ol G (4.50)

o B R

and the bra-ket statement of the relation between f, g, and A, Eq. (4.47), remains unchanged.
The statements in the forms either of the bra-ket relation, Eq. (4.47), or the matrix-vector
notation, Eq. (4.50), could be regarded as being more general statements than the form Eq.
(4.45), which applies only to representations in terms of specific variables X and y.



108 Chapter 4 Functions and operators

4.5 Evaluating the elements of the matrix associated with
an operator

Now that we have established both the relation between linear operators operating on functions
in linear spaces, and the mathematics of matrix-vector multiplications, it will be useful to be
able to evaluate the matrix associated with some specific operator for functions defined using
specific basis sets.

Suppose we start with f (X) =;(X), or equivalently
[ f)=|w;) 4.51)

i.e., we choose f(x) to be the jth basis function. In the expansion Eq. (4.9) this means we are
choosing ¢; =1 and setting all the other C’s to be zero. Now we operate on this | f) with A as
in Eq. (4.47) to get the resulting function |g). Suppose we want to know specifically what the
resulting coefficient d; is of the i th basis function in the expansion of this functi0n| g> (i.e., as
in Eq. (4.13)). It is obvious from the matrix form, Eq. (4.50), of the operation of A on this
| f), with the choice ¢; =1 and all other ¢ ’s zero, that

d =A (4.52)

‘ P, > axis

i)

/ ‘ ¥, > axis

‘ wj> axis

Fig. 4.2. Illustration of a matrix element of an operator A visualized in terms of vector
components. Operator A acting on the unit vector |y,), generates the vector Aly,), which in
general has a different length and direction from the original vector |y;). The matrix element
A =(pi|Alw,) is the projection of the vector A|y,) onto the |,) axis.

For example, for the specific case of j =2, we would have

d] A12 AH A12 A13 =10
d2_Azz_A21 Azz A23 1

SAE (4.53)
R

and so, to take one example result, we know that
d, = A,. (4.54)

But, from the expansions for | f) and |g) we have, for the specific case of | f)=|y;),
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|9)=2du )= Alwy) (4.55)
To extract d; from this expression, we multiply by (| on both sides to obtain
d =y |Alw,;) (4.56)
and hence we conclude, from Eq. (4.52)
A =i | Alw;) (4.57)

If we now think back to integrals considered as vector-vector multiplications, as in Eq. (4.14),
then we can see that, when the functions y;(x) are simple spatial functions, we have for the
matrix elements corresponding to the operator A

jy/. ) Ay, (x)dx (4.58)

The formation of a matrix element considered in terms of functions represented as vectors in
the Hilbert space is illustrated in Fig. 4.2. We can if we wish write out the matrix explicitly for
the operator A, obtaining, with the notation of Eq. (4.57)

(vxll{\ll/«) (wllfflt//z) (t//llfflwg)
A= <‘/’2|A|‘//1> <‘/’2|A|‘//2> <V/2|"i‘|‘/’3> (4.59)
<l//3 > <l//3 > <‘/’3|A|‘//3>

Now we have therefore deduced both how to set up the function as a vector in function space
(establishing the components through Eq. (4.15)), and how to set up a linear operator as a
matrix (through Eq. (4.58) or, equivalently, (4.57)) that operates on those vectors in the
function space.

4.6 Bilinear expansion of linear operators

We know that we can expand functions in a basis set, as in Egs. (4.9) and (4.13), or, in bra-ket
notation, for example, Eq. (4.16). What is the equivalent form of expansion for an operator?
We can deduce this from our matrix representation above. We do so by considering an
arbitrary function f in the function space, written in ket form as | f) from which a function g
(written as the ket | g)) can be calculated by acting with a specific operator A, i.e.,

|g)=A|f) (4.60)

The arbitrariness of the function |f>w111 allow us to deduce a general expression for the
operator A. We presume that g and f are expanded on the basis set y;, i.e., in function space
we have

|g):Zdi|z//i> (4.61)
f=2¢lv;) (4.62)

From our matrix representation, Eq. (4.50), of the expression (4.60), we know that
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d, = Z Ac, (4.63)
j
and, by definition of the expansion coefficient, we know that
c; =(wi|f) (4.64)
Hence, (4.63) becomes
d =2 A (v, |f) (4.65)
J
and, substituting back into (4.61),
19)=2 A (| F)lwi) (4.66)
]

Remember that (y;|f)=c; is simply a number, so we can move it within the multiplicative
expression. Hence we have

|g>:ZAJ|‘/’i><‘//1|f> (4.67)

But |f> represents an arbitrary function in the space, so we therefore conclude that the
operator A can be represented as

A= 2A v (v (4.68)

This form, Eq. (4.68), is referred to as a “bilinear expansion” of the operator, and is analogous
to the linear expansion of a vector.

In integral notation for functions of a simple variable, we have, analogously, the relation
g(x)=[Af (x)dx, (4.69)
which leads to the analogous form of the bilinear expansion

A= Ay (v (x) (4.70)

Note that these bilinear expansions can completely represent any linear operator that operates
within the space, i.e., for which the result of operating on a vector (function) with the operator
is always a vector (function) in the same space.

Note, incidentally, that an expression of the form of Eq. (4.68) contains an outer product of
two vectors. Whereas an inner product expression of the form <g| f) results in a single,
complex number, an outer product expression of the form |g><f| generates a matrix, i.e.,
explicitly for the outer product,

d, dec, dgc, dgc;
I I R R S @

dic/ dic; dic

The specific summation in Eq. (4.68) is actually, then, a sum of matrices, with the matrix
|wi)(wi| having the element in the ith row and the jth column being one, and all other
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elements being zero’. Such outer product expressions for operators are very common in
quantum mechanics.

Problem

4.6.1 In the notation where functions in a Hilbert space are expressed as vectors in that space, and
operators are expressed as matrices, for functions ‘ f> and ‘ g> and an operator A, state where each
of the following expressions corresponds to a column vector, a row vector, a matrix, or a complex
number.

2 (flg)
b) (f|A
o [f)gl
d) Alf)g|

o A)( 1))

4.7 Specific important types of linear operators

In the use of Hilbert spaces, there are a few specific types of linear operators that are very
important. Four of those are (i) the identity operator, (ii) inverse operators, (iii) unitary
operators, and (iv) Hermitian operators. The identity operator is relatively simple and obvious,
but is important in the algebra of operators. Often, the mathematical solution to a physical
problem involves finding an inverse operator, and inverse operators are also important in
operator algebra. Unitary operators are very useful for changing the basis for representing the
vectors. They also occur, in a quite different usage, as the operators that describe the evolution
of quantum mechanical systems. Hermitian operators are used to represent measurable
quantities, and they have some very powerful mathematical properties. In the Sections below,
we will discuss these types of operators and their properties.

4.8 ldentity operator

The identity operator | is that operator that, when it operates on a function, leaves the function
unchanged. In matrix form, the identity operator is, obviously,

1 00
=0 L0 (4.72)
1o 01 '
In bra-ket form, the identity operator can be written in the form
=2 v)wil (4.73)

where the |(//i> form a complete basis for the function space of interest. Note, incidentally, that
Eq. (4.73) holds for any complete basis, a fact that turns out to be very useful in the algebra of

5 We presume here that we are working with the y, as the basis functions for our vector space.
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linear operators, and to which we return below. Let us prove the statement Eq. (4.73). Consider
the arbitrary function

|f>:ZCi|'//i> (4.74)
By definition (or, explicitly, by multiplying on left and right by (y/m | ), we know that

Cp =(Wul f) (4.75)

so, explicitly

[1)=2 0wl )lwi) (4.76)

Now consider f| f) where we use the definition of | we had proposed in Eq. (4.73). We have

)= Sl ) @

A

But ((//i | f) is simply a number, and so can be moved in the product. Hence

=Xl 1) @78)

A

and hence, using Eq. (4.76), we have proved that, for arbitrary | f ) s
I f)y=]f) (4.79)
and so our proposed representation of the identity operator, Eq. (4.73), is correct.

The reader may be asking why we have gone to all the trouble of proving Eq. (4.73). The
statement Eq. (4.72) of the identity operator seems sufficient. After all, the statement Eq.
(4.73) is trivial if |(//i> is the basis being used to represent the space. Then

1 0 0
0 1 0
i) =| |- lw2)=| |- v =] | | (4.80)
so that
1 00 0 0 0 0 0 0
o0 o0 - 010 0 0 0
wdl=ly o o I Il=ly o o Ll Imsl=ly (481)

and obviously Zi|t//i>(t//i| gives the identity matrix of Eq. (4.72). Note, however, that the
statement Eq. (4.73) is true even if the basis being used to represent the space is not |(//i> .In
that case, |(//i> is not a simple vector with the ith element equal to one and all other elements
zero, and the matrix |wi ><(//i | in general has possibly all of its elements non-zero. Nonetheless,
the sum of all of those matrices |(//i><wi | still leads to the identity matrix of Eq. (4.72). The
important point for the algebra is that we can choose any convenient complete basis to write
the identity operator in the form Eq. (4.73).
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We can understand why the identity operator can be written this way for an arbitrary complete
set of basis vectors (functions) |1//i> . In an expression

[1)=Elwidw| 1) @)

the bra (1//i| projects out the component, C;, of the vector (function) | f) of interest, and
multiplying by the ket | l//i> adds into the resulting vector (function) on the left an amount ¢; of
the vector (function) |1//i> . Adding up all such components in the sum merely reconstructs the
entire vector (function) | f) .

An important point about thinking of functions as vectors is that, of course, the vector is the
same vector regardless of which set of coordinate axes we choose to use to represent it. If we
think about the identity operator in terms of vectors, then the identity operator is that operator
that leaves any vector unchanged. Looked at that way, it is obvious that the identity operator is
independent of what coordinate axes we use in the space. Our algebra here is merely showing
that we have set up the rules for the vector space so that we get the behavior we wanted to
have.

Trace of an operator

The identity matrix in the form we have defined above can be very useful in formal proofs.
The tricks are, first, that we can insert it, expressed on any convenient basis, within other
expressions, and, second, we can often rearrange expressions to find identity operators buried
within them that we can then eliminate to simplify the expressions. A good illustration of this
is the proof that the sum of the diagonal elements of an operator A is independent of the basis
on which we represent the operator; that sum of diagonal elements is called the “trace” of the
operator, and is written as Tr(A) . The trace itself can be quite useful in various situations
related to operators, and some of these will occur below.

Let us consider the sum, S, of the diagonal elements of an operator A, on some complete
orthonormal basis |l//i> ,1.e.,

S =2 (lAlw) (4.83)

Now let us suppose we have some other complete orthonormal basis, |¢m> We can therefore
write the identity operator as

—_—

= |4.)(¢n] (4.84)

m

We can insert an identity operator just before the operator A in Eq. (4.83), which makes no
difference to the result, since 1A= A, so we have

IR AL AN PRI 55)

iA

Rearranging gives

S DNABALTAE DUALTAALS
-0 A Sl )

m

(4.86)
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where we have used the fact that <l//i |¢m> and <¢m | A|1//i> are simply numbers and so can be
swapped.

Now we see that we have another identity operator inside an expression in the bottom line, i.e.,
=2 lv)wil (487)
i
and so, since Al = A, we can remove this operator from the expression, leaving

S =20 |Ald0) (4.88)

Hence, from Egs. (4.83) and (4.88), we have proved that the sum of the diagonal elements, i.e.,
the trace, of an operator is independent of the basis used to represent the operator, which is
why the trace can be a useful property of an operator.

Problem

4.8.1 Prove that the sum of the modulus squared of the matrix elements of a linear operator A is
independent of the complete orthonormal basis used to represent the operator.

4.9 Inverse operator

Now that we have defined the identity operator, we can formally consider an inverse operator.
If we consider an operator A operating on an arbitrary function | f> , then the inverse operator,
if it exists, is that operator A™' such that

|f)=A"A|f) (4.89)

Since the function | f> is arbitrary, we can therefore identify

ATA=1 (4.90)
i.e., the identity operator. Viewed as a vector operation, the operator A takes an “input” vector
and, in general, stretches it and reorients it. The inverse operator does exactly the opposite,
restoring the original input vector.

Since the operator can be represented by a matrix, finding the inverse of the operator reduces
to finding the inverse of a matrix, which is a standard linear algebra operation that is
equivalent to solving a system of simultaneous linear equations.

Just as in matrix theory, not all operators have inverses. For example, the projection operator
P=|f){f] (4.91)

in general has no inverse, because it projects all input vectors onto only one axis in the space,
the one corresponding to the vector | f) . This is a “many to one” mapping in vector space, and
there is now no way of knowing anything about the specific input vector other than its
component along this axis. Hence in general we cannot go backwards to the original input
vector starting from this information alone.

4.10 Unitary operators

A unitary operator, U , is one that obeys the following relation
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U=yt (4.92)

that is, its inverse is its Hermitian transpose (or adjoint). The Hermitian transpose of a matrix
is formed by reflecting the matrix about its diagonal, and taking the complex conjugate, just as
we discussed previously in the special case of a vector. Explicitly,

t ¥ * *
U, U, Ug; ’ i Uy 31
Uy Uy Uy _ U, Uy Uy - (4.93)

Conservation of length and inner product under unitary
transformations

One important property of a unitary operator is that, when it operates on a vector, it does not
change the length of the vector. This is consistent with the “unit” part of the term “unitary”. In
fact, more generally, when we operate on two vectors with the same unitary operator, we do
not change their inner product (the conservation of length follows from this as a special case,
as we will show).

Consider the unitary operator U and the two vectors | f0|d> and |go|d ) We form two new
vectors by operating with U ,

| frow) =U | foig) (4.94)
and

|9ne) =U | 9o ) (4.95)
In conventional matrix (or matrix-vector) multiplication with real matrix elements, we know
that

(AB)' =BTAT (4.96)

where the superscript “T” indicates the transpose (reflection about the diagonal). In matrix or
operator multiplication with complex elements, we analogously obtain

(AB)'t _BTA' (4.97)
and, explicitly, for matrix-vector multiplication (since a vector is just a special case of a
matrix)

(Aln)) = (n] A& (4.98)
Hence,

Gou |UTU| fold>
9o U U] foe)
Goia | 1] s )

Goia | foa)

<gnew | fnew> =

(4.99)

o~ o~ o~ ——
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so, as promised, the inner product is not changed if both vectors are transformed this way. In
particular,

< fnew | fnew> = < fold | fold > (4 100)

i.e., the length of a vector is not changed by a unitary operator.

Use of unitary operators to change basis sets for representing
vectors

One major use of unitary operators is to change basis sets (or, equivalently, representations or
coordinate axes). Suppose that we have a vector (function) | f0|d> that is represented, when we
express it as an expansion on the functions |l//n> , as the mathematical column vector

(4.101)

These numbers €y, C,, Cs, ... are the projections of | f0|d> on the orthogonal coordinate axes in
the vector space labeled with |1//1>, |1//2>, w;) ... . Suppose now we wish to change to
representing this vector on a new set of orthogonal coordinate axes, which we will label |¢1> ,
|¢2> s ¢3>, ... . Changing the axes, which is equivalent to changing the basis set of functions,
does not, of course, change the vector we are representing, but it does change the column of
numbers used to represent the vector from those in Eq. (4.101) to some new set of numbers.

For example, suppose, for simplicity, that the original vector was actually the first basis vector
in the old basis, |l//1> (which is simply the vector with 1 in the first element, and zero in all the
others). Then in this new representation, the elements in the column of numbers would be the
projections of this vector on the various new coordinate axes, each of which is simply
(¢m |l//1> , 1.e., under this coordinate transformation (or change of basis),

(4 ]w)
01 |(®:1v) (4.102)

(_) (¢ |.‘//1 )

We could write out similar transformations for each of the other original basis vectors |y/n>.
We can see that we will get the correct transformation if we define a matrix

u11 u12 u13
N u u u v
U=|2 2 23 (4.103)
Uy Ug Uy oo
where
Uy =(d|w;) (4.104)

and define our new column of numbers | fnew> as

| fnew> =U | foua > (4.105)
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Note incidentally that, in this case, | f0|d> and | fneW> refer to the same vector in the vector
space; it is only the representation (the coordinate axes), and, consequently the column of
numbers, that have changed, not the vector itself. This is rather like looking at, for example, a
sculpture from different viewing positions. Suppose, for example, that we are in some modern
art gallery in which an artist has made a sculpture in the form of an arrow, sticking at an angle
up out of the floor. As we change our position, our view of the arrow changes. We could write
down a representation of the arrow’s length and direction, (e.g., the tip of the arrow is 1.5
meters in front of us, 50 cm to the left, and 10 cm up). If we move to another position, the
representation we would write down would change, though the arrow remains the same®. (In
fact, such a change in viewing position can be exactly described by a unitary operator.)

Now we can prove that U is unitary. Writing the matrix multiplication in its sum form, we
have

(UU )ij - ;u:"‘umi - %X’/ﬁm |vi) <¢m |"’i>
=2 {wildn)dalvi)= (v, |(;|¢m><¢m |j|l,,j> w106

A

=il i) =(wilvs)

The statement (UU); =d; is equivalent to saying we have a matrix with 1 for every diagonal
element and zeros for all the others, i.e., the identity matrix, so

uid=1 (4.107)

and hence U is unitary since its Hermitian transpose is therefore its inverse (Eq. (4.92). Hence
any change in basis can be implemented with a unitary operator. We can also say that any such
change in representation to a new orthonormal basis is a unitary transform.

Note also, incidentally, that
A A oA A A
UU*:(U'U) =i = (4.108)

Given that we concluded above that a unitary transform did not change any inner product, we
can now also conclude that a transformation to a new orthonormal basis does not change any
inner product. Again, this is as we would have expected from thinking about the inner product
being like a vector dot product of two geometrical vectors; of course such an inner product
does not depend on the coordinate axes, only on the directions and lengths of the vectors
themselves.

Use of unitary operators for changing the representation of
operators

We have discussed so far how to change the column of numbers that represents a vector
(function) in vector space when we change the basis. What happens to the matrix of numbers
that represents an operator when we change the basis?

% We can think of this arrow as being like a vector in Hilbert space. The justhave to remember for our
vectors in Hilbert space that the projections onto the various coordinate axes can be complex numbers,
and we can have as many coordinate axes as we need, not just the three of geometrical space.
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We can understand what the new representation of A is by considering an expression such as

Al fren) =(19ren)) A )
= (U | Goug >)1L A“?W (Lj | fOld >) = <gold |Lj TA]EWU | fo|d>

where the vectors | f) and |g> are arbitrary. Note here also that the subscripts new and old
refer to the representations, not the vectors (or operators). The actual vectors and operators are
not changed by the change of representation, only the sets of numbers that represent them are
changed. Hence the result of such an expression should not be changed by changing the
representation. So we believe that

<gnew|Awew| fnew>=<gold |A3Id | fold> (4110)

Since this is to be true for arbitrary choices of vectors, we can write an equation for the
operators themselves, and from Egs. (4.109) and (4.110) can deduce that

<gnew
(4.109)

A, =U'A,U (4.111)

or, equivalently,
UA,U" =(UU")A,,(UU")=A,, (4.112)

We can understand this expression directly. U is the operator that takes us from the old
coordinate system to the new one. If we are in the new coordinate system, therefore, U~! =U'f
is the operator that takes us back to the old system. So, to operate with the operator A in the
new coordinate system, when we only know its representation, Ayq, in the old coordinate
system, we first operate with U to take us into the old system, then operate with Ayq, then
operate with U to take us back to the new system.

Unitary operators that change the state vector

The unitary operator we discussed above for changing basis sets is one important application
of unitary operators in quantum mechanics. There is another one, which is different in
character. In general, a linear operator in Hilbert space can change the “orientation” of a vector
in the space, and change its length by a factor. In the language of our modern art gallery
analogy, a linear operator operating on the arrow itself would in general move the arrow
sticking up out of the floor to a new angle, and possibly lengthen it or shorten it. A unitary
linear operator can rotate the arrow, but leaves its length unchanged. Such operators are not
changing the basis set — they are actually changing the state of the quantum mechanical
system, and are changing the vector’s orientation in vector space. Hence in our modern art
gallery, an operator that rotates the arrow to a new angle, while we stay standing exactly where
we are, is also a unitary operator, this time actually changing the state of the arrow, not
describing a change of our viewing position as previously.

Operators that change the quantum mechanical state of the system can quite often be unitary.
One reason why such operators arise in quantum mechanics is simple to see. If we are
working, for example, with a single particle, then presumably the sum of all the occupation
probabilities of all of the possible states is unity. I.e., if the quantum mechanical state |(//> is
expanded on the complete orthonormal basis |1//n> ,

lv)=2a|v.) (4.113)
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then Zn|an |2 =1 and if the particle is to be conserved then this sum is retained as the quantum
mechanical system evolves, for example in time. But this sum is just the square of the length of
the vector |l//> Hence a unitary operator, which conserves length, will be an appropriate
operator for describing changes in that system that conserve the particle. For example, the
time-evolution operator for a system where the Hamiltonian does not change in time,
exp(—iHt/ %), can be shown to be unitary, the explicit proof of which is left as an exercise for
the reader.

Problems

4.10.1 Evaluate the unitary matrix for transforming a vector in two dimensional space to a representation
in a new set of axes rotated by an angle #in an anticlockwise direction.

- 0 i
4.10.2 Consider the operator M, :{ : 0}

(1) What are the eigenvalues and associated (normalized) eigenvectors of this operator?
(i) What is the unitary transformation operator that will diagonalize this operator (i.e., the matrix
that will change the representation from the old basis to a new basis in which the operator is now

1
represented by a diagonal matrix)? Presume that the eigenvectors in the new basis are {0} and

0
L} respectively.

(iii) What is the operator M, in this new basis?

W

4.10.3 Consider the orthonormal basis functions l//l(X) =1/+/2 and l/lz(X) = \/gx that are capable of

representing any function of the form f (X) = ax + b defined over the range —-1<x<1.

. . . . 1 1
(i) Consider now the new basis functions ¢ (x)= @ + 5 and ¢,(x)= @ -3
Represent the functions ¢ (X) and ¢(X) in a two-dimensional diagram with orthogonal axes

corresponding to the functions (X) and y,(X) respectively.

(ii) Construct the matrix that will transform a function in the “old” representation as a vector { 1}
2

d
into a new representation in terms of these new basis functions as a vector { "| , where an

d,
arbitrary  function  f (X) =ax+b is represented as the linear combination
f (X) = d1¢1(x) + d2¢2(x) -
(iii) Show that the matrix from part (ii) is unitary.

d,

(iv) Use the matrix of part (ii) to calculate the vector { } for the specific example function 2X+3.

2
(v) Indicate the resulting vector on the same diagram as used for parts (i).

4.10.4 Consider the so-called Pauli matrices

R 0o 1] . 0 —-i| 1 0
o, = , O, =] . , 0,=
1 0 Y 1ioo0 0 -1

(which are used in quantum mechanics as the operators corresponding to the X, y, and z
components of the spin of an electron, though for the purposes of this problem we can consider them
simply as abstract operators represented by matrices). For this problem, find all the requested
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eigenvalues and eigenvectors by hand (i.e., not using a calculator or computer to find the eigenvalues

and eigenvectors), and show your calculations.

(i) Find the eigenvalues and corresponding (normalized) eigenvectors |5 ) of the operator &,

(ii) Find the eigenvalues and corresponding (normalized) eigenvectors y/xig of the operator &y

(iii) Show by explicit calculation that Zi‘l/lxi><l//xi ‘ =1, where I is the identity matrix in this two
dimensional space.

(iv) These operators have been represented in a basis that is the set of eigenvectors of &, .
Transform all three of the Pauli matrices into a representation that uses the set of eigenvectors of
Gy as the basis.

4.10.5 Consider an operator W =3, ;a;|é)(w;| where |¢) and |y;) are two different complete sets of
functions. Show that, if the columns of the matrix representation of the operator are orthogonal, i.e.,
if ¥,ajha; = 5, then the operator W is unitary. [Note: when multiplying operators represented by
expansions, use different indices in the expansion summations for the different operators. ]

4.10.6 Prove that the time-evolution operator A= exp(—iHt/%) is unitary.

See also Problem 13.2.2.

4.11 Hermitian operators

A Hermitian operator is one that is its own Hermitian adjoint, i.e.,

A

M =M (4.114)
We can also equivalently say that a Hermitian operator is self-adjoint.

Expressed in matrix terms, we have, with

M 11 M12 M13
~ M, M M
M=| 2 2 (4.115)
M3l M32 M33
that
Ml*l M ;1 M;l
Mt=|Me Mo My (4.116)
M 13 M23 M33
so the Hermiticity condition, Eq. (4.114), implies
M, =M; (4.117)

for all i and j. Incidentally, this condition, Eq. (4.117), implies that the diagonal elements of a
Hermitian operator must be real.

Mathematically, statements about operators in vector spaces are only valid insofar as they
apply to the operator operating on arbitrary functions. To understand what the Hermiticity
statement (4.114) means for actions on functions in general, we can examine the result
(g|M|f) . This result is from the multiplication of the vector (g|, the matrix M , and the vector
|f), and so we can consider the Hermitian adjoint of this result, ((g|M|f))", using the rules
for the adjoints of the products of matrices (and vectors as special cases of matrices),
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specifically the relation Eq. (4.97) ((AB)' = BfA™). Of course, in the specific case of the result
(g|M| ), the resulting matrix is a “one-by-one” matrix that can also be considered as simply a
number, and so

((aIM[ ) =((g[M] 1)) (4.118)

Hence we have, using the rule for the adjoint of products of matrices, for any functions f and g,
(to1%]13) =((al] 1) =[(ol(]7))]
=(M[1)) ()" = (1)) ™" ((a) (4.119)
=(f[M"]g)
Now we use the Hermiticity of M , Eq. (4.114), and obtain
(fIM[g)=((g|M]f)) (4.120)

which could be regarded as the most complete and general way of stating the Hermiticity of an
operator M . Note this is true even if | f) and |g> are not orthogonal. The statement for the
matrix elements, Eq. (4.117), is just a special case.

M

M

M

In integral form, for functions f(x) and g(x), the statement Eq. (4.120) of the Hermiticity of
M can be written

[ (x)NF (x)dx = Uf )Mg (x)d ] (4.121)
We can rewrite the right hand side using the property (ab)” =a’h” of complex conjugates to
obtain

[o" (x)Mf (x)dx= [ (%) Ag(x)}* dx (4.122)
and a simple rearrangement leads to

jg*(x)l\?lf(x)dx:.[{l\flg(x)}* f (x)dx (4.123)

Authors who prefer to introduce Hermitian operators in the integral form often use the form
Eq. (4.123) to define the operator M as Hermitian. The forms Eq. (4.114), (4.117), (4.120),
and, for functions of a continuous variable, (4.123), can all be regarded as equivalent
statements of the Hermiticity of the operator M .

Note that the bra-ket notation is more elegant than the integral notation in one important way.
In the bra-ket notation, the operator can also be considered to operate to the left — (g | A is just
as meaningful a statement as the statement A| f), and it does not matter how we group the
multiplications in the bra-ket notation, i.e.,

(alAlf)=((a|A)| T)=(g

because of the associativity of matrix multiplication. Conventional operators in the notation
used in integration, such as a differential operator, d/dx, do not have any meaning when they
operate “to the left”, hence we end up with the somewhat clumsy form Eq. (4.123) for
Hermiticity in this notation.

A

(A f)) (4.124)




122 Chapter 4 Functions and operators

Properties of Hermitian operators

The eigenvalues and eigenvectors of Hermitian operators have some special properties, some
of which are very easily proved.

Reality of eigenvalues

Suppose |1//n> is a normalized eigenvector of the Hermitian operator M with eigenvalue ,.
Then, by definition,

A

M|y,) =t |v,) (4.125)

Therefore

(oM y,) = w1, (o wa) = a4, (4.126)

But from the Hermiticity of M we know

Wa My ) =((wa M ) =4 (4.127)

and hence, from the equality of (4.126) and (4.127), u, must be real, i.e., the eigenvalues of a
Hermitian operator are real.” This suggests that such an operator may be useful for
representing a quantity that is real, such as a measurable quantity.

Orthogonality of eigenfunctions for different eigenvalues

The eigenfunctions of a Hermitian operator corresponding to different eigenvalues are
orthogonal, as can easily be proved in bra-ket notation. Trivially,

0=(y,|Mly,)—(¥a|M|y,) (4.128)
So, by associativity and the rule Eq. (4.97) ((AB)" = BTA")
0=({ynM)[w)=(wal(M]y,))

= (M7 l//m))+|wn>—(wm|('\7l v.))

Now, using the Hermiticity of M (M =M"), the fact that the Hermitian adjoint of a complex
number is simply its complex conjugate (the number is just a one-by-one matrix), and the fact
that the eigenvalues of a Hermitian operator are real anyway, we have

A

M

(4.129)

0= Hi <l//m |l//n>_tun <l//m |Wn> = (/um _lun)<'//m |'//n> (4130)
But, by assumption, gz, and g, are different, and hence

(W lw,) =0 (4.131)

7 Note that the converse is not true; there are matrices with real eigenvalues that are not Hermitian

1
matrices. E.g., the matrix L 2} is not Hermitian, but has real eigenvalues, 4, and -1. It also worth

1

2
noting that the resulting eigenvectors L} and { } are not orthogonal.
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and we have proved that the eigenfunctions associated with different eigenvalues of a
Hermitian operator are orthogonal.

Incidentally, it is quite possible (and actually common in problems that are highly symmetric
in some way or another) to have more than one eigenfunction associated with a given
eigenvalue. As discussed above, this situation is known as degeneracy. It is provable, at least
for a broad class of the operators that are used in quantum mechanics, that the number of such
linearly independent degenerate solutions for a given finite, non-zero eigenvalue is itself finite,
though we will not go into that proof here.

Completeness of sets of eigenfunctions

A very important result for a broad class’ of Hermitian operators is that, provided the operator
is bounded, that is, it gives a resulting vector of finite length when it operates on any finite
input vector, the set of eigenfunctions is complete, i.e., it spans the space on which the operator
operates. The proof of this result is understandable with effort, but requires setting up a
mathematical framework, e.g., for functional analysis, that is beyond what we can justify
here.'” This result means in practice that we can use the eigenfunctions of bounded Hermitian
operators to expand functions. This greatly increases the available basis sets beyond the simple
spatial or Fourier transform sets. For many problems, it means we can greatly simplify the
description of them.

Hermitian operators and quantum mechanics

As we mentioned above, a broad class of bounded Hermitian operators have the attractive
properties of having real eigenvalues, orthogonal eigenfunctions, and complete sets of
eigenfunctions. These properties make Hermitian operators powerful and quite easy to use for
problems for which they are applicable. By a remarkable stroke of good fortune, it turns out
that, as far as we know, the physically measurable quantities in quantum mechanics can be
represented by such Hermitian operators. In fact, some state this as an axiom of quantum
mechanics. We have already seen momentum and energy (Hamiltonian) operators, both of
which are apparently of this kind. We will encounter several other such operators
corresponding to other physical quantities as we get further into quantum mechanics. All of
these operators have the same algebra and properties as discussed here, and we hence have a
very general, sound, and useful mathematical methodology for discussing quantum mechanics.

Problems

4.11.1 For each of the following matrices, say whether or not it is unitary and whether or not it is
Hermitian.

Ttoo] _T1 il _Ti ol TJou
O g | @ 5 ] g ] M

8 1t is certainly true for “compact” operators, which in practice are operators that can be approximated to
any desired degree of accuracy by finite matrices. Since the sum of the modulus squared of the elements
is one of the aspects that must converge as we move to a sufficiently large such finite matrix for a
compact operator, then the sum of the eigenvalues must converge, which means that the degeneracy must
be finite for any given degenerate eigenvalue.

? Again, the compact operators.

1 See, e.g., David Porter and David S. G. Stirling, “Integral equations,” (Cambridge, 1990), pp. 109-111
(proof of the spectral theorem) and pp. 112-113 (proof of completeness)
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4.11.2 Prove that, for two square matrices A and B, (AB)T =BfAT

(Hint: consider a general element, e.g., the ijth element, of the resulting matrix, and write the result of
the matrix multiplication for that element as a summation over appropriate terms.)

4.11.3 Consider the Hermiticity of the following operators.
(i) Prove that the momentum operator is Hermitian. For simplicity you may perform this proof
for a one-dimensional system (i.e., only consider functions of X, and consider only the p,

operator).

[Hints: Consider [~y (X) puyj(X)dx where the w,(X) are a complete orthonormal set.
You may want to consider an integration by parts. Note that the (X) must vanish at oo,
since otherwise they could not be normalized.]

. d ..
(ii) Is the operator i Hermitian? Prove your answer.
X

d’ ..
iii)Is the operator — Hermitian? Prove your answer.
p d 2 y
X

Hints: You may want to consider another integration by parts, and you may presume that the

. dy(x .
derivatives ‘//dni() also vanish at oo .
X

2 2
(iv) Is the operator H = —;—% +V (x) Hermitian if V () is real? Prove your answer.
m dx

4.11.4 Prove by operator algebra that a Hermitian operator transformed to a new coordinate system by a
unitary transformation is still Hermitian.

4.11.5 Suppose we have an operator A, with eigenvalues @ (with eigenstates labeled with
i=1,2,3,...). Write out, in the simplest possible form, the matrix that represents this operator if we
use the (normalized) eigenfunctions as the basis for the representation.

4.11.6 A Hermitian operator A has a complete orthonormal set of eigenfunctions ‘(//n> with associated
eigenvalues «, . Show that we can always write

A:Zai i) (wil
(This is known as the expansion of A inits eigenfunctions, and is a very useful expansion.)

Now find a similar, simple expression for the inverse, A™'.

(This is also a very useful result. This results show that, if we can find the eigenfunctions of an
operator, also known as “diagonalizing” the operator, we have effectively found the inverse, and
usually in practice we have solved the quantum mechanical problem of interest.)

4.11.7 Considering the expansion of A in its eigenfunctions (Problem 4.11.6 above), show that the trace,
Tr(A), is always equal to the sum of the eigenvalues.

4.11.8 Prove the integral form of the definition of the Hermiticity of the operator M

[o"(x)mf (x)dx=.|-{l\7lg(x)}* f (x)dx

by expanding the functions f and g in a complete basis ‘l//n> and using the matrix element definition
of Hermiticity

M i = M* ji
where

M, :Iyxf(x)l\?lgyj(x)dx

4.11.9 Prove, for any Hermitian operator M , and any arbitrary function or state | f) , that the quantity
< f | M | f > is real. [Hence, the expectation value of any quantity represented by a Hermitian operator
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is always real, which is one good reason for using Hermitian operators to represent measurable
quantities.]

4.12 Matrix form of derivative operators

So far, we have discussed operators as matrices, and have dealt with these in the general case,
but have not related these matrices to the operators we have so far used in actual quantum
mechanics, as in the Schrodinger equation or the momentum operator. The operators in those
two cases happen to be differential operators, such as d?/dx?> or d/dx, and it may not be
immediately obvious that those can be described as matrices. The reason for this discussion is
not so that we can in practice use matrices to describe such operators; it is usually more
convenient to handle such operators using the integral form of inner products and matrix
elements. We merely wish to show how this can be done for conceptual completeness.

If we return to our original discussion of functions as vectors, we can postulate that an
appropriate form for the differential operator d /dx would be

1 1
-— 0 — 0
d_ 20X 20% (4.132)
dx 1 1
20X 25X

where as usual we are presuming we can take the limit as X — 0. If we were to multiply the
column vector whose elements are the values of the function f(X) at a set of values spaced by
an amount oX , then we would obtain

1 1 . f (% —6x)
26x 25 f(Xl)

b 1 f (x +6X%)

20X 26X f (% +26x)

- (4.133)

f(x +38,)-f(x—06x) df
26X dx
f(x+25,)-f(x) df
25% dx

Xj +0X
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where again we understand that we are taking the limit as 06X — 0. Hence we have a way of
representing a derivative as a matrix.

Note that we have postulated a form that has a symmetry about the matrix diagonal. In this
case the matrix is antisymmetric in reflection about the diagonal. This matrix is not, however,
Hermitian, which reflects the fact that the operator d/dx is not a Hermitian operator, as can
be verified from any of the definitions above of Hermiticity. We can see from this matrix
representation, by contrast, that the operator id/dx (or, for that matter, —id /dx ) would be
Hermitian (simply multiply all the matrix elements by i to see we have a matrix that is
Hermitian), and hence that the momentum operator, such as its X component p, = —iad /dx,

would be Hermitian.

It is left as an exercise for the reader to show how the second derivative can be represented as a
matrix, and that the corresponding matrix is Hermitian.

Problem

4.12.1 Given that d*/dx’ = algl()[( f (X—5X)—2f (X)+ f (X+ 5X))/(5X)2J , find an appropriate matrix

that could represent such a derivative operator, in a form analogous to the first derivative operator
matrix.

4.13 Matrix corresponding to multiplying by a function

One other situation we have already encountered is where the operator simply corresponds to
multiplying each element in the input vector by a (different) number. For example, we can
formally “operate” on the function f(x) by multiplying it by the function V(X) to generate
another function g(x)=V(x)f(Xx). Since the function V(x) is performing the role of an
operator (even though it is a particularly simple form of operator), we can if we wish represent
it as a matrix, so that we can express it in the same form as all of our other operators, and in
that case, in the position representation, it is a simple diagonal matrix whose elements are the
values of the function at each of the different points.

If the function is real, the corresponding matrix is Hermitian (though it is not if the function is
complex). Hence, one can conclude that the Hamiltonian as used in Schrodinger’s equation,
being the sum of two Hermitian matrices (e.g., in the one dimensional case, one corresponding
to the Hermitian operator (—#2?/2m) 0% /0x? and the other corresponding to the “operator”
V (X)), is Hermitian, as long as V (X) is real.

4.14 Summary of concepts

Functions as vectors

Functions can be regarded as vectors in a vector space, with the values of the function at the
different coordinate points or the expansion coefficients of the function on some basis being
the components of the vector along the corresponding coordinate axes in the space.

Hermitian adjoint

The Hermitian adjoint (also known as the Hermitian transpose, Hermitian conjugate, adjoint)
of a vector or a matrix is the complex conjugate of the transpose of the vector or matrix. The
Hermitian adjoint of the matrix A is written as A" (pronounced “A-dagger”).
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Dirac bra-ket notation

| f > , called a “ket”, is the vector in function space that represents the function f. The Hermitian
adjoint of that vector is the “bra”, <f | .

Inner product

The inner product in function space of two functions f and g is the vector product (f |g>,
which is in general a complex number, and we have

(tlo)=((al )} (4.36)

The inner product of a vector with itself gives the square of its length (also known as the norm
of the vector), and always results in a real quantity. The inner product is linear in sums of
functions and multiplying functions by constants.

Expansion coefficients as inner products

The expansion coefficients, c,, of a function f on a basis
f(x)=> cw,(x) (4.9)
are
Cn =Wl f) (4.15)

State vectors

Where a function f represents the quantum mechanical state of a system, the vector | f) is
known as the state vector of the system.

Vector (or function) space

A vector or function space is a mathematical space in which the (usually multidimensional)
vectors that represent functions exist.

Hilbert space

A Hilbert space is a vector space with an inner product. It is closely analogous to a
conventional three-dimensional geometrical space, with two important differences: (i) the
space may have any number of dimensions, including an infinite number, and, (ii) because
coefficients can be complex in Hilbert space, the inner product is in general complex. It is a
suitable vector space for representing vectors that are linear in both addition and in
multiplication by a constant.

Operators

An operator is an entity that changes one function into another, with the value of the new
function at any point possibly being dependent on the values of the original function at any or
all values of its argument or arguments.

Linear operators are linear both in addition of functions and in multiplication by a constant.
Linear operators can be represented by matrices that can operate on the vectors in function
space, and they obey the same algebra as matrices.
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Elements of the matrix representation of an operator

For a matrix representing a linear operator in Hilbert space, the elements of the matrix are
represented in the basis ,, as

A

A ={v, l,,j> (4.57)

Bilinear expansion of linear operators

A linear operator in a Hilbert space can be written as
A=A lw){v| (4.68)
¥

where y, is any complete basis in the space.

Identity operator

The identity operator acting on a function leaves the function unchanged, and can be written as

=2 v)wil (4.73)

i
where ,, is any complete basis in the space.
Trace of an operator

The trace of an operator A, written as Tr(A), is the sum of the diagonal elements of an
operator. It is independent of the basis on which the operator is expressed.

Inverse operator
The inverse operator, A, if it exists, is that operator for which
ATA=1 (4.90)
i.e., the operator that exactly undoes the effect of the operator A.
Unitary operator
A unitary operator U is an operator for which
U=yt (4.92)
or, equivalently,
'l =1 (4.107)

A unitary operator acting on a vector conserves the length of the vector. It can be used for
coordinate transformations of vectors

| fnew> = U | 1:old > (494)
and operators

A, =UA,U’ 4.112)
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Conservation of inner product under a unitary transformation of
coordinate system

A unitary coordinate transformation conserves the inner product of any two vectors

<gnew | fnew> = <gold | fold> (499)

and hence also conserves the length of any vector.
Identity for Hermitian adjoint of products of operators
A useful identity is that

(AE”;)T _BTA (4.97)

Unitary operators that change the state vector

Unitary operators representing physical processes (as opposed to the mathematical process of
changing coordinate systems) can change the state vector of the quantum mechanical system,
and are useful in representing those quantum mechanical processes, such as the time evolution
of the state of a particle, in which the particle is conserved (and hence in which the length of
the state vector is constant).

Degeneracy

If there are multiple eigenfunctions corresponding to a particular eigenvalue, this condition is
referred to as “degeneracy”, with the number of such multiple eigenfunctions being called “the
degeneracy”.

Hermitian operators
A Hermitian operator is one for which
M'=M (4.114)
or, equivalently for its matrix elements on some complete basis set
M, =M} 4.117)
or, equivalently, for functions of a spatial variable,
J'g*(x)Mf(x)dx=J'{l\7lg(x)}* f(x)dx (4.123)

Properties of Hermitian operators
For the Hermitian operators we encounter in quantum mechanics
the eigenvalues are real
the eigenfunctions corresponding to different eigenfunctions are orthogonal
the degeneracy of any given finite eigenvalue is finite
the set of eigenfunctions of a bounded Hermitian operator is complete
the diagonal elements are real

for arbitrary functions | f) and |g> , we have, for a Hermitian operator M ,
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(fIM]g)=((gM|f)) (4.120)

Hermitian operators and measurable quantities

Physically measurable quantities in quantum mechanics can be represented by Hermitian
operators.



Chapter 5

Operators and quantum mechanics

Prerequisites: Chapters 2, 3, and 4.

In this Chapter, we will start to use and extend the mathematics of the previous Chapter, and
relate it to quantum mechanics more directly.

Here we will first examine some of the important properties of operators that are associated
with measurable quantities. Then we will discuss the uncertainty principle in greater
mathematical detail. Finally, we will introduce the &-function, which is a very useful additional
piece of mathematics, and consider some of its uses and consequences, especially in quantum
mechanics.

5.1 Commutation of operators

It is considered a postulate of quantum mechanics that all measurable quantities can be
associated with a Hermitian operator. We have seen the momentum and energy operators
already, and we will encounter others. It is not the case that all operators that are useful in
quantum mechanics are Hermitian; for example, we will encounter later the non-Hermitian
creation and annihilation operators that are used extensively in quantum optics.

A very important property of Hermitian operators representing physical variables is whether or
not they commute, i.e., whether or not

AB = BA (5.1)
where A and B are two Hermitian operators. Remember that, because these linear operators

obey the same algebra as matrices, in general operators do not commute. For quantum
mechanics, we formally define an entity

[A, é] - AB-BA (5.2)
This entity is called the commutator. An equivalent statement to Eq. (5.1) is then'

[A,é] =0 (5.3)

! Technically, the zero on the right of Eq. (5.3) is the zero operator, which maps all functions to the
function that is zero everywhere, not the number zero, though this subtlety is not likely to cause any
confusion.
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If the operators do not commute, then Eq. (5.3) does not hold, and in general we can choose to
write

[A,é]:ié (5.4)

where C is sometimes referred to as the remainder of commutation or the commutation rest.
Eq. (5.4) is the “commutation relation” for operators A and B .

Let us now try to understand some of the consequences of operators commuting or not.

Commuting operators and sets of eigenfunctions

Operators that commute share the same set of eigenfunctions, and operators that share the
same set of eigenfunctions commute. We will now prove both of these statements.

Suppose that operators A and B commute, and suppose that the functions |l//n> are the
eigenfunctions of A with eigenvalues A . Then

ABly,)=BA|w,)=BA|w,) = AB|w,) (5.5)
Hence we have
AlBlwi)|=A[Blw)] (5.6)
But this means that the vector B|y;) is also the eigenvector |y;) or is proportional to it,’

for some number B;
é|'//i>:Bi|V/i> (5.7)

This kind of relation holds for all the eigenfunctions |1//,> and so these eigenfunctions are also
the eigenfunctions of the operator B, with associated eigenvalues B;. Hence we have proved
the first statement that operators that commute share the same set of eigenfunctions.

Note that the eigenvalues A and B; are not in general equal to one another.

Now we consider the second statement. Suppose that the Hermitian operators A and B share
the same complete set of eigenfunctions |1//n> with associated sets of eigenvalues A, and B,
respectively. Then

AB|y, )= AB,|y.) = AB|y;) (5.8)
and similarly
BAjy:)=BAly;)=BA|v,) (5.9)
Hence, for any function | ), which can always be expanded in this complete set of functions
|f>=zi:ci|y/i) (5.10)

we have

2 For simplicity here we neglect the case of degenerate eigenvalues, though this case can be handled
relatively easily.
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AB|f)=3 cAB |y;) =2 cBAly,)=BA|f) (5.11)

Since we have proved this for an arbitrary function | f), we have proved that the operators
commute, hence proving the second statement.

This equivalence of Hermitian operators commuting and having the same set of eigenfunctions
has an important quantum mechanical consequence. Suppose that the operators represent
different measurable quantities. An example of such a situation is the case of a free particle,
i.e., one for which the potential is constant everywhere; in this case, the energy operator
(Hamiltonian) and the momentum operator have the same eigenfunctions (plane waves) and
the operators for energy and momentum commute with one another. If the particle is in an
energy eigenstate, then it is also in a momentum eigenstate, and the particle in this case can
simultaneously have both a well-defined energy and a well-defined momentum. We can
measure both of these quantities and get perfectly well-defined values for both.

Of course, this raises the question of what happens when the operators do not commute, and
we deal with this next.

Problems

5.1.1 The Pauli spin matrices are quantum mechanical operators that operate in a two-dimensional
Hilbert space, and can be written as

A 0 1 | 0 -] 1 0
o, = , O, =] . , 0, =
1 0 Y lioo 0 -1

Find the commutation relations between each pair of these operators, proving your answer by explicit
matrix multiplication, and simplifying the answers as much as possible.

5.1.2 Show, for Hermitian operators A and B , that the product AB is a Hermitian operator if and only
if A and B commute.

5.1.3 Prove that the operator that is the commutator [A, B] of two Hermitian operators A and B is
never Hermitian if it is non-zero.

5.2 General form of the uncertainty principle

Here we will give a general proof and definition of the uncertainty principle. The proof is
somewhat mathematical, though in the end quite short and very powerful in defining one of the
most non-classical aspects of quantum mechanics.

First, we need to set up the concepts of the mean and variance of an expectation value. We
discussed above the mean value of a measurable quantity as being the expectation value of the
operator in the quantum mechanical state. Using A to denote the mean value of such a
quantity A, we have, in the bra-ket notation, for a measurable quantity associated with the
Hermitian operator A when the state of the system is | f)

A=(A)=(f|A|f) (5.12)

Let us define a new operator AA associated with the difference between the measured value of
A and its average value, i.e.,

AA=A-A (5.13)
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A is just a real number,’ and so this operator is also Hermitian.

So that we can examine the variance of the quantity A, we examine the expectation value of the
operator (AA)?. Expanding the arbitrary function | f) on the basis of the eigenfunctions, |l//i> ,
of A,ie., |f)=3c|pi), we can formally evaluate the expectation value of (AA)?. We have

() = (6 o) A& [ e, )
i ]
(et |j(A—K)(Zj:cj (A _z\)|%>]
. —\2
(Sl a7 )
=Xl (A-A)
Because the |Ci are interpreted in quantum mechanics as being the probabilities that the
system is found, on measurement, to be in the state i (or, equivalently, |l//i> ), and the quantity

(A —A)? simply represents the squared deviation of the value of the quantity A from its
average value, then by definition

W5<(AA)2>=<(A—K)Z>:(1‘ (A=A)|1)=(f| A =R [f)=(A)-A (5.15)

is the mean squared deviation we will find for the quantity A on repeatedly measuring the
system prepared in state |f). (Note: the algebraic step from (f|(A-A)?|f) to
(f|A2—A2|f) is left as an exercise for the reader below.) In statistical language, this quantity
is called the variance, and the square root of the variance, which we can write as

(5.14)

|2

AA=(AAY’ (5.16)
is the standard deviation. The standard deviation gives a well-defined measure of the width of
a distribution.

We can also consider some other quantity B associated with the Hermitian operator B,
B=(B)=(f|B|f) (5.17)

and, with similar definitions
(a8) =((a8)")=((8-8)")=(r[(B-B)| 1) (5.18)

These two expressions, (5.15) and (5.18), give us ways of calculating the uncertainty in the
measurements of the quantities A and B when the system is in a state | f). Now we use these
in our general proof of the uncertainty principle.

Suppose that the two operators A and B do not commute, and have a commutation rest C as
defined in Eq. (5.4) above. Consider*, for some arbitrary real number « , the number

3 Technically, A in this expression is actually the identity operator multiplied by the number (A) .
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G(a) = ((anA-iaB) |(arA-iaB) f) =0 (5.19)

(By |(aAA— iAB) f > , we simply mean the vector (AA— iAB)| f), but we wrote it in this form
to emphasize that it is simply a vector, and as a result has a positive inner product with itself,
which must be greater than or equal to zero, as in this equation (5.19)). Now we rearrange
(5.19) to obtain

G(a)=(f |(adA-iAB) (anrh-irB) 520
= (f|(aaA" +iAB")(arA-iaB)| T) |

By Hermiticity of the operators, we have then

G(a)=(f|(arA+iAB)(arA-iAB)|f)

+(4B) +aC|f) (521)

) 4(AA)°

The last step is a simple though not very obvious rearrangement. But this relation must be true
for arbitrary ¢, and so it is true for the specific value

o=- c - (5.22)
2(AA)
which sets the first term equal to zero in the last line of (5.21), and so we have
—\2
———7 |(C
(AA)'(AB)’ > % (5.23)

This is the general form of the uncertainty principle. It tells us the relative minimum size of the
uncertainties in two quantities if we perform a measurement. Only if the operators associated
with the two quantities commute (and hence give C and therefore C =0) is it possible for
there to be no width to the distribution of results for both quantities for any arbitrary state. This
is a very non-classical result, and is one of the core results of quantum mechanics that differs

fundamentally from classical mechanics.

* This treatment of the proof of the general uncertainty relation is similar to that of W. Greiner, Quantum
Mechanics (Third Edition) (Springer-Verlag, Berlin, 1994), pp 74-5
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Position-momentum uncertainty principle

We can apply this result now to derive the most quoted uncertainty principle, which we
introduced by example before, the position-momentum relation. Let us consider the
commutator of f, and X.(We treat the function X as the operator for position — this can be
justified, as we will discuss below.) To make the issue of differentiation clear, we will
explicitly consider this commutator operating on an arbitrary function | f). As we discussed
before, operator relations always implicitly assume that the operators are operating on an
arbitrary function anyway. Hence we have

[B,.x]| f):—ih[dix—xij| f)z—ih{%(ﬂ f))—x% f)}

X dx
. d d
_ -m{| exdr)-xd f)} (5.24)
=—in| f)

So, since | f) is arbitrary, we can write
[b,.%] =—in (5.25)

and the commutation rest operator C is simply the number (strictly the identity matrix
multiplied by the number)

C=-n (5.26)
Hence
C=-h (5.27)
and so, from (5.23) we have
2
(Ap, )’ (Ax) > " (5.28)
or, equivalently,
h
Ap,AX > 5 (5.29)

Energy-time uncertainty principle

We can proceed to calculate a similar relation between energy uncertainty and time
uncertainty. The energy operator is the Hamiltonian, H . From Schrédinger’s time-dependent
equation, we know that

A 0
Hly)=in—|w) (5.30)
ot
for an arbitrary state |y). If we take the time operator to be just the function t, then we have,

using essentially identical algebra to that used above for the momentum-position uncertainty
principle,

[I—],t]zih[%t—tgjzih (5.31)
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and so, similarly we have

2
(AE)’ (At)" > % (5.32)
or
L
ABAL> (5.33)

which is the energy-time uncertainty principle. We can relate this result mathematically to the
frequency-time uncertainty principle that occurs in Fourier analysis. Noting that E =7%® in
quantum mechanics, we have

AwAt > % (5.34)

Problems

5.2.1 Suppose that an operator A that does not depend on time (i.e., oA/t =0 (where here we strictly
mean the zero operator)) commutes with the Hamiltonian H . Show that the expectation value of this
operator, for an arbitrary state |y), does not depend on time (i.e., d(A)/dt =0 . [Hint: remember
that H =i%o/6t |

5.2.2 Show that (f|(A—A)’[f)=(f
5.2.3 Consider the “angular momentum” operators
Lo=yp,—-2p,, L, =2p, —xp,,and L, =xp, —yp,
where Py, Py and P. are the usual momentum operators associated with the X, y, and z directions.

(Note that these momentum operators are all Hermitian.)
(i) Prove whether on not L, is Hermitian.

Az — Az‘ f> for any function ‘ f> and any Hermitian operator A .

(i1) Construct an uncertainty principle for L, and I:y .

5.3 Transitioning from sums to integrals

One additional piece of mathematics that we will need below is how to change from sums to
integrals. This change can be convenient because integrals are often easier to evaluate than
sums. We will be able to do this transition when the different states involved are closely
spaced in some parameter (e.g., momentum or energy), and when all the terms in the sum vary
smoothly with that parameter. This is relatively obvious from basic integral calculus, but we
will discuss this explicitly here for clarity and completeness, and because we need to build on
the formal results in discussing applications of delta functions.

We imagine for the moment that we have some states, indexed by an integer (, and that, for
each of those g, some quantity has the value fq. Hence, summing all of those would give a
result

S=>f, (5.35)

It could be that the quantity fq can also equivalently be written as a function of some
parameter U that itself takes on some value for each g, i.c.,

f, =1,
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For example, the different g states could represent states of different momentum 7ikq , in which
case Ug could be the momentum, and f; could be the energy associated with that momentum.
Then we could just as well write, instead of Eq. (5.35),

S=> fuy) (5.36)
q

Suppose now that the uq and the fq are very closely spaced as we change g, and vary
relatively smoothly with g. We suppose that this smooth change of u; with g is such that we
can represent U as some smooth, and differentiable, function of q. Hence,

-U, =0u=—00=—00=— (5.37)

In Eq. (5.37), we have first defined ou as the difference between two adjacent values of u (this
quantity may be different for different values of g). Then we have multiplied top and bottom
lines by 6. Next, we have approximated ou/dq by du/dq . Finally, we have noted that 59,
the separation in g between adjacent values of ¢, is just unity, since q is by choice an integer.
So, if we were to consider some small range AU, within which the separation ou between
adjacent values of U was approximately constant, the number of different terms in the sum that
would lie within that range is Au/du = Au/ (du/ dq). Equivalently, defining a “density of
states”

1

we could say equivalently that the number of terms in the sum that lie within Au is g (u)Au .
Hence, instead of summing over g, we could instead consider a range of values of u, each
separated by an amount Au, and write the sum over all those values, i.e.,

S=>f, EZf(uq)=Zf(u)g(u)Au (5.39)

Finally, we can formally let Au become very small, and approximate the sum by an integral,
to obtain

S =I f(u)g(u)du (5.40)

The rule, therefore, in going from a sum to an integral, is to insert the density of states in the
integration variable into the integrand, i.e.,

Zq:...—>j...g(u)du (5.41)

Of course, the limits of the integral must correspond to the limits in the sum.

We will, incidentally, use this result explicitly below when considering, for example, densities
of states, both in momentum and in energy, in crystalline materials.

5.4 Continuous eigenvalues and delta functions

This Section shows how we can resolve a number of problems, especially with position and
momentum eigenfunctions, that we have so far carefully avoided. It also introduces a number of
techniques that can be quite broadly useful. In the rest of this book, we make only occasional use
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of some of the results, though these results can come up often in quantum mechanics. Hence this
Section need not be studied in depth at the moment, and can be used as a reference when these
techniques come up later, but we suggest at least reading through this Section at this point.

We have so far dealt explicitly and completely only with discrete eigenvalues (i.e., ones that
can take on only specific values, not continuous ranges of values) and the normalizable
eigenfunctions associated with them. The astute reader may have noticed that this is not the
only kind of situation we can encounter in quantum mechanics. For example, at the very
beginning, we talked about plane waves as being solutions of Schrodinger’s wave equation in
empty space; such waves cannot be normalized in the way we have been discussing so far.
Consider the simplest possible case, that of a plane wave in the z direction. Such a wave can be
written in the form

v, (z)=C, exp(ikz) (5.42)

Obviously
v (2) =[c,] (5.43)

and so, if we integrate |(z)* over the infinite range of all possible z, we will get an infinite
result for any finite value of C..” Hence we cannot define a normalization coefficient Cy in the
same way we did before.

Our same astute reader may also have noticed that these particular functions are the
eigenfunctions of the momentum operator for the z direction, p, =—ih d/0z , with eigenvalues
nk where the quantity k can take on any real value. It is a common situation in quantum
mechanics that, when eigenvalues can take on any value within a continuous range, the
eigenfunctions cannot be normalized in the way we have discussed so far. Such situations are
not unusual. They also occur for energy eigenvalues of unbounded systems, such as the states
above the “top” of a finite potential well, or states above the ionization energy of a hydrogen
atom, for example.

The situation for energy eigenvalues can always be resolved mathematically by putting the
whole system within a large but finite box, with infinitely high “walls”, and letting the size of
the box become arbitrarily large. That is not always mathematically convenient, however.’
Furthermore, for the case of the momentum eigenfunctions, building a box with potential
barriers makes no difference to the momentum eigenfunctions; the potential does not appear in
the momentum eigenfunction equation, and the solutions to that mathematical problem are still
infinite plane waves no matter what potential box we build. So, the question is, how can we
handle such situations in a mathematically tractable way? The key to this solution is to
introduce the Dirac delta function.” The delta function has various other mathematical uses, in
quantum mechanics and elsewhere, and it is an important topic in its own right.

* In mathematical parlance, these are not L (pronounced “L two™) functions (their squared modulus is
not Lebesgue integrable).

® For a hydrogen atom, for example, we would get a very inconvenient coordinate system; that problem
is most conveniently solved using a coordinate system that only treats the relative position of the electron
and proton, not the absolute position, as would be required if we put the atom in a box. (see Chapter 10)

7 Those familiar with, for example, Fourier transforms, or any of several other fields, will be familiar also
with Dirac’s delta function (see Chapter 5), but it was apparently introduced by Dirac to solve this
particular kind of problem in quantum mechanics.
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Dirac delta function

The Dirac delta function, &(x), is essentially a very narrow peak, of unit area, centered on
Xx=0. In fact, it is infinitesimally wide, and infinitely high, but still with unit area. It is not
strictly a function because, in the one place that it really matters (x = 0), its value is not strictly
defined. The formal definition of the delta function is

[8(x)dx=1, 5(x)=0 for x=0 (5.44)
Its most important property is that, for any continuous function f(x),
[ f(x)5(x)dx=f(0) (5.45)

This relation, Eq. (5.45), can be regarded as an operational definition of the delta function.
From this relation, we can readily deduce

T f(x)o(x—a)dx=f(a) (5.46)

Of course, o(X —a) is essentially a very sharply peaked function round about X = a. We can
see, therefore, that a key property of the delta function is that it pulls out the value of the
function at one specific value of the argument (i.e., at X = a in Eq. (5.46)) as the result of this
integral. This is exactly what we would expect a very sharply peaked function of unit area to
do if we put it inside the integrand as in Eq. (5.46).

Representing the delta function

The delta function in practice can be defined as the limit of just about any symmetrical peaked
function in the limit as the width of the peak goes to zero and the height goes to infinity,
provided we make sure the function retains unit area as we take the limit. Several common
examples are as follows.

1 T T T T

| | | | |
-41 =27 0 2n 4

Fig. 5.1. Plot of the function (sin X)/X, with X as the horizontal axis.
Sinc function representation

Based on the “sinc” function, graphed in Fig. 5.1,
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SMX _ sine x (5.47)
X
we can write
5(x) = lim 1 (5.48)
Lo X
where we have used the fact that
[ dx =7 (5.49)
X

—0

Exponential integral representation

A form that is very useful in formal evaluations of integrals is

0

§(x)=i [ exp(ixt)dt (5.50)

which can readily be proved using the result Eq. (5.49) above.
Lorentzian representation

Based on the Lorentzian function, common as, for example, a line shape in atomic spectra,
with a line width (half width at half maximum) of & we have

1 1

o(x)=lim——— (5.51)
)=l e 1+(x/ &)
where we have used the result
F
j —dx =7 (5.52)
s 1+x
Gaussian representation
Based on the Gaussian function of 1/e half width w, we have
XZ
o(x)=1lim exp| -—— 5.53
(0=t Leso - ) (559
where we have used the result
j exp(—x*)dx =z (5.54)

Square pulse representation
One of the simplest representations is that of a “square pulse” function that we could define as
0, X<-n/2
s(x)=<1/n, —n/2<x<n/2 (5.55)
0 X>n/2
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which is a function of width 7, and height 1/7, centered at x=0. With this square pulse
function, we have

S(x) =lims(x) (5.56)

n—0

Relation to Heaviside function

The above square pulse function can be written in another, equivalent way in terms of the
Heaviside function. The Heaviside function is the “unit step” function

1, x>0
®(x): 0. x<0 (5.57)

in terms of which we have the square pulse from above

$(x) = O(x+n/2)-0(x-1/2)

n
In the limit as 77 — 0, this is simply the definition of the derivative of ®, and so we have also
O(x+n/2)-0(x-n/2
5(x) = lim 2 1/2)=0(x=1/2)
n—>0 77
_de(x)
Cdx

(5.58)

(5.59)

From this, we can immediately conclude that the Heaviside function is the integral of the delta
function, i.e.,

O(x)= [ 5(x)dx (5.60)

Basis function representation and closure

Thus far, we have been discussing representations of the delta function as limits of other
mathematical functions. There is another kind of representation that is particularly general and
useful, which is a representation in terms of any complete set.

Suppose we have a complete orthonormal set of functions, ¢ (x) Then we can expand any
function in this set, i.e.,

f(x)=>a,¢,(x) (5.61)

As usual, we can determine the expansion coefficients a, by premultiplying by ¢ (x) and
integrating over X, i.e.,

[ (x) F (x)dx = ananjqﬁ; (X), (x)dx = anananm =a, (5.62)

Now we can use the far left of (5.62) to substitute for the expansion coefficients in (5.61), i.e.,
writing

a, = [ (x) f (x)dx (5.63)

we have
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:Zn:(jqﬁn*(x') F(x)ax') g (%) (5.64)

Interchanging the order of the integral and the sum, we have

f(x)zj f (x’)[;¢n"(x’)¢n (x)jdx' (5.65)

Comparing Eq. (5.65) to Eq. (5.46), we see that this sum is performing exactly as the delta
function, i.e.,

Zﬂ:¢;(x')¢n(x):§(x’—x) (=56(x=x)) (5.66)

Hence we have a general representation of the delta function in terms of any complete set. This
can be formally useful.

This property, Eq. (5.66), of the set of functions is known as closure, and is a consequence of
the completeness of the set. We can also see that Eq. (5.66) is simply the expansion of the delta
function in the set ¢ (x), with the expansion coefficients simply being the numbers ¢; (x').
Hence, for example, the expansion of d(X) would have expansion coefficients ¢@; (0) . We can
understand intuitively that, if a set of functions can manage to represent such an extreme
function as a delta function, then it can represent any other reasonable function, and so we can
understand how this property of closure is related to completeness.

Delta function in 3 dimensions

It is straightforward to construct delta functions in higher dimensions. The result is merely the
product of the various one-dimensional delta functions. For example, using the short-hand
o(r) to represent the delta function for three dimensions, we can write

S(r)=5(x)s(y)s(z) (5.67)

Normalizing to a delta function

Now that we have introduced the delta function, we can use it to perform a kind of
normalization for those functions that are not normalizable in the previous sense. We can
introduce this normalization through the example of the momentum eigenfunctions discussed
above (Eq. (5.42)).

Normalization of momentum eigenfunctions

Consider the “orthogonality” integral of two different momentum eigenfunctions, but where
we deliberately restrict the range of integration to some large range *L ,i.e.,

L
Iwkl z)dz —C,IICkJ.exp(—iklz)exp(ikz)dz
-L
L
=Cy\C [ exp[i(k—k )z ]dz (5.68)
L

sin[ (k—k )L]
(k—k])

Hence, taking the limit as L becomes very large, we have

=2C,,C,
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j v (2)y, (2)dz =22C; C.5(k—k,) (5.69)

where we have used the sinc function representation, Eq. (5.48), of the delta function. So, if we
choose®

C, =—r (5.70)

i.e., if we choose the momentum eigenfunctions to be defined as

l//k(Z)I \/;_”exp(ikz) (5.71)

then we at least get a tidy form for the orthogonality integral. Specifically, instead of Eq.
(5.69), we would have

I(//kl z)dz=5(k—k,) (5.72)

This choice of normalization, leading to an orthogonality integral like Eq. (5.72) with only a
delta function on the right, is called “normalization to a delta function”. Note that here we
make the orthogonality relation (5.72) do the work of both the normalization and the
orthogonality conditions — we do not write a separate normalization condition. It turns out we
can construct a viable mathematics for handling such “unnormalizable” functions if we
normalize in this way. We will develop this below.

It is interesting to compare Eq. (5.72) with the orthonormality relation for conventional
normalizable functions, Eq. (2.35). In that conventional case, the integral limits may be finite,
but the equations are otherwise essentially identical except that we now have a Dirac delta
function, (k — ki), instead of the Kronecker delta, &y, that was the result for the orthogonality
integral for two conventionally normalized basis functions, y4(z) and y(z). We will find that
this substitution of Dirac delta function for Kronecker delta is quite a general feature as we
compare the results for the two classes of functions.

Using functions normalized to a delta function

A key point in using functions normalized to a delta function is that they can be handled
provided we can work with integrals rather than sums, and we must make careful use of the
density of states in such sums. To see the basic mathematics of working with such functions,
we first consider that we have an orthonormal basis set of functions y4(z), and we consider
the expansion of some other function, ¢(z), on this set. We will have

=> fw,(2) (5.73)
q

where the fq are the expansion coefficients. We note that the sum of the squares of the
expansion coefficients gives

8 Note we could also have chosen to include any complex factor of unit magnitude in the definition (5.70)
, but, as usual, for simplicity we choose not to do so.
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[l6(2) dz=3 1%, [wi (2w, (2)dz=3|1,[ (5.74)

so the normalization of the function of interest is the same as that of the expansion
coefficients.’

Remembering how we make the transition from sums to integrals, we presume that there is
some quantity Ug (such as momentum) associated with the g that allows us to write,
equivalently,

#(z) = f(uy)w(u,.2) (5.75)

where f(uq)= fq and we make the minor additional change in notation w(Uq,2)=q(2).
From this we note, incidentally, that, for any specific value of Uq, such as a value v, we can
write

f(v)zjy/* (v,2)¢(z)dz (5.76)
in the usual way of evaluating expansion coefficients for a function ¢(z) on a basis set
wq(2) (=¥ (Ug,2)).

Now, let us transform the sum, Eq. (5.75), into an integral, using the density of states,
g(u)=1/(du/dq) asin Egs. (5.38) and (5.41) above. This gives

¢(z):J f(u)y(u,z)g(u)du (5.77)

Now we can substitute this form of ¢(z) back into Eq. (5.76) to give, after exchanging the
order of the integrals,

f(v)zj f (U)Uy/ (v,z)y/(u,z)g(u)dszu (5.78)

from which we see, by the definition of the delta function, Eq. (5.46), that the term in square
brackets is performing as a delta function, i.e.,

IW*(v,z)w(u,z)g(u)dz:5(v—u) (5.79)

The functions we are considering so far are all presumed to be normalized conventionally.
Now, however, we have an interesting option in choosing other functions that will work with
the delta function normalization to give useful and meaningful results. First, we have to make
the restriction that the density of states is a constant, i.c.,

g(u)=g (5.80)

This restriction is appropriate, for example, for momentum eigenfunctions, or plane waves in a
large box. Now, let us define two new functions, in which we fold the square root of the
density of states into each function, i.e.,

F(u)=+/gf(u) (5.81)

and

® Those used to Fourier series and transforms will recognize this as a form of Parseval’s theorem.
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¥ (u,2) =gy (u,2) (5.82)

Then we find, first, that the ¥(u,z) are basis functions normalized to a delta function, i.e., Eq.
(5.79) becomes

J.‘I’* (v,2)¥(u,z)dz=5(v—u) (5.83)

Second, we find that we have a simple expression for the expansion in such functions
normalized to a delta function, i.e., Eq. (5.77) becomes

¢(z)='|'F(u)‘I’(u,z)dz (5.84)

and we can also write for the expansion coefficient (or now expansion function), from Eq.
(5.76)

F(v)zj‘P* (v,2)¢(z)dz (5.85)

(where we have merely multiplied both sides of Eq. (5.76) by /g and substituted from Egs.
(5.81) and (5.82)).

Third, we find that F(u) has a simple normalization.'’
J'|¢(z)|2 dz = Z| fq|2 = H f (u)|2 gdu = HF (u)|2 du (5.86)
q

Thus, with functions normalized to delta functions, we recover a straightforward mathematics
that allows us, for example, to write quite simple expressions for expansions in such functions.
The only requirement is that the density of states be uniform.

This use of functions normalized to delta functions can be done any time the density of states
is large and uniform. The fact that the final results do not depend on the density of states
means that these expressions continue to be meaningful in the limit as the density of states
becomes effectively infinite, as is the case for momentum eigenfunctions.

The incorporation of the square root of the density of states into each of the expansion
coefficients and the basis functions essentially avoids two problems. As the density of states
increases, (i) the expansion coefficients themselves would otherwise become very small, and
(i) so also would the amplitude of the basis functions. The incorporation of the square root of
the density of states into both expansion coefficients and basis functions leaves them both
quite finite, and leaves us with a simple mathematics for handling the resulting functions,
without infinities or other singularities.

In summary on the mathematics of working with functions normalized to a delta function as in
Eq. (5.83), we can use them as a basis set, but we have Egs. (5.84) and (5.85) as the expansion
on the basis rather than Egs. (5.76) and (5.73), and instead of expansion coefficients, we have
an expansion “function” (here F(u)) that obeys a modulus squared integral normalization

condition Eq. (5.86) rather than the usual sum of squares of the expansion coefficients.

10" Again, readers used to Fourier transforms will recognize this as Parseval’s theorem. The mathematics
we have been describing here is exactly the mathematics required to go from Fourier series to Fourier
integrals.
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Example of normalization of plane waves

Let us return to the question of normalization of plane waves of the form Cyexp(ikz), and
perform this in the two different approaches of normalization to unity in a box of finite length
L, and normalization to a delta function.

Box and delta function normalization

In a box of length L, normalizing such an exponential plane wave gives a normalization
integral (taking symmetrical limits for simplicity)

L/2

[ Ciexp(~ikz)C, exp(ikz)dz =|C,[ L =1 (5.87)
-L/2
ie.,
C =L (5.88)
k \/E .
so the box-normalized wavefunction is
1 .
=y (k,z)=—=cexp(ikz 5.89
i (2) = (k.2) = e (ike) 559)

To transform this to a wavefunction normalized to a delta function, our prescription above (Eq.
(5.82)) is to multiply this wavefunction by the square root of the density of states to give

1 .
k z k z |kz ikz 5.90
=Joy ( / exp o ——-cxp(ikz) (5.90)

which is exactly what we had proposed before in Eq. (5.71) when considering plane waves
normalized to a delta function.

For a large box, therefore, we can use either a box-normalized approach, or we can use
functions normalized to a delta function. Either will give the same results in the end. As the
size of the box becomes infinite, it is more common to work with the delta-function
normalization, since then the infinities (in densities of states and in box size) and zeros (in the
amplitudes of the “normalized” functions) are avoided.

Relation to Fourier transforms

The classic example of the mathematics of basis functions normalized to delta functions is
when our basis functions are the plane waves,

¥(u,z)= exp(—iuz) (5.91)

1
27
in which case the expansion of the function F(u) in those functions is exactly equivalent to
the mathematics of the Fourier transform, i.e.,

(2) u)exp(—iuz)dz (5.92)

sl

where ¢(z) is the Fourier transform of the function F(u) . Note that then Eq. (5.86) is simply
a statement of Parseval’s theorem, which in turn is saying that the Fourier transform is a
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transform that does not change the length of the vector in Hilbert space, and it is, in fact, a
unitary transform. "'

Periodic boundary conditions

Before leaving the discussion of plane waves, we should mention one other topic, which is the
use of periodic boundary conditions. These boundary conditions are very commonly used in
solid state physics. We like to work with (complex) exponential waves rather than sines and
cosines because the mathematics is easier to handle. Putting exponential waves in a box causes
a minor formal problem. If we ask that the wavefunction reaches zero at the walls of the box,
then we will end up with sine waves as the allowed mathematical solutions (presuming we
choose the origin at one end of the box), not exponentials. A mathematical trick is to pretend
that the boundary conditions are periodic, with the length, L, of the box being the period, i.e.,
to pretend that

exp(ikz):exp[ik(z—i-L)] (5.93)
This leads to the requirement that
exp(ikL) =1 (5.94)
which in turn means that
k= zmTﬂ (5.95)

where m is a positive or negative integer or zero. The allowed values of k are therefore spaced
by 27/L, and the density of states in K (the number of states per unit K) is therefore
L
g=— (5.96)
2
We can then work with these functions just as we work with exponential plane waves
normalized over a finite large box, using either box normalization or delta-function
normalization as we wish.

This periodic boundary condition trick is often stated as if it had some physical justification,
but usually it does not. For example, it is used frequently in the physics of crystals (see
Chapter 8). In one dimension in a crystal, we could say we are imagining the crystal is very
long, and that physically we have bent it round into a circle, albeit one of very large radius;
that might be an acceptable approach in such a case. In three dimensions, connecting it back
round on itself in three directions at once is physically absurd and topologically impossible.
The justification there is seldom stated explicitly, but it is simply that it makes the math easier.
It is also true that, if we were to solve the problem with hard wall boundary conditions, with
sine waves as the solutions, for example, we would in fact end up with the same number of

' Viewed this way, we could say that in one sense the Fourier transform does exactly nothing. That is, it
can be viewed as merely a change of basis in Hilbert space that makes no difference to the function or
state being represented. In the language of Fourier transforms, the signal itself is not changed by Fourier
transformation, just the representation of it in “frequency” rather than “time”. The vector in Hilbert space
is still the same length (and hence the power or energy in the signal is not changed by the Fourier
transformation, which is Parseval’s theorem), and is pointing in the same “direction”; only the coordinate
axes have changed.
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states (except that the state with k = 0 is allowed in the exponential case, but does not exist in
the sine case), and essentially all measurable quantities would end up with the same results.
The honest truth is that we use periodic boundary conditions because they are convenient, and
experience tells us that we can get away with them, even though they are somewhat non-
physical in fact.

Position eigenfunctions

Thus far the only quantum mechanical functions we have dealt with explicitly that are
normalized to a delta function are plane waves, which are also the momentum eigenfunctions.
The theory we derived above (e.g., Egs. (5.83) - (5.86)), however, was not restricted to any
specific function that was normalized to a delta function. There is another very simple
example, namely the position eigenfunctions.

We stated before that the position operator, at least in the representation where functions are
described in terms of position, was simply the position, z, itself (in the one-dimensional case).
We might ask, therefore, what are the functions that, when operated on by the position
operator, give results that are simply an eigenvalue (which should be a “value” of position)
times the function? We can see the answer to this by inspection. The eigenfunctions are delta
functions. For example, consider the function

y, (2)=6(z2-2,) (5.97)
Then we can see that
ty, (2)=2y, (2) (5.98)

where for emphasis and clarity, we have explicitly written the position operator as 7 . The only
value of z for which the eigenfunction is non-zero is the one z=1z2,, so in any expression
involving 2y, (z) we can simply replace it by Zoy., (2).

The delta function itself is normalized to a delta function. To see this consider the integral
I§(zl—z)5(zz—z)dz=5(zl—zz) (5.99)

To understand why this integral itself evaluates to a delta function, consider the first delta
function as being one of its other representations, such as a Gaussian as in Eq. (5.53), before
we have quite taken the limit. Then by the definition of the delta function

I exp[—(zl\;—zz)zJé'(Zz—Z)dZ: exp{—(Zl;v—zzz)zJ (5.100)

Then take the limit of small w of the right hand side, which is the delta function on the right of
Eq. (5.99).

WA 7T WA T

Hence we have shown another example of a function that normalizes to a delta function, and
for which we can use the same general formalism.

Expansion of a function in position eigenfunctions

We expect that the position eigenfunctions form a complete set, and so we can expand other
functions in them. Let us formally see what happens when we do that. Suppose that we have
some set of expansion coefficients F(z,) that we use in an expansion of the form of Eq. (5.85)
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, as appropriate for an expansion in functions that are normalized to a delta function. Then we
have, using the position eigenfunctions as in Eq. (5.97) above,

z):jF(zu)S(z—zo)dz0 (5.101)

The evaluation of the integral above is trivial given the definition of the delta function, i.e., we
have

#(z)=F(z2) (5.102)

In other words, a function ¢(z) of position is its own set of expansion coefficients in the
expansion in position eigenfunctions. This point may seem trivial, but it shows that we can
view all the wavefunctions we have been working with so far as being expansions on the
position eigenfunctions. The wavefunction normalization integrals we have performed so far,
for example, which have been of the form [|¢(z)| dz, can now be seen as the normalization,
Eq. (5.86), that we have deduced for expansions in functions normalized to a delta functions.
In other words, since the very beginning when we started working with wavefunctions, we
have actually been using the concept of functions normalized to a delta function all along — we
just did not know it.

Change of basis for basis sets normalized to a delta function

So far we have only discussed change of basis sets for discrete sets normalized conventionally.
We can, however, also change between basis sets normalized to delta functions. This is best
illustrated by the example of changing between position and momentum basis sets, an example
that is also by far the most common use of such a transformation anyway.

We can presume that we have some function ¢@yq(z) that is expressed in the position basis.
The subscript “old” here refers to the old basis set, here the position basis. The new basis set,
also normalized to a delta function, is the set of momentum -eigenfunctions,
(1/2x)1'2 exp(ikz), as in Eq. (5.90). Then, according to our expansion formula for functions
normalized to a delta function, Eq. (5.85), we have

exp IkZ)dZ (5.103)

¢new \/— J.¢old

We can if we wish formally write this transformation in terms of an (integral) operator

j exp(~ikz)d (5.104)

J_

Note that U is an operator. One can only actually perform the integral once this operator
operates on a function of z.

In this form, we can then write Eq. (5.103) in the form we have used before for basis
transformations, as

|¢new>=u|¢old> (5105)

where in our notation we are anticipating that this operator U is unitary (a proof that is left to
the reader below).

Let us look at the specific case where the function ¢yq(z) is actually the position basis
function |¢O|d ) =0(Z2—-1,). Then we find that, in what is now the momentum representation,
that basis function is now expressed as
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exp( ikZ)dZ: (5.106)

1 .
é' exp(—ikz
new \/7 J. \/ﬁ ( 0 )
In other words, a position eigenfunction in the momentum representation is
(1/2x)12 exp(—ikzO ), where k takes on an unrestricted range of values, just as for a specific
value of k=k, the momentum eigenfunction in the position representation is
(1/2m)V2 exp(ikoz) where 7 takes on an unrestricted range of values.

The operator that will take us back to the position representation we can guess by the
symmetry of this particular problem will be

(5.107)

\/_ jexp IkZ

Note that in constructing this adjoint, we have taken the complex conjugate, and we have
interchanged the roles of k and z, which is analogous to the formation of an adjoint in our
conventionally normalizable basis representations, where we take the complex conjugate, and
interchange indices on the matrix elements or basis functions.

Using these definitions, as an illustration, we can now formally transform the position operator
into the momentum basis, using the usual formula for such transformations, i.e., formally
operating on an arbitrary function | f)

new| f> UzoIdUT| f>

:Ljexp(—ikz)jzexp(ik'z) f (k') dk'dz

:-”zexp[ i(k—k")z] f (k) dk'dz

=3 Iak”exp[-u (k—k")z]dzf (k)dk’ (5.108)
T

=i&j5(k'—k)f(k’)dk’

:|&f(k)

_. 0

=|6k|f>

Note two points about the above algebra. First, the index or variable of integration in the
operation Z,4UT, here chosen as k', is a different variable from the K in the final expression
for 2.y , because we have to sum or integrate over the k' variable in performing the operation
ZoqUT . Second, we have used the algebraic trick that
—izexp[-i(k—k")z]=(0/0K)exp[-i(k—k")z].

Since | f ) is arbitrary, then we can write the position operator in the momentum representation
as

.0
2oy =i— 5.109
new ak ( )

Note the symmetry between this and the z momentum operator in the position representation,
which is f, =(—ih)(6/82).
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With this exercise, we finally have a form of the position operator in which it is quite clearly
an operator, in contrast to its form in the position representation where it was difficult to
distinguish the operator Z from the simple position z. Of course, now in the momentum
representation we will have the similar difficulty of distinguishing the operator p from the

simple momentum value p.
Problems
541 Prove that the operator U=(1/y27)] exp(—ikz)dz, with  Hermitian  adjoint
Ut =(1/+2x)[exp(ik’z)dz , is unitary.

5.4.2 Demonstrate explicitly that the commutator [Z, p,] is identical, regardless of whether it is

evaluated in the position representation or the momentum representation.

5.4.3 Formally transform the momentum operator f, into the momentum basis using algebra similar to
that above for the transformation of the position operator into the momentum basis.

5.5 Summary of concepts

Commutator

The commutator of two operators is defined as
[A, é] - AB-BA (5.2)
Two operators are said to commute if
[A, é] =0 (5.3)
In general, we can write
[A,é]:ié (5.4)
where C is called the commutation rest or the remainder of commutation. Note, for example,
[ B, x] =—ih (5.25)

Commuting operators and eigenfunctions

Operators that commute share the same set of eigenfunctions, and operators that share the
same set of eigenfunctions commute.

General form of the uncertainty principle
—\2
——— |(C
(AA)’(AB) > % (5.23)
Energy-time uncertainty principle

AEAt zg (5.33)
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Transition from a sum to an integral

In transitioning from a sum to an integral, where the quantity fy being summed is smoothly
and slowly varying in the index g, we may make the approximation

S=> f,=> f(u)= f(u)g(u)au :.[ f(u)g(u)du (5.39) and (5.40)

where U is some variable in which the quantity being summed can also be expressed, where the
limits on the integral must correspond to the limits on the sum, and where g(u) is the density
of states

1

Dirac delta function
A practical operational definition of the Dirac delta function is that it is an entity 5(X) such
that, for any continuous function f(x),
I f(x)s(x—a)dx=f(a) (5.46)
Oo(X) is essentially a sharply peaked function around X =0, with unit area, in the limit as the
width of that peak goes to zero.

Representing the delta function

Various peaked functions can be used to represent the delta function. Particularly common are
the representation in terms of the sinc function

sin X

—— =sincX (5.47)
X
which gives
5(x) = lim 1 (5.48)
Low X
and in terms of the square pulse representation
0, X<-n/2
S(X)z 1/n, —n/2<x<n/2 (5.55)
0 x>n/2
which gives
5(X):}]1£%S(X) (5.56)
A very useful formal representation is
1 % .
6(x)=— | exp(ixt)dt 5.50
(x) = [ exp(ixt) (5.50)
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Basis function representation of the delta function, and closure
For any complete orthonormal set of functions ¢, (X),
Z¢n 8, (x)=5(X'=x) (=8(x—x)) (5.66)
This relation, for a set of functions ¢, (X) is called closure, and is an important criterion for the
completeness of the set.

Delta function in three dimensions

The delta function in three dimensions is just the product of the delta functions in each
dimension, and can be written

S(r)=5(x)s(y)s(z) (5.67)
Normalization to a delta function

A function (U, z) of two continuous parameters U and z (such as momentum and position) is
said to be normalized (in z) to a delta function if

J‘I//;(V,Z)l//&(U,Z)dZ=5(V—U) (5.83)

Normalized momentum eigenfunctions

When normalized to a delta function, the momentum eigenfunctions become

exp(ikz) (5.71)

v (2) ==
2
Expanding in functions normalized to a delta function

For a set of basis functions W(u,z) that are normalized to a delta function in z, we can expand
an arbitrary function ¢(z) in them using the expression

z)=IF(u)‘P(u,z)dz (5.85)
where the F(U) serve as the expansion coefficients, and
[l(z)]" dz =[|F (u)[" du (5.86)

Transition from conventional to delta function normalization

When functions /4(z) can be conventionally normalized, leading to a conventional expansion
of some arbitrary function ¢(z) in the form

2)=> fw.(2) (5.73)
q
presuming that we can make the integral approximation to this sum

¢(z):J f(u)w(u,z)g(u)dz (5.77)

provided the density of states is uniform (g(u) =g ), we can choose to change to functions
normalized to a delta function by choosing
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F(u)=+/gf(u) (5.81)

and

¥ (u)=+/gw (u) (5.82)
leading to the expansion above as in (5.85)
Periodic boundary conditions

A set of boundary conditions often used in quantum mechanics for mathematical convenience
are the periodic boundary conditions for a box of length L that the function should be the same
ata point z =L as they are at the point z=0 (or possibly some shifted version of these same
conditions). They are often used when the functions of interest are plane wave exponentials, in
which case they imply

exp(ikz) = exp[ik(z+L)] (5.93)
which leads to the condition
2mz
k=—- 5.95
1 (5.95)
and a density of states
L
=— 5.96
iy (5.96)

These boundary conditions, though often not strictly correct physically, allow exponential
functions to be used, rather than sines or cosines, when considering boxes of finite size, and
can allow simpler mathematics are a result.

Position eigenfunctions

The position eigenfunctions in z are the delta functions 6(z—-2z,) for each possible value of z,.
These eigenfunctions are themselves normalized to a delta function.

Expansion in position eigenfunctions

A function ¢(2) of position is its own set of expansion coefficients in the expansion in position
eigenfunctions.



Chapter 6

Approximation methods in
guantum mechanics

Prerequisites: Chapters 2 - 5, including a first reading of Section 2.11.

We have seen above how to solve some simple quantum mechanical problems exactly, and in
principle we know how to solve for any quantum mechanical problem that is the solution of
Schrodinger’s equation. Some extensions of Schrodinger’s equation are important for many
problems, especially those including the consequences of electron spin. Other equations also
arise in quantum mechanics, beyond the simple Schrodinger equation description, such as
appropriate equations to describe photons, and relativistically correct approaches. We will
postpone discussion of any such more advanced equations.

For all such equations, however, there are relatively few problems that are simple enough to be
solved exactly. This is not a problem peculiar to quantum mechanics; there are relatively few
classical mechanics problems that can be solved exactly either. Problems that involve multiple
bodies or that involve the interaction between systems are often quite difficult to solve.

One could regard such difficulties as being purely mathematical, say that we have done our job
of setting up the necessary principles to understand quantum mechanics, and move on,
consigning the remaining tasks to applied mathematicians, or possibly to some brute-force
computer technique. Indeed, the standard set of techniques that can be applied, for example, to
the solution of differential equations can be (and are) applied to the solution of quantum
mechanical differential equation problems. The problem with such an approach is that, if we
apply the mathematical techniques blindly, we may lose much insight as to how such more
complicated systems work. Specifically, we would not understand just what were the
important and often dominant aspects of such more complicated problems, aspects that often
allow us to have a relatively simpler view of them. Hence, it is useful, both from the practical
point of view (i.e., we can actually do the problems ourselves) and the conceptual one (i.e., we
can know what we are doing), to understand some of the key approximation methods of
quantum mechanics.

There are several such techniques, and it is quite common to invent new techniques or variants
of old ones to tackle particular problems. In nearly all cases, the analysis in terms of
expansions in complete sets of functions is central to the use or understanding of the
approximation techniques, and we rely heavily on the results from the Hilbert-space view of
functions and operators.

Among the most common techniques are (i) use of finite basis subsets, or, equivalently, finite
matrices, (ii) perturbation theory (which comes in two flavors, time-independent and time-
dependent), (iii) the tight-binding approximation, and (iv) the variational method. Each of
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these also offers some insight into the physical problem. In this Chapter, we will discuss all of
these except the time-dependent perturbation theory, which we postpone for the next Chapter.
There are also some specific techniques that are very useful for one-dimensional problems, and
we devote Chapter 11 to those.

6.1 Example problem — potential well with an electric
field

To illustrate the different methods, we will analyze a particular problem, that of a one-
dimensional, infinitely deep potential well for an electron with an applied electric field (a
skewed infinite well). This problem is solvable exactly analytically, and this was done in
Section 2.11 above. These exact solutions are based on Airy functions that themselves have to
be evaluated by numerical techniques (though these techniques are well understood, and the
error limits can be quantified). It is also straightforward to solve this problem by the various
approximation methods without recourse to the Airy functions, and, in practice, these methods
can actually be easier than evaluating the “exact” solutions. Another reason for using this
problem as an illustration is that, because the solutions of the “unperturbed” problem (i.e., with
no applied field) are mathematically simple, we will be able keep the mathematics simple in
the illustrations of the various techniques.

This particular problem has a specific practical application, which is in the design of quantum
well electroabsorption modulators. The shifts in the energy levels calculated here translate into
shifts in the optical absorption edge in semiconductor quantum well structures with applied
electric fields. This shift in turn is used to modulate the transmission of a light beam in high
speed modulators in optical communications systems. Aspects of this same problem occur also
in analyzing the allowed states of carriers in silicon transistor structures, and in tunneling in
the presence of electric fields.

without field with field
E
—_—
o) o) o) oo)
B I eEL,
«—
L

z

Fig. 6.1. Illustration of an infinitely deep potential well for an electron, without and with electric
field E.

First we will set up this problem in an appropriate form. The potential structure with and
without field is illustrated in Fig. 6.1. The energy of an electron in an electric field E simply
increases linearly with distance. A positive electric field in the positive z direction pushes the
electron in the negative z direction with a force of magnitude eE, and so the potential energy of
the electron increases in the positive z direction with the form eEz. We are free to choose our
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potential energy origin wherever we please, and we choose it, for convenience, to be zero in
the middle of the well. Hence, within the well, the potential energy is

V(z):eE(z—LZ/2) (6.1)
and the Hamiltonian becomes
n K od?
H=———+eE(z-L,/2 6.2
2m dz* ( /2) (62)

It is mathematically more convenient to define dimensionless units for this problem.! A
convenient unit of energy, E{” = (A2/2m)(x/L;)?, is the confinement energy of the first state
of the original infinitely deep well, and in those units the eigenenergy of the nth state will be

== (6.3)

A convenient unit of field is that field, E,, that will give one unit of energy, E;°, of potential
change from one side of the well to the other, i.e.,
E

E, =—2 6.4
° = 5L (6.4)

and in those units, the (dimensionless) field will be

f=r (6.5)

0

A convenient unit of distance will be the thickness of the well, and so the dimensionless
distance will be

E=1/L, (6.6)

Dividing throughout by Eg, the Hamiltonian within the well can now be written in these
dimensionless units as

RS
7 d&?

H=- +f(&-1/2) (6.7)

with the corresponding time-independent Schrodinger equation
Hg(&)=n4(¢) (6.8)

For the original “unperturbed” problem without field, we will write the “unperturbed”
Hamiltonian within the well as

2

b 1 d

°T 2t dé?

(6.9)

' The distance units that are most useful for illustrating the various approximation techniques are
necessarily different from those that put this problem into the form required for the Airy function
differential equation in Section 2.11, though we keep the energy units the same as in that Section. One
dimensionless unit of field here does correspond with one dimensionless unit of potential in Section 2.11,
e.g., f=3 here is the same as v, =3 in Section 2.11.
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The normalized solutions of the corresponding (unperturbed) Schrédinger equation

How, = &, (6.10)

are then
v, (&) =+2sin(nzé) (6.11)

This now completes the setup of this problem in dimensionless units so that we can
conveniently illustrate the various approximation methods using it as an example.

6.2 Use of finite matrices

Most quantum mechanical problems in principle have an infinite number of functions in the
basis set of functions that should be used to represent the problem.” In practice, we can very
often make a useful and quite accurate approximate solution by considering only a few specific
functions, i.e., a finite subset of all of the possible functions, typically those with energies
close to the state of the system in which we are most interested. Though the use of such finite
basis subsets is quite common, especially given the common use of matrices in solving
problems numerically on computers, it is not normally discussed explicitly in quantum
mechanics texts. In practice, the use of such finite subsets of basis functions leads us to use
matrices whose dimension corresponds with the number of basis functions used. With easy
manipulation of matrices now routine with mathematical software, this may be the first
numerical technique of choice. To give this technique a name, we can call it the “finite basis
subset method” or the “finite matrix method”, though the reader should be aware that both of
these names are inventions of this author.’

As can be seen from the discussion of the Hilbert space view of functions and operators,
quantum mechanical problems can often be conveniently reduced to linear algebra problems,
with operators represented by matrices and functions by vectors. The practical solution of
some problem, such as energy eigenvalues and eigenstates, then reduces to a problem of
finding the eigenvectors of a matrix. Occasionally, such problems can be solved exactly, of
course, but more often no exact analytic solution is known. Then to solve the problem we may
have to solve numerically for eigenvalues and eigenvectors, which means we have to restrict
the matrix to being a finite one, even if the problem in principle has a basis set with an
infinitely large number of elements.

It is also quite common to consider analytically a finite matrix and solve that simpler problem
exactly. Then one can have an approximate analytic solution. This approach is taken with great
success, for example, in the so-called k.p (“k dot p”) method of calculating band structures in
semiconductors discussed in Section 8.9. The k.p method is the principal method band

2 Some problems do have quite finite numbers of required basis functions, however, such as the problem
of a stationary electron in a magnetic field, which only needs two basis functions (one corresponding to
“spin-up”, and the other to “spin-down”).

3 This approach is mathematically closely related to the problem of degenerate perturbation theory
discussed below because it also involves similar manipulations with finite matrices. In some texts this
approach is even called degenerate perturbation theory when it is used in the way we discuss in this
Section. Since the approach in this Section is definitely not perturbation theory, calling this approach
degenerate perturbation theory in this context seems misleading to this author and possibly quite
confusing to the reader, so we have to invent another name.
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structure method used for calculating optical properties of semiconductors near the optical
absorption edge. The results of this method are crucial in understanding the basic properties of
modern semiconductor lasers, for example.

Why can we conclude that restricting to such a finite matrix is justifiable? The fundamental
justification why we can even consider such finite matrices is that the quantum mechanical
operator we are dealing with is compact in the mathematical sense. If an operator is compact,
then, as we add more basis functions into the set we are using in constructing the matrix for
our operator, eventually our finite matrix will be as good an approximation as we want for any
calculation to the infinite matrix we perhaps ought to have; this is essentially the mathematical
definition of compactness of operators.

In practice, there is no substitute for intelligence in choosing the finite basis subset, however,
and this is something of an art. If we choose the form of the basis subset badly, or make a poor
choice as to what elements to include in our finite subset, then we will end up with a poor
approximation to the result, or a matrix that is ill-conditioned. A very frequent choice of basis
subset is to use the energy eigenfunctions of the “unperturbed”™ problem (or possibly the
energy eigenfunctions of a simpler, though related, problem) with energies closest to those of
the states of interest.

Now we consider our specific example problem of an electron in a one-dimensional potential
well in the z direction, with an electric field applied perpendicular to the well. We will need to
construct the matrix of the Hamiltonian. The matrix elements are

I d?
H; —_ygl”i (é)dgz

(In this particular case, because the wavefunctions happen to be real, the complex conjugation
makes no difference in the integrals.)

v, ()8E+ 1]y (E)(E-112)y, (£)de 6.12)

For our explicit example here, we will consider a field of 3 dimensionless units (i.e., f=3),
and we will take as our finite basis only the first three energy eigenfunctions, from Eq. (6.11),
of the “unperturbed” problem. Then, performing the integrals in Eq. (6.12) numerically, we
obtain the approximate Hamiltonian matrix
1 —0.54 0
H=|-054 4  —0.584 (6.13)
0 -0.584 9

Note that this matrix is Hermitian, as expected. (In this particular case, because of the reality of
both the operators and the functions, the matrix elements are all real.) Now we can numerically
find the eigenvalues of this matrix, which are

n, =0.90437, 1, =4.0279, 7, =9.068 (6.14)

These can be compared with the results from the exact, Airy function solutions, which are

g =0.90419, ¢, =4.0275, &, =9.0173 (6.15)

* The use of the term “unperturbed” here does not mean that we are using perturbation theory here. It
merely refers to the simpler problem before the “perturbation” (here the applied electric field) was added.
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We see first that, by either the exact or approximate method, these are quite near to the
“unperturbed” (zero field) values (which would be 1, 4, and 9, respectively). We see also that
the lowest energy eigenvalue has reduced from its unperturbed value, and the second and third
eigenenergies are actually increased (which is counterintuitive, but true). This finite basis
subset approach has given quite an accurate answer for the lowest state, and somewhat less
accuracy for the others, especially the third level. This relative inaccuracy for the third level is
not very surprising — we may well need to include at least one more basis function in the basis
set to get an accurate answer here.’

The corresponding eigenvectors are solved numerically as

0.985 -0.175 -0.007
|#)=10.174|, |4,)=| 0978 |, |¢,)=| —0.115 (6.16)
0.013 0.115 0.993

(These are normalized, with the sum of the squares of the elements of the vectors each adding
to 1.) Explicitly, this means that, for example, the first eigenfunction is

8,(£)=0.985v2sin (7€) +0.174/2 sin (272) +0.013/2 sin (37 (6.17)

2.5 T T T T
With field
2 (f=3)
3
£
=
g 1.5
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Position in well, &

Fig. 6.2. Comparison of the unperturbed (zero field) wavefunction (dot-dashed line) and the
calculated wavefunction with 3 units of field for the first energy eigenstate in an infinitely deep
potential well, calculated (i) exactly (with Airy functions) — solid line, (ii) using the finite basis
subset method — dashed line (this line is almost indistinguishable from the solid line of the exact
calculation), and (iii) using first-order perturbation theory — dotted line.

Fig. 6.2 compares the first approximate eigenfunction solution ¢1(§) with the exact Airy
function result, and with the “unperturbed” exact (5) (the comparison with other methods

> In fact, including the fourth basis function of the “unperturbed” problem gives 9.0175 for the energy of
this third level, very close to the exact 9.0173
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below is also shown in Fig. 6.2). The electron wavefunction with field has moved to the left
somewhat, as would be expected for the electron being pushed by the field. We see by eye that
there is almost no difference between the wavefunction calculated here by this method and the
exact Airy function result. Results for the first energy level for 2, 3, and 4 basis functions in
the calculation are shown in Table 6.1. The energy eigenvalue in this case converges rapidly to
the exact value, with the energy correct to within ~ 1 part in 10° with four basis functions.

To conclude on this approach, with the ease of handling matrices in modern mathematical
computer programs, this technique can be quite convenient for simple problems, and we see it
can converge quite rapidly as we increase the number of basis functions, even with quite small
numbers of functions (and consequently small matrices). The main art in this approach is
choosing a good underlying set of basis functions and the right subset of them.

Method Result

Exact (Airy functions) 0.90419

Finite basis — 2 functions (2x2 matrix) | 0.90563

Finite basis — 3 functions (3x3 matrix) | 0.90437

Finite basis — 4 functions (4x4 matrix) | 0.90420
Perturbation theory — first order 1

Perturbation theory — second order | 0.90253

Variational 0.90563

Table 6.1. Calculated energies (in dimensionless units) of an electron in the first level in a
potential well with infinitely high barriers, for 3 units of electric field, calculated by various
different methods.

Problems

6.2.1 Solve the problem above of an electron in a potential well with 3 units of field using the first two
energy eigenfunctions of the well without field as the finite basis subset. Give the energies (in the
dimensionless units) and explicit formulae for the normalized eigenfunctions for the first two levels
calculated by this method. Do the algebra of this problem by hand, i.e., do not use mathematical
software to evaluate matrix elements or to solve for the eigenvalues and eigenfunctions.

[ Note: [3(&—1/2)sin(z&)sin(2zE)d& = —(8/972) |

6.2.2 [This problem can be used as a substantial assignment.] Electrons in semiconductors can behave as
if they had the charge of a normal electron, but have a much different mass (the so-called effective
mass). For GaAs, the electron effective mass is ~0.07 m,. We are interested in a semiconductor
device that could be a tunable detector for infra-red wavelengths. We make this device using a 100 A
thick layer of GaAs, surrounded on either side by materials that be considered to behave as if the
electron sees an infinitely high potential barrier on either side of the GaAs layer (this is an
approximation to the actual behavior of AlGaAs barriers).

The concept in this device is that there will be an electron initially in the lowest state in this infinitely
deep potential well, and we are interested in the optical absorption of light polarized in the z direction
(i.e., the optical electric field is in the z direction) that takes the electron from this lower state to one
or other of the higher states in the well. We presume that the energy of the photons that can be
absorbed corresponds to the energy separations of the states being considered. Once into these higher
states, we have some other mechanism that we need not consider in detail that extracts any electrons
from these higher states to give a photocurrent in the device (in practice, with actual finite barrier
heights, this can be either a thermal emission or a tunneling through the finite barrier), and we also
presume that we have another mechanism that puts another electron in the lower state again after any
such photocurrent “emission”.
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The optical electric field is at all times very small, so we can presume its only effect is to cause

transitions between levels, not otherwise to perturb the levels themselves. To tune the strengths and

wavelengths of the optical transitions in this device, however, we apply an electric field F along the
positive z direction, with a practical range from 0 to 10 V/um (use this range for calculations.)

Consider the first, second, and third electron levels as a function of field F.

(a) Calculate the energy separations between the first and second electron levels and between the
first and third energy levels over the stated range of fields, and plot these on a graph.

(b) Consider the energy eigenfunctions for each of the first three levels as a function of field.
Specifically, calculate the approximate amplitudes of the first four infinite well basis functions
in the expansion of each of these eigenfunctions, and plot these amplitudes as a function of field,
for each of the first three levels.

(c) Relative to the strength (i.e., transition rate for a given optical field amplitude) of the optical
absorption between the first and second levels at zero applied field, plot the strength of the
optical absorption between the first and second levels and between the first and third levels as a
function of field. [Note: the transition rate between states ‘l//j(z)> and ‘(//i(z)> for a given
optical field amplitude can be taken to be proportional to ‘Zij ‘2 , Where zjj = <y/i (Z)‘ z ‘ Vi (Z)> 1

(d) Given that we presume this device is useful as a tunable detector only for optical absorption
strengths that are at least 1/10 of that of the optical absorption between the first and second
levels at zero applied field, what are the tuning ranges, in wavelength, for which this detector is
useful given the stated range of fields F ?

6.3 Time-independent non-degenerate perturbation
theory

Many situations arise in quantum mechanics in which we want to know what happens when
some system interacts with some other system or disturbance. An example might be a
hydrogen atom in the presence of a weak electric field. Conceptually, we like to think that it is
still meaningful to talk about the existence of the hydrogen atom, but to imagine that the field
somehow perturbs the hydrogen atom in some way. Strictly speaking, in the presence of a
finite field, it is not clear that there is any such thing as a hydrogen atom in the ideal way we
normally imagine it. The system has no bound states as we understood them before — it is
possible for the electron to tunnel out of any of the formerly “bound” states.® In perturbation
theory, however, when we are interested in small perturbations, we hold on to the concept of
the “unperturbed” system as still being essentially valid, and calculate corrections to that
system caused by the small external perturbations. The effect of the small field is then viewed
mathematically as a correction. We expect that energy levels might move as a result of the
field, for example (an effect known in this particular case as the Stark effect), and we would
like to be able to calculate such small perturbations. One key approach is time-independent
perturbation theory (also known as stationary perturbation theory). This method is essentially
one of successive approximations. Though it is often not the best method to calculate a
numerical result to a given problem, especially with the easy availability of fast computers, it
is conceptually quite a useful technique, and is a way of looking at the interactions of physical
systems.’

® The hydrogen atom in the presence of an electric field does still have energy eigenstates, though there is
now a continuum of allowed energies, not the discrete spectrum of the former bound states.

7 This idea of perturbations as the interactions of systems, especially the interactions of particles, is one
that becomes particularly important as we go on to look at time-dependent perturbation theory, since the
perturbation approach lets us define processes in time, such as the absorption of a photon by an atom.
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Nearly always in time-independent problems we will be interested in energy levels and energy
eigenstatesg. We presume, therefore, that there is some unperturbed Hamiltonian, H, , that has
known eigen solutions, i.e.,

H,|v,) =E,|v,) (6.18)

and we will presume the eigenfunctions |l//n> are normalized. For example, this unperturbed
problem could be that of an electron in an infinitely deep potential well, without an applied
electric field.

In thinking about such perturbations, we can imagine that the perturbation we are considering
could be progressively “turned on”, at least in a mathematical sense. For example, we could
imagine that we are progressively increasing the applied field, E, from zero. The core idea of
perturbation theory is to look for the changes in the solutions (both the eigenfunctions and the
eigenvalues) that are proportional first to E (so-called “first-order corrections”), then, if we
want, those that are proportional to E? (“second-order corrections”), then, if we are still
interested, those that are proportional to E3, and so on. Presumably the first-order corrections
are the most important if this perturbation is a small one, and we might just stop there.
Sometimes the first-order correction is zero for some reason (e.g., because of some symmetry),
in which case we may go on to the second-order correction. Usually in this perturbation theory
method, we stop at the lowest order that gives us a non-zero result.

In general in perturbation theory, we imagine that our perturbed system has some additional
term in the Hamiltonian, the “perturbing Hamiltonian”, Hp . In our example case of an
infinitely deep potential well with an applied field, that perturbing Hamiltonian would be
Hp = eE(Z -L, /2) . We could construct the perturbation theory directly using the powers of E
as discussed above, but we may not always have a parameter like E in the problem that we can
imagine we can increase smoothly. It will be more useful (though entirely equivalent) to
generalize the way we write the theory by introducing a mathematical “house-keeping”
parameter y. In this way of writing the theory, we say that the perturbing Hamiltonian is y|:|p ,
where Hp can be physically a fixed perturbation, and we imagine we can smoothly increase 7,
looking instead for changes in the solutions that are proportional to y (for first-order
corrections), y* (for second-order corrections), and so on. In the end, when we come to
perform the actual calculation to a given order of approximation, having used the powers of y
to help separate out the different orders of corrections, we can set y =1, or indeed to any other
value we like as long as }/Hp corresponds to the actual physical perturbation of the system.

If this concept is confusing at a first reading,” the reader can just imagine that y is essentially
the strength of the electric field in our example problem. We could, for example, have a “y”
knob on the front of the voltage supply that provides the electric field for our system. We
progressively turn this knob from 0 to 1 to ramp the voltage up to its full value. Conceptually
as we do so, we could be looking for responses of the system that are proportional to 7 to *,

to y°, and so on.

¥ In fact, the mere statement that we are interested in time-independent solutions actually guarantees that
we have to deal ultimately with eigenstates of the Hamiltonian, since they are the only states that do not
change in time.

® Many students do find this concept of a “house-keeping” parameter confusing at first. It is not in the end
a very difficult concept, but most students have not come across this kind of approach before.
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With this way of thinking about the problem mathematically, we can write for our Hamiltonian
(e.g., Schrodinger) equation

(Ho+7H,)|#)=E|#) (6.19)

We now presume that we can express the resulting perturbed eigenfunction and eigenvalue as
power series in this parameter, i.e.,

|8)=[¢”)+7]¢")+7?

#)+

¢<3>>+--- (6.20)

E=E®+yE"Y +y2E? + E®) +... (6.21)
Now we substitute these power series into the equation (6.19).
(R )97}l
:(Ew)+7E<l>+yzE(z>+...)(‘¢<o>>+7‘¢<l>>+72‘¢<2)>+...)
A key point is that, if this power series description is to hold for any y (at least within some

convergence range), then it must be possible to equate terms in given powers of y on the two
sides of the equation. Quite generally, if we had two power series that were equal, i.e.,

(6.22)

a,+ay+ayi+ay +=h +by+by’ +by 4= () (6.23)

the only way this can be true for arbitrary y is for the individual terms to be equal, i.e.,
a; =b;. This is the same as saying that the power series expansion of a function f(y) is
unique. Of course, the equation (6.22) involves (column) vectors instead of the scalar
coefficients @ or b;. But that simply means that (6.22) corresponds to a set of different
equations like (6.23), one for each element (or row) of the vector. Hence, in the vector case
also, we must be able to equate powers of y.

Hence, equating powers of 7, we can obtain, from (6.22), a progressive set of equations. The
first of these is, equating terms in y° (i.e., terms not involving ), the “zeroth” order equation
H,|¢”) = E"|4") (6.24)

[o]

This is simply the original unperturbed Hamiltonian equation, with eigenfunctions |1//n> and
eigenvalues E,. We will presume now that we are interested in a particular eigenstate |1//m>
and how it is perturbed. We will therefore write |1//m> instead of |¢(0>> and E, instead of
E( . With this notation, our progressive set of equations, each equating a different power of
¥ , becomes

Ho W) =E,wn) (6.25)

") +E0 |y, (6.26)

H,

¢(2)>+ |_A|p ‘¢(1)>: E,

#7)+EV|g)+ EPy,) (6.27)
and so on. We can choose to rewrite these equations, (6.25) - (6.27), as

(HO—Em)Wm):o (6.28)
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(H,—E,)[¢")=(E" -, )lwn) (6.29)

(H,—E,)[0?)=(E"-R,)|¢") +E?|w,) (6.30)

and so on. Now we proceed to show how to calculate the various perturbation terms. It will
become clear as we do this that perturbation theory is just a theory of successive
approximations.

First-order perturbation theory

It is straightforward to calculate E() from Eq. (6.29). Premultiplying by (y/m | gives

(WalHo=Eq[8") = ((wn Ko )| 0") = (Wl (En ~E,)|#") = 0 (6.31)
= (W[ EY =P ) = BV~ (v |F v
ie,
EY = (| Hylva) (032

Hence we have quite a simple formula for the first-order correction, E(), to the energy of the
mth state in the presence of our perturbation Hp. Note that it depends only on the zeroth order
(i.e., the unperturbed) eigenfunction.

To calculate the first-order correction, |¢(1>> , to the wavefunction, we expand that correction
in the basis set |1//n> ,l.e.,

|7 =2 y,) (6.33)
Substituting this is in Eq. (6.29) gives
<'//i | |:|o -E, ¢(1)> = (Ei - Em)<‘/’i ‘¢(1)> = (Ei - Em)ai(l)
=(wi [EY —H, [w.) = E" (yi ) (v,

We now make a restriction, which is that we presume that the energy eigenvalue E,, is not
degenerate, i.e., there is only one eigenfunction corresponding to this eigenvalue. In general,
the whole approach we are discussing here requires this restriction, and the perturbation theory
we are discussing is therefore called “non-degenerate” perturbation theory. (Degeneracy needs
to be handled somewhat differently, and we will consider that case later.) With this restriction,
we still need to distinguish two cases in Eq. (6.34). First, for i # m, we have

al) :% (6.35)
m i

A (6.34)
H p

Vi)

For i =m, Eq. (6.34) gives us no additional information. Explicitly,
(Em_Em)aS):Oar(r:) (6.36)
=E(1)—<l//m||:|p|l//m>=E(l)—E(l)=O '

This means we are free to choose a\. The choice that makes the algebra simplest is to set

al) =0, which is the same as saying that we choose to make |¢(‘)> orthogonal to |1//m> . An
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analogous situation occurs with all the higher order equations, such as (6.30). Adding an
arbitrary amount of |!//m> into |¢(j)> makes no difference to the left hand side of the equation.
Hence we make the convenient choice

(v,

Hence we obtain, for the first-order correction to the wavefunction

¢“>> =0 (6.37)

K
60) - th,,n) (6.38)

m

Second-order perturbation theory

We can continue similarly to find the higher order terms. Premultiplying (6.30) on both sides
by (1//m| gives

#7) = (yul (B, —E,)[¢7) =0
= (Wl (EY =1, )[6")+ (v |E®[w,) (639)
— g0 <,/,m ‘¢<1>>_<,/,m H, ‘¢<1>>+ E®

Since we have chosen |y ) orthogonal to [¢(1)) (Eq. (6.37)), we therefore have

ED = (y,|H,|0") (6.40)

(Wal(H, —E,)

or, explicitly, using (6.38)

R H
g® =(!//m | H, (zwwn)] (6.41)

n=m E.-E

m n

1e.,

2

b
E® _ Z‘@/”E—ié]m) (6.42)
n=m m n

To find the second-order correction to the wavefunction, we can proceed similarly to before.
We expand |¢(2)> , noting now that, by choice (Eq. (6.37)), |¢(2>> is orthogonal to |l//m> , to
obtain

#7) =2 a0 |y,) (6.43)

n=m

We premultiply Eq. (6.30) by (y/i | to obtain
<(//i |(|:|0 - Em) ¢(2)> = (EI - Em)ai(Z)
=(wil(E"-R,)|")+ (i [ED |w,) (6.44)

=" - > a (wi|H, |v,)

n#m
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Note that we can write the summation in (6.44) excluding the term n=m because we have
chosen |¢“)> to be orthogonal to |!//m> (i.e., we have chosen a{’ =0). Hence, for i =m we
have

(1)< a M40
a (//.|H |(//> EYg
(2) _ n i p n i
a’ = - 6.45
. [Z E £ EE (6.45)
Note that the second-order wavefunction depends only on the first-order energy and
wavefunction. We can write out (6.45) explicitly, using (6.32) to substitute for E() and (6.38)
for a", to obtain

Ho [vo) Wl H [¥n)

(Em_Ei)2

(6.46)

a:2>=[z<'”i'”p|'”n><wn A, m}_w

i (B —E)(E,—E,)

We can now gather these results together, and write the perturbed energy and wavefunction up
to second order as

2

EzEm(wl&lw)@% (647)
and
- <'//i Hp '//m>
|¢>=|‘/’m>+;ﬁ|‘/’i>
Wil o v ) wa o lva) | (il Ho lva) (Wl H lva)
+gﬂ:l:[f§ﬂ (Em_Ei)(Em_En) J_ (Em_Ei)2 :||Wi>
(6.48)
16) = |vn)
WilHslva) [ WalHolva) | <« WalHslva) ol B lva)
Z{ E,-E, (l‘ £ ]Z (E.-E)(E,E,) ]"”
(6.49)

Example of well with field

Now we consider the problem of the infinitely deep potential well with an applied field. We
write the Hamiltonian as the sum of the unperturbed Hamiltonian, which is, in the well, in the
dimensionless units we chose,

- 1 d?
H, = “aE (6.50)

and the perturbing Hamiltonian

H,=f(£-1/2) (6.51)



6.3 Time-independent non-degenerate perturbation theory 169

where again we will take f=3 for our explicit calculation.

Let us now calculate the various corrections. In first-order, the energy shift with applied field
is

EY :(V/m|ﬁp|z,/m):fjﬁsin(m;zg)(g—1/2)J§sin(m;z§)d§

1

=2f[(&-1/2)sin’ (mzg)d¢ (6.52)

0

=0

The integrals here are zero for all m because the sine squared function is even with respect to
the center of the well, whereas the (§ -1/ 2) is odd. Hence, for this particular problem there is
no first-order energy correction (i.e., to first order in perturbation theory, the energy is
unchanged, hence the result “1” in Table 6.1). Why is that? The answer is because of the
symmetry of the problem. Suppose that there were an energy correction proportional to the
applied field f. Then, if we changed the direction of f, i.e., changed its sign, the energy
correction would also have to change sign. But, by the symmetry of this problem, the resulting
change in energy cannot depend on the direction of the field; the problem is symmetric in the +
or - £ directions, so there cannot be any change in energy linearly proportional to the field, f.

The general matrix elements that we will need for further perturbation calculations are
1
H,, =f[V2sin(uzg)(£-1/2)V2sin(vz&) d¢ (6.53)
0

where U and v are integers. In general we need U and Vv to have opposite parity (i.e., if one is
odd, the other must be even) for these matrix elements to be non-zero, since otherwise the
overall integrand is odd about & =1/2.

Now we can calculate the first-order correction to the wavefunction, which is, for the first state

#(6)-3

u=2 &

2y, (&) (6.54)

where here &,, =U? are the energies of the unperturbed states, and ( is a finite number that
we must choose in practice (we cannot in a general numerical calculation actually sum to
infinity). For these calculations here, we chose =6, though a smaller number would
probably be quite accurate (even =2 gives almost identical numerical answers, for reasons
that will become apparent). Explicitly, for the expansion coefficients aﬂl) =Hpu/ (501 —Eou ),
we have numerically, for example,

al! 20.180, al’ =0, a!" =0.003 (6.55)

Here the value of 0.180 for a$ compares closely with the value of 0.174 for the second
expansion coefficient in Eq. (6.16) obtained above in the finite basis subset method. The
wavefunction with the first-order correction is plotted in Fig. 6.2.

Since the first-order correction to the energy was zero, we have to go to second order to get a
perturbation correction to the energy. Explicitly, we have
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E® = zq: |H"“1 (6.56)
e, — &y,
which numerically here gives
E® =-0.0975 (6.57)
or a final estimate of the total energy of
n =e, +EY +E® =0.9025 (6.58)

which compares with the exact result of 0.90419 (see Table 6.1).

Note that the second-order energy correction, E(2) (which is the first energy correction in this
particular problem because E() is zero) is analytically proportional to the square of the field,
2. Hence perturbation theory gives us an approximate analytic result for the energy, which we
can now use for any field without performing the perturbation theory calculation again.
Explicitly, we can write

n =e, —0.0108 (6.59)

This is a typical kind of result from a perturbation calculation, allowing us to obtain an
approximate analytic formula valid for small perturbations. We similarly find that the
corrections to the wavefunction are approximately analytically proportional to the field, and
we have an approximate wavefunction of

(&) =2 sin (&) +0.06f/2 sin (27€) (6.60)

We have dropped higher terms because the next non-zero term (the term in sin(4z£)) is some
60 times smaller (see Eq. (6.55)). To a good degree of approximation, the perturbed
wavefunction at low fields simply involves an admixture of the second basis function. Since it
is the first-order wavefunction that is used to calculate the second-order energy, we can now
see why even including only one term in the sums (i.e., setting g =2 in the sums (6.54) and
(6.56)) is quite accurate in this case.

Remarks on perturbation theory

Perturbation theory is particularly useful, as one might expect, for calculations involving small
perturbations to the system. It can give simple analytic formulae and values of coefficients for
various effects involving weak interactions. It is also conceptually useful in understanding
interactions in general. Even if we are not performing an actual perturbation theory calculation,
we can use perturbation theory to judge whether or not to include some level in, for example, a
finite basis subset calculation. If a given level is far away in energy and/or has a matrix
element small compared to some closer level, we can safely neglect that given level because of
the energy separations that would appear in the denominators in the perturbation terms.

We have only shown here the first and second-order perturbation formulae. Generally,
perturbation calculations are most useful for the first non-zero order of correction. Specific
effects sometimes require higher order calculations. For example, nonlinear optical effects of
different types are associated with particular orders of perturbation theory calculations (though
they are time-dependent perturbation calculations). Linear optics is based on first-order
perturbation theory; linear electro-optic effects, second-harmonic generation, and optical
parametric generation use second-order perturbation; non-linear refraction and four-wave
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mixing (quite common effects in long-distance optical fiber systems) need third-order
perturbation calculations.

One minor point about the wavefunction formulae we have mentioned above is that they are
not quite normalized; we are merely adding the corrections to the original wavefunction in Eq.
(6.20). This is not a substantial issue for small corrections. It is quite straightforward also to
normalize the corrected wavefunctions if this is important.

Perturbation theory is a theory of successive approximations. As can be seen, we use the zeroth
order wavefunction to calculate the first-order energy correction, and we use the first-order
energy correction in calculating the second-order wavefunction correction. This process
continues. In time-dependent perturbation theory in the next Chapter.

It is quite generally true of approximation methods that energies can be calculated reasonably
accurately even with relatively poor wavefunctions. In perturbation theory, the nth
approximation to the energy only requires the (n — 1)th approximation to the wavefunction.

The particular kind of perturbation method we have discussed here (known as Rayleigh-
Schrodinger perturbation theory) tends to lead to a series that does not converge very rapidly.
Hence, trying to get a more accurate calculation by adding more terms to the series is often not
very productive.'® This is one reason why this kind of perturbation approach is most often used
up to only with the lowest non-zero terms in the perturbation expansion. Such an approach
often exposes the dominant physics of the problem, and gives physical insight, as well as
returning a first reasonable estimate of the effect of interest. There are other numerical
techniques, including other perturbation approaches (such as the Brillouin-Wigner theory) that
give more accurate numerical answers. If one’s goal is to understand the physics and obtain
simple approximate results, the Rayleigh-Schrodinger perturbation approach is very useful.
Once one understands the problem well physically, if one really wants accurate numerical
answers, the problem becomes one of numerical analysis and other perturbation techniques
may be more useful."

Problems

6.3.1 Consider a one-dimensional potential well of thickness L, in the z direction, with infinitely high
potential barriers on either side. Suppose we apply a fixed electric field in the z direction of
magnitude F.

(1) Write down an expression, valid to the lowest order in F for which there is a non-zero answer,
for the shift of the second electron energy level in this potential well as a function of field.

(i) Suppose that the potential well is 10 nm thick, and is made of the semiconductor GaAs, in which
we can treat the electron as having an effective mass of 0.07 of the normal electron mass. What,
approximately, is the shift of this second level relative to the potential in the center of the well,
in electron-volts (or milli-electron-volts), for an applied electric field of 10° V/ecm? (A numerical
answer that one would reasonably expect to be accurate to better than 10% will be sufficient.)
Be explicit about the sign of the shift - is this energy increasing or decreasing?

Note: you may need the expression

1% For example, in the problem of the infinitely deep potential well with a field of three dimensionless
units analyzed in this Chapter, the second-order wavefunction correction actually leads to a wavefunction
that is in poorer agreement with the exact result than is the first order correction.

1 See, for example, Quantum Mechanics, H. Kroemer (Prentice-Hall, Englewood Cliffs, 1994), Chapter
15.
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4qn
> forn+q odd

(n-a)’(n+a)
=0 for n+q even

I[g _*]Sm q¢)sin(ng)d¢ = -

6.3.2 Consider an electron in a one-dimensional potential well of width L,, with infinitely high barriers
on either side, and in which the potential energy inside the potential well is parabolic, of the form
V(z)=u(z-L,/2)

where U is a real constant. This potential is presumed to be small compared to the energy E; of the
first confined state of a simple rectangular potential well of the same width L,. [Note for interest: This
kind of situation can arise in semiconductor structures, where the parabolic curvature comes from the
electrostatic potential of uniform background doping of the material.]

Find an approximate expression, valid in the limit of small u, for the transition energy between the
first and second allowed states of this well in terms of u, L,, and fundamental constants.

6.3.3 The polarization P can be considered as the average position of the charge density, p(z),i.e., fora
particle of charge g, relative to some position z,

P :I(z—zo)p(z)dz
~qf(z-2,)o(2)f a2
:qf¢*(z)(z—zo)¢(z)dz
=a(¢l(z-2,)|¢)

where ¢(z) is the (normalized) wavefunction.

In the absence of applied electric field, the particle is presumed to be in the mth eigenstate, > , of
the unperturbed Hamiltonian. The symmetry of this unperturbed state is such that
<l//m ‘(Z -2, )‘ l//m> =0 (e.g., it is symmetric about the point z, ).

A field F is applied along the z direction so that the perturbing Hamiltonian is
H, =-qF(z-2,)
(i) Evaluate P for the case F=0.
(i) Find an expression for P for the case of finite F. (Retain only the lowest order non-zero terms.)
(iii) Find an expression for the change in energy AE of this mth state of the system for finite F,

again retaining only the lowest order non-zero terms.
(iv) Hence show that, to lowest non-zero order

AE=-LpF
2

6.4 Degenerate perturbation theory

We explicitly avoided above the “degenerate” case where there might be more than one
eigenfunction associated with a given eigenvalue. Such degeneracy is not uncommon in
quantum mechanics, especially in problems that are quite symmetric. For example, the three
different P orbitals of a hydrogen atom, each corresponding to a different one of the directions
X, ¥, and z, all have the same energy. It is quite important to understand such situations since
often perturbations, such as an electric field, will remove the degeneracy, making some of the
states have different energies, and defining the distinct eigenfunctions uniquely. We consider
this case now, at least for first-order perturbation theory.

Suppose that there are r degenerate orthonormal eigenfunctions, |l//ms> (wheres=1,2,... 1)
associated with the eigenenergy E, of the unperturbed problem. Then in general we can write a
wavefunction corresponding to this eigenenergy as a linear combination of these, i.e.,
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Wintor) = 2 8 [ W) 6.61)
s=1

Now let us consider the first-order perturbation equation, Eq. (6.29), in a fashion similar to
before, but now with the “unperturbed” or “zero order” wavefunction |1//mtot> ,le.,

(o =B, )[0") =(EY = H, )W) (6.62)

Now let us premultiply by a specific one of the degenerate basis functions |l//mi> to obtain,
analogously to Eq. (6.31)

JH, —En 6™ = (Wi |Ho —E )| ") = (i | (B —En )67 ) =0
<!//m|| o m ¢ > ((l//m|| 10 Am) ¢ > <l//;m |( m m) ¢ > ) (663)
= <l//mi | E( )- H p |l//mtot> = E( ) <l//mi |V/mtot>_<Wmi | Hp |l//mtot>
ie.,
<l//mi | |:| p |l//mtot> = E(l) <l//mi |l//mtot> (664)
or, explicitly in summation form
Zr: H pnims s = E" (6.65)
s=1
where
H pmims = <'//mi | |:| p |'//ms> (666)

We can repeat this for every i =1,2,---r , and so obtain a set of r equations of the form of Eq.
(6.65). But this set of equations is simply identical to the matrix-vector equation

H pmiml H pmim2 H pmimr am] a'ml
H pm2m1 H pm2m2 77 H pmamr || @ma2 _ E(l) A2 (6.67)
H pmrm1 H pmrm2 T H pmrmr A a,

This is just a matrix eigenequation. It generally has eigenvectors and eigenvalues. This first-
order degenerate perturbation calculation has therefore reduced to a special case of the finite
basis subset model (or finite matrix model) presented above. In this case, the finite basis we
choose is the set of r degenerate eigenfunctions corresponding to a particular unperturbed
energy eigenvalue Ep,.

The solution of the equation (6.67) will give a set of r first-order corrections to the energy,
which we could call E(", each associated with a particular new eigenvector |¢mi> that is a
linear combination of the degenerate basis functions |1//m5>. All of these new eigenvectors
|¢mi> are orthogonal to one another. To the extent that the energies E{" are different from one
another, the perturbation has “lifted the degeneracy”.

Note that the eigenvectors |¢mi> are actually still zero-order wavefunctions, not first-order
wavefunctions; each of them is an exact solution of the unperturbed problem with energy E,.
Indeed, any linear combination of the |l//mi> or the |¢mi> is a solution of the unperturbed
problem with energy E,,. The perturbation theory has merely selected a particular set of linear
combination of the unperturbed degenerate solutions. This is consistent with the result for the
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non-degenerate perturbation theory, in which the first-order energy correction depends only on
the zero-order wavefunctions.

It is also possible that the perturbation does not lift the degeneracy of the problem to first
order. Degenerate perturbation theory can be extended to higher orders, though we will not do
that here.

Problems

6.4.1 Consider an ideal cubical quantum box for confining an electron. The cube has length L on all three
sides, with edges along the X, y, and z directions, and the walls of the box are presumed to correspond
to infinitely high potential barriers. The resulting energy eigenfunctions in this box are simply the
products of the particle-in-a-box wavefunctions in each of the three coordinate directions, as can be
verified by substitution into the Schrodinger wave equation. [Note: we presume here for simplicity
that (X,y,z)=(0,0,0) is the point in the center of the box, and it may be more convenient to write
the wavefunctions centered on this point rather than on, say, a corner of the box.]

(i) Write down the normalized wavefunctions for the first 3 excited states for an electron in this box
[Note: in these states, the electron will be in the second state in one direction and the lowest state in
the other two directions.]

(i1) Now presume that there is a perturbation H p =€eFz applied (e.g., from an electric field F in the z
direction.) What happens to the three states as a result of this perturbation, according to first-order
degenerate perturbation theory?

(iii) Now presume that a perturbation H p = az? is applied instead. (Such a perturbation could result
from a uniform fixed background charge density in the box, for example.) Using first-order
degenerate perturbation theory, what are the new eigenstates and eigen energies arising from the three
originally degenerate states?

[Note: you may need the results
3 3
[2,02cos20d0="—-" and |72, 0>sin220do =" -2 ]
24 4 24 16
See also problem 10.5.9, which can be attempted once the hydrogen atom wavefunctions are
understood.

6.5 Tight binding model

An example of a another problem where the degeneracy is lifted is that of two identical
potential wells with a finite barrier thickness between them (a “coupled potential well”
problem). This has some similarities to a degenerate perturbation theory problem, so we
consider it here, though it is awkward mathematically to force it into a form where we are
adding a simple perturbing potential. We can certainly think of it as a finite basis set approach
using approximate starting basis functions. Solid state physicists would refer to this particular
calculation as a “tight-binding” method'?. Regardless of what we call it, it is, however, quite
straightforward to solve approximately, and leads to simple approximate analytic results with
interesting and important physical meaning.

12 The “tight binding” here refers to the particle being tightly or deeply bound within one potential well
or, in solid state physics, within one unit cell of the crystal, not to a strong binding between states in
adjacent wells or unit cells.
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We imagine two separate “unperturbed” potential wells, as shown in the second and third parts
of Fig. 6.3. If we had the “left” potential well present on its own, with corresponding potential
Viett (Z) , we would have the wavefunction solution e (z) , with associated energy E; for the
first state, a problem we already know how to solve exactly numerically. Similarly, if we
considered the right potential well on its own, with potential Vrignt (Z), we would have the
wavefunction solution wrignt (Z) (which is the same as et (Z) except that it is shifted over to
the right), and would have the same energy E;. The actual potential for which we wish to
calculate the states is, however, the potential V at the top of Fig. 6.3, which we could call a
coupled potential well.

Vleft

Fig. 6.3. Schematic illustration of a coupled potential well, showing the two coupled states
formed from the lowest states of the isolated wells. The lower state is symmetric, and the upper
state is antisymmetric.

Note that here we have chosen the origin for the potential at the top of the well. This particular
choice means that we can say that V (z)=Viet (2)+Vrignt (z) , and our algebra is simplified
somewhat. With our choice of energy origin, the Hamiltonian for this system is

~  —h*d?

H =%F+Vleﬂ (Z)+Vrigm (Z) (668)
We now solve using the finite basis subset method, choosing for our basis wavefunctions the
wavefunctions in the isolated wells, wiet and rignt , respectively. These are two functions that
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are approximately orthogonal as long as the barrier is reasonably thick, hence the term “tight-
binding” — the basis wavefunctions are each assumed to be relatively tightly confined in one
well, with little wavefunction “leakage” into the adjacent well. Hence the wavefunction in this
problem can be written approximately in the form

l// = al//left + bl//right (669)

In matrix form, our finite-basis-subset approximate version of Schrédinger’s equation is

|: , | :||: :| [ :|
21 22 : 0

where we should have, for example,

H11 = _[V/IZﬂ (Z)(%j?+vleft (Z)+Vright (Z)J%eft (Z)dZ (6'71)

Because we presume the barrier to be relatively thick, we are presuming the amplitude of the
left wavefunction is essentially zero inside the right well, so the integrand is essentially zero
for all z inside the right hand well, and hence the term

J.‘//;ﬁ (2)Veigne (2)Wier (2) dz
can be neglected. Hence
H,=E (6.72)

For the same reason (that et (Z) =0 in the right hand well) or the complementary one (that
wright () = 0 in the left hand well), we neglect all terms

J.!//I:eft (2)Vagn (2)Wrign (2) 2, J“/’l*eft (2)Vier (2)Wrigne (2) Iz,

jl//:ight (Z)Vright (Z)l//left (Z) dZ > and jl//:ight (Z)Vleft (Z) l//right (Z) dZ

(Remember that Vieit and Vright are zero except within their respective wells.) We do, however,
retain the interaction within the (middle) barrier where the wavefunctions, though small, are
presumed not completely negligible, i.e., we retain a result

. nod? . .
AE = I Wi (Z)(_%d? +V (2)(=0 in the barrler)jt//right (z)dz (6.73)
barrier

Note, incidentally, that AE is a negative number if we have chosen e (Z) and Wright (z) to
be the positive real functions as in Fig. 6.3; in the barrier, each of them will have a positive
second derivative, and so the net result of the integral is negative.

By choosing to integrate only over the barrier thickness, we are neglecting any contributions to
this integral that would have come from regions outside the barrier because again we presume
one or other basis wavefunction to be essentially zero there. With these simplifications, we

have
. =E (6.74)
AE" E ||b b
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(AE in this problem is real because the wavefunctions of this problem can (and will) be
chosen to be real for simplicity, but the complex conjugate is shown here for completeness.
AE is also a negative number here because the wavefunctions are each positively curved
inside the barrier.) We find the energy eigenvalues of Eq. (6.74) in the usual way by setting

E-E AE
det| " _, =0 (6.75)
AE" E-E
ie.,
(E,—E)’ —|AE| = E* -2EE, + E} -|AE[ =0 (6.76)
obtaining eigenvalues
E =E, +|AE]| (6.77)

Note, at least within the approximations here, that the energy levels are split by the coupling
between the wells, approximately symmetrically about the original "single-well" energy, E; .

Substituting the eigenvalues back into Eq. (6.74), and taking the original wavefunctions and
hence also AE, to be real for simplicity'® (and remembering that AE is negative), allows us to
deduce the associated normalized wavefunctions

V. :%@/mﬂ +l//rigm) and v, :%(V/m _‘//rigm) (6.78)

These wavefunctions are sketched in Fig. 6.3. The lower energy state is associated with a
symmetric linear combination of the single-well eigenfunctions (i.e., the wavefunction has the
same sign in both wells), and the upper energy state is associated with the anti-symmetric
combination (i.e., the wavefunction has the opposite sign in the two wells). Note now that we
can no longer view the states as corresponding to an electron in the "left" well or an electron in
the "right" well; in both states the electron is equally in both wells. This general form of
wavefunctions, one symmetric and the other antisymmetric, is characteristic of this kind of
symmetric problem, and is retained even as we perform more accurate calculations.

Hence we can see from this simplified physical model that the physical perturbation of
bringing two identical systems together leads to a splitting of the degenerate eigenvalues and a
coupling of the states. This is a very general phenomenon in quantum mechanics. It occurs, for
example, when we bring atoms together to form a crystalline solid, and leads to the formation
of energy bands of very closely spaced states rather than the discrete separated energy levels of
the constituent atoms.

Note, incidentally, that this calculation has features that are also found in molecular bonding.
Suppose that we have one electron to share between these two potential wells. As we bring
these two potential wells together, two possible states emerge, one of which has lower energy
than any of the states the system previously had. If we think of these potential wells as being
analogous to atoms, we see that we can get lower energy in the system in this lowest state by
bringing these “atoms” closer together. We can see then, that if the system was in this lowest

13 Remember that the solutions of the time-independent Schrodinger equation for a real potential can
always be chosen to be real because, if | is a solution, so also is l//* , as can be seen by taking the
complex conjugate of both sides of the equation, and hence  + ", which is real, is also a solution.
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state, we would have to add energy to the electron if we were to try to pull the potential wells
or “atoms” apart. Hence this lowest state corresponds to a kind of molecular, chemically
bonded state. The actual theory of molecular bonding is more complex than this because it has
to account for multiple electrons in the system'®, and potentials that are not simply square
wells. The symmetric and antisymmetric solutions we have found here for the coupled
quantum well are, however, sometimes referred to as “bonding” and “anti-bonding” states
respectively.

Problems

6.5.1 Consider three wells of equal thicknesses with equal barriers on either side of the middle well.
Take the same “tight-binding” approach as used above for two quantum wells, but now considering a
3 x 3 matrix. What are the approximate eigenenergies and wavefunctions of this coupled system?
How many zeros are there in each of these wavefunctions (not counting the zeros at the extreme left
and right of the system)?

6.5.2 Suppose we have a coupled potential well, consisting of two weakly-coupled identical potential
wells with a barrier between them. We presume that we have solved this problem approximately
using a “tight-binding” approach for the lowest two coupled states, giving approximate solutions

V- (2)= 5 aa () i (2)) and . (2) =5 (2)Vin(2)

with associated energies
E =E +|AE|

where E; is the energy of the lowest solution in either of the potential wells considered separately,
1//|en(z) is the corresponding wavefunction of the first state in the left well considered separately,
Wright (Z) is the corresponding wavefunction of the first state in the right well considered separately,
and AE is a number that has been calculated based on the coupling.
Suppose now that the coupled system is initially prepared, at time t =0, in the state such that the
particle is in the left well, with initial wavefunction yien (z) .
(1) Calculate expressions for the wavefunction and the probability density as a function of time after

t=0.
(i) Describe in words the time-dependence of this probability density.
[Note: this problem requires an understanding of Chapter 3]

6.6 Variational method

Consider for the moment an arbitrary quantum mechanical state, |¢> , of some system. We
suppose that the Hamiltonian of the system is H, and we want to evaluate the expectation
value of the energy, <E> Since the Hamiltonian is presumably an appropriate Hermitian
operator, it has some complete set of eigenfunctions, |l//n>, with associated eigenenergies E, ;
we may not know what they are — they may be mathematically difficult to calculate — but we
do know that they exist. (For simplicity here, we assume the eigenvalues are not degenerate.)
Consequently, we can certainly expand any arbitrary state in them, and so we can write as
usual, for some set of expansion coefficients a;,

|4)= Zilai lv:) (6.79)

!4 When there are multiple electrons, we have to account also for the so-called exchange energy, which is
very important in determining actual chemical bonds in molecules.
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We presume this representation of the state is normalized, so

>lal’ =1 (6.80)

Hence, the expectation value of the energy becomes, as usual,
(E)=(¢|H|#)=2[al E (6.81)

We also presume for convenience here that we have ordered all of the eigenfunctions in order
of the eigenvalues, starting with the smallest, E;.

Now we ask the question, what is the smallest expectation value of the energy that we can have
for any conceivable state |¢> ? The answer is obvious from Eq. (6.81). The smallest energy
expectation value we can have is E;, with correspondingly &, =1 and all the other expansion
coefficients zero. If we made one of the other expansion coefficients a; finite, then the energy
expectation value would become

(E)=[a E +[, |2 E
2 2
~(1-[a [ ). +[a[ E, (6.82)
=€ +[a[ (E,-E)>E

i.e., because of the normalization sum, Eq. (6.80), the energy would have to increase. This
simple property allows us to construct an approximate method of solution of quantum
mechanical problems for the ground state (the lowest energy state), and especially for its
energy. The key idea is that we choose some mathematical form of state, called the trial
wavefunction, that is mathematically convenient for us (and which we believe reasonably fits
at least the qualitative features we would expect for the ground state), and then vary some
parameter or parameters in this mathematical form to minimize the resulting expectation value
of the energy; as a result of this minimization with respect to variation, this is known as the
variational method. If we use this method, we do not formally know how accurate our result is
for the energy, but we do know that lower is better — we can never get an answer lower than
the energy of the lowest actual state of the system as we proved above — and we can if we wish
keep refining our mathematical form so as to reduce the resulting calculated energy
expectation value.

Why would we use such a method? One answer is that it allows us to calculate an
approximation for the ground state energy without solving the exact eigenfunctions of any
problem. A second reason is that, with careful choice of the form of the function to be varied,
so that the algebra of minimization gives simple analytic results, we may also be able to get
approximate analytic results for the effect of some perturbation.

Given that the form of the wavefunction we are using is not the actual form of the exact
solution, why does this method give even reasonable answers? The answer goes back to a point
we discussed in relation to perturbation theory above; we can often get quite good answers for
energies even with approximate wavefunctions. Remember that the first-order energy
correction uses the zero order wavefunction, for example.

The variational approach can be progressively extended to higher levels of the system if we
force the next trial wavefunction to be mathematically orthogonal to all the previous (lower
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energy) ones."” As far as numerical calculations are concerned, the variational method is nearly
always used only for ground states. The discussion of the variational method does, however,
point out a basic, exact property of eigenfunctions and eigenvalues that is actually obvious
from the equation (6.81). The eigenfunction corresponding to the lowest eigenvalue is that
function that minimizes the expectation value. The eigenfunction corresponding to the second
eigenvalue is that function that minimizes the expectation value, subject to the constraint that
the function is orthogonal to the first eigenfunction. This property extends to higher
eigenfunctions, with each successive eigenfunction being constrained to be orthogonal to all
the previous ones. Indeed, this successive minimization property can be used mathematically
to define the eigenfunctions and eigenvalues.'®

As an example of the variational method, we can do a simple calculation on our example
problem of an electron in an infinitely deep potential well with applied field. In this particular
case, because it makes our mathematics tractable, we will use as our trial function an unknown
linear combination of the first two states of the infinitely deep quantum well, though, as
mentioned above, it is more common in variational calculations to choose some mathematical
function unrelated to exact eigenfunctions of any problem. Hence, our trial function is

bria (£, ) = i(sin 7& +a,, sin27¢) (6.83)
1+a’

var

where a,, is the parameter we will vary to minimize the energy expectation value. Note that
we have normalized this wavefunction by dividing by +/1+a2,. . The expectation value of the
energy then becomes, as a function of the parameter a,,

<E(aVar )> ! “(\/5 sin 77 +a,, /2 sin 2ﬂ§):|

el ¢ (6.84)
x(—%%+f(§—l/2)j(\/§sinﬁ§+aw\/zsin27r§)d§
Using the result
jsinﬂ§(§—1/2)sin2m§d§:—%, (6.85)

0

the known eigenenergies of the unperturbed problem, and the orthogonality of the sine
functions, Eq. (6.84) becomes

(E(a,)) ! [g] (1+ 4a§ar)—32LV;ff} (6.86)

1+al, O

Now to find the minimum in this expectation value, we take the derivative with respect to ay,;,
to obtain

15 Such a mathematical approach is sometimes known as Gram-Schmidt orthogonalization.

!¢ This rather general and important property of eigenfunctions and eigenvalues is, surprisingly, often not
taught in courses on those subjects, and is less well-known than it ought to be.
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d(E(a 2 ‘a, -
(E(aw)) _ 2 16fa’, +277a,, ~16f (687)

da,, 97’ (1+a; )2

var

This derivative is zero when the quadratic in the numerator is zero. The root that gives the
lowest value of (E(avar )> is

277+ (27;;2)2 +1024f
var min 32f AL
(6.88) -

For f=3 in our example, we find ayumn =0.175, which
compares with 0.174 from the 3-basis-function finite basis Vo subset
method and 0.180 from the perturbation calculation. The
corresponding energy expectation value, which is the
approximation to the ground state energy in the presence of the
field, is, substituting the value of @, back into (6.86), L,

<E(0.175)> =0.90563, which compares reasonably well - with
0.90419 from the exact calculation.

a

8
8

Incidentally, it can be shown that a variational approach like this using the same basis
functions as a finite basis subset calculation gives exactly the same results; if we had
calculated the finite basis subset method using only the first two basis functions, we would get
the same answer as our variational calculation here. We can see this explicitly from Table 6.1,
where the two-basis-function finite basis subset method and the variational method with the
same two basis functions give exactly the same answer for the energy (they also give identical
wavefunctions). This is fundamentally because of the minimization property of eigenfunctions
and eigenvalues discussed above. An explicit proof is given by Kroemer.'”

Problems

6.6.1 Based on your understanding of the variational method and the principles behind it, prove that the
finite basis subset method will always give an answer for the energy of the lowest energy eigenstate
that is equal to or above the exact value.

6.6.2 [This problem may be used as a substantial assignment.] Solve this problem by any approximation
method or methods you consider appropriate. Consider an electron in an infinitely deep potential well
of thickness L, = 30 A, into which a potential barrier is introduced in the middle. This barrier has
thickness AL = 0.5A and height V, = 1 eV.

(i) Find the energies and plot the wavefunctions of the first two states (i.e., the ones with the lowest
energies) in this potential. Though formal proof of accuracy is not required, you should have
reasonable grounds for believing your energy calculation is accurate to ~5% or better for the
first level.

(i1) Now we apply an electric field, F, to this structure along the z-direction. We consider the energy
of the center of the well to be fixed as we apply field. We presume that, for small fields, the
energy E; of the first level changes quadratically with electric field, i.e.,

AE, = —lan
2

17 See, for example, Quantum Mechanics, H. Kroemer (Prentice-Hall, Englewood Cliffs, 1994), Chapter
14.
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(The quantity « is often called the polarizability.) Find a reasonable approximate numerical
result for ¢, expressed in units appropriate for energies in eV and fields in V/A.

6.7 Summary of concepts

Finite matrix/finite basis subsets method

We choose a finite number of basis functions to approximate the problem, and solve by finding
the eigenvalues and eigenfunctions of the corresponding finite matrix representing the operator
of interest (usually the Hamiltonian). The basis set usually chosen is the known solutions of
the unperturbed problem, and the finite set of functions chosen is most often those close in
energy to the state of greatest interest.

Time-independent non-degenerate perturbation theory

Presuming that there is a perturbation yHp added to an unperturbed Hamiltonian H, (whose
eigen solutions E, and |1//n> are presumed known), and presuming there are corresponding
power series in y for both the eigenenergies E

E-g® +;/E(l) +72E(2) +;/3E(3) een (6.21)
and the eigenfunctions |¢>
18)=[8")+7[87) 787y 7°[#7) (620

a series of relations are found by equating powers of y. Thereafter, y is conventionally set to
unity. The resulting first-order corrections to the mth level of the unperturbed system are

EY = (v H, vn) (6.32)

wy_y Walts lva)
[0")-% E g ) (638)

and the second-order correction to the energy is

A 2

Holyn)
E) _ (ALAZ 42
n; E_E (6.42)

Higher order corrections to wavefunctions and energies are found progressively from the
preceding orders of corrections. Usually such perturbation corrections are used to the lowest
non-zero order.

Degenerate perturbation theory

For the case where a given unperturbed energy level is degenerate, i.e., has more than one
eigenfunction associated with it, the wavefunction is expanded on the basis of the r degenerate
eigenfunctions

|V tor) = 2 B [Wins) 6.61)
s=1

The resulting first-order correction to the eigenenergies are found as the eigenvalues of the
matrix equation
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H pmiml H pmim2 H pmimr a, a,
H pm2ml1 H pm2m2 77 H pm2mr amz _ E(l) amz (667)
H pmrm1 H pmrm2 "7 H pmrmr a,, Qe
where
H pmims = <‘//mi I:I p |‘//ms> (666)

and the corresponding eigenvectors give the lowest order eigenfunctions corresponding to the
respective eigenvalues. The eigenfunctions found this way are zeroth order eigenfunctions, but
specific combinations with different energies may now have been forced by the perturbation,
in which case the perturbation is said to have “lifted the degeneracy”.

Tight binding model

A tight binding model is one in which the electrons in adjacent systems are presumed to be
quite tightly bound within those systems, but with a weak overlap between adjacent systems.
This weak interaction allows simplified analytic models to be constructed that can expose the
nature of the interactions between the systems.

Variational method

The variational method relies on the provable notion that the lowest possible expectation value
of the energy that can be attained for any proposed wavefunction of the system is exactly that
of the lowest energy eigenstate. This allows mathematically convenient forms to be used for
the wavefunction in approximate calculations especially of the lowest state of the system.
Usually, a parameter of the proposed approximate wavefunction is varied to minimize the
resulting energy expectation value.



Chapter 7

Time-dependent perturbation
theory

Prerequisites: Chapters 2 — 6.

Time-dependent perturbation theory is one of the most useful techniques for understanding
how quantum mechanical systems respond in time to changes in their environment. It is
especially useful for understanding the consequences of periodic changes; a classic example is
understanding how a quantum mechanical system responds to light, which can often be
usefully approximated as a periodically oscillating electromagnetic field. We will develop
time-dependent perturbation theory in this Chapter, including some specific applications to
interactions with light.

7.1 Time-dependent perturbations

For time-dependent problems, we will often be interested in the situation where we have some
time-dependent perturbation, H, (t), to an unperturbed Hamiltonian H, that is itself not
dependent on time. The total Hamiltonian is then

H=H,+H,(t) (7.1)
To deal with such a situation, we return to the time-dependent Schrodinger equation,

.. 0 -

mEW) =H|¥) (7.2)

where now the ket |‘P> is time-varying in general. As before, a convenient way to represent a
solution of the time-dependent Schrodinger equation is to expand it in the energy
eigenfunctions of the unperturbed problem. With |wn> and E, as the energy eigenfunctions
and eigenvalues of the time-independent equation

Holw,)=E.lv.) (7.3)

we can expand |‘P> as
W) =2 a, (t)exp(-iE t/7)|w,) (74)

Note that, in Eq. (7.4), we chose to include the time-dependent factor exp(—iEnt/ h) explicitly
in the expansion. We could have left that out, and merely included it in a,(t) . As is often the
case, however, it is better to take out the major underlying dependence if one knows it, which
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here leaves the time dependence of a,(t) to deal only with the changes that are in addition to
the underlying unperturbed behavior.'

Now we can substitute the expansion (7.4) into the time-dependent Schrodinger equation (7.3),

obtaining
> (ina, +a,E, )exp(~iE,t/7)|w,) = Za (Ho +H, (1)) exp(—E,t/7)[w,) (7.5)
where

. Oa,

8, =2 (7.6)

Using the time-independent Schrédinger equation (7.3) to replace Ho |1//n> with Ej, |1//n> leads
to the cancellation of terms in E, |y/n> from the two sides of the equation. Now premultiplying
by (waq| on both sides of (7.5) leads to

ina, (t)exp(—iE,t/h)= Za Jexp(—iE,t/7)(wy|H, (t)]w,) (7.7)

Note we have made no approximations in going from (7.2) to (7.7); these are entirely
equivalent equations.

Now we consider a perturbation series, in a manner closely analogous to the series we defined
for the time-independent problem. We introduce the expansion parameter y for the purposes of
mathematical housekeeping, just as before, now writing our perturbation as 7I:| » . Just as in the
time-independent perturbation theory, we can set this parameter to a value of 1 at the end. We
presume that we can express the expansion coefficients a, as a power series

a, =a” +yal) + %" +... (7.8)

n

and we substitute this expansion into Eq. (7.7). Since now in Eq. (7.7) we have replaced H,
by yH,, the lowest power of » we can possibly find on the right hand side of Eq. (7.7) is '
(i.e., ); there is no term in »°. Hence, equating powers of » on both sides of the equation, we
obtain for this zero order term

a” (t)=0 (7.9)
Not surprisingly, the zero order solution simply corresponds to the unperturbed solution, and
hence there is no change in the expansion coefficients in time. For the first-order term
(obtained by equating terms in ' on both sides of the equation), we have

aél) (t)= %Zﬂ: ar(]o) exp(iqut)<t//q | H 5 (t)|l/ln> (7.10)

where we have introduced the notation
o, =(E,~E,)/h (7.11)
Note here that the a'” are all constants; we deduced in Eq. (7.9) that they do not change in

time. They represent the “starting” state of the system at time t=0. We note now therefore
that, if we know the starting state, the perturbing potential and the unperturbed eigenvalues and

' This approach is sometimes known as the interaction picture.
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eigenfunctions, then everything on the right hand side of Eq. (7.10) is known. Hence we can
integrate Eq. (7.10) to obtain the first-order, time-dependent correction, a{’(t), to the
expansion coefficients. Since we now know the new approximate expansion coefficients,
=~ a0 4 o

a, =a, +a, (t) (7.12)
then we know the new wavefunction, and can calculate the behavior of the system from this
new wavefunction. Hence we have our first approximation to the effect of this time-dependent
perturbation to the system.

We can proceed to higher order in this time-dependent perturbation theory. In general,
equating powers of progressively higher order, we obtain

J(p+ 1 . i
aép g (t)= Ezn:af]p) exp(la)qnt)<t//q | H, (t)|l/ln> (7.13)

We see that this perturbation theory is also a method of successive approximations, just like
the time-independent perturbation theory. We calculate each higher order correction from the
preceding correction.

Just as for the time-independent perturbation theory, the time-dependent theory is often most
useful for calculating some process to the lowest non-zero order. Higher order time-dependent
perturbation theory is very useful, for example, for understanding nonlinear optical processes.
First-order time-dependent perturbation theory gives the ordinary, linear optical properties of
materials, as we will see below. Higher order time-dependent perturbation theory is used to
calculate processes such as second harmonic generation and two-photon absorption in
nonlinear optics, for example, processes that are seen routinely with the high optical intensities
of modern lasers.

Problems

7.1.1 An electron is initially in the lowest state of an infinitely deep one-dimensional potential well of
thickness L, . An electric field pulse, polarized in the direction perpendicular to the well, and of the
form

F(t)=0, t<0; F(t)=Fexp(-t/7), t=0

is applied to the well. This pulse will create some probability for times t >> 7 of finding the electron

in the second state, and we presume that electrons excited into the second state are subsequently

swept out to give a photocurrent on some timescale long compared to 7.

(i) Find an expression, valid for sufficiently small values of F,, for the probability of generating an
electron of photocurrent from such a pulse.

(ii)) Suppose now that we consider a pulse of a given fixed energy Epuise , which we may take to be
of the form Epuse = AFZ7 where A is some constant. For what value of characteristic pulse
length 7 does this detector have the maximum sensitivity (i.e., maximum chance of generating
an electron of photocurrent)?

(iii) Treating an electron in a GaAs quantum well as being modeled by such an infinitely deep well,
with an electron effective mass of mett =0.07m, , for a well of thickness 10 nm, calculate the
probability of generating an electron of photocurrent for a field value of F, = 10 V/cm, and a
characteristic time 7 =100 fs.

(iv) If we were now to make 10" such single electron systems (or equivalently, to put 10'" electrons
in one actual GaAs quantum well, a number quite feasible for ~ 1 cm™ area), what now would
be the average number of electrons of photocurrent generated per pulse?

(v) For the same pulse energy, what would be the optimum pulse length to maximize the
photocurrent for the GaAs case of parts (iii) and (iv), and how much larger would the
photocurrent be?
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7.1.2 Consider a one-dimensional semiconductor potential well of width L, with potential barriers on
either side approximated as being infinitely high. An electron in this potential well is presumed to
behave with an effective mass mesr . Initially, there is an electron in the lowest state of this potential
well.

We want to use this semiconductor structure as a detector for a very short electric field pulse. If the
electron is found in the second energy state after the pulse, the electron is presumed to be collected as
photocurrent by some mechanism, and the pulse is therefore detected.

To model this device, we presume that the electric field pulse F(t) can be approximated as a “half-
cycle” pulse of length At, i.e., a pulse of the form

F(t)=F, sin[%j

for times t from 0 to At, and zero for all other times.

(1) Find an approximate expression, valid for sufficiently small field amplitude F,, for the
probability of finding the electron in its second state after the pulse.

(ii) For a pulse of length At =100 fs, and a GaAs semiconductor structure with mer = 0.07m, and
width L, = 10 nm, for what minimum electric field magnitude F, does this detector have at
least a 1% chance of detecting the pulse?

(iii) For a full cycle pulse (i.e., one of the form F(t) = F, sin(27t/At) for times t from 0 to At,
and zero for all other times), what is the probability of detecting the pulse with this detector?
Justify your answer.

7.2 Simple oscillating perturbations

One of the most useful applications of time-dependent perturbation theory is the case of
oscillating perturbations. We will consider this problem here in first-order time-dependent
perturbation theory. For example, the interaction of a monochromatic electromagnetic wave
with a material is a situation where the perturbation, the electromagnetic field, is varying
sinusoidally in time. Such a sinusoidal perturbation is also called a harmonic perturbation, the
same use of the term “harmonic” as in the harmonic oscillator.

One common form would be to have an electric field in, say, the z direction’
E(t)=E, [exp(—ia)t) + exp(ia)t)] = 2E, cos(at) (7.14)

where @ is a positive (angular) frequency. For an electron, as before, the resulting
electrostatic energy in this field, relative to position z=0, would lead to a perturbing
Hamiltonian

|:|p(t)=eE(t)z = Hpo [exp(—ia)t)+exp(ia)t)] (7.15)
where, in this case,
H,, =€,z (7.16)

Note that this operator, H o, does not depend on time. This particular form of the perturbing
Hamiltonian is called the electric dipole approximation. In this particular case, this operator is

% The use of complex exponentials is often preferred for the mathematics of handling such perturbations,
though in the end it does not matter. Oscillating fields are often defined using this particular convention,
with the factor of 2 in the cosine version of the field, though there is not unanimity on this convention.



188 Chapter 7 Time-dependent perturbation theory

just a scalar function of z, though in other formulations of this problem it often has stronger
operator character.” Our approach here is valid for any perturbing Hamiltonian that is of the
general form of the far right of Eq. (7.15). *

Fermi’s Golden Rule

For the purposes of our calculation, we will presume that this perturbing Hamiltonian is only
on” for some finite time. For simplicity, we presume that the perturbation starts at time t =0
and ends at time t =t,, so formally we have

H,(t)=0,t<0
=H, [exp(—ia)t)+exp(ia)t)],0<'[<t0 (7.17)

=0,t >t
To be specific, we will be interested in a situation where, for times before t =0, the system is
in some specific energy eigenstate, |1//m>. We expect that the time-dependent perturbation
theory will tell us with what probability the system will make transitions into other states of
the system as a result of the perturbation. With this choice, all of the a” (the initial expansion

coefficients) are zero except a\’ , which has the value 1. With this simplification of the initial
state, the first-order perturbation solution, Eq. (7.10), becomes

. 1 . n
4 (t) = —exp(iogt) (v [H, (1) v) (7.18)
Then we have, substituting the perturbing Hamiltonian, Eq. (7.17),

f
(1) = [y o (v espiens )t

)

:%<y/q|lf|po|(//m J'{exp[l )t1]+exp[ (04 + @), J}dt

1 . exp i(a)qm—a))to -1 exp i(coqm+a))'[0 -1
__£<V/Q|Hp0|‘//m> ( ) + ( ) (7.19)

Oy — @ Oy + @

: n—0)t, /2
exp|:i (a)qm —a))to /2J Sm([ci q_w)t) = ]
gm 0
sin[(a)qm +a))t0 /2J
(a)qm -|-a))t0 /2

zlt_;@/q | H po |'//m>
+exp[i (a)qm + a))t0 /2}

3 Another common form is H, = —(e/m,)A-p, where A is the magnetic vector potential and p is the
momentum operator. This form is formally more complete than the electric dipole approximation (it
includes magnetic effects, for examplen), and is favored by solid state physicists, though it makes little or
no difference for nearly all common linear optical problems. We use it in Chapter 8 and derive it in
Appendix E.

4 Another common occurrence of a harmonic perturbation is in the interaction of vibrating atoms with
electrons, as in the interaction of phonons in solids with electrons (electron-phonon interactions), which
is responsible for many of the limitations on the speed of electrons in semiconductors, for example.
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The reader may remember that the function sinc(x) = (sin X)/ X peaks at 1 for x=0, and falls
off in an oscillatory fashion on either side. This function is shown in Fig. 5.1. It is essentially
only appreciably large for x= 0, which tells us we have a strongly resonant behavior, with
relatively strong perturbations when the frequency o is close to t@m . We will discuss the
meaning of this in more detail below.

What we have now calculated is the new quantum mechanical state for times t > t,, which is,
to first order,

| W) = exp(—iE,t/h)|y, )+ 2 al (t > t, ) exp (it /7)|w, ) (7.20)
q

with the a{’ (t >t,) given by Eq. (7.19). Now that we have established our approximation to
the new state, we can start calculating the time dependence of measurable quantities.

In our example here, we chose the system initially to be in the energy eigenstate |l//m> . The
application of the perturbation has changed that state, and we would like to know, if we were
to make a measurement of the energy after the perturbation is over (i.e., for t >t,), what is the
probability that the system will be found in some other state, |y/;). Another way of stating this
is that we want to know the transition probability from state |l//m> to |y;). Provided we are
dealing with small perturbations (so that the correction to wavefunction normalization can be
ignored), the probability, P( j), of finding the system in state |y;) is

P(i)=[a’[ (721)
ie.,
sin[(a)jm—a))to/Z] ’ sin[(a)jm+a))to/2J ’
i) ==l [P v (on o)t 2 (on 0]t (7.22)
R 5 . sin[(a)jm—a))to/ﬂ sin[(a)jm+a))to/2J
+2cos(at,) (a)jm—a))to/Z (a)jm+a))t0/2

As we see from Fig. 5.1, the sinc function and its square fall off rapidly for arguments >> 1.
Hence, for sufficiently long t,, either one or the other of the two sinc functions in the last term
in Eq. (7.22) will be small. Essentially, as the time t, is increased, these two sinc line
functions get sharper and sharper, and they will eventually not overlap for any value of .
Presuming we take t, sufficiently large therefore, we are left with

> sin[(a)jm—a))to/2] 2+ sin[(a)jm+a))t0/2J ’
(a)jm —a))to /2 (a)jm +a))t0 /2

HuoVn)

(7.23)

Lt
P(J):h%<'»”i

Clearly, we now have some finite probability that the system has changed state from its initial
state, |l//m> , to another “final” state, |1// j > . We see that this probability depends on the strength
of the perturbation squared, and specifically on the modulus squared of the matrix element of
the perturbation between the initial and final states.

In the case where the perturbation is the oscillating electric field acting on an electron, we see
therefore that this probability is proportional to the square of the electric field amplitude, E3,
which in turn is proportional to the intensity | (power per unit area) of an electromagnetic field.
Hence, in the case of the oscillating electric field perturbation, we see the probability of
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making a transition is proportional to the intensity, |. This is the kind of behavior we expect for
linear optical absorption.

What is the meaning of the two different terms in Eq. (7.23)? The first term is significant if
Om =@, 1.e., if

ho~E;-E, (7.24)
Since we chose @ to be a positive quantity, this term is significant if we are absorbing energy
into the system, raising the system from a lower energy state, |1//m> , to a higher energy state,

|w;). We note that the amount of energy we are absorbing is ~ 2@ . This term behaves as we
would require for absorption of a photon.

By contrast, the second term is significant if om ~ -, i.e., if
ho~E, —E, (7.25)
This can only be the case if the system is moving from a higher energy state |l/lm> , to a lower

energy state, |y;). This term behaves as we would require for emission of a photon. In fact,
the process associated with this term is stimulated emission, the process used in lasers.’

Now let us consider only the case associated with absorption, presuming we are starting in a
lower energy state and transitioning to a higher energy one. (The treatment of the stimulated
emission case is essentially identical,’ with the energies of the states reversed.) Then we have

2 sin[(wim—w)to/ﬂ 2
(a)jm —a))'[0 /2

Lt .
P(J):h%@/j Hoo W) (7.26)

Analyzing the case of a transition between one state and exactly one other state using this
approach has some formal difficulties; as we let the time t, become arbitrarily large, the form
of the sinc squared term becomes arbitrarily sharp in @, and unless we get the frequency
exactly correct, we will get no absorption. For any specific @ not mathematically exactly

> Incidentally, this particular so-called “semi-classical” analysis does not correctly model spontaneous
emission, the dominant kind of light emission in nearly all kinds of everyday situations (including, for
example, light bulbs). To model that correctly requires that the electromagnetic field is treated quantum
mechanically, not approximated by a classical field. Spontaneous emission can be modeled using this
semiclassical model if one presumes that, for some reason, there is 7@2 of energy in each
electromagnetic mode, with an associated electromagnetic field, sometimes called the vacuum field,
available to stimulate emission, though the only real justification for this approach is to solve the problem
correctly by treating the electromagnetic field quantum mechanically. We will return to this point in
Chapter 16, where we will correctly include spontaneous emission. Somewhat surprisingly, it is actually
harder in quantum mechanics to explain a light bulb than it is to explain a laser.

® Note, incidentally, that we can see from this quantum mechanical approach that the two processes of
optical absorption and stimulated emission fundamentally are equally strong processes — both have the
same prefactors (matrix elements). We do not see stimulated emission as much as we see absorption just
because quantum mechanical systems are not normally found starting out in upper, excited states, tending
for thermodynamic reasons to be found in their lower, unexcited states. This equivalence of the
microscopic strength of absorption and stimulated emission is exactly what is required by a statistical
mechanics analysis of optical absorption and emission, as deduced by Einstein in his famous “A and B
coefficient” argument. See, for example, H. Haken, Light, Vol. 1 (North-Holland, Amsterdam, 1981) pp
58 — 62.
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equal to @jn, the probability P(j) of a transition into the state |y;) will always become
essentially zero if we leave the perturbation on for long enough. This problem can be resolved
for calculating, for example, transitions between states in atoms, though it requires a more
sophisticated analysis using the density matrix that we postpone to Chapter 14. That approach
gives a “width” to an optical absorption line. Essentially, we end up replacing the sinc squared
function with a Lorentzian line whose width in angular frequency is ~1/T,, where T, is the
time between scattering events (e.g., collisions with other atoms) that disrupt at least the phase
of the quantum mechanical oscillation of the wavefunction.” We can rationalize such a change
based on an energy-time uncertainty relation; if the system only exists in its original form for
some time T, , then we should expect that the energy of the transition is only defined in energy
to ~+h/2T,, or in angular frequency to ~ £1/2T, .

Fortunately, however, there is a major class of optical absorption problems that can be
analyzed using this approach. Suppose that we have not one possible transition with energy
difference 7Zwjm, but a whole dense set of such possible transitions in the vicinity of the
photon energy %, all with essentially identical matrix elements. This kind of situation occurs
routinely in solids, for example, which have very dense sets of possible transitions, all of
which have rather similar properties in any given small energy range. We presume that this set
is very dense, with a density® g, (@) per unit energy near the photon energy %w. (g, (ha))
is sometimes known as a “joint density of states” since it refers to transitions between states,
not the density of states of only the starting or ending states.) Then adding up all the
probabilities for absorbing transitions, we obtain a total probability of absorption by this set of
transitions of

2
2 . 5 .| sin [(a)jm —a))tO /2}
P (wi| A lva) | (o —o)t /2 9, (hwy, )dho, (7.27)

~_9
tot T 22
h

0, is essentially constant over any small energy range, and the sinc squared term is essentially
quite narrow in @j». Hence we can take g, (@) out of the integral as, approximately,
0, (hw) . Formally changing the variable in the integral to X = (@j» —®)t. /2 therefore gives

2 . 221 sinx |
Ptot :?<l//j|Hpo|l//m> t_gJ (h(()).[|: X :| dX (728)
Using the mathematical result
% (sinx)’
[ [ J dx =7 (7.29)
LA

we obtain

7 The reader may be wondering, if we introduced a time T,, is there a time T;? There is. In the density
matrix approach (Chapter 14), T, is the total lifetime of the state, and it is certainly true that any
processes that cause a transition out of the state (e.g., from an excited state back to a ground state) will
also give a line width to the state. T, is introduced because there are collision processes other than such
major transitions that also disrupt the relative phase of the quantum-mechanical response of the system
and give a width to the transition.

8 See Section 5.3 for a discussion of the use of such densities, and the transition from sums to integrals.
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_2mt,

2
tot _T gJ (ha)) (7-30)

Hool¥n)

v,

Now we see that we have a total probability of making some transition that is proportional to
the time, t,, that the perturbation is turned on. This allows us now to deduce a transition rate,
or rate of absorption of photons,

W =2y [ v )f 0, (0) (7.31)

This result is sometimes known as “Fermi’s Golden Rule” or, more completely, “Fermi’s
Golden Rule No. 2”. It is one of the most useful results of time-dependent perturbation theory,
and forms the basis for calculation of, for example, the optical absorption spectra of solids, or
many scattering processes. Though we have discussed it here in the context of optical
absorption, it applies to any simple harmonic perturbation.

This rule is sometimes also stated using the Dirac J-function (see Section 5.4) in the form

2

Wi :7”‘<V’j|':'po|'//m>z5(EJm_h‘") (7.32)

where W, is the transition rate between the specific states |yn) and |y;). From Eq. (7.32)
one calculates the total transition rate involving all the possible similar transitions in the
neighborhood as

W = [w;,g, (hoy, )dho, (7.33)

which gives the expression (7.31). We will give an explicit example of the use of Fermi’s
Golden Rule in Section 8.10 when we evaluate optical absorption in semiconductors.

Note that Fermi’s Golden Rule is built on the presumption of a periodic perturbation. The
perturbation has to be “on” for many cycles, otherwise the
{sin[(@jm — @), / 2]} /[(@jm — @) /(t, / 2)] function in Eq. (7.27) will not be “sharp” enough to
allow the step from Eq. (7.27) to Eq. (7.28). For perturbations that are short, we can still use
time-dependent perturbation theory directly, as we discussed in Section 7.1 above, but just not
Fermi’s Golden Rule. We similarly must not leave the periodic perturbation on for too long so
that the population of the final state starts to become significant; Fermi’s Golden Rule is a
first-order perturbation result that implicitly presumes only small changes in the expansion
coefficients. In practice, relaxation processes not included in the perturbation theory analysis
may well continually depopulate the final state, and then Fermi’s Golden Rule can still in fact
be used to calculate, e.g., absorption in the steady state with a periodically oscillating
perturbation. A more complete theory would include such relaxation properly, such as the
density matrix approach in Chapter 14.

Problems
7.2.1 An electron is in the second state of a one-dimensional, infinitely deep potential well, with
potential V (Z) =0 for 0<z <L, and infinite otherwise. An oscillating electric field of the form
F(t)=F,[ exp(~iat) +exp(iet) | = 2F, cos(wt)
is applied along the z direction for a large but finite time, leading to a perturbing Hamiltonian during
that time of the form

H o(t)=eF(t)z= H o0 [exp(—ia)t) + exp(ia)t)]
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(1) Consider the first four states of this well, and presume that we are able to tune the frequency
o arbitrarily accurately to any frequency we wish. For each conceivable transition to another
one of those states, say whether that transition is possible or essentially impossible, given
appropriate choice of frequency.

(ii)) What qualitative difference, if any, would it make if the well was of finite depth (though still
considering only the first four states, all of which we presume to be bound in this finite well)?

7.2.2 1 wish to make a quantum-mechanical device that will sense static electric field F based on the
shift of an optical transition energy. I want to make an estimate of the sensitivity of this device by
considering optical transitions in an idealized infinitely deep one-dimensional potential well of
thickness L, , with an electron initially in the first state of that well, and considering the transition
between the first and second states of the well. The electric field to be sensed is presumed to be in the
direction perpendicular to the walls of the potential well, which we will call the z direction.

(i) In what direction should the optical electric field be polarized for this device? Justify your
answer.

(ii) Give an approximate expression for the shift of the transition energy with field, numerically
evaluating any summations. (You may make reasonable simplifying calculational assumptions,
such as retaining only the most important terms in a sum if they are clearly dominant.).

(iii) So that this estimate would correspond approximately to the situation we might encounter in
atoms, we will make the potential well 3 A thick. Presuming that the minimum change of optical
transition energy that can be measured is 0.1 %, calculate the corresponding minimum static
electric field that can be sensed.

(iv) Suggest a method, still using the electron transition energy in a well of this thickness and the
same measurable change in optical transition energy, that would increase the sensitivity of this
device for measuring changes in electric field.

7.2.3 [Note: this problem can be used as a substantial

. . N L Al ;Ga,,As
assignment. It is an exercise in both time-independent / 037507

calculation techniques and in consequences of Fermi’s Golden
Rule.] We wish to make a detector for radiation in the — | GaAs GaAs terahertz
frequency regime. The concept for this detector is first that we
will make a coupled potential well structure using GaAs wells
each of 5 nm thickness, surrounded by Aly3;Gaj;As layers
on either side, and with a barrier of the same

Aly;Gay7As material between the wells, of a thickness Snm W S5nm w to be
determined. Initially there will be electrons in the lowest level of

this structure, and, if we can raise the electrons by optical absorption from the first level into the
second level, we presume that the carriers in the second level are then swept out as photocurrent by a
mechanism not shown. The terahertz electric field is presumed to be polarized in the horizontal
direction in the diagram. We presume that this detector is held at very low temperature so that, to a
sufficient degree of approximation, all the electrons are initially in this lowest state.

[The electrons are free to move in the other two directions, but this does not substantially change the
result of this problem. The nature of optical absorption within the conduction band of semiconductors
is such that, even if the electron does have momentum (and hence kinetic energy) in the other two
directions, that momentum (and hence kinetic energy) is conserved in an optical transition, so the
transition energy is unaffected by that initial momentum in this particular so-called “intersubband”
transition. |

Assume that the electron can be treated like an ordinary electron, but with an effective mass, a mass
that is different in different material layers (see Problem 2.9.3 for appropriate boundary conditions
and a solution of the finite well problem in this case). Note the following parameters: Separation
between Al;3Gag;As and GaAs so-called “zone center” conduction band edges (i.e., the potential
barrier height in this problem) = 0.235 eV. Electron effective masses: 0.067 m, in GaAs; 0.092 m,

in A10_3Ga0_7As.
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(i) Deduce what thickness W of barrier should be chosen if this detector is to work for
approximately 0.5 THz (500 GHz) frequency. [Hint: you may assume the coupling is relatively
weak and that a tight binding approach would be a good choice. Note: you may have to discard a
solution here that goes beyond the validity of the approximate solution method you use.]

(i) We wish to tune this detector by applying a static electric field in the horizontal direction.

(a) Graph how the detected frequency changes with electric field up to a detected frequency of
approximately 1 THz

(b) Graph how the sensitivity of the detector (i.e., the relative size of the photocurrent) changes
as a function of static electric field.

(c) Over what frequency range does this detector have a sensitivity that changes by less than 3
dB (i.e., a factor of two) as it is tuned?

7.3 Refractive index

This Section can be omitted at a first reading, though it is a good exercise in the use of
perturbation theory. Prerequisite: Appendix D, Section D.1 for an introductory discussion of the
polarization P.

First-order time-dependent perturbation theory is sufficient to model all linear optical
processes quantum mechanically. Fermi’s Golden Rule, stated above, shows how absorption
(and stimulated emission) can be modeled. Here we illustrate how another linear optical
process, refractive index, can be calculated quantum mechanically using first-order time-
dependent perturbation theory. This is a different kind of example of time-dependent
perturbation theory because it does not involve a transition rate, as calculated using Fermi’s
Golden Rule. It will also prepare us for the following calculation of nonlinear optical
processes.

The key quantity we need to calculate is the polarization, P. In classical electromagnetism, the
relation between electric field and polarization (here for a simple isotropic medium so that the
polarization and the electric field are in the same direction) for the linear case is

P=¢g,4E (7.34)

where y is the susceptibility and &, is the permittivity of free space. The refractive index,
N, , can be deduced through the relation

n =1+ (7.35)

(at least if the material is transparent (non-absorbing) at the frequencies of interest). Hence, if
we can calculate the proportionality between P and E, we can deduce the refractive index.

We consider for simplicity here a system with a single electron, or in which our interactions
are only with a single electron. We also know classically that the dipole moment, s
associated with moving a single electron through a distance z is, by definition,

g, =—€Z (7.36)
(the minus sign arises because the electron charge is negative). The polarization P is the

dipole moment per unit volume, and so we expect that for the quantum mechanical expectation
value of the polarization we have

(P)= _i/<2> (7.37)
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where V is the volume of the system. Our quantum mechanical task of calculating refractive
index will therefore reduce essentially to calculating (P) .

Since we are working in first-order perturbation theory, we can write the total state of the
system as, approximately,

1) =|@®) +[00) (7.38)

where we note now that we are dealing with the full time-dependent state vectors (kets). Here
|D©) is the unperturbed (time-dependent) state vector, and |®®) is the first-order (time-
dependent) correction that we can write as

lo®) = > al (t)exp(-ia,t)|w,) (7.39)
where
o =E. Ih (7.40)

and |1//n> are the time-independent energy eigenfunctions of the unperturbed system. With
such a state vector, (7.38), the expectation value of the polarization would be

(P)z—\%(‘l’lzl‘P)

= —VE[(q)(") 2| 0®) +{@" 2| 0) + (0] 2| ) + (@ | z|q>(l>)]

(7.41)

The first term —e(®© |z|®©) is just the static dipole moment of the material in its
unperturbed state, and is not of interest to us here,’ so we will not consider it further. The
fourth term, —e(®d®|z|®®) is second order in the perturbation (it would, for example,
correspond to a term proportional to the square of the electric field), and hence, in this first-
order calculation, we drop it also. So, noting that (®®M|z|®©®)=(P© |z|d®M)" (which
follows from the Hermiticity of z as an operator corresponding to a physical observable (the
position)), we have

P) = Re[ 9z|l0")] (7.42)

For the sake of definiteness, we now presume that the system is initially in the eigenstate m,
ie.,

lo©) =exp(—ia)mt)|l//m> (7.43)

Hence, using the expansion (7.39) for |®") , we have, from (7.42),

(W———R{Za )exp (i@,t) (y/m| |y/n>} (7.44)

® Most materials will not have a static polarization in them, but such a phenomenon is not unknown,
being present in, for example, ferroelectric materials.
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We are interested here in the steady-state situation with a continuous oscillating field, and we
take the perturbing Hamiltonian (7.15) as valid for all times.'® We can rewrite Eq. (7.18) as

E . . .
a,(t)= eiho <1//q | z|!//m>exp(|a)qmt)[exp(—la)t)+exp(la)t)] (7.45)
to obtain
n— o)t exp[i(a)m +a))t]
(1) t :_EED exp[l( @y w) :| q 7 46
WO ) T ey |
Substituting into (7.44) gives
2e’E
(P)= ; *Re Y Vol 2|w, ) exp(iogt)
. exp|i(a,, —o)t] . exp|i(,, +o)t]
(0 — @) (O + @)
B E ( t) ( t) (7.47)
e cos(—w cos(w
- ;| ‘/’m n| |:(wnm_w)+(wnm+w)}
26 E, cos a)t 1
Z|l//m|2|‘//n { nm—w)+(wnm+w)}
(where we have used the fact that @y, = —@nn ), and so we have, from (7.34),
7= a2y )f | ——+— (7.48)
g,hV " (O — @) (0 + @)

from which we can deduce the refractive index, n,, if we wish from Eq. (7.35)."" This
therefore completes our calculation from first-order perturbation theory of refractive index.

1" Here we do not have to use the device we used for the Fermi’s Golden Rule derivation of having the
Hamiltonian only be “on” for a finite window because we do not have to take a limit as we did there.
Depending on how the oscillating perturbation is “started”, one does get a different constant of
integration in evaluating a®(t) from a((t), which we have simply ignored here. For example, we
would get a different answer for this constant of integration if we turned on a sin(wt) field at t =0 than
if we turned on the cos(wt) field we examined explicitly for the Fermi’s Golden Rule derivation. This
constant of integration is a term that does not vary with time, and therefore does not concern us for this
calculation of how the polarization changes in time in response to the electric field. It is a physically real
phenomenon, however, reflecting how the starting transient can give rise to additional occupation of
states in the system.

" The dependence of y on the volume V might confuse the reader, who expects that the refractive index
does not depend on the volume of the material — glass has an index of ~ 1.5 regardless of the size of the
piece of glass. In practice, the number of states in the material, and hence the number of elements in the
sum, does usually grow with the volume V, so these effects cancel. The expression does also correctly
deal with the situation of a single atom, for example, for which the dipole moment per unit volume will
indeed shrink with the total volume of the system being considered.



7.4 Nonlinear optical coefficients 197

Note a major difference between the absorption (Fermi’s Golden Rule) and the refractive
index. For absorption, the frequency @ must match the transition frequency @, very closely
for that particular transition to give rise to absorption of photons. For the refractive index, the
contribution of a particular possible transition |l//m> - |l//n> to the susceptibility (and hence the
refractive index) is finite even when the frequencies do not match exactly or even closely; that
contribution to the susceptibility rises steadily as @ rises towards @y, .

We can also see that there is a very close relation between absorption and refractive index. If
we have an absorbing transition at some frequency @y , it contributes to refractive index at all
frequencies. In fact, in this view, refractive index (in a region where the material is transparent)
arises entirely because of the absorption at other frequencies. It is also clear that, if there is a
refractive index different from unity, then there must be absorption at some other frequency or
frequencies.

The fundamental relation between refractive index and absorption is already well known from
classical physics, and is expressed through the so-called Kramers-Kronig relations. The
derivation of those relations, though relatively brief, is entirely mathematical, shedding no
light on the physical mechanism whereby absorption and refractive index are related. With the
quantum mechanical expressions we have here for these two processes, we can attempt to
understand any particular aspect that interests us in the physical relation between the two.

Unlike the case of absorption, calculated using Fermi’s Golden Rule, the expansion
coefficients do not grow steadily in time; there is no net transition rate. In this quantum
mechanical picture of refraction, we find that, even though we are in the transparent region of
the material, there are, however, finite expansion coefficients, in general oscillating in time,
and there are also consequently finite occupation probabilities for all of the states of the
system. It is only because we have such probabilities that the material has a polarization. The
polarization arises because the charges in the material change their physical wavefunctions in
response to the field, mixing in some of the other states of the system in response to this
perturbation. If we examined the expectation value of the energy of the material, we would
also find quite real energy stored in the material as a result. By these kinds of quantum
mechanical analyses, we can understand any specific measurable aspect of the process of
refractive index, and its relation to absorption, without recourse to the somewhat arcane
Kramers-Kronig relations.

7.4 Nonlinear optical coefficients

This Section can be omitted on a first reading, though it is a good example of how quantum
mechanics, which is based entirely on linear algebra, can calculate a non-linear process.
Prerequisite: Section 7.3.

The formalism developed above for calculation of refractive index provides the basis for
calculation of nonlinear optical effects, at least for the case where we are working in spectral
regions where the material is transparent. Nonlinear optical effects are quite common
phenomena now that we have relatively high powers and optical intensities routinely available
from lasers.

Nonlinear optical effects are quite important in the engineering of long-distance fiber optic
communication systems, for example. Nonlinear refraction and related effects such as four-
wave mixing are important mechanisms for degrading the transmission of optical pulses and
causing interaction between data streams at different wavelengths. Nonlinear refraction can
also cause so-called “soliton” propagation in which a short pulse can propagate long distances
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without degradation because in that case the nonlinear refractive effects can counteract the
linear dispersion that otherwise would progressively take the pulse apart. Raman amplification,
another nonlinear optical effect, is a potentially useful method of overcoming loss in optical
fibers. Many other nonlinear optical phenomena exist and are exploited, including electric-
field dependence of refractive index used in some optical modulators, and a broad variety of
effects that generate new optical frequencies by combining existing ones, such as second and
third harmonic generations, difference frequency mixing, and optical parametric oscillators.

Nonlinear optical effects also provide an excellent example of higher order time-dependent
perturbation theory in action. In particular, they show how the perturbation approach helps
generate and classify different processes. Different effects are associated with different orders
of perturbation. Second-order time-dependent perturbation theory leads, for example, to
second harmonic generation and the linear electro-optic effect (a linear variation of refractive
index with applied static electric field, known also as the Pockels effect), and to three-wave
mixing phenomena where a new frequency emerges as the sum or difference of the other two
frequencies. Third-order theory leads to intensity dependent refractive index and refractive
index changes proportional to the square of the static electric field (both known as “Kerr
effect” nonlinearities), as well as third harmonic generation and four-wave mixing. There are
many other variants and combinations of such effects.

Nearly all nonlinear optical processes that are used for practical purposes are described by
second and third-order perturbation theory. Higher order processes are known and can be
calculated by higher order perturbation theory, though they are usually quite weak by
comparison. The strongest effects are generally the second-order ones, though to see those, as
will become apparent below, the material needs to be asymmetric in a particular way. Isotropic
materials or those with a “center of symmetry”, such as glass and non-polar materials such as
silicon, therefore do not show second-order phenomena,12 and their lowest order nonlinear
effects are therefore third-order phenomena.

We will not discuss here all the details of nonlinear optics, which would be beyond the scope
of this work, deferring to other excellent texts.'> We will, for example, not deal here with the
various macroscopic electromagnetic propagation effects that arise formally once we substitute
the calculated polarization into Maxwell’s equations (or the wave equation that results from
those), though such effects (e.g., phase matching) are, however, very important for calculating
the final electromagnetic waves that result from microscopic nonlinear optical processes.

Formalism for nonlinear optical coefficients

In most cases, nonlinear optical phenomena are weak effects, and it can therefore be useful to
look upon them in terms of a power series expansion. We are interested in the response of the
material, characterized through the polarization P(t) , which we expand as a power series in
the electric field E(t), i.e.,

PO _ 0B (1) + 2282 (1) + 18 (1) ... (7.49)

12 Such materials can, however, show second-order effects at their surfaces, because the symmetry of the
bulk material is broken there.

13 See, e.g., R. W. Boyd, Nonlinear Optics (Academic Press, New York, 1992); Y. R. Shen, The
Principles of Nonlinear Optics (Wiley, New York, 1984)
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In general both the electric field E and the polarization P are vectors. Also in general, since
the polarization and the electric field may well not be in the same direction,'* the susceptibility
coefficients y, y@ = ¥O etc., are tensors. We will neglect such anisotropic effects for
simplicity here, and treat the electric field and polarization as always being in the same
direction, in which case we can treat them as scalars. In Eq.(7.49), y® is simply the linear
susceptibility calculated above, as in Eq. (7.48). y® and y® are respectively the second and
third-order nonlinear susceptibilities. In handling higher order perturbations, it is particularly
important to be very systematic in notations because the full expressions can become quite
complicated. Many of the nonlinear optical effects involve multiple different frequencies in the
fields. For example, with two frequency components, at (angular) frequencies @, and @,, the
total field would be

E(t)=2E,, cos(mt+3,)+2E,, cos(w,t +35,)
=E, {exp[—i(a)lt+é'l)]+exp[i(a)lt—l-ﬁl)]} (7.50)
+E,, {exp[—i (a)zt +6, )} + exp[i (a)zt +0, )]}

where now we have formally allowed the two fields also to have different phase angles §; and
0, . Another way of writing (7.50) is

E(t)=Y E(w,)exp(-iat) (7.51)

where
E(aw,)=E, exp(-id,) (7.52)

and the sum now is understood to be not just over the frequencies @, and @, , but also to
include the “negative” frequencies, —@ and —@, .15 Hence there are four terms in the sum
(7.51) for this two frequency case, corresponding to the four terms in the second line of Eq.
(7.50). Note also that

E(-w,)=E" (o) (7.53)
as can be deduced from Eq. (7.52). This property is required for the actual electric field to be
real. This sum over positive and negative frequencies simplifies the algebra that follows. We

can, of course, keep the form (7.51) as we extend to more frequency components in the electric
field.

Formal calculation of perturbative corrections

We will consider here nonlinearities up to third order in the electric field (i.e., up to ), and
as a result will consider up to third-order time-dependent perturbation corrections. We proceed

'* We could imagine, for example, that we had an electron on a spring along the x direction that was not
free to move in any other direction. If we applied an electric field in the X direction, then the electron
would be displaced in the x direction, giving a polarization in the X direction, but even if the field were
applied in a somewhat different direction, the electron would still only move in the x direction. Hence the
polarization and the electric field in this case would not be in the same direction, and the susceptibility
would formally have to be described as a tensor.

' Note the choice to use exp(—ia)"t) rather than exp(ia)ﬂt) in Eq. (7.51) is entirely arbitrary, but this
particular choice is a more typical notation in nonlinear optics texts.
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as before for time-dependent perturbation theory, now using the expression (7.51) for the
electric field, and hence having a perturbing Hamiltonian

H, (t)=eE(t z—ezZE Jexp(—imyt) (7.54)

Presuming as before that the system starts in some specific state m, the time derivative of the
first-order perturbation correction to the wavefunction then becomes, as in Eq. (7.18) (or (7.45)

)
a0 (¢ ﬂquE Jexp|i(@y, -, )t] (7.55)

where we have also introduced the more common notation of the electric dipole moment
between states

AL (7.56)

Integrating over time, assuming as before that we can simply neglect any constant of
integration because we are only considering oscillating effects, we have

E
all (1) :%Z(’ij—fij))exp[i(a)qm ~o,)t] (7.57)
s om s

We may then use the relation (7.13) that allows us to calculate subsequent levels of
perturbative correction from the preceding one to calculate the second-order correction. Using
(7.13), we have

12 Ih za fquzE exp[ (wiq —a)u)t]
= Zzﬂ’q ( MZ;:E)( )exp[i(a}jm - o, —a)u)tJ

q su Oy —

(7.58)

where we have noted that
0.+t =0 (7.59)
(This is simply a statement that the energy separation between level j and m is equal to the

energy separation between level q and level m plus the energy separation between level g and
level j.) Hence

a” (1) T ZZ tE () k() )exp[i(“’jm 0o, )t] (7.60)

P su( — o, a))(a)qm—a)S

Similarly,

=0 Za ykJZE exp[l(cokJ a))}
Zzﬂkj 'qu ( ),uqu( )

iq (60 — a))(a) —a)) exp[ wkm “ T w)t]
s,u,v u qm s

(7.61)

and so
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() (t :L ﬂkjE(a)V)ﬂqu(wU)'uqu(ws)
o ( ) " %:g":"(wkm_ws_wu_wv)(wjm_ws_wu)(a)qm_a)s) (7.62)
xexp[i(a)km -0, -0, —a)v)t}

Note in these sums, j and  are indices going over all possible states of the system, and s, U,
and Vv are indices going over all the frequencies of electric fields, including both their positive
and negative versions.

Formal calculation of linear and nonlinear susceptibilities

In general, including all possible terms in the polarization up to third order in the perturbation,
we now formally write the expectation value of the polarization as being the observable
quantity, using u = —€z as the dipole moment (operator),

{P(t))= \%(LI’|,u| ¥) = \%<q>(°) + o) +o? 1+ o

#‘¢<0)+®<l>+®(z>+®(a)>

= (P (1)) (P (1)) + (P (1)) + (P (1)) e
where
(p) = Vl(cp(‘” |l @) (7.64)
is the static polarization of the material,

(P (1)) = Vl((qa“’) |l @)+ (@0 | @) (7.65)
is the linear polarization (first-order correction to the polarization), giving linear refractive
index

(P (1)) = Vl((cb“” |l o) (@ ] 1 @) + (0" | ul ) (7.66)

is the second-order polarization, giving rise to phenomena such as second harmonic
generation, and sum and difference frequency mixing, and

(P(0) = (0 )08 9} 0 ] + (0 ol ) (67

is the third-order polarization, giving rise to phenomena such as third harmonic generation,
nonlinear refractive index, and four-wave mixing.

Now we will formally evaluate the different linear and nonlinear susceptibilities associated
with these various phenomena.

Linear susceptibility

We have already calculated this, but we briefly repeat the result in the present notation as used
in nonlinear optics. Since by choice |®©)= exp(—ia)mt)|t//m> , and using the standard
expansion notation (7.39) for |®") , we have, from the definition (7.64) above
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Lttt oo o[ 0, 0.}

Pr0)=y 22
Vh q s +ME* (a)s)exp(ia)qmt)exp[—i(a)qm—a)s)t:|

Oy — W

:Viézzslququ{ E(@) exp(—iwst)+ﬂexp(ia)st)} (7.68)

1)
Oy — W Oy, — D
Now we make a formal change, trivial for this case, but more useful in the higher order
susceptibilities. We note that, since we are summing over positive and negative values of
we can change @s to —@, in any terms we wish without changing the final result for the sum.
Hence we can write

<P(1) (t)> _ \%%;;qu#qm {w 1_ P }E(a)s )exp(—ia)st) (7.69)

qm 2N a)qm + (2N

We can if we wish now write

M: Z;((l)(a)s;a)s)E(a)s)exp(—ia)st) (7.70)

&, S

where by y® (a)s;a)s) we mean the (linear) susceptibility that gives rise to a polarization at
frequency s in response to a field at frequency ;. Of course, this notation is trivial for the
case of linear polarization, since there is no question that the frequency of the polarization will
be the same as that of the incident field, but this will not necessarily be the case for higher
order polarizations. From Eqgs. (7.69) and (7.70), we must have the definition

I 1
2 (@:0,) = 3 gty L} —+ } (7.71)
q mq

@, a)mq + o

We can see directly from this, incidentally, that
Z(]) (ws;ws)zl(l) (_a)s;_ws) (772)

so the latter is redundant here (an example of one of the many symmetries inherent in this
approach to susceptibilities). This expression allows us to calculate the linear refractive index.

Second-order susceptibility
In the second-order case, we use (7.66) above. For the first pair of terms, we have

\%((d)(o) |,u|d)(2)>+ <‘1)(2) |ﬂ|(b(°)>) = \%h_izzﬂmj:”jqﬂqm

j.q s.u

(7.73)

E(o, )E(@,)exp[-i(a, +o,)t] . E'(e,)E" (o2, )exp[ (e, + o, )t ]
(a)jm_a)u _ws)(a)qm_ws) (a)jm_a)u_a)s)(wqm_a)s)
Making the formal substitution of —@, for @, and —@, for @, , just as we did for the linear

case above, makes no difference to the result of the sum because it is over positive and
negative frequencies anyway, and so we obtain
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1
o) 0 ) = L LSS g e )

e (7.74)
X ! + ! exp[—i (o, +a)s)t}
(a)jm -, —a)s)(a)qm —a)s) (a)jm + o, +a)s)(a)qm +a)s)
Now examining the third term in (7.65) above, we similarly have
Lip0] 4le0
v (@] ul0™)
E'(w,)E(w,) i
=y hz %;’,um,ﬂ,qﬂqm (o —o)(, _ws)exp[l(a)u ,)t] (7.75)

E(w, )E(@,)
V#ZZ%%%

B Lo -] T

where we made the formal substitution of —@, for @, with the same justification as before.

Hence, now having all terms arranged with the same formal time dependence of
exp[—i (4 +a)s)tJ , We can write

(P (1) =5 27 (@, + @30,0,)E(@, )E(@,) (1.76)

(7.77)
Second-order nonlinear optical phenomena

With this first non-trivial case, we see the usefulness of the notation. For example, if we
consider @, = w, , we see that this (%) (Za)s;a)s,a)s) gives the strength of the second harmonic
generation process with input frequency @, . We can see, incidentally, that this effect would be
relatively quite strong if we had an energy level j such that wj» was close to 2w, and
especially if there was another energy level q such that o was close to @, because then we
would have two strong resonant denominators.

If we consider that our original electric field has two frequency components, @, and @s, we
can easily see that ;((2)(% +a)5;a)u,a)s) directly gives the strength of the sum frequency
generation process. With such fields, we must also remember that the negative of the actual
frequency should be considered as well since it is included in the sums over frequencies, and
so we would also have a process whose strength was given by (2 (a).J Ws; Oy ,— ) which
is one of the difference frequency generation terms. We can proceed with any combination of
input frequencies to calculate the strengths of the processes giving rise to all of the new
generated frequencies given by this second-order perturbation correction, and the analysis of
such effects is a core part of nonlinear optics.
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Note, incidentally, that if all the states in a system have definite parity (in the single direction
we are considering), there will be exactly no second-order nonlinear optical effects. We can
see this by looking at the three matrix elements. If the states have definite parity, then for ugm
to be finite, states g and m must have opposite parity, and for uj to be finite, states j and
must have opposite parity, which then means that states j and m must have the same parity, and
hence um must be zero. Hence the product of these three matrix elements is always zero if all
the states have definite parity. Hence a certain asymmetry is required in the material if the
second-order effects are to be finite.

Third-order susceptibility

The approach for third-order susceptibility is similar, and we will not repeat the algebra here.
We merely quote the result, which is left as an exercise for the reader. We can write

<P(3) (t)> = z 79 (0, + 0, +o;0,,0,,0,)E(0,)E(0,))E(a,)
(7.78)
xexp[ —i(@, + o, +o,)t]
in which case we would have

1

3
2 )(a)v+a)u +0;0,,0,,0,) =

1

vV,

Z /umk :ukj /ujq/uqm

1
+

(a)km -0, -, _a)s)(a)jm -, _a)s)(a)qm _a)s)

(O +a)v)(a)jm -, —605)(

1
+

@y,

—o,)

(O +a)v)(a)jm +, +a)u)(

+

1

WOy

_a,s)

(O +a)v)(a)jm +o, +a)u)(a)qm +o,+ 0, +605)

(7.79)

We can see here, similarly to the second-order case, how we can calculate the strength of
various third-order processes. For example, setting @, = o, = @, , as would be particularly
relevant if there was only one input frequency, would give the strength of the process for third
harmonic generation.

Problems

7.4.1 Consider a quantum mechanical system that has effectively only two levels of interest, levels 1 and
2, separated by some energy E,;. We presume that each of the levels has a spatial wavefunction with
a definite parity. The system is subject to an oscillating electric field of the form

E(t) =E,[ exp(~iat)+ exp(iet) | = 2E, cos(at)
leading to a perturbing Hamiltonian, in the electric dipole approximation, of
H o(t)=eE(t)z= eEDZ[exp(—ia)t) + exp(iwt)]
We presume that 7iw # E;; [so we avoid steady absorption from the radiation field, and may consider

the “steady state” case as in the consideration of linear susceptibility or refractive index], and we take
the system to be completely in the lower state in the absence of any perturbation.

(i) Show that the second-order perturbation of the upper state (state 2) is zero (or at least constant in
time, and hence not of interest here) (i.e., a§2> =0 or at least is constant)
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(i) What can you say about the parities of the two states if there is to be any response at all to the
perturbing electric field?

7.4.2 [Note: this problem can be used as a substantial assignment.] Consider a quantum mechanical
system in which a single electron has only three levels of interest, levels 1, 2, and 3, with energies
E,, E,, and E; and spatial wavefunctions |y,), |.), and |y;) respectively. The system is initially
in its lowest level (level 1). [We could imagine this system is, for example, a molecule of some
kind.]. The system is illuminated by a light beam of angular frequency @, polarized in the z direction,
which we can write as

E(t) =E,[ exp(—iat)+exp(iet) | = 2E, cos(wt)
and which perturbs the molecule through the electric dipole interaction.

(i) Derive an expression for the contributions to the expectation value of the dipole moment, i,
that are second-order in this perturbation. At least for this derivation, you may presume that all
the matrix elements between the spatial parts of the wavefunctions,

Z; :<‘/Ii‘z‘l//j>
are finite. [Note: a term of the form (4" |z|4") would give a second-order contribution, as
would a term (4 |z|¢”), whereas a term (¢"|z|4>) would be a third-order contribution.]
[This derivation may take quite a lot of algebra, though it is straightforward, and does lead to a
relatively simple expression in the end.]

(i1) You should find in your result to part (i) above a term or set of terms corresponding to second
harmonic generation, i.e., a term or terms oc cos(Za)t) . You should also have another term or set
of terms that behaves differently in time. This second effect is sometimes known as optical
rectification. What is the physical meaning of this second term, i.e., if we shine such a light
beam at this “molecule”, what is the physical consequence that results from this term?

(iii) What will be the consequence for these second-order effects if the states all have definite parity?

(iv) Calculate the amplitudes of the second harmonic and optical rectification electric fields
generated under the following set of conditions. Take z; =1A for all of the z; except we
choose z;=0 (i.e.,, no static dipole in the lowest state). E;—E =1 eV, E;—E =19¢eV,
ho=0.8eV, presume that there are 10" cm™ of these “molecules” per unit volume, and
consider an optical intensity | of the field E(t) of 10" W/m?. [Such an intensity corresponds to
that of a 1 pJ, 1 ps long light pulse focused to a 10 x 10 micron spot, a situation easily achieved
in the laboratory.] [Note that the relation between optical intensity (i.e., power per unit area) |
and the amplitude E, is

_E

z

where Z, =377Q . Note also that the polarization P is the same as the dipole moment per unit
volume, and the magnitude of a polarization can always be viewed in terms of an equivalent pair
of equal and opposite surface charge densities o , unit distance apart, of magnitude o =P . The
electric field from such charge densities, assuming no background dielectric constant (i.e.,
& =1) is of magnitude Edip =0/&,, and so the electric field from a dipole moment per unit
volume of magnitude P is Edip =P/&, . This field, incidentally, is negative in direction if the
dipole moment is positive in direction (positive dipole moment corresponds to positive charge
on the right, negative on the left, which corresponds to a field pointing away from the positive
charge).]

(v) Repeat the calculations of part (iv) but for %@ =0.98 eV. [Note: you should only now need to
calculate a few terms since these will dominate over all of the others.]

0

7.4.3 [Note: this problem can be used as a substantial assignment.] Consider a quantum mechanical
system in which a single electron has only four states of interest, states 1, 2, 3, and 4, with energies
E,, E,, E;3, and E, (all distinct) and spatial wavefunctions ‘1,//1> , y/2> R 1//3> , and ‘1,//4> respectively,
all with definite parities. The system is initially in its lowest level (level 1). [We could imagine this
system is, for example, a molecule of some kind.]. The system is illuminated by a light beam of
angular frequency o, polarized in the z direction, which we can write as
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E(t)=E, [exp(—iwt) + exp(iwt)] = 2E, cos(at)
and which perturbs the molecule through the electric dipole interaction, with perturbing Hamiltonian
H, =H,,[exp(-iet)+ exp(iot) ]

where

H,, =€z
We will presume that i@ and its multiples (e.g., 27w, 3hw ) do not coincide with any of the energy
differences between the states 1, 2, 3, and 4. Throughout this problem, use a notation where
on=Ei/h and (E, —Eq)/h =, and Hpg = (pp |Hpo|wa) -
We are interested here in calculating the lowest order nonlinear refractive index contribution from
such systems, a contribution that corresponds to a dipole uu, (strictly, its expectation value) that is
third order in the field E, (i.e., third order overall in the perturbation), and is at frequency @ .

As we do this, we will be considering terms up to the third order in the time-dependent perturbation
expansion of the wavefunction

where [ W) = i‘,lagn)(t) exp(—imgt)| ;) -
o

For simplicity in handling this problem, we choose E; =0 (which we can do arbitrarily because this
is simply an energy origin for the problem). Given this choice, and our choice of state 1 as the
starting state, we have [¥©) =|y,) ,ie., af” =1, a” =al” =a{” =0.

(i) Show that the expression for the first-order expansion coefficients a(j')(t) is

Hy exp[i(a)jl —a))tJ . exp[i(a)j1 + a))t}
n 1)

M
a' ()=
W@ o, +o

[Note: in integrating over time to get the required result, you may neglect the formal constant of
integration as we are only interested in the time varying parts here.]

(ii)) Now show that the expression for the second-order expansion coefficients a,(nz)(t) is
@ RN
a, (t) :?ZHWH“
=

X{ exp[ i (@, —20)t ] . exp(iwpt) . expliw,t] . exp[i(a)m1+2a))t]}

(a)jl —a))(a)ml -2w) (a)jl —a))a)ml (a)jl + a))a)ml (a)jl + a))(a)ml +20)

noting that successive orders in the perturbation calculation of the state can be calculated from
the previous one. (Note that @mj + ®@j1 = @m , which may keep the algebra slightly simpler.) [For
simplicity here and below, you may ignore the formal problem that @, =0.]

(iil) Now similarly show that the expression for the third-order expansion coefficients aff) (t) is

i(a)q1 —3a))tJ . exp[i(a)q1 —a))tJ
(wjl —a))(wml - 2w)(wa —3w) (wjl —a))(wml —2a))(a)ql —w)
exp[i(a)CIl - a))tJ ) exp[i(a)CIl + a))tJ . exp[i(a)CIl —a))tJ ) exp[i( o +a))tJ
(wil —a))a)ml(wa —a)) (a)jl —w)a)ml(wa +w) (wjl +a))a)ml(wq1 —a)) (a)jl +co)wm1(a)q1 +a))
exp[i(a)CIl +a))tJ exp[i(a)CIl +3a))tJ
(w” + a))(a)ml + 2w)(wa + w) (w“ + w)(wml +2w)(wa +3a))

+
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(iv) Now derive an expression for the contributions to the expectation value of the dipole moment,

™)

tap =€(¥|z|'V), that are third order in this perturbation, and that are oscillating at frequencies
o or — . [Note: a term of the form <‘1—’(1)‘ z“{-’(l) would give a second-order contribution, as
would a term <‘P(°)‘ Z“I’(z)> , whereas a term <‘P(‘) Z“P(z)> or a term <‘I’(°) ‘ ZJ ‘I‘(j)> would be a
third-order contribution. Note also that <‘P(”) ‘ Z“I’(’)> = <‘I’(’)‘ Z‘ ”)> , and that
e<l//p ‘ Z‘l/lq> =Hpq/E,. Note too that, because by choice the states have definite parities, then
Hpp =0 for any p, which should help eliminate some terms in the sums here.]
Now we will restrict the problem to one where the parities of states 1 and 4 are the same and the
parities of states 2 and 3 are the same as each other but opposite to those of states 1 and 4. For
simplicity, we will also choose all the non-zero perturbation matrix elements to be equal. Hence
we have

Hy=H,=H;=H,=H,=H;=0; H,=H;=H,, =H;, =H, =€ 7,
where Hp and z, are constants characteristic of the specific system. We will also presume that
ay, s very close (but not equal to) 2@ , though we will also assume that @,; and @, are not
very close to @ (or —@). As a result, we may retain only the terms for which there is a term
(a)41 - 20)) or its equivalent in the denominator. [Ignore again the formal problem that a; =0 .
In a full analysis, these terms cancel out, avoiding the apparent singularity here.]

(a) Write out the expression for puip with these assumptions.

(b) Choose fim, = 3 eV, hwy = 3.5 eV, haoy = 505 eV, ho= 25 eV, and z,= 1 A.
Presume that there are 10?2 cm™ of such “molecules” per unit volume. Calculate the nonlinear
refraction coefficient n,, which is the change of refractive index per unit optical intensity.
[Note that (i) the polarization P is the same as the dipole moment per unit volume, (ii)
P =g, 4E, where &, = 8.85 x 10" F/m, and we will assume for simplicity here that the only
contribution to P is the nonlinear contribution we are calculating (there is also a linear
contribution which we could also calculate, though we will neglect it for simplicity here), (iii)
the relative dielectric constant & =1+ y, (iv) the refractive index n= \/z , (v) the relation
between optical intensity (i.e., power per unit area) | and the amplitude E, is (strictly, in
free space, but we will use this relation here for simplicity) | =2E3/Z, where Z, =377Q ]

(c) Suppose we imagine that this model approximately describes nonlinear refractive index in a
hypothetical optical fiber intended for nonlinear optical switching applications. In such a
fiber, the cross-sectional size of the optical mode is ~ 10 x 10 pm?, and launched power into
the fiber could be ~ 10 mW. Nonlinear refractive effects can have quite substantial
consequences if they lead to changes in optical path length in the total length | of the fiber is
of the order of half a wavelength. The change in index will be ~ n,l , and the resulting
change in optical path length will be ~ n,ll . Considering a photon energy of 2.5 eV (as
above) with 10 mW power, what length | of fiber would lead to half a wavelength of optical
path length change from this nonlinear effect?

(d) Repeat the calculation of part (b) changing %@;, to 2.0 eV. Explain your result.

7.5 Summary of Concepts

Time-dependent perturbation theory

In time-dependent perturbation theory, the Hamiltonian is presumed to be the sum of a time-
independent Hamiltonian, H,, whose eigenenergies E, and eigenfunctions |(//n> are
presumed known, and a time-dependent perturbation, Hp (t) . The perturbed wavefunction is
presumed to be written as

|¥)=>"a,(t)exp(—E,t/h)|w,) (7.4)

The time derivatives of the first-order corrections to the expansion coefficients are shown to be
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) (t) = D" exp(iogt) (v [ H, (D) (7.10)
where g =(Eq—En)/7.

Higher order perturbation corrections to the state are derived from the immediately preceding
correction using

(p+ 1 ; i
4 (1) =, Za exp(iengt) (e H, (v .13

Fermi’s Golden Rule

For an oscillating perturbation of the form
I:|p(t)= I-A|po [exp(—ia)t)+exp(ia)t):| (7.15)

the transition rate from a state |wn) to a state |y/;) can be written as

"5(E,y ~ho) (7.32)

Win :Z%KWJ' | |:|po |l//m>

or, equivalently, when there is a density of similar transitions per unit transition energy of
9, (ha)) , the total transition rate per unit transition energy is given as

2

W ==y [y lwa)|* g, (70) (7.31)




Chapter 8

Quantum mechanics in crystalline
materials

Prerequisites: Chapters 2 — 7, including the discussion of periodic boundary conditions in Section
5.4

One of the most important practical applications of quantum mechanics is the understanding
and engineering of crystalline materials. Of course, the full understanding of crystalline
materials is a major part of solid state physics, and merits a much longer discussion than we
will give here. We will, however, try to introduce some of the most basic quantum mechanical
principles and simplifications in crystalline materials. This will also allow us to perform many
quantum mechanical calculations of important processes in semiconductors.

8.1 Crystals

2 1

—_—
;

Fig. 8.1. Illustration of a simple rectangular lattice in two dimensions.

A crystal is a material whose measurable properties are periodic in space. We can think about
it using the idea of a “unit cell”. If we think of the unit cell as a “block” or “brick”, then a
definition of a crystal structure is one that can fill all space by the regular stacking of these unit
cells. If we imagine that we marked a black spot on the same position of the surface of each
block, these spots or “points” would form a crystal lattice. We can if we wish define a set of
vectors, R, , which we will call lattice vectors. The set of lattice vectors consists of all of the
vectors that link points on this lattice, i.e.,
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R, =na, +n,a, +n;a, 8.1)

Here a,, a,, and a; are the three linearly independent vectors' that take us from a given point
in one unit cell to the equivalent point in the adjacent unit cell. In a simple cubic lattice, these
three vectors will lie along the X, y, and z directions. The numbers n;, n,, and n; range
through all (positive and negative) integer values. Fig. 8.1 illustrates a simple rectangular
lattice in two dimensions. In three dimensions, there are only 14 distinct kinds of mathematical
lattices of points (Bravais lattices) that can be made that will fill all space by the stacking of
identical blocks®.

Fig. 8.2. Illustration of a zinc-blende lattice, i.e., two interlocking face centered cubic lattices.
The larger atoms are clearly on a face-centered cubic lattice. The smaller atoms are also on a
face-centered cubic lattice that is displaced with respect to the other lattice, though this second
lattice structure may be less obvious from the illustration. The diamond lattice has the same
structure, but then both sets of atoms are of the same type. Each atom of one type is connected by
bond lines to four other atoms of the other type, and those four atoms lie on the corners of a
regular tetrahedron (a four-sided structure with equal (triangular) sides). The bond lines are
shown, as well as the edges of a cube (these edges are not bond lines).

We will not concern ourselves here with the details of the various crystal lattices and their
properties, and will for simplicity imagine that we are dealing with a cubic kind of lattice. A
large fraction of the semiconductor materials of practical interest, such as silicon, germanium,
and most of the III-V (e.g., GaAs) and II-VI (e.g., ZnSe) materials have a specific form of
cubic lattice. This lattice is based on two interlocking face-centered cubic lattices. A face-
centered cubic lattice is one with an atom on each corner of a cube plus one in the middle of
each face. In the case of the III-V and II-VI materials of this type, which are known as zinc-
blende structure materials, the group III (or II) atoms lie on one such face-centered cubic
lattice, and the group V (or VI) lie on the interlocking face-centered cubic lattice. In the case of
the group IV materials (e.g., silicon, germanium), both interlocking lattices of course have the
same atoms on them, and this structure is called the diamond lattice. The basic quantum

' Linear independence means that none of these vectors can be expressed as any kind of linear
combination of the other vectors. In practice this means that we do not have all three vectors in the same
plane.

2 A group of atoms can be associated with each mathematical lattice point. That group can have its own
symmetry properties, so there are more possible crystals than there are Bravais lattices.
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mechanical properties we discuss here can, however, be generalized to all the Bravais lattices.
The zinc-blende lattice is illustrated in Fig. 8.2.

8.2 One electron approximation

A crystal may well have a very large number of atoms or unit cells in it, e.g., 10*. How can we
start to deal with such a complex system? One key approximation is to presume that any given
electron sees a potential Vp (r) from all the other nuclei and electrons that is periodic with the
same periodicity as the crystal lattice. Because of that presumed periodicity, we have

Vo (r+R, )=V, (r) (8.2)

In this potential the charged nuclei are presumed to be fixed, and the charge distribution from
all the other electrons is also presumed to be effectively fixed, giving this net periodic
potential.

It is important to recognize that this is an approximation. In truth, any given electron does not
quite see a periodic potential from all the other nuclei and electrons because it interacts with
them, pulling them slightly out of this hypothetical periodic structure. We treat those
interactions, when we have to, as perturbations, however, so we start by pretending we can use
this perfectly periodic potential to model the potential any one electron sees in this the
crystalline material.

If we do have to examine the interactions between the electron states and the nuclei that
perturb this perfectly crystalline world, we describe nuclear motions through the modes of
vibration of periodic collections of masses connected by the “springs” of chemical bonds.
These modes are called phonon modes. Just as photons are the quanta associated with
electromagnetic modes, so phonons are the quanta associated with these mechanical modes.
The interaction of the electrons with the nuclei is therefore described through electron-phonon
interactions, for example. Any given electron state will also in reality interact with other
electrons, and we can describe that through various electron-electron interactions such as
electron-electron scattering. There are also many other interactions between particles that we
can consider in solid state physics. These interactions are very often handled as perturbations,
starting with the one-electron model results as the “unperturbed” solutions.

In this one-electron approximation, we presume, then, that we can write an effective,
approximate Schrodinger equation for the one electron in which we are interested, e.g.,
neglecting magnetic effects for simplicity.

hZ
2m

e

Vi (r)+V, (r)w (r) = Ey(r) (8.3)

8.3 Bloch theorem

The Bloch theorem is a very important simplification for crystalline structures. It essentially
enables us to separate the problem into two parts, one that is the same in every unit cell, and
one that describes global behavior. For simplicity, we will prove this theorem in one direction
and then generalize to three dimensions. We know that the crystal is periodic, having the same
potential at X+sa as it has at X (where S is an integer). Any observable quantity must also
have the same periodicity because the crystal must look the same in every unit cell. For
example charge density p o |://|2 must be periodic in the same way. Hence



212

Chapter 8 Quantum mechanics in crystalline materials

v (0 =[w (x+a) (8.4)
which means
w(x)=Cy(x+a) (8.5)

where C is a complex number of unit amplitude. Note that there is no requirement that the
wavefunction itself be periodic with the crystal periodicity since it is not apparently an
observable or measurable quantity.

To proceed further, we need to introduce boundary conditions on the wavefunction. As is often
the case, the boundary conditions lead to the quantization of the problem. The introduction of
boundary conditions for the crystal is a tricky problem. We have mathematically idealized the
problem by presuming that the crystal is infinite, so we could get a simple statement of
periodicity, such as Eq.(8.2) with the simple definition of the lattice vectors, Eq. (8.1). But in
practice, we know all crystals are actually finite. How can we introduce the concept of the
finiteness of the crystal, and corresponding finite countings of states, without having to
abandon our simple description in terms of infinite periodicity?

In one dimension, we could argue as follows. Suppose that we had a very long chain of
N equally spaced atoms, and that we joined the two ends of the chain together. Interpreting
distance X as the distance along this loop, we could have the simple kind of definition of
periodicity we have used above, for example, Vp (Xx+ma)=Vp (X), where m is any integer
(even much larger than N ). We could argue that, if this chain is very long, we do not expect
that its internal properties will be substantially different from an infinitely long chain, and so
this finite system will be a good model. Such a loop introduces a boundary condition, however.
We do expect that the wavefunction is a single-valued function (otherwise how could we
differentiate it, evaluate its squared modulus, etc.), so when we go round the loop we must get
back to where we started, i.e., explicitly

y(X) =y (x+Na) (8.6)

This is known as a periodic boundary condition® (also known as a Born-von Karman boundary
condition). Combining this with our condition (8.5), we have

w(x) =y (x+Na)=C"y(x) (8.7)
)
ch =1 (8.8)
and so C is one of the N roots of unity, i.e.,
C:exp(27ris/N);S:0,1,2,...N—1 (8.9)
(We could also choose
C= exp(Zﬂi [%+ mD; $s=0,1,2,...N -1, m any integer (8.10)

so there is some arbitrariness here, though this will not matter in the end.)

3 See the discussion of periodic boundary conditions in Section 5.4.
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Substituting C from (8.9) in (8.7),

!//(X+a):exp(ika)l//(x) (8.11)
where we could choose
k=228 520,12, N-1 (8.12)
Na
Note we could also choose
k=2ZS 2M 01,2, N—1 (8.13)
Na a
Conventionally, we choose
k=2 ho0, 41, +2,.£N/2 (8.14)
Na

which still gives essentially N states*, but now symmetrically disposed about k = 0. Note the
allowed k values are evenly spaced by 27z /L where L = Na is the length of the crystal in this
dimension’, regardless of the detailed form of the periodic potential. Hence, one form of the
Bloch theorem in one dimension is the statement that the wavefunction in a crystal can be
written in the form Eq. (8.11), subject to the condition (8.14) on the allowed k values.

There is another more common, and often more useful, way to state the Bloch theorem. We
multiply Eq. (8.11) by exp[—ik(x+a)] to obtain

l//(X+a)exp(—ik(X+a))ZI/I(X)eXp(—ikX) (8.15)
Hence if we define a function
u(x) =y (x)exp(—ikx) (8.16)
we can restate Eq. (8.15) as
u(x+a)=u(x) (8.17)

and hence u (x) is periodic with the lattice periodicity. (By obvious extension of Eq. (8.17),
we conclude u(x+2a)=u(x+a)=u(x), and so on for every unit cell in our crystal.) Hence,
we can rewrite the Bloch theorem equation (8.11) in the alternative form

w(X)=u(x)exp(ikx) (8.18)

where u(x) is periodic with the lattice periodicity. (Note that the two forms (8.11) and (8.18)
are entirely equivalent — we have just proved that (8.11) implies (8.18), and it is trivial to show
by mere substitution that (8.18) implies (8.11).)

4 Strictly, of course, Eq. (8.14) gives us N + 1 states, and we should actually take off one or other of the
end points (i.e., +N/2 or —N/2) to get a rigorous result, but despite that, the result is commonly written as
in Eq. (8.14). If that counting really matters, as it might in some short chain, then we should be rigorous
here, removing one of these two from the counting.

> Note that we now take the length of the crystal to be the length of the “loop” presumed in the periodic
boundary conditions.
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Fig. 8.3 illustrates the concept of the Bloch functions in the form of Eq. (8.18). We can think
of the exp(ikx) as being an example of an “envelope” function that multiplies the unit cell

function u(Xx).
envelope /_\\_

unit cell function

Bloch function \/

Fig. 8.3. Illustration of the Bloch function as a product of an envelope function, which is a
sinusoidal wave, and a unit cell function, which is the same in every unit cell. (Here we show the
real part of both functions)

In three dimensions, we can follow similar arguments. Periodic boundary conditions are then a
strange concept if we treat them too literally — we would then need to imagine a crystal where
each face is joined to the opposite one in a long loop, something we cannot do in three
dimensions. Despite this absurdity, we do use periodic boundary conditions in three
dimensions as being a way that allows our simple definition of periodicity and yet correctly
counts the available states’.

The Bloch theorem in three dimensions is otherwise a straightforward extension of the one-
dimensional version. We have

w(r+a)=ecxp(ika)y(r) (8.19)
or equivalently
w(r)=u(r)exp(ikr) (8.20)

where a is any crystal lattice vector, and u(r) =u(r +a) . Considering the three crystal basis

vector directions, 1, 2, and 3, with lattice constants (repeat distances) a;, &, and a;, and
numbers of atoms N, N,, and N3

k=22 .n=0,%1,+2,.+N, /2 (8.21)

and similarly for the other two components of k in the other two crystal basis vector directions.
Note that the number of possible values of k is the same as the number of atoms in the crystal.”
Egs. (8.20) and (8.21) therefore constitute the Bloch theorem result that the electron
wavefunction can be written in this form in a crystalline material.

6 Again, see the discussion of periodic boundary conditions in Section 5.4.

7 Again, strictly, with the definition (8.21) we would actually appear to have N + 1 allowed values of k in
a given direction for a crystal N atoms thick in that direction. This is actually not correct, and must be
dealt with properly for some short chain, but does not matter for large crystals.
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Problem

8.3.1 Consider a ring of six identical “atoms” or “unit cells”, e.g., like a benzene ring, with a repeat
length (center to center distance between the atoms) of 0.5 nm. Explicitly write out each of the
different allowed Bloch forms (i.e., (V) =u(v)exp(ikv) ) for the effective one-dimensional electron
wavefunctions (V) , where V is the distance coordinate as we move round the ring, and u(v) is a
function that is periodic with period 0.5 nm. Be explicit about the numerical values and units of the
allowed values of k.

8.4 Density of states in k-space

We see that the allowed values of k;, k», and k; are each equally spaced, with separations

gklzz_ﬂzz_ﬂ’é'kzzz_ﬂzz_ﬂ’and 5k3:2—”:2—” (822)
Na L N,a, L, N;a, L

respectively along the three axes®. Note that the lengths of the crystal along the three axes are
respectively Ly = Nija;, L, = N,a,, Ly = Nsa;. We could draw a three-dimensional diagram,
with axes K;, ky, and k3, and mark the allowed values of k. We would then have a set of dots in
space that themselves constitute a mathematical lattice. This lattice is known as the reciprocal
lattice, which is a lattice in so-called “k-space”. We can then imagine that each point has a
volume surrounding it, with these volumes touching one another to completely fill all the
space’. For our cubic lattices, these volumes in k-space will be of size 8V = 5k,5k,dks , i.e.,
(27)

oV, = (8.23)

where V =LL,L; is the volume of our crystal. Hence the density of states in K-space is
1/ 6V . Note that this density grows as we make the crystal larger. It is often more useful to
work with the density of states per unit volume of the crystal. Hence we have the density of
states in K-space per unit volume of the crystal

g(k)=

1
(27)

The density of states is a very useful quantity for actual quantum mechanical calculations in
crystalline materials.

(8.24)

Problem

8.4.1 A two-dimensional crystal has a rectangular unit cell, with spacings between the centers of the
atoms of 0.5 nm in one direction (e.g., the X direction), and 0.4 nm in the other direction (e.g., the y
direction). Presuming that the crystal has 1000 unit cells in each direction, sketch a representative
portion of the reciprocal lattice on a scale drawing, showing the dimensions, units, and directions
(i.e., kg and ky)

¥ The axis directions in k-space are not in general the same as the axis directions in the real space lattice,
though they are the same for cubic lattices. The lattice vectors in k-space (i.e., the vectors that separate
adjacent points in k-space) are, more formally, b, = 27(a, xa,)/(a, -(a, xa;)) and the cyclic permutations
of this for the other directions.

? These volumes would be the unit cells of the reciprocal lattice.
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8.5 Band structure

If we knew the potential Vp (r) , and could solve the one-electron Schrodinger equation (8.3),
we could calculate the energies E of all of the various possible states. There are several ways
of approaching such calculations from first principles, and we will not go into those here. The
results of such calculations give what is known as a band structure.

There are multiple bands in a band structure (in fact an infinite number), but usually only a few
are important in determining particular properties of a material. Fig. 8.4 illustrates a simple
band structure. Each band has a total number of allowed k-states equal to the number of unit
cells'’ in the crystal. These states are evenly spaced in k-space, as discussed above. Each band
loosely corresponds to a different atomic state in the constituent atoms — the bands can be
viewed as being formed from the atomic states as the atoms are pushed together into the
crystal.

-7/a 0 w/a
k

Fig. 8.4. Figurative illustration of a semiconductor band structure, plotted along one crystal
direction. The upper “band” (line) will be essentially empty of electrons, and is called the
conduction band; the lower band will be essentially full of electrons, and is called the valence
band.

Fig. 8.4 illustrates a simplified band structure, similar to structures encountered with some
semiconductors. In each band, we only have to plot k-values from —z/a to z/a . (This range
is sometimes known as the (first) Brillouin zone.) The bands are usually plotted as if they were
continuous, but in fact k can only take on discrete (though evenly spaced) values, and hence
the bands are really a set of very closely spaced points on this diagram. The lower band is like
the highest valence band in a semiconductor, and, in the unmodified or unexcited
semiconductor, it is typically full of electrons. The upper band is like the lowest conduction
band in some semiconductors, and, again in the unmodified or unexcited semiconductor, it is

1% Strictly, we need to say the number of “primitive” unit cells, where the primitive unit cells are the
smallest (in volume) unit cells we can construct.
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typically empty of electrons. Eg is the band gap energy that separates the lowest point in the
conduction band from the highest point in the valence band. The particular band structure in
Fig. 8.4 corresponds to what is called a direct gap semiconductor; the lowest point in the
conduction band is directly above the highest point in the valence band. Many III-V and II-VI
semiconductors are of this type. It is also very common for there to be minima or maxima in
the bands at k = 0. Also shown in the conduction band in Fig. 8.4 are subsidiary minima away
from k =0. It is possible that these minima, rather than any minimum at k =0, are the lowest
points in a semiconductor conduction band structure, in which case we have an indirect gap
semiconductor. Silicon and germanium are both indirect gap semiconductors.

The band structure in Fig. 8.4 is also drawn to be symmetric about k = 0. Band structures are
often symmetric in this way. In our simple one-electron model, neglecting magnetic effects,
the existence of symmetries like this is easily proved. Suppose that y(k,r) = uy (r)exp(ik.r) is
the Bloch function that satisfies the Schrodinger equation for the specific allowed value k. We
have now introduced k as an explicit notation in our Bloch function parts. (Note, incidentally,
that the unit cell part of the wavefunction, Uy (r), is in general different for every different k).
Hence we have

Hy (k.r)=Ey (k) (8.25)

where Ey is the eigenenergy associated with this specific k and H = — (2 / 2me ) V2 +Vp (r).
Now take the complex conjugate of both sides of Eq. (8.25). We note that H expressed in this
way does not change when we take the complex conjugate, and we also know that Ej is real
since it is the eigenvalue associated with a Hermitian operator. Hence we have

Hy' (k.r)=Ey (k) (8.26)

But y* (k,r) =Uug (r)exp(—ik.r) , which is also a wavefunction in Bloch form, but for
wavevector —k. Hence we are saying that for every Bloch function solution with wavevector k
and energy Ej, there is one with wavevector —k with the same energy. Hence the band
structure is symmetric about k = 0."" We can if we wish choose to write

v (k,r)=uy (r)exp(-ikr)=u_ (r)exp(-ikr) =y (-k,r) (8.27)
This equivalence of the energies for k and —k is known as Kramers degeneracy.

Problem

8.5.1 Conventionally, we express Bloch functions within the “first Brillouin zone”, which for a simple
one-dimensional crystal of repeat length a is the range —z/a <k <z /a . We could instead consider k
values lying outside this range. Show, however, that any such Bloch function (i.e., a function of the
form w(x) =u(x)exp(ikx) where u(x) is a function periodic with repeat length a) for any ke, outside

" 'We have not yet included electron spin. The consequent more sophisticated version of the Kramers
degeneracy proof involves time-reversing the Schrodinger equation (including spin) rather than merely
taking the complex conjugate. In this case, the Kramers degeneracy remains, though we then find that the
state with spin up at k is degenerate with the state with spin down at —k and vice versa. See O. Madelung,
Introduction to Solid State Theory (Springer-Verlag, Berlin, 1978), p 91.

Often, the fact that the band structure is symmetric about k =0 means that we have maxima or minima
in the bands there, as in Fig. 8.4. The required symmetry can also, however, be provided by having
“mirror image” bands cross at k =0. It is the band structure overall that is symmetric, not necessarily a
given band.
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this first Brillouin zone can also be expressed as a Bloch function with a k value inside the first
Brillouin zone. [Hint: any Kp, lying outside the first Brillouin zone can be written as
Knew =k +2n7/a for some positive or negative integer n.]

8.6 Effective mass theory

As was mentioned above, it is very common to have minima or maxima in the bands at k =0.
It is also quite common to have other minima or maxima in the band structure, as indicated in
Fig. 8.4. The minima in the conduction band and the maxima in the valence band are very
important in the operation of both electronic and optoelectronic semiconductor devices. Any
extra electrons in the conduction band will tend to fall into the lowest minimum. Any absences
of electrons in the valence band will tend to “bubble up” to the highest maximum in the
valence band. Such absences of electrons are often described as if they were positively charged
“holes”. As a result, the properties of most electronic devices and many optoelectronic devices
(especially light emitting devices, which involve recombination of electrons in the conduction
band with holes in the valence band) are dominated by what happens in these minima and
maxima. It is also the case in optoelectronics that many other devices, such as some optical
modulators, work for photon energies very near to the band gap energy, Eg, and their
properties are also determined by the behavior of electrons and holes in these minima and
maxima.

Because of the importance of these minima and maxima in the band structure, it is very useful
to have approximate models that give simplified descriptions of what happens in these regions.
One of these models is the effective mass approximation.

We would expect, near a minimum or maximum, that, to lowest order, the energy E, would
vary quadratically as k is varied along some direction in k-space. For simplicity here, we will
presume that this variation is isotropic, and also for simplicity we will presume that the
minimum or maximum of interest is located at k =0. Neither of these simplifications is
necessary for this effective mass approach, though it will keep our algebra simpler. This
isotropic k =0 minimum or maximum is a good approximation for the lowest conduction
band, and a reasonable first approximation for the highest valence bands, in the direct gap
semiconductors that are important in optoelectronics (e.g., GaAs, InGaAs). For the lowest
conduction bands in silicon or germanium or other indirect gap semiconductors such as AlAs,
the minima are not at k =0, and, though approximately parabolic in any given direction, they
are not isotropic; the theory is, however, easily extended to cover those cases.

If the energy at the minimum or maximum itself is some amount V, then, by assumption, we
have E, —V oc k2. For reasons that will become obvious, we choose to write this as

21,2
E:hk

+V 8.28
KT o (8.28)

eff

where the quantity mes is, for the moment, merely a parameter that sets the appropriate
proportionality. (Of course, as the reader has probably guessed, ms will turn out to be the
quantity we call the effective mass.) A relation such as Eq. (8.28) between energy and k-value
is sometimes called a dispersion relation. This particular approximation for the behavior of the
energies in a band is called, for obvious reasons, an isotropic parabolic band.

The reader will note, incidentally, that the effective mass is actually a negative number for the
case of electrons near the top of the valence band in Fig. 8.4, because the band is curved
“downwards”. At least in a semiconductor, however, this valence band is always almost
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entirely full of electrons, and we are more interested in what happens to the few states where
the electrons are missing. We can, in fact, treat those states of missing electrons (i.e., holes) as
if they were positively charged, and as if they had a positive mass. The precise reasons why we
can make this conceptual change are actually quite subtle. They can be deduced by a careful
consideration of group velocity and the change of group velocity with applied field, though we
will not repeat the arguments here. '

The next step in deriving this approximation is to consider a wave packet — a linear
superposition of different Bloch states. Since we are going to consider the time evolution, we
will also include the time-varying factor exp(—iEkt/ h) for each component in the
superposition. Hence we consider a wavefunction

¥ (r,t)=> cu,(r)exp(ikr)exp(-iEt/7) (8.29)

where ¢, are the coefficients of the different Bloch states in this superposition. We have
restricted this superposition to states within only one band. We will make the further
assumption that this superposition is only from a small range of k-states (near k =0). This is
what can be called a slowly varying envelope approximation since it means that the resulting
wavepacket does not vary rapidly in space.

Because of this slowly varying envelope approximation, we can presume that, for all the k of
interest to us, all of the unit cell functions Uy (r) are approximately the same. Though the
Uk (r) are all in principle different, and they do indeed vary substantially with important
consequences for large changes in k, for a sufficiently small range of k we can take them all to
be the same. Hence we presume Uy (r) = U, (r) for the range of interest to us, which enables us
to factor out this unit cell part, writing

Y(r,t)=u,(r)¥,, (r.t) (8.30)
where the envelope function W, (r,t) can be written

¥ (r,t) =Y ¢ exp(ikr)exp(-iEt/h) (8.31)

Now we are going to try to construct a Schrodinger-like equation for this envelope function.
Differentiating with respect to time, and then substituting E, from (8.28) gives

in atgtenv =Y ¢.E exp(ikr)exp(-iEt/ )
k
2
= 2? D c.k?exp(ikr)exp(—iE.t/n)+V D ¢, exp(ikr)exp(—iEt/7)
eff  k k
2
= 2? ﬁ Zk:[—ckvz exp(ik.r)] exp(—iEt/n)+VV¥,, (8.32)

since V? exp(ik.r) = —k* exp(ik.r) . Hence finally we have
h2
zmeff

VAW, () +V (1) P, (1) = m%xpem (r.) (8.33)

12 For a detailed discussion of this point, see W. A. Harrison, Applied Quantum Mechanics (World
Scientific, Singapore, 2000), pp. 189 - 190
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We can see therefore that we have managed to construct a Schrodinger equation for this
envelope function. All of the details of the periodic potential and the unit cell wavefunction
have been suppressed in this equation, and their consequences are all contained in the single
parameter, the effective mass me . This effective mass model is a very powerful
simplification, and is at the root of a large number of models of processes in semiconductors.

Note incidentally that we have allowed the potential V (r) (i.e., the energy of the band at
k =0) to vary with position r in Eq. (8.33). This is justifiable if the changes in that potential
are very small compared to %2k?/2mer over the scale of a unit cell and over the wavelength
27z /k . Technically, if that potential changes with position, then we no longer have a truly
periodic structure, and we might presume that we cannot use our crystalline theory to model it,
but in practice we can presume that the material is to a good enough approximation still locally
crystalline as long as that potential is slowly varying. In fact, practical calculations and
comparisons with experiment show that this kind of approach remains valid even for some
very rapid changes in potential; it does not apparently take many periods of the crystal
structure to define the basic properties of the crystalline behavior. We can also handle abrupt
changes in V(r) in practice through the use of appropriate boundary conditions. Changes in
V(r) with position can result, for example, from applying electric fields, or from changes in
material composition.

Effective mass approximation in semiconductor

heterostructures

Structures involving more than one kind of material are called heterostructures. An example of
a change in material composition would be changing the relative proportions of Ga and Al in
the alloy semiconductor Al,Ga; As. Such changes are made routinely in modern
semiconductor structures, especially abrupt changes in material composition (e.g., the interface
between GaAs and Aly;Gag,As) in optoelectronic devices such as laser diodes, and, in
particular, in quantum well structures involving very thin (e.g., 10 nm) layers of semiconductor
materials.

In analyzing semiconductor heterostructures, one also has to take into account that the
effective mass is in general different in different materials. It is then better to write Eq. (8.33)
as

2
_%v.{wa (r,t)} SV ()W, (rt) = ih%‘l’env (r.) (8.34)

eff

and to use boundary conditions such as

¥, continuous (8.35)

env
and

1
—VY,,
meff

., continuous (8.36)

to handle abrupt changes in material and/or potential. The choice of Eq. (8.34) and of the
boundary conditions (8.35) and (8.36) is to some extent arbitrary. For constant mass, Eq.
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(8.34) is no different from Eq. (8.33). However, these new choices do conserve probability
density if the mass changes with position."?
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Fig. 8.5. Tllustration of the allowed states in k-space, shown here in a two dimensional section,
with the allowed values illustrated by dots. L is the linear size of the “box” in real space (assumed
the same in all three directions). Also shown is a thin annulus (or spherical shell) of radius k and
thickness dk, as used in the calculation of the density of states in energy.

There is, however, apparently no way of deriving from first principles the boundary conditions
we should use for the envelope functions, and more than one set is possible. One reason w