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Preface  

This book introduces quantum mechanics to scientists and engineers. It can be used as a text 
for junior undergraduates onwards through to graduate students and professionals. The level 
and approach are aimed at anyone with a reasonable scientific or technical background looking 
for a solid but accessible introduction to the subject. The coverage and depth are substantial 
enough for a first quantum mechanics course for physicists. At the same time, the level of 
required background in physics and mathematics has been kept to a minimum to suit those also 
from other science and engineering backgrounds. 

Quantum mechanics has long been essential for all physicists and in other physical science 
subjects such as chemistry. With the growing interest in nanotechnology, quantum mechanics 
has recently become increasingly important for an ever-widening range of engineering 
disciplines, such as electrical and mechanical engineering, and for subjects such as materials 
science that underlie many modern devices. Many physics students also find that they are 
increasingly motivated in the subject as the everyday applications become clear.  

Non-physicists have a particular problem in finding a suitable introduction to the subject. The 
typical physics quantum mechanics course or text deals with many topics that, though 
fundamentally interesting, are useful primarily to physicists doing physics; that choice of 
topics also means omitting many others that are just as truly quantum mechanics, but have 
more practical applications. Too often, the result is that engineers or applied scientists cannot 
afford the time or cannot sustain the motivation to follow such a physics-oriented sequence. As 
a result, they never have a proper grounding in the subject. Instead, they pick up bits and 
pieces in other courses or texts. Learning quantum mechanics in such a piecemeal approach is 
especially difficult; the student then never properly confronts the many fundamentally 
counterintuitive concepts of the subject. Those concepts need to be understood quite deeply if 
the student is ever going to apply the subject with any reliability in any novel situation. Too 
often also, even after working hard in a quantum mechanics class, and even after passing the 
exams, the student is still left with the depressing feeling that they do not understand the 
subject at all. 

To address the needs of its broad intended readership, this book differs from most others in 
three ways. First, it presumes as little as possible in prior knowledge of physics. Specifically, it 
does not presume the advanced classical mechanics (including concepts such as Hamiltonians 
and Lagrangians) that is often a prerequisite in physics quantum mechanics texts and courses. 
Second, in two background appendices, it summarizes all of the key physics and mathematics 
beyond the high-school level that the reader needs to start the subject. Third, it introduces the 
quantum mechanics that underlies many important areas of application, including 
semiconductor physics, optics, and optoelectronics. Such areas are usually omitted from 
quantum mechanics texts, but this book introduces many of the quantum mechanical principles 
and models that are exploited in those subjects. 

It is also my belief and experience that using quantum mechanics in several different and 
practical areas of application removes many of the difficulties in understanding the subject. If 
quantum mechanics is only illustrated through examples that are found in the more esoteric 
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branches of physics, the subject itself can seem irrelevant and obscure. There is nothing like 
designing a real device with quantum mechanics to make the subject tangible and meaningful. 

Even with its deliberately limited prerequisites and its increased discussion of applications, this 
book offers a solid foundation in the subject. That foundation should prepare the reader well 
for the quantum mechanics in either advanced physics or in deeper study of practical 
applications in other scientific and engineering fields. The emphasis in the book is on 
understanding the ideas and techniques of quantum mechanics rather than attempting to cover 
all possible examples of their use. A key goal of this book is that the reader should 
subsequently be able to pick up texts in a broad range of areas, including, for example, 
advanced quantum mechanics for physicists, solid state and semiconductor physics and 
devices, optoelectronics, quantum information, and quantum optics, and find they already have 
all the necessary basic tools and conceptual background in quantum mechanics to make rapid 
progress.  

It is possible to teach quantum mechanics in many different ways, though most sequences will 
start with Schrödinger’s wave equation and work forward from there. Even though the final 
emphasis in this book may be different from some other quantum mechanics courses, I have 
deliberately chosen not to take a radical approach here. This is for three reasons: first, most 
college and university teachers will be most comfortable with a relatively standard approach 
since that is the one they have most probably experienced themselves; second, taking a core 
approach that is relatively conventional will make it easier for readers (and teachers) to 
connect with the many other good physics quantum mechanics books; third, this book should 
also be accessible and useful to professionals who have previously studied quantum mechanics 
to some degree, but need to update their knowledge or connect to the modern applications in 
engineering or applied sciences. 

The background requirements for the reader are relatively modest, and should represent little 
problem for students or professionals in engineering, applied sciences, physics, or other 
physical sciences. This material has been taught with apparent success to students in applied 
physics, electrical engineering, mechanical engineering, materials science, and other science 
and engineering disciplines, from 3rd year undergraduate level up to graduate students. In 
mathematics, the reader should have a basic knowledge in calculus, complex numbers, 
elementary matrix algebra, geometrical vectors, and simple and partial differential equations. 
In physics, the reader should be familiar with ordinary Newtonian classical mechanics and 
elementary electricity and magnetism. The key requirements are summarized in two 
background appendices in case the reader wants to refresh some background knowledge or fill 
in gaps. A few other pieces of physics and mathematics are introduced as needed in the main 
body of the text.  It is helpful if the student has had some prior exposure to elementary modern 
physics, such as the ideas of electrons, photons, and the Bohr model of the atom, but no 
particular results are presumed here. The necessary parts of Hamiltonian classical mechanics 
will be introduced briefly when required in later Chapters. 

This book goes deeper into certain subjects, such as the quantum mechanics of light, than most 
introductory physics texts. For the later Chapters on the quantum mechanics of light, additional 
knowledge of vector calculus and electromagnetism to the level of Maxwell’s equations are 
presumed, though again these are summarized in appendices.   

One intent of the book is for the student to acquire a strong understanding of the concepts of 
quantum mechanics at the level beyond mere mathematical description. As a result, I have 
chosen to try to explain concepts with limited use of mathematics wherever possible. With the 
ready availability of computers and appropriate software for numerical calculations and 
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simulations, it is progressively easier to teach principles of quantum mechanics without as 
heavy an emphasis on analytical techniques. Such numerical approaches are also closer to the 
methods that an engineer will likely use for calculations in real problems anyway, and access 
to some form of computer and high-level software package is assumed for some of the 
problems. This approach substantially increases the range of problems that can be examined 
both for tutorial examples and for applications.  

Finally, I will make one personal statement on handling the conceptual difficulties of quantum 
mechanics in texts and courses. Some texts are guilty of stating quantum mechanical 
postulates, concepts and assumptions as if they should be obvious, or at least obviously 
acceptable, when in fact they are far from obvious even to experienced practitioners or 
teachers. In many cases, these are subjects of continuing debate at the highest level. I try 
throughout to be honest about those concepts and assumptions that are genuinely unclear as to 
their obviousness or even correctness. I believe it is a particularly heinous sin to pretend that 
some concept should be clear to the student when it is, in fact, not even clear to the professor 
(an overused technique that preserves professorial ego at the expense of the student’s!). 

It is a pleasure to acknowledge the many teaching assistants who have provided much useful 
feedback and correction of my errors in this material as I have taught it at Stanford, including 
Aparna Bhatnagar, Julien Boudet, Eleni Diamanti, Onur Fidaner, Martina Gerken, Noah 
Helman, Ekin Kocabas, Bianca Nelson, Tomas Sarmiento, and Scott Sharpe. I would like to 
thank Ingrid Tarien for much help in preparing many parts of the course material, and Marjorie 
Ford for many helpful comments on writing.   

I am also pleased to acknowledge my many professorial colleagues at Stanford, including 
Steve Harris, Walt Harrison, Jelena Vuckovic, and Yoshi Yamamoto in particular, for many 
stimulating, informative, and provocative discussions about quantum mechanics. I would 
especially like to thank Jelena Vuckovic, who successfully taught the subject to many students 
despite having to use much of this material as a course reader, and who consequently corrected 
numerous errors and clarified many points. All remaining errors and shortcomings are, of 
course, my sole responsibility, and any further corrections and suggestions are most welcome. 

David A. B. Miller 

Stanford, California, September 2007 



How to use this book  
 

For teachers 

The entire material in this book could be taught in a one-year course. More likely, depending 
on the interests and goals of the teacher and students, and the length of time available, only 
some of the more advanced topics will be covered in detail. In a two-quarter course sequence 
for senior undergraduates and for engineering graduate students at Stanford, the majority of the 
material here will be covered, with a few topics omitted and some covered in lesser depth.  

The core material (Chapters 1 – 5) on Schrödinger’s equation and on the mathematics behind 
quantum mechanics should be taught in any course. Chapter 4 gives a more explicit 
introduction to the ideas of linear operators than is found in most texts. Chapter 4 also explains 
and introduces Dirac notation, which is used from that point onwards in the book. This 
introduction of Dirac notation is earlier than in many older texts, but it saves considerable time 
thereafter in describing quantum mechanics. Experience teaching engineering students in 
particular, most of whom are quite familiar with linear algebra and matrices from other 
applications in engineering, shows that they have no difficulties with this concept.  

Aside from that core there are many possible choices about the sequence of material and on 
what material needs to be included in a course. The prerequisites for each Chapter are clearly 
stated at the beginning of the Chapter. There are also some Sections in several of the Chapters 
that are optional, or that may only need to be read through when first encountered. These 
Sections are clearly marked. The discussion of methods for one-dimensional problems in 
Chapter 11 can come at any point after the material on Schrödinger’s equations (Chapters 2 
and 3). The core transfer matrix part could even be taught directly after the time-independent 
equation (Chapter 2). The material is optional in that it is not central to later topics, but in my 
experience students usually find it stimulating and empowering to be able to do calculations 
with simple computer programs based on these methods. This can make the student 
comfortable with the subject, and begin to give them some intuitive feel for many quantum 
mechanical phenomena. (These methods are also used in practice for the design of real 
optoelectronic devices.)  

For a broad range of applications, the approximation methods of quantum mechanics (Chapter 
6 and 7) are probably the next most important after Chapters 1 - 5. The specific topic of the 
quantum mechanics of crystalline materials (Chapter 8) is a particularly important topic for 
many applications, and can be introduced at any point after Chapter 7; it is not, however, 
required for subsequent Chapters (except for a few examples, and some optional parts at the 
end of Chapter 11), so the teacher can choose how far he or she wants to progress through this 
Chapter. For fundamentals, angular momentum (Chapter 9) and the hydrogen atom (Chapter 
10) are the next most central topics, both of which can be taught directly after Chapter 5 if 
desired. After these, the next most important fundamental topics are spin (Chapter 12) and 
identical particles (Chapter 13), and these should probably be included in the second quarter or 
semester if not before.  
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Chapter 14 introduces the important technique of the density matrix for connecting to 
statistical mechanics, and it can be introduced at any point after Chapter 5; preferably the 
student would also have covered Chapters 6 and 7 so they are familiar with perturbation 
theory, though that is not required. The density matrix material is not required for subsequent 
Chapters, so this Chapter is optional.  

The sequence of Chapters 15 – 17 introduces the quantum mechanics of electromagnetic fields 
and light, and also the important technique of second quantization in general, including 
fermion operators (a technique that is also used extensively in more advanced solid state 
physics). The inclusion of this material on the quantum mechanics of light is the largest 
departure from typical introductory quantum mechanics texts. It does however redress a 
balance in material that is important from a practical point of view; we cannot describe even 
the simplest light emitter (including an ordinary light bulb.) or light detector without it, for 
example. This material is also very substantial quantum mechanics at the next level of the 
subject. These Chapters do require almost all of the preceding material, with the possible 
exceptions of Chapters 8, 11, and 14.  

The final two Chapters, Chapter 18 on a brief introduction to quantum information concepts 
and Chapter 19 on the interpretation of quantum mechanics, could conceivably be presented 
with only Chapters 1 – 5 as prerequisites. Preferably also Chapters 9, 10, 12, and 13 would 
have been covered, and it is probably a good idea that the student has been working with 
quantum mechanics successfully for some time before attempting to grapple with the tricky 
conceptual and philosophical aspects in these final Chapters. The material in these Chapters is 
well suited to the end of a course, when it is often unreasonable to include any further new 
material in a final exam, but yet one wants to keep the students’ interest with stimulating ideas.   

Problems are introduced directly after the earliest possible Sections rather than being deferred 
to the ends of the Chapters, thus giving the greatest flexibility in assigning homework. Some 
problems can be used as substantial assignments, and all such problems are clearly marked. 
These can be used as “take-home” problems or exams, or as extended exercises coupled with 
tutorial “question and answer” sessions. These assignments may necessarily involve some 
more work, such as significant amounts of (relatively straightforward) algebra or calculations 
with a computer. I have found, though, that students gain a much greater confidence in the 
subject once they have used it for something beyond elementary exercises, exercises that are 
necessarily often artificial. At least, these assignments tend to approach the subject from the 
point of view of a problem to be solved rather than an exercise that just uses the last technique 
that was studied. Some of these larger assignments deal with quite realistic uses of quantum 
mechanics.  

At the very end of the book, I also include a suggested list of simple formulae to be memorized 
in each Chapter. These lists could also be used as the basis of simple quizzes, or as required 
learning for “closed-book” exams.  

For students 

Necessary background 

Students will come to this book with very different backgrounds. You may recently have 
studied a lot of physics and mathematics at college level. If so, then you are ready to start. I 
suggest you have a quick look at Appendices A and B just to see the notations used in this 
book before starting Chapter 2.  
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For others, your mathematical or physics background may be less complete, or it may be some 
time since you have seen or used some of the relevant parts of these subjects. Rest assured, 
first of all, that in writing this book I have presumed the least possible knowledge of 
mathematics and physics consistent with teaching quantum mechanics, and much less than the 
typical quantum mechanics text requires. Ideally, I expect you have had the physics and 
mathematics typical of first or second year college level for general engineering or physical 
science students. You do absolutely have to know elementary algebra, calculus, and physics to 
a good pre-college level, however. I suggest you read the Background Mathematics Appendix 
A and the Background Physics Appendix B to see if you understand most of that. If not too 
much of that is new to you, then you should be able to proceed into the main body of this 
book. If you find some new topics in these Appendices, there is in principle enough material 
there to “patch over” those holes in knowledge temporarily so that you can use the 
mathematics and physics needed to start quantum mechanics; these Appendices are not, 
however, meant to be a substitute for learning these topics in greater depth..  

Study aids in this book 

Lists of concepts introduced 

Because there are many concepts that the student needs to understand in quantum mechanics, I 
have summarized the most important ones at the end of the Chapters in which they are 
introduced. These summaries should help both in following the “plot” of the book, and in 
revising the material. 

Appendices 

The book is as reasonably self-contained as I can make it. In addition to the background 
Appendices A and B covering the overall prerequisite mathematics and physics, additional 
background material needed later on is introduced in Appendices C and D (vector calculus and 
electromagnetism), and one specific detailed derivation is given in Appendix E. Appendix F 
summarizes the early history of quantum mechanics, Appendix G collects and summarizes 
most of the mathematical formulae that will be needed in the book, including the most useful 
ones from elementary algebra, trigonometric functions, and calculus. Appendix H gives the 
Greek alphabet (every single letter of it is used somewhere in quantum mechanics), and 
Appendix I lists all the relevant fundamental constants. 

Problems 

There are about 160 problems and assignments, collected at the ends of the earliest possible 
Sections rather than at the ends of the Chapters. 

Memorization list 

Quantum mechanics, like many aspects of physics, is not primarily about learning large 
numbers of formulae, but rather understanding the key concepts clearly and deeply. It will, 
however, save a lot of time (including in exams!) to learn a few basic formulae by heart, and 
certainly if you also understand these well, you should have a good command of the subject. 

At the very end of the book, there is a list of formulae worth memorizing in each Chapter of 
the book. None of these formulae is particularly complicated – the most complicated ones are 
the Schrödinger wave equation in its two forms. Many of the formulae are simply short 
definitions of key mathematical concepts. If you learn these formulae chapter by chapter as 
you work through the book, there are not very many formulae to learn at any one time. 
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The list here is not of the formulae themselves, but rather is of descriptions of them so you can 
use this list as an exercise to test how successfully you have learned these key results. 

Self-teaching 

If you are teaching yourself quantum mechanics using this book, first of all, congratulations to 
you for having the courage to tackle what most people typically regard as a daunting subject. 
For someone with elementary college level physics and mathematics, I believe it is quite an 
accessible subject in fact. But, the most important point is that you must not start learning 
quantum mechanics “on the fly” by picking and choosing just the bits you need from this book 
or any other. Trying to learn quantum mechanics like that would be like trying to learn a 
language by reading a dictionary. You cannot treat quantum mechanics as just a set of 
formulae to be substituted into problems, just as you cannot translate a sentence from one 
language to another just by looking up the individual words in a dictionary and writing down 
their translations. There are just so many counterintuitive aspects about quantum mechanics 
that you will never understand it in that piecemeal way, and most likely you would not use the 
formulae correctly anyway. Make yourself work on all of the first several Chapters, through at 
least Chapter 5; that will get you to a first plateau of understanding. You can be somewhat 
more selective after that. For the next level of understanding, you need to study angular 
momentum, spin and identical particles (Chapters 9, 12, and 13). Which other Chapters you 
use will depend on your interests or needs. Of course, it is worthwhile studying all of them if 
you have the time! 

Especially if you have no tutor of whom you can ask questions, then I also expect that you 
should be looking at other quantum mechanics books as well. Use this one as your core, and 
when I have just not managed to explain something clearly enough or to get it to “click” for 
you, look at some of the others, such as the ones listed in the Bibliography. My personal 
experience is that a difficult topic finally becomes clear to me once I have five books on it 
open on my desk. One hope I have for this book is that it enables readers to access the more 
specialized physics texts if necessary. Their alternative presentations may well succeed where 
mine fail, and those other books can certainly cover a range of specific topics impossible to 
include here. 

 

 





Chapter 1  
 
Introduction  

1.1 Quantum mechanics and real life 

Quantum mechanics, we might think, is a strange subject, one that does not matter for daily 
life. Only a few people, therefore, should need to worry about its difficult details. These few, 
we might imagine, run about in the small dark corners of science, at the edge of human 
knowledge. In this unusual group, we would expect to find only physicists making ever larger 
machines to look at ever smaller objects, chemists examining the last details of tiny atoms and 
molecules, and perhaps a few philosophers absently looking out of windows as they wonder 
about free will. Surely quantum mechanics therefore should not matter for our everyday 
experience. It could not be important for designing and making real things that make real 
money and change real lives. Of course, we would be wrong.  

Quantum mechanics is everywhere. We do not have to look far to find it. We only have to 
open our eyes. Look at some object, say a flower pot or a tennis ball. Why is the flower pot a 
soothing terra-cotta orange color and the tennis ball a glaring fluorescent yellow? We could 
say each object contains some appropriately colored pigment or dye, based on a material with 
an intrinsic color, but we are not much further forward in understanding. (Our color technology 
would also be stuck in medieval times, when artists had to find all their pigments in the colors 
in natural objects, sometimes at great cost1.) The particularly bright yellow of our modern 
tennis ball would also be quite impossible if we restricted our pigments to naturally occurring 
materials.  

Why does each such pigment have its color? We have no answer from the “classical” physics 
and chemistry developed before 1900. But quantum mechanics answers such questions 
precisely and completely2. Indeed, the beginning of quantum mechanics comes from one 

                                                           
1 They had to pay particularly dearly for their ultramarine blue, a pigment made by grinding up the 
gemstone lapis lazuli. The Spanish word for blue, azul, and the English word azure both derive from this 
root. The word ultramarine refers to the fact that the material had to be brought from “beyond (ultra) the 
sea (marine)” – i.e., imported, presumably also at some additional cost. Modern blue coloring is more 
typically based on copper phthalocyanine, a relatively cheap, man-made chemical.  
2 In quantum mechanics, photons, the quantum mechanical particles of light, have different colors 
depending on their tiny energies; materials have energy levels determined by the quantum mechanics of 
electrons, energy levels separated by similarly tiny amounts. We can change the electrons from one 
energy level to another by absorbing or emitting photons. The specific color of an object comes from the 
specific separations of the energy levels in the material. A few aspects of color can be explained without 
quantum mechanics. Color can be sometimes result from scattering (such as the blue of the sky or the 
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particular aspect of color. Classical physics famously failed to explain the color of hot objects3, 
such as the warm yellow of the filament in a light bulb or the glowing red of hot metal in a 
blacksmith’s shop. Max Planck realized in 1900 that if the energy in light existed only in 
discrete steps, or quanta, he could get the right answer for these colors. And so quantum 
mechanics was born.  

The impact of quantum mechanics in explaining our world does not end with color. We have 
to use quantum mechanics in explaining most properties of materials. Why are some materials 
hard and others soft? For example, why can a diamond scratch almost anything, but a pencil 
lead will slide smoothly, leaving a black line behind it?4 Why do metals conduct electricity and 
heat easily, but glass does not? Why is glass transparent? Why do metals reflect light? Why is 
one substance heavy and another light? Why is one material strong and another brittle? Why 
are some metals magnetic and others are not? We need, of course, a good deal of other science, 
such as chemistry, materials science, and other branches of physics, to answer such questions 
in any detail; but in doing so all of these sciences will rely on our quantum mechanical view of 
how materials are put together. 

So, we might now believe, the consequences of quantum mechanics are essential for 
understanding the ordinary world around us. But is quantum mechanics useful? If we devote 
our precious time to learning it, will it let us make things we could not make before? One 
science in which the quantum mechanical view is obviously essential is chemistry, the science 
that enables most of our modern materials. No-one could deny that chemistry is useful.  

Suppose even that we set chemistry and materials themselves aside, and ask a harder question: 
do we need quantum mechanics when we design devices – objects intended to perform some 
worthwhile function? After all, the washing machines, eye-glasses, staplers, and automobiles 
of everyday life need only 19th century physics for their basic mechanical design, even if we 
employ the latest alloys, plastics or paints to make them. Perhaps we can concede such 
macroscopic mechanisms to the classical world. But when, for example, we look at the 
technology to communicate and process information, we have simply been forced to move to 
quantum mechanics. Without quantum theory as a practical technique, we would not be able to 
design the devices that run our computers and our internet connections. 

The mathematical ideas of computing and information had begun to take their modern shape in 
the 1930’s, 1940’s and 1950’s. By the 1950’s, telephones and broadcast communication were 
well established, and the first primitive electronic computers had been demonstrated. The 
transistor and integrated circuit were the next key breakthroughs. These devices made complex 
computers and information switching and processing practical. These devices relied heavily on 
the quantum mechanical physics of crystalline materials. 

                                                                                                                                                         
white of some paints), diffraction (for example by a finely ruled grating or a hologram), or interference 
(such as the varied colors of a thin layer of oil on the surface of water), all of which can be explained by 
classical wave effects. All such classical wave effects are also explained as limiting cases of quantum 
mechanics, of course. 
3 This problem was known as the “ultraviolet catastrophe”, because classical thermal and statistical 
physics predicted that any warm object would emit ever increasing amounts of light at ever shorter 
wavelengths. The colors associated with such wavelengths would necessarily extend past the blue, into 
the ultraviolet – hence the name.  
4 Even more surprising here is that diamond and pencil lead are both made from exactly the same 
element, carbon. 
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A well-informed devil’s advocate could still argue, though, that the design of transistors and 
integrated circuits themselves was initially still an activity using classical physics. Designers 
would still use the idea of resistance from 19th century electricity, even if they added the ideas 
of charged electrons as particles carrying the current, and would add various electrical barriers 
(or “potentials”) to persuade electrons to go one way or another. No modern transistor designer 
can ignore quantum mechanics, however. For example, when we make small transistors, we 
must also make very thin electrical insulators. Electrons can manage to penetrate through the 
insulators because of a purely quantum mechanical process known as tunneling. At the very 
least, we have to account for that tunneling current as an undesired, parasitic process in our 
design.  

As we try to shrink transistors to ever smaller sizes, quantum mechanical effects become 
progressively more important. Naively extrapolating the historical trend in miniaturization 
would lead to devices the size of small molecules in the first few decades of the 21st century. 
Of course, the shrinkage of electronic devices as we know them cannot continue to that point. 
But as we make ever-tinier devices, quantum mechanical processes become ever more 
important. Eventually, we may need new device concepts beyond the semi-classical transistor; 
it is difficult to imagine how such devices would not involve yet more quantum mechanics. 

We might argue, at least historically, about the importance of quantum mechanics in the design 
of transistors. We could have no comparable debate when we consider two other technologies 
crucial for handling information – optical communications and magnetic data storage. 

Today nearly all the information we send over long distances is carried on optical fibers – 
strands of glass about the thickness of a human hair. We very carefully put a very small light 
just at one end of that fiber. We send the “ones” and “zeros” of digital signals by rapidly 
turning that light on and off and looking for the pattern of flashes at the fiber’s other end. To 
send and receive these flashes, we need optoelectronic devices – devices that will change 
electrical signals into optical pulses and vice versa. All of these optoelectronic devices are 
quantum mechanical on many different levels. First, they mostly are made of crystalline 
semiconductor materials, just like transistors, and hence rely on the same underlying quantum 
mechanics of such materials. Second, they send and receive photons, the particles of light 
Einstein proposed to expand upon Planck’s original idea of quanta. Here these devices are 
exploiting one of the first of many strange phenomena of quantum mechanics, the photo-
electric effect. Third, most modern semiconductor optoelectronic devices used in 
telecommunications employ very thin layers of material, layers called quantum wells. The 
properties of these thin layers depend exquisitely on their thicknesses through a text-book 
piece of quantum mechanics known as the “particle-in-a-box” problem. That physics allows us 
to optimize some of the physical processes we already had in thicker layers of material and 
also to create some new mechanisms only seen in thin layers. For such devices, engineering 
using quantum mechanics is both essential and very useful. 

When we try pack more information onto the magnetic hard disk drives in our computers, we 
first have to understand exactly how the magnetism of materials works. That magnetism is 
almost entirely based on a quantum mechanical attribute called “spin” – a phenomenon with 
no real classical analog. The sensors that read the information off the drives are also often now 
based on sophisticated structures with multiple thin layers that are designed completely with 
quantum mechanics. 

Quantum mechanics is, then, a subject increasingly necessary for engineering devices, 
especially as we make small devices or exploit quantum mechanical properties that only occur 
in small structures. The examples given above are only a few from a broad and growing field 
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that can be called nanotechnology. Nanotechnology exploits our expanding abilities to make 
very small structures or patterns. The benefits of nanotechnology come from the new 
properties that appear at these very small scales. We get most of those new properties from 
quantum mechanical effects of one kind or another. Quantum mechanics is therefore essential 
for nanotechnology. 

1.2 Quantum mechanics as an intellectual achievement 

Any new scientific theory has to give the same answers as the old theories everywhere these 
previous models worked, and yet successfully describe phenomena that previously we could 
not understand. The prior theories of mechanics, Newton’s Laws, worked very well in a broad 
range of situations. Our models for light similarly were quite deep and had achieved a 
remarkable unification of electricity and magnetism (in Maxwell’s equations). But when we 
would try to make a model of the atom, for example, with electrons circling round some 
charged nucleus like satellites in orbit round the earth, we would meet major contradictions. 
Existing mechanics and electromagnetic theory would predict that any such orbiting electron 
would constantly be emitting light; but atoms simply do not do that.  

The challenge for quantum mechanics was not an easy one. To resolve these problems of light 
and the structure of matter we actually had to tear down much of our view of the way the 
world works, to a degree never seen since the introduction of natural philosophy and the 
modern scientific method in the Renaissance. We were forced to construct a completely new 
set of principles for the physical world. These were, and still are in many cases, completely 
bizarre and certainly different from our intuition. Many of these principles simply have no 
analogs in our normal view of reality.  

We mentioned above one of the bizarre aspects of quantum mechanics: the process of 
“tunneling” allows particles to penetrate barriers that are classically too high for them to 
overcome. This process is, however, actually nothing like the act of digging a tunnel; we are 
confronting here the common difficulty in quantum mechanics of finding words or analogies 
from everyday experience to describe quantum mechanical ideas. We will often fail.  

There are many other surprising aspects of quantum mechanics. The typical student starting 
quantum mechanics is confused when told, as he or she often will be, that some question 
simply does not have an answer. The student will, for example, think it perfectly reasonable to 
ask what are the position and momentum (or, more loosely, speed) of some particle, such as an 
electron. Quantum mechanics (or in practice its human oracle, the professor) will enigmatically 
reply that there is no answer to that question. We can know one or the other precisely, but not 
both at once. This particular enigma is an example of Heisenberg’s uncertainty principle. 

Quantum mechanics does raise more than its share of deep questions, and it is arguable that we 
still do not understand quantum mechanics. In particular, there are still major questions about 
what a measurement really is in the quantum world. Erwin Schrödinger famously dramatized 
the difficulty with the paradox of his cat. According to quantum mechanics, an object may 
exist in a superposition state, in which it is, for example, neither definitely on the left, nor on 
the right. Such superposition states are not at all unusual – in fact they occur all the time for 
electrons in any atom or molecule. Though a particle might be in a superposition state, when 
we try to measure it, we always find that the object is at some specific position, e.g., definitely 
on the left or on the right. This mystical phenomenon is known as “collapse of the 
wavefunction”. We might find that a bizarre idea, but one that, for something really tiny like 
an electron, we could perhaps accept.  
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But now Schrödinger proposes that we think not about an electron, but instead about his cat. 
We are likely to care much more about the welfare of this “object” than we did about some 
electron. An electron is, after all, easily replaced with another just the same5; there are plenty 
of them, in fact something like 1024 electrons in every cubic centimeter of any solid material. 
And Schrödinger constructs a dramatic scenario. His cat is sealed in a box with a lethal 
mechanism that may go off as a result of, e.g., radioactive decay. Before we open the box to 
check on it, is the cat alive, dead, or, as quantum mechanics might seem to suggest, in some 
“superposition” of the two?  

The superposition hypothesis now seems absurd. In truth, we cannot check it here; we do not 
know how to set up an experiment to test such quantum mechanical notions with macroscopic 
objects. In trying to repeat such an experiment we cannot set up the same starting state exactly 
enough for something as complex as a cat. Physicists disagree about the resolution of this 
paradox. It is an example of a core problem of quantum mechanics: the process of 
measurement, with its mysterious “collapse of the wavefunction”, cannot be explained by 
quantum mechanics.6 The proposed solutions to this measurement problem can be extremely 
bizarre; in the “many worlds” hypothesis, for example, the world is supposed continually to 
split into multiple realities, one for each possible outcome of each possible measurement.  

Another important discussion centers round whether quantum mechanics is complete. When 
we measure a quantum mechanical system, there is at least in practice some randomness in the 
result. If, for example, we tried to measure the position of an electron in an atom, we would 
keep getting different results. Or if we measured how long it took a radioactive nucleus to 
decay, we would get different numbers each time. Quantum mechanics would correctly predict 
the average position we would measure for the electron and the average decay time of the 
nucleus, but it would not tell us the specific position or time yielded by any particular 
measurement.  

We are, of course, quite used to randomness in our ordinary classical world. The outcome of 
many lotteries is decided by which numbered ball appears out of a chute in a machine. The 
various different balls are all bouncing around inside the machine, driven probably by some air 
blower. The process is sufficiently complicated that we cannot practically predict which ball 
will emerge, and all have equal chance. But we do tend to believe classically that, if we knew 
the initial positions and velocities of all the air molecules and the balls in the machine, we 
could in principle predict which ball would emerge. Those variables are in practice hidden 
from us, but we do believe they exist. Behind the apparent randomness of quantum mechanics, 
then, are there just similarly some hidden variables? Could we actually predict outcomes 
precisely if we knew what those hidden variables were? Is the apparent randomness of 
quantum mechanics just because of our lack of understanding of some deeper theory and its 
starting conditions, some “complete” theory that would supersede quantum mechanics?  

Einstein believed that indeed quantum mechanics was not complete, that there were some 
hidden variables that, once we understood them, would resolve and remove its apparent 
randomness. Relatively recent work, centered round a set of relations called Bell’s inequalities, 
shows rather surprisingly that there are no such hidden variables (or at least, not local ones that 

                                                           
5 Indeed, in quantum mechanics electrons can be absolutely identical, much more identical than the so-
called “identical” toys from an assembly line or “identical” twins in a baby carriage.  
6 If at this point the reader raises an objection that there is an inconsistency in saying that quantum 
mechanics will only answer questions about things we can measure but quantum mechanics cannot 
explain the process of measurement, the reader would be quite justified in doing so! 



6  Chapter 1 Introduction 

propagate with the particles), and that, despite its apparent absurdities, quantum mechanics 
may well be a complete theory in this sense.  

It also appears that quantum mechanics is “non-local”: two particles can be so “entangled” 
quantum mechanically that measuring one of them can apparently instantaneously change the 
state of the other one, no matter how far away it is (though it is not apparently possible to use 
such a phenomenon to communicate information faster than the velocity of light).7  

Despite all its absurdities and contradictions of common sense, and despite the initial disbelief 
and astonishment of each new generation of students, quantum mechanics works. As far as we 
know, it is never wrong; we have made no experimental measurement that is known to 
contradict quantum mechanics, and there have been many exacting tests. Quantum mechanics 
is both stunningly radical and remarkably right. It is an astonishing intellectual achievement. 

The story of quantum mechanics itself is far from over. We are still trying to understand 
exactly what are all the elementary particles and just what are the implications of such theories 
for the nature of the universe.8 Many researchers are working on the possibility of using some 
of the strange possibilities of quantum mechanics for applications in handling information 
transmission. One example would send messages whose secrecy was protected the laws of 
quantum physics, not just the practical difficulty of cracking classical codes. Another example 
is the field of quantum computing, in which quantum mechanics might allow us to solve 
problems that would be too hard ever to be solved by any conventional machine.  

1.3 Using quantum mechanics 

At this point, the poor student may be about to give up in despair. How can one ever 
understand such a bizarre theory? And if one cannot understand it, how can one even think of 
using it? Here is the good news: whether we think we understand quantum mechanics or not, 
and whether there is yet more to discover about how it works, quantum mechanics is 
surprisingly easy to use.  

The prescriptions for using quantum mechanics in a broad range of practical problems and 
engineering designs are relatively straightforward. They use the same mathematical techniques 
most engineering and science students will already have mastered to deal with the “classical” 
world9. Because of a particular elegance in its mathematics10, quantum mechanical calculations 
can actually be easier than those in many other fields.  

The main difficulty the beginning student has with quantum mechanics lies in knowing which 
of our classical notions of the world have to be discarded, and what new notions we have to 

                                                           
7 This non-locality is often known through the original “EPR” thought experiment or paradox proposed 
by Einstein, Podolsky and Rosen. 
8 Such theories require relativistic approaches that are unfortunately beyond the scope of this book. 
9 In the end, most calculations require performing integrals or manipulating matrices. Many of the 
underlying mathematical concepts are ones that are quite familiar to engineers used to Fourier analysis, 
for example, or other linear transforms. 
10 Quantum mechanics is based entirely and exactly on linear algebra. Unlike most other uses of linear 
algebra, the fundamental linearity of quantum mechanics is apparently not an approximation.  
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use to replace them.11 The student should expect to spend some time in disbelief and conflict 
with what is being asserted in quantum mechanics – that is entirely normal! In fact, a good 
fight with these propositions is perhaps psychologically necessary, like the clarifying catharsis 
of an old-fashioned bar-room brawl.  

And there is a key point that simplifies all the absurdities and apparent contradictions: 
provided we only ask questions about quantities that can be measured, there are no 
philosophical problems that need worry us, or at least that would prevent us from calculating 
anything that we could measure.12 As we use quantum mechanical principles in tangible 
applications, such as electronic or optical devices and systems, the apparently bizarre aspects 
become simply commonplace and routine. The student may soon stop worrying about quantum 
mechanical tunneling and Heisenberg’s uncertainty principle. In the foreseeable future, such 
routine comprehension and acceptance may also extend to concepts such as non-locality and 
entanglement as we press them increasingly into practical use. 

Understanding quantum mechanics does certainly mark a qualitative change in one’s view of 
how the world actually works.13 That understanding gives the student the opportunity to apply 
this knowledge in ways that others cannot begin to comprehend14. Whether the goal is basic 
understanding or practical exploitation, learning quantum mechanics is, in this author’s 
opinion, certainly one of the most fascinating things one can do with one’s brain. 

                                                           
11 The associated teaching technique of breaking down the student’s beliefs and replacing them with the 
professor’s “correct” answers has a lot in common with brainwashing! 
12 This philosophical approach of only dealing with questions that can be answered by measurement (or 
that are purely logical questions within some formal system of logic), and regarding all other questions as 
meaningless, is essentially what is known in the philosophical world as “logical positivism”. It is the 
most common approach taken in dealing with quantum mechanics, at least at the elementary 
philosophical level, and, by allowing university professors to dismiss most student questions as 
meaningless, saves a lot of time in teaching the subject! 
13 It is undoubtedly true that, if one does not understand quantum mechanics, one does not understand 
how the world actually works. It may also, however, be true that, even if one does understand quantum 
mechanics, one still may not understand how the world works. 
14 Despite the inherent sense of superiority such an understanding may give the student, it is, however, as 
many physicists have already regrettably found, not particularly useful to point this out at parties. 



Chapter 2  
 
Waves and quantum mechanics – 
Schrödinger’s equation 

Prerequisites: Appendix A Background mathematics. Appendix B Background physics. 

If the world of quantum mechanics is so different from everything we have been taught before, 
how can we even begin to understand it? Miniscule electrons seem so remote from what we 
see in the world around us that we do not know what concepts from our everyday experience 
we could use to get started. There is, however, one lever from our existing intellectual toolkit 
that we can use to pry open this apparently impenetrable subject, and that lever is the idea of 
waves. If we just allow ourselves to suppose that electrons might be describable as waves, and 
follow the consequences of that radical idea, the subject can open up before us. Astonishingly, 
we will find we can then understand a large fraction of those aspects of our everyday 
experience that can only be explained by quantum mechanics, such as color and the properties 
of materials. We will also be able to engineer novel phenomena and devices for quite practical 
applications. 

On the face of it, proposing that we describe particles as waves is a strange intellectual leap in 
the dark. There is apparently nothing in our everyday view of the world to suggest we should 
do so. Nevertheless, it was exactly such a proposal historically (de Broglie’s hypothesis) that 
opened up much of quantum mechanics. That proposal was made before there was direct 
experimental evidence of wave behavior of electrons. Once that hypothesis was embodied in 
the precise mathematical form of Schrödinger’s wave equation, quantum mechanics took off.  

Schrödinger’s equation remains to the present day one of the most useful relations in quantum 
mechanics. Its most basic application is to model simple particles that have mass, such as a 
single electron, though the extensions of it go much further than that. It is also a good example 
of quantum mechanics, exposing many of the more general concepts. We will use these 
concepts as we go on to more complicated systems, such as atoms, or to other quite different 
kinds of particles and applications, such as photons and the quantum mechanics of light. 
Understanding Schrödinger’s equation is therefore a very good way to start understanding 
quantum mechanics. In this Chapter, we introduce the simplest version of Schrödinger’s 
equation – the time-independent form – and explore some of the remarkable consequences of 
this wave view of matter. 

2.1 Rationalization of Schrödinger’s equation 

Why do we have to propose wave behavior and Schrödinger equation for particles such as 
electrons? After all, we are quite sure electrons are particles, because we know that they have 
definite mass and charge. And we do not see directly any wave-like behavior of matter in our 



 2.1 Rationalization of Schrödinger’s equation 9 

everyday experience. It is, however, now a simple and incontrovertible experimental fact that 
electrons can behave like waves, or at least in some way are “guided” by waves. We know this 
for the same reasons we know that light is a wave – we can see the interference and diffraction 
that are so characteristic of waves. At least in the laboratory, we see this behavior routinely. 

We can, for example, make a beam of electrons by applying a large electric field in a vacuum 
to a metal, pulling electrons out of the metal to create a monoenergetic electron beam (i.e., all 
with the same energy). We can then see the wave-like character of electrons by looking for the 
effects of diffraction and interference, especially the patterns that can result from waves 
interacting with particular kinds or shapes of objects.  

One common situation in the laboratory is, for example, to shine such a beam of electrons at a 
crystal in a vacuum. Davisson and Germer did exactly this in their famous experiment in 1927, 
diffracting electrons off a crystal of nickel. We can see the resulting diffraction if, for example, 
we let the scattered electrons land on a phosphor screen as in a television tube (cathode ray 
tube); we will see a pattern of dots on the screen. We would find that this diffraction pattern 
behaved rather similarly to the diffraction pattern we might get in some optical experiment; we 
could shine a monochromatic (i.e., single frequency) light beam at some periodic structure1 
whose periodicity was of a scale comparable to the wavelength of the waves (e.g., a diffraction 
grating). The fact that electrons behave both as particles (they have a specific mass and a 
specific charge, for example) and as waves is known as a “wave-particle duality.”2 

The electrons in such wave diffraction experiments behave as if they have a wavelength 

 h
p

λ =  (2.1) 

where p  is the electron momentum, and h  is Planck’s constant 

 346.626 10 Joule secondsh −≅ × ⋅ .  

(This relation, Eq. (2.1), is known as de Broglie’s hypothesis). For example, the electron can 
behave as if it were a plane wave, with a “wavefunction” ψ, propagating in the z direction, and 
of the form3 

 ( )exp 2 /izψ π λ∝ . (2.2) 

If it is a wave, or is behaving as such, we need a wave equation to describe the electron. We 
find empirically4 that the electron behaves like a simple scalar wave (i.e., not like a vector 
wave, such as electric field, E, but like a simple acoustic (sound) wave with a scalar amplitude; 
in acoustics the scalar amplitude could be the air pressure). We therefore propose that the 
electron wave obeys a scalar wave equation, and we choose the simplest one we know, the 

                                                           
1 I.e., a structure whose shape repeats itself in space, with some spatial “period” or length. 
2 This wave-particle duality is the first, and one of the most profound, of the apparently bizarre aspects of 
quantum mechanics that we will encounter. 
3 We have chosen a complex wave here, exp(2 / )izπ λ , rather than a simpler real wave, such as 
sin(2 / )zπ λ  or cos(2 / )zπ λ , because the mathematics of quantum mechanics is set up to require the use 
of complex numbers. The choice does also make the algebra easier. 
4 At least in the absence of magnetic fields or other magnetic effects. 
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“Helmholtz” wave equation for a monochromatic wave. In one dimension, the Helmholtz 
equation is 

 2
2

d k
dz
ψ ψ= −  (2.3) 

This equation has solutions such as sin(kz), cos(kz), and exp(ikz) (and sin(-kz), cos(-kz), and 
exp(-ikz)), that all describe the spatial variation in a simple wave. In three dimensions, we can 
write this as  

 2 2kψ ψ∇ = −  (2.4) 

where the symbol 2∇  (known variously as the Laplacian operator, “del squared”, and “nabla”, 
and sometimes written Δ ) means 

 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂
, (2.5) 

where x, y, and z are the usual Cartesian coordinates, all at right angles to one another. This has 
solutions such as sin(k.r), cos(k.r), and exp(ik.r) (and sin(-k.r), cos(-k.r), and exp(-ik.r)), 
where k and r are vectors. The wavevector magnitude, k, is defined as 

 2 /k π λ=  (2.6) 

or, equivalently, given the empirical wavelength exhibited by the electrons (de Broglie’s 
hypothesis, Eq. (2.1)) 

 /k p= =  (2.7) 

where 

 34/ 2 1.055 10 Joule secondsh π −= ≅ × ⋅=   

(a quantity referred to as “h bar”). With our expression for k  (Eq. (2.7)), we can rewrite our 
simple wave equation (Eq. (2.4)) as 

 2 2 2pψ ψ− ∇ ==  (2.8) 

We can now choose to divide both sides by 2 om , where, for the case of the electron, om  is the 
free electron rest mass 

 319.11 10 kgom −≅ ×   

to obtain 
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2

2 2o o

p
m m

ψ ψ− ∇ =
=  (2.9) 

But we know for Newtonian classical mechanics, where op m v=  (with v as the velocity), that 

 
2

kinetic energy of an electron
2 o

p
m

≡  (2.10) 

and, in general, 

 Total energy ( )=Kinetic energy + Potential energy ( ( ))E V r  (2.11) 
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Note that this potential energy V(r) is the energy that results from the physical position (the 
vector r in the usual coordinate space) of the particle.5 

Hence, we can postulate that we can rewrite our wave equation (Eq. (2.9)) as 

 ( )( )
2

2

2 o

E V
m

ψ ψ− ∇ = − r=  (2.12) 

or, in a slightly more standard way of writing this, 

 ( )
2

2

2 o

V E
m

ψ ψ
⎛ ⎞

− ∇ + =⎜ ⎟
⎝ ⎠

r=  (2.13) 

which is the time-independent Schrödinger equation for a particle of mass om . 

Note that we have not “derived” Schrödinger’s equation. We have merely suggested it as an 
equation that agrees with at least one experiment. There is in fact no way to derive 
Schrödinger’s equation from first principles; there are no “first principles” in the physics that 
precedes quantum mechanics that predict anything like such wave behavior for the electron. 
Schrödinger’s equation has to be postulated, just like Newton’s laws of motion were originally 
postulated. The only justification for making such a postulate is that it works.6 

2.2 Probability densities 

We find in practice that the probability ( )P r  of finding the electron near any specific point r  
in space is proportional to the modulus squared, 2| ( ) |ψ r , of the wave ( )ψ r . The fact that we 
work with the squared modulus for such a probability is not so surprising. First of all, it assures 
that we always have a positive quantity (we would not know how to interpret a negative 
probability). Second, we are already aware of the usefulness of squared amplitudes with 
waves. The squared amplitude typically tells us the intensity (power per unit area) or energy 
density in a wave motion such as a sound wave or an electromagnetic wave. Given that we 
know that the intensity of electromagnetic waves also corresponds to the number of photons 
arriving per unit area per second, we would also find in the electromagnetic case that the 
probability of finding a photon at a specific point was proportional to the squared wave 
amplitude; if we chose to use complex notation to describe an electromagnetic wave, we would 
find that we would use the modulus squared of the wave amplitude to describe the wave 
intensity, and hence also the probability of finding a photon at a given point in space.7  

                                                           
5 Though the symbol V is used, it does not refer to a voltage, despite the fact that the potential energy can 
be (and often is) an electrostatic potential. It (and other energies in quantum mechanical problems) is 
often expressed in electron-volts, this being a convenient unit of energy, but it is always an energy, not a 
voltage. 
6 The reader should get used to this statement. Again and again, we will simply postulate things in 
quantum mechanics, with the only justification being that it works. 
7 Though the analogy between electromagnetic waves and quantum mechanical wave amplitudes may be 
helpful here, the reader is cautioned not to take this too far. The wave amplitude in a classical wave, such 
as an acoustic wave or the classical description of electromagnetic waves, is a measurable and 
meaningful quantity, such as air pressure or electric field (which in turn describes the actual force that 
would be experienced by a charge). The wave amplitude of a quantum mechanical wave does not 
describe any real quantity, and it is actually highly doubtful that it has any meaning at all other than as a 
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The fact that the probability is given by the modulus squared of some quantity, in this case the 
wavefunction ψ, leads us also to call that quantity the “probability amplitude” or “quantum 
mechanical amplitude.” Note that this probability amplitude is quite distinct from the 
probability itself; to repeat, the probability is proportional to the modulus squared of the 
probability amplitude. The probability amplitude is one of those new concepts that is 
introduced in quantum mechanics that has little or no precedent in classical physics or, for that 
matter, classical statistics. For the moment, we think of that probability amplitude as being the 
amplitude of a wave of some kind; we will find later that the concept of probability amplitudes 
extends into quite different descriptions, well beyond the idea of quantum mechanical waves, 
while still retaining the concept of the modulus squared representing a probability.  

This use of probability amplitudes in quantum mechanics is an absolutely central concept, and 
a crucial but subtle one for the student to absorb. In quantum mechanics, we always first 
calculate this amplitude (here a wave amplitude) by adding up all contributions to it (e.g., all 
the different scattered waves in a diffraction experiment), and then take the squared modulus 
of the result to come up with some measurable quantity. We do not add the measurable 
quantities directly. The effect of adding the amplitudes is what gives us interference, allowing 
cancellation between two or more amplitudes, for example. We will not see such a cancellation 
phenomenon if we add the measurable quantities or probabilities from two or more sources 
(e.g., electron densities) directly. A good example to understand this point is the diffraction of 
electrons by two slits. 

2.3 Diffraction by two slits 

With our postulation of Schrödinger’s equation, Eq. (2.13), and our interpretation of 2| ( ) |ψ r  
as proportional to the probability of find the electron at position r, we are now in a position to 
calculate a simple electron diffraction problem, that of an electron wave being diffracted by a 
pair of slits8. We need some algebra and wave mechanics to set up this problem, but it is well 
worth the effort. This behavior is not only one we can use relatively directly to see and verify 
the wave nature of electrons; it is also a conceptually important “thought experiment” in 
understanding some of the most bizarre aspects of quantum mechanics, and we will keep 
coming back to it. 

We consider two open slits, separated by a distance s, in an otherwise opaque screen (see Fig. 
 2.1). We are shining a monochromatic electron beam of wavevector k at the screen, in the 

                                                                                                                                                         
way of calculating other quantities. A second very important difference is that, whereas a classical wave 
with higher intensity would be described by a larger amplitude of wave, in general the states of quantum 
mechanical systems with many electrons (or with many photons) cannot be described by quantum 
mechanical waves simply with larger amplitudes. Instead, the description of multiparticle systems 
involves products of the wave amplitudes of the waves corresponding to the individual particles, and 
sums of those products, in a much richer set of possibilities than a simple increase of the amplitude of a 
single wave. A third problem is that, in a proper quantum mechanical description of optics, there are 
many situations possible in which we have photons, but in which there is not anything very like the 
classical electromagnetic wave. Electromagnetic waves are not then actually analogous in a rigorous 
sense to the quantum mechanical wave that describes electron behavior. 
8 In optics, this apparatus is known as Young’s slits, demonstrated by Thomas Young in about 1803. It is 
a remarkable experiment that enables us both to see the wave nature directly, and also to measure the 
wavelength without having to have some object at the same size scale as the wavelength itself. An 
instrument on a size scale of the wavelength of light (less than one micron) would have been 
unimaginable in 1803.  
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direction normal to the screen. For simplicity, we presume the slits to be very narrow 
compared to both the wavelength 2 / kλ π=  and the separation s. We also presume the screen 
is far away from the slits for simplicity, i.e., oz s>> , where oz  is the position of the screen 
relative to the slits. 

For simplicity of analysis, we will regard the slits as essentially point sources9 of expanding 
waves, in the spirit of Huygens’ principle. We write could write these waves in the form 
exp( )ikr , where r is the radius from the source point10. We have therefore one source (slit) at 
x = s/2, and another at x = –s/2. The net wave should be the sum of the waves from these two 
sources. Remembering that in the x-z plane the equation of a circle of radius r centered about a 
point x a=  and 0z =  is 2 2 2( )r x a z= − + , the net wave at the screen is 

 ( ) ( ) ( )2 22 2exp / 2 exp / 2s o ox ik x s z ik x s zψ ⎡ ⎤ ⎡ ⎤∝ − + + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (2.14) 

where the first term corresponds to a wave expanding from the upper slit, and the second 
corresponds similarly with the wave from the lower slit. Note that we are adding the wave 
amplitudes here. If we presume we are only interested in the pattern on the screen for relatively 
small angles, i.e., ox z<< , then11  

 ( ) ( ) ( )2 2 22 2

2 2

/ 2 1 / 2 / / 2 / 2

/ 2 / 8 / 2
o o o o o

o o o o

x s z z x s z z x s z

z x z s z sx z

− + = + − ≅ + −

= + + −
 (2.15) 

and similarly for the other exponent (though with opposite sign for the term in s). Hence, using 
2cos( ) exp( ) exp( )i iθ θ θ= + − , we obtain 

 ( ) ( ) ( ) ( ) ( )exp cos / 2 exp cos /s o ox i ksx z i sx zψ φ φ π λ∝ =  (2.16) 

where φ is a real number ( 2 2( / 2 / 8 )o o ok z x z s zφ = + + ), so exp( )iφ  is simply a phase factor. 
Hence, on the screen,  

 ( ) ( ) ( )2 2 1cos / 1 cos 2 /
2s o ox sx z sx zψ π λ π λ∝ = +⎡ ⎤⎣ ⎦  (2.17) 

So, if we shine a beam of monoenergetic electrons at the slits, and put some phosphorescent 
screen (like our cathode ray tube screen) some distance behind the slits, we should expect to 
see a (co)sinusoidal interference pattern, or “fringes”, on the screen, with the fringes separated 
by a distance /s od z sλ= .12 This simple fringe pattern is somewhat idealized; with a more 

                                                           
9  To be strictly correct, we should actually consider them as line sources since they extend in the 
direction out of the paper in Fig.  2.1. To consider such line sources rigorously that would complicate our 
mathematics to no real benefit in this explanation, however. 
10 More rigorously, for spherically expanding waves, we ought to write them in the form exp( ) /ikr r  
because they must get weaker with distance, but since we are considering essentially one large distance 
for the position of the screen, and we can neglect the r in the denominator. 

11 Remember the power series expansion 1 1 / 2a a+ + +� …  for small a, which can be proved by 
Taylor (or Maclaurin) expansion. 
12 Note, incidentally, that because the distance zo is much greater than the slit separation, we can 
effectively measure the wavelength in such an experiment without ever having a measuring device that is 
the size of the wavelength, which is one of the other beauties of this experiment. 
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sophisticated diffraction model, and with finite width for the slits, the intensity of the fringes 
falls off for larger x, but the basic interference fringes we predict here will be observed near the 
axis as long as the slit separation is much larger than the slit width.  

s

slits screen

zo

electron
beam

brightness
on screen

x

ds

 
Fig.  2.1 A top view of diffraction from two slits, showing the form of the brightness of the 
interference pattern on a phosphorescent screen. 

The existence of these interference effects for the quantum mechanical amplitudes has some 
bizarre consequences that we simply cannot understand classically. For example, suppose that 
we block one of the slits so the electrons can only go through one slit. Then we would not see 
the interference fringes. Near the axis we would see a broad featureless band13 that is readily 
understood from wave diffraction from a single slit. Such a broad band is already difficult to 
explain based on a classical model of a particle; in a classical model, with the electron particles 
all traveling from left to right in straight lines, we would expect to see a relatively sharp spot 
on the screen. If we were determined to explain this broad band classically we might come up 
with some explanation, involving electrons bouncing off the edges of the slit, that would at 
least be qualitatively plausible (if ultimately incorrect). If we now uncover the second slit, 
however, we see something that cannot be explained by a classical particle picture – parts of 
the screen that were formerly bright now become dark (the minima of the (co)sinusoidal 
interference pattern described above). How can we explain that opening a second source of 
particles actually reduces the number of particles arriving at some point in the screen?  

We might try to argue that the particles from the second slit were somehow bouncing off the 
ones from the first slit, and hence avoiding some particular part of the screen because of these 
collisions. If we repeat the experiment with extremely low electron currents so that there are 
never two electrons in the apparatus at a given time, and take a time-exposure picture of the 
phosphorescent screen, we will, however, see exactly the same interference pattern emerge, 
and we cannot now invoke some explanation that involves particles colliding with one 

                                                           
13 The actual intensity diffraction pattern from a single slit of width w  is, in this simple Huygens 
diffraction model, of the form 2{[2 / ][sin( / 2 )]}o oz kx kxw z , which has a central “bright” band of width 
4 /oz kwπ , and progressively weaker bands each half this width. This band will be much larger in size 
than the interference fringe separation in the two slit interference experiment as long as the slit width is 
much less than the slit separation. Note, incidentally, that the function (sin ) /x x  is equal to 1 for 0x = . 
If the reader is not familiar with this function, also often known as the “sinc” function, now would be a 
good time to graph it and understand how it behaves (it will come up again later). 
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another.14 Hence we are forced even qualitatively to describe the behavior of the electrons in 
terms of some process involving interference of amplitudes, and we also find that the wave 
description postulated above does explain the behavior quantitatively.  

Though a “two-slit” diffraction experiment of exactly the form described here might be quite 
difficult to perform in practice with electrons, diffraction phenomena such as this can be seen 
quite readily with electrons. Such diffraction is routinely used as a diagnostic and 
measurement tool. Electrons can be accelerated by electric fields and, if necessary, focused 
using magnetic and electric techniques. The wavelength associated with such accelerated 
electrons can be very small (e.g., an Ångstrom (1 Å), which is 0.1 nm). Diffractive effects are 
particularly strong when the wavelength is comparable to the size of an object (e.g., 
comparable to the slit spacing, s, above). Electrons can diffract quite strongly off crystal 
surfaces, for example, where the spacings between the atoms are on the order of Ångstroms or 
fractions of a nanometer.  

One diagnostic technique, reflection high-energy electron diffraction (RHEED), for example, 
monitors the form of a crystal surface during the growth of crystalline layers; an electron beam 
incident at a shallow angle relative to the surface (i.e., nearly parallel with the crystal surface) 
is reflected and diffracted onto a phosphorescent screen to give a diffraction pattern 
characteristic of the precise form of the surface. Electron diffraction is also intrinsic to the 
operation of some kinds of electron microscope. In general, the fact that the electron 
wavelength can be so small means that electron microscopes can be used to view very small 
objects; it is practically difficult to image objects much smaller than a wavelength with any 
optical or wave-based technique because of diffractive effects, but the small wavelength 
possible in electron beams means that small objects or features can be seen. 

Problems 
 2.3.1  Suppose we have a screen that is opaque to electrons except for two thin slits separated by 5 nm. 

(We might imagine a plane of atoms with two missing rows of atoms, 5 nm apart, for example, as one 
way we might make such a structure.) We accelerate electrons, which are initially stationary, through 
1 V of potential. These electrons arrive at the back of the screen perpendicular to the surface. A 
phosphorescent surface (e.g., like a cathode ray tube screen) is placed 10 cm away from the other side 
of the screen and parallel to it. 

(i) What is the spatial period of the bright and dark stripes seen on the phosphorescent surface 
(i.e., the distance between the centers of the bright stripes)? 

(ii) What is the period of the stripes if we use protons (hydrogen nuclei) instead of electrons? 
(The mass of a proton is ~ 1.67 x 10-27 kg.) 

 2.3.2  In an electron diffraction experiment, consider a screen with a single vertical slit of finite width, d, 
in the x direction, “illuminated” from behind by a plane monochromatic electron wave of wavelength 
λ, with the wave fronts parallel to the plane of the slit (i.e., the wave is propagating perpendicularly 
to the screen). Presume that we take the simple “Huygens’ principle” model of diffraction, and, as 
above model the slit as a source of a spherically expanding (complex) wave (and hence each vertical 
line in the slit is a source of a circularly expanding wave).  

                                                           
14 Such experiments with single electrons and two slits raise other very interesting questions that probe 
the heart of the bizarre nature of quantum mechanics. Classically, we are tempted to ask, for any given 
electron passing through the slits to give one of the flashes on our screen that goes to make up the 
interference pattern over time on our photographic plate, which slit did the electron go through? In 
quantum mechanics that is apparently a meaningless question. Any attempt to measure which slit the 
electron goes through apparently destroys the interference pattern, so there is no measurable situation that 
corresponds to the question we wish to ask, and hence the question can be thrown out!  
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(a) Find an approximate analytic expression for the form of the wave amplitude (by “form” we 
mean here that you may neglect any constant factor multiplying the wave amplitude) at a plane a 
distance oz  from the screen (assuming oz d>> ). 

(b) For a slit of width d = 1 μm, with an electron wavelength of λ = 50 nm, plot the magnitude of 
the light intensity we would see on a phosphorescent screen placed 10 cm in front of the slit, as a 
function of the lateral distance in the x direction. Continue your plot sufficiently far in x to 
illustrate all of the characteristic behavior of this intensity. 

(c) Consider now two such slits in the screen, positioned symmetrically a distance 5 μm apart in the 
x direction, but with all other parameters identical to part (b) above. Plot the intensity pattern on 
the phosphorescent screen for this case. 

 [Notes: You may presume that, in the denominator, the distance r from a slit to a point on the screen 
is approximately constant at � or z  (though you must not make this assumption for the numerator in 
the calculation of the phase). You may also presume that for all x of interest on the screen, ox z<< , a 
so-called paraxial approximation. You will probably want to use a computer program or high-level 
mathematical computer package to plot the required functions. With this particular problem, you may 
find that you may want to avoid asking the program to calculate the amplitude or brightness at 
exactly 0x =  since there may be a formal (though not actual) problem with evaluating the function 
there.] 

2.4 Linearity of quantum mechanics: multiplying by a 
constant 

Note that, in Schrödinger’s equation (2.15), we could multiply both sides by a constant a and 
the equation would still hold. In other words, if ψ is a solution of Schrödinger’s equation, so 
also is aψ. This may seem a trivial property to point out, but the reason why this is possible is 
because Schrödinger’s equation is linear. The wavefunction only appears in first order (i.e., to 
the power one) in the equation; there are no second-order terms, such as 2ψ , or any other 
terms that are higher order in ψ. The linearity (in this particular sense) of equations in quantum 
mechanics is of profound importance and generality. As far as we understand it, all quantum 
mechanical equations are linear in this sense (i.e., linear in the quantum mechanical amplitude 
for which the equation is being solved).  

With classical fields, we often use linear equations, such as the differential equations that allow 
us to solve for small oscillatory motion of, say, a pendulum. In such a classical case, the linear 
equation is an approximation; a pendulum with twice the amplitude of oscillation will not 
oscillate at exactly the same frequency, for example. Hence we cannot take the solution 
derived at one amplitude of oscillation of the pendulum and merely scale it up for larger 
amplitudes of oscillation, except as a first approximation. We should emphasize right away, 
however, that, in quantum mechanics, this linearity of the equations with respect to the 
quantum mechanical amplitude is not an approximation of any kind; it is apparently an 
absolute property. Among other things, this linearity allows us to use the full power of linear 
algebra to handle the mathematics of quantum mechanics, a point to which we shall return later 
in some detail. 

Problems 
 2.4.1  Which of the following differential equations is linear, in the sense that, if some function ( )zψ  is a 

solution (and this may well be a different function for each equation below), so also is the function 
( ) ( )z a zφ ψ= , where a  is an arbitrary constant? Justify your answers. 

(i) ( ) ( ) ( ) 0
d z

z g z z
dz

ψ
ψ+ =  where ( )g z  is some specific function 
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(ii) ( ) ( ) ( ) 0
d z

z z
dz

ψ
ψ ψ+ =  

(iii) ( ) ( ) ( )
2

2

d z d z
b c z

dz dz
ψ ψ

ψ+ =  where b and c are constants. 

(iv) ( )3

3 1
d z

dz
ψ

=  

(v) ( ) ( )( ) ( ) ( )
2

2

2 1
d z d z

z g z
dz dz
ψ ψ

ψ ψ+ + =  where g is a constant 

[Note: you do not need to solve these equations for the function ( )zψ . Merely show that if ( )zψ  is a 
solution, then ( )a zψ  is or is not also a solution. Hint: is the equation for ( )zφ  identical to the 
equation for ( )zψ , or does a unavoidably appear in the equation for ( )zφ , meaning ( )zφ  is 
necessarily a solution of a different equation if we insist on arbitrary a?] 

2.5 Normalization of the wavefunction 

We have postulated above that the probability ( )P r of finding a particle near a point r in space 
is 2| ( ) |ψ∝ r . So that we can use the concept of probability in its exact statistical sense, we 
should be more precise about this definition. Specifically, let us define ( )P r  as the probability 
per unit volume of finding the particle near the point r ; ( )P r  can then rigorously be viewed 
as a “probability density”. Then, for some very small (infinitesimal) volume 3d r  around r,15 
the probability of finding the particle in that volume is 3 2 3( ) | ( ) |P d dψ∝r r r r . Presumably, 
we know that the particle is somewhere in the total volume of interest. Hence, the sum of such 
probabilities, considering all possible such infinitesimal volumes, should equal unity, i.e.,  

 ( ) 3 1P d =∫ r r  (2.18)  

where the integral is over the whole volume of interest. In general, unless we have been very 
cunning or very lucky, we will find that our first attempt at solving Schrödinger’s equation will 
lead to a solution ψ for which 2 3| ( ) | 1dψ∫ ≠r r . This integral will, however, be real (because it 
is an integral of a real quantity, 2| ( ) |ψ r ), so we will in general have 

 ( ) 2 3
2

1d
a

ψ =∫ r r  (2.19) 

where a is some number (possibly complex).16 But we know from the discussion above on 
linearity that, if ψ is a solution, so also is N aψ ψ= , and we now have  

 ( ) 2 3 1N dψ =∫ r r  (2.20) 

                                                           
15 Here d3r is just a shorthand for the volume element dxdydz (in conventional Cartesian coordinates x, y, 
and z)  
16 Functions that can be normalized in this way, i.e., that give a finite answer for an integral of their 
squared modulus, are sometimes referred to as “square integrable”, or, slightly more specifically in 
mathematical language, as being L2 functions. Here the “L” refers to the name Lebesgue, and the 
superscript “2” refers to the fact that we are talking about an integral of the square of the function. The 
“Lebesgue” in turn refers to a formal method of integration that is more tolerant to some kinds of badly 
behaved functions than the “Riemann” integration that we normally perform, though gives the same 
answers for all normal situations. These details will not concern us here, and we mention these various 
terms just in case the reader comes across them in other contexts. See Appendix A. 
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This wavefunction solution Nψ  is referred to as a “normalized” wavefunction, and now there 
is a direct correspondence between probability density and the modulus squared of the 
wavefunction, i.e., 2( ) | ( ) |NP ψ=r r . The use of such normalized wavefunctions is quite 
convenient in the algebra of quantum mechanics. 

Note, incidentally, that our plane wave, Eq. (2.2), cannot always be normalized in this way if 
we take the space of interest to be infinite. There is no way we can normalize a plane wave 
over an infinite space, for example, using this definition of normalization. Such problems can 
often be removed by considering that the particle is confined to some finite box, even if we 
take that box to be very large.17  

2.6 Particle in an infinitely deep potential well (“particle 
in a box”) 

Now that we have introduced the (time-independent) Schrödinger equation and some basic 
concepts like probability density and wavefunction normalization, we can proceed to solve 
some simple problems, starting with the so-called “particle in a box”. In following Sections, 
we will look at solutions for waves incident on steps, the particle in a box of finite depth, the 
harmonic oscillator, and various problems related to linearly varying potentials. These 
problems, and the hydrogen atom problem to which we will return in Chapter 10, are some of 
the main, exactly solvable problems in quantum mechanics. There are, unfortunately, relatively 
few other useful problems that can be solved exactly. Nearly all other practical problems have 
to be solved by approximation techniques, to which we will return in Chapter 6.18  

The exactly solvable problems do give us much insight into quantum mechanics in general, 
and we will use these problems to illustrate a number of basic concepts in quantum mechanics. 
These problems are also at the root of the solution of many other actual practical problems. 
The particle-in-a-box problem is used routinely to design the so-called “quantum well” 
optoelectronic structures that are at the core of a large fraction of modern semiconductor 
optoelectronic devices, for example. The harmonic oscillator problem allows us to understand 
vibrating systems of many kinds, including, for example, acoustic vibrations in solids, and also 
electromagnetic waves, where it leads to the concept of photons (Chapter 15). The linearly 
varying potential is important for understanding the quantum mechanics of accelerating 
particles in fields, and has direct practical uses in semiconductor optical modulators and biased 
semiconductor devices generally. 

We consider the simple problem of a particle, of mass m, with a spatially-varying potential 
V(z) in the z direction. We will not consider yet the fact that in a real structure the particle may 
also be able to move in the x and y directions. In fact, for a simple problem like a particle in a 
cubic box (or, more generally, a cuboidal box, i.e, one with rectangular faces), that motion can 
be considered separately and its consequences added in later.19  

                                                           
17 We will return to another way of normalizing functions like the plane wave in Section 5.4. 
18 The fact that there are only a few problems that are exactly solvable in quantum mechanics is more a 
statement about the limitations of mathematics than about the limitations of quantum mechanics. There 
are also relatively few problems that can be solved exactly in classical mechanics. 
19 Strictly, such a simple quantum-mechanical problem is "separable" mathematically in the three 
directions. 
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The (time-independent) Schrödinger equation for the particle’s motion in the z-direction in our 
“one-dimensional” box is, then, the simple differential equation 

 
( ) ( ) ( ) ( )

22

22
d z

V z z E z
m dz

ψ
ψ ψ− + =

=  (2.21) 

where E is the energy of the particle and ( )zψ is the wavefunction. 

We are particularly interested in the case where the potential is a simple “rectangular” potential 
well (sometimes known also as a “square” potential well), i.e., one in which the potential 
energy is constant inside the well and rises abruptly at the walls. We choose the thickness of 
the well to be Lz. We can choose the value of V in the well to be zero for simplicity (this is 
only a choice of energy origin, and makes no difference to the physical meaning of the final 
results).  

On either side of the well (i.e., for z < 0 or z > Lz), the potential, V, for this first problem, is 
presumed infinitely high. (Such a structure is sometimes called an infinite potential well.) 
Because these potentials are infinitely high, but the particle’s energy E is presumably finite, we 
presume there can be no possibility of finding the particle in these regions outside the well. 
Hence the wavefunction ψ must be zero inside the walls of the well, and, to avoid a 
discontinuity in the wavefunction, we therefore reasonably ask that the wavefunction must also 
go to zero inside the well at the walls20. Formally putting this "infinite well" potential into 
Eq. (2.21), we have 

 
( ) ( )

22

22
d z

E z
m dz

ψ
ψ− =

=  (2.22) 

within the well, subject to the boundary conditions  

 0; 0, zz Lψ = =  (2.23)  

The solution to Eq. (2.22) is very simple. The reader may well recognize the form of the 
equation (2.22). The general solution to this equation can be written 

 ( ) ( ) ( )sin cosz A kz B kzψ = +  (2.24) 

where A  and B  are constants, and 22 / =k mE= . The requirement that the wavefunction 
goes to zero at 0z =  means that 0B = . Because we are now left only with the sine part of 
(2.24), the requirement that the wavefunction goes to zero also at zz L=  then means that 

/ zk n Lπ= , where n is an integer. Hence, we find that the solutions to this equation are, for the 
wave, 

 ( ) sinn n
z

n zz A
L
πψ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2.25) 

where An is a constant that can be any real or complex number, with associated energies  

                                                           
20 If the reader is bothered by the arguments here to justify these boundary conditions based on infinities 
(and is perhaps mathematically troubled by the discontinuities we are introducing in the wavefunction 
derivative), the reader can be assured that, if we take a well of finite depth, and solve that problem with 
boundary conditions that are more mathematically reasonable, the present “infinite well” results are 
recovered in the limit as the walls of the well are made arbitrarily high. 
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22

2n
z

nE
m L

π⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=  (2.26) 

We can restrict n to being a positive integer, i.e., 

 1, 2,n = …  (2.27) 

for the following reasons. Since sin( ) sin( )a a− = −  for any real number a, the solutions with 
negative n are actually the same solutions as those with positive n; all we would have to do to 
turn one into the other is change the sign of the constant nA , and the sign of that is arbitrary 
anyway. The solution with 0n =  is a trivial case; the wavefunction would be zero everywhere. 
If the wavefunction is zero everywhere, the particle is simply not anywhere, so the 0n =  
solution can be discarded. The resulting energy levels and wavefunctions are sketched in Fig. 
 2.2.  

Solutions such as these, with a specific set of allowed values of a parameter (here energy) and 
with a particular function solution associated with each such value, are called eigen solutions; 
the parameter value is called the eigenvalue, the equation that gives rise to such solutions (here 
Eq. (2.21)) is called the eigenequation and the function is called the eigenfunction. It is 
possible to have more than one eigenfunction associated with a given eigenvalue, a 
phenomenon known as degeneracy. The number of such states with the same eigenvalue is 
sometimes called the degeneracy. Here, since the parameter is an energy, we can also call these 
eigenvalues the eigenenergies, and can refer to the eigenfunctions as the energy 
eigenfunctions. 

Incidentally, we can see that the eigenfunctions in Fig.  2.2 have a very definite symmetry with 
respect to the middle of the well. The lowest (n = 1) eigenfunction is the same on the right as 
on the left. Such a function is sometimes called an “even” function, or, equivalently, is said to 
have “even parity”. The second (n = 2) eigenfunction is an exact inverted image, with the 
value at any point to the right of the center being exactly minus the value of the mirror image 
point on the left of the center. Such a function is correspondingly called an “odd” function or 
has “odd parity”. For this particular problem, the functions alternate between being even and 
odd, and all of the solutions are either even or odd, i.e., all the solutions have a definite parity. 
It is quite possible for solutions of quantum mechanical problems not to have either odd or 
even behavior; such a situation could arise if the form of the potential was not itself symmetric. 
In situations where the potential is symmetric, however, such odd and even behavior is very 
common, and can be quite useful since it can enable us to conclude that certain integrals and 
other quantum mechanical calculated properties will vanish exactly, for example. 

n=1

n=2

n=3

energy wavefunction

Lz  
Fig.  2.2. Sketch of the energy levels in an infinitely deep potential well and the associated 
wavefunctions. 
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For completeness in this solution, we can normalize the eigenfunctions. We have 
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∫  (2.28) 

To have this integral equal one for a normalized wavefunction, we therefore should choose 
1/ 2(2 / )n zA L= . Note that nA  can in general be complex, and it should be noted that the 

eigenfunctions are arbitrary within a constant complex factor; i.e., even the normalized 
eigenfunction can be arbitrarily multiplied by any factor exp( )iθ  (where θ  is real). By 
convention, here we choose these eigenfunctions to be real quantities for simplicity, so the 
normalized wavefunctions become 

 ( ) 2 sinn
z z

n zz
L L

πψ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2.29) 

Now we have mathematically solved this problem. The question is, what does this solution 
mean physically? We started out here by considering the known fact that electrons behave in 
some ways like propagating waves, as shown by electron diffraction effects. We constructed a 
simple wave equation that could describe such effects for monochromatic (and hence 
monoenergetic) electrons. What we have now found is that, if we continue with this equation 
that assumes the particle has a well-defined energy and put that particle in a box, there are only 
discrete values of that energy possible, with specific wavefunctions associated with each such 
value of energy. We are now going beyond the wave-particle duality we discussed before. This 
problem is showing us our first truly “quantum” behavior in the sense of the discreteness (or 
“quantization”) of the solutions and the “quantum” steps in energy between the different 
allowed states.  

There are several basic points about quantum confinement that emerge from this "particle-in-a-
box" behavior that are qualitatively generally characteristic of such systems where we confine 
a particle in some region, and are very different from what we expect classically.  

First, there is only a discrete set of possible values for the energy (Eq. (2.26)).  

Second, there is a minimum possible energy for the particle, which is above the energy of 
the classical "bottom" of the box. In this problem, the lowest energy corresponds to n = 1, 
with the corresponding energy being 2 2

1 ( / 2 )( / )zE m Lπ= = . This kind of minimum energy 
is sometimes called a "zero point" energy.  

Third, the particle, as described by the modulus squared, 2
nψ , of the appropriate 

eigenfunction, is not uniformly distributed over the box, and its distribution is different for 
different energies. It is never found very near to the walls of the box. In general, the 
probability of finding the electron at a particular point in the box obeys a kind of standing 
wave pattern. In the lowest state ( 1n = ), it is most likely to be found near the center of the 
box. In higher states, there are points inside the box, away from the walls and 
corresponding to the other zeros of the sinusoidal eigenfunctions, where the particle will 
never be found.  

All of these behaviors are very unlike the classical behavior of a classical particle (e.g., a 
billiard ball) inside a box.  

We can also note that each successively higher energy state has one more “zero” in the 
eigenfunction (i.e., one more point where the function changes sign from positive to negative 
or vice versa). This is a very common behavior in quantum mechanics.  
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We can use this simple example to get some sense of orders of magnitude in quantum 
mechanics. Suppose we confine an electron in a box that is 5 Å (0.5 nm) thick, a characteristic 
size for an atom or a unit cell in a crystal. Then the first allowed level for the electron is found 
at 2 10 2 19

1 ( / 2 )( / 5 10 ) 2.4 10 JoE m π − −= × ≅ ×= .  

In practice in quantum mechanics, it is usually inconvenient to work with energies in Joules. A 
more useful practical unit is the electron-Volt (eV). An electron-Volt is the amount of energy 
acquired by an electron in moving through an electric potential change of 1 V. Since the 
magnitude of the electronic charge is 

 191.602 10e −≅ ×  C 

and the energy associated with moving such a charge through an electrostatic potential change 
of U is e U× , then one electron-volt (1 eV) corresponds to an energy 191.602 10−≅ × J. With 
this practical choice of energy units, the first allowed level in our 5 Å wide well is 

-192.4 10 J 1.5 eV× ≅ above the energy of the bottom of the well. The separation between the 
first and second allowed energies ( 2 1 13E E E− = ) is ~ 4.5 eV, which is of the same magnitude 
as major energy separations between levels in an atom. (Of course, this one dimensional 
particle-in-a-box model is hardly a good one for an atom, but it does give a sense of energy 
and size scales.)  

Problems 
 2.6.1  An electron is in a potential well of thickness 1 nm, with infinitely high potential barriers on either 

side. It is in the lowest possible energy state in this well. What would be the probability of finding the 
electron between 0.1 and 0.2 nm from one side of the well? 

 2.6.2  Which of the following functions have a definite parity relative to the point 0x =  (i.e., we are 
interested in their symmetry relative to 0x = )? For those that have a definite parity, state whether it 
is even or odd. 

(i) ( )sin x  

(ii) ( )exp ix  

(iii) ( )( )x a x a− +  

(iv) ( ) ( )exp expix ix+ −  

(v) ( )2 1x x −  

 2.6.3  Consider the problem of an electron in a one-dimensional “infinite” potential well of width zL  in 
the z  direction (i.e., the potential energy is infinite for 0z <  and for zz L> , and, for simplicity, zero 
for other values of z ). For each of the following functions, in exactly the form stated, is this function 
a solution of the time-independent Schrödinger equation? 

(a) ( )sin 7 / zz Lπ  

(b) ( )cos 2 / zz Lπ  

(c) ( ) ( )0.5sin 3 / 0.2sin /z zz L z Lπ π+  

(d) ( )exp( 0.4 )sin 2 / zi z Lπ−  

 2.6.4  Consider an electron in a three-dimensional cubic box of side length zL . The walls of the box are 
presumed to correspond to infinitely high potentials.  

 (i) Find an expression for the allowed energies of the electron in this box. Express your result in 
terms of the lowest allowed energy, 1E∞ , of a particle in a one-dimensional box.  

(ii) State the energies and describe the form of the wavefunctions for the 4 lowest energy states. 
(iii) Are any of these states degenerate? If so, say which, and also give the degeneracy associated 

with any of the eigenenergies you have found that are degenerate. 
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 [Note: This problem can be formally separated into three uncoupled one-dimensional equations, one 
for each direction, with the resulting wavefunction being the product of the three solutions, and the 
total energy being the sum of the three energies. This is easily verified by presuming this separation 
does work and finding that the product wavefunction is indeed a solution of the full three-
dimensional equation.] 

2.7 Properties of sets of eigenfunctions 

Completeness of sets – Fourier series 

As we can see from Eq. (2.29), the set of eigenfunctions for this problem is the set of sine 
waves that includes all the harmonics of a sine wave that has exactly one half period within the 
well (i.e., sine waves with two half periods (one full period), three half periods, etc.). This set 
of functions has a very important property, very common in the sets of functions that arise in 
quantum mechanics, called “completeness”. We will discuss completeness in greater detail 
later, but we can illustrate it now through the relation of this particular set of functions to 
Fourier series. 

The reader may well be aware that we could describe, for example, the movement of the 
loudspeaker in an audio system either in terms of the actual displacements of the loudspeaker 
cone at each successive instant in time, or, equivalently, in terms of the amplitudes (and 
phases) of the various frequency components that make up the music being played. These two 
descriptions are entirely equivalent, and both are “complete”; any conceivable motion can be 
described by the list of actual positions in time (so that approach is “complete”), or 
equivalently by the list of the amplitudes and phases of the frequency components.  

The calculation of the frequency components required to describe the motion from the actual 
displacements in time is called Fourier analysis, and the resulting way of representing the 
motion in terms of these frequency components is called a Fourier series. 

There are a few specific forms of Fourier series21. For a situation where we are interested in the 
behavior from time zero to time ot , an appropriate Fourier series to represent the loudspeaker 
displacement, ( )f t  would be 

 ( )
1

sinn
n o

n tf t a
t
π∞

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (2.30) 

where the na are the relevant amplitudes.22 

We can see now that we could similarly represent any function ( )f z  between the positions 
0z =  and zz L=  as what we will now call, using a more general notation, an “expansion in 

the set of (eigen)functions”, ( )n zψ  from Eq. (2.29), 

                                                           
21 Fourier series can be constructed with combinations of sine functions, combinations of cosine 
functions, combinations of sine and cosine functions, and combinations of complex exponential 
functions.  
22 Strictly, with this choice of sine Fourier series, we have to exclude the end points t = 0 and t = to, 
because there the function would have to be zero if we use this expansion. We can use this expansion to 
deal with functions that have finite values at any finite distance from these end points, however, so if we 
exclude the end points, this expansion is complete.  
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 ( ) ( )
1 1

sinn n n
n nz

n zf z a b z
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∞ ∞

= =
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= =⎜ ⎟
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∑ ∑  (2.31) 

where / 2n z nb L a=  to account for our formal normalization of the nψ . The coefficients an 
are the so-called “expansion coefficients” in the expansion of the function ( )f z  in the 
functions sin( / )zn z Lπ . Similarly the coefficients bn are the expansion coefficients of ( )f z  in 
the functions ( )n zψ . 

Thus we have found that we can express any function between positions 0z =  and zz L=  as 
an expansion in terms of the eigenfunctions of this quantum mechanical problem. We justified 
this expansion through our understanding of Fourier analysis. There are many other sets of 
functions that are also complete, and we will return to generalize these concepts later.  

A set of functions such as the nψ  that can be used to represent an arbitrary function ( )f z  is 
referred to as a “basis set of functions” or, more simply, a “basis”. The set of coefficients 
(amplitudes), nb , would then be referred to as the “representation” of ( )f z  in the basis nψ . 
Because of the completeness of the set of basis functions nψ , this representation is just as 
good a one as the set of the amplitudes at every point z  between zero and zL  required to 
specify or “represent” the function ( )f z  in ordinary space.  

The eigenfunctions of differential equations are very often complete sets of functions. We will 
find quite generally that the sets of eigenfunctions we encounter in solving quantum 
mechanical problems are complete sets, a fact that turns out to be mathematically very useful, 
as we will see in later Chapters. 

Orthogonality of eigenfunctions 
The set of functions ( )n zψ  have another important property, which is that they are 
“orthogonal”. In this context, two functions ( )g z  and ( )h z are orthogonal23 (formally, on the 
interval 0 to zL ) if24 

 ( ) ( )
0

0
zL

g z h z dz∗ =∫  (2.32) 

It is easy to show for the specific nψ  sine functions (Eq. (2.29)) that 

 ( ) ( )
0

0
zL

n mz z dzψ ψ∗ =∫  for n m≠  (2.33) 

and hence that the different eigenfunctions are orthogonal to one another. Indeed, it is obvious 
from parity considerations, without performing the integral algebraically, that this integral will 
vanish if nψ  and mψ  have opposite parity; in such a case, the product function will have odd 
parity with respect to the center of the well, and the net integral of any odd function is zero.  
Hence all the cases where n is an even number and m is an odd number, or where n is an odd 
number and m is an even number, lead to a net zero integral. The other cases are not quite so 

                                                           
23 We formally presume that neither of these functions is zero everywhere (which would have made this 
orthogonality integral trivial). 
24 ( )g z∗  is the complex conjugate of ( )g z . This explicit use of the complex conjugate may seem 
redundant given that the specific eigenfunctions we have considered so far have all been real, but this 
gives a more general statement of the orthogonality condition. 
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obvious, but performing the actual integration shows zero net integral for all cases where 
n m≠ .25 For n = m, the integral reduces to the normalization integral already performed (Eq. 
(2.28)). Introducing the notation known as the Kronecker delta 

 
0,  
1

nm

nn

n mδ
δ

= ≠

=
 (2.34) 

we can therefore write  

 ( ) ( )
0

zL

n m nmz z dzψ ψ δ∗ =∫  (2.35) 

The relation Eq. (2.35) expresses both the fact that all different eigenfunctions are orthogonal 
to one another, and that the eigenfunctions are also normalized. A set of functions obeying a 
relation like Eq. (2.35) is said to be “orthonormal”, i.e., both orthogonal and normalized, and 
Eq. (2.35) is sometimes described as the orthonormality condition. Orthonormal sets turn out 
to be particularly convenient mathematically, so most basis sets are chosen to be orthonormal. 

The property of the orthogonality of different eigenfunctions is again a very common one in 
quantum mechanics, and is not at all restricted to this specific simple problem where the 
eigenfunctions are sine waves.  

Expansion coefficients 
The orthogonality (and orthonormality) of a set of functions makes it very easy to evaluate the 
expansion coefficients. Suppose we want to write the function ( )f x  in terms of a complete set 
of orthonormal functions ( )n xψ , i.e.,  

 ( ) ( )n n
n

f x c xψ= ∑  (2.36) 

In general, incidentally, it is simple to evaluate the expansion coefficients nc  in Eq. (2.36). 
Explicitly, multiplying Eq. (2.36) on the left by ( )m xψ ∗  and integrating, we have 
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∑ ∑∫  (2.37) 

Problems 
 2.7.1  Which of the following pairs of functions are orthogonal on the interval –1 to +1? 

(i) x, 2x  
(ii) x, 3x  
(iii) x, sin x  

                                                           
25 Note that sin( )sin( ) (1/ 2)[cos( ) cos( )n m n m n mθ θ θ θ= − − + ]. With / zz Lθ π= , the integration limits 
for θ become 0 to π. For a function cos pθ, except for p = 0, the function is either “odd” round about the 
middle of the integration interval (i.e., round about π/2), so its integral is zero, or the integration is over a 
complete number of periods of the cosine functions, so its integral is again zero. p = 0 occurs only for n 
= m in the first cosine term, and then the integration reduces to the normalization integral already 
performed.  
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(iv) x, ( )exp / 2i xπ  
(v) ( )exp 2 ixπ− , ( )exp 2 ixπ  

 2.7.2  Suppose we wish to construct a set of orthonormal functions so that we can use them as a basis set. 
We wish to use them to represent any function of x  on the interval between –1 and +1. We know 
that the functions 0 ( ) 1f x = , 1( )f x x= , 2

2 ( )f x x= , …, ( ) n
nf x x= , … are all independent, that is, 

we cannot represent one as a combination of the others, and in this problem we will form 
combinations of them that can be used as this desired orthonormal basis. 
(i) Show that not all of these functions are orthogonal on this interval. (You may prove this by 

finding a counter example.) 
(ii) Construct a set of orthogonal functions by the following procedure: 

a) Choose 0( )f x  as the (unnormalized) first member of this set, and normalize it to obtain the 
resulting normalized first member, 0 ( )g x . 

b) Find an (unnormalized) linear combination of 0 ( )g x  and 1( )f x  of the form 1 10 0( ) ( )f x a g x+  
that is orthogonal to 0 ( )g x  on this interval (this is actually trivial for this particular case), 
and normalize it to give the second member, 1( )g x , of this set. 

c) Find a linear combination of the form 2 20 0 21 1( ) ( ) ( )f x a g x a g x+ +  that is orthogonal to 
0 ( )g x , and 1( )g x  on this interval, and normalize it to obtain the third member, 2 ( )g x  of 

this set.  
d)  Write a general formula for the coefficient ija  in the 1i + th unnormalized member of this 

set. 
e) Find the normalized fourth member, 3( )g x , of this set, orthogonal to all the previous 

members. 
f)  Is this the only set of orthogonal functions for this interval that can be constructed from the 

powers of x? Justify your answer. 
[Note: The above kind of procedure is known as Gram-Schmidt orthogonalization, and you should 
succeed in constructing a version of the Legendre polynomials by this procedure.]  

2.8 Particles and barriers of finite heights 

Boundary conditions 

Thus far, we have only considered a potential V that is either zero or infinite, which led to very 
simple boundary conditions for the problem (the wavefunction was forced to be zero at the 
boundary with the infinite potential). We would like to consider problems with more realistic, 
finite potentials, though for simplicity of mathematical modeling we would still like to be able 
to deal with abrupt changes in potential, such as a finite potential step.26 

In particular, we would like to know what the boundary conditions should be on the 
wavefunction, ψ, and its derivative, /d dzψ , at such a step. We know from the basic theory of 
second-order differential equations that, if we know both of these quantities on the boundaries, 

                                                           
26 Any abrupt change in potential should really be regarded as unphysical. It is, however, practically 
useful to set up problems with such abrupt steps, essentially as simple models of more realistic systems 
with relatively steep changes in potential. We then, however, have to find mathematical constructions 
that get us out of the mathematical problems we have created by this abruptness, and these boundary 
conditions are such a construction. The choice of boundary conditions is really one that appears not to 
create any physical problems (such as losing particles or particle current), and would be a limiting case as 
a potential was made progressively more abrupt. The boundary conditions given here are not quite as 
absolute as one might presume, however. For example, if the mass of the particle varies in space (as does 
happen in some semiconductor problems), the boundary condition given here on the derivative of the 
wavefunction is not correct. The boundary condition of continuity of (1/m)(dψ/dz) is then often 
substituted instead of continuity of dψ/dz. 
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we can solve the equation. We are interested in solutions of Schrödinger’s equation, Eq. (2.21), 
for situations where V is presumably finite everywhere, and where the eigenenergy E is also a 
finite number. If E and V are to be finite, then, for ( )zψ  to be a solution to the equation, 

2 2/d dzψ  must also be finite everywhere. For 2 2/d dzψ  to be finite, 

  /d dzψ  must be continuous  (2.38) 

(if there were a jump in /d dzψ , 2 2/d dzψ  would be infinite at the position of the jump), and 
/d dzψ  must be finite (otherwise 2 2/d dzψ  could also be infinite, being a limit of a difference 

involving an infinite quantity). For /d dzψ  to be finite,  

 ψ must be continuous (2.39) 

These two conditions, Eqs. (2.38) and (2.39), will be the boundary conditions we will use to 
solve problems with finite steps in the potential. 

Reflection from barriers of finite height 

Let us first remind ourselves of what a classical particle, such as a ball, does when it 
encounters a finite potential barrier. If the barrier is abrupt, like a wall, the ball is quite likely 
to reflect off the wall, even if the kinetic energy of the ball is more than the potential energy it 
would have at the top of the wall. (We loosely refer to the potential energy the ball or particle 
would have at the top of the barrier as the “height” of the barrier, hence expressing this 
“height” in energy units (usually electron-volts) rather than distance units.) If the barrier is a 
smoothly rising one, such as a gentle slope, the ball will probably continue over the barrier if 
its kinetic energy exceeds the (potential energy) height of the barrier. We certainly would not 
expect that the ball could get to the other side of the barrier if its kinetic energy was less than 
the barrier height. We also would never expect that the ball could be found inside the barrier 
region in that case. The behavior of a quantum mechanical particle at a potential barrier is 
quite different. As we shall see, it both can be found within the barrier and can get to the other 
side of the barrier, even if its energy is less than the height of the potential barrier. 

We start by considering a barrier of finite height, Vo, but of infinite thickness, as shown in Fig. 
 2.3. For convenience, we choose the potential to be zero in the region to the left of the barrier 
(it would not matter if we chose it to be something different, since only energy differences 
actually matter in these kinds of quantum mechanical calculations). 

Energy

0

Vo

z = 0 z  
Fig.  2.3 Potential barrier of finite height, but infinite thickness. 

We presume that a quantum mechanical wave is incident from the left on the barrier, and we 
presume that the energy, E, associated with this wave, is positive (i.e., 0E > ). We are not 
going to be looking for eigenfunction solutions in this problem; we are merely considering 
what will happen to a monoenergetic particle wave as it interacts with the barrier, presuming 
that that the energy E that we will consider is a valid one for the system overall.  

We will also allow for possible reflection of the wave from the barrier into the region on the 
left. We can allow for both of these possibilities by allowing the wave on the left hand side to 
be the general solution of the wave equation in this region. That equation is the same as the Eq. 



28  Chapter 2  Waves and quantum mechanics – Schrödinger’s equation 

(2.22) we used above for the region inside the potential well, because in both cases the 
potential is presumed to be zero in this region. The general solution could be written as in Eq. 
(2.24), but here we choose instead to write the solution, leftψ , for 0z <  in terms of complex 
exponential waves 

 ( ) ( ) ( )exp expleft z C ikz D ikzψ = + −  (2.40) 

where we have, as before, 22 / =k mE= . Such a way of writing the solution can, of course, 
be exactly equivalent mathematically to that of Eq. (2.24).27 The complex exponential form is 
conventionally used to represent running waves. In the convention we will use, ( )exp ikz  
represents a wave traveling to the right (i.e., in the positive z  direction), and ( )exp ikz−  
represents a wave traveling to the left (i.e., in the negative z direction). The right traveling 
wave, ( )expC ikz , is the incident wave, and the left-traveling wave, ( )expD ikz− , represents 
the wave reflected from the barrier. 

Now let us presume that oE V< , i.e., we are presuming that the particle represented by the 
wave does not have enough energy classically to get over this barrier. Inside the barrier, the 
wave equation therefore becomes 

 ( )
2 2

22 o
d V E

m dz
ψ ψ−

= − −
=  (2.41) 

The mathematical solution of this equation is straightforward, being, for the wave, rightψ , on 
the right (i.e., for 0z > ) in the general form,  

 ( ) ( ) ( )exp expright z F z G zψ κ κ= + −  (2.42) 

where ( ) 2 1/ 2(2 / )om V Eκ = − = .  

We presume that 0F = . Otherwise the wave amplitude would increase exponentially to the 
right for ever, which does not appear to correspond to any classical or quantum mechanical 
behavior we see for particles incident from the left. (Also, the particle would never be found on 
the left because all of the probability amplitude would be arbitrarily far to the right because of 
the growing exponential.) Hence we are left with 

 ( ) ( )expright z G zψ κ= −  (2.43) 

Even this solution is strange. It proposes that the wave inside the barrier is not identically zero, 
but rather falls off exponentially as we move inside the barrier. Let us formally complete the 
mathematical solution here by using the boundary conditions (2.38) and (2.39). Continuity of 
the wavefunction, (2.39), gives us 

 C D G+ =  (2.44) 

and continuity of the derivative, (2.38), gives us 

 iC D G
k
κ

− =  (2.45) 

Addition of Eqs. (2.44) and (2.45) gives us 

                                                           

27 Formally B = C + D, A = - i(C – D). 
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Subtraction of Eqs. (2.44) and (2.45) gives us 

 
( )2 2o o
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− − −−
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+
 (2.47) 

Just as a check here, we find from Eq. (2.47) that 2/ 1D C = , so any incident particle is 
completely reflected. /D C  is, however, complex, which means that there is a phase shift on 
reflection from the barrier, an effect with no classical precedent or meaning.  

The most unusual aspect of this solution is the exponential decay of the wavefunction into the 
barrier. The fact that this exponential decay exists means that there must be some probability 
of finding the particle inside the barrier. This kind of behavior is sometimes called “tunneling” 
or “tunneling penetration”, by loose analogy with the classical idea that we could get inside or 
through a barrier that was too high simply by digging a tunnel. There is, however, little or no 
mathematical connection between the classical idea of a tunnel and this quantum mechanical 
process28. 

The wavefunction has fallen off to 1/ e  of its initial amplitude29 in a distance 1/κ . That 
distance is short when oE V<< , becoming longer as E  approaches oV ; the less is the energy 
deficit, oV E− , the longer is the tunneling penetration into the barrier.  

Let as look at some example numbers. Suppose that the barrier is Vo = 2 eV high and that we 
are considering incident electrons with 1 eV energy. Then 

  ( ) ( )231 19 34 92 9.1095 10 2 1 1.602 10 / 1.055 10 5 10κ − − −= × × × − × × × ≅ × m-1   

In other words, the attenuation length of the wave amplitude into the barrier (i.e., the length to 
fall to 1/e of its initial value) is 1/ 0.2 nm 2κ ≅ ≡ Å. Note that the probability density falls off 
twice as fast, i.e., 2| ( ) | exp( 2 )z zψ κ∝ − , so the penetration depth of the electron into the 

                                                           
28 Note, incidentally, that, though tunneling penetration is not a concept that has any meaning or 
precedent in the classical mechanics of classical particles, the phenomenon of tunneling is quite common 
when dealing with waves in general, including classical waves. Perhaps the best-known example is found 
in total internal reflection in optics. A wave inside a high refractive index medium, such as water or glass, 
at a sufficiently steep angle of incidence at the interface to the outside air (past the so-called critical 
angle), is totally reflected, just as the wave here is totally reflected by the barrier for energies below the 
barrier height. This phenomenon is well known to any swimmer who opens his or her eyes under water, 
with the water surface looking quite “silvery” and reflective for directions off at some angle. Though the 
reflection is total, there is an exponentially decaying field amplitude inside the air. Just as there is a phase 
shift here in reflecting the quantum mechanical wave from the barrier, so also is there a phase shift in this 
optical reflection. In optics, that phase shift leads to an effective sideways shift in the beam on reflection 
from this surface, known as the Goos-Hänchen shift. This optical tunneling is a routine part of the design 
and operation of optical waveguides, such as optical fibers. Once the mathematical equations are 
separated formally, leaving the forward waveguide propagation in another equation, the remaining 
equation for the wave in transverse direction is of the same form as we are discussing in this Section, 
with exactly analogous types of behavior. The propagating bound modes of an optical fiber are 
essentially the same concept as the bound states in a quantum potential well of finite depth, for example.  
29 e here is the base of the natural logarithms, not, obviously, the electronic charge.  
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barrier is 1/ 2 1κ ≅∼ Å. This calculation also gives a sense of why the units of electron-volts 
and Ångstroms are commonly used in quantum mechanics for electrons.  

Fig.  2.4 shows wavefunctions, ( )zψ , for an electron incident on such a barrier, and Fig.  2.5 
shows the corresponding probability amplitudes, 2| ( ) |zψ . (The real part of the wavefunction is 
shown in Fig.  2.4.30) Note in Fig.  2.4 and Fig.  2.5 that the reflection from the barrier (which is 
a total reflection in this case) leads to a standing wave pattern in the electron wavefunction and 
probability density. The position of the standing wave pattern depends on the phase change on 
reflection from the barrier, and this changes as the electron energy changes. For example, for a 
barrier that is very high compared to the electron energy, the phase change on reflection is π 
(i.e., 180°, or, equivalently, phase reversal), and when the electron energy approaches the 
barrier energy, the phase change becomes ~ 0.  

2− 0 2

z (Angstroms)z (Ångstroms)

2− 0 2

z (Angstroms)z (Ångstroms)

 
Fig.  2.4. Real part of the wavefunction ψ (z) for electrons with 1 eV of energy when incident on a 
barrier that is 2 eV high. 
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Fig.  2.5. Probability density 2( )zψ∝ for electrons with the 1 eV of energy when incident on a 
barrier that is 2 eV high. 

                                                           
30 For a solution of the time-independent Schrödinger equation, the complex conjugate of any solution 
ψ (z) is also a solution, as can be seen by taking the complex conjugate of both sides. Hence the sum of a 
solution and its complex conjugate is also a solution, so the real part of any solution is also a solution. 
This works because the terms that multiply or operate on the wavefunction ψ (z) are themselves real in 
the time-independent Schrödinger equation. 
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Problems 
 2.8.1  An electron of energy 1 eV is incident perpendicularly from the left on an infinitely high potential 

barrier. Sketch the form of the probability density for the electron, calculating a value for any 
characteristic distance you find in your result.  

 2.8.2  An electron wave of energy 0.5 eV is incident on an infinitely thick potential barrier of height 1 
eV. Is the electron more likely to be found (a) within the first 1 Ångstrom of the barrier, or (b) 
somewhere further into the barrier? 

 2.8.3  Consider the one-dimensional problem, in the z direction, of an infinitely thick barrier of height Vo, 
at z = 0, beside an infinitely thick region with potential V = 0. We are interested in the behavior of an 
electron wave with electron energy E, where E > Vo. 
(i) For the case where the barrier is to the right, i.e., the barrier is for z > 0, as shown below 

z = 0
V = 0

V = Vo

E

 
 and the electron wave is incident from the left,  

(a) solve for the wavefunction everywhere, within one arbitrary constant for the overall 
wavefunction amplitude 

(b) sketch the resulting probability density, giving explicit expressions for any key distances in 
your sketch, and being explicit about the phase of any standing wave patterns you find.  

z = 0
V = 0

V = Vo

E

z = 0
V = 0

V = Vo

E

 
(ii) Repeat (i) but for the case where the barrier is on the left, i.e., for z < 0, the potential is Vo, and for 

z > 0 the potential is V = 0, as shown in the second figure. The electron is still “incident” from 
the left (i.e., from within the barrier region in this case). 

 2.8.4  Graph the (relative) probability density as a function of distance for an electron wave of energy 1.5 
eV incident from the left on a barrier of height 1 eV. Continue your graph far enough in distance on 
both sides of the barrier to show the characteristic behavior of this probability density. 

 2.8.5  Electrons with energy E  are incident, in the direction perpendicular to the barrier, on an infinitely 
thick potential barrier of height oV  where oE V>  . Show that the fraction of electrons reflected from 
this barrier is 

 ( ) ( ) 21 / 1R a a= ⎡ − + ⎤⎣ ⎦   
 where ( ) /oa E V E= − . 

 2.8.6  An electron wave of unit amplitude is incident from the left on the potential structure shown in the 
figure below. In this structure, the potential barrier at 0z =  is infinitely high, and there is a potential 
step of height oV  and width b just to the left of the infinite potential barrier. The potential may be 
taken to be zero elsewhere on the left. For the purposes of this problem, we will only consider 
electron energies oE V> . 
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(i) Show that the wavefunction in Region 2 may be 
written in the form ( ) sin( )z C fzψ =  where C is 
a complex constant and f is a real constant. 

(ii) What is the magnitude of the wave amplitude of 
the reflected wave (i.e., the wave propagating to 
the left)? 

(iii) Find an expression for C in terms of E, Vo, and b.  
(iv) Taking oV =  1 eV, and b =  10 Å, sketch 2| |C  

as a function of energy from 1.1 eV to 3 eV.  
(v) Sketch the (relative) probability density in the 

structure at E =  1.356 eV.  
(vi) Provide an explanation for the form of the curve in part (iv). 

 2.8.7  Consider an electron in the infinitely deep one-dimensional “stepped” 
potential well shown in the figure. The potential step is of height SV  
and is located in the middle of the well, which has total width zL . SV  
is substantially less than 2 2( / 2 )( / )o zm Lπ= .  
(i) Presuming that this problem can be solved, and that it results in a 

solution for some specific eigenenergy SE , state the functional 
form of the eigenfunction solutions in each half of the well, being 
explicit about the values of any propagation constants or decay 
constants in terms of the eigenenergy SE , the step height SV , and 
the well width zL . [Note: do not attempt a full solution of this problem – it does not have simple 
closed-form solutions for the eigenenergies. Merely state what the form of the solutions in each 
half would be if we had found an eigenenergy SE .] 

(ii) Sketch the form of the eigenfunctions (presuming we have chosen to make them real functions) 
for each of the first two states of this well. In your sketch, be explicit about whether any zeros in 
these functions are in the left half, the right half, or exactly in the middle. [You may exaggerate 
differences between these wavefunctions and those of a simply infinitely deep well for clarity.] 

(iii) State whether each of these first two eigenfunctions have definite parity with respect to the 
middle of the structure, and, if so, whether that parity is even or odd.  

(iv) Sketch the form of the probability density for each of the two states. 
(v) State, for each of these eigenfunctions, whether the electron is more likely to be found in the left 

or the right half of the well. 

2.9 Particle in a finite potential well 

Now that we have understood the interaction of a quantum mechanical wave with a finite 
barrier, we can consider a particle in a “square” potential well of finite depth. This is a more 
realistic problem than the “infinite” (i.e., infinitely deep or with infinitely high barriers) square 
potential well. We presume a potential structure as shown in Fig.  2.6.  

Here we have chosen the origin for the z position to be in the middle of the potential well (in 
contrast to the infinite well above where we chose one edge of the well). Such a choice makes 
no difference to the final results, but is mathematically more convenient now. 

Such a problem is relatively straightforward to solve. Indeed, it is one of the few non-trivial 
quantum mechanical problems that can be solved analytically with relatively simple algebra 
and elementary functions, so it is a useful example to go through completely. It also has a close 
correspondence with actual problems in the design of semiconductor quantum well structures.  

We consider for the moment to the case where oE V< . Such solutions are known as bound 
states. For such energies, the particle is in some sense “bound” to the well. It certainly does not 
have enough energy classically to be found outside the well.  

S
V

∞ ∞

/2zL /2zL

 

0z = z

b oV

Region 1 Region 2

∞
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Energy

0

Vo

+Lz/2z -Lz/2   
Fig.  2.6. A finite square potential well. 

We know the nature of the solutions in the barriers (exponential decays away from the 
potential well) and in the well (sinusoidal), and we know the boundary conditions that link 
these solutions. We first need to find the values of the energy for which there are solutions to 
the Schrödinger equation, then deduce the corresponding wavefunctions. 

The form of Schrödinger’s equation in the potential well is the same as we had for the infinite 
well (i.e., Eq. (2.22), and the solutions are of the same form (i.e., Eq. (2.24)), though the valid 
energies E and the corresponding values of k ( 22 / =mE= ) will be different from the infinite 
well case. The form of the solution in the barrier is an exponential one as discussed above, 
except that the solution in the left barrier will be exponentially decaying to the left so that it 
does not grow as we move further away from the well. Hence, formally, the solutions are of 
the form 

 ( ) ( )expz G zψ κ= , / 2zz L< −   

 ( ) sin cosz A kz B kzψ = + , / 2 / 2z zL z L− < <  (2.48) 

 ( ) ( )expz F zψ κ= − , / 2zz L>   

where the amplitudes A, B, F, G, and the energy E (and consequently k, and 
2 1/ 2(2 ( ) / )om V Eκ = − = ) are constants to be determined. For simplicity of notation, we choose 

to write 

 ( )exp / 2L zX Lκ= − , ( )sin / 2L zS kL= , ( )cos / 2L zC kL=   

so the boundary conditions give, from continuity of the wavefunction  

 L L LGX AS BC= − +  (2.49) 

 L L LFX AS BC= +  (2.50) 

and from continuity of the derivative of the wavefunction 

 L L LGX AC BS
k
κ

= +  (2.51) 

 L L LFX AC BS
k
κ

− = −  (2.52) 

Adding Eqs. (2.49) and (2.50) gives 

 ( )2 L LBC F G X= +  (2.53) 

Subtracting Eq. (2.52) from Eq. (2.51) gives 
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 ( )2 L LBS F G X
k
κ

= +  (2.54) 

As long as F G≠ − , we can divide Eq. (2.54) by Eq. (2.53) to obtain 

 ( )tan / 2 /zkL kκ=  (2.55) 

Alternatively, subtracting Eq. (2.49) from Eq. (2.50) gives 

 ( )2 L LAS F G X= −  (2.56) 

and adding Eqs. (2.51) and (2.52) gives 

 ( )2 L LAC F G X
k
κ

= − −  (2.57) 

Hence, as long as F G≠ , we can divide Eq. (2.57) by Eq. (2.56) to obtain 

 ( )cot / 2 /zkL kκ− =  (2.58) 

For any situation other than F G= (which leaves Eq. (2.55) applicable but Eq. (2.58) not) or 
F G= −  (which leaves Eq. (2.58) applicable but Eq. (2.55) not), the two relations (2.55) and 
(2.58) would contradict each other, so the only possibilities are (i) F G=  with relation (2.55), 
and (ii) F G= −  with relation (2.58). 

For F G= , we see from Eqs. (2.56) and (2.57) that 0A = ,31 so we are left with only the 
cosine wavefunction in the well, and the overall wavefunction is symmetrical from left to right 
(i.e., has even parity). Similarly, for F G= − , 0B = , we are left only with the sine 
wavefunction in the well, and the overall wavefunction is antisymmetric from left to right (i.e., 
has odd parity). Hence, we are left with two sets of solutions.  

To write these solutions more conveniently, we change notation. We define a useful energy 
unit, the energy of the first level in the infinite potential well of the same width Lz, 

 
22

1 2 z

E
m L

π∞ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=  (2.59) 

and define a dimensionless energy  

 1/E Eε ∞≡  (2.60) 

and a dimensionless barrier height 

 1/o ov V E∞≡  (2.61) 

Consequently,  

 o oV E v
k E

εκ
ε

− −
= =  (2.62) 

                                                           
31 Note formally that CL and SL cannot both be zero at the same time, so the only way of satisfying both 
of these equations is for A to be zero. 
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12 2 2

zkL E
E

π π ε∞= =  (2.63) 

 
12 2 2

oz
o

V EL
v

E
κ π π ε∞

−
= = −  (2.64) 

We can also conveniently define two quantities that will appear in the wavefunctions 

 
( )

( )
( )

( )
cos / 2cos / 2

exp / 2 exp / 2
zL

L
L z o

kLC
c

X L v

π ε

κ π ε
= = =

− − −
 (2.65) 

 
( )

( )
( )

( )
sin / 2sin / 2

exp / 2 exp / 2
zL

L
L z o

kLS
s

X L v

π ε

κ π ε
= = =

− − −
 (2.66) 

and it will be convenient to define a dimensionless distance 

 / zz Lζ =  (2.67) 

We can therefore write the two sets of solutions as follows. 

Symmetric solution 

The allowed energies satisfy 

 tan
2 ovπε ε ε⎛ ⎞ = −⎜ ⎟

⎝ ⎠
 (2.68) 

The wavefunctions are  

 ( ) ( )expL oBc vψ ζ π εζ= − , 1/ 2ζ < −   

 ( ) ( )cosBψ ζ π εζ= , 1/ 2 1/ 2ζ− < <  (2.69) 

 ( ) ( )expL oBc vψ ζ π εζ= − − , 1/ 2ζ >   

Antisymmetric solution 

The allowed energies satisfy 

 cot
2 ovπε ε ε⎛ ⎞− = −⎜ ⎟

⎝ ⎠
 (2.70) 

The wavefunctions are 

 ( ) ( )expL oAs vψ ζ π εζ= − − , 1/ 2ζ < −   

 ( ) ( )sinAψ ζ π εζ= , 1/ 2 1/ 2ζ− < <  (2.71) 

 ( ) ( )expL oAs vψ ζ π εζ= − − , 1/ 2ζ >   
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Here A and B are normalization coefficients that will in general be different for each different 
solution. 

The relations (2.68) and (2.70) do not give simple formulae for the allowed energies; these 
relations have to be solved to deduce the allowed energies, though this is straightforward in 
practice. A graphical illustration of the solutions of Eqs. (2.68) and (2.70) is shown in Fig.  2.7. 
Allowed energies ε correspond to the points where the appropriate solid curve (corresponding 
to the right hand side of these relations) intersects with one of the broken curves 
(corresponding to the left hand sides of these relations). Intersections with the dashed curves 
are solutions of Eq. (2.68) (corresponding to a symmetric solution), and intersections with the 
dot-dashed curves are solutions of Eq. (2.70) (corresponding to an antisymmetric solution). 
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vo = 2

vo = 5 vo = 8

ε

 
Fig.  2.7. Graphical solutions for equations (2.68) and (2.70) for the allowed energies in a finite 
potential well. The solid curves correspond to different values of the height of the potential 
barrier. The simple dashed lines correspond to Eq. (2.68), the symmetrical solutions, and the lines 
with alternating short and long dashes correspond to Eq. (2.70), the antisymmetric solutions. 
Allowed energy solutions correspond to the intersections of the solid and the various dashed 
curves. 

We can see, for example, that for 8ov = , there are three possible solutions: (i) a symmetric 
solution at 0.663ε = ; (ii) an antisymmetric solution at 2.603ε = ; and (iii) a symmetric 
solution at 5.609ε = . These three solutions are shown in Fig.  2.8. 

Note that these solutions for oE V< have two important characteristics. First, there are 
solutions of the time-independent Schrödinger equation only for specific discrete energies. We 
already saw such behavior for the infinite potential well, and here we have found this kind of 
behavior for a finite number of states in this finite well.32 A second characteristic of these 
bound states is that the particle is indeed still largely found in the vicinity of the potential well, 
in correspondence with the classical expectation, though there is some probability of finding 
the particle in the barriers near the well. (Note the penetration of the wavefunction into the 

                                                           
32 It is not generally true that there are only finite numbers of bound states in problems with bound states. 
The hydrogen atom, for example, has an infinite number of bound states, though each of those has a 
specific eigenenergy, and there are separations between the different eigenenergies for these bound states. 
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barrier rises for the higher energy states, as we would have expected from the behavior with 
the single barrier discussed in the previous Section.)  

 
Fig.  2.8. First three solutions for a finite potential well of depth 8 units (the energy unit is the first 
confinement energy of an infinitely deep potential well of the same width). The dotted lines 
indicate the energies corresponding the three states. For convenience, these are used as the zeros 
for plotting the three eigenfunctions. Note the first and third levels have symmetric 
wavefunctions, and the second has an antisymmetric wavefunction. 

We have considered only solutions to this problem for energies below the top of the potential 
well, i.e., for oE V< . This problem can also be solved for energies above the top of the barrier, 
though we will omit this here. In that case, there are solutions possible for all energies, a so-
called continuum of energy eigenstates, just as there are solutions possible for all energies in 
the simple problem where V is a constant everywhere (the well-known plane waves we have 
been using to discuss diffraction and waves reflecting from single barriers).  

Problems 
 2.9.1  Consider a one-dimensional problem with a potential barrier as shown below. A particle wave is 

incident from the left, but no wave is incident from the right. The energy, E, of the particle is less 
than the height, Vo, of the barrier. 

Energy

0

Vo

z  
(i) Describe and sketch the form of the probability density in all three regions (i.e., on the left, in 

the barrier, and on the right). (Presume that the situation is one in which the transmission 
probability of the particle through the barrier is sufficiently large that the consequences of 
this finite transmission are obvious in the sketched probability density.) 

(ii) Show qualitatively how the probability density on the right of the barrier can be increased 
without changing the energy of the particle or the amplitude of the incident wave, solely by 
increasing the potential in some region to the left of the barrier. (This may require some 
creative thought!) 

 2.9.2 A one-dimensional potential well has a barrier of height 1.5 eV (relative to the energy of the bottom 
of the well) on the right hand side, and a barrier higher than this on the left hand side. We happen to 
know that this potential well has an energy eigenstate for an electron at 1.3 eV (also relative to the 
energy at the bottom of the well). 
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 State the general form of the wavefunction solution (i.e., within a normalizing constant that you need 
not attempt to determine) in each of the following two cases, giving actual values for any wavevector 
magnitude k and/or decay constant κ in these wavefunctions 

(a) within the well  
(b) in the barrier on the right hand side 

 2.9.3  Consider a barrier, 10 Å thick and 1 eV high. An electron wave is incident on this barrier from the 
left (perpendicular to the barrier).  
(i) Plot the probability of the transmission of an electron from one side of this barrier to the other as 

a function of energy from 0 eV to 3 eV. 
(ii) Plot the probability density for the electron from 1 Å to the left of the barrier to 1 Å to the right 

of the barrier at an energy corresponding to the first maximum in the transmission for energies 
above the barrier. 

(iii) Attempt to provide a physical explanation for the form of the transmission as a function of 
energy for energies above the top of the barrier. 

Hints:  
(1) The probability of transmission of the electron can be taken to be 2 2/RF LFψ ψ , where 

( ) exp( )LF z ikzψ ∝  is the forward-going wave (i.e., the wave propagating to the right) on the left 
of the barrier, and ( ) exp( )RF z ikzψ ∝  is the forward-going wave on the right of the barrier. 

(2) Presume that there is a specific amplitude for the forward-going wave on the right, and no 
backward-going wave on the right (there is no wave incident from the right). This enables you to 
work the problem mathematically “backwards” from the right. 

(3) You may wish to use a computer program or high-level mathematical programming package to 
deal with this problem, or at least a programmable calculator. This problem can be done by 
hand, though it is somewhat tedious to do that.  

 2.9.4  In semiconductors, it is possible to make actual potential wells, quite similar to the finite potential 
well discussed above, by sandwiching a “well” layer of one semiconductor material (such as InGaAs) 
between two “barrier” layers of another semiconductor material (such as InP). In this structure, the 
electron has lower energy in the “well” material, and sees some potential barrier height Vo at the 
interface to the “barrier” materials. This kind of structure is used extensively in, for example, the 
lasers for telecommunications with optical fibers. In semiconductors, such potential wells are called 
“quantum wells”. In these semiconductors, the electrons in the conduction band behave as if they had 
an effective mass, m∗ , that is different from the free electron mass, mo, and this mass is different in 
the two materials, e.g., wm∗  in the well and bm∗  in the barrier. Because the electron effective mass 
differs in the two materials, the boundary condition that is used at the interface between the two 
materials for the derivative of the wavefunction is not continuity of the derivative /d dzψ ; instead, a 
common choice is continuity of (1/ )( / )m d dzψ  where m is different for the materials in the well and 
in the barrier. (Without such a change in boundary conditions, there would not be conservation of 
electrons in the system as they moved in and out of the regions of different mass.) The wavefunction 
itself is still taken to be continuous across the boundary. 
(i) Rederive the relations for the allowed energies of states in this potential well (treating it like the 

one-dimensional well analyzed above), i.e., relations like (2.68) and (2.70) above, using this 
different boundary condition. 

(ii) InGaAs has a so-called “bandgap” energy of ~ 750 meV. The bandgap energy is approximately 
the photon energy of light that is emitted in a semiconductor laser. This energy corresponds to a 
wavelength that is too long for optimum use with optical fibers. (The relation between photon 
energy, photonE , in electron-volts and wavelength, λ, in meters is /photonE hc eλ= , which 
becomes, for wavelengths in microns, ( )1.24 /photon micronsE λ≅ , a very useful relation to 
memorize.) For use with optical fibers we would prefer light with wavelength ~ 1.55 microns. 
We wish to change the photon energy of emission from the InGaAs by making a quantum well 
structure with InGaAs between InP barriers. The confinement of electrons in this structure will 
raise the lowest possible energy for an electron in the conduction band by the “zero-point” 
energy of the electron (i.e. the energy of the first allowed state in the quantum well). Assuming 
for simplicity in this problem that the entire change in the bandgap is to come from this zero-
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point energy of the electron, what thickness should the InGaAs layer be made? (For InGaAs, the 
electron effective mass is 0.041InGaAs om m∗ ≅ , and for InP it is 0.08InP om m∗ ≅ . The potential 
barrier seen by the electrons in the InGaAs at the interface with InP is 260oV ≅ meV.)  

2.10 Harmonic oscillator 

The second, relatively simple quantum mechanical problem that we will solve exactly is the 
harmonic oscillator. This system is one of the most useful in quantum mechanics, being the 
first approximation to nearly all oscillating systems. One of its most useful applications is in 
describing photons, and we will return to this point in Chapter 15. For the moment we will 
consider a simple mechanical oscillator. 

Classical harmonic oscillators are ones that give a simple, sinusoidal oscillation in time. Such 
behavior results, for example, from linear springs whose (restoring) force, F, is proportional to 
distance, z, with some spring constant, s, i.e., F sz= − . With a mass m, we obtain from 
Newton’s second law ( F ma=  where a is acceleration, 2 2/d z dt ) 

 
2

2

d zm sz
dt

= −  (2.72) 

The solutions to such a classical motion are sinusoidal with angular frequency  

 /s mω =  (2.73) 

(e.g., of the form sin tω ). To analyze such an oscillator quantum mechanically using 
Schrödinger’s equation, we need to cast the problem in terms of potential energy. The potential 
energy, ( )V z , is the integral of force exerted on the spring (i.e., F− ) times distance, i.e.,  

 ( ) 2 2 2

0

1 1
2 2

z
V z F dz sz m zω= − = =∫   (2.74) 

Hence, for a quantum mechanical oscillator, we have a Schrödinger equation 

 
2 2

2 2
2

1
2 2

d m z E
m dz

ψ ω ψ ψ− + =
=  (2.75) 

To make this more manageable mathematically, we define a dimensionless unit of distance 

 m zωξ =
=

 (2.76) 

Changing to this variable, and dividing by ω−= , we obtain 

 
2

2
2

2d E
d

ψ ξ ψ ψ
ωξ

− = −
=

 (2.77) 

The reader might be astute enough to spot33 that one specific solution to this equation is of the 
form 2exp( / 2)ψ ξ∝ −  (with a corresponding energy / 2E ω= = ). This suggests that we make 
a choice of form of function 

                                                           
33 It is, in fact, quite unlikely that any normal reader could possibly be astute enough to spot this. The 
reason why the author is astute enough to spot this is, of course, because he knows the answer already. 
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 ( ) ( ) ( )2exp / 2n n nA Hψ ξ ξ ξ= −  (2.78) 

where ( )nH ξ  is some set of functions still to be determined. Substituting this form in the 
Schrödinger equation (2.77), we obtain, after some algebra, the equation 

 
( ) ( ) ( )

2

2

22 1 0n n
n

d H dH E H
dd

ξ ξ
ξ ξ

ξ ωξ
⎛ ⎞− + − =⎜ ⎟
⎝ ⎠=

 (2.79) 

The solutions to this equation are known. This equation turns out to be the defining differential 
equation for the Hermite polynomials. Solutions exist provided 

 2 1 2E n
ω

− =
=

, n = 0, 1, 2, …  (2.80) 

i.e.,  

 1
2

E n ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

=  (2.81) 

(Note that here n starts from zero, not 1.) Here we see the first remarkable property of the 
harmonic oscillator – the allowed energy levels are equally spaced, separated by an amount 
=ω , where ω  is the classical oscillation frequency. Like the potential well, there is also a 
“zero point energy” – the first allowed state is not at zero energy, but instead here at / 2=ω  
compared to the classical minimum energy.  

The first few Hermite polynomials are as follows. 

 0 1H =  (2.82) 

 ( )1 2H ξ ξ=  (2.83) 

 ( ) 2
2 4 2H ξ ξ= −  (2.84) 

 ( ) 3
3 8 12H ξ ξ ξ= −  (2.85) 

 ( ) 4 2
4 16 48 12H ξ ξ ξ= − +  (2.86) 

Note that the functions are either entirely odd or entirely even, i.e., they have a definite parity.  

The polynomials have some other useful properties. In particular, they satisfy a recurrence 
relation 

 ( ) ( ) ( ) ( )1 22 2 1n n nH H n Hξ ξ ξ ξ− −= − −  (2.87) 

which means that the successive Hermite polynomials can be calculated from the previous two. 

The normalization coefficient, An, in the wavefunction (2.78) is  

 1
2 !n n

A
nπ

=  (2.88) 

and the wavefunction can be written explicitly in the original coordinate system as 

 ( ) 21 exp
22 !n nn

m m mz z H z
n

ω ω ωψ
π

⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠= = =
 (2.89) 
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The first several harmonic oscillator eigenfunctions are shown in Fig.  2.9, together with the 
parabolic potential V ( 2 / 2ξ=  in the dimensionless units).  
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Fig.  2.9. Illustration of the eigenfunctions of a harmonic oscillator. Each eigenfunction is plotted 
relative to an origin that corresponds to the eigenenergy (i.e., =ω/2, 3=ω/2, etc.). The parabolic 
harmonic oscillator potential is also shown. 

The reader may be content that we have found the solution to Schrödinger’s time-independent 
wave equation for the case of the harmonic oscillator, just as we did for the infinite and finite 
potential wells. But on reflection the reader may well now be perplexed. Surely this is meant to 
be an oscillator; then why is it not oscillating? We have calculated stationary states for this 
oscillator, including stationary states in which the oscillator has energy much greater than zero. 
This would appear to be meaningless classically; an oscillator that has energy ought to 
oscillate. To understand how we recover oscillating behavior, and indeed to understand the 
true meaning of the stationary eigenstates we have calculated, we need first to understand the 
time-dependent Schrödinger equation, which is the subject of the next Chapter. 

Problem 
 2.10.1  Suppose we have a “half harmonic oscillator” potential, e.g., exactly half of a parabolic potential 

on the right of the “center” and an infinitely high potential barrier to the left of the center. Compared 
to the normal harmonic oscillator, what are the (normalized) energy eigenfunctions and eigenvalues? 
[Hint: there is very little you have to solve here – this problem mostly requires thought, not 
mathematics.] 
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2.11 Particle in a linearly varying potential 

(This topic can be omitted on a first reading, though it does give some very useful insights into 
wave mechanics, and is useful for several practical problems.) 

Another situation that occurs frequently in quantum mechanics is that we have applied a 
uniform electric field, E, in some direction, say the z direction. For a charged particle, this 
leads to a potential that varies linearly in distance. For example, an electron, which is 
negatively charged with a charge of magnitude e, will see a potential energy, relative to that at 

0z = , of  

 V e z= E   (2.90) 

In practice, we find this kind of potential in many semiconductor devices. We use it  when we 
are calculating the quantum mechanical penetration (tunneling) through the gate oxide in 
Metal-Oxide-Semiconductor (MOS) transistors, for example. We see it in semiconductor 
optical modulators,34 which use optical absorption changes that result from electric fields. It is 
of basic interest also if we want to understand how an electron is accelerated by a field, a point 
to which we will return in the next Chapter. 

The technique for solving for the electron states is just the same as before; we merely have to 
put this potential into the Schrödinger equation and solve the equation. The Schrödinger 
equation then becomes 

 
( ) ( ) ( )

22

22
d z

e z z E z
m dz

ψ
ψ ψ− + =E=  (2.91) 

The solutions to this equation are not obvious combinations of well-known functions. When 
one finds an equation such as this, the most productive practical technique for solving it is to 
look up a mathematical reference book35 to see if someone has solved this kind of equation 
before. This particular kind of equation, with a linearly varying potential, has solutions that are 
so-called “Airy” functions. The standard form of differential equation that defines Airy 
functions is 

 
( ) ( )

2

2 0
d f

f
d

ζ
ζ ζ

ζ
− =  (2.92) 

The solutions of this equation are formally the Airy functions Ai(ζ) and Bi(ζ), i.e., the general 
solution to this equation is 

 ( ) ( ) ( )f a Ai b Biζ ζ ζ= +  (2.93) 

To get Eq. (2.91) into the form of Eq. (2.92), we make a change of variable to  

 
1/ 3

2

2me Ez
e

ζ
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

E
E=

 (2.94) 

                                                           
34 There are two closely related electroabsorption mechanisms used in semiconductors. The Franz-
Keldysh effect in bulk semiconductors, and the quantum-confined Stark effect in quantum wells, both of 
which rely on this underlying physics. 
35 A very comprehensive reference is M. Abramowitz and I. A. Stegun, "Handbook of Mathematical 
Functions" (National Bureau of Standards, Washington, 1972) 
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The reader can verify this change of variable does work by substituting the right hand side of 
Eq. (2.94) each time for ζ in Eq. (2.92), which will give Eq. (2.91) after minor manipulations. 
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Fig.  2.10. Airy functions Ai(ζ) (solid line) and Bi(ζ) (dashed line). 

The functions Ai and Bi are plotted in Fig.  2.10. Though they are not very common functions, 
they are usually available in advanced mathematics programs as built-in functions.36 Note that 

(i) both functions are oscillatory for negative arguments, with a shorter and shorter period 
as the argument becomes more negative. 

(ii) The Ai function decays in an exponential-like fashion for positive arguments. 

(iii) The Bi function diverges for positive arguments. 

Now let us examine solutions to some specific problems. 

Linear potential without boundaries 

The simplest situation mathematically is just a potential that varies linearly without any 
additional boundaries or walls. This is somewhat unphysical since it presumes some source of 
potential, such as an electric field, that continues forever in some direction, but it is a simple 
idealization when we are far from any boundary. The mathematics allows for two possible 
solutions, one based on the Ai function, and the other based on the Bi function. Physically, we 
discard the Bi solution here because it diverges for positive arguments, becoming larger and 
larger. Any attempt at normalizing this function would fail, and the particle would have 
increasing probability of being found at arbitrarily large positive z. This is the same argument 
we used to ignore the exponentially growing solution when considering penetration into an 
infinitely thick barrier. We are left only with the Ai function in this case. Substituting back 
from the change of variable, Eq. (2.94), the Ai(ζ) solution becomes explicitly 

                                                           
36 The Airy functions are also related to Bessel functions of 1/3 fractional order.  
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E
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 (2.95)  

This solution is sketched, for a specific eigenenergy Eo, together with the potential energy, in 
Fig.  2.11. 
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Fig.  2.11. Sketch of a linearly varying potential, and the Airy function solution of the resulting 
Schrödinger equation. 

There are several interesting aspects about this solution. 

(i) Since we have introduced no additional boundary conditions, there are mathematical 
solutions for any possible value of the eigenenergy E. This behavior reminds us of the 
simple case of a uniform zero potential (i.e., 0V = everywhere), which leads to plane wave 
solutions for any positive energy. In the present case also, the allowed values of the 
eigenenergies are continuous, not discrete. Like the case of a uniform potential, the 
eigenstates are not bound within some finite region (at least for negative z). 

(ii) The solution is oscillatory when the eigenenergy is greater than the potential energy, 
which occurs on the left of the point /oz E e= E , and it decays to the right of this point. 
This point is known as the classical turning point, because it is the furthest to the right that 
a classical particle of energy Eo could go. 

(iii) The eigenfunction solutions for different energies are the same except they are shifted 
sideways (i.e., shifted in z). 

(iv) Unlike the uniform potential case, the solutions here are not running waves; rather, 
they are standing waves, which is more like the case of the particle in a box. 

We again find, just like the harmonic oscillator case, that we have been able to derive 
eigenstates, i.e., states that are stable in time. Just as in the harmonic oscillator case, where 
classically we would have expected to get an oscillation if we have finite energy, here we 
would have expected classically to get states that correspond to the electron being accelerated. 
Simply put, we have put an electron in an electric field, and the electron is not moving. Again, 
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to resolve this paradox, we need to consider the time-dependent Schrödinger equation, which 
we will cover in the next Chapter. 

How is it that we could even have a standing wave in this case? In the case of a particle in a 
box, we can easily rationalize that the particle is reflecting off the walls. In the present case, we 
could presumably readily accept that the particle should bounce off the increasing potential 
seen at or near the classical turning point, so it is relatively easy to see why there is a reflection 
at the right. There is also here reflection from the left; the reason for this reflection is that, from 
the point of view in general of wave mechanics, any change in potential (or change of 
impedance in the case of acoustic or electromagnetic waves), even if it is smooth rather than 
abrupt, leads to reflections. Effectively, there is a distributed reflection on the left from the 
continuously changing potential there. The fact that there is such a distributed reflection 
explains why the wave amplitude decreases progressively as we go to the left. The fact that we 
have a standing wave is apparently because, integrated up, that reflection does eventually add 
up to 100%. 

Why does the period of the oscillations in the wave decrease (i.e., the oscillations become 
faster) as we move to the left? Suppose in Schrödinger’s equation we divide both sides by ψ; 
then we have 

 ( )
2 2

2

1
2

d V z E
m dz

ψ
ψ

−
+ =

=  (2.96) 

For any eigenstate of the Schrödinger equation, E is a constant (the eigenenergy). In such a 
state, if V decreases, then - 2 2(1/ )( / )d dzψ ψ  (which we can visualize as the degree of 
curvature of the wavefunction) must increase. If we imagine that we have an oscillating wave, 
which we presume is locally approximately sinusoidal, of the form sin( )kz θ+∼  for some 
phase angle θ,  

 
2

2
2

1 d k
dz

ψ
ψ
− �  (2.97) 

Hence, if V decreases, the wavevector k must increase, i.e., the period must decrease. Viewed 
from the perspective of the particle, we could imagine that the particle is going increasingly 
fast as it goes towards the left, being accelerated by the field, or equivalently, is going 
increasingly slowly as it goes towards the right, being decelerated by the field, either of which 
is consistent with smaller periods as we go to the left. This view of particle motion is not very 
rigorous, though there is a kernel of truth to it, but for a full understanding in terms of particle 
motion, we need the time-dependent Schrödinger equation of the next Chapter.  

Triangular potential well 

If we put a hard barrier on the left, we again get a discrete set of eigenenergies. Formally, we 
can consider an electron, still in a uniform electric field E, with an infinitely high potential 
barrier at 0z =  (i.e., the potential is infinite for all negative z ) as shown in Fig.  2.12, with the 
potential taken to be zero at 0z =  (or at least just to the right of 0z = ).  

For all 0z > , we have the same potential as we considered above. Again we can discard the Bi 
solution because it diverges, so we are left with the Ai solution. Now we have the additional 
boundary condition imposed by the infinitely high potential at 0z = , which means the 
wavefunction must go to zero there. This is easily achieved with the Ai function if we position 
it laterally so that one of its zeros is found at 0z = . The ( )Ai ζ  function will have zeros for a 
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set of values ζi. These can be found in mathematical tables, or are relatively easily calculated 
numerically in advanced mathematics programs.  

z = 0

V(z)

z
V = 0

 
Fig.  2.12 Triangular potential well. 

The first few of these zeros are 
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 (2.98) 

To get the solution Eq. (2.95) to be zero at 0z =  means therefore that 
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i.e., the argument of this function must be one of the zeros of the Ai function, 
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 (2.100) 

or, equivalently, the possible energy eigenvalues are 

 ( )
1/ 32

2 / 3

2i iE e
m

ζ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

E=  (2.101) 

Fig.  2.13 shows the results of a specific calculation, for the case of an electric field of 1 V/Å 
(1010 V/m). As can be seen, the wavefunctions for the different levels are simple shifted 
versions of one another, with the wavefunction being truncated at the infinitely high potential 
barrier at position 0, at which point each wavefunction is zero in amplitude. As in the simple 
rectangular potential wells, the lowest energy function has no zeros (other than at the left and 
right ends), and each successive, higher-energy solution has one more zero. 

Infinite potential well with field 

We can take the triangular well one step further, by including also an infinitely high barrier on 
the right. This makes the potential structure into an infinite potential well with field (or a 
skewed infinite potential well). 

The equations remain the same, except we have the additional boundary condition that the 
potential is infinite, and hence the wavefunction is zero, at zz L= . Now we cannot discard the 
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Bi solution; the potential forces the wavefunction to zero at the right wall, so there will be no 
wavefunction amplitude to the right of this wall, and so the divergence of the Bi function no 
longer matters for normalization (we would only be normalizing inside the box). Hence we 
have to work with the general solution, Eq. (2.93), with both Ai and Bi functions. 
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Fig.  2.13. Graphs of wavefunctions and energy levels for the first three levels in a triangular 
potential well, for a field of 1V/Å.  

This solution requires some more mathematical work, but is ultimately straightforward. The 
two boundary conditions are that the wavefunction must be zero at 0z =  and at zz L= , or 
equivalently at 0ζ ζ=  and Lζ ζ= , where  
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These boundary conditions will establish what the possible values of E are, i.e., the energy 
eigenvalues. The conditions result in two equations 

 ( ) ( )0 0 0a Ai b Biζ ζ+ =  (2.104) 

 ( ) ( ) 0L La Ai b Biζ ζ+ =  (2.105) 

or, in matrix form 

 
( )
( ) ( )

0 0 0
L L

Ai Bi a
Ai Bi b

ζ ζ
ζ ζ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (2.106) 

The usual condition for a solution of such equations is 
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( ) ( )
( ) ( )

0 0 0
L L

Ai Bi
Ai Bi

ζ ζ
ζ ζ

=  (2.107) 

or, equivalently,  

 ( ) ( ) ( ) ( )0 0 0L LAi Bi Ai Biζ ζ ζ ζ− =  (2.108) 

The next mathematical step is to find for what values of Lζ Eq. (2.108) can be satisfied. This 
can be done numerically.  

First, we will change to appropriate dimensionless units. In this problem, there are two relevant 
energies. One is the natural unit for discussing potential well energies, which is the energy of 
the lowest state in an infinitely deep potential well, 2 2( / 2 )( / )zm Lπ=  (as in Eq. (2.26)), which 
here we will call 1E∞ to avoid confusion with the final energy eigenstates for this problem; we 
will use this as the energy unit. Hence we will use the dimensionless “energy” 

 1/E Eε ∞≡  

The second energy in the problem is the potential drop from one side of the well to the other 
resulting from the electric field, which is 

 L zV e L= E  (2.109) 

or, in dimensionless form 

 1/L LV Eν ∞=  (2.110) 

With these definitions, we can rewrite Eqs. (2.102) and (2.103) as, respectively, 
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 (2.112) 

Now we choose a specific νL, which corresponds to choosing the electric field for a given well 
width. Suppose, for example, that we consider a 6 Å wide well with a field of 1 V/Å. Then 

1 1.0455E∞ � eV, and 5.739Lν �  (i.e., the potential change from one side of the well to the 
other is 15.739 E∞� ). Next we numerically find the values of ε that make the determinant 
function from Eq. (2.108), 

 ( ) ( )( ) ( )( ) ( )( ) ( )( )0 0L LD Ai Bi Ai Biε ζ ε ζ ε ζ ε ζ ε= −  (2.113) 

equal to zero. One way to do this is to graph this function from 0ε =  upwards to find the 
approximate position of the zero crossings, and use a numerical root finder to find more 
accurate estimates. With these eigenvalues of ε it is now straightforward also to evaluate the 
wavefunctions. From Eq. (2.104), we have for the coefficients a and b of the general solution, 
Eq. (2.93) , for each eigenenergy εi,  
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Given that we know the ratio bi/ai, we can normalize the wavefunction by integrating from 0 to 
Lz to find the specific values of both ai and bi for each i if we wish. The resulting wavefunction 
is therefore, for a given energy eigenstate, using the same notation as for Eqs. (2.111) and 
(2.112) with the dimensionless energies 

 ( )
2 / 3 2 / 3

i i L i L
L z L z

z zz a Ai b Bi
L L

π πψ ν ε ν ε
ν ν

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (2.115) 

For the example numbers here, we have 

 εi Ei (eV) b/a 
First level (i = 1) 3.53 3.69 -0.04 

Second level (i = 2) 6.95 7.27 -2.48 
Third level (i = 3) 11.93 12.47 -0.12 
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Fig.  2.14. First three eigenstates in a 6 Å potential well with infinitely high barriers at each side, 
for an electron in a field of 1 V/Å. The potential is also sketched. 

The resulting solutions are plotted in Fig.  2.14. Note that 

(i) All the wavefunctions go to zero at both sides of the well, as required by the infinitely 
high potential energies there. 

(ii) The lowest solution is almost identical in energy and wavefunction to that of the lowest 
state in the triangular well. (The fraction of the Bi Airy function is very small, -0.04). The 
energy is actually slightly higher because the wavefunction is slightly more confined. 

(iii) The second solution is now quite strongly influenced by the potential barrier at the 
right, with a significantly higher energy than in the triangular well. 
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(iv) The third solution is very close in form to that of the third level of a simple rectangular 
well. To the eye, it looks to be approximately sinusoidal, though the period is slightly 
shorter on the left hand side, consistent with our previous discussion of the effect on the 
wavefunction oscillation period from changes in potential. 

We can see in the lowest state that the electron has been pulled closer to the left hand side, 
which is what we would expect classically from such an electric field. Note, though, that our 
classical intuition does not work for the higher levels. In fact, in the second level, a detailed 
calculation shows that the electron is actually substantially more likely to be in the right half (~ 
64%) of the well than in the left half (~ 36%).37 

Problems 
 2.11.1  Give actual energy levels in electron volts to three significant figures for the first three levels in 

the triangular well as in Fig.  2.13 (i.e., with a field of 1 V/Å). 

 2.11.2  Repeat the calculation of problem  2.11.1 for electrons in the semiconductor GaAs, for specific 
electric fields of 1 V/µm and 10 V/µm. Instead of using the free electron mass, use the effective mass 
of an electron in GaAs, 0.07eff om m� . Also, calculate the distance from the interface to the classical 
turning point in each case. 

 2.11.3  For the following two fields, calculate the first three energy levels (in electron-volts) for an 
electron in a 100 Å GaAs potential well with infinitely high barriers, and plot the probability 
densities in units of Å-1 for each of the three states. State the energies relative to the energy of the 
center of the well (not relative to the lower corner). Presume that the electron can be treated as having 
an effective mass of 0.07eff om m� . (For this problem, mathematical software will be required. You 
need to be able to find roots numerically, evaluate the Airy functions, and perform numerical 
integration for normalization.) 
(i) zero field 
(ii)  20 V/µm  

2.12 Summary of concepts 

This Chapter has seen the introduction, mostly by example, of various of the unusual concepts 
in quantum mechanics, and of some key results and equations. We list these briefly here. (See 
also the memorization list at the end of the book for those formulae particularly worth learning 
by heart.) 

Wave-particle duality 

The idea that particles, such as electrons, also behave in some ways as if they were waves (e.g., 
showing diffraction). 

Time-independent Schrödinger wave equation 

Single particles with mass, such as a non-relativistic electron in the absence of a magnetic 
field, often obey the (time-independent) Schrödinger wave equation 

                                                           
37 The reader is likely surprised at the large difference in probabilities between the right and left halves of 
the well; by eye, the wavefunction perhaps does not look so unbalanced between the two halves. 
Remember, though, that it is the modulus squared of the wavefunction that gives the probability. The left 
half contains the zero crossing, and there is little contribution to the square from the region near the zero 
crossing. The small difference in the magnitude of the peak of the wavefunction in the two halves is also 
magnified by taking the square. 
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Probability density and probability amplitude (or quantum 
mechanical amplitude) 

For a particle with wave behavior ( )ψ r , the probability of finding a particle near a given point 
r in space is proportional to 2| ( ) |ψ r , which can then be described as a probability density, and 

( )ψ r  can be called a probability amplitude or quantum mechanical amplitude. Such 
probability amplitudes or quantum mechanical amplitudes occur throughout quantum 
mechanics, not merely as wave amplitudes in Schrödinger wave equations. Quantum 
mechanical calculations proceed by first adding all possible contributions to the quantum 
mechanical amplitude, and then taking the modulus squared to calculate probabilities. There is 
no analogous concept of probability amplitude in classical probability. 

Normalization 

A wavefunction ( )ψ r  is normalized if 2 3( ) 1dψ∫ =r r , meaning the sum of all the 
probabilities adds to 1. 

Linearity of quantum mechanics and probability amplitude 

Quantum mechanics is apparently exactly linear in the addition of probability amplitudes for a 
given particle, which allows linear algebra to be used as a rigorous mathematical foundation 
for quantum mechanics. 

Eigenfunctions and eigenvalues 

Solutions of some equations in quantum mechanics, including in particular the time-
independent Schrödinger equation, lead to functions (eigenfunctions) each associated with a 
particular value of some parameter (the eigenvalue). For the case of the time-independent 
Schrödinger equation, the parameter (eigenenergy) is the energy corresponding to the 
eigenfunction. 

Discrete energy states 

Often, solutions of the time-independent Schrödinger equation are associated with discrete 
energy values or “states”, with solutions possible only for those discrete values. 

Parity and odd and even functions 

Often in quantum mechanics, functions are encountered that are either even, i.e., 
symmetrically the same on either side of some point in space, or odd, i.e., exactly 
antisymmetric on either side of some point in space so that they have exactly the opposite 
value at such symmetric points. Functions with such even or odd character are described as 
having even or odd parity. 

Zero point energy 

The lowest energy solution in quantum mechanical problems often has an energy higher than 
the energy at the bottom of the potential. Such an energy is called a zero point energy, and has 
no classical analog. 
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Solutions for a particle in an infinitely deep potential well (“particle 
in a box”) 
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Basis set 

A basis set is a set of functions that can be used, by taking appropriate combinations, to 
represent other functions in the same space.  

Representation 

The coefficients of the basis functions required to represent some other specific function would 
be the representation of that specific function in this basis. 

Orthogonality 

A mathematically useful property of two functions g(z) and h(z), in which their “overlap” 
integral ( ) ( )g z h z dz∗∫  is zero. It can also be applied as a condition for a set of functions, in 
which case any pair of different functions in the set is found to be orthogonal.  

Completeness 

The condition that a basis set of functions can be used to represent any function in the same 
space. 

Orthonormality 

The condition that a set of functions both is orthogonal and the functions in the set are also 
normalized. 

Expansion coefficients 

In representing a function ( )f z  in a complete orthonormal basis set of functions, ( )n xψ , i.e.,  

 ( ) ( )n n
n

f x c xψ= ∑  (2.36) 

the expansion coefficient cm is given by 

 ( ) ( )m mc x f x dxψ ∗= ∫  (2.37) 

Degeneracy 

The condition where two or more orthogonal states have the same eigenvalue (usually energy). 
The number of such states with the same eigenvalue is sometimes called the degeneracy.  

Bound states 

Bound states are states with energy less than the energy classically required to “escape” from 
the potential. They usually also have discrete allowed energies, with finite energy separations 
between any two (non-degenerate) bound states. 
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Unbound states 

States with energy greater than the energy classically required to “escape” from the potential. 
They commonly have continuous ranges of allowed energies. 



Chapter 3  
 
The time-dependent Schrödinger 
equation  

Prerequisites: Chapter 2. 

Thus far with Schrödinger’s equation, we have considered only situations where the spatial 
probability distribution was steady in time. In our rationalization of the time-independent 
Schrödinger equation, we imagined we had, for example, a steady electron beam, where the 
electrons had a definite energy; this beam was diffracting off some object, such as a crystal or 
through a pair of slits. The result was some steady diffraction pattern (at least the probability 
distribution did not vary in time). We then went on to use this equation to examine some other 
specific problems, including potential wells, where this requirement of definite energy led to 
the unusual behavior that only specific, “quantized” energies were allowed.  

In particular, we analyzed the problem of the harmonic oscillator, and found stationary states 
of that oscillator. On the face of it, stationary states of an oscillator (other than the trivial one 
of the oscillator having zero energy) make little sense given our classical experience with 
oscillators – a classical oscillator with energy oscillates.  

Clearly, we must expect quantum mechanics to model situations that are not stationary. The 
world about us changes, and if quantum mechanics is to be a complete theory, it must handle 
such changes. To understand such changes, at least for the kinds of systems where 
Schrödinger’s equation might be expected to be valid, we need a time-dependent extension of 
Schrödinger’s equation.  

We start off this Chapter by rationalizing such an equation. The equation we find is somewhat 
different from the ones we know from classical waves, though it is still  straightforward. We 
then introduce a very important concept in quantum mechanics, superposition states. 
Superposition states allows us to handle the time evolution of quantum mechanical systems 
rather easily. Then we examine some specific examples of time evolution. 

We will also be able to use this discussion of Schrödinger’s time-dependent equation to 
illustrate many core concepts in quantum mechanics, concepts we will be able to generalize 
and extend later, and to introduce intriguing topics such the uncertainty principle, and the issue 
of measurement in quantum mechanics. By the end of this Chapter, we will have quite a 
complete view of quantum mechanics as illustrated by this wave equation approach for 
particles. 
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3.1 Rationalization of the time-dependent Schrödinger 
equation 

The key to understanding time-dependence and Schrödinger’s equation is to understand the 
relation between frequency and energy in quantum mechanics. One very well known example 
of a relation between frequency and energy is the case of electromagnetic waves and photons. 
We can imagine doing a simple pair of experiments with a monochromatic electromagnetic 
wave. In one experiment, we would measure the frequency of the oscillation in the wave.1 In a 
second experiment,  we would measure the power in the wave, and also count the number of 
photons per second. At optical frequencies, a simple photodiode can count the photons; it is 
relatively easy to make a photodetector that will generate one electron per absorbed photon, 
and we can count electrons (and hence photons) by measuring current. Hence we can count 
how many photons per second correspond to a particular power at this frequency. We would 
find in such an experiment that the energy per photon was  

 E hν ω= = =  (3.1) 

i.e., the photon energy, E, is proportional to the frequency, ν, with proportionality constant h, 
or equivalently, it is proportional to the angular frequency, 2ω πν= , with proportionality 
constant / 2h π== . 

Of course, this discussion above is for photons, not the electrons or other particles with mass2 
for which the Schrödinger equation supposedly applies. Entities such as hydrogen atoms emit 
photons as they transition between allowed energy levels, however, and we might reasonably 
expect there is therefore some oscillation in the electrons at the corresponding frequency 
during the emission of the photon, which in turn might lead us to expect that there is a similar 
relation between energy and frequency associated with the separation of electron levels. Our 
question now is how to construct a wave equation that both has this kind of relation between 
energy and frequency (Eq. (3.1)), yet still allows, for example, a simple wave of the form 

( )exp[ ]i kz tω− , to be a solution in a uniform potential (i.e., for constant ( )V r ). The answer 
that Schrödinger postulated to this question is the equation 

 ( ) ( ) ( ) ( )2
2 ,

, , ,
2

t
t V t t i

m t
∂Ψ

− ∇ Ψ + Ψ =
∂

r
r r r= =  (3.2) 

which is the time-dependent Schrödinger equation. It is easy to check, for example, that waves 
of the form  

 ( )exp exp expEt Eti kz i ikz⎡ ⎤⎛ ⎞ ⎛ ⎞− ± ≡ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∓

= =
  

with E ω= =  and 22 /k mE= = , would be solutions when 0V =  everywhere.  

                                                           
1 At optical frequencies, this can be tricky, but is essentially straightforward; alternatively we could 
always measure the wavelength, which is relatively easy to do in an optical experiment, and deduce the 
frequency from the known relation between frequency and wavelength for an electromagnetic wave. 
2 Particles with mass, such as electrons, are sometimes referred to as massive particles even though their 
mass may be ~ 10-30 kg! Even at that mass they are much more massive than photons, which have zero 
mass. 
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Schrödinger also made a specific choice of sign for the imaginary part on the right hand side, 
which means that a wave with a spatial part exp( )ikz∝ is quite definitely a wave propagating 
in the positive z direction for all positive energies E (i.e., the wave, including its time-
dependence, would be of the form3 exp[ ( / )]i kz Et− = ). 

The time-dependent Schrödinger equation is a different kind of wave equation from a more 
common wave equation encountered in classical physics, which is typically of the form 

 
2 2

2
2 2

k ff
tω

∂
∇ =

∂
 (3.3) 

and for which ( )exp[ ]f i kz tω∝ −  would also be solution. This equation (3.3) has a second 
derivative with respect to time, as opposed to the first derivative in the time-dependent 
Schrödinger equation (3.2).  

Note, incidentally, that the choice by Schrödinger to use complex notation here means that the 
wavefunction is required to be a complex entity. Unlike the use of complex notation with 
classical waves, it is not the case that the “actual” wave is taken at the end of the calculation to 
be the real part of the calculated “complex” wave.  

Problems 
 3.1.1  Consider Schrödinger’s time-dependent equation for an electron, with a potential that is uniform 

and constant at a value oV , with a solution of the form ( )exp[ ]i kz tω− . Deduce the relationship 
giving k  in terms of ω  and oV , and deduce under what conditions there is a solution for real k . 

 3.1.2  Presuming that the potential is constant in time and space, and has a zero value, which of the 
following are possible solutions of the time-dependent Schrödinger equation for some positive (non-
zero) real values of k  and ω ? 

(i) sin( )kz tω−  
(ii) ( )exp ikz  

(iii) ( )exp i t kzω⎡− + ⎤⎣ ⎦  

(iv) [ ]exp ( )i t kzω −  

 3.1.3  Consider the problem of an electron in a one-dimensional “infinite” potential well of width zL  in 
the z direction (i.e., the potential energy is infinite for 0z <  and for zz L> , and, for simplicity, zero for 
other values of z). For each of the following functions, in exactly the form stated, state whether the 
function is a solution of the time-dependent Schrödinger equation (with time variable t). 

(a) 
2

2exp sin
2 o z z

zi t
m L L
π π⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

=  

(b) 
2

2

4 2exp sin
2 o z z

zi t
m L L

π π⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

=  

                                                           
3 Unfortunately for engineers, and especially electrical engineers, the choice made by Schrödinger is the 
opposite of that commonly used by engineers. Schrödinger’s choice means that a forward propagating 
wave is (and has to be) represented as exp[ ]( )i kz tω− , whereas in engineering it is much more common 
to have ( )exp[ ]i t kzω −  represent a forward wave (or to write ( )exp[ ]j t kzω − with 1j ≡ − ). In 
engineering, it does not matter which convention one uses since the quantities finally calculated are only 
the real part of such complex representations of waves, but in quantum mechanics we have to keep the 
full complex wave. 
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(c) 
2

2exp cos
2 2 2o z z

zi t
m L L
π π π π⎛ ⎞⎛ ⎞ ⎛ ⎞

− + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

=  

(d) 
2 2 2

2 2

9 32exp sin exp sin
2 2o z z o z z

z zi t i i t
m L L m L L
π π π π⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

− − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= =  

3.2 Relation to the time-independent Schrödinger equation 

Suppose that we had a solution where the spatial behavior of the wavefunction did not change 
its form with time (and in which, of necessity, the potential V did not change in time). In such 
a case, we could allow for some time-varying multiplying factor, ( )A t , in front of the spatial 
part of the wavefunction, i.e., we could write 

 ( ) ( ) ( ), t A t ψΨ =r r  (3.4) 

where, explicitly, we are presuming that ( )ψ r is not changing in time. In our previous 
discussions on the time-independent Schrödinger equation, we had asserted that solutions 
whose spatial behavior was steady in time should satisfy the time-independent equation (Eq. 
(2.13)) 

 ( ) ( ) ( ) ( )
2

2

2
V E

m
ψ ψ ψ− ∇ + =r r r r=  (3.5)  

Merely adding the factor ( )A t  in front of ( )ψ r  makes no difference in Eq. (3.5); ( , )tΨ r  
would also be a solution of Eq. (3.5), regardless of what function we chose for ( )A t . I.e., we 
would have 

 ( ) ( ) ( ) ( ) ( ) ( )
2

2

2
A t V EA t

m
ψ ψ ψ

⎡ ⎤
− ∇ + =⎢ ⎥

⎣ ⎦
r r r r=  (3.6) 

Now let us see what happens if we also want to make the kind of solution in Eq. (3.4) work for 
the time-dependent Schrödinger equation. Substituting the form (3.4) into the time-dependent 
Schrödinger equation (3.2) (presuming the potential V is constant in time) then gives 

 ( ) ( ) ( ) ( ) ( ) ( )2
2

2
A t

A t V i
m t

ψ ψ ψ
∂⎡ ⎤

− ∇ + =⎢ ⎥ ∂⎣ ⎦
r r r r= =  (3.7) 

which therefore means that, if we want the same solution to work for both the time-
independent and the time-dependent Schrödinger equation,  

 ( ) ( )A t
EA t i

t
∂

=
∂

=  (3.8) 

i.e.,  

 ( ) ( )exp /oA t A iEt= − =  (3.9) 

where oA  is a constant. Hence, for any situation in which the spatial part of the wavefunction 
is steady in time (and for which the potential V does not vary in time), the full time-dependent 
wavefunction can be written in the form 

 ( ) ( ) ( ), exp /ot A iEt ψΨ = −r r=  (3.10) 
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In other words, if we have a solution ( )ψ r of the time-independent Schrödinger equation, with 
corresponding eigenenergy E, then multiplying by  the factor exp( / )iEt− =  will give us a 
solution of the time-dependent Schrödinger equation.  

The reader might be worried that we have a time-dependent part to the wavefunction when we 
are supposed to be considering a situation that is stable in time. If, however, we consider a 
meaningful quantity, such as the probability density, we will find it is stable in time. Explicitly, 

 ( ) ( ) ( ) ( ) ( ) ( )2 2
, exp / exp /t iEt iEtψ ψ ψ∗⎡ ⎤Ψ = + × − =⎡ ⎤⎣ ⎦⎣ ⎦r r r r= =  (3.11) 

Again we see that the wavefunction itself is not necessarily a meaningful quantity – 
introducing the factor exp( / )iEt− =  has given us an apparent time dependence in a time-
independent problem; the wavefunction is merely a means to calculate other quantities that do 
have meaning, such as the probability density. 

3.3 Solutions of the time-dependent Schrödinger equation 

The time-dependent Schrödinger equation, Eq. (3.2), unlike the time-independent one, is not 
an eigenvalue equation; it is not an equation that only has solutions for a particular set of 
values of some parameter. In fact, it is quite possible to have any spatial function as a solution 
of the time-dependent Schrödinger equation at a given time (as long as it is a mathematically 
well-behaved function whose second derivative is defined and finite). That spatial function 
also determines exactly how the wavefunction will subsequently evolve in time (presuming we 
also know the potential V as a function of space and time). This ability to predict the future 
behavior of the wave from its current spatial form is a rather important property of the time-
dependent Schrödinger equation.  

In general, we can see that, if we knew the wavefunction at every point in space at some time 
ot , i.e., if we knew ( , )otΨ r  for all r, we could evaluate the left hand side of Eq. (3.2) at that 

time for all r. We would know ( , ) /t t∂Ψ ∂r  for all r, and could in principle integrate the 
equation to deduce ( , )tΨ r  at all times. Explicitly, we would have for some small advance in 
time by an amount δ t  

 ( ) ( )
,

, ,
o

o o
t

t t t t
t

δ δ∂Ψ
Ψ + ≅ Ψ +

∂ r

r r  (3.12) 

Because Schrödinger’s equation tells us / t∂Ψ ∂  at time to if we know ( , )otΨ r , we have 
everything we need to know to calculate ( , )ot tδΨ +r . In other words, the whole subsequent 
evolution of the wavefunction could be deduced from its spatial form at some given time.  

Some physicists view this ability to deduce the wavefunction at all future times as being the 
reason why this equation has only a first derivative in time (as opposed to the second 
derivative in the more common wave equations in classical physics). In the ordinary classical 
wave equation, like Eq. (3.3), taking a snapshot of a wave on a string at some time allows us to 
know the second spatial derivative, from which we can deduce the second time derivative; the 
ordinary wave equation is simply a relation between the second spatial derivative and the 
second time derivative. But that is not enough to tell us what will happen next. Specifically, 
this snapshot does not tell us in which direction the wave is moving. By contrast, with the 
time-dependent Schrödinger equation, if we know the full complex form of the wavefunction 
in space at some point in time, we can know exactly what is going to happen next, and at all 
subsequent times (at least if we know the potential V everywhere for all subsequent times 
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also). Hence we can view the wavefunction ( )ψ r  at some time as being a complete 
description of the particle being modeled for all situations for which the Schrödinger equation 
is appropriate; this is a core idea in quantum mechanics – the wavefunction or, as we will 
generalize it later, the quantum mechanical state, contains all the information required about 
the particle for the calculation of any observable quantity. 

Note, of course, that if the spatial wavefunction is in an eigenstate, there is no subsequent 
variation in time of the wavefunction, other than the oscillation exp( / )iEt− =  that, on its own, 
leads to no variation of the measurable properties of the system in time. 

Problem 
 3.3.1 Consider the problem of an electron in a one-dimensional “infinite” potential well of width Lz in the 

z direction (i.e., the potential energy is infinite for z < 0 and for z > Lz, and, for simplicity, zero for 
other values of z). [In the functions below, t refers to time.] 
(a) For each of the following functions, state whether it could be a solution to the time-independent 

Schrödinger equation for this problem. 

(i) ( )sin 3 / zz Lπ  

(ii) ( ) ( )
2 2

2

7.5
exp sin 7.5 /

2 z
o z

i t z L
m L

π
π

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

=
 

(iii) ( ) ( )sin / sin 4 /z zA z L B z Lπ π+  where A and B are arbitrary complex constants. 

(iv) ( ) ( )
2 2

2 2

8exp sin / exp sin 4 /
2 z z

o z o z

A i t z L B i t z L
m L m L
π ππ π

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= =  where A and B are arbitrary 

complex constants. 
(b) For each of the above functions, state whether it could be a solution of the time-dependent 

Schrödinger equation for this problem 

3.4 Linearity of quantum mechanics: linear superposition 

The time-dependent Schrödinger equation is also linear in the wavefunction Ψ, just as the 
time-independent Schrödinger equation was. Again, no higher powers of Ψ appear anywhere 
in the equation. In the time-independent equation, this allowed us to say that, if ψ was a 
solution, then so also was Aψ, where A is any constant, and the same kind of behavior holds 
here for the solutions Ψ of the time-dependent Schrödinger equation. Another consequence of 
linearity is the possibility of linear superposition of solutions, which we can state as follows. 

 If ( ),a tΨ r  and ( ),b tΨ r  are solutions,   

 then so also is ( ) ( ) ( ), , ,a b a bt t t+Ψ = Ψ + Ψr r r . (3.13) 

This is easily verified by substitution into the time-dependent Schrödinger equation4. 

                                                           

4 This kind of superposition property also formally applies to the time-independent Schrödinger equation, 
but it is much less useful there, essentially only being helpful for the case when a state is degenerate (i.e., 
where there is more than one eigenfunction possible for a given eigenvalue). Then superpositions of those 
different degenerate states are also solutions of the same equation, i.e., corresponding to the same value 
of energy E. We cannot, however, superpose solutions corresponding to different values of E in the case 
of the time-independent Schrödinger equation; such solutions are solutions to what are actually different 
equations (different values of E on the right hand side). In the case of the time-independent Schrödinger 
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We can also multiply the individual solutions by arbitrary constants and still have a solution to 
the equation, i.e., 

 ( ) ( ) ( ), , ,c a a b bt c t c tΨ = Ψ + Ψr r r  (3.14) 

where ca and cb are (complex) constants, is also a solution. 

The concept of linear superposition solutions is, at first sight, a very strange one from a 
classical point of view. There is no classical precedent for saying that a particle or a system is 
in a linear superposition of two or more possible states. In classical mechanics, a particle 
simply has a “state” that is defined by its position and momentum, for example. Here we are 
saying that a particle may exist in a superposition of states each of which may have different 
energies (or possibly positions or momenta). Actually, however, it will turn out that, to recover 
the kind of behavior we expect from particles in the classical picture of the world, we need to 
use linear superpositions, as we will illustrate below.  

3.5 Time dependence and expansion in the energy 
eigenstates 

A particularly interesting and useful way to look at the time-evolution of the wavefunction, 
especially for the case where the potential V is constant in time, is to expand it in the energy 
eigenfunction basis. If V is constant in time, each of the energy eigenstates is separately a 
solution of the time-dependent Schrödinger equation (with different values of energy E if the 
solutions are not degenerate). Explicitly, the n-th energy eigenfunction can be written, 
following Eq. (3.10) above 

 ( ) ( ) ( ), exp /n n nt iE t ψΨ = −r r=  (3.15) 

where nE  is the nth energy eigenvalue, and now we presume that the nψ  (and consequently 
the nΨ ) are normalized. This function is a solution of the time-dependent Schrödinger 
equation. Because of the linear superposition defined above, any sum of such solutions is also 
a solution.  

Suppose that we had expanded the original spatial solution at time 0t =  in energy 
eigenfunctions, i.e., 

 ( ) ( )n n
n

aψ ψ= ∑r r  (3.16) 

where the an are the expansion coefficients (the an are simply fixed complex numbers). We 
know that any spatial function ( )ψ r  can be expanded this way because the set of 
eigenfunctions ( )nψ r  is believed to be complete for describing any spatial solution. We can 
now write a corresponding time-dependent function  

                                                                                                                                                         
equation, if there is only one spatial form of solution, ( )ψ r , for a given energy E, then the only different 
possible solutions correspond to multiples of that one solution. Hence then linear superposition is the 
same as multiplying by a constant, i.e.,  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )a b a b A B A Bψ ψ ψ ψ ψ ψ+ = + = + = +r r r r r r .  
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 ( ) ( ) ( ) ( ), , exp /n n n n n
n n

t a t a iE t ψΨ = Ψ = −∑ ∑r r r=  (3.17) 

We know that this function is a solution to the time-dependent Schrödinger equation because it 
is constructed from a linear combination of solutions to the equation. At 0t =  it correctly 
gives the known spatial form of the solution. Hence Eq. (3.17) is the solution to the time-
dependent Schrödinger equation with the initial condition  

 ( ) ( ) ( ),0 n n
n

aψ ψΨ = = ∑r r r    (3.18) 

for the case where the potential V does not vary in time. 

Hence, if we expand the spatial wavefunction in terms of the energy eigenstates at 0t = , as in 
Eq. (3.16), we have solved for the time evolution of the state thereafter; we have no further 
integration to do, merely a calculation of the sum (3.17) at each time of interest to us. This is a 
remarkable result, and enables us immediately to start examining the time dependence of 
quantum-mechanical solutions for potentials V that are fixed in time. 

3.6 Time evolution of infinite potential well and harmonic 
oscillator 

Now we will look at the time evolution of a number of simple examples for cases where the 
potential is fixed in time (i.e., ( , ) ( )V t V≡r r ) and the system is in a superposition state.  
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Fig.  3.1. Illustration of the oscillation resulting from the linear superposition of the first and 
second levels in a potential well with infinitely high barriers. For this illustration, the well is 
taken to have unit thickness, and the unit of time is taken to be =/E1. The oscillation angular 
frequency, ω21, is 3 per unit time because the energy separation of the first and second levels is 
3E1. The probability density therefore oscillates back and forwards three times in 2π units of 
time.  
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Simple linear superposition in an infinite potential well 

Let us consider a very simple physical case where the mathematics is also very simple. We 
suppose that we have an infinite potential well (i.e., one with infinitely high barriers), and that 
the particle within that well is in a linear superposition state with equal parts of the first and 
second states of the well, i.e., 

 ( ) 1 21 2, exp sin exp sin
z zz

E Ez zz t i t i t
L LL
π π⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞Ψ = − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦= =
 (3.19) 

where the well is of thickness Lz, and E1 and E2 are the energies of the first and second states 
respectively. (We have chosen this linear combination so that it is normalized.) Then the 
probability density is given by  

 
( ) 2

2 2 2 1

,

1 2 2sin sin 2cos sin sin
z z z z z

z t

E Ez z z zt
L L L L L

π π π π

Ψ =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦=

 (3.20) 

Here we see that the probability density has a part that oscillates at an angular 
frequency 21 2 1 1( ) / 3 /E E Eω = − == = . Notice, incidentally, that the absolute energy origin does 
not matter here because the oscillation frequency only depends on the separation of energy 
levels. We could have added an arbitrary amount to both of the two energies E1 and E2 without 
making any difference to the resulting oscillation. Changing the energy origin in this way 
would have changed the oscillatory factors in the wavefunctions, but it would have made no 
difference to anything measurable, another illustration that the wavefunction itself is not 
necessarily meaningful. The oscillatory behavior of this particular system is illustrated in Fig. 
 3.1.  
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Fig.  3.2. Time evolution of an equal linear superposition of the first and second eigenstates of a 
harmonic oscillator. Here the probability density is plotted against position in dimensionless units 
(i.e., distance units of 1/ 2( / )mω=  where m is the particle’s mass) at (i) the beginning of each 
period (solid line), (ii) ¼ and ¾ of the way through each period (dotted line), and (iii) half way 
through each period (dashed line).. 
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Harmonic oscillator example 
We can construct a linear superposition state for the harmonic oscillator to see what kind of 
time behavior we obtain. For example, we could construct a superposition with equal parts of 
the first and second states, just like we did above for the potential well. Quite generally, if we 
make a linear superposition of two energy eigenstates with energies Ea and Eb, the resulting 
probability distribution will oscillate at the frequency /ab a bE Eω = − = . I.e., if we have a 
superposition wavefunction 

 ( ) ( ) ( ) ( ) ( ), exp / exp /ab a a a b b bt c iE t c iE tψ ψΨ = − + −r r r= =  (3.21) 

then the probability distribution will be 
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where arg( ( ) ( ))ab a a b bc cθ ψ ψ∗ ∗= r r . 

Fig.  3.2 shows the resulting probability density for such an equal linear superposition of the 
first and second states of the harmonic oscillator. The probability density of this superposition 
oscillates at the (angular) frequency, ω, of the classical harmonic oscillator because the energy 
separation between the first and second states is ω= . 

Now we are beginning to get a correspondence with the classical case; at least now we have 
the quantum mechanical oscillator actually oscillating, and with the frequency we expect 
classically.  

Coherent state 

It turns out for the harmonic oscillator that the linear superpositions that correspond best to our 
classical understanding of harmonic oscillators are well known. They are known as “coherent 
states”. We will not look here in any mathematical detail at why these correspond to the 
classical behavior, and where this particular linear combination comes from. For our purposes 
here, it is simply some specific superposition of the all the harmonic oscillator eigenstates, one 
that happens, for large total energies at least, to give a behavior that corresponds quite closely 
to what we expect a harmonic oscillator to do from our classical experience. We will simply 
show some of the properties of this coherent state by example calculation, specifically what 
happens to the probability density if we let this particular linear combination evolve in time.  

The coherent state for a harmonic oscillator of frequency ω is, using the notation from Chapter 
2,  

 ( ) ( )
0

1, exp
2N Nn n

n

t c i n tξ ω ψ ξ
∞

=

⎡ ⎤⎛ ⎞Ψ = − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (3.23) 

where  
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Incidentally, the reader may notice that  
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=  (3.25) 

is the well-known Poisson distribution from statistics, with mean N (and also standard 
deviation N )5. The parameter N is, in a way that will become clearer later, a measure of the 
amount of energy in the system overall – larger N corresponds to larger energy. 
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Fig.  3.3. Probability distribution (not to scale vertically) for a coherent state of a harmonic 
oscillator with N = 1 at time t = 0. Also shown is the parabolic potential energy in this case. 

We can calculate the resulting probability density, for example numerically, by simply 
including a finite but sufficient number of terms in the series (3.23). Fig.  3.3 illustrates the 
probability density at time 0t =  for 1N = , and Fig.  3.4 and Fig.  3.5 illustrate this for 10N =  
and 100N =  respectively. In each case, for subsequent times the probability distribution 
essentially oscillates back and forth from one side of the potential to the other, with angular 
frequency ω, retaining essentially the same shape as it does so. For higher N, the spatial width 
of the probability distribution becomes a smaller fraction of the size of the overall oscillation. 
Hence, as we move to the classical scale of large oscillations, the probability distribution will 
appear to be very localized (compared to the size of the oscillation), and so we can recover the 
classical idea of oscillation.  

Now we have explicitly demonstrated that at least some particular quantum mechanical 
superposition state for a harmonic oscillator shows the kind of behavior we expected 
classically such an oscillator should have, with an object (here an electron “wavepacket”) 

                                                           
5 For those who are exasperated by their curiosity about where this coherent state superposition comes 
from and what it means, we give one real example. A laser under ideal conditions, operating in a single 
mode, will have the light field in a coherent state, and N here will be the average number of photons in 
the mode in question. The quantity that is oscillating in that case is the magnetic field amplitude, rather 
than the position of some electron. Though an oscillating particle and an oscillating magnetic field seem 
very different at this point, the equations that govern both of these can turn out to be the same, a point to 
which we return in Chapter 15. It is also quite true, and easily checked experimentally, that the measured 
number of photons in such a light beam does have a Poissonian statistical distribution, in accord with the 
Poissonian distribution here.  
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oscillating back and forward, apparently sinusoidally, at the frequency we would expect 
classically. Quantum mechanics, though it works in a very different way, can reproduce the 
dynamics we have come to expect for objects in the classical world. 
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Fig.  3.4 Probability distribution (not to scale vertically) for a coherent state of a harmonic 
oscillator with N = 10 at time t = 0. Also shown is the parabolic potential energy in this case. 
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Fig.  3.5 Probability distribution (not to scale vertically) for a coherent state of a harmonic 
oscillator with N = 100 at time t = 0. Also shown is the parabolic potential energy in this case. 

It is important to note, however, that, in general, a system in a linear superposition of multiple 
energy eigenstates does not execute a simple harmonic motion like this harmonic oscillator 
does. That harmonic motion is a special consequence of the fact that all the energy levels are 
equally spaced in the harmonic oscillator case. Fig.  3.6 shows the probability density at 
different times for the equal linear superposition of the first three bound levels of the finite 
well of Fig. 2.8. Because the energy separations between the levels are not in integer ratios, the 
resulting probability density does not repeat in time. 
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Fig.  3.6. Probability density at three different times for an equal linear superposition of the first 
three levels of a finite potential well as in Fig. 2.8. (i) t = 0 (solid line); (ii) t = π /2  (dotted line); 
(iii) t = π (dashed line). The time units are 1/ E∞=   where 1E∞  is the energy of the first level in a 
well of the same width but with infinitely high barriers.  

Problems 
 3.6.1  An electron in an infinitely deep potential well of thickness 4 Å is placed in a linear superposition 

of the first and third states. What is the frequency of oscillation of the electron probability density? 

 3.6.2  A one-dimensional harmonic oscillator with a potential energy of the form ( ) 2V z az=  in its 
classical limit (i.e., in a coherent state with a large expectation value of the energy) would have a 
frequency of oscillation of f cycles per second.  
(i) What is the energy separation between the first and second energy eigenstates in this harmonic 

oscillator? 
(ii) If the potential energy was changed to ( ) 20.5V z az= , would the energy separation between 

these states increase or decrease? 

 3.6.3  Consider an electron in an infinitely deep one-dimensional potential well of width 1 nmzL = . This 
electron is prepared in a state that is an equal linear superposition of the first three states. Presuming 
that oscillations in wavefunction amplitude lead to oscillations at the same frequency in the charge 
density, and that the charge density at any point in the structure give rise to radiated electromagnetic 
radiation at the same frequency, list all of frequencies (in Hertz) of radiation that will be emitted by 
this system. 

 3.6.4  Consider an electron in a one-dimensional potential well of width Lz in the z direction, with 
infinitely high potential barriers on either side (i.e., at 0z =  and zz L= ). For simplicity, we assume 
the potential energy is zero inside the well. Suppose that at time 0t =  the electron is in an equal 
linear superposition of its lowest two energy eigenstates, with equal real amplitudes for those two 
components of the superposition. 
(i)  Write down the wavefunction at time 0t =  such that it is normalized. 
(ii)  Starting with the normalized wavefunction at time 0t = , write down an expression for the 

wavefunction valid for all times t.  
(iii)  Show explicitly whether this wavefunction is normalized for all such times t. 

 3.6.5 Consider an electron in a potential well of width Lz, with infinitely high potential barriers on either 
side. Suppose that the electron is in an equal linear superposition of the lowest two energy eigenstates 
of this potential well. Find an expression for the expectation value, as a function of time, of the 
position z of the electron in terms of Lz and fundamental constants. 

 Note: you may need the expressions 
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3.7 Time evolution of wavepackets 

In looking at time evolution so far, we have explicitly considered the harmonic oscillator, and 
found that, at least with a particular choice of linear superposition, we can recover the kind of 
behavior we associate with a classical harmonic oscillator. Another important example is the 
propagation of wave packets to emulate the propagation of classical particles.  

Imagine, for example, that the potential energy, V, is constant everywhere. For simplicity, we 
could take V to be zero. In such a situation, we know there is a solution of the time-
independent Schrödinger equation possible for every energy E (greater than zero). In fact there 
are two such solutions for every energy, a “right-propagating” one 

  ( ) ( )expER z ikzψ =  (3.26) 

and a “left-propagating” one 

 ( ) ( )expEL z ikzψ = −  (3.27) 

where 22 /k mE= =  as usual6.  

The corresponding solutions of the time-dependent Schrödinger equation are 

 ( ) ( ), expER z t i t kzωΨ = − −⎡ ⎤⎣ ⎦  (3.28) 

and  

 ( ) ( ), expEL z t i t kzωΨ = − +⎡ ⎤⎣ ⎦  (3.29) 

where /Eω = = .  

We want to understand the correspondence between the movement of such a “free” particle in 
the quantum mechanical description and in the classical one. We might at first be tempted to 
ask for the so-called “phase velocity” of the wave represented by either of Eqs. (3.28) or (3.29)
, which would be 

 
2

2 2p
E Ev

k mE m
ω

= = =
=

=
 (3.30) 

That would lead to a relation between the particle’s energy and this velocity pv  of 22 pE mv= , 
which does not correspond with the classical relation between kinetic energy and velocity of 

                                                           
6 We have deliberately not attempted to normalize these solutions. That is mathematically somewhat 
problematic for a uniform wave in an infinite space, though there is a solution to this problem 
(normalization to a delta function) to which we will return in Chapter 5. This lack of normalization will 
not matter for the situations we will examine here. 
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2(1/ 2)E mv= . If we examine the ( ) 2,EL z tΨ  or ( ) 2,ER z tΨ  associated with either of these 
waves, we will, however, find that they are uniform in space and time, and it is not meaningful 
to ask if there is any movement associated with them. To understand movement, we are going 
to have to construct a “wave-packet” – a linear superposition of waves that adds up to give a 
“packet” that is approximately localized in space at any given time. To understand what 
behavior we expect from such packets, we have to introduce the concept of group velocity. 

Group velocity 

Elementary wave theory, based on examining the behavior of linear superpositions of waves, 
says that the velocity of the center of a wave packet or pulse is the “group velocity” 

 g
dv
dk
ω

=  (3.31) 

where ω  is the frequency and k  is the wavevector.  

To understand this, consider a total wave made up out of a superposition of two waves, both 
propagating to the right, one at frequency ω δω+ , with a wavevector k kδ+ , and one at a 
frequency ω δω−  and a wavevector k kδ− . Then the total wave is 

( ) ( ) ( ){ } ( ) ( ){ }, exp expf z t i t k k z i t k k zω δω δ ω δω δ= − + − + + − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (3.32) 

We can rewrite this as 

 ( ) ( ), 2cos( ) expf z t t kz i t kzδω δ ω= − − −⎡ ⎤⎣ ⎦  (3.33) 

which can be viewed as an underlying wave exp[ ( )]i t kzω− −  modulated by an envelope 
( )cos t kzδω δ− , as illustrated in Fig.  3.7.  

We know in general that some entity of the form cos( )at bz−  is itself a wave that is moving at 
a velocity a/b. Hence we see here that the envelope is moving at the “group velocity” 

 gv
k

δω
δ

=  (3.34) 

or, in the limit of very small δω  and kδ , the expression Eq. (3.31). 

  
Fig.  3.7. Illustration of the “beating” between two waves in space (here showing only the real 
part), leading to an envelope that propagates at the group velocity. 

We could extend this argument to some more complicated superposition of more than two 
waves, which would give some other form of the “envelope”. We would find similarly, as long 
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as /d dkω  is approximately constant over the frequency or wavevector range we use to form 
this superposition, that this envelope would move at the group velocity of Eq. (3.31).  

If the reader is new to the concept of group velocity, he or she might regard it as being some 
obscure phenomenon. After all, for waves such as light waves in free space, or sound waves in 
ordinary air in a room, the velocity of the waves does not depend on the frequency, or at least 
not to any substantial degree, so / /d dk kω ω=  and phase and group velocities are equal. 
There are many possible situations in which ω is not proportional to k, and we refer to this lack 
of proportionality as “dispersion”. For example, near to the center frequency of some optical 
absorption line, such as in an atomic vapor, the refractive index changes quite rapidly with 
frequency, the variation of refractive index with frequency (known as material dispersion) is 
not negligible, and the group and phase velocities are no longer the same. It is also true that in 
waveguides the different modes propagate with different velocities, so there is dispersion there 
also, this time from the geometry of the structure (an example of structural dispersion). In long 
optical fibers, for example, the effects of dispersion and of group velocity are far from 
negligible. Also, any structure whose physical properties, such as refractive index, change on a 
scale comparable to the wavelength will show structural dispersion. 

In contrast to the normal optical or acoustic cases, for a particle such as an electron, the phase 
velocity and group velocity of quantum mechanical waves are almost never the same. For the 
simple free electron we have been considering, the frequency ω is not proportional to the 
wavevector magnitude k. For zero potential energy, the time-independent Schrödinger equation 
(for example, in one dimension) tells us that, for any wave component, ( ) exp( )z ikzψ ∝ ± . In 
fact (for zero potential energy),  
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We see then that the propagation of the electron wave is always highly dispersive. Hence, for 
our present quantum mechanical case, we would have a velocity for a wavepacket made up out 
of a linear superposition of waves of energies near E, 

 1 1 2
/ /g

Ev
dk d dk dE mω

= = =
=

 (3.38) 

Fortunately, we now find that, using this group velocity, we can write, using Eq. (3.37)  

 21
2 gE mv=  (3.39) 
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Hence, the quantum mechanical description in terms of propagation as a superposition of 
waves does correspond to the same velocity as we would have expected from a classical 
particle of the same energy, as long as we correctly consider group velocity7. 

Examples of motion of wavepackets 

A real wavepacket that corresponds to a particle localized approximately in some region of 
space at a given time needs to be somewhat more complex than the simple sum of two 
propagating waves. There are many forms that could give a wavepacket. A common one used 
as an example is a Gaussian wavepacket.  

Freely propagating wave packet  

A Gaussian wavepacket propagating in the positive z direction in free space could be written as 

 ( ) ( ){ }
2

, exp exp
2G

k

k kz t i k t kz
k

ω
⎡ ⎤⎛ ⎞−
⎢ ⎥Ψ ∝ − − −⎡ ⎤⎜ ⎟ ⎣ ⎦Δ⎢ ⎥⎝ ⎠⎣ ⎦

∑  (3.40) 

where k  is the value at the center of the distribution of k values, and the parameter Δk is a 
width parameter for the Gaussian function. The sum here runs over all possible values of k, 
which we presume to be evenly spaced.8  
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Fig.  3.8. Illustration of a wavepacket propagating in free space. The wavepacket is a Gaussian 
wavepacket in k-space, centered round a wavevector k  = 0.5 Å-1, which corresponds to an 
energy of ~ 0.953 eV, with a Gaussian width parameter Δk of 0.14 Å-1. The units of time are 

/ 0.66e= � fs. 

At this point, it is useful to introduce the idea of integration rather than summation when we 
are dealing with parameters that are continuous9. Instead of (3.40) above, we can choose to 
write 

                                                           
7 Incidentally, situations can arise in quantum mechanics, such as with electrons in the valence band of 
semiconductors, in which the phase velocity and group velocity are even in opposite directions; this is not 
some bizarre and exceptional situation, but is in fact a routine part of the operation of approximately half 
of all the transistors (the PMOS transistors that complement the NMOS transistors in complementary 
metal-oxide-semiconductor (CMOS) technology) in modern integrated circuits. 
8 In practice for calculations, we will work with a sum over an evenly spaced set of values of k, taking the 
spacings to be sufficiently close so that no substantial difference results in the calculations by choosing 
the spacing to be finer. In many real situations with finite space, the allowed k values are equally spaced 
(e.g., particles in large boxes or in crystals). 
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Though this is now an integral rather than a sum, it is still just a linear combination of 
eigenfunctions of the time-dependent Schrödinger equation. 

The motion of a Gaussian wavepacket for our free electron wave is illustrated in Fig.  3.8. We 
see first of all that the wavepacket does move to the right as we expect, with the center moving 
linearly in time (at the group velocity). We also see that the wavepacket gets broader in time. 
This increase in width is because the group velocity itself is not even the same for different 
wave components in the wave packet, a dispersive phenomenon called group-velocity 
dispersion. Clearly, there will be group velocity dispersion if /d dkω  is not a constant over the 
region of wavevectors of interest, i.e., if 2 2/ 0d dkω ≠ , which is certainly the case for our free 
electron, for which 
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Wavepacket hitting a barrier 

A more complex example of wavepacket propagation is that of a wavepacket hitting a finite 
barrier. To analyze this problem, we can start by solving for the wavefunction of the time-
independent Schrödinger equation in the presence of a finite barrier for the situation where 
there is no wave incident from the right.  

We find that there are solutions for every energy. Each of these solutions contains a forward 
(right) propagating wave on the left of the barrier (as well as a reflected wave there), forward 
and backward waves within the barrier (which may be exponentially growing and decaying for 
energies below the top of the barrier), and a forward wave on the right. We can then form a 
linear superposition of these solutions with Gaussian weightings. The procedure is identical to 
that of (3.40) except the waves are these more complicated solutions. The results are shown in 
Fig.  3.9.  

Here we see first the wavepacket approaching the barrier at times t = -10 and t = -5. Near t = 0, 
we see strong interference effects. These effects result from the incoming wave interfering 
with the wave reflected off the barrier, and show “standing wave” phenomena. At times t = 5 
and t = 10, we see a pulse propagating to the right on the right side of the barrier, 
corresponding to a pulse that has propagated through the barrier (in this case mostly by 
tunneling)10, as well as a reflected pulse propagating backwards. It is important to emphasize 
here that all of these phenomena in the time dependent behavior arise from the interference of 
the various energy eigenstates of the problem, with the time dependence itself arising from the 
change in phase in time between the various components as the exp( / )iEt− =  phase factors 
evolve in time. With the energy eigenstates already calculated for the problem, the time 

                                                                                                                                                         
9 See Section 5.3 below for a more complete introduction to the transition from sums to integrals 
10 The Gaussian distribution we have chosen does necessarily mean that there are some components of 
the wavepacket that have energies above the top of the barrier, and these likely do contribute to the small 
oscillatory component seen inside the barrier region in the simulation at t = 5 and t = 10. It is important to 
emphasize, however, that the penetration of the wavepacket through the barrier is substantially due to 
tunneling through the barrier in this case, not to propagation for energies above the barrier.  
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behavior arises simply from a linear sum of these different components with their time-
dependent phase factors.  
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Fig.  3.9. Simulation of an electron wavepacket hitting a barrier. The barrier is 1 eV high and 10 Å 
thick, and is centered around the zero position. The wavepacket is a Gaussian wavepacket in k-
space, centered round a wavevector k  = 0.5 Å-1, which corresponds to an energy of ~ 0.953 eV, 
with a Gaussian width parameter Δk of 0.14 Å-1. The units of time are / 0.66e= � fs. 

Simulating at a higher energy, such as the one corresponding to the first resonance above the 
barrier at an energy ~ 1.37 eV, shows similar kinds of behaviors, but has a larger transmission 
and a smaller reflection. 

Problems 
 3.7.1 Suppose that in some semiconductor material, the relation between the electron eigenenergies E and 

the effective wavevector k in the z direction is given by 

  
2 2

2
kE
b

= −
=   

 for some positive real constant b. If we consider a wavepacket made from waves with wavevectors in 
a small range around a given value of k, in what direction is the wavepacket moving 
(i) for a positive value of k 
(ii) for a negative value of k. 

 3.7.2 In a crystalline solid material, the energy E of the electron energy eigenstates can be expressed as a 
function of an effective wavevector kz for waves propagating in the z direction as shown in the figure 
below.  

 Consider now the motion of a wavepacket formed from states in the immediate vicinity of the 
particular points A, B, C, and D marked on the figure. State for each of these points  
(i) the direction of the group velocity (i.e., is the electron moving in a positive or negative z 

direction), and  
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(ii) the sign of the parameter, meff, known as the effective mass, where  
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D

Energy E

Wavevector kz  
 3.7.3 [This problem can be used as a substantial assignment] (Notes: 

(i) See Section 2.11 before attempting this problem; (ii) some 
mathematical and/or numerical software will be required.) 
Consider the one-dimensional problem of an electron in a uniform 
electric field F , and in which there is an infinitely high potential 
barrier at 0z =  (i.e., the potential is infinite for all negative z ) as 
sketched below, with the potential taken to be zero at 0z =  (or at 
least just to the right of 0z = ). The field is in the +ve z  direction, 
and consequently the potential energy associated with the electron 
in that field is taken to be, for 0z > , ( )V z eFz=  

(A positive field pushes the electron in the negative z  direction, so the negative z  direction is 
“down hill” for the electron, so the electron has increasing potential energy in the positive z  
direction.)  

(i) For an applied electric field of 1010 V/m, solve for the lowest twenty energy eigenvalues of 
the electron (in electron-volts), and graph, and state the explicit functional form of, the first 
three energy eigenfunctions. (You need not normalize the eigenfunctions for this graph.) 

(ii) Consider a wavepacket made up out of a linear superposition of such energy eigenfunctions. 
In particular, choose a wavepacket corresponding to an energy expectation value of about 17 
eV, with a characteristic energy distribution width much less than 17 eV. [One convenient 
form is a wavepacket with a Gaussian distribution, in energy, of the weights of the 
(normalized) energy eigenfunctions.] Calculate and graph the time evolution of the resulting 
probability density, showing sufficiently many different times to show the characteristic 
behavior of this wavepacket. Also describe in words the main features of the time evolution 
of this wavepacket. State explicitly whether the behavior of this system is exactly cyclic in 
time, and justify your answer. 

(iii) Compare the quantum mechanical behavior to what one would expect classically, on the 
assumption that the electron would bounce perfectly off the barrier. In what ways is the 
behavior the same? In what ways is it different? [Note: approximate numerical calculations 
and comparisons should be sufficient here.]  

3.8 Quantum mechanical measurement and expectation 
values 

When a normalized wavefunction is expanded in an orthonormal set, e.g.,  

 

z = 0

V(z)

z
V = 0
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then the normalization integral requires that 
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If we look at the integral over the sums, we see that because of the orthogonality of the basis 
functions, the only terms that will survive after integration will be for n m= , and because of 
the orthonormality of the basis functions, the result from any such term in the integration will 
simply be ( ) 2

nc t . Hence, we have 

 2 1n
n

c =∑  (3.45) 

In quantum mechanics, when we make a measurement on a small system with a large 
measuring apparatus, of some quantity such as energy, we find the following behavior, which 
is sometimes elevated to a postulate or hypothesis in quantum mechanics:11 

On measurement, the system collapses into an eigenstate of the quantity being measured, 
with probability  

 2
n nP c=  (3.46) 

where cn is the expansion coefficient in the (orthonormal) eigenfunctions of the quantity 
being measured. 

We see, though, that our conclusion (3.45) is certainly consistent with using the 2
nc  as 

probabilities, since they add up to 1. 

Suppose now that we measure the energy of our system in such an experiment. We could 
repeat the experiment many times, and get a statistical distribution of results. Given the 
probabilities, we would find in the usual way that the average value of energy E that we would 
measure would be 

 2
n n n n

n n

E E P E c= =∑ ∑  (3.47) 

where we are using the notation E  to denote the average value of E, a quantity we call the 
“expectation value of E” in quantum mechanics. (In (3.47), the En are the energy eigenvalues.) 

For example, for the coherent state discussed above with parameter N, we have 

                                                           
11 There are many problems connected with this statement, especially if we try to consider it as anything 
other than an empirical observation for measurements by large systems on small ones. We will postpone 
discussion of these difficulties until Chapter 19. The core difficulty is that it is not clear that we can 
explain the measurement process itself by quantum mechanics, at least in any way that is not apparently 
quite bizarre. Resolving these difficulties, has, however, been a major activity in quantum mechanics up 
to the present day, and the modern pictures of these resolutions are much different from those originally 
envisaged in the early days of quantum mechanics. The branch of quantum mechanics that deals with 
these problems is known as measurement theory, and the core problem is known as the measurement 
problem. 
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We can show that having an energy N ω≈ =  for the large N implicit in a classical situation 
corresponds very well to our notions of energy, frequency and oscillation amplitude in a 
classical oscillator. Note that N  is not restricted to being an integer – it can take on any real 
value. Quite generally, the expectation value of the energy or any other quantum-mechanically 
measurable quantity is not restricted to being one of a discrete set of values – it can take on any 
real value within the physically possible range of the quantity in question. 

Stern-Gerlach experiment 

The measurement hypothesis is very strange, possibly even stranger than it already appears. It 
is important in quantum mechanics not to move past this point too lightly, and we should 
confront its true strangeness here. The Stern-Gerlach experiment is the first and the most 
classic experiment that shows just how strange it is. 

An electron has another property, in addition to having a mass and a charge – it has a “spin”. 
We will return to discuss spin in much greater depth later, in Chapter 12. For the moment, we 
can think of the electron spin as making the electron behave like a very small bar magnet. The 
strength of this magnet is exactly the same for all electrons.  

If we pass a bar magnet through a region of space that has a uniform magnetic field, nothing 
will happen to the position of the bar, because the North and South poles of the bar magnet are 
pulled with equal and opposite force.12  

But, if the field is not uniform, then the pole that is in the stronger part of the field will 
experience more force, and the bar magnet will be deflected as it passes through the field. A 
magnet that would give such a non-uniform field is sketched in Fig.  3.10.13 Because the shape 
of the North pole is “sharpened” so that one part of it is closer to the South pole than other 
parts, there will be greater magnetic field concentration near the “sharp” part, thereby giving us 
a non-uniform magnetic field. 

Hence, we could imagine various situations with ordinary classical bar magnets fired, all at the 
same velocity, through this field horizontally. If the bar magnet started out oriented with the 

                                                           
12 It might be that the bar magnet could be aligned by the field – i.e., twisted by the field to line up its 
South pole towards the North pole of the magnet producing the magnetic field – but it would not move up 
or down. In fact, we can presume in this experiment that there is negligible twisting, and it anyway could 
not lead to the actual result of the experiment. In the experiment,  both possible extreme orientations 
appear to occur in the experiment – the South pole of the bar magnet aligned to the North pole of the 
external magnet (which we could rationalize by the magnet twisting in the field), and also the North pole 
of the bar magnet aligned to the North pole of the external magnet (which could not be explained by the 
twisting in the field, because the magnetic field will not twist North to align with North) – with 
apparently equal probability. 
13 The top end of the North pole is connected magnetically to the bottom end of the South pole, but we 
have omitted that connection for simplicity in the diagram. 
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South pole facing up (Fig.  3.10(a)), there would be more force pulling the South pole up than 
is pulling the North pole down, because the South pole is in a region of larger magnetic field. 
Hence the magnet would be deflected upwards, and would hit the screen at a point above the 
middle. If the bar magnet started out in the opposite orientation, it would instead be deflected 
downwards (Fig.  3.10(b)). If the bar magnet started out oriented in the horizontal plane (in any 
direction), it would not be deflected at all (Fig.  3.10(c)). In any other orientation of the bar 
magnet, it would be deflected by some intermediate amount.  
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Fig.  3.10 Sketch of Stern-Gerlach experiment. A non-uniform magnetic field is imagined 
deflecting small bar magnets, entering horizontally from the left, in different orientations: (a) 
South pole up, (b) North pole up, and (c) both poles in a horizontal plane. For random initial 
orientations of the bar magnets, a solid line is expected for the accumulated arrival points on the 
screen, (d), for the arrival points of the magnets, but electrons in the same experiment, (e), show 
only two distinct arrival spots.  

Now let us repeat this experiment again and again with bar magnets prepared in no particular 
orientation, each time marking where the bar magnet hits the screen. Then we would expect to 
see a fairly continuous line of points, as in Fig.  3.10(d). When we do this experiment with 
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electrons,14 however, we see that all the electrons land only at an upper position, or at a lower 
position (Fig.  3.10(e)). This is very surprising. Remember that the electrons were not prepared 
in any way that always aligned their spins in the “up” or “down” directions. It also does not 
matter if we change the direction of the magnets – the pattern of two dots just rotates as we 
rotate the external magnets. 

The quantum mechanical explanation is that this apparatus “measures” the vertical component 
of the electron spin. There are only two eigenfunctions of vertical electron spin, namely “spin 
up” and “spin down”. When we make a measurement, according to the measurement 
hypothesis, we “collapse” the state of the system into one of the eigen states of the quantity 
being measured (here the vertical electron spin component), and hence we see only the two 
dots on the screen, corresponding respectively to “spin up” and “spin down” states.. Again, if 
the reader thinks this is bizarre, then the reader is exactly correct – this measurement behavior 
is truly strange, and totally counter to our classical intuition. 

Problem 
 3.8.1 As in Problem  3.6.4, consider an electron in a one-dimensional potential well of width Lz in the z 

direction, with infinitely high potential barriers on either side (i.e., at 0z =  and zz L= ). For 
simplicity, we assume the potential energy is zero inside the well. Suppose that, at time 0t = , the 
electron is in an equal linear superposition of its lowest two energy eigenstates, with equal real 
amplitudes for those two components of the superposition. What is the expectation value of the 
energy for an electron in this state? Does it depend on time t? 

3.9 The Hamiltonian 

Classical mechanics was put on a more sophisticated mathematical foundation in the late 18th 
and the 19th century. One particular important concept was the notion of the Hamiltonian, a 
function, usually of positions and momenta, essentially representing the total energy in the 
system. The Hamiltonian and some of the concepts surrounding it were important in the 
development of quantum mechanics, and continue to be important in analyzing various topics. 
There are many formal links and correspondences between the Hamiltonian of classical 
mechanics and quantum mechanics. We will avoid discussing these here except to make one 
definition. In quantum mechanics that can be analyzed by Schrödinger’s equation, we can 
define the entity 

 ( )2ˆ ,
2

H V t
m

= − ∇ +
2

r=  (3.49) 

so that we can write the time-dependent Schrödinger equation in the form 

 ( ) ( ),ˆ ,
t

H t i
t

∂Ψ
Ψ =

∂
r

r =   (3.50) 

or the time-independent Schrödinger equation as 

 ( ) ( )Ĥ Eψ ψ=r r  (3.51) 

(where ( )ψ r  is now restricted to being an eigenfunction with associated eigenenergy E). 

                                                           
14 Stern and Gerlach actually did this experiment with silver atoms, which turn out to have the same spin 
properties as electrons as far as this experiment is concerned. 
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We can regard this way of writing the equations as merely a shorthand notation, though this 
kind of approach turns out to be very useful in quantum mechanics. The entity Ĥ  is not a 
number, and it is not a function. It is instead an “operator”, just like the entity d/dz is a spatial 
derivative operator. We will return to discuss operators in greater detail in Chapter 4. We use 
the notation with a “hat” above the letter here to distinguish operators from functions and 
numbers. The most general definition of an operator is an entity that turns one function into 
another. 

The particular operator Ĥ  is called the Hamiltonian operator because it is related to the total 
energy of the system. The idea of the Hamiltonian operator extends beyond the specific 
definition here that applies to single, non-magnetic particles; in general in non-relativistic 
quantum mechanics, the Hamiltonian operator is the operator related to the total energy of the 
system.  

3.10 Operators and expectation values 

We can now show an important but simple relation between the Hamiltonian operator, the 
wavefunction, and the expectation value of the energy. Consider the integral 

 ( ) ( ) 3ˆ, ,I t H d∗= Ψ Ψ∫ r r t r  (3.52) 

where ( , )tΨ r  is the wavefunction of some system of interest. We can expand this 
wavefunction in energy eigenstates, as in Eq. (3.43). We know that, with ( )nψ r  as the energy 
eigenstates (of the time-independent Schrödinger equation)  
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⎣ ⎦ ⎣ ⎦
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r

= =

  (3.53) 

and so 

 ( ) ( ) ( ) ( ) ( ) ( )3 3ˆ, , m m n n n
m n

t H d c t c t E dψ ψ
∞

∗ ∗ ∗

−∞

⎡ ⎤ ⎡ ⎤Ψ Ψ = ×⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∑ ∑∫ ∫r r t r r r r  (3.54) 

Given the orthonormality of the ( )nψ r , we have 

 ( ) ( ) 23ˆ, , n n
n

t H d E c∗Ψ Ψ = ∑∫ r r t r  (3.55) 

But comparing to the result (3.47), we therefore have 

 ( ) ( ) 3ˆ, ,E t H d∗= Ψ Ψ∫ r r t r  (3.56) 

This kind of relation between the operator (here Ĥ ), the quantum mechanical state 
(here ( , )tΨ r ), and the expected value of the quantity associated with the operator (here E) is 
quite general in quantum mechanics.  

The reader might ask, but if we already knew how to calculate E  from Eq. (3.47), what is 
the benefit of this new relation, Eq. (3.56)? One major benefit is that we do not have to solve 
for the eigenfunctions of the operator (here Ĥ ) to calculate the result. We used the 
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decomposition into eigenfunctions to prove the result (3.56), but we do not have to do that 
decomposition to evaluate E  from (3.56). All we need is the quantum mechanical state (here 
the wavefunction ( , )tΨ r ), and the operator associated with the quantity E  (here Ĥ ). 

Problem 

 3.10.1  A particle in a potential ( ) 2 / 2V z z=  has a wavefunction at a given instant in time of 

 ( ) ( ) ( )21 1 2 exp / 2
2

z z zψ
π

= + −  

What is the expectation value of the energy for the particle in this state. (You may use numerical 
integration to get a result if you wish.) 

3.11 Time evolution and the Hamiltonian operator 

Let us look at Schrödinger’s time-dependent equation in the form as in Eq. (3.50) and rewrite 
it slightly as  

 
( ) ( )

ˆ,
,

t iH t
t

∂Ψ
= − Ψ

∂
r

r
=

, (3.57) 

If we presume that Ĥ does not depend on time (i.e., the potential ( )V r is constant in time), it is 
tempting to wonder if it is “legal” and meaningful to integrate this equation directly to obtain 

 ( ) ( ) ( )1 0
1 0

ˆ
, exp ,

iH t t
t t

⎛ ⎞−
Ψ = − Ψ⎜ ⎟⎜ ⎟

⎝ ⎠
r r

=
 (3.58) 

Certainly if Ĥ  were replaced by a constant number (a rather trivial case of an operator) we 
could perform such an integration. If it were legal and meaningful to do this for an actual time-
independent Hamiltonian, we would have an operator ( 1 0

ˆexp[ ( ) / ]iH t t− − = ) that, in one 
operation, gave us the state of the system at time 1t  directly from its state at time 0t .  

It is certainly not obvious that such an expression (3.58) is meaningful – what do we mean by 
the exponential of an operator? We can show, however, that provided we are careful to define 
what we mean here, this expression is meaningful. Understanding this expression will be a 
useful exercise, introducing some of the concepts associated with operators that we will 
examine in more detail later. To think about this, first we note that, because Ĥ  is a linear 
operator, for any number a , 

 ( ) ( )ˆ ˆ, ,H a t aH tΨ = Ψ⎡ ⎤⎣ ⎦r r  (3.59) 

We say that the operator Ĥ  “commutes” with the scalar quantity (i.e., the number) a . 
Because this relation holds for any function ( , )tΨ r , we can write, as a short-hand, 

 ˆ ˆHa aH=  (3.60) 

(Note that any time we have such an equation relating the operators themselves on either side, 
we are implicitly saying that this relation holds for these operators operating on any function in 
the space. I.e., the relation 

 ˆ ˆA B=  (3.61) 

for any two operators Â  and B̂  is really a shorthand for the statement 
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 ˆ ˆA BΨ = Ψ  (3.62) 

where Ψ is any arbitrary function in the space in question.) 

Next we have to define what we mean by an operator raised to a power. By 2Ĥ  we mean 

 ( ) ( )2ˆ ˆ ˆ, ,H t H H t⎡ ⎤Ψ = Ψ⎣ ⎦r r  (3.63) 

(i.e., Ĥ  operating on the function that is itself the result of operating on ( ), tΨ r  with Ĥ ). 
Specifically, for example, for the energy eigenfunction ( )nψ r  

 ( ) ( ) ( ) ( ) ( )2 2ˆ ˆ ˆ ˆ ˆ
n n n n n n n nH H H H E E H Eψ ψ ψ ψ ψ⎡ ⎤= = = =⎡ ⎤⎣ ⎦⎣ ⎦r r r r r  (3.64) 

We can proceed by an inductive process to define the meaning of all higher powers of an 
operator, i.e.,  

 1ˆ ˆ ˆm mH H H+ ⎡ ⎤≡ ⎣ ⎦  (3.65) 

which will give, for the case of an energy eigenfunction 

 ( ) ( )ˆ m m
n n nH Eψ ψ=r r  (3.66) 

Now let us look at the time evolution of some wavefunction ( , )tΨ r  between times 0t  and 1t . 
Suppose the wavefunction at time 0t  is ( )ψ r , which we can expand in the energy 
eigenfunctions ( )nψ r  as  

 ( ) ( )n n
n

aψ ψ= ∑r r  (3.67) 

Then we know (see Eq. (3.17), for example) that 

 ( ) ( ) ( )1 0
1, exp n

n n
n

iE t t
t a ψ

−⎡ ⎤
Ψ = −⎢ ⎥

⎣ ⎦
∑r r

=
 (3.68) 

We can if we wish write the exponential factors as power series, noting that 

 ( )
2 3

exp 1
2! 3!
x xx x= + + + +"  (3.69) 

so (3.68) can be written as 

 ( ) ( ) ( ) ( )
2

1 0 1 0
1

1, 1
2!

n n
n n

n

iE t t iE t t
t a ψ

⎡ ⎤− −⎛ ⎞ ⎛ ⎞
⎢ ⎥Ψ = + − + − +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑r r"
= =

 (3.70) 

Because of Eq. (3.66), everywhere we have ( )m
n nE ψ r , we can substitute ( )ˆ m

nH ψ r , and so 
we have 

 ( ) ( ) ( ) ( )
2

1 0 1 0
1

ˆ ˆ1, 1
2!n n

n

iH t t iH t t
t a ψ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥Ψ = + − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑r r"

= =
 (3.71) 

Because the operator Ĥ , and all its powers as defined above, commute with scalar quantities 
(numbers), we can rewrite (3.71) as 
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So, provided we define the exponential of the operator in terms of a power series, i.e., 
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with powers of operators as given by (3.63) and (3.65), we can indeed write Eq. (3.58). Hence 
we have established that there is a well-defined operator that, given the quantum mechanical 
wavefunction or “state” at time 0t , will tell us what the state is at a time 1t . The importance 
here is not so much that we have derived the form of the operator – this is not likely to be 
something that we use often for actual numerical calculations – but that we have deduced that 
there is such an operator, and we have understood how we can approach forming new 
operators that are “functions” of other operators.  

The particular operator we have derived here is valid for situations where the Hamiltonian is 
not explicitly dependent on time (which usually means that the potential V does not depend on 
time). It is possible to derive operators that deal with more complex situations, though we will 
not consider those here.15  

Problem 
 3.11.1  If the eigenenergies of the Hamiltonian Ĥ  are nE  and the eigenfunctions are ( )nψ r , what are 

the eigenvalues and eigenfunctions of the operator 2ˆ ˆH H− ? 

3.12 Momentum and position operators 

Thus far, the only operator we have considered has been the Hamiltonian Ĥ  associated with 
the energy E. In quantum mechanics, we can construct operators associated with many other 
measurable quantities. For the momentum operator, which we will write as p̂ , we postulate 
the operator 

 p̂ i≡ − ∇=  (3.74) 

with 

 
x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂
i j k  (3.75) 

where i, j, and k are unit vectors in the x, y, and z directions.  

With this postulated form, (3.74), we find that 

                                                           
15 See, for example, J. J. Sakurai, Modern Quantum Mechanics (Revised Edition) (Addison Wesley, 
1994), pp 72-73, for a discussion of such operators for time-dependent Hamiltonians.  



82  Chapter 3 The time-dependent Schrödinger equation 

 
2 2

2ˆ
2 2
p
m m

≡ − ∇
=  (3.76) 

and we have a correspondence between the classical notion of the energy E as 

 
2

2
pE V
m

= +  (3.77) 

and the corresponding Hamiltonian operator of the Schrödinger equation 

 
2 2

2 ˆˆ
2 2

pH V V
m m

= − ∇ + = +
=  (3.78) 

The plane waves exp( )i ⋅k r  are the eigenfunctions of the operator p̂  with eigenvalues k= , 
since 

 ( ) ( )ˆ exp expp i i⋅ = ⋅k r k k r=  (3.79) 

(The eigenvalues in this case are vectors, which is quite acceptable mathematically.) We can 
therefore make the identification for these eigenstates that the momentum is 

 =p k=  (3.80) 

Note that the p in Eq. (3.80) is a vector, with three components with scalar values, not an 
operator.  

For the position operator, the postulated operator is almost trivial when we are working with 
functions of position. It is simply the position vector, r, itself.16 At least when we are working 
in a representation that is in terms of position, we therefore typically do not write r̂ , though 
rigorously perhaps we should. The operator for the z-component of position would be, for 
example, also simply be z itself. 

Problems 
 3.12.1  Consider the equal linear superposition of the first two states of an infinitely deep potential well. 

(a) Show by explicit substitution that this state is a solution of the time-dependent Schrödinger 
equation for a particle in such a well. 

(b) For this state, what are the expectation values of 
(i)  the energy 
(ii)  the momentum 
(iii)  the position  

(Note: take the expectation value of position as being given by the expression z z dz∗= Ψ Ψ∫ ). 

 3.12.2  We perform an experiment in which we prepare a particle in a given quantum mechanical state, 
and then measure the momentum of the particle. We repeat this experiment many times, and obtain 
an average result for the momentum p  (the expectation value of the momentum). For each of the 
following quantum mechanical states, give the (vector) value of p , or, if appropriate, ( )tp  where 
t is the time after the preparation of the state. 
(i) ( ) ( )exp iψ ∝ ⋅r k r  
(ii) a particle of mass m in an infinitely deep quantum well of thickness zL  (here you need only 

give zp  or ( )zp t , the z-component of the value, where z is the direction perpendicular to 
the walls of the well), in the lowest energy state.  

                                                           
16 We will return in Chapter 5 to consider the eigenfunctions of position. These are actually Dirac delta 
functions, when expressed in terms of position. 
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(iii) Offer an explanation for the result of part (ii) based on the result from part (i). 

 3.12.3  Suppose that a particle of mass m is in a one-dimensional potential well with infinitely high 
barriers and thickness Lz in the z direction. Suppose also that it is in a state that is an equal linear 
superposition of the first and second states of the well. 

[Note that ( ) ( )
0
sin cos 2 2 /3d

π
θ θ θ = −∫ , ( ) ( )

0
sin 2 cos 4 /3d

π
θ θ θ =∫  ]  

 (i) At what frequency is this system oscillating in time?  
 (ii) Evaluate the expectation value of the z component of the momentum (i.e., ( )zp t ) as a 

function of time.  
 (iii) Suppose instead that the particle is in an equal linear superposition of the first and third states of 

the well. Deduce what now is ( )zp t . (Hint: this should not need much additional algebra, and 
may involve consideration of the consequences of odd functions in integrals.)  

 3.12.4  In an experiment, an electron is prepared in the state described by the wavefunction ( ),tΨ r , 
where t  is the time from the start of each run of the experiment. In this experiment, the momentum is 
measured at a specific time ot  after the start of the experiment. This experiment is then repeated 
multiple times. Give an expression, in terms of differential operators, fundamental constants and this 
wavefunction, for the average value of momentum that would be measured in this set of experiments.  

 3.12.5 Suppose an electron is sitting in the lowest energy state of some potential, such as a one-
dimensional potential well with finite potential depth (i.e., finite height of the potential barriers on 
either side). Suppose next we measure the momentum of the electron. What will have happened to 
the expectation value of the energy? I.e., if we now measure the energy of the electron again, what 
will have happened to the average value of the result we now get? Has it increased, decreased, or 
stayed the same compared to what it was originally? Explain your answer. 

3.13 Uncertainty principle 

One of the most perplexing aspects of quantum mechanics from a classical viewpoint is the 
uncertainty principle. (There are actually several uncertainty principles with similar character.) 
The most commonly quoted form is to say that we cannot simultaneously know both the 
position and momentum of a particle. This runs quite counter to our classical notion. Classical 
mechanics implicitly assumes that knowing both position and momentum is possible. In a 
practical sense for large objects, it is possible to know both at once; but more fundamentally 
according to quantum mechanics it is not, a fact that has profound philosophical implications 
for any discussion of, for example, determinism.  

We will postpone a more formal discussion of uncertainty principles. Here we will simply 
illustrate the position-momentum uncertainty principle by example. We defined a Gaussian 
wavepacket above in Eq. (3.41) as an integral over a set of waves with Gaussian weightings on 
their amplitudes about some central k value, k . Indeed, we could rewrite Eq. (3.41) at time 
t = 0 as 

 ( ) ( ) ( ),0 expk
k

z k ikz dkΨ = Ψ∫  (3.81) 

where 

 ( )
2

exp
2k
k kk

k

⎡ ⎤⎛ ⎞−
⎢ ⎥Ψ ∝ −⎜ ⎟Δ⎢ ⎥⎝ ⎠⎣ ⎦

  (3.82) 

We can regard ( )k kΨ as being the representation of the wavefunction in “k space”. 
Specifically, we can regard ( ) 2

k kΨ  as being the probability Pk (or more strictly, the 
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probability density) that, if we measured the momentum of the particle (actually in this case 
the z component of the momentum), it was found to have value k= . This probability would 
have a statistical distribution 

 ( )
( )

( )

2

2

2exp
2

k k

k k
P k

k

⎡ ⎤−
⎢ ⎥= Ψ ∝ −
⎢ ⎥Δ
⎣ ⎦

 (3.83) 

The Gaussian in Eq. (3.83) corresponds to the standard statistical expression for a Gaussian 
probability distribution, with standard deviation kΔ . 

We also note that Eq. (3.81) is simply the Fourier transform of ( )k kΨ . The result of this 
transform is well known. The Fourier transform of a Gaussian is a Gaussian17. Explicitly, if we 
were to formally perform the integral Eq. (3.81), we would find 

 ( ) ( )2 2,0 expz k z⎡ ⎤Ψ ∝ − Δ⎣ ⎦  (3.84) 

Now considering the probability (or again, strictly, the probability density) of finding the 
particle at point z at time t = 0 as ( ) 2,0zΨ , we have 

 ( ) ( )
( )

2
2 2 2

2,0 exp 2 exp
2

zz k z
z

⎡ ⎤
⎡ ⎤Ψ ∝ − Δ ≡ −⎢ ⎥⎣ ⎦ Δ⎢ ⎥⎣ ⎦

 (3.85) 

where we have chosen to define the quantity zΔ  so that it corresponds to the standard deviation 
of the probability distribution in real space. From Eq. (3.85), we find the relation 

 1
2

k zΔ Δ =  (3.86) 

or, with momentum (here strictly the z component of momentum) p k= = , 

 
2

p zΔ Δ =
=  (3.87) 

where p kΔ = Δ= .  

We saw when we propagated the wavepacket in time that it got wider, that is, zΔ  became 
larger, though kΔ  had not changed; the same Gaussian distribution of magnitudes of 
amplitudes of k components remained, though their relative phases had now changed with 
time, leading to a broadening of the wavepacket, so we can also certainly have / 2p zΔ Δ > = . It 
turns out that the Gaussian distribution and its Fourier transform have the minimum product 

k zΔ Δ  of any distribution (though we will not prove that here), and so we find the “uncertainty 
principle” 

 / 2p zΔ Δ ≥ =  (3.88) 

Though demonstrated here only for a specific example, this uncertainty principle turns out to 
be quite general. It expresses the non-classical notion that, if we know the position of a particle 
very accurately, we cannot know its momentum very accurately. For objects of everyday 
human scale and mass, this uncertainty is so small it falls below our other measurement 
accuracies, but for very light objects such as electrons, this uncertainty is not negligible.  

                                                           
17 This is a very special (and very useful) property of Gaussian functions. 
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It is important to emphasize, too, that the modern understanding of quantum mechanics 
appears to say that it is not merely that we cannot simultaneously measure these two quantities, 
or that quantum mechanics is only some incomplete statistical theory that does not tell us both 
momentum and position simultaneously even though they both exist to arbitrary accuracy. 
Quantum mechanics is apparently a complete theory, not merely a statistical “image” of some 
underlying deterministic theory; a particle simply does not have simultaneously both a well-
defined position and a well-defined momentum in this view18.  

Uncertainty principles are well known to those who have done Fourier analysis of temporal 
functions. There one finds that one cannot simultaneously have both a well-defined frequency 
and a well-defined time for a signal. If a signal is a short pulse, it is necessarily made up out of 
a range of frequencies. The shorter the pulse is, the larger the range of frequencies that must be 
used to make it up, i.e., 

 1
2

tωΔ Δ ≥  (3.89) 

The mathematics of this well-known Fourier analysis result is identical to that for the 
uncertainty principle discussed above.  

Another common example of an uncertainty principle is found in the diffraction angle of a 
beam, propagating, for example in the x direction, emerging from a finite slit with some width 
in the z direction. Smaller slits correspond to more tightly defined position in the z direction, 
and give rise to larger diffraction angles. The diffraction angle corresponds to the uncertainty 
in the z component of the wavevector. If we think of light propagation as being due to 
momentum of photons, diffraction is understood as the uncertainty principle giving momentum 
uncertainty in the z direction for this example. The diffraction of an electron beam from a 
single slit shows exactly the same diffraction phenomenon; we can regard the fact that the 
beam gets wider as it propagates as being because it is made up out of a range of beams of 
different momenta, each going in somewhat different directions. The propagation of Gaussian 
light beams, commonly encountered with laser beams, corresponds exactly to the above 
analysis if we define the beams with the correct parameters that correspond to the statistical 
definition of Gaussian distributions for the beam intensity.  

We can see, therefore, that, though the uncertainty principle seems at first a very strange 
notion, consequences of this kind of relation may actually be quite well known to us from 
classical situations with waves and time-varying functions. The unusual aspect is that it applies 
to properties of material particles also.  

Problem 
 3.13.1  Suppose we have a 1g mass, whose position we know to a precision of 1 Å.  

(i) What would be the minimum uncertainty in its velocity in a given direction? 
(ii) What would be the corresponding uncertainty in velocity if the particle was an electron 

instead of a 1g mass? 

                                                           
18 This point is not absolutely settled, however. See the discussion in Chapter 19. 
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3.14 Particle current 

Additional prerequisite: understanding of the divergence of a vector (see Appendix C). 

Our classical intuition leads us to expect that particles with kinetic energy must be moving, 
and hence there will be particle currents or current densities (i.e., particles crossing unit area 
per unit time). We have, however, apparently deduced that there are stationary states (energy 
eigenstates) in quantum mechanics where the particle may have energy that exceeds the 
potential energy, and we are now expecting that there may well be no current associated with 
such energy eigenstates. We need a meaningful way of calculating particle current in quantum 
mechanics so that we can check these notions.  

In general, if we are to conserve particles, we expect that we will have a relation of the form 

 . p
s
t

∂
= −∇

∂
j  (3.90) 

where s is the particle density and pj  is the particle current density (not the electrical current in 
this case, though if s was the charge density, this would be the form of the relation for 
conservation of charge with a charge current density). The reader may remember that this kind 
of vector calculus relation is justified by considering a small box, and looking at the difference 
of particle currents in and out of the opposite faces of the box.  

In our quantum mechanical case, the particle density for a particle in a state with wavefunction 
Ψ(r,t) is | Ψ(r,t)|2, so we are looking for a relation of the form of Eq. (3.90) but with | Ψ(r,t)|2 
instead of s. To do this requires a little algebra, and a clever substitution. 

We know that  

 
( ) ( )

, 1 ˆ ,
t

H t
t i

∂Ψ
= Ψ

∂
r

r
=

 (3.91) 

which is simply Schrödinger’s equation. We can also take the complex conjugate of both sides, 
i.e., 

 
( ) ( )

, 1 ˆ ,
t

H t
t i

∗
∗ ∗∂Ψ

= − Ψ
∂

r
r

=
 (3.92) 

Hence, we can write 

 ( )ˆ ˆ 0i H H
t

∗ ∗ ∗ ∗∂ ⎡ ⎤Ψ Ψ + Ψ Ψ − Ψ Ψ =⎣ ⎦∂ =
 (3.93) 

If the potential is real (it is hard to imagine how it could not be) and does not depend on time, 
then we can rewrite Eq. (3.93) as  

 ( )2 2 0
2
i

t m
∗ ∗ ∗∂ ⎡ ⎤Ψ Ψ − Ψ ∇ Ψ − Ψ∇ Ψ =⎣ ⎦∂

=  (3.94) 

Now we use an algebraic “trick” to rearrange this, i.e., 

 ( )
2 2 2 2∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

Ψ∇ Ψ − Ψ ∇ Ψ = Ψ∇ Ψ + ∇Ψ∇Ψ − ∇Ψ∇Ψ − Ψ ∇ Ψ

= ∇ ⋅ Ψ∇Ψ − Ψ ∇Ψ
 (3.95) 

Hence we have 
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( ) ( )

2
i

t m

∗
∗ ∗

∂ Ψ Ψ
= − ∇ ⋅ Ψ∇Ψ − Ψ ∇Ψ

∂
=  (3.96) 

which is an equation of the form of Eq. (3.90) if we identify 

 ( )
2p
i
m

∗ ∗= Ψ∇Ψ − Ψ ∇Ψj =  (3.97) 

as the particle current. Hence we have found an expression for particle currents for situations 
where the potential does not depend on time. 

Now we can use this to examine stationary states (energy eigenstates) to see what particle 
currents can be associated with them. The expression Eq. (3.97) above for particle current 
applies regardless of whether the system is in an energy eigenstate. Explicitly presuming we 
are in the nth energy eigenstate, we have 

 ( ) ( ) ( ) ( ) ( )( ), , , , ,
2pn n n n n
it t t t t
m

∗ ∗= Ψ ∇Ψ − Ψ ∇Ψj r r r r r=  (3.98) 

We can write out Ψn(r,t) explicitly as 

 ( ) ( ), exp n
n n

E
t i t ψ⎛ ⎞Ψ = −⎜ ⎟

⎝ ⎠
r r

=
 (3.99) 

The gradient operator ∇  has no effect on the exponential time factor, so the time factors in 
each term can be factored to the front of the expression, and anyway multiply to unity because 
of the complex conjugation, i.e., 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

, exp exp
2

2

n n
pn n n n n

n n n n

E Eit i t i t
m

i
m

ψ ψ ψ ψ

ψ ψ ψ ψ

∗ ∗

∗ ∗

⎛ ⎞ ⎛ ⎞= − ∇ − ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ∇ − ∇

j r r r r r

r r r r

=
= =

=
 (3.100) 

Hence jpn does not depend on time, i.e., we can write for any energy eigenstate n  

 ( ) ( ),pn pnt =j r j r  (3.101) 

Therefore particle current is constant in any stationary state (i.e., energy eigenstate).  

For a particle such as an electron, the electrical current density is simply pej . A steady current 
does not radiate any electromagnetic radiation. This means that an electron in an energy 
eigenstate does not radiate electromagnetic radiation.  

Hence, we have the quantum mechanical answer to the question, for example, about whether a 
hydrogen atom in an energy eigenstate, including any of the excited energy eigenstates, should 
be radiating. Classically, the electron orbiting round the nucleus would have a time-varying 
current; the electron in a classical orbit is continually being accelerated (and hence the 
associated current is being changed) because its direction is changing all the time to keep it in 
its circular or elliptical classical orbit, and so it would have to radiate electromagnetic energy. 
Regardless of the details of the energy eigenfunction solutions for a hydrogen atom, this 
quantum mechanical result says that the atom in such a state does not radiate electromagnetic 
energy because there is no changing current. The quantum mechanical picture agrees with 
reality for hydrogen atoms in states, and the classical picture does not. 
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For the common case where the spatial part of the energy eigenstate (i.e., ψ(r)) is real, or can 
be written as a real function multiplied by a complex constant, the right hand side of Eq. 
(3.100) is zero, and there is zero particle current. Hence, for example, the energy eigenstates in 
a potential well or a harmonic oscillator have no particle current associated with them. 

Problems 
 3.14.1  Suppose we have a particle in a wavepacket, where the spatial wavefunction at some time t is 

( ) ( ) ( )expA iψ = ⋅r r k r . Here, ( )A r  is a function that varies very slowly in space compared to the 
function ( )exp i ⋅k r , describing the “envelope” of the wavepacket.  
(i) Given that the particle current density is given by ( )( )/ 2p i m ∗ ∗= Ψ∇Ψ − Ψ ∇Ψj = , show that 

( ) 2 /p mψ≅j r p  where p is the (vector) expectation value of the momentum. 
(ii) With similar approximations, evaluate the expectation value of the energy, on the assumption 

that the potential energy is constant in space. 
(iii) Hence show that the velocity of the probability density corresponds to the velocity we would 

expect classically. 

 3.14.2  There are situations in quantum mechanics where the mass is not constant in space. This occurs 
specifically in analysis of semiconductor heterostructures where the effective mass is different in 
different materials. For the case where mass m(z) varies with z, we can postulate the Hamiltonian 

 
( ) ( )

2 1ˆ
2

d dH V z
dz m z dz

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠

=   

(For the sake of simplicity, we consider here only a one-dimensional case.)  
(i)  Show that this Hamiltonian leads to conservation of particle density if we postulate that the 

particle current (for the z direction) is given by 

 
( )2pz

i d dj
m z dz dz

ψ ψψ ψ
∗

∗⎡ ⎤
= −⎢ ⎥

⎣ ⎦

=   

 (actually the same expression as in the situation where mass did not depend on position). (Hint: 
follow through the argument above for the particle current, but with the new form of the 
Hamiltonian given here.) 

(ii) Show that the boundary conditions that should be used at a potential step with this new 

Hamiltonian are continuity of 1 d
m dz

ψ  and continuity of ψ. (These are commonly used boundary 

conditions for analyzing such problems.) (Hint: follow through the argument  leading up to Eqs. 
(2.38) and (2.39) with the new Hamiltonian.) 

3.15 Quantum mechanics and Schrödinger’s equation 

Thus far, all the quantum mechanics we have studied has been associated with Schrödinger’s 
equation, in its time-independent and time-dependent forms. This has introduced a very large 
number of the features of quantum mechanics to us. We have seen the emergence of 
“quantum” behavior, the idea of discrete states, with very specific energies associated with 
them. Though quantum mechanics operates in very different ways from classical mechanics, 
we have seen how quantum mechanics can describe moving particles, in ways that can 
correspond to classical motion, such as particles moving at a constant velocity, oscillating 
particles or accelerating particles. We have introduced a large number of the concepts of the 
mathematical approach to quantum mechanics, such as complete sets of eigenfunctions, states 
represented as linear superpositions of these states, and the general idea of linear algebra and 
quantum mechanics, including operators such as the Hamiltonian (for energy) and the 
momentum operator. We have also introduced quantum mechanical ideas like the uncertainty 
principle and wave-particle duality.  
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We introduced, too, the idea of quantum-mechanical amplitudes, of which the “wave” 
amplitude in Schrödinger’s equation is an example. We have mentioned at various points that 
the wavefunction (and, indeed any other quantum mechanical amplitude) is not necessarily a 
meaningful quantity on its own. In fact, it would actually cause us considerable problems if it 
were a measurable quantity; we would have solutions for measurable quantities that did not 
have the underlying symmetry of the problem, as in antisymmetric wavefunction solutions to 
symmetric problems (e.g., the second state in a square potential well), or had time dependence 
even when there was no real time dependence in the problem (as in any energy eigenstate). 
The wavefunction (or other quantum mechanical amplitude we will encounter later) is 
arguably just a mathematical device that makes calculations more convenient. That might seem 
an odd concept, but another common example of a mathematical device of possibly no direct 
physical meaning is complex numbers themselves. The use of complex numbers makes many 
calculations in engineering and classical physics easier, but the imaginary numbers themselves 
arguably have no direct physical meaning. 

The reader will also have noticed that we use complex numbers extensively in the quantum 
mechanics with Schrödinger’s equation that we have discussed so far. This complex nature is 
retained as we go further in quantum mechanics. Quantum-mechanical amplitudes in general 
are complex quantities.  

The Schrödinger equation is a very powerful and important relation in quantum mechanics, but 
it is far from all of quantum mechanics. It is the equation that describes the behavior of a single 
particle with mass, under non-relativistic conditions (i.e., everything moving much slower than 
the velocity of light), and in the absence of magnetic effects. Essentially, the Schrödinger 
equation describes the Hamiltonian of such a non-relativistic particle in the absence of 
magnetic fields. We can extend it to cover some other situations, by adding further terms to it, 
and we will look at some of these situations below, but there is also important quantum 
mechanics, such as that describing light, in which we need to go beyond the ideas of 
Schrödinger’s equation. The reader can be assured, however, that the underlying concepts we 
have already illustrated carry all the way through this additional quantum mechanics, 
especially the linear algebra aspects. Indeed, looking at quantum mechanics more generally in 
terms of linear algebra, rather than only the mathematics of a differential equation such as 
Schrödinger’s equation, can be very liberating intellectually in understanding quantum 
mechanics, and can also save us a lot of time. It is to that linear algebra description that we 
turn in the next Chapter. 

3.16 Summary of concepts 

Relation between energy and frequency 

In quantum mechanics, we find we can quite generally associate an energy E with a frequency 
ν  or an angular frequency ω  through the relation 

 E hν ω= = =  (3.1) 

Time-dependent Schrödinger equation 

The time-dependent Schrödinger equation is not an eigenequation. Knowing the solution in 
space at a given time (and any time dependence of the potential) is sufficient to calculate the 
solution at any subsequent (or, for that matter, previous) time. 
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 ( ) ( ) ( ) ( )2
2 ,

, , ,
2

t
t V t t i

m t
∂Ψ

− ∇ Ψ + Ψ =
∂

r
r r r= =  (3.2) 

Superposition state 

Because of the linearity of Schrödinger’s time-dependent equation, if Ψa(r,t) and Ψb(r,t) are 
separately solutions of the equation, then so also is the sum Ψa(r,t) + Ψb(r,t). This can be 
inductively extended to any linear superposition of an arbitrary number of solutions.  

Group velocity and dispersion 

Dispersion is the phenomenon in which the frequency ω and the magnitude of the wavevector 
k for some type of wave are not simply proportional to one another. The group velocity is the 
velocity at which some wavepacket, constructed from some superposition of waves, will move, 
and it is defined as 

 g
dv
dk
ω

=  (3.31)  

Group velocity dispersion is the phenomenon where the group velocity itself changes with ω 
or k. Such group velocity dispersion typically leads to a change in the width of the wavepacket 
as it propagates. 

Quantum mechanical measurement and collapse of the 
wavefunction 

When a small quantum mechanical system is measured by a large measuring apparatus, the 
system is always measured to be in one of the eigenstates of the quantity being measured, even 
if it was in a linear superposition of eigenstates before measurement. This is sometimes known 
as “collapse of the wavefunction”. (If viewed as a fundamental postulate of quantum 
mechanics, rather than an empirical behavior of small systems measured by large ones, it has 
various philosophical problems.)  

The probability of finding the system in a particular eigenstate on measurement is proportional 
to the modulus squared of the expansion coefficient of that state in the original superposition, 
i.e., if the expansion of the state in the (normalized) eigenstates of the quantity being measured 
is ( , ) ( ) ( )n nnt c t ψΨ = ∑r r , then the probability of finding the system in eigenstate ( )nψ r  is 

 2
n nP c=  (3.46) 

Operators 

An operator is an entity that changes one function into another. Operators are of central 
importance to the mathematical foundation of quantum mechanics. Operators are often 
indicated by having a “hat” over the corresponding letter, e.g., Ĥ  for the Hamiltonian operator 
(we adopt this notation consistently here). 

Hamiltonian operator 

The Hamiltonian operator is the operator that is associated with the energy of a quantum 
mechanical system. There is a very close link between Schrödinger’s equation and the 
Hamiltonian operator (for those systems for which Schrödinger’s equation is a good 
description). Quite generally, we write 
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∂
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r =  (3.50) 

even when the system is more complex than that described by the simple Schrödinger 
equations discussed so far. We also write, quite generally, for Hamiltonians that do not depend 
on time, 

 ( ) ( )Ĥ Eψ ψ=r r  (3.51) 

Time evolution of a quantum mechanical state 

The way in which a quantum mechanical state evolves in time is a key concept in quantum 
mechanics, and is fundamentally unlike the time-evolution of classical systems.  

The evolution of a quantum mechanical system in time can be viewed as proceeding by the 
coherent addition of quantum mechanical amplitudes, each of which is evolving in time. This 
coherent addition is like the interference of different waves, and, when the quantum 
mechanical amplitude we are considering is a wavefunction, there is an exact analogy here. 
Probability densities and other measurable quantities (such as expectation values of energy or 
momentum) can be deduced from the resulting sum of amplitudes at any particular time.  

We have illustrated above that the interference of quantum mechanical amplitudes can lead to 
the kind of behavior we see in the classical world, as in the harmonic oscillator with large 
energies and the propagation of wave packets.  

We can, of course, always simply integrate Schrödinger’s time-dependent equation in time if 
we know the initial wavefunction, and hence deduce everything that happens subsequently.  

There are also two specific methods for calculating the time-evolution of quantum mechanical 
system, for the case where the potential is constant in time, that give useful insight into 
quantum mechanical evolution of a system.  

(i) If we express the initial spatial wavefunction as a linear superposition of the energy 
eigenstates,  

 ( ) ( ) ( ),0 n n
n

aψ ψΨ = = ∑r r r  (3.18) 

then the evolution of the wavefunction in time is given by a simple linear superposition of 
these eigenstates with their oscillating prefactors ( ( )exp /niE t− = ), i.e.,  

 ( ) ( ) ( ) ( ), , exp /n n n n n
n n

t a t a iE t ψΨ = Ψ = −∑ ∑r r r=  (3.17) 

(ii) Alternatively, and equivalently, we can define a time-evolution operator ˆexp( / )iHt− =  
which enables us to deduce the state at time 1t , 1( , )tΨ r , from that at time 0t  , 0( , )tΨ r , 
simply by applying this operator, i.e.,  

 ( ) ( ) ( )1 0
1 0

ˆ
, exp ,

iH t t
t t

⎛ ⎞−
Ψ = − Ψ⎜ ⎟⎜ ⎟

⎝ ⎠
r r

=
 (3.58) 

Momentum operator 

It is possible also to define an operator associated with momentum, 
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 p̂ i≡ − ∇=  (3.74) 

which has associated eigenfunctions exp( )i ⋅k r  and eigenvalues k= . 

Position operator 

The position operator, at least when functions are expressed in terms of position, is simply the 
position vector itself, r.  

Expectation values 

For quantum mechanical states that are not eigenstates corresponding to some measurable 
quantity (such as energy or momentum), it is still possible to define the average value of the 
quantity of interest. This is known as the expectation value. It is the average value that would 
be obtained after repeated measurements on the system if it were prepared in the same state 
each time. 

The expectation value of a physical quantity, such as energy E , can be evaluated  

(i) from the known expansion of the state (here the wavefunction ( , )tΨ r ) in the (normalized) 
eigenfunctions of the corresponding operator, e.g., the Hamiltonian Ĥ  for the energy E  with 
eigenfunctions ( )nψ r  and eigenvalues nE  leads to the expansion 

 ( ) ( ) ( ), n n
n

t c t ψΨ = ∑r r  (3.43) 

and the corresponding expectation value  

 2
n n n n

n n
E E P E c= =∑ ∑  (3.47) 

or 

(ii) directly from the known state of the system using the operator in the appropriate 
expression, e.g., for the example case of energy and the Hamiltonian operator, through an 
expression of the form 

  ( ) ( ) 3ˆ, ,E t H d∗= Ψ Ψ∫ r r t r  (3.56) 

Uncertainty principle 

We find that quantum mechanics imposes a limit on the relative precision with which certain 
attributes of a particle can be defined. The best known such relation is the Heisenberg 
uncertainty principle between position and momentum for a particle, which is a relationship 
between the standard deviations of the probability distributions for position zΔ  in a given 
direction and momentum pΔ  in the same direction 

 / 2p zΔ Δ ≥ =  (3.88) 

This uncertainty principle is exactly analogous to the well-known relation  

 1
2

tωΔ Δ ≥  (3.89) 

between angular frequency and time in Fourier analysis of temporal functions, and to the 
phenomenon of diffraction of waves.  



 3.16 Summary of concepts 93 

Particle current 

We find that, for a potential that is constant in time, we can identify the quantity 

 ( )
2p
i
m

∗ ∗= Ψ∇Ψ − Ψ ∇Ψj =  (3.97) 

with particle current.  

The particle current associated with an energy eigenstate is constant, and that associated with 
an eigenstate with a real wavefunction (or a real function multiplied by a complex constant) is 
zero. 

Meaninglessness of wavefunction 

It is not clear that the wavefunction we have introduced has any meaning in itself; it is 
apparently not a measurable quantity. Like complex numbers themselves, however, the 
wavefunction is a very useful device for calculating other quite meaningful, mathematically 
real quantities. It is also a good example of a quantum mechanical amplitude, a concept that 
will recur many times in other aspects of quantum mechanics. 



Chapter 4  
 
Functions and operators 

Prerequisites: Chapters 2 and 3. 

So far, we have introduced quantum mechanics through the example of the Schrödinger 
equation and the spatial and temporal wavefunctions that are solutions to it. This has allowed 
us to solve some simple but important problems, and to introduce many quantum mechanical 
concepts by example. Quantum mechanics does, however, go considerably beyond the 
Schrödinger equation. For example, photons are not described by the kind of Schrödinger 
equation we have considered so far, though they are undoubtedly very much quantum 
mechanical.1  

To prepare for other aspects of quantum mechanics, and to make the subject easier to deal with 
in more complex problems, we need to introduce a more general and extended mathematical 
formalism. This formalism is actually mostly linear algebra. Readers will probably have 
encountered many of the basic concepts already in subjects such as matrix algebra, Fourier 
transforms, solutions of differential equations, possibly (though less likely) integral equations, 
or analysis of linear systems in general. For this book, we assume that the reader is familiar 
with at least the matrix version of linear algebra – the other examples are not necessary 
prerequisites. The fact that the formalism is based on linear algebra is because of the basic 
observation that quantum mechanics is apparently absolutely linear in certain specific ways as 
we discussed above. 

Thus far, we have dealt with the state of the quantum mechanical system as the wavefunction 
( , )tΨ r  of a single particle. More complex systems will have more complex states to describe, 

but in general any quantum mechanical state can simply be written as a list (possibly infinitely 
long) of numbers. This list can be written as a vector, which is, after all, simply a list of 
numbers. The operators of quantum mechanics can then be written as matrices (also possibly 
infinitely large), and the operation of the operator on the function corresponds to the 
multiplication of the state vector by the operator matrix. It is this generalized linear algebra 
approach that we will discuss and develop in this section. 

The linear algebra formalism is more generalized in quantum mechanics than in most of the 
other subjects mentioned above, and it is often presented in a rather abstract way. The 
shorthand notations that are introduced in these more abstract presentations are quite useful 
and worth learning, but the reader should be assured that the concepts are fundamentally the 
same as other manifestations of linear algebra. Here we will try to explain the concepts in a 
tangible and, hopefully, intelligible way. The mathematical approach here is deliberately 

                                                           
1 In fact, arguably the first quantum mechanics was concerned with the photon, through Planck’s solution 
of the problem of the spectral distribution of thermal radiation. 
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informal, with the emphasis being on grasping the core concepts and ways of visualizing the 
mathematical operations rather than on the more rigorous mathematical detail. The 
justification for this informality is that, once the essence of the concepts is understood, the 
reader can come back to understand the detail in a more rigorous treatment, but the opposite 
approach is generally much less successful.  

The discussion here so far of quantum mechanics has largely been one of breaking down 
classical beliefs, and replacing them with a specific approach (Schrödinger’s equation) that 
works for certain problems. A major goal of introducing this mathematical approach is to show 
a way of visualizing quantum mechanics, giving the reader an intuitive understanding quantum 
mechanics that extends to a broad range of problems. 

4.1 Functions as vectors 

First, we look at functions as particular kinds of vectors. A function, e.g., f(x), is essentially a 
mapping from one set of numbers (the “argument”, x, of the function) to another (the “result” 
or “value”, f(x), of the function). The fundamentals of this concept are not changed for 
functions of multiple variables, or for functions with complex number results or geometrical 
vector results (such as a position or momentum vector). We can imagine that the set of 
possible values of the argument is a list of numbers, and the corresponding set of values of the 
function is another list.  

One kind of list of arguments would be the list of all real numbers, which we could write in 
order as x1, x2, x3 … and so on. Of course that is an infinitely long list, and the adjacent values 
in the list are infinitesimally close together, but we will regard these infinities as details, and 
for the moment we ask the reader to assume that these details can be handled successfully from 
a more rigorous mathematical viewpoint.  

If we presume that we know this list of possible arguments of the function, we can write out 
the function as the corresponding list of results or values, and we choose to write this list as a 
column vector, i.e., 

 

( )
( )
( )

1

2

3

f x
f x
f x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦#

  

We can certainly imagine, for example, that, as a reasonable approximation to an actual 
continuous function of a continuous variable, we could specify the function at a discrete set of 
points spaced by some small amount δx, with x2 = x1 + δx, x3 = x2 + δx and so on; we would 
do this for sufficiently many values of x and over a sufficient range of x so that we would have 
useful representation of the function for the purposes of some calculation we wished to 
perform. For example, such an approximation to the function would be sufficient to calculate 
any integral of any reasonably well-behaved function to any desired degree of accuracy simply 
by taking δx sufficiently small. The integral of | f(x)|2 could then be written as 

 ( ) ( ) ( ) ( )

( )
( )
( )

1

2 2
1 2 3

3

f x
f x

f x dx f x f x f x x
f x

δ∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤≅ ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

∫ "

#

 (4.1) 
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f

x1 axis

x2 axis

x3 axis

f(x1)
f(x2)

f(x3)
f(x)

f(x1)

f(x2)

f(x3)

x1 x2 x3

(a) (b)

f

x1 axis
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x3 axis

f(x1)
f(x2)

f(x3)
f(x)

f(x1)

f(x2)

f(x3)

x1 x2 x3

(a) (b)  
Fig.  4.1 (a) Representation of a function f (x) approximately as a set of values at a discrete set of 
points, x1, x2, and x3. (b) Illustration of how the function can be represented as a vector, at least 
for the case where there are only three points of interest, x1, x2, and x3, and where the function is 
always real. 

The fact that we can usefully write the function as a vector suggests that we might be able to 
visualize it as a “geometrical” vector. For example, in Fig.  4.1, the function ( )f x  is 
approximated by its values at three points, 1x , 2x , and 3x , and is represented as a vector  

 
( )
( )
( )

1

2

3

f x
f x
f x

⎡ ⎤
⎢ ⎥≡ ⎢ ⎥
⎢ ⎥⎣ ⎦

f   

in a three-dimensional space. We will return below to discuss the mathematical space in which 
such vectors exist, but for the moment we merely note that we can visualize a function as a 
vector. Of course, since there are many elements in the vector (possibly an infinite number), 
we may need a space with a very large (possibly infinite) number of dimensions, but we will 
still visualize the function (and, more generally, the quantum mechanical state) as a vector in a 
space. 

Dirac bra-ket notation 
Since we will be working with such vectors extensively, it will be useful to introduce a 
shorthand notation. In quantum mechanics, we use the Dirac “bra-ket” notation; this notation is 
a convenient way to represent linear algebra quite generally, though its main use is in quantum 
mechanics. In this notation the expression ( )f x , called a “ket”, represents the column vector 
corresponding to the function f(x). For the case of our function f(x), we can define the “ket” as 

 ( )

( )
( )
( )

1

2

3

f x x

f x xf x
f x x

δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥≡ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦#

 (4.2) 

or, more strictly, the limit of this as 0xδ → . We have incorporated the factor xδ  into the 
vector so that we can handle normalization of the function, but this does not change the 
fundamental concept that we are writing the function as a vector list of numbers.  
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We can similarly define the “bra” ( )f x  to refer to an appropriate form of our row vector, in 
this case 

 ( ) ( ) ( ) ( )1 2 3f x f x x f x x f x xδ δ δ∗ ∗ ∗⎡ ⎤≡ ⎣ ⎦"  (4.3) 

where again we more strictly mean the limit of this as 0xδ → .  

Let us pause for a moment to consider the relation between “bra” and “ket” vectors. Note that, 
in our row vector, we have taken the complex conjugate of all the values. Quite generally, the 
vector 

 1 2 3a a a∗ ∗ ∗⎡ ⎤⎣ ⎦"   

is what is called, variously, the Hermitian adjoint, the Hermitian transpose, the Hermitian 
conjugate, or, sometimes, simply the adjoint, of the vector 

 

1

2

3

a
a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦#

  

A common notation used to indicate the Hermitian adjoint is to use the “dagger” character “ † ” 
as a superscript, i.e.,  

 

†
1

2
1 2 3

3

a
a

a a a
a

∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤≡ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

"

#

 (4.4) 

We can view the operation of forming the Hermitian adjoint as a reflection of the vector about 
a -45º line, coupled with taking the complex conjugate of all the elements, as shown below.  

†
1

2

3

a
a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦#

1

2

3

a
a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦#

1 2 3a a a∗ ∗ ∗⎡ ⎤⎣ ⎦" =⇒ 1 2 3a a a∗ ∗ ∗⎡ ⎤⎣ ⎦"

 
We see with this operation that the “bra” is the Hermitian adjoint of the “ket” and vice versa. 
Note the Hermitian adjoint of a Hermitian adjoint takes us back to where we started, i.e., 

 

††
1 1

†2 2
1 2 3

3 3

a a
a a

a a a
a a

∗ ∗ ∗

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎡ ⎤= =⎜ ⎟ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

"

# #

 (4.5) 

We will return later to consider the same kind of adjoint manipulation with matrices rather 
than vectors.  

Returning to the discussion of f(x) as a vector, with the definitions (4.1), (4.2), and (4.3) we 
find 
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( ) ( ) ( ) ( )

( )
( )
( )

( ) ( )

( ) ( )

1

2 2
1 2 3

3

n n
n

f x x

f x xf x dx f x x f x x f x x
f x x

f x x f x x

f x f x

δ

δδ δ δ
δ

δ δ

∗ ∗ ∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤≡ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

≡

≡

∫

∑

"

#

 (4.6) 

where again the strict equality applies in the limit when 0xδ → . Writing this as a vector 
multiplication eliminates the need to write a summation or integral since that is implicit in the 
vector multiplication. The reader will note that we have written the vector product of the “bra” 
and “ket” in a specific shorthand way as 

 g f g f× ≡  (4.7) 

Of course, as suggested by Eq. (4.7), this notation is also useful when we are dealing with 
integrals of two different functions, i.e.,  

 

( ) ( ) ( ) ( ) ( )

( )
( )
( )

( ) ( )

( ) ( )

1

2
1 2 3

3

n n
n

f x x

f x xg x f x dx g x x g x x g x x
f x x

g x x f x x

g x f x

δ

δδ δ δ
δ

δ δ

∗ ∗ ∗ ∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤≡ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

≡

≡

∫

∑

"

#

  (4.8) 

In general this kind of “product” of two vectors is called an inner product in linear algebra. The 
geometric vector dot product is an inner product, the bra-ket “product” is an inner product, and 
the “overlap integral” on the left of Eq. (4.8) is an inner product. It is “inner” because it takes 
two vectors and turns them into a number, a “smaller” entity. The bra-ket notation can also be 
considered to give an inner “look” to this multiplication with the special parentheses at either 
end giving a “closed” look to the expression. 

We could also consider situations in which a function is not represented directly as a set of 
values for each point in ordinary geometrical space, but is instead represented as an expansion 
in some complete orthonormal basis set, ( )n xψ , in which case we would write 

 ( ) ( )n n
n

f x c xψ= ∑  (4.9) 

(An example of such an expansion would be a Fourier series.) In this case, we could also write 
the function as a vector or “ket” (which would also in general have an infinite number of 
elements) 

 ( )

1

2

3

c
c

f x
c

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎣ ⎦#

 (4.10) 
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This is just as valid a description of the function as is the list of values at successive points in 
space. In this case, the “bra” becomes 

 ( ) 1 2 3f x c c c∗ ∗ ∗⎡ ⎤≡ ⎣ ⎦"  (4.11) 

When we write the function in this different form, as a vector containing these expansion 
coefficients, we say we have changed its “representation”. The function f(x) is still the same 
function as it was before, and we visualize the vector ( )f x  as being the same vector in our 
space. We have merely changed the axes in that space that we use to represent the function, 
and hence the coordinates in our new representation of the vector have changed (now they are 
the numbers 1c , 2c , 3c … ).2 (This idea that the function is the same vector independent of how 
it is represented is an important one in this mathematics.) 

Just as before, we could evaluate 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2

2

, ,

1

2
1 2 3

3

n n m m
n m

n m n m n m nm n
n m n m n

f x dx f x f x dx c x c x dx

c c x x dx c c c

c
c

c c c f x f x
c

ψ ψ

ψ ψ δ

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

⎡ ⎤ ⎡ ⎤≡ ≡ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

≡ ≡ ≡

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤≡ ≡⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑∫ ∫ ∫

∑ ∑ ∑∫

"

#

 (4.12) 

Similarly, with  

 ( ) ( )n n
n

g x d xψ= ∑  (4.13) 

we have 

 

 ( ) ( ) ( ) ( )

1

2
1 2 3

3

c
c

g x f x dx d d d g x f x
c

∗ ∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤≡ ≡⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

∫ "

#

 (4.14) 

with similar intermediate algebraic steps to those of Eq. (4.12).  

Note that the result of a bra-ket expression like ( ) ( )f x f x  or ( ) ( )g x f x  is simply a 
number (in general a complex one), which is easy to see if we think of this as a vector-vector 
multiplication. Note too that this number (inner product) is not changed as we change the 
representation, as we would expect by analogy with the dot product of two vectors, which is 
independent of the coordinate system. Again, this fact that the inner product does not depend 
on the representation is very important in this mathematics. 

                                                           
2 The reader might ask – what are the new coordinate axes? The answer is that they are simply the 
functions ( )n xψ , drawn as unit vectors in the same space, as we will discuss below. 
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Expansion coefficients 
Just as we did in Section 2.7, it is simple to evaluate the expansion coefficients nc  in Eq. (4.9) 
(or nd  in Eq. (4.13)) because we choose the set of functions ( )n xψ  to be orthonormal. Since 

( )n xψ  is just another function, we can also write it as a ket. In the bra-ket notation, to evaluate 
the coefficient cm, we premultiply by the bra mψ  

 ( ) ( ) ( ) ( )m n m n m
n

x f x c x x cψ ψ ψ= =∑  (4.15) 

(Here remember that the different functions ( )n xψ  are all orthogonal to one another in such 
an orthonormal basis, and hence ( ) ( ) ( ) ( )m n m n nmx x x x dxψ ψ ψ ψ δ∗≡ =∫ .) Note that nc  is just 
a number, so it can be moved about in the product. Using the bra-ket notation, we can write 
Eq. (4.9) as 

 
( ) ( ) ( )

( ) ( ) ( )

n n n n
n n

n n
n

f x c x x c

x x f x

ψ ψ

ψ ψ

= =

=

∑ ∑

∑
 (4.16) 

Again, because nc  is just a number, it can be moved about in the product (formally, 
multiplication of a vector and a number is commutative, though, of course, multiplication of 
vectors or matrices generally is not.) 

Often in using the bra-ket notation, we may drop arguments like x. Then we can write Eq. 
(4.16) as 

 n n
n

f fψ ψ= ∑  (4.17) 

Here we see a key reason for introducing the Dirac bra-ket notation; it is a generalized 
shorthand way of writing the underlying linear algebra operations we need to perform, and can 
be used whether we are thinking about representing functions as continuous functions in some 
space, or as summations over basis sets. It will also continue to be useful as we consider 
quantum mechanical attributes that are not represented as functions in normal geometric space; 
an example (to which we will return much later) is the “spin” of an electron, a magnetic 
property of the electron.  

State vectors 
In the quantum mechanical context where the function f represents the state of the quantum 
mechanical system (for example, it might be the wavefunction), we think of the set of numbers 
represented by the bra ( f ) or ket ( f ) vector as representing the state of the system, and 
hence we refer to the ket vector that represents f as the “state vector” of the system, and the 
corresponding bra vector as the (Hermitian) adjoint of that state vector.  

In quantum mechanics, the bra or ket always represents either the quantum mechanical state of 
the system (such as the spatial wavefunction ( )xψ ), or some state that the system could be in 
(such as one of the basis states ( )n xψ ). The convention for what symbols we put inside the bra 
or ket is rather loose, and usually one deduces from the context what exactly is being meant. 
For example, if it was quite obvious what basis we were working with, we might use the 
notation n  to represent the n th basis function (or basis “state”) rather than the notation 

( )n xψ  or nψ . In general, what symbols we put inside the bra or ket should be enough to 
make it clear what state we are discussing in a given context; beyond that, there are essentially 
no rules for the notation inside the bra or ket; the symbols inside the bra or ket are simply 
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labels to remind us what quantum mechanical state is being represented. We could if we 
wanted write 

 
2

The state where the electron has the lowest
possible energy in a harmonic oscillator with
potential energy 0.375x

  

but since we presumably already know we are discussing such a harmonic oscillator, it will 
save us time and space simply to write 

 0   

with the zero representing the quantum number of that state. Either would be correct 
mathematically.  

Problems 

 4.1.1 Suppose we adopt a notation  

 2 sin
z z

n zn
L L

π⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
  

 to label the states of a particle in a one-dimensional potential well of thickness Lz. Write the bra-ket 
notation form that is equivalent to each of the following integrals (do not evaluate the integrals – just 
change the notation). 

(i) 
0

2 3 5sin sin
zL

z z z

z z dz
L L L

π π⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫  

(ii) 
0

2 3 3sin sin
zL

z z z

G z z dz
L L L

π π⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ , where G is some constant 

(iii) 
0

5 5sin sin
zL

z z

z z dz
L L
π π⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫  

 4.1.2 Suppose that there are two quantum-mechanically measurable quantities, c with associated operator 
Ĉ , and d with associated operator D̂ . In particular, operator Ĉ  has two eigenvectors 1φ  and 2φ , 
and similarly operator D̂  has two eigenvectors 1ψ  and 2ψ . The relation between the 
eigenvectors is 

 ( )1 1 2
1 3 4
5

φ ψ ψ= +   

 ( )2 1 2
1 4 3
5

φ ψ ψ= −   

 Suppose a measurement is made of the quantity c, and the system is measured to be in state 1φ . 
Then a measurement is made of quantity d, and following that the quantity c is again measured. What 
is the probability (expressed as a fraction) that the system will be found in state 1φ  on this second 
measurement of c? [Note: this is really a problem in quantum mechanical measurement discussed in 
the previous Chapter, but is a good exercise in the use of the Dirac notation.] 

4.2 Vector space 

Now we should try to understand more about the space in which the vectors representing 
functions exist. For a vector with three components  
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1

2

3

a
a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

we can obviously imagine a conventional three-dimensional Cartesian space. The vector can 
be visualized as a line in that space, starting from the origin, with projected lengths a1, a2, and 
a3 along the three Cartesian axes respectively (with each of these axes being at right angles to 
each other axis), just as we did in Fig.  4.1. 

In the case of a function expressed as its values at a set of points, instead of 3 axes labeled 1x , 
2x , and 3x , we have more commonly an infinite number of different axes all orthogonal to 

one another. If we were only ever interested in functions expressed in terms of position x, we 
would create one axis for each possible position x and we would label the axes accordingly 
with those positions.  

More generally, we represent a function as an expansion on a basis set, as in Eq. (4.16). In this 
generalized case, we have one axis for each element in the basis set of functions. We now label 
each axis with the name of the basis function with which it is associated, e.g., nψ . Just as we 
may formally label the axes in conventional space with unit vectors in the directions of the 
axes (e.g., one notation is x̂ , ŷ , and ẑ  for the unit vectors), so also here we can label the axes 
with the kets associated with the basis functions, nψ ; either notation is acceptable. Note that 
a basis function is itself a vector in this space, and, if normalized, the basis function vectors are 
simply the unit vectors along the corresponding axis.  

The geometrical space has a vector dot product that defines both the orthogonality of the axes, 
e.g., with x̂ , ŷ , and ẑ  as the unit vectors in the coordinate directions3 

 ˆ ˆ 0⋅ =x y  (4.18) 

and defines the components of a vector along those axes, e.g., for  

 ˆ ˆ ˆx y zf f f= + +f x y z  (4.19) 

with  

 ˆxf = ⋅f x  (4.20) 

and similarly for the other components.  

Our vector space has an inner product that defines both the orthogonality of the basis functions 

 m n nmψ ψ δ=  (4.21) 

as well as the components  

 m mc fψ=  (4.22) 

Note that the fact that the basis functions are mathematically orthogonal, as given by Eq. 
(4.21), corresponds with the fact that we can draw them as orthogonal axes in the space. 

                                                           
3 Note that here we have used the “ � ” to indicate geometrical unit vectors, but we will otherwise reserve 
the “ � ” to indicate an operator. 
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The geometrical space and our vector space share a number of elementary mathematical 
properties that seem so obvious they are almost trivial. With respect to addition of vectors, 
both spaces are commutative 

 + = +a b b a  (4.23) 

 f g g f+ = +  (4.24) 

and associative 

 ( ) ( )+ + = + +a b c a b c  (4.25) 

 ( ) ( )f g h f g h+ + = + +  (4.26)  

and linear with respect to multiplying by constants, e.g.,  

 ( )c c c+ = +a b a b  (4.27) 

 ( )c f g c f c g+ = +  (4.28) 

(The constants in our vector space case are certainly allowed to be complex.)  

The inner product is linear both in multiplying by constants, e.g., 

 ( ) ( ). .c c=a b a b  (4.29) 

 f cg c f g=  (4.30) 

and in superposition of vectors 

 ( ). . .+ = +a b c a b a c  (4.31) 

 ( )f g h f g f h+ = +  (4.32)  

There is a well-defined “length” to a vector in both cases (formally, a norm), which we can 
write in a formal mathematical notation as 

 .=a a a  (4.33) 

 f f f=  (4.34) 

In both cases, any vector in the space can be represented to an arbitrary degree of accuracy as a 
linear combination of the basis vectors (this is essentially the completeness requirement on the 
basis set).  

There is a slight difference between the geometrical space and our vector space in the inner 
product. Usually in geometrical space the lengths a1, a2, and a3 of a vector are real, which 
would lead us to believe that the inner product (vector dot product) was commutative, i.e.,  

 . .=a b b a  (4.35) 

In working with complex coefficients rather than real lengths, it is more useful to have an inner 
product (as we do) that has a complex conjugate relation  

 ( )f g g f
∗

=  (4.36) 
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Such a relation ensures that f f  is real, as required for it to be a useful norm. (The 
existence of a norm is formally required to prove properties like completeness by showing that 
the norm of the difference of two vectors can be as small as desired.)   

These kinds of requirements, plus a few others (the existence of a null or “zero” vector, and the 
existence of an “antivector” that added to the vector gives the null vector) are sufficient to 
define these two spaces as “linear vector spaces”, and specifically, with the properties of the 
inner product, what are called “Hilbert spaces”. The Hilbert space is the space in which the 
vector representation of the function exists, just as normal Cartesian geometrical space is the 
space in which a geometrical vector exists4.  

The main differences between our vector space and the geometrical space are that (i) our 
components can be complex numbers rather than only real ones, and (ii) we can have more 
dimensions (possibly an infinite number). However, these differences are not so strong that we 
cannot use the idea of a geometrical space as a starting point for visualizing our vector space. 
In practice, we can carry over most of the intuition from our understanding of geometrical 
space and use it in visualizing the vector space in which we are representing functions. 

Our vector space can also be called a function space. A vector in this space is a representation 
of a function. The set of basis vectors (basis functions) that can be used to represent vectors in 
this space is said in linear algebra to “span” the space. 

Problems 
 4.2.1  We will consider the function space that corresponds to all linear functions of a single variable, i.e., 

functions of the form,  

 ( )f x ax b= +   

defined over the range 1 1x− < < . 

(i) Show that the functions ( )1 1/ 2xψ =  and ( )2
3
2

x xψ =  are orthonormal 

(ii) By showing that any arbitrary function ( )f x ax b= +  can be represented as the linear 
combination 1 1 2 2( ) ( ) ( )f x c x c xψ ψ= + , show that the functions 1( )xψ  and 2( )xψ  constitute a 
complete basis set for representing such functions. 

(iii) Represent the function 2x+3 as a vector in a two-dimensional function space by drawing that 
vector in a two-dimensional diagram with orthogonal axes corresponding to the functions 1( )xψ  
and 2( )xψ , stating the values of appropriate coefficients or components. 

4.3 Operators 

A function turns one number (the argument) into another (the result). Most broadly stated,  

an operator turns one function into another. 

In the vector space representation of a function, an operator turns one vector into another. 
Operators are central to quantum mechanics, and are encountered frequently in many forms in 
the mathematics that underlies much of science and engineering. 

                                                           
4 Note that, if we extended our notions of geometrical space to allow for complex lengths in the 
coordinate directions, and if we defined ( )∗⋅ = ⋅a b b a  then our geometrical space would also be, 
mathematically, a Hilbert space. 
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Suppose that we are constructing the new function ( )g y  from the function ( )f x  by acting on 
( )f x  with the operator Â . The variables x and y might actually be the same kind of variable, 

as in the case where the operator corresponds to differentiation of the function, e.g.,  

 ( ) ( )dg x f x
dx

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4.37) 

or they might be quite different, as in the case of a Fourier transform operation where x might 
represent time and y might represent frequency, e.g., 

 ( ) ( ) ( )1 exp
2

g y f x iyx dx
π

∞

−∞

= −∫  (4.38) 

A standard notation for writing such an operation on a function is  

 ( ) ( )ˆg y Af x=  (4.39) 

Note that this is not a multiplication of ( )f x  by Â  in the normal algebraic sense, but should 
be read as Â  operating on ( )f x .  

For Â  to be the most general operation we could imagine, it should be possible for the value 
of ( )g y , for example at some particular value of y = y1, to depend on the values of ( )f x  for 
all values of the argument x. This is the case, for example, in the Fourier transform operation 
of Eq. (4.38).  

4.4 Linear operators 

We will be interested here solely in what are called linear operators. We only care about linear 
operators because they are essentially the only ones we will use in quantum mechanics, again 
because of the fundamental linearity of quantum mechanics. A linear operator has the 
following characteristics: 

 ( ) ( ) ( ) ( )ˆ ˆ ˆA f x h x Af x Ah x+ = +⎡ ⎤⎣ ⎦  (4.40) 

 ( ) ( )ˆ ˆA cf x cAf x=⎡ ⎤⎣ ⎦  (4.41) 

for any complex number c and for any two functions ( )f x  and ( )h x .  

To understand what this linearity implies about how we can represent Â , let us consider how, 
in the most general way, we could have 1( )g y  related to the values of ( )f x  and still retain the 
linearity implied by Eqs. (4.40) and (4.41). Let us now go back to thinking of the function 

( )f x  as being represented by a list of values, 1( )f x , 2( )f x , 3( )f x , … , just as we did when 
considering ( )f x  as a vector. Again, we can take the values of x to be as closely spaced as we 
want, and we believe that this representation can give us as accurate a representation of ( )f x  
as we need for any calculation we need to perform. Then we propose that, for a linear 
operation represented by the operator Â , the value of 1( )g y  might be related to the values of 

( )f x  by a relation of the form 

 ( ) ( ) ( ) ( )1 11 1 12 2 13 3g y a f x a f x a f x= + + +…  (4.42) 

where the ija  are complex constants. This form certainly has the linearity of the type required 
by Eqs. (4.40) and (4.41), i.e., if we were to replace ( )f x  by ( ) ( )f x h x+ , then we would have 
some other resulting function value 
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( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 11 1 1 12 2 2

13 3 3

11 1 12 2 13 3

11 1 12 2 13 3

g y a f x h x a f x h x

a f x h x

a f x a f x a f x

a h x a h x a h x

= + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
+ +⎡ ⎤⎣ ⎦

= + + +

+ + + +

…

…

…

 (4.43) 

which is just the sum as required by Eq. (4.40), and similarly if we were to replace ( )f x  by 
( )c f x , we would have for yet some other resulting function value 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
1 11 1 12 2 13 3

11 1 12 2 13 3

g y a cf x a cf x a cf x

c a f x a f x a f x

= + + +

= + + +⎡ ⎤⎣ ⎦

…

…
 (4.44)  

as required by Eq. (4.41). Now let us consider whether the form Eq. (4.42) is the most general 
it could be. We can see this by trying to add other powers and “cross terms” of ( )f x . Any 
more complicated function relating 1( )g y  to ( )f x  could presumably be written as a power 
series in ( )f x , possibly involving ( )f x  for different values of x (i.e., cross terms). If we were 
to add higher powers of ( )f x , such as 2[ ( )]f x , or cross terms such as 1 2( ) ( )f x f x  into the 
series (4.42), it would, however, no longer have the required linear behavior of Eqs. (4.43) and 
(4.44). We also cannot add a constant term (i.e., one not dependent on ( )f x ) to the series 
(4.42); that would violate the second linearity condition, (4.41), since the additive constant 
would not be multiplied by c. Hence we conclude that the form Eq. (4.42) is the most general 
one possible for the relation between 1( )g y  and ( )f x  if this relation is to correspond to a 
linear operator. 

To construct the entire function ( )g y , we should construct series like Eq. (4.42) for each other 
value of y, i.e., y2, y3, … . It is now clear that, if we write the functions ( )f x  and ( )g y  as 
vectors, then this general linear operation that relates the function ( )g y  to the function ( )f x  
can be written as a matrix-vector multiplication,  

 

( )
( )
( )

( )
( )
( )

11 12 131 1

21 22 232 2

31 32 333 3

a a ag y f x
a a ag y f x
a a ag y f x

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

"
"
"

# # # %# #

 (4.45) 

with the operator 

 

11 12 13

21 22 23

31 32 33

ˆ

a a a
a a a

A
a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"
"

# # # %

 (4.46) 

It is important to emphasize that any linear operator can be represented this way. At least in so 
far as we presume functions can be represented as vectors, then linear operators can be 
represented by matrices. This now gives us a conceptual way of understanding what linear 
operators are and what they can do.  

In bra-ket notation, we can write Eq. (4.39) as 

 ˆg A f=  (4.47) 
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Again, in so far as we regard the ket as a vector, we now regard the (linear) operator Â  as a 
matrix. In the language of vector (function) spaces, the operator takes one vector (function) 
and turns it into another. Now have a very general way of thinking about linear transformations 
of functions. All of the following linear mathematical operations can be described in this way: 
differentiation, rotation (and dilatation) of a vector, all linear transforms (Fourier, Laplace, 
Hankel, z-transform, … ), Green’s functions in integral equations, and linear integral equations 
generally.  

In quantum mechanics, such linear operators are used as operators associated with measurable 
variables (such as the Hamiltonian operator for energy, and the momentum operator for 
momentum), as operators corresponding to changing the representation of a function (changing 
the basis), and for a few other specific purposes, with the associated vectors representing 
quantum mechanical states. 

A very important consequence is that the algebra for such operators is identical to that of 
matrices. In particular, operators do not in general commute, i.e.,  

 ˆ ˆAB f  is not in general equal to ˆB̂A f  (4.48) 

for any arbitrary f . If we understand that we are considering the operators to be operating 
on an arbitrary vector in the space, we can drop the vector itself, and write relations between 
operators, e.g., we can say, instead of Eq. (4.48) 

 ˆ ˆAB  is not in general equal to ˆB̂A  (4.49) 

which we would regard as an obvious statement if we are thinking of the operators as matrices.  

There are specific operators that do commute, just as there as specific matrices that do 
commute. Whether or not operators commute is also of central importance in quantum 
mechanics. 

Of course, although we presented the argument above for functions nominally of a variable x 
or y, it would have made no difference if we had been talking about expansion coefficients on 
basis sets. For example, we had expanded ( )f x  on a basis set in Eq. (4.9), which gives a set of 
coefficients nc  that we can write as a vector. We similarly had expanded ( )g x on a basis set in 
Eq. (4.13) to get a vector of coefficients md . In that case we had chosen the same basis for 
both expansions, but it would make no difference to the argument if ( )g x  had been expanded 
on a different set. We could follow an argument identical to the one above, requiring that each 
expansion coefficient id  depend linearly on all the expansion coefficients nc . The specific 
matrix we obtain for representing Â  depends on the choice of basis functions sets for the 
expansions of ( )f x  and ( )g x , but we still obtain a matrix vector statement of the same form, 
i.e., 

 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

d A A A c
d A A A c
d A A A c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

"
"
"

# # # # % #

 (4.50) 

and the bra-ket statement of the relation between f, g, and Â , Eq. (4.47), remains unchanged. 
The statements in the forms either of the bra-ket relation, Eq. (4.47), or the matrix-vector 
notation, Eq. (4.50), could be regarded as being more general statements than the form Eq. 
(4.45), which applies only to representations in terms of specific variables x and y. 
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4.5 Evaluating the elements of the matrix associated with 
an operator 

Now that we have established both the relation between linear operators operating on functions 
in linear spaces, and the mathematics of matrix-vector multiplications, it will be useful to be 
able to evaluate the matrix associated with some specific operator for functions defined using 
specific basis sets.  

Suppose we start with ( ) ( )jf x xψ= , or equivalently  

 jf ψ=  (4.51) 

i.e., we choose ( )f x  to be the j th basis function. In the expansion Eq. (4.9) this means we are 
choosing 1jc =  and setting all the other c’s to be zero. Now we operate on this f  with Â  as 
in Eq. (4.47) to get the resulting function g . Suppose we want to know specifically what the 
resulting coefficient id  is of the i th basis function in the expansion of this function g (i.e., as 
in Eq. (4.13)). It is obvious from the matrix form, Eq. (4.50), of the operation of Â  on this 

f , with the choice 1jc =  and all other c ’s zero, that  

 i ijd A=  (4.52) 

j
ψ

axis
j

ψ

axis
i

ψ

axis
k

ψ

ˆ
j

A ψ

ˆ
i j

Aψ ψ

 
Fig.  4.2. Illustration of a matrix element of an operator Â  visualized in terms of vector 
components. Operator Â  acting on the unit vector jψ , generates the vector ˆ

jA ψ , which in 
general has a different length and direction from the original vector jψ . The matrix element 

ˆ
ij i jA Aψ ψ≡  is the projection of the vector ˆ

jA ψ  onto the iψ  axis. 

For example, for the specific case of 2j = , we would have  

 

1 12 11 12 13

2 22 21 22 23

3 32 31 32 33

0
1
0

d A A A A
d A A A A
d A A A A

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

"
"
"

# # # # # % #

 (4.53) 

and so, to take one example result, we know that   

 3 32d A= . (4.54) 

But, from the expansions for f  and g  we have, for the specific case of jf ψ= , 
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 ˆ
n n j

n

g d Aψ ψ= =∑  (4.55) 

To extract id  from this expression, we multiply by iψ  on both sides to obtain 

 ˆ
i i jd Aψ ψ=  (4.56) 

and hence we conclude, from Eq. (4.52) 

 ˆ
ij i jA Aψ ψ=  (4.57) 

If we now think back to integrals considered as vector-vector multiplications, as in Eq. (4.14), 
then we can see that, when the functions ( )i xψ  are simple spatial functions, we have for the 
matrix elements corresponding to the operator Â  

 ( ) ( )ˆ
ij i jA x A x dxψ ψ∗= ∫  (4.58) 

The formation of a matrix element considered in terms of functions represented as vectors in 
the Hilbert space is illustrated in Fig.  4.2. We can if we wish write out the matrix explicitly for 
the operator Â , obtaining, with the notation of Eq. (4.57) 

 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

ˆ ˆ ˆ

ˆ ˆ ˆˆ
ˆ ˆ ˆ

A A A

A A AA
A A A

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥≡ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

"

"
# # # %

 (4.59) 

Now we have therefore deduced both how to set up the function as a vector in function space 
(establishing the components through Eq. (4.15)), and how to set up a linear operator as a 
matrix (through Eq. (4.58) or, equivalently, (4.57)) that operates on those vectors in the 
function space.  

4.6 Bilinear expansion of linear operators 

We know that we can expand functions in a basis set, as in Eqs. (4.9) and (4.13), or, in bra-ket 
notation, for example, Eq. (4.16). What is the equivalent form of expansion for an operator? 
We can deduce this from our matrix representation above. We do so by considering an 
arbitrary function f in the function space, written in ket form as f , from which a function g 
(written as the ket g ) can be calculated by acting with a specific operator Â , i.e.,  

 ˆg A f=  (4.60) 

The arbitrariness of the function f will allow us to deduce a general expression for the 
operator Â . We presume that g and f are expanded on the basis set iψ , i.e., in function space 
we have 

 i i
i

g d ψ= ∑  (4.61) 

 j j
j

f c ψ= ∑  (4.62) 

From our matrix representation, Eq. (4.50), of the expression (4.60), we know that  
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 i ij j
j

d A c= ∑  (4.63) 

and, by definition of the expansion coefficient, we know that 

 j ic fψ=  (4.64) 

Hence, (4.63) becomes 

 i ij j
j

d A fψ= ∑  (4.65) 

and, substituting back into (4.61), 

 
,

ij j i
i j

g A fψ ψ= ∑  (4.66) 

Remember that j jf cψ ≡  is simply a number, so we can move it within the multiplicative 
expression. Hence we have 

 
,

ij i j
i j

g A fψ ψ= ∑  (4.67) 

But f  represents an arbitrary function in the space, so we therefore conclude that the 
operator Â  can be represented as  

 
,

ˆ
ij i j

i j
A A ψ ψ≡ ∑  (4.68) 

This form, Eq. (4.68), is referred to as a “bilinear expansion” of the operator, and is analogous 
to the linear expansion of a vector. 

In integral notation for functions of a simple variable, we have, analogously, the relation 

 ( ) ( )1 1
ˆg x Af x dx= ∫  (4.69) 

which leads to the analogous form of the bilinear expansion 

 ( ) ( )1
,

ˆ
ij i j

i j
A A x xψ ψ ∗≡ ∑  (4.70) 

Note that these bilinear expansions can completely represent any linear operator that operates 
within the space, i.e., for which the result of operating on a vector (function) with the operator 
is always a vector (function) in the same space.  

Note, incidentally, that an expression of the form of Eq. (4.68) contains an outer product of 
two vectors. Whereas an inner product expression of the form g f  results in a single, 
complex number, an outer product expression of the form g f  generates a matrix, i.e., 
explicitly for the outer product, 

 

1 1 1 1 2 1 3

2 2 1 2 2 2 3
1 2 3

3 3 1 3 2 3 3

d d c d c d c
d d c d c d c

g f c c c
d d c d c d c

∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎡ ⎤= =⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

"
"

"
"

# # # # %

 (4.71)  

The specific summation in Eq. (4.68) is actually, then, a sum of matrices, with the matrix 
i jψ ψ  having the element in the i th row and the j th column being one, and all other 
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elements being zero5. Such outer product expressions for operators are very common in 
quantum mechanics.  

Problem 
 4.6.1 In the notation where functions in a Hilbert space are expressed as vectors in that space, and 

operators are expressed as matrices, for functions f  and g  and an operator Â , state where each 
of the following expressions corresponds to a column vector, a row vector, a matrix, or a complex 
number. 
a) f g  

b) ˆf A  

c) f g  

d) Â f g  

e) ( )††Â f f  

4.7 Specific important types of linear operators 

In the use of Hilbert spaces, there are a few specific types of linear operators that are very 
important. Four of those are (i) the identity operator, (ii) inverse operators, (iii) unitary 
operators, and (iv) Hermitian operators. The identity operator is relatively simple and obvious, 
but is important in the algebra of operators. Often, the mathematical solution to a physical 
problem involves finding an inverse operator, and inverse operators are also important in 
operator algebra. Unitary operators are very useful for changing the basis for representing the 
vectors. They also occur, in a quite different usage, as the operators that describe the evolution 
of quantum mechanical systems. Hermitian operators are used to represent measurable 
quantities, and they have some very powerful mathematical properties. In the Sections below, 
we will discuss these types of operators and their properties. 

4.8 Identity operator 

The identity operator Î  is that operator that, when it operates on a function, leaves the function 
unchanged. In matrix form, the identity operator is, obviously, 

 

1 0 0
0 1 0ˆ
0 0 1

I

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"
"

# # # %

 (4.72) 

In bra-ket form, the identity operator can be written in the form 

 ˆ
i i

i
I ψ ψ= ∑  (4.73) 

where the iψ  form a complete basis for the function space of interest. Note, incidentally, that 
Eq. (4.73) holds for any complete basis, a fact that turns out to be very useful in the algebra of 

                                                           
5 We presume here that we are working with the ψn as the basis functions for our vector space.  
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linear operators, and to which we return below. Let us prove the statement Eq. (4.73). Consider 
the arbitrary function  

 i i
i

f c ψ= ∑  (4.74) 

By definition (or, explicitly, by multiplying on left and right by mψ ), we know that  

 m mc fψ=  (4.75) 

so, explicitly 

 i i
i

f fψ ψ= ∑  (4.76) 

Now consider Î f  where we use the definition of Î  we had proposed in Eq. (4.73). We have 

 ˆ
i i

i
I f fψ ψ= ∑  (4.77) 

But i fψ  is simply a number, and so can be moved in the product. Hence 

 ˆ
i i

i
I f fψ ψ= ∑  (4.78) 

and hence, using Eq. (4.76), we have proved that, for arbitrary f , 

 Î f f=  (4.79) 

and so our proposed representation of the identity operator, Eq. (4.73), is correct. 

The reader may be asking why we have gone to all the trouble of proving Eq. (4.73). The 
statement Eq. (4.72) of the identity operator seems sufficient. After all, the statement Eq. 
(4.73) is trivial if iψ  is the basis being used to represent the space. Then 

 1

1
0
0

ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦#

, 2

0
1
0

ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦#

, 3

0
0
1

ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦#

, …  (4.80) 

so that 

1 1

1 0 0
0 0 0
0 0 0

ψ ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"
"

# # # %

, 2 2

0 0 0
0 1 0
0 0 0

ψ ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"
"

# # # %

, 3 3

0 0 0
0 0 0
0 0 1

ψ ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"
"

# # # %

 (4.81) 

and obviously i ii ψ ψ∑  gives the identity matrix of Eq. (4.72). Note, however, that the 
statement Eq. (4.73) is true even if the basis being used to represent the space is not iψ . In 
that case, iψ  is not a simple vector with the i th element equal to one and all other elements 
zero, and the matrix i iψ ψ  in general has possibly all of its elements non-zero. Nonetheless, 
the sum of all of those matrices i iψ ψ  still leads to the identity matrix of Eq. (4.72). The 
important point for the algebra is that we can choose any convenient complete basis to write 
the identity operator in the form Eq. (4.73).  
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We can understand why the identity operator can be written this way for an arbitrary complete 
set of basis vectors (functions) iψ . In an expression 

 i i
i

f fψ ψ= ∑  (4.82) 

the bra iψ  projects out the component, ic , of the vector (function) f  of interest, and 
multiplying by the ket iψ  adds into the resulting vector (function) on the left an amount ic  of 
the vector (function) iψ . Adding up all such components in the sum merely reconstructs the 
entire vector (function) f .  

An important point about thinking of functions as vectors is that, of course, the vector is the 
same vector regardless of which set of coordinate axes we choose to use to represent it. If we 
think about the identity operator in terms of vectors, then the identity operator is that operator 
that leaves any vector unchanged. Looked at that way, it is obvious that the identity operator is 
independent of what coordinate axes we use in the space. Our algebra here is merely showing 
that we have set up the rules for the vector space so that we get the behavior we wanted to 
have. 

Trace of an operator 
The identity matrix in the form we have defined above can be very useful in formal proofs. 
The tricks are, first, that we can insert it, expressed on any convenient basis, within other 
expressions, and, second, we can often rearrange expressions to find identity operators buried 
within them that we can then eliminate to simplify the expressions. A good illustration of this 
is the proof that the sum of the diagonal elements of an operator Â  is independent of the basis 
on which we represent the operator; that sum of diagonal elements is called the “trace” of the 
operator, and is written as ˆ( )ATr . The trace itself can be quite useful in various situations 
related to operators, and some of these will occur below. 

Let us consider the sum, S, of the diagonal elements of an operator Â , on some complete 
orthonormal basis iψ , i.e., 

 ˆ
i i

i
S Aψ ψ= ∑  (4.83) 

Now let us suppose we have some other complete orthonormal basis, mφ . We can therefore 
write the identity operator as 

 ˆ
m m

m
I φ φ= ∑  (4.84) 

We can insert an identity operator just before the operator Â  in Eq. (4.83), which makes no 
difference to the result, since ˆ ˆÎA A= , so we have 

 ˆ ˆˆ
i i i m m i

i i m
S IA Aψ ψ ψ φ φ ψ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
∑ ∑ ∑  (4.85) 

Rearranging gives 

 

ˆ ˆ

ˆ

i m m i m i i m
m i m i

m i i m
m i

S A A

A

ψ φ φ ψ φ ψ ψ φ

φ ψ ψ φ

= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑∑ ∑∑

∑ ∑
 (4.86) 



114  Chapter 4  Functions and operators 

where we have used the fact that i mψ φ  and ˆ
m iAφ ψ  are simply numbers and so can be 

swapped.  

Now we see that we have another identity operator inside an expression in the bottom line, i.e.,  

 ˆ
i i

i
I ψ ψ= ∑  (4.87) 

and so, since ˆ ˆˆAI A= , we can remove this operator from the expression, leaving 

 ˆ
m m

m
S Aφ φ= ∑  (4.88) 

Hence, from Eqs. (4.83) and (4.88), we have proved that the sum of the diagonal elements, i.e., 
the trace, of an operator is independent of the basis used to represent the operator, which is 
why the trace can be a useful property of an operator. 

Problem 

 4.8.1 Prove that the sum of the modulus squared of the matrix elements of a linear operator Â  is 
independent of the complete orthonormal basis used to represent the operator. 

4.9 Inverse operator 

Now that we have defined the identity operator, we can formally consider an inverse operator. 
If we consider an operator Â  operating on an arbitrary function f , then the inverse operator, 
if it exists, is that operator 1Â−  such that 

 1ˆ ˆf A A f−=  (4.89) 

Since the function f  is arbitrary, we can therefore identify  

 1ˆ ˆ ˆA A I− =  (4.90) 

i.e., the identity operator. Viewed as a vector operation, the operator Â  takes an “input” vector 
and, in general, stretches it and reorients it. The inverse operator does exactly the opposite, 
restoring the original input vector. 

Since the operator can be represented by a matrix, finding the inverse of the operator reduces 
to finding the inverse of a matrix, which is a standard linear algebra operation that is 
equivalent to solving a system of simultaneous linear equations.  

Just as in matrix theory, not all operators have inverses. For example, the projection operator 

 P̂ f f=  (4.91) 

in general has no inverse, because it projects all input vectors onto only one axis in the space, 
the one corresponding to the vector f . This is a “many to one” mapping in vector space, and 
there is now no way of knowing anything about the specific input vector other than its 
component along this axis. Hence in general we cannot go backwards to the original input 
vector starting from this information alone. 

4.10 Unitary operators 

A unitary operator, Û , is one that obeys the following relation 
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 1 †ˆ ˆU U− =  (4.92) 

that is, its inverse is its Hermitian transpose (or adjoint). The Hermitian transpose of a matrix 
is formed by reflecting the matrix about its diagonal, and taking the complex conjugate, just as 
we discussed previously in the special case of a vector. Explicitly, 

 

†
11 12 13 11 21 31

21 22 23 12 22 32

31 32 33 13 23 33

u u u u u u
u u u u u u
u u u u u u

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

" "
" "
" "

# # # % # # # %

 (4.93) 

Conservation of length and inner product under unitary 
transformations 

One important property of a unitary operator is that, when it operates on a vector, it does not 
change the length of the vector. This is consistent with the “unit” part of the term “unitary”. In 
fact, more generally, when we operate on two vectors with the same unitary operator, we do 
not change their inner product (the conservation of length follows from this as a special case, 
as we will show).  

Consider the unitary operator Û  and the two vectors oldf  and oldg . We form two new 
vectors by operating with Û ,  

 ˆ
new oldf U f=  (4.94) 

and  

 ˆ
new oldg U g=  (4.95) 

In conventional matrix (or matrix-vector) multiplication with real matrix elements, we know 
that  

 ( )T T TAB B A=  (4.96) 

where the superscript “T” indicates the transpose (reflection about the diagonal). In matrix or 
operator multiplication with complex elements, we analogously obtain 

 ( )† † †ˆ ˆˆ ˆAB B A=  (4.97) 

and, explicitly, for matrix-vector multiplication (since a vector is just a special case of a 
matrix) 

 ( )†
†ˆ ˆA h h A=  (4.98) 

Hence,  

 

†

1

ˆ ˆ

ˆ ˆ

ˆ

new new old old

old old

old old

old old

g f g U U f

g U U f

g I f

g f

−

=

=

=

=

 (4.99) 
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so, as promised, the inner product is not changed if both vectors are transformed this way. In 
particular,  

 new new old oldf f f f=  (4.100) 

i.e., the length of a vector is not changed by a unitary operator. 

Use of unitary operators to change basis sets for representing 
vectors 

One major use of unitary operators is to change basis sets (or, equivalently, representations or 
coordinate axes). Suppose that we have a vector (function) oldf  that is represented, when we 
express it as an expansion on the functions nψ , as the mathematical column vector 

 

1

2

3
old

c
c

f
c

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦#

 (4.101) 

These numbers c1, c2, c3, … are the projections of oldf  on the orthogonal coordinate axes in 
the vector space labeled with 1ψ , 2ψ , 3ψ  … . Suppose now we wish to change to 
representing this vector on a new set of orthogonal coordinate axes, which we will label 1φ , 

2φ , 3φ , … . Changing the axes, which is equivalent to changing the basis set of functions, 
does not, of course, change the vector we are representing, but it does change the column of 
numbers used to represent the vector from those in Eq. (4.101) to some new set of numbers.  

For example, suppose, for simplicity, that the original vector was actually the first basis vector 
in the old basis, 1ψ  (which is simply the vector with 1 in the first element, and zero in all the 
others). Then in this new representation, the elements in the column of numbers would be the 
projections of this vector on the various new coordinate axes, each of which is simply 

1mφ ψ , i.e., under this coordinate transformation (or change of basis),  

 

1 1

2 1

3 1

1
0
0

φ ψ
φ ψ
φ ψ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⇒
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦# #

 (4.102) 

We could write out similar transformations for each of the other original basis vectors nψ . 
We can see that we will get the correct transformation if we define a matrix 

 

11 12 13

21 22 23

31 32 33

ˆ

u u u
u u u

U
u u u

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"
"

# # # %

  (4.103) 

where  

 ij i ju φ ψ=  (4.104) 

and define our new column of numbers newf  as 

 ˆ
new oldf U f=  (4.105) 
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Note incidentally that, in this case, oldf  and newf  refer to the same vector in the vector 
space; it is only the representation (the coordinate axes), and, consequently the column of 
numbers, that have changed, not the vector itself. This is rather like looking at, for example, a 
sculpture from different viewing positions. Suppose, for example, that we are in some modern 
art gallery in which an artist has made a sculpture in the form of an arrow, sticking at an angle 
up out of the floor. As we change our position, our view of the arrow changes. We could write 
down a representation of the arrow’s length and direction, (e.g., the tip of the arrow is 1.5 
meters in front of us, 50 cm to the left, and 10 cm up). If we move to another position, the 
representation we would write down would change, though the arrow remains the same6. (In 
fact, such a change in viewing position can be exactly described by a unitary operator.)  

Now we can prove that Û  is unitary. Writing the matrix multiplication in its sum form, we 
have 

 

( )†ˆ ˆ

ˆ

mi mj m i m jij m m

i m m j i m m j
m m

i j i j

ij

U U u u

I

φ ψ φ ψ

ψ φ φ ψ ψ φ φ ψ

ψ ψ ψ ψ

δ

∗∗= =

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

= =

=

∑ ∑

∑ ∑  (4.106) 

The statement †ˆ ˆ( )ij ijU U δ=  is equivalent to saying we have a matrix with 1 for every diagonal 
element and zeros for all the others, i.e., the identity matrix, so 

 †ˆ ˆ ˆU U I=  (4.107) 

and hence Û  is unitary since its Hermitian transpose is therefore its inverse (Eq. (4.92). Hence 
any change in basis can be implemented with a unitary operator. We can also say that any such 
change in representation to a new orthonormal basis is a unitary transform. 

Note also, incidentally, that 

 ( )†† † †ˆ ˆ ˆ ˆ ˆ ˆUU U U I I= = =  (4.108) 

Given that we concluded above that a unitary transform did not change any inner product, we 
can now also conclude that a transformation to a new orthonormal basis does not change any 
inner product. Again, this is as we would have expected from thinking about the inner product 
being like a vector dot product of two geometrical vectors; of course such an inner product 
does not depend on the coordinate axes, only on the directions and lengths of the vectors 
themselves.  

Use of unitary operators for changing the representation of 
operators 

We have discussed so far how to change the column of numbers that represents a vector 
(function) in vector space when we change the basis. What happens to the matrix of numbers 
that represents an operator when we change the basis? 

                                                           
6 We can think of this arrow as being like a vector in Hilbert space. The justhave to remember for our 
vectors in Hilbert space that the projections onto the various coordinate axes can be complex numbers, 
and we can have as many coordinate axes as we need, not just the three of geometrical space. 
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We can understand what the new representation of Â  is by considering an expression such as  

 
( )
( ) ( )

†

† †

ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ
new new new new new new

old new old old new old

g A f g A f

U g A U f g U A U f

=

= =
 (4.109) 

where the vectors f  and g  are arbitrary. Note here also that the subscripts new and old 
refer to the representations, not the vectors (or operators). The actual vectors and operators are 
not changed by the change of representation, only the sets of numbers that represent them are 
changed. Hence the result of such an expression should not be changed by changing the 
representation. So we believe that 

 ˆ ˆ
new new new old old oldg A f g A f=  (4.110) 

Since this is to be true for arbitrary choices of vectors, we can write an equation for the 
operators themselves, and from Eqs. (4.109) and (4.110) can deduce that 

 †ˆ ˆˆ ˆ
old newA U A U=  (4.111) 

or, equivalently,  

 ( ) ( )† † †ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
old new newUA U UU A UU A= =  (4.112) 

We can understand this expression directly. Û  is the operator that takes us from the old 
coordinate system to the new one. If we are in the new coordinate system, therefore, 1 †ˆ ˆU U− =  
is the operator that takes us back to the old system. So, to operate with the operator Â  in the 
new coordinate system, when we only know its representation, ˆ

oldA , in the old coordinate 
system, we first operate with †Û to take us into the old system, then operate with ˆ

oldA , then 
operate with Û to take us back to the new system.  

Unitary operators that change the state vector 

The unitary operator we discussed above for changing basis sets is one important application 
of unitary operators in quantum mechanics. There is another one, which is different in 
character. In general, a linear operator in Hilbert space can change the “orientation” of a vector 
in the space, and change its length by a factor. In the language of our modern art gallery 
analogy, a linear operator operating on the arrow itself would in general move the arrow 
sticking up out of the floor to a new angle, and possibly lengthen it or shorten it. A unitary 
linear operator can rotate the arrow, but leaves its length unchanged. Such operators are not 
changing the basis set – they are actually changing the state of the quantum mechanical 
system, and are changing the vector’s orientation in vector space. Hence in our modern art 
gallery, an operator that rotates the arrow to a new angle, while we stay standing exactly where 
we are, is also a unitary operator, this time actually changing the state of the arrow, not 
describing a change of our viewing position as previously.  

Operators that change the quantum mechanical state of the system can quite often be unitary. 
One reason why such operators arise in quantum mechanics is simple to see. If we are 
working, for example, with a single particle, then presumably the sum of all the occupation 
probabilities of all of the possible states is unity. I.e., if the quantum mechanical state ψ  is 
expanded on the complete orthonormal basis nψ , 

 n n
n

aψ ψ= ∑  (4.113) 
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then 2 1nn a =∑  and if the particle is to be conserved then this sum is retained as the quantum 
mechanical system evolves, for example in time. But this sum is just the square of the length of 
the vector ψ . Hence a unitary operator, which conserves length, will be an appropriate 
operator for describing changes in that system that conserve the particle. For example, the 
time-evolution operator for a system where the Hamiltonian does not change in time, 

ˆexp( / )Hi t− = , can be shown to be unitary, the explicit proof of which is left as an exercise for 
the reader. 

Problems 
 4.10.1  Evaluate the unitary matrix for transforming a vector in two dimensional space to a representation 

in a new set of axes rotated by an angle θ in an anticlockwise direction.  

 4.10.2  Consider the operator 
0ˆ

0old

i
M

i
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
  

(i) What are the eigenvalues and associated (normalized) eigenvectors of this operator? 
(ii) What is the unitary transformation operator that will diagonalize this operator (i.e., the matrix 

that will change the representation from the old basis to a new basis in which the operator is now 

represented by a diagonal matrix)? Presume that the eigenvectors in the new basis are 
1
0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 

0
1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 respectively. 

(iii) What is the operator ˆ
newM  in this new basis? 

 4.10.3  Consider the orthonormal basis functions ( )1 1/ 2xψ =  and ( )2
3
2

x xψ =  that are capable of 

representing any function of the form ( )f x ax b= + defined over the range 1 1x− < < . 

(i) Consider now the new basis functions ( )1
3 1
2 2

xxφ = +  and ( )2
3 1
2 2

xxφ = − .  

 Represent the functions 1( )xφ  and 2( )xφ  in a two-dimensional diagram with orthogonal axes 
corresponding to the functions 1( )xψ  and 2( )xψ respectively. 

(ii) Construct the matrix that will transform a function in the “old” representation as a vector 1

2

c
c

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

into a new representation in terms of these new basis functions as a vector 1

2

d
d

⎡ ⎤
⎢ ⎥
⎣ ⎦

 , where an 

arbitrary function ( )f x ax b= +  is represented as the linear combination 

( ) ( ) ( )1 1 2 2f x d x d xφ φ= + . 

(iii) Show that the matrix from part (ii) is unitary.  

(iv) Use the matrix of part (ii) to calculate the vector 1

2

d
d

⎡ ⎤
⎢ ⎥
⎣ ⎦

 for the specific example function 2 3x + . 

(v) Indicate the resulting vector on the same diagram as used for parts (i). 

 4.10.4  Consider the so-called Pauli matrices  

0 1 0 1 0
ˆ ˆ ˆ, ,

1 0 0 0 1x y z

i
i

σ σ σ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

(which are used in quantum mechanics as the operators corresponding to the x , y , and z  
components of the spin of an electron, though for the purposes of this problem we can consider them 
simply as abstract operators represented by matrices). For this problem, find all the requested 
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eigenvalues and eigenvectors by hand (i.e., not using a calculator or computer to find the eigenvalues 
and eigenvectors), and show your calculations. 
(i) Find the eigenvalues and corresponding (normalized) eigenvectors ziψ  of the operator ˆ zσ   
(ii) Find the eigenvalues and corresponding (normalized) eigenvectors xiψ  of the operator ˆ xσ  
(iii) Show by explicit calculation that ˆxi xii Iψ ψ =∑ , where Î  is the identity matrix in this two 

dimensional space.  
(iv) These operators have been represented in a basis that is the set of eigenvectors of ˆ zσ . 

Transform all three of the Pauli matrices into a representation that uses the set of eigenvectors of 
ˆ xσ  as the basis.  

 4.10.5  Consider an operator ,
ˆ

ij i ji jW a φ ψ= ∑  where iφ  and jψ  are two different complete sets of 
functions. Show that, if the columns of the matrix representation of the operator are orthogonal, i.e., 
if iq ij qji a a δ∗ =∑ , then the operator Ŵ  is unitary. [Note: when multiplying operators represented by 
expansions, use different indices in the expansion summations for the different operators.] 

 4.10.6  Prove that the time-evolution operator ˆ ˆexp( / )A Hi t= − =  is unitary. 

See also Problem 13.2.2. 

4.11 Hermitian operators 

A Hermitian operator is one that is its own Hermitian adjoint, i.e.,  

 †ˆ ˆM M=  (4.114) 

We can also equivalently say that a Hermitian operator is self-adjoint.  

Expressed in matrix terms, we have, with  

 

11 12 13

21 22 23

31 32 33

ˆ

M M M
M M M

M
M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"
"

# # # %

 (4.115) 

that 

 

11 21 31

† 12 22 31

13 23 33

ˆ

M M M
M M M

M
M M M

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
"

# # # %

 (4.116) 

so the Hermiticity condition, Eq. (4.114), implies 

 ij jiM M ∗=  (4.117) 

for all i and j. Incidentally, this condition, Eq. (4.117), implies that the diagonal elements of a 
Hermitian operator must be real. 

Mathematically, statements about operators in vector spaces are only valid insofar as they 
apply to the operator operating on arbitrary functions. To understand what the Hermiticity 
statement (4.114) means for actions on functions in general, we can examine the result 

M̂g f . This result is from the multiplication of the vector g , the matrix M̂ , and the vector 
f , and so we can consider the Hermitian adjoint of this result, †ˆ( )g M f , using the rules 

for the adjoints of the products of matrices (and vectors as special cases of matrices), 
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specifically the relation Eq. (4.97) ( † † †ˆ ˆˆ ˆ( )AB B A= ). Of course, in the specific case of the result 
M̂g f , the resulting matrix is a “one-by-one” matrix that can also be considered as simply a 

number, and so 

 ( ) ( )†ˆ ˆg M f g M f
∗

≡  (4.118) 

Hence we have, using the rule for the adjoint of products of matrices, for any functions f and g, 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

††

† † † ††

†

ˆ ˆ ˆ

ˆ ˆ

ˆ

g M f g M f g M f

M f g f M g

f M g

∗ ⎡ ⎤≡ = ⎣ ⎦

= =

=

 (4.119) 

Now we use the Hermiticity of M̂ , Eq. (4.114), and obtain 

 ( )ˆ ˆf M g g M f
∗

=  (4.120) 

which could be regarded as the most complete and general way of stating the Hermiticity of an 
operator M̂ . Note this is true even if f  and g  are not orthogonal. The statement for the 
matrix elements, Eq. (4.117), is just a special case.  

In integral form, for functions ( )f x  and ( )g x , the statement Eq. (4.120) of the Hermiticity of 
M̂  can be written  

 ( ) ( ) ( ) ( )ˆ ˆg x Mf x dx f x Mg x dx
∗

∗ ∗⎡ ⎤= ⎣ ⎦∫ ∫  (4.121) 

We can rewrite the right hand side using the property ( )ab a b∗ ∗ ∗=  of complex conjugates to 
obtain 

 ( ) ( ) ( ) ( ){ }ˆ ˆg x Mf x dx f x Mg x dx
∗

∗ =∫ ∫  (4.122) 

and a simple rearrangement leads to 

 ( ) ( ) ( ){ } ( )ˆ ˆg x Mf x dx Mg x f x dx
∗

∗ =∫ ∫  (4.123)  

Authors who prefer to introduce Hermitian operators in the integral form often use the form 
Eq. (4.123) to define the operator M̂ as Hermitian. The forms Eq. (4.114), (4.117), (4.120), 
and, for functions of a continuous variable, (4.123), can all be regarded as equivalent 
statements of the Hermiticity of the operator M̂ . 

Note that the bra-ket notation is more elegant than the integral notation in one important way. 
In the bra-ket notation, the operator can also be considered to operate to the left – Âg  is just 
as meaningful a statement as the statement Â f , and it does not matter how we group the 
multiplications in the bra-ket notation, i.e., 

 ( ) ( )ˆ ˆ ˆg A f g A f g A f≡ ≡  (4.124) 

because of the associativity of matrix multiplication. Conventional operators in the notation 
used in integration, such as a differential operator, d/dx, do not have any meaning when they 
operate “to the left”, hence we end up with the somewhat clumsy form Eq. (4.123) for 
Hermiticity in this notation.  
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Properties of Hermitian operators 

The eigenvalues and eigenvectors of Hermitian operators have some special properties, some 
of which are very easily proved. 

Reality of eigenvalues 

Suppose nψ  is a normalized eigenvector of the Hermitian operator M̂  with eigenvalue nμ . 
Then, by definition, 

 ˆ
n n nM ψ μ ψ=  (4.125) 

Therefore 

 ˆ
n n n n n nMψ ψ μ ψ ψ μ= =  (4.126) 

But from the Hermiticity of M̂ we know 

 ( )ˆ ˆ
n n n n nM Mψ ψ ψ ψ μ

∗
∗= =  (4.127) 

and hence, from the equality of (4.126) and (4.127), nμ  must be real, i.e., the eigenvalues of a 
Hermitian operator are real.7 This suggests that such an operator may be useful for 
representing a quantity that is real, such as a measurable quantity. 

Orthogonality of eigenfunctions for different eigenvalues 

The eigenfunctions of a Hermitian operator corresponding to different eigenvalues are 
orthogonal, as can easily be proved in bra-ket notation. Trivially,  

 ˆ ˆ0 m n m nM Mψ ψ ψ ψ= −  (4.128) 

So, by associativity and the rule Eq. (4.97) ( † † †ˆ ˆˆ ˆ( )AB B A= ) 

 
( ) ( )
( ) ( )††

ˆ ˆ0

ˆ ˆ

m n m n

m n m n

M M

M M

ψ ψ ψ ψ

ψ ψ ψ ψ

= −

= −
 (4.129) 

Now, using the Hermiticity of M̂  ( †ˆ ˆM M= ), the fact that the Hermitian adjoint of a complex 
number is simply its complex conjugate (the number is just a one-by-one matrix), and the fact 
that the eigenvalues of a Hermitian operator are real anyway, we have 

 0 ( )m m n n m n m n m nμ ψ ψ μ ψ ψ μ μ ψ ψ= − = −  (4.130) 

But, by assumption, mμ  and nμ  are different, and hence  

 0m nψ ψ =  (4.131) 

                                                           
7 Note that the converse is not true; there are matrices with real eigenvalues that are not Hermitian 

matrices. E.g., the matrix 
1 2

3 2
⎡ ⎤
⎢ ⎥⎣ ⎦

 is not Hermitian, but has real eigenvalues, 4, and -1. It also worth 

noting that the resulting eigenvectors 
2

3
⎡ ⎤
⎢ ⎥⎣ ⎦

 and 
1

1−
⎡ ⎤
⎢ ⎥⎣ ⎦

 are not orthogonal. 
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and we have proved that the eigenfunctions associated with different eigenvalues of a 
Hermitian operator are orthogonal.  

Incidentally, it is quite possible (and actually common in problems that are highly symmetric 
in some way or another) to have more than one eigenfunction associated with a given 
eigenvalue. As discussed above, this situation is known as degeneracy. It is provable, at least 
for a broad class of the operators that are used in quantum mechanics, that the number of such 
linearly independent degenerate solutions for a given finite, non-zero eigenvalue is itself finite, 
though we will not go into that proof here.8  

Completeness of sets of eigenfunctions 

A very important result for a broad class9 of Hermitian operators is that, provided the operator 
is bounded, that is, it gives a resulting vector of finite length when it operates on any finite 
input vector, the set of eigenfunctions is complete, i.e., it spans the space on which the operator 
operates. The proof of this result is understandable with effort, but requires setting up a 
mathematical framework, e.g., for functional analysis, that is beyond what we can justify 
here.10 This result means in practice that we can use the eigenfunctions of bounded Hermitian 
operators to expand functions. This greatly increases the available basis sets beyond the simple 
spatial or Fourier transform sets. For many problems, it means we can greatly simplify the 
description of them.  

Hermitian operators and quantum mechanics 

As we mentioned above, a broad class of bounded Hermitian operators have the attractive 
properties of having real eigenvalues, orthogonal eigenfunctions, and complete sets of 
eigenfunctions. These properties make Hermitian operators powerful and quite easy to use for 
problems for which they are applicable. By a remarkable stroke of good fortune, it turns out 
that, as far as we know, the physically measurable quantities in quantum mechanics can be 
represented by such Hermitian operators. In fact, some state this as an axiom of quantum 
mechanics. We have already seen momentum and energy (Hamiltonian) operators, both of 
which are apparently of this kind. We will encounter several other such operators 
corresponding to other physical quantities as we get further into quantum mechanics. All of 
these operators have the same algebra and properties as discussed here, and we hence have a 
very general, sound, and useful mathematical methodology for discussing quantum mechanics.  

Problems 
 4.11.1  For each of the following matrices, say whether or not it is unitary and whether or not it is 

Hermitian. 

(i) 
1 0
0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

  (ii) 
1

1
i

i
⎡ ⎤
⎢ ⎥−⎣ ⎦

  (iii) 
0

0
i

i
⎡ ⎤
⎢ ⎥
⎣ ⎦

  (iv) 
0 1

0i
⎡ ⎤
⎢ ⎥
⎣ ⎦

  

                                                           
8 It is certainly true for “compact” operators, which in practice are operators that can be approximated to 
any desired degree of accuracy by finite matrices. Since the sum of the modulus squared of the elements 
is one of the aspects that must converge as we move to a sufficiently large such finite matrix for a 
compact operator, then the sum of the eigenvalues must converge, which means that the degeneracy must 
be finite for any given degenerate eigenvalue. 
9 Again, the compact operators. 
10 See, e.g., David Porter and David S. G. Stirling, “Integral equations,” (Cambridge, 1990), pp.  109-111 
(proof of the spectral theorem) and pp. 112-113 (proof of completeness) 
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 4.11.2  Prove that, for two square matrices A and B, ( )† † †AB B A=  

(Hint: consider a general element, e.g., the ij th element, of the resulting matrix, and write the result of 
the matrix multiplication for that element as a summation over appropriate terms.)  

 4.11.3  Consider the Hermiticity of the following operators. 
(i) Prove that the momentum operator is Hermitian. For simplicity you may perform this proof 

for a one-dimensional system (i.e., only consider functions of x, and consider only the ˆ xp  
operator).  

 [Hints: Consider ( ) ( )ˆ ji xx p x dxψ ψ∞ ∗
−∞∫  where the ( )n xψ  are a complete orthonormal set. 

You may want to consider an integration by parts. Note that the ( )n xψ  must vanish at ±∞ , 
since otherwise they could not be normalized.]  

(ii) Is the operator d
dx

 Hermitian? Prove your answer. 

(iii) Is the operator 
2

2

d
dx

 Hermitian? Prove your answer. 

 Hints: You may want to consider another integration by parts, and you may presume that the 

derivatives ( )nd x
dx

ψ
 also vanish at ±∞ . 

(iv) Is the operator ( )
2 2

2
ˆ

2
dH V x

m dx
= − +

=  Hermitian if ( )V x  is real? Prove your answer. 

 4.11.4  Prove by operator algebra that a Hermitian operator transformed to a new coordinate system by a 
unitary transformation is still Hermitian.  

 4.11.5  Suppose we have an operator Â , with eigenvalues ia  (with eigenstates labeled with 
1,2,3,i = … ). Write out, in the simplest possible form, the matrix that represents this operator if we 

use the (normalized) eigenfunctions as the basis for the representation. 

 4.11.6  A Hermitian operator Â  has a complete orthonormal set of eigenfunctions nψ  with associated 
eigenvalues nα . Show that we can always write  

 ˆ
i i i

i
A α ψ ψ= ∑   

(This is known as the expansion of Â  in its eigenfunctions, and is a very useful expansion.) 

Now find a similar, simple expression for the inverse, 1Â− . 
(This is also a very useful result. This results show that, if we can find the eigenfunctions of an 
operator, also known as “diagonalizing” the operator, we have effectively found the inverse, and 
usually in practice we have solved the quantum mechanical problem of interest.) 

 4.11.7  Considering the expansion of Â  in its eigenfunctions (Problem  4.11.6 above), show that the trace, 
ˆ( )ATr , is always equal to the sum of the eigenvalues. 

 4.11.8  Prove the integral form of the definition of the Hermiticity of the operator M̂  

 ( ) ( ) ( ){ } ( )ˆ ˆg x Mf x dx Mg x f x dx
∗

∗ =∫ ∫   

by expanding the functions f and g in a complete basis nψ  and using the matrix element definition 
of Hermiticity 

 ij jiM M ∗=   
where  

 ( ) ( )ˆ
ij i jM x M x dxψ ψ∗= ∫   

 4.11.9  Prove, for any Hermitian operator M̂ , and any arbitrary function or state f , that the quantity 
M̂f f  is real. [Hence, the expectation value of any quantity represented by a Hermitian operator 
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is always real, which is one good reason for using Hermitian operators to represent measurable 
quantities.] 

4.12 Matrix form of derivative operators 

So far, we have discussed operators as matrices, and have dealt with these in the general case, 
but have not related these matrices to the operators we have so far used in actual quantum 
mechanics, as in the Schrödinger equation or the momentum operator. The operators in those 
two cases happen to be differential operators, such as 2 2/d dx  or /d dx , and it may not be 
immediately obvious that those can be described as matrices. The reason for this discussion is 
not so that we can in practice use matrices to describe such operators; it is usually more 
convenient to handle such operators using the integral form of inner products and matrix 
elements. We merely wish to show how this can be done for conceptual completeness. 

If we return to our original discussion of functions as vectors, we can postulate that an 
appropriate form for the differential operator /d dx  would be 

 

1 1 002 2
1 10 0

2 2

xd x
dx

x x

δ δ

δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥≡
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

%

" "

" "

%

 (4.132) 

where as usual we are presuming we can take the limit as 0xδ → . If we were to multiply the 
column vector whose elements are the values of the function ( )f x  at a set of values spaced by 
an amount xδ , then we would obtain 

 

( )
( )

( )
( )

( ) ( )

( ) ( )

1 1 002 2
1 10 0

2 2 2

2
2
2

i

i

i

i

i

i

i x i

x

i x i

x x

f x x
f xx x

f x x
x x f x x

dff x f x x
dxx

f x f x df
dxx δ

δ

δ δ
δ

δ δ δ

δ δ
δ

δ
δ +

⎡ ⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ +⎢ ⎥−⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥+ − − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥= =⎢ ⎥+ − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

#%

" "

" "

% #

##

# #

 (4.133) 
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where again we understand that we are taking the limit as 0xδ → . Hence we have a way of 
representing a derivative as a matrix.  

Note that we have postulated a form that has a symmetry about the matrix diagonal. In this 
case the matrix is antisymmetric in reflection about the diagonal. This matrix is not, however, 
Hermitian, which reflects the fact that the operator /d dx  is not a Hermitian operator, as can 
be verified from any of the definitions above of Hermiticity. We can see from this matrix 
representation, by contrast, that the operator /id dx  (or, for that matter, /id dx− ) would be 
Hermitian (simply multiply all the matrix elements by i to see we have a matrix that is 
Hermitian), and hence that the momentum operator, such as its x component /xp i d dx= − = , 
would be Hermitian. 

It is left as an exercise for the reader to show how the second derivative can be represented as a 
matrix, and that the corresponding matrix is Hermitian.  

Problem 

 4.12.1 Given that ( ) ( ) ( )( ) ( )22 2

0
/ lim 2 /

x
d dx f x x f x f x x x

δ
δ δ δ

→
⎡ ⎤≡ − − + +⎣ ⎦ , find an appropriate matrix 

that could represent such a derivative operator, in a form analogous to the first derivative operator 
matrix. 

4.13 Matrix corresponding to multiplying by a function 

One other situation we have already encountered is where the operator simply corresponds to 
multiplying each element in the input vector by a (different) number. For example, we can 
formally “operate” on the function ( )f x  by multiplying it by the function ( )V x  to generate 
another function ( ) ( ) ( )g x V x f x= . Since the function ( )V x  is performing the role of an 
operator (even though it is a particularly simple form of operator), we can if we wish represent 
it as a matrix, so that we can express it in the same form as all of our other operators, and in 
that case, in the position representation, it is a simple diagonal matrix whose elements are the 
values of the function at each of the different points.  

If the function is real, the corresponding matrix is Hermitian (though it is not if the function is 
complex). Hence, one can conclude that the Hamiltonian as used in Schrödinger’s equation, 
being the sum of two Hermitian matrices (e.g., in the one dimensional case, one corresponding 
to the Hermitian operator 2 2 2( / 2 ) /m x− ∂ ∂=  and the other corresponding to the “operator” 

( )V x ), is Hermitian, as long as ( )V x  is real. 

4.14 Summary of concepts 

Functions as vectors 

Functions can be regarded as vectors in a vector space, with the values of the function at the 
different coordinate points or the expansion coefficients of the function on some basis being 
the components of the vector along the corresponding coordinate axes in the space. 

Hermitian adjoint 

The Hermitian adjoint (also known as the Hermitian transpose, Hermitian conjugate, adjoint) 
of a vector or a matrix is the complex conjugate of the transpose of the vector or matrix. The 
Hermitian adjoint of the matrix Â  is written as †Â  (pronounced “A-dagger”). 
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Dirac bra-ket notation 

f , called a “ket”, is the vector in function space that represents the function f. The Hermitian 
adjoint of that vector is the “bra”, f .  

Inner product 

The inner product in function space of two functions f and g is the vector product f g , 
which is in general a complex number, and we have  

 ( )f g g f
∗

=  (4.36) 

The inner product of a vector with itself gives the square of its length (also known as the norm 
of the vector), and always results in a real quantity. The inner product is linear in sums of 
functions and multiplying functions by constants. 

Expansion coefficients as inner products 

The expansion coefficients, nc , of a function f on a basis nψ  

 ( ) ( )n n
n

f x c xψ= ∑  (4.9) 

are 

 m mc fψ=  (4.15)  

State vectors 

Where a function f represents the quantum mechanical state of a system, the vector f  is 
known as the state vector of the system. 

Vector (or function) space 

A vector or function space is a mathematical space in which the (usually multidimensional) 
vectors that represent functions exist.  

Hilbert space 

A Hilbert space is a vector space with an inner product. It is closely analogous to a 
conventional three-dimensional geometrical space, with two important differences: (i) the 
space may have any number of dimensions, including an infinite number, and, (ii) because 
coefficients can be complex in Hilbert space, the inner product is in general complex. It is a 
suitable vector space for representing vectors that are linear in both addition and in 
multiplication by a constant. 

Operators 

An operator is an entity that changes one function into another, with the value of the new 
function at any point possibly being dependent on the values of the original function at any or 
all values of its argument or arguments.  

Linear operators are linear both in addition of functions and in multiplication by a constant. 
Linear operators can be represented by matrices that can operate on the vectors in function 
space, and they obey the same algebra as matrices. 
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Elements of the matrix representation of an operator 

For a matrix representing a linear operator in Hilbert space, the elements of the matrix are 
represented in the basis nψ  as  

 ˆ
ij i jA Aψ ψ=   (4.57) 

Bilinear expansion of linear operators 

A linear operator in a Hilbert space can be written as 

 
,

ˆ
ij i j

i j
A A ψ ψ≡ ∑  (4.68) 

where nψ  is any complete basis in the space. 

Identity operator 

The identity operator acting on a function leaves the function unchanged, and can be written as 

 ˆ
i i

i
I ψ ψ= ∑  (4.73) 

where nψ  is any complete basis in the space. 

Trace of an operator 

The trace of an operator Â , written as ˆ( )ATr , is the sum of the diagonal elements of an 
operator. It is independent of the basis on which the operator is expressed. 

Inverse operator 

The inverse operator, 1Â− , if it exists, is that operator for which 

 1ˆ ˆ ˆA A I− =  (4.90) 

i.e., the operator that exactly undoes the effect of the operator Â . 

Unitary operator 

A unitary operator Û  is an operator for which 

 1 †ˆ ˆU U− =  (4.92) 

or, equivalently, 

 †ˆ ˆ ˆU U I=  (4.107) 

A unitary operator acting on a vector conserves the length of the vector. It can be used for 
coordinate transformations of vectors 

 ˆ
new oldf U f=  (4.94) 

and operators 

 †ˆ ˆˆ ˆ
new oldA UA U=  (4.112) 
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Conservation of inner product under a unitary transformation of 
coordinate system 

A unitary coordinate transformation conserves the inner product of any two vectors 

 new new old oldg f g f=  (4.99) 

and hence also conserves the length of any vector. 

Identity for Hermitian adjoint of products of operators 

A useful identity is that  

 ( )† † †ˆ ˆˆ ˆAB B A=  (4.97) 

Unitary operators that change the state vector 

Unitary operators representing physical processes (as opposed to the mathematical process of 
changing coordinate systems) can change the state vector of the quantum mechanical system, 
and are useful in representing those quantum mechanical processes, such as the time evolution 
of the state of a particle, in which the particle is conserved (and hence in which the length of 
the state vector is constant). 

Degeneracy 

If there are multiple eigenfunctions corresponding to a particular eigenvalue, this condition is 
referred to as “degeneracy”, with the number of such multiple eigenfunctions being called “the 
degeneracy”. 

Hermitian operators 

A Hermitian operator is one for which 

 †ˆ ˆM M=  (4.114) 

or, equivalently for its matrix elements on some complete basis set 

 ij jiM M ∗=  (4.117) 

or, equivalently, for functions of a spatial variable, 

 ( ) ( ) ( ){ } ( )ˆ ˆg x Mf x dx Mg x f x dx
∗∗ =∫ ∫  (4.123) 

Properties of Hermitian operators 

For the Hermitian operators we encounter in quantum mechanics 

the eigenvalues are real 

the eigenfunctions corresponding to different eigenfunctions are orthogonal 

the degeneracy of any given finite eigenvalue is finite 

the set of eigenfunctions of a bounded Hermitian operator is complete 

the diagonal elements are real 

for arbitrary functions f  and g , we have, for a Hermitian operator M̂ ,  
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 ( )ˆ ˆf M g g M f
∗

=  (4.120) 

Hermitian operators and measurable quantities 

Physically measurable quantities in quantum mechanics can be represented by Hermitian 
operators.  

 

 



Chapter 5  
 
Operators and quantum mechanics 

Prerequisites: Chapters 2, 3, and 4. 

In this Chapter, we will start to use and extend the mathematics of the previous Chapter, and 
relate it to quantum mechanics more directly.  

Here we will first examine some of the important properties of operators that are associated 
with measurable quantities. Then we will discuss the uncertainty principle in greater 
mathematical detail. Finally, we will introduce the δ-function, which is a very useful additional 
piece of mathematics, and consider some of its uses and consequences, especially in quantum 
mechanics.  

5.1 Commutation of operators 

It is considered a postulate of quantum mechanics that all measurable quantities can be 
associated with a Hermitian operator. We have seen the momentum and energy operators 
already, and we will encounter others. It is not the case that all operators that are useful in 
quantum mechanics are Hermitian; for example, we will encounter later the non-Hermitian 
creation and annihilation operators that are used extensively in quantum optics.  

A very important property of Hermitian operators representing physical variables is whether or 
not they commute, i.e., whether or not 

 ˆ ˆˆ ˆAB BA=  (5.1) 

where Â  and B̂  are two Hermitian operators. Remember that, because these linear operators 
obey the same algebra as matrices, in general operators do not commute. For quantum 
mechanics, we formally define an entity  

 ˆ ˆ ˆˆ ˆ ˆ,A B AB BA⎡ ⎤ = −⎣ ⎦  (5.2) 

This entity is called the commutator. An equivalent statement to Eq. (5.1) is then1 

 ˆ ˆ, 0A B⎡ ⎤ =⎣ ⎦  (5.3) 

                                                           
1 Technically, the zero on the right of Eq. (5.3) is the zero operator, which maps all functions to the 
function that is zero everywhere, not the number zero, though this subtlety is not likely to cause any 
confusion. 
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If the operators do not commute, then Eq. (5.3) does not hold, and in general we can choose to 
write 

 ˆ ˆˆ,A B iC⎡ ⎤ =⎣ ⎦  (5.4) 

where Ĉ  is sometimes referred to as the remainder of commutation or the commutation rest. 
Eq. (5.4) is the “commutation relation” for operators Â  and B̂ . 

Let us now try to understand some of the consequences of operators commuting or not. 

Commuting operators and sets of eigenfunctions 

Operators that commute share the same set of eigenfunctions, and operators that share the 
same set of eigenfunctions commute. We will now prove both of these statements. 

Suppose that operators Â  and B̂  commute, and suppose that the functions nψ  are the 
eigenfunctions of Â  with eigenvalues iA . Then 

 ˆ ˆˆ ˆ ˆ ˆ
i i i i i iAB BA BA A Bψ ψ ψ ψ= = =  (5.5) 

Hence we have 

 ˆ ˆ ˆ
i i iA B A Bψ ψ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  (5.6) 

But this means that the vector ˆ
iB ψ  is also the eigenvector iψ  or is proportional to it,2 i.e., 

for some number iB  

 ˆ
i i iB Bψ ψ=  (5.7) 

This kind of relation holds for all the eigenfunctions iψ , and so these eigenfunctions are also 
the eigenfunctions of the operator B̂ , with associated eigenvalues iB . Hence we have proved 
the first statement that operators that commute share the same set of eigenfunctions. 

Note that the eigenvalues iA  and iB  are not in general equal to one another. 

Now we consider the second statement. Suppose that the Hermitian operators Â  and B̂  share 
the same complete set of eigenfunctions nψ  with associated sets of eigenvalues nA  and nB  
respectively. Then 

 ˆ ˆˆ
i i i i i iAB AB A Bψ ψ ψ= =  (5.8) 

and similarly 

 ˆˆ ˆ
i i i i i iBA BA B Aψ ψ ψ= =  (5.9) 

Hence, for any function f , which can always be expanded in this complete set of functions 

 i i
i

f c ψ= ∑  (5.10) 

we have 

                                                           
2 For simplicity here we neglect the case of degenerate eigenvalues, though this case can be handled 
relatively easily. 
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 ˆ ˆˆ ˆ
i i i i i i i i

i i
AB f c A B c B A BA fψ ψ= = =∑ ∑  (5.11) 

Since we have proved this for an arbitrary function f , we have proved that the operators 
commute, hence proving the second statement. 

This equivalence of Hermitian operators commuting and having the same set of eigenfunctions 
has an important quantum mechanical consequence. Suppose that the operators represent 
different measurable quantities. An example of such a situation is the case of a free particle, 
i.e., one for which the potential is constant everywhere; in this case, the energy operator 
(Hamiltonian) and the momentum operator have the same eigenfunctions (plane waves) and 
the operators for energy and momentum commute with one another. If the particle is in an 
energy eigenstate, then it is also in a momentum eigenstate, and the particle in this case can 
simultaneously have both a well-defined energy and a well-defined momentum. We can 
measure both of these quantities and get perfectly well-defined values for both. 

Of course, this raises the question of what happens when the operators do not commute, and 
we deal with this next. 

Problems 
 5.1.1  The Pauli spin matrices are quantum mechanical operators that operate in a two-dimensional 

Hilbert space, and can be written as 

 
0 1 0 1 0

ˆ ˆ ˆ, ,
1 0 0 0 1x y z

i
i

σ σ σ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 Find the commutation relations between each pair of these operators, proving your answer by explicit 
matrix multiplication, and simplifying the answers as much as possible. 

 5.1.2  Show, for Hermitian operators Â  and B̂ , that the product ˆ ˆAB  is a Hermitian operator if and only 
if Â  and B̂  commute. 

 5.1.3  Prove that the operator that is the commutator ˆ ˆ,A B⎡ ⎤⎣ ⎦  of two Hermitian operators Â  and B̂  is 
never Hermitian if it is non-zero. 

5.2 General form of the uncertainty principle 

Here we will give a general proof and definition of the uncertainty principle. The proof is 
somewhat mathematical, though in the end quite short and very powerful in defining one of the 
most non-classical aspects of quantum mechanics. 

First, we need to set up the concepts of the mean and variance of an expectation value. We 
discussed above the mean value of a measurable quantity as being the expectation value of the 
operator in the quantum mechanical state. Using A  to denote the mean value of such a 
quantity A, we have, in the bra-ket notation, for a measurable quantity associated with the 
Hermitian operator Â  when the state of the system is f  

 ˆA A f A f= =  (5.12) 

Let us define a new operator ÂΔ  associated with the difference between the measured value of 
A and its average value, i.e., 

 ˆ ˆA A AΔ = −  (5.13) 
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A  is just a real number,3 and so this operator is also Hermitian.  

So that we can examine the variance of the quantity A, we examine the expectation value of the 
operator 2ˆ( )AΔ . Expanding the arbitrary function f  on the basis of the eigenfunctions, iψ , 
of Â , i.e., i iif c ψ∑= , we can formally evaluate the expectation value of 2ˆ( )AΔ . We have 

 

( )

( ) ( )

( )

( )

22

2

22

ˆ ˆ( )

ˆ

i i j j
i j

i i j j j
i j

i i j j j
i j

i i
i

A c A A c

c A A c A A

c c A A

c A A
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ψ ψ
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∗

⎛ ⎞⎛ ⎞Δ = − ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= −

∑ ∑

∑ ∑

∑ ∑

∑

 (5.14)  

Because the 2
ic  are interpreted in quantum mechanics as being the probabilities that the 

system is found, on measurement, to be in the state i  (or, equivalently, iψ ), and the quantity 
2( )iA A−  simply represents the squared deviation of the value of the quantity A from its 

average value, then by definition  

( ) ( ) ( ) ( )2 2 22 2 2 2 2ˆ ˆ ˆ ˆ ˆA A A A f A A f f A A f A AΔ ≡ Δ = − = − = − ≡ −  (5.15) 

is the mean squared deviation we will find for the quantity A  on repeatedly measuring the 
system prepared in state f . (Note: the algebraic step from 2ˆ( )A Af f−  to 

2 2Â Af f−  is left as an exercise for the reader below.) In statistical language, this quantity 
is called the variance, and the square root of the variance, which we can write as 

 ( )2A AΔ ≡ Δ  (5.16) 

is the standard deviation. The standard deviation gives a well-defined measure of the width of 
a distribution.  

We can also consider some other quantity B  associated with the Hermitian operator B̂ ,  

 ˆB B f B f= =  (5.17) 

and, with similar definitions 

 ( ) ( ) ( ) ( )2 2 22 ˆ ˆ ˆB B B B f B B fΔ ≡ Δ = − = −  (5.18) 

These two expressions, (5.15) and (5.18), give us ways of calculating the uncertainty in the 
measurements of the quantities A and B when the system is in a state f . Now we use these 
in our general proof of the uncertainty principle. 

Suppose that the two operators Â  and B̂  do not commute, and have a commutation rest Ĉ  as 
defined in Eq. (5.4) above. Consider4, for some arbitrary real number α , the number 

                                                           
3 Technically, A  in this expression is actually the identity operator multiplied by the number A . 
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 ( ) ( ) ( )ˆ ˆˆ ˆ 0G A i B f A i B fα α α= Δ − Δ Δ − Δ ≥  (5.19) 

(By ˆ ˆ( )A i B fαΔ − Δ , we simply mean the vector ˆ ˆ( )A i B fαΔ − Δ , but we wrote it in this form 
to emphasize that it is simply a vector, and as a result has a positive inner product with itself, 
which must be greater than or equal to zero, as in this equation (5.19)). Now we rearrange 
(5.19) to obtain 

 
( ) ( ) ( )

( )( )

†

† †

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

G f A i B A i B f

f A i B A i B f

α α α

α α

= Δ − Δ Δ − Δ

= Δ + Δ Δ − Δ
 (5.20) 

By Hermiticity of the operators, we have then 
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α α α
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= Δ + Δ − Δ Δ − Δ Δ

⎡ ⎤= Δ + Δ − Δ Δ⎣ ⎦

= Δ + Δ +

= Δ + Δ +

⎡ ⎤
⎢ ⎥= Δ + + Δ − ≥
⎢ ⎥Δ Δ⎣ ⎦

 (5.21) 

The last step is a simple though not very obvious rearrangement. But this relation must be true 
for arbitrary α, and so it is true for the specific value 

 
( )22

C

A
α = −

Δ
 (5.22) 

which sets the first term equal to zero in the last line of (5.21), and so we have 

 ( ) ( )
( )2

2 2

4

C
A BΔ Δ ≥  (5.23) 

This is the general form of the uncertainty principle. It tells us the relative minimum size of the 
uncertainties in two quantities if we perform a measurement. Only if the operators associated 
with the two quantities commute (and hence give Ĉ  and therefore 0C = ) is it possible for 
there to be no width to the distribution of results for both quantities for any arbitrary state. This 
is a very non-classical result, and is one of the core results of quantum mechanics that differs 
fundamentally from classical mechanics. 

                                                                                                                                                         
4 This treatment of the proof of the general uncertainty relation is similar to that of W. Greiner, Quantum 
Mechanics (Third Edition) (Springer-Verlag, Berlin, 1994), pp 74-5 
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Position-momentum uncertainty principle 
We can apply this result now to derive the most quoted uncertainty principle, which we 
introduced by example before, the position-momentum relation. Let us consider the 
commutator of ˆ xp  and x . (We treat the function x  as the operator for position – this can be 
justified, as we will discuss below.) To make the issue of differentiation clear, we will 
explicitly consider this commutator operating on an arbitrary function f . As we discussed 
before, operator relations always implicitly assume that the operators are operating on an 
arbitrary function anyway. Hence we have 

 

[ ] ( )ˆ ,x
d d d dp x f i x x f i x f x f
dx dx dx dx

d di f x f x f
dx dx

i f

⎛ ⎞ ⎧ ⎫= − − = − −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎩ ⎭
⎧ ⎫= − + −⎨ ⎬
⎩ ⎭

= −

= =

=

=

 (5.24) 

So, since f  is arbitrary, we can write 

 [ ]ˆ ,xp x i= − =  (5.25) 

and the commutation rest operator Ĉ  is simply the number (strictly the identity matrix 
multiplied by the number) 

 Ĉ = −=  (5.26) 

Hence 

 C = −=  (5.27) 

and so, from (5.23) we have 

 ( ) ( )
2

2 2

4xp xΔ Δ ≥
=  (5.28) 

or, equivalently, 

 
2xp xΔ Δ ≥
=  (5.29) 

Energy-time uncertainty principle 
We can proceed to calculate a similar relation between energy uncertainty and time 
uncertainty. The energy operator is the Hamiltonian, Ĥ . From Schrödinger’s time-dependent 
equation, we know that 

 Ĥ i
t

ψ ψ∂
=

∂
=  (5.30) 

for an arbitrary state ψ . If we take the time operator to be just the function t, then we have, 
using essentially identical algebra to that used above for the momentum-position uncertainty 
principle, 

 ˆ ,H t i t t i
t t

∂ ∂⎛ ⎞⎡ ⎤ = − =⎜ ⎟⎣ ⎦ ∂ ∂⎝ ⎠
= =  (5.31) 
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and so, similarly we have 

 ( ) ( )
2

2 2

4
E tΔ Δ ≥

=  (5.32) 

or 

 
2

E tΔ Δ ≥
=  (5.33) 

which is the energy-time uncertainty principle. We can relate this result mathematically to the 
frequency-time uncertainty principle that occurs in Fourier analysis. Noting that E ω= =  in 
quantum mechanics, we have 

  1
2

tωΔ Δ ≥  (5.34) 

Problems 
 5.2.1 Suppose that an operator Â  that does not depend on time (i.e., ˆ / 0A t∂ ∂ =  (where here we strictly 

mean the zero operator)) commutes with the Hamiltonian Ĥ . Show that the expectation value of this 
operator, for an arbitrary state ψ , does not depend on time (i.e., / 0A t∂ ∂ = . [Hint: remember 
that ˆ /H i t≡ ∂ ∂= ] 

 5.2.2 Show that ( )2 2 2ˆ ˆf A A f f A A f− = −  for any function f  and any Hermitian operator Â . 

 5.2.3 Consider the “angular momentum” operators 
 ˆ ˆ ˆx z yL yp zp= − , ˆ ˆ ˆy x zL zp xp= − , and ˆ ˆ ˆz y xL xp yp= −  

where ˆ xp , ˆ yp  and ˆ zp  are the usual momentum operators associated with the x, y, and z directions. 
(Note that these momentum operators are all Hermitian.) 

(i) Prove whether on not ˆ
xL  is Hermitian. 

(ii) Construct an uncertainty principle for ˆ
xL  and ˆ

yL . 

5.3 Transitioning from sums to integrals 

One additional piece of mathematics that we will need below is how to change from sums to 
integrals. This change can be convenient because integrals are often easier to evaluate than 
sums. We will be able to do this transition when the different states involved are closely 
spaced in some parameter (e.g., momentum or energy), and when all the terms in the sum vary 
smoothly with that parameter. This is relatively obvious from basic integral calculus, but we 
will discuss this explicitly here for clarity and completeness, and because we need to build on 
the formal results in discussing applications of delta functions. 

We imagine for the moment that we have some states, indexed by an integer q, and that, for 
each of those q, some quantity has the value qf . Hence, summing all of those would give a 
result 

 q
q

S f= ∑  (5.35) 

It could be that the quantity qf  can also equivalently be written as a function of some 
parameter u that itself takes on some value for each q, i.e.,  

 ( )q qf f u≡  
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For example, the different q states could represent states of different momentum qk= , in which 
case qu  could be the momentum, and qf  could be the energy associated with that momentum. 
Then we could just as well write, instead of Eq. (5.35),  

 ( )q
q

S f u= ∑  (5.36) 

Suppose now that the qu  and the qf  are very closely spaced as we change q, and vary 
relatively smoothly with q. We suppose that this smooth change of qu  with q is such that we 
can represent u as some smooth, and differentiable, function of q. Hence,  

 1q q
u du duu u u q q
q dq dq

δδ δ δ
δ+ − ≡ =� �  (5.37) 

In Eq. (5.37), we have first defined δu as the difference between two adjacent values of u (this 
quantity may be different for different values of q). Then we have multiplied top and bottom 
lines by δq. Next, we have approximated /u qδ δ  by /du dq . Finally, we have noted that δq, 
the separation in q between adjacent values of q, is just unity, since q is by choice an integer. 
So, if we were to consider some small range uΔ , within which the separation δu between 
adjacent values of u was approximately constant, the number of different terms in the sum that 
would lie within that range is ( )/ / /u u u du dqδΔ Δ� . Equivalently, defining a “density of 
states” 

 ( ) ( )
1
/

g u
du dq

=  (5.38) 

we could say equivalently that the number of terms in the sum that lie within uΔ  is ( )g u uΔ . 
Hence, instead of summing over q, we could instead consider a range of values of u, each 
separated by an amount uΔ , and write the sum over all those values, i.e.,  

 ( ) ( ) ( )q q
q q u

S f f u f u g u u= ≡ Δ∑ ∑ ∑�  (5.39) 

Finally, we can formally let uΔ  become very small, and approximate the sum by an integral, 
to obtain 

 ( ) ( )S f u g u du∫�  (5.40) 

The rule, therefore, in going from a sum to an integral, is to insert the density of states in the 
integration variable into the integrand, i.e., 

 ( )... ...
q

g u du→∑ ∫  (5.41)  

Of course, the limits of the integral must correspond to the limits in the sum. 

We will, incidentally, use this result explicitly below when considering, for example, densities 
of states, both in momentum and in energy, in crystalline materials. 

5.4 Continuous eigenvalues and delta functions 

This Section shows how we can resolve a number of problems, especially with position and 
momentum eigenfunctions, that we have so far carefully avoided. It also introduces a number of 
techniques that can be quite broadly useful. In the rest of this book, we make only occasional use 
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of some of the results, though these results can come up often in quantum mechanics. Hence this 
Section need not be studied in depth at the moment, and can be used as a reference when these 
techniques come up later, but we suggest at least reading through this Section at this point.  

We have so far dealt explicitly and completely only with discrete eigenvalues (i.e., ones that 
can take on only specific values, not continuous ranges of values) and the normalizable 
eigenfunctions associated with them. The astute reader may have noticed that this is not the 
only kind of situation we can encounter in quantum mechanics. For example, at the very 
beginning, we talked about plane waves as being solutions of Schrödinger’s wave equation in 
empty space; such waves cannot be normalized in the way we have been discussing so far. 
Consider the simplest possible case, that of a plane wave in the z direction. Such a wave can be 
written in the form 

 ( ) ( )expk kz C ikzψ =  (5.42) 

Obviously 

 ( ) 2 2
k kz Cψ =  (5.43) 

and so, if we integrate |ψ(z)|2 over the infinite range of all possible z, we will get an infinite 
result for any finite value of Ck.5 Hence we cannot define a normalization coefficient Ck in the 
same way we did before.  

Our same astute reader may also have noticed that these particular functions are the 
eigenfunctions of the momentum operator for the z direction, ˆ /zp i z≡ − ∂ ∂= , with eigenvalues 
=k where the quantity k can take on any real value. It is a common situation in quantum 
mechanics that, when eigenvalues can take on any value within a continuous range, the 
eigenfunctions cannot be normalized in the way we have discussed so far. Such situations are 
not unusual. They also occur for energy eigenvalues of unbounded systems, such as the states 
above the “top” of a finite potential well, or states above the ionization energy of a hydrogen 
atom, for example. 

The situation for energy eigenvalues can always be resolved mathematically by putting the 
whole system within a large but finite box, with infinitely high “walls”, and letting the size of 
the box become arbitrarily large. That is not always mathematically convenient, however.6 
Furthermore, for the case of the momentum eigenfunctions, building a box with potential 
barriers makes no difference to the momentum eigenfunctions; the potential does not appear in 
the momentum eigenfunction equation, and the solutions to that mathematical problem are still 
infinite plane waves no matter what potential box we build. So, the question is, how can we 
handle such situations in a mathematically tractable way? The key to this solution is to 
introduce the Dirac delta function.7 The delta function has various other mathematical uses, in 
quantum mechanics and elsewhere, and it is an important topic in its own right. 

                                                           
5 In mathematical parlance, these are not L2 (pronounced “L two”) functions (their squared modulus is 
not Lebesgue integrable). 
6 For a hydrogen atom, for example, we would get a very inconvenient coordinate system;  that problem 
is most conveniently solved using a coordinate system that only treats the relative position of the electron 
and proton, not the absolute position, as would be required if we put the atom in a box. (see Chapter 10) 
7 Those familiar with, for example, Fourier transforms, or any of several other fields, will be familiar also 
with Dirac’s delta function (see Chapter 5), but it was apparently introduced by Dirac to solve this 
particular kind of problem in quantum mechanics. 
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Dirac delta function 

The Dirac delta function, δ (x), is essentially a very narrow peak, of unit area, centered on 
x = 0. In fact, it is infinitesimally wide, and infinitely high, but still with unit area. It is not 
strictly a function because, in the one place that it really matters (x = 0), its value is not strictly 
defined. The formal definition of the delta function is 

 ( ) 1x dxδ
∞

−∞

=∫ , ( ) 0xδ =  for 0x ≠  (5.44) 

Its most important property is that, for any continuous function f(x), 

 ( ) ( ) ( )0f x x dx fδ
∞

−∞

=∫  (5.45) 

This relation, Eq. (5.45), can be regarded as an operational definition of the delta function. 
From this relation, we can readily deduce 

 ( ) ( ) ( )f x x a dx f aδ
∞

−∞

− =∫  (5.46) 

Of course, δ(x – a) is essentially a very sharply peaked function round about x = a. We can 
see, therefore, that a key property of the delta function is that it pulls out the value of the 
function at one specific value of the argument (i.e., at x = a in Eq. (5.46)) as the result of this 
integral. This is exactly what we would expect a very sharply peaked function of unit area to 
do if we put it inside the integrand as in Eq. (5.46). 

Representing the delta function 

The delta function in practice can be defined as the limit of just about any symmetrical peaked 
function in the limit as the width of the peak goes to zero and the height goes to infinity, 
provided we make sure the function retains unit area as we take the limit. Several common 
examples are as follows. 

0 2π 4π-2π-4π

0

1

 
Fig.  5.1. Plot of the function (sin ) /x x , with x  as the horizontal axis. 

Sinc function representation 

Based on the “sinc” function, graphed in Fig.  5.1,  
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 sin sincx x
x

≡  (5.47) 

we can write 

 ( ) sinlim
L

Lxx
x

δ
π→∞

=  (5.48) 

where we have used the fact that 

 sin x dx
x

π
∞

−∞

=∫  (5.49) 

Exponential integral representation 

A form that is very useful in formal evaluations of integrals is 

 ( ) ( )1 exp
2

x ixt dtδ
π

∞

−∞

= ∫  (5.50) 

which can readily be proved using the result Eq. (5.49) above. 

Lorentzian representation 

Based on the Lorentzian function, common as, for example, a line shape in atomic spectra, 
with a line width (half width at half maximum) of ε, we have 

 ( )
( )20

1 1lim
1 /

x
xε

δ
πε ε→

=
+

 (5.51) 

where we have used the result 

 2

1
1

dx
x

π
∞

−∞

=
+∫  (5.52) 

Gaussian representation 

Based on the Gaussian function of 1/e half width w, we have 

 ( )
2

20

1lim exp
w

xx
ww

δ
π→

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (5.53) 

where we have used the result 

 ( )2exp x dx π
∞

−∞

− =∫  (5.54) 

Square pulse representation 

One of the simplest representations is that of a “square pulse” function that we could define as 

 ( )
0, / 2
1/ , / 2 / 2
0 / 2

x
s x x

x

η
η η η

η

< −⎧
⎪= − ≤ ≤⎨
⎪ >⎩

 (5.55) 
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which is a function of width η, and height 1/η, centered at x = 0. With this square pulse 
function, we have 

 ( ) ( )
0

limx s x
η

δ
→

=  (5.56) 

Relation to Heaviside function 

The above square pulse function can be written in another, equivalent way in terms of the 
Heaviside function. The Heaviside function is the “unit step” function 

 ( )
1, 0
0, 0

x
x

x
>⎧

Θ = ⎨ <⎩
 (5.57) 

in terms of which we have the square pulse from above 

 ( ) ( ) ( )/ 2 / 2x x
s x

η η
η

Θ + − Θ −
=  (5.58) 

In the limit as η → 0, this is simply the definition of the derivative of Θ, and so we have also 

 
( ) ( ) ( )

( )
0

/ 2 / 2
lim

x x
x

d x
dx

η

η η
δ

η→

Θ + − Θ −
=

Θ
=

 (5.59) 

From this, we can immediately conclude that the Heaviside function is the integral of the delta 
function, i.e.,  

 ( ) ( )1 1

x

x x dxδ
−∞

Θ = ∫  (5.60) 

Basis function representation and closure 

Thus far, we have been discussing representations of the delta function as limits of other 
mathematical functions. There is another kind of representation that is particularly general and 
useful, which is a representation in terms of any complete set. 

Suppose we have a complete orthonormal set of functions, ( )i xφ . Then we can expand any 
function in this set, i.e., 

 ( ) ( )n n
n

f x a xφ= ∑  (5.61) 

As usual, we can determine the expansion coefficients an by premultiplying by ( )m xφ∗  and 
integrating over x, i.e.,  

 ( ) ( ) ( ) ( )m n m n n nm m
n n

x f x dx a x x dx a aφ φ φ δ∗ ∗= = =∑ ∑∫ ∫  (5.62) 

Now we can use the far left of (5.62) to substitute for the expansion coefficients in (5.61), i.e., 
writing 

 ( ) ( )n na x f x dxφ∗ ′ ′ ′= ∫  (5.63) 

we have 
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 ( ) ( ) ( )( ) ( )n n
n

f x x f x dx xφ φ∗ ′ ′ ′= ∑ ∫  (5.64) 

Interchanging the order of the integral and the sum, we have 

 ( ) ( ) ( ) ( )n n
n

f x f x x x dxφ φ∗⎛ ⎞′ ′ ′= ⎜ ⎟
⎝ ⎠
∑∫  (5.65) 

Comparing Eq. (5.65) to Eq. (5.46), we see that this sum is performing exactly as the delta 
function, i.e.,  

 ( ) ( ) ( ) ( )( )n n
n

x x x x x xφ φ δ δ∗ ′ ′ ′= − = −∑  (5.66) 

Hence we have a general representation of the delta function in terms of any complete set. This 
can be formally useful.  

This property, Eq. (5.66), of the set of functions is known as closure, and is a consequence of 
the completeness of the set. We can also see that Eq. (5.66) is simply the expansion of the delta 
function in the set ( )i xφ , with the expansion coefficients simply being the numbers ( )n xφ∗ ′ . 
Hence, for example, the expansion of ( )xδ  would have expansion coefficients ( )0nφ∗ . We can 
understand intuitively that, if a set of functions can manage to represent such an extreme 
function as a delta function, then it can represent any other reasonable function, and so we can 
understand how this property of closure is related to completeness. 

Delta function in 3 dimensions 

It is straightforward to construct delta functions in higher dimensions. The result is merely the 
product of the various one-dimensional delta functions. For example, using the short-hand 

( )δ r  to represent the delta function for three dimensions, we can write 

 ( ) ( ) ( ) ( )x y zδ δ δ δ=r  (5.67) 

Normalizing to a delta function 

Now that we have introduced the delta function, we can use it to perform a kind of 
normalization for those functions that are not normalizable in the previous sense. We can 
introduce this normalization through the example of the momentum eigenfunctions discussed 
above (Eq. (5.42)). 

Normalization of momentum eigenfunctions 

Consider the “orthogonality” integral of two different momentum eigenfunctions, but where 
we deliberately restrict the range of integration to some large range L± , i.e., 

 

( ) ( ) ( ) ( )

( )

( )
( )

1 1 1

1 1

1
1

1

exp exp

exp

sin
2

L L

k k k k
L L

L

k k
L

k k

z z dz C C ik z ikz dz

C C i k k z dz

k k L
C C

k k

ψ ψ∗ ∗

− −

∗

−

∗

= −

= −⎡ ⎤⎣ ⎦

−⎡ ⎤⎣ ⎦=
−

∫ ∫

∫  (5.68) 

Hence, taking the limit as L becomes very large, we have 
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 ( ) ( ) ( )1 1 12k k k kz z dz C C k kψ ψ π δ
∞

∗ ∗

−∞

= −∫  (5.69) 

where we have used the sinc function representation, Eq. (5.48), of the delta function. So, if we 
choose8 

 1
2kC
π

=  (5.70) 

i.e., if we choose the momentum eigenfunctions to be defined as 

 ( ) ( )1 exp
2k z ikzψ
π

=  (5.71) 

then we at least get a tidy form for the orthogonality integral. Specifically, instead of Eq. 
(5.69), we would have 

 ( ) ( ) ( )1 1k kz z dz k kψ ψ δ
∞

∗

−∞

= −∫  (5.72) 

This choice of normalization, leading to an orthogonality integral like Eq. (5.72) with only a 
delta function on the right, is called “normalization to a delta function”. Note that here we 
make the orthogonality relation (5.72) do the work of both the normalization and the 
orthogonality conditions – we do not write a separate normalization condition. It turns out we 
can construct a viable mathematics for handling such “unnormalizable” functions if we 
normalize in this way. We will develop this below. 

It is interesting to compare Eq. (5.72) with the orthonormality relation for conventional 
normalizable functions, Eq. (2.35). In that conventional case, the integral limits may be finite, 
but the equations are otherwise essentially identical except that we now have a Dirac delta 
function, δ(k – k1), instead of the Kronecker delta, δnm, that was the result for the orthogonality 
integral for two conventionally normalized basis functions, ψn(z) and ψm(z). We will find that 
this substitution of Dirac delta function for Kronecker delta is quite a general feature as we 
compare the results for the two classes of functions.  

Using functions normalized to a delta function 
A key point in using functions normalized to a delta function is that they can be handled 
provided we can work with integrals rather than sums, and we must make careful use of the 
density of states in such sums. To see the basic mathematics of working with such functions, 
we first consider that we have an orthonormal basis set of functions ( )q zψ , and we consider 
the expansion of some other function, ( )zφ , on this set. We will have 

 ( ) ( )q q
q

z f zφ ψ= ∑  (5.73) 

where the qf  are the expansion coefficients. We note that the sum of the squares of the 
expansion coefficients gives 

                                                           
8 Note we could also have chosen to include any complex factor of unit magnitude in the definition (5.70)
, but, as usual, for simplicity we choose not to do so. 
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 ( ) ( ) ( ) 22

,
p q p q q

p q q
z dz f f z z dz fφ ψ ψ∗ ∗= =∑ ∑∫ ∫  (5.74) 

so the normalization of the function of interest is the same as that of the expansion 
coefficients.9 

Remembering how we make the transition from sums to integrals, we presume that there is 
some quantity qu  (such as momentum) associated with the q that allows us to write, 
equivalently, 

 ( ) ( ) ( ),q q
q

z f u u zφ ψ= ∑  (5.75) 

where ( )q qf u f≡  and we make the minor additional change in notation ( , ) ( )q qu z zψ ψ≡ . 
From this we note, incidentally, that, for any specific value of qu , such as a value v, we can 
write 

 ( ) ( ) ( ),f v v z z dzψ φ∗= ∫  (5.76) 

in the usual way of evaluating expansion coefficients for a function ( )zφ  on a basis set 
( )q zψ ( ( , )qu zψ≡ ). 

Now, let us transform the sum, Eq. (5.75), into an integral, using the density of states, 
( ) 1/( / )g u du dq=  as in Eqs. (5.38) and (5.41) above. This gives 

 ( ) ( ) ( ) ( ),z f u u z g u duφ ψ= ∫  (5.77) 

Now we can substitute this form of ( )zφ  back into Eq. (5.76) to give, after exchanging the 
order of the integrals, 

 ( ) ( ) ( ) ( ) ( ), ,f v f u v z u z g u dz duψ ψ∗⎡ ⎤= ⎣ ⎦∫ ∫  (5.78) 

from which we see, by the definition of the delta function, Eq. (5.46), that the term in square 
brackets is performing as a delta function, i.e., 

 ( ) ( ) ( ) ( ), ,v z u z g u dz v uψ ψ δ∗ = −∫  (5.79) 

The functions we are considering so far are all presumed to be normalized conventionally. 
Now, however, we have an interesting option in choosing other functions that will work with 
the delta function normalization to give useful and meaningful results. First, we have to make 
the restriction that the density of states is a constant, i.e.,  

 ( )g u g≡  (5.80) 

This restriction is appropriate, for example, for momentum eigenfunctions, or plane waves in a 
large box. Now, let us define two new functions, in which we fold the square root of the 
density of states into each function, i.e.,  

 ( ) ( )F u g f u=  (5.81) 

and  

                                                           
9 Those used to Fourier series and transforms will recognize this as a form of Parseval’s theorem. 
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 ( ) ( ), ,u z g u zψΨ =  (5.82)  

Then we find, first, that the ( , )u zΨ  are basis functions normalized to a delta function, i.e., Eq. 
(5.79) becomes 

 ( ) ( ) ( ), ,v z u z dz v uδ∗Ψ Ψ = −∫  (5.83) 

Second, we find that we have a simple expression for the expansion in such functions 
normalized to a delta function, i.e., Eq. (5.77) becomes 

 ( ) ( ) ( ),z F u u z dzφ = Ψ∫  (5.84) 

and we can also write for the expansion coefficient (or now expansion function), from Eq. 
(5.76) 

 ( ) ( ) ( ),F v v z z dzφ∗= Ψ∫  (5.85) 

(where we have merely multiplied both sides of Eq. (5.76) by g  and substituted from Eqs. 
(5.81) and (5.82)). 

Third, we find that ( )F u  has a simple normalization.10  

 ( ) ( ) ( )22 2 2
q

q
z dz f f u gdu F u duφ = = =∑∫ ∫ ∫  (5.86) 

Thus, with functions normalized to delta functions, we recover a straightforward mathematics 
that allows us, for example, to write quite simple expressions for expansions in such functions. 
The only requirement is that the density of states be uniform. 

This use of functions normalized to delta functions can be done any time the density of states 
is large and uniform. The fact that the final results do not depend on the density of states 
means that these expressions continue to be meaningful in the limit as the density of states 
becomes effectively infinite, as is the case for momentum eigenfunctions.  

The incorporation of the square root of the density of states into each of the expansion 
coefficients and the basis functions essentially avoids two problems. As the density of states 
increases, (i) the expansion coefficients themselves would otherwise become very small, and 
(ii) so also would the amplitude of the basis functions. The incorporation of the square root of 
the density of states into both expansion coefficients and basis functions leaves them both 
quite finite, and leaves us with a simple mathematics for handling the resulting functions, 
without infinities or other singularities. 

In summary on the mathematics of working with functions normalized to a delta function as in 
Eq. (5.83), we can use them as a basis set, but we have Eqs. (5.84) and (5.85) as the expansion 
on the basis rather than Eqs. (5.76) and (5.73), and instead of expansion coefficients, we have 
an expansion “function” (here ( )F u ) that obeys a modulus squared integral normalization 
condition Eq. (5.86) rather than the usual sum of squares of the expansion coefficients.  

                                                           
10 Again, readers used to Fourier transforms will recognize this as Parseval’s theorem. The mathematics 
we have been describing here is exactly the mathematics required to go from Fourier series to Fourier 
integrals. 
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Example of normalization of plane waves 

Let us return to the question of normalization of plane waves of the form Ckexp(ikz), and 
perform this in the two different approaches of normalization to unity in a box of finite length 
L, and normalization to a delta function. 

Box and delta function normalization 

In a box of length L, normalizing such an exponential plane wave gives a normalization 
integral (taking symmetrical limits for simplicity) 

 ( ) ( )
/ 2

2

/ 2

exp exp 1
L

k k k
L

C ikz C ikz dz C L∗

−

− = =∫  (5.87) 

i.e.,  

 1
kC

L
=  (5.88) 

so the box-normalized wavefunction is 

 ( ) ( ) ( )1, expk z k z ikz
L

ψ ψ≡ =  (5.89) 

To transform this to a wavefunction normalized to a delta function, our prescription above (Eq. 
(5.82)) is to multiply this wavefunction by the square root of the density of states to give 

 ( ) ( ) ( ) ( )1 1, , exp exp
2 2
Lk z g k z ikz ikz

L
ψ

π π
Ψ = = =  (5.90) 

which is exactly what we had proposed before in Eq. (5.71) when considering plane waves 
normalized to a delta function.  

For a large box, therefore, we can use either a box-normalized approach, or we can use 
functions normalized to a delta function. Either will give the same results in the end. As the 
size of the box becomes infinite, it is more common to work with the delta-function 
normalization, since then the infinities (in densities of states and in box size) and zeros (in the 
amplitudes of the “normalized” functions) are avoided.  

Relation to Fourier transforms 

The classic example of the mathematics of basis functions normalized to delta functions is 
when our basis functions are the plane waves, 

  ( ) ( )1, exp
2

u z iuz
π

Ψ ≡ −  (5.91) 

in which case the expansion of the function ( )F u  in those functions is exactly equivalent to 
the mathematics of the Fourier transform, i.e., 

 ( ) ( ) ( )1 exp
2

z F u iuz dzφ
π

∞

−∞

= −∫  (5.92) 

where ( )zφ  is the Fourier transform of the function ( )F u . Note that then Eq. (5.86) is simply 
a statement of Parseval’s theorem, which in turn is saying that the Fourier transform is a 
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transform that does not change the length of the vector in Hilbert space, and it is, in fact, a 
unitary transform.11 

Periodic boundary conditions 

Before leaving the discussion of plane waves, we should mention one other topic, which is the 
use of periodic boundary conditions. These boundary conditions are very commonly used in 
solid state physics. We like to work with (complex) exponential waves rather than sines and 
cosines because the mathematics is easier to handle. Putting exponential waves in a box causes 
a minor formal problem. If we ask that the wavefunction reaches zero at the walls of the box, 
then we will end up with sine waves as the allowed mathematical solutions (presuming we 
choose the origin at one end of the box), not exponentials. A mathematical trick is to pretend 
that the boundary conditions are periodic, with the length, L, of the box being the period, i.e., 
to pretend that 

 ( ) [ ]exp exp ( )ikz ik z L= +  (5.93) 

This leads to the requirement that 

 ( )exp 1ikL =  (5.94) 

which in turn means that  

 2mk
L

π
=  (5.95) 

where m is a positive or negative integer or zero. The allowed values of k are therefore spaced 
by 2π /L, and the density of states in k (the number of states per unit k) is therefore 

 
2
Lg
π

=  (5.96) 

We can then work with these functions just as we work with exponential plane waves 
normalized over a finite large box, using either box normalization or delta-function 
normalization as we wish. 

This periodic boundary condition trick is often stated as if it had some physical justification, 
but usually it does not. For example, it is used frequently in the physics of crystals (see 
Chapter 8). In one dimension in a crystal, we could say we are imagining the crystal is very 
long, and that physically we have bent it round into a circle, albeit one of very large radius; 
that might be an acceptable approach in such a case. In three dimensions, connecting it back 
round on itself in three directions at once is physically absurd and topologically impossible. 
The justification there is seldom stated explicitly, but it is simply that it makes the math easier. 
It is also true that, if we were to solve the problem with hard wall boundary conditions, with 
sine waves as the solutions, for example, we would in fact end up with the same number of 

                                                           
11 Viewed this way, we could say that in one sense the Fourier transform does exactly nothing. That is, it 
can be viewed as merely a change of basis in Hilbert space that makes no difference to the function or 
state being represented. In the language of Fourier transforms, the signal itself is not changed by Fourier 
transformation, just the representation of it in “frequency” rather than “time”. The vector in Hilbert space 
is still the same length (and hence the power or energy in the signal is not changed by the Fourier 
transformation, which is Parseval’s theorem), and is pointing in the same “direction”; only the coordinate 
axes have changed. 
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states (except that the state with k = 0 is allowed in the exponential case, but does not exist in 
the sine case), and essentially all measurable quantities would end up with the same results. 
The honest truth is that we use periodic boundary conditions because they are convenient, and 
experience tells us that we can get away with them, even though they are somewhat non-
physical in fact. 

Position eigenfunctions 

Thus far the only quantum mechanical functions we have dealt with explicitly that are 
normalized to a delta function are plane waves, which are also the momentum eigenfunctions. 
The theory we derived above (e.g., Eqs. (5.83) - (5.86)), however, was not restricted to any 
specific function that was normalized to a delta function. There is another very simple 
example, namely the position eigenfunctions. 

We stated before that the position operator, at least in the representation where functions are 
described in terms of position, was simply the position, z, itself (in the one-dimensional case). 
We might ask, therefore, what are the functions that, when operated on by the position 
operator, give results that are simply an eigenvalue (which should be a “value” of position) 
times the function? We can see the answer to this by inspection. The eigenfunctions are delta 
functions. For example, consider the function  

 ( ) ( )
oz oz z zψ δ= −  (5.97) 

Then we can see that 

 ( ) ( )ˆ
o oz o zz z z zψ ψ=  (5.98) 

where for emphasis and clarity, we have explicitly written the position operator as ẑ . The only 
value of z for which the eigenfunction is non-zero is the one oz z= , so in any expression 
involving ( )ˆ ozz zψ  we can simply replace it by ( )oo zz zψ . 

The delta function itself is normalized to a delta function. To see this consider the integral 

 ( ) ( ) ( )1 2 1 2z z z z dz z zδ δ δ− − = −∫  (5.99) 

To understand why this integral itself evaluates to a delta function, consider the first delta 
function as being one of its other representations, such as a Gaussian as in Eq. (5.53), before 
we have quite taken the limit. Then by the definition of the delta function 

 
( ) ( ) ( )2 2

1 1 2
22 2

1 1exp exp
z z z z

z z dz
w ww w

δ
π π

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟− − = −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫  (5.100) 

Then take the limit of small w of the right hand side, which is the delta function on the right of 
Eq. (5.99).  

Hence we have shown another example of a function that normalizes to a delta function, and 
for which we can use the same general formalism.  

Expansion of a function in position eigenfunctions 

We expect that the position eigenfunctions form a complete set, and so we can expand other 
functions in them. Let us formally see what happens when we do that. Suppose that we have 
some set of expansion coefficients ( )oF z  that we use in an expansion of the form of Eq. (5.85)



150  Chapter 5  Operators and quantum mechanics 

, as appropriate for an expansion in functions that are normalized to a delta function. Then we 
have, using the position eigenfunctions as in Eq. (5.97) above, 

 ( ) ( ) ( )o o oz F z z z dzφ δ= −∫  (5.101) 

The evaluation of the integral above is trivial given the definition of the delta function, i.e., we 
have 

 ( ) ( )z F zφ =  (5.102) 

In other words, a function ( )zφ of position is its own set of expansion coefficients in the 
expansion in position eigenfunctions. This point may seem trivial, but it shows that we can 
view all the wavefunctions we have been working with so far as being expansions on the 
position eigenfunctions. The wavefunction normalization integrals we have performed so far, 
for example, which have been of the form ( ) 2z dzφ∫ , can now be seen as the normalization, 
Eq. (5.86), that we have deduced for expansions in functions normalized to a delta functions. 
In other words, since the very beginning when we started working with wavefunctions, we 
have actually been using the concept of functions normalized to a delta function all along – we 
just did not know it.  

Change of basis for basis sets normalized to a delta function 

So far we have only discussed change of basis sets for discrete sets normalized conventionally. 
We can, however, also change between basis sets normalized to delta functions. This is best 
illustrated by the example of changing between position and momentum basis sets, an example 
that is also by far the most common use of such a transformation anyway. 

We can presume that we have some function ( )old zφ  that is expressed in the position basis. 
The subscript “old” here refers to the old basis set, here the position basis. The new basis set, 
also normalized to a delta function, is the set of momentum eigenfunctions, 

( )1/ 2(1/ 2 ) exp ikzπ , as in Eq. (5.90). Then, according to our expansion formula for functions 
normalized to a delta function, Eq. (5.85), we have 

 ( ) ( ) ( )1 exp
2new oldk z ikz dzφ φ
π

= −∫  (5.103) 

We can if we wish formally write this transformation in terms of an (integral) operator  

 ( )1 exp
2

ikz dz
π

≡ −∫U  (5.104) 

Note that U is an operator. One can only actually perform the integral once this operator 
operates on a function of z.  

In this form, we can then write Eq. (5.103) in the form we have used before for basis 
transformations, as 

 new oldφ φ= U  (5.105) 

where in our notation we are anticipating that this operator U is unitary (a proof that is left to 
the reader below). 

Let us look at the specific case where the function ( )old zφ  is actually the position basis 
function ( )old oz zφ δ= − . Then we find that, in what is now the momentum representation, 
that basis function is now expressed as  
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 ( ) ( ) ( )1 1exp exp
2 2new o oz z ikz dz ikzφ δ
π π

= − − = −∫  (5.106) 

In other words, a position eigenfunction in the momentum representation is 
( )1/ 2(1/ 2 ) exp oikzπ − , where k takes on an unrestricted range of values, just as for a specific 

value of ok k=  the momentum eigenfunction in the position representation is 
( )1/ 2(1/ 2 ) exp oik zπ  where z takes on an unrestricted range of values. 

The operator that will take us back to the position representation we can guess by the 
symmetry of this particular problem will be 

 ( )† 1 exp
2

ikz dk
π

= ∫U  (5.107) 

Note that in constructing this adjoint, we have taken the complex conjugate, and we have 
interchanged the roles of k and z, which is analogous to the formation of an adjoint in our 
conventionally normalizable basis representations, where we take the complex conjugate, and 
interchange indices on the matrix elements or basis functions.  

Using these definitions, as an illustration, we can now formally transform the position operator 
into the momentum basis, using the usual formula for such transformations, i.e., formally 
operating on an arbitrary function f  

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

†ˆ ˆ
1 exp exp

2
1 exp

2
1 exp

2

new oldz f z f

ikz z ik z f k dk dz

z i k k z f k dk dz

i k k z dzf k dk
i k

i k k f k dk
k

i f k
k

i f
k

π

π

π

δ

=

′ ′ ′= −

′ ′ ′= − −⎡ ⎤⎣ ⎦

− ∂ ′ ′ ′= − −⎡ ⎤⎣ ⎦∂
∂ ′ ′ ′= −
∂
∂

=
∂
∂

≡
∂

∫ ∫

∫ ∫

∫ ∫

∫

U U

 (5.108) 

Note two points about the above algebra. First, the index or variable of integration in the 
operation †ˆoldz U , here chosen as k ′ , is a different variable from the k in the final expression 
for ˆnewz , because we have to sum or integrate over the k ′  variable in performing the operation 

†ˆoldz U . Second, we have used the algebraic trick that 
exp[ ( ) ] ( / ) exp[ ( ) ]iz i k k z k i k k z′ ′− − − ≡ ∂ ∂ − − .  

Since f  is arbitrary, then we can write the position operator in the momentum representation 
as 

 ˆnewz i
k
∂

=
∂

 (5.109) 

Note the symmetry between this and the z momentum operator in the position representation, 
which is ( )( )ˆ /zp i z= − ∂ ∂= . 
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With this exercise, we finally have a form of the position operator in which it is quite clearly 
an operator, in contrast to its form in the position representation where it was difficult to 
distinguish the operator ẑ  from the simple position z. Of course, now in the momentum 
representation we will have the similar difficulty of distinguishing the operator p̂  from the 
simple momentum value p. 

Problems 

 5.4.1 Prove that the operator ( )(1/ 2 ) exp ikz dzπ≡ −∫U , with Hermitian adjoint 

( )† (1/ 2 ) exp ik z dzπ ′≡ ∫U , is unitary. 

 5.4.2  Demonstrate explicitly that the commutator ˆˆ[ , ]zz p  is identical, regardless of whether it is 
evaluated in the position representation or the momentum representation. 

 5.4.3  Formally transform the momentum operator ˆ zp  into the momentum basis using algebra similar to 
that above for the transformation of the position operator into the momentum basis.   

5.5 Summary of concepts 

Commutator 

The commutator of two operators is defined as 

 ˆ ˆ ˆˆ ˆ ˆ,A B AB BA⎡ ⎤ = −⎣ ⎦  (5.2) 

Two operators are said to commute if 

 ˆ ˆ, 0A B⎡ ⎤ =⎣ ⎦  (5.3) 

In general, we can write 

 ˆ ˆˆ,A B iC⎡ ⎤ =⎣ ⎦  (5.4) 

where Ĉ  is called the commutation rest or the remainder of commutation. Note, for example, 

 [ ]ˆ ,xp x i= − =  (5.25) 

Commuting operators and eigenfunctions 

Operators that commute share the same set of eigenfunctions, and operators that share the 
same set of eigenfunctions commute. 

General form of the uncertainty principle 

 ( ) ( )
( )2

2 2

4

C
A BΔ Δ ≥  (5.23) 

Energy-time uncertainty principle 

 
2

E tΔ Δ ≥
=  (5.33) 
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Transition from a sum to an integral 

In transitioning from a sum to an integral, where the quantity qf  being summed is smoothly 
and slowly varying in the index q, we may make the approximation 

( ) ( ) ( ) ( ) ( )q q
q q u

S f f u f u g u u f u g u du= ≡ Δ∑ ∑ ∑ ∫� �  (5.39) and (5.40) 

where u is some variable in which the quantity being summed can also be expressed, where the 
limits on the integral must correspond to the limits on the sum, and where ( )g u  is the density 
of states 

 ( ) ( )
1
/

g u
du dq

=  (5.38) 

Dirac delta function 

A practical operational definition of the Dirac delta function is that it is an entity ( )xδ  such 
that, for any continuous function f(x), 

 ( ) ( ) ( )f x x a dx f aδ
∞

−∞

− =∫  (5.46) 

( )xδ  is essentially a sharply peaked function around 0x = , with unit area, in the limit as the 
width of that peak goes to zero. 

Representing the delta function 

Various peaked functions can be used to represent the delta function. Particularly common are 
the representation in terms of the sinc function 

 sin sincx x
x

≡  (5.47) 

which gives 

 ( ) sinlim
L

Lxx
x

δ
π→∞

=  (5.48) 

and in terms of the square pulse representation 

 ( )
0, / 2
1/ , / 2 / 2
0 / 2

x
s x x

x

η
η η η

η

< −⎧
⎪= − ≤ ≤⎨
⎪ >⎩

 (5.55) 

which gives 

 ( ) ( )
0

limx s x
η

δ
→

=  (5.56) 

A very useful formal representation is 

 ( ) ( )1 exp
2

x ixt dtδ
π

∞

−∞

= ∫  (5.50) 
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Basis function representation of the delta function, and closure 

For any complete orthonormal set of functions ( )n xφ , 

 ( ) ( ) ( ) ( )( )n n
n

x x x x x xφ φ δ δ∗ ′ ′ ′= − = −∑  (5.66) 

This relation, for a set of functions ( )n xφ  is called closure, and is an important criterion for the 
completeness of the set. 

Delta function in three dimensions 

The delta function in three dimensions is just the product of the delta functions in each 
dimension, and can be written 

 ( ) ( ) ( ) ( )x y zδ δ δ δ=r  (5.67) 

Normalization to a delta function 

A function ( , )u zδψ  of two continuous parameters u and z (such as momentum and position) is 
said to be normalized (in z) to a delta function if 

 ( ) ( ) ( ), ,v z u z dz v uδ δψ ψ δ∗ = −∫  (5.83) 

Normalized momentum eigenfunctions 

When normalized to a delta function, the momentum eigenfunctions become 

 ( ) ( )1 exp
2k z ikzψ
π

=  (5.71) 

Expanding in functions normalized to a delta function 

For a set of basis functions ( , )u zΨ  that are normalized to a delta function in z, we can expand 
an arbitrary function ( )zφ  in them using the expression 

 ( ) ( ) ( ),z F u u z dzφ = Ψ∫  (5.85) 

where the ( )F u  serve as the expansion coefficients, and  

 ( ) ( )2 2
z dz F u duφ =∫ ∫  (5.86) 

Transition from conventional to delta function normalization 

When functions ( )q zψ can be conventionally normalized, leading to a conventional expansion 
of some arbitrary function ( )zφ  in the form 

 ( ) ( )q q
q

z f zφ ψ= ∑  (5.73) 

presuming that we can make the integral approximation to this sum 

 ( ) ( ) ( ) ( ),z f u u z g u dzφ ψ= ∫  (5.77) 

provided the density of states is uniform ( ( )g u g≡ ), we can choose to change to functions 
normalized to a delta function by choosing 
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  ( ) ( )F u g f u=  (5.81) 

and  

 ( ) ( )u g uψΨ =  (5.82)  

leading to the expansion above as in (5.85) 

Periodic boundary conditions 

A set of boundary conditions often used in quantum mechanics for mathematical convenience 
are the periodic boundary conditions for a box of length L that the function should be the same 
at a point z L=  as they are at the point 0z =  (or possibly some shifted version of these same 
conditions). They are often used when the functions of interest are plane wave exponentials, in 
which case they imply 

 ( ) [ ]exp exp ( )ikz ik z L= +  (5.93) 

which leads to the condition 

 2mk
L

π
=  (5.95) 

and a density of states 

 
2
Lg
π

=  (5.96) 

These boundary conditions, though often not strictly correct physically, allow exponential 
functions to be used, rather than sines or cosines, when considering boxes of finite size, and 
can allow simpler mathematics are a result. 

Position eigenfunctions 

The position eigenfunctions in z are the delta functions ( )oz zδ −  for each possible value of zo. 
These eigenfunctions are themselves normalized to a delta function. 

Expansion in position eigenfunctions 

A function ( )zφ of position is its own set of expansion coefficients in the expansion in position 
eigenfunctions. 

 



Chapter 6  
 
Approximation methods in 
quantum mechanics  

Prerequisites: Chapters 2 - 5, including a first reading of Section 2.11.  

We have seen above how to solve some simple quantum mechanical problems exactly, and in 
principle we know how to solve for any quantum mechanical problem that is the solution of 
Schrödinger’s equation. Some extensions of Schrödinger’s equation are important for many 
problems, especially those including the consequences of electron spin. Other equations also 
arise in quantum mechanics, beyond the simple Schrödinger equation description, such as 
appropriate equations to describe photons, and relativistically correct approaches. We will 
postpone discussion of any such more advanced equations.  

For all such equations, however, there are relatively few problems that are simple enough to be 
solved exactly. This is not a problem peculiar to quantum mechanics; there are relatively few 
classical mechanics problems that can be solved exactly either. Problems that involve multiple 
bodies or that involve the interaction between systems are often quite difficult to solve.  

One could regard such difficulties as being purely mathematical, say that we have done our job 
of setting up the necessary principles to understand quantum mechanics, and move on, 
consigning the remaining tasks to applied mathematicians, or possibly to some brute-force 
computer technique. Indeed, the standard set of techniques that can be applied, for example, to 
the solution of differential equations can be (and are) applied to the solution of quantum 
mechanical differential equation problems. The problem with such an approach is that, if we 
apply the mathematical techniques blindly, we may lose much insight as to how such more 
complicated systems work. Specifically, we would not understand just what were the 
important and often dominant aspects of such more complicated problems, aspects that often 
allow us to have a relatively simpler view of them. Hence, it is useful, both from the practical 
point of view (i.e., we can actually do the problems ourselves) and the conceptual one (i.e., we 
can know what we are doing), to understand some of the key approximation methods of 
quantum mechanics.  

There are several such techniques, and it is quite common to invent new techniques or variants 
of old ones to tackle particular problems. In nearly all cases, the analysis in terms of 
expansions in complete sets of functions is central to the use or understanding of the 
approximation techniques, and we rely heavily on the results from the Hilbert-space view of 
functions and operators.  

Among the most common techniques are (i) use of finite basis subsets, or, equivalently, finite 
matrices, (ii) perturbation theory (which comes in two flavors, time-independent and time-
dependent), (iii) the tight-binding approximation, and (iv) the variational method. Each of 
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these also offers some insight into the physical problem. In this Chapter, we will discuss all of 
these except the time-dependent perturbation theory, which we postpone for the next Chapter. 
There are also some specific techniques that are very useful for one-dimensional problems, and 
we devote  Chapter 11 to those.  

6.1 Example problem – potential well with an electric 
field 

To illustrate the different methods, we will analyze a particular problem, that of a one-
dimensional, infinitely deep potential well for an electron with an applied electric field (a 
skewed infinite well). This problem is solvable exactly analytically, and this was done in 
Section 2.11 above. These exact solutions are based on Airy functions that themselves have to 
be evaluated by numerical techniques (though these techniques are well understood, and the 
error limits can be quantified). It is also straightforward to solve this problem by the various 
approximation methods without recourse to the Airy functions, and, in practice, these methods 
can actually be easier than evaluating the “exact” solutions. Another reason for using this 
problem as an illustration is that, because the solutions of the “unperturbed” problem (i.e., with 
no applied field) are mathematically simple, we will be able keep the mathematics simple in 
the illustrations of the various techniques.  

This particular problem has a specific practical application, which is in the design of quantum 
well electroabsorption modulators. The shifts in the energy levels calculated here translate into 
shifts in the optical absorption edge in semiconductor quantum well structures with applied 
electric fields. This shift in turn is used to modulate the transmission of a light beam in high 
speed modulators in optical communications systems. Aspects of this same problem occur also 
in analyzing the allowed states of carriers in silicon transistor structures, and in tunneling in 
the presence of electric fields.  

∞ ∞ ∞∞

Lz

1E∞

without field with field

e E Lz

E
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without field with field

e E Lz

E

 
Fig.  6.1. Illustration of an infinitely deep potential well for an electron, without and with electric 
field E. 

First we will set up this problem in an appropriate form. The potential structure with and 
without field is illustrated in Fig.  6.1. The energy of an electron in an electric field E simply 
increases linearly with distance. A positive electric field in the positive z direction pushes the 
electron in the negative z direction with a force of magnitude eE, and so the potential energy of 
the electron increases in the positive z direction with the form eEz. We are free to choose our 
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potential energy origin wherever we please, and we choose it, for convenience, to be zero in 
the middle of the well. Hence, within the well, the potential energy is 

  ( ) ( )/ 2zV z e z L= −E  (6.1) 

and the Hamiltonian becomes  

 ( )
2 2

2
ˆ / 2

2 z
dH e z L

m dz
= − + −E=  (6.2) 

It is mathematically more convenient to define dimensionless units for this problem.1 A 
convenient unit of energy, 2 21 ( / 2 )( / )zE m Lπ∞ = = , is the confinement energy of the first state 
of the original infinitely deep well, and in those units the eigenenergy of the nth state will be 

 
1

n
n

E
E

η ∞=  (6.3) 

A convenient unit of field is that field, oE , that will give one unit of energy, 1E∞ , of potential 
change from one side of the well to the other, i.e., 

 o
o

z

E
eL

=E  (6.4) 

and in those units, the (dimensionless) field will be 

 
o

=
Ef
E

 (6.5) 

A convenient unit of distance will be the thickness of the well, and so the dimensionless 
distance will be 

 / zz Lξ =  (6.6) 

Dividing throughout by oE∞ , the Hamiltonian within the well can now be written in these 
dimensionless units as 

 ( )
2

2 2

1ˆ 1/ 2dH
d

ξ
π ξ

= − + −f  (6.7) 

with the corresponding time-independent Schrödinger equation 

 ( ) ( )Ĥφ ξ ηφ ξ=  (6.8) 

For the original “unperturbed” problem without field, we will write the “unperturbed” 
Hamiltonian within the well as 

 
2

2 2

1ˆ
o

dH
dπ ξ

= −  (6.9) 

                                                           
1 The distance units that are most useful for illustrating the various approximation techniques are 
necessarily different from those that put this problem into the form required for the Airy function 
differential equation in Section 2.11, though we keep the energy units the same as in that Section. One 
dimensionless unit of field here does correspond with one dimensionless unit of potential in Section  2.11, 
e.g., 3=f  here is the same as 3Lν =  in Section 2.11.  
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The normalized solutions of the corresponding (unperturbed) Schrödinger equation 

 ˆ
o n n nH ψ ε ψ=  (6.10) 

are then  

 ( ) ( )2 sinn nψ ξ πξ=  (6.11) 

This now completes the setup of this problem in dimensionless units so that we can 
conveniently illustrate the various approximation methods using it as an example. 

6.2 Use of finite matrices 

Most quantum mechanical problems in principle have an infinite number of functions in the 
basis set of functions that should be used to represent the problem.2 In practice, we can very 
often make a useful and quite accurate approximate solution by considering only a few specific 
functions, i.e., a finite subset of all of the possible functions, typically those with energies 
close to the state of the system in which we are most interested. Though the use of such finite 
basis subsets is quite common, especially given the common use of matrices in solving 
problems numerically on computers, it is not normally discussed explicitly in quantum 
mechanics texts. In practice, the use of such finite subsets of basis functions leads us to use 
matrices whose dimension corresponds with the number of basis functions used. With easy 
manipulation of matrices now routine with mathematical software, this may be the first 
numerical technique of choice. To give this technique a name, we can call it the “finite basis 
subset method” or the “finite matrix method”, though the reader should be aware that both of 
these names are inventions of this author.3  

As can be seen from the discussion of the Hilbert space view of functions and operators, 
quantum mechanical problems can often be conveniently reduced to linear algebra problems, 
with operators represented by matrices and functions by vectors. The practical solution of 
some problem, such as energy eigenvalues and eigenstates, then reduces to a problem of 
finding the eigenvectors of a matrix. Occasionally, such problems can be solved exactly, of 
course, but more often no exact analytic solution is known. Then to solve the problem we may 
have to solve numerically for eigenvalues and eigenvectors, which means we have to restrict 
the matrix to being a finite one, even if the problem in principle has a basis set with an 
infinitely large number of elements.  

It is also quite common to consider analytically a finite matrix and solve that simpler problem 
exactly. Then one can have an approximate analytic solution. This approach is taken with great 
success, for example, in the so-called k.p (“k dot p”) method of calculating band structures in 
semiconductors discussed in Section 8.9. The k.p method is the principal method band 

                                                           
2 Some problems do have quite finite numbers of required basis functions, however, such as the problem 
of a stationary electron in a magnetic field, which only needs two basis functions (one corresponding to 
“spin-up”, and the other to “spin-down”).  
3 This approach is mathematically closely related to the problem of degenerate perturbation theory 
discussed below because it also involves similar manipulations with finite matrices. In some texts this 
approach is even called degenerate perturbation theory when it is used in the way we discuss in this 
Section. Since the approach in this Section is definitely not perturbation theory, calling this approach 
degenerate perturbation theory in this context seems misleading to this author and possibly quite 
confusing to the reader, so we have to invent another name. 
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structure method used for calculating optical properties of semiconductors near the optical 
absorption edge. The results of this method are crucial in understanding the basic properties of 
modern semiconductor lasers, for example. 

Why can we conclude that restricting to such a finite matrix is justifiable? The fundamental 
justification why we can even consider such finite matrices is that the quantum mechanical 
operator we are dealing with is compact in the mathematical sense. If an operator is compact, 
then, as we add more basis functions into the set we are using in constructing the matrix for 
our operator, eventually our finite matrix will be as good an approximation as we want for any 
calculation to the infinite matrix we perhaps ought to have; this is essentially the mathematical 
definition of compactness of operators. 

In practice, there is no substitute for intelligence in choosing the finite basis subset, however, 
and this is something of an art. If we choose the form of the basis subset badly, or make a poor 
choice as to what elements to include in our finite subset, then we will end up with a poor 
approximation to the result, or a matrix that is ill-conditioned. A very frequent choice of basis 
subset is to use the energy eigenfunctions of the “unperturbed”4 problem (or possibly the 
energy eigenfunctions of a simpler, though related, problem) with energies closest to those of 
the states of interest. 

Now we consider our specific example problem of an electron in a one-dimensional potential 
well in the z direction, with an electric field applied perpendicular to the well. We will need to 
construct the matrix of the Hamiltonian. The matrix elements are  

 ( ) ( ) ( )( ) ( )
1 12

2 2
0 0

1 1/ 2ij i j i j
dH d d

d
ψ ξ ψ ξ ξ ψ ξ ξ ψ ξ ξ

π ξ
∗ ∗= − + −∫ ∫f  (6.12) 

(In this particular case, because the wavefunctions happen to be real, the complex conjugation 
makes no difference in the integrals.) 

For our explicit example here, we will consider a field of 3 dimensionless units (i.e., 3=f ), 
and we will take as our finite basis only the first three energy eigenfunctions, from Eq. (6.11), 
of the “unperturbed” problem. Then, performing the integrals in Eq. (6.12) numerically, we 
obtain the approximate Hamiltonian matrix 

 
1 0.54 0

ˆ 0.54 4 0.584
0 0.584 9

H
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (6.13) 

Note that this matrix is Hermitian, as expected. (In this particular case, because of the reality of 
both the operators and the functions, the matrix elements are all real.) Now we can numerically 
find the eigenvalues of this matrix, which are 

 1 2 30.90437, 4.0279, 9.068η η η� � �  (6.14) 

These can be compared with the results from the exact, Airy function solutions, which are 

 1 2 30.90419, 4.0275, 9.0173ε ε ε� � �  (6.15) 

                                                           
4 The use of the term “unperturbed” here does not mean that we are using perturbation theory here. It 
merely refers to the simpler problem before the “perturbation” (here the applied electric field) was added. 
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We see first that, by either the exact or approximate method, these are quite near to the 
“unperturbed” (zero field) values (which would be 1, 4, and 9, respectively). We see also that 
the lowest energy eigenvalue has reduced from its unperturbed value, and the second and third 
eigenenergies are actually increased (which is counterintuitive, but true). This finite basis 
subset approach has given quite an accurate answer for the lowest state, and somewhat less 
accuracy for the others, especially the third level. This relative inaccuracy for the third level is 
not very surprising – we may well need to include at least one more basis function in the basis 
set to get an accurate answer here.5  

The corresponding eigenvectors are solved numerically as 

 1

0.985
0.174
0.013

φ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 2

0.175
0.978
0.115

φ
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 2

0.007
0.115

0.993
φ

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.16) 

(These are normalized, with the sum of the squares of the elements of the vectors each adding 
to 1.) Explicitly, this means that, for example, the first eigenfunction is 

 ( ) ( ) ( ) ( )1 0.985 2 sin 0.174 2 sin 2 0.013 2 sin 3φ ξ πξ πξ πξ= + +  (6.17) 
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Fig.  6.2. Comparison of the unperturbed (zero field) wavefunction (dot-dashed line) and the 
calculated wavefunction with 3 units of field for the first energy eigenstate in an infinitely deep 
potential well, calculated (i) exactly (with Airy functions) – solid line, (ii) using the finite basis 
subset method – dashed line (this line is almost indistinguishable from the solid line of the exact 
calculation), and (iii) using first-order perturbation theory – dotted line.  

Fig.  6.2 compares the first approximate eigenfunction solution ( )1φ ξ  with the exact Airy 
function result, and with the “unperturbed” exact ( )1ψ ξ  (the comparison with other methods 

                                                           
5 In fact, including the fourth basis function of the “unperturbed” problem gives 9.0175 for the energy of 
this third level, very close to the exact 9.0173 
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below is also shown in Fig. 6.2). The electron wavefunction with field has moved to the left 
somewhat, as would be expected for the electron being pushed by the field. We see by eye that 
there is almost no difference between the wavefunction calculated here by this method and the 
exact Airy function result. Results for the first energy level for 2, 3, and 4 basis functions in 
the calculation are shown in Table  6.1. The energy eigenvalue in this case converges rapidly to 
the exact value, with the energy correct to within ~ 1 part in 105 with four basis functions.  

To conclude on this approach, with the ease of handling matrices in modern mathematical 
computer programs, this technique can be quite convenient for simple problems, and we see it 
can converge quite rapidly as we increase the number of basis functions, even with quite small 
numbers of functions (and consequently small matrices). The main art in this approach is 
choosing a good underlying set of basis functions and the right subset of them.  

  
Method Result 

Exact (Airy functions) 0.90419 
Finite basis – 2 functions (2x2 matrix) 0.90563 
Finite basis – 3 functions (3x3 matrix) 0.90437 
Finite basis – 4 functions (4x4 matrix) 0.90420 

Perturbation theory – first order 1 
Perturbation theory – second order 0.90253 

Variational 0.90563 

Table  6.1. Calculated energies (in dimensionless units) of an electron in the first level in a 
potential well with infinitely high barriers, for 3 units of electric field, calculated by various 
different methods. 

Problems 
 6.2.1  Solve the problem above of an electron in a potential well with 3 units of field using the first two 

energy eigenfunctions of the well without field as the finite basis subset. Give the energies (in the 
dimensionless units) and explicit formulae for the normalized eigenfunctions for the first two levels 
calculated by this method. Do the algebra of this problem by hand, i.e., do not use mathematical 
software to evaluate matrix elements or to solve for the eigenvalues and eigenfunctions.  
[ Note: 1 2

0 ( 1/ 2)sin( )sin(2 ) (8 /9 )dξ πξ πξ ξ π− = −∫ ] 

 6.2.2  [This problem can be used as a substantial assignment.] Electrons in semiconductors can behave as 
if they had the charge of a normal electron, but have a much different mass (the so-called effective 
mass). For GaAs, the electron effective mass is ~ 0.07 mo. We are interested in a semiconductor 
device that could be a tunable detector for infra-red wavelengths. We make this device using a 100 Å 
thick layer of GaAs, surrounded on either side by materials that be considered to behave as if the 
electron sees an infinitely high potential barrier on either side of the GaAs layer (this is an 
approximation to the actual behavior of AlGaAs barriers).  
The concept in this device is that there will be an electron initially in the lowest state in this infinitely 
deep potential well, and we are interested in the optical absorption of light polarized in the z direction 
(i.e., the optical electric field is in the z direction) that takes the electron from this lower state to one 
or other of the higher states in the well. We presume that the energy of the photons that can be 
absorbed corresponds to the energy separations of the states being considered. Once into these higher 
states, we have some other mechanism that we need not consider in detail that extracts any electrons 
from these higher states to give a photocurrent in the device (in practice, with actual finite barrier 
heights, this can be either a thermal emission or a tunneling through the finite barrier), and we also 
presume that we have another mechanism that puts another electron in the lower state again after any 
such photocurrent “emission”. 
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The optical electric field is at all times very small, so we can presume its only effect is to cause 
transitions between levels, not otherwise to perturb the levels themselves. To tune the strengths and 
wavelengths of the optical transitions in this device, however, we apply an electric field F along the 
positive z direction, with a practical range from 0 to 10 V/µm (use this range for calculations.) 
Consider the first, second, and third electron levels as a function of field F. 
(a) Calculate the energy separations between the first and second electron levels and between the 

first and third energy levels over the stated range of fields, and plot these on a graph. 
(b) Consider the energy eigenfunctions for each of the first three levels as a function of field. 

Specifically, calculate the approximate amplitudes of the first four infinite well basis functions 
in the expansion of each of these eigenfunctions, and plot these amplitudes as a function of field, 
for each of the first three levels.  

(c) Relative to the strength (i.e., transition rate for a given optical field amplitude) of the optical 
absorption between the first and second levels at zero applied field, plot the strength of the 
optical absorption between the first and second levels and between the first and third levels as a 
function of field. [Note: the transition rate between states ( )j zψ  and ( )i zψ  for a given 
optical field amplitude can be taken to be proportional to 2

ijz , where ( ) ( )ij jiz z z zψ ψ= .] 
(d) Given that we presume this device is useful as a tunable detector only for optical absorption 

strengths that are at least 1/10 of that of the optical absorption between the first and second 
levels at zero applied field, what are the tuning ranges, in wavelength, for which this detector is 
useful given the stated range of fields F ? 

6.3 Time-independent non-degenerate perturbation 
theory 

Many situations arise in quantum mechanics in which we want to know what happens when 
some system interacts with some other system or disturbance. An example might be a 
hydrogen atom in the presence of a weak electric field. Conceptually, we like to think that it is 
still meaningful to talk about the existence of the hydrogen atom, but to imagine that the field 
somehow perturbs the hydrogen atom in some way. Strictly speaking, in the presence of a 
finite field, it is not clear that there is any such thing as a hydrogen atom in the ideal way we 
normally imagine it. The system has no bound states as we understood them before – it is 
possible for the electron to tunnel out of any of the formerly “bound” states.6 In perturbation 
theory, however, when we are interested in small perturbations, we hold on to the concept of 
the “unperturbed” system as still being essentially valid, and calculate corrections to that 
system caused by the small external perturbations. The effect of the small field is then viewed 
mathematically as a correction. We expect that energy levels might move as a result of the 
field, for example (an effect known in this particular case as the Stark effect), and we would 
like to be able to calculate such small perturbations. One key approach is time-independent 
perturbation theory (also known as stationary perturbation theory). This method is essentially 
one of successive approximations. Though it is often not the best method to calculate a 
numerical result to a given problem, especially with the easy availability of fast computers, it 
is conceptually quite a useful technique, and is a way of looking at the interactions of physical 
systems.7 

                                                           
6 The hydrogen atom in the presence of an electric field does still have energy eigenstates, though there is 
now a continuum of allowed energies, not the discrete spectrum of the former bound states. 
7 This idea of perturbations as the interactions of systems, especially the interactions of particles, is one 
that becomes particularly important as we go on to look at time-dependent perturbation theory, since the 
perturbation approach lets us define processes in time, such as the absorption of a photon by an atom. 
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Nearly always in time-independent problems we will be interested in energy levels and energy 
eigenstates8. We presume, therefore, that there is some unperturbed Hamiltonian, ˆ oH , that has 
known eigen solutions, i.e.,  

 ˆ
o n n nH Eψ ψ=  (6.18) 

and we will presume the eigenfunctions nψ  are normalized. For example, this unperturbed 
problem could be that of an electron in an infinitely deep potential well, without an applied 
electric field.  

In thinking about such perturbations, we can imagine that the perturbation we are considering 
could be progressively “turned on”, at least in a mathematical sense. For example, we could 
imagine that we are progressively increasing the applied field, E , from zero. The core idea of 
perturbation theory is to look for the changes in the solutions (both the eigenfunctions and the 
eigenvalues) that are proportional first to E  (so-called “first-order corrections”), then, if we 
want, those that are proportional to 2E (“second-order corrections”), then, if we are still 
interested, those that are proportional to 3E , and so on. Presumably the first-order corrections 
are the most important if this perturbation is a small one, and we might just stop there. 
Sometimes the first-order correction is zero for some reason (e.g., because of some symmetry), 
in which case we may go on to the second-order correction. Usually in this perturbation theory 
method, we stop at the lowest order that gives us a non-zero result. 

In general in perturbation theory, we imagine that our perturbed system has some additional 
term in the Hamiltonian, the “perturbing Hamiltonian”, ˆ pH . In our example case of an 
infinitely deep potential well with an applied field, that perturbing Hamiltonian would be 

( )ˆ / 2p zH e z L= −E . We could construct the perturbation theory directly using the powers of E  
as discussed above, but we may not always have a parameter like E  in the problem that we can 
imagine we can increase smoothly. It will be more useful (though entirely equivalent) to 
generalize the way we write the theory by introducing a mathematical “house-keeping” 
parameter γ. In this way of writing the theory, we say that the perturbing Hamiltonian is ˆ pHγ , 
where ˆ pH  can be physically a fixed perturbation, and we imagine we can smoothly increase γ, 
looking instead for changes in the solutions that are proportional to γ (for first-order 
corrections), γ 2 (for second-order corrections), and so on. In the end, when we come to 
perform the actual calculation to a given order of approximation, having used the powers of γ 
to help separate out the different orders of corrections, we can set 1γ = , or indeed to any other 
value we like as long as ˆ pHγ  corresponds to the actual physical perturbation of the system.  

If this concept is confusing at a first reading,9 the reader can just imagine that γ is essentially 
the strength of the electric field in our example problem. We could, for example, have a “γ” 
knob on the front of the voltage supply that provides the electric field for our system. We 
progressively turn this knob from 0 to 1 to ramp the voltage up to its full value. Conceptually 
as we do so, we could be looking for responses of the system that are proportional to γ, to γ 2, 
to γ 3, and so on. 

                                                           
8 In fact, the mere statement that we are interested in time-independent solutions actually guarantees that 
we have to deal ultimately with eigenstates of the Hamiltonian, since they are the only states that do not 
change in time. 
9 Many students do find this concept of a “house-keeping” parameter confusing at first. It is not in the end 
a very difficult concept, but most students have not come across this kind of approach before. 
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With this way of thinking about the problem mathematically, we can write for our Hamiltonian 
(e.g., Schrödinger) equation  

 ( )ˆ ˆ
o pH H Eγ φ φ+ =  (6.19) 

We now presume that we can express the resulting perturbed eigenfunction and eigenvalue as 
power series in this parameter, i.e.,  

 ( ) ( ) ( ) ( )0 1 2 32 3φ φ γ φ γ φ γ φ= + + + +"  (6.20) 

 ( ) ( ) ( ) ( )0 1 2 32 3E E E E Eγ γ γ= + + + +"  (6.21) 

Now we substitute these power series into the equation (6.19).  

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

0 1 22
0

0 1 2 0 1 22 2

ˆ ˆ
pH H

E E E

γ φ γ φ γ φ

γ γ φ γ φ γ φ

+ + + +

= + + + + + +

"

" "
 (6.22) 

A key point is that, if this power series description is to hold for any γ (at least within some 
convergence range), then it must be possible to equate terms in given powers of γ on the two 
sides of the equation. Quite generally, if we had two power series that were equal, i.e.,  

 ( )2 3 2 3
0 1 2 3 0 1 2 3a a a a b b b b fγ γ γ γ γ γ γ+ + + + = + + + + =" "  (6.23) 

the only way this can be true for arbitrary γ  is for the individual terms to be equal, i.e., 
i ia b= . This is the same as saying that the power series expansion of a function ( )f γ  is 

unique. Of course, the equation (6.22) involves (column) vectors instead of the scalar 
coefficients ia  or ib . But that simply means that (6.22) corresponds to a set of different 
equations like (6.23), one for each element (or row) of the vector. Hence, in the vector case 
also, we must be able to equate powers of γ. 

Hence, equating powers of γ, we can obtain, from (6.22), a progressive set of equations. The 
first of these is, equating terms in 0γ (i.e., terms not involving γ), the “zeroth” order equation  

 ( ) ( ) ( )0 0 0ˆ
oH Eφ φ=  (6.24) 

This is simply the original unperturbed Hamiltonian equation, with eigenfunctions nψ  and 
eigenvalues nE . We will presume now that we are interested in a particular eigenstate mψ  
and how it is perturbed. We will therefore write mψ  instead of (0)φ  and mE  instead of 

(0)E . With this notation, our progressive set of equations, each equating a different power of 
γ , becomes 

 ˆ
o m m mH Eψ ψ=  (6.25) 

 ( ) ( ) ( )1 1 1ˆ ˆ
o p m m mH H E Eφ ψ φ ψ+ = +  (6.26) 

 ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 1 2ˆ ˆ
o p m mH H E E Eφ φ φ φ ψ+ = + +  (6.27) 

and so on. We can choose to rewrite these equations, (6.25) - (6.27), as 

 ( )ˆ 0o m mH E ψ− =  (6.28) 
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 ( ) ( ) ( )( )1 1ˆ ˆ
o m p mH E E Hφ ψ− = −  (6.29) 

 ( ) ( ) ( )( ) ( ) ( )2 1 1 2ˆ ˆ
o m p mH E E H Eφ φ ψ− = − +  (6.30) 

and so on. Now we proceed to show how to calculate the various perturbation terms. It will 
become clear as we do this that perturbation theory is just a theory of successive 
approximations.  

First-order perturbation theory 

It is straightforward to calculate ( )1E  from Eq. (6.29). Premultiplying by mψ  gives 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1

1 1

ˆ ˆ 0

ˆ ˆ
m o m m o m m m m

m p m m p m

H E H E E E

E H E H

ψ φ ψ φ ψ φ

ψ ψ ψ ψ

− = − = − =

= − = −
 (6.31) 

i.e., 

 ( )1 ˆ
m p mE Hψ ψ=  (6.32) 

Hence we have quite a simple formula for the first-order correction, ( )1E , to the energy of the 
mth state in the presence of our perturbation ˆ pH . Note that it depends only on the zeroth order 
(i.e., the unperturbed) eigenfunction.  

To calculate the first-order correction, (1)φ , to the wavefunction, we expand that correction 
in the basis set nψ , i.e., 

 ( ) ( )1 1
n n

n
aφ ψ= ∑  (6.33) 

Substituting this is in Eq. (6.29) gives 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1

1 1

ˆ

ˆ ˆ
i o m i m i i m i

i p m i m i p m

H E E E E E a

E H E H

ψ φ ψ φ

ψ ψ ψ ψ ψ ψ

− = − = −

= − = −
 (6.34) 

We now make a restriction, which is that we presume that the energy eigenvalue mE  is not 
degenerate, i.e., there is only one eigenfunction corresponding to this eigenvalue. In general, 
the whole approach we are discussing here requires this restriction, and the perturbation theory 
we are discussing is therefore called “non-degenerate” perturbation theory. (Degeneracy needs 
to be handled somewhat differently, and we will consider that case later.) With this restriction, 
we still need to distinguish two cases in Eq. (6.34). First, for i m≠ , we have 

 ( )1
ˆ

i p m
i

m i

H
a

E E
ψ ψ

=
−

 (6.35) 

For i m= , Eq. (6.34) gives us no additional information. Explicitly,  

 
( ) ( ) ( )

( ) ( ) ( )

1 1

1 1 1

0
ˆ 0

m m m m

m p m

E E a a

E H E Eψ ψ

− =

= − = − =
 (6.36) 

This means we are free to choose (1)
ma . The choice that makes the algebra simplest is to set 

(1) 0ma = , which is the same as saying that we choose to make (1)φ  orthogonal to mψ . An 
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analogous situation occurs with all the higher order equations, such as (6.30). Adding an 
arbitrary amount of mψ  into ( )jφ  makes no difference to the left hand side of the equation. 
Hence we make the convenient choice 

 ( ) 0j
mψ φ =  (6.37) 

Hence we obtain, for the first-order correction to the wavefunction 

 ( )1
ˆ

n p m
n

n m m n

H
E E

ψ ψ
φ ψ

≠

=
−∑  (6.38) 

Second-order perturbation theory 
We can continue similarly to find the higher order terms. Premultiplying (6.30) on both sides 
by mψ  gives 

 

( ) ( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1 1 2

1 1 1 2

ˆ 0

ˆ

ˆ

m o m m m m

m p m m

m m p

H E E E

E H E

E H E

ψ φ ψ φ

ψ φ ψ ψ

ψ φ ψ φ

− = − =

= − +

= − +

 (6.39) 

Since we have chosen mψ  orthogonal to ( )jφ  (Eq. (6.37)), we therefore have 

 ( ) ( )2 1ˆ
m pE Hψ φ=  (6.40) 

or, explicitly, using (6.38) 

 ( )2
ˆ

ˆ n p m
m p n

n m m n

H
E H

E E
ψ ψ

ψ ψ
≠

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠
∑  (6.41) 

i.e.,  

 ( )

2

2
ˆ

n p m

n m m n

H
E

E E

ψ ψ

≠

=
−∑  (6.42) 

To find the second-order correction to the wavefunction, we can proceed similarly to before. 
We expand (2)φ , noting now that, by choice (Eq. (6.37)), (2)φ  is orthogonal to mψ , to 
obtain 

 ( ) ( )2 2
n n

n m
aφ ψ

≠

= ∑  (6.43) 

We premultiply Eq. (6.30) by iψ  to obtain 

 

( ) ( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

2 2
0

1 1 2

1 1 1

ˆ

ˆ

ˆ

i m i m i

i p i m

i n i p n
n m

H E E E a

E H E

E a a H

ψ φ

ψ φ ψ ψ

ψ ψ
≠

− = −

= − +

= − ∑
 (6.44) 
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Note that we can write the summation in (6.44) excluding the term n m=  because we have 
chosen (1)φ  to be orthogonal to mψ  (i.e., we have chosen (1) 0ma = ). Hence, for i m≠  we 
have 

 ( )
( ) ( ) ( )1 1 1

2
ˆ

n i p n i
i

n m m i m i

a H E a
a

E E E E
ψ ψ

≠

⎛ ⎞
⎜ ⎟= −
⎜ ⎟− −⎝ ⎠
∑  (6.45) 

Note that the second-order wavefunction depends only on the first-order energy and 
wavefunction. We can write out (6.45) explicitly, using (6.32) to substitute for (1)E  and (6.38) 
for (1)

ia , to obtain 

 ( )

( )( ) ( )
2

2

ˆ ˆ ˆ ˆ
i p n n p m i p m m p m

i
n m m i m n m i

H H H H
a

E E E E E E

ψ ψ ψ ψ ψ ψ ψ ψ

≠

⎛ ⎞
⎜ ⎟= −
⎜ ⎟− − −⎝ ⎠
∑  (6.46) 

We can now gather these results together, and write the perturbed energy and wavefunction up 
to second order as 

 

2ˆ
ˆ n p m

m m p m
n m m n

H
E E H

E E

ψ ψ
ψ ψ

≠

≅ + +
−∑  (6.47) 

and  
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  (6.48) 

i.e.,  
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m
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i
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H H H H
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  (6.49) 

Example of well with field 

Now we consider the problem of the infinitely deep potential well with an applied field. We 
write the Hamiltonian as the sum of the unperturbed Hamiltonian, which is, in the well, in the 
dimensionless units we chose, 

 
2

2 2

1ˆ
o

dH
dπ ξ

= −  (6.50) 

and the perturbing Hamiltonian 

 ( )ˆ 1/ 2pH ξ= −f  (6.51) 
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where again we will take 3=f  for our explicit calculation.  

Let us now calculate the various corrections. In first-order, the energy shift with applied field 
is 

 

( ) ( )( ) ( )

( ) ( )

1
1

0

2

ˆ 2 sin 1/ 2 2 sin

2 1/ 2 sin

0

m p mE H m m d

m d

ψ ψ πξ ξ πξ ξ

ξ πξ ξ

= = −

= −

=

∫

∫
1

0

f

f  (6.52) 

The integrals here are zero for all m  because the sine squared function is even with respect to 
the center of the well, whereas the ( )1/ 2ξ −  is odd. Hence, for this particular problem there is 
no first-order energy correction (i.e., to first order in perturbation theory, the energy is 
unchanged, hence the result “1” in Table  6.1). Why is that? The answer is because of the 
symmetry of the problem. Suppose that there were an energy correction proportional to the 
applied field f. Then, if we changed the direction of f, i.e., changed its sign, the energy 
correction would also have to change sign. But, by the symmetry of this problem, the resulting 
change in energy cannot depend on the direction of the field; the problem is symmetric in the + 
or - ξ directions, so there cannot be any change in energy linearly proportional to the field, f. 

The general matrix elements that we will need for further perturbation calculations are 

 ( )( ) ( )
1

0

ˆ 2 sin 1/ 2 2 sinpuvH u v dπξ ξ πξ ξ= −∫f  (6.53) 

where u and v are integers. In general we need u and v to have opposite parity (i.e., if one is 
odd, the other must be even) for these matrix elements to be non-zero, since otherwise the 
overall integrand is odd about 1/ 2ξ = . 

Now we can calculate the first-order correction to the wavefunction, which is, for the first state 

 ( ) ( ) ( )11

2 1

q
pu

u
u o ou

H
φ ξ ψ ξ

ε ε=

=
−∑  (6.54) 

where here 2
ou uε =  are the energies of the unperturbed states, and q  is a finite number that 

we must choose in practice (we cannot in a general numerical calculation actually sum to 
infinity). For these calculations here, we chose 6q = , though a smaller number would 
probably be quite accurate (even 2q =  gives almost identical numerical answers, for reasons 
that will become apparent). Explicitly, for the expansion coefficients ( ) ( )1

1 1/puu o oua H ε ε= − , 
we have numerically, for example, 

 ( )1
2 0.180a ≅ , ( )1

3 0a = , ( )1
4 0.003a =  (6.55) 

Here the value of 0.180 for (1)
2a  compares closely with the value of 0.174 for the second 

expansion coefficient in Eq. (6.16) obtained above in the finite basis subset method. The 
wavefunction with the first-order correction is plotted in Fig.  6.2. 

Since the first-order correction to the energy was zero, we have to go to second order to get a 
perturbation correction to the energy. Explicitly, we have 
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 ( )
2

12

2 1

q
pu

u o ou

H
E

ε ε=

≅
−∑  (6.56) 

which numerically here gives 

 ( )2 0.0975E = −  (6.57) 

or a final estimate of the total energy of 

 ( ) ( )1 2
1 1 0.9025o E Eη ε≅ + + =  (6.58) 

which compares with the exact result of 0.90419 (see Table  6.1). 

Note that the second-order energy correction, ( )2E  (which is the first energy correction in this 
particular problem because ( )1E  is zero) is analytically proportional to the square of the field, 
f2. Hence perturbation theory gives us an approximate analytic result for the energy, which we 
can now use for any field without performing the perturbation theory calculation again. 
Explicitly, we can write 

 2
1 1 0.0108oη ε≅ − f  (6.59) 

This is a typical kind of result from a perturbation calculation, allowing us to obtain an 
approximate analytic formula valid for small perturbations. We similarly find that the 
corrections to the wavefunction are approximately analytically proportional to the field, and 
we have an approximate wavefunction of 

 ( ) ( ) ( )2 sin 0.06 2 sin 2φ ξ πξ πξ≅ + f  (6.60) 

We have dropped higher terms because the next non-zero term (the term in sin(4 )πξ ) is some 
60 times smaller (see Eq. (6.55)). To a good degree of approximation, the perturbed 
wavefunction at low fields simply involves an admixture of the second basis function. Since it 
is the first-order wavefunction that is used to calculate the second-order energy, we can now 
see why even including only one term in the sums (i.e., setting 2q = in the sums (6.54) and 
(6.56)) is quite accurate in this case. 

Remarks on perturbation theory 

Perturbation theory is particularly useful, as one might expect, for calculations involving small 
perturbations to the system. It can give simple analytic formulae and values of coefficients for 
various effects involving weak interactions. It is also conceptually useful in understanding 
interactions in general. Even if we are not performing an actual perturbation theory calculation, 
we can use perturbation theory to judge whether or not to include some level in, for example, a 
finite basis subset calculation. If a given level is far away in energy and/or has a matrix 
element small compared to some closer level, we can safely neglect that given level because of 
the energy separations that would appear in the denominators in the perturbation terms.  

We have only shown here the first and second-order perturbation formulae. Generally, 
perturbation calculations are most useful for the first non-zero order of correction. Specific 
effects sometimes require higher order calculations. For example, nonlinear optical effects of 
different types are associated with particular orders of perturbation theory calculations (though 
they are time-dependent perturbation calculations). Linear optics is based on first-order 
perturbation theory; linear electro-optic effects, second-harmonic generation, and optical 
parametric generation use second-order perturbation; non-linear refraction and four-wave 
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mixing (quite common effects in long-distance optical fiber systems) need third-order 
perturbation calculations. 

One minor point about the wavefunction formulae we have mentioned above is that they are 
not quite normalized; we are merely adding the corrections to the original wavefunction in Eq. 
(6.20). This is not a substantial issue for small corrections. It is quite straightforward also to 
normalize the corrected wavefunctions if this is important. 

Perturbation theory is a theory of successive approximations. As can be seen, we use the zeroth 
order wavefunction to calculate the first-order energy correction, and we use the first-order 
energy correction in calculating the second-order wavefunction correction. This process 
continues. In time-dependent perturbation theory in the next Chapter. 

It is quite generally true of approximation methods that energies can be calculated reasonably 
accurately even with relatively poor wavefunctions. In perturbation theory, the nth 
approximation to the energy only requires the (n – 1)th approximation to the wavefunction.  

The particular kind of perturbation method we have discussed here (known as Rayleigh-
Schrödinger perturbation theory) tends to lead to a series that does not converge very rapidly. 
Hence, trying to get a more accurate calculation by adding more terms to the series is often not 
very productive.10 This is one reason why this kind of perturbation approach is most often used 
up to only with the lowest non-zero terms in the perturbation expansion. Such an approach 
often exposes the dominant physics of the problem, and gives physical insight, as well as 
returning a first reasonable estimate of the effect of interest. There are other numerical 
techniques, including other perturbation approaches (such as the Brillouin-Wigner theory) that 
give more accurate numerical answers. If one’s goal is to understand the physics and obtain 
simple approximate results, the Rayleigh-Schrödinger perturbation approach is very useful. 
Once one understands the problem well physically, if one really wants accurate numerical 
answers, the problem becomes one of numerical analysis and other perturbation techniques 
may be more useful.11  

Problems 
 6.3.1  Consider a one-dimensional potential well of thickness Lz in the z direction, with infinitely high 

potential barriers on either side. Suppose we apply a fixed electric field in the z direction of 
magnitude F.  
(i)  Write down an expression, valid to the lowest order in F for which there is a non-zero answer, 

for the shift of the second electron energy level in this potential well as a function of field. 
(ii)  Suppose that the potential well is 10 nm thick, and is made of the semiconductor GaAs, in which 

we can treat the electron as having an effective mass of 0.07 of the normal electron mass. What, 
approximately, is the shift of this second level relative to the potential in the center of the well, 
in electron-volts (or milli-electron-volts), for an applied electric field of 105 V/cm? (A numerical 
answer that one would reasonably expect to be accurate to better than 10% will be sufficient.) 
Be explicit about the sign of the shift - is this energy increasing or decreasing? 

Note: you may need the expression 

                                                           
10 For example, in the problem of the infinitely deep potential well with a field of three dimensionless 
units analyzed in this Chapter, the second-order wavefunction correction actually leads to a wavefunction 
that is in poorer agreement with the exact result than is the first order correction. 
11 See, for example, Quantum Mechanics, H. Kroemer (Prentice-Hall, Englewood Cliffs, 1994), Chapter 
15.  



172  Chapter 6  Approximation methods in quantum mechanics 

 
( ) ( )

( ) ( )2 2
0

4sin sin for n + q odd 
2

= 0 for  even

qnq n d
n q n q

n q

π πζ ζ ζ ζ⎛ ⎞− = −⎜ ⎟
⎝ ⎠ − +

+
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 6.3.2  Consider an electron in a one-dimensional potential well of width Lz, with infinitely high barriers 
on either side, and in which the potential energy inside the potential well is parabolic, of the form 

 ( ) 2( / 2)zV z u z L= −   
where u  is a real constant. This potential is presumed to be small compared to the energy E1 of the 
first confined state of a simple rectangular potential well of the same width Lz. [Note for interest: This 
kind of situation can arise in semiconductor structures, where the parabolic curvature comes from the 
electrostatic potential of uniform background doping of the material.] 
Find an approximate expression, valid in the limit of small u, for the transition energy between the 
first and second allowed states of this well in terms of u, Lz, and fundamental constants. 

 6.3.3  The polarization P can be considered as the average position of the charge density, ( )zρ , i.e., for a 
particle of charge q, relative to some position zo 
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∫
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∫

  

where ( )zφ  is the (normalized) wavefunction.  

In the absence of applied electric field, the particle is presumed to be in the mth eigenstate, mψ , of 
the unperturbed Hamiltonian. The symmetry of this unperturbed state is such that 

( ) 0m o mz zψ ψ− =  (e.g., it is symmetric about the point oz ).  
A field F is applied along the z direction so that the perturbing Hamiltonian is 

 ( )ˆ
p oH qF z z= − −   

(i) Evaluate P for the case 0F = . 
(ii) Find an expression for P for the case of finite F. (Retain only the lowest order non-zero terms.) 
(iii) Find an expression for the change in energy EΔ  of this mth state of the system for finite F, 

again retaining only the lowest order non-zero terms. 
(iv) Hence show that, to lowest non-zero order  

 1
2

E PFΔ ≅ −   

6.4 Degenerate perturbation theory 

We explicitly avoided above the “degenerate” case where there might be more than one 
eigenfunction associated with a given eigenvalue. Such degeneracy is not uncommon in 
quantum mechanics, especially in problems that are quite symmetric. For example, the three 
different P orbitals of a hydrogen atom, each corresponding to a different one of the directions 
x, y, and z, all have the same energy. It is quite important to understand such situations since 
often perturbations, such as an electric field, will remove the degeneracy, making some of the 
states have different energies, and defining the distinct eigenfunctions uniquely. We consider 
this case now, at least for first-order perturbation theory.  

Suppose that there are r degenerate orthonormal eigenfunctions, msψ  (where s = 1, 2, … r) 
associated with the eigenenergy Em of the unperturbed problem. Then in general we can write a 
wavefunction corresponding to this eigenenergy as a linear combination of these, i.e., 
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1

r

mtot ms ms
s

aψ ψ
=

= ∑  (6.61) 

Now let us consider the first-order perturbation equation, Eq. (6.29), in a fashion similar to 
before, but now with the “unperturbed” or “zero order” wavefunction mtotψ , i.e., 

 ( ) ( ) ( )( )1 1ˆ ˆ
o m p mtotH E E Hφ ψ− = −  (6.62) 

Now let us premultiply by a specific one of the degenerate basis functions miψ  to obtain, 
analogously to Eq. (6.31) 

( ) ( ) ( ) ( ) ( )
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1 1 1

1 1

ˆ ˆ 0

ˆ ˆ
mi o m mi o m mi m m

mi p mtot mi mtot mi p mtot

H E H E E E

E H E H

ψ φ ψ φ ψ φ

ψ ψ ψ ψ ψ ψ

− = − = − =

= − = −
 (6.63) 

i.e.,  

 ( )1ˆ
mi p mtot mi mtotH Eψ ψ ψ ψ=  (6.64) 

or, explicitly in summation form 

 ( )1

1

r

pmims ms mi
s

H a E a
=

=∑  (6.65) 

where  

 ˆ
pmims mi p msH Hψ ψ=  (6.66) 

We can repeat this for every 1, 2,i r= " , and so obtain a set of r  equations of the form of Eq. 
(6.65). But this set of equations is simply identical to the matrix-vector equation 
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 (6.67) 

This is just a matrix eigenequation. It generally has eigenvectors and eigenvalues. This first-
order degenerate perturbation calculation has therefore reduced to a special case of the finite 
basis subset model (or finite matrix model) presented above. In this case, the finite basis we 
choose is the set of r degenerate eigenfunctions corresponding to a particular unperturbed 
energy eigenvalue Em.  

The solution of the equation (6.67) will give a set of r first-order corrections to the energy, 
which we could call (1)

iE , each associated with a particular new eigenvector miφ  that is a 
linear combination of the degenerate basis functions msψ . All of these new eigenvectors 

miφ  are orthogonal to one another. To the extent that the energies (1)
iE  are different from one 

another, the perturbation has “lifted the degeneracy”.  

Note that the eigenvectors miφ  are actually still zero-order wavefunctions, not first-order 
wavefunctions; each of them is an exact solution of the unperturbed problem with energy mE . 
Indeed, any linear combination of the miψ  or the miφ  is a solution of the unperturbed 
problem with energy mE . The perturbation theory has merely selected a particular set of linear 
combination of the unperturbed degenerate solutions. This is consistent with the result for the 
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non-degenerate perturbation theory, in which the first-order energy correction depends only on 
the zero-order wavefunctions.  

It is also possible that the perturbation does not lift the degeneracy of the problem to first 
order. Degenerate perturbation theory can be extended to higher orders, though we will not do 
that here.  

Problems 
 6.4.1  Consider an ideal cubical quantum box for confining an electron. The cube has length L on all three 

sides, with edges along the x, y, and z directions, and the walls of the box are presumed to correspond 
to infinitely high potential barriers. The resulting energy eigenfunctions in this box are simply the 
products of the particle-in-a-box wavefunctions in each of the three coordinate directions, as can be 
verified by substitution into the Schrödinger wave equation. [Note: we presume here for simplicity 
that ( , , ) (0,0,0)x y z =  is the point in the center of the box, and it may be more convenient to write 
the wavefunctions centered on this point rather than on, say, a corner of the box.] 

 (i) Write down the normalized wavefunctions for the first 3 excited states for an electron in this box 
[Note: in these states, the electron will be in the second state in one direction and the lowest state in 
the other two directions.]  

 (ii) Now presume that there is a perturbation ˆ pH eFz=  applied (e.g., from an electric field F in the z 
direction.) What happens to the three states as a result of this perturbation, according to first-order 
degenerate perturbation theory? 

 (iii) Now presume that a perturbation 2ˆ pH zα= is applied instead. (Such a perturbation could result 
from a uniform fixed background charge density in the box, for example.) Using first-order 
degenerate perturbation theory, what are the new eigenstates and eigen energies arising from the three 
originally degenerate states? 

 [Note: you may need the results  

 
3

/ 2 2 2
/ 2 cos

24 4
dπ

π
π πθ θ θ− = −∫  and 

3
/ 2 2 2
/ 2 sin 2

24 16
dπ

π
π πθ θ θ− = −∫   ] 

See also problem 10.5.9, which can be attempted once the hydrogen atom wavefunctions are 
understood. 

6.5 Tight binding model 

An example of a another problem where the degeneracy is lifted is that of two identical 
potential wells with a finite barrier thickness between them (a “coupled potential well” 
problem). This has some similarities to a degenerate perturbation theory problem, so we 
consider it here, though it is awkward mathematically to force it into a form where we are 
adding a simple perturbing potential. We can certainly think of it as a finite basis set approach 
using approximate starting basis functions. Solid state physicists would refer to this particular 
calculation as a “tight-binding” method12. Regardless of what we call it, it is, however, quite 
straightforward to solve approximately, and leads to simple approximate analytic results with 
interesting and important physical meaning.  

                                                           
12 The “tight binding” here refers to the particle being tightly or deeply bound within one potential well 
or, in solid state physics, within one unit cell of the crystal, not to a strong binding between states in 
adjacent wells or unit cells. 
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We imagine two separate “unperturbed” potential wells, as shown in the second and third parts 
of Fig.  6.3. If we had the “left” potential well present on its own, with corresponding potential 

( )leftV z , we would have the wavefunction solution ( )left zψ , with associated energy 1E  for the 
first state, a problem we already know how to solve exactly numerically. Similarly, if we 
considered the right potential well on its own, with potential ( )rightV z , we would have the 
wavefunction solution ( )right zψ (which is the same as ( )left zψ  except that it is shifted over to 
the right), and would have the same energy 1E . The actual potential for which we wish to 
calculate the states is, however, the potential V at the top of Fig.  6.3, which we could call a 
coupled potential well. 

0

0

0

V

Vleft

Vright

E1

E1

2ΔE

 
Fig.  6.3. Schematic illustration of a coupled potential well, showing the two coupled states 
formed from the lowest states of the isolated wells. The lower state is symmetric, and the upper 
state is antisymmetric. 

Note that here we have chosen the origin for the potential at the top of the well. This particular 
choice means that we can say that ( ) ( ) ( )left rightV z V z V z= + , and our algebra is simplified 
somewhat. With our choice of energy origin, the Hamiltonian for this system is 

 ( ) ( )
2 2

2
ˆ

2 left right
dH V z V z

m dz
−

= + +
=  (6.68) 

We now solve using the finite basis subset method, choosing for our basis wavefunctions the 
wavefunctions in the isolated wells, leftψ  and rightψ , respectively. These are two functions that 
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are approximately orthogonal as long as the barrier is reasonably thick, hence the term “tight-
binding” – the basis wavefunctions are each assumed to be relatively tightly confined in one 
well, with little wavefunction “leakage” into the adjacent well. Hence the wavefunction in this 
problem can be written approximately in the form 

 left righta bψ ψ ψ= +  (6.69) 

In matrix form, our finite-basis-subset approximate version of Schrödinger’s equation is 

 11 12

21 22

H H a a
E

H H b b
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

 (6.70) 

where we should have, for example, 

 ( ) ( ) ( ) ( )
2 2

11 22left left right left
dH z V z V z z dz

m dz
ψ ψ∗ ⎛ ⎞−

= + +⎜ ⎟
⎝ ⎠

∫
=  (6.71) 

Because we presume the barrier to be relatively thick, we are presuming the amplitude of the 
left wavefunction is essentially zero inside the right well, so the integrand is essentially zero 
for all z inside the right hand well, and hence the term 

 ( ) ( ) ( )left right leftz V z z dzψ ψ∗∫   

can be neglected. Hence  

 11 1H E≅  (6.72) 

For the same reason (that ( ) 0left zψ ≅  in the right hand well) or the complementary one (that 
( ) 0right zψ ≅  in the left hand well), we neglect all terms 

  ( ) ( ) ( )left right rightz V z z dzψ ψ∗∫ , ( ) ( ) ( )left left rightz V z z dzψ ψ∗∫ ,  

 ( ) ( ) ( )right right leftz V z z dzψ ψ∗∫ , and ( ) ( ) ( )right left rightz V z z dzψ ψ∗∫  

(Remember that Vleft and Vright are zero except within their respective wells.) We do, however, 
retain the interaction within the (middle) barrier where the wavefunctions, though small, are 
presumed not completely negligible, i.e., we retain a result 

 ( ) ( ) ( )
2 2

2 ( 0 in the barrier)
2left right

barrier

dE z V z z dz
m dz

ψ ψ∗ ⎛ ⎞
Δ = − + =⎜ ⎟

⎝ ⎠
∫

=  (6.73) 

Note, incidentally, that EΔ  is a negative number if we have chosen ( )left zψ  and ( )right zψ  to 
be the positive real functions as in Fig.  6.3; in the barrier, each of them will have a positive 
second derivative, and so the net result of the integral is negative.  

By choosing to integrate only over the barrier thickness, we are neglecting any contributions to 
this integral that would have come from regions outside the barrier because again we presume 
one or other basis wavefunction to be essentially zero there. With these simplifications, we 
have 

 1

1

E E a a
E

E E b b∗

Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (6.74) 
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( EΔ  in this problem is real because the wavefunctions of this problem can (and will) be 
chosen to be real for simplicity, but the complex conjugate is shown here for completeness. 

EΔ  is also a negative number here because the wavefunctions are each positively curved 
inside the barrier.) We find the energy eigenvalues of Eq. (6.74) in the usual way by setting 

 1

1

det 0
E E E

E E E∗

− Δ
=

Δ −
 (6.75) 

i.e.,  

 ( ) 2 22 2 2
1 1 12 0E E E E EE E E− − Δ = − + − Δ =  (6.76) 

obtaining eigenvalues 

 1E E E= ± Δ  (6.77) 

Note, at least within the approximations here, that the energy levels are split by the coupling 
between the wells, approximately symmetrically about the original "single-well" energy, 1E .  

Substituting the eigenvalues back into Eq. (6.74), and taking the original wavefunctions and 
hence also ΔE, to be real for simplicity13 (and remembering that EΔ  is negative), allows us to 
deduce the associated normalized wavefunctions 

 ( )1
2 left rightψ ψ ψ− = +  and ( )1

2 left rightψ ψ ψ+ = −  (6.78) 

These wavefunctions are sketched in Fig.  6.3. The lower energy state is associated with a 
symmetric linear combination of the single-well eigenfunctions (i.e., the wavefunction has the 
same sign in both wells), and the upper energy state is associated with the anti-symmetric 
combination (i.e., the wavefunction has the opposite sign in the two wells). Note now that we 
can no longer view the states as corresponding to an electron in the "left" well or an electron in 
the "right" well; in both states the electron is equally in both wells. This general form of 
wavefunctions, one symmetric and the other antisymmetric, is characteristic of this kind of 
symmetric problem, and is retained even as we perform more accurate calculations. 

Hence we can see from this simplified physical model that the physical perturbation of 
bringing two identical systems together leads to a splitting of the degenerate eigenvalues and a 
coupling of the states. This is a very general phenomenon in quantum mechanics. It occurs, for 
example, when we bring atoms together to form a crystalline solid, and leads to the formation 
of energy bands of very closely spaced states rather than the discrete separated energy levels of 
the constituent atoms. 

Note, incidentally, that this calculation has features that are also found in molecular bonding. 
Suppose that we have one electron to share between these two potential wells. As we bring 
these two potential wells together, two possible states emerge, one of which has lower energy 
than any of the states the system previously had. If we think of these potential wells as being 
analogous to atoms, we see that we can get lower energy in the system in this lowest state by 
bringing these “atoms” closer together. We can see then, that if the system was in this lowest 

                                                           
13 Remember that the solutions of the time-independent Schrödinger equation for a real potential can 
always be chosen to be real because, if ψ  is a solution, so also is ψ ∗ , as can be seen by taking the 
complex conjugate of both sides of the equation, and hence ψ ψ ∗+ , which is real, is also a solution. 
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state, we would have to add energy to the electron if we were to try to pull the potential wells 
or “atoms” apart. Hence this lowest state corresponds to a kind of molecular, chemically 
bonded state. The actual theory of molecular bonding is more complex than this because it has 
to account for multiple electrons in the system14, and potentials that are not simply square 
wells. The symmetric and antisymmetric solutions we have found here for the coupled 
quantum well are, however, sometimes referred to as “bonding” and “anti-bonding” states 
respectively. 

Problems 
 6.5.1  Consider three wells of equal thicknesses with equal barriers on either side of the middle well. 

Take the same “tight-binding” approach as used above for two quantum wells, but now considering a 
3 x 3 matrix. What are the approximate eigenenergies and wavefunctions of this coupled system? 
How many zeros are there in each of these wavefunctions (not counting the zeros at the extreme left 
and right of the system)? 

 6.5.2  Suppose we have a coupled potential well, consisting of two weakly-coupled identical potential 
wells with a barrier between them. We presume that we have solved this problem approximately 
using a “tight-binding” approach for the lowest two coupled states, giving approximate solutions 

( ) ( ) ( )( )1
2 left rightz z zψ ψ ψ− = +  and ( ) ( ) ( )( )1

2 left rightz z zψ ψ ψ+ = −  

with associated energies 
 1E E E= ± Δ   

where 1E  is the energy of the lowest solution in either of the potential wells considered separately, 
( )left zψ  is the corresponding wavefunction of the first state in the left well considered separately, 
( )right zψ  is the corresponding wavefunction of the first state in the right well considered separately, 

and EΔ  is a number that has been calculated based on the coupling. 
Suppose now that the coupled system is initially prepared, at time 0t = , in the state such that the 
particle is in the left well, with initial wavefunction ( )left zψ . 
(i) Calculate expressions for the wavefunction and the probability density as a function of time after 

0t = . 
(ii) Describe in words the time-dependence of this probability density. 
[Note: this problem requires an understanding of Chapter 3] 

6.6 Variational method 

Consider for the moment an arbitrary quantum mechanical state, φ , of some system. We 
suppose that the Hamiltonian of the system is Ĥ , and we want to evaluate the expectation 
value of the energy, E . Since the Hamiltonian is presumably an appropriate Hermitian 
operator, it has some complete set of eigenfunctions, nψ , with associated eigenenergies nE ; 
we may not know what they are – they may be mathematically difficult to calculate – but we 
do know that they exist. (For simplicity here, we assume the eigenvalues are not degenerate.) 
Consequently, we can certainly expand any arbitrary state in them, and so we can write as 
usual, for some set of expansion coefficients ia , 

 i i
i

aφ ψ= ∑  (6.79) 

                                                           
14 When there are multiple electrons, we have to account also for the so-called exchange energy, which is 
very important in determining actual chemical bonds in molecules. 
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We presume this representation of the state is normalized, so 

 2 1i
i

a =∑  (6.80) 

Hence, the expectation value of the energy becomes, as usual, 

 2ˆ
i i

i
E H a Eφ φ= = ∑  (6.81) 

We also presume for convenience here that we have ordered all of the eigenfunctions in order 
of the eigenvalues, starting with the smallest, 1E . 

Now we ask the question, what is the smallest expectation value of the energy that we can have 
for any conceivable state φ ? The answer is obvious from Eq. (6.81). The smallest energy 
expectation value we can have is 1E , with correspondingly 1 1a =  and all the other expansion 
coefficients zero. If we made one of the other expansion coefficients ja  finite, then the energy 
expectation value would become 

 ( )
( )

22
1 1

2 2

1

2

1 1 1

1

j j

j j j

j j

E a E a E

a E a E

E a E E E

= +

= − +

= + − >

 (6.82) 

i.e., because of the normalization sum, Eq. (6.80), the energy would have to increase. This 
simple property allows us to construct an approximate method of solution of quantum 
mechanical problems for the ground state (the lowest energy state), and especially for its 
energy. The key idea is that we choose some mathematical form of state, called the trial 
wavefunction, that is mathematically convenient for us (and which we believe reasonably fits 
at least the qualitative features we would expect for the ground state), and then vary some 
parameter or parameters in this mathematical form to minimize the resulting expectation value 
of the energy; as a result of this minimization with respect to variation, this is known as the 
variational method. If we use this method, we do not formally know how accurate our result is 
for the energy, but we do know that lower is better – we can never get an answer lower than 
the energy of the lowest actual state of the system as we proved above – and we can if we wish 
keep refining our mathematical form so as to reduce the resulting calculated energy 
expectation value.  

Why would we use such a method? One answer is that it allows us to calculate an 
approximation for the ground state energy without solving the exact eigenfunctions of any 
problem. A second reason is that, with careful choice of the form of the function to be varied, 
so that the algebra of minimization gives simple analytic results, we may also be able to get 
approximate analytic results for the effect of some perturbation. 

Given that the form of the wavefunction we are using is not the actual form of the  exact 
solution, why does this method give even reasonable answers? The answer goes back to a point 
we discussed in relation to perturbation theory above; we can often get quite good answers for 
energies even with approximate wavefunctions. Remember that the first-order energy 
correction uses the zero order wavefunction, for example. 

The variational approach can be progressively extended to higher levels of the system if we 
force the next trial wavefunction to be mathematically orthogonal to all the previous (lower 
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energy) ones.15 As far as numerical calculations are concerned, the variational method is nearly 
always used only for ground states. The discussion of the variational method does, however, 
point out a basic, exact property of eigenfunctions and eigenvalues that is actually obvious 
from the equation (6.81). The eigenfunction corresponding to the lowest eigenvalue is that 
function that minimizes the expectation value. The eigenfunction corresponding to the second 
eigenvalue is that function that minimizes the expectation value, subject to the constraint that 
the function is orthogonal to the first eigenfunction. This property extends to higher 
eigenfunctions, with each successive eigenfunction being constrained to be orthogonal to all 
the previous ones. Indeed, this successive minimization property can be used mathematically 
to define the eigenfunctions and eigenvalues.16  

As an example of the variational method, we can do a simple calculation on our example 
problem of an electron in an infinitely deep potential well with applied field. In this particular 
case, because it makes our mathematics tractable, we will use as our trial function an unknown 
linear combination of the first two states of the infinitely deep quantum well, though, as 
mentioned above, it is more common in variational calculations to choose some mathematical 
function unrelated to exact eigenfunctions of any problem. Hence, our trial function is 

 ( ) ( )var var2
var

2, sin sin 2
1

trial a a
a

φ ξ πξ πξ= +
+

 (6.83) 

where vara  is the parameter we will vary to minimize the energy expectation value. Note that 
we have normalized this wavefunction by dividing by 2

var1 a+ . The expectation value of the 
energy then becomes, as a function of the parameter vara , 

 
( ) ( )

( ) ( )

1

var var2
var 0

2

var2 2

1 2 sin 2 sin 2
1

1 1/ 2 2 sin 2 sin 2

E a a
a

a d

πξ πξ

ξ πξ πξ ξ
π ξ

⎡ ⎤
= +⎢ ⎥+ ⎣ ⎦

⎛ ⎞∂
× − + − +⎜ ⎟∂⎝ ⎠

∫

f
 (6.84) 

Using the result 

 ( )
1

2
0

8sin 1/ 2 sin 2
9

dπξ ξ πξ ξ
π

− = −∫ , (6.85) 

the known eigenenergies of the unperturbed problem, and the orthogonality of the sine 
functions, Eq. (6.84) becomes 

 ( ) ( )2 var
var 1 var2 2

var

321 1 4
1 9

a
E a a

a
ε

π
⎡ ⎤= + −⎢ ⎥+ ⎣ ⎦

f
 (6.86) 

Now to find the minimum in this expectation value, we take the derivative with respect to vara , 
to obtain 

                                                           
15 Such a mathematical approach is sometimes known as Gram-Schmidt orthogonalization.  
16 This rather general and important property of eigenfunctions and eigenvalues is, surprisingly, often not 
taught in courses on those subjects, and is less well-known than it ought to be. 
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( )

( )
2 2

var var var
2 22

var var

16 27 162
9 1

d E a a a
da a

π
π

+ −
=

+

f f
 (6.87) 

This derivative is zero when the quadratic in the numerator is zero. The root that gives the 
lowest value of ( )varE a  is 

 
( )22 2 2

var min

27 27 1024

32
a

π π− + +
=

f

f
 (6.88) 

For 3=f  in our example, we find var min 0.175a ≅ , which 
compares with 0.174 from the 3-basis-function finite basis subset 
method and 0.180 from the perturbation calculation. The 
corresponding energy expectation value, which is the 
approximation to the ground state energy in the presence of the 
field, is, substituting the value of var mina  back into (6.86), 

( )0.175 0.90563E ≅ , which compares reasonably well with 
0.90419 from the exact calculation.  

Incidentally, it can be shown that a variational approach like this using the same basis 
functions as a finite basis subset calculation gives exactly the same results; if we had 
calculated the finite basis subset method using only the first two basis functions, we would get 
the same answer as our variational calculation here. We can see this explicitly from Table  6.1, 
where the two-basis-function finite basis subset method and the variational method with the 
same two basis functions give exactly the same answer for the energy (they also give identical 
wavefunctions). This is fundamentally because of the minimization property of eigenfunctions 
and eigenvalues discussed above. An explicit proof is given by Kroemer.17  

Problems 
 6.6.1  Based on your understanding of the variational method and the principles behind it, prove that the 

finite basis subset method will always give an answer for the energy of the lowest energy eigenstate 
that is equal to or above the exact value.  

 6.6.2  [This problem may be used as a substantial assignment.] Solve this problem by any approximation 
method or methods you consider appropriate. Consider an electron in an infinitely deep potential well 
of thickness Lz = 30 Å, into which a potential barrier is introduced in the middle. This barrier has 
thickness ΔL = 0.5Å and height Vo = 1 eV.  
(i) Find the energies and plot the wavefunctions of the first two states (i.e., the ones with the lowest 

energies) in this potential. Though formal proof of accuracy is not required, you should have 
reasonable grounds for believing your energy calculation is accurate to ~5% or better for the 
first level. 

(ii) Now we apply an electric field, F, to this structure along the z-direction. We consider the energy 
of the center of the well to be fixed as we apply field. We presume that, for small fields, the 
energy E1 of the first level changes quadratically with electric field, i.e.,  

 2
1

1
2

E FαΔ = −   

                                                           
17 See, for example, Quantum Mechanics, H. Kroemer (Prentice-Hall, Englewood Cliffs, 1994), Chapter 
14. 

∞∞

Lz

ΔL

Vo

z
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 (The quantity α is often called the polarizability.) Find a reasonable approximate numerical 
result for α, expressed in units appropriate for energies in eV and fields in V/Å. 

6.7 Summary of concepts 

Finite matrix/finite basis subsets method 

We choose a finite number of basis functions to approximate the problem, and solve by finding 
the eigenvalues and eigenfunctions of the corresponding finite matrix representing the operator 
of interest (usually the Hamiltonian). The basis set usually chosen is the known solutions of 
the unperturbed problem, and the finite set of functions chosen is most often those close in 
energy to the state of greatest interest. 

Time-independent non-degenerate perturbation theory 

Presuming that there is a perturbation ˆ pHγ  added to an unperturbed Hamiltonian ˆ oH  (whose 
eigen solutions nE  and nψ  are presumed known), and presuming there are corresponding 
power series in γ for both the eigenenergies E  

 ( ) ( ) ( ) ( )0 1 2 32 3E E E E Eγ γ γ= + + + +"  (6.21) 

and the eigenfunctions φ  

 ( ) ( ) ( ) ( )0 1 2 32 3φ φ γ φ γ φ γ φ= + + + +"  (6.20) 

a series of relations are found by equating powers of γ. Thereafter, γ is conventionally set to 
unity. The resulting first-order corrections to the mth level of the unperturbed system are 

 ( )1 ˆ
m p mE Hψ ψ=  (6.32) 

 ( )1
ˆ

n p m
n

n m m n

H
E E

ψ ψ
φ ψ

≠

=
−∑  (6.38) 

and the second-order correction to the energy is 

 ( )

2

2
ˆ

n p m

n m m n

H
E

E E

ψ ψ

≠

=
−∑  (6.42) 

Higher order corrections to wavefunctions and energies are found progressively from the 
preceding orders of corrections. Usually such perturbation corrections are used to the lowest 
non-zero order. 

Degenerate perturbation theory 

For the case where a given unperturbed energy level is degenerate, i.e., has more than one 
eigenfunction associated with it, the wavefunction is expanded on the basis of the r degenerate 
eigenfunctions 

 
1

r

mtot ms ms
s

aψ ψ
=

= ∑  (6.61) 

The resulting first-order correction to the eigenenergies are found as the eigenvalues of the 
matrix equation 
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 ( )

1 1 1 2 1 1 1

2 1 2 2 2 12 2

1 2

pm m pm m pm mr m m

pm m pm m pm mr m m

pmrm pmrm pmrmr mr mr

H H H a a
H H H a a

E

H H H a a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

"
"

# # % # # #
"

 (6.67) 

where  

 ˆ
pmims mi p msH Hψ ψ=  (6.66) 

and the corresponding eigenvectors give the lowest order eigenfunctions corresponding to the 
respective eigenvalues. The eigenfunctions found this way are zeroth order eigenfunctions, but 
specific combinations with different energies may now have been forced by the perturbation, 
in which case the perturbation is said to have “lifted the degeneracy”. 

Tight binding model 

A tight binding model is one in which the electrons in adjacent systems are presumed to be 
quite tightly bound within those systems, but with a weak overlap between adjacent systems. 
This weak interaction allows simplified analytic models to be constructed that can expose the 
nature of the interactions between the systems. 

Variational method 

The variational method relies on the provable notion that the lowest possible expectation value 
of the energy that can be attained for any proposed wavefunction of the system is exactly that 
of the lowest energy eigenstate. This allows mathematically convenient forms to be used for 
the wavefunction in approximate calculations especially of the lowest state of the system. 
Usually, a parameter of the proposed approximate wavefunction is varied to minimize the 
resulting energy expectation value.  



Chapter 7  
 
Time-dependent perturbation 
theory 

Prerequisites: Chapters 2 – 6. 

Time-dependent perturbation theory is one of the most useful techniques for understanding 
how quantum mechanical systems respond in time to changes in their environment. It is 
especially useful for understanding the consequences of periodic changes; a classic example is 
understanding how a quantum mechanical system responds to light, which can often be 
usefully approximated as a periodically oscillating electromagnetic field. We will develop 
time-dependent perturbation theory in this Chapter, including some specific applications to 
interactions with light. 

7.1 Time-dependent perturbations 

For time-dependent problems, we will often be interested in the situation where we have some 
time-dependent perturbation, ( )ˆ pH t , to an unperturbed Hamiltonian ˆ oH  that is itself not 
dependent on time. The total Hamiltonian is then 

 ( )ˆ ˆ ˆ
o pH H H t= +  (7.1) 

To deal with such a situation, we return to the time-dependent Schrödinger equation,  

 ˆi H
t

∂
Ψ = Ψ

∂
=  (7.2) 

where now the ket Ψ  is time-varying in general. As before, a convenient way to represent a 
solution of the time-dependent Schrödinger equation is to expand it in the energy 
eigenfunctions of the unperturbed problem. With nψ  and nE  as the energy eigenfunctions 
and eigenvalues of the time-independent equation 

 ˆ
o n n nH Eψ ψ=  (7.3) 

we can expand Ψ  as 

 ( ) ( )exp /n n n
n

a t iE t ψΨ = −∑ =  (7.4) 

Note that, in Eq. (7.4), we chose to include the time-dependent factor ( )exp /niE t− =  explicitly 
in the expansion. We could have left that out, and merely included it in ( )na t . As is often the 
case, however, it is better to take out the major underlying dependence if one knows it, which 
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here leaves the time dependence of ( )na t  to deal only with the changes that are in addition to 
the underlying unperturbed behavior.1  

Now we can substitute the expansion (7.4) into the time-dependent Schrödinger equation (7.3), 
obtaining 

( ) ( ) ( )( ) ( )ˆ ˆexp / exp /n n n n n n o p n n
n n

i a a E iE t a H H t iE tψ ψ+ − = + −∑ ∑�= = =  (7.5) 

where  

 n
n

a
a

t
∂

≡
∂

�  (7.6) 

Using the time-independent Schrödinger equation (7.3) to replace ˆ
o nH ψ  with n nE ψ  leads 

to the cancellation of terms in n nE ψ  from the two sides of the equation. Now premultiplying 
by qψ  on both sides of (7.5) leads to  

 ( ) ( ) ( ) ( ) ( )ˆexp / exp /q q n n q p n
n

i a t iE t a t iE t H tψ ψ− = −∑�= = =  (7.7) 

Note we have made no approximations in going from (7.2) to (7.7); these are entirely 
equivalent equations. 

Now we consider a perturbation series, in a manner closely analogous to the series we defined 
for the time-independent problem. We introduce the expansion parameter γ for the purposes of 
mathematical housekeeping, just as before, now writing our perturbation as ˆ pHγ . Just as in the 
time-independent perturbation theory, we can set this parameter to a value of 1 at the end. We 
presume that we can express the expansion coefficients na  as a power series 

 ( ) ( ) ( )0 1 22
n n n na a a aγ γ= + + +"  (7.8) 

and we substitute this expansion into Eq. (7.7). Since now in Eq. (7.7) we have replaced ˆ pH  
by ˆ pHγ , the lowest power of γ we can possibly find on the right hand side of Eq. (7.7) is γ 1 
(i.e., γ); there is no term in γ 0. Hence, equating powers of γ on both sides of the equation, we 
obtain for this zero order term 

 ( ) ( )0 0qa t =�  (7.9) 

Not surprisingly, the zero order solution simply corresponds to the unperturbed solution, and 
hence there is no change in the expansion coefficients in time. For the first-order term 
(obtained by equating terms in γ 1 on both sides of the equation), we have 

 ( ) ( ) ( ) ( ) ( )1 01 ˆexpq n qn q p n
n

a t a i t H t
i

ω ψ ψ= ∑�
=

 (7.10) 

where we have introduced the notation 

 ( ) /qn q nE Eω = − =  (7.11) 

Note here that the (0)
na  are all constants; we deduced in Eq. (7.9) that they do not change in 

time. They represent the “starting” state of the system at time 0t = . We note now therefore 
that, if we know the starting state, the perturbing potential and the unperturbed eigenvalues and 

                                                           
1 This approach is sometimes known as the interaction picture. 
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eigenfunctions, then everything on the right hand side of Eq. (7.10) is known. Hence we can 
integrate Eq. (7.10) to obtain the first-order, time-dependent correction, (1) ( )qa t , to the 
expansion coefficients. Since we now know the new approximate expansion coefficients,  

 ( ) ( ) ( )0 1
q q qa a a t+�  (7.12) 

then we know the new wavefunction, and can calculate the behavior of the system from this 
new wavefunction. Hence we have our first approximation to the effect of this time-dependent 
perturbation to the system. 

We can proceed to higher order in this time-dependent perturbation theory. In general, 
equating powers of progressively higher order, we obtain 

 ( ) ( ) ( ) ( ) ( )1 1 ˆexpp p
q n qn q p n

n
a t a i t H t

i
ω ψ ψ+ = ∑�

=
 (7.13) 

We see that this perturbation theory is also a method of successive approximations, just like 
the time-independent perturbation theory. We calculate each higher order correction from the 
preceding correction.  

Just as for the time-independent perturbation theory, the time-dependent theory is often most 
useful for calculating some process to the lowest non-zero order. Higher order time-dependent 
perturbation theory is very useful, for example, for understanding nonlinear optical processes. 
First-order time-dependent perturbation theory gives the ordinary, linear optical properties of 
materials, as we will see below. Higher order time-dependent perturbation theory is used to 
calculate processes such as second harmonic generation and two-photon absorption in 
nonlinear optics, for example, processes that are seen routinely with the high optical intensities 
of modern lasers.  

Problems 
 7.1.1  An electron is initially in the lowest state of an infinitely deep one-dimensional potential well of 

thickness zL . An electric field pulse, polarized in the direction perpendicular to the well, and of the 
form 

 ( ) 0, 0; ( ) exp( / ), 0oF t t F t F t tτ= < = − ≥   
is applied to the well. This pulse will create some probability for times t τ>>  of finding the electron 
in the second state, and we presume that electrons excited into the second state are subsequently 
swept out to give a photocurrent on some timescale long compared to τ . 
(i) Find an expression, valid for sufficiently small values of oF , for the probability of generating an 

electron of photocurrent from such a pulse. 
(ii) Suppose now that we consider a pulse of a given fixed energy pulseE , which we may take to be 

of the form 2pulse oE AF τ=  where A is some constant. For what value of characteristic pulse 
length τ  does this detector have the maximum sensitivity (i.e., maximum chance of generating 
an electron of photocurrent)? 

(iii) Treating an electron in a GaAs quantum well as being modeled by such an infinitely deep well, 
with an electron effective mass of 0.07eff om m= , for a well of thickness 10 nm, calculate the 
probability of generating an electron of photocurrent for a field value of oF = 10 3 V/cm, and a 
characteristic time τ = 100 fs. 

(iv) If we were now to make 1011 such single electron systems (or equivalently, to put 1011 electrons 
in one actual GaAs quantum well, a number quite feasible for ~ 1 cm-2 area), what now would 
be the average number of electrons of photocurrent generated per pulse? 

(v) For the same pulse energy, what would be the optimum pulse length to maximize the 
photocurrent for the GaAs case of parts (iii) and (iv), and how much larger would the 
photocurrent be? 
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 7.1.2  Consider a one-dimensional semiconductor potential well of width zL  with potential barriers on 
either side approximated as being infinitely high. An electron in this potential well is presumed to 
behave with an effective mass effm . Initially, there is an electron in the lowest state of this potential 
well.  
We want to use this semiconductor structure as a detector for a very short electric field pulse. If the 
electron is found in the second energy state after the pulse, the electron is presumed to be collected as 
photocurrent by some mechanism, and the pulse is therefore detected. 
To model this device, we presume that the electric field pulse ( )F t  can be approximated as a “half-
cycle” pulse of length tΔ , i.e., a pulse of the form 

 ( ) sino
tF t F
t

π⎛ ⎞= ⎜ ⎟Δ⎝ ⎠
  

for times t  from 0 to tΔ , and zero for all other times. 
(i) Find an approximate expression, valid for sufficiently small field amplitude oF , for the 

probability of finding the electron in its second state after the pulse. 
(ii) For a pulse of length tΔ = 100 fs, and a GaAs semiconductor structure with 0.07eff om m=  and 

width zL =  10 nm, for what minimum electric field magnitude oF  does this detector have at 
least a 1% chance of detecting the pulse? 

(iii) For a full cycle pulse (i.e., one of the form ( )sin 2 /( ) oF F t tt π= Δ  for times t from 0 to tΔ , 
and zero for all other times), what is the probability of detecting the pulse with this detector? 
Justify your answer.  

7.2 Simple oscillating perturbations 

One of the most useful applications of time-dependent perturbation theory is the case of 
oscillating perturbations. We will consider this problem here in first-order time-dependent 
perturbation theory. For example, the interaction of a monochromatic electromagnetic wave 
with a material is a situation where the perturbation, the electromagnetic field, is varying 
sinusoidally in time. Such a sinusoidal perturbation is also called a harmonic perturbation, the 
same use of the term “harmonic” as in the harmonic oscillator.  

One common form would be to have an electric field in, say, the z  direction2 

 ( ) ( ) ( ) ( )exp exp 2 coso ot i t i t tω ω ω= − + =⎡ ⎤⎣ ⎦E E E  (7.14) 

where ω  is a positive (angular) frequency. For an electron, as before, the resulting 
electrostatic energy in this field, relative to position 0z = , would lead to a perturbing 
Hamiltonian 

 ( ) ( ) ( ) ( )ˆ ˆ exp expp poH t e t z H i t i tω ω= = − +⎡ ⎤⎣ ⎦E  (7.15) 

where, in this case, 

 ˆ
po oH e z= E  (7.16) 

Note that this operator, ˆ poH , does not depend on time. This particular form of the perturbing 
Hamiltonian is called the electric dipole approximation. In this particular case, this operator is 

                                                           
2 The use of complex exponentials is often preferred for the mathematics of handling such perturbations, 
though in the end it does not matter. Oscillating fields are often defined using this particular convention, 
with the factor of 2 in the cosine version of the field, though there is not unanimity on this convention. 
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just a scalar function of z, though in other formulations of this problem it often has stronger 
operator character.3 Our approach here is valid for any perturbing Hamiltonian that is of the 
general form of the far right of Eq. (7.15). 4 

Fermi’s Golden Rule 
For the purposes of our calculation, we will presume that this perturbing Hamiltonian is only 
“on” for some finite time. For simplicity, we presume that the perturbation starts at time 0t =  
and ends at time ot t= , so formally we have 

 

( )
( ) ( )

ˆ 0, 0
ˆ exp exp , 0

0,

p

po o

o

H t t

H i t i t t t

t t

ω ω

= <

= − + < <⎡ ⎤⎣ ⎦
= >

 (7.17) 

To be specific, we will be interested in a situation where, for times before 0t = , the system is 
in some specific energy eigenstate, mψ . We expect that the time-dependent perturbation 
theory will tell us with what probability the system will make transitions into other states of 
the system as a result of the perturbation. With this choice, all of the (0)

na  (the initial expansion 
coefficients) are zero except (0)

ma , which has the value 1. With this simplification of the initial 
state, the first-order perturbation solution, Eq. (7.10), becomes 

 ( ) ( ) ( ) ( )1 1 ˆexpq qm q p ma t i t H t
i

ω ψ ψ=�
=

 (7.18) 

Then we have, substituting the perturbing Hamiltonian, Eq. (7.17), 
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3 Another common form is ( )ˆ ˆ/p oH e m≅ − ⋅A p , where A  is the magnetic vector potential and p̂  is the 
momentum operator. This form is formally more complete than the electric dipole approximation (it 
includes magnetic effects, for examplen), and is favored by solid state physicists, though it makes little or 
no difference for nearly all common linear optical problems. We use it in Chapter 8 and derive it in 
Appendix E. 
4 Another common occurrence of a harmonic perturbation is in the interaction of vibrating atoms with 
electrons, as in the interaction of phonons in solids with electrons (electron-phonon interactions), which 
is responsible for many of the limitations on the speed of electrons in semiconductors, for example. 
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The reader may remember that the function ( ) ( )sinc sin /x x x≡  peaks at 1 for 0x = , and falls 
off in an oscillatory fashion on either side. This function is shown in Fig. 5.1. It is essentially 
only appreciably large for 0x ≅ , which tells us we have a strongly resonant behavior, with 
relatively strong perturbations when the frequency ω  is close to qmω± . We will discuss the 
meaning of this in more detail below. 

What we have now calculated is the new quantum mechanical state for times ot t> , which is, 
to first order, 

 ( ) ( ) ( )1exp / ( )exp /m m q o q q
q

iE t a t t iE tψ ψΨ − + > −∑� = =  (7.20) 

with the ( )(1)
q oa t t>  given by Eq. (7.19). Now that we have established our approximation to 

the new state, we can start calculating the time dependence of measurable quantities.  

In our example here, we chose the system initially to be in the energy eigenstate mψ . The 
application of the perturbation has changed that state, and we would like to know, if we were 
to make a measurement of the energy after the perturbation is over (i.e., for ot t> ), what is the 
probability that the system will be found in some other state, jψ . Another way of stating this 
is that we want to know the transition probability from state mψ  to jψ . Provided we are 
dealing with small perturbations (so that the correction to wavefunction normalization can be 
ignored), the probability, ( )P j , of finding the system in state jψ  is 

 ( ) ( ) 21
jP j a=  (7.21) 

i.e.,  
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As we see from Fig. 5.1, the sinc function and its square fall off rapidly for arguments >> 1. 
Hence, for sufficiently long ot , either one or the other of the two sinc functions in the last term 
in Eq. (7.22) will be small. Essentially, as the time ot  is increased, these two sinc line 
functions get sharper and sharper, and they will eventually not overlap for any value of ω . 
Presuming we take ot  sufficiently large therefore, we are left with 
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Clearly, we now have some finite probability that the system has changed state from its initial 
state, mψ , to another “final” state, jψ . We see that this probability depends on the strength 
of the perturbation squared, and specifically on the modulus squared of the matrix element of 
the perturbation between the initial and final states.  

In the case where the perturbation is the oscillating electric field acting on an electron, we see 
therefore that this probability is proportional to the square of the electric field amplitude, 2

oE , 
which in turn is proportional to the intensity I (power per unit area) of an electromagnetic field. 
Hence, in the case of the oscillating electric field perturbation, we see the probability of 
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making a transition is proportional to the intensity, I. This is the kind of behavior we expect for 
linear optical absorption.  

What is the meaning of the two different terms in Eq. (7.23)? The first term is significant if 
jmω ω≈ , i.e., if 

 j mE Eω ≈ −=  (7.24) 

Since we chose ω to be a positive quantity, this term is significant if we are absorbing energy 
into the system, raising the system from a lower energy state, mψ , to a higher energy state, 

jψ . We note that the amount of energy we are absorbing is ω≈ = . This term behaves as we 
would require for absorption of a photon. 

By contrast, the second term is significant if jmω ω≈ − , i.e., if 

 m jE Eω ≈ −=  (7.25) 

This can only be the case if the system is moving from a higher energy state mψ , to a lower 
energy state, jψ . This term behaves as we would require for emission of a photon. In fact, 
the process associated with this term is stimulated emission, the process used in lasers.5  

Now let us consider only the case associated with absorption, presuming we are starting in a 
lower energy state and transitioning to a higher energy one. (The treatment of the stimulated 
emission case is essentially identical,6 with the energies of the states reversed.) Then we have 
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Analyzing the case of a transition between one state and exactly one other state using this 
approach has some formal difficulties; as we let the time ot  become arbitrarily large, the form 
of the sinc squared term becomes arbitrarily sharp in ω , and unless we get the frequency 
exactly correct, we will get no absorption. For any specific ω  not mathematically exactly 

                                                           
5 Incidentally, this particular so-called “semi-classical” analysis does not correctly model spontaneous 
emission, the dominant kind of light emission in nearly all kinds of everyday situations (including, for 
example, light bulbs). To model that correctly requires that the electromagnetic field is treated quantum 
mechanically, not approximated by a classical field. Spontaneous emission can be modeled using this 
semiclassical model if one presumes that, for some reason, there is =ω/2 of energy in each 
electromagnetic mode, with an associated electromagnetic field, sometimes called the vacuum field, 
available to stimulate emission, though the only real justification for this approach is to solve the problem 
correctly by treating the electromagnetic field quantum mechanically. We will return to this point in 
Chapter 16, where we will correctly include spontaneous emission. Somewhat surprisingly, it is actually 
harder in quantum mechanics to explain a light bulb than it is to explain a laser. 
6 Note, incidentally, that we can see from this quantum mechanical approach that the two processes of 
optical absorption and stimulated emission fundamentally are equally strong processes – both have the 
same prefactors (matrix elements). We do not see stimulated emission as much as we see absorption just 
because quantum mechanical systems are not normally found starting out in upper, excited states, tending 
for thermodynamic reasons to be found in their lower, unexcited states. This equivalence of the 
microscopic strength of absorption and stimulated emission is exactly what is required by a statistical 
mechanics analysis of optical absorption and emission, as deduced by Einstein in his famous “A and B 
coefficient” argument. See, for example, H. Haken, Light, Vol. 1 (North-Holland, Amsterdam, 1981) pp 
58 – 62. 
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equal to jmω , the probability ( )P j  of a transition into the state jψ  will always become 
essentially zero if we leave the perturbation on for long enough. This problem can be resolved 
for calculating, for example, transitions between states in atoms, though it requires a more 
sophisticated analysis using the density matrix that we postpone to Chapter 14. That approach 
gives a “width” to an optical absorption line. Essentially, we end up replacing the sinc squared 
function with a Lorentzian line whose width in angular frequency is 21/T∼ , where 2T  is the 
time between scattering events (e.g., collisions with other atoms) that disrupt at least the phase 
of the quantum mechanical oscillation of the wavefunction.7 We can rationalize such a change 
based on an energy-time uncertainty relation; if the system only exists in its original form for 
some time 2T , then we should expect that the energy of the transition is only defined in energy 
to 2/ 2T±∼ = , or in angular frequency to 21/ 2T±∼ . 

Fortunately, however, there is a major class of optical absorption problems that can be 
analyzed using this approach. Suppose that we have not one possible transition with energy 
difference jmω= , but a whole dense set of such possible transitions in the vicinity of the 
photon energy ω= , all with essentially identical matrix elements. This kind of situation occurs 
routinely in solids, for example, which have very dense sets of possible transitions, all of 
which have rather similar properties in any given small energy range. We presume that this set 
is very dense, with a density8 ( )Jg ω=  per unit energy near the photon energy ω= . ( ( )Jg ω=  
is sometimes known as a “joint density of states” since it refers to transitions between states, 
not the density of states of only the starting or ending states.) Then adding up all the 
probabilities for absorbing transitions, we obtain a total probability of absorption by this set of 
transitions of  
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Jg  is essentially constant over any small energy range, and the sinc squared term is essentially 
quite narrow in jmω . Hence we can take ( )J jmg ω=  out of the integral as, approximately, 

( )Jg ω= . Formally changing the variable in the integral to ( ) / 2jm ox tω ω= −  therefore gives 
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Using the mathematical result 
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we obtain 

                                                           
7 The reader may be wondering, if we introduced a time T2, is there a time T1? There is. In the density 
matrix approach (Chapter 14), T1 is the total lifetime of the state, and it is certainly true that any 
processes that cause a transition out of the state (e.g., from an excited state back to a ground state) will 
also give a line width to the state. T2 is introduced because there are collision processes other than such 
major transitions that also disrupt the relative phase of the quantum-mechanical response of the system 
and give a width to the transition. 
8 See Section 5.3 for a discussion of the use of such densities, and the transition from sums to integrals. 
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Now we see that we have a total probability of making some transition that is proportional to 
the time, ot , that the perturbation is turned on. This allows us now to deduce a transition rate, 
or rate of absorption of photons, 

 ( )
22 ˆ

j po m JW H gπ ψ ψ ω= =
=

 (7.31) 

This result is sometimes known as “Fermi’s Golden Rule” or, more completely, “Fermi’s 
Golden Rule No. 2”. It is one of the most useful results of time-dependent perturbation theory, 
and forms the basis for calculation of, for example, the optical absorption spectra of solids, or 
many scattering processes. Though we have discussed it here in the context of optical 
absorption, it applies to any simple harmonic perturbation. 

This rule is sometimes also stated using the Dirac δ-function (see Section 5.4) in the form 

 ( )22 ˆ
jm j po m jmw H Eπ ψ ψ δ ω= − =

=
 (7.32) 

where jmw  is the transition rate between the specific states mψ  and jψ . From Eq. (7.32) 
one calculates the total transition rate involving all the possible similar transitions in the 
neighborhood as 

 ( )jm J jm jmW w g dω ω= ∫ = =  (7.33) 

which gives the expression (7.31). We will give an explicit example of the use of Fermi’s 
Golden Rule in Section 8.10 when we evaluate optical absorption in semiconductors. 

Note that Fermi’s Golden Rule is built on the presumption of a periodic perturbation. The 
perturbation has to be “on” for many cycles, otherwise the 
{sin[( ) / 2]}/[( ) /( / 2)]jm jmo ot tω ω ω ω− −  function in Eq. (7.27) will not be “sharp” enough to 
allow the step from Eq. (7.27) to Eq. (7.28). For perturbations that are short, we can still use 
time-dependent perturbation theory directly, as we discussed in Section  7.1 above, but just not 
Fermi’s Golden Rule. We similarly must not leave the periodic perturbation on for too long so 
that the population of the final state starts to become significant; Fermi’s Golden Rule is a 
first-order perturbation result that implicitly presumes only small changes in the expansion 
coefficients. In practice, relaxation processes not included in the perturbation theory analysis 
may well continually depopulate the final state, and then Fermi’s Golden Rule can still in fact 
be used to calculate, e.g., absorption in the steady state with a periodically oscillating 
perturbation. A more complete theory would include such relaxation properly, such as the 
density matrix approach in Chapter 14. 

Problems 
 7.2.1  An electron is in the second state of a one-dimensional, infinitely deep potential well, with 

potential ( ) 0V z =  for 0 zz L< <  and infinite otherwise. An oscillating electric field of the form  
( ) ( ) ( ) ( )exp exp 2 coso oF t F i t i t F tω ω ω= ⎡ − + ⎤ =⎣ ⎦  

is applied along the z direction for a large but finite time, leading to a perturbing Hamiltonian during 
that time of the form  

( ) ( ) ( ) ( )ˆ ˆ exp expp poH t eF t z H i t i tω ω= = ⎡ − + ⎤⎣ ⎦  
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(i) Consider the first four states of this well, and presume that we are able to tune the frequency 
ω arbitrarily accurately to any frequency we wish. For each conceivable transition to another 
one of those states, say whether that transition is possible or essentially impossible, given 
appropriate choice of frequency. 

(ii) What qualitative difference, if any, would it make if the well was of finite depth (though still 
considering only the first four states, all of which we presume to be bound in this finite well)? 

 7.2.2  I wish to make a quantum-mechanical device that will sense static electric field F  based on the 
shift of an optical transition energy. I want to make an estimate of the sensitivity of this device by 
considering optical transitions in an idealized infinitely deep one-dimensional potential well of 
thickness zL , with an electron initially in the first state of that well, and considering the transition 
between the first and second states of the well. The electric field to be sensed is presumed to be in the 
direction perpendicular to the walls of the potential well, which we will call the z  direction.  
(i) In what direction should the optical electric field be polarized for this device? Justify your 

answer. 
(ii) Give an approximate expression for the shift of the transition energy with field, numerically 

evaluating any summations. (You may make reasonable simplifying calculational assumptions, 
such as retaining only the most important terms in a sum if they are clearly dominant.).  

(iii) So that this estimate would correspond approximately to the situation we might encounter in 
atoms, we will make the potential well 3 Å thick. Presuming that the minimum change of optical 
transition energy that can be measured is 0.1 %, calculate the corresponding minimum static 
electric field that can be sensed.  

(iv) Suggest a method, still using the electron transition energy in a well of this thickness and the 
same measurable change in optical transition energy, that would increase the sensitivity of this 
device for measuring changes in electric field.  

 7.2.3  [Note: this problem can be used as a substantial 
assignment. It is an exercise in both time-independent 
calculation techniques and in consequences of Fermi’s Golden 
Rule.] We wish to make a detector for radiation in the terahertz 
frequency regime. The concept for this detector is first that we 
will make a coupled potential well structure using GaAs wells 
each of 5 nm thickness, surrounded by Al0.3Ga0.7As layers 
on either side, and with a barrier of the same 
Al0.3Ga0.7As material between the wells, of a thickness w to be 
determined. Initially there will be electrons in the lowest level of 
this structure, and, if we can raise the electrons by optical absorption from the first level into the 
second level, we presume that the carriers in the second level are then swept out as photocurrent by a 
mechanism not shown. The terahertz electric field is presumed to be polarized in the horizontal 
direction in the diagram. We presume that this detector is held at very low temperature so that, to a 
sufficient degree of approximation, all the electrons are initially in this lowest state. 
[The electrons are free to move in the other two directions, but this does not substantially change the 
result of this problem. The nature of optical absorption within the conduction band of semiconductors 
is such that, even if the electron does have momentum (and hence kinetic energy) in the other two 
directions, that momentum (and hence kinetic energy) is conserved in an optical transition, so the 
transition energy is unaffected by that initial momentum in this particular so-called “intersubband” 
transition.] 
Assume that the electron can be treated like an ordinary electron, but with an effective mass, a mass 
that is different in different material layers (see Problem 2.9.3 for appropriate boundary conditions 
and a solution of the finite well problem in this case). Note the following parameters: Separation 
between Al0.3Ga0.7As and GaAs so-called “zone center” conduction band edges (i.e., the potential 
barrier height in this problem) = 0.235 eV. Electron effective masses: 0.067 om  in GaAs; 0.092 om  
in Al0.3Ga0.7As.  

w 5 nm5 nm

GaAs GaAs

Al0.3Ga0.7As
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(i) Deduce what thickness w of barrier should be chosen if this detector is to work for 
approximately 0.5 THz (500 GHz) frequency. [Hint: you may assume the coupling is relatively 
weak and that a tight binding approach would be a good choice. Note: you may have to discard a 
solution here that goes beyond the validity of the approximate solution method you use.] 

(ii) We wish to tune this detector by applying a static electric field in the horizontal direction.  
(a) Graph how the detected frequency changes with electric field up to a detected frequency of 

approximately 1 THz 
(b) Graph how the sensitivity of the detector (i.e., the relative size of the photocurrent) changes 

as a function of static electric field. 
(c) Over what frequency range does this detector have a sensitivity that changes by less than 3 

dB (i.e., a factor of two) as it is tuned? 

7.3 Refractive index 

This Section can be omitted at a first reading, though it is a good exercise in the use of 
perturbation theory. Prerequisite: Appendix D, Section D.1 for an introductory discussion of the 
polarization P.  

First-order time-dependent perturbation theory is sufficient to model all linear optical 
processes quantum mechanically. Fermi’s Golden Rule, stated above, shows how absorption 
(and stimulated emission) can be modeled. Here we illustrate how another linear optical 
process, refractive index, can be calculated quantum mechanically using first-order time-
dependent perturbation theory. This is a different kind of example of time-dependent 
perturbation theory because it does not involve a transition rate, as calculated using Fermi’s 
Golden Rule. It will also prepare us for the following calculation of nonlinear optical 
processes. 

The key quantity we need to calculate is the polarization, P. In classical electromagnetism, the 
relation between electric field and polarization (here for a simple isotropic medium so that the 
polarization and the electric field are in the same direction) for the linear case is 

 oε χ=P E  (7.34) 

where χ  is the susceptibility and oε  is the permittivity of free space. The refractive index, 
rn , can be deduced through the relation 

 1rn χ= +  (7.35) 

(at least if the material is transparent (non-absorbing) at the frequencies of interest). Hence, if 
we can calculate the proportionality between P and E, we can deduce the refractive index. 

We consider for simplicity here a system with a single electron, or in which our interactions 
are only with a single electron. We also know classically that the dipole moment, dipμ  
associated with moving a single electron through a distance z  is, by definition, 

 dip ezμ = −  (7.36) 

(the minus sign arises because the electron charge is negative). The polarization P  is the 
dipole moment per unit volume, and so we expect that for the quantum mechanical expectation 
value of the polarization we have 

 
e z
V

−
=P  (7.37) 
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where V is the volume of the system. Our quantum mechanical task of calculating refractive 
index will therefore reduce essentially to calculating P . 

Since we are working in first-order perturbation theory, we can write the total state of the 
system as, approximately, 

 ( ) ( )0 1Ψ = Φ + Φ  (7.38) 

where we note now that we are dealing with the full time-dependent state vectors (kets). Here 
(0)Φ  is the unperturbed (time-dependent) state vector, and (1)Φ  is the first-order (time-

dependent) correction that we can write as 

 ( ) ( ) ( ) ( )1 1 expn n n
n

a t i tω ψΦ = −∑  (7.39) 

where  

 /n nEω = =  (7.40) 

and nψ  are the time-independent energy eigenfunctions of the unperturbed system. With 
such a state vector, (7.38), the expectation value of the polarization would be 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 0 0 1 1 1

e z
V
e z z z z
V

= − Ψ Ψ

⎡ ⎤= − Φ Φ + Φ Φ + Φ Φ + Φ Φ⎣ ⎦

P
 (7.41) 

The first term (0) (0)e z− Φ Φ  is just the static dipole moment of the material in its 
unperturbed state, and is not of interest to us here,9 so we will not consider it further. The 
fourth term, (1) (1)e z− Φ Φ  is second order in the perturbation (it would, for example, 
correspond to a term proportional to the square of the electric field), and hence, in this first-
order calculation, we drop it also. So, noting that (1) (0) (0) (1)z z ∗Φ Φ = Φ Φ  (which 
follows from the Hermiticity of z as an operator corresponding to a physical observable (the 
position)), we have 

 ( ) ( )0 12 Ree z
V

⎡ ⎤= − Φ Φ⎣ ⎦P  (7.42) 

For the sake of definiteness, we now presume that the system is initially in the eigenstate m , 
i.e.,  

 ( ) ( )0 exp m mi tω ψΦ = −  (7.43) 

Hence, using the expansion (7.39) for (1)Φ , we have, from (7.42), 

 ( ) ( ) ( )12 Re expn mn m n
n

e a t i t z
V

ω ψ ψ⎡ ⎤= − ⎢ ⎥⎣ ⎦
∑P  (7.44) 

                                                           
9 Most materials will not have a static polarization in them, but such a phenomenon is not unknown, 
being present in, for example, ferroelectric materials.  
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We are interested here in the steady-state situation with a continuous oscillating field, and we 
take the perturbing Hamiltonian (7.15) as valid for all times.10 We can rewrite Eq. (7.18) as  

 ( ) ( ) ( ) ( )exp exp expo
q q m qm

e
a t z i t i t i t

i
ψ ψ ω ω ω= − +⎡ ⎤⎣ ⎦

E�
=
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Substituting into (7.44) gives 
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(where we have used the fact that mn nmω ω= − ), and so we have, from (7.34), 
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from which we can deduce the refractive index, rn , if we wish from Eq. (7.35).11 This 
therefore completes our calculation from first-order perturbation theory of refractive index. 

                                                           
10 Here we do not have to use the device we used for the Fermi’s Golden Rule derivation of having the 
Hamiltonian only be “on” for a finite window because we do not have to take a limit as we did there. 
Depending on how the oscillating perturbation is “started”, one does get a different constant of 
integration in evaluating ( )1 ( )a t  from ( )1 ( )a t� , which we have simply ignored here. For example, we 
would get a different answer for this constant of integration if we turned on a sin( )tω  field at 0t =  than 
if we turned on the cos( )tω  field we examined explicitly for the Fermi’s Golden Rule derivation. This 
constant of integration is a term that does not vary with time, and therefore does not concern us for this 
calculation of how the polarization changes in time in response to the electric field. It is a physically real 
phenomenon, however, reflecting how the starting transient can give rise to additional occupation of 
states in the system. 
11 The dependence of χ on the volume V might confuse the reader, who expects that the refractive index 
does not depend on the volume of the material – glass has an index of ~ 1.5 regardless of the size of the 
piece of glass. In practice, the number of states in the material, and hence the number of elements in the 
sum, does usually grow with the volume V, so these effects cancel. The expression does also correctly 
deal with the situation of a single atom, for example, for which the dipole moment per unit volume will 
indeed shrink with the total volume of the system being considered. 
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Note a major difference between the absorption (Fermi’s Golden Rule) and the refractive 
index. For absorption, the frequency ω  must match the transition frequency nmω  very closely 
for that particular transition to give rise to absorption of photons. For the refractive index, the 
contribution of a particular possible transition m nψ ψ→  to the susceptibility (and hence the 
refractive index) is finite even when the frequencies do not match exactly or even closely; that 
contribution to the susceptibility rises steadily as ω  rises towards nmω . 

We can also see that there is a very close relation between absorption and refractive index. If 
we have an absorbing transition at some frequency nmω , it contributes to refractive index at all 
frequencies. In fact, in this view, refractive index (in a region where the material is transparent) 
arises entirely because of the absorption at other frequencies. It is also clear that, if there is a 
refractive index different from unity, then there must be absorption at some other frequency or 
frequencies. 

The fundamental relation between refractive index and absorption is already well known from 
classical physics, and is expressed through the so-called Kramers-Kronig relations. The 
derivation of those relations, though relatively brief, is entirely mathematical, shedding no 
light on the physical mechanism whereby absorption and refractive index are related. With the 
quantum mechanical expressions we have here for these two processes, we can attempt to 
understand any particular aspect that interests us in the physical relation between the two. 

Unlike the case of absorption, calculated using Fermi’s Golden Rule, the expansion 
coefficients do not grow steadily in time; there is no net transition rate. In this quantum 
mechanical picture of refraction, we find that, even though we are in the transparent region of 
the material, there are, however, finite expansion coefficients, in general oscillating in time, 
and there are also consequently finite occupation probabilities for all of the states of the 
system. It is only because we have such probabilities that the material has a polarization. The 
polarization arises because the charges in the material change their physical wavefunctions in 
response to the field, mixing in some of the other states of the system in response to this 
perturbation. If we examined the expectation value of the energy of the material, we would 
also find quite real energy stored in the material as a result. By these kinds of quantum 
mechanical analyses, we can understand any specific measurable aspect of the process of 
refractive index, and its relation to absorption, without recourse to the somewhat arcane 
Kramers-Kronig relations. 

7.4 Nonlinear optical coefficients 

This Section can be omitted on a first reading, though it is a good example of how quantum 
mechanics, which is based entirely on linear algebra, can calculate a non-linear process. 
Prerequisite: Section 7.3. 

The formalism developed above for calculation of refractive index provides the basis for 
calculation of nonlinear optical effects, at least for the case where we are working in spectral 
regions where the material is transparent. Nonlinear optical effects are quite common 
phenomena now that we have relatively high powers and optical intensities routinely available 
from lasers.  

Nonlinear optical effects are quite important in the engineering of long-distance fiber optic 
communication systems, for example. Nonlinear refraction and related effects such as four-
wave mixing are important mechanisms for degrading the transmission of optical pulses and 
causing interaction between data streams at different wavelengths. Nonlinear refraction can 
also cause so-called “soliton” propagation in which a short pulse can propagate long distances 
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without degradation because in that case the nonlinear refractive effects can counteract the 
linear dispersion that otherwise would progressively take the pulse apart. Raman amplification, 
another nonlinear optical effect, is a potentially useful method of overcoming loss in optical 
fibers. Many other nonlinear optical phenomena exist and are exploited, including electric-
field dependence of refractive index used in some optical modulators, and a broad variety of 
effects that generate new optical frequencies by combining existing ones, such as second and 
third harmonic generations, difference frequency mixing, and optical parametric oscillators. 

Nonlinear optical effects also provide an excellent example of higher order time-dependent 
perturbation theory in action. In particular, they show how the perturbation approach helps 
generate and classify different processes. Different effects are associated with different orders 
of perturbation. Second-order time-dependent perturbation theory leads, for example, to 
second harmonic generation and the linear electro-optic effect (a linear variation of refractive 
index with applied static electric field, known also as the Pockels effect), and to three-wave 
mixing phenomena where a new frequency emerges as the sum or difference of the other two 
frequencies. Third-order theory leads to intensity dependent refractive index and refractive 
index changes proportional to the square of the static electric field (both known as “Kerr 
effect” nonlinearities), as well as third harmonic generation and four-wave mixing. There are 
many other variants and combinations of such effects.  

Nearly all nonlinear optical processes that are used for practical purposes are described by 
second and third-order perturbation theory. Higher order processes are known and can be 
calculated by higher order perturbation theory, though they are usually quite weak by 
comparison. The strongest effects are generally the second-order ones, though to see those, as 
will become apparent below, the material needs to be asymmetric in a particular way. Isotropic 
materials or those with a “center of symmetry”, such as glass and non-polar materials such as 
silicon, therefore do not show second-order phenomena,12 and their lowest order nonlinear 
effects are therefore third-order phenomena.  

We will not discuss here all the details of nonlinear optics, which would be beyond the scope 
of this work, deferring to other excellent texts.13 We will, for example, not deal here with the 
various macroscopic electromagnetic propagation effects that arise formally once we substitute 
the calculated polarization into Maxwell’s equations (or the wave equation that results from 
those), though such effects (e.g., phase matching) are, however, very important for calculating 
the final electromagnetic waves that result from microscopic nonlinear optical processes. 

Formalism for nonlinear optical coefficients 
In most cases, nonlinear optical phenomena are weak effects, and it can therefore be useful to 
look upon them in terms of a power series expansion. We are interested in the response of the 
material, characterized through the polarization ( )tP , which we expand as a power series in 
the electric field ( )tE , i.e.,  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 32 3

o

t
t t tχ χ χ

ε
= + + +

P
E E E …  (7.49) 

                                                           
12 Such materials can, however, show second-order effects at their surfaces, because the symmetry of the 
bulk material is broken there.  
13 See, e.g., R. W. Boyd, Nonlinear Optics (Academic Press, New York, 1992); Y. R. Shen, The 
Principles of Nonlinear Optics (Wiley, New York, 1984)  
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In general both the electric field E  and the polarization P  are vectors. Also in general, since 
the polarization and the electric field may well not be in the same direction,14 the susceptibility 
coefficients (1)χ , (2)χ , (3)χ , etc., are tensors. We will neglect such anisotropic effects for 
simplicity here, and treat the electric field and polarization as always being in the same 
direction, in which case we can treat them as scalars. In Eq.(7.49), (1)χ  is simply the linear 
susceptibility calculated above, as in Eq. (7.48). (2)χ  and (3)χ  are respectively the second and 
third-order nonlinear susceptibilities. In handling higher order perturbations, it is particularly 
important to be very systematic in notations because the full expressions can become quite 
complicated. Many of the nonlinear optical effects involve multiple different frequencies in the 
fields. For example, with two frequency components, at (angular) frequencies ω1 and ω2, the 
total field would be 

 

( ) ( ) ( )
( ) ( ){ }
( ) ( ){ }

1 1 1 2 2 2

1 1 1 1 1

2 2 2 2 2

2 cos 2 cos

exp exp

exp exp

o o

o

o

t t t

i t i t

i t i t

ω δ ω δ

ω δ ω δ

ω δ ω δ

= + + +

= − + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ − + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

E E E

E

E

 (7.50) 

where now we have formally allowed the two fields also to have different phase angles 1δ  and 
2δ . Another way of writing (7.50) is  

 ( ) ( ) ( )exps s
s

t i tω ω= −∑E E  (7.51) 

where  

 ( ) ( )exps os siω δ= −E E  (7.52) 

and the sum now is understood to be not just over the frequencies 1ω  and 2ω , but also to 
include the “negative” frequencies, 1ω−  and 2ω− .15 Hence there are four terms in the sum 
(7.51) for this two frequency case, corresponding to the four terms in the second line of Eq. 
(7.50). Note also that  

 ( ) ( )s sω ω∗− =E E  (7.53) 

as can be deduced from Eq. (7.52). This property is required for the actual electric field to be 
real. This sum over positive and negative frequencies simplifies the algebra that follows. We 
can, of course, keep the form (7.51) as we extend to more frequency components in the electric 
field. 

Formal calculation of perturbative corrections  

We will consider here nonlinearities up to third order in the electric field (i.e., up to (3)χ ), and 
as a result will consider up to third-order time-dependent perturbation corrections. We proceed 

                                                           
14 We could imagine, for example, that we had an electron on a spring along the x direction that was not 
free to move in any other direction. If we applied an electric field in the x direction, then the electron 
would be displaced in the x direction, giving a polarization in the x direction, but even if the field were 
applied in a somewhat different direction, the electron would still only move in the x direction. Hence the 
polarization and the electric field in this case would not be in the same direction, and the susceptibility 
would formally have to be described as a tensor. 
15 Note the choice to use ( )exp ni tω−  rather than ( )exp ni tω  in Eq. (7.51) is entirely arbitrary, but this 
particular choice is a more typical notation in nonlinear optics texts.  
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as before for time-dependent perturbation theory, now using the expression (7.51) for the 
electric field, and hence having a perturbing Hamiltonian 

 ( ) ( ) ( ) ( )ˆ expp s s
s

H t e t z ez i tω ω= = −∑E E  (7.54) 

Presuming as before that the system starts in some specific state m , the time derivative of the 
first-order perturbation correction to the wavefunction then becomes, as in Eq. (7.18) (or (7.45)
) 

 ( ) ( ) ( ) ( )1 expqm
q s qm s

s
a t i t

i
μ

ω ω ω
−

⎡ ⎤= −⎣ ⎦∑E�
=

 (7.55) 

where we have also introduced the more common notation of the electric dipole moment 
between states 

 qm q me zμ ψ ψ= −  (7.56) 

Integrating over time, assuming as before that we can simply neglect any constant of 
integration because we are only considering oscillating effects, we have 

 ( ) ( ) ( )
( ) ( )1 1 expqm s

q qm s
s qm s

a t i t
μ ω

ω ω
ω ω

⎡ ⎤= −⎣ ⎦−
∑

E
=

 (7.57) 

We may then use the relation (7.13) that allows us to calculate subsequent levels of 
perturbative correction from the preceding one to calculate the second-order correction. Using 
(7.13), we have 
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∑ ∑
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E
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=

=

 (7.58) 

where we have noted that 

 jq qm jmω ω ω+ =  (7.59) 

(This is simply a statement that the energy separation between level j and m is equal to the 
energy separation between level q and level m plus the energy separation between level q and 
level j.) Hence 

 ( ) ( ) ( ) ( )
( )( ) ( )2

2
,

1 expjq u qm s
j jm s u

q s u jm s u qm s

a t i t
μ ω μ ω

ω ω ω
ω ω ω ω ω

⎡ ⎤= − −⎣ ⎦− − −
∑∑

E E
=

 (7.60) 

Similarly,  

( ) ( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )

3 2

3
, , ,
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k j kj v kj v
j v

kj v jq u qm s
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E
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=

 (7.61) 

and so 
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=  (7.62) 

Note in these sums, j and q are indices going over all possible states of the system, and s, u, 
and v are indices going over all the frequencies of electric fields, including both their positive 
and negative versions. 

Formal calculation of linear and nonlinear susceptibilities 

In general, including all possible terms in the polarization up to third order in the perturbation, 
we now formally write the expectation value of the polarization as being the observable 
quantity, using ezμ = − as the dipole moment (operator), 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 2 3 0 1 2 3

0 1 2 3

1 1t
V V

t t t t

μ μ= Ψ Ψ ≅ Φ + Φ + Φ + Φ Φ + Φ + Φ + Φ

≅ + + +

P

P P P P
 (7.63) 

where  

 ( ) ( ) ( )0 0 01
V

μ= Φ ΦP  (7.64) 

is the static polarization of the material, 

 ( ) ( ) ( ) ( ) ( ) ( )( )1 0 1 1 01t
V

μ μ= Φ Φ + Φ ΦP  (7.65) 

is the linear polarization (first-order correction to the polarization), giving linear refractive 
index 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 0 2 2 0 1 11t
V

μ μ μ= Φ Φ + Φ Φ + Φ ΦP  (7.66) 

is the second-order polarization, giving rise to phenomena such as second harmonic 
generation, and sum and difference frequency mixing, and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3 0 3 3 0 1 2 2 11t
V

μ μ μ μ= Φ Φ + Φ Φ + Φ Φ + Φ ΦP  (7.67) 

is the third-order polarization, giving rise to phenomena such as third harmonic generation, 
nonlinear refractive index, and four-wave mixing. 

Now we will formally evaluate the different linear and nonlinear susceptibilities associated 
with these various phenomena.  

Linear susceptibility 

We have already calculated this, but we briefly repeat the result in the present notation as used 
in nonlinear optics. Since by choice ( )(0) exp m mi tω ψΦ = − , and using the standard 
expansion notation (7.39) for (1)Φ , we have, from the definition (7.64) above 
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Now we make a formal change, trivial for this case, but more useful in the higher order 
susceptibilities. We note that, since we are summing over positive and negative values of sω  
we can change sω  to sω−  in any terms we wish without changing the final result for the sum. 
Hence we can write 

 ( ) ( ) ( ) ( )1 1 1 1 expmq qm s s
q s qm s qm s

t i t
V

μ μ ω ω
ω ω ω ω

⎧ ⎫⎪ ⎪= + −⎨ ⎬− +⎪ ⎪⎩ ⎭
∑∑ 1P E

=
 (7.69) 

We can if we wish now write 

 
( ) ( ) ( ) ( ) ( ) ( )
1

1 ; exps s s s
so

t
i tχ ω ω ω ω

ε
= −∑

P
E  (7.70) 

where by ( )(1) ;s sχ ω ω  we mean the (linear) susceptibility that gives rise to a polarization at 
frequency sω  in response to a field at frequency sω . Of course, this notation is trivial for the 
case of linear polarization, since there is no question that the frequency of the polarization will 
be the same as that of the incident field, but this will not necessarily be the case for higher 
order polarizations. From Eqs. (7.69) and (7.70), we must have the definition 

 ( ) ( )1 ;s s mq qm
q mq s mq s

χ ω ω μ μ
ω ω ω ω

⎡ ⎤1 1
= +⎢ ⎥

− +⎢ ⎥⎣ ⎦
∑  (7.71) 

We can see directly from this, incidentally, that  

 ( ) ( ) ( ) ( )1 1; ;s s s sχ ω ω χ ω ω= − −  (7.72) 

so the latter is redundant here (an example of one of the many symmetries inherent in this 
approach to susceptibilities). This expression allows us to calculate the linear refractive index. 

Second-order susceptibility 

In the second-order case, we use (7.66) above. For the first pair of terms, we have 
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E E E E

=
 (7.73) 

Making the formal substitution of sω−  for sω  and uω−  for uω , just as we did for the linear 
case above, makes no difference to the result of the sum because it is over positive and 
negative frequencies anyway, and so we obtain 
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Now examining the third term in (7.65) above, we similarly have 
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 (7.75) 

where we made the formal substitution of uω−  for uω with the same justification as before. 

Hence, now having all terms arranged with the same formal time dependence of 
( )exp u si tω ω− +⎡ ⎤⎣ ⎦ , we can write 

 ( ) ( ) ( ) ( ) ( ) ( )2 2

,

1 ; ,u s u s u s
s u

t
V

χ ω ω ω ω ω ω= +∑P E E  (7.76) 

where 
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  (7.77) 

Second-order nonlinear optical phenomena 

With this first non-trivial case, we see the usefulness of the notation. For example, if we 
consider u sω ω= , we see that this ( ) ( )2 2 ; ,s s sχ ω ω ω  gives the strength of the second harmonic 
generation process with input frequency sω . We can see, incidentally, that this effect would be 
relatively quite strong if we had an energy level j  such that jmω  was close to 2 sω , and 
especially if there was another energy level q such that qmω  was close to sω , because then we 
would have two strong resonant denominators.  

If we consider that our original electric field has two frequency components, uω  and sω , we 
can easily see that ( ) ( )2 ; ,u s u sχ ω ω ω ω+  directly gives the strength of the sum frequency 
generation process. With such fields, we must also remember that the negative of the actual 
frequency should be considered as well since it is included in the sums over frequencies, and 
so we would also have a process whose strength was given by ( ) ( )2 ; ,u s u sχ ω ω ω ω− − , which 
is one of the difference frequency generation terms. We can proceed with any combination of 
input frequencies to calculate the strengths of the processes giving rise to all of the new 
generated frequencies given by this second-order perturbation correction, and the analysis of 
such effects is a core part of nonlinear optics.  
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Note, incidentally, that if all the states in a system have definite parity (in the single direction 
we are considering), there will be exactly no second-order nonlinear optical effects. We can 
see this by looking at the three matrix elements. If the states have definite parity, then for qmμ  
to be finite, states q and m must have opposite parity, and for jqμ to be finite, states j and q 
must have opposite parity, which then means that states j and m must have the same parity, and 
hence mjμ  must be zero. Hence the product of these three matrix elements is always zero if all 
the states have definite parity. Hence a certain asymmetry is required in the material if the 
second-order effects are to be finite. 

Third-order susceptibility 

The approach for third-order susceptibility is similar, and we will not repeat the algebra here. 
We merely quote the result, which is left as an exercise for the reader. We can write 
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in which case we would have 
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We can see here, similarly to the second-order case, how we can calculate the strength of 
various third-order processes. For example, setting v u sω ω ω= = , as would be particularly 
relevant if there was only one input frequency, would give the strength of the process for third 
harmonic generation.  

Problems 
 7.4.1  Consider a quantum mechanical system that has effectively only two levels of interest, levels 1 and 

2, separated by some energy 21E . We presume that each of the levels has a spatial wavefunction with 
a definite parity. The system is subject to an oscillating electric field of the form  

 ( ) ( ) ( ) ( )exp exp 2 coso ot i t i t tω ω ω= ⎡ − + ⎤ =⎣ ⎦E E E   
leading to a perturbing Hamiltonian, in the electric dipole approximation, of 

 ( ) ( ) ( ) ( )ˆ exp expp oH t e t z e z i t i tω ω= = ⎡ − + ⎤⎣ ⎦E E   
We presume that 21Eω ≠=  [so we avoid steady absorption from the radiation field, and may consider 
the “steady state” case as in the consideration of linear susceptibility or refractive index], and we take 
the system to be completely in the lower state in the absence of any perturbation. 
(i) Show that the second-order perturbation of the upper state (state 2) is zero (or at least constant in 

time, and hence not of interest here) (i.e., ( )2
2 0a =  or at least is constant) 
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(ii) What can you say about the parities of the two states if there is to be any response at all to the 
perturbing electric field? 

 7.4.2  [Note: this problem can be used as a substantial assignment.] Consider a quantum mechanical 
system in which a single electron has only three levels of interest, levels 1, 2, and 3, with energies 

1E , 2E , and 3E  and spatial wavefunctions 1ψ , 2ψ , and 3ψ  respectively. The system is initially 
in its lowest level (level 1). [We could imagine this system is, for example, a molecule of some 
kind.]. The system is illuminated by a light beam of angular frequency ω, polarized in the z direction, 
which we can write as 

 ( ) ( ) ( ) ( )exp exp 2 coso ot i t i t tω ω ω= ⎡ − + ⎤ =⎣ ⎦E E E   
and which perturbs the molecule through the electric dipole interaction.  
(i) Derive an expression for the contributions to the expectation value of the dipole moment, dipμ , 

that are second-order in this perturbation. At least for this derivation, you may presume that all 
the matrix elements between the spatial parts of the wavefunctions, 

 ij i jz zψ ψ=   

 are finite. [Note: a term of the form (1) (1)
i jzφ φ  would give a second-order contribution, as 

would a term (0) (2)
i jzφ φ , whereas a term (1) (2)

i jzφ φ  would be a third-order contribution.] 
[This derivation may take quite a lot of algebra, though it is straightforward, and does lead to a 
relatively simple expression in the end.] 

(ii) You should find in your result to part (i) above a term or set of terms corresponding to second 
harmonic generation, i.e., a term or terms ( )cos 2 tω∝ . You should also have another term or set 
of terms that behaves differently in time. This second effect is sometimes known as optical 
rectification. What is the physical meaning of this second term, i.e., if we shine such a light 
beam at this “molecule”, what is the physical consequence that results from this term? 

(iii) What will be the consequence for these second-order effects if the states all have definite parity? 
(iv) Calculate the amplitudes of the second harmonic and optical rectification electric fields 

generated under the following set of conditions. Take 1ijz = Å for all of the ijz  except we 
choose 11 0z =  (i.e., no static dipole in the lowest state). 2 1 1E E− =  eV, 3 1 1.9E E− = eV, 

0.8ω == eV, presume that there are 1019 cm-3 of these “molecules” per unit volume, and 
consider an optical intensity I of the field ( )tE  of 1010 W/m2. [Such an intensity corresponds to 
that of a 1 pJ, 1 ps long light pulse focused to a 10 x 10 micron spot, a situation easily achieved 
in the laboratory.] [Note that the relation between optical intensity (i.e., power per unit area) I 
and the amplitude oE  is 

22 o

o

I
Z

=
E  

 where 377oZ ≅ Ω . Note also that the polarization P is the same as the dipole moment per unit 
volume, and the magnitude of a polarization can always be viewed in terms of an equivalent pair 
of equal and opposite surface charge densities σ± , unit distance apart, of magnitude σ = P . The 
electric field from such charge densities, assuming no background dielectric constant (i.e., 

1rε = ) is of magnitude /dip oσ ε=E , and so the electric field from a dipole moment per unit 
volume of magnitude P is /dip oε=E P . This field, incidentally, is negative in direction if the 
dipole moment is positive in direction (positive dipole moment corresponds to positive charge 
on the right, negative on the left, which corresponds to a field pointing away from the positive 
charge).] 

(v) Repeat the calculations of part (iv) but for 0.98ω ==  eV. [Note: you should only now need to 
calculate a few terms since these will dominate over all of the others.] 

 7.4.3  [Note: this problem can be used as a substantial assignment.] Consider a quantum mechanical 
system in which a single electron has only four states of interest, states 1, 2, 3, and 4, with energies 
E1, E2, E3, and E4 (all distinct) and spatial wavefunctions 1ψ , 2ψ , 3ψ , and 4ψ  respectively, 
all with definite parities. The system is initially in its lowest level (level 1). [We could imagine this 
system is, for example, a molecule of some kind.]. The system is illuminated by a light beam of 
angular frequency ω, polarized in the z direction, which we can write as 
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 ( ) ( ) ( ) ( )exp exp 2 coso ot i t i t tω ω ω= ⎡ − + ⎤ =⎣ ⎦E E E   
and which perturbs the molecule through the electric dipole interaction, with perturbing Hamiltonian 

 ( )ˆ ˆ exp exp( )p poH H i t i tω ω= ⎡ − + ⎤⎣ ⎦   
where  

 ˆ
poH e z≡ oE   

We will presume that ω=  and its multiples (e.g., ω2= , 3 ω= ) do not coincide with any of the energy 
differences between the states 1, 2, 3, and 4. Throughout this problem, use a notation where 

/n nEω ≡ =  and ( ) /p q pqE E ω− ≡= , and ˆpq p po qH Hψ ψ≡ .  
We are interested here in calculating the lowest order nonlinear refractive index contribution from 
such systems, a contribution that corresponds to a dipole dipμ  (strictly, its expectation value) that is 
third order in the field oE  (i.e., third order overall in the perturbation), and is at frequency ω .  
As we do this, we will be considering terms up to the third order in the time-dependent perturbation 
expansion of the wavefunction 

 ( ) ( ) ( ) ( )0 1 2 3Ψ ≅ Ψ + Ψ + Ψ + Ψ   

where ( ) ( )4

1
( ) exp( )nn

s s s
s

a t i tω ψ
=

Ψ ≡ −∑ .  

For simplicity in handling this problem, we choose 1 0E =  (which we can do arbitrarily because this 
is simply an energy origin for the problem). Given this choice, and our choice of state 1 as the 
starting state, we have ( )0

1ψΨ = , i.e., (0)
1 1a = , (0) (0) (0)

2 3 4 0a a a= = = .  
(i) Show that the expression for the first-order expansion coefficients ( )1 ( )ja t  is 

 
( ) ( )1 11(1)

1 1

exp exp
( )

j jj
j

j j

i t i tH
a t

ω ω ω ω

ω ω ω ω

⎧ ⎫⎡ ⎤ ⎡ ⎤− +⎪ ⎪⎣ ⎦ ⎣ ⎦= − +⎨ ⎬
− +⎪ ⎪⎩ ⎭

=
 . 

 [Note: in integrating over time to get the required result, you may neglect the formal constant of 
integration as we are only interested in the time varying parts here.]  

(ii) Now show that the expression for the second-order expansion coefficients ( )2 ( )ma t  is 
4

(2)
12

1

1( )m mj j
j

a t H H
=

= ∑=
 

( )
( )( )

( )
( )

[ ]
( )

( )
( )( )

1 111

1 1 1 1 1 1 1 1

exp 2 exp 2expexp
2 2

m mmm

j m j m j m j m

i t i ti ti tω ω ω ωωω
ω ω ω ω ω ω ω ω ω ω ω ω ω ω

⎧ ⎫⎡ − ⎤ ⎡ + ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦× + + +⎨ ⎬
− − − + + +⎪ ⎪⎩ ⎭

 

 noting that successive orders in the perturbation calculation of the state can be calculated from 
the previous one. (Note that 1 1mj j mω ω ω+ = , which may keep the algebra slightly simpler.) [For 
simplicity here and below, you may ignore the formal problem that 11 0ω = .]  

(iii) Now similarly show that the expression for the third-order expansion coefficients ( ) ( )3
qa t  is 

( )
( )( )( )

( )
( )( )( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )

4 4
(3)

13
1 1

1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1 1 1

1

exp 3 exp

2 3 2

exp exp exp exp

q qm mj j
m j

q q

j m q j m q

q q q q

j m q j m q j m q j

a H H H

i t i t

i t i t i t i t

ω ω ω ω

ω ω ω ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω

= =

−
=

⎧ ⎡ ⎤ ⎡ ⎤− −⎪ ⎣ ⎦ ⎣ ⎦× +⎨
− − − − − −⎪⎩
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ + + +

− − − + + −

∑∑=

( ) ( )
( )

( )( )( )
( )

( )( )( )

1 1

1 1

1 1 1 1 1 1

exp exp 3

2 2 3

m q

q q

j m q j m q

i t i t

ω ω ω ω

ω ω ω ω

ω ω ω ω ω ω ω ω ω ω ω ω

+ +

⎫⎡ ⎤ ⎡ ⎤+ + ⎪⎣ ⎦ ⎣ ⎦+ + ⎬
+ + + + + + ⎪⎭
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(iv) Now derive an expression for the contributions to the expectation value of the dipole moment, 
dip e zμ ≡ Ψ Ψ , that are third order in this perturbation, and that are oscillating at frequencies 

ω  or ω− . [Note: a term of the form ( ) ( )1 1zΨ Ψ  would give a second-order contribution, as 
would a term ( ) ( )0 2zΨ Ψ , whereas a term ( ) ( )1 2zΨ Ψ  or a term ( ) ( )0 3zΨ Ψ  would be a 
third-order contribution. Note also that ( ) ( ) ( ) ( )n r r nz z

∗
Ψ Ψ = Ψ Ψ , and that 

/p q pqe z Hψ ψ = oE . Note too that, because by choice the states have definite parities, then 
0ppH =  for any p, which should help eliminate some terms in the sums here.]  

(v) Now we will restrict the problem to one where the parities of states 1 and 4 are the same and the 
parities of states 2 and 3 are the same as each other but opposite to those of states 1 and 4. For 
simplicity, we will also choose all the non-zero perturbation matrix elements to be equal. Hence 
we have 

 11 22 33 44 14 23 0H H H H H H= = = = = = ; 12 13 24 34 D oH H H H H e z= = = = ≡ oE  
 where DH  and oz  are constants characteristic of the specific system. We will also presume that 

41ω  is very close (but not equal to) 2ω , though we will also assume that 21ω  and 31ω  are not 
very close to ω (or ω− ). As a result, we may retain only the terms for which there is a term 
( )41 2ω ω−  or its equivalent in the denominator. [Ignore again the formal problem that 11 0ω = . 
In a full analysis, these terms cancel out, avoiding the apparent singularity here.] 

(a) Write out the expression for dipμ with these assumptions. 
(b) Choose 21ω ≡=  3 eV, 31ω ≡=  3.5 eV, 41ω ≡=  5.05 eV, ω ≡=  2.5 eV, and oz =  1 Å. 

Presume that there are 1022 cm-3 of such “molecules” per unit volume. Calculate the nonlinear 
refraction coefficient 2n , which is the change of refractive index per unit optical intensity.  

 [Note that (i) the polarization P is the same as the dipole moment per unit volume, (ii) 
oε χ=P E , where oε �  8.85 x 10-12 F/m, and we will assume for simplicity here that the only 

contribution to P is the nonlinear contribution we are calculating (there is also a linear 
contribution which we could also calculate, though we will neglect it for simplicity here), (iii) 
the relative dielectric constant 1rε χ= + , (iv) the refractive index rn ε= , (v) the relation 
between optical intensity (i.e., power per unit area) I  and the amplitude oE  is (strictly, in 
free space, but we will use this relation here for simplicity) 22 /o oI Z= E  where 377oZ ≅ Ω .]  

(c) Suppose we imagine that this model approximately describes nonlinear refractive index in a 
hypothetical optical fiber intended for nonlinear optical switching applications. In such a 
fiber, the cross-sectional size of the optical mode is ~ 10 x 10 μm2, and launched power into 
the fiber could be ~ 10 mW. Nonlinear refractive effects can have quite substantial 
consequences if they lead to changes in optical path length in the total length l  of the fiber is 
of the order of half a wavelength. The change in index will be ~ 2n I , and the resulting 
change in optical path length will be ~ 2n Il . Considering a photon energy of 2.5 eV (as 
above) with 10 mW power, what length l  of fiber would lead to half a wavelength of optical 
path length change from this nonlinear effect? 

(d) Repeat the calculation of part (b) changing 31ω=  to 2.0 eV. Explain your result. 

7.5 Summary of Concepts 

Time-dependent perturbation theory 

In time-dependent perturbation theory, the Hamiltonian is presumed to be the sum of a time-
independent Hamiltonian, ˆ oH , whose eigenenergies nE  and eigenfunctions nψ  are 
presumed known, and a time-dependent perturbation, ( )ˆ pH t . The perturbed wavefunction is 
presumed to be written as  

 ( ) ( )exp /n n n
n

a t iE t ψΨ = −∑ =  (7.4) 

The time derivatives of the first-order corrections to the expansion coefficients are shown to be  
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 ( ) ( ) ( ) ( ) ( )1 01 ˆexpq n qn q p n
n

a t a i t H t
i

ω ψ ψ= ∑�
=

 (7.10) 

where ( ) /qn q nE Eω = − = . 

Higher order perturbation corrections to the state are derived from the immediately preceding 
correction using 

 ( ) ( ) ( ) ( ) ( )1 1 ˆexpp p
q n qn q p n

n
a t a i t H t

i
ω ψ ψ+ = ∑�

=
 (7.13) 

Fermi’s Golden Rule 

For an oscillating perturbation of the form 

 ( ) ( ) ( )ˆ ˆ exp expp poH t H i t i tω ω= − +⎡ ⎤⎣ ⎦  (7.15) 

the transition rate from a state mψ  to a state jψ  can be written as 

 ( )22 ˆ
jm j po m jmw H Eπ ψ ψ δ ω= − =

=
 (7.32) 

or, equivalently, when there is a density of similar transitions per unit transition energy of 
( )Jg ω= , the total transition rate per unit transition energy is given as 

 ( )
22 ˆ

j po m JW H gπ ψ ψ ω= =
=

 (7.31)



Chapter 8  
 
Quantum mechanics in crystalline 
materials 

Prerequisites: Chapters 2 – 7, including the discussion of periodic boundary conditions in Section 
5.4  

One of the most important practical applications of quantum mechanics is the understanding 
and engineering of crystalline materials. Of course, the full understanding of crystalline 
materials is a major part of solid state physics, and merits a much longer discussion than we 
will give here. We will, however, try to introduce some of the most basic quantum mechanical 
principles and simplifications in crystalline materials. This will also allow us to perform many 
quantum mechanical calculations of important processes in semiconductors.  

8.1 Crystals 

a1

a2

R

 
Fig.  8.1. Illustration of a simple rectangular lattice in two dimensions. 

A crystal is a material whose measurable properties are periodic in space. We can think about 
it using the idea of a “unit cell”. If we think of the unit cell as a “block” or “brick”, then a 
definition of a crystal structure is one that can fill all space by the regular stacking of these unit 
cells. If we imagine that we marked a black spot on the same position of the surface of each 
block, these spots or “points” would form a crystal lattice. We can if we wish define a set of 
vectors, LR , which we will call lattice vectors. The set of lattice vectors consists of all of the 
vectors that link points on this lattice, i.e.,  
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 1 1 2 2 3 3L n n n= + +R a a a   (8.1) 

Here 1a , 2a , and 3a  are the three linearly independent vectors1 that take us from a given point 
in one unit cell to the equivalent point in the adjacent unit cell. In a simple cubic lattice, these 
three vectors will lie along the x, y, and z directions. The numbers 1n , 2n , and 3n  range 
through all (positive and negative) integer values. Fig.  8.1 illustrates a simple rectangular 
lattice in two dimensions. In three dimensions, there are only 14 distinct kinds of mathematical 
lattices of points (Bravais lattices) that can be made that will fill all space by the stacking of 
identical blocks2.  

 
Fig.  8.2. Illustration of a zinc-blende lattice, i.e., two interlocking face centered cubic lattices. 
The larger atoms are clearly on a face-centered cubic lattice. The smaller atoms are also on a 
face-centered cubic lattice that is displaced with respect to the other lattice, though this second 
lattice structure may be less obvious from the illustration. The diamond lattice has the same 
structure, but then both sets of atoms are of the same type. Each atom of one type is connected by 
bond lines to four other atoms of the other type, and those four atoms lie on the corners of a 
regular tetrahedron (a four-sided structure with equal (triangular) sides). The bond lines are 
shown, as well as the edges of a cube (these edges are not bond lines). 

We will not concern ourselves here with the details of the various crystal lattices and their 
properties, and will for simplicity imagine that we are dealing with a cubic kind of lattice. A 
large fraction of the semiconductor materials of practical interest, such as silicon, germanium, 
and most of the III-V (e.g., GaAs) and II-VI (e.g., ZnSe) materials have a specific form of 
cubic lattice. This lattice is based on two interlocking face-centered cubic lattices. A face-
centered cubic lattice is one with an atom on each corner of a cube plus one in the middle of 
each face. In the case of the III-V and II-VI materials of this type, which are known as zinc-
blende structure materials, the group III (or II) atoms lie on one such face-centered cubic 
lattice, and the group V (or VI) lie on the interlocking face-centered cubic lattice. In the case of 
the group IV materials (e.g., silicon, germanium), both interlocking lattices of course have the 
same atoms on them, and this structure is called the diamond lattice. The basic quantum 

                                                           
1 Linear independence means that none of these vectors can be expressed as any kind of linear 
combination of the other vectors. In practice this means that we do not have all three vectors in the same 
plane. 
2 A group of atoms can be associated with each mathematical lattice point. That group can have its own 
symmetry properties, so there are more possible crystals than there are Bravais lattices. 
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mechanical properties we discuss here can, however, be generalized to all the Bravais lattices. 
The zinc-blende lattice is illustrated in Fig.  8.2. 

8.2 One electron approximation 

A crystal may well have a very large number of atoms or unit cells in it, e.g., 1023. How can we 
start to deal with such a complex system? One key approximation is to presume that any given 
electron sees a potential ( )PV r  from all the other nuclei and electrons that is periodic with the 
same periodicity as the crystal lattice. Because of that presumed periodicity, we have 

 ( ) ( )P L PV V+ =r R r  (8.2) 

In this potential the charged nuclei are presumed to be fixed, and the charge distribution from 
all the other electrons is also presumed to be effectively fixed, giving this net periodic 
potential.  

It is important to recognize that this is an approximation. In truth, any given electron does not 
quite see a periodic potential from all the other nuclei and electrons because it interacts with 
them, pulling them slightly out of this hypothetical periodic structure. We treat those 
interactions, when we have to, as perturbations, however, so we start by pretending we can use 
this perfectly periodic potential to model the potential any one electron sees in this the 
crystalline material.  

If we do have to examine the interactions between the electron states and the nuclei that 
perturb this perfectly crystalline world, we describe nuclear motions through the modes of 
vibration of periodic collections of masses connected by the “springs” of chemical bonds. 
These modes are called phonon modes. Just as photons are the quanta associated with 
electromagnetic modes, so phonons are the quanta associated with these mechanical modes. 
The interaction of the electrons with the nuclei is therefore described through electron-phonon 
interactions, for example. Any given electron state will also in reality interact with other 
electrons, and we can describe that through various electron-electron interactions such as 
electron-electron scattering. There are also many other interactions between particles that we 
can consider in solid state physics. These interactions are very often handled as perturbations, 
starting with the one-electron model results as the “unperturbed” solutions.  

In this one-electron approximation, we presume, then, that we can write an effective, 
approximate Schrödinger equation for the one electron in which we are interested, e.g., 
neglecting magnetic effects for simplicity. 

 ( ) ( ) ( ) ( )
2

2

2 P
e

V E
m

ψ ψ ψ− ∇ + =r r r r=  (8.3) 

8.3 Bloch theorem 

The Bloch theorem is a very important simplification for crystalline structures. It essentially 
enables us to separate the problem into two parts, one that is the same in every unit cell, and 
one that describes global behavior. For simplicity, we will prove this theorem in one direction 
and then generalize to three dimensions. We know that the crystal is periodic, having the same 
potential at x sa+  as it has at x  (where s  is an integer). Any observable quantity must also 
have the same periodicity because the crystal must look the same in every unit cell. For 
example charge density 2ρ ψ∝  must be periodic in the same way. Hence 
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 ( ) ( )2 2
x x aψ ψ= +  (8.4) 

which means 

 ( ) ( )x C x aψ ψ= +  (8.5) 

where C is a complex number of unit amplitude. Note that there is no requirement that the 
wavefunction itself be periodic with the crystal periodicity since it is not apparently an 
observable or measurable quantity. 

To proceed further, we need to introduce boundary conditions on the wavefunction. As is often 
the case, the boundary conditions lead to the quantization of the problem. The introduction of 
boundary conditions for the crystal is a tricky problem. We have mathematically idealized the 
problem by presuming that the crystal is infinite, so we could get a simple statement of 
periodicity, such as Eq.(8.2) with the simple definition of the lattice vectors, Eq. (8.1). But in 
practice, we know all crystals are actually finite. How can we introduce the concept of the 
finiteness of the crystal, and corresponding finite countings of states, without having to 
abandon our simple description in terms of infinite periodicity?  

In one dimension, we could argue as follows. Suppose that we had a very long chain of 
N equally spaced atoms, and that we joined the two ends of the chain together. Interpreting 
distance x  as the distance along this loop, we could have the simple kind of definition of 
periodicity we have used above, for example, ( ) ( )P PV x ma V x+ = , where m  is any integer 
(even much larger than N ). We could argue that, if this chain is very long, we do not expect 
that its internal properties will be substantially different from an infinitely long chain, and so 
this finite system will be a good model. Such a loop introduces a boundary condition, however. 
We do expect that the wavefunction is a single-valued function (otherwise how could we 
differentiate it, evaluate its squared modulus, etc.), so when we go round the loop we must get 
back to where we started, i.e., explicitly 

 ( ) ( )x x Naψ ψ= +  (8.6) 

This is known as a periodic boundary condition3 (also known as a Born-von Karman boundary 
condition). Combining this with our condition (8.5), we have 

 ( ) ( ) ( )Nx x Na C xψ ψ ψ= + =  (8.7) 

so 

 1NC =  (8.8) 

and so C is one of the N roots of unity, i.e., 

 ( )exp 2 / ; 0, 1, 2, 1C is N s Nπ= = −…  (8.9) 

(We could also choose 

 exp 2 ; 0, 1, 2, 1sC i m s N
N

π⎛ ⎞⎛ ⎞= + = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

… , m  any integer (8.10) 

so there is some arbitrariness here, though this will not matter in the end.) 

                                                           
3 See the discussion of periodic boundary conditions in Section 5.4. 
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Substituting C from (8.9) in (8.7), 

 ( )( ) exp ( )x a ika xψ ψ+ =  (8.11) 

where we could choose 

 2 ; 0, 1, 2, 1sk s N
Na
π

= = −…  (8.12) 

Note we could also choose 

 2 2 ; 0, 1, 2, 1s mk s N
Na a
π π

= + = −…  (8.13) 

Conventionally, we choose 

 2 ... 0, 1, 2,... / 2nk n N
Na
π

= = ± ± ±  (8.14) 

which still gives essentially N states4, but now symmetrically disposed about 0k = . Note the 
allowed k values are evenly spaced by 2 / Lπ  where L Na=  is the length of the crystal in this 
dimension5, regardless of the detailed form of the periodic potential. Hence, one form of the 
Bloch theorem in one dimension is the statement that the wavefunction in a crystal can be 
written in the form Eq. (8.11), subject to the condition (8.14) on the allowed k  values.  

There is another more common, and often more useful, way to state the Bloch theorem. We 
multiply Eq. (8.11) by exp[ ( )]ik x a− +  to obtain 

 ( ) ( )( ) ( ) ( )exp expx a ik x a x ikxψ ψ+ − + = −  (8.15) 

Hence if we define a function  

 ( ) ( ) ( )expu x x ikxψ= −  (8.16) 

we can restate Eq. (8.15) as 

 ( ) ( )u x a u x+ =  (8.17) 

and hence ( )u x  is periodic with the lattice periodicity. (By obvious extension of Eq. (8.17), 
we conclude ( 2 ) ( ) ( )u x a u x a u x+ = + = , and so on for every unit cell in our crystal.) Hence, 
we can rewrite the Bloch theorem equation (8.11) in the alternative form 

 ( ) ( ) ( )expx u x ikxψ =  (8.18) 

where ( )u x  is periodic with the lattice periodicity. (Note that the two forms (8.11) and (8.18) 
are entirely equivalent – we have just proved that (8.11) implies (8.18), and it is trivial to show 
by mere substitution that (8.18) implies (8.11).)  

                                                           
4 Strictly, of course, Eq. (8.14) gives us N + 1 states, and we should actually take off one or other of the 
end points (i.e., +N/2 or –N/2) to get a rigorous result, but despite that, the result is commonly written as 
in Eq. (8.14). If that counting really matters, as it might in some short chain, then we should be rigorous 
here, removing one of these two from the counting. 
5 Note that we now take the length of the crystal to be the length of the “loop” presumed in the periodic 
boundary conditions.  
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Fig.  8.3 illustrates the concept of the Bloch functions in the form of Eq. (8.18). We can think 
of the exp( )ikx  as being an example of an “envelope” function that multiplies the unit cell 
function ( )u x . 

envelope

unit cell function

Bloch function

 
Fig.  8.3. Illustration of the Bloch function as a product of an envelope function, which is a 
sinusoidal wave, and a unit cell function, which is the same in every unit cell. (Here we show the 
real part of both functions) 

In three dimensions, we can follow similar arguments. Periodic boundary conditions are then a 
strange concept if we treat them too literally – we would then need to imagine a crystal where 
each face is joined to the opposite one in a long loop, something we cannot do in three 
dimensions. Despite this absurdity, we do use periodic boundary conditions in three 
dimensions as being a way that allows our simple definition of periodicity and yet correctly 
counts the available states6. 

The Bloch theorem in three dimensions is otherwise a straightforward extension of the one-
dimensional version. We have 

 ( )( ) exp . ( )iψ ψ+ =r a k a r  (8.19) 

or equivalently 

 ( ) ( ) ( )exp .u iψ =r r k r  (8.20) 

where a is any crystal lattice vector, and ( ) ( )u u= +r r a . Considering the three crystal basis 
vector directions, 1, 2, and 3, with lattice constants (repeat distances) a1, a2, and a3, and 
numbers of atoms N1, N2, and N3 

 1
1 1 1

1 1

2
... 0, 1, 2,... / 2

n
k n N

N a
π

= = ± ± ±  (8.21) 

and similarly for the other two components of k in the other two crystal basis vector directions. 
Note that the number of possible values of k is the same as the number of atoms in the crystal.7 
Eqs. (8.20) and (8.21) therefore constitute the Bloch theorem result that the electron 
wavefunction can be written in this form in a crystalline material.  

                                                           
6 Again, see the discussion of periodic boundary conditions in Section 5.4. 
7 Again, strictly, with the definition (8.21) we would actually appear to have N + 1 allowed values of k in 
a given direction for a crystal N atoms thick in that direction. This is actually not correct, and must be 
dealt with properly for some short chain, but does not matter for large crystals. 
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Problem 
 8.3.1  Consider a ring of six identical “atoms” or “unit cells”, e.g., like a benzene ring, with a repeat 

length (center to center distance between the atoms) of 0.5 nm. Explicitly write out each of the 
different allowed Bloch forms (i.e., ( ) ( )exp( )v u v ikvψ = ) for the effective one-dimensional electron 
wavefunctions ( )vψ , where v is the distance coordinate as we move round the ring, and ( )u v  is a 
function that is periodic with period 0.5 nm. Be explicit about the numerical values and units of the 
allowed values of k. 

8.4 Density of states in k-space 

We see that the allowed values of k1, k2, and k3 are each equally spaced, with separations  

 1
1 1 1

2 2k
N a L

π πδ = = , 2
2 2 2

2 2k
N a L

π πδ = = , and 3
3 3 3

2 2k
N a L

π πδ = =  (8.22) 

respectively along the three axes8. Note that the lengths of the crystal along the three axes are 
respectively 1 1 1L N a= , 2 2 2L N a= , 3 3 3L N a= . We could draw a three-dimensional diagram, 
with axes k1, k2, and k3, and mark the allowed values of k. We would then have a set of dots in 
space that themselves constitute a mathematical lattice. This lattice is known as the reciprocal 
lattice, which is a lattice in so-called “k-space”. We can then imagine that each point has a 
volume surrounding it, with these volumes touching one another to completely fill all the 
space9. For our cubic lattices, these volumes in k-space will be of size 1 2 3kV k k kδ δ δ δ= , i.e.,  

 
( )32

kV
V
π

δ =  (8.23) 

where 1 2 3V L L L=  is the volume of our crystal. Hence the density of states in k-space is 
1/ kVδ . Note that this density grows as we make the crystal larger. It is often more useful to 
work with the density of states per unit volume of the crystal. Hence we have the density of 
states in k-space per unit volume of the crystal 

 ( )
( )3

1
2

g
π

=k  (8.24) 

The density of states is a very useful quantity for actual quantum mechanical calculations in 
crystalline materials.  

Problem 
 8.4.1  A two-dimensional crystal has a rectangular unit cell, with spacings between the centers of the 

atoms of 0.5 nm in one direction (e.g., the x direction), and 0.4 nm in the other direction (e.g., the y 
direction). Presuming that the crystal has 1000 unit cells in each direction, sketch a representative 
portion of the reciprocal lattice on a scale drawing, showing the dimensions, units, and directions 
(i.e., kx and ky)  

                                                           
8 The axis directions in k-space are not in general the same as the axis directions in the real space lattice, 
though they are the same for cubic lattices. The lattice vectors in k-space (i.e., the vectors that separate 
adjacent points in k-space) are, more formally, ( ) ( )( )1 2 3 1 2 32 /π= × ⋅ ×b a a a a a  and the cyclic permutations 
of this for the other directions.  
9 These volumes would be the unit cells of the reciprocal lattice. 
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8.5 Band structure 

If we knew the potential ( )PV r , and could solve the one-electron Schrödinger equation (8.3), 
we could calculate the energies E of all of the various possible states. There are several ways 
of approaching such calculations from first principles, and we will not go into those here. The 
results of such calculations give what is known as a band structure.  

There are multiple bands in a band structure (in fact an infinite number), but usually only a few 
are important in determining particular properties of a material. Fig.  8.4 illustrates a simple 
band structure. Each band has a total number of allowed k-states equal to the number of unit 
cells10 in the crystal. These states are evenly spaced in k-space, as discussed above. Each band 
loosely corresponds to a different atomic state in the constituent atoms – the bands can be 
viewed as being formed from the atomic states as the atoms are pushed together into the 
crystal.  

0 π/a-π/a

k

E

EG

 
Fig.  8.4. Figurative illustration of a semiconductor band structure, plotted along one crystal 
direction. The upper “band” (line) will be essentially empty of electrons, and is called the 
conduction band; the lower band will be essentially full of electrons, and is called the valence 
band. 

Fig.  8.4 illustrates a simplified band structure, similar to structures encountered with some 
semiconductors. In each band, we only have to plot k-values from / aπ−  to / aπ . (This range 
is sometimes known as the (first) Brillouin zone.) The bands are usually plotted as if they were 
continuous, but in fact k can only take on discrete (though evenly spaced) values, and hence 
the bands are really a set of very closely spaced points on this diagram. The lower band is like 
the highest valence band in a semiconductor, and, in the unmodified or unexcited 
semiconductor, it is typically full of electrons. The upper band is like the lowest conduction 
band in some semiconductors, and, again in the unmodified or unexcited semiconductor, it is 

                                                           
10 Strictly, we need to say the number of “primitive” unit cells, where the primitive unit cells are the 
smallest (in volume) unit cells we can construct. 
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typically empty of electrons. GE  is the band gap energy that separates the lowest point in the 
conduction band from the highest point in the valence band. The particular band structure in 
Fig.  8.4 corresponds to what is called a direct gap semiconductor; the lowest point in the 
conduction band is directly above the highest point in the valence band. Many III-V and II-VI 
semiconductors are of this type. It is also very common for there to be minima or maxima in 
the bands at 0k = . Also shown in the conduction band in Fig.  8.4 are subsidiary minima away 
from 0k = . It is possible that these minima, rather than any minimum at 0k = , are the lowest 
points in a semiconductor conduction band structure, in which case we have an indirect gap 
semiconductor. Silicon and germanium are both indirect gap semiconductors. 

The band structure in Fig.  8.4 is also drawn to be symmetric about 0k = . Band structures are 
often symmetric in this way. In our simple one-electron model, neglecting magnetic effects, 
the existence of symmetries like this is easily proved. Suppose that ( , ) ( ) exp( . )u iψ = kk r r k r  is 
the Bloch function that satisfies the Schrödinger equation for the specific allowed value k. We 
have now introduced k as an explicit notation in our Bloch function parts. (Note, incidentally, 
that the unit cell part of the wavefunction, ( )uk r , is in general different for every different k). 
Hence we have 

 ( ) ( )ˆ , ,H Eψ ψ= kk r k r  (8.25) 

where Ek  is the eigenenergy associated with this specific k and ( ) ( )2 2ˆ / 2 e PH m V= − ∇ + r= . 
Now take the complex conjugate of both sides of Eq. (8.25). We note that Ĥ expressed in this 
way does not change when we take the complex conjugate, and we also know that Ek  is real 
since it is the eigenvalue associated with a Hermitian operator. Hence we have 

 ( ) ( )ˆ , ,H Eψ ψ∗ ∗= kk r k r  (8.26) 

But ( ) ( ) ( ), exp .u iψ ∗ ∗= −kk r r k r , which is also a wavefunction in Bloch form, but for 
wavevector –k. Hence we are saying that for every Bloch function solution with wavevector k 
and energy Ek , there is one with wavevector –k with the same energy. Hence the band 
structure is symmetric about 0k = .11 We can if we wish choose to write 

  ( ) ( ) ( ) ( ) ( ) ( ), exp . exp . ,u i u iψ ψ∗ ∗
−= − ≡ − = −k kk r r k r r k r k r  (8.27) 

This equivalence of the energies for k and −k  is known as Kramers degeneracy. 

Problem 
 8.5.1  Conventionally, we express Bloch functions within the “first Brillouin zone”, which for a simple 

one-dimensional crystal of repeat length a is the range / /a k aπ π− ≤ ≤ . We could instead consider k 
values lying outside this range. Show, however, that any such Bloch function (i.e., a function of the 
form ( ) ( )exp( )x u x ikxψ =  where u(x) is a function periodic with repeat length a) for any knew outside 

                                                           
11 We have not yet included electron spin. The consequent more sophisticated version of the Kramers 
degeneracy proof involves time-reversing the Schrödinger equation (including spin) rather than merely 
taking the complex conjugate. In this case, the Kramers degeneracy remains, though we then find that the 
state with spin up at k is degenerate with the state with spin down at –k and vice versa. See O. Madelung, 
Introduction to Solid State Theory (Springer-Verlag, Berlin, 1978), p 91. 

Often, the fact that the band structure is symmetric about 0k =  means that we have maxima or minima 
in the bands there, as in Fig.  8.4. The required symmetry can also, however, be provided by having 
“mirror image” bands cross at 0k = . It is the band structure overall that is symmetric, not necessarily a 
given band.  



218  Chapter 8  Quantum mechanics in crystalline materials 

this first Brillouin zone can also be expressed as a Bloch function with a k value inside the first 
Brillouin zone. [Hint: any knew lying outside the first Brillouin zone can be written as 

2 /newk k n aπ= +  for some positive or negative integer n.] 

8.6 Effective mass theory 

As was mentioned above, it is very common to have minima or maxima in the bands at 0=k . 
It is also quite common to have other minima or maxima in the band structure, as indicated in 
Fig.  8.4. The minima in the conduction band and the maxima in the valence band are very 
important in the operation of both electronic and optoelectronic semiconductor devices. Any 
extra electrons in the conduction band will tend to fall into the lowest minimum. Any absences 
of electrons in the valence band will tend to “bubble up” to the highest maximum in the 
valence band. Such absences of electrons are often described as if they were positively charged 
“holes”. As a result, the properties of most electronic devices and many optoelectronic devices 
(especially light emitting devices, which involve recombination of electrons in the conduction 
band with holes in the valence band) are dominated by what happens in these minima and 
maxima. It is also the case in optoelectronics that many other devices, such as some optical 
modulators, work for photon energies very near to the band gap energy, GE , and their 
properties are also determined by the behavior of electrons and holes in these minima and 
maxima. 

Because of the importance of these minima and maxima in the band structure, it is very useful 
to have approximate models that give simplified descriptions of what happens in these regions. 
One of these models is the effective mass approximation. 

We would expect, near a minimum or maximum, that, to lowest order, the energy Ek  would 
vary quadratically as k is varied along some direction in k-space. For simplicity here, we will 
presume that this variation is isotropic, and also for simplicity we will presume that the 
minimum or maximum of interest is located at 0k = . Neither of these simplifications is 
necessary for this effective mass approach, though it will keep our algebra simpler. This 
isotropic 0k =  minimum or maximum is a good approximation for the lowest conduction 
band, and a reasonable first approximation for the highest valence bands, in the direct gap 
semiconductors that are important in optoelectronics (e.g., GaAs, InGaAs). For the lowest 
conduction bands in silicon or germanium or other indirect gap semiconductors such as AlAs, 
the minima are not at 0k = , and, though approximately parabolic in any given direction, they 
are not isotropic; the theory is, however, easily extended to cover those cases. 

If the energy at the minimum or maximum itself is some amount V, then, by assumption, we 
have 2E V k− ∝k . For reasons that will become obvious, we choose to write this as 

 
2 2

2 eff

kE V
m

= +k
=  (8.28) 

where the quantity effm  is, for the moment, merely a parameter that sets the appropriate 
proportionality. (Of course, as the reader has probably guessed, effm  will turn out to be the 
quantity we call the effective mass.) A relation such as Eq. (8.28) between energy and k-value 
is sometimes called a dispersion relation. This particular approximation for the behavior of the 
energies in a band is called, for obvious reasons, an isotropic parabolic band. 

The reader will note, incidentally, that the effective mass is actually a negative number for the 
case of electrons near the top of the valence band in Fig.  8.4, because the band is curved 
“downwards”. At least in a semiconductor, however, this valence band is always almost 
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entirely full of electrons, and we are more interested in what happens to the few states where 
the electrons are missing. We can, in fact, treat those states of missing electrons (i.e., holes) as 
if they were positively charged, and as if they had a positive mass. The precise reasons why we 
can make this conceptual change are actually quite subtle. They can be deduced by a careful 
consideration of group velocity and the change of group velocity with applied field, though we 
will not repeat the arguments here.12  

The next step in deriving this approximation is to consider a wave packet – a linear 
superposition of different Bloch states. Since we are going to consider the time evolution, we 
will also include the time-varying factor ( )exp /iE t− k =  for each component in the 
superposition. Hence we consider a wavefunction 

 ( ) ( ) ( ) ( ), exp . exp /t c u i iE tΨ = −∑ k k k
k

r r k r =  (8.29) 

where ck  are the coefficients of the different Bloch states in this superposition. We have 
restricted this superposition to states within only one band. We will make the further 
assumption that this superposition is only from a small range of k-states (near 0k = ). This is 
what can be called a slowly varying envelope approximation since it means that the resulting 
wavepacket does not vary rapidly in space.  

Because of this slowly varying envelope approximation, we can presume that, for all the k of 
interest to us, all of the unit cell functions ( )uk r  are approximately the same. Though the 

( )uk r  are all in principle different, and they do indeed vary substantially with important 
consequences for large changes in k, for a sufficiently small range of k we can take them all to 
be the same. Hence we presume 0( ) ( )u u≅k r r  for the range of interest to us, which enables us 
to factor out this unit cell part, writing 

 ( ) ( ) ( )0, ,envt u tΨ = Ψr r r  (8.30) 

where the envelope function ( , )env tΨ r  can be written 

 ( ) ( ) ( ), exp . exp /env t c i iE tΨ = −∑ k k
k

r k r =  (8.31) 

Now we are going to try to construct a Schrödinger-like equation for this envelope function. 
Differentiating with respect to time, and then substituting Ek  from (8.28) gives 

 ( ) ( )exp . exp /envi c E i iE t
t

∂Ψ
= −

∂ ∑ k k k
k

k r= =   

 ( ) ( ) ( ) ( )
2

2 exp . exp / exp . exp /
2 eff

c k i iE t V c i iE t
m

= − + −∑ ∑k k k k
k k

k r k r= = =  

 ( ) ( )
2

2 exp . exp /
2 env

eff

c i iE t V
m

⎡ ⎤= − ∇ − + Ψ⎣ ⎦∑ k k
k

k r= =  (8.32) 

since 2 2exp( . ) exp( . )i k i∇ = −k r k r . Hence finally we have 

 ( ) ( ) ( )
2

2 ( , ) , ,
2 env env env

eff

t V t i t
m t

∂
− ∇ Ψ + Ψ = Ψ

∂
r r r r= =  (8.33) 

                                                           
12 For a detailed discussion of this point, see W. A. Harrison, Applied Quantum Mechanics (World 
Scientific, Singapore, 2000), pp. 189 - 190 
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We can see therefore that we have managed to construct a Schrödinger equation for this 
envelope function. All of the details of the periodic potential and the unit cell wavefunction 
have been suppressed in this equation, and their consequences are all contained in the single 
parameter, the effective mass effm . This effective mass model is a very powerful 
simplification, and is at the root of a large number of models of processes in semiconductors. 

Note incidentally that we have allowed the potential ( )V r  (i.e., the energy of the band at 
0k = ) to vary with position r  in Eq. (8.33). This is justifiable if the changes in that potential 

are very small compared to 2 2 / 2 effk m=  over the scale of a unit cell and over the wavelength 
2 / kπ . Technically, if that potential changes with position, then we no longer have a truly 
periodic structure, and we might presume that we cannot use our crystalline theory to model it, 
but in practice we can presume that the material is to a good enough approximation still locally 
crystalline as long as that potential is slowly varying. In fact, practical calculations and 
comparisons with experiment show that this kind of approach remains valid even for some 
very rapid changes in potential; it does not apparently take many periods of the crystal 
structure to define the basic properties of the crystalline behavior. We can also handle abrupt 
changes in ( )V r  in practice through the use of appropriate boundary conditions. Changes in 

( )V r  with position can result, for example, from applying electric fields, or from changes in 
material composition. 

Effective mass approximation in semiconductor 
heterostructures 

Structures involving more than one kind of material are called heterostructures. An example of 
a change in material composition would be changing the relative proportions of Ga and Al in 
the alloy semiconductor AlxGa1-xAs. Such changes are made routinely in modern 
semiconductor structures, especially abrupt changes in material composition (e.g., the interface 
between GaAs and Al0.3Ga0.7As) in optoelectronic devices such as laser diodes, and, in 
particular, in quantum well structures involving very thin (e.g., 10 nm) layers of semiconductor 
materials.  

In analyzing semiconductor heterostructures, one also has to take into account that the 
effective mass is in general different in different materials. It is then better to write Eq. (8.33) 
as 

 ( ) ( ) ( )
2 1 ( , ) , ,

2 env env env
eff

t V t i t
m t

⎡ ⎤ ∂
− ∇ ⋅ ∇Ψ + Ψ = Ψ⎢ ⎥

∂⎢ ⎥⎣ ⎦
r r r r= =  (8.34) 

and to use boundary conditions such as 

 envΨ  continuous (8.35) 

and  

 1
env

effm
∇Ψ  continuous (8.36) 

to handle abrupt changes in material and/or potential. The choice of Eq. (8.34) and of the 
boundary conditions (8.35) and (8.36) is to some extent arbitrary. For constant mass, Eq. 
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(8.34) is no different from Eq. (8.33). However, these new choices do conserve probability 
density if the mass changes with position.13  

k

dk

kx

ky
2π /L

 
Fig.  8.5. Illustration of the allowed states in k-space, shown here in a two dimensional section, 
with the allowed values illustrated by dots. L is the linear size of the “box” in real space (assumed 
the same in all three directions). Also shown is a thin annulus (or spherical shell) of radius k and 
thickness dk, as used in the calculation of the density of states in energy.  

There is, however, apparently no way of deriving from first principles the boundary conditions 
we should use for the envelope functions, and more than one set is possible. One reason why 
we cannot derive the boundary conditions is that, by allowing abrupt changes in material 
composition, we have severely violated the assumption, implicit in the effective mass theory, 
that the material is locally crystalline. In practice, we find that the above equation and 
boundary conditions work well in modeling many experimental situations; we should simply 
consider them to be a viable model for handling the quantum mechanics of semiconductor 
heterostructures, a model that is at least self-consistent (i.e., it does not lose particles). 

Problems 
 8.6.1.  Suppose we have a crystalline material that has an isotropic parabolic band with an energy 

minimum at some point new o= −k k k  in the Brillouin zone, i.e., in general not at 0=k . Show that 
we can also construct an effective mass Schrödinger equation of the form 

  ( ) ( ) ( )
2

2 ( , ) , ,
2 envnew envnew envnew

eff
t V t i t

m t
∂

− ∇ Ψ + Ψ = Ψ
∂

r r r r= =   

 where the full wavefunction for the electron can be written as 
 ( ) ( ) ( ) ( )0, exp ,o envnewt u i tΨ = ⋅ Ψr r k r r   
 You may presume that the unit cell function in the range of k of interest round about ko is 

approximately the same for all such k, with a form ( )ou r . [Hint: follow through the derivation of the 
effective mass envelope function equation, but centering the energy “parabola” around ko.]  

                                                           
13 Eq. (8.33) does not conserve probability density if the mass changes with position, and neither does the 
boundary condition “ env∇Ψ continuous”. The conservation of probability density for Eq. (8.34) and the 
boundary conditions (8.35) and (8.36) were proved in Problem 3.14.2. 
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 8.6.2.  Suppose that we have a material that has a different effective mass in each of the x, y, and z, 
directions, and hence has a dispersion relation (for a band minimum at k = 0)  

 
22 2 2

2
yx z

x y z

kk kE V
m m m

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
k

=   

 where mx, my, and mz are possibly different effective masses in the three different Cartesian 
directions, and kx, ky, and kz are the corresponding components of the k vector. Show that we can 
construct an effective mass Schrödinger equation for the envelope function, of the form 

 ( ) ( ) ( )
2 2 2 2

2 2 2

1 1 1 ( , ) , ,
2 env env env

x y z
t V t i t

m x m y m z t
⎡ ⎤∂ ∂ ∂ ∂

− + + Ψ + Ψ = Ψ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
r r r r= =  

8.7 Density of states in energy 

We deduced above the form of the density of states in k-space, which is constant (Eq. (8.24)) 
and quite generally independent of the form of the band structure. For many calculations, 
however, what we need is the density of states in energy. For example, we might want to know 
the thermal distribution of carriers (electrons or holes) in a band. The thermal occupation 
probability of a given state is a function of energy, and hence to know the number of electrons 
within some energy range, we need to know the number of states within that energy range.  

The density of states in energy does, however, depend on the band structure. To deduce the 
density of states in energy per unit (real) volume, ( )g E , we need to know the relation between 
the electron energy, E, and k. Here we will work out that density of states for the case of the 
isotropic parabolic band.  

Because the band is isotropic by assumption, states of a given energy E all have the same 
magnitude of k, so they are all found on a spherical surface in k-space. The number of states 
between energies E  and E dE+ , i.e., ( )g E dE , is then the number of states in k-space in a 
spherical shell between k  and k dk+ , where 

 dkdk dE
dE

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (8.37) 

Using the parabolic band dispersion relation Eq. (8.28), we have 

 2

21 1
2

effmdk
dE E V

=
−=

 (8.38) 

Before proceeding further, we now introduce the fact that electrons can have two possible spin 
states. For each k state, we have two possible electron basis states, one corresponding to each 
of the two possible spins. Hence we must multiply our density of states by a factor of 2 if we 
are to include both electron spins, giving the factor of 2 in front of ( )g k  below.14 Putting all of 
this together gives 

( ) ( )
( ) ( )

3 2 2
3 3 2

22 2 1 12 4 4
22 2

effm
g E dE g d k dk k dE

E V
π π

π π
= = =

−
k k

=
 (8.39) 

                                                           
14 We are making the simple assumption that introducing spin means that we double the number of 
transitions. This is essentially correct, though we need a more detailed analysis to correctly calculate the 
spin selection rules in the transitions. 
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i.e. 

 ( ) ( )
3/ 2

1/ 2
2 2

21
2

effm
g E E V

π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠=

. (8.40) 

This gives an “ 1/ 2E ” density of states. As the energy E rises above the energy of the bottom of 
the “parabola”, the density of states rises as the square root of the extra energy, as shown in 
Fig.  8.6. 

8.8 Densities of states in quantum wells  

Semiconductor heterostructures made in the form of a thin layer of a narrow band gap material, 
such as GaAs, between two wider band gap (e.g., AlGaAs) layers, are a good example of a 
quantum-confined structure, in this case known as a quantum well. Such quantum confinement 
changes the form of the density of states from that of simple bulk materials. Those changes are 
particularly useful for engineering improved optoelectronic devices, such as lasers and optical 
modulators. 
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Fig.  8.6. Density of states as a function of energy above the bottom of the band for the case of a 
parabolic band ( 0V =  for simplicity). 

We have previously discussed how to solve for the states of electrons (or holes) for the motion 
perpendicular to the layers (conventionally, the z direction).15 Such solutions are classic 
examples of “particle in a box” quantum mechanical behavior. Now we will look at the formal 
quantum mechanical problem and the full density of states that follow from that behavior once 
we consider the motion of the electron or hole in the other two directions (x and y).  

Formal separation of the quantum well problem 
The simple picture of the states in a quantum well is that the eigenstates of a particle (electron 
or hole) correspond to the particle being in one of the states of the one-dimensional potential, 
with quantum number n and envelope wavefunction, ( )n zψ , in the z direction, and 
unconstrained "free" plane-wave motion in the other two directions (which are in the plane of 

                                                           
15 Now that we have formally developed the effective mass theory, we can justify the assumptions 
previously made that we can treat the electron or hole behavior through a Schrödinger equation for the 
envelope function of a particle with an effective mass. 
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the quantum well layer), with wavevector k xy. (Note, incidentally, that the quantum well 
wavefunctions labeled with quantum number n are not necessarily the simple sinusoidal 
wavefunctions of the infinite well, but are, in general, the solutions for the real quantum well 
potential of interest.)  

Formally, for a particle of effective mass effm , the full Schrödinger equation for the envelope 
function for the quantum well electron is 

 ( ) ( ) ( ) ( )
2

2

2 eff

V z E
m

ψ ψ ψ− ∇ + =r r r=  (8.41) 

where the potential ( )V z  is, in the quantum well, only a function of z, and corresponds to the 
effective potential energy change of an electron or hole as we move between the layers of 
different material.16 For quantum-confined structures such as quantum wires (which have a 
confining potential in two dimensions) or quantum boxes or “dots” (with confinement in all 
three directions), we formally would have a potential that was a function of two directions or 
three directions, respectively. 

To solve (8.41), we formally separate the variables in the equation. We have 

 ( ) ( ) ( ) ( ) ( )
2 2 2

2
22 2xy

eff eff

V z E
m m z

ψ ψ ψ ψ∂
− ∇ − + =

∂
r r r r= =  (8.42) 

where  

 
2 2

2
2 2xy x y

∂ ∂
∇ ≡ +

∂ ∂
 (8.43) 

We postulate a separation 

 ( ) ( ) ( )n xy xyzψ ψ ψ=r r  (8.44) 

where xy x y≡ +r i j  is the position of the electron in the plane of the quantum wells. As usual in 
the technique of separation of variables, substituting this form, and dividing by it throughout, 
leads to 

  
( ) ( ) ( ) ( ) ( )

2 2 2
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2

1 1
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z V z E
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ψ ψ
ψ ψ
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∂
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We can formally separate the equation as 

 
( ) ( ) ( ) ( ) ( )

2 2 2
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2 2xy xy xy n
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E z V z
m m z z

ψ ψ
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∂
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∂
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r
= =  (8.46) 

                                                           
16 Such an equation is quite a good approximation for electrons in semiconductors such as GaAs, and is a 
reasonable starting approximation for holes, though the valence band structure is somewhat more 
complicated. The effective mass of holes is anisotropic, and formally to model the quantum well states 
properly we also need to consider at least two different bands, the so-called “heavy” and “light” hole 
bands, complicating this envelope function approach. 
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where now the left hand side depends on xyr  and the right hand side depends only on z. 
Therefore, as usual in this technique, these must also equal a separation constant, here chosen 
to be xyE , giving us 

 ( ) ( )
2

2

2 xy xy xy xy xy xy
eff

E
m

ψ ψ− ∇ =r r=  (8.47) 

With the formal choice  

 xy nE E E= +  (8.48) 

we have also 

 ( ) ( ) ( ) ( )
2 2

22 n n n n
eff

d z V z z E z
m dz

ψ ψ ψ− + =
=  (8.49) 

Eq. (8.47) is easily solved to give 

 ( ) ( )exp .xy xy xyiψ ∝r k r  (8.50) 

with  

 
2 2

2
xy

xy
eff

k
E

m
=

=
 (8.51) 

and Eq. (8.49) is the simple one-dimensional quantum well equation we have already solved 
for simple “square” potentials for the particle-in-a-box energy levels and wavefunctions in the 
z direction. This separation is very simple for this quantum well case. (We can follow a similar 
procedure to analyze quantum wires and dots, separating in appropriate ways.) 

Now that we are considering the motion possible in the plane of the layers, the total allowed 
energies are therefore no longer simply the energies nE  for the quantum well energies 
associated with state n, but now have the additional energy 22 / 2xy effk m=  associated with the 
in-plane motion. As a result, instead of discrete energy levels, we have so-called "subbands," 
as sketched in Fig.  8.7. Note that the bottom of each subband has the energy En of the one-
dimensional quantum well problem. 

kx

k yE

n =  1

n  =  2

n  =  3

 
Fig.  8.7. Sketch of the first three subbands for one of the particles in a quantum well. (The solid 
regions merely emphasize that the subbands are paraboloids of revolution, and have no physical 
significance.) 
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Quantum well density of states  
Now we will treat the density of states of a subband. Just as for the bulk case, we formally 
impose periodic boundary conditions in the x and y directions. This gives us allowed values of 
the wavevector in the x direction, kx, spaced by 2 xLπ , where Lx is the length of the crystal in 
the x direction; similarly, the allowed values of yk  are spaced by 2 yLπ , with analogous 
definitions. Each xyk state occupies an “area” of xyk -space of 2(2 ) / qwAπ , where xy x yA L L= , 
and there is altogether one allowed value of xyk for each unit cell in the x-y plane of the 
quantum well. The number of states in a small area 2 xyd k of xyk -space is therefore 

2 2[ /(2 ) ]qwA dπ k . Hence we can usefully define a ( xyk -space) density of states per unit (real) 
area, 2 ( )xyDg k , given by 

 ( )
( )2 2

1
2

D xyg
π

=k  (8.52) 

The number of k states between energies xyE and xy xyE dE+ , i.e., 2 ( )xy xyDg E dE , is then the 
number of states in xyk -space in an annular ring of area 2 xy xyk dkπ , between xyk and 

xy xyk dk+ , where 

 xy
xy xy

xy

dk
dk dE

dE
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (8.53) 

provided that xyE  is positive. Using the assumed parabolic relation between xyE  and xyk , we 
have therefore, now including the factor of 2 for spin, 

 

( ) ( )

( )

2 2

2 2 2

2 2

2 22 1 12
22

xy
D xy xy D xy xy xy

xy

eff eff
xy xy

xy

dk
g E dE g k dE

dE

m m
E dE

E

π

π
π

=

=

k

= =

 (8.54) 

i.e.,  

 ( )2 2
eff

D xy

m
g E

π
=

=
 (8.55) 

This density of states therefore has the very simple form that it is constant for all 0xyE > . (It is 
zero for 0xyE < ). It is therefore a "step" density of states, starting at 0xyE = , i.e., starting at 

nE E= . Hence, the total density of states as a function of the energy E rises as a series of 
steps, with a new step starting as we reach each En. 

Special case of "infinite" quantum well density of states 

There is a particularly simple relation between the density of states in an "infinite" quantum 
well (i.e., a layer with infinitely high potential barriers on either side) and the density of states 
in a conventional bulk ("3D") semiconductor. This relation helps in visualizing the quantum 
well density of states. The "3D" density of states is 

 ( )
3/ 2

1/ 2
2 2

21
2

effm
g E E

π
⎛ ⎞

= ⎜ ⎟
⎝ ⎠=

 (8.56) 

Let us evaluate the density of states in a bulk semiconductor at the energy 1E  that corresponds 
to the first confined state of a quantum well of thickness Lz. We obtain 
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 ( )1 2

1eff

z

m
g E

Lπ
=

=
 (8.57) 

which is the same as the density of states per unit volume (rather than per unit area) of an 
"infinite" quantum well, i.e., dividing g2D by Lz 

 ( ) 2
1

D

z

g
g E

L
=  (8.58) 

In other words, if we plot the "infinite" quantum well density of states (per unit volume), it 
"touches" the bulk density of states (per unit volume) at the edge of the first step. Furthermore, 
since the steps are spaced quadratically in energy, and the bulk density of states is a "parabola 
on its side," the quantum well (volume) density of states touches the bulk (volume) density of 
states at the corner of each step, as shown in Fig.  8.8.  
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Energy, E
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Fig.  8.8. Comparison of the bulk semiconductor density of states (curve) with the density of 
states for an “infinite” quantum (per unit volume) (steps).  

Note, incidentally, that this relation between the quantum well and bulk density of states 
allows for a simple correspondence; if we started to increase the thickness of the quantum well, 
the steps would get closer and closer together, but their corners would still touch the bulk 
density of states, so that, as the quantum well became very thick we would eventually not be 
able to distinguish its density of states from that of the bulk material. 

Problems 
 8.8.1  Derive an expression for the form of the density of states of a subband in a quantum “wire” with a 

rectangular cross-section – a cuboidal structure that is small in two directions, but large 
(approximately infinite) in the third. Take the “walls” of the quantum wire to be infinitely “high” 
(i.e., this is an “infinite” quantum wire, in the same sense as an “infinite” quantum well). (Note that 
the quantum wire problem in this case is “separable” into separate Schrödinger equations for each of 
the three directions.) 

 8.8.2  In the simplest form of a quantum well structure, a “quantum well” layer of one material (e.g., 
GaAs) is sandwiched between two “barrier” layers of a different material (e.g., AlGaAs alloy), 
resulting in a “rectangular” potential well, e.g., for electrons. The electrons are free to move in two (x 
and y) directions, but the wavefunction the third direction (z) behaves like that of a particle in a box. 
Suppose now that, instead of a simple uniform quantum well layer, the material is actually smoothly 
graded in the z direction so that the potential well seen by the electrons in this direction is parabolic, 
with the potential increasing quadratically as we move in the z direction from the center of the well. 
(Such structures can be made, for example by progressively grading the aluminum concentration in 
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an AlGaAs alloy.) For simplicity, we will presume that the electron mass does not change as we 
change the material composition. Sketch the form of the electron density of states in this quantum 
well, including the first several sub-bands. (Note: you should not have to perform any actual 
calculations for this.) 

8.9 k.p method 

This Section is optional in that it is not required for subsequent Sections, other than some 
problems that are clearly marked, but it is an interesting and practically useful exercise in 
quantum mechanics of crystalline materials and the finite basis subset method. 

We are particularly interested in the behavior of semiconductors near to maxima and minima. 
Though the calculation of the complete band structure is a difficult task, it is possible to 
construct simple, semi-empirical models useful near band minima and maxima. The 

.k p method is one useful approach to such models. It allows us to calculate how properties 
change near to those maxima and minima, and allows us to relate various different phenomena, 
such as band gap energies, effective masses, and optical absorption strengths. Once we have 
used the .k p  method to derive an appropriate model, only a few measurable parameters are 
required to define the most useful properties of the band structure.  

We start by substituting the Bloch form, Eq. (8.20), into the Schrödinger equation, Eq. (8.3). 
Now we explicitly label the band n of a given unit cell function. Noting that 

 
( ) ( ) ( ) ( ){ } ( )exp expn nk nu i u i u i∇ ⋅ = ∇ + ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦k kr k r r k r k r  (8.59) 

and 

 ( ) ( ) ( ) ( ) ( ){ } ( )2 2 2exp 2 . expn n n nu i u i u k u i∇ ⋅ = ∇ + ∇ − ⋅⎡ ⎤⎣ ⎦k k k kr k r r k r r k r  (8.60) 

we have  
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ˆ ˆ
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kH u E u
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⎡ ⎤ ⎡ ⎤
+ ⋅ = −⎢ ⎥ ⎢ ⎥
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where we have used ˆ i= − ∇p = , ( )nE k is the energy eigenvalue for the state k in band n,  

 ( )
2

2ˆ
2o L

o

H V
m

−
= ∇ + r=  (8.62) 

and  

 ( ) ( ) ( )0 0
ˆ 0o n n nH u E u=r r  (8.63) 

(Note we are now using the notation om  for the electron mass, to clarify that this is the rest 
mass of the electron, not any electron effective mass.) These ( )0nu r  are therefore the solutions 
for the unit cell functions at 0k =  (to see this, set 0k =  in Eq. (8.61)). 

Now comes a key step in this approach to band structure. Because the 0 ( )nu r  are the solutions 
to an eigenequation, Eq. (8.63), they form a complete set for describing unit cell functions, and 
so we can, if we wish, expand the ( )nu k r  in them, i.e., 

 ( ) ( )0n nn k n
n

u a u′ ′
′

= ∑k r r  (8.64) 
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i.e., we are expanding the unit cell function in band n and wavevector k in the set of unit cell 
functions of all the bands for 0k = . The expansion Eq. (8.64) is sometimes known as the 
Luttinger-Kohn representation. This expansion is over the bands n′ . When we have to add in 
some finite amount of the unit cell function from some particular band, 0 ( )nu ′ r , in the 
expansion Eq. (8.64), we say we are mixing in some of that "band," though strictly we are 
adding in some of the zone-center unit cell function from that band. 

Thus far, we have made no approximations (beyond those used to get the Schrödinger equation 
(8.3) to start with). We have merely rewritten the Schrödinger equation for the electron given 
the known Bloch form of its wavefunction in a crystalline material. We can, however, see 
some interesting possibilities in this rearrangement. A common approach is simply to presume 
that we know the wavefunctions un0(r) and energies En(0) at 0=k . These energies can often 
be determined experimentally, from measured bandgap energies for example. Though we do 
not really know the wavefunctions, we will, in the end, only need some specific matrix 
elements using these wavefunctions, and it will turn out that these matrix elements can often 
also be deduced from other experimental measurements. With this presumption, we can see 
that one approach to solving Eq. (8.61), to understand what happens just away from 0=k , 
would be to treat the .k p  term as a perturbation, and use perturbation theory to deduce 
effective masses and other properties of interest. A useful basis for the perturbation theory 
would be the complete set of unit cell functions, un0(r), at 0=k . (This approach is readily 
amended to work at any other specific point in the Brillouin zone, so it is not restricted to the 
neighborhood of 0=k  only.) 

We will not, for the moment, take such a perturbative approach, though it can be done. Instead, 
more generally useful results can be obtained by “pretending” that we only need to consider a 
small number of basis functions, un0(r), to analyze the problem, i.e., we presume, as a starting 
point that we only need to include a small number of bands in the expansion, Eq. (8.64). This 
is what we previously referred to in Chapter 6 as the finite basis subset method. This approach 
enables us to get exact results for a somewhat artificial problem; if we have chosen our limited 
set of basis functions wisely, we will, however, have a good first approximation to the actual 
problem, and then we could add in other terms as perturbations. In other words, we will 
consider the effects of some bands exactly, and we will presume we could treat the remaining 
bands perturbatively, if necessary.17  

Two well known and useful approaches based on this method are the Kane band model18, 
which treats the lowest conduction band and the top three valence bands exactly, and adds in 
the next most important effects as perturbations, and the Luttinger-Kohn model19 for the 

                                                           
17 The inclusion of the effects of other bands as perturbation is routinely done in actual band structure 
calculations. The technique used, Löwdin perturbation theory (P. Löwdin, "A Note on the Quantum-
Mechanical Perturbation Theory," J. Chem. Phys. 19, 1396-1401 (1951)), is slightly more complex than 
the simple perturbation theory we used above, because one is trying to calculate a perturbation to a matrix 
element in a finite basis set method rather than calculating a perturbation of the final solution. 
18 E. O. Kane, "Band Structure of Indium Antimonide," J. Phys. Chem. Solids 1, 249-261 (1957). E. O. 
Kane, "The k.p Method," in Semiconductors and Semimetals, Eds: R. K. Willardson and A. C. Beer 1, 
Physics of III-V Compounds (Academic, New York, 1966). 
19 J. M. Luttinger and W. Kohn, "Motion of Electrons and Holes in Perturbed Periodic Fields," Phys. 
Rev. 97, 869-883 (1955). 
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valence bands. The Pikus-Bir model20 takes the same kind of approach, and includes the 
effects of strain. These three models form the basis for most calculations of valence (and 
conduction) band structure for zinc-blende materials near the minima and maxima in the band 
structure, both in bulk materials, and with some additional work, in quantum wells. We will 
not go into the detail of these models, which are best left to a more comprehensive discussion 
than space permits here. We will, however, look at the simplest model to show how such 
methods work, and the kinds of results they can give. This simple model is for an idealized 
“two-band” semiconductor. 

k.p model for a two-band semiconductor 
The two-band .k p  is not a model we can use to treat any particular real semiconductor,21 but it 
illustrates the .k p  approach. In general, if we substitute the expansion, Eq. (8.64) into the 
rewritten Schrödinger equation, Eq. (8.61), we have,  

 ( ) ( ) ( )
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ˆ ˆ

2o n n n n n
n no o
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m m′ ′ ′ ′
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Multiplying on the left by 0 ( )qu∗ r and integrating over a unit cell, we have (at least for non-
degenerate bands) 
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where we have used the orthonormality of the 0 ( )qu r , and where 

 ( ) ( ) 3
0 0ˆnn n n

unit
cell

u u d∗
′ ′≡ ∫p r p r r  (8.67) 

Up to this point, we have made no approximations.22 Eq. (8.66) is a complete statement of the 
Schrödinger wave equation for a periodic potential and periodic boundary conditions. 

Now we presume that only two bands are important. We will presume (as is usually the case) 
that the un0(r) have definite parity, so 0nn =p  (the gradient operator implicit in p̂  flips the 
parity of the wavefunction on which it operates, e.g., the derivative of an even function is an 
odd function, leading to a zero value for the integral (8.67) for n n′= ). Hence, now writing 
Eq. (8.66) in matrix form for the two bands of interest, 1 and 2, we have 

                                                           
20 G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 
1974). 
21 It is actually not a bad model for the conduction band and the light hole band in zinc-blende materials 
near 0k = , though it certainly does not include the heavy hole band or split-off hole band in these 
materials, and does not include the effects of spin and spin-orbit coupling that are needed in a more 
complete model. The procedure with those more complicated models is, however, essentially the same as 
that illustrated here for the simple two-band case. 
22 We have not included spin effects in the Hamiltonian, so in that sense the original Schrödinger 
equation is itself not very complete, but we have made no approximations after postulating that equation. 
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To solve this equation for the eigenenergies of the two bands, we set the appropriate 
determinant to zero, i.e.,  
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 (8.69) 

The operator p̂  is Hermitian, and so 12 21
∗=p p . Let us also presume for simplicity here (i) that 

we know for some reason that 12p  is at least approximately isotropic, and (ii) that 2 2 / 2 ok m=  
is negligible compared to ( )E k  (as will be the case if the resulting bands turn out to have very 
light effective masses). Hence we have 
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 (8.70) 

We choose the energy origin as 1(0) 0E =  (this choice makes no difference to the results), and 
we write 2 1(0) (0) gE E E− = . We also define the parameter pE  as 

 2
12
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2
pE p

m
= , (8.71) 

Hence we have, from Eq. (8.70),  
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which is a quadratic with two solutions. For small k, we have 
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and 
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Hence the band structure calculated from this simple set of assumptions consists of two bands, 
a conduction-like band starting at energy gE , with a positive effective mass 
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and a valence-like band starting at energy 0, with a negative (i.e., hole-like) effective mass 

 1
g

eff o
p

E
m m

E
= −  (8.76) 

This band structure is sketched in Fig.  8.9. Note, for example, that the effective masses depend 
proportionately on the energy gap, gE .  

“conduction” band

“valence” band

Eg

 
Fig.  8.9. Band structure calculated in the k.p model assuming two bands only are important. 
"Conduction" and "valence" bands result, with equal (and opposite) effective masses. 

Note that the effective mass (as opposed to the bare electron mass) is "caused" by the 
"interaction between the bands". If the 12p  and 21p  matrix elements were zero, then the matrix 
in Eq. (8.68) would simply be diagonal, and both bands would simply have the free electron 
mass (they would also both be curved in the same direction). 

Having worked out the eigenenergies, it is now a simple matter to work out the eigenvectors or 
eigenfunctions. With the simplifying approximations and definitions we made, for example, 
the matrix equation, Eq. (8.68), is 
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Hence, for the upper band (band 2), we have, using the eigenenergy solution, Eq. (8.73) 
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where by 21ka  we mean the coefficient of 10 ( )u r  in the expansion of the form (8.64) of the 
unit cell function 2 ( )ku r , i.e., explicitly the expansion of Eq. (8.64) is, in this simple two band 
case,  
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 ( ) ( ) ( )2 21 10 22 20k ku a u a u= +k r r r  (8.79) 

To deduce the unit cell wavefunctions as a function of k in this band 2, we solve equation 
Eq. (8.78) for the coefficients 21ka  and 22ka . For the simple case of 0k = , the only non-zero 
term is the upper left term, which is then equal to gE− . As a result, we have 21 0g kE a = , 
which means that 21 0ka = . Hence, at 0k = , the unit cell wavefunction is 20 ( )u r  for the upper 
band, as we would have expected. Away from 0k = , however, the coefficients 21ka  and 22ka  
deduced from Eq. (8.78) are both, in general, non-zero. We would find a growing admixture of 

10 ( )u r  as we move away from 0k = . This is a simple example of "band mixing." As we move 
away from 0k = , the unit cell wavefunctions are no longer exactly the ideal functions, with 
simple exact parities and symmetry properties, found at 0k = . For "allowed" processes (such 
as “one photon” optical absorption between valence and conduction bands), this mixing is not 
very important for small k, though we should understand that "forbidden" processes, i.e., ones 
disallowed at 0k =  by symmetry, can become progressively stronger as we move away from 

0k = . Examples of "forbidden" processes are those that violate polarization selection rules, or 
two-photon absorption, which is parity forbidden at 0k = . This kind of approach to band 
structure enables us to calculate such "forbidden" processes if we wish. 

8.10 Use of Fermi’s Golden Rule  

Now that we have a sufficient model for crystalline semiconductors, we can use the most 
important result of time-dependent perturbation theory we derived before, Fermi’s Golden 
Rule (No. 2), to calculate the optical absorption in direct gap semiconductors. From Eq. (7.32), 
we know that the transition rate for absorption between an initial electron state iψ  in the 
valence band, with energy iE , and a final state fψ  in the conduction band, with energy fE , 
in the presence of an oscillating perturbation of angular frequency ω, is  

 ( )
22 ˆ

abs f po i f iw H E Eπ ψ ψ δ ω= − − =
=

 (8.80) 

Here, ˆ poH  is of the form defined by Eq. (7.15), i.e., in the present context where we are 
interested also in the spatial variation of the perturbation, here through the spatial dependence 
of the amplitude of an electromagnetic wave,  

 ( ) ( ) ( ) ( )ˆ ˆ, exp expp poH t H i t i tω ω= − +⎡ ⎤⎣ ⎦r r  (8.81) 

while the oscillatory field is “turned on”. It represents the amplitude of the oscillatory 
perturbation. ˆf po iHψ ψ  can now be written explicitly as 

 ( ) ( ) ( )* 3ˆ ˆ
f po i f po iH H dψ ψ ψ ψ= ∫ r r r r  (8.82) 

where ( )iψ r  and ( )fψ r  are, respectively, the wavefunctions of the initial and final states.23  

                                                           
23 Note that we are considering only the spatial parts of the initial and final states. In reality, they also 
have spin character, which strictly ought to be included, and which does make a significant difference 
(e.g., factors of 1/2 or 1/3 in the final result for optical absorption strength). Proper consideration of the 
spin is also somewhat complicated by the fact that the spin character of some of the valence band states 
in, e.g., zinc blende materials is mixed, and requires a more detailed understanding of the valence band 
structure. The spin character also is important in determining the polarization dependence of optical 
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Form of the perturbing Hamiltonian for an electromagnetic field 
For the case of an electron in an electromagnetic field, the usual form24 presumed for ˆ ( , )pH tr  
in semiconductors is (see Appendix E) 

 ˆ ˆ( , )p
o

eH t
m

≅ ⋅r A p  (8.83) 

where om  is the free electron mass, p̂  is the momentum operator i− ∇= , and A  is the 
electromagnetic vector potential corresponding to a wave of (angular) frequency ω  

 ( ) ( )0 0exp exp
2 2op op
A A

i t i tω ω⎧ ⎫⎡ ⎤ ⎡ ⎤= ⋅ − + − ⋅ −⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭
A e k r k r  (8.84) 

Here opk  is the wave vector of the optical field inside the material, and we have taken the field 
to be linearly polarized with its electric vector in the direction of the unit vector e . Here we 
will presume that we will only be dealing with absorption processes, so, as discussed in 
Chapter 7, we can drop the term in exp( )i tω+  in our perturbing Hamiltonian because it 
corresponds to emission. Hence, from this point on, we will use 

 
( )expˆ ˆ( )

2
o op

po
o

eA i
H

m
⋅

= − ⋅
k r

r e p  (8.85) 

so here we are formally retaining only the exp( )i tω−  part of Eq. (8.81), i.e., we are taking 
ˆ ˆ( , ) exp( )p poH Ht i tω= −r  with ˆ ( )poH r  as in Eq. (8.85).25  

Direct valence to conduction band absorption 
To proceed further, we need to know ( )iψ r  and ( )fψ r . We presume that we can use the 
“single-electron” Bloch states deduced. We are most interested in the transitions between an 
initial state in the valence band and a final state in the conduction band. We will want to use 
normalized wavefunctions in the calculation below, and so we will define 

 ( ) ( ) ( )expi i v vB u iψ = ⋅r r k r  (8.86) 

and 

 ( ) ( ) ( )expf f c cB u iψ = ⋅r r k r  (8.87) 

                                                                                                                                                         
absorption in the presence of strain or in layered structures such as quantum wells, in both of which cases 
there is a special axis (e.g., the strain or growth direction). 
24 It is quite common to treat the interaction between the electromagnetic field and the electron in terms 
of the electric field and the electronic charge. This usually leads to a first approximation called the 
electric dipole approximation. Solid state physicists in particular, however, tend to prefer a formally more 
complete treatment in terms of the magnetic vector potential. One main reason solid state physicists use it 
is because the momentum matrix element that emerges from this form of calculation is the same 
momentum matrix element that emerges in the .k p calculations of the band structure. We give this theory 
in terms of the vector potential, though the reader should note that there is no substantial difference here 
in the result compared to an electric dipole calculation. 
25 In this semiclassical approach (i.e., with the electromagnetic field treated classically), we end up 
making this ad hoc change to the perturbing Hamiltonian to restrict to absorption processes only. In the 
full approach with quantized electromagnetic fields (Chapter 17), the resulting algebra takes care of such 
restrictions automatically. 
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where iB  and fB  are normalization constants (here, and below, we omit the subscript k on 
( )cu r  and ( )vu r  for simplicity). Note that we are now explicitly allowing the conduction 

( ( )cu r ) and valence ( ( )vu r ) unit cell functions to be different. This is quite important – we 
would in the end get no optical absorption here if they were the same. We do, however, 
presume that they do not depend on k, which is in practice a good approximation for an 
“allowed” process (i.e., one in which the matrix element is finite in the lowest order 
approximation).  

In our normalization calculation, first we choose ( )vu r  and ( )cu r  to be normalized over a unit 
cell, i.e., 

 ( ) ( )* 3 1v vunit cell
u u d =∫ r r r  (8.88) 

and similarly for ( )cu r . Hence, normalizing ( )iψ r  and ( )fψ r , we have, for iψ  

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* 3

2 * 3

2 * 3 2 * 3

2

1

exp exp

i i
V

i v v v v
V

i v v i v v
V unit cell

i

d

B u i u i d

B u u d B N u u d

B N

ψ ψ =

= − ⋅ ⋅

= =

=

∫

∫

∫ ∫

r r r

r k r r k r r

r r r r r r
 (8.89) 

(where N is the number of unit cells in the crystal and V is the volume of the crystal), and 
similarly for ( )fψ r . Hence we have 

 1
i fB B

N
= =  (8.90) 

With the choice of a valence band initial state and a conduction band final state, the matrix 
element of interest is now, from Eq. (8.82)  

 
( )

( ) ( ) ( ) ( ) ( )* 30

0

ˆ

ˆexp exp exp
2

f po i

c c op v v
V

H

eA
u i i u i d

m N

ψ ψ =

⎡ ⎤− − ⋅ ⋅ ⋅ ⋅⎡ ⎤⎣ ⎦⎣ ⎦∫

r

r k r k r e p r k r r
 (8.91) 

where the integral is over the volume V  of the crystal. We are interested in transitions 
involving states near the center of the Brillouin zone, so vk  and ck  are both / aπ<<  (since 

/ aπ  corresponds to the edge of the zone). Strictly, p̂  operates on the product 
( ) ( )expv vu i ⋅r k r . Because we assume small vk , ( )exp vi ⋅k r  changes very slowly 

compared to the rate of change of ( )vu r , however, i.e., 
( ) ( )exp ~ ~ /v v vi k u aπ∇ ⋅ << ∇k r r . Hence we can neglect p̂  operating on ( )exp vi ⋅k r , at 

least as a first approximation.  

For definiteness, we choose the direction e  of polarization of the optical electric field to be in 
the x-direction (x will be one of the directions perpendicular to the propagation of the 
electromagnetic wave). Rewriting, we have (neglecting the effect of p̂  on ( )exp vi ⋅k r ) 

( ) ( ) ( ) ( )* 30

0

ˆ ˆexp
2f po i v c op c x v

V

eA
H i u p u d

m N
ψ ψ ⎡ ⎤ ⎡ ⎤= − − + ⋅ ⎣ ⎦⎣ ⎦∫r k k k r r r r  (8.92) 
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The optical wave vector opk  corresponds to wavelength (even inside the material) of 100s of 
nm or more, which means that /op aπk � . In fact, compared to the size scale of the Brillouin 
zone, opk  is almost totally negligible; even with a 100 nm wavelength inside the material, 

~ 2 /100op πk nm-1, while the edge of the Brillouin zone is -1/ ~ / 0.5 nmaπ π , corresponding 
to /( / ) ~ 1%op aπk . Hence, the entire factor exp[ ( ) ]v c opi − + ⋅k k k r  varies very slowly over 
the length scale, a, of a unit cell. As a result, we can approximately separate the above integral 
into a sum of integrals over a unit cell, treating the value of exp[ ( ) ]v c opi − + ⋅k k k r  as being 
approximately constant within a given unit cell, i.e., 

 ( ) ( )0

( . .,0
)

ˆ ˆ exp
2f po i x v c op m

m i e
unit cells

eA
H c p v i

m N
ψ ψ ⎡ ⎤= − − + ⋅⎣ ⎦∑r k k k R  (8.93)  

where Rm is the position of (the center of) the mth unit cell in the crystal, and the summation is 
over all N  unit cells. Here  

 ( ) ( )* 3ˆ ˆx c x v cv
unit
cell

c p v u p u d p≡ ≡∫ r r r  (8.94) 

(which is the same for any unit cell in the crystal).  

In general, the separation of the “slowly-varying” “envelope” function (i.e., in this case the 
exp( )i ⋅k r  term) from the unit cell part, treating the variation of the “envelope” function as 
being negligible within a unit cell, is known as the “slowly-varying envelope approximation.”  

The summation in Eq. (8.93) will average approximately to zero unless 

 0v c op− + =k k k  (8.95) 

because otherwise the function exp[ ( ) ]v c opi − + ⋅k k k r  is oscillatory. (Note, incidentally, that 
the condition Eq. (8.95) can be seen to correspond to conservation of “momentum” ( k= )). In 
this case, the sum becomes 

 ( )exp exp(0)v c op m
m m

i N⎡ ⎤− + ⋅ = =⎣ ⎦∑ ∑k k k R  (8.96) 

Hence, we have 

 ( ) 0

0

ˆ
2f po i cv
eA

H p
m

ψ ψ = −r  (8.97) 

and the transition rate becomes 

 ( )
2 2

20
2
0

2
4abs cv f i
e A

w p E E
m

π δ ω= − − =
=

 (8.98) 

Eq. (8.98) is therefore the restatement of Eq. (8.80) after we have made use of the facts that (i) 
the electron wavefunctions in the crystalline semiconductor are in the Bloch form, and (ii) the 
optical wavelength is much larger than the unit cell size. Note that the concept of conservation 
of “momentum” emerged automatically, and is consistent with k=  being the effective electron 
“momentum” in a Bloch state. Note also that the transition rate is proportional to a (squared) 
matrix element, 2

cvp , that only depends on the unit cell functions. Finally we note that the 
transition rate is proportional to the optical intensity (since it is proportional to the square of 
the electromagnetic field amplitude, as expressed by 2

oA ), which, since it represents power per 
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unit area, corresponds also to the average arrival rate of photons in the semiconductor (per unit 
area). 

Now Eq. (8.98) represents the transition rate from one particular initial valence band state with 
k vector vk  to a particular conduction band state, in this case, the state with wave vector 

c v op= +k k k . The total transition rate, TOTW , which we need to calculate the optical 
absorption coefficient, α, is the sum of the transition rates between all possible initial states 
and all possible final states, i.e., 

 ( ) ( )
22 ˆ

TOT f po i f i
i f

W H E Eπ ψ ψ δ ω= − −∑∑ r =
=

 (8.99) 

We have shown above that, for a given initial state with wave vector vk , the only final state 
possible is the conduction band state with c v op= +k k k . Since opk  is generally a very small 
fraction of the size of the Brillouin zone, we will henceforth neglect it, taking c v=k k ; this 
negligible size of the optical wavevector means that the direct optical transitions are essentially 
“vertical” on the energy-momentum diagram. Hence, for a given initial state vk , only one term 
remains in the sum over the final states, namely that with c v=k k . Hence we have, 
substituting from Eq. (8.98), and dropping the suffix “ v ” (i.e., writing k  instead of vk ) 

 ( ) ( )
2 2

20
2
0

2
4TOT cv c v
e A

W p E E
m

π δ ω= − −⎡ ⎤⎣ ⎦∑
k

k k =
=

 (8.100) 

In Eq. (8.100) we have additionally assumed 2
cvp  is independent of k, which turns out to be a 

reasonable approximation. 

Now we formally rewrite (considering unit volume) 

 3( )g d≈∑ ∫
k k

k k  (8.101) 

where ( )g k  is the density of states in k-space. We next change variables in the integral to the 
energy ( ) ( )c vE E−k k . Assuming parabolic bands, we can define EJ, the energy separation 
between the valence and conduction bands at a particular k, as 

 
2 2 2 21 1( ) ( ) ( )
2 2J c v g g

effe effh eff

k kE E E E E
m m μ

⎛ ⎞
= − = + + = +⎜ ⎟⎜ ⎟

⎝ ⎠
k k k = =  (8.102) 

where effem is the effective mass of the electrons in the conduction band and effhm  is the 
effective mass of the holes in the valence band. Note that typically the electron effective mass 
at the top of the valence band is actually negative because we are at a maximum in the band. 
Holes have energy that increases as we go down into the valence band, just as the potential 
energy of a bubble in water increases as we push it further under the surface. Hence in terms of 
holes, the valence band effective mass is positive, and it is this positive mass that we mean by 

effhm . The reduced effective mass we need for this problem, effμ , is given by 

 1 1 1

eff effe effhm mμ
= +  (8.103) 

Hence, we can follow the same argument as we followed above in deriving the energy density 
of states. We can define a “joint density of states,” ( )J Jg E , and write, including the factor of 
2 for the two different spin states, 

 3( ) 2 ( )J J Jg E dE g d= k k  (8.104) 
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Hence, for J gE E≥ , 

 ( )
3/ 2

1/ 2

2 2

21( )
2

eff
J J J gg E E E

μ
π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠=
 (8.105) 

So, using Eqs. (8.100), (8.101), (8.104), and (8.105), we obtain (per unit volume) 

( ) ( )
3/ 22 2

1/ 220
2 2 2
0

22 1
4 2

J g

eff
TOT cv J g J J

E E

e A
W p E E E dE

m
μπ δ ω

π≥

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∫ =

= =
 (8.106) 

i.e., 

 ( )
3 / 22 2

1/ 220
2 2 2
0

22 1( )
4 2

eff
TOT cv g

e A
W p E

m
μπω ω

π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

= =
= =

 (8.107) 

(for gEω ≥= ). 

The final step is to relate the absorption coefficient, α, to the total transition rate TOTW . α is the 
probability of absorption of a photon per unit length (in the direction of propagation). The 
number of photons incident per unit area per second is 

 p
In
ω

=
=

 (8.108) 

where I is the optical intensity (power per unit area), so 

 TOT TOT

p

W W
n I

ω
α = =

=
. (8.109) 

The intensity I  can be written (see Sections D.8 and F.3) 

 
2 2

0 0

2
rn c A

I
ε ω

=  (8.110) 

where rn  is the refractive index, c  is the velocity of light, and oε  is the permittivity of free 
space. Hence 

 
( )

( )

3/ 22 2
1/ 220

2 2 2 2 2
0 0 0

3/ 22 1/ 22
2 2
0

22 1 2( )
4 2

21
2

eff
cv g

r

eff
cv g

ro

e A
p E

m n c A

e p E
nm c

μπα ω ω ω
π ε ω

μ
ω

ωπ ε

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= = =
= =

=
=

 (8.111) 

In actual calculations, the parameter  

 2

0

2
p cvE p

m
=  (8.112) 

which typically has a value of ~ 20 eV in many semiconductors, is often used instead of 2
cvp  , 

in which case we can rewrite Eq. (8.111) as  

 ( ) ( )
3/ 22 1/ 2

2
0 0

21
4

p eff
g

r

Ee E
m c n

μ
α ω ω

π ε ω
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

== =
= =

 (8.113) 



 8.10 Use of Fermi’s Golden Rule 239 

or 

 ( ) ( )
2

0 0

1
2

p
J

r

Ee g
m c n
πα ω ω

ε ω
=

== =
=

 (8.114) 

We can see that the absorption spectrum, ( )α ω=  follows the joint density of states, rising (in 
this model) as 1/ 2( )gEω −=  (and being zero for gEω <= ). 

The above model is very often used as a starting point for optical calculations in 
semiconductors. The very simple model here does ignore some important spin effects, which 
can be qualitatively important for polarization dependence. It also completely neglects 
excitonic effects, which are quantitatively and qualitatively quite important in optical 
absorption in direct gap semiconductors, though we will not treat them here.  

Problems 
 8.10.1  [Note: Section 8.9 should also have been studied before attempting this problem] In this problem, 

we will progressively consider direct optical transitions between the two bands in the simple two 
band .k p  model constructed above, assuming that the lower band (band 1) is initially full of 
electrons and the upper band (band 2) is initially empty of electrons. For this problem, do not assume 
the small k approximation of Eq. (8.72). Work with the full roots of Eq. (8.72) for finding the 
eigenenergies and unit cell functions. 
(i) Show that the wavefunction in the upper band may be written as 

 ( ) ( ) ( )
2

2 10 20

1 11
k

b
u u u

d bd+ +

+ +
= +r r r   

 where  

 ( )2
2

2

11 1 1d b
b

± = + ± +   

 where 122 / g ob kp E m= =  (so that 2 2 2 22 /p g ob E k E m= = ). 
 Hints: 

(a) You may find it useful in the intermediate algebra (1) to work only in terms of p21 rather than 
pE  ( 2

212 / op m= ) and (2) to introduce the parameter b early in your manipulations.  
(b) Note that, if we find, e.g., a2 in terms of a1, then we actually can deduce both coefficients 

through the normalization of the overall unit cell wavefunction, i.e., 2 2
1 2 1a a+ = . 

(ii) Find a similar expression for ( )1ku r . 
(iii) Show, for the interband momentum matrix element 21kp  at Bloch wavevector k, i.e.,  

 ( ) 3
21 2 1ˆ( )k k k

unit cell

p u u d∗= ∫ r p r r   

 that 

 2
21 2 2

2

22 1

po
k

p

g o

Emp E k
E m

=
+

=
  

 Note that 0nnp =  because we assume the unit cell functions at 0k =  to have definite parity. 
(This part may take a fair amount of algebra, though it is straightforward algebra.) 

(iv) Construct a mathematical expression for the absorption coefficient, ( )α ω=  for interband direct 
optical absorption in this model, expressed in terms of pE , the bandgap energy, gE , the 
refractive index, rn , and the photon energy, ω= , and fundamental constants. (Note: do not 
assume a simple parabolic density of states.) 

(v) Assuming the refractive index is constant at 3.5rn ≅ , 1 eVgE = , and 20 eVpE = , graph the 
absorption coefficient, expressed in units of cm-1, calculated using this model, and compare it 
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with the results for the simple parabolic band model with constant 2
21p . Graph your results up 

to a photon energy of 2 eV.  

 8.10.2  Here we will consider the equivalence of the electric dipole and “ .A p ” versions of the 
Hamiltonian for certain optical absorption processes. 
(i) Prove, for a single-electron Hamiltonian of the form 

 ( )
2

2ˆ
2el

o

H V
m

−
= ∇ + r=   

 that  

 ˆ ˆ,el
o

H i
m

⎡ ⎤ = −⎣ ⎦r p=   

(ii) When 1ψ  and 2ψ  are eigenfunctions of ˆ
elH , with corresponding eigenenergies 1E  and 2E , 

find an expression relating 21 2 1ˆψ ψ=p p  to 21 2 1ψ ψ=r r . 
(iii) Consider the two possible time-dependent perturbing Hamiltonians 

 ˆ ˆ.pA
o

eH
m

= − A p , with coso tω=A A   

 and 
 ˆ .pEH e= − E r , with coso tω=E E   

 Show that, in Fermi’s Golden Rule, these two Hamiltonians will lead to the same transition rate 
for the same strength of electromagnetic field for transitions between eigenstates of ˆ elH . [You 
may use the relation / t= −∂ ∂E A .] 

 8.10.3  [Note: this problem can be used as a substantial assignment, and should be attempted only after 
completing Problem 8.10.1.] Consider two-photon absorption in the simple two-band k.p theory 
semiconductor considered above. Assume the lower band is initially full of electrons and the upper 
band is initially completely empty. 
For the purposes of this exercise, you need only consider the process corresponding to two-photon 
absorption from the lower band (band 1) to the upper band (band 2) in which states in the upper band 
are available as the intermediate states. You also need only consider the first contribution to the 
process, i.e., in the previous notation, you may presume 

 

( ) ( )

( )( )
( )

( )

22

2

4

ˆ ˆ ˆ ˆ sin 2 / 2

2 / 2

j o

m po q q po j j po n n po m jm oo
o

n q nm qm jm o

a t

H H H H tt t
t

ψ ψ ψ ψ ψ ψ ψ ψ ω ω

ω ω ω ω ω ω

=

⎡ ⎤⎡ ⎤−⎢ ⎥⎢ ⎥
⎢ ⎥− − −⎢ ⎥⎣ ⎦⎣ ⎦
∑∑=

 

(Note that, at least as part of a two-photon process, it is possible to consider the optical transition 
from a state within band 2 to an adjacent state in the same band. Though the optical wavevector is 
usually negligible numerically, its finite magnitude ensures that such a transition is between two 
different states, albeit ones of nearly identical wavevector k.) 
Specifically, 
(i) Given the above presumptions about the initial, intermediate and final states, evaluate each of 

the matrix elements ˆpoij i po jH Hψ ψ=  in the above expression in terms of the magnetic vector 
potential amplitude oA  of the oscillatory electromagnetic field, momentum matrix elements of 
the form ( ) ( ) 3

nn unit cell n np u pu d′
∗

′= ∫k k kr r r , and fundamental constants, and deduce any 
restrictions these impose on the terms surviving in the summations. (Consider the optical 
wavevector opk  to be negligibly small.)  

(ii) For a particular initial state with wavevector mk  in band 1, derive a mathematical expression for 
the two-photon transition rate ( ) ( ) 22 /m j o ow a t t=k  in terms of the optical intensity, I , the photon 
energy ω= , the energy separation ( )J mE k  between the states in bands 1 and 2 at wavevector 

mk , the quantities 2
21 mp k  and 2

22 mp k , a function of the form 2[(sin ) / ]ot x x , the refractive 
index rn , and fundamental constants. 
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(iii) Find an approximate expression for the matrix element 2
22 mp k , valid to lowest order in mk , and 

expressed in terms of 2
21p , the band gap energy gE , and fundamental constants. [This will be 

an expression proportional to 2
mk .] 

(iv) Find an expression for the total two-photon transition rate from all possible initial states to all 
possible final states, valid to lowest order in mk , and in terms of optical intensity, I , the photon 
energy ω= , the quantity 2

212 /p oE p m= , the refractive index rn , and fundamental constants. 
[Note: because we are only interested in the lowest order behavior with mk , you may use the 
parabolic dispersion relations for the bands.] 

(v) Consider a semiconductor with 3.5rn ≅ , 1 eVgE = , and 20 eVpE = . A short pulse laser has an 
average power of 1 mW, and a photon energy of 0.6 eV. Its light is concentrated in pulses that 
are 100 fs long with a repetition rate of 100 MHz. For simplicity of calculation you may assume 
that the light intensity is constant throughout the pulse. This light shines on a 10 x 10 micron 
square area of the surface of the semiconductor, approximately uniformly (you may assume the 
surface is anti-reflection coated so there is no reflection from the surface). The semiconductor is 
1 micron thick. The semiconductor is structured like a photodiode so that every electron-hole 
pair generated in the semiconductor gives rise to one electron of current. Approximately what 
will be the average current generated in this diode on the above two-photon absorption model? 

8.11 Summary of Concepts 

Crystals 

Crystals are structures whose measurable properties are periodic in space. Lattice vectors of 
the form 

 1 1 2 2 3 3L n n n= + +R a a a   (8.1) 

where the numbers n1, n2, and n3 are integers, map between equivalent points in the structure. 
There are only 14 distinct mathematical lattices of points (Bravais lattices) that form the 
corners of objects that can repetitively fill all space. Two very common forms of lattices are 
the diamond lattice, of which silicon is an example, and the zinc blende lattice (interlocking 
face-centered cubic lattice), a lattice form very closely related to the diamond lattice, and one 
that is characteristic of most III-V compounds (e.g., GaAs, InP). 

One electron approximation 

The starting point for most band theory of crystalline solids is to presume that an electron 
moves in an effective periodic potential given by all of the other nuclei and electrons in the 
structure. 

Bloch theorem 

The Bloch theorem states that the wavefunction solutions in a periodic structure must be of the 
form 

 ( )( ) exp . ( )iψ ψ+ =r a k a r  (8.19) 

where a is any lattice vector, or equivalently (and more commonly) 

 ( ) ( ) ( )exp .u iψ =r r k r  (8.20) 

where ( )u r  is a function that is periodic with the lattice periodicity, and k can only take on 
one of a discrete set of vector values; considering the three crystal basis vector directions, 1 , 
2 , and 3 , with lattice constants (repeat distances) 1a , 2a , and 3a , and numbers of atoms 1N , 

2N , and 3N  
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 1
1 1 1

1 1

2
... 0, 1, 2,... / 2

n
k n N

N a
π

= = ± ± ±  (8.21) 

and similarly for the other two components of k in the other two crystal basis vector directions. 

Density of states in k-space 

k-states are equally spaced in k in each direction, regardless of the precise form of the crystal’s 
potential, and have a density of states in k-space, per unit volume of the crystal, of 

 ( )
( )3

1
2

g
π

=k  (8.24) 

Band structure 

Solving for the possible states of an electron in a crystalline material leads to a band structure, 
which is plotted as electron energy as a function of k, in principle in all three directions, 
though in practice in some projections along specific symmetry directions. There is essentially 
one line or band on such a diagram for every atomic state of the original constituent atoms or 
molecules, and essentially one actual state on the line for every atom or molecule that makes 
up the piece of material. The highest filled band in a semiconductor is called the valence band, 
and the lowest unfilled band is the conduction band. 

Kramers degeneracy 

Neglecting the effects of electron spin, for every state with a corresponding wavevector k in a 
band, there is one with equal energy of wavevector −k . 

Effective mass theory 

Specific points in the band structure are maxima or minima of energy in the bands. Since extra 
electrons and the absences of electrons (holes) tend to collect near these minima or maxima, 
many important properties, such as transport and optical emission, can be understood from the 
properties near such maxima and minima. 

By presuming that the periodic parts of the wavefunctions in a given band are rather similar 
near such a maximum or minimum, and treating the minima and maxima as approximately 
parabolic we can postulate that the wavefunction can be written as  

 ( ) ( ) ( )0, ,envt u tΨ = Ψr r r  (8.30) 

where the envelope function ( ),env tΨ r  can be written 

 ( ) ( ) ( ), exp . exp /env t c i iE tΨ = −∑ k k
k

r k r =  (8.31) 

which leads to a Schrödinger equation for the envelope 

 ( ) ( ) ( )
2

2 ( , ) , ,
2 env env env

eff

t V t i t
m t

∂
− ∇ Ψ + Ψ = Ψ

∂
r r r r= =  (8.33) 

where the energy of states near these minima or maxima can be written in this parabolic 
approximation as 
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2 2

2 eff

kE V
m

= +k
=  (8.28) 

thus defining the effective mass effm  for each band minimum or maximum. Electrons and 
holes (absences of electrons) in crystalline solids therefore can behave as particles with 
effective masses different from the free electron mass. 

Effective mass approximation in semiconductor heterostructures 

Use of boundary conditions such as 

 envΨ  continuous (8.35) 

and  

 1
env

effm
∇Ψ  continuous (8.36) 

allows problems, such as quantum wells, to be handled in semiconductor heterostructures 
using the effective masses of the electrons and holes in the constituent materials, and 
considering the simpler envelope function Schrödinger equation. 

Density of states in energy 

Near a parabolic band maximum or minimum, the density of states in energy is 

 ( ) ( )
3/ 2

1/ 2
2 2

21
2

effm
g E E V

π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠=

. (8.40) 

One electron Schrödinger equation for Bloch functions 

In a crystal, we can rewrite the Schrödinger equation without further approximations as 

 ( ) ( ) ( )
2 2

ˆ ˆ
2o n n n

o o

kH u E u
m m

⎡ ⎤ ⎡ ⎤
+ ⋅ = −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
k kk p r k r= =  (8.61) 

Luttinger-Kohn representation 

The unit cell functions at 0k =  in all the different bands form a complete set for representing 
unit cell functions, so we can expand any unit cell function in terms of them, as 

 ( ) ( )0n nn k n
n

u a u′ ′
′

= ∑k r r  (8.64) 

 



Chapter 9   
 
Angular momentum 

Prerequisites: Chapters 2 – 5. 

Thus far we have dealt primarily with energy, position, and linear momentum, and have 
proposed operators for each of these. One other quantity that is important in classical 
mechanics, angular momentum, is particularly important also in quantum mechanics. Here we 
will introduce angular momentum, its operators, eigenvalues and eigenfunctions. If this 
discussion seems somewhat abstract, the reader can be assured that the concepts of angular 
momentum will become very concrete in the discussion of the hydrogen atom.  

One aspect of angular momentum that we will find different from the quantities and operators 
that we discussed previously is that its operators always have discrete eigenvalues. Whereas 
linear momentum is associated with eigenfunctions that are functions of position along a 
specific spatial direction, angular momentum is associated with eigenfunctions that are 
functions of angle or angles about a specific axis. The fact that the eigenvalues are discrete is 
associated with the fact that, for a single-valued spatial function, once we have gone an angle 
2π about a particular axis, we are back to where we started. The wavefunction is presumably 
continuous and single-valued1 and hence we must therefore have integral numbers of periods 
of oscillation with angle within this angular range; this requirement of integer numbers of 
periods leads to the discrete quantization of angular momentum. 

Another surprising aspect of angular momentum operators is that the operators corresponding 
to angular momentum about different orthogonal axes, e.g., ˆxL , ˆyL , and ˆzL , do not commute 
with one another (in contrast to the linear momentum operators for the different orthogonal 
coordinate directions, for example). We do, however, find that there is another useful angular 
momentum operator, 2L̂ , which does commute with each of ˆxL , ˆyL , and ˆzL  separately.  

Here, we will propose the form of the angular momentum operators, and solve for the 
eigenfunctions and eigenvalues. The eigenfunctions for ˆxL , ˆyL , and ˆzL  are quite 
straightforward. Those for 2L̂ , the spherical harmonics, may at first appear to be 
mathematically rather obscure and complicated functions, though in fact they can be 
understood relatively simply. 

9.1 Angular momentum operators 

The reader may remember from elementary classical mechanics that the angular momentum of 
a small object of (vector) linear momentum p centered at a point given by the vector 
displacement r relative to some origin is  

                                                           
1 I.e., at any given angle there will be only one answer for the amplitude of the wavefunction. 
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 = ×L r p  (9.1) 

relative to that origin, where the vector cross product (see Appendix A, Section A.1) is defined 
as usual by 

 
sin

( ) ( ) ( )

x y z

x y z

y z z y x z z x x y y x

AB A A A
B B B

A B A B A B A B A B A B

θ= × ≡ ≡

≡ − − − + −

i j k
C A B

i j k

 (9.2) 

where here i, j, and k are unit vectors in the usual x , y , and z  coordinate directions, and Ax 
is the component of A in the x direction (and similarly for the other components)2. C is 
perpendicular to the plane of A and B just as the z axis is perpendicular to the plane containing 
the x and y axes for normal right-handed axes.3 θ  is the angle between the vectors A and B. 
Fig.  9.1 illustrates vectors r and p for the angular momentum cross product of Eq. (9.1).  

x

y

r

p θ

origin

position of 
object

momentum

 
Fig.  9.1. Illustration of the momentum and position vectors for the case where the momentum is 
parallel to the x axis. In this case, the resulting angular momentum vector would point into the 
page away from the reader. 

Since the angular momentum is a vector quantity, we can if we wish explicitly write out the 
various components, obtaining 

 x z yL yp zp= − , y x zL zp xp= − , z y xL xp yp= −  (9.3) 

In quantum mechanics, we can propose an angular momentum operator L̂  by analogy with the 
classical angular momentum4, 

                                                           
2 Note incidentally that the ordering of the multiplications in the second line of Eq. (9.2) is carefully 
chosen to work also when we use operators instead of numbers for one or other vector; the sequence of 
multiplications in each term is always in the sequence of the rows from top to bottom.  
3 Turning a right-handed screw head from the x direction to the y direction drives it in the z direction in 
right-handed axes. 
4 It might seem pedantic here to use the position operator r̂  rather than the simple position r , and then 
merely confusing to use r  later. It is, however, only in the position representation that the position 
operator r̂  is simply the position r . If we used some other representation, for example a momentum 
representation (i.e., a spatial Fourier transform of the position representation) as discussed in Section 5.4, 
the position operator is not simply the same as the position vector. The statement ˆ ˆ ˆ= ×L r p  is correct in 
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 ( )ˆ ˆ ˆ i= × = − ×∇L r p r=  (9.4) 

with corresponding components 

 ˆ ˆ ˆ ˆˆx z yL yp zp i y z
z dy

⎛ ⎞∂ ∂
= − = − −⎜ ⎟∂⎝ ⎠

=  (9.5) 

 ˆ ˆ ˆ ˆˆy x zL zp xp i z x
x dz

∂ ∂⎛ ⎞= − = − −⎜ ⎟∂⎝ ⎠
=  (9.6) 

 ˆ ˆ ˆ ˆ ˆz y xL xp yp i x y
y dx

⎛ ⎞∂ ∂
= − = − −⎜ ⎟∂⎝ ⎠

=  (9.7) 

These individual components of the angular momentum operator L̂  are each Hermitian5, and 
so, correspondingly, is the operator L̂  itself. The operators corresponding to individual 
coordinate directions obey commutation relations 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ,x y y x x y zL L L L L L i L⎡ ⎤− = =⎣ ⎦ =  (9.8)  

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ,y z z y y z xL L L L L L i L⎡ ⎤− = =⎣ ⎦ =  (9.9) 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ,z x x z z x yL L L L L L i L⎡ ⎤− = =⎣ ⎦ =  (9.10) 

Note that these relations are cyclic permutations of one another (i.e., the first two subscript 
indices in Eq. (9.8) are x and y, and the last subscript index on the right is z, and the 
corresponding order of  these same indices in Eq. (9.9) is y, z, x, and in Eq. (9.10) the order is 
z, x, y), which may make them easier to remember. These individual commutation relations can 
also be written in a more compact form as a shorthand, 

 ˆ ˆ ˆi× =L L L=  (9.11) 

Eq. (9.11) may seem a strange way to write a set of commutation relations – it does not 
resemble the usual form of commutation relations very closely – but it is only a shorthand for 
writing or remembering relations (9.8) - (9.10).6 

                                                                                                                                                         
any representation; the statement ( )ˆ i= − × ∇L r=  is only correct in the position representation. We will 
be using the position representation for the moment, however. 
5  The proof of the Hermiticity of the individual components of the angular momentum operator is left as 
an exercise for the reader – it follows from the known Hermiticity of the individual operator components, 
and the commutation properties of the position and momentum operators corresponding to the different 
coordinate directions. 
6 Another shorthand way of writing the same set of commutation relations, which is closer to the form of 
a simple commutation relation is ˆ ˆ ˆ[ , ]m n mnl lL L Li ε= = , where the indices m, n, and l can each be any of x, y 
or z, and ε mnl is an entity known as the totally antisymmetric tensor, or, equivalently, the Levi-Civita 
symbol. This tensor has the following properties. First, ε xyz=1. For an ε mnl formed by an even number of 
permutations of the indices (an even permutation), such as ε yzx (which is formed by swapping x and y, 
followed by swapping x and z), the value is still +1. For an ε mnl formed by an odd number of 
permutations of the indices (an odd permutation), such as ε xzy (which is formed by swapping y and z), the 
value is –1. If two of the indices are the same, as in ε xxy, the value is zero (as required, for example, 
because an operator commutes with itself). The “multiplication” ˆ

mnl lLε  is technically a tensor 
multiplication, which means that there is technically a summation over the repeated index l. For any 
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We started here by postulating an operator L̂  for angular momentum, and deduced the 
corresponding operators for angular momentum components on each of the Cartesian 
directions. Note, however, that, unlike our previously postulated vector operators, r̂  for 
position and p̂  for linear momentum, the different components of this angular momentum 
operator do not commute with one another. It was quite possible, for example, for a particle to 
have simultaneously a well-defined position in both the x and y directions, for example, or 
alternatively to have simultaneously a well-defined momentum in both the x and y directions. 
The commutation relations (9.8) - (9.10) tell us that a particle cannot in general simultaneously 
have a well-defined angular momentum component in more than one direction.7 This 
conclusion may appear bizarre, but it is nonetheless apparently correct. 

x

y

z

r

(x, y, z)

φ

θ

 
Fig.  9.2. Illustration of spherical polar coordinates, r, θ, and φ.  

The eigenfunctions and eigenvalues of angular momentum operators are most usefully written 
using spherical polar coordinates. The standard definition of these coordinates is illustrated in 
Fig.  9.2 (see also Appendix C, Section C.2) . The relation between spherical polar and 
Cartesian coordinates is 

 sin cosx r θ φ=  , sin siny r θ φ=  , cosz r θ=  (9.12) 

and, in inverse form 

                                                                                                                                                         
given (different) m and n, there is, however, only one value of l for which ε mnl is not zero, so this tensor 
multiplication reduces in practice to a simple multiplication. 
7 These angular momentum commutation relations also differ from the previous commutation relations 
we have examined in that the quantity on the right is an operator, not simply a number. The practical 
result of this is that the uncertainty relation between the standard deviations of the expected values of, 
say, the x and y components of the angular momentum depends on the state of the quantum mechanical 
system. For example, if the system is in an eigenstate of ˆ

zL , the operator ˆ
zL  is effectively replaced by its 

eigenvalue, zm , in the ˆ
xL  and ˆyL  commutation relation and in the corresponding uncertainty principle 

for the x and y components of the angular momentum. 
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 2 2 2r x y z= + + , 
2 2

1

2 2 2
sin

x y

x y z
θ −

⎛ ⎞+
⎜ ⎟=
⎜ ⎟+ +⎝ ⎠

, 1tan y
x

φ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (9.13) 

θ is known as the polar angle, and φ is the azimuthal angle. 

With these definitions of spherical polar coordinates, and with standard partial derivative 
relations of the form (see Appendix A, Section A.5) 

 r
x x r x x

θ φ
θ φ

∂ ∂ ∂ ∂ ∂ ∂ ∂
≡ + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (9.14) 

for each of the Cartesian coordinate directions, it is straightforward (if a little tedious)8 to show 
from (9.5) - (9.7) that  

 ˆ sin cot cosxL i φ θ φ
θ φ

⎛ ⎞∂ ∂
= +⎜ ⎟∂ ∂⎝ ⎠

=  (9.15) 

 ˆ cos cot sinyL i φ θ φ
θ φ

⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠

=  (9.16) 

 ˆ
zL i

φ
∂

= −
∂

=  (9.17) 

We can solve Eq. (9.17) for the eigenfunctions and eigenvalues of ˆzL . The eigenequation is 

 ( ) ( )ˆ
zL mφ φΦ = Φ=  (9.18) 

where m=  is the eigenvalue to be determined. The solution of this equation is 

 ( ) ( )exp imφ φΦ =  (9.19) 

The requirements that the wavefunction and its derivative are continuous when we return to 
where we started, i.e., for 2φ π= , mean that m must be an integer (positive or negative or 
zero). Hence we find that the angular momentum around the z axis is quantized, with units of 
angular momentum of = . 

From this discussion, we can understand that indeed the eigenfunctions of the angular 
momentum about the different axes are not the same, as required by the fact that the different 
angular momentum operators do not commute. Our choice of the z axis was quite arbitrary – 
we could equally well have chosen the x or y axes as the polar axes for our coordinate system, 
in which case we would see quite clearly that the eigenfunctions of the ˆxL  or ˆyL  operators are 

                                                           
8 Remember that, for example, the partial derivative /r x∂ ∂  is implicitly taken at constant y and z, and is 

not the same as 1/
x
r

∂

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

, where the derivative is implicitly taken at constant θ and φ. Hence the 

expression for r in terms of x, y, and z must be used to evaluate this derivative. Similar considerations 

apply to the other partial derivatives. The relations 
1

2

sin 1

1

d x
dx x

−

=
−

 and 
1

2

tan 1
1

d x
dx x

−

=
+

 are useful 

here. 
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of similar form to Eq. (9.19), but in terms of the angles of rotation about the x or y axes 
respectively. Hence the eigenfunctions of the angular momentum operators ˆxL , ˆyL , and ˆzL  are 
not the same. 

Problems 
 9.1.1  Show, starting from the definition of the operators for the Cartesian components of the angular 

momentum, that ˆ ˆ ˆi× =L L L= . [Note that you should also explicitly derive any commutation relations 
that you need between the operators of the angular momentum components, starting from the known 
commutation properties of position and (linear) momentum operators.] 

 9.1.2  Starting from the definition in Cartesian coordinates, and noting that 

 r
x x r x x

θ φ
θ φ

∂ ∂ ∂ ∂ ∂ ∂ ∂
≡ + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
  

show that  

sin cot cosxL i φ θ φ
θ φ

⎛ ⎞∂ ∂
= +⎜ ⎟∂ ∂⎝ ⎠

=  

(Remember that 
1

2

sin 1
1

d x
dx x

−

=
−

 and 
1

2

tan 1
1

d x
dx x

−

=
+

) 

9.2 L squared operator 

In quantum mechanics it is also useful to consider another operator associated with angular 
momentum, the operator 2L̂ . This should be thought of as the “dot” product of L̂  with itself, 
and is defined as 

 2 2 2 2ˆ ˆ ˆ ˆ
x y zL L L L= + +  (9.20) 

It is similarly straightforward (and again somewhat tedious) to show then that 

 2 2 2
,L̂ θ φ= − ∇=  (9.21) 

where the operator 2
,θ φ∇  is given by 

 
2

2
, 2 2

1 1sin
sin sinθ φ θ

θ θ θ θ φ
⎡ ⎤∂ ∂ ∂⎛ ⎞∇ = +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

 (9.22) 

This 2
,θ φ∇  operator is actually the θ and φ part of the Laplacian ( 2∇ ) operator in spherical polar 

coordinates, hence the notation. (We will return to the full Laplacian in spherical polar 
coordinates when we examine the hydrogen atom below.) This relation between 2L̂  and the 
Laplacian gives a mathematical hint as to why we have chosen to introduce this operator.  

2L̂  has another property that is very important physically – it commutes with ˆxL , ˆyL , and ˆzL . 
It is easy to see from (9.22) and the form of ˆzL  (Eq. (9.17)), that at least 2L̂  and ˆzL  commute; 
the operation / φ∂ ∂  has no effect on functions or operators depending on θ  alone, there are no 
functions of φ in the 2L̂  operator, and / φ∂ ∂  commutes with 2 2/ φ∂ ∂ . Of course, the choice of 
the z direction is quite arbitrary; we could equally well have developed this problem 
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considering the polar axis along the x or y directions, in which cases it would similarly be 
obvious that 2L̂  commutes with ˆxL or ˆyL .9 

Now let us examine the eigenfunctions of this operator 2L̂ . We are looking for eigenfunctions 
of 2L̂  (or, equivalently, 2

,θ φ∇ ), and so the equation we hope to solve is of the form 

 ( ) ( ) ( )2
, , 1 ,lm lmY l l Yθ φ θ φ θ φ∇ = − +  (9.23) 

We have anticipated the answer by writing the expected eigenvalue in the form ( )1l l− + , but 
for the moment we can consider this as an arbitrary number to be determined. The notation 

( ),lmY θ φ also anticipates the final answer, though again for the moment it is an arbitrary 
function to be determined. 

Formally, we will attempt separation of variables to divide the problem into smaller solvable 
units. The reader is probably familiar with this from previous problems in more than one 
variable. Indeed the main reason for the choice of particular coordinate systems (e.g., here 
spherical polars) is to make such separations possible. We presume that the final 
eigenfunctions can be separated10 in the form 

 ( ) ( ) ( ),lmY θ φ θ φ= Θ Φ  (9.24) 

where ( )θΘ  only depends on θ  and ( )φΦ  only depends on φ . Substituting this form in Eq. 
(9.23) gives 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2 2sin 1
sin sin

l l
φ θ φ

θ θ θ φ
θ θ θ θ φ

Φ Θ ∂ Φ∂ ∂⎛ ⎞Θ + = − + Θ Φ⎜ ⎟∂ ∂ ∂⎝ ⎠
 (9.25) 

Multiplying both sides by ( ) ( )2sin /θ θ φΘ Φ  and rearranging terms, we have 

 
( )

( ) ( ) ( ) ( )
2

2
2

1 sin1 sin sinl l
φ θθ θ θ

φ θ θ θφ
∂ Φ ∂ ∂⎛ ⎞= − + − Θ⎜ ⎟Φ Θ ∂ ∂∂ ⎝ ⎠

 (9.26) 

In the usual manner of separation of variables, we note that the left hand side depends only on 
φ  whereas the right hand side depends only on θ , and so these must both equal a constant (the 
separation constant). Again anticipating the answer with our notation, we choose a separation 
constant of 2m− , where m  is still to be determined. Note that now that we have performed 
this separation, it is no longer necessary to use the partial derivative notation; on each side of 

                                                           
9 At this point, the reader should be confused. Did we not decide that ˆ

xL , ˆyL , and ˆ
zL do not commute 

with each other? How then can each of them commute with the same operator 2L̂ ? The answer is that it is 
true that the eigenfunctions of 2L̂  can indeed be chosen so that they are also the eigenfunctions of ˆ

xL , 
ˆyL , or ˆ

zL . But the version of the 2L̂  eigenfunctions that is the same as the ˆ
zL  eigenfunctions is different 

from the versions that are eigenfunctions of ˆyL , or ˆ
zL  (they each have different polar axes). Why is there 

this ambiguity? The answer lies in the spherical symmetry of the operator 2L̂ ; it does not care what we 
choose as the polar axis, and will happily have its eigenfunctions defined with respect to any polar axis.  

In real physical problems there is very often something about the problem that defines one axis as being 
special in some way, and by convention we typically call that axis the z axis. For example, there might be 
an electric or magnetic field along that axis. In such a case, that axis defines one direction over the others, 
and, in the limit as the perturbation along that axis tends towards zero, we will typically recover the kinds 
of solutions we have here with the z axis having a special role. 
10 The justification for any such proposed separation is that, a posteriori, we find that it satisfies the 
equation, and has enough arbitrary constants to be a general solution.  



 9.2 L squared operator 251 

the equation, the functions only depend on one variable, so henceforth we can use the normal 
total derivative notation for the resulting separated equations. 

Taking the left hand side first, we now have an equation 

 
( ) ( )

2
2

2

d
m

d
φ

φ
φ

Φ
= − Φ  (9.27) 

The solutions to an equation like this are of the form sin mφ , cos mφ  or exp imφ . In quantum 
mechanics, we choose the exponential form so that this is also a solution of the 
ˆ

zL eigenequation, Eq. (9.18). Again, as we mentioned above, since this is to be a quantum 
mechanical spatial wavefunction, we expect that it and its derivative are continuous and single 
valued. As a result, this wavefunction must be cyclic every 2π of angle φ, and m must be an 
integer. 

Taking the right hand side of Eq. (9.26) we can now write an equation  

 ( ) ( ) ( ) ( )
2

2

1 sin 1 0
sin sin

d d m l l
d d

θ θ θ θ
θ θ θ θ

⎛ ⎞Θ − Θ − + Θ =⎜ ⎟
⎝ ⎠

 (9.28) 

Fortunately, the solutions to this equation are known. This is the associated Legendre equation, 
and the solutions to it are the associated Legendre functions, ( ) ( )cosm

lPθ θΘ = . The solutions 
require that 

 0, 1, 2, 3, ...l =  (9.29) 

 m ll ≤ ≤−  (m integer) (9.30) 

The associated Legendre functions can conveniently be defined using Rodrigues’ formula 

 ( ) ( ) ( )/ 22 21 1 1
2 !

l mm lm
l l l m

dP x x x
l dx

+

+= − −  (9.31) 

The first few of these functions are, explicitly, 
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P x x
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−
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=

=

= −

= − −

= −

= −

= − −

= −

= −

 (9.32) 

We can see by inspection that these functions have the following properties: (i) the highest 
power of the argument x is always lx ; (ii) the functions for a given l for +m and –m are 
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identical (other than for differences in numerical prefactors). Less obviously, between –1 and 
+1, and not including the values at those end points, the functions have l m−  zeros.  

Now we can retrace our steps and construct the full eigenfunctions of 2L̂ . From (9.21) and 
(9.23), the eigenequation is 

 ( ) ( ) ( )2 2ˆ , 1 ,lm lmL Y l l Yθ φ θ φ= +=  (9.33) 

where ( ),lmY θ φ  are referred to as the spherical harmonics, which, after normalization11, can be 
written 

 ( ) ( ) ( )
( ) ( ) ( )

!2 1, 1 cos exp
4 !

m m
lm l

l mlY P im
l m

θ φ θ φ
π

−+
= −

+
 (9.34) 

The allowed eigenvalues of 2L̂  are ( )2 1l l += . As is easily verified, these spherical harmonics12 
are also eigenfunctions of the ˆzL  operator. Explicitly we have the eigenequation 

 ( ) ( )ˆ , ,z lm lmL Y m Yθ φ θ φ= =  (9.35) 

with the eigenvalues of ˆzL  being m= . 

Problems 
 9.2.1 Show explicitly in Cartesian (x, y, z) coordinates that the 2∇  and ˆ

zL  operators commute, i.e., 
 2 ˆ, 0zL⎡ ⎤∇ =⎣ ⎦   

 9.2.2 Write out the associated Legendre functions for l = 0, 1, and 2 with cos θ  instead of x as the 
argument (possibly simplifying the results using 2 2cos sin 1θ θ+ = ), and hence state all the angles θ 
for which each of these associated Legendre function has zeros.  

9.3 Visualization of spherical harmonic functions 

See also Appendix Section D.9 for a brief background discussion of modes. 

These spherical harmonics may appear to be relatively obscure functions, but in fact it is quite 
possible to visualize what they are like, and there is quite a simple rule that allows one to 
describe an arbitrary spherical harmonic qualitatively. 

It is easiest to visualize spherical harmonics if we step away from the quantum mechanical 
problem for the moment, and think of another problem for which the spherical harmonics are 
the solutions, namely the modes of vibration of a thin spherical shell.13 The only substantial 

                                                           
11 Note that the normalization factor is just what is required to make the θ  dependence of these spherical 
harmonics identical for positive and negative values of m; it compensates for the different numerical 
prefactors in the m

lP  and m
lP−  functions. 

12 The spherical harmonics are the eigenfunctions of the ˆ
zL  operator at least when defined using 

exp( )imφ  rather than an alternative definition using cosmφ  and sin mφ . 
13 One can readily construct this spherical shell problem, just as one constructs the usual wave equation 
for, say, a wave on a string. If an element of the surface is displaced radially by an amount ψ, it 
experiences an elastic restoring force proportional to the local second spatial derivative of that 
displacement in the plane, i.e. 2

θφψ∝ ∇ , which leads to a proportionate restoring acceleration 
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mathematical difference between these two problems is that the shell’s vibrations must have 
real amplitudes, and so, instead of using positive and negative m with complex functions 

( )exp imφ , we use only positive m but use both sin mφ  and cos mφ  solutions. (Remember 
that the θ dependence of the spherical harmonics is the same for positive and negative m.) 
Since the solutions corresponding to sin mφ  and cos mφ  are merely rotated by ¼ of a period 
(an angle of π /2m) around the polar axis with respect to one another, we only need to 
understand one of these to understand the nature of the spherical harmonics. It is simple to 
construct the ( )exp imφ  solution from these.  

l 2=
m 2=

l 0=
m 0=

l 1=
m 0=

l 2=
m 0=

l 2=
m 1=

l 1=
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l 2=
m 2=
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l 2=
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l 2=
m 1=

l 1=
m 1=

 
Fig.  9.3. Illustration of the nodal circles for the spherical harmonics corresponding to the 
vibration modes of a spherical shell, for various cases (l = 0, m = 0, l = 1, m = 0, 
l = 1, m = 1, l = 2, m = 0, l = 2, m = 1, l = 2, m = 2.) 

Fig.  9.3 illustrates the nature of the solutions for the vibrating spherical shell problem, here 
showing the cos mφ  solutions (i.e., the real part of the complex spherical harmonics). The 
lowest solution ( 0, 0l m= = ) simply corresponds to the “breathing” mode of the spherical 
shell – the shell simply expands and contracts periodically while retaining its spherical shape. 

                                                                                                                                                         
2 2/ tψ∝ ∂ ∂ . The presumption of sinusoidal oscillations in time leads to the usual Helmholtz wave 

equation that here we can write in the form 2 aθφψ ψ∇ = −  for some positive eigenvalues a  to be 
determined, which is the same form as our quantum mechanical equation. 
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For all other solutions, there are one or more nodal circles on the sphere. A nodal circle is one 
that is exactly unchanged in that particular oscillating mode. To understand the oscillations of 
the sphere in a give spherical harmonic, we can use the following rules. 

(i) the surfaces on opposite sides of a nodal circle oscillate in opposite directions – exactly as 
one would expect for a node in an oscillating surface. 

(ii) the total number of nodal circles is equal to l. 

(iii) the number of nodal circles passing through the poles is m, and they divide the sphere 
equally in the azimuthal angle φ . (The precise positions of these circles are determined by the 
zeros of cos mφ .) 

(iv) the remaining nodal circles are either equatorial or parallel to the equator, and are 
symmetrically distributed between the top and bottom halves of the sphere. (Only the precise 
position of these circles is not immediately obvious from symmetry, and is determined by the 
zeros of the associated Legendre functions.)  

With these simple rules, it is quite straightforward to visualize the form of the spherical 
harmonics.  

Of course, this visualization of vibrating modes of a spherical shell is not itself the spherical 
harmonic function. It is the amplitude of the oscillation of the vibration at any given angle that 
is the spherical harmonic function; spherical harmonics are functions of angle only, not radius.  

Note that the amplitude of the spherical harmonic may be positive for one range of angles and 
negative for another; for example, for all the 1l =  spherical harmonics, the function is positive 
on one hemispherical range of angle and negative on the other hemispherical range. Fig.  9.4 
illustrates an example of a parametric plot of a spherical harmonic function. Such plots, though 
often plotted in quantum mechanics texts, can be difficult to interpret since it is not so obvious 
what values of angles correspond to particular points on the surface. 

 
Fig.  9.4. A plot of the spherical harmonic for 2l = , 1m = , showing two “dumbbells”. These 
dumbbells can be seen to be the consequence of a polar circle of value zero, which pinches the 
function to zero in the vertical direction, and an equatorial circle of value zero, which pinches the 
function to zero in the horizontal direction. This kind of plot is a polar parametric plot as a 
function of θ and φ of the surface given by the set of points (x, y, z) with 

21 ( , ) sin cosx Y θ φ θ φ= , 21 ( , ) sin siny Y θ φ θ φ= , and 21 ( , ) cosz Y θ φ θ= . The view is along the y 
axis.  
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9.4 Comments on notation 

Dirac notation 

We will also commonly use the Dirac notation in writing equations associated with angular 
momentum, in which case it is conventional to write 

 ( )2 2ˆ , 1 ,L l m l l l m= +=  (9.36) 

instead of Eq. (9.33), and  

 ˆ , ,zL l m m l m= =  (9.37) 

instead of Eq. (9.35).  

“s, p, d, f” notation 

 

l 0 1 2 3 4 5 

notation s p d f g h 

In the context of quantum mechanics, the spherical harmonics come up in the solution of the 
hydrogen atom problem. Different values of l  give rise to different sets of spectral lines that 
spectroscopists in the 19th century had identified empirically in their work on hydrogen. In 
particular, they had identified what they called respectively “spectral” (s), “principal” (p), 
“diffuse” (d), and “fundamental” (f) groups of lines. Each of these is now identified with the 
specific values of l  as follows, where we also indicate the alphabetic extension to higher l  
values. 

It is also convenient to note that the s wavefunctions are all spherically symmetric, even 
though the s of the notation originally had nothing to do with spherical symmetry. 

S, X, Y, Z functions 

Many semiconductor crystals have crystalline structure that is based on a form of cubic crystal 
lattice (see Chapter 8). In particular, most of the semiconductors of technological importance, 
such as Si, Ge, GaAs, InP, have such crystalline structures. For understanding many properties 
of these crystals, such as optical absorption, for example, we need to understand some of the 
attributes of the electron wavefunctions within the unit cell (the unit that, when periodically 
repeated, constructs the entire crystal lattice).  

The detailed calculation of the wavefunctions within the unit cell is difficult, but often the 
qualitative aspects of the behavior, such as the polarization dependence of optical absorption, 
can be understood if we understand the symmetry of the unit cell wavefunctions in the 
different bands. The wavefunctions within the unit cell can have symmetries that are the same 
as, or similar to, the symmetries of atomic states; the angular symmetries of atomic states are 
essentially those of the spherical harmonics.  

For example, the unit cell wavefunctions in the conduction band of materials such as GaAs and 
InP have approximately spherical symmetry (even though they are embedded in cubic unit 
cells), just like the 0l =  spherical harmonic function. In the analysis of such materials and 
their properties, this conduction band unit cell function is often written as ( )S r , where here r  
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refers to the position within the unit cell. We do not know the actual detailed form of ( )S r , 
but we do know that it is approximately spherically symmetric within the unit cell. 

If we look at the spherical harmonic for 1l = , 0m = , we see that it is antisymmetric about 
0z = . The value of the function at a given point above the equator is minus that of the value 

of the function at the corresponding point below the equator. This is, somewhat trivially, the 
same symmetry as the function z itself. A function with this symmetry can therefore be written 
as ( )Z r . For such a function, we may not know its detailed form, but we do know that it is 
antisymmetric about 0z = . 

There are two other spherical harmonics for 1l = . If we consider the real form of the spherical 
harmonics (with cos mφ  and sin mφ  angular dependences) with 1m = , one of these (the 
cos mφ  one illustrated in Fig.  9.3) corresponds to a function that is antisymmetric about 0x = . 
A function with the same symmetry as this spherical harmonic can be written as ( )X r . 
Similarly, the 1l = , 1m =  spherical harmonic with the sin mφ  dependence corresponds to a 
function that is antisymmetric about 0y = , and a function with this symmetry can be written 
as ( )Y r . 

Functions with these ( )X r , ( )Y r , and ( )Z r  symmetries are the p atomic orbitals (often 
shown as three orthogonal dumbbell orbitals in chemistry texts). The valence band states of 
most importance in materials such as GaAs and InP can be characterized by unit cell functions 
of these forms also, even though the detailed form of these functions is not known with any 
accuracy. This notation is extensively used in the analysis of the band structure properties of 
such materials to allow calculation of optical and other properties. 

Lz axis

-

-2

+2

+
Lz

Lrxy axis

L

 
Fig.  9.5. Illustration of the eigenvalues of angular momentum for the case of 2l = . 

9.5 Visualization of angular momentum 

We can visualize the quantization of angular momentum as shown in Fig.  9.5. To make this 
visualization formal, we need to consider one more operator,  

 2 2 2ˆ ˆ ˆ
rxy zL L L= −  (9.38) 
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where by the subscript rxy  we are referring to the radius 2 2xyr x y= +  in the x-y plane. Then 
we have 

 ( )2 2 2 2 2 2ˆ ˆ ˆ, , , 1 , ,rxy z rxyL l m L l m L l m l l m l m L l m⎡ ⎤= − = + − =⎣ ⎦=  (9.39) 

In other words, the state ,l m , in addition to being an eigenstate of 2L̂  and ˆzL , is also an 
eigenstate of this new operator 2ˆrxyL , with eigenvalue ( )2 2 2[ 1 ]rxyL l l m= + −= . Because the two 
operators ˆzL  and 2ˆrxyL  have the same eigenstates, they both simultaneously can have exactly 
defined expectation values (i.e., eigenvalues), and we can plot the eigenstates and eigenvalues 
as on a circle in Fig.  9.5, which is drawn for a particular case of 2l = . The possible eigenstates 
correspond to the intersections of the horizontal straight lines, corresponding to the values of 

zL , and spaced by = , and the semicircle of radius ( 1)l l +=  (i.e., 6=  for this example). 

9.6 Summary of concepts 

Angular momentum operators 

By extension from linear momentum, we can define angular momentum operators associated 
with each of the coordinate directions, ˆxL , ˆyL , and ˆzL . 

ˆ ˆ ˆ ˆˆ sin cot cosx z yL yp zp i y z i
z dy

φ θ φ
θ φ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= − = − − = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

= =  (9.5) and (9.15) 

ˆ ˆ ˆ ˆˆ cos cot siny x zL zp xp i z x i
x dz

φ θ φ
θ φ

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= − = − − = − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
= =  (9.6) and (9.16) 

 ˆ ˆ ˆ ˆ ˆz y xL xp yp i x y i
y dx φ

⎛ ⎞∂ ∂ ∂
= − = − − = −⎜ ⎟∂ ∂⎝ ⎠

= =  (9.7) and (9.17) 

or, in shorthand form 

 ( )ˆ ˆ ˆ i= × = − ×∇L r p r=  (9.4) 

Each of these has possible eigenvalues m=  where m  is an integer, but these operators do not 
commute; it is not possible to have well-defined angular momentum about two different axes 
at once. Unlike linear momentum, angular momentum is restricted to discrete values. 

L2 operator 

The 2L̂  operator commutes with any one of ˆxL , ˆyL , and ˆzL ; conventional notation chooses 
ˆzL . 2L̂  has eigenvalues of ( )2 1l l +=  where 0, 1, 2l = … , and has spherical harmonics as its 

eigenfunctions. The range of m  is l m l− ≤ ≤ . 

Spherical harmonics 

Spherical harmonics can be written as 

 ( ) ( ) ( )
( ) ( ) ( )

!2 1, 1 cos exp
4 !

m m
lm l

l mlY P im
l m

θ φ θ φ
π

−+
= −

+
 (9.34) 

where ( )m
lP u  are the associated Legendre functions.  
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Spherical harmonics can be visualized in terms of the spatial modes of vibration of a spherical 
shell, with the spherical harmonics being proportional to the amplitude of the oscillations of 
the sphere at any given angles corresponding to a point on the sphere. The number of nodal 
circles is l, with m of these passing through both poles. 

 



Chapter 10  
 
The hydrogen atom 

Prerequisites: Chapters 2 – 5 and Chapter 9.  

The hydrogen atom is a very important problem in quantum mechanics. It is also a problem 
described by Schrödinger’s equation that is mathematically exactly solvable (if we neglect a 
few small corrections that lie beyond the simple Schrödinger equation description).1 These 
solutions give the basis for our conceptual understanding of atoms and molecules, as well as 
much of the notation. In engineering, the hydrogen atom solutions also can be used as a model 
to explain a phenomenon (Wannier excitonic effects) that is very important in the optical 
absorption in most semiconductor optoelectronic devices. 

The hydrogen atom problem is additionally an excellent tutorial one to take us beyond the 
simple one-dimensional spatial problems we have used as examples so far. In particular, it is a 
concrete example of the angular momentum behavior we discussed in the previous Chapter. 
Also, unlike all the problems dealt with so far, the hydrogen atom involves two particles (the 
electron and the proton), not just one. The hydrogen atom therefore gives us an introduction to 
how we can handle more than one particle (though, unfortunately, problems containing more 
than two particles are almost always not exactly solvable). We will additionally use this 
problem to illustrate another technique that is often used in deriving the solutions for those 
Schrödinger problems that can be solved exactly, namely series solution of differential 
equations.2 

How should we tackle this problem of two particles? The basic approach we take to this and 
many other problems in quantum mechanics is to generalize the Schrödinger equation. We 
write quite generally for time-independent problems 

 Ĥ Eψ ψ=  (10.1) 

                                                           
1 The simple Schrödinger equation solution given here neglects (i) the interaction of the electron spin and 
the proton orbit (the spin-orbit interaction), a relativistic correction that can be viewed as an interaction 
between the electron spin and the magnetic field that results from the proton moving in an orbit relative 
to the electron, and which gives rise to some splitting of the otherwise degenerate levels, known as fine 
structure splitting, (ii) the hyperfine interaction associated with the interaction of the electron and proton 
spins, and (iii) the Lamb shift, a splitting of degeneracy of specific levels resulting from quantum electro-
dynamics. Even these corrections are very important to physics since they test more advanced aspects of 
quantum mechanics extraordinarily well. 
2 This method would have been the way we would have arrived at the Hermite polynomial solutions of 
the harmonic oscillator problem, for example, in Chapter 2, though we merely stated that result there 
rather than deduced it from first principles. 
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where now we mean that the Hamiltonian Ĥ  is the operator representing the energy of the 
entire system, and similarly ψ  is the wavefunction representing the state of the entire system. 

10.1 Multiple particle wavefunctions 

For the hydrogen atom, there are two particles, the electron and the proton. Each of these has a 
set of coordinates associated with it ( ex , ey , and ez  for the electron and px , py , and pz  for 
the proton). The wavefunction will therefore in general be a function of all six of these 
coordinates.  

In the simple single-particle problems we considered before, we could imagine that the 
wavefunction at any given time was a function in ordinary three dimensional space. Now, 
however, we have to move beyond that simple picture. This hydrogen atom wavefunction is a 
function of six spatial coordinates, and is really a wavefunction in what is called configuration 
space. The dimensionality of this space would grow even further if we had more particles; 
three particles would require nine spatial coordinates. A small lump of a solid material would 
need of the order of 1023 spatial coordinates to describe its configuration space!  

To make matters worse, it is not simply the case that the proton wavefunction is a function of 
three position variables and the electron wavefunction is similarly a function of three position 
variables. The underlying issue that we have to confront here is that the behavior of the 
electron and the proton cannot be completely described if we insist on describing them 
separately, each with wavefunctions determined only by their own position coordinates.  

Why do we need this additional complexity to describe a multiple particle system? Imagine, 
for example, that we had a hydrogen atom in a box. The hydrogen atom might be found 
anywhere in the box, and hence the electron might be found anywhere in the box. We might 
think that a simple electron wavefunction describing the electron as being found anywhere in 
the box would be sufficient. Similarly, the proton might be found anywhere in the box, and we 
might also imagine that we could have a simple proton wavefunction describing it as being 
anywhere in the box. But that would not describe the relationship between the electron and the 
proton. In particular, for example, it would not tell us the answer to a question such as “if we 
find the electron at a particular position, what is the probability that we will find the proton 
within 1 Å of that position?” Obviously, if the electron and proton were in a bound state of the 
hydrogen atom, the answer to that question would be that there is a large chance of finding the 
proton nearby; if the hydrogen atom was in a very high excited state, or an ionized state, that 
probability would be quite low. Hence we see that simple, separate wavefunctions for electron 
and proton, each a function only of that particle’s own coordinates, are not sufficient to 
describe the complete state of the pair of particles.  

We have an analogous situation in ballroom dancing. We could have a probability distribution 
describing the chance of finding a man at any particular place on the dance floor. Since 
ballroom dancers typically move round the entire floor during the dance, that distribution is 
relatively uniform over most of the dance floor. We would have a similar probability 
distribution for finding a woman at any particular place. But those distributions would not tell 
us the probability of finding a woman dancer close to a man dancer, a probability that is high 
because they dance in pairs. Hence those individual probability distributions are just not 
sufficient to describe the dancers.  

By careful choice of coordinate systems, we can sometimes find ways of separating the 
problem so that we do get back to a simple description, with our six coordinate wavefunction 
being a product of two functions each of only three coordinates (and that is indeed the case for 
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the hydrogen atom in empty space). In general, we cannot hope to factor the wavefunction that 
simply, however.3 

Note too that this configuration space is not the same as the Hilbert space we use to describe 
functions. Our configuration space has three dimensions for each particle (possibly four if we 
include time). The Hilbert space has a possibly infinite number of dimensions for each degree 
of freedom (e.g., for each coordinate direction for each particle). It is, of course, certainly true 
that the Hilbert space acquires more dimensions as we describe sets of more than one particle.4 

10.2 Hamiltonian for the hydrogen atom problem 

The electron and proton each have a mass ( em  and pm  respectively), and we correspondingly 
expect kinetic energy operators associated with each of these masses. In this particular 
problem, there is also a potential energy corresponding to the Coulomb attraction of the 
electron and the proton. With all these terms and definitions, the Hamiltonian becomes 

 ( )
2 2

2 2ˆ
2 2e p e p

e p

H V
m m

= − ∇ − ∇ + −r r= =   (10.2) 

where  
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(and similarly for 2
p∇ ),  

 e e e ex y z= + +r i j k  (10.4) 

is the position vector of the electron coordinates (and similarly for pr ) and 
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4e p
o e p

eV
πε

− = −
−

r r
r r

 (10.5) 

is the Coulomb potential energy arising from the electrostatic attraction between the electron 
and the proton. Note that this potential energy only depends on the distance e p−r r  between 
the electron and proton coordinates5.  

The Schrödinger equation with this Hamiltonian can now be written explicitly as 

 
( ) ( )

( )

2 2
2 2 , , , , ,

2 2

, , , , ,

e p e p e e e p p p
e p

e e e p p p

V x y z x y z
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E x y z x y z

ψ

ψ

⎡ ⎤
− ∇ − ∇ + −⎢ ⎥

⎢ ⎥⎣ ⎦

=

r r= =
 (10.6) 

                                                           
3 The problem of a hydrogen atom in a box does not strictly separate in the same way – indeed it is not 
clear that it does separate. The problem then is that the box imposes some energy terms that depend on 
absolute coordinates, whereas the usual hydrogen atom problem separates because it depends only on 
relative positions.  
4 We will return to this issue in Chapter 12 when we discuss direct product spaces. 
5 See Appendix B, Section B.2 for Coulomb’s law. 
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Bohr radius and Rydberg energy 
Before proceeding to solve the complete problem mathematically, at this point it will be useful 
to introduce appropriate units for the problem;6 we will need dimensionless forms of the 
equations for some of the subsequent mathematics, and these units also have simple physical 
significance.  

We presume that the hydrogen atom will have some characteristic size, which is called the 
Bohr radius, oa . We expect that the “average” potential energy (strictly its expectation value) 
will therefore be 

 
2

4potential
o o

eE
aπε

≈ −   (10.7) 

For a reasonable smooth single-peaked wavefunction of characteristic size oa , the second 
spatial derivative will be roughly 21/ oa−  times the value of the function7 (the minus sign 
comes about because the function is presumably peaked in the middle and falls off towards the 
sides – a reasonable guess at least for a lowest state – hence giving a negative second 
derivative). Remembering that the kinetic energy operator is ( )2 2/ 2μ− ∇= , the “average” 
kinetic energy (again, strictly its expectation value) will therefore be  
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22kinetic
o

E
aμ

≈
=  (10.8) 

If we are looking for the lowest state of the system to start with, we would like to minimize the 
total energy, in the spirit of a variational calculation. With our very simple model here, the 
total energy is 

 2 2

2 42

total kinetic potential

o oo

E E E

e
aa πεμ

= +

≈ −
=  (10.9) 

Of course, the total energy is a balance between the potential energy, which is made lower 
(more negative) by choosing oa  smaller, and the kinetic energy, which is made lower (less 
positive) by making oa  larger. For the simple model represented in Eq. (10.9), differentiation 
shows that the choice of oa  that minimizes the energy overall is 
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2
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e
πε

μ
= ≅

=
 0.529 Å = 5.29 x 10-11 m (10.10) 

This equation, (10.10), is the standard definition of the Bohr radius. We therefore see that the 
hydrogen atom is approximately 1 Å in diameter. 

With this choice of oa , the corresponding total energy of the state is, from Eq. (10.9),  

                                                           
6 Of course it makes no real difference if we get this choice of units “right”, so we can be fairly informal 
in our arguments to choose them. As usual, however, we know the answer, and hence make the right 
choices anyway. 
7 A function rising from 0 to 1 in a distance oa  would have to have a slope of ~ 1/ oa , and if the same 
function now falls from 1 to 0 in a distance oa , it will now need a slope of ~ 1/ oa− . Hence over a 
distance ~ 2 oa  the derivative has changed by 2 / oa− , corresponding to a second derivative of ~ 21/ oa− . 
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We can usefully define an energy unit that we call the “Rydberg”, Ry , 
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 13.6 eV  (10.12) 

in which case totalE Ry= − . 

Though we have produced the Bohr radius oa  and the Rydberg Ry  here by informal 
arguments, they will turn out to be rigorously meaningful quantities once we have solved the 
complete hydrogen atom problem. Specifically, the energy of the lowest hydrogen atom state 
will indeed turn out to be Ry− . 

10.3 Coordinates for the hydrogen atom problem 

Eq. (10.6) contains all of the physical assumptions we want for this problem. Our task is now 
the mathematical one of solving this equation. Our first goal is to find a way of breaking this 
problem up into more manageable parts. We do this by an intelligent choice of coordinate 
systems, and by separating the resulting differential equation. There are two questions in the 
choice of coordinate systems.  

(i) The coordinates of what?  

With a single particle, it was obvious to choose the coordinates of the single particle. With two 
particles, we might at first think we simply choose the separate coordinates of the individual 
particles as the coordinates to work with. In fact, the problem does not separate conveniently if 
we do that. We will choose center-of-mass coordinates of the pair of particles instead. 

(ii) What axes? 

For a problem with spherical symmetry, like the hydrogen atom, we could make an intelligent 
guess that the problem would be simpler using spherical polar coordinates rather than simple 
Cartesian ones. 

Center-of-mass coordinates 
The main hint as to what coordinate approach we might take is to note that the potential in this 
problem is only a function of the relative separation of the electron and proton, e p−r r . We 
might therefore try to choose a new set of six coordinates in which three are the relative 
positions 

 e px x x= − , e py y y= − , e pz z z= −  (10.13) 

i.e., with a relative position vector 

 x y z= + +r i j k , (10.14) 

from which we obtain 

 2 2 2
e pr x y z= + + = −r r  (10.15) 
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What should we choose for the other three coordinates? Experience with related classical 
problems, such as a moon orbiting a planet under gravitational attraction, tells us that the 
position of the center of mass of the moon and the planet is not affected by the orbit of the 
moon round the planet – each of them executes an orbit about the center of mass. We therefore 
look for a similar approach here. The position R of the center of mass is the same as the 
balance point of a light-weight beam with the two masses attached at opposite ends, and so is 
the weighted average of the positions of the two individual masses, i.e.,  

 e e p pm m
M
+

=
r r

R  (10.16) 

where M is the total mass 

 e pM m m= +  (10.17) 

Now let us construct the differential operators we need in terms of these coordinates. With 

 X Y Z= + +R i j k  (10.18) 

we have, for example, for the new coordinates in the x -direction 

 e e p pm x m x
X

M
+

= , e px x x= −  (10.19) 

and so the first derivatives in the x -direction can be written as 

 p p p
x Xe e ex x x

e

x X

X x
x x X x x

m
M X x

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

∂ ∂
= +

∂ ∂

 (10.20) 

and similarly 

 e e e
x Xp p px x x

p

x X

X x
x x X x x

m
M X x

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

∂ ∂
= −

∂ ∂

 (10.21) 

(Here we have explicitly indicated the variables in the x-direction held constant in each partial 
differentiation to try to reduce confusion.) 

The second derivatives become 

 

2

2

2 2 2

2 2

p p p pp

e

x Xe e e ee x x x xx

e e

X x x Xx X

m
x x M x X x xx

m m
M M x X X xX x

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟= = +
⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂∂
⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ∂ ∂ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠

 (10.22) 

and similarly 
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22 2 2

2 2 2

e

p p

X x x Xp x Xx

m m
M M x X X xx X x

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
= + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂ ∂ ∂ ⎝ ⎠⎝ ⎠

 (10.23) 

and so (dropping the explicit statement of variables held constant) 

 

2 2 2 2

2 2 2 2 2

2 2
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1 1 1 1

1 1

e h
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⎛ ⎞+∂ ∂ ∂ ∂
+ = + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂ ∂
= +

∂ ∂

 (10.24) 

where μ is the so-called reduced mass 

 e p

e p

m m
m m

μ =
+

 (10.25) 

The same kinds of relations can be written for each of the other Cartesian directions, and so we 
have 

 
2 2 2

2
2 2 2X Y Z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂R  and 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂r  (10.26) 

Instead of Eq. (10.2), we can write the Hamiltonian in a new form with center of mass 
coordinates, 

 ( )
2 2

2 2ˆ
2 2

H V
M μ

= − ∇ − ∇ +R r r= =  (10.27) 

which will now allow us to separate the problem.  

To attempt the separation in center-of-mass coordinates, we first presume that the total 
wavefunction can be written as a product 

 ( ) ( ) ( ), S Uψ =R r R r  (10.28) 

(As always for such proposed separations, the justification is that the separation leads to 
solutions of the equation that fit all the constraints of the problem and that are sufficiently 
general.) Substituting this form in the Schrödinger equation (10.1) with the Hamiltonian in the 
form (10.27), we obtain 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2

2 2
U S S V U ES U

M μ
⎡ ⎤

− ∇ + − ∇ + =⎢ ⎥
⎣ ⎦

R rr R R r r R r= =  (10.29) 

Dividing by ( ) ( )S UR r  and moving some terms, we have 

 
( ) ( ) ( ) ( ) ( )

2 2
2 21 1

2 2
S E V U

S M U μ
⎡ ⎤

− ∇ = + ∇ +⎢ ⎥
⎣ ⎦

R rR r r
R r

= =  (10.30) 

The left hand side depends only on R, and the right hand side depends only on r , and so both 
of these must equal some constant, which we will call CoME . Hence we now have two 
separated equations 
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 ( ) ( )
2

2

2 CoMS E S
M

− ∇ =R R R=  (10.31) 

and 

 ( ) ( ) ( )
2

2

2 HV U E U
μ

⎡ ⎤
− ∇ + =⎢ ⎥

⎣ ⎦
r r r r=  (10.32) 

where  

 H CoME E E= −  (10.33) 

We can see immediately that the first of these equations, Eq. (10.31), is the Schrödinger 
equation for a free particle of mass M, with wavefunction solutions 

 ( ) ( )expS i= ⋅R K R  (10.34) 

and eigenenergies 

 
2 2

2CoM
KE
M

=
=  (10.35) 

This solution corresponds to the center of mass of the pair of particles moving as a composite 
particle with mass equal to the total mass of the two particles – i.e., this is the motion of the 
entire hydrogen atom. 

The second of these equations, Eq. (10.32), corresponds to the “internal” relative motion of the 
electron and proton, and will give us the internal states of the hydrogen atom.  

To solve Eq. (10.32), we can make use of the spherical symmetry of this equation, and change 
to spherical polar coordinates. (Henceforth, we drop the subscript r in the 2∇  operator for 
simplicity of notation.) In spherical polars, we have 

 
2

2 2
2 2 2 2

1 1 1 1sin
sin sin

r
r rr r

θ
θ θ θ θ φ

⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞∇ ≡ + +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
 (10.36) 

where the term in square brackets is the operator 2 2 2, ˆ /Lθ φ∇ ≡ − =  that we introduced above in 
discussing angular momentum. Knowing the solutions to the angular momentum problem, we 
propose the separation 

 ( ) ( ) ( ),U R r Y θ φ=r  (10.37) 

where ( ),Y θ φ  will be the appropriate spherical harmonic function.  

10.4 Solving for the internal states of the hydrogen atom 

This Section can be omitted at a first reading, though it contains the detailed solution of the radial 
equation, including the technique of power series solutions of differential equations. At least parts 
of this Section are also required for most of the problems at the end of this Chapter. 

Now let us explicitly solve for the internal states of the hydrogen atom. It will make our 
mathematics simpler if we write the separation of Eq. (10.37) in the form 

 ( ) ( ) ( )1 ,U r Y
r

χ θ φ=r  (10.38) 
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where, obviously, 

 ( ) ( )r rR rχ =  (10.39) 

With this choice we obtain the convenient simplification of the radial derivatives 

 
( ) ( )2

2
2 2

1 1r r
r

r r r rr r
χ χ∂∂ ∂

=
∂ ∂ ∂

 (10.40) 

Hence, the Schrödinger equation (10.32) becomes 
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∂
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=
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 (10.41) 

Dividing by ( ) ( )2 3, / 2r Y rχ θ φ μ−=  and rearranging, we have 
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( ) ( )( ) ( ) ( )
22

2 2
2 2 2

2 1 1 ˆ ,
,H

rr r E V r L Y
r Yr

χ μ θ φ
χ θ φ

∂
+ − =

∂ = =
 (10.42) 

In the usual manner for a separation argument, we have arranged that the left hand side 
depends only on r , and the right hand side depends only on θ  and φ , so both sides must be 
equal to a constant. As it happens, because we have already solved the angular momentum 
problem, we already know what that constant is explicitly (i.e., we already know that 

( ) ( ) ( )2 2ˆ , 1 ,lm lmL Y l l Yθ φ θ φ= += , so that the constant is ( )1l l + ). Hence, in addition to the 2L̂  
eigenequation that we have already solved, this separation gives us a radial equation for the 
hydrogen atom wavefunction 

 
( ) ( ) ( ) ( ) ( )

22 2

2 2

1
2 2 H

d r l l
V r r E r

dr r
χ

χ χ
μ μ

+⎛ ⎞
− + + =⎜ ⎟

⎝ ⎠

= =  (10.43) 

which we can write as an ordinary differential equation because all the functions and 
derivatives are only in one variable, r. 

Hence we have a Schrödinger-like wave equation for this radial part of the wavefunction, with 
an additional effective potential energy term ( ) 21 /l l r+ . We remember that 0, 1, 2,l = … , and 
label the solutions with the l  subscript. 

Note incidentally that, though here we have a specific form for ( )V r  in our assumed Coulomb 
potential in Eq. (10.5), the algebra for the separation of the wave equation here will work for 
any potential that is only a function of r  (sometimes known as a central potential). The precise 
form of the equation (10.43) will be different for different central potentials, but the separation 
remains.  

The separation allowed us to separate out the 2L̂  angular momentum eigenequation. The 
solutions of this equation have specific 2L  values ( ( )2 1l l += ) and zL  values ( m= ). Hence we 
see that we have proved that angular momentum (in the sense of 2L  and zL  values) is 
conserved (i.e., has well-defined and constant values) in any of the eigenstates of this hydrogen 
atom, or indeed in any problem with a central potential. Note that we did not start by 
presuming conservation of angular momentum for such problems; this conservation was a 
consequence of the solution to the problems. 



268  Chapter 10  The hydrogen atom 

Solution of the hydrogen radial wavefunction 

We will solve for the radial hydrogen wavefunction completely from first principles. Aside 
from giving the answer, this will give one illustration of a method used for solving such 
differential equations. Such methods are also used, for example, to solve the harmonic 
oscillator problem and other ordinary differential equation problems in quantum mechanics, 
and typically result in the known named polynomial functions (e.g., Hermite polynomials). 

This method has typically two basic steps. First, we look for what must be the behavior of the 
solution in asymptotic situations (here we will look at both 0r →  and r → ∞ ). This will 
suggest underlying functional forms that should be present in the full solution. We especially 
want to identify underlying functions that have infinite power series, such as exponentials. At 
this stage, we can make all kinds of assumptions and approximations – we are only trying to 
identify underlying functional forms, not yet solve the actual equation, so there are no rules. 
We construct a solution incorporating these forms, substitute it in the differential equation, and 
obtain a new differential equation for the remaining unknown part of the function. A goal of 
this part of the solution method is to end up with an equation that will have a solution that can 
be defined as a polynomial with a finite number of terms. In the second step, we solve this new 
differential equation by postulating such a finite power series (polynomial) as a solution, and 
deduce the coefficients and hence deduce the function. Typically, it is because the power series 
must have finite numbers of terms that forces the quantization to give discrete eigen solutions. 
The finite length of the power series also leads to finite numbers of zeros in the eigenfunctions, 
a very common phenomenon in quantum mechanics. 

Asymptotic behavior 

(i) 0r →  

Consider first the case as 0r → . Examining Eq. (10.43), we see that we should presume that 
( ) 0rχ →  as 0r → . Both the actual Coulomb potential and the additional effective potential 

in this equation are tending towards infinite magnitude as 0r → . The only way we could keep 
the equation satisfied for finite ( )rχ  and finite HE  as 0r →  is if ( ) 0rχ → . (From the point 
of view of solving Eq. (10.43) for ( )rχ , it is as if there were an infinite potential barrier for 

( )rχ at 0r = .)  

As we approach 0r = , the dominant term in the effective potential is the term in 21/ r ; for 
sufficiently small r, it will become arbitrarily larger than the Coulomb potential term. Hence, 
very near to 0r = , we can write Eq. (10.43) as 

 
2

2 2

( 1) 0d l l
dr r

χ χ+
− + =  (10.44) 

We now presume that ( )rχ  must be an analytic function, and we can consequently postulate a 
power series form for it. By a power series, we mean a form such as 

( ) 0 1 2
0 1 1r a r a r a rχ = + + +…  

At small r, we will find in the end that we are only interested in the lowest power in the power 
series (for sufficiently small r, the lowest power in the series will always dominate). We will 
not, however, presume that the lowest power is 0r , and will instead presume that we start with 
some power pr  where p is still to be determined. Hence we presume a form at small r 

 ( ) pr rχ ∼  (10.45) 

Substituting this form in Eq. (10.44), we obtain 
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 ( ) ( )2 21 1 0p pp p r l l r− −− − + + =   (10.46) 

This must be true for all (very small) r, and so we presume that 1p l= +  (that presumption 
obviously satisfies Eq. (10.46)). Hence we expect that, for very small r  

 ( ) 1lr rχ +∼  (10.47) 

(ii) r → ∞  

Now we will explicitly use the Coulomb attraction of the electron and proton as the potential 
from Eq. (10.5), so Eq. (10.43) becomes  
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χ
χ χ

μ πε μ
+⎛ ⎞
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⎝ ⎠

= =  (10.48) 

For very large r, both the 1/ r  term and the 21/ r  term become arbitrarily small, and so we 
have approximately 

 
( ) ( )

22

22 H

d r
E r

dr
χ

χ
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− ≅
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For any bound state of the system, the eigenenergy HE  will be negative.8 This asymptotic 
equation therefore has a simple solution for large r, which is9  

 2

2exp HE rμχ
⎛ ⎞

∝ − −⎜ ⎟⎜ ⎟
⎝ ⎠=

 (10.50) 

This solution should not surprise us; it physically corresponds to the electron tunneling away 
from the proton into the potential barrier, which at large r simply is a barrier of height HE  for 
a state of (negative) energy HE . 

Recasting the mathematical problem 
Now we can rewrite the mathematical problem to be solved, Eq. (10.43), using the new units 
introduced above and the asymptotic forms. We choose to write the eigenenergy HE  of some 
specific state of interest in terms of the Rydberg Ry 

 2H
RyE
n

= −  (10.51) 

Here the parameter n is the parameter we will try to evaluate mathematically to deduce the 
eigenenergy. For the moment it is simply an arbitrary real number, though we will prove later 
that it is an integer. 

We choose to define a new, dimensionless radial distance, s, 

 s rα=  (10.52) 

                                                           
8 The bound states have negative energy just because of the way we defined the Coulomb potential 
energy, which goes from negative values towards zero at infinite distance. 
9 We have here as usual discarded the exponentially growing solution as being unphysical; it certainly 
does not correspond to a hydrogen atom as we know it, and mathematically cannot be normalized in any 
reasonable way. 
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where the parameter α is 

 2

2 22 H
o

E
na

μα = = −
=

 (10.53) 

Using this distance unit, we can rewrite Eq. (10.48), after some rearrangements, as 

 
( )2

2 2

1 1 0
4

l ld n
sds s

χ χ
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⎣ ⎦

 (10.54) 

Now we propose a functional form for ( )sχ  that incorporates what we deduced from the 
asymptotic behavior above. Specifically, in terms of s , from the small r  behavior of Eq. 
(10.47), we will incorporate a factor 1ls + , and from the large r  behavior of Eq. (10.50), we 
obtain a factor ( )exp / 2s− . Hence the proposed form of the function is 

 ( ) ( ) ( )1 exp / 2ls s L s sχ += −  (10.55) 

where ( )L s  is now the function to be determined.10  

Having taken out the two asymptotic behaviors, we hope that the function ( )L s  can be some 
relatively simple function, such as a low-order polynomial. The only important restriction we 
will have to put on ( )L s  is that it does not grow too fast with large s, so that the function ( )sχ  
can be normalized; this restriction is actually the source of the quantization we will obtain, 
hence its importance.  

Now we substitute this form into the Eq. (10.54), and obtain an equation for ( )L s  

 ( ) ( )
2

2 2 1 1 0d L dLs s l n l L
dsds

− − + + − + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (10.56) 

which is the kind of form we need for the next part of this solution. 

Power series solution 
Next we propose that, since ( )L s  is presumably an analytic function, it can be described as a 
power series, which we write formally as 

 ( )
0

q
q

q
L s c s

∞

=

= ∑  (10.57) 

where the qc  are coefficients to be determined by solving the differential equation (10.56). 
Substituting this power series form into Eq. (10.56), we obtain 

 ( ) ( ) ( )1 1

0

1 2 1 1 0q q q q
q q q q

q
q q c s qc s q l c s n l c s

∞
− −

=

⎡ ⎤− − + + + − + =⎡ ⎤⎣ ⎦⎣ ⎦∑  (10.58) 

We can open up this sum to see explicitly how we will gather terms in specific powers of s. In 
the middle of the summation, we will have two successive terms from the above sum 

                                                           
10 TheL  here has nothing to do with angular momentum. We introduce this notation because it is a 
standard one for the associated Laguerre polynomials that will emerge in this problem. 
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We can now gather terms of the same power of s (specifically here for minor reasons of 
convenience in 1qs − ) to rewrite Eq. (10.58) 

 ( ) ( ) ( ) ( ){ } 1
1

1

1 2 1 1 1 0q
q q

q
q q q l c q l n c s

∞
−

−
=

− + + − − + + − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  (10.59) 

(We have changed the sum to start at 1q =  rather than 0q = , but the reader can verify by 
writing out the first few terms of the sum that Eq. (10.58) and Eq. (10.59) are equivalent also 
for the lowest powers of s.) Of course, this relation must hold for all s. The only way this can 
be is if the coefficients of each power of s are zero. So what we have shown is that there is a 
relation between successive coefficients in the power series, i.e., explicitly 

 ( ) ( ) ( ) ( ) 11 2 1 1 1q qq q q l c q l n c −− + + = − + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (10.60) 

i.e.,  

 
( )
( ) 12 1q q

q l n
c c

q q l −

+ −
=

+ +
 (10.61) 

This kind of relation between successive terms in a series is called a recurrence relation. 

We are now very close to a solution of the mathematical problem, but one important step 
remains. Note that, for very large q, the factors in successive terms in the series are smaller by 
a factor of about 1/ q , so the factors themselves are approximately proportional to 1/ !q . That 
is the behavior we would find in the power series for the exponential function ( )exp s . Such 
behavior would cause the function ( )sχ  to grow with increasing s, and hence not to be 
normalizable. How do we get out of this difficulty? The answer is that we try to find the 
condition that will cause the series to terminate at a finite number of terms. That will happen if 
and only if the factor ( ) 0q l n+ − =  for some 1q ≥ . (We make the restriction that q must be at 
least 1 so that we have at least one term (the term 0

0c s ) in the series – otherwise the function 
is zero and not of interest to us.) Hence we require two things for termination of the series. 
First, since q is an integer by definition, and l is already known to be an integer from the 
solution of the angular momentum eigenfunction problem, n must also be an integer. Second, 
we require that  

 1n l≥ +  (10.62) 

otherwise there will be no q for which the series terminates. This termination therefore is 
responsible mathematically for the quantization of the radial behavior of the wavefunction.  

Now, given our recurrence relation and the known stopping point of the power series, we can 
formally construct the polynomial functions ( )L s  that are the solutions of Eq. (10.56). Hence 
we now have completed the last step required to solve the hydrogen atom problem 
mathematically. Next, we will discuss the actual polynomial functions that the recurrence 
relation (10.61) has defined for us. 
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Associated Laguerre polynomials 
Not surprisingly, the polynomials that solve (10.56) and that are defined by (i) the recurrence 
relation (10.61), and (ii) the “stopping condition” of an integer n that satisfies (10.62), are a 
standard set of known polynomials, the associated Laguerre polynomials. (It is not necessary 
that we know this to solve the problem, but this does connect with other relations that can be 
helpful in making, for example, normalization integrals easier.) The only choice we need to 
make to define our polynomials completely is the first coefficient in the power series ( 0c ); 
because the coefficients in the polynomial are constructed progressively from the preceding 
coefficient, this coefficient merely multiplies the entire polynomial, and is arbitrary as far as 
solving the equation (10.56) is concerned. To make a connection with the standard definition 
of the associated Laguerre polynomials, we choose 
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 (10.63)  

With this choice, our polynomials become, using the recursive relation Eq. (10.61), 
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where we have introduced the notation for the associated Laguerre polynomials 
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p q j q q=

+
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− +∑  (10.65) 

10.5 Solutions of the hydrogen atom problem 

Now we can work back through our argument and put the complete solution together. We 
have, from Eqs. (10.55) and (10.64), with the definition Eq. (10.65) for the associated Laguerre 
polynomials ( )j

pL s , the function  

 ( ) ( ) ( )1 2 1
1 exp / 2l l

n ls s L s sχ + +
− −= −  (10.66) 

of the variable (2 / )os na r= . Hence, changing back to the variable r for the separation of the 
electron and proton, from Eq. (10.39) ( ( ) ( )r rR rχ = ) 
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 (10.67) 

Explicitly introducing a normalization constant into the radial wavefunction, we have 

 ( ) ( ) ( )2 1
1

1/ 2 exp / 2l l
o n lR r na s s L s s

A
+

− −= = −  (10.68) 

The full normalization integral of the wavefunction ( ) ( ) ( ),U R r Y θ φ=r  would be 
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π π

θ φ

θ φ θ θ φ
∞

= = =

= ∫ ∫ ∫  (10.69) 
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but we have already normalized the spherical harmonics with the θ and φ integrals, so we are 
left with the radial normalization 

 ( )2 2

0

1 R r r dr
∞

= ∫  (10.70) 

It is possible to show that 
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from which we can therefore conclude that the normalized radial wavefunction is 
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 (10.72) 

The following are various of the low order radial wavefunctions. Here we choose to write the 
wavefunctions using the Bohr radius oa  as the unit of radial distance for simplicity of notation, 
so we have a radial distance / or aρ = , and we introduce the subscripts n  and l  for the 
quantum numbers to index the various functions ,n lR . (To get the expression in absolute 
distance units, one should use the explicit formula (10.72).) 
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 (10.73)  

These various functions are graphed in Fig.  10.1. 

Note the following behaviors of the wavefunction.  

(i) The overall “size” of the wavefunctions becomes larger with larger n. 

(ii) The number of zeros in the wavefunction is 1n − . The associated Laguerre polynomials in 
the radial wavefunction have 1n l− −  zeros, and the spherical harmonics have l nodal 
“circles”. (The radial wavefunctions appear to have an additional zero at 0r =  for all 1l ≥ , 
but note that all the spherical harmonics have at least one nodal “circle” for all 1l ≥ . As 

0r → , that nodal circle forces the wavefunction to be zero anyway, and so this zero is already 
counted.)  

In summary of the quantum numbers, the possible solutions of our hydrogen atom equation 
require for the so-called principal quantum number n 

 1, 2, 3,n = …  (10.74) 
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and  

 1l n≤ −  (10.75) 

(We have already deduced in consideration of angular momentum that l is a positive or zero 
integer.)  
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Fig.  10.1.  Hydrogen atom radial wavefunctions, with radial distance units of the Bohr radius, oa . 
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We also now know the eigenenergies of the hydrogen atom. Now that we have deduced the 
possible values for n, we can write immediately for the eigenenergies from Eq. (10.51) 

 2H
RyE
n

= − , 1, 2,3,n = …  (10.76) 

This completes the solution of the hydrogen atom problem. 

Problems 
 10.5.1  Consider an electron in a thin cylindrical shell potential. This potential is zero within the 

cylindrical shell and may be presumed infinite everywhere else. The shell has inner radius or  and 
thickness rL , where o rr L>> . The cylindrical shell may be presumed to be infinite along its 
cylindrical (z) axis.  
(i) Show that the energy eigenfunctions (i.e., solutions of the time-independent Schrödinger 

equation) are, approximately, 

 ( ) ( ) ( )( , , ) sin exp expo
z

r

n r r
r z im ik z

L
π

ψ φ φ
−

∝    

(ii) State what the restrictions are on the values of n, m, and k
z
 (e.g., are they real, integer, limited in 

their range?) 
(iii) Give an approximate expression for the corresponding energy eigenvalues. 
Note: in cylindrical polar coordinates 

 
2 2

2
2 2 2

1 1r
r r r r zφ

∂ ∂ ∂ ∂⎛ ⎞∇ = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
  

 10.5.2  Consider the case of a spherical potential well, i.e., a structure in which the potential energy is 
lower and constant for all radii or r<  and higher and constant for all or r> , and a particle of mass 

om . 
For the case of an “infinite” potential well (i.e., one where the potential is infinite for all or r> ), find 
the energy of the lowest state of a particle in the well relative to the bottom of the well. (You may 
presume the lowest state has the lowest possible angular momentum.) [Note: Remember that it can be 
shown that, with a radial wavefunction ( ) ( ) /R r r rχ= , ( )0 0χ = .] 
(This problem is part of the analysis of spherical semiconductor quantum dots. Such structures can be 
made, and are commonly used in color glass filters and as fluorescent markers for biological 
experiments. The color of the dots or of their fluorescence is partly determined and controlled by the 
size of the dot through these quantum size effects. Quantum dots are also interesting for 
optoelectronic devices.)  

 10.5.3  Consider the defining differential equation for the Hermite polynomials 

 ( ) ( ) ( )
2

2 2 2 0n n
n

d H x dH x
x nH x

dx dx
− + =   

and solve it by the series solution method for functions ( )nH x  such that ( ) ( )2exp / 2nH x x−  can be 
normalized 
In your solution 

(i) find a recurrence relation between the coefficients of the power series solutions [Note: this 
relation will be between qc  and 2qc + ] 

(ii) show that ( ) ( )2exp / 2nH x x−  will not be normalizable unless the power series terminates 
[Note: you will have to consider two power series, one starting with 0c , and one starting with 

1c , and show that neither will terminate unless n  is an integer.] 
(iii) choosing 0c =  0 or 1 and 1c = 0 or 1, find the first 5 power series solutions of the equation. 

 10.5.4  Consider a spherical quantum box or "dot" with an electron inside it. We presume the potential is 
infinite at the boundary of the dot, and zero within, and that the "dot" has radius r0. 
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(i) Find an expression for the eigenenergies nE A , where A  is the usual angular momentum quantum 
number, and n is another integer quantum number (starting at 1n = ), expressing your result in 
terms of the zeros ns A  of the spherical Bessel function ( )j xA , where ns A  is the nth zero for a 
given A . 

(ii) Find the electron confinement energies for the nine conditions n = 1, 2, 3, with 0,1, 2=A  for 
each n, for the case of a 10 nm diameter semiconductor dot with electron effective mass of 

00.2m . [Note: You will have to find appropriate zeros of special functions from mathematical 
tables or otherwise.] 

Notes:  
(a) The equation: 

 
2

2 2
2 2

1 1 0
4

d y a p y
dx x

⎡ ⎤⎛ ⎞+ + − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
  

 has solutions 
 ( ) ( )p py x A J ax BY ax⎡ ⎤= +⎣ ⎦   

 where A and B are arbitrary constants, pJ  is the Bessel function of order p, and pY  is the Weber 
function of order p. Note that the Weber functions tend to infinity as 0x → , though the Bessel 
functions remain finite as 0x → . 

(b) The spherical Bessel functions are given by: 

 1/ 2( ) ( )
2

j x J x
x

π
+=A A   

 and these functions can also be expressed as 

 ( ) 1 sind xj x x
x dx x

⎛ ⎞= −⎜ ⎟
⎝ ⎠

A
A

A   

 10.5.5  Find an expression for the energy eigenstates of a cylindrical quantum wire of radius ro for which 
we assume there is an infinitely high barrier at radius ro. Specify all quantum numbers, and state their 
allowed values.  
[Note: In this case, it is left as an exercise for the reader to find the necessary special functions and 
their properties to solve this problem.]  

 10.5.6  Evaluate the matrix element 210 100U z U , where by nlmU  we mean the hydrogen atom orbital 
where the quantum numbers n, l, and m take their usual meanings.  

 10.5.7  Suppose we are considering optical transitions between different states in the hydrogen atom. We 
presume that the hydrogen atom is initially in a given starting state, and we want to know if, for a 
linearly polarized oscillating electromagnetic field (i.e., one for which the optical electric field can be 
taken to be along the z direction) of the appropriate frequency, it can make transitions to the given 
final state, at least for transition rates calculated using first-order time-dependent perturbation theory 
in the electric dipole approximation. State, for each of the combinations below, whether such optical 
transitions are possible. Explain your method and your results. [Note: this problem requires some 
understanding of transition matrix elements for optical transitions as discussed in Chapter 7.] 

(a) Starting state 1,0,0 , final state 2,1,0  

(b) Starting state 1,0,0 , final state 2,1,1  

(c) Starting state 1,0,0 , final state 2,0,0  

(d) Starting state 2,1,0 , final state 1,0,0  

 

 10.5.8  [This problem can be used as a substantial assignment.] Consider the problem of a “two-
dimensional” hydrogen atom. Such a situation could arise for a hydrogen atom squeezed between two 
parallel plates, for example. (This problem is a good limiting model for excitons in semiconductor 
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quantum wells.) We are not concerned with the motion in the z direction perpendicular to the plates, 
and are hence left with a Schrödinger equation for the electron and proton  

 ( ) ( )
2 2 2

2 2 , , , , , ,
2 2 4xye xyp e e p p e e p p

e p o xye xyp

e x y x y E x y x y
m m

ψ ψ
πε

⎡ ⎤
⎢ ⎥− ∇ − ∇ − =

−⎢ ⎥⎣ ⎦r r
= =  

where 

 
2 2

2
2 2xye
e ex y

∂ ∂
∇ ≡ +

∂ ∂
  

where ex  and ey  are the position coordinates of the electron, and similarly for the proton. 
Solve for the complete wavefunctions and eigenenergies for all states where the electron and proton 
are bound to one another (you need not normalize the wavefunctions). 
Give an explicit expression for the coefficients of any polynomials you derive for solutions, in terms 
of the lowest order coefficient in the polynomial. 
Explicitly state the allowed values of any quantum numbers, and give the numerical answer for the 
lowest energy of the system in electron volts. 
Hints: 
(i) This problem can be solved in a very similar fashion to the 3-D hydrogen atom. Use the same 

units as are used in that problem. 
(ii) The Laplacian in two-dimensional polar coordinates is 

 
2

2
2 2

1 1r
r r r r φ

∂ ∂ ∂⎛ ⎞∇ = +⎜ ⎟∂ ∂ ∂⎝ ⎠
  

(iii) You should be able to get to an equation that looks something like 

 
2

2 ( ) 0d L dLs A s BL
ds ds

+ − + =   

 in solving for the radial motion, where A and B do not depend on s. 

 10.5.9  [This problem can be used as a substantial assignment.] Consider the effect of a small electric 
field on the 2n =  levels of the hydrogen atom. [Note: there are several such levels because of the 
different values of l and m possible for 2n = . This problem should therefore be approached using 
first-order degenerate perturbation theory. The algebra of the problem may be somewhat easier if the 
electric field is chosen in the z direction.] 

 Find how these 2n =  degenerate states are affected by the field. Give explicit numerical expressions 
for the shifts of those levels that are affected by the field F , and show how their wavefunctions are 
made up as linear combinations of hydrogen wavefunctions of specific n, l, and m quantum numbers. 
Specify also the basis functions that can be used to describe any 2n =  state or states not affected by 
the field. 

 Give explicit numbers for the shifts of states for a field of 105 V/m.  Specify energies in electron-
volts. [Note: Chapter 6 is a prerequisite for this problem.] 

10.6 Summary of concepts 

Generalization of Schrödinger’s equation 

With more than one particle or with more complicated Hamiltonians than we have considered 
so far, we can generalize Schrödinger’s time-independent equation as 

 Ĥ Eψ ψ=  (10.1) 

where Ĥ  is the energy operator for the system, E is the total energy, and ψ is the 
wavefunction, or more generally the quantum mechanical state of the system. 
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Multiple particle wavefunctions 

In general, the wavefunction of a multiple particle system cannot be separated into products of 
single-particle wavefunctions, and must be written as a function of all the coordinates. E.g., for 
the system of an electron (e) and a proton (p), in general we have to write 

( ), , , , ,e e e p p px y z x y zψ . 

Center of mass coordinates 

For a two-particle problem where the potential only depends on the relative separation of the 
two particles, we can separate the problem using center of mass coordinates, into the relative 
position coordinate r, and the center of mass coordinate R, where  

 e e p pm m
M
+

=
r r

R  (10.16) 

 x y z= + +r i j k  (10.14) 

with 

 e px x x= − , e py y y= − , e pz z z= −  (10.13) 

and where e pM m m= +  is the total mass. 

Solutions for the hydrogen atom internal states 

The wavefunction solutions for the hydrogen atom internal states are 

 ( ) ( ) ( ),nlm n lmU R r Y θ φ=r  from (10.37) 

where ( ),lmY θ φ  are the spherical harmonics, and  

 ( ) ( )
( )

1/ 23
2 1

1

1 ! 2 2 2 exp
2 !

l
l

n l
o o o o

n l r r rR r L
n n l na na na na

+
− −

⎡ ⎤− − ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (10.72) 

where the principal quantum number 1, 2, 3,n = …  , l is zero or a positive integer 
with 1l n≤ − , and ( )j

pL s  are the associated Laguerre polynomials, with associated energies 
2/HE Ry n= − . These wavefunctions always have 1n −  zeros. 



Chapter 11  
 
Methods for one-dimensional 
problems 

Prerequisites: Chapters 2 and 3, and, for Section 11.4, Sections 8.1 – 8.7 of Chapter 8. 

Many interesting quantum mechanical problems can be reduced to one-dimensional 
mathematical problems. This reduction is often because the problem, though truly three-
dimensional, can be mathematically separated. For example, the three-dimensional hydrogen 
atom also mathematically separates to leave a radial equation that looks like a one-dimensional 
effective Schrödinger equation. Most problems associated with electrons and planar surfaces or 
layered structures can be handled with one-dimensional models. Examples include field 
emission of electrons from planar metallic surfaces, and most problems associated with 
semiconductor quantum well structures.  

One-dimensional problems can be solved by a number of techniques. Here we discuss one of 
these, the transfer matrix technique, and we will also derive one key result of the so-called 
“WKB” method. We will concentrate here on the use of such techniques for solving tunneling 
problems, and so we start with a brief discussion of tunneling rates. 

11.1 Tunneling probabilities 

Suppose we have a barrier, shown below in Fig.  11.1 as a simple rectangular barrier. Electrons 
are incident on the barrier from the left. Some are reflected, and some are transmitted. We 
presume that the electron energy E is less than the barrier height oV  so that we are discussing a 
tunneling problem. We already know how to solve this problem quantum mechanically for the 
simple case of a rectangular barrier, with notation as shown in the figure. We will discuss 
below how to solve such problems for more complex forms of barrier. For any form of barrier, 
supposing we have found appropriate relations between the amplitudes of the incident wave 
(A), the reflected wave (B) and the transmitted wave (F) for some given energy of particle, 
how do we relate this quantum mechanical problem to actual currents of electrons? 

In the full problem of tunneling emission of electrons, for example, we will typically presume 
that we have some thermal distribution of electrons on the left of the barrier, and we will use a 
thermal argument to deduce how many electrons there are with a particular velocity v in the z 
direction (i.e., perpendicular to the barrier). We want to add up the results of all such tunneling 
currents for all of the electrons in the distribution to deduce the total emitted current. Hence, if 
we can find some way of deducing what fraction of the electrons traveling at some velocity v 
in the z direction are transmitted by the barrier, we will know the tunneling emission current. 
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Fig.  11.1. Electrons tunneling through a simple rectangular barrier. 

We discussed in Section 3.14 how to calculate the particle current quantum mechanically, 
concluding that the particle current density is 

 ( )
2p
i
m

∗ ∗= Ψ∇Ψ − Ψ ∇Ψj =  (3.97) 

where ( , )tΨ = Ψ r  is the full time-dependent wavefunction. If we presume here we are dealing 
with particles of well-defined energy E, which is 2 2 / 2E k m= =  in the propagating regions, the 
time-dependent factor ( )exp /iEt− =  disappears in this current density equation because of the 
product of complex conjugates, so in this case of well-defined energy we can write 

 ( )
2p
ij
m

ψ ψ ψ ψ∗ ∗= ∇ − ∇
=  (11.1)  

where ψ  is now the one-dimensional spatial wavefunction ( )zψ , and we have dropped the 
vector character of the particle current density pj  because we are considering only currents in 
the z direction. 

If we now consider, for example, the wavefunction on the right, ( )expF ikz , then we have 
from Eq. (11.1) 

 2
p

kj F
m

=
=  (11.2) 

The quantity /k m=  behaves like an effective classical velocity v, with 
2 2 2/ 2 (1/ 2)E k m mv= == .1 

For the particle current on the left, we should proceed carefully, remembering to deal with the 
whole wavefunction on the left in evaluating the particle current. With the wavefunction 

( ) ( ) ( )exp expz A ikz B ikzψ = + − , we have from Eq. (11.1) 

                                                           
1 Note we have taken a particularly simple situation here for this illustration in which the potential on the 
right of the barrier is the same as the potential on the left. If this were not the case, we would end up with 
a different effective classical velocity on the right, though we would still find that the overall particle 
currents added up correctly.  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )2 2

exp exp exp exp

2 exp exp exp exp
p

A ikz B ikz ikA ikz ikB ikzij
m A ikz B ikz ikA ikz ikB ikz

k A B
m

∗ ∗

∗ ∗

⎧ ⎫⎡ ⎤+ − − − +⎡ ⎤⎣ ⎦⎪ ⎣ ⎦ ⎪= ⎨ ⎬
⎡ ⎤− − + − −⎡ ⎤⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

= −

=

=
 (11.3) 

because all of the spatially oscillating terms cancel. We can therefore consider 2 /k A m=  as 
the forward current on the left of the barrier, and 2 /k B m=  as the reflected or backward 
current, adding the two to get the net current. Hence we find that we can identify the (particle) 
current densities as follows, for particles of effective classical velocity /v k m= = . 

Incident current density 2A v  

Reflected current density 2B v  

Transmitted current density 2F v  

The fraction of incident particles that are transmitted by the barrier is 

 ( )2 2 2/A B Aη = −  (11.4) 

For the specific problem above where the medium on the left and the medium on the right have 
the same potential, we can also write Eq. (11.4) in the form  

 2 2/F Aη = .  (11.5) 

We can use either Eq. (11.4) or Eq. (11.5), depending on which is easier to calculate. The form 
(11.4) involving only A and B remains valid regardless of the form of the potential to the right, 
and is more useful in some problems; for example, in a field-emission tunneling problem, 
where an electric field is applied perpendicular to a metal surface, the potential in the barrier 
falls off linearly with distance, and there is no region on the right of uniform potential, making 
it harder to calculate the transmitted current directly.  

It might seem above that we are merely proving the obvious. Note, however, that we have not 
used classical notions here to deduce the results, though we have shown a connection to those 
notions. We have instead rigorously deduced the current densities by a first-principles quantum 
mechanical argument. We have been able to avoid trying to decide whether to use group 
velocities or phase velocities in considering the currents here, for example. This argument 
clears the way for practical calculations of tunneling currents, including those with more 
complicated barriers. 

Problem 
 11.1.1  Consider a single barrier of thickness L, with height V much larger than the energy E of an 

electron wave incident on the left of the barrier. Presume the barrier is thick enough that the amount 
of wave reflected back from the right hand side of the barrier to the left is essentially negligible. 
Show that the fraction η of incident electrons transmitted by this barrier can be written approximately 
as 

 
( )

( )
2 2

22 2

16 exp 2k L
k

κη κ
κ

−
+

�   

 where 2 1/ 2(2 / )ok m E= =  and 2 1/ 2[2 ( ) / ]om V Eκ = − =  
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 [Note: use the expression of the form 2 2/F Aη =   where F and A are the amplitudes of the 
transmitted and incident waves respectively, to derive this; otherwise the algebra becomes much 
more involved.]  

11.2 Transfer matrix 

We previously deduced how to analyze simple problems such as the potential barrier in Fig. 
 11.1 above. In principle, the simple methods we used before are extensible to barriers with 
multiple layers of different thicknesses and potentials in one dimension, though in practice we 
need better mathematical techniques to keep track of the various coefficients. The solution of a 
problem with two or more layers becomes progressively more intractable unless we take 
another approach to handling all the various coefficients for the various waves in the different 
layers. Fortunately, there is a simple way of doing this, which is to introduce the transfer 
matrix. This enables us to turn on the power of matrix algebra to handle all of the coefficients.  

To exploit this method, we presume that the potential is a series of steps. This could 
correspond directly to an actual step-like potential, or we could be approximating some actual 
continuously varying potential as a series of "steps," as shown in Fig.  11.2. 

This enables us to reduce the problem of waves in an arbitrary potential to that of waves within 
a simple constant potential (waves which are then either sinusoidal or exponential), together 
with appropriate boundary conditions to link the solutions in adjacent layers. Many actual 
problems, such as those involved in analyzing layered semiconductors, have such step-like 
potentials anyway. The concepts of the wave mechanics to analyze such a structure are closely 
related to those that we might use to analyze multilayer optical filters or one-dimensional 
waveguide structures. (The latter waveguide case is a particularly close analogy since then the 
optical waves also have exponentially-decaying solutions past the critical reflection angle, just 
like the exponentially-decaying solutions in the "tunneling" quantum mechanical problem). 

actual potential, V(z)

step-wise approximation to V(z)

V

z  
Fig.  11.2. Illustration of the approximation of a continuously-varying potential by a step-wise 
potential. 

Imagine that we have a potential structure conceptually like that in Fig.  11.2. We can also 
imagine that we have an electron wave incident on the structure from one side, with a 
particular energy, E. In general, when the wave hits an interface, there will be some reflected 
wave and some transmitted wave, and we must allow for this in the formalism we will set up. 
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...
“entering” 
material

“exiting” 
material

...

N layers

layer 1 2 3 4 N+1N N+2

interface 1 2 3 4 N-1 N N+1

incident wave
reflected wave

transmitted 
wave

position z1= 0 z2 z3 z4 zN-1 zN zN+1  
Fig.  11.3. Notation for a multiple-layer potential structure, illustrating also the case where we 
impinge a wave from the left (incident wave), and have both transmitted and reflected waves. 

To set up the formalism, we consider a multilayer structure with the notation shown in Fig. 
 11.3, and specifically for one layer in the structure, as shown in Fig.  11.4. The approach we 
will take is, for each layer in the structure, to derive a matrix that relates the forward and 
backward amplitudes, Am and Bm, just to the right of the (m - 1) th interface, to the forward and 
backward amplitudes Am+1 and Bm+1, just to the right of the mth interface. By multiplying those 
matrices together for all of the layers, we will construct a single "transfer matrix" for the whole 
structure, which will enable us to analyze the entire multilayer structure. 

interface m

layer (m+1)layer m

interface (m-1)

Am+1

Bm+1

AL

BL

Am

Bm

dm

 
Fig.  11.4. A layer of the structure, showing the forward and backward wave amplitudes just to the 
right of the interfaces, and also the forward and backward wave amplitudes, AL and BL, just to the 
left of the mth interface. 

In this formalism, each layer m will have a potential energy mV , a thickness md , and possibly 
a mass or effective mass, fmm . The position of the m th interface will formally be, relative to 
the position of interface 1, 

 
2

m

m q
q

z d
=

= ∑  (11.6) 

for interfaces 2 and higher (e.g., 2 2z d= , 3 2 3z d d= + , etc.). 

In any given layer, if mE V> , we know that we will in general have a "forward" propagating 
wave (i.e., propagating to the right in the figures), of the form 1exp[ ( )]o m mA A ik z z −= − , and a 
"backward" propagating wave of the form 1exp[ ( )]o m mB B ik z z −= − − , where A and B are 
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complex numbers representing the amplitude of the forward and backward waves, 
respectively. In this case 

 ( )2

2 fm
m m

m
k E V= −

=
 (11.7) 

where fmm  is the mass of the particle in a given layer of the structure (possibly an effective 
mass if we are working in the effective mass approximation with a layered semiconductor 
structure). Similarly, if mV E> , we will have a "forward" decaying “wave” of the form 

1exp[ ( )]o m mA A z zκ −= − − , and a "backward" decaying wave of the form 
1exp[ ( )]o m mB B z zκ −= − , where  

 ( )2

2 fm
m m

m
V Eκ = −

=
 (11.8) 

Now, we note that, if we use only the form (11.7), not only for the situation with mE V>  but 
also for the case mV E> , we obtain imaginary k  ( iκ≡ ) for the mV E>  case. Mathematically, 
as long as we choose the positive square root (either real or imaginary) in both cases, we can 
work only with this k. A forward “wave” can then be written in the form 1exp[ ( )]m mik z z −−  for 
both the mE V>  and mV E>  cases.  

For the mV E>  case, we have, with imaginary k , a “wave” 
1 1exp[ ( )] exp[ ( )]m m m mik z z z zκ− −− ≡ − − . This will simplify our handling of the mathematics, 

allowing us to use the same formalism in all layers. Now in any layer we have a wave that we 
can write as 

 ( ) ( ) ( )1 1exp expm m m m m mz A ik z z B ik z zψ − −= − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (11.9) 

where k can be either real or imaginary, and is given by Eq. (11.7). 

Now let us look at the boundary conditions in going from just inside one layer to the right of 
the boundary to just inside the adjacent layer on the left of the boundary. Using the notation of 
Fig.  11.4, we have, first of all for the continuity of the wavefunction, ψ, at the interface 
 1 1L L m mA B A Bψ + += + = + . (11.10) 

In the second boundary condition, the continuity of /d dzψ gives 

 ( )d ik A B
dz
ψ

= −  (11.11) 

for the wave on either side of the boundary, so we have, for the right boundary in Fig.  11.4, 

 ( )1 1L L m m mA B A B+ +− = Δ −  (11.12) 
where  

 1m
m

m

k
k

+Δ =  (11.13) 

with the obvious notation that subscripts m and m + 1 refer to the values in the corresponding 
layers.  

In a layered semiconductor structure in the effective mass approximation, we might use 
continuity of (1/ ) /fm d dzψ  for the second boundary condition, in which case instead of Eq. 
(11.13) we would obtain  
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 1

1

f mm
m

m f m

mk
k m

+

+

Δ =  (11.14) 

where fmm  is the (effective) mass in layer m , and we would use this mΔ  in Eq. (11.12) and all 
subsequent equations. 

Using Eq. (11.10) and Eq. (11.12) gives 

 1 1
1 1

2 2
m m

L m mA A B+ +

+ Δ − Δ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (11.15) 

and 

 1 1
1 1

2 2
m m

L m mB A B+ +

− Δ + Δ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (11.16) 

which can be written in matrix form as 

 1

1

mL
m

mL

AA
BB

+

+

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
D  (11.17) 

where 

 

1 1
2 2

1 1
2 2

m m

m
m m

+ Δ − Δ⎡ ⎤
⎢ ⎥

= ⎢ ⎥
− Δ + Δ⎢ ⎥

⎢ ⎥⎣ ⎦

D  (11.18) 

Having dealt with the boundary conditions, we now need to deal with the propagation that 
relates Am and Bm to AL and BL. (We have chosen, for a minor formal reason that will become 
apparent below, to calculate the matrices for going "backwards" through the structure; this is 
not essential and makes no ultimate difference, though it does influence the signs in the 
exponents below). For the propagation in a given layer, m, whose layer thickness is dm, we 
have 

 ( )expm L m mA A ik d= −  (11.19) 

 ( )expm L m mB B ik d=  (11.20) 

corresponding to a matrix-vector representation 

 m L
m

m L

A A
B B

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
P  (11.21) 

with 

 
( )

( )
exp 0

0 exp
m m

m
m m

ik d
ik d

⎡ − ⎤
= ⎢ ⎥

⎣ ⎦
P  (11.22) 

Hence we can now write the full transfer matrix, T, for this structure, which relates the forward 
and backward wave amplitudes at the “entrance” (i.e., just to the left of the first interface) to 
the forward and backward wave amplitudes at the “exit” (i.e., just to the right of the last 
interface), 
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 21

21

N

N

AA
BB

+

+

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
T  (11.23) 

where 

 1 2 2 3 3 1 1N N+ +=T D P D P D P D"  (11.24) 

Note that this transfer matrix depends on the energy E that we chose for the calculation of the 
k’s in each layer.  

Calculation of tunneling probabilities 

Given that we have calculated the transfer matrix for some structure and for some energy E 

 11 12

21 22

T T
T T

⎡ ⎤
≡ ⎢ ⎥

⎣ ⎦
T  (11.25) 

we can now deduce the fraction of incident particles at that energy that are transmitted by the 
barrier. In such a tunneling or transmission problem, we presume that there is no wave incident 
from the right, so there is no backward wave amplitude on the right of the potential. Hence we 
have, for incident forward and backward amplitudes A and B respectively, and a transmitted 
amplitude F, 

 11 12

21 22 0
T TA F
T TB

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 (11.26) 

From this we can see that 

 11A T F=  (11.27) 

and 

 21B T F=  (11.28) 

and hence, from Eq. (11.4), the fraction of particles transmitted by this barrier is2 

 
2

21
2

11

1
T

T
η = −  (11.29) 

This technique can be used to give exact analytic results for layered potentials, though such 
exact results become algebraically impractical for structures with even only quite small 
numbers of layers. It is, however, particularly useful for numerical calculations. It is 
straightforward to program on a computer, and even for structures with very large numbers of 
layers (e.g., 100’s), the calculations of transmission at a given energy can be essentially 
instantaneous even on a small machine. It is therefore a very useful practical technique for 
investigating one-dimensional potentials and their behavior. 

                                                           
2 We could have used the relation 11A T F=  directly to deduce 2

111/ Tη =  if the layer on the left and the 
layer on the right have the same uniform potential, but we use this more complete form here to include 
the case where the potentials are not equal on the two sides. 
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Calculation of wavefunctions 
Note that this method also enables us to calculate the wavefunction at any point in the 
structure. We can readily calculate the forward and backward amplitudes, mA  and mB  
respectively, at the left of each layer in the structure. Obviously, we have 

 1 2
1 1

1 2

N N
N N

N N

A A
B B

+ +
+ +

+ +

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
P D  (11.30) 

and similarly, we have in general for any layer within the structure 

 2
1 1

2

m N
m m N N N N

m N

A A
B B

+
+ +

+

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
P D P D P D…  (11.31) 

Given that we know the forward and backward amplitudes at the left of layer m, then the 
wavefunction at some point z in that layer is the sum of the forward and backward 
wavefunctions as in Eq. (11.9).  

Note that we could set up a calculation so that these forward and backward amplitudes at the 
interfaces are calculated as intermediate results if we progressively evaluate the forward and 
backward amplitudes for each successive layer as in  

 1

1

m m
m m

m m

A A
B B

+

+

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
P D  (11.32) 

rather than evaluating the transfer matrix T itself. We can still calculate the transmission 
probability η using Eq. (11.4) rather than Eq. (11.29). 
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Fig.  11.5. Transmission probability as a function of incident particle energy for an electron 
incident on a double barrier structure consisting of two barriers of height 1 eV and thickness 0.2 
nm on either side of a 0.7 nm thick region of zero potential energy. The regions on the left and 
the right of the entire structure are also assumed to have zero potential energy.  
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Example – tunneling through a double barrier structure. 

Fig.  11.5 shows results calculated using this method for the tunneling probability through a 
double barrier structure. This structure shows a resonance in the tunneling probability (or 
transmission) where the incident energy coincides with the energy of a resonance in the 
structure. If the barriers were infinitely thick, there would be an eigenstate of the structure 
approximately at the energy where this resonance occurs. 

 Calculation of eigenenergies of bound states 
It is possible to use the transfer matrix itself to find eigenstates in cases of truly bound states. 
For example, if the first layer (layer 1) and last layer (layer 2N + ) are infinitely thick, and 
their potentials are 1V E>  and 2NV E+ > , there may be some values of E for which there are 
bound eigenstates. Such states would only have exponentially decaying wavefunctions into the 
first and last layers from the multilayer structure. Hence 1 0A =  (i.e., no exponentially growing 
wave going out from the left of the structure) and 2 0NB + =  (i.e., no exponentially growing 
wave going out from the right side of the structure). Therefore, if we have a bound eigenstate, 
we must have 

 11 122 2

1 21 22

0
0 0
N NT TA A

B T T
+ +⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

T  (11.33)  

This can only be the case if the element in the first row and first column of T is zero, i.e., 

  11 0T = . (11.34)  

This condition can be used to solve analytically for eigenenergies in simple structures, or can 
be used in a numerical search for eigenenergies by varying E. 

Tunneling resonance calculations for quasi-bound states 

There are many situations of practical interest where we do not have any truly bound states of 
the system, though we have strong resonances, like the transmission resonance in Fig.  11.5. If 
the resonances are relatively sharp, they can in practice have most of the characteristics of a 
true bound state, but just with a finite lifetime. If we were to take the double barrier structure 
considered for Fig.  11.5 above, and progressively make the barriers on either side thicker and 
thicker, then the transmission resonance would get sharper and sharper. The wavefunction 
inside the structure at the resonance energy would become closer and closer to the 
wavefunction of the truly bound state we would have for infinitely thick barriers. The energy 
of the resonance peak would also become closer and closer to the exact eigenenergy for the 
infinitely thick barrier case. In fact, even for the resonance in Fig.  11.5, the energy of that peak 
and the wavefunction within the structure at resonance, are almost identical to those for the 
eigenstate for infinitely thick barriers. 

One common situation where we do not have truly bound states is when we apply electric 
fields. For any state that was originally truly bound, such as the lowest state in the hydrogen 
atom, once electric field is applied, there are no longer any truly bound states. Applying 
electric field corresponds to adding a “tilt” to the potential seen by an electron. There is always 
some lower energy state for the electron outside the atom on the “down hill” side towards the 
positive electrode, and the electron can tunnel through the now-finite potential barrier (i.e., be 
field-emitted from the atom, or “field-ionized”). Still, we like to think of this state as being 
effectively an eigenstate of the hydrogen atom, but just with finite lifetime. As a practical 
matter, we can calculate the effective eigenstates as a function of electric field by looking for 
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the resonances in the transmission3, just as in Fig.  11.5. We use the position of the center of the 
resonance as the effective eigenenergy, and, for one-dimensional problems, we can use the 
wavefunction we deduce at the resonance peak energy from our transfer matrix calculation as 
the effective wavefunction of this “quasi-bound” state. Such an approach for calculating quasi-
bound energy levels and wavefunctions is called a tunneling resonance calculation. This 
technique is used extensively for calculating the effective eigenstates of layered semiconductor 
structures such as semiconductor quantum wells, including shifts of the energy levels with 
applied fields.   

Problems 
 11.2.1  Consider a double barrier structure consisting of two barriers of height 1 eV and thickness 0.3 nm 

on either side of a 1 nm thick region of zero potential energy, with the regions on the left and the 
right of the entire structure assumed to have zero potential energy. Construct a transfer matrix model 
for that structure, and calculate the tunneling probability of an electron through the structure as a 
function of electron energy from 0 eV to 1 eV, graphing the resulting transmission probability.  

 11.2.2  Perform a similar calculation to that of Problem  11.2.1 for the case of a semiconductor structure. 
The material on the left, on the right, and in the middle “well” is taken to be GaAs, and we are 
considering an electron in the conduction band of this and the other materials. The two barriers are 
now taken to be the specific AlGaAs material with aluminum fraction x = 0.3. The conduction band 
barrier height relative to the GaAs conduction band is given by the relation 

 0.77AlGaAsV x� eV  
and the electron effective masses in the GaAs and AlGaAs layers are 

 ( )0.067 0.083f om x m+�   
with 0x =  corresponding to the GaAs case. The middle GaAs “well” layer is 9 nm thick. 

Specifically, find, within 0.1 meV, the energy of maximum transmission of the electron through the 
structure in the range 0 to 0.1 eV, for the following AlGaAs barrier thicknesses on either side of the 
well 

(i) 4 nm 
(ii) 6 nm 
(iii) 8 nm 

 11.2.3  Consider a GaAs and AlGaAs structure, with a 9 nm thick GaAs layer, but with infinitely thick 
AlGaAs barriers on either side. Using the method of finding the energy that minimizes T11, the top 
left element of the transfer matrix, find the bound state of this structure in the range 0 to 0.2 eV 
within 0.1 meV. [Note: here you will only have three layers in your structure altogether, with the 
“entering” and “exiting” materials being AlGaAs, and only one GaAs intermediate layer, which 
makes the transfer matrix in this case only the product of three matrices altogether.]  

 11.2.4  Consider sets of one-dimensional potential wells that are 0.7 nm thick, with potential barriers 
separating the wells (i.e., on either side of the wells) that are 0.3 nm thick and 0.9 eV high, and 
consider the transmission resonances of an electron (in one dimension) in sets of these wells for 
energies up to 0.5 eV, presuming that the entering and exiting “materials” are the same as the 
potential well. 
(i) Consider for reference one such well, i.e., a 0.7 nm well with two 0.3 nm barriers on either side, 

and find the resonance energy and sketch or graph the corresponding probability density inside 
the structure.  

(ii) Consider two such wells (i.e., two wells and three barriers),  

                                                           
3 An alternative, and essentially equivalent, technique for finding the effective eigenenergies is to look 
for minima in the matrix element 11T  of the full transfer matrix. 
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(a) graph the transmission probability as a function of energy with sufficient resolution to show 
all the resonances,  

(b) state the number of resonances you find,  
(c) find the lowest and highest resonance energies in the range, and  
(d) sketch or graph the probability amplitudes inside the structure corresponding to the lowest 

and highest energy resonances. 
(iii) Repeat part (ii) for four such wells. 
(iv) Repeat part (ii) for eight such wells  
[Note: This problem illustrates the emergence of band structure in periodic systems.] 

11.3 Penetration factor for slowly varying barriers 

It is possible to make some analytic approximations to penetration and tunneling through 
barriers when the barrier potential is slowly varying over the scale of the exponential 
attenuation length. The rigorous analytic approach to such problems is known in quantum 
mechanics as the WKB method, though the mathematical technique predates quantum 
mechanics. We will not go into this analytic method here; it is largely a mathematical exercise, 
though it can be quite useful for obtaining analytic approximations to some problems. It can be 
found in many texts on quantum mechanics.4 There is, however, one important result from the 
WKB approach that contains some physical insight. We will derive that somewhat informally 
from the transfer matrix approach above, though the WKB approach is much more rigorous for 
deriving this result. 

Suppose we have a potential as shown in Fig.  11.6 that we approximate as a series of steps, in 
which the potential varies slowly. For simplicity of our algebra, we choose the entering and 
exiting materials as having the same energy, though that is not a necessary restriction. 

“entering” 
material

“exiting” 
material

incident wave
reflected wave

transmitted 
wave

energy E of 
interest  

Fig.  11.6. Example of a slowly varying potential approximated as a series of steps. 

For our purposes here, we presume that the energy mE V<<  for each layer inside the structure. 
We presume also that we have chosen the layers sufficiently thin in our calculation so that, at 
least for interfaces within the structure, 1m mk k +≅ . Then, for interfaces within the structure, we 
can approximate the boundary condition matrix as the identity matrix 

 
1 0
0 1mD ⎡ ⎤

≅ ⎢ ⎥
⎣ ⎦

∼ ∼
∼ ∼

 (11.35) 

Since all of the internal boundary condition matrices have therefore been approximated by 
identity matrices, we can omit them, and so the transfer matrix becomes 

                                                           
4 See, for example, L. I. Schiff, Quantum Mechanics (Third Edition) (McGraw-Hill, New York, 1968) pp 
268-79, H. Kroemer, Quantum Mechanics for Engineering, Materials Science, and Applied Physics 
(Prentice Hall, Englewood Cliffs, New Jersey, 1994), pp. 165-81, and R. L. Liboff, Introductory 
Quantum Mechanics (Fourth Edition) (Addison-Wesley, San Francisco, 2003) pp 243-59 
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 1 2 3 1 1N N N+ +=T D P P P P D"  (11.36) 

(We have left in the boundary condition matrices for the beginning and end of the structure, 
where the potential may be quite discontinuous.) Since the propagation matrices are all 
diagonal, their product is simple, being 

 2 3 1

1/ 0
0N N

G
G+

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
P P P P

∼
"

∼
 (11.37) 

where  

 
1 1 1

22 2

exp( ) exp( ) exp
N N N

q q q q q q
qq q

G ik d d dκ κ
+ + +

== =

⎛ ⎞
= = − = −⎜ ⎟

⎝ ⎠
∑∏ ∏  (11.38) 

Now, if we have chosen the layers to be sufficiently thin, we may take the summation to be 
approximately equal to an integral, i.e., 

 ( )
1

2 0

totzN

q q
q

d z dzκ κ
+

=

≅∑ ∫  (11.39) 

where 1( )tot Nz z +=  is the total thickness of the structure (which is taken to start on the left at 
0z = ). Hence we have 

 ( ) ( )( )2
0 0

2
exp exp

tot totz z
fm

G z dz V z E dzκ
⎛ ⎞⎛ ⎞
⎜ ⎟≅ − = − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫ =
 (11.40) 

where now ( )V z  is the potential as a function of position z. If we now presume that we have 
an amplitude F of forward wave leaving the right of the structure and no wave arriving from 
the right, as in our earlier example, then, using the transfer matrix of Eq. (11.36) together with 
the above substitutions for the propagation matrix product, Eq. (11.37), and the form of the 
boundary condition matrices for the first and last interfaces, we have for the forward wave 
amplitude 

 
( )( )1 11 1

4
NA F

G
++ Δ + Δ

≅  (11.41) 

from which we can evaluate the transmission probability from Eq. (11.5)5 as 

 
( )( )

( )( )2 2
01 1

216 exp 2
1 1

totz
f

N

m
V z E dzη

+

⎛ ⎞
⎜ ⎟≅ − −
⎜ ⎟+ Δ + Δ ⎝ ⎠

∫ =
 (11.42) 

The prefactor before the exponential contains the boundary conditions at the beginning and 
end of the whole structure. The exponential factor, sometimes referred to as the Gamow 
penetrability factor, is an approximate expression for the effect of the tunneling within the 
barrier itself. This approximation is frequently used in tunneling calculations.  

                                                           
5 The perceptive reader may notice that the expression 22 2

( /) AA Bη = −  does not give the correct 
answer here. This is because we have not been careful enough in the matrix approximations to retain the 
backward wave to sufficient order. Doing so gives a much more complicated expression, and prevents the 
simple expressions that allowed us to calculate the forward wave sufficiently accurately. 
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11.4 Electron emission with a potential barrier 

(This Section can be omitted at a first reading. Sections 8.1 – 8.7 of Chapter 8 are also 
prerequisites.)  

Now that we have understood what current is transmitted by a barrier for a given energy of 
electron and how to calculate quantum-mechanically the transmission of arbitrary barriers, we 
can complete the basic model for electron emission in the presence of a potential barrier. The 
main additional element we have to introduce is the thermal distribution of electrons. The 
additional work here is primarily the appropriate integration over that thermal distribution. 
This kind of approach enables us to calculate thermionic emission (the simple classical 
emission over a potential barrier because the particle has sufficient kinetic energy), and the 
corrections to that model resulting from the tunneling of particles through the barrier. 
Examples of such corrections are field-assisted thermionic emission, where some of the 
particles without sufficient energy can tunnel through the barrier, or even field emission, where 
the tunneling through the barrier dominates over the conventional thermionic emission over 
the top. To illustrate the solution to this class of problems, we will set up a simple form of such 
problems, for the case of particles with a constant mass or effective mass, and, in the end, for 
the case where the thermal distribution may be approximated by its high-energy limit. The 
solution of this kind of problem essentially involves no additional quantum mechanics.  

The solution of problems of electron emission, such as  

(i) from a metal into a vacuum (as is encountered, for example, with vacuum tubes of all kinds, 
including cathode ray tubes and field emission displays),  

(ii) from a metal into a semiconductor (as in a Schottky barrier), or  

(iii) in electron emission across or “through” barriers in semiconductor devices, such as 
leakage of current through barriers in semiconductor devices (e.g., through the gate oxide in 
silicon field effect transistors),  

can all be handled by essentially the same approach. A simplified form of the potential energy 
diagram is shown in Fig.  11.7, together with the typical terminologies for such problems. 

Emax

EF

Φmetal or 
semiconductor

barrier (vacuum, or 
insulator or semi-

conductor material)  
Fig.  11.7. Illustration of a simple potential barrier for emission of electrons from a metal or a 
semiconductor. Emax is the electron affinity if the barrier is the vacuum, or the band discontinuity 
if the barrier is an insulator or a semiconductor. EF is the Fermi energy (it is not necessarily 
above the bottom of the band as shown here). Φ is the work function in the case of a metal-
vacuum interface (the separation between the Fermi energy and the vacuum level). 

The form of the potential in the barrier is arbitrary (and not necessarily of the form shown in 
Fig.  11.7), though we do mean maxE  to be the highest barrier potential seen by any electron 
from the left, even if it is not exactly at the interface with the metal or semiconductor on the 
left. 
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In modeling thermionic or field emission, the usual approach is to presume that any electron 
that makes it through the barrier never comes back, and that there is negligible current of any 
other electrons coming back into the metal or semiconductor from the barrier side. Usually 
there is some electric field present, even in the thermionic case, that sweeps any emitted 
electrons away from the metal or semiconductor emitter, to the right in the diagram. Such 
emission is not like a diffusion process, in which the electrons experience a net drift down a 
concentration gradient. The situation in thermionic or field emission is more severe than that – 
there are essentially no carriers coming back from right to left at all. The concentration 
gradient in going from the metal or semiconductor into the barrier is essentially infinite. The 
current is simply limited then by how fast the emitted carriers can leave the emitting material. 
Essentially, we figure out how many carriers are going to the right at a given energy and how 
fast they are going, multiply that by the transmission probability associated with that energy, 
and add up the resulting currents for all energies; the resulting total will be the emission 
current. 

We can construct a simple model that will be a useful starting point, and indeed may be a 
sufficient model for many circumstances. We presume that the emitting metal or 
semiconductor on the left has an isotropic parabolic band with mass (or effective mass) fm .6 
For simplicity, we assume we are dealing with electrons in a conduction band. An electron in a 
given k-state, with components kx, ky, and kz, will have an energy (essentially a kinetic energy) 
relative to the bottom of the band of 

 ( )
2

2 2 2

2KE x y z
f

E k k k
m

= + +
=  (11.43) 

We presume that the particles are in a thermal distribution, which, for electrons, will in general 
be a Fermi-Dirac distribution. In a Fermi-Dirac distribution, the probability that a state of any 
particular energy KEE  is occupied is 

 ( )
( )

1
1 exp /FD KE

KE F B

P E
E E k T

=
+ −⎡ ⎤⎣ ⎦

 (11.44) 

where FE  is the Fermi energy, Bk  is Boltzmann’s constant (~ 1.38 x 10-23 J/K), and T is the 
temperature in Kelvin. As usual, the Fermi energy implicitly contains the information about 
how many electrons there are altogether (larger densities of electrons correspond to higher 
Fermi energies). We also presume, incidentally, that the distribution remains a thermal one 
even though we are continually extracting carriers in particular energy ranges. In practice, that 
is usually a good assumption – gasses of electrons tend to thermalize very quickly within 
themselves (e.g., << 1 ps). 

We will only be interested in electrons with positive kz and hence positive effective classical 
velocities / fz zv k m= =  (we take z  to be the horizontal direction in Fig.  11.7) since those will 
be the only ones emitted to the right. Any electron with positive kz just on the left of the barrier 
therefore gives a contribution to the emitted (electrical) current of ( )2 2 / 2 fz ze k m vη = , where, 
as before, ( )zEη  is the transmission probability of an electron with kinetic energy Ez 
associated with its motion in the z direction, and e is the electronic charge (we will not worry 
here about the sign of the charge and the current, both of which are obvious in this problem). 
Electrons with negative kz and vz do not enter the barrier, and make no contribution to the 

                                                           
6 For simplicity also we presume that whatever the mass is here, it is constant throughout the structure of 
interest. This is not necessarily a good approximation for the semiconductor case. 
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emitted current, and so must not be counted in the current. Note explicitly that it is only the 
kinetic energy associated with the z motion that enters the calculation of the transmission 
probability η. The kinetic energies associated with the other directions, and the kx and ky 
values, make no difference to this transmission probability.7 Note also, though, that the thermal 
occupation probability of a state does depend on the total kinetic energy, EKE.  

Now we start to deduce the total emitted current density. The density of states in k  space is 
31/(2 )π  per unit real volume8. Including an additional factor of 2 for the two spin states of the 

electron, the total emitted current density is therefore 

 
( )

( ) ( )2 2
3

0

2 / 2
2

x y z

z f FD KE z x y z
k k k

eJ k m P E v dk dk dkη
π

+∞ +∞ +∞

=−∞ =−∞ =

= ∫ ∫ ∫ =  (11.45) 

Note explicitly that the integral is only over positive values of zk  (and hence over only 
positive values of / fz zv k m= = ). 

We can evaluate Eq. (11.45) now to calculate the total emission current, including thermionic 
and field-assisted emission effects. Applied electric fields E (technically of negative sign) 
simply give a potential barrier that falls off linearly to the right at a rate, eE, resulting in a 
triangular barrier for tunneling.9  

It is often (though not always10) the case in emission problems like this that only electrons with 
energies Ez near the top of the barrier or above make any substantial contribution to the 
emission current. The tunneling for electrons with lower energies may be totally negligible. It 
is also usually the case that the barrier height, Emax is much larger than kBT. In such cases, we 
can approximate the Fermi-Dirac distribution by neglecting the “1” on the bottom line (making 
it technically then Maxwell-Boltzmann approximation), to obtain 

 ( ) ( )
( )2 2 22

exp / exp
2

x y z
FD KE F B

f B

k k k
P E E k T

m k T

⎡ ⎤+ +
⎢ ⎥−
⎢ ⎥⎣ ⎦

=�  (11.46) 

We can now deal with the kx and yk  integrals separately, and these integrals can conveniently 
be evaluated mathematically by changing to polar coordinates, imagining that the integral over 
the x yk k−  plane is performed by adding up rings of area 2 r rk dkπ  (where 2 2 2

r x yk k k= + ), 
giving 

                                                           
7 This is strictly true only for parabolic bands. In general, higher momenta in other directions (e.g., x and 
y) will lead to some change in the behavior in a given direction (e.g., z). 
8 The use of unit volume of emitting material for the calculation means that the quantum mechanical 
wavefunctions in the emitting material have unit amplitude when normalized to that material, which 
quantum mechanically keeps track of the currents correctly. If we chose another volume, we would 
formally have to normalize the quantum mechanical wavefunctions to that volume, which would lead to a 
correction factor that would exactly cancel the effect in the density of states of changing the volume, so 
in the end the emitted current density does not depend on the volume of the emitting material (as long as 
it is large enough to avoid significant quantum well confinement phenomena).   
9 The tunneling of particles through such triangular barriers is known as Fowler-Nordheim tunneling (R. 
H. Fowler and L. Nordheim, Proc. Roy. Soc. London 119A, 173 – 181 (1928)). 
10 For the case where there is negligible thermionic emission, and field emission (i.e., tunneling) 
dominates, the Maxwell-Boltzmann approximation is likely not sufficient, especially at low temperatures, 
and the full Fermi-Dirac distribution should be used. This is straightforward, at least numerically. 
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Now,  
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Therefore,  
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and so  
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We can change variable in the integration. Noting that 
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is the kinetic energy associated with the z  direction, we therefore have 
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Since our quantum mechanical analysis above enables us to work out ( )zEη  for quite arbitrary 
barrier forms, this expression (11.53) lets us evaluate electron emission through a barrier. This 
expression includes both tunneling current and the current over the top of the barrier 
(conventionally thought of as thermionic emission current). In principle, we have even 
accounted for the quantum mechanical partial reflection that can occur for particles with 
energy above the top of the barrier. 

Finally, for reasons of notation, let us connect back to the conventional description of 
thermionic emission. In the semiclassical view of thermionic emission, the transmission 
probability ( )zEη  is simply assumed to be unity for z maxE E> , and zero for z maxE E< . This 
view neglects not only tunneling, but also the partial reflection that can occur for energies 
above the barrier, though it is a good starting approximation for thermionic emission in 
practice. In this simple case, the thermionic emission is therefore 
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i.e.,  
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where A0 is the Richardson constant 
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and max FE EΦ = −  is the so-called “work function” in the case of a metal-vacuum interface. 
Eq. (11.55) is known as the Richardson-Dushman equation. (When the quantum mechanical 
effects of tunneling are added, it is still common to use the Richardson constant, or an effective 
Richardson constant, in the final expressions.) 

Problems 
 11.4.1  Consider a potential barrier of height 1 eV and thickness 1 nm. The same otherwise uniform 

material (taken here just to be vacuum) is on both sides of the barrier, and no electric field is applied. 
There are electrons on the left of the barrier, but none on the right. The electrons on the left are in a 
thermal distribution at room temperature (300K), with the Fermi energy of that distribution at -100 
meV, below the lowest energy state of the electrons on the left, so we can approximately say the 
electrons are in a Maxwell-Boltzmann distribution. Using the approximate formula 
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 where 2 1/ 2(2 / )ok m E= =  and 2 1/ 2[2 ( ) / ]om V Eκ = − = , for the transmission probability of an electron 
of wavevector +k for tunneling from the left to the right of the barrier, calculate the total tunneling 
emission current density (in A/cm2) from left to right of the barrier. [Note: you may well perform an 
appropriate numerical integral to get this result.]  

 11.4.2  [Note: this problem can be used as a substantial assignment.] Consider two GaAs layers separated 
by an Al0.3Ga0.7As barrier, 5 nm thick, which has a potential height for electrons of ~ 231 meV and 
an effective mass of ~0.0919 mo. Presume the electron effective mass in GaAs is 0.067 mo. The 
temperature is 300K, and the carrier density on the left of the barrier is such that the Fermi energy is 
at the bottom of the conduction band. (You may use the Maxwell-Boltzmann approximation to the 
thermal distribution of electrons.) There are presumed to be no carriers on the right hand side of the 
barrier, though the GaAs is assumed to be at the same uniform potential as the GaAs on the left hand 
side of the barrier (i.e., assume the bottom of the GaAs conduction band is at the same constant 
energy on both sides). 
(i) Plot the transmission probability for an electron incident on the barrier from the left as a 

function of the energy of the electron, from 0 to 0.5 eV. 
(ii) Calculate the current density of electrons (in A/cm2) moving from the left of the barrier to the 

right that we would expect on a simple classical calculation (i.e., the Richardson-Dushman 
equation). 

(iii) Calculate the current density now using the quantum mechanical calculation with the 
transmission probability included. 

(iv) Now replace the single barrier with a pair of Al0.3Ga0.7As barriers each 3 nm thick around an 
empty GaAs “well” of thickness 4 nm. Plot the transmission probability for an electron incident 
on the barrier from the left as a function of the energy of the electron, from 0 to 0.5 eV. 

(v) With this new structure, calculate the current density now using the quantum mechanical 
calculation with the transmission probability included  
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 11.4.3  [Note: this problem can be used as a substantial assignment. It is similar to the above problem, but 
here the electric field over the barrier is changed.] Consider the problem of emission of electrons 
from GaAs, through an AlGaAs barrier of thickness 10 nm, and aluminum fraction of 30%, into 
another GaAs layer. The Fermi energy of the electrons in the conduction band of the emitting GaAs 
is presumed to be at the bottom of conduction band (which, incidentally, corresponds to an electron 
concentration of ~ 3.2 x 1017 cm-3). Presume there is negligibly small carrier density in the GaAs 
layer on the other side of the barrier. The temperature is 300 K. You may assume the carrier 
distribution is approximately given by the Maxwell-Boltzmann distribution for all carriers that are 
important in the carrier emission. Answers for current densities need only be accurate to ~ 10 %. 
(i) Calculate the thermionic emission current density across this barrier, in A/cm-2, based on the 

classical Richardson-Dushman equation. (The presumption is that all carriers going to the 
“right” across the barrier are emitted.) 

(ii) Calculate the total emission current density at zero applied field across this barrier including the 
quantum mechanical transmission coefficient. Explain any difference in the value you get 
compared to the Richardson-Dushman result. 

(iii) Calculate the total emission current density at a field of 20 V/micron. This field is presumed to 
be applied over the AlGaAs barrier only, in such a direction as to increase emission current 
substantially. The GaAs layers on either side of the barrier may be presumed to have zero field 
in them.  

(iv) Graph the total emission current density over a field range from 0 to 40 V/micron over the 
AlGaAs barrier. 

Note: Perform this calculation by constructing a transfer matrix model for the structure, and dividing 
the barrier into a sufficient number of layers. The effect of electric field in the barrier is incorporated 
by progressively changing the potential in each successive layer of the barrier structure through the 
addition (or subtraction) of the potential due to the electric field in the barrier. You should not need a 
very large number of layers to get sufficiently accurate answers. You may need to take some care in 
numerical integrations over the Maxwell-Boltzmann exponential function because of its strongly 
decaying nature, though sophisticated numerical integration techniques should not be necessary. 

11.5 Summary of Concepts 

Transmission by a barrier 

The fraction of incident particles that are transmitted by the barrier is 

 ( )2 2 2/A B Aη = −  (11.4) 

where A and B are respectively the amplitudes of the wave incident on the barrier and the wave 
reflected by it. 

Transfer matrix 

The transfer matrix is constructed by  

(i) approximating the structure of interest by a number of layers, each with a given potential 
and, if necessary, effective mass,  

(ii) choosing an energy of interest for the incident wave,  

(iii) calculating boundary condition matrices for the forward and backward waves at each 
interface for the chosen energy,  

(iv) calculating propagation matrices for forward and backward waves in each layer,  

(v) multiplying all of these matrices together in sequence to construct a complete transfer 
matrix for the structure.  
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Conventionally, the matrix is constructed backwards through the structure, so that proposing 
only an exiting wave at the far “right” of the structure, we can deduce the relative amplitudes 
of the “incident” and “reflected” waves at the “left” of the structure, thus solving for the 
reflectivity or transmission of the wave at the chosen energy. Formally, for a matrix  

 11 12

21 22

T T
T T

⎡ ⎤
≡ ⎢ ⎥

⎣ ⎦
T  (11.25) 

calculated in this way, the fraction of particles transmitted by this barrier is 
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T

T
η = −  (11.29) 

For any given energy, the wavefunction amplitudes of the forward and backward waves inside 
the structure are available as intermediate results in the calculation. Adding the forward and 
backward waves together at any given point gives the wavefunction at that point. 

Calculation of eigenenergies of bound states 

For a structure with truly bound states, the eigenenergies are those energies for which  

  11 0T =  (11.34) 

Tunneling resonance calculations for quasi-bound states 

When a structure possesses sharp resonances in its transmission, the energies of those 
resonances can be considered as effective eigenenergies of quasi-bound states (states that have 
finite lifetimes), with the wavefunctions calculated at those resonances being effective 
eigenfunctions for those quasi-bound states. 

Penetration factor for slowly varying barriers 

For a barrier of potential energy ( )V z E>  for z from 0 to some point totz , for some energy of 
interest E, the transmission of the barrier is  

 ( )( )2
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2
exp 2
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V z E dzη
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⎜ ⎟∝ − −
⎜ ⎟
⎝ ⎠

∫ =
 (11.42)  



Chapter 12  
 
Spin 

 Prerequisites: Chapters 2 – 5 and Chapters 9 and 10. 

Up to this point, we have essentially presumed that the state of a system, such as an electron, 
or even a hydrogen atom, can be specified by considering a function in space and time, a 
function we have called the wavefunction. That description in terms of one quantity, the scalar 
amplitude of the wavefunction, turns out not to be sufficient to describe quantum mechanical 
particles. We find that we also need to specify amplitudes for the spin of the particle.  

The idea that we would need additional degrees of freedom to describe a system completely is 
not itself unusual. For example, in classical mechanics, we might use position as a function of 
time to describe an object such as a football, but that would not be a complete description; we 
might need to add a description of the rotation of the football so that we could calculate the 
expected future dynamics of the ball. The rotation of the football is still something we can 
describe purely in terms of the position of points on the football, and we might view it as being 
loosely analogous to the angular momentum of a quantum mechanical particle such as a 
hydrogen atom. We might also, however, need to add the color of the ball to its description if 
we were showing the ball on television, and the manufacturer of the ball would care very much 
that the correct name was clearly displayed on the ball. Those additional attributes of the ball 
cannot be described simply as the positions of the points on the surface of the ball – we need to 
add the color of the points as an additional attribute that varies over the surface of the ball. It is 
an attribute that varies in space, but is not itself the position of the points on the surface. 
Additionally, and more importantly for our discussion here, there might be other properties 
that are intrinsic to the football that would be important for its dynamics. 

Elementary particles, such as electrons, neutrons, and protons, have an additional intrinsic 
property, called spin, that, just like the rotation of a football, can have quite measurable and 
important consequences for the behavior of the particle.1 The magnitude of this spin turns out 
to be an intrinsic and unalterable property of each specific type of particle. In that sense, spin is 
not like the external rotation of the football. Spin is more analogous to having a constantly 
spinning gyroscope buried inside the football. Spin is, however, a very quantum-mechanical 
property, and it would be wise to leave classical analogies behind from this point on. 

Spin and its consequences are extremely important in quantum mechanics. Spin turns out to be 
the determining quantity for deciding whether more than one particle can occupy a given state. 
Both chemistry and solid state physics rely heavily on the Pauli exclusion principle that only 

                                                           
1 Elementary particles have other attributes, such as “charm” and “strangeness”, that will not concern us, 
just as the specific manufacturer of the football might not be important to the football player. These 
additional quantum mechanical properties do matter very much in high-energy physics, and the specific 
manufacturer of the football does matter to the company shareholders. 
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one electron can occupy a given state. (We will discuss the consequences of exclusion or 
otherwise in Chapter 13.) Magnetic effects in materials are almost entirely due to spin 
properties. Electron spin effects are very important in determining polarization selection rules 
in optical absorption and emission, both in atoms and in optoelectronic devices, for example.  

12.1 Angular momentum and magnetic moments 

To see just what the “spin” angular momentum of an electron is, we can look at how the 
energies of electron states or the positions of electrons are influenced by magnetic fields. First, 
we need to understand some basic concepts about angular momentum and magnetic moments. 
One of the most direct consequences of angular momentum is that charged particles with 
angular momentum have so-called magnetic moments, which means that they behave as if they 
were little magnets. This is easy to understand, for example, for an orbiting electron.  

Classically, an electron orbiting with a velocity v in a circular orbit of radius r, as in the simple 
Bohr model of the hydrogen atom, has an angular momentum of magnitude 

 oL m vr=  (12.1) 

We can also write angular momentum as a vector, in which case we have, classically, 

 om= ×L v r  (12.2) 

The electron takes a time 2 /r vπ  to complete an orbit, so the current corresponding to this 
orbiting electron is of magnitude / 2I ev rπ=  (this is the amount of charge that will pass any 
point in the loop per second). The current loop corresponding to the orbit has an area 2rπ .  

In magnetism, we can define a quantity called the magnetic dipole, magnetic moment or 
magnetic dipole moment, a quantity that is essentially the strength of a magnet. For any closed 
current loop, the magnitude of the classical dipole moment is current areadμ = × . Such an 
orbiting electron therefore classically has a magnetic dipole of magnitude  

 / 2 / 2e oevr eL mμ = − = −  (12.3) 

where the minus sign is because the electron charge is negative.  

Magnetic moment is a vector quantity, with the vector axis being along the polar axis of the 
magnet. In the full vector statement, the vector magnetic dipole moment for a current loop is  

 d I= aμ  (12.4) 

where I is the current in the loop, and a is a vector whose magnitude is the area of the loop, 
and whose direction is given by the right hand rule when considering the direction of current 
flow round the loop. For a classical electron in a circular orbit, the magnetic dipole moment as 
a vector is therefore 

 
2 2e

o

e e
m

= − × = −
Lv rμ  (12.5)  

If we apply a magnetic field B, classically the energy of an object with a magnetic moment dμ  
direction changes by an amount  

 dEμ = − ⋅Bμ  (12.6) 
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Applying a magnetic field B along the z-direction to a hydrogen atom will define the z-
direction as the quantization axis, making the angular momentum quantized around the z-
direction, with quantum number m, where the allowed values of m go in integer steps from -l 
to +l. The corresponding angular momenta are of magnitude m= , or in vector form ˆm z= . 
Taking these values of angular momentum, we would expect corresponding magnetic 
moments for these electron orbits of 
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μ  (12.7) 

hence the name magnetic quantum number sometimes given to m. Here we have used the 
natural unit, μB, called the Bohr magneton, for magnetic moment in quantized problems, where  

 
2B

o

e
m

μ =
=  (12.8) 

Hence, we would expect energy changes for these states of  

 m BE m Bμ=  (12.9) 

as a result of applying the magnetic field.  

So, in a hydrogen atom, we might expect an applied magnetic field to split the 2 1l +  
degenerate levels of some state with non-zero l (e.g., a P state, with 1l = ) into 2 1l +  different 
energy levels. Of course, we should do that calculation properly from a quantum mechanical 
point of view,2 which in this case would be a degenerate perturbation theory calculation of the 
hydrogen atom with a perturbing Hamiltonian3 operator ( )ˆ ˆ/ 2p o zH e m BL= , but the result 
(neglecting spin effects) would be essentially what we expect, with 2 1l +  different energy 
levels appearing, with energies Bm Bμ . The splitting of atomic levels with magnetic fields is 
called the Zeeman effect, and can be seen in optical absorption spectra, for example.  

Another way of seeing the magnetic moments of particles is to see how they are deflected by 
non-uniform magnetic fields, as in the Stern-Gerlach experiment (see Section 3.8). In such an 
experiment, if we prepared the particles with arbitrary initial values of m and repeated the 
experiment many different times, we should expect to see 2 1l +  different deflection angles 
emerging.  

Hence, we expect a Zeeman splitting experiment or a Stern-Gerlach experiment to show us 
how many different values of the z component of the angular momentum are allowed in a 
magnetic field in the z direction in a given state. We can now ask, what happens if we try to 
use an approach like this to look at an electron itself in a magnetic field to understand its 
internal angular momentum or “spin”?4 How many different values of the z component of the 
angular momentum do we see? The answer is, rather surprisingly, 2.  

                                                           
2 See, for example, the discussion of the Zeeman effect for the hydrogen atom in W. Greiner, Quantum 
Mechanics (Third Edition) (Springer-Verlag, Berlin, 1994), pp 316 - 320 
3 Because the electron has negative charge, a positive angular momentum in the z direction gives a 
negative dipole moment in the z direction, hence, even when considering the full vector form of the 
dipole energy, the sign in this perturbing Hamiltonian is positive as stated for a magnetic field in the z 
direction. 
4 Actual experiments may use an atom with a single electron in its outer shell in an S orbital state (with 
therefore no orbital angular momentum). The Stern-Gerlach experiment used silver atoms. 
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To distinguish this spin angular momentum from orbital angular momentum, we use the 
quantum numbers s rather than l, and σ rather than m. If we want to reconcile this result for the 
electron with the quantum mechanical formalism for angular momentum we previously 
constructed where we had 2 1l +  different deflection angles in the Stern-Gerlach experiment, 
to get 2 1 2s + = , we need 1/ 2s = . Hence we seem to have to assign a spin angular 
momentum to the electron of / 2s == = . As before, we say that σ can take values in integer 
steps from -s to +s, so 1/ 2σ = −  or 1/ 2+ , and the corresponding angular momentum 
component in the z direction is σ± = .  

Based on our previous understanding of angular momentum from the Schrödinger equation or 
our creation of quantum mechanical angular momentum operators from classical angular 
momentum, this apparent value of ½ for the internal “spin” angular momentum of the electron 
is bizarre. When we considered angular momentum associated with wavefunctions before, we 
concluded that the m quantum number had to be an integer, otherwise the spatial wavefunction 
that corresponded to it would not be single-valued after a single complete rotation about the z 
axis. How then can we have the σ quantum number be a half integer?  

The answer to which we are forced is that the eigenfunctions associated with this internal 
angular momentum of the electron are not functions in space. We cannot describe the behavior 
of an electron, including its spin, only in terms of one function amplitude in space. For a 
complete description, we need to specify and describe another degree of freedom, the electron 
spin, just as for the football we needed to specify and describe another degree of freedom, the 
chemical composition of the surface, to handle the issue of the color of the football. It was not 
sufficient merely to describe the positions of the points on the surface of the football if we 
wanted to describe the football’s color.  

Incidentally, and somewhat confusingly, the magnitude of magnetic moment of the electron 
due to its spin is not simply Bσμ  as we might expect, but is instead 

 e Bgμ σμ=   (12.10) 

where we have the so-called gyromagnetic factor 2.0023g � , often approximated as a factor 
2. There is also no radius of classical orbit of an electron that will give it both an angular 
momentum of / 2=  and a magnetic moment of / 2Bgμ± , further confirming that spin cannot 
be considered as corresponding to a classical orbit of any kind. 

12.2 State vectors for spin angular momentum 

Suppose for the moment that we are only interested in the spin properties of the electron. How 
do we describe the state of the electron in that case? To understand that, we can ask first how 
we would have described an orbital angular momentum state without describing it explicitly as 
a function of angle in space.  

Suppose, for example, that we considered only states with a specific value of l. We can write 
such a state as l  if we wish. In general, l  would be some linear combination of the basis 
states ,l m  corresponding to any of the specific allowed values of m, i.e.,  

 ,
l

m
m l

l a l m
=−

= ∑  (12.11) 

In the case of these states, each of the states ,l m  can also be written as one of the spherical 
harmonic functions in space, and the resulting linear combination l  can also therefore be 
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written as a function of angle in space. We could also, if we wish, write l  explicitly as a 
vector of the coefficients ma , i.e.,  
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#  (12.12) 

Note that the set of functions corresponding to all of the possible values of m for a given l is a 
complete set for describing any possible function with that value of l, including even the 
eigenfunctions of xL  and yL  that are oriented around the other axes. 

In the case of the electron spin, we cannot write the basis functions as functions of angle in 
space, but we do expect that we can write them using the same kind of state and vector 
formalism as we use for other angular momenta. In the electron spin case, that formalism 
becomes very simple. Instead of l, we have s, which we know is ½, and instead of m we have 
σ. Just as we did for orbital angular momentum, where we could write any specific basis state 
as ,l m  we can use a notation ,s σ  for the spin case. There are, however, now only two 
basis states, 1/ 2,1/ 2  and 1/ 2, 1/ 2− , corresponding to 1/ 2σ =  and 1/ 2σ = −  
respectively. Hence, if we choose to write our general spin state as s , we have 

 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2

1/ 2

1/ 2,1/ 2 1/ 2, 1/ 2
a

s a a a a
a− −

−

⎡ ⎤
= + − ≡ ↑ + ↓ ≡ ⎢ ⎥

⎣ ⎦
 (12.13) 

where we have also indicated another common notation, with ↑  being the “spin-up” state 
1/ 2,1/ 2 , and ↓  being the “spin-down” state 1/ 2, 1/ 2− . (The “up” and “down” refer to 

the z direction, conventionally.)  

Any possible spin state of the electron can presumably be described this way. Rather 
obviously, a state with its magnetic moment in the z+  direction (the “spin-up” state) will be 

the state 
1
0

⎡ ⎤
⎢ ⎥
⎣ ⎦

, and a state with its magnetic moment in the z−  direction (the “spin-down” 

state) will be 
0
1

⎡ ⎤
⎢ ⎥
⎣ ⎦

. We could also multiply these states by any unit complex number and they 

would still be spin-up and spin-down states respectively. The choice of unit amplitudes for 
these states also assures that they are normalized. Normalization in this case means assuring 
that the sum of the modulus squared of the two vector elements is equal to one, i.e., 

2 2
1 / 2 1 / 2 1a a−+ = . 

The reader might think that these vectors, 
1
0

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 
0
1

⎡ ⎤
⎢ ⎥
⎣ ⎦

, can represent only spin-up and spin-

down states, oriented along the z axis. In fact, that is not correct; these two basis vectors can 
represent any possible spin state of the electron, including spin states with the magnetic 
moment oriented along the x direction or along the y direction. This is readily shown once we 
have defined the operators for the various spin components. 
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12.3 Operators for spin angular momentum 

Now that we have found an appropriate way of writing spin states, we need to define operators 
for spin angular momentum. In the case of orbital angular momentum, we started by 
postulating the operators associated with the components of the orbital angular momentum 
along the three coordinate axes, ˆxL , ˆyL , and ˆzL , in terms of spatial position and spatial 
derivative operators, an option that we do not have for the spin operators since the spin 
functions are not functions of space. We also, however, were able to write commutation 
relations for the orbital angular momentum operators. An alternative approach to finding the 
characteristics of the spin operators might therefore be to start with the commutation relations, 
and find a representation of spin operators that satisfy such commutation relations. In fact, 
some authors regard the commutation relations as being the more fundamental statement of the 
operator properties. If one starts with the commutation relations for angular momentum 
operators, one can prove that both integer and half integer values for angular momentum are 
possible, and these are all that are possible.5  

By analogy with the angular momentum operators ˆ
xL , ˆyL , and ˆ

zL , we can write spin angular 
momentum operators ˆ

xS , ˆyS , and ˆ
zS , and we expect them to obey a set of commutation 

relations 

 ˆ ˆ ˆ,x y zS S i S⎡ ⎤ =⎣ ⎦ =  (12.14) 

 ˆ ˆ ˆ,y z xS S i S⎡ ⎤ =⎣ ⎦ =  (12.15) 

 ˆ ˆ ˆ,z x yS S i S⎡ ⎤ =⎣ ⎦ =  (12.16) 

It is common in discussing spin to work with the “dimensionless” operators ˆ xσ , ˆ yσ , and ˆ zσ  
from which the spin angular momentum magnitude / 2=  has been removed, i.e., 

 ˆˆ 2 /x xSσ = = , ˆˆ 2 /y ySσ = = , ˆˆ 2 /z zSσ = =  (12.17) 

giving the set of commutation relations 

 ˆ ˆ ˆ, 2x y ziσ σ σ=⎡ ⎤⎣ ⎦  (12.18) 

 ˆ ˆ ˆ, 2y z xiσ σ σ⎡ ⎤ =⎣ ⎦  (12.19) 

 [ ]ˆ ˆ ˆ, 2z x yiσ σ σ=  (12.20) 

If we choose to represent the spin function in the vector format, then the operators become 
represented by matrices. One set of matrix representations of these operators is 

 
0 1 0 1 0

ˆ ˆ ˆ, ,
1 0 0 0 1x y z

i
i

σ σ σ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (12.21) 

Such matrix representations are known as Pauli spin matrices. There is more than one way we 
could have chosen these – in fact there is an infinite number of ways – depending on what axis 
we choose for the spin. This set, which we can call the z representation, is such that the spin-up 

                                                           
5 See, e.g., P. A. M. Dirac, The Principles of Quantum Mechanics (4th Edition, revised) (Oxford, 1967), 
pp 144 – 146. 



 12.4 The Bloch sphere 305 

and spin-down vectors defined previously are eigenvectors of the ˆ zσ  operator. The reader can 
check that these operators do indeed obey the commutation relations (12.18) - (12.20). 

We can if we wish choose to write the three different Pauli spin matrices as one entity, σ̂ , 
which has components associated with each of the coordinate directions x, y, and z,  

 
0 1 0 1 0

ˆ ˆ ˆ ˆ
1 0 0 0 1x

i
i

σ σ σ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ + ≡ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
y zi j k i j k=σ  (12.22) 

For completeness in discussing the spin operators, we note that, by analogy with the 2L̂  
operator, we can also define an 2Ŝ  operator  

 2 2 2 2ˆ ˆ ˆ ˆ
x y zS S S S= + +  (12.23) 

or a 2σ̂  operator. 

 2 2 2 2ˆ ˆ ˆ ˆx y zσ σ σ σ= + +  (12.24) 

From the definitions for the Pauli matrices, we see that 

 2 1 0
ˆ 3

0 1
σ

⎡ ⎤
≡ ⎢ ⎥

⎣ ⎦
 (12.25) 

and hence that 

 ( )2 2 21 0 1 03ˆ 1
0 1 0 14

S s s
⎡ ⎤ ⎡ ⎤

≡ = +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= =  (12.26) 

from which we see that any spin ½ vector is an eigenvector of the 2Ŝ  operator, with 
eigenvalue ( ) ( )2 21 3 / 4s s + == = . Incidentally, it is also similarly true for orbital angular 
momentum that any linear combination of spherical harmonics corresponding to a given l  
value is an eigenfunction of the 2L̂  operator, with eigenvalue ( ) 21l l + = , so the behaviors here 
are still analogous to the behavior of orbital angular momentum. 

Problems 

See Problems 4.10.4 and 5.1.1  

12.4 The Bloch sphere 

Although we have chosen to discuss spins using the z representation here, which has 
eigenfunctions that correspond to pure “spin-up” and “spin-down”, this representation can also 
describe spins oriented exactly along the x axis, or exactly along the y axis, or, indeed, spins 
oriented at any angle. Strange as it may seem, a spin pointing in the x direction can be 
expressed as a linear combination of spin-up and spin-down states described in the z direction. 
How can this be? Note that the spin vector itself is not a vector in ordinary geometrical space. 
It is a vector in a two-dimensional Hilbert space. One way to find what are the two spin vectors 
that correspond to a spin oriented respectively in the positive or negative x direction is to find 
the eigenvectors of the ˆ xσ  Pauli spin matrix, which is a simple exercise in matrix algebra, and 
similarly for the y direction. 

The general spin state, as in Eq. (12.13) can be visualized in a particularly elegant way. There 
are four real numbers required to specify the electron spin vector – a real and an imaginary part 
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(or equivalently a magnitude and phase) for each of the two elements of the vector. This is 
enough to specify the two angles and the complex amplitude (e.g., magnitude and phase) for a 
spin pointing in any specific direction. Since the magnitude of the vector is fixed for spin, and 
since we can choose the quantum mechanical phase of any single state arbitrarily without 
making any difference to measurable quantities, in fact, we only really need two numbers to 
describe a spin state. A particularly illuminating way to specify those two numbers is as a pair 
of angles, θ and φ, in terms of which we can choose to write the general spin state as 

 ( ) ( ) ( )cos / 2 exp sin / 2s iθ φ θ= ↑ + ↓  (12.27) 

Since 2 2cos ( / 2) sin ( / 2) 1θ θ+ = , the magnitude of this vector is correctly guaranteed to be 
unity, and the exp(iφ) factor allows for any relative quantum-mechanical phase between the 
two components. 

x

y

z

Ps

φ

θ

x

y

z

Ps

φ

θ

 
Fig.  12.1. Bloch sphere, showing the general state of a single s=1/2 spin represented as a vector 
Ps. 

We can now formally ask for the expectation value of the Pauli spin operator σ̂  (as defined in 
Eq. (12.22)) with such a state, obtaining as the result a “spin polarization” vector Ps 

 
ˆ ˆ ˆ ˆ

sin cos sin sin cos
s xs s s s s s s sσ σ σ

θ φ θ φ θ
= = + +

= + +
y zP i j k

i j k
σ

 (12.28) 

the algebra of which is left as an exercise for the reader. But this vector Ps is simply a vector of 
unit length pointing from the origin out to a point on a sphere of unit radius, with angle relative 
to the North pole of θ, and azimuthal angle φ. In other words, the general spin state s  can be 
visualized (Fig.  12.1) as a vector on a unit sphere. The North pole corresponds to the state ↑ , 
and the South pole to state ↓ . This sphere is called the Bloch sphere, with the angles θ  and φ 
on this sphere characterizing the spin state, and the geometrical x, y, and z directions 
corresponding to the directions of the eigenvectors of the corresponding spin operators. 

Problem 

 12.4.1 Show that, for ( ) ( ) ( )cos / 2 exp sin / 2s iθ φ θ= ↑ + ↓ ,  

  ˆ sin cos sin sin coss s θ φ θ φ θ= + +i j kσ . 
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 12.4.2 Suppose an electron is in the spin state ( )[ ]1/ 2s i= ↑ + ↑ , and that the electron spin 
magnetic moment operator can be written as ˆ ˆe Bgμμ = σ . What is the expectation value of the 
electron spin magnetic moment? [Note: the result is a vector].  

 12.4.3 Consider an arbitrary spin state ( ) ( ) ( )cos / 2 exp sin / 2s iθ φ θ= ↑ + ↓ , and operate on it with 
the ˆ zσ  operator. Describe the result of this operation in terms of a rotation of the spin polarization 
vector on the Bloch sphere.   

12.5   Direct product spaces and wavefunctions with spin 

Thus far, we have only discussed spin in isolation – we have not also considered the spatial 
variation of the electron’s behavior. How can we put the two of these together to obtain a 
description of the electron incorporating both spin and spatial behavior? The answer is that we 
allow the electron to have two spatial wavefunctions, one associated with spin up and the other 
associated with spin down. We can write such a wavefunction as a vector in which the 
components vary in space. Thus if Ψ  is to be the most complete representation of the state of 
the electron, including spin effects, we might write 

 
( )
( ) ( ) ( )

, 1 0
, ,

, 0 1
t

t t
t

ψ
ψ ψ

ψ
↑

↑ ↓
↓

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
Ψ ≡ ≡ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

r
r r

r
 (12.29) 

A function of the form 
( )
( )

,
,
t
t

ψ
ψ

↑

↓

⎡ ⎤
⎢ ⎥
⎣ ⎦

r
r

 is called a “spinor”. We can also use other equivalent 

notations. Before doing so, it will be important to understand exactly what we are doing with 
the Hilbert spaces.  

We previously discussed a Hilbert space to represent one function, the wavefunction, in space 
and also, if we wished, time. For general spatial wavefunctions, for example, we needed an 
infinite dimensional Hilbert space, with one dimension for each basis function. The state 
vector in that Hilbert space was just the vector of the amplitudes of all the basis functions 
required to build up the desired function in space (e.g., the vector of the Fourier amplitudes). 
For other more restricted problems, we can construct other Hilbert spaces. For the case where 
we are only interested in electron spin, we had only a two dimensional Hilbert space, with the 
dimensions labeled spin-up and spin-down. We could have constructed a Hilbert space to 
represent any angular function associated with a specific total orbital angular momentum l. 
That space would have had 2 1l +  dimensions, corresponding to the different possible values 
of m.  

What happens, as in the present case, where we want to combine two Hilbert spaces (e.g., the 
spatial and temporal Hilbert space describing ordinary spatial and temporal functions, and the 
Hilbert space for spin) to create a space that can handle any state in this more complicated 
problem? In the present electron spin case, we want to have a space that is sufficient to 
represent two spatial (or spatial and temporal) functions at once. Hence, where previously we 
only needed one dimension, and one coefficient, associated with a particular spatial and 
temporal basis function, we now need two. We have doubled the number of our dimensions.  

The basis functions in our new Hilbert space are all the products of the basis functions in the 
original separate spaces. For example, if the basis functions for the spatial and temporal 
function were 

 ( )1 , tψ r , ( )2 , tψ r , …, ( ),j tψ r , …  
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then the basis functions when we add spin into the problem are 

 ( )1

1
,

0
tψ

⎡ ⎤
⎢ ⎥
⎣ ⎦

r , ( )2

1
,

0
tψ

⎡ ⎤
⎢ ⎥
⎣ ⎦

r , …, ( )
1

,
0j tψ

⎡ ⎤
⎢ ⎥
⎣ ⎦

r , …,  

 ( )1

0
,

1
tψ

⎡ ⎤
⎢ ⎥
⎣ ⎦

r , ( )2

0
,

1
tψ

⎡ ⎤
⎢ ⎥
⎣ ⎦

r ,…, ( )
0

,
1j tψ

⎡ ⎤
⎢ ⎥
⎣ ⎦

r , …  

This concept of the new basis functions being the products of the elements two basis function 
sets is not exclusively a quantum mechanical one. For example, if a spatial function in one 
dimensional box of size xL  can be represented as a Fourier series of the form 

 ( ) ( )exp 2 /n x
n

f x a i n x Lπ= ∑  (12.30) 

then a function in a two-dimensional rectangular box of sizes xL  and yL  in the respective 
coordinate directions can be represented as a Fourier series 

 ( ) ( ) ( ),
,

, exp 2 / exp 2 /n p x y
n p

g x y a i nx L i py Lπ π= ∑   (12.31) 

Here the new basis functions are the products of the basis functions of the two Hilbert spaces 
associated with the two separate problems of functions in x and functions in y.  

A Hilbert space formed in this way is called a direct product space. The spinors exist in such a 
direct product space formed by the multiplication (“direct product”)6 of the spatial and 
temporal basis functions and the spin basis functions. We can also write the new basis 
functions using Dirac notation. In the electron spin case, we could write the basis functions as 

 1ψ ↑ , 2ψ ↑ , … jψ ↑ , …, 1ψ ↓ , 2ψ ↓ , …, jψ ↓ , …  

Here, we understand that the jψ  kets are vectors in one Hilbert space, the space that 
represents an arbitrary spatial and temporal function, and the ↑  and ↓  kets are vectors in 
the other Hilbert space representing only spin functions. The products jψ ↑  and jψ ↓  
are vectors in the direct product Hilbert space. We could if we wished also write these 
products, using the notations j jψ ψ≡ ↑↑  and so on, as the basis functions of our direct 
product Hilbert space 

 1ψ ↑ , 2ψ ↑ , …, jψ ↑ , …, 1ψ ↓ , 2ψ ↓ , …, jψ ↓ , …  

Direct product spaces occur any time in quantum mechanics that we add more degrees of 
freedom or “dynamical variables” into the problem, including, for example, adding more 
spatial dimensions, or more particles, or more attributes, such as spin, for individual particles. 
With our different notations, we could also write Eq. (12.29) as 

 ψ ψ ψ ψ↑ ↓ ↑ ↓Ψ = ↑ + ↓ = ↑ + ↓  (12.32)  

                                                           
6 This direct product can also be considered as a tensor product. Sometimes this product is marked 
explicitly using a sign such as ⊗ , i.e., writing 1ψ ⊗ ↑ instead of 1ψ ↑ . 
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12.6 Pauli equation 

It is clear that, with the addition of spin, the Schrödinger equation we had been using is not 
complete. At the very least, we should add in the energy that an electron has from the 
interaction with a magnetic field B. Classically, if we viewed the electron spin as a vector, σ , 
because it has direction, just as normal angular momentum does, then we would expect an 
associated magnetic moment, in a simple vector generalization of Eq. (12.10), 

 e Bgμ=μ σ  (12.33) 

and the energy associated with that magnetic moment in the field yx zB B B= + +B i j k  where i, 
j, and k, are the unit vectors associated with the usual Cartesian coordinate directions, would 
be 

 S e BE gμ= ⋅ = ⋅B Bμ σ  (12.34) 

In the quantum mechanical case, as usual we postulate the use of the operator instead of the 
classical quantity.  

The quantum mechanical Hamiltonian corresponding to the energy SE  of Eq. (12.34) is 
therefore 

 
0 1 0 1 0ˆ ˆ
1 0 0 0 12 2 2 2

B B B B
S x y z

ig g g g
H B B B

i
μ μ μ μ−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⋅ ≡ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
Bσ  (12.35) 

where we have used σ̂  as in Eq. (12.22). (The factor ½ in this expression compared to the 
classical one is only because we like to work with Pauli matrices with eigenvalues of unit 
magnitude, rather than the half integer magnitude associated with the spin itself – it does not 
express any other difference in the physics.) The Pauli equation includes this term. It also 
attempts to treat all electromagnetic effects on the electron, and so it uses ˆ e−p A  instead of 
just the momentum operator ˆ i= − ∇p =  in constructing the rest of the energy terms in the 
equation (this point is discussed in Appendix E). Hence, instead of the Schrödinger equation, 
we have the Pauli equation 

 ( )21 ˆ ˆ
2 2

B

o

g
e V i

m t
μ⎡ ⎤ ∂Ψ

− + + ⋅ Ψ =⎢ ⎥ ∂⎣ ⎦
p A B =σ  (12.36) 

Note here that 
( )
( )

,
,
t
t

ψ
ψ

↑

↓

⎡ ⎤
Ψ ≡ ⎢ ⎥

⎣ ⎦

r
r

 is a spinor. The Pauli equation is therefore not one differential 

equation, but is in general two coupled ones. This equation is the starting point for 
investigating the effects of magnetic effects on electrons, and can be used, for example, to 
derive the Zeeman effect rigorously, including the effects of spin.  

12.7 Where does spin come from? 

Spin appears a bizarre concept in quantum mechanics, and thus far we have simply said it 
exists. Arguably, we can do no more than that. The entirety of quantum mechanics is merely 
postulated as a model to explain what we see. Initially, spin and the mathematical framework 
of the Pauli spin matrices were postulated simply to explain experimental behavior. Later, 
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Dirac showed that,7 if one postulated a version of the quantum mechanics of an electron that 
was correct according to special relativity, in his famous Dirac equation for the electron, the 
spin behavior of the electron emerged naturally.8 In special relativity, it is essential that one 
treats space and time on a much more equal footing. Essentially, it was not possible to 
construct a relativistically invariant wave equation that is a first-order differential equation in 
time without introducing another degree of freedom in the formulation, and that additional 
“dynamical variable” is spin.  

It is usually stated that spin therefore is a relativistic effect, though in fact it is only necessary9 
to require that the electron obeys a wave equation that treats time and space both with only 
first derivatives (rather than having time treated using a first derivative and space using a 
second derivative, as in the Schrödinger equation) to have the spin behavior emerge. One can, 
therefore, construct both relativistic and non-relativistic wave equations that treat time and 
space both through first derivatives, and which have all of the solutions of the Schrödinger 
equation as solutions also, but which additionally naturally incorporate spin. If one takes this 
approach non-relativistically, one obtains an equation that can also be rewritten as the Pauli 
equation above. 

Whether we were trying to construct a relativistic or non-relativistic equation for the electron, 
simply put, when we postulated Schrödinger’s equation, we did not get it quite right. If we 
postulate the correct equation, spin emerges naturally as a requirement, and nature tells us we 
need to incorporate spin for a complete description of the electron.  

12.8 Summary of concepts 

Magnetic moment 

Magnetic moment is a measure of the strength of a magnet, and is a vector quantity pointing 
along the polar axis of the magnet. For a current I in a loop of area a, the magnitude of the 
magnetic moment is 

 d Iaμ =  (12.3) 

The magnetic moment corresponding to an electron in an orbit of magnetic quantum number m 
is of magnitude Bmμ  where / 2B oe mμ = =  is the Bohr magneton.  

The magnetic moment corresponding to an electron of spin σ is  

 e Bgμ σμ=  (12.10) 

where 2.0023g �  is the gyromagnetic factor, often approximated as a factor 2. 

Spin 

Spin is a property, intrinsic to each elementary particle, that behaves like an angular 
momentum, but that cannot be written as a function of space. Whereas orbital angular 
momentum has integer values l = 0, 1, 2, …, for the electron, the magnitude s of the spin is ½. 

                                                           
7 See P. A. M. Dirac, The Principles of Quantum Mechanics (4th Edition, revised) (Oxford, 1967), 
Chapter XI. 
8 The same equation he derived also proposed the positron, the positive anti-particle to the electron. 
9 W. Greiner, Quantum Mechanics – An Introduction (Springer, Berlin, 1994), Chapter 13 
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State vectors for electron spin 

A general state of electron spin can be represented by a linear combination of two basis states, 

one corresponding to the “spin-up” state, written as ↑ , 1/ 2,1/ 2 , or 
1
0

⎡ ⎤
⎢ ⎥
⎣ ⎦

, and the other 

corresponding to a “spin-down” state, written as ↓ , 1/ 2, 1/ 2− , or 
0
1

⎡ ⎤
⎢ ⎥
⎣ ⎦

. The “up” and 

“down” refer to the z direction, conventionally, though any axis in space can be chosen. A 
general electron spin state can therefore be written as 

 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2

1/ 2

1/ 2,1/ 2 1/ 2, 1/ 2
a

s a a a a
a− −

−

⎡ ⎤
= + − ≡ ↑ + ↓ ≡ ⎢ ⎥

⎣ ⎦
 (12.13) 

Spin operators 

By analogy with orbital angular momentum operators, spin operators ˆxS , ˆyS , and ˆzS  can be 
defined with analogous commutation relations. More commonly, the operators 

 ˆˆ 2 /x xSσ = = , ˆˆ 2 /y ySσ = = , ˆˆ 2 /z zSσ = =  (12.17) 

are used, with commutation relations 

 ˆ ˆ ˆ, 2x y ziσ σ σ⎡ ⎤ =⎣ ⎦  (12.18) 

 ˆ ˆ ˆ, 2y z xiσ σ σ⎡ ⎤ =⎣ ⎦  (12.19) 

 [ ]ˆ ˆ ˆ, 2z x yiσ σ σ=  (12.20) 

These operators can be written as the Pauli spin matrices 

 
0 1 0 1 0

ˆ ˆ ˆ, ,
1 0 0 0 1x y z

i
i

σ σ σ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (12.21) 

Direct product spaces 

When we want to combine two Hilbert spaces each corresponding to different attributes (e.g., 
the spatial and temporal Hilbert space describing ordinary spatial and temporal functions, and 
the Hilbert space for spin) to create a space that can handle any state with the combined 
attributes, we create a “direct product space” in which the basis functions in our new Hilbert 
space are all the products of the basis functions in the original separate spaces, and there is one 
basis function for each product. Thus, when adding spin in considering the electron, we have 
twice as many functions as before, with one spin-up version and one spin-down version of 
each spatial basis function originally used for the (spatial) wavefunctions.  

Spinor 

A spinor is a vector in the direct product space of the spatial (or space and time) and spin basis 
functions, and corresponds to a vector with a possibly different spatial (or space and time) 
function for each spin direction, i.e.,  

 
( )
( ) ( ) ( )

, 1 0
, ,

, 0 1
t

t t
t

ψ
ψ ψ

ψ
↑

↑ ↓
↓

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
Ψ ≡ ≡ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

r
r r

r
 (12.29) 
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A spinor can represent any possible state of a single electron, including spin.  

Pauli equation 

An improved version of the Schrödinger equation that includes additional terms to treat the 
effects of magnetic fields on electrons, including the effects of spin and orbital angular 
momenta, is the Pauli equation, 

 ( )21 ˆ ˆ
2 2

B

o

g
e V i

m t
μ⎡ ⎤ ∂Ψ

− + + ⋅ Ψ =⎢ ⎥ ∂⎣ ⎦
p A B =σ  (12.36) 

where σ̂  is the vector spin operator 

 
0 1 0 1 0

ˆ ˆ ˆ ˆ
1 0 0 0 1x

i
i

σ σ σ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ + ≡ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
y zi j k i j k=σ  (12.22) 



Chapter 13  
 
Identical particles 

Prerequisites: Chapters 2 – 5, and Chapters 9, 10, and 12 

One aspect of quantum mechanics that is very different from the classical world is that 
particles can be absolutely identical, so identical that it is meaningless to say which is which. 
This “identicality” has substantial consequences for what states are allowed quantum 
mechanically, and in the counting of possible states. Here we will examine this identicality, 
introducing the concepts of fermions and bosons, and the Pauli exclusion principle that lies 
behind so much of the physics of materials.  

13.1 Scattering of identical particles 

Suppose we have two electrons in the same spin state1, electrons that for the moment we 
imagine we can label as electron 1 and electron 2. We will write the spatial coordinates of 
electron 1 as 1r , and those of electron 2 as 2r . As far as we know, there is absolutely no 
difference between one electron and another. They are absolutely interchangeable. We might 
think, because of something we know about the history of these electrons, that it is more likely 
that we are looking at electron 1 rather than electron 2, but there is no way by making a 
measurement so that we can actually know for sure which one we are looking at.  

We could imagine that the two electrons were traveling through space, each in some kind of 
wave packet. The wavepackets might each be quite localized in space at any given time. These 
wavepackets will, however, each extend out arbitrarily far, even though the amplitude will 
become small, and hence the wavefunctions always overlap to some degree. We may find the 
following argument more convincing if we imagine that the wave packets are initially directed 
towards one another, and that these wave packets substantially overlap for some period of time 
as they “bounce” off one another, as shown in Fig.  13.1, repelled by the electron Coulomb 
repulsion or even some other force as yet undetermined.2 

On the right of the scattering region, when we measure the electrons, it is possible that we will 
find one near path a and another near path b. But, because two electrons of the same spin are 
absolutely identical, we have absolutely no way of knowing whether it is electron 1 or electron 

                                                           
1 It is not even necessary that they have the same spin if we believe there is any possibility that some 
interaction could swap the spins.  
2 Considering the scattering may help us believe that the electrons could be exchanged through some 
physical process. In fact it is not even necessary that we consider any such scattering if we accept that the 
wave packets overlap to any finite extent in space. If the wavepackets do overlap, even only very weakly, 
then, on finding an electron at some point in space, we are never exactly sure from which wave packet 
the electron came. That slight doubt is sufficient for the argument that follows. 
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2 that we find near any particular path. We might think we have good reason to believe, 
because of our understanding of the scattering process, that if electron 1 started out on path a 
on the left, it is relatively unlikely that electron 1 emerged into path b on the right, but we have 
to accept that it is possible. Let us write the wavefunction, ( )aψ r , associated with path a, at 
least on the right of the scattering region, and at some particular time, and similarly write 

( )bψ r  for the corresponding wavefunction on path b. Hence, we might expect that the two 
particle wavefunction ( )1 2,tpψ r r  on the right can be written as some linear combination of the 
two possible outcomes 

 ( ) ( ) ( ) ( ) ( )1 2 12 1 2 21 2 1,tp a b a bc cψ ψ ψ ψ ψ= +r r r r r r  (13.1) 

where 12c  is the amplitude for the outcome that it is electron 1 on path a and electron 2 on 
path b , and oppositely for the amplitude 21c . 

path a

path a
path b

path b
scattering 

region

 
Fig.  13.1. Hypothetical scattering of two electrons. Initially, on the left of the scattering region, 
there is an electron wavepacket that is concentrated around path a and another concentrated 
around path b. After the scattering region, which is some volume where we are convinced we 
cannot neglect the overlap of the electron wavepackets, we expect that there is some probability 
of finding an electron around path a on the right of the scattering region, and some probability of 
finding another electron around path b on the right of the scattering region.  

But we believe electrons to be absolutely identical, to the extent that it can make no difference 
to any measurable outcome if we swap the electrons. We can never measure the wavefunction 
itself (indeed it may not have any real meaning), but we do expect to be able to measure 2

tpψ . 
Swapping the electrons changes ( )1 2,tpψ r r  into ( )2 1,tpψ r r , and so we conclude that 

 ( ) ( )2 2

1 2 2 1, ,tp tpψ ψ=r r r r  (13.2) 

which means that  

 ( ) ( )2 1 1 2, ,tp tpψ γψ=r r r r  (13.3) 

where γ is some complex number of unit magnitude. We could of course swap the particles 
again. Since the particles are absolutely identical, this swapping process produces exactly the 
same result if we started out with the particles the other way around, and so 

 ( ) ( )1 2 2 1, ,tp tpψ γψ=r r r r  (13.4) 

But we already know ( ) ( )2 1 1 2, ,tp tpψ γψ=r r r r  from Eq. (13.3), and so we have 

 ( ) ( )2
1 2 1 2, ,tp tpψ γ ψ=r r r r  (13.5) 
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Presuming such a pair of swaps brings the wavefunction back to its original form3, then  

 2 1γ =  (13.6) 

and so we have only two possibilities for γ 

 1γ =  (13.7) 

or 

 1γ = −  (13.8) 

i.e.,  

 ( ) ( )1 2 2 1, ,tp tpψ ψ= ±r r r r  (13.9) 

Now we can substitute our general linear combination from Eq. (13.1) in Eq. (13.3), to get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )12 1 2 21 2 1 21 1 2 12 2 1a b a b a b a bc c c cψ ψ ψ ψ ψ ψ ψ ψ+ = ± +r r r r r r r r  (13.10) 

Rearranging, we have 

 ( ) ( )[ ] ( ) ( )[ ]1 2 12 21 2 1 12 21a b a bc c c cψ ψ ψ ψ=r r r r∓ ∓  (13.11) 

But this must hold for all 1r  (or, for that matter, all 2r ), and in general ( ) ( )1 1a bψ ψ≠r r  (or, 
for that matter, ( ) ( )2 2a bψ ψ≠r r ) since they represent different and largely separate 
wavepackets, and so we must have 

 12 21 0c c =∓  (13.12) 

i.e., 12 21c c= ±   (13.13) 

So, given that the electrons emerge on paths a and b, we have shown that there are only two 
possibilities for the nature of the wavefunction on the right of the scattering volume, either 

 ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1,tp a b a bcψ ψ ψ ψ ψ= +⎡ ⎤⎣ ⎦r r r r r r  (13.14) 

or ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1,tp a b a bcψ ψ ψ ψ ψ= −⎡ ⎤⎣ ⎦r r r r r r  (13.15) 

where c is in general some complex constant. We have therefore proved that, on the right, the 
amplitudes of the function ( ) ( )1 2a bψ ψr r  and the function ( ) ( )2 1a bψ ψr r  are equal in 
magnitude (though possibly opposite in sign).  

But, the reader might say, for the electron on path a  on the left, the scattering probability into 
path a on the right is in general different from the scattering probability into path b on the right 
(and the reader would be correct in saying that!). How therefore can we have the amplitudes of 
the two possibilities ( ) ( )1 2a bψ ψr r  and ( ) ( )2 1a bψ ψr r  being equal in magnitude? The 
resolution of this apparent problem is that, even on the left of the scattering volume, at some 
time before the scattering, the wavefunction ( )1 2,tpbeforeψ r r  must also have had the two 
possibilities ( ) ( )1 2abefore bbeforeψ ψr r  and ( ) ( )2 1abefore bbeforeψ ψr r  being equal in magnitude, i.e. 
specifically, corresponding to the final situation of Eq. (13.14), of the form  

                                                           
3 This presumption can be regarded as a postulate of quantum mechanics. It is not required merely for 
measurable quantities to be unchanged by such swapping.  
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 ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1,tpbefore before abefore bbefore abefore bbeforecψ ψ ψ ψ ψ⎡ ⎤= +⎣ ⎦r r r r r r  (13.16) 

or, corresponding to the final situation of Eq. (13.15), of the form 

 ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1,tpbefore before abefore bbefore abefore bbeforecψ ψ ψ ψ ψ⎡ ⎤= −⎣ ⎦r r r r r r  (13.17) 

Actually, we know from the basic linearity of quantum mechanical operators that this must be 
the case, as we can now show. If we know the wavefunction on the left before the scattering 
event, ( )1 2,tpbeforeψ r r , we know in general that we could integrate the Schrödinger equation in 
time to deduce the wavefunction after scattering, which we can in general call ( )1 2,tpafterψ r r . 
The result of that integration is the same as some linear operator Ŝ  (a time-evolution operator 
as discussed in Section 3.11) acting on the initial state ( )1 2,tpbeforeψ r r , because the integration 
is just a sum of linear operations on the initial state. Hence we can write 

 ( ) ( )1 2 1 2
ˆ, ,tpafter tpbeforeSψ ψ=r r r r  (13.18) 

Now, there is absolutely no difference in the effect of the Hamiltonian on the state 
( ) ( )1 2abefore bbeforeψ ψr r  and on the state ( ) ( )2 1abefore bbeforeψ ψr r  because the particles are absolutely 

identical (if there were a difference, there would be a different energy associated with these 
two states, and hence we could distinguish between them). Hence, since Ŝ  is derived from the 
Hamiltonian, the same holds true for it. So, if 

 ( ) ( ) ( ) ( )1 2 1 2
ˆ

abefore bbefore aafter bafterSψ ψ ψ ψ=r r r r  (13.19) 

then 

 ( ) ( ) ( ) ( )2 1 2 1
ˆ

abefore bbefore aafter bafterSψ ψ ψ ψ=r r r r  (13.20) 

Now Ŝ  is a linear operator, so 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }

1 2 1 2 2 1

1 2 2 1

1 2 2 1

ˆ ˆ,

ˆ

ˆ ˆ

tpbefore before abefore bbefore abefore bbefore

before abefore bbefore abefore bbefore

before abefore bbefore abefore bbefore

before aaft

S Sc

c S

c S S

c

ψ ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ

⎡ ⎤= ±⎣ ⎦
⎡ ⎤= ±⎣ ⎦

⎡ ⎤ ⎡ ⎤= ±⎣ ⎦ ⎣ ⎦

=

r r r r r r

r r r r

r r r r

( ) ( ) ( ) ( )1 2 2 1er bafter aafter bafterψ ψ ψ⎡ ⎤±⎣ ⎦r r r r

 (13.21) 

Hence we have shown that, if we start out with a linear combination of the form 
( ) ( ) ( ) ( )1 2 2 1abefore bbefore abefore bbeforeψ ψ ψ ψ±r r r r  on the left, we end up with a linear combination of 

the form ( ) ( ) ( ) ( )1 2 2 1aafter bafter aafter bafterψ ψ ψ ψ±r r r r  on the right. The Schrödinger equation can 
just as well be integrated backwards in time, starting mathematically with a wavefunction on 
the right of the form ( ) ( ) ( ) ( )1 2 2 1aafter bafter aafter bafterψ ψ ψ ψ±r r r r , in which case we would get to an 
initial wavefunction of the form ( ) ( ) ( ) ( )1 2 2 1abefore bbefore abefore bbeforeψ ψ ψ ψ±r r r r . The action of the 
scattering does not change this underlying property of the wavefunction. 

In the argument above, we have supposed the two electrons were scattering off one another. 
Our scattering was very generally described, and the same conclusion can be drawn for any 
state of the pair of particles where the two particles overlap or interact, including, for example, 
electrons in an atom or molecule. 

In our argument so far, we have discussed the pair of identical particles as if they were 
electrons with the same spin, but in fact we have not presumed any specific property of these 
particles other than that they are absolutely identical. Thus we could apply the same quantum 
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mechanical argument to protons with the same spin or neutrons with the same spin. We can 
also apply this argument to photons. We find that a given kind of particle always corresponds 
to only one of the possible choices of γ.  

All particles corresponding to 1γ = +  (i.e., a wavefunction for a pair of particles of the form 
1 2 1 2 2 1( , ) [ ( ) ( ) ( ) ( )]tp a b a bcψ ψ ψ ψ ψ= +r r r r r r ) are called bosons. Photons and all particles with 

integer spin (including also, for example, 4He nuclei) are bosons. We say that such particles 
have a wavefunction that is symmetric in the exchange of two particles. Sometimes, loosely, 
we say the wavefunction is symmetric, though the symmetry we are referring to here is a 
symmetry in the exchange of the particles, not in the spatial distribution of the wavefunction.  

All particles corresponding to 1γ = −  (i.e., a wavefunction for a pair of particles of the form 
1 2 1 2 2 1( , ) [ ( ) ( ) ( ) ( )]tp a b a bcψ ψ ψ ψ ψ= −r r r r r r ) are called fermions. Electrons, protons, neutrons, 

and all particles with half-integer spin (1/2, 3/2, 5/2, …) are fermions4. Such particles have a 
wavefunction that is antisymmetric in the exchange of two particles. Again, loosely, we 
sometimes say this wavefunction is antisymmetric, though again we are not referring to its 
spatial distribution, and mean that it is antisymmetric with respect to exchange of the particles.  

Problem 
 13.1.1  Suppose that the initial state of the pair of identical particles (not restricted to being electrons) on 

the left in Fig.  13.1 is one of the states required for identical particles, i.e., 
 ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1,tpbefore abefore bbefore abefore bbeforeψ ψ ψ ψ ψ= ±r r r r r r   

Suppose also that, mathematically, the effect of the scattering in Fig.  13.1 on a state 
( ) ( )1 2abefore bbeforeψ ψr r  is  

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2abefore bbefore straight aafter bafter swap bafter aafters sψ ψ ψ ψ ψ ψ→ +r r r r r r   
where straights  and swaps  are constant complex numbers. Show that the resulting state after the 
scattering is still of the right form required for identical particles. 

13.2 Pauli exclusion principle 

Fermions have one particularly unusual property compared to classical particles, the Pauli 
exclusion principle, which follows from the simple antisymmetric definition above. For two 
fermions, we know the wavefunction is of the form (13.15). Suppose now that we postulate 
that the two fermions are in the same single-particle state, say state a. Then the wavefunction 
becomes 

 ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1, 0tp a a a acψ ψ ψ ψ ψ= − =⎡ ⎤⎣ ⎦r r r r r r  (13.22) 

Note that this wavefunction is zero everywhere. Hence, it is not possible for two fermions of 
the same type (e.g., electrons) in the same spin state to be in the same single-particle state. This 
is the famous Pauli exclusion principle, originally proposed to explain the occupation of 
atomic orbitals by electrons. Only fermions show this exclusion principle, not bosons. There is 
no corresponding restriction on the number of bosons that may occupy a given mode.5 

                                                           
4 Why bosons are associated with integer spin and fermions with half-integer spin is not a simple story. 
The simplest statement we can make is that it is a consequence of relativistic quantum field theory. The 
arguments are reviewed by I. Duck and E. C. G. Sudarsham, “Toward an understanding of the spin-
statistic theorem,” Am. J. Phys. 66, 284-303 (1998).  
5 See Appendix Section D.9 for a brief discussion of the concept of modes generally. 
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13.3 States, single-particle states, and modes 

The use of the word “state” can be confusing in discussions of Pauli exclusion and identical 
particles in general. A quantum mechanical system at any given time is only in one “state”. In 
one given state of the system, individual particles can be in different “single-particle states” or 
modes. To clarify the distinction between the overall state of the system and states of 
individual particles, in what follows in this Chapter, for the possible states of individual 
particles, we will use “single-particle state” in the fermion case, and “mode” in the boson case 
whenever there would be confusion. Though we will use these two different terms, they refer 
to the same concept – we could equally well use “mode” for both fermions and bosons, for 
example, but it would just be unusual to do so.  

This distinction between the “state” of the system on the one hand, and “single-particle states” 
and “modes” on the other can be illustrated by analogy. Consider the fermion case first. The 
United States of America has 50 States (with a capital “S”). Each State can have a Governor. A 
State cannot have more than one Governor. It is possible that, due to some tragic event, a State 
might have no Governor at some time. We can say, therefore, that there is something we could 
call a democratic exclusion principle at work that means we cannot have more than one 
Governor in a State. We can also write down a column vector with 50 elements that we can 
call the state (with a small “s”) of the Governorships. The elements in that vector correspond to 
the States listed in alphabetical order. Depending on whether there is a Governor in a given 
State, we put a “1” (Governor) or a “0” (no Governor) in the corresponding element of the 
vector. The analogy here then is that the quantum-mechanical state of the system of particles is 
like the state vector of the Governorships, and that state corresponds to occupation or not of 
various different States by individual Governors. Here, we have a clear difference between the 
ideas of the “state” and the “State”, and this example is closely analogous to the fermion case 
with Pauli exclusion. We can still use “state” to refer to an overall quantum mechanical state of 
a system, but we should find some other term as the analog of “State” in our Governor 
example. We use “single-particle state” here as the analog of “State” for fermions.  

For the case of bosons, a corresponding analogy might be to consider the number of citizens in 
a given State (a number that is not limited), and also to have a state vector that lists the number 
of citizens in each State. For the case of bosons like photons or phonons, we do sometimes 
already correctly use the word “mode” as the analog of “State” because we already use the 
same mode concept to describe electromagnetic or vibrational fields. Because more than one 
boson can be in a given “mode”, it can be confusing to talk about a “single-particle state” for 
bosons, so here we will use “mode” as the analog of  State for the boson case while using 
“state” to refer to the vector of all of the occupation numbers of the different modes. 

13.4 Exchange energy 

Exchange energy is another important property with no classical analog that is associated with 
identical particles. Suppose we have two electrons of in identical spin states. They will 
certainly have a Coulomb repulsion,6 and so we could write the Hamiltonian in a similar 
fashion to the one we wrote for the hydrogen atom, except here the two particles are identical 
and the Coulomb potential is repulsive rather than attractive. The Hamiltonian is therefore 

                                                           
6 They might also have some magnetic interaction between their spins, though we neglect that here. It 
does not alter the essence of this argument, and we will work with the simple Schrödinger equation. 
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 ( )1 2

2 2
2 2

1 2

ˆ
2 4o o

eH
m πε

= − ∇ + ∇ +
−r r r r

=  (13.23) 

Suppose for simplicity that we can approximate their wavefunction by a simple product form 
(i.e., terms like ( ) ( )1 2a bψ ψr r ). Then because they are fermions, 

 ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1
1,
2tp a b a bψ ψ ψ ψ ψ= −⎡ ⎤⎣ ⎦r r r r r r  (13.24) 

where now we presume that the individual wavefunctions ( )aψ r  and ( )bψ r  are normalized, 
and the factor 1/ 2  now ensures that the total wavefunction normalizes to unity also. To save 
ourselves some writing, we can also write this in bra-ket notation as 

 ( )1 1, 2, 2, 1,
2tp a b a bψ = −  (13.25) 

where ( )11, aa ψ≡ r  and so on.  

(Note, incidentally, that the order of the products of the wavefunctions or kets does not matter 
in expressions such as (13.24) and (13.25). Obviously  

 ( ) ( ) ( ) ( )1 2 2 1a b b aψ ψ ψ ψ=r r r r  (13.26) 

since ( )1aψ r  and ( )2bψ r  are each simply a number for any given value of 1r  or 2r . For the 
case of the bra-ket notation, changing the order of the kets 1, a  and 2,b  could also result in 
a change in the order of integration in a bra-ket expression, but in general that will make no 
difference for quantum mechanical wavefunctions, so we also can state 

 1, 2, 2, 1,a b b a=  (13.27) 

Quite generally, the order of the statement of the vectors corresponding to different degrees of 
freedom or dynamical variables does not matter in direct product spaces.) 

Now we will evaluate the expectation value of the energy of this two-particle state. We have 

 ˆ
tp tpE Hψ ψ=  (13.28) 

I.e.,  

 
ˆ ˆ1, 2, 1, 2, 2, 1, 2, 1,1

ˆ ˆ2 1, 2, 2, 1, 2, 1, 1, 2,

a b H a b a b H a b
E

a b H a b a b H a b

⎡ ⎤+
⎢ ⎥=
⎢ ⎥− −⎣ ⎦

 (13.29) 

The first two terms in Eq. (13.29) (which are actually equal) have a straightforward meaning. 
Formally evaluating these, we have, for the first one, 
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 (13.30) 
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Here, KEaE  is the kinetic energy of an electron in single-particle state a, given by  

 
( ) ( )

1 1

2 2
2 2

2
2 3

1, 2, 1, 2, 1, 1, 2, 2,
2 2

2

KEa
o o

a a
o

E a b a b a a b b
m m
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m
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= − ∇ = − ∇

= − ∇∫

r r

r r r

= =

=
 (13.31) 

(Note 2, 2, 1b b =  because the single-particle wavefunctions are presumed normalized.) 
Similarly,  

 ( ) ( )
2

2 3

2KEb b b
o

E d
m

ψ ψ∗= − ∇∫ r r r=  (13.32)  

is the kinetic energy of an electron in single-particle state b. The final contribution in Eq. 
(13.30) is simply the potential energy resulting from the Coulomb interaction of the charge 
density from one electron in single-particle state a and the other in single-particle state b, i.e.,  

 
( ) ( )2 2

2
2 3 3

1 2

1, 2, 1, 2,
4 4

a b
PEab

o o

eE a b a b e d d
ψ ψ

πε πε

′
′= =

′− −∫
r r

r r
r r r r

 (13.33) 

Evaluating the second term, ˆ2, 1, 2, 1,a b H a b , in Eq. (13.29) gives exactly the same 
answer (the naming of the variables 1r  and 2r  is interchanged, but the net result is identical 
mathematically). Hence we have 

 1 ˆ ˆ1, 2, 1, 2, 2, 1, 2, 1,
2 KEa KEb PEaba b H a b a b H a b E E E⎡ ⎤+ = + +⎣ ⎦  (13.34) 

This is the energy we might have expected in a semiclassical view, consisting of the kinetic 
energies of the two particles and the potential energy from their interaction.  

But there are more terms in Eq. (13.29). These additional terms constitute what is called the 
exchange energy, an energy contribution with no classical analog. We note that, by the 
Hermiticity of the Hamiltonian, 

 ˆ ˆ2, 1, 1, 2, 1, 2, 2, 1,a b H a b a b H a b
∗

⎡ ⎤= ⎣ ⎦  (13.35) 

and so the exchange energy can be written 
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( ) ( ) ( ) ( ) 3 3
1 2 2 1 1 2

1 ˆ ˆ1, 2, 2, 1, 1, 2, 2, 1,
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ˆRe

EXab

a b a b

E a b H a b a b H a b
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∗

∗ ∗

⎡ ⎤= − + ⎣ ⎦

⎡ ⎤= − ⎣ ⎦∫ r r r r r r
 (13.36) 

and finally 

 KEa KEb PEab EXabE E E E E= + + +  (13.37) 

This exchange energy here is a correction to our calculation of the energy from the Coulomb 
interaction, a correction that comes from the requirement of antisymmetry with respect to 
particle exchange. That exchange antisymmetry therefore changes the energy of states 
involving two (or more) identical fermions (and will do so for any form of interaction, not just 
the Coulomb interaction).  
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This phenomenon of exchange energy is very important in, for example, the states of the 
helium atom, where different energy spectra result for the situations of the two electron spins 
being aligned (orthohelium) or antiparallel (parahelium). It is important to understand that this 
change in energy is not caused by the magnetic interaction between spins (though there might 
be a small correction from that). It results from the exchange energy, not some additional term 
in the Hamiltonian itself. It is also true that exchange energy phenomena are very important in 
magnetism. 

If exchange energy is such a real phenomenon, and electrons in general are in these kinds of 
states that involve other electrons and that are antisymmetric with respect to exchange, why 
were the calculations we did on single electrons valid at all? The answer is that, if the two or 
more electrons are far apart from one another, there is negligible correction from the exchange 
energy. We can see this by looking at the exchange energy expression above. If the function 

( )aψ r  is only substantial in a region near some point ar , then so also is the function 
( )2

aψ∇ r . Similarly, if the function ( )bψ r  is only substantial near to some point br , then so 
also is the function ( )2

bψ∇ r . Hence, if the points ar  and br  are far enough apart that there is 
negligible overlap of the functions ( )aψ r  and ( )bψ r ,  

 ( ) ( )
1

2 3
1 1 1 0a b dψ ψ∗ ∇∫ rr r r �  and ( ) ( )

2

2 3
2 2 2 0b a dψ ψ∗ ∇∫ rr r r �  (13.38) 

Similarly, for such negligible overlap, regardless of the form of the potential energy ( )1 2,V r r  
( ( )2

1 2/ 4 oe πε= −r r  in the above example) 

 ( ) ( ) ( ) ( ) ( ) 3 3
1 2 1 2 2 1 1 2, 0a b a bV d dψ ψ ψ ψ∗ ∗∫ r r r r r r r r �  (13.39) 

simply because the functions ( )aψ r  and ( )bψ r  do not overlap. Hence there is only a 
contribution to the exchange energy if the individual particle wavefunctions overlap. 

This argument is unchanged if we add other potentials into the Hamiltonians for the individual 
particles, such as a confining box, or a proton to give an electrostatic potential to form a 
hydrogen atom. In the practical absence of any significant exchange energy, the problem 
essentially separates again into problems that are apparently for single electrons, and our 
previous results, such as for the hydrogen atom, are completely valid for calculating energies 
and wavefunctions. 

Bosons also have exchange energies, though we may come across them less often in practice. 
Photons, though bosons, interact so weakly that such exchange corrections are usually 
negligible, and so, except for possible nonlinear optical interactions, we do not in practice need 
to consider such exchange energies for photons. We do, however, need to consider exchange 
energies for bosons such as 4He (helium-4 nuclei or atoms). (See Problem  13.4.1 below.) 

Problems 
 13.4.1  Suppose that we have two 4He nuclei, which are bosons, and also have electric charge because 

they have been stripped of their electrons. Suppose that they interact with one another through a 
potential energy that can be written in the form 1 2( , )V r r  (this potential could just be the Coulomb 
repulsion between these nuclei, for example, though the precise form does not matter for this 
problem). Suppose also that these particles are sufficiently weakly interacting that we can 
approximate their wavefunctions using products of the form ( ) ( )1 2a bψ ψr r , though we have to 
remember to symmetrize the overall wavefunction with respect to exchange. Write down an 
expression for the exchange energy of this pair of particles in terms of the Hamiltonian Ĥ  for this 
pair of particles. [In other words, essentially go through the argument presented above for electrons, 
but presume bosons instead of fermions.] 
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 13.4.2  The classical beamsplitter. An optical beamsplitter is a 
partially reflecting and partially transmitting mirror. One 
common form of beamsplitter is in the form of a cube, with 
the reflecting surface being a diagonal one, as in the figure. 
The beamsplitter is presumed loss-less, so an input beam on, 
say, the left face or the bottom face will have its power split 
between the top and right output beams. EL, EB, ET, and ER 
are the electric field amplitudes of the various light beams as 
shown. For convenience we take a complex representation for 
the fields, all of which we presume to be of the same 
frequency,  i.e., ( )expL LoE E i tω= −  and similarly for the other beams, and of the same polarization 
(in the direction out of the page). The power in the left beam can therefore be taken to be 

2
LE (within a constant that will not matter for this problem), and similarly for the other beams. 

Because the beamsplitter is a linear optical component, we can write the relation between the input 
(left and bottom) beams and the output (right and top) beams using a matrix, i.e., we can in general 
write 

 ˆT L

R B

E E
S

E E
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  where  ˆ LT BT

LR BR

R T
S

T R
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  

 where RLT, RBR, TBT and TLR are constants for a given beamsplitter (with a self-evident notation in 
terms of reflection and transmission coefficients). 

 (i) Show for this loss-less beamsplitter that 
 * * 0LR BT BR LRR T R T+ =  and 2 2 2 2 1LT LR BR BTR T R T+ = + =   
 [Hints: conservation of power between the total input power ( 2 2

L BE E+ ) and the total output 
power must hold for (a) arbitrary phase difference between EL and EB, and (b) arbitrary field 
magnitudes LE  and BE .] 

 (ii) Given the conditions proved in part (i) above, show that the matrix Ŝ  is unitary. 

 13.4.3  The boson beamsplitter. Consider a 50:50 optical beamsplitter, i.e., one that takes an input beam 
in the left or bottom input port and splits it equally in power between the top and right output ports. 
Following Problem  13.4.2 above, a suitable matrix that could describe such a beamsplitter would be  

 11ˆ
12
i

S
i

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  

 where we are considering two possible input beams, “left” and “bottom”, and two possible output 
beams, “top” and “right”, all of which are presumed to have exactly the same frequency and 
polarization (out of the page).  When viewed quantum mechanically, these different beams each 
represent different “modes” (or “single-particle states”). In this way of viewing a beamsplitter, it 
couples the quantum mechanical amplitudes as follows: 

 amplitude in "top" mode amplitude in "left" modeˆ
amplitude in "right" mode amplitude in "bottom" mode

S
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  

 Hence the state 1, L  corresponding to a photon 1 in the “left” input mode is transformed according 
to the rule 

 ( )11, 1, 1,
2

L i T R→ +   

 and similarly for photon 1 initially in the “bottom” input mode 

 ( )11, 1, 1,
2

B T i R→ +   

 where L, R, T and B refer to the left, right, top and bottom modes respectively. 

 Presume that the initial state of the system is one photon in the “left” input mode and one in the 
“bottom” input mode. 
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 (i) Construct a state for these two photons in these two (input) modes that is correctly symmetrized 
with respect to exchange. 

 (ii) Using the above transformation rules for the effect of the beamsplitter on any single photon state, 
deduce the output state after the beamsplitter, simplifying as much as possible. 

 (iii) Now suppose we perform a measurement on the output state, and find one photon in the “top” 
mode. In what mode will we find the second photon? 

 (iv) In general, what can we say about the output modes in which we find the two photons? 

 [Note: this problem illustrates a particularly intriguing quantum mechanical behavior of a simple 
beamsplitter that is not predicted classically.] 

 13.4.4  The fermion beamsplitter. Imagine that a beamsplitter represented by the same matrix as in 
Problem  13.4.3 above is operating as an electron (rather than photon) beamsplitter (for electrons of 
the same spin), deduce by a similar analysis to that of Problem  13.4.3 above: 

 (i) What will be the output quantum mechanical state of the two electrons if the input state is one 
electron in the “left” mode (or single-particle state) and one in the “bottom” mode (or single-particle 
state), simplifying as much as possible? 

 (ii) In general, what can we say about the output modes (single-particle states) in which we find the 
two electrons? 

13.5 Extension to more than two identical particles 

Suppose now we consider more than two particles. If we had N different (i.e., not identical) 
particles that were approximately not interacting, at least in some region of space and time 
(e.g., substantially before or substantially after the scattering), then, as above, we expect that 
we could construct the state differentΨ  for those by multiplying the N single-particle states or 
modes, i.e.,  

 1, 2, 3, ,different a b c N nψ = …  (13.40) 

where the numbers and the letter N refer to the particles, and the small letters refer to the 
single-particle states or modes that the individual particles are in. 

Now suppose the particles are identical. Even if we have many particles, it should still be true 
that swapping any two identical particles should make no difference to any observable. We can 
follow through the argument as before, and find that swapping the same particles a second time 
should get us back to where we started, and again we would therefore find that swapping any 
two particles once either multiplies the state by +1 (bosons) or –1 (fermions). 

More than two bosons 
If all the particles are identical bosons, and we are interested in the state of the set of bosons 
where one particle is in mode a, another is in mode b, another is in mode c, and so on, then we 
can construct a state (the general symmetric state) that consists of a sum of all conceivable 
permutations of the particles among the modes.  

 
ˆ

ˆ 1, 2, 3, ,identical bosons
P

P a b c N nψ ∝ ∑ …  (13.41) 

Here P̂  is one of the permutation operators. It is an operator, like all other operators we have 
been considering, that changes one function in the Hilbert space into another, in this case by 
permuting the particles (numbers 1, 2, 3, …) among the modes (letters a, b, c, …). (It is a 
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linear operator.) The meaning of the sum is that it is taken over all of the possible distinct 
permutations7. The notation Eq. (13.41) is just a mathematical way of saying we are summing 
over all distinct permutations of the N particles among the chosen set of modes. Incidentally, 
for this boson case, it is quite allowable for two or more of the states to be the same mode, e.g., 
for mode b to be the same mode as mode a, an important and general property of bosons.  

The state defined by Eq. (13.41) satisfies the symmetry requirement that swapping any two 
particles does not change the sign of the state and leaves the state amplitude unchanged. 
Swapping particles merely corresponds to changing the order of the terms in the sum, but 
leaves the sum itself unchanged. 

More than two fermions 
For the case of fermions, we can write the state for N identical fermions as  

 
!

ˆ 1

1 ˆ 1, 2, 3, ,
!

N

identical fermions
P

P a b c N n
N

ψ
=

= ±∑ …  (13.42) 

where now by P̂±  we mean that we use the + sign when the permutation corresponds to an 
even number of pair-wise permutations of the individual particles, and the – sign when the 
permutation corresponds to an odd number of pair-wise permutations of the individual 
particles. Note in this case that if two of the states are identical, e.g., if b a= , then the fermion 
state is exactly zero because for each permutation there is an identical one with opposite sign 
that exactly cancels it (caused by permuting the two particles that are in the same single-
particle state). This is the extension of the Pauli exclusion principle to N particles. 

There is a particularly convenient way to write the N particle fermion state, which is called the 
Slater determinant. The determinant is simply another way of writing a sum of the form of Eq. 
(13.42),8 i.e., we can write 

 

1, 2, ,
1, 2, ,1

!
1, 2, ,

identical fermions

a a N a
b b N b

N
n n N n

ψ =

"
"

# # % #
"

 (13.43) 

The reader may remember, from the theory of determinants, that  

(i) the determinant is zero if two of the columns are identical, which here corresponds to the 
Pauli exclusion principle, and 

(ii) the determinant changes sign if two of the rows are interchanged, which here corresponds 
to exchanging two particles.  

                                                           
7 The number of distinct permutations is a slightly complicated formula if more than one boson occupies 
a particular single-particle state or mode, because permutations that correspond merely to swapping one 
or more bosons within a given mode should be omitted since they are not distinct permutations. The 
number of distinct permutations can be evaluated in any given case without particular difficulty, though a 
general formula for it is somewhat complicated, so we omit it here, and we do not therefore explicitly 
normalize Eq. (13.41) by dividing by the number of distinct permutations.  
8 The formula for a determinant that is equivalent to the form of Eq. (13.42) is known as the Leibniz 
formula.  
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13.6 Multiple particle basis functions 

So far, we have been considering states of the multiple particles in which we presume the 
particles are interacting sufficiently weakly that, to a reasonable approximation, we can write 
the wavefunctions in terms of products of the wavefunctions of the individual particles 
considered on their own. In general, it will not be possible or at least obvious that we can 
factor multiple particle states this way. When we considered the hydrogen atom, for example, 
the resulting state of the two particles, electron and proton, was not simply the product of the 
eigen wavefunction of an electron considered on its own (which would be a plane wave) and 
the eigen wavefunction of a proton considered on its own (which would also be a plane wave), 
though if the particles had both been uncharged, and there were no other potential energies of 
importance, we could have factored the state this way. How can we deal with such situations of 
strong interaction between the particles, yet still handle the symmetries of the wavefunction 
with respect to exchange? 

The answer is that we can construct basis functions for the direct product space corresponding 
to the multiple particle system, and require the basis functions to have the necessary symmetry 
properties with respect to exchange of particles. If each basis function obeys the required 
symmetry properties with respect to exchange of particles, then the linear combination of them 
required to represent the state of the (possibly interacting) multiple particle system will also 
have the same symmetry properties with respect to exchange. 

Hence, we can, for example, find some complete basis set to represent one of the particles, 
( ) ,i j j iψ ≡r , and we can formally construct a basis function ( )1 2, ,ab n N ab nΨ ≡ Ψr r r" "…  for 

the N  particle system in the direct product space. Depending on the symmetry of the particles 
with respect to exchange, there are different forms for this basis function.  

(i) for non-identical particles 

 ( ) ( ) ( ) ( )1 2 1 2, ,ab n N a b n Nψ ψ ψ ψ=r r r r r r" … "  (13.44) 

or equivalently 

 1, 2, ,ab n a b N nΨ =" "  (13.45) 

where each of the ( )aψ r  may be chosen to be any of the single-particle basis functions or 
basis modes ( )iψ r .  

(ii) for identical bosons9  

 
ˆ

ˆ 1, 2, ,ab n
P

P a b N nΨ ∝ ∑" "  (13.46) 

(iii) for identical fermions 

 
!

ˆ 1

1 ˆ 1, 2, ,
!

N

ab n
P

P a b N n
N =

Ψ = ±∑" "  (13.47) 

                                                           
9 In constructing these boson basis functions, we are only interested here in how many distinguishable 
basis functions there are, and for simplicity we will not in general consider the normalization of the basis 
functions, though that is straightforward to do in any specific case. 
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Number of basis states for non-identical particles 
In the case of non-identical particles, there is one basis state of the form (13.45) for every 
choice of combination of single-particle basis functions or basis modes. If we imagined there 
were M possible single-particle basis functions or basis modes, and there are N particles, then 
there are in general NM  such basis functions for the N particle system, and specifying a state 
of that N particle system involves specifying NM  expansion coefficients, and there are NM  
distinct states of these N non-identical particles (even if we now allow them to interact), i.e.,  

  
Number of states of  non-identical particles, 

with  available single-particle states or modes,
N

N
M

M=

 (13.48) 

Number of basis states for identical bosons 
In the case of identical bosons, the N-particle basis states corresponding to different 
permutations of the same set of choices of basis modes are not distinct, and so there are fewer 
basis states. For example, the state ab nΨ "  is not distinct from the state ba nΨ "  in Eq. 
(13.46) because, since all permutations of the products of the basis modes already exist in the 
sum, these two states are merely the same sum of products performed in a different order. The 
counting of these states is somewhat complicated if one tries to do it from first principles, 
though fortunately it corresponds to a standard problem in the theory of permutations and 
combinations in statistics, which is the problem of counting the number of combinations of 
M things (here the basis modes) taken N  at a time (since we always have N  particles) with 
repetitions,10 for which the result is ( 1)!/[ !( 1)!]M N N M+ − − . (For example, the set of 
combinations of two identical particles among 3 states, a, b, and c with repetitions is ab, ac, 
bc, aa, bb, cc, giving six in all, which corresponds to (3 2 1)!/[2!(3 1)!] 6+ − − = .) Just as for the 
non-identical particle case, this number of basis states is also the number of different possible 
states we can have for the system of particles even if we allow interactions. 

 ( )
( )

Number of states of  identical bosons,
1 !

 with  available modes
! 1 !

N
M N

M
N M

+ −
=

−
 (13.49) 

Number of basis states for identical fermions 
In the case of identical fermions, just as in the identical boson case, we also have to avoid 
double counting basis states that are merely permutations of the same choice of single-particle 
basis states11. Additionally many of these basis functions would not exist because they would 
involve more than one particle in the same state, so there are even fewer possible basis states 
for multiple identical fermions. Specifically, if there are M choices for the first single-particle 
basis state a in ab nΨ " , then there are 1M −  choices for the second single-particle basis state 
b, and so on, down to 1M N− +  choices for the last single-particle basis state n. Hence, 

                                                           
10 See, e.g., E. Kreysig, Advanced Engineering Mathematics (Third Edition) (Wiley, New York, 1972), p. 
719 
11 Possibly permuting the order of the indices a, b, … n will change the sign of the basis function in the 
identical fermion case, but two basis functions that differ only in sign are not distinct from one another 
(they are certainly not orthogonal, for example). Basis functions are always arbitrary anyway within a 
multiplying complex constant. 
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instead of NM  initial choices, we have only ( ) ( ) ( )1 1 !/ !M M M N M M N− − + = −" . We 
then also have to divide by !N  because there are !N  different orderings of N different entities 
(the different entities in this case are the different single-particle basis states). Hence in the 
identical fermion case there are ( )!/ ! !M M N N−⎡ ⎤⎣ ⎦  possible basis states, and hence the same 
number of possible states altogether, even if we allow interactions between the particles. I.e.,  

 

( )

Number of states of  identical fermions,
with  available single-particle states 

!
! !

N
M

M
M N N

=
−

 (13.50)   

Example of numbers of states 
For example, suppose we have two particles, each of which can be in one of two different 
single-particle states or modes, a and b. We might imagine that these particles are in some 
potential such that there are two single-particle states or modes quite close in energy, and all 
other possible single-particle states or modes are sufficiently far away in energy that, for other 
reasons, we can approximately neglect them in our counting. We might be considering, for 
example, two particles in a weakly coupled pair of similar quantum boxes12 (or, if we consider 
only a one dimensional problem, coupled potential wells). Because we know for some other 
reason that the particles cannot have much energy (for example, the temperature may be low), 
we may approximately presume that the particles can only be in one or other of the two lowest 
coupled single-particle states or modes of these two wells or boxes. For each of the different 
situations we consider, these two single-particle states or modes might be somewhat different, 
for example, because of exchange energy, but that will not affect our argument here, which is 
only one of counting of states. For each situation (non-identical particles, identical bosons, and 
identical fermions) there will only be two single-particle basis functions or basis modes and, 
consequently, only two single-particle states or modes, a and b, from which to make up the 
states of the pair of particles.  

Let us now write out the possible states in each case. For all of these cases, the number of 
possible single-particle states or modes of a particle is 2M = , and the number of particles is 

2N = . 

 (i) For non-identical particles, such as two electrons with different spin13, the possible distinct 
states of this pair of particles are 

 1, 2,a a , 1, 2,b b , 1, 2,a b , 1, 2,b a  (13.51) 

i.e., there are, from Eq. (13.48), 22 4=  states of the pair of particles. 

(ii) For identical bosons, such as two 4He (helium-four) atoms, which turn out to be bosons 
because they are made from 6 particles each with spin ½ (two protons, two neutrons and two 
electrons, which must therefore have a total spin that is an integer), the possible distinct states 
of this pair of a particles are 

                                                           
12 A quantum box is simply a structure with confining potentials in all three dimensions. Presuming that it 
has some bound states, these bound states are discrete in energy, as is readily proved for a cubic box, for 
example, by a simple extension of the rectangular potential well problem to three dimensions. 
13 Where there is no possibility of the spins exchanging between the particles. 
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 1, 2,a a , 1, 2,b b , ( )1 1, 2, 2, 1,
2

a b a b+  (13.52) 

since, rather trivially, 1, 2, 2, 1,a a a a+  is the same state as 1, 2,a a  since the ordering 
of the kets does not matter, and similarly for the state with both particles in the b mode. Note 
in this case, we did introduce a factor 1/ 2  to normalize the symmetric combination state, 
since we may use such states later. Here we have, from Eq. (13.49), ( ) ( )2 2 1 !/ 2! 2 1 ! 3+ − − =  
possible states, in contrast to the four in the case of independent particles. 

(iii) For identical fermions, there is only one possible state of the pair of particles since the two 
particles have to be in different single-particle states, and there are only two single-particle 
states to choose from for each particle, i.e., the state is 

  ( )1 1, 2, 2, 1,
2

a b a b−  (13.53) 

where again we have normalized this particular wavefunction for possible future use. This 
count of only one state agrees with the formula Eq. (13.50), which gives ( )2!/ 2!0! 1=  state 
(where we remember that 0! 1= ). 

The differences in the number of available states in the three cases of non-identical particles, 
identical bosons, and identical fermions lead to very different behavior once we consider the 
thermal occupation of states. For example, if we presume that we are at some relatively high 
temperature, such that the thermal energy, Bk T , is much larger than the energy separation of 
the two states a and b, then the thermal occupation probabilities of all the different two particle 
states will all tend to be similar. For the case of the non-identical particles, which behave like 
classical particles as far as the counting of states is concerned, with the four states 1, 2,a a , 
1, 2,b b , 1, 2,a b , 1, 2,b a  of (13.51), we therefore expect a probability of ~ ¼ of 

occupation of each of the states. Therefore, the probability that the two particles are in the 
same state is ~ ½.  

For the case of the identical bosons, there are only three possible states, so the probability of 
occupation of any one state is now ~ 1/3. Two of the two-particle states have the particles in 
identical modes 1, 2,a a , 1, 2,b b , and only one two-particle state, 
(1/ 2)( 1, 2, 2, 1, )a b a b+ , corresponds to the particles in different modes. Hence the 
probability of finding the two identical bosons in the same mode is now 2/3, larger than the ½ 
for the non-identical particle case.  

For the case of identical fermions, there is only one possible state, which therefore has 
probability ~1, and it necessarily corresponds to the two particles being in different states.  

Therefore identical bosons are more likely to be in the same states than are non-identical (or 
classical) particles, and identical fermions are less likely to be in the same states than are non-
identical (or classical) particles (in fact, they are never in the same states).  

The most common description of the differences between bosons and fermions is that we can 
have as many identical bosons in the same mode as we wish, whereas, for identical fermions 
we can only have one in each single-particle state. For non-identical (or classical) particles, we 
can also have as many particles as we wish in a given mode or single-particle state. The 
difference between bosons and non-identical particles is that, compared to the states for non-
identical particles, there are fewer states in which identical bosons are in different modes, as 
we saw in the example above. 
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Bank account analogy for counting states 

The previous arguments on counting states may be more tangible if we consider an analogy 
with dollars in bank accounts. 

You might be a person who does not trust banks, so you might have an antique jar (labeled a) 
in the kitchen with your spending money, and a box (labeled b) under the bed with your 
savings money. You put your dollar bills, each of which is clearly labeled with a unique serial 
number, into one or other of the antique jar (a) or the box (b). This situation is analogous to the 
quantum mechanical situation of non-identical particles (the dollar bills) and different single-
particle states or modes (a or b) into which they can be put (the antique jar or the box). If I 
have two dollar bills, then there are four possible situations (states of the entire system of two 
dollar bills in the antique jar and/or the box ),  

bill 1 in the box and bill 2 in the box 

bill 1 in the box and bill 2 in the antique jar 

bill 1 in the antique jar and bill 2 in the box 

bill 1 in the antique jar and bill 2 in the antique jar 

making four states altogether. This reproduces the counting we found above for the states of 
non-identical particles. 

Consider next that instead you have bank accounts, a checking account (a), and a savings 
account (b). Since these are bank accounts, you can know how much money you have in each 
account, but the dollars are themselves absolutely identical in the bank accounts (dollars in 
bank accounts do not have serial numbers), so now there are only three possible states, which 
are 

Two dollars in the savings account 

One dollar in the savings account and one in the checking account 

Two dollars in the checking account 

Note that there are two states in which both dollars are in the same account, but only one in 
which they are in different accounts. This bank account argument above reproduces the 
counting we found above for boson states.  

Consider now that you have two bank accounts, a checking account (a), and a savings account 
(b), but you are living in the Protectorate of Pauliana, which has particularly restrictive 
banking laws because of past bad experiences with smart but impoverished students. In 
Pauliana, you may only have one dollar in each bank account. Then for your two dollars, there 
is only one possible state. 

One dollar in the savings account, and one dollar in the checking account. 

This reproduces the counting we found for fermion states above.  

In the above analogy, then, dollar bills are like classical particles or non-identical quantum-
mechanical particles. Each of them is quite different – they even have different serial numbers. 
But dollars in bank accounts are like quantum-mechanical identical particles. It is quite 
meaningless to ask which dollar is in which bank account. This is the sense in which identical 
quantum mechanical particles are identical – it is quite meaningless to ask which one is in 
which single-particle state or mode. 
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Problem 
 13.6.1  Suppose we have three particles, labeled 1, 2, and 3, and three single-particle states or modes, a, 

b, and c. We presume the particles are essentially not interacting, so the state of the three particles can 
be written in terms of products of the form 1, 2, 3,a b c , though we do presume that the states 
have to obey appropriate symmetries with respect to interchange of particles if the particles are 
identical. For the purposes of this problem, we are only interested in situations where each particle is 
in a different single-particle state or mode. For example, if the different states correspond to 
substantially different positions in space, we presume that we are considering states in which we 
would always find one and only one particle near each of these three positions if we performed a 
measurement.  
Write out all the possible states of the three particles  
(i) if the particles are identical bosons, 
(ii) if the particles are identical fermions, 
(iii) if the particles are each different (e.g., one is an electron, one is a proton, and one is a neutron) 
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Fig.  13.2. Comparison of the Fermi-Dirac, Maxwell-Boltzmann and Bose-Einstein distributions, 
showing the number of particles per state, N(E), as a function of the energy separation from the 
chemical potential, in units of kBT. 

13.7 Thermal distribution functions  

We will not go into the detailed behavior of thermal occupation probabilities at finite 
temperatures here, though the reader should be aware that identical bosons obey a thermal 
distribution known as the Bose-Einstein distribution, whereas identical fermions obey the 
Fermi-Dirac distribution, both of which are different from the classical Maxwell-Boltzmann 
distribution. The three distributions are compared in Fig.  13.2. Note that, consistent with the 
conclusions above, identical bosons are more likely to be in the same single-particle state or 
mode than are classical or non-identical particles (the Bose-Einstein distribution lies above the 
Maxwell-Boltzmann distribution), whereas identical fermions are less likely to be in the same 
single-particle state or mode than are classical or non-identical particles (the Fermi-Dirac 
distribution lies below the Maxwell-Boltzmann distribution). For reference, appropriate 
formulae for the three distributions are, for the average number of particles in a single-particle 
state or mode of energy E at a temperature T with a chemical potential μ, 

(i) Maxwell-Boltzmann 
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 ( ) exp exp
B B

EN E
k T k T
μ⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
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 (13.54) 

(ii) Fermi-Dirac 

 ( ) 1

1 exp
B

N E
E
k T

μ
=

⎡ ⎤−
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⎣ ⎦

 (13.55) 

For the Fermi-Dirac case, the chemical potential μ  is often called the Fermi energy, and is 
then written FE . 

(iii) Bose-Einstein 

 ( ) 1

exp 1
B

N E
E
k T

μ
=

⎡ ⎤−
−⎢ ⎥

⎣ ⎦

 (13.56) 

For the particular case of photons in a mode (or other similar bosons with only one possible 
mode), the chemical potential is zero.14 The energy E of a particle is then ω= , and so we have 
a special case of the Bose-Einstein distribution, known as the Planck distribution, which is 

 ( ) 1

exp 1
B

N E

k T
ω

=
⎡ ⎤

−⎢ ⎥
⎣ ⎦

=
 (13.57) 

13.8 Important extreme examples of states of multiple 
identical particles  

In general, the states of multiple identical particles can be quite complicated. There are, 
however, some important states that turn out to be quite simple. Two examples are filled bands 
in semiconductors (or any crystalline solid) and multiple photons in the same mode of the 
electromagnetic field.  

A filled semiconductor band 
One important extreme example of a state for multiple identical fermions is a filled valence 
band in a semiconductor. In semiconductor physics, one usually takes a “single particle” 
approximation in which one electron is assumed to move in an average periodic potential from 
the nuclei and other electrons, and one hence arrives at the Bloch state of a single electron in a 
particular k state (see Chapter 8). The various possible single-particle Bloch states of a single 

                                                           
14 The chemical potential is formally the change in Helmholtz free energy per particle added. In the case 
of photons in a given mode, exchange of particles with a reservoir is exactly the same process as 
exchange of energy with the reservoir since there is only one state (and hence one energy) possible for 
the photon in that mode. If the photons are in thermal equilibrium with the reservoir, they are by 
definition in equilibrium with the reservoir with respect to exchange of energy, since that is what thermal 
equilibrium means. But that means they are also in equilibrium with the reservoir with respect to 
exchange of particles with the reservoir. If we are in equilibrium with respect to exchange of particles, 
the change in Helmholtz free energy per particle added is zero, and hence the chemical potential is zero.  
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electron (for a given spin) correspond to all of the different possible k values in the band, of 
which there are cN  if there are cN  unit cells in the crystal. A full band therefore corresponds 
to cN  electrons of a given spin in the cN  different single-particle states. There is only one 
such state that obeys the antisymmetry with respect to exchange, which is the Slater 
determinant of all of the single-particle states in the band. 

N photons in a mode 
Photons are bosons with a particularly simple behavior. Photons in a mode do not have excited 
states of any kind, and there is therefore no meaning to the identical photons in a given mode 
having more than one state they can choose from. They are either there or they are not. 
Therefore, 1M = , and the number of possible states of the N photons in the mode is simply 
( )1 1 !/[ !(1 1)!] 1N N+ − − = . That multiple particle state is simply all the photons in the same 
mode.15  

13.9 Quantum mechanical particles reconsidered 

The arguments about identical particles in quantum mechanics are necessarily quite subtle and 
can certainly be confusing, just as the earlier discussion of wave-particle duality was bizarre. 
Much of this confusion comes from the fact that we insist on calling these entities “particles”. 
The confusion stems largely from what a philosopher would call an ontological problem. 
When we think of something called a particle, we intrinsically attach attributes to it like size, 
shape, charge, mass, position, velocity, and notions of discreteness, countability, and also of 
uniqueness or “identity” – this particle here and that particle there are different particles, and 
always will be. These attributes and notions make up the “ontology” of the idea of a particle 
(or, in dictionary definition, the “nature of its being”). When we start thinking about a quantum 
mechanical particle, we have to progressively delete or modify most of this ontology that 
ordinarily comes along with the idea of a particle. We could save ourselves a lot of time if we 
just did not use the word “particle” for these quantum mechanical entities in the first place – 
we could then avoid having to selectively “unlearn” the previous ontological baggage. In fact, 
from our above list of ontological attributes and notions, about all that remains for a quantum-
mechanical particle like an electron is charge, mass, some intertwined version of position and 
velocity (or momentum) from the uncertainty principle, some kind of discreteness, and some 
heavily modified notions of counting. We have also had to add other attributes of wave-like 
interference and spin that are not possessed by classical particles.  

There are probably fewer ontological problems if we consider instead levels of excitation of 
modes. Instead of saying there are three photons in mode a and two in mode b, we could 
simply say instead that mode a is in its third level of excitation, and mode b is in its second 
level of excitation. Certainly, the counting becomes much more obvious, as we saw above in 
the bank account analogy. It does not really matter if we never introduce the idea of particles – 
as long as we have the rules constructed by quantum mechanics for manipulating states, it is of 
no ultimate importance what words we use (or possibly abuse) to describe them. In the next 
three Chapters, we will set up the next level of rules for working with fermions and bosons (or 
whatever we would like to call them). 

                                                           
15 If one thinks of photons in a particular mode as being typical bosons, one misses quite a lot of the 
richness of the behavior possible with bosons. Photons, and other particles that are associated with the 
quantization of simple harmonic oscillators of various kinds, such as phonons, can be rather atypical 
bosons because of their particularly simple properties. 
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Of course, we are not commonly going to express our world in terms of excitation levels of 
modes – particles are here to stay. In fact, we might well find it disquieting to think of 
electrons as merely being excitation levels of modes rather than being particles. That is a 
psychological problem rather than a physical one, but the price we pay is a confusion about 
quantum mechanics that is essentially self-inflicted. The good news is that, if we merely accept 
the rules of quantum mechanics and apply them faithfully, all of these problems go away.16  

13.10 Distinguishable and indistinguishable particles 

In this Chapter, we have been rather careful so far to use the word “identical” and avoid the 
word “indistinguishable”, or more particularly, we have not yet used the term 
“distinguishable”. That is because we wish to make a distinction between these two concepts, 
as we will now describe. This distinction between the meanings of these words is not 
universally applied, but the reader should at least be aware that there are two different ideas 
here that we should not confuse. 

We believe all electrons are identical. There is no meaning to ascribing a particular name to 
one electron and a different name to another. They do not have separate identities, just as two 
dollars in a bank account do not have distinct identities or names. It is, however, possible that 
we might regard two specific electrons as being distinguishable from a practical point of view. 
If they are so far apart that their interaction is negligible, then we can regard them as distinct or 
“distinguishable” because there is no physical process by which they could be swapped over. 
This is like saying we have one dollar in a bank account in, say, California, and another in a 
bank account in Hawaii, but for some reason there are presently no communications between 
the two banks. In that case, because there is no possibility of exchange, it makes no difference 
to any calculation on our two electrons whether we bother to “symmetrize” the two-particle 
wavefunction into its correct two-fermion form. We saw this explicitly above when we were 
discussing exchange energy for two electrons whose wavefunctions do not overlap. In this 
case, we can get away with treating these two “distinguishable” electrons as if they were non-
identical particles. It is also true that, because it will make no difference to this calculation, we 
can still symmetrize the wavefunction properly if we want to, even though it may take more 
paper to write down the algebra. So, even if two particles are identical, if there is no reasonable 
physical process by which they could be swapped over, as a reasonable approximation, such 
“distinguishable” particles can be treated as if they were non-identical. 

It is also true that all photons are identical. This does, however, lead to the apparently absurd 
conclusion that a microwave photon and a gamma ray photon are identical. Photons in 
different modes (e.g., different frequencies or different directions) mostly do not interact with 
one another – we can pass two light beams right through one another, for example. We can 
therefore in practice often regard photons in different modes as being distinguishable from one 
another, treating them as if they were non-identical particles, and hence dropping the 
symmetrization of the state in such cases. We cannot, however, always do that, and if in doubt 
we should symmetrize the state because that is always correct.  

How could it be that the microwave photon and the gamma ray should fundamentally be 
viewed as identical (at least in the sense we use the term here)? Suppose that they were in a 
medium in which two-photon absorption was possible. Even if the photon energies did not add 

                                                           
16 The self-aware reader may note that we are essentially back to the brain-washing techniques promised 
earlier. 
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up correctly to correspond to that absorbing transition, there is still a nonlinear refractive effect 
(intensity dependent refractive index) or more generally what is known as a four-wave mixing 
effect that results. We can, loosely, view that effect as corresponding to “virtual” two-photon 
absorption followed almost immediately by two-photon emission, and in that process we have 
lost track of which photon is which (in fact it is meaningless to ask which is which), at least in 
terms of any labels that we might have put on the photons. Whether or not we like this form of 
words to describe a two-photon process (more generally a χ(3) process) does not matter; in 
general we would not get quite the right answer for calculations on such a process if we did not 
symmetrize the initial state of the two photons correctly. In that case, the two photons are 
certainly not distinguishable. One might argue that such a process is a very unusual thing, and 
would require special nonlinear optical materials for it to be of any important strength, and that 
is generally correct. It is, however, at least in principle possible to have such a process even in 
the vacuum, because there is a two-photon transition that can create an electron-positron pair. 
The correction from that process for low energy photons is of course quite negligible from a 
practical point of view. But its existence does tell us that the only absolutely correct state for 
these two photons is a symmetrized one, and in that sense these two photons necessarily must 
be viewed as identical (in the meaning of that word as used in quantum mechanics).  

It is, therefore, possible to say as an approximation (albeit sometimes an extremely good one) 
that two identical particles are distinguishable if the exchange interaction between them is 
negligibly small, and in that case this “distinguishability” allows us to treat them as if they 
were non-identical particles for practical purposes. Conversely, if we say that two particles are 
indistinguishable (because of the possibility of exchange of them), then we are saying that we 
have to symmetrize the state properly with respect to exchange. 

13.11 Summary of concepts 

Fermions and bosons 

For the two-particle wavefunction ( )1 2,tpψ r r  of two identical particles of positions r1 and r2 
respectively, exchanging the particles either leaves the wavefunction unchanged, in which case 
the particles are called bosons, or it multiplies the wavefunction by -1, in which case the 
particles are called fermions, i.e., 

 ( ) ( )1 2 2 1, ,tp tpψ ψ= ±r r r r  (13.9) 

with the “+” sign corresponding to bosons and the “-” sign to fermions. States with the “+” 
sign are said to be symmetric with respect to exchange, and those with the “-” sign are said to 
be antisymmetric with respect to exchange. 

All particles with integer spin are bosons (e.g., photons, phonons, 4He nuclei), and all particles 
with half-integer spin are fermions (e.g., electrons, protons, neutrons). 

Identical particles 

All particles of the same species are identical, e.g., all photons are identical, all electrons are 
identical, all protons are identical, regardless of what single-particle state or mode they occupy. 

Pauli exclusion principle 

It is not possible for two fermions of the same type (e.g., electrons) in the same spin state to be 
in the same single-particle state. 
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Exchange energy 

Because of the requirement that multiple particle wavefunctions must have specific 
symmetries with respect to exchange of particles, systems of identical particles have additional 
terms that appear when we evaluate the energy of the system. These terms, which do not have 
an analog in the simple single-particle or classical systems, give rise to corrections to the 
energy called exchange energy. 

Multiple particle states 

When we consider states of multiple particles with identical spin states, because the particles 
are indistinguishable, we need to consider all possible permutations of the identical particles 
among the different single-particle states or modes. 

For N identical bosons in identical spin states occupying modes a, b, c, …, the wavefunction 
becomes 

 
ˆ

ˆ 1, 2, 3, ,identical bosons
P

P a b c N nψ ∝ ∑ …  (13.41) 

where by the summation we mean the sum over all the distinct permutations (given by the 
different permutation operators P̂ ) of the particles among the modes. For N identical fermions 
in identical spin states occupying single-particle states a, b, c, …, the wavefunction becomes 
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where now by the summation we also mean that we use the + sign when the permutation 
corresponds to an even number of pair-wise permutations of the individual particles, and the – 
sign when the permutation corresponds to an odd number of pair-wise permutations of the 
individual particles. The fermion case can also conveniently be written as a Slater determinant 
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Similar expressions result also when we are considering multiple particle basis states. 

Numbers of states 

For M available single-particle basis states or basis modes and N particles, the numbers of 
possible states are 

(i) for non-identical particles, NM  

(ii) for identical bosons, 
( )

( )
1 !

! 1 !
M N
N M

+ −
−

 

(iii) for identical fermions, 
( )

!
! !
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M N N−
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Distinguishability and indistinguishability 

Particles in specific single-particle states or modes, even if the particles are identical, can be 
viewed as distinguishable if the possibility of particle exchange between the two single-
particle states or modes is negligible (or equivalently, if the exchange correction to the 
Hamiltonian is negligible). Distinguishable particles may then be treated (approximately) as if 
they are non-identical, and the symmetrization of the state with respect to particle exchange 
can be omitted. If the exchange interaction is not negligible, then the particles must be viewed 
as indistinguishable, and the states must be symmetrized appropriately with respect to 
exchange. If in doubt, it is always correct to symmetrize the states of identical particles; such 
symmetrization of the states will make no difference if the exchange interaction is negligible.  

 

 

 



 

 

Chapter 14   
 
The density matrix 

Prerequisites: Chapters 2 – 5. Preferably also Chapters 6 and 7 

The density operator, or as it is more commonly called, the density matrix, is a key tool in 
quantum mechanics that allows us to connect the world of quantum mechanics with the world 
of statistical mechanics, and we introduce it briefly here. This is an important connection. Just 
as we needed statistical ideas in complicated classical systems (e.g., large collections of atoms 
or molecules), we will need the same ideas in complicated quantum mechanical systems.  

We will also examine one rather elementary but important application in optics; we will use 
the density matrix to turn the rather extreme and unrealistic idea of  infinitely sharp “δ-
function” optical transitions that emerged from the simple perturbation theory model of 
Chapter 7 into more physical absorption lines with finite width, just as we actually see in 
atomic and molecular spectra, for example. 

14.1 Pure and mixed states 

So far in thinking about the state of a system, the only randomness we have considered is that 
involved in quantum-mechanical measurement. We have presumed that otherwise everything 
else was definite. Suppose, for example, we were thinking about the state of polarization of a 
photon. In the way we have so far considered states, we could write a general state of 
polarization as 

 H Va H a Vψ = +  (14.1) 

where H  means a horizontally polarized photon state and V  means a vertically polarized 
one. There is apparently randomness on quantum mechanical measurement; if we performed a 
measurement, using, e.g., a polarizing beamsplitter oriented to separate horizontal and vertical 
polarizations to different outputs with different detectors, we expect a probability of 2

Ha  of 
measuring the photon in the horizontal polarization and 2

Va  of measuring it in the vertical 
polarization. 

Since we must have 2 2 1H Va a+ =  by normalization, we could also choose to write 

 cosHa θ=    ( )exp sinVa iδ θ=  (14.2) 

The fact that 2 2sin cos 1θ θ+ =  ensures that this way of writing the  state is properly 
normalized. For the case where 0δ = , we are describing ordinary linear polarization of a light 
field, and θ  has the simple physical meaning of the angle of the optical electric vector relative 
to the horizontal axis. It is also possible with light that there can be some phase delay between 
the horizontal and vertical components of the optical electric field, and that phase difference 
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can be expressed through the exp(iδ) term. When 0δ ≠ , the field is in general “elliptically 
polarized”, which is the most general possible state of polarization of a propagating photon, 
and the special cases of / 2δ π= ±  with θ = 45º give the two different kinds of circularly 
polarized photons (right and left circularly polarized)1.  

An important point about such a state is that we can always build a polarizing filter that will 
pass a photon of any specific polarization, 100% of the time. Even if the photon was in the 
most general possible elliptically polarized state, we could arrange to delay only the horizontal 
polarization by a compensating amount -δ to make the photon linearly polarized2, and then 
orient a linear polarizer at an angle θ so that the photon was always passed through. Such 
polarization compensators and filters are routine optical components. When we can make such 
a polarization filter so that we will get 100% transmission of the photons, we say that the 
photons are in a “pure” state (here, Eq. (14.1)). The states of photons or anything else we have 
considered so far have all been pure states in this sense; we can at least imagine that an 
appropriate filter could be made to pass any particles that are in any one such specific quantum 
mechanical state with 100% efficiency.3 

But such “pure” states are by no means the only ones we will encounter. Suppose that we have 
a beam of light that is a mixture from two different, and quite independent, lasers, lasers “1” 
and “2”, giving laser beams of possibly even different colors. Presume that laser 1 contributes 
a fraction 1P  of the total number of photons, and laser 2 contributes a fraction 2P . Then the 
probability that a given photon is from laser 1 is 1P  and similarly there is probability 2P  it is 
from laser 2. We presume also that these two lasers give photons of two possibly different 
polarization states, 1ψ  and 2ψ  respectively, in the beam.  

Something is quite measurably different about this “mixed” state; no setting of our polarizing 
filter will in general pass 100% of the photons. If we set the polarization filter to pass all the 
photons in state 1ψ , it will in general not pass all the photons in state 2ψ , and vice versa. If 
we set the polarizing filter in any other state, it will not pass 100% of either set of photons. 
This measurable difference tells us that we cannot simply write this mixed state as some linear 
combination of the two different polarization states in the fashion we have used up to now for 
linear combinations of quantum mechanical states. If we were able to do that, e.g., in some 
linear combination of the form 1 1 2 2b bψ ψ+ , we would be able to construct a polarizing 
filter that would pass 100% of the photons in this state (which is a pure state), and we know 
here that no such polarization filter is possible.4  

                                                           
1 “Right circular polarization” means that, if we were to look back towards the source of a plane wave, 
i.e., looking against the direction of propagation, the electric field vector would be rotating, with constant 
length, in a clockwise direction, and this corresponds to / 2δ π= . “Left circular polarization” similarly 
corresponds to / 2δ π= −  and anti-clockwise rotation. 
2 A birefringent material, which has different refractive indices on two axes at right angles to one another, 
can create such a relative phase delay if it is oriented in the correct direction and is of the right thickness. 
3 If the reader prefers to think in electron spin states rather than photon polarization states, we can 
construct filters out of Stern-Gerlach-like magnet setups, with beam blocks to block the undesired spin 
components. Spin states can also be described in the same form as in Eqs. (14.1) and (14.2), using spin-
up and spin-down components along a given axis instead of the horizontal and vertical components of the 
photon case. The rest of the mathematics proceeds essentially identically. 
4 It is true that, if the photons from the two different lasers were actually both in the same mode, i.e., 
exactly the same frequency and spatial form, and of defined relative phase, we could construct such a 
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The difference between pure and mixed states can have important consequences for other 
measurable quantities. Suppose, for example, that, for some particle with mass we have a 
potential well, such as the simple “infinite” one-dimensional potential well we considered 
earlier, with infinitely high potential barriers around a layer of some thickness, Lz, in the z 
direction. If we put the particle in a pure state that is an equal linear superposition of the lowest 
two states of this well, 1 2(1/ 2)( )ψ ψ ψ= + , the position of this particle, as given 
formally by the expectation value z  of the ẑ  position operator, will oscillate back and 
forwards in time in the well because of the different time-evolution factors 1exp( / )iE t− =  and 

2exp( / )iE t− =  for the two energy eigenstates (with energies E1 and E2 respectively). Suppose 
instead we take an ensemble of identical potential wells, and randomly prepare half of them 
with the particle in the lowest state and half of them with the particle in the second state. 
Statistically, since we do not know which wells are which, at least before performing any 
measurements, each of these wells is in a mixed state, with 50% probability of being in either 
the first or second state. Now we evaluate the expectation value z  of the ẑ  position operator 
for each potential well. In each well in this ensemble, z  evaluates to the position of the 
center of the well since both these wavefunctions are equally balanced about the center (the 
lowest being symmetric and the second being antisymmetric). The average, z , of all of the 
expectation values from each of the different wells (what we can call an “ensemble average”) 
is also zero, and there is no oscillation in time. Hence again the mixed state and the pure state 
have quite different properties. Again it would not be correct simply to write the mixed state as 
a linear combination of the form 1 1 2 2b bψ ψ+ .  

We could also consider a slightly more complicated version of the ensemble of potential wells, 
one in which each well is skewed, as would be the case if we applied electric field 
perpendicular to the wells for the case of a charged particle like an electron in the well. Then 
the expectation values z  of the position would be different for the first and second states of 
the well (and neither one would in general be in the center of the well) , with some specific 
values 1z z=  for the first state and 2z z=  for the second state. In the case of the pure state, 
with a combination of these two states in each well, we would still expect oscillation. We 
could now instead presume a mixed state with possibly different probabilities P1 and P2 
respectively that we had prepared a given well in the first or second state. In this mixed state, 
we would still have no oscillation, and our ensemble average value of the measured position 
would now be 

 
2

1 1 2 2
1

ˆj j j
j

z P z P z P zψ ψ
=

= + ≡ ∑  (14.3) 

More generally for a mixed state, we expect that the ensemble average expectation value for 
some operator Â  corresponding to an observable quantity can be written 

 ˆ
j j j

j
A P Aψ ψ= ∑  (14.4) 

for some set of different quantum mechanical state preparations jψ  made with respective 
probabilities jP .  

Note, incidentally, that there is no requirement in mixed states that the different jψ  are 
orthogonal. We could be considering several different polarization states that are quite close to 

                                                                                                                                                         
pure state by combining them, but that would violate our presumption above that the lasers are 
independent. 
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one another in angle. For example, there might be some fluctuation in time in the precise 
output polarization of some laser, perhaps because some mirror in the laser cavity is subject to 
vibrations. Then we would have to consider a mixed state of many different possible similar 
but not identical polarizations.  

The question now is whether we can find a convenient and powerful algebra for representing 
such mixed states and their properties, so that we can get to results such as A  by a more 
elegant method than simply adding up probabilities and measured values as in Eq. (14.3). 
Ideally also, that method would give the correct results even if the mixed state became a pure 
one, i.e., we simply had one of the 1jP =  and all the others zero, giving us one unified 
approach for pure and mixed states. We have already concluded that the linear superposition 
form 1 1 2 2b bψ ψ+  will not work for representing mixed states, so we may need to go 
beyond such a simple addition. The answer to this question is to introduce the density operator.  

Problem 
 14.1.1  Suppose that we are measuring the value of the spin magnetic moment of electrons. We take the 

spin magnetic dipole moment operator to be ˆ ˆe Bgμμ = σ . We will compare the average value we 
measure in two different states, both of which are equal mixtures of x and y spin character for the 
electrons. 

 (i) Consider the pure spin state ( )1/ 3 ( )p x ys s s= + . Here xs  and ys  are respectively spin 
states oriented along the +x and +y directions. [Hint: see Eq. (12.27) and the associated discussion of 
the Bloch sphere to see how to write out these two states.] 

(a) Show that this pure state is normalized. 
(b) Find the expected value (which will be a vector) of the spin magnetic dipole moment (i.e., the 

average result on measuring the magnetic dipole on multiple successive electrons all prepared 
in this state). 

(c) What is the magnitude of this average dipole moment (i.e., the length of the vector)? 

 (ii) Consider now the mixed spin state, with equal probabilities of the electrons being in the pure state 
xs  and the pure state ys . 

(a) What is the resulting average expected value (again a vector) of the spin magnetic dipole 
moment when measuring an ensemble of successive electrons prepared this way? 

(b) What is the magnitude of this ensemble average value? 

 (iii) What differences are there between the measured magnetic dipole moments in the two different 
cases of pure and mixed states? 

14.2 Density operator 

However we are going to represent the mixed state, it must obviously contain the probabilities 
jP  and the pure states jψ , but it must not simply be a linear combination of the states. The 

structure we propose instead is the density operator 

 j j j
j

Pρ ψ ψ= ∑  (14.5) 

We see that this is an operator because it contains the outer products of state vectors (i.e., 
j jψ ψ ). Though the mathematics of operating with this operator takes on the same 

algebraic rules as any other operators we have been using, we have deliberately left the “hat” 
off the top of this operator to emphasize that its physical meaning and use are quite different 
from other operators we have considered. ρ is not an operator representing some physical 
observable. Rather, ρ is representing the state (in general, a mixed state) of the system.  
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If ρ is a useful way of representing the mixed state, it must allow us to calculate quantities like 
the ensemble average measured value A  for any physical observable with corresponding 
operator Â . In fact, if we can evaluate A  for any physically observable quantity, then ρ will 
be the most complete way we can have of describing this mixed quantum mechanical state 
because it will tell us the value we will get of any measurable quantity, to within our 
underlying statistical uncertainties. 

14.3 Density matrix and ensemble average values 

To see how to use the density operator, first let us write it out in terms of some complete 
orthonormal basis set, mφ . First we expand each of the pure states jψ  in this set, obtaining 

 ( )j
j u u

u
cψ φ= ∑  (14.6) 

where the superscript ( j) means these are the coefficients for the expansion of the specific state 
jψ . Then we use Eq. (14.6) and its adjoint in Eq. (14.5) to obtain 
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Written this way, the matrix representation of ρ is now clear. We have for a matrix element in 
this basis 

 ( ) ( )( )j j
uv u v j u v u v

j
P c c c cρ φ ρ φ

∗
∗≡ = ≡∑  (14.8) 

where we have also introduced and defined the idea of the ensemble average of the coefficient 
product u vc c∗ . Given the form Eq. (14.8), we now more typically talk of ρ as the density 
matrix (rather than the density operator), with matrix elements given as in Eq. (14.8). The 
density matrix is just a way of representing the density operator, but since we essentially 
always represent the density operator this way, the two terms are in practice used 
interchangeably, with “density matrix” being the more common usage. 

There are several important properties of the density matrix we can deduce from Eq. (14.8). 

(i) The density matrix is Hermitian, i.e., explicitly 

 ( ) ( )( ) ( ) ( )( )j j j j
vu j v u j u v uv

j j
P c c P c cρ ρ

∗
∗ ∗

∗⎛ ⎞
≡ = =⎜ ⎟

⎝ ⎠
∑ ∑  (14.9) 

Because the density matrix is Hermitian, so also is the density operator since the density 
matrix is just a representation of the density operator. 

(ii) The diagonal elements mmρ give us the probabilities of finding the system in a specific one 
of the basis states mφ . ( ) ( ) ( ) 2( ) | |j j j

m m mc c c∗ ≡  is the probability for any specific pure state j that 
we will find the system in (basis) state m. Hence adding these up with probabilities jP  gives us 
the overall probability of finding the system in state m in the mixed state. (The meaning of the 
off-diagonal elements is more subtle, but quite important. They are a measure of what we 



342  Chapter 14  The density matrix 

 

could loosely think of as the “coherence” between different states in the system, and we will 
return to discuss this below.) 

(iii) The sum of the diagonal elements of the density matrix is unity, i.e., remembering that we 
can formally write the sum of the diagonal elements of some matrix or operator as the trace 
(Tr) of the matrix or operator, 

 ( ) ( ) ( )2 2
1j j

mm j m j m j
m m j j m j

Tr P c P c Pρ ρ= = = = =∑ ∑∑ ∑ ∑ ∑  (14.10) 

because (a) the state jψ  is normalized (so ( ) 2| | 1j
mm c =∑ ), and (b) the sum of all the 

probabilities jP  of the various pure states jψ  in the mixed state must be 1. 

Now we come to a key trick with the density matrix. Let us consider an operator Â  
corresponding to some physical observable, and specifically consider the product Âρ , i.e., 

 ( ) ( )( )
.

ˆ ˆj j
j u v u v

u v j
A P c c Aρ φ φ
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= ⎜ ⎟

⎝ ⎠
∑ ∑  (14.11) 

We can therefore write some diagonal element of the resulting matrix as 
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 (14.12) 

Then the sum of the all of these diagonal elements is 

 

( )( ) ( )ˆ ˆ

ˆ

j j
q q j v v q q

q j v q

j j j
j

A P c A c

P A

φ ρ φ φ φ

ψ ψ

∗ ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

∑ ∑ ∑ ∑

∑
 (14.13) 

Note that the result here is exactly the result for the ensemble average value A  of the 
expectation value of the operator Â  for this specific mixed state as given in Eq. (14.4) above. 
Hence we have a key result of density matrix theory 

 ( )ˆA Tr Aρ=  (14.14) 

We have therefore found that the density matrix, through the use of the relation (14.14), 
describes any measurable ensemble average property of a mixed state. Hence the density 
matrix does indeed give as full a description as possible of a mixed state.  

Note that this result, Eq. (14.14), is completely independent of the basis used to calculate the 
trace – the basis mφ  could be any set that is complete for the problem of interest. (This 
invariance of the trace with respect to any complete orthonormal basis is a general property of 
traces of operators.) Note also that, if we have the system in a pure state ψ , in which case 

1P =  for that state, and there is zero probability for any other state, then we recover the usual 
result for the expectation value, i.e., ( )ˆ ˆTr A A Aρ ψ ψ= = , so the density matrix 
description gives the correct answers for pure or mixed states.  
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Problems 
 14.3.1  Suppose we have a set of photons in a mixed state, with probabilities 1 0.2P =  and 2 0.8P =  

respectively of being in the two different pure states 

 1 Hψ ψ=  and 2
3 4
5 5H V

iψ ψ ψ= +   

 where Hψ  and Vψ  are the normalized and orthogonal basis states representing horizontal and 
vertical polarization respectively. ( 1ψ  therefore is a horizontally polarized state, and 2ψ  is an 
elliptically polarized state.) Write the density matrix for this state, in the Hψ  and Vψ  basis, with 

H Hψ ρ ψ  as the top left element.  

 14.3.2  Consider the mixed spin state, with equal probabilities of the electrons being in the pure state 
xs  and the pure state ys . Here xs  and ys  are respectively spin states oriented along the +x 

and +y directions. (See Problem 14.1.1)  

 (i) Evaluate the density operator ρ on the z spin basis (i.e., ↑  and ↓ )   

 (ii) Now write this density operator as a density matrix, with the term in ↑ ↑  in the top left 
element.  

 (iii) Taking the spin magnetic dipole moment operator to be ˆ ˆe Bgμμ = σ , evaluate ˆ eμ  as a matrix on 
the same z spin basis (i.e., ↑  and ↓ , with the element ˆ e↑ ↑μ  in the top left corner. 

 (iv) Using the expression of the form ( )ˆA Tr Aρ= , evaluate the ensemble average expectation 
value for the spin magnetic dipole moment in this mixed state.  [Hint: the answer should be the same 
as that for Problem 14.1.1 (ii)(a).] 

14.4 Time-evolution of the density matrix 

When we want to understand how a quantum mechanical system in some pure state jψ  
evolves, we can use the Schrödinger equation 

 ˆ
j jH i

t
ψ ψ∂

=
∂

=  (14.15) 

How can we describe the evolution of a mixed state? In principle, we can do this by 
considering each pure state in the mixture, and appropriately averaging the result, but there is a 
more elegant approach, which is directly to calculate the time-evolution of the density matrix. 
The density matrix, after all, contains all the available information about the mixed state. To 
see how to construct the appropriate equation for the density matrix, we start with the 
Schrödinger equation (14.15), and substitute using the expansion, Eq. (14.6), in some basis set 

nφ , to obtain 

 
( ) ( ) ( ) ( ) ˆ

j
jn

n n n
n n

c t
i c t H

t
φ φ

∂
=

∂∑ ∑=  (14.16) 

where we have put all of the time dependence of the state into the coefficients ( ) ( )j
nc t . Now 

operating from the left of Eq. (14.16) with mφ , we have 

 
( ) ( ) ( ) ( )

j
jm

n mn
n

c t
i c t H

t
∂

=
∂ ∑=  (14.17) 
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where ˆ
mn m nH Hφ φ=  is a matrix element of the Hamiltonian. Also, we can take the 

complex conjugate of both sides of Eq. (14.17). Noting that Ĥ  is Hermitian, i.e., mn nmH H∗ = , 
we have  

 
( ) ( )( ) ( ) ( )( )

j
m j

n nm
n

c t
i c t H

t

∗

∗∂
− =

∂ ∑=  (14.18) 

or, trivially, changing indices 

 
( ) ( )( ) ( ) ( )( )

j
n j

s sn
s

c t
i c t H

t

∗

∗∂
− =

∂ ∑=  (14.19) 

But, from (14.8),  

 ( )
( )( ) ( )( )

( )j j
nj jmn m

j m n
j

c c
P c c

t t t
ρ

∗

∗
⎛ ⎞∂∂ ∂⎜ ⎟= +⎜ ⎟∂ ∂ ∂⎜ ⎟
⎝ ⎠

∑  (14.20) 

So, substituting from Eqs. (14.17) and (14.19) (and changing the summation index in Eq. 
(14.17) from n to q), we have  

 

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

j j j jmn
j m q qn n s ms

j q s

j j j j
j m q qn ms j s n

q j s j

i iP c c H c c H
t

i P c c H H P c c

ρ ∗ ∗

∗ ∗

⎛ ⎞∂
= −⎜ ⎟

∂ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞

= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑ ∑

= =

=

 (14.21) 

So, using the definition Eq. (14.8) of the density matrix elements, we have  

 ( ) ( )( )ˆ ˆ

ˆ,

mn
mq qn ms sn

q s

mn mn

mn

i H H
t

i H H

i H

ρ
ρ ρ

ρ ρ

ρ

⎛ ⎞∂
= −⎜ ⎟

∂ ⎝ ⎠

= −

⎡ ⎤= ⎣ ⎦

∑ ∑=

=

=

 (14.22) 

or equivalently,  

 ˆ,i H
t
ρ ρ∂ ⎡ ⎤= ⎣ ⎦∂ =

 (14.23) 

Eq. (14.23) is therefore the equation that governs the time-evolution of the density matrix, and 
hence of the mixed state. This is a very useful equation in applications of the density matrix. It 
is sometimes known as the Liouville equation because it has the same form as the Liouville 
equation of classical mechanics.5   

                                                           
5 The Liouville equation of classical mechanics is the equation of motion for the phase space 
probability distribution. 
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14.5 Interaction of light with a two-level “atomic” system 

One simple and useful example of the use of the density matrix is the interaction of light with 
an electron system with two energy levels. We presume these levels have energies E1 and E2, 
with corresponding energy eigenfunctions 1ψ  and 2ψ . We will also presume for simplicity 
that the system is much smaller than an optical wavelength, so an incident optical field E will 
simply be uniform across the system, and we will take E to be polarized in the z direction. We 
will take a simple “electric dipole” interaction between the light and the electron, so that the 
change of energy of the electron as it is displaced by an amount z is eEz. Hence we can take the 
perturbing Hamiltonian, in a semiclassical approximation for simplicity, to be 

 ˆ ˆpH e z μ= = −E E  (14.24) 

where μ̂  is the operator corresponding to the electric dipole, with matrix elements 

 mn m ne zμ ψ ψ= −  (14.25) 

so that  

 ( )ˆ
p pmn mnmn

H H μ≡ = −E  (14.26) 

For simplicity also, we will choose the states 1ψ  and 2ψ  both to have definite parity, so 
that  

 11 22 0μ μ= =  and hence 11 22 0p pH H= =  (14.27) 

and we are free to choose the relative phase of the two wavefunctions such that 12μ  is real so 
that we have 

 12 21 dμ μ μ= ≡  (14.28) 

Hence the dipole operator of this system can be written as 

 
0

ˆ
0

d

d

μ
μ

μ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (14.29) 

and the perturbing Hamiltonian is 

 
0ˆ

0
d

p
d

H
μ

μ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

-E
-E

 (14.30) 

The unperturbed Hamiltonian ˆ
oH  is just a 2 x 2 diagonal matrix on this basis, with E1 and E2 

as the diagonal elements, so the total Hamiltonian is 

 1

2

ˆ ˆ ˆ d
o p

d

E
H H H

E
μ

μ
⎡ ⎤

= + = ⎢ ⎥
⎣ ⎦

-E
-E

 (14.31)  

The density matrix is also a 2 x 2 matrix because there are only two basis states under 
consideration here, and in general we can write it as 

 11 12

21 22

ρ ρ
ρ

ρ ρ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (14.32) 
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The dipole induced in this system is important for two different reasons. First, as above, we see 
that it is closely related to the perturbing Hamiltonian. Second, it represents the response of the 
system to the electric field. Formally, the polarization of a system in response to electric field 
is the dipole moment per unit volume, and the relation between polarization and electric field 
allows us to define the electric susceptibilities or dielectric constants that we typically use to 
describe the optical properties of materials. So we particularly want to know the expectation 
value or ensemble average value of the dipole. We have not yet defined what the state of this 
system is, but we can still use (14.14) to write 

 ( )ˆTrμ ρμ=  (14.33) 

Using Eqs. (14.29) and (14.32), we have 

 12 1111 12

22 2121 22

0
ˆ

0
d d d

d d d

μ ρ μ ρ μρ ρ
ρμ

μ ρ μ ρ μρ ρ
⎡ ⎤ ⎡ ⎤⎡ ⎤

= =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (14.34) 

Hence 

 ( )12 21dμ μ ρ ρ= +  (14.35) 

Now let us try to evaluate the behavior of the density matrix in time so we can deduce the 
behavior of μ . We have, from Eq. (14.23) with the definitions of ρ  from Eq. (14.32) and 
Ĥ from Eq. (14.31),6 

( )

( ) ( ) ( )
( ) ( ) ( )

1 111 12 11 12

2 221 22 21 22

12 21 11 22 2 1 12

22 11 1 2 21 21 12

ˆ ˆ

d d

d d

d d

d d

d i H H
dt

E Ei
E E

E Ei
E E

ρ ρ ρ

μ μρ ρ ρ ρ
μ μρ ρ ρ ρ

μ ρ ρ μ ρ ρ ρ
μ ρ ρ ρ μ ρ ρ

= −

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= −⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠
⎡ − − − − + − ⎤

= ⎢ ⎥− − + − − −⎣ ⎦

-E -E
-E -E

E E
E E

=

=

=

 (14.36) 

There are two specific useful equations we can deduce from this. The first concerns 12 /d dtρ  
or 21 /d dtρ . We only need consider one of these since 12ρ  and 21ρ  are complex conjugates of 
one another because of the Hermiticity of the density matrix. We have, taking the “2 – 1” 
element of both sides, 

 
( ) ( )( )

( )

21
11 22 2 1 21

21 21 11 22

d

d

d i E E
dt

i i

ρ
ρ ρ μ ρ

μ
ω ρ ρ ρ

= − − −

= − + −

E

E

=

=

 (14.37) 

 where 21 2 1E Eω = −= . The second equation we will write relates to the change in 11 22ρ ρ− , 
which is essentially the fractional population difference between the lower and upper states. 

 ( ) ( )11 22 21 212 dd i
dt

μ
ρ ρ ρ ρ∗− = −E

=
 (14.38) 

                                                           
6 We have changed from a partial derivative in time to a total derivative because there are no other 
variables in this problem. 
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where we have used the Hermiticity of ρ (which tells us that 12 21ρ ρ∗= ). 

This analysis and these equations (14.37) and (14.38) hint at various behaviors we might 
expect as we shine light on this “atom”. For example, Eq. (14.38) shows that the relative 
fractional population of the upper and lower states of this atom is likely to be changing in time 
because of the presence of field E.  

The analysis so far has made no approximations. In particular, this is not a perturbation theory 
analysis. Solving the pair of coupled equations (14.37) and (14.38) would cover any possible 
behavior of this idealized system. Of course, there is nothing in these equations so far that was 
not in the original time-dependent Schrödinger equation; solving that separately for each of the 
possible pure starting states jψ of interest, and then averaging the resulting expectation 
values for some quantity of interest, such as the dipole moment, would give us the same results 
as we would get from our density matrix analysis so far.  

A key benefit of the density matrix is, however, that we can model additional random 
processes that lie outside the idealized problem, and about which we may know little.  Suppose 
we consider the fractional population difference 11 22ρ ρ−  between the “lower” and “upper” 
states. We might know that, in thermal equilibrium, and with no optical electric field present, 
this difference settles down to some particular value, 11 22( )oρ ρ− . Suppose then that, perhaps 
due to optical absorption from the lower to the upper state, we have some specific different 
fractional population difference 11 22ρ ρ− . Experience tells us that such systems often settle 
back to 11 22( )oρ ρ−  with an exponential decay with a time constant T1. This settling might 
result from random collisions of an atom, e.g., with the walls of the box containing the atom, 
or possibly with other atoms, or possibly just due to spontaneous emission. In this model, these 
processes can change the probabilities jP  of the various pure states, and hence we expect this 
density matrix picture could be appropriate. If we believe all that,7 then we could hypothesize 
that we could add an appropriate term to Eq. (14.38), e.g.,  

 ( ) ( ) ( ) ( )11 22 11 22
11 22 21 21

1

2 d od i
dt T

ρ ρ ρ ρμ
ρ ρ ρ ρ∗ − − −

− = − −E
=

 (14.39) 

We can see that, if there is no driving optical field E, Eq. (14.39) will indeed lead to an 
exponential settling of the fractional population difference to its equilibrium value 11 22( )oρ ρ−  
with a time constant T1.8 

In practice, though, just changing Eq. (14.38) into Eq. (14.39) is not sufficient for modeling 
such systems. We have to consider a similar process also for the off-diagonal elements of the 
density matrix, as in Eq. (14.37). To understand this, we need to understand the meaning of the 
off-diagonal elements.  

Within any given pure state j, the product ( ) ( )( )j j
u vc c

∗
 is something that is in general oscillating. 

There is a time dependence ( )exp /uiE t− =  built into ( )j
uc and associated with basis state u. 

Similarly ( )( )j
vc ∗ has a time dependence ( )exp /viE t = , so the product has an oscillation of the 

form exp( ( ) / )u vi E E t− − = . In our two-level system, even if we manage to prepare the system 
in one pure state with such an oscillation in this product, as time evolves we can imagine that 
our simple system can get scattered into another pure state k with some probability, possibly 

                                                           
7 Or if we are just too lazy to construct a better model, such as correctly including spontaneous emission 
from first principles. 
8 This “T1” relaxation of populations is sometimes called a “longitudinal relaxation”. 
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even one in which the fractional populations 11ρ  and 22ρ  are unchanged, but in which the 
phases of the coefficients ( )

1
kc  and ( )

2
kc  are different. At any given time, therefore, we may 

have an ensemble of different possibilities for the quantum mechanical state, and in general 
these different possibilities will have different phases of oscillation. If we have sufficiently 
many such random phases that are sufficiently different in our mixed state, then the ensemble 
average of a product u vc c∗  for different u and v, i.e., u vc c∗ , will average out to zero. But this 
ensemble average is simply the off-diagonal density matrix element uvρ , as defined in Eq. 
(14.8).  

Hence, we can see that these off-diagonal elements contain information about the coherence of 
the populations in different states. The collisions or other processes that could scatter into 
states with different phases for the expansion coefficients can be called “dephasing” processes. 
The simplest model we can construct is to postulate that such dephasing processes acting alone 
on the off-diagonal density matrix elements would give rise to an exponential settling of any 
off-diagonal element to zero, with some time constant T2.9 Hence we can postulate adding a 
term 21 2/Tρ−  to Eq. (14.37) to obtain 

 ( )21 21
21 21 11 22

2

dd
i i

dt T
μρ ρ

ω ρ ρ ρ= − + − −E
=

 (14.40) 

The dephasing rate or loss of coherence (the “T2” process) is always comparable to or faster 
than the population relaxation (the “T1” process)10 because any process that relaxes the 
population by such a decay also destroys the coherence.11 In this equation, in the absence of an 
optical field E, 21ρ  would execute an oscillation at approximately frequency 21ω , decaying to 
zero amplitude approximately exponentially with a time constant T2. 

The equations (14.39) and (14.40) now constitute our model for our two-level system, 
including collision, relaxation, and dephasing processes that lie outside the Hamiltonian we 
know about for the system. We are particularly interested in solving for the behavior of the 
system for the case of an oscillating electric field, for example, of the form 

 ( ) ( ) ( )( )cos exp exp
2
o

ot t i t i tω ω ω= = + −
EE E  (14.41) 

To solve the equations in this case, we make a substitution and one final simplifying 
approximation. As is often the case, it is useful to take the underlying oscillation out of the 
variables of interest. We therefore choose to define a new “slowly varying” quantity 

 ( ) ( ) ( )21 21 expt t i tβ ρ ω=  (14.42) 

and substitute using this to obtain, instead of Eqs. (14.39) and (14.40),  

 ( ) ( ) ( ) ( )11 22 11 22
11 22 21 21

1

d o
o

d i
dt T

ρ ρ ρ ρμ
ρ ρ β β ∗ − − −

− = − −E
=

 (14.43) 

                                                           
9 This “T2” relaxation of populations is sometimes called a “transverse relaxation”. 
10 Old professors often become incoherent long before they have stopped talking. 
11 More precisely, we can write 2 1 2(1/ ) (1/ 2 ) (1/ )T T T ′= +  where 2T ′  describes dephasing processes that 
are in addition to the population relaxation. See, e.g., M. Fox, Quantum Optics (Oxford, 2006) , p. 181 
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 ( ) ( )21 21
21 21 11 22

22
dd

i i
dt T

μβ β
ω ω β ρ ρ= − + − −oE

=
 (14.44) 

where we have also made the approximation of dropping all terms proportional to 
( )exp 2i tω± . Such terms will average out to zero over timescales of cycles, and hence will 

make relatively little contribution to the resulting values of 11 22ρ ρ−  and 21β  that are obtained 
formally by integrating these equations in practice.12 These equations (14.43) and (14.44) are 
often known as the optical Bloch equations.13 In terms of 21β , the ensemble average of the 
dipole moment is now, from Eq. (14.35), 

 
( ) ( )( )

( ) ( )
12 21

21 21

exp exp

2 Re cos Im sin
d

d

i t i t

t t

μ μ β ω β ω

μ β ω β ω

= + −

= +⎡ ⎤⎣ ⎦
 (14.45) 

where we have used the fact that 21 12β β ∗= , which follows from the definition, Eq. (14.42) and 
the fact that the density matrix itself is Hermitian. 

Now let us solve the equations (14.43) and (14.44) for one important and useful case. We want 
to know what happens in the “steady state” – i.e., for a monochromatic field and when the 
system has settled down. In that case, we expect first that the fractional population difference, 

11 22ρ ρ− , will no longer be changing, so 11 22( ) / 0d dtρ ρ− = . We also expect that any 
coherent responses we have from the system, as seen for example in the off-diagonal density 
matrix element 21ρ , will have settled down to following the appropriate driving field terms. 
Since we already took out the variation of the form exp( )i tω−  in setting up the slowly-varying 
element 21β , we therefore expect that 21 / 0d dtβ =  in the steady state. 

Therefore, setting the left-hand sides of both (14.43) and (14.44) to zero, we can solve these 
equations. Adding Eq. (14.43) and its complex conjugate gives us an expression for the real 
part of 21β , and similarly subtracting them gives the imaginary part. These can then be 
substituted into Eq. (14.44), leading to solution for 11 22ρ ρ−  and hence for all the desired 
variables. Hence we have 

 ( ) ( )
( )

2 2
21 2

11 22 11 22 2 2 2
21 2 2 1

1

1 4o

T

T T T

ω ω
ρ ρ ρ ρ

ω ω

+ −
− = −

+ − + Ω
  (14.46) 

 ( ) ( )
( )

2 11 22
21 2 2 2

21 2 2 1

Im
1 4

oT

T T T

ρ ρ
β

ω ω

Ω −
=

+ − + Ω
 (14.47) 

 ( ) ( ) ( )
( )

2
21 2 11 22

21 2 2 2
21 2 2 1

Re
1 4

o
T

T T T

ω ω ρ ρ
β

ω ω

− Ω −
=

+ − + Ω
 (14.48) 

where / 2d oμΩ = E = .  

To understand what these equations are telling us, we now presume that we have some large 
number N of such systems (“atoms”) per unit volume. The population difference between the 
number in the lower state and the number in the higher state (per unit volume) is therefore 

                                                           
12 This approximation is known as the “rotating wave” approximation. 
13 The actual Bloch equations in their simplest form were derived to describe another “two-level” system, 
namely spin-1/2 nuclei in a magnetic field. The optical Bloch equations here are mathematically closely 
analogous. See, e.g., M. Fox, Quantum Optics (Oxford, 2006) for a recent introductory discussion.  
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( )11 22N N ρ ρΔ = − , and the population difference in the absence of the optical field is 
( )11 22o oN N ρ ρΔ = − . Then instead of Eq. (14.46) we can write 

 
( )

( )

2 2
21 2

2 2 2
21 2 2 1

1

1 4
o

T
N N

T T T

ω ω

ω ω

+ −
Δ = Δ

+ − + Ω
 (14.49) 

In general in electromagnetism, the (static) polarization P is defined as  

 oε χP = E  (14.50) 

where χ is the susceptibility. When we have an oscillating field, the response of the medium, 
and hence the polarization, can be out of phase with the electric field, and then it is convenient 
to generalize the idea of susceptibility. We can formally think of it as a complex quantity with 
real and imaginary parts χ′  and χ′′  respectively, or equivalently we can explicitly write the 
response to a real field coso tωE  as  

 ( )cos sino o t tε χ ω χ ω′ ′′= +P E  (14.51) 

It is also generally true in electromagnetism that the polarization is the dipole moment per unit 
volume. Hence here we can also write 

 N μ=P  (14.52) 

Hence, putting Eqs. (14.45), (14.47), (14.48), (14.51), and (14.52) together, we can write 

 ( ) ( )
( )

2
21 22

2 2 2
21 2 2 11 4

d o

o

TT N
T T T

ω ωμ
χ ω

ε ω ω

−Δ′ =
+ − + Ω=

 (14.53) 
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( )

2
2

2 2 2
21 2 2 1

1
1 4

d o

o

T N
T T T

μ
χ ω

ε ω ω
Δ′′ =

+ − + Ω=
 (14.54) 

In electromagnetism, the in-phase component of the polarization (and hence χ′  - the real part 
of χ) is responsible for refractive index, and the quadrature (i.e., 90 degrees shifted) 
component (and hence χ′′  - the imaginary part of χ) is responsible for optical absorption. 
These behaviors can be checked by formally solving the wave equation, as derived from 
Maxwell’s equations, with these susceptibilities present. In this particular case, therefore, what 
we have found is an expression for the refractive index and absorption of an atomic absorption 
line.  

If we consider the case where the electric field amplitude is small, then 0Ω � , and we have 
the normal “linear” refraction variation 

 ( ) ( )
( )

2
21 22

2 2
21 21

d o

o

TT N
T

ω ωμ
χ ω

ε ω ω

−Δ′ =
+ −=

 (14.55)  

and a Lorentzian absorption line 

 ( )
( )

2
2

2 2
21 2

1
1

d o

o

T N
T

μ
χ ω

ε ω ω
Δ′′ =

+ −=
 (14.56) 

associated with an “atomic” or “two-level” transition. These functions are sketched in Fig. 
 14.1. 
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Fig.  14.1. Sketch of the Lorentzian line shape for χ′′  and the corresponding line shape for χ′ , as 
in Eqs. (14.56) and (14.55) respectively. 

Note that, finally, we have got rid of the δ-function behavior of absorbing transitions that we 
got from simple time-dependent perturbation theory. Now we have an absorbing line with a 
much more reasonable shape, with a width. The parameter of the width is 21/T , i.e., the more 
dephasing “collisions” there are with the “atom”, the wider the absorption line. Incidentally, 
any process that leads to the recovery of the atom from its excited state back to its lower state 
will also cause a decay of the off-diagonal elements, and so even if there are no additional 
dephasing processes, the absorbing line will still have a width. When the only recovery process 
is spontaneous emission, the resulting line-width is called the natural line-width. We can view 
the line-width of the absorbing transition as being consistent with the energy-time uncertainty 
principle – if the state (or the coherence of the state) only persists for a finite time, then the 
state cannot have a well-defined energy, hence the line-width. 

The approach we have taken so far is not perturbation theory. Within its simplifications and 
the approximations of simple times 1T  and 2T  to describe the relaxation of the system, it is 
exact for all fields. In particular, the results we have here model absorption saturation for this 
system. If we keep trying to absorb more and more photons into an ensemble of these “atoms”, 
there will be fewer and fewer atoms in their lower states (and also more and more in their 
upper states), which removes these atoms from absorption. (It also allows them to show 
stimulated emission from the upper to the lower state, which is a process that is exactly the 
opposite of absorption.) Hence the absorption should progressively disappear as we go to 
higher intensities. This process is built in to the model we have here. The quantity 2Ω  is 
proportional to the electric field squared, which in turn is proportional to the intensity I of the 
light field. Hence we can write 2

2 14 / ST T I IΩ ≡  where SI  is called the saturation intensity. 
Hence, for example, on resonance ( 21ω ω= ), we have 

 ( ) 1
1 / SI I

χ ω′′ ∝
+

 (14.57) 
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This equation is extensively used to describe the process of “absorption saturation” that is 
often encountered in absorbing systems illuminated with the high intensities available from 
lasers. 

Problem 
 14.5.1   Suppose we have been driving an ensemble of “two-level” atoms with an energy separation 

between the two levels of 21ω=  and a (real) dipole matrix element dμ  between these two levels. The 
atoms have been illuminated with an electric field of the form coso tωE for a sufficiently long time 
that the system has reached a steady state. We work in the approximation where we have 
characteristic times T1 and T2 to describe the population recovery time and the dephasing time, 
respectively. For simplicity also, we presume we are at a low temperature so that the equilibrium 
condition (in the absence of optical electric field) is that all the atoms are in their lower state. 
(i)  Write down expressions for the values of the fractional difference 11 22ρ ρ−  between the lower 

and upper state populations of the atoms, and for the ensemble average μ of the polarization 
of these atoms at time 0t = . 

(ii)  At time 0t = , we suddenly cut off this driving field (i.e., we suddenly set 0o =E ). Find 
expressions for the subsequent behavior of 11 22ρ ρ−  and μ . [Note: you may neglect the 
additional electric field that results from the polarization, for simplicity assuming that the total 
electric field is always zero for 0t ≥ . You may use expressions based on the “rotating wave” 
approximation for this part.]  

(iii) Presuming that 1 2 211/T T ω� �  (e.g., 1 2 214 20 2 /T T π ω= = × ), and for simplicity presuming we 
are operating far from resonance, i.e., 21 21/Tω ω− � , sketch the resulting behavior as a 
function of time of both the fraction of the population of atoms that are in their upper state, and 
the ensemble average of the polarization (in arbitrary units for both these quantities), indicating 
all the characteristic times on your sketch. [Note: it is easier here not to use the slowly-varying 
or rotating wave expressions for the off-diagonal elements.]  

(iv)  It might be that radiative recombination is the only process by which the atoms recover to their 
ground state (and hence that is the only process that contributes to T1). You may find in part (ii) 
above that the ensemble average of the overall magnitude of the polarization decays faster than 
the population recovers to its ground state. Explain why that rapid polarization decay can still be 
consistent with the longer overall (radiative) recovery of the population.  

14.6 Density matrix and perturbation theory 

The discussion above of a two level system showed an exact solution of a simple problem, 
including both the linear response and also the non-linear response of absorption saturation. 
Just as in solutions of Schrödinger’s equation, for more complicated systems, exact solutions 
are usually not possible. Again, just as for Schrödinger’s time-dependent equation, we can use 
perturbation theory, but now with Eq. (14.22) or Eq. (14.23) for the time evolution of the 
density matrix instead of Schrödinger’s equation. One common approach is to generalize the 
kinds of relaxation time approximations we introduced above, writing instead of Eq. (14.22) 

 ( )ˆ,mn
mn mn mnomn

i H
t

ρ
ρ γ ρ ρ

∂ ⎡ ⎤= − −⎣ ⎦∂ =
 (14.58) 

Here mnoρ  is the value to which density matrix element mnρ  settles in the absence of 
excitation, and mnγ  is the “relaxation rate” of element mnρ . For our two-level system problem 
above, if we had chosen 11 22 11/Tγ γ= =  and 21 12 21/Tγ γ= = , then Eq. (14.58) would lead to 
Eqs. (14.39) and (14.40) that we had solved essentially exactly for that system.  

In the common perturbation theory approach, one starts with the equations of the form (14.58) 
for each of the density matrix elements, and constructs a perturbation theory just as we had 
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done in Chapter 7 above when starting with the time-dependent Schrödinger equation. In fact, 
this density matrix version is the one commonly used for calculating non-linear optical 
coefficients, rather than the simple Schrödinger equation version of Chapter 7, because the 
inclusion of relaxation avoids all of the singularities that otherwise occur when the transition 
energy and the photon energy coincide. For reasons of space, we will not repeat this version of 
perturbation theory here, referring the reader to the literature on non-linear optics.14 

Further reading 

K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996) gives a 
comprehensive and accessible discussion of the density matrix and all its many applications.  

M. Fox, Quantum Optics (Oxford, 2006) discusses the density matrix and its application to 
two-level systems in a clear introductory account. 

A. Yariv, Quantum Electronics (3rd Edition) (Wiley, New York, 1989) gives an introductory 
account of the density matrix applied to a two-level system, in an approach  similar to that we 
have taken here. 

14.7 Summary of concepts 

Pure state 

A pure state in practice is one that can be written as a simple linear combination of quantum 
mechanical states, e.g., as in the form 1 1 2 2b bψ ψ+ . (It is not necessary that 1ψ  and 2ψ  
are orthogonal.) 

Ensemble average 

If we have a system that can occupy any of a set of different states with probabilities Pn, then 
we can imagine constructing a set or “ensemble” of N replicas of the system, with P1N of them 
in state 1, P2N in state 2, and so on. An ensemble average is the average of some quantity when 
measured in each of the members of this ensemble.  

Mixed state 

A mixed state is one in which we only know probabilities jP  that the system is in one of the 
different pure states jψ . (It is not necessary that the jψ  are orthogonal.) 

Ensemble average measured value of a quantity 

For a system in a quantum-mechanical mixed state as above, the ensemble average value of a 
quantity that is represented by an operator Â  is  

 ˆ
j j j

j
A P Aψ ψ= ∑  (14.4) 

Density operator 

The density operator is a way of representing a system that is in a mixed state, and is given by 

                                                           
14 See in particular the excellent treatment in R. W. Boyd, Nonlinear Optics (Academic, New York, 
1992), pp 116 – 148. 
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 j j j
j

Pρ ψ ψ= ∑  (14.5) 

As a special case, with one particular 1jP = , it can also represent a pure state, so the density 
operator and its associated formalism can be used for both pure and mixed states. 

Note that, though it is an operator, in quantum mechanics it is not like other operators that 
represent variables, such as position, momentum or energy; instead, it represents the state of a 
system. To emphasize this difference, we represent it without the “hat” used on other 
operators. 

Density matrix 

The density operator is almost always represented by a matrix, in which case the matrix 
elements are  

 ( ) ( )( )j j
uv u v j u v u v

j
P c c c cρ φ ρ φ

∗
∗≡ = ≡∑  (14.8) 

where the c’s are the expansion coefficients of the pure states on some complete orthonormal 
basis uφ   

 ( )j
j u u

u
cψ φ= ∑  (14.6) 

and the “bar” notation on u vc c∗  denotes an ensemble average.  

The density matrix is Hermitian (and hence so also is the density operator), and  

 ( ) 1Tr ρ =  (14.10) 

Ensemble average from the density matrix 

For a quantity represented by the quantum mechanical operator Â , the ensemble average 
measured value of that quantity when the system is in a state represented by density matrix ρ is 
given by 

 ( )ˆA Tr Aρ=  (14.14) 

which applies for both pure and mixed states. 

Equation of motion for the density matrix 

Just as the time-dependent Schrödinger equation can give the time-evolution of a system in a 
pure state represented by a wavefunction ψ, so also the equation  

 ˆ,i H
t
ρ ρ∂ ⎡ ⎤= ⎣ ⎦∂ =

 (14.23) 

can give the time-evolution of a system in a mixed (or pure) state represented by the density 
operator ρ. This same equation can also be written explicitly for each element of the 
corresponding density matrix ρ as 

 ˆ,mn

mn

i H
t

ρ
ρ

∂ ⎡ ⎤= ⎣ ⎦∂ =
 (14.22) 
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Relaxation time approximation 

When the system interacts in a random fashion with other elements that are not included in the 
Hamiltonian Ĥ , the overall behavior can often be modeled by phenomenologically adding 
relaxation rates to obtain, instead of (14.22) 

 ( )ˆ,mn
mn mn mnomn

i H
t

ρ
ρ γ ρ ρ

∂ ⎡ ⎤= − −⎣ ⎦∂ =
 (14.58) 

where mnoρ  is the equilibrium value of the density matrix element mnρ  in the absence of 
excitation. 

Optical Bloch equations 

A specific pair of equations that follow from the relaxation time approximation above, with an 
additional approximation of the neglect of terms oscillating at 2ω (the “rotating wave” 
approximation), are the optical Bloch equations 

 ( ) ( ) ( ) ( )11 22 11 22
11 22 21 21

1

d o
o

d i
dt T

ρ ρ ρ ρμ
ρ ρ β β ∗ − − −

− = − −E
=

 (14.43) 

 ( ) ( )21 21
21 21 11 22

22
dd

i i
dt T

μβ β
ω ω β ρ ρ= − + − −oE

=
 (14.44) 

which describe an optically excited two-level system. Here ( ) ( ) ( )21 21 expt t i tβ ρ ω= , and the 
system, with dipole matrix element dμ , is being excited with an electric field of the form 

coso tωE . These equations lead to the classic “Lorentzian” line shape of atomic transitions, 
and also explain absorption saturation in a simple model. 

 

 



 

 

Chapter 15  
 
Harmonic oscillators and photons 

Prerequisites: Chapters 2 – 5, 9, 10, 12, and 13. For additional background on vector calculus, 
electromagnetism and modes see Appendices C and D. 

In this Section, we will return to the harmonic oscillator, and consider it in a mathematically 
more elegant way. This approach leads to the introduction of “raising” and “lowering” 
operators that take us from one harmonic oscillator state to another. The introduction of these 
operators allows us to rewrite the harmonic oscillator mathematics quite economically. We 
then show that the electromagnetic field for a given mode can also be described in a manner 
exactly analogous to a harmonic oscillator. In this case, we describe the states of this 
generalized harmonic oscillator in terms of the number of photons per mode, with that number 
corresponding exactly to the quantum number for the corresponding harmonic oscillator state. 
The raising and lowering operators are now physically interpreted as “creation” and 
“annihilation” operators for photons, and are key operators for describing electromagnetic 
fields.  

By this process, we can describe the electromagnetic field quantum mechanically, rather than 
our previous semiclassical use of quantum mechanical electron behavior but with classical 
electric and magnetic fields. We say we have “quantized” the electromagnetic field. This 
quantization is then the basis for all of quantum optics. This approach will also prepare us for 
discussions in subsequent Chapters of fermion operators, and of the full description of 
stimulated and spontaneous emission.  

15.1 Harmonic oscillator and raising and lowering 
operators 

We remember the (time-independent) Schrödinger equation that we had constructed before for 
the harmonic oscillator (Eq. (2.75)). That approach was based on the idea that there was a 
simple, mechanical potential energy that was proportional to the square of the displacement, 
z , i.e.,  

 
2 2

2 2
2

1ˆ
2 2

dH m z E
m dz

ψ ω ψ ψ
⎡ ⎤

= − + =⎢ ⎥
⎣ ⎦

=  (15.1) 

Here, we had identified ω as the angular frequency of oscillation of the classical oscillator. For 
mathematical convenience, we introduce a dimensionless distance, as in Eq. (2.76) 

 m zωξ =
=

 (15.2) 
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which enables us to rewrite the Schrödinger equation, as in Eq. (2.77), as 

 
2

2
2

1
2

d E
d

ξ ψ ψ
ωξ

⎡ ⎤
− + =⎢ ⎥

⎣ ⎦ =
 (15.3) 

Now, we show how to write this equation in another, elegant form, by introducing the raising 
and lowering operators.  

The term 2 2 2/d dξ ξ− +  reminds us of the difference of two squares of numbers  

 2 2 2 2 ( )( )a b b a a b a b− + = − = − + +  (15.4) 

though here we note that 2 2/d dξ  is an operator so we cannot quite use this same algebraic 
identity. Anyway, if we examine a product of this form for our present case, we have 

 
2

2
2

1 1 1 1
2 22 2

d d d d d
d d d dd

ξ ξ ξ ξ ξ
ξ ξ ξ ξξ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + × + = − + − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 (15.5) 

As before, when we were considering the commutator of momentum and position, we note 
that, for any function ( )f ξ  

 
( ) ( )( ) ( )

( ) ( ) ( ) ( )

d d d df f f
d d d d

d d df f f f
d d d

ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ

ξξ ξ ξ ξ ξ ξ
ξ ξ ξ

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠

= + − =
 (15.6) 

so we can write the commutation relation 

 1d d
d d

ξ ξ
ξ ξ

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
 (15.7) 

Hence, from Eq. (15.5), we have 

 
2

2
2

1 1 1 1
2 22 2

d d d
d dd

ξ ξ ξ
ξ ξξ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + = − + × + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 (15.8) 

We can, if we wish, choose to write what we will come to call the “raising” or “creation” 
operator 

 † 1ˆ
2

da
d

ξ
ξ

⎛ ⎞
≡ − +⎜ ⎟

⎝ ⎠
 (15.9) 

(pronounced “a dagger”) and the “lowering” or “annihilation” operator, 

 1ˆ
2

da
d

ξ
ξ

⎛ ⎞
≡ +⎜ ⎟

⎝ ⎠
 (15.10) 

Note we have written these two operators using the notation that one is the Hermitian adjoint 
of the other. This is in fact the case. The operator /d dξ  is itself anti-Hermitian, as we 
demonstrated earlier for the operator /d dz , i.e., / [ / ]d d d dφ ξ ψ ψ ξ φ ∗= −  for two 
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arbitrary states φ  and ψ .1 Also, ξ  is Hermitian (it represents the position operator, at least 
in the position representation, and with position being an observable, the operator must be 
Hermitian), and so [ ]φ ξ ψ ψ ξ φ ∗= . Therefore 

†1 1ˆ ˆ
2 2

d da a
d d

φ ψ φ ξ ψ ψ ξ φ ψ φ
ξ ξ

∗
∗⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= + = − + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦
 (15.11) 

and so, by definition, the operators â  and †â  are indeed Hermitian adjoints.2 Incidentally, 
these operators are not Hermitian, i.e., it is not true that †ˆ ˆa a= , and thus differ mathematically 
from many other operators we have been considering so far. 

Now using the definitions for these operators, Eqs. (15.9) and (15.10), we can write, from Eq. 
(15.3), 

 † 1ˆ ˆ
2

Ea a ψ ψ
ω

⎛ ⎞+ =⎜ ⎟
⎝ ⎠ =

 (15.12) 

In other words, we can rewrite the Hamiltonian as 

 † 1ˆ ˆ ˆ
2

H a aω ⎛ ⎞≡ +⎜ ⎟
⎝ ⎠

=  (15.13) 

We know from the previous solution of the harmonic oscillator that the eigenenergy associated 
with eigenstate nψ  is ( )1/ 2nE nω= += , and so we know that 

 †ˆ ˆ n na a nψ ψ=  (15.14) 

This operator †ˆ ˆa a  obviously has the harmonic oscillator states as its eigenstates, and the 
number of the state as its eigenvalue, and is sometimes called the number operator, N̂ , i.e.,  

 †ˆ ˆ ˆN a a≡  (15.15) 

with the eigenequation 

 ˆ
n nN nψ ψ=  (15.16) 

Properties of raising and lowering operators 
Thus far, we have merely made a mathematical rearrangement of the solutions we already 
knew from the previous discussion of the harmonic oscillator, introducing two new, and rather 
unusual operators, â  and †â . These operators are, however, very useful, as we will see below, 
and give an elegant way of looking at harmonic oscillators, a way that is particularly useful 
also as we generalize to considering the electromagnetic field.  

                                                           
1 Remember, of course, that the momentum operator in the z direction, -i=d/dz, is Hermitian, and so d/dz 
must be anti-Hermitian. 
2 The proof that â  and †â  are indeed Hermitian conjugates of one another is obvious if one writes them 
out in the matrix form in the position representation, as in, for example, Eq. (4.132). If one merely adds 
the position variable itself (x in that example) along the diagonal to construct the matrix for the operator 
i(d/dx)+x, it is obvious that reflecting the matrix about the diagonal and taking the complex conjugate 
leads to the matrix representation for the operator -i(d/dx)+x. 
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The operators â  and †â  have a very important property, easily proved from their definitions, 
which is their commutator. Specifically, we find 

 † † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a aa a a⎡ ⎤ = − =⎣ ⎦  (15.17) 

We can use this property, together with the “number operator” property (Eq. (15.14)), to show 
the reason why these operators are called raising and lowering operators, or creation and 
annihilation operators. 

Suppose first we operate on both sides of Eq. (15.14) with â . Then we have 

 ( )†ˆ ˆ ˆ ˆn na a a naψ ψ=  (15.18) 

i.e., regrouping the operators on the left, and substituting from Eq. (15.17), we have 

 ( )( ) ( )( ) ( )† †ˆ ˆ ˆ ˆ ˆ ˆ ˆ1n n naa a a a a n aψ ψ ψ= + =  (15.19) 

i.e.,  

 ( ) ( )( )†ˆ ˆ ˆ ˆ1n na a a n aψ ψ= −  (15.20) 

But this means, from Eq. (15.14), that ˆ na ψ  is simply 1nψ − , at least within some 
normalizing constant nA , i.e., 

 1ˆ n n na Aψ ψ −=  (15.21) 

Hence we see why the operator â  is called the lowering operator, because it changes the state 
nψ  into the state 1nψ − .  

We can perform a similar analysis, operating on both sides of Eq. (15.14) with †â . The details 
of this are left as an exercise for the reader. The result is, similarly to Eq. (15.20), 

 ( ) ( )( )† † †ˆ ˆ ˆ ˆ1n na a a n aψ ψ= +  (15.22) 

Again, we conclude from Eq. (15.14) that †ˆ na ψ  must simply be 1nψ + , at least within some 
normalizing constant 1nB +  

 †
1 1ˆ n n na Bψ ψ+ +=  (15.23) 

and we similarly see why the operator †â  is called the raising operator, because it changes the 
state nψ  into the state 1nψ + .  

Incidentally, one way to remember which operator is which is to think of the superscript 
dagger “ † ” as a “+” sign corresponding to raising the state. Indeed, it is quite a common 
alternative notation to use a superscript “+” sign. 

We can now proceed one step further, which is to deduce what nA  and nB  are. Premultiplying 
Eq. (15.21) by 1nψ −  gives 

 1 ˆn n na Aψ ψ− =  (15.24) 

But, using the normal properties of operators and state vectors, and the conjugate of Eq. 
(15.23) rewritten for initial state 1nψ −  rather than nψ , we have  

 
† ††

1 1ˆ ˆn n n n n na a B Bψ ψ ψ ψ∗
− −⎡ ⎤= = ⎡ ⎤ =⎣ ⎦⎣ ⎦  (15.25) 
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so  

 1 ˆn n n n n n na A B Bψ ψ ψ ψ∗ ∗
− = = =  (15.26) 

Hence 

 2† †
1ˆ ˆ ˆn n n n n n n n na a A a A B A nψ ψ ψ ψ ψ−= = = =  (15.27) 

and so 

 nA n=  (15.28) 

at least within a unit complex constant, which we choose to be +1.3 Hence, we have instead of 
Eq. (15.21), 

 1ˆ n na nψ ψ −=  (15.29) 

and instead of Eq. (15.23) 

 †
1ˆ 1n na nψ ψ += +  (15.30) 

Eigenfunctions using raising and lowering operators 
We know that the harmonic oscillator has a lowest state, which corresponds to 0n = . Hence, 
from Eq. (15.29), we must have 

 0ˆ 0a ψ =  (15.31) 

(or more strictly 0 oψ , since the result is strictly a state vector of zero length, not a number). 

We can use this as an alternative method of deducing ( )0 0ψ ψ ξ≡ . Using the differential 
operator definition of â  from Eq. (15.10), we have 

 ( )0
1 0
2

d
d

ξ ψ ξ
ξ

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
 (15.32) 

from which we can immediately verify that the solution is  

 ( )
( )

2

0 1/ 4

1 exp
2

ξψ ξ
π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (15.33) 

(where we have also normalized the solution), in agreement with our previous method of direct 
solution of the second-order differential Schrödinger equation. Now, however, we can proceed 
using the raising operator to construct all the other solutions for different n . Successive 
application of †â  to 0ψ  gives 

 ( )†
0ˆ !

n

na nψ ψ=  (15.34) 

                                                           
3 This choice is not totally arbitrary. If we were to consider multiple different harmonic oscillators, as we 
could do in considering multiple different modes of the electromagnetic field, we need to have specific 
commutation relations between the creation and annihilation operators for different modes. This choice 
does give the correct commutation relations in that case. We will return to this point below when 
considering more general boson commutation relations. 
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and so the normalized eigenstates can be written as 

 ( )†
0

1 ˆ
!

n

n a
n

ψ ψ=  (15.35) 

We see by this approach that each eigenfunction can be progressively deduced from the 
preceding ones. We would reconstruct the previously derived solutions with Hermite 
polynomials and Gaussians if we proceeded this way. We may use this result either actually to 
construct the eigenfunctions explicitly, or as a substitution to allow convenient manipulations 
of the states by operators.  

We can see that the use of these raising and lowering operators has certainly given us a 
compact and elegant way of stating the properties of the harmonic oscillator, one in which the 
properties can largely be stated without recourse to the actual wavefunction in space. This 
latter aspect is particularly useful as we generalize the harmonic oscillator to other results 
where the concept of a quantum mechanical wavefunction in space is possibly not meaningful, 
such as with the electromagnetic field. 

Note, incidentally, that saying that the harmonic oscillator is in state n is mathematically 
identical to considering that the harmonic oscillator “mode” contains a number n of identical 
particles. Each particle has energy ω= . It is of course meaningless to say what order the 
particles are in – we can only say that we have n  identical particles in the oscillator. This is 
exactly the kind of behavior we expect for identical bosons that are all in one mode. As we 
deduced above in Chapter 13, there is only one way in which we have n identical bosons in 
one mode, and there is only one way in which this oscillator “mode” can be in state n. For the 
harmonic oscillator discussed here, it may not appear particularly useful to introduce this 
concept of identical particles, though it is viewed as a useful concept as we talk about the 
electromagnetic field. 

Problem 
 15.1.1. Prove the relation 
 † † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a aa a a⎡ ⎤ = − =⎣ ⎦   

for the harmonic oscillator raising and lowering operators, starting from their definitions 

 † 1ˆ
2

da
d

ξ
ξ

⎛ ⎞
≡ − +⎜ ⎟

⎝ ⎠
 and 1ˆ

2
da

d
ξ

ξ
⎛ ⎞

≡ +⎜ ⎟
⎝ ⎠

. 

 15.1.2. Given that  
 †ˆ ˆ n na a nψ ψ=   

and  
 † † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a aa a a⎡ ⎤ = − =⎣ ⎦   

show that 
 ( ) ( )( )† † †ˆ ˆ ˆ ˆ1n na a a n aψ ψ= +  

15.2 Hamilton’s equations and generalized position and 
momentum 

In our previous attempts at turning classical problems into quantum mechanical ones, such as 
the postulation of the Schrödinger equation or of the angular momentum operator, we have 
written a classical equation in terms of momentum and position, and then substituted the 
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operator /i x− ∂ ∂=  for the momentum xp , and similarly for other components if needed. Can 
we take a similar approach for other kinds of problems, such as the electromagnetic field, and 
arrive at the analog of the Schrödinger equation?  

The answer is that we can, but we will not do this by considering momentum and position in 
the sense that we do with a particle. What we will do is find quantities, e.g., for the 
electromagnetic field, that are mathematically analogous to momentum and position for a 
particle, though these quantities are not physically momentum and position in the case of an 
electromagnetic wave. To find these analogous quantities, we go back and examine the 
mathematical roles of momentum and position in the Hamiltonian of a particle, and look for 
quantities with analogous roles in the Hamiltonian of, e.g., one mode of the electromagnetic 
field. Once we find those, we can proceed as before to quantize by substituting an appropriate 
operator for the quantity analogous to momentum.  

This general approach to quantization of finding quantities mathematically analogous to 
momentum and position in the Hamiltonian, and substituting the operator for the momentum, 
works in a broad range of examples, beyond the electromagnetic case. In the end, its only 
justification is that it appears to work, giving us a quantum model of the world around us that 
agrees with what we see.  

To see how we find quantities that are mathematically analogous to position and momentum in 
a Hamiltonian, we return momentarily to classical mechanics. In classical mechanics, the 
Hamiltonian, H, represents the total energy and, in the simple case of one particle in one 
dimension, is a function of the momentum, p, and the position, conventionally written as q. p 
and q are considered to be independent variables. Hence, in classical mechanics, for a particle 
of mass m, considering only one dimension for simplicity, 

 ( )
2

2
pH V q
m

= +  (15.36) 

where ( )V q  is the potential energy. The force on the particle is the negative of the gradient of 
the potential (a particle accelerates when going down hill), i.e., the force is 

 dV HF
dq q

∂
= − ≡ −

∂
 (15.37) 

As usual, from Newton’s second law, (force = rate of change of momentum) we know 
therefore that 

 dp H
dt q

∂
= −

∂
 (15.38) 

We note that  

 H p
p m

∂
=

∂
 (15.39) 

Since p mv=  where v  is the particle velocity, and, by definition, /v dq dt≡ , we therefore 
have 

 dq H
dt p

∂
=

∂
 (15.40) 
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The two equations (15.38) and (15.40) play a central role in the Hamiltonian picture of 
classical mechanics, and are sometimes known as Hamilton’s equations. For our purposes, we 
note only that, if the Hamiltonian depends on two quantities p and q, and these quantities and 
the Hamiltonian obey Hamilton’s equations (15.38) and (15.40), then we have found the 
quantities analogous to momentum and position. It has been very successful in quantum 
mechanics to use these quantities as the basis for quantization by substituting a differential 
operator /i d dq− =  for p in the corresponding Hamiltonian.  

Note that in this general case both p and q may bear little relation to the momentum or position 
of anything; all that matters is that they and the Hamiltonian obey Hamilton’s equations 
(15.38) and (15.40). The art in using this approach to suggest a quantization is in finding 
appropriate quantities in the problem that will behave in the same mathematical manner as the 
p and q in the Hamiltonian equations.  

15.3 Quantization of electromagnetic fields 

For a summary of the relevant additional vector calculus and electromagnetism necessary from 
this point on, see Appendices C and D. 

Description of a mode of the electromagnetic field 
Here we will consider a very simple example of a mode of the electromagnetic field, and we 
will start by describing it in classical terms, checking the proposed classical behavior against 
Maxwell’s equations. We imagine a box of length L in the x direction. We presume it is 
arbitrarily large in the other dimensions, and consequently the mode can be described as a 
standing plane wave in the x direction, of some wavevector k. We certainly expect that the 
electric field E is perpendicular to the x direction, as both the E field and the magnetic field B 
are transverse to the direction of propagation for a simple plane electromagnetic wave. We will 
choose a polarization for the mode, here selecting the electric field to be polarized in the z 
direction, with an appropriate amplitude, Ez. The E field in the other two directions is taken to 
be zero. We also expect that the magnetic field B is perpendicular to the E  field, so we choose 
it polarized in the y direction, with amplitude yB , with zero B field in the other two directions. 
Hence we postulate that  

 ( ) sinzE p t D kx=  (15.41) 

and  

 ( ) cosy
DB q t kx
c

=  (15.42) 

where c is the velocity of light, introduced here for subsequent convenience, D is a constant 
still to be determined, and ( )p t  and ( )q t  are at the moment simply functions of time yet to be 
determined. We now check that these fields satisfy the appropriate Maxwell’s equations, which 
will justify all our postulations about these classical fields, and will tell us some other required 
relations between our postulated quantities. For this we now presume that we are in a vacuum, 
so there is no charge density and no magnetic materials, and the permittivity and permeability 
are their vacuum values of oε  and oμ  respectively.  

Using the Maxwell equation 

 
t

∂
∇× = −

∂
BE  (15.43) 
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we find, with our postulated electric and magnetic fields above, and noting that / 0zE y∂ ∂ =  
because we have an infinite plane wave with no variation in the y direction, 

 yz
BE

x t
∂∂

=
∂ ∂

 (15.44) 

i.e.,  

 cos cosD qkpD kx kx
c t

∂
=

∂
 (15.45) 

so 

 dq p
dt

ω=  (15.46) 

where kcω = . 

Similarly, using the Maxwell equation 

 o o t
ε μ ∂

∇× =
∂
EB  (15.47) 

and noting that / 0yB z∂ ∂ =  because the plane wave has no variation in the z direction,  

 y z
o o

B E
x t

ε μ
∂ ∂

=
∂ ∂

 (15.48) 

i.e.,  

 sin sino o
D dpkq kx D kx
c dt

ε μ− =  (15.49) 

i.e., using the relation from electromagnetism 

 2

1
o o c

ε μ =  (15.50) 

we have 

 dp q
dt

ω= −  (15.51) 

So we have found that our postulated form for the mode of the radiation field does indeed 
satisfy the two Maxwell equations, (15.43) and (15.47), provided we can simultaneously have 
the relations (15.46) and (15.51) between our time-varying amplitudes p and q. 

We can draw one further important conclusion here. Differentiating Eq. (15.46) with respect to 
time t, and substituting from Eq. (15.51), we find 

  
2

2
2

d q q
dt

ω= −  (15.52) 

which means that the electromagnetic mode does indeed behave exactly like a harmonic 
oscillator, with oscillation (angular) frequency ω. 
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Hamiltonian for the electromagnetic mode 

Now we want to construct the Hamiltonian for the mode, so that we can manage to find the 
appropriate quantities that will behave analogously to momentum and position by obeying 
Hamilton’s equations, (15.38) and (15.40). The reader will have guessed that we are striving to 
make p and q be those quantities, though we still have just a little work to do to make that so.  

Formally in an electromagnetic field in a vacuum, the energy density is 

 2 21 1
2 o

o

W ε
μ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
E B  (15.53) 

In a box of length L, then, per unit cross-sectional area, the total energy is the Hamiltonian 

 

( )

0

2
2 2 2 2

2
0

2
2 2 2 2

0
2

2 2

1sin cos
2

sin cos
2

4

L

L

o
o

L
o

o

H Wdx

D p kx q kx dx
c

D
p kx q kx dx

D L
p q

ε
μ

ε

ε

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

= +

⎡ ⎤= +⎣ ⎦

∫

∫

∫
 (15.54) 

We now try to choose A so as to get p and q to correspond to the analogs of momentum and 
position with the Hamiltonian H of Eq. (15.54) by having H, p, and q obey Hamilton’s 
equations, (15.38) and (15.40). We note that we already have the relation (15.46) between 

/dq dt  and p, and the relation (15.51) between /dp dt  and q. Inspection shows that, if we 
choose 

 ( )2 2

2
H p qω

= +  (15.55) 

i.e.,  

 2

o

D
L

ω
ε

=  (15.56) 

then indeed H, p, and q do indeed satisfy the Hamiltonian equations (15.38) and (15.40), 
making p and q the desired analogs of momentum and position. Specifically, using (15.46) 

 H dqp
p dt

ω∂
= =

∂
 (15.57) 

and using (15.51) 

 H dpq
q dt

ω∂
= = −

∂
 (15.58) 

Quantization 

Having derived an appropriate classical Hamiltonian that describes the electromagnetic mode, 
we now proceed to quantize it, in a manner that in the end is the same approach that we took in 
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postulating the Schrödinger equation for the electron. We postulate that we can substitute the 
operator 

 ˆ dp i
dq

= − =  (15.59) 

for the scalar quantity p of the classical Hamiltonian, obtaining a Hamiltonian operator 

 
2

2 2
2

ˆ
2

dH q
dq

ω ⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
=  (15.60) 

It is more convenient to use the dimensionless unit 

 /qξ = =  (15.61) 

(For future use, we also can define an operator 

 ˆ ˆ / dp i
d

π
ξ

= ≡ −=  (15.62) 

which is a dimensionless form of the momentum operator.) 

Use of the dimensionless unit ξ gives the Hamiltonian in the form 

 
2

2
2

ˆ
2

dH
d

ω ξ
ξ

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦

=  (15.63) 

which is mathematically identical to the Hamiltonian we used for the harmonic oscillator 
above (e.g., in Eq. (15.3)).  

(Incidentally, we can also write 

 ( )2 2ˆ ˆ
2

H ω π ξ= +
=  (15.64) 

if we prefer this dimensionless form.) 

This completes the postulation of the mathematical analogy between a mode of the 
electromagnetic field and a quantum harmonic oscillator. Obviously, if our basic postulation of 
the quantization by substitution of the operator of (15.59) is correct for describing an 
electromagnetic mode quantum mechanically (and it appears in practice that it is), we can now 
re-use all of the elegant formalism we developed above for the harmonic oscillator to describe 
the electromagnetic mode, including the raising and lowering operators (creation and 
annihilation operators).  

Because there are many possible modes of the electromagnetic field, as we think about a future 
generalization to considering all of those modes, we need to distinguish which mode the 
operators refer to. It is common to use the index λ  to index the different modes (though it is 
not sufficient to imagine that λ  is the wavelength of the mode – other attributes, such as 
polarization and the spatial form of the mode are also important). With that new notation, 
which will help us emphasize that we have made the switch from a simple mechanical 
oscillator to an electromagnetic mode, for a given mode we have, a frequency λω , a 
Hamiltonian Ĥλ , creation and annihilation operators †âλ  and âλ , and a number operator N̂λ . 
We can also label the eigenstates similarly as nλψ  as being the nth eigenstate associated with 
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the mode λ. We should also change to using the coordinate λξ , since each different mode will 
have its own corresponding coordinate. With this notation, we can rewrite some of our results 
to summarize the key relations for the electromagnetic mode case. 

Analogously to Eq. (15.13) 

 † 1ˆ ˆ ˆ
2

H a aλ λ λ λω ⎛ ⎞≡ +⎜ ⎟
⎝ ⎠

=  (15.65) 

The number operator for this mode is defined, analogously to Eq. (15.15), as 

 †ˆ ˆ ˆN a aλ λ λ≡  (15.66) 

so, analogously to Eqs. (15.14) and (15.16) 

 †ˆ ˆ ˆn n nN a a nλ λ λ λ λ λ λψ ψ ψ= =  (15.67) 

Now it is fairly obvious to make the association of nλ  with the number of photons in the 
mode, with an energy that grows in proportion to the number of photons by an amount nλ ω= . 

We also have the commutation relation, analogous to Eq. (15.17), 

 † † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a a a a aλ λ λ λ λ λ⎡ ⎤ = − =⎣ ⎦  (15.68) 

We have the lowering relation, analogous to Eq. (15.29) 

 1ˆ n na nλ λ λ λψ ψ −=  (15.69) 

which we now think is taking the state with nλ  photons in mode λ  and changing it into the 
state with 1nλ −  photons, and hence, in the electromagnetic field context, we call âλ  the 
annihilation operator for than mode. Similarly, we have the raising relation, analogous to Eq. 
(15.30) 

 †
1ˆ 1n na nλ λ λ λψ ψ += +  (15.70) 

which is taking the state with nλ  photons in mode λ  and changing it into the state with 1nλ +  
photons, so we call †âλ  the creation operator for that mode. We also expect we have, by 
analogy with Eq. (15.31),  

 0ˆ 0aλ λψ =  (15.71) 

and, as in Eq. (15.35) 

 ( )†
0

1 ˆ
!

n

n a
n

λ

λ λ λ
λ

ψ ψ=  (15.72) 

We have now essentially completed our process of quantizing one mode of the electromagnetic 
field, working by analogy with the quantization of the harmonic oscillator. We could argue 
that there is little justification for what we have done, other than that we have followed a 
similar procedure to one that worked before, and, from a fundamental point of view that is 
quite a valid complaint. As always, the only justification for such a postulation is that it works, 
as indeed this quantization of the electromagnetic field does. 
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15.4 Nature of the quantum mechanical states of an 
electromagnetic mode 

This quantization of the electromagnetic field mode has all been done by analogy, leading to a 
somewhat abstract set of results. Now we will investigate what are some of the consequences 
of these results in more tangible properties of the electromagnetic field. Based on our previous 
experiences with quantum mechanical wavefunctions, which were mostly functions of a spatial 
coordinate (though the spin functions were not), our first instinct might be to look at the 
wavefunction (or its squared modulus). It is instructive to do this, and the wavefunction does 
have some meaning, though it is quite different from that of the electron spatial wavefunction, 
for example. 

Just as before in Eq. (15.33), we have, for example, for the state with no photons in the mode, 

 ( )
( )

2

0 1/ 4

1 exp
2
λ

λ λ
ξ

ψ ξ
π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (15.73) 

but if we now work backwards to find the physical interpretation of the coordinate λξ , we 
find, from Eqs. (15.50), (15.56), and (15.42), 

 
2

coso
yB kx

L
λ

λ
μ ω

ξ=
=

 (15.74) 

In other words, λξ  is, in a dimensionless form, the amplitude of the mode of the magnetic 
field. It is not a spatial coordinate. For example, we can interpret ( ) 2

0| |λ λψ ξ  as being the 
probability that, for the lowest state of this electromagnetic field mode, the field mode will be 
found to have (dimensionless) amplitude λξ .4 That probability (per unit range of 
dimensionless field amplitude) is therefore the Gaussian ( )2(1/ )exp λπ ξ− . We would find 
related results for the states of the mode with more photons. This kind of result tells us two 
behaviors that are quite different from what we might expect from classical electromagnetic 
fields, namely 

(i) that, in a state with a given number of photons, the magnetic field amplitude is not a fixed 
quantity, but is rather described by a distribution, and 

(ii) even with no photons in the mode, the magnetic field amplitude is not zero.  

Similar results can be stated for the electric field mode amplitude. The presence of such 
amplitudes of the electric and magnetic fields even with no photons is called vacuum 
fluctuations. In general, the states with specific numbers of photons, which correspond to the 
eigenstates of the Hamiltonian or the number operator, do not have precisely defined electric 
or magnetic field amplitudes. 

Though we may sometimes be interested in these distributions of magnetic or electric field 
amplitude, we are generally much less interested in these than we were in the probabilities of 
finding particles at points in space. As a result, in the quantized electromagnetic field, we make 
relatively little use of the wavefunctions themselves. Most of the results we are interested in, 

                                                           
4 The mode amplitude is also oscillating in time, though it is really the amplitude of the oscillations in 
time and space that we are describing here by the coordinate ξ. Though a field oscillating in time would 
obviously have a distribution of its field amplitudes because the field is oscillating even with a fixed 
mode amplitude, we are talking here about a distribution in the amplitude of the oscillations.  
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such as processes where we are adding or subtracting photons (as in optical emission and 
absorption) can more conveniently be described through the use of operators and state vectors. 
Typically, the basis set and the resulting state we will use for electromagnetic fields will not be 
written as functions, ( )λψ ξ , of the amplitudes, λξ , of the fields in the modes, but will instead 
be basis vectors corresponding to specific numbers of photons in a mode, i.e., basis vectors 
corresponding to the energy or number eigenstates of the mode 

 n nλ λψ ≡  (15.75) 

where we now typically choose to drop the use of the ψ in our notation, simply indexing the 
basis states by the number of photons nλ in the mode λ, as in the notation on the right of Eq. 
(15.75).  

Once we start describing states as having a specific number of particles in them, we sometimes 
use the terms number states or Fock5 states. The states as described in Eq. (15.75) are therefore 
number or Fock states. Representations of quantum mechanical states based on such number 
state representations are also sometimes called Fock representations.  

In the end, this choice of basis and representation is a matter of taste or convenience. We can 
always evaluate the average value of any measurable quantity by taking the expectation value 
of the associated operator in the state of interest, regardless of what basis or representation we 
use for the state and operator. Note we could also have described the electron perfectly 
completely without explicit recourse to functions of space coordinates, using state vectors 
instead, and using a basis other than the simple position basis (such as a Fourier basis). 

15.5 Field operators 

Given the usefulness of the creation and annihilation operators, we would like to represent 
other operators in this problem in terms of them. Remembering the original definitions of these 
operators in terms of ξ and /d dξ , we have, analogously to Eq. (15.9) 

 † 1ˆ
2

da
dλ λ

λ

ξ
ξ

⎛ ⎞
≡ − +⎜ ⎟

⎝ ⎠
 (15.76) 

and, analogously to Eq. (15.10) 

 1ˆ
2

da
dλ λ

λ

ξ
ξ

⎛ ⎞
≡ +⎜ ⎟

⎝ ⎠
 (15.77) 

Now we note that we can write 

 ( )†1ˆ ˆ ˆ
2

a aλ λ λξ ≡ +  (15.78) 

This reminds us, incidentally, that λ̂ξ  is really an operator, not just a coordinate. Now that we 
have no explicit mention of position in the equation, we can explicitly put the “hat” over this 
operator. We ran into the same issue in considering the position r in the spatial representation 
of electron wavefunctions, for example (see the discussion in Section 5.4). In the position 

                                                           
5 The Russian physicist Vladimir Fock is also renowned for the Hartree-Fock approximation used 
extensively in solid-state physics. 
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representation in that case, it was quite acceptable simply to use the quantity r when we 
wanted to evaluate the expectation value of position in some state ( )φ r , writing 

( ) ( ) 3dφ φ φ φ∗≡ = ∫r r r r r r . The ability to use the quantity as its own operator is a 
consequence of being in the representation based on that quantity. In this r representation, 
where we can write out a function ( )f r  as a vector of its values at each of the points r, the 
operator corresponding to r is simply a diagonal matrix, with elements of value r along the 
diagonal.  

In general, however, if we change representations, we must explicitly recognize that r is 
actually an operator, which should be written as r̂ , and the corresponding matrix in any other 
basis is not diagonal. We should in general be writing ˆφ φ=r r , which will be correct in 
any representation. The same line of argument should be followed here in understanding that 

λξ  is actually an operator. Since we are now likely to be using this operator with the photon 
number basis states, we have to recognize its operator nature explicitly.  

We can also write the dimensionless form of the generalized momentum operator, defined as 
in Eq. (15.62) as  

 ˆ ˆ/ /id d pλ λ λπ ξ= − ≡ = ,  (15.79) 

in the form 

 ( )†ˆ ˆ ˆ
2
i a aλ λ λπ = −  (15.80) 

When we started out looking at the electromagnetic mode classically, we wrote it in terms of 
standing waves and two parameters, p and q. Now that we have completed our quantization of 
that mode, we realize that both p and q have been replaced by operators. With our expressions 
(15.78) and (15.80), and the definitions of the dimensionless operators λξ  and ˆλπ  , we now 
substitute back into the relations (15.41) and (15.42) that defined the electric and magnetic 
fields in our mode. Instead of scalar quantities for the electric and magnetic fields for this 
mode, we now have operators 

 ( )†ˆ ˆ ˆ sinz
o

E i a a kx
L
λ

λ λ λ
ω

ε
= −

=
 (15.81) 

and  

 ( )†ˆ ˆ ˆ coso
yB a a kx

L
λ

λ λ λ
μ ω

= +
=

 (15.82) 

What do we mean by such field operators? Just as before, if we want to know the average 
value of a measurable quantity, we take the expected value of its operator, and the same is true 
here. For a state φ  of this mode, we would have 

 ˆ
z zE Eλ λφ φ=  (15.83) 

 ˆ
y yB Bλ λφ φ=  (15.84)  

Incidentally, this postulation of operators for the electric and magnetic fields is an example of a 
quantum field theory. We started out in our discussion of quantum mechanics quantizing the 
states of a particle. We have now come to a description in which we are quantizing a field, and 
we can view the particles, in this case photons, as emerging from the quantization of the field. 
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It is also possible and useful to construct quantum field theories for electrons in a solid, for 
example, which gives a particularly elegant way of writing solid state physics. Much of 
modern quantum mechanics that is concerned with elementary particles is also in the form of 
quantum field theories. 

Uncertainty principle of electric and magnetic fields in a mode 

Note that the electric and magnetic field operators do not commute – we cannot in general6 
simultaneously know both the electric and magnetic field exactly.  

Explicitly, from Eqs. (15.81) and (15.82), we have 

 † †ˆ ˆ ˆ ˆ ˆ ˆ, sin cos ,o
z y

o

E B i kx kx a a a a
L

λ
λ λ λ λ λ λ

ω μ
ε

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦⎣ ⎦
=

 (15.85) 

i.e.,  

 
( )† † † † † † † †

ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆsin cos

z y

o

o

E B

i kx kx a a a a a a a a a a a a a a a a
L

λ λ

λ
λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

ω μ
ε

⎡ ⎤ =⎣ ⎦

+ − − − + − +
=   

 † †ˆ ˆ ˆ ˆ2 sin coso

o

i kx kx a a a a
L

λ
λ λ λ λ

ω μ
ε

⎡ ⎤= −⎣ ⎦
=

 (15.86) 

So, using the known commutator of the creation and annihilation operators, Eq. (15.68), we 
have  

 ˆ ˆ, 2 sin coso
z y

o

E B i kx kx
L

λ
λ λ

ω μ
ε

⎡ ⎤ =⎣ ⎦
=

 (15.87) 

We remember that the general form of the commutation relation, ˆ ˆˆ,[ ]A B Ci=  (Eq. (5.4)) leads 
to the uncertainty principle / 2A B CΔ Δ ≥  (from Eq. (5.23)), and so we have for the standard 
deviations of the expected values of the electric and magnetic fields in this mode 

 sin coso
z y

o

E B kx kx
L

λ
λ λ

ω μ
ε

Δ Δ ≥
=

 (15.88) 

Problem 

 15.5.1. Find the commutator ˆ ˆ[ , ]λ λξ π  starting from the operator definitions 

 ( )†1ˆ ˆ ˆ
2

a aλ λ λξ ≡ + and ( )†ˆ ˆ ˆ
2
i a aλ λ λπ = − . 

                                                           
6 We will see from the result below that it is possible to know them both exactly if one of them is zero, as 
would happen at a node of the standing wave for one or other of the electric or magnetic field, though 
that is a special case. 
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15.6 Quantum mechanical states of an electromagnetic 
field mode  

Many states are possible quantum mechanically for the electromagnetic mode. Nearly all of 
these are quite different from the fields we are used to classically. We briefly discuss two of 
the types of states that could be considered for electromagnetic field modes, the number states 
and the coherent state. The reader should be aware that there are many other states possible in 
principle, including ones with such intriguing titles as squeezed states and photon antibunched 
states.  

Of these various states, only the coherent state has much relation to the kinds of fields we 
expect in a mode from a classical analysis. It is essentially the kind of field generated by a 
laser, and corresponds quite closely to our classical notion of an electromagnetic field in a 
mode. The other kinds of states generally have little relation to any classical concept of an 
electromagnetic field. They are in practice quite difficult to generate controllably, generally 
requiring sophisticated nonlinear optical techniques, and have all only been demonstrated to a 
limited degree in the laboratory.  

Number state 

The eigenstates nλ  of the Hamiltonian would seem to be the most obvious quantum 
mechanically. These states correspond to a specific number nλ  photons in the mode, and are 
known as the number states or Fock states. They are also, obviously, eigenstates of the number 
operator. Their properties are, however, very unlike any classical field we might expect.  

As we mentioned above, in these states, the probability of measuring any particular amplitude 
of the Bλy field in the mode is distributed according to the square of the Hermite-Gaussian 
functions that are the solutions of the harmonic oscillator problem with quantum number nλ. 
The Eλz amplitudes are similarly distributed.7 The expectation values of the electric and 
magnetic field amplitudes are also both zero for any number state. To prove this, for example, 
for the electric field mode amplitude, we have 

 ( )

†ˆ ˆ ˆsin

sin 1 1 1

0

z
o

o

n E n i kx n a a n
L

i kx n n n n n n
L

λ
λ λ λ λ λ λ λ

λ
λ λ λ λ

ω
ε

ω
ε

= −

= + + − −

=

=

=
 (15.89) 

because the states nλ , 1nλ − , and 1nλ +  are all orthogonal, being different eigenstates of 
the same Hermitian operator. A similar proof can be performed for the magnetic field mode 
amplitude. 

The reader might think it very odd that there may be energy in this mode, but yet there appears 
to be no field. It is not correct that there is no field in the mode, it is just that the average value 

                                                           
7 There are several ways of showing this. Note, for example, that our choice of assigning the electric field 
amplitude a generalized momentum character and the magnetic field amplitude a generalized position 
character was essentially arbitrary – we could equally well have made this assignment the other way 
around, in which case it would be the electric field amplitude that was the argument of the Hermite-
Gaussian functions, whose square would then give the probability of measuring the mode of the electric 
field to have any particular amplitude.  
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of the mode amplitude is zero. This can be explained if we presume that the phase of the field 
is quite undetermined in such a number state. Any given measurement is quite likely to result 
in a finite amplitude for the electric or magnetic field in the mode, but, because of the 
possibility of the mode amplitude being positive or negative, the average is zero.  

We do see, though, that the number states, while simple mathematically, bear little relation to 
classical fields. 

Representation of time dependence – Schrödinger and Heisenberg 
representations 

So far, in discussing the states of the electromagnetic field mode, from a quantum mechanical 
point of view we have been dealing with the solutions to the time-independent Schrödinger 
equation for the mode. Note here that we use the term “Schrödinger equation” in the 
generalized sense where we mean that 

 Ĥ Eφ φ=  (15.90) 

is a (time-independent) Schrödinger equation for a system in an eigenstate φ  with 
eigenenergy E. Explicitly, for the eigenstates of our electromagnetic mode, we have 

 ( )ˆ 1/ 2H n n nλ λ λ λω= + =  (15.91) 

In our generalization of our earlier postulations about quantum mechanics, we also postulate 
here that the time-dependent generalized Schrödinger equation is valid, i.e., 

 Ĥ i
t

φ φ∂
=

∂
=  (15.92) 

This postulation does appear to work. 

One note about taking this approach is that we are implicitly assuming that the time-
dependence of the system is described by time-dependence of the state, not of the operators. It 
is actually completely a matter of taste or convenience whether we put the time dependence 
into the states or the operators. When we come to evaluate the expectation value of the 
operator, we obtain identical results. The time-dependent state picture is described as the 
Schrödinger representation, and the time-dependent operator picture is described as the 
Heisenberg representation. Either one is valid, though in the Heisenberg representation we 
cannot use the time-dependent Schrödinger equation, and must use a somewhat different, but 
equivalent, formalism. Here we will explicitly operate in the Schrödinger picture, adding the 
time dependence to the states, and choosing the operators (specifically the creation and 
annihilation operators) to be time-independent. 

With the Schrödinger approach to describing time-dependence, as before, to get the time 
variation of a given state, we multiply the time-independent energy eigenstate descriptions we 
have used so far by ( )exp[ 1/ 2 / ]i n tλ λω− + = =  (i.e., ( )exp[ 1/ 2 ]i n tλ λω− +  to make Eq.(15.91) 
consistent with Eq. (15.92)). Including the time dependence in this way, our number states 
become 

 ( )exp 1/ 2i n t nλ λω− +⎡ ⎤⎣ ⎦  (15.93) 

Now we are ready to consider the specific case of the coherent state, which is a specific 
superposition of number states, and has a particularly important overall time dependence. 
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Coherent state 

The state that corresponds most closely to the classical field in an electromagnetic mode is the 
coherent state. We introduced the coherent state previously as an example in discussing the 
time dependence of the harmonic oscillator. Now, using our current notation, we can rewrite 
the coherent state originally proposed in Eq. (3.23) as 

 
0

1exp
2n nn

n
c i n t n

λ

λ λ λ λ λω
∞

=

⎡ ⎤⎛ ⎞Ψ = − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (15.94) 

where  

 
( )exp
!

n

nn

n n
c

n

λ

λ
λ

−
=  (15.95) 

Here the quantity n  will turn out to be the expected value of the number of photons in the 
mode. As before, we note that 

 
( )2 exp
!

n

nn

n n
c

n

λ

λ
λ

−
=  (15.96) 

is the Poisson statistical distribution with mean n  and standard deviation n . 

We have shown by explicit illustration before (Chapter 3) that this state oscillates at frequency 
ω, and that remains true here. In this state, the electric and magnetic fields do not have precise 
values, just as the position did not have precise values before in the mechanical harmonic 
oscillator. As the average number of photons n  increases, the relative variation in the values 
of the electric and magnetic fields decreases (though the absolute value of the variation 
actually increases), and the behavior resembles a classical pair of oscillating electric and 
magnetic fields ever more closely. 

Note that, in the coherent state, the number of photons in the mode is not determined. The 
coefficients 2

nncλ  tell us the probability that we will find nλ  photons in the mode if we make 
a measurement. This number is now found to be distributed according to a Poisson 
distribution. It is in fact the case that the statistics of the number of photons in an oscillating 
“classical” electromagnetic field are Poissonian. For example, if one puts a photodetector in a 
laser beam, one will measure a Poissonian distribution of the arrival rates of the photons, an 
effect known as shot noise. 

Note that the coherent state is not an eigenstate of any operator representing a physically 
observable quantity. In fact the coherent states are the eigenstates of the annihilation operator, 
â , the proof of which is left as an exercise for the reader. The annihilation operator is not a 
Hermitian operator, and does not itself represent an observable physical quantity. 

Problems 
 15.6.1. Show that the coherent state in Eq. (15.94) is an eigenstate of the annihilation operator âλ , with 

eigenvalue ( )expn i tλω− . 

 15.6.2. Using the results of Prob.  15.6.1, find an expression for the expectation value of the “position” 
λξ  for the coherent state in Eq. (15.94) in terms of n , λω  and time t. 

 15.6.3. Consider the uncertainty relation for position and momentum in the coherent state of Eq. (15.94). 
 (i) Deduce the uncertainty relation for the operators λ̂ξ  and ˆλπ . 
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 (ii) By evaluating 2 2
λ̂ λξ ξ−  for the coherent state, show that the standard deviation of the width of 

the resulting probability distribution for the “position” ξ is 1/ 2 , independent of time.  
 (iii) Repeat the calculation in (ii) for “momentum”, with operator ˆλπ , instead of “position”. 
 (iv) Deduce that the coherent state is a “minimum uncertainty” state, i.e., it has the minimum possible 

product of the standard deviations of “position” and “momentum”. 

 [Hints: use the results of Probs.  15.6.1 and  15.6.2, and the general relations for uncertainty principles 
in Chapter 5.] 

15.7 Generalization to sets of modes 

Thus far, we have derived the theory considering only one specific plane wave mode of the 
electromagnetic field. In any specific classical electromagnetic problem, there will be a set of 
modes that will actually form a complete set for describing all solutions of Maxwell’s 
equations. In free space, these would be a set of propagating or standing waves. In resonators, 
there are in general resonator modes, such as the Laguerre-Gaussian modes of a typical laser 
cavity, that also form a complete set for describing such classical waves. We can generalize the 
formalism, with each such mode being a harmonic oscillator with annihilation and creation 
operators. 

Above we had postulated a simple example mode that had sinusoidal spatial behavior in one 
direction, was plane in the other directions, and could be separated into a product of a spatial 
and a temporal part (see Eqs. (15.41) and (15.42)). Now we postulate a set of classical modes, 
each of which has the following form 

 ( ) ( ), ( )t p t Dλ λ λ λ= −E r u r  (15.97) 

 ( ) ( ), ( )
D

t q t
c

λ
λ λ λ=B r v r  (15.98) 

Here λE , λB , λu , and λv  are all in general vectors, and Dλ  is a constant. (The forms of 
Eqs. (15.41) and (15.42) correspond to these with ( ) ( )ˆ sin kxλ = −u r z  and 

( ) ( )ˆ cos kxλ =v r y .) We will find these forms will satisfy Maxwell’s equations and the wave 
equation in free space8 if we require that 

 ( ) ( )
c

λ
λ λ

ω
∇× =u r v r  (15.99) 

 ( ) ( )
c

λ
λ λ

ω
∇× =v r u r  (15.100) 

 
dq

p
dt

λ
λ λω=  (15.101) 

 
dp

q
dt

λ
λ λω= −  (15.102) 

We presume the classical electromagnetic problem has been solved with the boundary 
conditions of the system to yield these electromagnetic modes for the problem. We will also 

                                                           
8 It is straightforward to extend this approach to situations other than free space, such as a dielectric 
material. 
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presume that the spatial functions ( )λu r  and ( )λv r  are normalized over the entire volume 
appropriate for the problem, and we presume that they are all orthogonal9, i.e.,  

 ( ) ( ) 3
1 2 1, 2. dλ λ λ λδ=∫u r u r r  (15.103) 

and 

 ( ) ( ) 3
1 2 1, 2. dλ λ λ λδ=∫ v r v r r  (15.104) 

Now suppose we consider that the electromagnetic system is in a classical superposition of 
such electromagnetic modes, i.e., the electric field for some specific set of amplitudes of the 
oscillatory terms pλ  is 

 ( ) ( ), ( )t p t Dλ λ λ
λ

= −∑E r u r  (15.105) 

and the magnetic field is similarly, for some specific set of amplitudes of the oscillatory terms 
qλ  

 ( ) ( ) ( ),
D

t q t
c

λ
λ λ

λ

= ∑B r v r  (15.106) 

We know the energy density of an electromagnetic field (Eq. (15.53)), and so we can write for 
the total energy of such a field 

( ) ( ) ( ) ( )

( )

2 2 3

3
1 2 1 2 1 2 1 2 1 2

1, 2

2 2 2

1 1
2

1 . .
2
1
2

o
o

o

o

H d

D D p p q q d

D p q

λ λ λ λ λ λ λ λ λ λ
λ λ

λ λ λ
λ

ε
μ

ε

ε

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

= +⎡ ⎤⎣ ⎦

= +

∫

∑ ∫

∑

E B r

u r u r v r v r r  (15.107) 

where we have used the orthogonality of the spatial electromagnetic modes to eliminate all 
cross-terms in the integral, and have used 21/ o oc ε μ= . Now we see that we can write this total 
energy (or classical Hamiltonian function) as the sum of separate energies (or classical 
Hamiltonian functions) for each separate mode, i.e.,  

 H Hλ
λ

= ∑  (15.108) 

where  

 ( )2 2 21
2 oH D p qλ λ λ λε= +  (15.109) 

Now we can cast this classical mode Hamiltonian into the correct form so that we get 
Hamilton’s equations as in (15.38) and (15.40), i.e., in the present notation we want to obtain 

                                                           
9 They will be orthogonal, at least if the system is loss-less, because they will be the (classical) 
eigenfunctions of a (classical) Hermitian operator in such an electromagnetic mode problem. 
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dp H
dt q

λ λ

λ

∂
= −

∂
 (15.110) 

and  

 
dq H
dt p

λ λ

λ

∂
=

∂
 (15.111) 

If we choose10 

 
o

D λ
λ

ω
ε

=  (15.112) 

then we now have 

 ( )2 2

2
H p qλ

λ λ λ
ω

= +  (15.113) 

Explicitly considering Eq. (15.111), for example, we have, using (15.101) 

 
H dq

p
p dt

λ λ
λ λ

λ

ω
∂

= =
∂

 (15.114) 

as required.  

Hence, for our multimode case, we have got to the point that, for each mode, we have a 
classical Hamiltonian in exactly the same form as we had for the single mode case (Eq. (15.55)
), and have established, for each mode, the quantities that correspond to the “momentum” and 
“position” of the classical Hamiltonian. We can proceed for each mode exactly as we did 
before, quantizing each mode with its own annihilation and creation operators. Formally, we 
postulate a “momentum” operator for each mode, as in Eq. (15.59) 

 ˆ dp i
dqλ

λ

= − =  (15.115) 

and thereby propose the quantum mechanical Hamiltonian for the mode as in Eq. (15.60), from 
Eq. (15.113) above 

 
2

2 2
2

ˆ
2

dH q
dq

λ
λ λ

λ

ω ⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
=  (15.116) 

We next rewrite this Hamiltonian as in Eq. (15.63) and (15.65) as 

 
2

2 †
2

1ˆ ˆ ˆ
2 2

dH a a
d

λ
λ λ λ λ λ

λ

ω
ξ ω

ξ
⎡ ⎤ ⎛ ⎞= − + = +⎢ ⎥ ⎜ ⎟

⎝ ⎠⎣ ⎦

= =  (15.117) 

where we have defined dimensionless units /qλ λξ = =  as in Eq. (15.61), and have creation 
and annihilation operators defined as in Eq. (15.9) 

                                                           
10 The only substantial difference between this choice of Dλ and the choice of A in the single mode case is 
that the present mode functions are presumed already normalized, whereas we included the normalization 
of the sine functions in A previously. 
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 † 1ˆ
2

da
dλ λ

λ

ξ
ξ

⎛ ⎞
≡ − +⎜ ⎟

⎝ ⎠
 (15.118) 

and in Eq. (15.10) 

 1ˆ
2

da
dλ λ

λ

ξ
ξ

⎛ ⎞
≡ +⎜ ⎟

⎝ ⎠
 (15.119) 

Now the total Hamiltonian for the set of modes becomes 

 † 1ˆ ˆ ˆ
2

H a aλ λ λ
λ

ω ⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑=  (15.120) 

Multimode photon states 

When we are considering multiple different photon modes, it is convenient to write the state of 
such a system in what we can call the occupation number representation. In such a 
representation, for each basis state we merely write down a list of the number of photons in 
each particular mode. For example, the state with one photon in mode k, three in mode m and 
none in any other mode could be written as 

 0 , ,0 ,1 ,0 ,3 ,0 ,a j k l m n… …   

where we imagine we have labeled the states progressively with the lower case letters.  

Just as before, the creation and annihilation operators will have the properties, now specific to 
the given mode, analogous to Eq. (15.69),  

 ( )ˆ , , , 1 ,a n n nλ λ λ λ λ
= −… … … …  (15.121) 

with 

 ˆ ,0 , 0aλ λ =… …  (15.122) 

Similarly, analogous to Eq. (15.70), we have 

 ( )†ˆ , , 1 , 1 ,a n n nλ λ λ λ λ
= + +… … … …  (15.123) 

As in Eq. (15.66), the number operator for a specific mode in the multimode case is 

 †ˆ ˆ ˆN a aλ λ λ≡  (15.124) 

as follows from the above definitions of the effects of the creation and annihilation operators 
on the multimode state. 

Just as in the single mode case, we can create such a state by progressively operating with the 
appropriate creation operators starting mathematically with the “zero” state or completely 
“empty” state, often written simply as 0 . For the above example state, we could write 

 † † † †1 ˆ ˆ ˆ ˆ0 , ,0 ,1 ,0 ,3 ,0 , 0
1!3!a j k l m n k m m ma a a a=… …  (15.125) 

where we had to introduce the square root factor with factorials so that we could keep the state 
normalized, compensating for the square root factors introduced by the creation operators. In 
general, we can write a state with 1n  particles in mode 1, 2n  particles in mode 2, and so on, as 
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 ( ) ( ) ( )1 2† † †
1 2 1 2

1 2

1 ˆ ˆ ˆ, , , , 0
! ! !

n n n
n n n a a a

n n n
λ

λ λ
λ

=… … … …
… …

 (15.126) 

Commutation relations for boson operators 

With bosons, it makes no difference to the final state in what mathematical order we create 
particles in a mode. The result of a different order of creation could be viewed as permuting 
the particles (the photons) among the single-particle states (here the modes), but any 
permutation of bosons among the single-particle states makes no difference to the resulting 
multi-boson state11. Hence the creation operators for different modes commute with one 
another.  

Consequently, we can state for operators operating on any state, † † † †ˆ ˆ ˆ ˆj jk ka a a a= , or 

 † † † †ˆ ˆ ˆ ˆ 0j k k ja a a a− =  (15.127) 

where we have written this in the form of a commutation relation. A similar argument can be 
made for annihilation operators that it does not matter what order we destroy particles, and so 
we similarly have 

 ˆ ˆ ˆ ˆ 0j k k ja a a a− =  (15.128) 

For the case of mixtures of annihilation and creation operators, if we are annihilating a boson 
in one mode and creating one in another, it does not matter what mathematical order we do that 
either. Only if we are creating and annihilating in the same mode does it matter what order we 
do this, with a commutation relation we have previously deduced (Eq. (15.68)). Hence in 
general we can write 

 † †ˆ ˆ ˆ ˆj k k j jka a a a δ− =  (15.129) 

This completes the commutation relations we need for the boson operators12, and the relations 
we need for working with photons themselves in a quantum mechanical manner.  

Multimode field operators 

It is now straightforward to construct the full multimode electric and magnetic field operators. 
Working from the classical definition of the multimode electric field, Eq. (15.105), as an 
expansion in classical field modes, we substitute the operator p̂λ  for the quantity ( )p tλ  in 
each mode, using also the value of Dλ  from (15.112), obtaining 

 ( )ˆ ˆ ( )
o

p t λ
λ λ

λ

ω
ε

= −∑E u r  (15.130) 

                                                           
11 The same is not true for fermions, where interchanging two particles changes the sign of the state, and 
leads to quite different commutation behavior for fermions. 
12 We can now see a reason for the choice of nA n=  in (15.28). We had the freedom to choose it to 
have any complex phase at that point, but to satisfy the boson requirement of not changing the sign of the 
resulting wavefunction if we change the order of creating two bosons, i.e., the operator pairs † †ˆ ˆj ka a  and 

† †ˆ ˆ jka a  should give the same sign of result, we do at least need the complex phase factor to be the same for 
all boson creation operators, and the simplest choice is +1. As we will see in the next Chapter, for 
fermions the sign is not necessarily the same for each possible creation operator acting on given states.  
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Noting that, from Eqs. (15.79) and (15.80), 

 ( )†ˆ ˆ ˆ
2

p i a aλ λ λ= −
=  (15.131) 

we therefore have 

 ( ) ( ) ( )†ˆ ˆ ˆ,
2 o

t i a a λ
λ λ λ

λ

ω
ε

= −∑E r u r
=

 (15.132) 

By a similar argument, we can start with the classical expression for a multimode magnetic 
field, Eq. (15.106), substituting the operator q̂λ  for the quantity ( )q tλ  in each mode, to obtain 

 ( ) ( )ˆ,
D

t q
c

λ
λ λ

λ

= ∑B r v r  (15.133) 

Using Eqs. (15.61) and (15.78), we can write 

 ( )†ˆ ˆ ˆ
2

q a aλ λ λ≡ +
=  (15.134) 

so we obtain 

 ( ) ( ) ( )†ˆ ˆ ˆ,
2

ot a a λ
λ λ λ

λ

ω μ
= +∑B r v r

=
 (15.135) 

Problem 
 15.7.1. Consider a set of modes of the electromagnetic field in which the electric field is polarized along 

the x direction and the magnetic field is polarized in the y direction. Restricting consideration only to 
those modes, find the simplest expression you can for the commutation relation [ ]ˆ ˆ,x yE B  for this 
multimode field. 

15.8 Vibrational modes 

At the start of this Chapter, we dealt with an abstract harmonic oscillator. There are many 
systems that have such behavior, and we analyzed in detail above the case of electromagnetic 
modes. Any mechanical vibrating mode can also be analyzed in this way. Such modes occur in 
particular in molecules and in crystalline solids. In a classical view, we can think of systems of 
atoms as being masses connected by springs. In principle, there is a spring connecting each 
mass to each other mass. Such a system is complicated, but for any finite number N of such 
masses we can write down 3N coupled differential equations (one for each mass and each of 
the three spatial coordinate directions) in which the forces from the springs connecting to each 
other mass act on a given mass to accelerate it according to Newton’s second law. The 
standard method of approaching such problems is to look for solutions in which every mass in 
the crystal is oscillating at the same frequency. This leads to a matrix equation that can be 
solved for the eigenvectors, with the frequency (or its square) essentially as the eigenvalues. 
The resulting eigenvectors correspond to the modes of the system, and are known as the 
normal modes. The elements in the eigenvectors tell the relative amplitude and direction of the 
oscillation of each individual mass in that mode.  
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If we change to these eigenvectors as the mathematical basis, we again obtain a set of 
uncoupled harmonic oscillator equations. The overall amplitude of the mode’s displacement 
from its equilibrium position behaves like the position coordinate of a harmonic oscillator, and 
a corresponding coordinate based on the time rate of change of the position coordinate and a 
mass parameter (which is a properly weighted combination of the individual masses) serves as 
the momentum coordinate. We then rigorously obtain equations for each mode that can be 
quantized using the harmonic oscillator model above. Each mode then has its own creation and 
annihilation operators.  

We will not formally go through this analysis here for such vibrations, but it is straightforward, 
and leads to a formalism that, when expressed in terms of boson creation and annihilation 
operators, is identical to that from Eq. (15.108) to Eq. (15.129) of the multimode photon case 
above. Instead of photon modes, we have the normal modes of vibration of the system. We can 
also think of quasi-particles occupying these modes just as we think of photons occupying the 
photon modes. This approach is taken extensively in solid state physics for crystalline 
materials, with the resulting particles being called phonons.  

15.9 Summary of concepts 

Raising and lowering operators for a harmonic oscillator 

For the nth state nψ  of a harmonic oscillator or an equivalent physical system, the lowering 
(or annihilation) operator â  and the raising (or creation) operator †â  have the following 
properties:  

 1ˆ n na nψ ψ −=  (15.29) 

 †
1ˆ 1n na nψ ψ += +  (15.30) 

Note specifically from Eq. (15.29) that 

 0ˆ 0a ψ =  (15.31) 

where here “0” is the zero vector in the Hilbert space. Also 

 ( )†
0ˆ !

n

na nψ ψ=  (15.34) 

or equivalently 

 ( )†
0

1 ˆ
!

n

n a
n

ψ ψ=  (15.35) 

These operators have a commutator 

 † † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a aa a a⎡ ⎤ = − =⎣ ⎦  (15.17) 

which is the main algebraic relation used to simplify expressions in such operators. 

Number operator 

For the nth state nψ  of a harmonic oscillator or an equivalent physical system, the number 
operator N̂  is defined as 

 †ˆ ˆ ˆN a a≡  (15.15) 
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with the eigenequation 

 ˆ
n nN nψ ψ=  (15.16) 

Harmonic oscillator Hamiltonian 

In terms of the raising (creation) and lowering (annihilation) operators and the number 
operator, the harmonic oscillator Hamiltonian can be written 

 † 1 1ˆ ˆˆ ˆ
2 2

H a a Nω ω⎛ ⎞ ⎛ ⎞≡ + ≡ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =  (15.13) with (15.15) 

Classical Hamiltonian and Hamilton’s equations 

For some problem of interest, if we can write down a function H of two variables, an effective 
momentum p and an effective position q, where that function H represents the energy of the 
system, and where H, p, and q obey Hamilton’s equations  

 dp H
dt q

∂
= −

∂
 (15.38) 

and 

 dq H
dt p

∂
=

∂
 (15.40)  

then we can call H the classical Hamiltonian for the problem.  

Quantization using effective momentum and position 

For some problem, if we can write down the classical Hamiltonian as above, then we can 
postulate a quantum-mechanical Hamiltonian for the problem by substituting an operator 

/i d dq− =  for the variable p in the expression for the classical Hamiltonian. 

Quantization of the electromagnetic field 

For each mode of the electromagnetic field, we can show that it has a classical Hamiltonian 
that can be written in the form 

 ( )2 2

2
H p qω

= +  (15.55) 

where ω is the angular frequency of oscillation of the electromagnetic field in this mode, and 
H, p and q obey Hamilton’s equations. For each mode we can therefore postulate the above 
procedure to quantize it, and hence obtain quantum-mechanical creation (raising) and 
annihilation operators, a number operator, and a Hamiltonian exactly analogous to those of the 
simple harmonic oscillator. Now we think of “raising” the mode from one state to the next one 
as “creating” a photon in the mode, and oppositely for “lowering” as “annihilating” a photon in 
the mode.  

Because we may be discussing many different modes, we can introduce a subscript λ on all of 
the operators to label which specific mode we are considering at a given time. Otherwise, we 
have operator relations identical to those above for a simple harmonic oscillator. 
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Nature of quantum mechanical states of a mode 

The “eigenfunctions” of the harmonic oscillator equations for an electromagnetic mode are 
functions not of position, but of the amplitude of oscillation of the magnetic field. Just as the 
modulus squared of the wavefunction for a simple mechanical harmonic oscillator gave the 
probability of finding the mass at some particular position, now the modulus squared of the 
“wavefunction” gives the relative probability of finding the electromagnetic field oscillating 
with a specific amplitude of magnetic field.  

Because we are not usually interested in this underlying “coordinate” of magnetic field 
amplitude, we will typically drop explicit mention of the “wavefunction” and use a notation for 
the eigenstates of a given mode λ of nnλ λψ≡ . Such a state with a specific number of 
photons in a mode (or specific numbers of photons in each mode) is called a number state or 
Fock state. 

Note that, just as the position of the mass in a quantum mechanical simple harmonic oscillator 
is not definite even in the lowest state of the oscillator (i.e., it has some spatial wavefunction), 
there is a finite possibility of measuring a finite amplitude for the magnetic field even if there 
are no “photons” in the mode. We will measure a complete (Gaussian) range of resulting 
amplitudes for the magnetic field amplitude even with no photons in the mode, and such 
fluctuations are called vacuum fluctuations. 

In quantum mechanics, the electric and magnetic fields in nearly all quantum mechanical states 
do not have definite values, just as the position and momentum do not have definite values in 
most quantum mechanical states of a particle with mass. 

Electric and magnetic field operators 

We can define field operators for a simple z-polarized standing wave mode in the x direction, 
in a box of length L as 

 ( )†ˆ ˆ ˆ sinz
o

E i a a kx
L
λ

λ λ λ
ω

ε
= −

=
 (15.81) 

 ( )†ˆ ˆ ˆ coso
yB a a kx

L
λ

λ λ λ
μ ω

= +
=

 (15.82) 

The expected values of the electric or magnetic field can be evaluated by taking the expected 
values of these operators in any given quantum mechanical state. The electric and magnetic 
fields in any given mode obey an uncertainty principle, which becomes 

 sin coso
z y

o

E B kx kx
L

λ
λ λ

ω μ
ε

Δ Δ ≥
=

 (15.88) 

for the above mode. 

These operators are examples of “field operators” in quantum mechanics. This quantization of 
the electromagnetic field is an example of a quantum field theory in quantum mechanics, in 
which particles (here photons) emerge from quantization of a field.  

The expectation value of the magnetic (or electric) field in a number state is zero, just as the 
expectation value of the position of a mass in a simple mechanical harmonic oscillator state is 
zero (or the center of the potential). 
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Coherent state 

The coherent state is the state that corresponds most closely with the classical idea of an 
oscillating electromagnetic field. For a given mode λ, a coherent state is   

0

1exp
2n nn

n
c i n t n

λ

λ λ λ λ λω
∞

=

⎡ ⎤⎛ ⎞Ψ = − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (15.94) with 

( )exp
!

n

nn

n n
c

n

λ

λ
λ

−
=  (15.95) 

where n  that expresses the average number of photons in the mode. In a coherent state, the 
number of photons is not determined, and will be measured to have a Poisson distribution. 

Multimode fields 

For a multimode electromagnetic field, the Hamiltonian is the sum of the individual 
Hamiltonians for each mode, i.e., with λ indexing the different modes 

 † 1ˆ ˆ ˆ
2

H a aλ λ λ
λ

ω ⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑=  (15.120) 

and the multimode field operators are similarly the sums of the field operators for the 
individual modes, i.e.,  

 ( ) ( ) ( )†ˆ ˆ ˆ,
2 o

t i a a λ
λ λ λ

λ

ω
ε

= −∑E r u r
=

 (15.132) 

 ( ) ( ) ( )†ˆ ˆ ˆ,
2

ot a a λ
λ λ λ

λ

ω μ
= +∑B r v r

=
 (15.135) 

Commutation relation for boson creation and annihilation operators 

For creation and annihilation operators associated with specific modes j and k,  

 † †ˆ ˆ ˆ ˆj k k j jka a a a δ− =  (15.129) 

 

 



 

 

Chapter 16  
 
Fermion operators  

Prerequisites: Chapters 2 – 5, 9, 10, 12, 13, and 15. 

Thus far, we have worked with a quantum mechanical wave for electrons and similar particles, 
we have worked with classical waves for electric and magnetic fields, and we have introduced 
a quantum mechanical way of looking at electric and magnetic fields through the use of boson 
annihilation and creation operators. The use of these operators for boson modes led to the 
quantization of the electromagnetic field into photons. These operators naturally behaved in 
such a way as to give the photons the properties we expect of bosons, allowing any zero or 
positive integer number of photons in a mode. We will find that we can also introduce 
annihilation and creation operators for fermions, and it is the purpose of this Chapter to make 
this introduction. These operators will lead to the natural quantization of the number of 
fermions possible in a fermion “mode” or single-particle state, limiting us to zero or one as 
required. Analogously to the boson operator description of the electromagnetic wave with field 
operators, we will also be able to describe the quantum mechanical wave associated with 
electrons and similar particles in terms of the fermion operators.1  

Just as the quantization of the electromagnetic wave led to the appearance in our quantum 
mechanics of boson particles, we can view this introduction of the fermion annihilation and 
creation operators as leading to the appearance in our quantum mechanics of fermion particles. 
We started the quantum mechanics of electrons and similar particles knowing them as 
particles, and later discovered their wave properties. With electromagnetism, we came out of 
the 19th century believing electromagnetism to be a wave phenomenon2, and later introduced 
the boson quantum theory that led to photon particles. The introduction of the fermion 
annihilation and creation operators can be viewed as completing a picture here since it now 
introduces a formalism that explicitly gives us the particles that have the fermion’s 
characteristics (especially Pauli exclusion).  

It should be pointed out that, unlike the use of boson creation and annihilation operators to 
quantize the classical electromagnetic field, the postulation of fermion annihilation and 

                                                           
1 This new description of the quantum mechanical wave in terms of field operators is sometimes called 
“second quantization” because it is rather like taking a quantum mechanical wave and “quantizing” it, 
just as we did for the electromagnetic wave. 
2 Newton had a corpuscular theory of light, but this was largely pushed into the background following the 
success of wave theory in explaining diffraction phenomena of light in the early 19th century, phenomena 
that had no ready explanation with a classical particle theory of light. The failure of the classical theory 
of radiation to agree with thermodynamics was what led Planck to postulate quantization of the light 
field, and Einstein to introduce the photon. The quantized wave field model introduced in the previous 
Chapter of course has both wave and particle characters, as required. 
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creation operators does not fundamentally add anything to the quantum mechanics we already 
have for fermions (at least at the level to which we consider the quantum mechanics of 
electrons and similar fermion particles here); it does, however, give us a very convenient way 
of writing the quantum mechanics, and also gives us a formalism that is of the same type as the 
boson creation and annihilation operators we created above. This approach naturally includes 
the Pauli exclusion principle so we do not have to add it in some ad hoc fashion. Once we 
work in systems with many fermions, the use of fermion creation and annihilation operators is 
almost essential from a practical point of view so as to keep track of the fermion character of 
many particle systems. Even when we are only considering a single fermion, the creation and 
annihilation operators give a particularly simple notation that we can use to describe other 
operators, such as the Hamiltonian. This kind of description is particularly useful for processes 
that involve collisions of fermions with one another (as in electron-electron scattering, for 
example) or the interaction of fermions and bosons (as in optical absorption and emission, or 
electron-phonon scattering). 

16.1 Postulation of fermion annihilation and creation 
operators 

The approach we take here will be simply to postulate annihilation and creation operators for 
fermions, giving them the required properties. Later we will use them to rewrite operators 
involving interactions with fermions. The key property these operators require, in comparison 
to the boson operators, is that they will correctly change the sign of the wavefunction upon 
exchange of particles. This will lead us to a formalism similar in character to the boson 
operators, though we will find so-called anticommutation relations instead of the commutation 
relations of the boson operators. It should be emphasized that a principal reason for 
introducing such fermion operators is so that we never again have to worry about the details of 
the antisymmetry with respect to exchange of fermions; the anticommutation relations we will 
develop below will take care of these details quite conveniently.  

Description and ordering of multiple fermion states 

The reader will remember from our previous discussion that we can write a basis state for 
multiple identical fermions as a sum over all possible permutations of particles among the 
occupied states, or equivalently a Slater determinant, in the forms 

 

!

; , ,
ˆ 1

1 ˆ 1, 2, 3, ,
!

1, 2, ,
1, 2, ,1

!
1, 2, ,

N

N a b n
P

P a b c N n
N

a a N a
b b N b

N
n n N n

ψ
=

= ±

≡

∑… …

"
"

# # % #
"

 (16.1) 

Here, there are N identical fermions, and they occupy single-particle basis states , , ,a b n… . 
Note that the single-particle basis states are specific individual possible states that a fermion 
can occupy, and, in the notation shown here, each has a lower case letter associated with it. For 
example, each possible electron state in a potential well or atom would correspond to a 
different basis state here. If we had a system with multiple potential wells or atoms, each 
possible single electron state associated with each potential well or atom would have its own 
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unique label (here a lower case letter, though obviously we could run out of those quite 
quickly!).  

Though the notation above might seem to imply that each of the possible states is occupied, 
that is not in general the case. In fact, very few of the possible single-particle states will 
typically be occupied in any given multiple fermion basis state. We might, for example, have 
three electrons in a system with five potential wells, and be considering a (multiple particle) 
basis state in which there is one electron in the ground state of well 1, one in the second state 
of well 3, and one in the 17th state of well 4. All of the other single-particle basis states would 
be unoccupied in this multiple particle basis state. The formalism also allows as a perfectly 
viable mathematical basis state that we might have two electrons in one well, one on the lowest 
state and one on the sixth state, for example; such a state is not forbidden by Pauli exclusion, 
and hence is a viable two-particle basis state, though it is not necessarily an eigenstate of the 
Hamiltonian (the first electron would give rise to a repulsive potential for the second electron, 
and so the second electron would not see a simple square potential any more). 

To draw the connection with the boson case, each of the single-particle basis states can be 
considered as a “mode” (single-particle state) of the fermion field, just as the boson basis states 
were modes of the electromagnetic field. The boson modes could have any integer number of 
particles in them, though the fermion modes can only have zero or one. Just as the boson 
annihilation and creation operators for a given mode allowed any positive or zero integer 
number of bosons in the mode, so also the fermion annihilation and creation operators will 
allow only zero or one fermion in the mode if we set them up correctly. Now that we have 
drawn the analogy with boson modes, rather than using the term “mode” for fermions we will 
now mostly revert to use the term “single-particle state”, though the reader should understand 
this is merely a matter of taste and usage. 

In the construction of the determinants for the multiple fermion basis functions below, we need 
to define, at least for the temporary purposes of our argument, one standard order of labeling of 
the single-particle basis states. For example, if we had a system with five potential wells, we 
might label sequentially all of the states in well 1, then next all of the states in well 2, and so 
on. We could choose some other labeling sequence, labeling all of the first states in wells 1 
through 5, then all of the second states in wells 1 through 5, and so on, or we could even 
choose some more complicated labeling sequence. It does not matter what sequence we 
choose, but we have to have one standard labeling sequence to which we can refer in all of our 
mathematical operations. For simplicity here, we will presume we can label the single-particle 
basis states (or fermion modes) using the lower case letters, and our standard order will be the 
one in which those lower case letters are in alphabetical order. 

We might, for example, have a basis state corresponding to three identical fermions, one in 
state b, one in state k, and one in state m. In standard order, we would write that state as 

 3; , , ,

1, 2, 3,
1 1, 2, 3, 0 ,1 ,0 , ,1 ,0 ,1 ,0
3! 1, 2, 3,

b k m a b c k l m n

b b b
k k k
m m m

ψ = ≡ … … …  (16.2) 

Here we have also introduced another notation to describe this basis state, which we can 
describe as the occupation number notation. This notation is similar to the boson occupation 
number notation introduced previously. In this notation, 0a  in the ket means that the single-
particle fermion state (or fermion mode) a is empty, and 1b  means state b is occupied, and so 
on. Because this is a fermion state, the determinant combination of the different fermions to 
the occupied states is of course understood. 
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We could also write a state that was not in standard order for the rows, e.g.,  

 3; , ,

1, 2, 3,
1 1, 2, 3,
3! 1, 2, 3,

k b m

k k k
b b b
m m m

ψ =  (16.3) 

To get that state into standard order for the rows, we would have to swap the first and second 
rows in the determinant. We know that if we swap two adjacent rows in a determinant we have 
to multiple the determinant by 1− , and so, swapping the top two rows, we have 

 
3; , ,

, 3; , ,

1, 2, 3,
1 1, 2, 3,
3! 1, 2, 3,

0 ,1 ,0 , ,1 ,0 ,1 ,0

k b m

a b c k l m n b k m

b b b
k k k
m m m

ψ

ψ

= −

= − = −… … …

 (16.4) 

Fermion creation operators 
Suppose now we postulate a fermion creation operator for fermion “mode” or single-particle 
basis state k, and write it as †

k̂b . Then we need it to have the property that it takes any state in 
which single-particle basis state k is empty and turns it into one in which this state k is 
occupied. We also need it to have a very particular behavior with regard to the sign of the 
wavefunction it creates, so that operations that are equivalent to swapping two particles will 
change the sign of the wavefunction. This sign behavior means we have to construct the 
operator with some care over signs, though in the end this is quite straightforward. We will 
find, incidentally, that these sign requirements lead to a very particular kind of commutation 
relation for the fermion annihilation and creation operators (an anticommutation relation). In 
practice, these anticommutation relations are very useful algebraically. Here we will 
progressively build up the properties of these operators, starting with the creation operator.  

For the sake of definiteness of illustration, let us suppose we start with the state where single-
particle states b and m are occupied, but state k and all other states are not. In the permutation 
notation, we can therefore propose that †

k̂b  has the following effect on that state: 

 
2! 3!

†

ˆ ˆ1 1

1 1ˆ ˆ ˆ1, 2, 1, 2, 3,
2! 3!k

P P

b P b m P b m k
= =

± = ±∑ ∑  (16.5) 

In other words, the action of †
k̂b  is to add a third particle into the system, and we propose for 

definiteness that it adds it to the end of the list in the permutation notation.3  

                                                           
3 It actually does not really matter where we propose that we add the particle in the list, though we have 
to choose something consistent. We could, for example, have chosen to add it to the front of the list as 
particle 1, moving all the other states to one higher particle number. In general, adding the particle at a 
different point in the list is equivalent to redefining our arbitrary standard order and adding the particle at 
the end again. The reason why it does not matter where we add the particle in the list is ultimately 
because we always end up using fermion operators in annihilation-creation pairs in working out any 
observable, and the differences in sign that would result from adding the particle to the beginning of the 
list as opposed to the end will cancel out when we use such a pair of operators as long as we are 
consistent. The reader might be worried about this apparent arbitrariness, but note that the creation 
operator will turn out not to be Hermitian, and hence expectation values of it do not correspond to 
physically observable quantities. In quantum mechanics we have already encountered an unobservable 
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Now let us examine these kinds of processes in determinant notation. From this point on, for 
simplicity we will be ignoring the factorial normalization factors that should precede the 
determinants; we will be concentrating on the signs and orderings only. 

Adding to the end of the list in the permutation notation is equivalent to adding a row to the 
bottom of the determinant (and a column to the right), i.e., in determinant notation, (16.5) is 

 †

1, 2, 3,
1, 2,ˆ 1, 2, 3,
1, 2,

1, 2, 3,
k

b b b
b b

b m m m
m m

k k k
=  (16.6) 

(To go from permutation notation to determinant notation, note that the sequence in the 
permutation is the same as that down the leading diagonal of the determinant.) 

For the particular example case we have chosen, we find now that the determinant is not 
written in standard order. (In fact, the only case in which this determinant would be in standard 
order would be if the state in which we added a particle was further up the list in standard 
order than all of the other occupied states.) To get this particular determinant into standard 
order, we need to swap the bottom two rows, and in performing this one swap, we must 
therefore multiply the determinant by 1− . Hence, in this case 

 †

1, 2, 3,
1, 2,ˆ 1, 2, 3,
1, 2,

1, 2, 3,
k

b b b
b b

b k k k
m m

m m m
= −  (16.7) 

Suppose now that we add another particle, this time in state j, using the operator †ˆ jb . Then we 
have 

 

† † †

1, 2, 3,
1, 2,ˆ ˆ ˆ 1, 2, 3,
1, 2,

1, 2, 3,

1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4,
1, 2, 3, 4,

j k j

b b b
b b

b b b k k k
m m

m m m

b b b b
k k k k
m m m m
j j j j

= −

= −

 (16.8) 

To get to standard order, we have to swap the bottom j row with the adjacent m row, 
multiplying by 1− , and then swap the j row, now second from the bottom, with the adjacent k 
row, multiplying again by 1− , to get into standard order, i.e.,  

                                                                                                                                                         
quantity, the wavefunction, that has a degree of arbitrariness to it (e.g., its absolute phase). Again, in 
working out any observable quantity with the wavefunction, the arbitrariness cancels and disappears. 
When we do work out observable quantities using creation and annihilation operators, this arbitrariness 
will similarly become unimportant. 
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( )2

1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,

1
1, 2, 3, 4, 1, 2, 3, 4,
1, 2, 3, 4, 1, 2, 3, 4,

1, 2, 3, 4,
1, 2, 3, 4,

1
1, 2, 3, 4,
1, 2, 3, 4,

b b b b b b b b
k k k k k k k k
m m m m j j j j
j j j j m m m m

b b b b
j j j j
k k k k
m m m m

→ −

→ −

 (16.9) 

and so  

 † †

1, 2, 3, 4,
1, 2, 1, 2, 3, 4,ˆ ˆ
1, 2, 1, 2, 3, 4,

1, 2, 3, 4,

j k

b b b b
b b j j j j

b b
m m k k k k

m m m m

= −  (16.10) 

Now suppose we do this two-particle creation operation in the opposite order. First, just as for 
Eq. (16.7) 

 †

1, 2, 3,
1, 2,ˆ 1, 2, 3,
1, 2,

1, 2, 3,
j

b b b
b b

b j j j
m m

m m m
= −  (16.11) 

Next, if we operate with †
k̂b  we obtain 

 † †

1, 2, 3, 4,
1, 2, 1, 2, 3, 4,ˆ ˆ
1, 2, 1, 2, 3, 4,

1, 2, 3, 4,

k j

b b b b
b b j j j j

b b
m m m m m m

k k k k

= −  (16.12) 

Now, however, we only have to swap adjacent rows once, not twice as in (16.9), to get the 
determinant into standard order, i.e., swapping the bottom two rows and multiplying by 1− , 
we obtain 

 † †

1, 2, 3, 4,
1, 2, 1, 2, 3, 4,ˆ ˆ
1, 2, 1, 2, 3, 4,

1, 2, 3, 4,

k j

b b b b
b b j j j j

b b
m m k k k k

m m m m

=  (16.13) 

This result is 1−  times the result from that of the operators in the order † †ˆ ˆj kb b  in (16.10). Note 
that this behavior corresponds exactly to what we want for fermion creation operators. 
Swapping two particles must give a change in sign for the overall fermion wavefunction. 
Creating two particles in one order rather than the other must give a result that is equivalent to 
swapping the two particles in the resulting state. 

This behavior of obtaining opposite signs for the result if the particles are created in opposite 
order is a general one, and it does not matter what the initial state is or what specific states the 
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particles are being created in (as long as the particles are being created in states that are 
different and that are initially empty). For example, we would get exactly the same difference 
in sign in the result if we had considered the pairs of operators † †ˆ ˆ

a kb b  and † †ˆ
âkb b , or the pairs 

† †ˆ ˆj nb b  and † †ˆ ˆjnb b . The key point is that one of the pairs of operators always results in one more 
swap of adjacent rows than the other, because it encounters one more row to be swapped. In 
the pair † †ˆ ˆj kb b , the row added by the †ˆ jb  operator has to be swapped past the row corresponding 
to a particle in state k whereas the row added by the †

k̂b  operator in the pair † †ˆ ˆ jkb b  does not have 
to be swapped past the row added by the †ˆ jb . This asymmetry is because one of the two states 
in the pair has to be ahead of the other in the standard order. 

Hence we have the result, valid for the operators operating on any state in which single-particle 
states j and k are initially empty 

 † † † †ˆ ˆ ˆ ˆ 0j k k jb b b b+ =   (16.14) 

In fact, this relation (16.14) is universally true for any state. To see this, we note first that, for 
any state in which state k is initially occupied, the fermion creation operator for that state must 
have the property that 

 †ˆ ,1 , 0k kb =… …  (16.15) 

because we cannot create two fermions in one single-particle state. Hence for any state for 
which the single-particle state k  is occupied, trivially we have 

 † †ˆ ˆ ,1 , 0j k kb b =… …  and † †ˆ ˆ ,1 , 0k j kb b =… …  (16.16) 

Hence our relation Eq. (16.14) still works here because each individual term is zero. We get an 
exactly similar result if the initial state is such that the single-particle state j is occupied. We 
also trivially get the same result for any initial state if j k=  because we are trying to create at 
least two fermions in the single-particle state (three if it is already occupied), and so we also 
get zero for both terms. Hence we conclude that (16.14) is valid for any starting state.  

A relation of the form of (16.14) is called an anticommutation relation. It is like a commutation 
relation between operators, but with a plus sign in the middle rather than the minus sign of a 
commutation relation. A notation sometimes used for an anticommutator of two operators, 
taking the expression of (16.14) as an example, is 

 { }† † † † † †ˆ ˆ ˆ ˆ ˆ ˆ,j k k j j kb b b b b b+ ≡  (16.17) 

Here we will progressively develop a family of anticommutation relations for the fermion 
operators. They will turn out to be the principal relations we use for simplifying expressions 
using fermion operators, and they are often quite convenient and useful. 

To proceed further, let us generalize and formalize the definition of the creation operator and 
the resulting signs. We see, with our choice that we add the particle in state k initially to the 
end of the list, or, equivalently, to the bottom of the determinant, and then swap it into place, 
that the number of swaps we have to perform is the number, kS , of occupied states that are 
above the state k of interest in the standard order. With this definition, we can write formally4 

                                                           
4 Note that S does depend on the occupation of the other single-particle states in the multiple particle state 
in question. This may seem an unusual concept, though it is quite consistent with the annihilation 
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 ( )†ˆ ,0 , 1 ,1 ,kS
k k kb = −… … … …  (16.18) 

Fermion annihilation operators 

Now we can proceed to define annihilation operators. From (16.18), we can see that 

 ( ) ( )†ˆ,1 , ,0 , 1 ,1 , ,1 , 1k kS S
k k k k kb = − = −… … … … … … … …  (16.19) 

Let us now take the complex conjugate or, actually, the Hermitian adjoint, of both sides of 
(16.19) and use the known algebra for Hermitian adjoints of products, i.e.,  

 

( ) ( )

( )

† ††† †ˆ ˆ,1 , ,0 , ,0 , ,1 ,

ˆ,0 , ,1 ,

1 k

k k k k k k

k k k

S

b b

b

=

=

= −

… … … … … … … …

… … … …  (16.20) 

(where we use the fact that the Hermitian adjoint of a Hermitian adjoint takes us back to where 
we started, i.e., † †ˆ( ˆ)k kb b= ). From (16.20) we deduce therefore that 

 ( )ˆ ,1 , 1 ,0 ,kS
k k kb = −… … … …  (16.21) 

Hence, whereas †
k̂b  creates a fermion in single-particle state k (provided that state was empty), 

k̂b  annihilates a fermion in single-particle state k provided that state was full, and is called the 
fermion annihilation operator for state k. 

We can think of the action of the annihilation operator on the Slater determinant as 
progressively swapping the row corresponding to state k in the determinant with the one below 
it until that row gets to the bottom of the determinant, in which case we remove it (and the last 
column) of the determinant, in an inverse fashion to the process with the creation operator we 
discussed above. By a similar set of arguments, we arrive at the anticommutation relation for 
the annihilation operator, valid for all states and for j k= , 

 ˆ ˆ ˆ ˆ 0j k k jb b b b+ =  (16.22) 

where we will also have used the relation, analogous to (16.15), 

 ˆ ,0 , 0k kb =… …  (16.23) 

which merely states that, if the single-particle state k is empty to start with, we cannot 
annihilate another particle from that state. 

Mixtures of creation and annihilation operators 
The final set of properties we require are those for mixtures of annihilation and creation 
operators. We can proceed in a similar fashion as above. Suppose that we are initially in the 
state with single-particle states b, j, and m occupied, and we operate on this state first with the 
annihilation operator ˆ jb . Then we have 

                                                                                                                                                         
operators being linear quantum mechanical operators. This inter-relation with the occupation of other 
single-particle states is an intrinsic, and classically bizarre, property of fermion states. 
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1, 2, 3,

1, 2,ˆ 1, 2, 3,
1, 2,

1, 2, 3,
j

b b b
b b

b j j j
m m

m m m
= −  (16.24) 

where the minus sign arises because we had to swap the j and m rows to get the j row to the 
bottom. Now we operate with †

k̂b , obtaining 

 

† †

1, 2, 3,
1, 2,ˆ ˆ ˆ1, 2, 3,
1, 2,

1, 2, 3,

1, 2, 3,
1, 2, 3,
1, 2, 3,

k j k

b b b
b b

b b j j j b
m m

m m m

b b b
k k k
m m m

= −

=

 (16.25) 

where the minus sign is cancelled because we had to swap the k row from the bottom with the 
m row. Next let us consider applying these operators in the opposite order. 

 †

1, 2, 3, 4,
1, 2, 3,

1, 2, 3, 4,ˆ 1, 2, 3,
1, 2, 3, 4,

1, 2, 3,
1, 2, 3, 4,

k

b b b b
b b b

j j j j
b j j j

k k k k
m m m

m m m m

= −  (16.26) 

where the minus sign has arisen because we had to swap the k  row from the bottom with the 
m row. Applying the ˆ jb  operator now gives 

 

†

1, 2, 3, 4,
1, 2, 3,

1, 2, 3, 4,ˆ ˆ ˆ1, 2, 3,
1, 2, 3, 4,

1, 2, 3,
1, 2, 3, 4,

1, 2, 3,
1, 2, 3,
1, 2, 3,

j k j

b b b b
b b b

j j j j
b b j j j b

k k k k
m m m

m m m m

b b b
k k k
m m m

= −

= −

 (16.27) 

In operating with ˆ jb , two swaps are required because we have to swap past both the m  and k  
rows. As before, we find an additional row swap required with one order of operators rather 
than the other (similar behavior would be found if we considered the pairs †ˆ ˆj kb b  and †ˆ ˆ jkb b ). The 
result (16.27) is minus the result (16.25). Hence we see that, at least when operating on states 
when single-particle state j is initially full and single-particle state k is initially empty, 

 † †ˆ ˆ ˆ ˆ 0j k k jb b b b+ =  (16.28) 

Again, if state j is initially empty, then both pairs of operators will lead to a zero result, and 
similarly if state k is initially full. Hence, as long as states j and k are different states, (16.28) is 
universally true.  

The only special case we have to consider more carefully here is for j k= . Suppose we 
consider the case where single-particle state k is initially full. Then we have 
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 †

1, 2, 3,
ˆ ˆ 1, 2, 3, 0

1, 2, 3,
k k

b b b
b b k k k

m m m
=  (16.29) 

because †
k̂b  operating on this state gives zero. For the other order of operators, we have 

 

† †

1, 2, 3,
1, 2,ˆ ˆ ˆ1, 2, 3,
1, 1,

1, 2, 3,

1, 2, 3,
1, 2, 3,
1, 2, 3,

k k k

b b b
b b

b b k k k b
m m

m m m

b b b
k k k
m m m

= −

=

 (16.30) 

It is left as an exercise for the reader to repeat this derivation for the situation where state k is 
initially empty. In both cases, the result is the same; one or other of the pairs returns the 
original state and the other pair returns zero. Hence we can say that 

 † †ˆ ˆ ˆ ˆ 1k k k kb b b b+ =  (16.31) 

Putting (16.31) together with (16.28), we can write the anticommutation relation 

 † †ˆ ˆ ˆ ˆ
j k k j jkb b b b δ+ =  (16.32) 

Finally, it only remains for us to note that †ˆ ˆ
k kb b  is the fermion number operator for the state k, 

i.e., it will tell us the number of fermions occupying state k. If the state is initially empty, it 
will return the value zero, and if the state is initially full it will return the value 1. We can write 
this as 

 †ˆ ˆˆ
k k kN b b=  (16.33) 

Problems 
 16.1.1. Consider a system that has two possible single fermion states, 1 and 2, and can have anywhere 

from zero to two particles in it. There are therefore four possible states of this system: 1 20 ,0  (the 
state with no particles in either single-fermion state, a state we could also write as the empty state 
0 ), 1 21 ,0 , 1 20 ,1 , and 1 21 ,1 . (We will also choose the standard ordering of the states to be in 

the order 1,2.) Any state of the system could be described as a linear combination of these four basis 
states, i.e.,  

 1 1 2 2 1 2 3 1 2 4 1 20 ,0 1 ,0 0 ,1 1 ,1c c c cΨ = + + +   
which we could also choose to write as a vector 

 

1

2

3

4

c
c
c
c

⎡ ⎤
⎢ ⎥
⎢ ⎥Ψ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

(i) Construct 4 x 4 matrices for each of the operators †
1̂b , 1̂b , †

2̂b , and 2̂b . 
(ii) Explicitly verify by matrix multiplication the anticommutation relations 

 † †
1 1 1 1
ˆ ˆ ˆ ˆ 1b b b b+ =   

 † †
2 2 2 2

ˆ ˆ ˆ ˆ 1b b b b+ =   
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 † † † †
1 2 2 1
ˆ ˆ ˆ ˆ 0b b b b+ =   

 † † † †
1 1 1 1
ˆ ˆ ˆ ˆ 0b b b b+ =   

 16.1.2. Prove the relation  
 ˆ ˆ ˆ ˆ 0j k k jb b b b+ =   

by considering the swapping of rows in determinants (i.e., follow similar arguments to the analogous 
relation for creation operators in the Section above), considering all relevant initial states and choices 
of j and k. 

16.2 Wavefunction operator 

It is very convenient to have an operator, in this occupation number representation, that 
represents the quantum mechanical wavefunction itself. One major use of it is to provide a 
simple way to postulate operators, such as Hamiltonians, that, in addition to having the spatial 
character they had before, also now have the creation and annihilation properties we desire for 
fermions. We will use these in the next Chapter to rewrite Hamiltonians so they have the 
fermion character built into them.  

The simplest situation we could consider would be a wavefunction operator where we have a 
single particle. Then we can propose an operator  

 ( ) ( )ˆˆ j j
j

bψ φ= ∑r r  (16.34) 

where the ( )kφ r  are some complete set for describing functions of space. Suppose for 
example that we had a situation where the single particle of interest here was in state m , i.e., 
the state with wavefunction ( )mφ r . We can also write that state as 

 †ˆ0 ,1 ,0 , 0l m n mb≡… …  (16.35) 

where here by 0  we mean the state with no fermions present in any single-particle state5. 
Then we find that 

 
( ) ( )

( )

†

†

ˆˆ ˆ0 ,1 ,0 , 0
ˆ ˆ 0

l m n m

j j m
j

b

b b

ψ ψ

φ

=

= ∑
r r

r

… …
 (16.36) 

Now we use the anticommutation relation (16.32), obtaining 

 ( ) ( )( )†ˆ ˆˆ 0 ,1 ,0 , 0l m n j jm m j
j

b bψ φ δ= −∑r r… …  (16.37) 

But 

 ˆ 0 0jb =  (16.38) 

                                                           
5 Note, incidentally that, just as for the empty state we encountered with bosons, the empty state 0  for 
fermions is a perfectly well-defined state of the system. It is one of the possible basis states for a multi-
fermion system. In Hilbert space, it is a vector of unit length, just like any other basis state. It does not 
have zero length.  
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because an attempt to annihilate a particle that is not there results in a null result. Hence we 
have 

 ( ) ( )ˆ 0 ,1 ,0 , 0l m n mψ φ=r r… …  (16.39) 

We can see then that this operator has successfully extracted the amplitude ( )mφ r  as we 
would hope for a system in single-particle state m . We have also acquired the ket 0  in the 
final result, which might seem odd, but remember that we should have a state vector here 
because the result of operating on a state vector should be a state vector (a matrix times a 
vector is a vector), so this is required for formal purposes.  

This illustration with the wavefunction operator also shows a very typical algebraic operation 
with creation and annihilation operators. To simplify an expression, one progressively 
rearranges it using the commutation or anticommutation relations to push an annihilation 
operator to the extreme right, operating on the 0  state or a state with no particle in the single-
particle state associated with the annihilation operator. Such a term then vanishes, leaving a 
simpler expression. 

We can also see by a simple extension of the above algebra that, if the particle is initially not 
in a specific single-particle state, but in a linear superposition, i.e.,  

 ,1 ,S k k
k

cψ = ∑ … …  (16.40) 

where by ,1 ,k… …  we mean the state with one particle in state k  and no other single-particle 
states occupied, then  

 ( ) ( )ˆ 0S k k
k

cψ ψ φ⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑r r  (16.41) 

which has now extracted the linear superposition of wavefunctions we would have desired. 

The next more complex case is to propose a wavefunction operator for a two-fermion state. We 
propose 

  ( ) ( ) ( )1 2 1 2
,

1 ˆ ˆˆ ,
2 n j j n

j n

b bψ φ φ= ∑r r r r  (16.42) 

(The 1/ 2  term is to ensure normalization of the final result.) 

It is left as an exercise for the reader to demonstrate that such an operator, operating on a state 
with two different single-particle states occupied, leads to a linear combination of products of 
wavefunctions that is correctly antisymmetric with respect to exchange of these two particles, 
i.e., if this operator acts on a state that has one fermion in single-particle state k  and an 
identical fermion in single-particle state m , i.e., the state † †ˆ ˆ,1 , ,1 , 0mkk m b b≡… … … , then 

 ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1
1ˆ , ,1 , ,1 , 0
2k m k m k mψ φ φ φ φ= −⎡ ⎤⎣ ⎦r r r r r r… … …  (16.43) 

We can propose to extend such wavefunction operators to larger numbers of particles, 
postulating 

 ( ) ( ) ( ) ( )1 2 1 2
, , ,

1 ˆ ˆ ˆˆ , , N n b a a b n N
a b n

b b b
N

ψ φ φ φ= ∑r r r r r r
…

… … …  (16.44) 



 16.3 Fermion Hamiltonians 397 

 

with the expectation that these operators will also extract the correct sum of permutations. 

Having now postulated the fermion annihilation and creation operators and the wavefunction 
operator, we are ready to make use of them. In addition to their obvious use as a way of 
writing fermion states, their other use is to represent operators (especially Hamiltonians), and 
we will deal with this next.  

Problems 
 16.2.1. Consider the two particle wavefunction operator 

 ( ) ( ) ( )1 2 1 2
,

1 ˆ ˆˆ ,
2 n j j n

j n
b bψ φ φ= ∑r r r r   

and a state † †ˆ ˆ,1 , ,1 , 0mkk m b b≡… … …  that has one fermion in single-particle state k and an identical 
fermion in single-particle state m. Show that  

 ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1
1ˆ , ,1 , ,1 , 0
2k m k m k mψ φ φ φ φ= ⎡ − ⎤⎣ ⎦r r r r r r… … …   

(i.e., this operator correctly constructs the combination of wavefunction products that is 
antisymmetric with respect to exchange of identical particles). 

16.3 Fermion Hamiltonians 

So far, we have treated fermions using a Schrödinger wave equation, and have explicitly 
forced the wavefunctions to have the necessary fermion character (i.e., we have forced them to 
be antisymmetric with respect to exchange of particles). The Schrödinger equation itself did 
not force the fermion character on the wavefunctions, and the solution of the Schrödinger 
equation did not itself give rise to the particles in any way. By contrast, with bosons, we have 
found an equation (which can also be viewed as a Schrödinger equation in the general sense) 
whose solution did itself give rise to the particles (e.g., photons), and this equation also was 
made up using operators that enforced the correct behavior of the states with respect to boson 
exchange.  

In the previous Sections, we constructed the fermion annihilation and creation operators. Our 
purpose in this Section is now to use the fermion operators to represent other operators, 
especially Hamiltonians, in a fashion analogous to that developed above for boson 
Hamiltonians, obtaining the necessary particle-like behavior. This development is necessarily 
somewhat abstract, but the reader should trust that this will be worth the effort. It leads to a 
particularly elegant and simple way of representing fermion properties that is valid for both 
single and multiple particle systems. This formalism works together with the boson formalism 
developed above to result in a particularly simple way of describing fermion-boson 
interactions (such as optical absorption of photons by electron systems). The interactions of 
fermions and bosons will be the subject of the next Chapter.  

The key to creating the Hamiltonians and other operators in the form we want is the use of the 
wavefunction operator to substitute where the wavefunction itself appeared before. This is a 
postulation, but we will see that it does correspond to our previous results, as well as giving us 
a convenient way of handling other problems such as systems of multiple identical fermions or 
fermion-boson interactions. Below we will consider progressively more sophisticated cases of 
fermion operators, showing how these can be written using creation and annihilation operators. 
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Single-particle fermion Hamiltonian with a single fermion 

First, we will consider the simplest case of a Hamiltonian for a single fermion. Previously, we 
had a simple Hamiltonian such as the simplest Schrödinger equation for a single particle 

 ( )
2

2ˆ
2

H V
m

= − ∇ +r r r=  (16.45) 

The expected value for energy was then, for any given state ψ  (presuming for simplicity 
here that the state can also be described by a spatial wavefunction ( )ψ r ), 

 ( ) ( ) ( )
2

2 3ˆ
2

E H V d
m

ψ ψ ψ ψ∗ ⎡ ⎤
= = − ∇ +⎢ ⎥

⎣ ⎦
∫r rr r r r=  (16.46) 

Now we postulate a new Hamiltonian operator, one that will have the fermion particle 
character we hope to add into the Hamiltonian operator. Our postulated method for 
constructing such an operator is to substitute for the wavefunction in an equation such as 
(16.46) with the wavefunction operator, generating our desired new fermion operator instead 
of the expectation value. Hence we obtain for our single-particle Hamiltonian operator 

 ( ) ( ) ( )
2

† 2 3ˆ ˆ ˆ
2

H V d
m

ψ ψ
⎡ ⎤

≡ − ∇ +⎢ ⎥
⎣ ⎦

∫ rr r r r=  (16.47) 

For the moment, we will presume for simplicity that the single-particle basis states with spatial 
wavefunctions ( )mφ r  are the eigenstates of this single-particle Hamiltonian, with 
corresponding eigenenergies mE ; we will discuss the more general case later below. Now we 
can formally rewrite (16.47) using the definition of the wavefunction operator from Eq. (16.34)
, obtaining 

 

( ) ( ) ( )

( ) ( )

2
† 2 3

,

† 3

,

†

,

ˆ ˆˆ
2

ˆ ˆ

ˆ ˆ

j k j k
j k

j k k j k
j k

j k k jk
j k

H b b V d
m

b b E d

b b E

φ φ

φ φ

δ

∗

∗

⎡ ⎤
= − ∇ +⎢ ⎥

⎣ ⎦

=

=

∑∫

∑ ∫

∑

rr r r r

r r r

=

 (16.48) 

i.e.,  

 †ˆ ˆˆ ˆ
j j j j j

j j
H E b b E N= ≡∑ ∑  (16.49) 

To show that this corresponds to results from our previous approach, let us evaluate the 
expectation value of the energy. Suppose that the system was in some state ψ  that was a 
linear superposition of the basis states, then we could write, as usual in the r representation 

 ( )m m
m

cψ φ= ∑ r  (16.50) 

or equivalently in the number state notation 

 †ˆ 0m m
m

c bψ = ∑  (16.51) 
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where we have used the notation †ˆ 0mb  as a convenient way of writing the basis state in which 
only the single-particle state m  is occupied. Note incidentally that we can take the Hermitian 
conjugate of both sides to obtain  

 ˆ0m m
m

c bψ ∗= ∑  (16.52) 

Now let us formally evaluate the expectation value of the energy in this state using the 
Hamiltonian (16.49).  

We obtain 

 † †

, ,

ˆ ˆ ˆ ˆˆ 0 0m n j m j j n
m n j

E H c c E b b b bψ ψ ∗= = ∑  (16.53) 

Now we will simplify the expression † †ˆ ˆ ˆ ˆ 0j jm nb b b b  using the anticommutation relations for 
fermion operators. Our standard algebraic approach is to use the anticommutation relations to 
push annihilation operators to the right; that will lead to disappearance of terms because an 
annihilation operator acting on the empty state 0  gives a zero result. We will therefore keep 
making substitutions of the form 

 † †ˆ ˆ ˆ ˆ
m j mj j mb b b bδ= −  (16.54) 

which is just the anticommutation relation for operators m̂b  and †ˆjb . Hence, we have 

 

( )( )
( )

† † † †

†

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0

ˆ ˆ 0

0

m j j n mj j m nj n j

mj j m nj

mj nj

b b b b b b b b

b b

δ δ

δ δ

δ δ

= − −

= −

=

 (16.55) 

Hence, substituting back into (16.53) we have 

 
, ,

2

0 0m n j mj nj
m n j

j j
j

E c c E

c E

δ δ∗=

=

∑

∑
 (16.56) 

which is exactly the result we would have expected based on our previous approach as in Eq. 
(16.46), for example. Hence this new approach to Hamiltonians does appear to work, at least 
for this simple example. Incidentally, except for the other simple anticommutation relations 
((16.14) and (16.22)) that merely change the sign on swapping fermion creation operators or 
fermion annihilation operators, the algebraic approach used above is essentially the main 
algebraic manipulation one has to perform with fermion operators, and is very powerful. 

Single-particle fermion Hamiltonians with multiple particle 
states 

Now let us take a somewhat more complicated example, which is that of single-particle 
fermion Hamiltonians with multiple fermions. What we now mean by a single-particle 
Hamiltonian is that the Hamiltonian of any one fermion can be written entirely in terms of that 
fermion’s properties and coordinates, i.e., that fermion’s energy does not depend on the other 
fermions in the system, or equivalently the fermions are non-interacting.  
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We might imagine this would be a good starting point for multiple uncharged fermions, such 
as a set of neutrons, possibly so dilute that they do not interact with one another in any other 
important way (i.e., negligible collisions of any kind). The reader might object that this is a 
rather artificial example, and it certainly is. A much more important and real example is the 
case of electrons in a crystalline solid. The reader may remember (from Chapter 8) that the 
starting approximation for modeling such electrons is that each one is presumed to move in the 
average potential, ( )V r , created by all the other electrons and nuclei, with this ( )V r  being 
presumed the same for all electrons. By making that approximation, we have now decoupled 
all the Hamiltonians for all the different electrons, and have a total Hamiltonian that is simply 
the sum of the single-electron Hamiltonians. Hence the case we are about to analyze is actually 
a very important and useful one. 

Suppose then that we have N identical fermions. Fermion i is presumed to have a single-
particle Hamiltonian in the original r form such as 

 ( )
2

2ˆ
2 ii iH V

m
= − ∇ +r r r=  (16.57) 

with the total Hamiltonian for the set of N fermions consequently being, in the original r form, 

 
1

ˆ ˆ
N

i
i

H H
=

= ∑r r  (16.58) 

What we will now find is that, even for the multiple fermion case, we can still write the total 
Hamiltonian operator exactly as in Eq. (16.49). Now that we write the Hamiltonian in the new 
form with creation and annihilation operators, we will not have to change the Hamiltonian for 
non-interacting fermions regardless of how many particles there are in the system (i.e., we do 
not have to write a sum like (16.58) in our new notation). We begin here to see some of the 
power of the annihilation and creation operator form for multiple fermion systems. Here we 
will illustrate that this Hamiltonian (16.49) works for the case of two fermions ( 2N = ). 

Suppose then that we have a specific two-fermion state with one fermion in single-particle 
state k and one in single-particle state m. We can write that state as 

 † †ˆ ˆ,1 , ,1 , 0TP k m k mb bψ = =… … …  (16.59) 

We want to evaluate the expectation value for the energy in this particular two-particle state 
presuming we can use the Hamiltonian in its occupation number representation as in Eq. 
(16.49). Then we have 

 
( )†

† † † † †

† † †

ˆ ˆ ˆ ˆ ˆ ˆˆ 0 0

ˆ ˆ ˆ ˆ ˆ ˆ0 0

TP TP k m j j j k m
j

j m k j j k m
j

E H b b E b b b b

E b b b b b b

ψ ψ= =

=

∑

∑
 (16.60) 

Now we have a small exercise in creation and annihilation operator algebra to simplify this 
expression. We take the standard approach of using the anticommutation relation between 
annihilation and creation operator pairs to push the annihilation operators to the right. We then 
can eliminate each term involving an annihilation operator on the right because ˆ 0 0ib =  for 
any i. We have 
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( )( )
( )

( ) ( )( )
( )( )

† † † † † †

† † † † † † † †

† † †

† † †

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ ˆ ˆ

m k j j k m m jk j k jk k j m

jk m m jk m k j m jk m j k m m j k k j m

jk m m jk mk k m mj m j

jk mj j m mk m k mj j

b b b b b b b b b b b b

b b b b b b b b b b b b b b b b

b b b b b b

b b b b b

δ δ

δ δ δ

δ δ δ δ

δ δ δ δ

= − −

= − − +

⎡= − − − −⎣

− − − + −( )( )( )† †ˆ ˆ ˆ ˆ1 0m k k mj j mb b b b bδ ⎤− − ⎦

 (16.61) 

Now we have annihilation operators on the far right on every expression involving creation 
and annihilation operators, so all of those terms disappear. Hence we have 

 ( )† † †ˆ ˆ ˆ ˆ ˆ ˆ 0 0m k j j k m jk jk mk mj jk mj mk mjb b b b b b δ δ δ δ δ δ δ δ= − − +  (16.62) 

But, by choice, m and k are different states so mkδ  never has any value other than zero6. Hence 
we have 

 ( )† † †ˆ ˆ ˆ ˆ ˆ ˆ 0 0m k j j k m jk mjb b b b b b δ δ= +  (16.63) 

Substituting back into (16.60), we have 

 ( ) 0 0j jk mj k m
j

E E E Eδ δ= + = +∑   (16.64) 

which is exactly what we would expect for non-interacting fermions, one in state k and one in 
state m. Hence this illustration shows how the Hamiltonian (16.49) also works for multiple 
particle states. Unlike the r representation of the Hamiltonian, we do not have to add separate 
Hamiltonians for each identical fermion, and hence we have an elegant form of Hamiltonian 
for multiple fermion systems. 

Representation of general single-particle fermion operators 
The Hamiltonian is a rather special case because, for a single-particle operator, the occupation 
number states are eigenstates of the Hamiltonian by definition. How would we represent other 
single-particle fermion operators (e.g., the momentum operator or the position operator) in this 
annihilation and creation operator formalism? Having a suitable approach for this is practically 
quite useful; we may need it, for example, if we are to handle the position r  in the electric 
dipole interaction ⋅E r , or similarly to handle the momentum in the ⋅A p  interaction in other 
formulations of the interaction of an electron with an electromagnetic field.  

Here we consider the general case of a system with N fermions. In the r representation of some 
operator, Ĝr , (e.g., such as the momentum operator) for a multiple fermion system we would 
have to add all of the operators corresponding to the coordinates of each particle, i.e.,  

 
1

ˆ ˆ
N

i
i

G G
=

= ∑r r  (16.65) 

where ˆ
iGr  is the operator for a specific particle (e.g., it might be the momentum operator 

ˆ
ii i= − ∇r rp = ). In the annihilation and creation operator formalism, we postulate instead that 

                                                           
6 We also know that † †ˆ ˆ 0k kb b =  because we cannot create two fermions in the same state. Hence we could 
have used this property to replace † †ˆ ˆ

k mb b  formally with † †ˆ ˆ(1 ) k mmk b bδ−  as a first step in this algebra. The 
product (1 0)mk mkδ δ− =  under all conditions, and so all terms containing mkδ  vanish. 
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 † 3 3 3
1 2

ˆ ˆˆ ˆ NG G d d dψ ψ= ∫ r r r r…  (16.66) 

where ψ̂  is the N-particle fermion wavefunction operator. Substituting the N-particle fermion 
wavefunction operator into (16.66), we obtain 

 

( ) ( ) ( ) ( ) ( ) ( )

† † †

1 , ,
, ,

3 3 3
1 2 1 2 1 2

1 ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ

N

a b n n b a
i a b n

a b n

a b n N i a b n N N

G b b b b b b
N

G d d dφ φ φ φ φ φ

′ ′ ′
=

′ ′ ′

∗ ∗ ∗
′ ′ ′

=

×

∑ ∑

∫ rr r r r r r r r r

…
…

… …

… … …

 (16.67) 

where each of the , ,a b n…  and each of the , ,a b n′ ′ ′…  ranges over all possible single-particle 
fermion states. 

Now, all the spatial integrals, except the one over ir , lead to Kronecker deltas of the form k kδ ′ , 
forcing a a′ = , b b′ = , etc., (except for particle i ). Hence we have 

 † † † †
1 2 1 2

1 , , , 1, 2,

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
N

i i a b i n n i b a
i a b i i n

G G b b b b b b b b
N =

= ∑ ∑
… …

… … … …  (16.68) 

where 

 ( ) ( ) 3
1 2 1 2

ˆ
i i i i i i i iG G dφ φ∗= ∫ rr r r  (16.69)  

We can use the anticommutation relation ˆ ˆ ˆ ˆ 0j jk kb b b b+ =  progressively to swap the operator 
2îb  from the right to the center, and similarly we use the anticommutation relation 

† † † †ˆ ˆ ˆ ˆ 0j jk kb b b b+ =  progressively to swap the operator †
1îb  from the left to the center. Each such 

application of an anticommutation relation results in a sign change, but there are equal number 
of swaps from the left and from the right, so there is no net sign change in this operation. 
Hence we have  

 
† †
1 2

† † † †
1 2 1 2

1 , , , 1, 2, ˆ ˆ

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

i i

N

i i a b n i i n b a
i a b i i n

omitting b omitting b

G G b b b b b b b b
N =

= ∑ ∑
… …

… …��	�
 ��	�
  (16.70) 

In practice with any operator, we are in the end always working out matrix elements for the 
operator. Any two operators with identical matrix elements are equivalent operators. We can 
consider two, possibly different, N-fermion basis states, 1Nψ  and 2Nψ , and consider matrix 
elements of the operator Ĝ  between such states. Because of Pauli exclusion, the only strings 
of operators that can survive in matrix elements for legal fermion states are those in which all 
the operators ˆ ˆ ˆ, ,a b nb b b…  are different from each other (i.e., correspond to annihilation 
operators for different single-particle states) and are each different from both 1îb  and 2îb ; 
otherwise we would be trying either to annihilate two fermions from the same state or create 
two fermions in the same state, both of which are impossible. Hence, for these states, since no 
two single-particle states in our string of creation operators or our string of annihilation 
operators can be identical, not only do the pairs of annihilation operators anticommute and the 
pairs of creation operators anticommute as usual, so also do all the pairs of creation and 
annihilation operators with different subscripts (other than possibly the pair †

21ˆ îib b ). Hence we 
can take the creation operator †

âb  and swap it all the way from the left until we get to the left of 
the corresponding annihilation operator âb , only acquiring minus signs as we do so. Actually, 
however, we acquire an even number of minus signs, because the number of swaps taken to get 
to the middle is equal to the number to get from the middle to its final position, so there is no 
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change in sign in all these swaps. We can repeat this procedure for each creation operator 
(other than †

1îb , which we do not need to move anyway), and so we have 

 
†

21

†
1 2 1 2

1 , , , 1, 2, ˆ ˆ

1 ˆ ˆˆ ˆ ˆ ˆ

ii

N

i i i i n b a
i a b i i n

omitting b b

G G b b N N N
N =

= ∑ ∑
… …

…��	�
  (16.71) 

When this operator operates on a specific N-fermion basis state 1Nψ , the only terms in the 
summation that can survive are those for which the list of states , ,a b n…  correspond to 
occupied states in 1Nψ , and so the sum over , ,a b n…  (omitting 1i  and 2i ) and the number 
operators can be dropped without changing any matrix element. Hence we can write 

 †
1 2 1 2

1 1, 2

1 ˆ ˆˆ
N

i i i i
i i i

G G b b
N =

= ∑∑  (16.72) 

It makes no difference which fermion we are considering – 1 2i iG  is the same for every fermion 
– and so we can write finally, simplifying notation by substituting j  for 1i  and k  for 2i   

 †

,

ˆ ˆˆ
jk j k

j k
G G b b= ∑  (16.73) 

which is the general form for a single-particle fermion operator. The Hamiltonian, (16.49), is 
just a special case for a diagonal operator. Hence we have found a very simple form for the 
single-particle fermion operator valid for any number of fermions.  

Two-particle fermion Hamiltonians 

The analysis above for single-particle fermion Hamiltonians is useful for situations where the 
fermions do not interact with one another. Fermions such as electrons do, however, interact 
quite strongly, e.g., through their Coulomb repulsion, and so it will be quite common to have 
to deal with such interactions. For such cases, we will need to have two-particle operators 
(again usually Hamiltonians, though not necessarily). Here we find out how to approach such 
processes using the annihilation and creation operators. 

Consider what happens, for example, when we have two interacting fermions. In the r  form, 
we might have an operator ( )1 2

ˆ ,Dr r r  that depends on the coordinates of both particles. Then 
we would postulate that we could create the corresponding new operator in the annihilation 
and creation operator form in an analogous way to our previous approach for single-particle 
operators, i.e., we postulate 

 ( ) ( ) ( )† 3 3
1 2 1 2 1 2 1 2

ˆ ˆˆ ˆ, , ,D D d dψ ψ= ∫ rr r r r r r r r   (16.74) 

with the two-fermion wavefunction operator ( ) ( ) ( ),1 2 1 2
ˆ ˆˆ , (1/ 2) j k k j j kb bψ φ φ∑=r r r r . 

Substituting this form into (16.74), we have 

 ( ) ( ) ( ) ( ) ( )† † 3 3
1 2 1 2 1 2 1 2

, , ,

1 ˆ ˆ ˆ ˆˆ ˆ ,
2 a b d c a b c d

a b c d

D b b b b D d dφ φ φ φ∗ ∗= ∑ ∫ rr r r r r r r r  (16.75) 

or equivalently 

 † †

, , ,

1 ˆ ˆ ˆ ˆˆ
2 abcd a b d c

a b c d

D D b b b b= ∑  (16.76) 

where 
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 ( ) ( ) ( ) ( ) ( ) 3 3
1 2 1 2 1 2 1 2

ˆ ,abcd a b c dD D d dφ φ φ φ∗ ∗= ∫ rr r r r r r r r  (16.77) 

Note, incidentally, that the order of the suffices on the chain of operators † †ˆ ˆ ˆ ˆ
a d cbb b b b  is not 

, , ,a b c d . The ordering is in the opposite sense for the annihilation operators. This different 
ordering here has emerged here from the wavefunction operators and the properties of 
Hermitian conjugation. 

We presume that we would be able to show that the two-particle fermion operator of (16.76) 
would remain unchanged as we changed the system to have more than two fermions in it. The 
arguments would be very similar to those given above that showed that the single-particle 
fermion operator (16.73) was unchanged as we considered multiple fermion states, so we 
presume that (16.76) is a general statement for a two-particle fermion operator in this 
annihilation and creation operator approach. 

Example – electrons interacting through the Coulomb potential 

The meaning of the two-particle fermion operator will become clearer if we consider a simple 
example. Consider two electrons (of the same spin) interacting through the Coulomb repulsion. 
The Hamiltonian in the r form would be, as in Eq. (13.23) when we considered the exchange 
interaction between identical electrons, 

 ( ) ( )1 2

2 2
2 2

1 2
1 2

ˆ ,
2 4o o

eH
m πε

= − ∇ + ∇ +
−r r rr r

r r
=  (16.78) 

Hence our two particle operator formalism gives us the new operator 

 † †

, , ,

1 ˆ ˆ ˆ ˆˆ
2 abcd a b d c

a b c d

H H b b b b= ∑  (16.79) 

where abcdH  is defined analogously to Eq. (16.77).  

Suppose specifically that we have the two-fermion state where one electron is in the basis state 
( )kφ r  and the other is in the state ( )mφ r , i.e., the two-particle state can be written  

 † †ˆ ˆ 0TP k mb bψ =  (16.80) 

Now let us evaluate the expectation value of the energy in this two-particle state using the 
Hamiltonian (16.79). We have 

 † † † †

, , ,

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ 0 0
2TP TP abcd m k a b d c k m

a b c d

H H b b b b b b b bψ ψ = ∑  (16.81) 

Now  

 
† † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0m k a b d c k m

ak bm ck dm am bk cm dk am bk ck dm ak bm cm dk

b b b b b b b b
δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ= + − −

 (16.82) 

the proof of which is left as an exercise for the reader (as usual, this merely requires repeated 
application of the anticommutation relation of the form † †ˆ ˆ ˆ ˆ

p q pq q pb b b bδ= −  to push the 
annihilation operators to the right). Hence we have for the energy expectation value 

 ( )1ˆ
2TP TP kmkm mkmk mkkm kmmkH H H H Hψ ψ = + − −  (16.83) 
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Explicitly, we have 

 ( ) ( ) ( ) ( ) 3 3
1 2 1 2 1 2

ˆ
kmkm mkmk k m k mH H H d dφ φ φ φ∗ ∗= = ∫ rr r r r r r  (16.84) 

and 

 ( ) ( ) ( ) ( ) 3 3
1 2 1 2 1 2

ˆ
kmmk mkkm k m m kH H H d dφ φ φ φ∗ ∗ ∗= = ∫ rr r r r r r  (16.85) 

These terms are exactly the same as we previously calculated using the r  formalism in 
Chapter 13. kmkmH  (or equivalently (1/ 2)( )kmkm mkmkH H+ ) is the sum of the kinetic energies 
for the two particles and the Coulomb potential energy for two electrons, as in Eqs. (13.30) – 
(13.34) (and is therefore the energy we would calculate if the particles were not identical); 

(1/ 2)( )mkkm kmmkH H− +  is the exchange energy of Eq. (13.36). Hence this approach does 
reproduce the results of our previous r  formalism. Importantly, this formalism, in which we 
never have to explicitly introduce the antisymmetry of the wavefunction for two identical 
fermions, has correctly introduced the exchange energy terms. This exchange term has 
emerged naturally through the use of the anticommutation relations for the fermion operators. 

Problems 
 16.3.1. For identical fermions, prove 
 † † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0m k a b d c k m ak bm ck dm am bk cm dk am bk ck dm ak bm cm dkb b b b b b b b δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ= + − −  

 16.3.2. Consider electrons and protons, and construct the Hamiltonian in the r form for one electron and 
one proton assuming Coulomb interaction only.  

 (i) Transform this Hamiltonian into an occupation number form with creation and annihilation 
operators for both electrons and protons. [Hint: use separate wavefunction operators for the electron 
wavefunction and for the proton wavefunction, noting any commutation relation between the 
operators corresponding to different kinds of particles.]  

 (ii) By presuming that the system is in a state ψ  in which the electron is in some electron basis 
state k and the proton is in some proton basis state m, formally evaluate the expectation value of the 
energy of this system of one electron and one proton using this occupation number form of the 
Hamiltonian. Make use of the commutation and/or anticommutation relations appropriate for the 
operators (you need not actually evaluate any integrals), showing that in this case there is no 
exchange energy term in the resulting energy expectation value.  

 16.3.3. (i) Using a complete orthonormal spatial basis set ( )nφ r , write a general expression in terms of 
creation and annihilation operators for the position operator r̂  of a fermion.  

  (ii) Suppose now the fermion is explicitly in a one-dimensional potential well with infinitely high 
potential barrier on each side. Write an explicit expression for the position operator, using the energy 
eigenfunctions ( )n zφ  of this one-dimensional potential well problem as a basis.  You may 
need the result 

 
( ) ( ) ( )

( ) ( )2 2
0

4/ 2 sin sin , for  odd

0 , for  even

nmx nx mx dx n m
n m n m

n m

π
π −

− = +∫
− +

= +
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16.4 Summary of concepts 

Fermion annihilation and creation operators 

We define fermion creation †
k̂b  and annihilation k̂b  operators for a given single-particle state k 

respectively through the relations 

 ( )†ˆ ,0 , 1 ,1 ,kS
k k kb = −… … … …  (16.18) 

 †ˆ ,1 , 0k kb =… …  (16.15) 

 ( )ˆ ,1 , 1 ,0 ,kS
k k kb = −… … … …  (16.21) 

 ˆ ,0 , 0k kb =… …  (16.23) 

where Sk is the number of occupied single-particle states ahead of state k in the arbitrary 
standard ordering we have chosen for labeling the single-particle states. 

Anticommutator 

The anticommutator is denoted with curly brackets, and for two operators ĉ  and d̂  is defined 
as the sum  

 { }ˆ ˆ ˆˆ ˆ ˆ,cd dc c d+ ≡  after Eq. (16.17) 

Anticommutation relations 

Fermion creation and annihilation operators have the following anticommutation relations: 

 † † † †ˆ ˆ ˆ ˆ 0j k k jb b b b+ =  (16.14) 

 ˆ ˆ ˆ ˆ 0j k k jb b b b+ =  (16.22) 

 † †ˆ ˆ ˆ ˆ
k j j k jkb b b b δ+ =  (16.32) 

Fermion number operator 

The fermion number operator for a single-particle state k is defined as 

 †ˆ ˆˆ
k k kN b b=  (16.33) 

Wavefunction operators 

We can define a single-particle wavefunction operator 

 ( ) ( )ˆˆ j j
j

bψ φ= ∑r r  (16.34) 

For a system in a specific single-particle state m, we therefore have, for example,  

 ( ) ( )ˆ 0 ,1 ,0 , 0l m n mψ φ=r r… …  (16.39) 

so the wavefunction operator has successfully “extracted” the wavefunction of that state, and it 
will similarly extract linear superpositions of wavefunctions for a particle in a linear 
superposition of single-particle states. 
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We can similarly define a two-particle and N particle wavefunction operators respectively 

 ( ) ( ) ( )1 2 1 2
,

1 ˆ ˆˆ ,
2 n j j n

j n

b bψ φ φ= ∑r r r r  (16.42) 

 ( ) ( ) ( ) ( )1 2 1 2
, , ,

1 ˆ ˆ ˆˆ , , N n b a a b n N
a b n

b b b
N

ψ φ φ φ= ∑r r r r r r
…

… … …  (16.44) 

Single-particle fermion Hamiltonian 

For non-interacting fermions (or ones approximated as non-interacting, like electrons in a solid 
in a single-electron approximation), we can write the Hamiltonian as 

 †ˆ ˆˆ ˆ
j j j j j

j j

H E b b E N= ≡∑ ∑  (16.49) 

where the states j have been chosen to be the eigenstates of this single-particle Hamiltonian. 
We call this a “single-particle” Hamiltonian, but we understand that this same Hamiltonian 
remains valid no matter how many such non-interacting particles there are in the system; we 
no longer have to add Hamiltonians for all the different particles. It is a “single-particle” 
operator in the sense that there are no interactions between particles involved. 

General single-particle fermion operator 

When the single-particle basis states are not necessarily the eigenstates of the operator, a 
single-particle fermion operator can be written as 

 †

,

ˆ ˆˆ
jk j k

j k
G G b b= ∑  (16.73) 

where the matrix elements are taken over the single-particle basis wavefunctions, i.e.,  

 ( ) ( ) 3
1 2 1 2

ˆ
i i i i i i i iG G dφ φ∗= ∫ rr r r  (16.69) 

Again, this Hamiltonian remains the same regardless of how many such non-interacting 
particles are in the system. 

General two-particle Fermion operator 

With similar definitions as above, an operator that expresses the interaction between two 
fermions, such as the Coulomb interaction Hamiltonian between two electrons can be written 
as 

 † †

, , ,

1 ˆ ˆ ˆ ˆˆ
2 abcd a b d c

a b c d

D D b b b b= ∑  (16.76) 

The use of such an operator automatically gives rise to the exchange terms, for example, based 
solely on the properties of the fermion creation and annihilation operators. Even for large 
numbers of particles, this operator remains unchanged. 

 



 

 

Chapter 17  
 
Interaction of different kinds of 
particles 

Prerequisites: Chapters 2 –  7, 9, 10, 12, 13, 15, 16. 

So far in the treatment of creation and annihilation operators, we have considered operators, 
including especially Hamiltonians, in which we are concerned with only one kind of particle 
(i.e., either identical bosons or identical fermions). Many important phenomena involve 
interactions of different kinds of particles (e.g., interactions of photons or phonons with 
electrons). Here we will discuss how to handle operators for such situations. As a specific, and 
particularly useful, example, we will discuss the electron-photon interaction. This will lead us 
through perturbation theory in this operator formalism to a proper quantum mechanical 
treatment of absorption and stimulated and spontaneous emission. 

17.1 States and commutation relations for different kinds 
of particles 

The approach is an extension of what we have done before. We need two additions. First, 
though we will continue to work in the occupation number representation, we must include the 
description of the occupied single-particle states for each different particle in the overall 
description of the states. Second, we need commutation relations between operators 
corresponding to different kinds of particles. 

In considering the occupation number basis states, for example for a system with two different 
kinds of particles, we simply have to list which states are occupied for each different kind of 
particle. Suppose we have a set of identical electrons and a set of identical bosons (e.g., 
photons). Then for a state with one fermion in fermion state k, and one in state q, and one 
photon in photon mode dλ  and three in photon mode sλ , we could write the state either in the 
form of a list or using creation operators acting on the empty state, i.e., 

 
( )3† † † †

,0 ,1 ,0 , 0 ,1 ,0 , ; ,0 ,1 ,0 , ,0 ,3 ,0 ,

1 ˆ ˆ ˆ ˆ; 0
3!

j k l p q r c d e r s t

fm bn k q d sN N b b a a

λ λ λ λ λ λ

λ λ≡ ≡

… … … … … …
 (17.1) 

By fmN  we simply mean the mth possible list of occupied fermion states (here the list 
,0 ,1 ,0 , 0 ,1 ,0 ,j k l p q r… … … ) and similarly by bnN  we mean the n th possible list of occupied 

boson states (here the list ,0 ,1 ,0 , ,0 ,3 ,0 ,c d e r s tλ λ λ λ λ λ… … … ). Note now that the empty state 
0  is one that is empty both of this kind of fermion and this kind of boson.  
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As for the commutation relations, we simply postulate that creation and annihilation operators 
corresponding to non-identical particles commute under all conditions. Specifically then for 
the boson and fermion operators we would have  

 
† † † †

† † † †

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0 0
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0 0

j j j j

j j j j

b a a b b a a b

b a a b b a a b
λ λ λ λ

λ λ λ λ

− = − =

− = − =
 (17.2) 

Note such relations also would hold for annihilation and creation operators corresponding to 
two different kinds of fermions, such as electrons and protons, or, for that matter, two different 
kinds of bosons, such as photons and phonons.  

17.2 Operators for systems with different kinds of particles 

The basic approach for constructing operators corresponding to interactions between different 
kinds of particles is progressively to apply the methods appropriate for each particle. Because 
of the commutation relations for annihilation and creation operators for different particles, 
there is no particular necessary order for applying these methods. The construction of such 
operators is probably  best understood by illustration.  

The case of most interest to us here is that of the interaction of electrons and photons. The 
basic approach is to use the field operators instead of the classical fields and use the fermion 
wavefunction operators to transform the fermion position (or momentum) operator to the 
occupation number form.  

Suppose, for example, we consider the Hamiltonian of the electric dipole interaction between 
electrons and electromagnetic modes. We presume first that we had “turned off” 
(mathematically at least) any interaction between the electron and the photons. Then, because 
there is no interaction, the resulting Hamiltonian would simply be the sum of the separate 
fermion (electron) and boson (photon) Hamiltonians, i.e.,  

 † †ˆ ˆˆ ˆ ˆo j j j
j

H E b b a aλ λ λ
λ

ω= +∑ ∑=  (17.3) 

As before, the sum over j is over all possible single-particle fermion states, and the sum over λ 
is over all possible photon modes.  

Now let us consider the interaction between the electrons and the photons. Previously, for the 
electric dipole interaction, we had, from a semiclassical view of the energy of an electron at 
position ir  in an electric field E 

 ˆ
scedH e= ⋅r E r  (17.4) 

(where r is actually the position operator). Substituting the multimode electric field operator of 
Eq. (15.132) for the classical field E gives, for any specific electron i,  

 ( ) ( )†ˆ ˆ ˆ1 .
2ed i i i

o

H e a a λ
λ λ λ

λ

ω
ε

= − −∑r u r r
=

 (17.5) 

For N electrons, we have to add all these Hamiltonians, i.e.,  

 ( ) ( )†

1

ˆ ˆ ˆ1 .
2

N

ed i i
i o

H e a a λ
λ λ λ

λ

ω
ε=

= − −∑ ∑r u r r
=

 (17.6) 



410  Chapter 17 Interaction of different kinds of particles 

 

Now we want to transform this Hamiltonian in r form into the fermion occupation number 
form also. To do so, we formally use the N-fermion field operators. Because the fermion and 
boson operators commute with one another, the boson operators also commute with the 
(fermion) wavefunction operators, and so we can write 

 ( ) ( )

( ) ( )

† 3 3 3
1 2

† † 3 3 3
1 2

1

† † 3 3 3
1 2

1

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ1 .
2

ˆ ˆˆ ˆ 1 .
2

ed ed N

N

i i N
i o

N

i i N
i o

H H d d d

e a a d d d

a a e d d d

λ
λ λ λ

λ

λ
λ λ λ

λ

ψ ψ

ω
ψ ψ

ε

ω
ψ ψ

ε

=

=

=

⎡ ⎤
= − −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= − −⎢ ⎥
⎢ ⎥⎣ ⎦

∫

∑ ∑∫

∑ ∑∫

r r r r

u r r r r r

u r r r r r

…

= …

= …

 (17.7) 

But this is a situation we anticipated above. Inside this expression, we have a single-particle 
fermion operator with a multiple fermion state, as in Eq. (16.65), which we can write in the r 
form as 

 
1

ˆ ˆ
N

ed ed i
i

H Hλ λ
=

= ∑r r  (17.8) 

where here 

 ( )ˆ 1 .
2ed i i i

o

H e λ
λ λ

ω
ε

= −r u r r
=

 (17.9) 

This is a single-particle fermion operator because each ˆ
ed iH λr  only depends on the coordinates 

of one fermion. 

With this notation, (17.7) becomes 

 ( )† † 3 3 3
1 2

ˆ ˆˆ ˆˆ ˆed ed NH a a H d d dλ λ λ
λ

ψ ψ= −∑ ∫ r r r r…  (17.10) 

Now we can use our specific previous results for single-particle fermion operators with 
multiple fermion states, which allow us to write (as in Eq. (16.73)) 

 † 3 3 3 †
1 2

,

ˆ ˆˆˆ ˆed N ed jk j k
j k

H d d d H b bλ λψ ψ = ∑∫ r r r r…  (17.11) 

where (as in Eq. (16.69)) 

 
( ) ( )

( ) ( ) ( )

3

3

ˆ

1 .
2

ed jk j i ed i k i i

j i i i k i i
o

H H d

e d

λ λ

λ
λ

φ φ

ω
φ φ

ε

∗

∗

=

= − ⎡ ⎤⎣ ⎦

∫

∫

rr r r

r u r r r r
=  (17.12) 

Hence, substituting back into expression (17.7) for this perturbing electric-dipole Hamiltonian, 
we have 

 ( )† †

, ,

ˆ ˆˆ ˆ ˆed ed jk j k
j k

H H b b a aλ λ λ
λ

= −∑  (17.13) 

In such an expression, all of the details of the specific form of the single-particle fermion states 
and of the electromagnetic modes are contained within the constants jed kH λ .  
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The annihilation and creation operators identify specific processes that could occur given 
appropriate starting states. We can open up the creation and annihilation operator expression 

 ( )† † † † †ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆj k j k j kb b a a b b a b b aλ λ λ λ− = −  (17.14) 

Hence, for example, if fermion state k was occupied, and fermion state j was empty, and we 
had at least one photon in mode λ, then we could have a process, corresponding to the 
operators †ˆ ˆ ˆj kb b aλ , which involves annihilating a photon in mode λ and changing an electron 
from state k to state j, i.e., we are describing an absorption process in which absorption of a 
photon takes an electron from one state to another. Similarly, the process corresponding to the 
operators † †ˆ ˆ ˆj kb b aλ  is one of emission of a photon as an electron goes from state k to state j. We 
will return to evaluating transition rates for such processes once we have discussed time-
dependent perturbation theory for this formalism.  

Problem 
 17.2.1. Suppose that we are going to describe a number of particles in each case using the basis set of 

plane waves of different directions and/or different wavevector magnitudes, indexed by the 
wavevector k. Suppose we have one or more electrons (all of the same spin), with the annihilation 
operator b̂k  corresponding to the annihilation of an electron in basis plane wave state of wavevector 
k. Similarly consider one or more protons (all with the same spin) with annihilation operators d̂k , 
and one or more photons (all with the same polarization in any given plane wave state) with 
annihilation operators âk . For each of the following sets of operators, describe the process being 
represented by the operators, and if that process necessarily cannot never actually happen because of 
basic rules such as Pauli exclusion, say so. (For example, the operators †

2 31
ˆ ˆ ˆb b ak kk  correspond to the 

process of absorption of a photon from the plane wave state with wavevector k3, and changing an 
electron from the plane wave state with wavevector k2 to that with wavevector k1.) 
(i) †

2 31
ˆ ˆ ˆd d ak kk  

(ii) ( )2†
2 31

ˆ ˆ ˆb b ak kk  

(iii) † †
3 41 2

ˆ ˆ ˆ ˆd d d dk kk k  

(iv) ( )2†
3 41

ˆ ˆ ˆb b bk kk  

(v) † †
3 41 1

ˆ ˆ ˆ ˆb d b dk kk k  

(vi) † †
3 41 2

ˆ ˆˆ ˆb a b ak kk k  

17.3 Perturbation theory with annihilation and creation 
operators 

The time-dependent perturbation theory we derived above remains valid as we change the way 
we write the Hamiltonian and the states in the occupation number and annihilation and 
creation operator form. We have not changed the underlying nature of the quantum mechanics, 
and are still interested in the time evolution of the amplitudes of the various possible states of 
the system.  

When we use perturbation theory for states and operators in this occupation number form, we 
are usually considering transitions caused by interactions between different particles. We will 
have an unperturbed Hamiltonian, ˆ

oH , such as the one for non-interaction fermions and 
bosons in Eq. (17.3). Then we will consider the interactions between particles, such as the 
electric dipole interaction discussed above for electrons and photons, Eq. (17.13), as a 
perturbation. Note, incidentally, that this approach works for any kinds of particles; we could, 
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for example, apply it to electron-electron scattering. It is, of course, not necessary that the 
interaction is between different kinds of particles for us to apply perturbation theory. For 
definiteness here we will discuss a system in which there is one kind of fermion (which we can 
think of as electrons) and one kind of boson (which we can think of as photons). 

For completeness, we will briefly write out the key steps in first-order time-dependent 
perturbation theory in the notation of our current approach. First we note that the quantum 
mechanical states we will be using are those of the entire system. Previously, we might have 
considered only the electron state, treating the perturbation, such as an electric dipole 
perturbation, as being from something external to the quantum system, such as a classical field. 
Now our basis states must describe both the occupation of each single-particle electron state 
and the occupation of each boson mode. Hence we write our basis states as in Eq. (17.1). 
Specifically, the mth state of this entire (non-interacting) fermion-boson system can be written 
as ;fm bmN N , where fmN  is the list of all the occupation numbers of each possible single-
particle fermion state, and bmN  is similarly the list of all the occupation numbers of each 
possible boson mode. These states will be the eigenstates of the unperturbed Hamiltonian, 
which we take as the ˆ

oH  of Eq. (17.3) that is simply the sum of the separate fermion and 
boson Hamiltonians. Analogous to Eq. (7.3) we therefore have 

 ˆ ; ;o fm bm m fm bmH N N E N N=  (17.15) 

where mE  would be the energy of this fermion-boson system in state m in the absence of any 
interaction between the fermions and bosons. 

The actual state of the system is some linear superposition ψ , which we expand in the above 
basis, i.e., analogous to Eq. (7.4) we have 

 ( )exp / ;m m fm bm
m

c iE t N Nψ = −∑ =  (17.16) 

where we have explicitly added the time varying factors ( )exp /miE t− =  so that we can leave 
them out of the states ;fm bmN N .1 Note again that, in contrast to previous approaches that 
treated perturbations as external phenomena, mE  is the energy of the complete (unperturbed) 
fermion-boson system in this state m, not merely the energy of the fermion. 

The state ψ  is presumed to obey the time-dependent Schrödinger equation with the complete 
Hamiltonian, including the perturbation ˆ pH , i.e., analogous to Eq. (7.2) 

 ( )ˆ ˆ
o pi H H

t
ψ ψ∂

= +
∂

=  (17.17) 

Substituting (17.16) in (17.17), eliminating terms on both sides using (17.15), and 
premultiplying by the bra for state q of the fermion-boson system, ;fq bqN N , gives, 
analogously to Eq. (7.7),  

 ( ) ( ) ˆexp / exp / ; ;q q m m fq bq p fm bm
m

i c iE t c iE t N N H N N− = −∑�= = =  (17.18) 

                                                           
1 We have also used c rather than a for the expansion coefficients to avoid confusion with boson 
operators. 
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Taking the usual perturbation approach of basing the first-order change in wavefunctions on 
the zeroth-order state (i.e., on the unperturbed wavefunctions), we have, analogously to Eq. 
(7.10), 

 ( ) ( ) ( )1 01 ˆexp / ; ;q m m q fq bq p fm bm
m

c c i E E t N N H N N
i

⎡ ⎤− −⎣ ⎦∑� � =
=

 (17.19) 

Now in our new notation we are ready to use time-dependent perturbation theory. We will use 
as an example the important process of optical emission and absorption, including spontaneous 
emission. 

Problem 
 17.3.1. Suppose we have electrons (which are fermions with annihilation operator b̂ ) and 4He nuclei 

(which are bosons (here with an annihilation operator ĉ ) because they are made up of an even 
number of fermions, and which are also charged because they are ionized). The Coulomb interaction 
between these two particles can be described by a (perturbing) Hamiltonian of the form 

  † †

, , ,

ˆ ˆˆ ˆ ˆCen kjCjk
j k

H H b c b cμλλμ
λ μ

= ∑ ,  

 Evaluate using the creation and annihilation operator formalism the matrix element 
ˆ; ;fq bq fm bmCenN N H N N  for an initial state (i.e., ;fm bmN N ) corresponding to one electron in 

single-particle state u with no other electron states occupied and one 4He nucleus in mode α with no 
other 4He states occupied, and a final state ;fq bqN N  corresponding to one electron in state v with no 
other electron states occupied and one 4He nucleus in state β with no other 4He states occupied. 
[Note: the answer to this is rather simple and even obvious, but this problem gives an elementary 
exercise in using the commutation properties of the various operators.] 

17.4 Stimulated emission, spontaneous emission, and 
optical absorption 

Optical emission and absorption are particularly common and practically important processes 
that can be understood using time-dependent perturbation theory in the occupation number and 
annihilation and creation operator form. Spontaneous emission is the process responsible for 
the vast majority of all photons we see, yet can only be understood using the quantized 
electromagnetic field. The annihilation and creation operator approach gives a particularly 
straightforward way of describing and comparing spontaneous and stimulated emission of 
photons and also optical absorption. 

We will consider a simple situation to expose the key mechanisms and their behavior. Suppose 
that we start with the electron-photon system in some specific basis state s, so that (0) 1sc =  and 
all other such coefficients are zero. Then (17.19) becomes 

 ( ) ( )1 1 ˆexp / ; ;q q s fq bq p fs bsc i E E t N N H N N
i

⎡ ⎤−⎣ ⎦� � =
=

 (17.20) 

Now let us take as our perturbing Hamiltonian the electric dipole interaction of Eq. (17.13), 

 ( )† †

, ,

ˆ ˆˆ ˆ ˆ ˆp ed ed jk j k
j k

H H H b b a aλ λ λ
λ

= = −∑  (17.21) 

For simplicity here, we presume we have only one electron, and that there are only two single-
particle states of interest for this electron,  

State 1 – the lowest energy state of the electron, with energy 1E  
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State 2 – the upper state of the electron, with energy 2E  

We will consider the three possible processes of photon absorption, spontaneous emission and 
stimulated emission. 

Absorption 
Consider first that the electron is initially in state 1 (the lower state), there is one photon in 
mode 1λ , and there are no photons in any other modes. Then we can write the initial state as 

 
1

† †
1̂ ˆ; 0fs bsN N b aλ=  (17.22) 

This state will have an energy  

 
11sE E λω= + =  (17.23) 

(Here and below we will emit all of the additional / 2λω=  contributions to the energy that we 
usually acquire from the zero point energy of the harmonic oscillator. This merely corresponds 
to a choice of energy origin, and here anyway we would have to know how many modes 
altogether we were going to consider if we were to leave this term in the energy expressions.) 
Now we have  

 ( )
1

† † † †
1

, ,

ˆ ˆ ˆˆ ˆ ˆ ˆ; 0p fs bs ed jk j k
j k

H N N H b b a a b aλ λ λ λ
λ

= −∑  (17.24) 

Examining the sequence of operators, we have 

 

( ) ( )
( )( )

( )

1 1 1

1 1 1

1 1

1 1

† † † † † † † † †
1 1

† † † † †
1 1

† † †
1

† † † †
1 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0

ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ0 0

j k j k

j k k

j k

k j k j

b b a a b a b b b a a a a

b b b a a a a

b a a

b b a a

λ λ λ λ λ λ λ

λλ λ λ λ λ

λλ λ λ

λλ λ λ

δ δ

δ δ

δ δ δ

− = −

= − + −

= −

= −

 (17.25) 

When we come to form ˆ; ;fq bq p fs bsN N H N N  as needed in Eq. (17.20), we will only get 
non-zero answers if our final state also has either †ˆ 0jb  or 1

† † †ˆ ˆ ˆ 0jb a aλ λ  in it. Hence there are 
only two possible basis state choices for the final state ;fq bqN N  that will give non-zero 
results. 

(i) One possibility is  

 †ˆ; 0fq bq jN N b=  (17.26) 

which is the state with one electron in state j, and no photons in any modes. This state will 
have energy 

 q jE E=  (17.27) 

which leads to  

 

( ) ( )

( )

1 1

1 1

1 †
1 1

,

1 1

1 ˆ ˆexp / 0 0

1 exp /

q j ed jk k j j
k

j ed j

c i E E t H b b
i

i E E t H
i

λ λ λλ
λ

λ λ

ω δ δ

ω

⎡ ⎤− −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

∑� � = =
=

= =
=

 (17.28) 
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Now we integrate over time. This will lead to a similar result to that we obtained before in 
time-dependent perturbation theory for an oscillating perturbation (Fermi’s Golden Rule), 
including eventually a Dirac δ-function that enforces conservation of energy for steady 
transition rates. By definition, we choose ( )(1) 0 0qc t = =  since we regard the system as starting 
in the specified initial state at 0t = . Hence integrating from 0t =  to ot , we have 

( ) ( ) ( ){ }

( ) ( )

1

1

1

1

1 1

1

11
1

1

1

1 1
1

exp / 1

sin / 2
2 exp / 2

ed j
q o j o

j

j o

ed j j o
j

H
c t i E E t

E E

E E t
iH i E E t

E E

λ
λ

λ

λ

λ λ
λ

ω
ω

ω
ω

ω

⎡ ⎤= − − − −⎣ ⎦− −

⎡ ⎤− −⎣ ⎦⎡ ⎤= − − −⎣ ⎦ − −

= =
=

= =
= =

=

 (17.29) 

So 

 

( ) ( )
( )
( )

( )
( )

1

1

1

1

1

1

2
2 2 11

1 2

1

2
2 1

1 2

1

sin / 2
4

sin / 22 1 2

j o

q o ed j

j

j o

o ed j
o j

E E t
c t H

E E

E E t
t H

t E E

λ

λ

λ

λ

λ

λ

ω

ω

ωπ
π ω

⎡ ⎤− −⎣ ⎦=
− −

⎧ ⎫⎡ ⎤− −⎪ ⎪⎣ ⎦= ⎨ ⎬
− −⎪ ⎪⎩ ⎭

= =

=

= ==
= =

 (17.30) 

Now the function in curly brackets { }…  is a sharply peaked function near 11 0jE E λω− − == , 
and it has unit area when integrated over this energy argument (note that 

2 2[(sin ) / ]x x dx π∞
−∞∫ = ). Hence, in the limit of large ot , it can be replaced by the Dirac δ-

function, i.e.,  

 ( ) ( ) ( )1 1

2 21
1 1

2
q o o ed j jc t t H E Eλ λ

π δ ω= − − =
=

 (17.31) 

which we see gives an occupation probability steadily rising with time to for this state q. Hence 
the transition rate is 

 ( )1 1

2

1 1
2

q ed j jw H E Eλ λ
π δ ω− −� =
=

 (17.32) 

Now, for 1j = , the δ-function vanishes for any finite 1λω=  – we simply cannot get the 
energies to match if the final electron state is the same as the initial electron state – so the only 
final state q that will give a non-zero transition rate is the state 2j = , with the corresponding 
restriction that 

 
12 1E E λω− = =  (17.33) 

Hence our process is 

we start with one photon in mode 1λ  and the electron in state 1 

we finish with no photons and the electron in state 2 

which describes a normal absorption process, correctly now requiring the destruction of the 
photon in the process, with transition rate given by Eq. (17.32).  

(ii) The other possibility for the final state that we have to consider, given Eq. (17.25), is  

 
1

† † †ˆ ˆ ˆ; 0fq bq jN N b a aλ λ=  (17.34) 
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with a corresponding energy  

 
1q jE E λ λω ω= + += =  (17.35) 

But 1q s jE E E E λω− = − + =  cannot be close to zero because 1 0jE E− ≥  and λω=  is also 
positive. Hence on integrating over time as above, this term will not give rise to any steady 
transition rate. (As we will see below, this term would actually correspond to photon emission, 
but we cannot emit a photon because we are starting in the lowest energy electron state, and 
hence there is no lower state to which we can emit.) Hence this possibility can be discarded 
here. 

Hence, having started with the electron in the lower state and one photon in a mode, the only 
process we are left with is the optical absorption process described above in (i). 

Spontaneous emission 
Suppose now that the electron is initially in state 2 (the upper state), and there are no photons 
in any mode. This situation is not like any we have considered before in our semiclassical 
analysis. Indeed, semiclassically it would be trivial; with no electromagnetic field, there would 
be no transitions. The result now, though, will be different.  

Our starting state now is 

 †
2̂; 0fs bsN N b=  (17.36) 

with a corresponding energy 

 2sE E=  (17.37) 

Now in forming ˆ ;p fs bsH N N  we will encounter the string of operators 

 

( ) ( )
( )( )

† † † † † †
2 2

† † †
2 2

† †
2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ0 0

ˆ ˆ ˆ ˆ ˆ 0

ˆ ˆ 0

j k j k

j k k

k j

b b a a b b b b a a

b b b a a

b a

λ λ λ λ

λ λ

λ

δ

δ

− = −

= − −

= −

 (17.38) 

So that we get a non-zero result for ˆ; ;fq bq p fs bsN N H N N , we must therefore choose for 
state q 

 † †ˆ ˆ; 0fq bq jN N b aλ=  (17.39) 

which is the state with the electron now in state j, and a photon in mode λ. This state q has 
energy 

 q jE E λω= + =  (17.40) 

Hence we now have, for this state q 

 

( ) ( )

( )

1 † †
2 2

2 2

1 ˆ ˆˆ ˆexp / 0 0

1 exp /

q j ed jk k j j
k

j ed j

c i E E t H a b b a
i

i E E t H
i

λ λ λ λ

λ λ

ω δ

ω

⎡ ⎤− +⎣ ⎦

⎡ ⎤= − +⎣ ⎦

∑� � = =
=

= =
=

 (17.41) 

Integrating and taking 2(1)
qc  to get the transition rate gives 
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 ( )2

2 2
2

q ed j jw H E Eλ λ
π δ ω= − + =
=

 (17.42) 

As before, for any finite λω=  the only possible choice is 1j =  for the final state if there is to 
be any transition rate, with the requirement 

 2 1E E λω− = =  (17.43) 

i.e., we have 

 ( )2
12 1 2

2
q edw H E Eλ λ

π δ ω= − + =
=

 (17.44) 

This transition process is spontaneous emission. The electron starts in its higher state 2 with no 
photons present, and ends in its lower state 1 with one photon present. This photon can be in 
any mode λ  that has the correct photon energy to match the energy separation 2 1E E−  (and 
for which the coefficient 12edH λ  is not formally zero for some other reason). This process has 
emerged naturally as a consequence of quantizing the electromagnetic field, requiring 
essentially no additional physics other than that quantization.  

Stimulated emission 

We have one final and important process to consider, which is stimulated emission. This 
process is strong in laser light, though it is also present in small amounts all the time, and is 
necessary in order to make the statistical mechanics of light agree with observation.2 

Suppose now we have a photon in mode 1λ  and also have an electron in its upper state 2. The 
initial state is therefore 

 
1

† †
2̂ ˆ; 0fs bsN N b aλ=  (17.45) 

with an energy  

 
12sE E λω= + =  (17.46) 

Then, with algebra similar to Eq. (17.25) 

 ( )
1 1 1

† † † † † † † †
2 2 2

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ0 0 0j k k j k jb b a a b a b b a aλ λ λ λλ λ λδ δ δ− = −  (17.47) 

The first term here is simply the absorption term, but this will vanish because there is no 
electron state into which we can absorb, given that we are starting in the upper state. The 
second term has two possibilities in the summation, which we will now consider. 

(a) Suppose 1λ λ≠ . Then for some specific λ, to get a non-zero result for 
ˆ; ;fq bq p fs bsN N H N N  the final state will have to be 

 
1

† † †ˆ ˆ ˆ; 0fq ba jN N b a aλ λ=  (17.48) 

with energy 

 
1q jE E λ λω ω= + += =  (17.49) 

                                                           
2 This is Einstein’s famous “A and B” coefficient argument. See, e.g., H. Haken, Light (Vol. 1), (North-
Holland, Amsterdam, 1981), pp 58 – 62. 
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corresponding to a state with the electron in level j and a photon in each of the different modes 
λ and 1λ . We will have, for some specific λ and j 

 

( ) ( )

( )

1 1

1 † † †
2 2

2 2

1 ˆ ˆˆ ˆ ˆ ˆexp / 0 0

1exp /

q j ed j j j

j ed j

c i E E t H a a b b a a
i

i E E t H
i

λ λ λ λ λ λ

λ λ

ω

ω

− ⎡ ⎤− +⎣ ⎦

− ⎡ ⎤= − +⎣ ⎦

� � = =
=

= =
=

 (17.50) 

leading to a transition rate 

 ( )2

2 2
2

q ed j jw H E Eλ λ
π δ ω= − + =
=

 (17.51) 

for which the only possibility here for non-zero transition rate is 1j = , and  

 2 1E E λω− = =  (17.52) 

with a transition rate 

 ( )2
12 1 2

2
q edw H E Eλ λ

π δ ω= − + =
=

 (17.53) 

This process is just spontaneous emission into mode λ, and the transition rate Eq. (17.53) is 
identical to that of Eq. (17.44). The only point of this current derivation is to show explicitly 
that the presence of a photon in another mode has no influence on spontaneous emission. (In 
fact, spontaneous emission does not care how many photons are in any other modes.) 

(b) Suppose now we consider the case 1λ λ= . Now to get a non-zero result for 
ˆ; ;fq bq p fs bsN N H N N  the final state will have to be 

 ( )1

2† †1 ˆ ˆ; 0
2!fq bq jN N b aλ=  (17.54) 

with energy  

 
1

2q jE E λω= + =  (17.55) 

Note that, to have a normalized state here, we have had to introduce the factor 1/ 2!  (see, 
e.g., Eq. (15.72) or Eq. (15.126)). Hence we obtain a term in  

 ( )† †

, ,

ˆ ˆˆ ˆ ˆ; ; ; ;fq bq p fs bs fq bq ed jk j k fs bs
j k

N N H N N N N H b b a a N Nλ λ λ
λ

= −∑  (17.56) 

that is  

 

( ) ( )

( ) ( )

1 1 1

1 1 1

1

2 2† †
2

2 2† †
2

2

1 ˆ ˆˆ ˆ0 0
2!

1 1ˆ ˆˆ ˆ2! 0 0
2! 2!

2

ed j j j

ed j j j

ed j

H a b b a

H a b b a

H

λ λ λ

λ λ λ

λ

=

=

 (17.57) 
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The 2  is very important – it shows we are getting a larger amplitude for this process than we 
did for the spontaneous emission term just calculated. This 2  can be traced back to the fact 
that we started with one photon in this mode 1λ  and created another one. 

Hence for this process we have  

 ( ) ( )1 1

1
2 2

1exp / 2q j ed jc i E E t H
i λ λω− ⎡ ⎤− +⎣ ⎦� � = =
=

 (17.58) 

leading to a transition rate into this final state of  

 ( )1 1

2

2 2
2 2q ed j jw H E Eλ λ
π δ ω= − + =
=

 (17.59) 

for which the only possibility for finite transition rate is with 1j =  and 

 
12 1E E λω− = =  (17.60) 

with a corresponding transition rate, finally, of 

 ( )1 1

2

12 1 2
2 2q edw H E Eλ λ
π δ ω= − + =
=

 (17.61) 

Note in particular the additional factor of 2 that has appeared in (17.61). The additional process 
going on here is stimulated emission into mode 1λ . Note that, other things being equal (e.g., 
matrix elements and energies), the transition rate into the mode already occupied with a photon 
is twice as high as the spontaneous emission into an unoccupied mode. Bosons want to go into 
modes that are already occupied. 

A conventional way to look at this is to say that the spontaneous emission process into 
mode 1λ  is still going on, and it accounts, on the average, for half of the factor of 2 in Eq. 
(17.61), with the additional stimulated emission process accounting for the other half of the 
factor of 2. Thus, with one input photon per mode, the spontaneous and stimulated emission 
rates into the mode are equal on the average. Of course, if they are transitions into the same 
mode, the resulting photons are completely indistinguishable in the end, and the algebra here 
does not care how we choose to re-express it in words.  

Multiphoton case 
It is left as an exercise for the reader to analyze the case of 1nλ  photons initially in mode 1λ .  

Stimulated emission 

The result for stimulated emission in that case is 

 ( ) ( )1 1 1

2

12 1 2
2 1q edw n H E Eλ λ λ
π δ ω= + − + =
=

 (17.62) 

with the transition rate into the mode 1λ  being 1 1nλ +  times larger than the spontaneous rate 
into an otherwise similar mode. Again, we can view the “1” here in the factor 1 1nλ +  as being 
from spontaneous emission, and the 1nλ  as being the additional transition rate from stimulated 
emission. 
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Spontaneous emission 

The spontaneous emission in any other mode is unaffected by the presence of 1nλ  photons in 
mode 1λ , as can be shown by directly considering the multiphoton case. 

Absorption 

The result for absorption with 1nλ  photons initially in mode 1λ  can similarly be shown to be  

 ( )1 1 1

2

12 2 1
2

q edw n H E Eλ λ λ
π δ ω= − − =
=

 (17.63) 

Note specifically that we wrote the matrix element 112edH λ , not the matrix element 121edH λ  in 
(17.63). Given the definition of 1ed jkH λ  above (Eq. (17.12)), we see that 

 
1 112 21ed edH Hλ λ

∗=  (17.64) 

and so the squared moduli are the same. (This is a general property for any kind of perturbing 
Hamiltonian since Hamiltonians must be Hermitian).  

The relation between the absorption and stimulated emission strengths is fundamental, as is 
their relation to the spontaneous emission strengths. There is only one set of matrix elements 
involved in all of these processes.3  

Total spontaneous emission rate 

To complete this discussion of spontaneous emission, and to enable us to calculate actual rates 
of the decay of systems from higher to lower (electron) states, we need to add up the 
spontaneous emission rates for all possible modes. In the course of this, we will formally 
manage to get rid of the delta function, getting a finite answer for the complete problem of 
spontaneous emission. We presume we start off with the electron in an excited state (here it 
must be state 2 by assumption), and no photons in any modes (though such photons will not 
make any difference to the spontaneous emission calculation – we would just also have to deal 
with stimulated emission). The total spontaneous transition rate for interaction with all possible 
modes will be the sum of the transition rates into all possible final states q through 
spontaneous emission 

 spon q
q

W w= ∑  (17.65) 

where qw  is the spontaneous emission rate into a specific mode λ, as given by Eq. (17.44). 
Since we know that the electron must start in state 2 and end in state 1, the sum over final 
states reduces to summing over all possible photon modes λ. Hence we have  

 ( )2
12 1 2

2
spon edW H E Eλ λ

λ

π δ ω= − +∑ =
=

 (17.66) 

To get our final result, we need to be able to evaluate 12edH λ  and to perform the sum over the 
modes. First we look at evaluating the matrix element. 

                                                           
3 Einstein had derived these relations by consideration of thermodynamic equilibrium and statistical 
mechanics with only relatively minor assumptions about atomic transitions, predicting in the process the 
necessity of the concept of stimulated emission, in his famous “A and B coefficients” argument. See, e.g., 
H. Haken, Light (Vol. 1), (North-Holland, Amsterdam, 1981), pp 58 – 62.  
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As is common with electric dipole interactions, we presume that the field is approximately 
uniform over the scale of the quantum system of interest, so we can replace ( )λu r  by ( )oλu r  
where or  is the approximate position of the quantum system of interest. Hence for the matrix 
element we need here (Eq. (17.12)) 
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 (17.67) 

where  

 ( ) ( ) 3
jk j k dφ φ∗= ∫r r r r r  (17.68) 

Next we need to choose the form of the modes. For our calculation here, we will presume that 
the modes of the electromagnetic field of interest to us are all plane waves in what is 
essentially unbounded, free space. This is a standard assumption in most calculations of 
spontaneous emission, though the reader should note that it is not always the correct 
assumption. For example, if the electron system is within some resonator, especially a small 
resonator, the modes of interest will be those of the resonator, and the result below does not 
necessarily apply. It is quite possible to inhibit spontaneous emission in such a resonator by 
making sure that the modes of the resonator do not coincide either in energy or in field 
amplitude distribution with electronic states, and it is also possible to enhance emission using 
resonators by lining up the resonator modes with the frequencies of transitions between levels.  

Given that we are going to use plane waves, we need a normalizable form of the modes. We 
imagine we have a cubic box of volume bV . It is common for mathematical convenience to use 
running waves (which technically come from the somewhat unphysical periodic boundary 
conditions encountered also in solid state physics for electron waves), though one could use 
standing waves and get the same result for a large box. The resulting modes have the form 

 ( ) ( )1 exp .e
b

i
Vλ λ=u r k r  (17.69) 

where e  is a unit vector in the polarization direction of the electric field. These modes are 
readily seen to be normalized over the box of volume bV . As usual for such modes, the 
allowed values of, for example, xk , are spaced by 2 / xLπ , where xL  is the length of the box 
in the x direction, and similarly for the y  and z  directions, leading to a density of modes in k-
space of 2/(2 )bV π . For such propagating waves, we will also have two distinct polarization 
directions, though we will handle polarization properties directly here rather than adding them 
into the density of states. As is usual in the case of a large box, we will approximate the sum 
over the modes λ by an integral over k with this density of states, and also formally a sum over 
the two possible polarizations, i.e., 

 
( )

3
32

b
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V
d λ

λ π
→∑ ∑ ∫ k… …  (17.70)  

In considering the polarizations, we can choose two polarization directions at right angles to 
one another and at right angles to λk . Specifically we need to choose them relative to the 
vector matrix element 12r . Fig.  17.1 shows one possible choice, which is to choose one of the 
polarization directions p  to be in the plane of the vectors λk  and 12r . With this choice, the 
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other polarization direction is always perpendicular to 12r , and so the vector dot product 
12( )oλ ⋅u r r  vanishes for all modes with this polarization. Hence we can drop the sum over 

polarizations. For this choice, we therefore find that  

 ( ) ( )12 12 sino ou rλ λ θ⋅ =u r r r  (17.71) 

(where the non-bold quantities refer to the magnitude of the corresponding vectors). 
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Fig.  17.1 Vectors for polarization effects in dipole interactions. 

Now we can use all these results to rewrite the total spontaneous transition rate of Eq. (17.66) 
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i.e.,  
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where we have chosen to integrate in spherical polar coordinates, noting there is variation only 
in the θ angle. Now, noting that ckλ λω= , and changing variables to ckλ λω≡= = , we have 

 ( ) ( )
22

212 3
1 24 3 0 0

sin
4spon

o

e r
W E E d d

c λ

π

λ λ λ λω
ω δ ω ω ω θ θ

πε
∞

=
= − +∫ ∫=

= = = =
=

 (17.74) 

Given that 
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we finally have that the total spontaneous emission rate is 
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where  

 ( )12 2 1 /E Eω = − =  (17.77) 

Such a rate gives rise to a natural lifetime, natτ , for a state 
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 1/nat sponWτ =  (17.78) 

A quantum mechanical system sitting in empty space in an excited state will decay on average 
over this timescale to its lower state, emitting a photon. The direction of the mode into which 
the photon is emitted is random (though weighted somewhat by the polarization effects).  

Problems 
 17.4.1. Consider an electron that may be in one of two states, state 1 with electron energy E1 or state 2 

with electron energy E2, where E2 > E1. This electron is assumed to interact with the electromagnetic 
field through the electric-dipole interaction  

 ( )† †

, ,

ˆ ˆˆ ˆ ˆed ed jk j k
j k

H H b b a aλ λ λ
λ

= −∑   

where λ indexes the photon modes and j and k refer to electron states. The initial state of this system 
is presumed to be that the electron is in state 2, there are 1nλ  photons in mode 1λ , and no photons in 
other modes.  
(i) Show that the stimulated emission transition rate into the state stimq  with 1 1nλ +  photons in 

mode 1λ  is 

 ( ) ( )
1

2

1 21 2 1 1
2 1qstim edw n H E E hλ λ λ
π δ ω= + − −
=

  

(ii) Show that the spontaneous emission transition rate into a state sponq  with 1nλ  photons still in 
mode 1λ  and one photon in another mode λ  is  

 ( )2
21 2 1

2
qspon edw H E E hλ λ

π δ ω= − −
=

  

(iii) Suppose now that the initial state is still with 1 1nλ +  photons in the mode 1λ , but that the 
electron is in state 1. Show that the absorption transition rate into the state with electron in state 
2 and 1nλ  photons in mode 1λ  is identical to the rate qstimw  calculated above for the stimulated 
emission. 

 17.4.2. [This problem can be used as a substantial assignment.]Consider a mass m on a spring. The mass 
is constrained in such a way that it can only move along one axis (e.g., the z axis), and, because of the 
linear restoring force of the spring, the mass has a natural oscillation (angular) frequency of Ω, 
behaving like a simple harmonic oscillator. The mass has a charge q, and consequently it can interact 
with electromagnetic radiation. 
(i) Write an expression for the quantum mechanical Hamiltonian for this simple harmonic oscillator 

(neglecting any interaction with the electromagnetic field) in terms of raising and lowering 
(annihilation and creation) operators. [Note: to avoid confusion with annihilation and creation 
operators for photons, you may want to use a different letter for these, e.g., †d̂  and d̂ .] 

(ii) Give an expression for the position operator for the mass in terms of raising and lowering 
(annihilation and creation) operators of the harmonic oscillator formed by the mass and its 
spring. [Note: do not write the position operator in terms of fermion annihilation and creation 
operators for the mass. That makes this problem much harder, and anyway we have not even 
specified here whether this mass is a fermion or a boson.]  

(iii) The electromagnetic field and the charged mass are presumed to interact through the electric 
dipole interaction. Give an expression for the Hamiltonian for this interaction with the 
electromagnetic field in terms of raising and lowering and/or annihilation and creation operators, 
considering all possible modes of the electromagnetic field. (You should make the 
approximation that the field amplitude of the mode is taken to be approximately constant over 
the size of the oscillator, and can be replaced by its value at some specific point in space in the 
region of the oscillator.)  

(iv) Presume that the harmonic oscillator is initially in its lowest state. Considering for the moment 
only electromagnetic modes with electric field polarized in the z direction, describe the form of 
the optical absorption spectrum as a function of frequency. You may do this by considering the 
interaction with an electromagnetic mode initially containing one photon. 
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(v) Now consider a situation where the harmonic oscillator is in its first excited state, and consider 
the interactions with all possible electromagnetic modes, all presumed initially empty of 
photons. Derive an expression for the spontaneous emission lifetime of this first excited state of 
the harmonic oscillator (i.e., how long will it take on average to emit a photon and decay to its 
lowest state). 

(vi) Suppose that m =10-26 kg (roughly the mass of a small atom), q e= +  (corresponding to an ion 
with a positive charge), and 142 10πΩ = × s-1 (a typical frequency for some kinds of vibration 
modes in solids). In this case, what is the spontaneous emission lifetime? 

(vii) Describe qualitatively in words the angular dependence of the emission rate of photons from 
such a system if the harmonic oscillator is initially in its first excited state. 

17.5 Summary of concepts 

Commutators for different kinds of particles 

We postulate that the creation and annihilation operators for different kinds of particles 
commute, i.e.,  
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− = − =

− = − =
 (17.2) 

Such commutation applies to any different kinds of particles, e.g., fermions and bosons, or two 
different kinds of fermions, or two different kinds of bosons. 

Interaction Hamiltonian 

To write a Hamiltonian involving the interaction of different kinds of particles, we 
progressively apply the methods for each particle to transform into the creation and 
annihilation operator form. For example, the electric dipole Hamiltonian that represents the 
energy of an electron in an electric field, i.e., ˆ

scedH e= ⋅r E r  (Eq. (17.4)) becomes, after 
substituting the multi-mode electric field operator for E, and using the wavefunction operator 
to transform r, 

 ( )† †

, ,

ˆ ˆˆ ˆ ˆed ed jk j k
j k

H H b b a aλ λ λ
λ

= −∑  (17.13) 

where the constants jed kH λ  contain the appropriate integrals over the specific forms of the 
electron basis states and the electromagnetic modes (Eq. (17.12)). 

Processes identified by creation and annihilation operators 

With the form of Hamiltonian for the interaction of two particles as in Eq. (17.13), we can 
identify specific processes by considering the action of the creation and annihilation operators. 
For example, the sequence of operators †ˆ ˆ ˆj kb b aλ  describes a process in which absorption of a 
photon (annihilation of a photon in mode λ) takes an electron from one state (annihilation of an 
electron in state k) to another (creation of an electron in state j). 

Perturbation theory with creation and annihilation operators 

Perturbation theory is essentially unchanged when we move to the representation of operators 
with creation and annihilation operators. We merely substitute the perturbing Hamiltonian in 
the new form, and remember that we now have to write the complete quantum mechanical 
state (e.g., of electrons and photons) in all matrix elements (instead of just, e.g., the electron 
wavefunction). See, e.g., Eq. (17.19). 
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Absorption, stimulated emission and spontaneous emission 

When the electromagnetic field is quantized using annihilation and creation operators, the 
processes of absorption, stimulated emission, and spontaneous emission all emerge 
automatically when considering the interaction between the electromagnetic field and some 
other system such as an electron. Absorption is the normal process of absorption of light. 
Spontaneous emission is the most common process of light emission, and is the dominant 
process found in nearly all sources of illumination, such as light bulbs. Stimulated emission is 
the process found in lasers, where additional photons are created specifically in a mode in 
which there are already photons.  

For a two level electron system and for photons 1nλ  initially in a specific mode λ1, the 
transition rates for the various processes are 

absorption ( )1 1 1

2

12 2 1
2

q edw n H E Eλ λ λ
π δ ω= − − =
=

 (17.63) 

stimulated emission ( ) ( )1 1 1

2

12 1 2
2 1q edw n H E Eλ λ λ
π δ ω= + − + =
=

 (17.62) 

spontaneous emission ( )1 1

2

12 1 2
2

q edw H E Eλ λ
π δ ω= − + =
=

 after (17.44) 

Note that (i) all three processes have the same matrix element 112edH λ , and so the same 
underlying strength, (ii) absorption has an additional factor of 1nλ , the number of photons in 
mode λ1, and (iii) stimulated emission has an additional factor 1 1nλ +  (note: it is also possible 
to view the “1” in this factor as being the spontaneous emission into the same mode). 
Spontaneous emission is independent of the number of photons in any mode. 

Total spontaneous emission rate 

To calculate the total spontaneous emission rate, we need to calculate the interaction matrix 
element for each possible mode of light with the system of interest, and add up all of the 
resulting spontaneous emission rates into each mode. In vacuum for a two level system with an 
electric dipole interaction between the system and the electromagnetic field, we would obtain 
the total transition rate 
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where  

  ( ) ( ) 3
12 1 2 dφ φ∗= ∫r r r r r  (17.68) 

for wavefunctions 1( )φ r  and 2( )φ r  for the two states in the system. Associated with such a 
transition rate is the natural lifetime, natτ , for the “upper” state 2,  

 1/nat sponWτ =  (17.78)   

  

 

 



 

 

Chapter 18  
 
Quantum information 

Prerequisites: Chapters 2 – 5, 9, 10, 12, and 13. 

When we think of processing information, we are typically used to a classical world in which 
we represent information in terms of the classical state of an object. For example, we could 
represent a number as the length of some particular rod in meters or the value of some 
electrical potential in volts; these would be analog representations. More typically in 
information processing, we represent numbers and other information digitally, in binary form 
as a sequence of “bits” that are either “1” or “0”. We can use all sorts of physical 
representations for the 1 and 0, such as an object being “up” or “down”, a device being “on” 
(e.g., passing current) or “off” (e.g., not passing current), or a voltage being “high” or “low”.  

In the quantum mechanical world, we have additional options in representing information; in 
particular we can use quantum mechanical superpositions, such as a superposition of “up” and 
“down”. Though we could easily also have the equivalent of a superposition in a classical 
world for one physical system (a system that was half “up” and half “down” could simply be 
represented by it being horizontal), in quantum mechanics, we can have kinds of 
superpositions of multiple systems (so called entangled states) that have no classical analog, 
and the act of measurement on a quantum mechanical system in a superposition can have quite 
a different result from that in a classical system (the process of “collapse” into an eigenstate). 
These additional processes of entanglement and collapse under measurement open up quite 
different opportunities in handling and processing information, and have led to the field known 
as quantum information. Here we will briefly introduce a few of the most basic ideas in 
applications including quantum cryptography, quantum computing, and quantum teleportation. 

18.1 Quantum mechanical measurements and 
wavefunction collapse 

Let us review first how we believe we can use the results of a quantum mechanical calculation. 
If that calculation says that the state of the system should be ψ , then the average value we 
will measure for some quantity A is given by evaluating  

 ˆA Aψ ψ=  (18.1) 

where Â  is the operator associated with the quantity A. Sometimes it may take us some effort 
to deduce what the operator Â  is, but once we have done that we do get the predicted answers 
for the average values of A. The measurement is a statistical process – we must repeat the 
experiment many times from the start (i.e., including the process that puts the quantum 
mechanical system into the state ψ ) and take the average answer. We also find that every 
measurement we make returns a value corresponding to one of the possible eigenvalues, nA , 
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of Â . Not every measurement returns the same value. If we decompose the state into a linear 
combination of the normalized eigenstates nψ  of the operator Â , i.e.,  

 n n
n

aψ ψ= ∑  (18.2) 

then we find that the probability of measuring a particular value nA  is given by 2
na . 

Furthermore, if we make any subsequent measurements1 on this system, presuming that no 
external influence is applied to the system in the meantime, we will always subsequently get 
the same answer nA  on measuring the quantity A. This behavior is called the “collapse of the 
wavefunction”. The act of measurement of a quantity A appears to force it into one of its 
eigenstates. As far as we know empirically, this collapse is totally random.  

18.2 Quantum cryptography 

We can use this randomness for a specific practical application, which is the secure 
distribution of information. In conventional cryptography, if we do not have the key, we 
cannot decode a message because it would practically take us too long to do the calculations. 
We worry, though, that other people just might find a way to do those calculations (possibly 
with a quantum computer). Hence they could decode our messages. Quantum cryptography, 
however, relies on fundamental properties of quantum mechanics that allow the exchange of 
information with apparently absolute security. No amount of calculation could crack the code. 
To see how this works, we must first show that it is impossible to clone a quantum mechanical 
state reliably. 

No-cloning theorem 
Quantum cryptography is secure because no-one can guarantee to make an exact replica of an 
arbitrary quantum mechanical state of a system. For example, we might want to take an 
electron that is in a particular spin state, and make another electron have exactly the same spin 
state, leaving the first electron in its original state. Equivalently, we might want to take a 
photon in a particular polarization state and make another photon with exactly the same 
polarization state, leaving the first photon in its original polarization state.  

In the case of photons, the two polarization basis states can be, respectively, horizontally 
polarized and vertically polarized. A general linear combination of those two states is an 
elliptically polarized photon, i.e., some specific ratio of amplitudes of horizontal and vertical 
polarization with some phase difference between the amplitudes. In both the spin case and the 
photon polarization case, we can if we wish write the state as a simple two-element vector with 
complex elements. 

We can show, in a very simple proof,2 that, starting from the first system in an arbitrary state 
1aψ and the second system in some prescribed starting state, 2sψ , we cannot in general 

create the second system in the state 2aψ , leaving the first system in state 1aψ .3 

                                                           
1  I.e., measurements after we have collapsed the system onto an eigenstate 
2 W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299 802-803 (1982); 
D. Dieks, “Communication by EPR devices,” Phys. Lett. A 92, 271-272 (1982); see also P. W. Milonni 
and M. L. Hardies, “Photons cannot always be replicated,” Physics. Lett. A 92, 321-322 (1982) 
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In this proof, our initial state of the two systems is therefore the (direct product) state 
1 2a sψ ψ . We then imagine that we have some operation that, over time, turns this state into 

the state 1 2a aψ ψ . This operation is just some time-evolution that we can describe by a 
(unitary) linear operator T̂ , such as the time-evolution operator we devised in Chapter 3, 

 ( )ˆ ˆexp /oT iH t t⎡ ⎤= − −⎣ ⎦=  (18.3) 

where t is the time at the end of the operation and ot  is the time when we started. To get the 
desired cloning behavior, we presume we have, of course, engineered our cloning system, and 
hence its Hamiltonian Ĥ , to give T̂  the required properties. Specifically we need at least two 
properties for T̂ . First we know we want T̂  to perform the operation 

  1 2 1 2
ˆ

a a a sTψ ψ ψ ψ=  (18.4) 

cloning the state a of system 1 also into system 2. Of course, we want to have this work for 
any initial state of system 1. Suppose we choose some other state 1bψ  as the initial state of 
system 1 (we will choose this orthogonal to 1aψ ). Then we also want T̂  now to perform the 
operation 

 1 2 1 2
ˆ

b b b sTψ ψ ψ ψ=  (18.5) 

cloning state b into system 2. There is in general no problem in principle with constructing 
such an operator with these two properties. 

The problem comes when we want to clone a linear superposition state. Suppose for example 
that the initial state of system 1 is the linear superposition 

 ( )1 11

1
2Sup a bψ ψ ψ= +  (18.6) 

Hence the initial state of the pair of systems is  

 ( ) ( )1 1 2 1 2 1 2

1 1
2 2a b s a s b sψ ψ ψ ψ ψ ψ ψ+ = +  (18.7) 

By postulation in quantum mechanics, the operators are linear – operating on a linear 
superposition must give the linear superposition of the operations, i.e., 

 
( ) ( )

( )

1 2 1 2 1 2 1 2

1 2 1 2

1 1ˆ ˆ ˆ
2 2

1
2

a s b s a s b s

a a b b

T T Tψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ

+ = +

= +
 (18.8) 

This is not the result we wanted for our cloning operation, which was 

 ( )( )1 1 2 2

1
2 a b a bψ ψ ψ ψ+ +  (18.9) 

Such a result would have cloned the superposition state of system 1 into system 2, leaving 
system 1 in its original superposition state. The linearity properties of the quantum mechanical 

                                                                                                                                                         
3 Throughout this Chapter, we will use subscripts outside the bras and kets to indicate which particle the 
bra or ket is describing. 
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operator determined that, if we got the cloning properties we wanted for the individual states a 
and b, we did not get the cloning result we wanted for the superposition. This result is not 
special to the particular superposition we chose – any other superposition would give us a 
similar “wrong” answer. Hence, though we could in principle make a device that could clone 
specific basis states, that device could not clone superpositions of those basis states, and hence 
we cannot make a device that will clone an arbitrary quantum state.4 Back-up of quantum 
states is impossible! 

With some cunning we can use this particular no-cloning property to ensure the security of 
communications through what is known as quantum cryptography. 

A simple quantum encryption scheme 

A well-known and simple scheme for quantum encryption using single photons was devised by 
Bennett and Brassard in 19845 and demonstrated later by them and their colleagues.6 Schemes 
like this have subsequently been demonstrated in increasingly practical conditions, including, 
for example, demonstrations over a 48 km optical fiber network,7 and through the atmosphere 
over 1.6 km.8 Such a horizontal atmospheric distance is thought to be a good test of whether 
one could send quantum encrypted signals upwards through the atmosphere to a satellite and 
back. The communication rate in such schemes is often not high (e.g., 100’s of bits per second) 
though it is fast enough that such schemes could practically be used to send simple messages 
or secret cryptographic keys for use with classical cryptography. 

                                                           
4 The reader might ask why it is that the process of stimulated emission does not clone arbitrary quantum 
mechanical states, and it was this question that in part triggered the original discussions by Wootters, 
Zurek, Milonni and Hardies. Consider, for example, a photon that has two accessible basis states 
corresponding to the two different polarizations, x and y, for example. For simplicity of illustration 
imagine that these two polarizations interact equally strongly with some atomic system that is in its 
“upper” state; such a condition is required if we are to be able to clone photons in the specific x and y 
polarization states with equal strength. The mechanistic answer to why no reliable cloning is possible in 
that case is that, with one photon in a mode (and hence in a specific polarization state), the process of 
stimulated emission and that of spontaneous emission are equally likely (see Chapter 17). Because the 
interaction with the mode of the orthogonal polarization is by design equally strong, the spontaneous 
photon that emerges on the average is just as likely to be in the same polarization as the incident photon 
as it is to be in  the orthogonal one. That prevents reliable cloning of a photon in the same mode as the 
incident photon; the additional emerging photon does not have a predictable polarization state, and hence 
is not predictably in the desired mode or the undesired mode (of the “wrong” polarization). When we 
include the unavoidable process of spontaneous emission, the stimulated emission process therefore does 
not even reliably clone photons in either of the two basis states, let alone cloning superpositions reliably. 
5 C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in 
Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, New 
York, 1984 (IEEE) pp. 175-179 
6 C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum 
cryptography,” J. Cryptol. 5, 3 – 28 (1992) 
7 R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fiber 
network,” J. Mod. Opt. 47, 533-547 (2000) 
8 W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C. G. Peterson, 
“Daylight quantum key distribution over 1.6 km,” Phys. Rev. Lett. 84, 5652 – 5655 (2000) 
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Fig.  18.1. Polarizer settings for communicating a photon from Alice to Bob. Settings (i) and (ii) 
will successfully communicate a bit, either “1” or “0”. Settings (iii) and (iv) will communicate 
nothing – regardless of whether Alice chooses to send a “0” or a “1”, Bob will get a totally 
random answer. 

The basic scheme is illustrated in Fig.  18.1. By convention, the person sending the message is 
known as Alice, and the person receiving the message is known as Bob. An eavesdropper 
trying to intercept the message would be known as “Eve”.9 

Consider first the situation in Fig.  18.1 (i). Here we imagine that when Alice wants to send a 
bit of information with the value “1”, she sends a photon that is polarized in the vertical 
direction (i.e., a photon in the state V ), and if she wants to send a “0”, she sends a 
horizontally polarized photon (i.e., a photon in the state H ). Bob, we presume, has set up a 
detection apparatus that separates the two polarizations out to different single-photon detectors. 
He can do this with a polarizing beamsplitter oriented to separate horizontal and vertical 

                                                           
9 Physicists have a weakness for puns. 
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polarizations, with appropriate photodetectors attached to it. When he receives a photon in his 
vertical polarization detector, he records a “1”, and when he receives a photon in his horizontal 
polarization detector, he records a “0”.  

A scheme such as Fig.  18.1 (i) is not itself secure. Eve could insert a detection system exactly 
like Bob’s into the path, receive the photon from Alice, write down the answer, and then, using 
a transmission system exactly like Alice’s, retransmit the photon on to Bob, with Alice and 
Bob being unaware of her interception.10  

To see how we make this system secure, imagine first that we rotate Alice’s apparatus, for 
example by 45º. Now Alice transmits a “1” using the state +45  and a “0” using the state 
-45 . If Bob leaves his apparatus unchanged, as in Fig.  18.1 (iv), he will receive no 

information at all. To see this, note that the state +45  can be written as a linear superposition 
of the horizontal and vertical states, i.e.,  

 ( )1
2

= ++45 H V  (18.10) 

Measuring this state now with Bob’s apparatus will give the answer H  half the time and the 
answer V  half the time (because the expansion coefficients in these two basis states are each 
1/ 2 , leading to probabilities of 1/ 2 , in what we believe to be a totally random process in 
quantum mechanics). Similarly,  

 ( )1
2

= −-45 H V  (18.11) 

which also will give the answer H  half the time and the answer V  half the time. Hence it 
does not matter what Alice transmits. 

So now let us presume that Alice and Bob each rotate their apparatus by 45º, as in Fig.  18.1 
(ii). Then they can send information just as before. If however Eve interposes her apparatus, 
still oriented horizontally and vertically, she will receive no information, and, furthermore, 
Bob and Alice will quickly deduce that their message is being intercepted. Alice and Bob 
monitor for errors in their communication channel, occasionally calling one another up over 
the telephone and checking (quite openly and publicly) to see that they are sending and 
receiving the same bits on some specific test bits they choose. If Eve has interposed herself in 
this horizontal and vertical way, half the bits apparently received by Bob will turn out to be 
wrong, and Alice and Bob will know to discard all of the bits and to send out a search party to 
find Eve and her apparatus.  

Of course, Eve might soon realize that she must have her apparatus set incorrectly (perhaps 
alerted by the approach of the search party), and she can retreat to come back another day, 
possibly then setting her apparatus in the 45º fashion. Alice and Bob might by that time have 
changed back, but there is a 50% chance that Eve could set her apparatus appropriately on any 
given day, and a 50% chance of interception is quite likely to be unacceptable to Alice and 
Bob.11 

                                                           
10 Alice and Bob could notice some unexpected time delay in the transmission, though that would not be 
considered here to be a strong enough protection against eavesdropping. 
11 Incidentally, if Eve sets her apparatus at some other angle not exactly aligned to the horizontal-vertical 
or 45º directions, she may manage to get some information, but she will also generate some errors that 
can also be detected by Alice and Bob. By monitoring the error rate, Alice and Bob can put some upper 
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The trick to thwarting Eve is that Alice and Bob, for each time they want to try to 
communicate a bit, each randomly choose between the horizontal-vertical setting of their 
apparatus and the 45º one. This leads to four possibilities, as shown in Fig.  18.1 (i) – (iv). In 
two of these, their transmission is meaningful. In the other two no information will be 
exchanged. All that is necessary now for successful secure information exchange by Alice and 
Bob is for them again to call one another up on the telephone (quite openly and publicly) and 
figure out for which bits they had their polarizers set identically (a phone call they can make 
without ever revealing what information was exchanged in each such case).12 Then at last 
Alice and Bob have a string of bits that they both know and that is known to no-one else. 

There is now no strategy that Eve can follow to choose her apparatus orientation that can 
possibly work more than half the time, and for the other half she will again generate errors half 
the time, a fraction easily noticed by Alice and Bob (and stimulating the search party again). 
Eve might have wanted to solve this problem by cloning the incoming photon, passing the 
clone on to Bob who would then not notice any errors being introduced by Eve. If Eve could 
do the cloning, she could on the average deduce half of the information Alice was sending to 
Bob with random choices of her apparatus orientation. But we know that Eve cannot perform 
that cloning, by the no-cloning theorem proved above. So, finally, Alice and Bob have a way 
of sending bits so that no-one can intercept them without Alice and Bob finding out.  

If Alice and Bob find that their message is being intercepted, because they notice a large error 
rate, then again they discard the bits sent and send out the search party to find Eve. One might 
think that Eve then has at least intercepted some of their message, but that problem is easily 
overcome by the strategy of not sending the actual message, and instead sending only what is 
known to cryptographers as the key. Once Alice and Bob have the set of shared bits that they 
are sure are secret, they then send their actual message. A very simply way of doing that is for 
Alice now to call up Bob again, on the public telephone, and tell him her actual message is, for 
example, bits 1, 4, 5, 9, 11, and 16 on their shared list. Only Alice and Bob then know what 
that message is. Provided they only use each shared bit once in their message, their actual 
message is totally secure.13 

There are many other quantum cryptographic techniques14, and there is much discussion in the 
research literature as to how secure such techniques are against very sophisticated kinds of 
attacks. The understanding at the time of writing this, however, is that, when augmented by 
known classical information theory and cryptographic techniques to handle errors, monitor 
error rates, and exclude consequences from partial interception of the message, these kinds of 

                                                                                                                                                         
limit on how much information is being intercepted, and, by sending somewhat more bits than actually 
needed for their messages, can use classical coding and cryptographic techniques to protect their 
information from this partial interception (so-called privacy amplification). 
12 On this same phone call, they can also deal with loss of bits in transmission. In fact, likely a very large 
fraction of bits will be completely lost during transmission of these single photons. Alice and Bob simply 
discard all the situations where Alice sent a photon and Bob received nothing.  
13 In this case, the set of shared secret bits is known as a “one-time pad”. A more sophisticated way of 
using a one-time pad is for Alice to send a string of random bits to Bob to make up the one-time pad, and 
then for Alice and Bob to send, publicly, a string of bits that is the exclusive OR of the desired message 
with the one-time pad. Since the one-time pad is a string of random bits, the transmitted message also 
looks like random bits, and only Bob can decode it using his copy of the one-time pad. 
14 For a review, see, e.g., N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” 
Rev. Mod. Phys. 74 145-95 (2002) 
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quantum encryption protocols are very secure. As we have seen for this example, their security 
derives from the randomness of quantum mechanical measurement for superposition states, 
and from the no-cloning theorem that is itself a very simple consequence of the linearity of 
quantum mechanics. 

18.3 Entanglement 

Up till now, we have nearly always been considering the state of one particle at a time. What if 
we have two particles? What then are the possible states? Suppose that we think of particle 1 
as being in one of a set of possible states 1mψ , and particle 2 as being in one of a set of 
possible states 2nφ . The particles could be photons, for example. Particle 1 might be a photon 
going to the left in a particular spatial mode (beam shape) and with a specific frequency, and 
the different possible states might be different polarization states, such as vertical or horizontal 
polarization. Similarly, particle 2 might be a photon going to the right. Alternatively, the 
particles might be electrons going along different paths, with the spin-up and spin-down states 
being the different possible states for each particle.15  

For the sake of definiteness, we can consider the photon case. Then appropriate basis  states for 
particle 1 (the left-going photon) would be 1H  and 1V , where H and V refer to horizontal 
and vertical polarization, respectively. Similarly for particle 2 (the right-going photon) we 
would have  2H  and 2V  as basis states.  

A possible state of these two photons is, for example, 1 2H V , which is the left-going photon 
horizontally polarized, and the right-going photon vertically polarized. Other examples include 

1 2H H , 1 2V V , and 1 2V H  with obvious meanings. We can express other polarizations 
of a given photon as linear combinations of horizontal and vertical. For example, the state 
( )( )1 11/ 2 +H V  describes a left-going photon polarized at an angle of 45°. Hence a state 
like ( )( )1 1 21/ 2 +H V H  describes a left-going photon polarized at 45°, and a right-going 
photon horizontally polarized. In each of the states in this paragraph, we can assign a definite 
polarization to each photon. Though we have expressed these states in the quantum mechanical 
notation, and we mean them to be quantum mechanical states, these state descriptions could 
also correspond to a classical description of a particle – in a classical view each photon has a 
well-defined polarization that is a property of that photon. But these states above are not the 
only ones allowed by quantum mechanics. 

For example, consider the following state of the two photons 

 ( )1 2 1 212

1
2

+Φ = +H H V V  (18.12) 

A pair of photons in a state like this is sometimes called an EPR pair (after Einstein, Podolsky 
and Rosen), and the state itself is sometimes called a Bell state.16 This state is a linear 
superposition of two of the states we considered already. According to quantum mechanics, 

                                                           
15 We will presume that the two photons (or the two electrons) are practically distinguishable particles in 
the sense we introduced in Section 13.10, because they are moving on very distinct paths, and there is no 
practical possibility of exchange. Hence we can omit the symmetrization of the wave functions with 
respect to exchange, which will greatly simplify our algebra in discussing entangled states. We 
emphasize that the entangled states we are discussing here are not merely the states one gets as a result of 
symmetrization with respect to exchange. 
16 We will have a lot more to say about such states when we discuss Bell’s inequalities in  Chapter 19. 
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such a state is a valid state of the system. Just as for all the states we have considered so far in 
this Section, we can view it as a vector in the 4-dimensional Hilbert space that describes the 
polarization state of two photons, a direct product space in which 1 2H H , 1 2V V , 

1 2H V  and 1 2V H  are appropriate orthonormal basis vectors. 

It is relatively straightforward with modern techniques, such as spontaneous optical parametric 
down-conversion (a second-order nonlinear optical technique),17 to generate pairs of photons 
in EPR states. There are several ways of generating EPR states; in each of them there is 
something intrinsic to the generating process that guarantees that, though we may not know the 
state of the individual particles, each member of the pair has to be found in the same (or 
possibly the opposite) polarization state as the other member when we make a measurement. 
(In the case of electron spin EPR pairs, the electrons may be guaranteed to be in opposite spin 
states, for example).  

There is, however, something very unusual and non-classical about the state in Eq. (18.12). It 
cannot be factorized into a product of a state of particle 1 and a state of particle 2. States that, 
like this one,18 cannot be factorized into a product of the states of individual systems on their 
own are said to be entangled. A consequence of such an entangled state is that, in such a state, 
particle 1 does not have a definite state of its own independent of the state of particle 2. 
Imagine, for example, that we make a measurement on this state, say of the polarization of the 
left-going photon (photon 1), and we find a horizontal polarization, which means we have 
collapsed the overall state of the system into one that now only has terms in 1H . After that 
measurement, the state of the whole system now is 1 2H H ; we have also collapsed the state 
of the second (right-going) photon into a horizontal polarization (even though we did not 
“touch” it). The state of the right-going photon depends on the state we measure for the left-
going photon, even though both results are possible for the measurement of the left-going 
photon.  

There are, incidentally, three other states like Eq. (18.12) that together make up the four Bell 
states, specifically, 

 ( )1 2 1 212

1
2

−Φ = −H H V V  (18.13) 

 ( )1 2 1 212

1
2

+Ψ = +H V V H  (18.14) 

 ( )1 2 1 212

1
2

−Ψ = −H V V H  (18.15) 

These four Bell states are orthogonal, and are a complete basis for describing any such two 
particle system with two available basis states per particle (here H  and V ), the proofs of 
which are left as exercises for the reader. 

There are many bizarre and important consequences of this kind of entangled behavior for the 
meaning of quantum mechanics, and we will return to these in the Chapter 19 when we discuss 
Bell’s inequalities. For the moment, we simply want to emphasize that, once we consider the 

                                                           
17 P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard “Ultrabright source of 
polarization-entangled photons,” Phys. Rev. A 60, R773-R776 (1999) 
18 The state in Eq. (18.8) in the proof of the no-cloning theorem above is also an entangled state.  
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states of more than one quantum system at a time, there is a whole additional range of states in 
quantum mechanics, these entangled states, that have no analog in the classical view of the 
world. 

For the two particles considered here, the space is four-dimensional as we said above. The 
most general quantum mechanical state of these two photons is therefore 

 1 2 1 2 1 2 1 2c c c cψ = + + +HH HV VH VVH H H V V H V V  (18.16) 

where we obviously have needed four (generally complex) coefficients, the c’s, to specify the 
state of just two photons. Classically, we would have needed at most two complex numbers to 
specify the polarization state of two photons (one complex number is enough to specify the 
relative amplitude and phase of the two polarization components of one photon). 

As we increase the number of particles, even restricting ourselves to particles with only two 
basis states of interest, the dimensionality of the resulting direct-product Hilbert space and 
hence the number of require expansion coefficients – the c’s – rises  quickly. For three 
particles, we would have 8 required coefficients to express the quantum mechanical state, for 
four particles, 16 coefficients, and so on, leading to 2N coefficients for N particles. 300 
particles would therefore required 2300 coefficients, a number that may be larger than the 
number of atoms in the observable universe! 

Problems 
 18.3.1 State whether each of the following states is entangled or not (i.e., can it be factored into a product 

of states of the individual particles, in which case it is not entangled). 

(i) ( )1 2 1 2
1
2

−H V H H  

(ii) ( )1 2 1 2
1
2

−H V V H  

(iii) 1 2 1 2
3 4
5 5

i
+H V V V  

(iv) ( )1 2 1 2 1 2 1 2
1
2

+ + +H H H V V H V V  

 18.3.2 Show that the Bell states 12
−Φ  and 12

+Ψ are orthogonal. 

 18.3.3 Show that the set of four Bell states is complete as a basis for two-particle states where each 
particle has two available basis states, i.e., show that the general state of Eq. (18.16) can be written in 
terms of the Bell states, and write that state out in terms of Bell states and the coefficients cHH, cHV, 
cVH, and cVV. [Hint: note that, e.g., 1 2H H  can be written as a sum of two different Bell states.] 

 18.3.4 (i) Consider the Bell state 1 2 1 212 (1/ 2)( )−Φ = −H H V V  of two photons, and suppose now 
that we wish to express it not on a basis of horizontal ( H ) and vertical ( V ) polarized states, but 
instead on a basis rotated by 45°, i.e., a new basis  

 ( )( ) ( )( )1/ 2 1/ 2= + = −+45 H V -45 H V  
 Show that, expressed on this particular basis, the resulting state is still a Bell state.   

 (ii) Repeat part (i), but with the Bell state 1 2 1 212 (1/ 2)( )+Φ = +H H V V . What difference do 
you note between the two results? 

See also Problems 13.2.2 – 13.2.4 
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18.4 Quantum computing 

The basic idea of quantum computing is to make a machine that operates on a quantum state 
rather than a classical one. We can see a reason why that might be interesting from the 
discussion above of the quantum mechanical states of many particles. A machine that only had 
to deal with N two-level quantum mechanical systems, at least as the input to the machine, 
could actually be performing an operation on 2N numbers at once and essentially in parallel. 
No classical machine can do that for even moderate N. For N = 300 binary inputs, there are not 
enough atoms even to store 2300 numbers at one atom per number. Of course, such a statement 
does not prove that a quantum computer can be made, or whether it is better at some specific 
problem than a classical one. There is, however, a strong motivation to explore such quantum 
computing because it is well known in classical computing that the difficulty of solving certain 
rather important problems grows so fast with the size of the problem that no classical computer 
could possibly solve them once they get above a certain size.  

The full simulation of a 300 element quantum system would be an example of such a problem, 
since we could not even store the necessary coefficients classically. Finding the factors of a 
large number is a particularly famous problem that is known to be similarly hard. One major 
use of such factorization would be to crack codes, which are often based on the practical 
impossibility of factoring large numbers. After important initial proof-of-concept proposals 
that a quantum computer could at least solve some problem faster than a classical one (in the 
sense of how the computation scaled for large versions of the problem),19 it was the proof20 
that a quantum computer could solve the factorization problem in a way that scaled better than 
a classical machine that led to a rapid growth in the field. A second important proof was that 
some database searching could also scale better on a quantum computer.21  

A classical computer takes some information in a classical state – some data as a set of bits, for 
example – processes it in a “black box”, and gives an output again as another classical state 
containing bits of information. A quantum computer at this level is similar. Instead of bits that 
can take a value of “0” or “1”, a quantum computer could work with “qubits” that are 
represented as the linear superposition of two states of a quantum mechanical object. The 
object might be an electron spin in a linear superposition of spin-up and spin-down, a photon 
in a linear superposition of two different polarization states, an atom in a linear superposition 
of two possible states, or any of various other quantum mechanical systems that could exist in 
such a two-state linear superposition. In general, the state of that qubit can be written as 

 0
0 1

1
0 1

c
c c

c
ψ

⎡ ⎤
= + ≡ ⎢ ⎥

⎣ ⎦
 (18.17) 

where 0  is the quantum mechanical state chosen to represent a logical “0”, for example, a 
horizontal polarization state H of a photon, a spin-down state ↓  of an electron, or a ground 
state g  of an atom, and similarly 1  could be represented by vertical polarization V , spin-
up ↑ , or an excited atomic state e . (Because of normalization, 2 2

0 1 1c c+ = .) 

                                                           
19 D. Deutsch, Proc. Roy. Soc. London A 400, 97 (1985) 
20 P. W. Shor, in Proc. of the 35th Annual Symposium on Foundations of Computer Science (ed. S. 
Goldwasser), IEEE Computer Society Press (1994), p. 124 
21 L. K. Grover, in Proc. of the 28th Annual ACM Symposium on the Theory of  Computing (STOC), 
Philadelphia, PA, May 1996, p. 212; Phys. Rev. Lett. 79, 325 (1997) 
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To run the quantum computer, an input quantum state is prepared. At least conceptually it is 
fed into the quantum black box (known rather poetically as the “oracle” in quantum 
computing). In practice, inputting the quantum state may well take the form of carefully 
initializing the quantum states of the various quantum elements (such as electrons with spins, 
or atoms) in the box to specific quantum “starting conditions”. Then we might “turn on” the 
quantum computer and let its quantum mechanical state evolve in time because of the various 
designed interactions between the different quantum systems. Sometimes, such running of the 
computer will involve shining specific pulses of light onto specific quantum elements at 
specific times, for example, in a quantum version of “clocking” the computer, to trigger the 
various required quantum operations. Then finally we would read out the state of the system or 
of some subset of it. That readout is a quantum-mechanical measurement process, and in that 
process we do necessarily throw away some of the information about the final quantum state of 
the system; that loss is one of the issues in designing and running quantum computers. 

In conceptualizing a quantum computer, there are ideas that are loosely analogous to the ideas 
of gates in classical computers. In a classical computer, we know that any classical logic 
system could be made entirely from 2-input NOR gates with “fan-out” of 2 (i.e., capable of 
driving the inputs of two subsequent such gates). That does not mean that we would 
necessarily make a computer that way, but the demonstration of such a NOR gate would be a 
“completeness” proof that such a classical computer could be made.  

Gates in quantum computers are necessarily  different. One major difference is that they are 
reversible, which ordinary classical logic gates are not because they deliberately throw away 
information – knowledge of the output state of a classical NOR gate is not sufficient to tell you 
what the input state was. (It is possible, though, to make a classical computer with classically 
reversible gates.)  The reversibility goes along with the idea that the quantum computer works 
through the evolution of quantum mechanical states; that evolution is a unitary process that is 
in principle reversible using the inverse unitary operator.  

One way of expressing the necessary basic operations for a quantum computer is in terms of 
four different operations. Three of these are operations on a single qubit. We can write these 
operations as 2 x 2 matrices representing the corresponding unitary operators. One possible set 
is 

 
1 11
1 12

HU ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 
1 0
0 1ZU ⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

0 1
1 0NOTXU ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (18.18) 

These unitary operators can act on a given qubit, and are known as Hadamard (UH), Z (UZ) and 
NOT X (UNOTX) operators respectively. We can think of the qubit using the Bloch sphere 
picture introduced in Chapter 12 (Fig. 12.1). That Bloch sphere picture can be used to 
represent the complete quantum mechanical state of any two-state system. If, then, the qubit is 
represented as a vector pointing from the center of a sphere to its surface (of unit radius), these 
various operations correspond to rotations of various kinds of that vector. In practice, single 
qubit operations like these can be achieved, for example, by appropriate pulses of magnetic 
fields in given directions in the case of spins, or corresponding pulses of electromagnetic fields 
in the case of two-level “atomic” systems. Manipulating a photon representation of a qubit can 
simply involve changing the polarization state of the photon, which can be done arbitrarily 
with various well-known polarization components that can be arranged to correspond to the 
single qubit operators above. Such single-qubit manipulations have been known and 
understood for some time, long before quantum computing was proposed.  
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The fourth operation, however, involves an interaction between two qubits, an interaction 
called a Controlled-NOT (C-NOT). One of these qubits is called the control, and the other is 
called the target. If the control is 0 , the target qubit is passed through unchanged, but if the 
control is 1 , the target qubit is inverted, i.e., a target qubit of state 0  is changed to state 1 , 
and a target qubit of 1  is changed to state 0 , hence the name Controlled-NOT.  

A two-qubit state is a vector in a four-dimensional Hilbert space, i.e., like Eq. (18.16) 

 

00 01

10 11

00

01

10

11

0 0 0 1

1 0 1 1
control target control target

control target control target

c c

c c

c
c
c
c

ψ = +

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (18.19) 

and so the corresponding operator can be written 

 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOTU

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (18.20) 

For example, the input state with the control as a logic 0 and the target as a logic 1 is the state 
with c00 = 0, c01 = 1, c10 = 0, and c11 = 0. Writing that state as a column vector, and operating 
with UCNOT gives 

 

0 1 0 0 0 0
1 0 1 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (18.21) 

which is just the state we started with, i.e., as intended, the target qubit passes through 
unchanged if the control qubit is logic 0. But if we choose to have the control qubit be a logic 
1, i.e., if we choose the input state as c00 = 0, c01 = 0, c10 = 1, and c11 = 0, then  

 

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 1
1 0 0 1 0 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (18.22) 

then the output state of c00 = 0, c01 = 0, c10 = 0, and c11 = 1 is the state with the target qubit now 
a logic 0 – i.e., it has been “flipped” – and the control bit remaining at logic 1. 

A key point about the physical process that implements such an operator is that there must be 
interaction between two systems representing the two qubits for this to work.  If the system 
representing the control qubit is in its 1  state, we would want it to affect the system 
representing the target qubit. Now, one common approach in running such a gate is that we 
might have a pulse (e.g., a light pulse) that shines on the gate (and especially on the target 
qubit system) every “cycle” of operation. This pulse itself is not carrying information, and 
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might loosely be analogous to a “clock” pulse in a conventional digital system. If the control 
qubit system is in its 0  state, then this “clock” pulse does nothing to the target qubit system 
(e.g., perhaps the “clock” pulse then has the wrong optical frequency to affect the target qubit 
system). If, however, the control qubit is in its 1  state, perhaps it then changes some 
transition frequency in the target qubit system, through some interaction between the control 
and target qubit systems. With this change in transition energy, the target qubit system could 
then be sensitive to the “clock” pulse in such a way that the “clock” pulse then causes an 
inversion of the target qubit state. This kind of system would implement the Controlled-NOT 
function. 

Many different systems have been proposed for implementing quantum computing, and 
various simple ones have been demonstrated. Example systems include ions in ion traps, 
superconducting flux and charge qubits, quantum dots, and spins in semiconductor 
impurities.22 

A major challenge for quantum computing is that it is difficult to isolate the quantum 
mechanical systems enough from their environment. The consequence of that is that at least 
the phase of the quantum mechanical system keeps being disturbed, which destroys the fidelity 
of the quantum mechanical states being used; quantum computing does rely on the phase of the 
quantum mechanical states being undisturbed for sufficiently long times. Essentially, we need 
systems with long dephasing or decoherence times (like the T2 dephasing times discussed in 
Chapter 14). One possible solution is to perform quantum error correction to restore the 
fidelity of the state, though that itself requires quantum computing gates, and so we would still 
need to be able to get above some threshold number of quantum operations without dephasing. 
At the time of writing, the difficulties of dephasing prevent any serious quantum computer 
from being constructed, but the idea remains a very intriguing one that could ultimately have 
substantial practical implications. 

18.5 Quantum teleportation 

The idea of quantum teleportation is to transfer a quantum state from one place to another 
without actually transferring the specific carrier of that state.23 For example, we might have a 
photon (photon 1) in an unknown superposition of horizontal and vertical polarization; we 
want to manage to have a different (distinguishable) photon (photon 3) be in the same 
superposition state somewhere else, but without sending photon 1 there. In fact, we may even 
destroy (absorb) photon 1 in the process.  

                                                           
22 For a critical review, see, e.g., T. P. Spiller, W. J. Munro, S. D. Barrett, and P. Kok, “An introduction 
to quantum information processing: applications and realizations,” Contemporary Physics 46, 407 – 436 
(2005) 
23 The common science fiction notion of teleportation is that we manage to transfer matter from one place 
to another; that is not what is meant by teleportation here, unfortunately. We are only transporting the 
quantum mechanical state that the matter might have had. In transferring or “beaming down” the starship 
captain to the planet surface, if we wanted him or her to be in the same quantum mechanical state as they 
had been on the starship, then quantum teleportation in the sense being discussed here would have to be 
part of the mechanism. Whether it is important to transfer the quantum mechanical state or only the 
classical state in such a transfer of a living entity is an interesting philosophical question, but one that is 
certainly beyond us here.  
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This would appear to be an extremely tricky task to accomplish. We know from the no-cloning 
theorem that we cannot simply clone photon 1 to produce an identical photon (photon 3). We 
also know from our discussion above that simply making a measurement on photon 1, for 
example with a polarizing beamsplitter or filter of some kind together with photodetectors, will 
not reliably tell us the full quantum state of photon 1; we end up statistically “collapsing” the 
state, and unavoidably throw away information about the original quantum state of the photon. 

The key to making this work is to “share entanglement”, which is achieved through sharing a 
pair of photons (an EPR pair) that are in an entangled state in the form of a Bell state. The 
block diagram24 of the quantum teleportation apparatus is shown in Fig.  18.2.  
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Fig.  18.2. Apparatus for quantum teleportation. 

The EPR photon pair is presumed to be in the Bell state of Eq. (18.15)25 

 ( )2 3 2 323

1
2

−Ψ = −H V V H  (18.23) 

We presume that the input photon is in some general state that is a linear superposition of the 
horizontal and vertical polarizations, i.e., 

 1 1 1c cψ = +H VH V  (18.24) 

The state of all three photons therefore can be written as  

 ( )( )123 1 1 2 3 2 3
1
2

c cΨ = + −H VH V H V V H  (18.25) 

A core trick in the teleportation is to note that this state can be rewritten as 

                                                           
24 Alice and Bob appear here as the “names” associated with the boxes for historical reasons from 
quantum cryptography, though it is important to emphasize that there is in fact no human intervention 
required here to make this work. In fact neither Alice or Bob acquires any knowledge about the state of 
photon 1 or of photon 3. The only information they receive here is about the EPR pair, but that is 
information “internal” to this system. 
25 This particular Bell state is readily produced by parametric down-conversion. 
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( ) ( )
( ) ( )

123 3 3 3 312 12

3 3 3 312 12

1
2

c c c c

c c c c

+ −

+ −

⎡Ψ = Φ − + Φ +⎣

⎤+ Ψ − + − Ψ + ⎦

H V H V

H V H V

V H V H

H V H V
 (18.26) 

Note that we have managed to write the state in terms of Bell states of photons 1 and 2. If we 
now make a measurement in Alice’s Bell state measurement box of the Bell state of this pair of 
photons 1 and 2, we will collapse the state into just one of those terms. For example, suppose 
we made the measurement of the Bell state and got the answer 12

−Φ , an answer we can 
know classically because it is the result of a measurement, then the overall system of three 
photons would now be in the state 

 ( )123 3 312

1
2

c c−Ψ = Φ +H VV H  (18.27) 

Since Alice can tell Bob the result of her measurement by communication over an ordinary 
classical channel (e.g., a phone line), Bob now knows that photon 3 is in the state 

3 3c c+H VV H . This is not the same as the original state of the photon (which was 

1 1c c+H VH V ), but that is easily fixed. In this specific case, Bob could rotate the 
polarization of the photon by 90° clockwise, turning vertical polarization into horizontal and 
horizontal into –vertical (i.e., →V H  and → −H V ), and insert a half wave plate to 
delay the vertical polarization by 180° relative to the horizontal, turning cV to -cV. Then photon 
3 will be in exactly the same state as photon 1 was, without either Alice or Bob ever knowing 
what that state was (i.e., without them knowing the coefficients cH and cV. For other results 
from Alice’s Bell state measurement, Bob will have to implement other polarization 
manipulations, but those present no fundamental problem (he could use electrically controlled 
phase shifters, for example). In general terms, Bob implements a specific unitary 
transformation on photon 3 (a combination here of phase delays and polarization rotations) that 
depends on the outcome of Alice’s Bell state measurement, and hence for any result from 
Alice, Bob can put photon 3 into exactly the same state as photon 1 originally had, thus 
completing the teleportation of the quantum mechanical state. 

The reader should feel that there is something very strange going on here. The measurement of 
photons 1 and 2 by Alice has apparently changed the state of photon 3. This particular 
strangeness is at the core of the EPR paradox and the consequences that follow from it, such as 
Bell’s inequalities, both of which will be discussed in the next Chapter. 

Further reading 

M. Fox, Quantum Optics (Oxford, 2006), Chapters 12 – 14, gives a clear tutorial introduction 
to quantum information, more extensive than is possible here.  

M. A. Nielsen and I. L. Chang, Quantum Computation and Quantum Information (Cambridge, 
2000) gives an extensive discussion of the subject.  

D. Boowmeester, A. Ekert and A. Zeilinger (eds.) The Physics of Quantum Information 
(Springer 2000) introduces the subject and gives an extended discussion of research with 
contributions from a broad range of participants in the field. 

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 
74, 145-195 (2002) gives a clear and comprehensive discussion of quantum cryptography. 



442  Chapter 18  Quantum information 

 

T. P. Spiller, W. J. Munro, S. D. Barrett, and P. Kok, “An introduction to quantum information 
processing: applications and realizations,” Contemporary Physics 46, 407 – 436 (2005) 
reviews the various aspects of quantum information and the approaches to demonstrating it. 

18.6 Summary of concepts 

No cloning theorem 

It is not possible to make a quantum mechanical apparatus that can clone a quantum 
mechanical state in an arbitrary superposition. The proof relies essentially on the linearity of 
quantum mechanical operators. 

Entangled states 

An entangled state of two or more particles is one that cannot be factored into a product of 
states for each particle.  

Bell states 

Bell states are classic examples of entangled states for pairs of particles, each of which has two 
accessible basis states (such as horizontal H  and vertical V  polarization of a photon, or 
spin-up and spin-down of an electron). The four Bell states for a pair of photons are  

 ( )1 2 1 212

1
2

+Φ = +H H V V  (18.12) 

 ( )1 2 1 212

1
2

−Φ = −H H V V  (18.13) 

 ( )1 2 1 212

1
2

+Ψ = +H V V H  (18.14) 

 ( )1 2 1 212

1
2

−Ψ = −H V V H  (18.15) 

 



 

 

Chapter 19  
 
Interpretation of quantum 
mechanics 

Prerequisites: Chapters 2 – 5, 9, 10, 12, and 13. Sections 18.1 and 18.3.  

Quantum mechanics as we have discussed it here works remarkably well. When we can figure 
out how to calculate something using quantum mechanics, we know of no situation where it 
gives the wrong answer. At a pragmatic level, it therefore works. It does, however, have some 
aspects about it that are very different from the classical view of the world. Interpreting what 
quantum mechanics says about reality is a very tricky subject with strange consequences and 
truly bizarre proposals about how reality actually works. Here will try to give a short 
introductory summary of some of those key ideas. It is necessarily brief and incomplete, and is 
certainly not conclusive. Indeed, this field of the interpretation of quantum mechanics can be 
considered unresolved, even if protagonists of various interpretations might attempt to 
convince us otherwise. Fundamentally, we do not know how to resolve some of the more 
philosophical aspects because we have no experiment to discriminate between them, though 
some points previously believed to be only philosophical have been resolved by experiments, 
with remarkable consequences.  

19.1 Hidden variables and Bell’s inequalities 

Is quantum mechanics truly random? Perhaps the solution to the apparent randomness of 
quantum mechanics, with states collapsing into eigenstates with only statistical weights, is that 
quantum mechanics as stated is incomplete, in the sense that classical statistical mechanics is 
incomplete. Statistical mechanics discusses the most likely outcomes from a statistical point of 
view of processes based, for example, on the collisions of atoms or molecules in a gas. It is a 
good way of calculating thermodynamic behavior, such as relations between pressure and 
temperature in gasses.  

In a classical view of the world, though, there is an underlying deterministic behavior of 
colliding mechanical particles, such as billiard-ball-like collisions of atoms or molecules, and 
the use of the statistical treatment just helps us avoid dealing with all those collisions for some 
calculations. For other calculations, we presume there is that underlying deterministic theory 
we could use if we wanted to. If we only use statistical mechanics, these underlying variables 
(the actual positions and momenta of each atom or molecule) are hidden from us, though, at 
least in a classical world, we presume they exist. Perhaps quantum mechanics rests also on 
such hidden variables, and if we could figure out what they were, the apparent randomness of 
quantum mechanics would disappear as a fundamental aspect of nature. 
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Einstein in particular was not happy with either the randomness of quantum mechanics as 
stated, nor the collapse of the wavefunction. With his colleagues Podolsky and Rosen he came 
up with a famous thought-experiment that he believed demonstrated the absurdity of the 
randomness and the wavefunction collapse, and the reasonableness of a hidden variable 
approach, a thought-experiment known since then as the EPR paradox.1 

Essentially, the core of the EPR paradox is that it is possible to create two distinguishable 
particles (an EPR pair) in a quantum mechanical superposition state of the form of one of the 
Bell states discussed in Chapter 18, for example for two photons 1 and 2 going in different 
directions, like  

 ( )1 2 1 212

1
2

+Φ = +H H V V  (19.1) 

i.e., a linear superposition of the state where the two photons are both horizontally polarized 
and the state where the two photons are both vertically polarized.2  

In such a state, if one measures one of the photons to be horizontally polarized, i.e., in a state 
H , according to quantum mechanics, the state of both particles is forced to collapse into the 

one element 1 2H H  in the linear superposition, and a measurement on the other photon is 
now bound to give the result H  also if the apparatuses have aligned polarizers. Similarly, 
measuring the result V  for one photon will lead, according to quantum mechanics, to the 
inescapable conclusion that the other photon will also be in the state V .  

According also to quantum mechanics, neither photon has a defined polarization until it is 
measured, and so one seems to be forced to conclude that somehow the measurement of one 
photon leads to a change in the other one’s state. This is indeed a bizarre notion, especially if 
one arranges that the photons are very widely separated at the time either of them is measured, 
so far apart that there is no possibility during the time of measurement that any signal can be 
conveyed, even at the velocity of light,3 between the two measurement apparatuses. Einstein 
referred to such a change in state of the other particle as “spooky action at a distance.” He 
considered such behavior strong evidence that in fact there should be hidden variables.  

A potential way out of the absurdity would seem to be to assert that, in fact, each photon 
actually does have a specific polarization at the time it leaves the apparatus that creates it, but 
that we merely are unaware of it until the measurement takes place. The fact that the photons 
had actual polarizations at all times would be a variable hidden from quantum mechanics, in 
the sense that the actual positions and momenta of gas atoms are hidden from classical 
statistical mechanics. This supposed hidden variable would presumably be quite real in some 
more complete theory. This information on the polarization of the photon would presumably 
be carried with the photon as a local property of the photon, and hence such a hidden variable 
is called a local hidden variable. This particular hidden variable theory, with polarization as the 
hidden variable, will certainly not work, as will become clear below.  

                                                           
1 A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777-780 (1935) 
2 This is not actually the state proposed by EPR, but it is more convenient for our discussion and has the 
correct basic character. 
3 Though the influence would apparently travel faster than light in the quantum mechanical view, no 
useful information can be conveyed this way because we still cannot choose the outcome of the 
measurement that the distant observer will find; we merely know what result that observer will see.  



 19.1 Hidden variables and Bell’s inequalities 445 

 

Einstein apparently held the opinion for the rest of his life that there were, however, some local 
hidden variables behind quantum mechanics, but he, and everyone else, believed that there was 
no experimental test that could answer the question as to whether local hidden variables 
actually existed. This whole discussion therefore remained in the unprovable world of 
philosophical speculation.  

The appeal of the idea of local hidden variables is obvious. It restores to us the belief that, 
though we do not yet have a theory that explains exactly how such variables behave, the world 
actually does agree with our apparent local determinate view (i.e., things have actual well-
defined states given by properties that exist in some region of space near the things).  

In 1964, Bell4 proposed that there was a way of distinguishing experimentally between local 
hidden variable theories and the predictions of quantum mechanics. He showed that, in a 
particular kind of behavior that could be seen in an EPR experiment, any local hidden variable 
theory would give a result that would be different from the predictions of quantum mechanics. 
This remarkable prediction was tested with increasing sophistication.5 The result is the same in 
all tests. The experiments agree with quantum mechanics and disagree with any local hidden 
variable theory.  

The specific results that discriminate between the local hidden variable theories and quantum 
mechanics relate to the correlation we would see between the results from the two different 
apparatuses for measuring the polarization of the two different photons. In particular, the key 
aspect is what happens when the two apparatuses have their axes rotated at an angle. For 
certain ranges of angles, the two theories disagree substantially and measurably, and the results 
for local hidden variable theories obey a set of inequalities (Bell’s inequalities). The behavior 
in the quantum case turns out to give correlations that are different from those that are possible 
in any local hidden variable theory.  

We can easily see that we run into trouble with local hidden variable approaches. Suppose, for 
example, that we presume that the EPR pair of photons is heading off to two different 
measuring apparatuses with their axes aligned as in Fig.  19.1. As we mentioned above, 
quantum mechanics predicts that, for an EPR pair in, for example, the Bell state of Eq. (19.1), 
if we measure one photon to be horizontal, then we will find the other photon also to be 
horizontal, and similarly if we measure one photon to be vertical, the other photon will also be 
measured to be vertical. This is the behavior we find also in experiments; with their 
polarization axes aligned, both apparatuses always measure the same polarization for the two 
photons.  

Suppose we asserted that, in fact, the two photons had the same polarization, with that actual 
polarization being the hidden variable, though we just did not know what it was until it we 
measured it. In that case, the polarization of each photon would be what is called a “local 
hidden variable” – a quantity whose value is presently unknown but that is a property that is 
“carried along with” the photon; in this sense, it is local to the photon.  

                                                           
4 J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195-200 (1964); reprinted in J. S. 
Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, 1993), pp. 14-21 
5 J. F. Clauser and A. Shimony, “Bell’s theorem. Experimental tests and implications,” Rep. Prog. Phys. 
41, 1881-1927 (1978); A. Aspect, P. Grangier, and G. Roger “Experimental Realization of Einstein-
Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities,” Phys. Rev. 
Lett. 49, 91-94 (1982); A. Aspect “Bell's inequality test: more ideal than ever,” Nature 398,189-190 
(1999) 
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Fig.  19.1. Illustration of an EPR photon pair source and two aligned apparatuses to detect 
horizontal or vertical polarization. 

If that polarization is not aligned with either the horizontal or vertical axis, then each photon 
has a probability of being measured to be either horizontal or vertical, and many times we will 
therefore see the two photons being measured to have different polarizations. But this is not 
what we observe in an experiment. With such EPR pairs of photons, we always find the two 
photons to have the same measured polarization (even if we choose the angles of the polarizers 
after the photons have been created – a so-called “delayed choice” experiment).  

We can fix up this particular hidden variable theory to get the same answer as the experiment 
for aligned polarizers, though we have to introduce attributes and behavior that bear no relation 
to any physical model we had thought about for photons or electromagnetic radiation. (For 
example, we can simply say that each photon has some additional local attribute that causes it 
to emerge on a particular axis from the polarizer, and since both photons have the same 
attribute, they both emerge always on the same axis.)  

It turns out, however, as Bell proved, that, once we misalign the two measuring apparatuses 
(i.e., rotate the polarizer axes of one apparatus with respect to the other), there are inequalities 
relating the correlations between the measured results on the two different apparatuses that 
must be obeyed for any local hidden variable theory. Those limiting correlations can be tested 
against experiment. It is found that the experimental results violate these inequalities, so no 
local hidden variable theory agrees with experiment. (It is also true that, so far as we can tell, 
the experimental results do agree with the quantum mechanical prediction for such EPR 
states.)  

The stunning conclusion then is that reality is not local. We cannot describe reality as we see it 
based only on local properties. To be forced to this conclusion, we do not even need to believe 
that quantum mechanics is correct. Even if quantum mechanics is wrong and its agreement 
with the experimental results is merely a coincidence, it is still not possible to construct a local 
hidden variable theory that agrees with the experimental results  

A simple version of a Bell’s inequality 

The general proof of Bell’s inequalities can be difficult to follow. We can examine a simpler 
version here, a version that needs very little mathematics.6 Consider the consequences of a 
deterministic hidden variable theory, where the hidden variables are definite properties of each 

                                                           
6 This is based on an argument given in J. S. Bell “Bertlmann’s socks and the nature of reality,”  in 
Speakable and Unspeakable in Quantum Mechanics  (Cambridge, 1987), pp 139 – 158, amended to 
discuss photons, and extended to include a Venn diagram approach. 
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particle on its own, and hence can be said to be local to the particle. The particle may also have 
various attributes or definite values of variables that are not hidden. The net result of the 
combination of the hidden and non-hidden variables, which we can call the local state of the 
particle, determine the outcome of any measurement on the particle. Measuring devices acting 
on other particles we therefore expect do not matter, and in such a theory they cannot possibly 
matter if those measurements are made sufficiently far away and at such times that no 
information can get to our particle in time to influence the outcome of our measurement.  

In particular then, in such a local deterministic view of reality, the values of the hidden and 
non-hidden variables for a photon, i.e., the local state of the photon, determine from which port 
of a polarizing beamsplitter the photon will emerge, since this is by choice a deterministic 
theory. So we can if we wish draw a Venn diagram, as in Fig.  19.2. Each combination of local 
variables that corresponds to a particular measurable set of behaviors with polarizers at any 
angle is represented by a point on this Venn diagram. This figure shows three possibly 
overlapping regions. One region includes all possible local states that lead to the particle 
passing through a polarizer set at 0°. A second region includes all possible local states that lead 
to the particle passing through a polarizer at 22.5°. A third region includes all possible local 
states for which a particle will not pass through a polarizer at 45°. All of these three regions 
can overlap, pair-wise and overall, and still be in agreement with our observations on what 
happens with single photons and polarizers. 

pass at 22.5°

pass at 0°

not pass at 45°

Region 1 – pass at 
0° and not at 45°

Region 2 – pass at 
0° and not at 22.5°

Region 3 – pass at 
22.5° and not at 45°

(a)

(b) (c) (d)

pass at 22.5°

pass at 0°

not pass at 45°

Region 1 – pass at 
0° and not at 45°

Region 2 – pass at 
0° and not at 22.5°

Region 3 – pass at 
22.5° and not at 45°

(a)

(b) (c) (d)

 
Fig.  19.2. (a) Venn diagram for various possible polarization combinations of the two EPR 
photons. (b), (c), and (d) Venn diagrams with specific regions marked. Note that every point in 
Region 1 lies within either Region 2 or Region 3. 

Now, we have to restrict ourselves to performing only one test on a given photon (with a 
polarizer set at 0°, 22.5°, or 45°) because that test or measurement may change the state of the 
photon in some way. However, with our EPR photon pair source, we have two photons to use 
in two different experiments (one on the left, and one on the right), and we already know that 
photons prepared this way always behave identically if the polarizers are set identically. Hence 



448  Chapter 19  Quantum information and interpretation of quantum mechanics 

 

on the presumption that their behavior when they get to the polarizer is determined by local 
information they carry with them, we conclude that their local states are identical in that they 
lie at the same point on this Venn diagram. So now we can consider the overlap regions of the 
Venn diagram, which correspond to those sets of local states in which, for example, one 
photon passes a polarizer at 0° and the other passes a polarizer at 22.5°.  

We can identify three particular regions of the Venn diagram of interest to us here. Region 1 is 
the set of all local states in which one photon will pass a polarizer at 0° while the other will not 
pass a polarizer at 45°. Region 2 is the set where one photon will pass at 0° and the other will 
not pass at 22.5°, and Region 3 is the set where one photon will pass at 22.5° and the other will 
not pass at 45°. 

It is obvious from the Venn diagram that Regions 2 and 3 taken together encompass all of the 
states in Region 1 (i.e., Region 1 is a subset of the union of Regions 2 and 3). Hence the sum 
of the number of local states in Regions 2 and 3 taken together always either equals or exceeds 
the number of local states in Region 1. We presume that we can perform this experiment many 
times with random local states (we can verify the randomness by performing experiments on 
just one of the photons to see that they give random behavior independent of polarizer angle). 
In such a case therefore, the probability that the local state is found to lie in Region 1 must be 
less than or equal to the probability that the local state is found to lie in Region 2 or Region 3, 
i.e., 

The probability that one photon will pass at 0° and the other will not pass at 22.5° 

+ 

The probability that one photon will pass at 22.5° and the other will not pass at 45° 

≥  

The probability that one photon will pass at 0° while the other will not pass at 45° 

  (19.2) 

This is a specific example for a Bell’s inequality. If we therefore find in an experiment that this 
inequality is violated, then we have to throw out any deterministic local hidden variable 
theory.  

But experiments do violate this inequality. Therefore deterministic local hidden variable 
theories cannot explain reality. 

Note this argument does not even mention quantum mechanics. Bell’s inequalities in this sense 
have nothing to do with quantum mechanics. They show that, because of the results of 
experiments, reality cannot be explained by local variables, hidden or otherwise. 

Of course, we find that the results of the experiments do also agree with the predictions of 
quantum mechanics, which therefore gives another strong argument for quantum mechanics, 
but at a great price – we are forced to abandon a local view of reality. Particles cannot simply 
be described deterministically by properties they carry along with them.  

The quantum mechanical calculation of these probabilities is straightforward.  Consider a 
photon linearly polarized at an angle θ to the horizontal. We can then describe the polarization 
state of that photon as 

 ( ) cos sinH Vψ θ θ θ= +  (19.3) 
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where H  and V  are the horizontal and vertical polarization basis states, respectively. We 
take the probability that such a photon will pass a horizontally-oriented beamsplitter to be  

 ( )
2

2cosHP H ψ θ θ= =  (19.4) 

Now we consider two different photon modes, one propagating to the left (L) and the other to 
the right (R). We presume that we have one photon in each mode, and that this pair of photons 
is in an “EPR” (Bell) state with the two orthogonal polarization states now generalized to be at 
angles θ and / 2θ π+  instead of just horizontal and vertical. Hence we can have the form 

 ( ) ( ) ( ) ( )1 , , / 2 , / 2 ,
2

EPR L R L Rψ ψ θ ψ θ ψ θ π ψ θ π⎡ ⎤= + + +⎣ ⎦  (19.5)  

where ( ) , Lψ θ  means that the photon in the left-going mode is polarized with angle θ  to 
the horizontal axis, and so on. We consider now examining this state with a horizontal 
polarizer on the left (or at least the horizontal arm of a polarizing beamsplitter) and a polarizer 
at angle φ  to the horizontal on the right. For such an examination, we will have an amplitude 
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⎜ ⎟=
⎜ ⎟+ + +⎝ ⎠

⎡ ⎤
⎢ ⎥=
⎢ ⎥+ + +⎣ ⎦

 (19.6) 

Note that we can write 

 ( ) ( ) ( )Hψ φ ψ θ ψ θ φ= −  (19.7) 

because the inner product of these two vectors will not change if we rotate both of them by an 
angle φ− . Hence we have  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 cos cos cos / 2 cos / 2
2

1 cos cos sin sin
2

1 1 cos cos 2 cos cos 2
22

1 cos
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φ

= − + + + −⎡ ⎤⎣ ⎦

= − + −⎡ ⎤⎣ ⎦

= + − + − −⎡ ⎤⎣ ⎦

=

 (19.8) 

independent of the angle θ  of the polarization axis of the EPR pair. Hence we can conclude 
that the probability of the “left” photon passing the left polarizer at angle 0 (horizontal) and the 
“right” photon passing the right polarizer at angle φ  is 

 2 21 cos
2

P A φ= =  (19.9) 
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If a photon on the right passes at an angle φ , then it fails to emerge from the other arm of a 
polarization beamsplitter, an arm that passes a photon of polarization angle / 2φ π− . Hence 
we can finally conclude that the probability of the “left” photon passing the left polarizer at 
angle 0 (horizontal) and the “right” photon failing to pass the right polarizer at angle φ  (i.e., 
passing a right polarizer at angle / 2φ π− ) is  

 ( )2 21 1cos / 2 sin
2 2

Pφ φ π φ= − =  (19.10) 

The choice of the polarizer orientation on the left as “horizontal” is arbitrary, and so this 
expression applies when the angle between the two polarizers is φ. Hence we have 

The probability that one photon will pass at 0° and the other will not pass at 22.5° 
( 2(1/ 2)sin (22.5 ) 0.0732° �  

+ 

The probability that one photon will pass at 22.5° and the other will not pass at 45° 
2(1/ 2)sin (22.5 ) 0.0732° �  

0.1464�  

But 

The probability that one photon will pass at 0° while the other will not pass at 45° 
2(1/ 2)sin (45 ) 0.2500° �  

Hence since 0.2500 0.0732 0.1464> + , Bell’s inequality, Eq. (19.2) for this case, is violated 
by the quantum mechanical calculation, a calculation that also appears to agree well with 
experiment. 

Hence no local hidden variable theory can explain the results of the EPR experiment with 
misaligned polarizers. Hence, if quantum mechanics is to explain the results of experiments 
(and it does), quantum mechanics cannot be explained by local hidden variable theories either. 
This is a remarkable conclusion. 

Problem 
 19.1.1 (i) Consider the Bell state 1 2 1 212 (1/ 2)( )+Φ = +H H V V  of two photons. Express it now 

not on a basis of horizontal ( H ) and vertical ( V ) polarized states, but instead on a basis θ  and 
/ 2θ π+  rotated by an angle θ  in a positive (i.e., anti-clockwise) direction relative to the horizontal 

axis [Hint: on such a basis, sin cos / 2θ θ θ θ π= + +V , and a similar expression exists for  H ] 

 (ii) Hence show that the two photons in such a state will always come out of the same arm of each 
polarizer when two aligned polarizers are used to examine the pair of photons. 

19.2 The measurement problem 

Thus far in discussing quantum mechanics, we have presumed that we can make a 
measurement, and it is this measurement that forces quantum mechanical systems into 
eigenstates of the quantity being measured (the “collapse of the wavefunction”). There is, 
however, a major problem. We do not know what a measurement is in quantum mechanics, 
and we cannot construct a model of it in the quantum mechanics we have constructed with 
linear operators acting on states. 
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The proof of this difficulty is very simple. Suppose we have some measurement apparatus that 
is going to act on a quantum mechanical state to give the measured value. Suppose then that 
this apparatus is described by the quantum mechanical operator M̂ , which must therefore be a 
linear operator. Suppose that the system starts out in one of the eigenstates of the quantity 
being measured by the apparatus. It will be sufficient here to deal with a quantity that only has 
two eigenstates (e.g., electron spin). Hence, for the initial eigenstate ↑ , we have the result of 
the measurement being the state 

 M =↑ ↑  (19.11) 

i.e., the system, when measured in an eigenstate, stays in that eigenstate. Similarly for the other 
possible initial eigenstate 

 M =↓ ↓  (19.12) 

So far, this agrees with our observation. But suppose instead that the system starts in a linear 
superposition state a a↑ ↓+↑ ↓ . Then on operating on that state, because of the linearity of 
M̂ , we have 

 ( )ˆ ˆ ˆM a a a M a M a a↑ ↓ ↑ ↓ ↑ ↓↑ + ↓ = ↑ + ↓ = ↑ + ↓  (19.13) 

Note that the resulting state is a linear superposition also.7 The “measurement” operation has 
not been able to collapse the resulting state into an eigenstate, in disagreement with our 
understanding of measurement. Therefore there is no way of describing measurement using the 
quantum mechanics we have constructed. 

19.3 Solutions to the measurement problem 

The measurement problem has existed since at least the late 1920’s. There is no proposed 
solution to it that does not appear either absurd in some way, or that invokes something outside 
quantum mechanics for which we have no explanation. Also, however, there is no experiment 
that we know of that can discriminate between the different proposals, and therefore all of 
them remain in the realm of metaphysical philosophical speculation. We cannot even use their 
relative absurdity (even if we had a standard for that) as a way of deciding which one is the 
right one. We have already seen above that the experimentally testable aspects of quantum 
mechanics lead us to conclusions that are quite absurd but nonetheless correct. Here we briefly 
mention some of the contenders for solutions to the measurement problem. This is not a 
complete list (the actual list is very long, especially if one gets into variations of the contenders 
presented here). It will, however, give some flavor of the speculations in this field. 

The Standard Interpretation  

The so-called Standard Interpretation of quantum mechanics is that we merely separate out the 
measurement process as being something different, and use our simple rules to work out the 
probability of various outcomes. It is essentially the view advocated by von Neumann and by 
Dirac. From an engineering point of view, this presents no apparent problems as long as it 
keeps working for every problem we ask it to solve. It is, however, very unsatisfactory from a 

                                                           
7 It might be argued that we ought to include the state of the measurement apparatus in the overall 
quantum mechanical state being considered, but that does not get us out of this problem, still leaving us 
in a linear superposition state when we start with a linear superposition state. 
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scientific or philosophical point of view because we have no description of how the 
measurement process works, and at what point we make the boundary between the quantum 
mechanical world and the (presumably) macroscopic world of measurements. We take the 
approach that the quantum system keeps evolving in superposition states until we measure it, 
but we do not know what measurement is. The Standard Interpretation does not solve the 
measurement problem, but does acknowledge that it exists. 

The Standard Interpretation is also an example of theory in which reality (or specifically the 
determinate experience we have of things being in specific states rather than superpositions) is 
created by the act of observation, whatever that is. The classic illustration of the absurdity of 
the Standard Interpretation is Schrödinger’s cat, which is presumed trapped within a box that 
has a device that will go off randomly, with a quantum mechanical process such as radioactive 
decay triggering the death of the cat. The Standard Interpretation would say that, if we do not 
open the box and make a measurement, the cat will continue to “exist” in a linear superposition 
of alive and dead, which, the criticism would say, is absurd. Whether it is absurd or not, and 
whether absurdity should be given any weight in deciding the validity of a quantum theory 
provided the theory agrees with experiment, remain matters of opinion.  

The Copenhagen Interpretation 

The Copenhagen interpretation is essentially due to Bohr. We know that we must accept the 
wave-particle duality – electrons have both wave and particle character. Such a duality requires 
us to accept two views that, in a classical view at least, are contradictory (or, in the 
terminology of the Copenhagen interpretation, complementary). We also note that certain 
variables have a complementarity to them, such as position and momentum – we can 
accurately only know one of these at a time, as given by the uncertainty principle. In the 
Copenhagen interpretation, quantum mechanical particles or systems have no properties until 
we measure them, and in so doing we destroy the possibility of measuring their 
complementary variable, just as a position measurement will leave us with no possibility of an 
answer to the momentum (consistent with the uncertainty principle). Because in this 
interpretation there are no actual properties that a particle has until it is measured, there are no 
hidden variables. Thus Bell’s inequalities are not a problem in this interpretation (though it 
does still leave the absurdity of “spooky action at a distance”). 

In the Copenhagen interpretation view, perhaps we should extend this complementarity 
principle to other aspects of quantum mechanics that are also apparently contradictory, such as 
the “complementarity” of the linear superposition aspects of quantum mechanical states 
(having character seen also in waves with their linear superposition) and the apparent definite 
states seen as a result of measurements (having character seen also in particles with their 
definite discrete existence).  

Modern opinion on this approach is sometimes that generations of physicists were misled into 
believing that Bohr had indeed somehow solved the problem of the interpretation of quantum 
mechanics, including the measurement problem, though no-one was exactly sure how precisely 
he had done this (see, e.g., Gell-Mann8). Whatever Bohr was advocating is not clearly defined 

                                                           
8 M. Gell-Mann, “What are the building blocks of matter,” in D. Huff and O. Prewitt (eds.), The Nature 
of the Physical Universe (Wiley, New York, 1979) p 29. The quote from Murray Gell-Mann is “The fact 
that an adequate philosophical presentation has been so long delayed is no doubt caused by the fact that 
Niels Bohr brainwashed a whole generation of theorists into thinking that the job was done fifty years 
ago.” 
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from a mathematical point of view once we go beyond aspects like the uncertainty principle 
and wave-particle duality. This approach also does not appear to offer a way of resolving the 
difficulties of the interpretation of quantum mechanics (though we may have to accept that 
there is no such resolution between the classical concepts of definite reality and the quantum 
mechanical world). A common problem with the Copenhagen Interpretation is that one cannot 
find a consistent or clear definition in the literature as to what it actually is, especially as one 
extends the ideas of complementarity to new domains. 

Bohm’s pilot wave 

David Bohm9 noticed that Schrödinger’s equation for a particle like an electron can be written 
in a way that looks exactly like a particular way of writing the classical equation of motion of 
such a particle, with only one difference. Specifically he adds a new “quantum potential” Q  to 
the classical potential.  

The algebra of this is quite straightforward. We start with the time-dependent Schrödinger 
equation as usual 

 
2

2

2
V i

m t
ψψ ψ− ∂

∇ + =
∂

= =  (19.14) 

and then we make a mathematical choice to write 

 ( ) ( ) ( )( ), , exp ,t R t iS tψ =r r r  (19.15) 

where R and S are real quantities. Any complex function can be represented in this way. If we 
substitute the form (19.15) into Eq. (19.14), then, after a little algebra, we can deduce the 
equation 

 
( )2

0
2
SS V Q

t m
∇∂

+ + + =
∂

 (19.16) 

where 

 
2 2

2
RQ

m R
∇

= −
=  (19.17) 

Now, Eq. (19.16) without the quantum potential Q is known as the Hamilton-Jacobi equation 
of classical mechanics. That equation is an alternative formulation of classical mechanics for 
such a particle, and it reproduces all the usual classical behavior. In that case, S is known as the 
“action” or Hamilton’s principal function, and the momentum is S= ∇p . As usual for 
classical mechanics, Eq. (19.16) (at least without Q) is therefore a completely deterministic 
equation in which position and momentum are both simultaneously well defined. In 
considering the correspondence between the classical and quantum worlds, for a large 
wavepacket and a large mass, then the quantum potential is a very small correction, and hence, 
even using the full form of Eq. (19.16), we obtain the classical behavior with which we are 
familiar.  

                                                           
9 The original papers are D. Bohm, Phys. Rev. 85, 166-193 (1952) and D. Bohm, Phys. Rev. 89, 458-466 
(1953). A comprehensive discussion of all of Bohm’s ideas is given in D. Bohm and B. J. Hiley, The 
undivided universe (Routledge, New York, 1993). The argument here is adapted primarily from that in 
Chapter 3 of that book. 
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Bohm’s core point, though, is that, because we can use definite position and momentum as 
meaningful concepts in the classical version of Eq. (19.16), so also we can use them when we 
add in a finite quantum potential Q. We are merely adding in the potential from another field – 
here a potential derived from the solution to Schrödinger’s equation – to the Hamilton-Jacobi 
equation, just as we might add in another potential from, say, an electromagnetic field that is 
the solution of Maxwell’s equations. This quantum potential also acts, together with the other 
potentials in the system, to guide the particle. As a result this potential, or the wavefunction 
that generates it, can be regarded as a “pilot wave”. 

As far as Schrödinger’s equation is concerned, there is nothing apparently wrong with Bohm’s 
assertion. Eq. (19.16) is derived from Schrödinger’s equation, so it must be consistent with it. 
The randomness of quantum mechanics in this picture comes from the ordinary randomness of 
the initial positions and momenta of the particles.  

This picture does correctly reproduce the results of classic experiments like diffraction through 
two slits. In this case, the wavefunction through the quantum potential gives the necessary 
additional potential to guide the particles, one by one, so that an ensemble of them with 
suitable random starting conditions will reproduce the diffraction pattern we see, with the zeros 
at specific points as required. If we block one of the slits, we will, of course, also block the 
wavefunction from passing through that slit; as a result the wavefunction will not have the 
diffraction pattern corresponding to two slits, hence neither will the quantum potential, and the 
ensemble of particles will therefore not show that two-slit diffraction pattern either, just as we 
expect. Note, though, that in this picture, the particle does definitely go through one slit or the 
other, and any individual particle does have definite position and momentum at all times. 
Because of this definiteness, there is no “collapse of the wavefunction” required to explain 
definite measurements. 

There have been many objections to this picture. In this simple form as presented here, it is not 
relativistically correct, and it only applies to one particle. Approaches to addressing such 
problems do exist however.10 It does also appear to give a special status to position, whereas 
the conventional description of quantum mechanics treats position on an equal footing with 
any other dynamical variable. Despite these objections, Bohm’s approach has never 
disappeared from the discussion of interpretations of quantum mechanics, and remains a 
contender. It may also be true that Bohm’s approach did not receive the attention it deserved 
initially because Bohm was excluded from working at any major US institution in the 1950’s.11 

This kind of approach is also not a local description of reality because the wavefunction and 
the potential Q exist at all positions, not merely the current position of the particle; they are 
non-local hidden variables. Hence this kind of approach can be consistent with Bell’s 
inequalities, which only exclude local hidden variables.12  

                                                           
10 See, e.g., D. Bohm and B. J. Hiley, The undivided universe (Routledge, New York, 1993). 
11 Bohm was summoned to the House Un-American Activities Committee in 1949, on the basis of 
allegations of communist sympathies that were never apparently substantiated. He refused on principle to 
testify, and was found in contempt of Congress. He was required to leave Princeton University, and could 
obtain no other position in the US. After various positions in other countries, he settled in the UK. He 
was subsequently cleared of the contempt of Congress charges. See D. Z. Albert, “Bohm’s Alternative to 
Quantum Mechanics,” Scientific American, May 1994, pp. 58 - 67. 
12 J. S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, 1993), pp. 
29 – 39. 
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Nonlinearity 

Our proof that there is a measurement problem is based on the linearity of quantum mechanics. 
Perhaps quantum mechanics is not actually exactly linear, and the effects of that nonlinearity 
become strong as we move to the macroscopic world in which we appear to exist. Then 
mathematically we could discount the kind of proof we gave above and propose that some 
state collapse is possible.  

This approach does not seem to get a lot of attention, presumably because no-one has been 
able to come up with a theory that both satisfactorily explains the microscopic world and yet 
gives the kind of state collapse we think we see. (Bell briefly mentions this possibility,13 for 
example.) In principle, if quantum mechanics is slightly nonlinear, it ought to be possible to 
find such behavior experimentally, so it does at least offer hope of resolving the problem 
conclusively. 

Distinction between matter and mind 

Perhaps the process of measurement and collapse of the wavefunction occurs when a 
conscious mind (whatever that is) intervenes. Consciousness is then viewed as the aspect that 
lies outside quantum mechanics as we have stated it so far. Such a supposition might allow us 
to test experimentally for the presence of consciousness in a chain of events; consciousness 
would collapse the wavefunction and lead to an evolution after that point that was different 
from the evolution we would have seen for a true superposition. If the system that is supposed 
to be conscious is a relatively complex one (such as a human brain), however, it is doubtful 
that we could calculate the evolution of a true superposition in interacting with that system, 
and so we probably  could not distinguish it from the evolution of a collapsed state of a 
complex system; hence this experiment is perhaps discouragingly hard. Also, from a 
theoretical point of view, because we have no clear definition of consciousness to work with, it 
is difficult to make much progress with such a theory. It does raise the hypothesis that maybe 
consciousness has something to do with nonlinearity in quantum mechanics, but does not 
propose any serious way of making progress with that conjecture either. 

Many-worlds hypothesis 

Everett14 proposed in 1957 that there was no collapse of the wavefunction. Rather each 
possible outcome of a measurement actually exists, but in different “worlds”. Performing a 
measurement causes reality to split into multiple branches or worlds, each corresponding to a 
different possible result. Multiple replicas of the observer then exist, one for each world, and in 
each world the observer believes a different outcome happened. In this approach, an observer 
can be a machine, and its main characteristic is that it writes down results (e.g., in a register of 
some kind). For each possible answer the machine might write down, there is a different world. 
An alternative version would have the observer have multiple different minds, one for each 
outcome, in which case it is known as a many-minds hypothesis.  

This approach is truly bizarre, but does not obviously violate any laws of quantum mechanics, 
and claims not to require anything other than linear quantum mechanics to describe everything, 

                                                           
13 J. S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, 1993), p 
190 
14 H. Everett III, “"Relative State" Formulation of Quantum Mechanics,” Reviews of Modern Physics, 29, 
454-62 (1957) 
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including the observer. It does, however, require an awful lot of splitting of the universe. It is 
apparently believed by quite large numbers of distinguished physicists.15 

Problem 
 19.3.1 Derive the relations  

 (i) ( )2
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 and (ii) 
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from Schrödinger’s time-dependent equation, where  

 
2 2

2
RQ

m R
∇

= −
=   

and the wavefunction is written in the form  
 ( ) ( ) ( )( ), , exp ,t R t iS tψ =r r r .  
 [Note: the second relation, (ii), above corresponds to conservation of particles or probability density, 

because ( ) /S m∇  can be interpreted as velocity, and hence 2 ( ) /R S m∇  represents the flow of 
probability density.] 

19.4 Epilogue 

In the end, this discussion of the meaning of quantum mechanics and the measurement 
problem in particular has perhaps merely confused the reader, and caused the reader 
(unwisely?) to doubt quantum mechanics as the way to understand the world. Perhaps instead 
we should have taken the advice of Willis Lamb (a Nobel Laureate). “I have taught graduate 
courses in quantum mechanics for over 20 years …, and for almost all of them I have dealt 
with measurement in the following manner. On beginning the lectures I told the students, ‘You 
must first learn the rules of calculation in quantum mechanics, and then I will tell you about 
the theory of measurement and discuss the meaning of the subject.’ Almost invariably, the 
time allotted to the course ran out before I had time to fulfill my promise.”16 

Further reading 

The subject of the interpretation of quantum mechanics is a particularly intriguing one, and 
there are many quite readable discussions at a variety of different levels. Several of these are 
listed below. 

Popular accounts 

D. Z. Albert, Quantum Mechanics and Experience (Harvard University Press, 1992). Albert, 
an active philosopher of quantum mechanics, presents an accessible account of the issues and 
possible solutions in the measurement problem. 

D. Deutsch, The Fabric of Reality (Penguin Books, 1997). Deutsch, a major scientific 
contributor to fields such as quantum computing, discusses a broad range of ideas in quantum 

                                                           
15 Perhaps it is only in this world that those physicists believe it, and in another world where Everett’s 
paper was rejected for publication, no one even considers it! Also, remember that for every advocate of 
the many worlds hypothesis in this world, presumably in some other world he or she is saying exactly the 
opposite, so how much weight should we give to their opinions? 
16 J. A. Wheeler and W. H. Zurek (eds.) Quantum Theory and Measurement (Princeton University Press, 
1983), pp. xviii – xix 
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mechanics and other areas, with a strong emphasis on a many-worlds view of quantum 
mechanics, for which Deutsch is an impassioned advocate. 

N. Herbert, Quantum Reality (Anchor Books, 1985). This is a readable account, accessible to 
those without deep understanding of quantum mechanics, of many of the ideas regarding 
quantum mechanics, measurement, and reality.  

A. Rae, Quantum Physics – Illusion or Reality? (Second edition) (Cambridge, 2004) This is a 
clear and readable account of the various issues in the interpretation of quantum mechanics, 
presented with minimal mathematics. 

Bell’s inequalities 

J. S. Bell Speakable and unspeakable in quantum mechanics (Cambridge University Press, 
1993). This collects Bell’s writings on quantum measurement and reality, including the 
original paper (which was published in a journal that may be difficult to find in some libraries), 
and also some other, more accessible treatments by Bell (including “Bertlmann’s socks and the 
nature of reality” (pp. 139 – 158)). 

R. A. Bertlmann and A. Zeilinger (eds.) Quantum [Un]Speakables – From Bell to Quantum 
Information (Springer, 2002) is a collection of essays, many at a fairly technical level, in honor 
of John Bell, primarily covering many aspects of Bell’s inequalities and the work following 
from them, including quantum information. 

Specific popular accounts of Bell’s Inequalities can be found in the following two articles.  

B. d’Espagnat, “The Quantum Theory and Reality,” Scientific American, 241, Nov. 1979, pp. 
150-1818. 

D. Mermin, “Is the moon there when nobody looks? Reality and the quantum theory,” Physics 
Today, 38, No. 4, April 1985, pp. 38-47. 

Many worlds theories 

J. A. Barrett, The Quantum Mechanics of Minds and Worlds (Oxford University Press, 1999). 
This book is an account of the many versions of the many-worlds view of quantum mechanics. 
It is a scholarly work, but is generally readable for those with a basic understanding of 
quantum mechanics.  

Collections of papers 

J. A. Wheeler and W. H. Zurek Quantum Theory and Measurement (Princeton University 
Press, 1983). Many of the key papers in the field of quantum measurement, including, for 
example, the original EPR paper, Bell’s paper, and Everett’s, are collected in this anthology. 

19.5 Summary of concepts 

Bell’s inequalities and local hidden variable theories 

If we perform an EPR experiment on a pair of photons in an appropriate EPR state, when we 
measure a horizontal polarization for one of the pair of photons, then we will always find a 
horizontal polarization in the other photon, and similarly for vertical polarizations. The 
measurement of one photon appears to influence the result of the other measurement, 
regardless of how far away the other measurement is.  
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An apparent solution to this would be to postulate that there is some other unknown variable 
that carries the necessary information along with each photon in the first place, a so-called 
“local hidden variable”. But Bell’s inequalities allow an experimental test, a test that disproves 
any such local hidden variable theory, independent of quantum mechanics. Hence we are 
apparently forced to conclude that reality is not local, i.e., reality at some point is not 
describable by properties found only at that point, and can be influenced by remote events. 

The measurement problem 

There is no linear operator that can describe the measurement process, i.e., no linear operator 
can in general give the collapse of the wavefunction onto an eigenstate of the quantity being 
measured. Hence we cannot apparently describe a measurement apparatus quantum 
mechanically. Proposed solutions to this problem include the Copenhagen interpretation, 
making a distinction between mind and matter, Bohm’s pilot wave, adding nonlinearity to 
quantum mechanics, the many-worlds hypothesis, and the many-minds hypothesis, though 
there is no universal consensus on the solution. 

 

 



 

 

Appendix A  
 
Background mathematics 

In this Appendix, we summarize the core background mathematics that we presume in the rest 
of the book. A major purpose here is to clarify the mathematical notations and terminology. 
Readers coming from different backgrounds may be more used to one notation or another, and 
other books that the reader may consult may use different notation and terms, so we clarify the 
ones we use here and their relations to others. This Appendix may also serve as a refresher, or 
to patch over some holes temporarily in the reader’s knowledge until the reader has more time 
to study the relevant mathematics in more detail. This short discussion here is certainly not a 
complete one, and no attempt is made here to give rigorous and complete mathematics.  

Quantum mechanics is sometimes presented as being a very mathematical subject. It is true 
that many aspects of quantum mechanics can only be well defined using a mathematical 
vocabulary. In fact, we can assure the reader that the mathematics of quantum mechanics is not 
harder than that found in classical physics or any analytic branch of engineering, and the 
required background is essentially the same as in those fields. Because quantum mechanics is 
very fundamentally based on linear mathematics, quantum mechanics in practice is arguably 
simpler mathematically than many other areas of science and engineering. 

A.1 Geometrical vectors 

Cartesian coordinates 

Geometrical vectors are entities that, in ordinary space, have length and also direction. We will 
most often be thinking of (geometrical) vectors in Cartesian (i.e., “x, y, z”) coordinates, where 
all the axes are at right angles. Conventionally, we construct unit vectors (i.e., vectors of length 
1 unit of distance) in these coordinate directions, i, j, and k, respectively, for the x, y, and z 
directions1. We will also often write a vector F in terms of its Cartesian components, i.e.,  

 x y zF F F= + +F i j k  (A.1) 

                                                           
1 In this book, we will mostly use i, j, and k as the unit vectors for Cartesian directions as this is a 
standard and relatively simple mathematical notation. We will also, however, have to use k for another 
purpose as the wave vector because that is the most standard notation for that concept in physics. If there 
is any confusion, we will use x̂ , ŷ , and ẑ  for the unit vectors in the Cartesian directions, which is 
another common notation. That notation could cause some confusion with our use otherwise of the “hat” 
notation, as in Â , to denote operators. Some overlap of notations here unfortunately seems unavoidable 
if we are to stay with notations that are otherwise reasonably conventional for mathematics and/or 
physics. Hopefully there will be no confusion in practice, and we will try to be explicit where any 
possible confusion might arise.  
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where Fx, Fy, and Fz are all real numbers. The quantity Fxi ≡ iFx, for a positive number Fx, 
means a vector of length Fx in the direction of the (unit) vector i, i.e., in the x direction. If Fx is 
a negative number, the vector Fxi is of length |Fx|, and the vector is pointing in the negative x 
direction. The quantities Fx, Fy, and Fz can also be viewed as the projections of the vector F 
onto the x, y, and z directions. The length of the vector F, which we can write as |F|, is 

 2 2 2
x y zF F F= + +F  (A.2) 

Often, if there is no confusion, we write F instead of F  for the length of vector F.  

We will conventionally always work in so-called right-handed axes, and such axes obey the 
“right-hand rule”.  
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Fig. A.3. Right handed coordinate axes, showing the unit vectors i, j, and k along the x, y, and z 
axes respectively, and a vector F with its x, y, and z components Fx, Fy, and Fz respectively.  

Right-hand rule 

If the thumb of your right hand points to the right, if the index finger points upwards, and if the 
middle finger is bent inward at a right angle to the index finger to point towards you, then the 
thumb, index finger and middle finger give the relative directions of the x-, y-, and z-axes in a 
right-handed coordinate system. The thumb is along the x-axis, the index finger is along the y-
axis and the middle finger is along the z-axis. Hence, if the x-axis is horizontal and the y-axis is 
vertical, the z-axis points towards the viewer. 

Note also that cyclic permutations of the axes defined this way are also right handed. E.g., if 
the index finger above is the x direction, and the middle finger is the y direction, then the 
thumb is in the z direction. 

Another way of remembering the right hand rule is through the right hand screw rule. If one 
imagines one is turning a screwdriver clockwise to drive in an ordinary (right-handed) screw, 
and one is turning from the x to the y axis in doing so, then the z axis is the one pointing in the 
direction in which the screw is being driven into the material. 
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Vector dot product 
For two geometrical vectors yx za a a= + +a i j k  and yx zb b b= + +b i j k , where the a’s and b’s 
here are real numbers, the vector dot product can be written 

 x x y y z za b a b a b⋅ = + +a b  (A.3) 

or, equivalently, 

 cos cosabθ θ⋅ = ≡a b a b  (A.4) 

where θ is the angle between the two vectors. Note that the vector dot product is an operation 
involving two vectors that generates a scalar result. In that sense, it is an example of what is 
sometimes called an inner product.  

The vector dot product is commutative, i.e.,  

 ⋅ = ⋅a b b a  (A.5) 

Note that the length of a vector can be deduced from its dot product with itself, i.e., 

 a≡ = ⋅a a a  (A.6) 

The components of a vector, such as F above, can formally be deduced by taking the dot 
product of the vector with the unit vectors of the coordinate axes, e.g.,  

 xF = ⋅F i  (A.7) 

Vector cross product 
For two geometrical vectors yx za a a= + +a i j k  and yx zb b b= + +b i j k , where the a’s and b’s 
here are real numbers, the vector cross product can be written 

 ( ) ( ) ( )y z z y z x x z x y y xa b a b a b a b a b a b× = − + − + −a b i j k  (A.8) 

It can also be written 

 sin sinabθ θ× = =a b n a b n  (A.9) 

where n is a unit vector perpendicular to the plane in which a and b lie. In this definition, we 
still need to clarify which of two possible directions to choose for n. If we have chosen to work 
in right handed coordinates, then n is given by a right hand rule; here, since a and b are not 
necessarily at right angles to one another, the right hand screw rule is most useful. If we 
arrange to look at the vectors a and b from the direction such that turning from a to b 
corresponds to turning a screwdriver in a clockwise direction, then the direction n is the 
direction a right handed screw would move, i.e., away from us. Another way to say this is that 
the coordinate systems (a, b, a × b) or (a, b, n) are right handed (though a and b are not 
necessarily at right angles to one another). 

The form Eq. (A.8) can be written in a more readily memorable form as a determinant (see 
below for a discussion of determinants) 

 x y z

x y z

a a a
b b b

× =
i j k

a b  (A.10) 
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Note that the cross product of two vectors is a vector. Note also that it is not commutative. In 
fact, changing the order of the vectors changes the sign of the cross product, i.e.,  

 × = − ×b a a b  

We can view this change of sign as being a result of us having now to rotate in the opposite 
direction in going from b to a, compared to going from a to b. 

A.2 Exponential and logarithm notation 

The number e, shown here to the first 20 decimal places,  

 2.71828 18284 59045 23536e �  (A.11) 

is the base of the natural logarithms. In raising it to a power, we will most commonly use the 
“exp” notation, i.e.,  

 ( )exp xx e≡  (A.12) 

to minimize confusion with the use of the letter e to represent the magnitude of the charge on 
the electron, and to avoid the use of small superscript characters. 

Remember that the product of two exponentials is given by the sum of the exponents, i.e.,  

 ( ) ( ) ( )exp exp expa b a b= +  (A.13) 

and that 

 
( ) ( )1 exp

exp
a

a
= −  (A.14) 

In discussing logarithms to the base e, the notations  

 ln log logex x x≡ ≡  (A.15) 

are all equivalent; we will prefer the first (ln x) here.  

The logarithm is the inverse function of the exponential and vice versa, i.e., 

 ( )ln exp a a=⎡ ⎤⎣ ⎦  (A.16) 

and 

 ( )exp ln a a=⎡ ⎤⎣ ⎦  (A.17)  

Remember also that the log of a product is the sum of the logs, i.e.,  

 ( ) ( ) ( )ln ln lnab a b= +  (A.18) 

and that  

 ( ) ( )ln 1/ lna a= −  (A.19) 
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A.3 Trigonometric notation 

In terms of sines and cosines, we have the definitions 

 sintan
cos

xx
x

=  (A.20) 

 1 coscot
tan sin

xx
x x

= =  (A.21) 

Sines, cosines, and tangents all use a notation2 of the form 

 ( ) ( ) 22sin sinx x≡ ⎡ ⎤⎣ ⎦  (A.22) 

The notation on the right would be less confusing, but by convention the notation on the left is 
commonly used. This convention is only used for such trigonometric functions, and is only 
used for positive powers. For functions in general, a notation such as 2 ( )f x , if it is used at all, 
means the “function of the function” of x, i.e., 2 ( ) ( ( ))f x f f x≡ , which is not the same as the 
trigonometric power notation above, i.e., in general, ( ) 2sin sin( ) [sin( )]x x≠ . 

The inverse function of the sine can be written as arcsin or sin-1, and has the meaning that 

 ( )( ) ( )( )1arcsin sin sin sinθ θ θ−≡ =  (A.23) 

and similarly for the other trigonometric inverse functions. In this case, the notation does agree 
with the general notation for functions, where 1( )f y−  is the inverse function of ( )f x  such 
that 1( ( ))f f x x− = , and the notation does not mean “sin(x) raised to the power -1”, i.e., in 
general, 

 ( ) ( )
1 1sin

sin
x

x
− ≠   (A.24) 

A.4 Complex numbers 

Complex numbers exploit the mathematics associated with the square root of the number 
minus one. There are two notations used to represent this square root 

 1i = −  (A.25) 

 1j = −  (A.26) 

The “i” notation is used in physics. Typically, electrical engineering uses the “j” notation3. We 
will use the “i” notation exclusively here, as is common in quantum mechanics. As with other 
square roots, both +i and –i are square roots of -1, and they are the only square roots of -1. 

                                                           
2 The hyperbolic functions sinh, cosh, and tanh also use this form of notation. 
3 Physics and engineering also have different conventions for complex representations of oscillations and 
propagating waves. In physics, one often writes exp( )i tω−  for an oscillation at (angular) frequency ω, 
and exp[ ( )]i t kzω− −  for a forward-propagating wave in the z direction; in quantum mechanics one 
always makes this choice because of a choice made in the definition of the time-dependent Schrödinger 
equation. In electrical engineering, commonly one writes exp( )j tω for an oscillation and exp[ ( )]j t kzω −  
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A number that can be written as 

 f ib=  (A.27) 

(by which we mean i times b) where b is a real number, is said to be an imaginary number. A 
number that can be written  

 g a ib= +  (A.28) 

where a and b are both real numbers, is called a complex number. a is the real part of g, which 
can be written as 

 ( )Rea g=  (A.29) 

and b is the imaginary part of g, which can be written as 

 ( )Imb g=  (A.30) 

Quantities or entities that can be represented by a single real, imaginary or complex number 
are sometimes called scalars or scalar quantities. This term distinguishes them from vectors 
and other entities requiring more than one number to specify them. 

The complex conjugate of a complex number has the sign of the imaginary part reversed, and 
is usually indicated by the notation4 of a superscript asterisk, i.e., for our complex number g, 
the complex conjugate is written g∗ , i.e., 

 g a ib∗ = −  (A.31) 

The quantity 

 2g g g gg∗ ∗≡ =  (A.32) 

is called the modulus squared of g. It is always a positive real number. The modulus or 
magnitude of g is the positive square root  

 2g g= +  (A.33) 

and is also always a positive real number. Note that 

 ( )( )2 2 2g a ib a ib a b= + − = +  (A.34) 

The relation ( )( )2 2a b a ib a ib+ = + −  in Eq. (A.34) is a commonly used algebraic identity. 
Another common manipulation with complex numbers is to change a complex number in the 
denominator so it can be written in the form of Eq. (A.28) by multiplying top and bottom lines 
by the complex conjugate of the denominator, i.e., 

                                                                                                                                                         
for a forward propagating wave. Because of these conventions, some authors suggests we should think of 
j i= − , though that is not always a reliable conversion. 

4 When we consider the extension of the idea of complex conjugates to matrices and operators, for an 
operator Â , we will define the Hermitian conjugate or Hermitian adjoint as †Â . A complex number is a 
trivial case of an operator, so technically for a complex number g we could write its complex conjugate 
as either g∗  or †g .  
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( )

( )
( ) 2 2 2 2 2 2

1 1 c id c id c dg i
c id c id c id c d c d c d

− −
= = = = −

+ + − + + +
 (A.35) 

Note that any complex number can always be written in the form of Eq. (A.28). 

Euler’s formula relates exponentials, cosines, and sines. 

 ( )exp cos sini iθ θ θ= +  (A.36) 

Occasionally, authors use the notation ( )exp( ) cisiθ θ≡ , whose form mimics the expression on 
the right (“cis” ≡ “cos i sin”), but we will not use that notation here. Euler’s formula leads to 
another very convenient way of representing any complex number, which is to write 

 ( )expg g iθ=  (A.37) 

This is sometimes known as the polar form of a complex number. In this case, θ is sometimes 
known as the argument or phase of the complex number. Complex numbers are conveniently 
visualized on a two-dimensional diagram, known as an Argand diagram, on a plane known as 
the complex plane (Fig. A.4). 

real axis

imaginary axis

exp( )r iθ

θ

2 2r x y= +

cosx r θ=

siny r θ=

r

real axis

imaginary axis

exp( )r iθ

θ

2 2r x y= +

cosx r θ=

siny r θ=

r

 
Fig. A.4. Argand diagram of a complex number exp( )c x iy r iθ= + = on the complex plane. 

One important result in the algebra of complex numbers is that, for any two complex numbers 
g and h, the complex conjugate of the product is the product of the complex conjugates, i.e.,  

 ( )gh g h∗ ∗ ∗=  (A.38) 

Also 

 1 1
gh g h

∗

∗ ∗

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 (A.39) 

and  

 g g
h h

∗ ∗

∗

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

These three results are very easy to prove using the complex exponential form.5  

                                                           
5 For example, with  | | exp( )gg g iθ=  and | | exp( )hh h iθ= , 
then | | exp( ) | | exp( ) | || | exp[ ( )]g gh hgh g i h i g h iθ θ θ θ= = +  
so  ( ) | || | exp[ ( )] | | exp( ) | | exp( )g gh hgh g h i g i h i g hθ θ θ θ∗ ∗ ∗= − + = − − =  
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The exponential notation for complex numbers, Eq. (A.37), makes it particularly simple to 
write down the nth root of unity, which is that number that, raised to the nth power, gives 
unity. Obviously, and trivially, the number 1 has this property for any power n, but less 
trivially, and more usefully for many purposes, since exp(2 ) 1iπ = , we can write the nth root 
of unity as, 

 ( )1 exp 2 /n i nπ=  (A.40) 

Complex numbers are always a purely mathematical concept in that there is no actual 
physically measurable quantity that is imaginary or complex6. The use of complex numbers 
can allow great simplifications of algebra, but at the end in relating to the physical world we 
have to return to real numbers. In much of the use of complex numbers in engineering and in 
classical physics (e.g., for classical electromagnetic waves), one starts by writing, e.g., 
exp( )i tω  instead of ( )cos tω , because the algebra of complex exponentials is simpler than that 
of sines and cosines, and in the end one simply takes the real part of the final result. In the use 
of complex numbers in quantum mechanics, however, the underlying internal quantities in 
quantum mechanical calculations are chosen to be expressed in complex numbers from the 
start. To get to the real numbers of interest for physically measurable quantities, one more 
commonly uses the modulus squared of the final result.  

A.5 Differential calculus 

We presume the reader is familiar with elementary differential calculus, including the 
derivatives of common functions, and the various rules for derivatives of combinations of 
functions of a single variable (many of these formulae are listed for reference in Appendix G). 
We will discuss the notation and definitions underlying differential calculus below, in part 
because we need to use the fundamental definitions of derivatives in the book, and also to 
prepare the reader for differential equations. 

First derivative 
The first derivative of a function ( )y x  with respect to x is written as 

 ( ) dyy x
dx

′ =  (A.41) 

Here we will use exclusively the “ /dy dx ” or “Leibniz” notation, because of its intrinsic 
elegance and its intuitive relation to the formal definition of the derivative. To be precise in the 
Leibniz notation, we may have to specify the value of x at which we are taking the derivative; 
for a specific point ox , we can write 

 ( )
o

o
x x

dyy x
dx =

′ =  (A.42) 

by which we mean the derivative taken at the point ox x= . (There is a similar notation used 
for a different purpose in partial derivatives (see below), though in practice there is usually no 

                                                           
6 A good electrical engineer might well object to this, because he or she is quite comfortable operating in 
the complex plane for amplitude and phase, but in the end the quantities of amplitude and phase (or of 
quadrature components) that the engineer measures are real numbers. 
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confusion. One can more generally view this “vertical line and subscript” notation as giving 
some additional necessary specifications or restrictions on the derivative.)  
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Fig. A.5. Sketch of the function ( )y x  (solid curve), showing (i) a positive first derivative at 
point 1x , corresponding to the positive slope of the tangent dashed line, (ii) a negative second 
derivative at point 2x , corresponding to the curve bending progressively from upwards towards 
downwards with increasing x, (iii) a negative first derivative at point 3x , corresponding to the 
negative slope of the tangent dashed line, and (iv) a positive second derivative at point 4x , 
corresponding to the curve bending progressively from downwards towards upwards with 
increasing x. 

We can formally define the derivative as 

 
( ) ( )

0 0

2 2lim lim
o

o o
o o

x x
x x

x xy x y xy x x y xdy
dx x xΔ → Δ →

=

Δ Δ⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟+ Δ − ⎝ ⎠ ⎝ ⎠= =
Δ Δ

 (A.43) 

where the “lim” notation here means the limit of the expression to the immediate right as xΔ  
is made arbitrarily small. We have shown the more standard “forward difference” limit first, 
and also a symmetrical “central difference” limit second, either of which is valid. The 
derivative can be thought of as the rate of change of y with x. If we draw a graph of ( )y x  as a 
function of x, then the derivative is just the slope of the graph at the point of interest, as 
sketched in Fig. A.5. 

Second derivative 
The second derivative is similarly the rate of change of the first derivative. Hence we can write 
for the second derivative, taking the difference of two first derivatives at points spaced by xΔ  
symmetrically about ox , 

 ( )
2

2 0

2 2lim
o

o o

o x
x x

x xy x y x
d yy x

xdx Δ →
=

Δ Δ⎛ ⎞ ⎛ ⎞′ ′+ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠′′ ≡ =

Δ
 (A.44) 

Rewriting using the symmetrical “central difference” form of the first derivative from Eq. 
(A.43), we have 

 ( ) ( ) ( ) ( )
( )

2

2 20

2
lim

o

o o o
o x

x x

y x x y x y x xd yy x
dx xΔ →

=

+ Δ − + − Δ
′′ ≡ =

Δ
 (A.45) 
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The second derivative graphically is the amount of “bend” in the curve, as illustrated in Fig. 
A.5. A positive second derivative corresponds to a curve that is bending upwards.  

Higher order derivatives can be defined in a similar fashion, with analogous notations. 

Partial differentiation 
Frequently we have to deal with functions of more than one variable. For example, we might 
have the function ( ),h x y  representing the height of a hill, with the x and y coordinates 
representing the positions in the “east” and “north” directions respectively. The rate at which 
our height would increase if we walked east would be specified by the partial derivative 

 
y

h h
x x

∂ ∂
≡

∂ ∂
 (A.46) 

The symbol ∂  is a curved “d”, and the expression on the left of Eq. (A.46) is sometime 
pronounced “partial d h by d x”. The more explicit notation on the right of Eq. (A.46), with a 
vertical line and a subscript, is clarifying specifically that this derivative is taken with the y 
variable held constant. The simpler notation on the left is more common, but where there is 
any possibility of confusion, the notation on the right is used. Some authors use the notation 

xh∂  for the partial derivative in Eq. (A.46), though we will not use that in this book.  

Just as for ordinary differentiation, we can also take higher derivatives, such as  

 
2 2

2 2
y

h h
x x

∂ ∂
≡

∂ ∂
 (A.47) 

which is the curvature of the hill in the x direction. We can also find cross-derivatives of the 
form 

 
2

y x

h h
x y x y

∂ ∂ ∂
≡

∂ ∂ ∂ ∂
 (A.48) 

which are slightly more difficult to visualize; this specific one is the rate of change as we move 
east of the slope in the northerly direction. Note that, provided all of the various first 
derivatives and the two cross-derivatives in the two different orders both exist, we can 
interchange the order of the partial differentiations in the cross-derivative, i.e., 

 
2 2h h

x y y x
∂ ∂

=
∂ ∂ ∂ ∂

 (A.49) 

In quantum mechanics we will often come across functions of all three Cartesian coordinate 
directions, x, y, and z, such as some function ( ), ,x y zφ , or functions of the spatial coordinates 
and of time, such as ( ), , ,x y z tΦ , so we will frequently need to use partial derivatives.  

Differentials and changing coordinate systems 
This particular topic will not come up until Chapter 9, so it can be omitted on first reading. 

If we imagined that we walked a very small distance xδ  east and another very small distance 
yδ  north, then we would expect that the resulting change in height, hδ , would be given by 

 
y x

h hh x y
x y

δ δ δ∂ ∂
+

∂ ∂
�  (A.50) 
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We are saying that the change in height, hδ , is the sum of two parts: first, the change we get 
from going east by xδ , which is the slope in the easterly direction ( /h x∂ ∂ ) times the distance 
in the easterly direction ( xδ ), and, second, the change we get from going north by yδ , which 
is the slope in the northerly direction ( /h y∂ ∂ ) times the distance in the northerly direction 
( yδ ) . We can take the limit of very small xδ  and yδ , in which case we can write this as 
what is called a differential (or sometimes an exact differential) 

 
y x

h hdh dx dy
x y

∂ ∂
= +

∂ ∂
 (A.51) 

Suppose we knew what path we were taking on the hill (that is, we know both x and y as a 
function of time t), even if the path was not along some specific compass direction. We can 
then talk about the total derivatives /dx dt  and /dy dt , which are the velocities we have in the 
x and y directions respectively on the path on which we are walking. Then, in a time dt, we 
would move an amount ( / )dx dx dt dt=  in the x direction, and similarly in the y direction, so 
we could then write 

 
y x

h dx h dydh dt dt
x dt y dt

∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (A.52) 

Alternatively, we could now write the rate our height was changing in terms of the total 
derivative /dh dt , which would be 

 
y x

dh h dx h dy
dt x dt y dt

∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (A.53) 

Even for a function of more than one variable, total derivatives (i.e., ones written with “d” 
rather than “ ∂ ”) can still have meaning, and so the distinction between the two kinds of 
derivatives is important. 

Another important use of partial derivatives and the differential is in changing from one 
coordinate system to another. Suppose above we wanted instead to express the slopes of the 
hill along some other coordinate directions, for example, south-east (a) and north-east (b), but 
we only knew the slopes along the east and north coordinate directions. We do, however, know 
how far we move along each of the old coordinate directions changes as we move along each 
of the new coordinate directions, i.e., we can easily write down that, as we move south-east by 
one unit, the amount we move in the easterly direction is 1/ 2  units (because 
cos 45 1/ 2° = ), so  

 1
2b

x
a

∂
=

∂
, and similarly 1

2b

y
a

∂
= −

∂
, 1

2a

x
b

∂
=

∂
 and 1

2a

y
b

∂
=

∂
  (A.54) 

Suppose then we make a small movement along the a (south-east) direction, in which case, of 
course, we are making no movement along the b (north-east) direction that is at right angles to 
it. So we can write 

 
b

xx a
a

δ δ∂
∂

�  (A.55) 

and similarly for yδ . So, we have, from (A.50),  
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y b bx

h x h yh a a
x a y a

δ δ δ∂ ∂ ∂ ∂
+

∂ ∂ ∂ ∂
�  (A.56) 

or, since all of this is performed at constant b, we can divide both sides by aδ  and take the 
limit of small aδ  to get the partial derivative 

 
b y b bx

h h x h y
a x a y a

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
 (A.57) 

More generally, since this will work for any function of x and y,7 we can write 

 
b b y b x

x y
a a x a y
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

 (A.58) 

which shows us how we can change partial derivatives from one coordinate system to another. 

A.6 Differential equations 

Differential equations in one variable 

A differential equation is an equation that involves one or more derivatives of some function. 
A very simple differential equation would be 

 dy ay
dx

=  (A.59) 

where a is some real number. The solution to this equation is 

 ( )expy A ax=  (A.60) 

Here A is an arbitrary constant. The reader can check that this exponential function is indeed 
the solution. No matter what the constant A is, the function in Eq. (A.60) will still solve Eq. 
(A.59) as stated.  

Unlike in simple differential calculus, there is no simple general set of rules to work out the 
solution to differential equations; in that sense, differential equations are more like integral 
calculus, where one essentially has to use intelligent guesswork to deduce the analytic form of 
an integral. Fortunately, at least in understanding quantum mechanics in practice, we end up 
using a relatively small range of differential equations, and for these equations, we usually 
know the solutions already, or have some standard techniques to work them out.8 As in any 
analytic subject, for problems beyond idealized ones, we typically have to use numerical or 
approximation techniques to find the solutions.9  

                                                           
7 At least, for suitable continuous functions of x and y for which all of these derivative exist. 
8 We will present in the book any such techniques we use to work out solutions to some equations, 
techniques such as series solution, and the reader need not know these in advance. 
9 We will discuss some such techniques in the book, such as perturbation theory and transfer matrix 
methods, but it is not necessary that the reader know these in advance. 
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First-order differential equations 

This particular equation, (A.59), is an example of a first-order differential equation. A first-
order differential equation contains no derivatives higher than the first order (i.e., it does not 
contain the second derivative, 2 2/d y dx , or any higher derivatives).  

A first-order equation typically has one undetermined constant (here A) in its general solution. 
A solution of a differential equation in which we still have the maximum possible number 
(here, one) of undetermined constants is called a general solution. Often we know more about 
the problem being solved, and, if so, we may be able to be more specific about the value of A. 
One common situation is where we know some boundary condition; a boundary condition is 
some additional piece of knowledge we have about the solution at some point. That point is 
often one that coincides with some physical boundary in the physical problem being solved, 
hence the name boundary condition, though the term “boundary condition” is often still used 
even if there is no physical boundary at that point.  

For example, we might know that some particular ramp has a relation between its height, y¸ 
and the horizontal distance, x, that obeys the equation / 0.4dy dx y= , a specific example of a 
relation of the form of Eq. (A.59) with 0.4a = . One kind of boundary condition is where we 
know the actual value of the solution at some point – for example, we might know that the 
height of the ramp at the horizontal distance 0x =  was 1.5y = . (This position 0x =  might be 
the start of the ramp, in which case the term “boundary condition” makes obvious sense.) 
Then, since exp(0) 1= , we can immediately conclude that 1.5A = , and our full solution, 
obeying this additional boundary condition, is 1.5exp(0.4 )y x= . Another kind of boundary 
condition is where we know the slope (first derivative) of the solution at some point. For 
example, we might know that the slope of the ramp at 0x =  was / 0.6dy dx =  (a slope 
corresponding to 0.6 m rise in 1 m, or an angle θ for which tan 0.6θ = , i.e., an angle of ~ 31°, 
sloping upwards). Then using our solution Eq. (A.60) with 0.4a = , i.e., we know 

exp(0.4 )y A x= , and our original differential equation, (A.59), we must have 
( )/ 0.6 0.4 exp 0dy dx A= = , i.e., 1.5A = . 

Note that we can also write an equation such as (A.59) but with an imaginary coefficient ib 
(where b is a real number), i.e., 

 dy iby
dx

=  (A.61) 

which has the general solution 

 ( ) ( )exp cos siny A ibx A bx i bx= ≡ +  (A.62) 

Note, incidentally, that neither cosb  nor sin b  is, on its own, a solution of this equation10. 

Second-order differential equations 

A second-order differential equation contains no derivatives higher than the second order. It 
may contain the first derivative, e.g., /dy dx , and must contain the second derivative, e.g., 

2 2/d y dx , to be called a second-order differential equation, but must contain no higher 
derivatives, such as a third derivative 3 3/d y dx . 

                                                           
10 This point is quite important in the time-dependent Schrödinger equation. 
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In practice, second-order differential equations cover a very broad range of problems in 
science and engineering, including most simple oscillations and waves. In this book, we do not 
need any differential equations beyond second order. 

A simple second-order differential equation is 

 
2

2
2

d y y
dt

ω= −  (A.63) 

where ω is a real number. This equation is sometimes called the simple harmonic oscillator 
equation. Any of the functions exp( )i tω , exp( )i tω− , cos( )tω , or sin( )tω  is a solution to this 
equation. All of these functions describe oscillatory behavior in time t, at an angular frequency 
ω (or a conventional frequency / 2ω π ). To write the general solution of a second-order 
equation, we need two undetermined constants, and two equivalent forms of the general 
solution of this simple harmonic oscillator equation are 

 ( ) ( )cos siny A t B tω ω= +  (A.64) 

and 

 ( ) ( )exp expy C i t D i tω ω= + −  (A.65) 

where A, B, C, and D are (possibly complex) undetermined constants. These two forms are 
equivalent, because we can write the complex exponential in terms of sines and cosines, as in 
Eq. (A.36), or we can write sines and cosines in terms of complex exponentials, as in the 
useful formulae 

 ( ) ( )1cos exp exp
2

i iθ θ θ= + −⎡ ⎤⎣ ⎦  (A.66) 

and 

 ( ) ( )1sin exp exp
2

i i
i

θ θ θ= − −⎡ ⎤⎣ ⎦  (A.67) 

Note that mathematically we can replace ω by −ω in the general solutions Eqs. (A.64) and 
(A.65), and still have equally valid general solutions.  

Another common second-order differential equation is the one-dimensional Helmholtz wave 
equation, which is written 

 
2

2
2 0d y k y

dx
+ =  (A.68) 

where k is a real number. This equation can describe the spatial form of, for example, simple 
waves on a string at any given time. 

The reader may note that, in fact, the simple harmonic oscillator equation and the one-
dimensional Helmholtz wave equation are actually identical mathematically. Merely 
exchanging k and ω and x and t in these equations turns one into the other. Hence the solutions 
of the one-dimensional Helmholtz wave equation and the simple harmonic oscillator equation 
are mathematically identical. We can write the general solutions of the Helmholtz wave 
equation by repeating Eqs. (A.64) and (A.65) with k substituted for ω and x substituted for t.  
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These second-order equations illustrated above show another important feature of some 
differential equations; these equations, (A.63) and (A.68) are both linear. The most important 
defining characteristic of a linear equation is that, if f and g are both functions that are 
solutions of the equation, then so also is the function f g+ . It is easily seen by direct 
substitution in Eq. (A.63) that any sum of the functions exp( )i tω , exp( )i tω− , cos( )tω , or 
sin( )tω  is also a solution to this equation. For linear equations, it is also the case that, if f is a 
solution, so also is cf where c is some constant, which is also easily verified to be the case for 
any of the functions exp( )i tω , exp( )i tω− , cos( )tω , or sin( )tω  or for the general solutions 
(A.64) or (A.65). (The specific first-order equations discussed above, Eqs. (A.59) and (A.61), 
are also linear, though, since they only have one functional form of solution, the linearity 
criterion is restricted to the simpler case where, if f is a solution, so also is cf, for some 
constant c.) A key factor in ensuring the linearity of these various differential equations is that 
y and its various derivatives (e.g., dy/dt and 2 2/d y dt ) only appear to the first power (e.g., 
there are no terms in y2 or in 2( / )dy dt or in 2 2 2( / )d y dt , or any higher powers). The 
differential equations in this book will all be first or second-order linear differential equations. 
Because the concept of linearity is so central to quantum mechanics, it is also discussed at 
some length in the main text of this book.  

For second-order differential equations, we can see by example above that there are two 
undetermined coefficients in the general solutions. Hence, we need two boundary conditions of 
some kind to get to a specific solution with no undetermined coefficients. These conditions 
could be, for example, values of the function y and its first derivative at one specific point, or 
the values of the function y itself at two points.  

Partial differential equations 

Just as we can have equations involving the simple derivatives of functions of one variable, we 
can also have equations involving the partial derivatives of functions of more than one 
variable. Such equations are called partial differential equations. A classic example of such an 
equation is the one-dimensional wave equation 

 
( ) ( )2

2 2 2

, ,1 0
z t z t

z c t
φ φ∂ ∂

− =
∂ ∂

 (A.69) 

Note that, in writing the equation this way, it is implicit that the second (partial) derivative 
here with respect to time, 2 2/ tφ∂ ∂ , is taken at constant position, z, and similarly the second 
(partial) derivative with respect to position, 2 2/ zφ∂ ∂ , is taken at constant time, t. This is 
considered sufficiently obvious that it is not necessary to make this explicit by using the 
vertical-line-and-subscript notation discussed above. 

This particular wave equation is very common in classical physics. For waves propagating in 
the z direction at some wave propagation velocity c, with some simplifying assumptions, this 
equation describes waves on a string, plane acoustic waves in general, and plane 
electromagnetic waves11.  

For a wave on a string, φ could, for example, be the upwards displacement of a horizontal 
string. We can simply rewrite the equation (A.69) as 2 2 2 2 2/ ( / )t c zφ φ∂ ∂ = ∂ ∂ ; the equation is 
then telling us that, at any given point on the string, the acceleration of the string in the 

                                                           
11 The time-dependent Schrödinger equation for quantum mechanical waves is not of this form, however. 
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upwards direction ( 2 2/ tφ∂ ∂ ) is proportional to the (upwards) “bend” ( 2 2/ zφ∂ ∂ ) of the string 
at that point, with a proportionality constant of c2. 

The reader can verify by direct substitution that any function ( )f z ct−  and any function 
( )g z ct+  (with continuous first and second derivatives in both cases) are solutions of this 

equation. ( )f z ct−  corresponds to a wave propagating, with constant shape, in the +z 
direction at velocity c, and ( )g z ct+  similarly corresponds to one propagating in the –z 
direction. The general solution can be written 

 ( ) ( ) ( ),z t f z ct g z ctφ = − + +  (A.70) 

where f and g are arbitrary functions with appropriately continuous derivatives.  

Note, incidentally, that it is not the absolute sign of z or ct in ( )f z ct−  or ( )g z ct+  that 
determines the direction of the propagating wave; only the relative sign of z and ct matters. 
Thus ( )f ct z−  would still be a wave propagating in the +z direction, though its shape would 
be the mirror image of the wave given by ( )f z ct− .  

Partial differential equations like this may typically require initial conditions to specify the 
solution completely, such as the specific form of the shape of the string at some initial time12, 
and might also involve boundary conditions, such as the specification that the string position is 
fixed at both ends, as in a violin or a guitar. 

In many cases, we are only interested in waves where the amplitude at any given point on the 
wave is oscillating sinusoidally at one specific (angular) frequency ω, i.e., where the time-
dependence of the wave is of the form exp( )i tω , exp( )i tω− , cos( )tω , sin( )tω , or any 
combination of these. (For example, we might know the wave to be of the form 

( , ) ( )sin( )z t h z tφ ω= .) Then 2 2 2/ tφ ω φ∂ ∂ = − , and the one-dimensional wave equation 
reduces to the one-dimensional Helmholtz equation, (A.68) with 2 2 2/k cω= , which explains 
why the Helmholtz equation is called a wave equation. 

Frequently, we will also be dealing with functions that depend on all three spatial coordinates, 
and so we will simultaneously be dealing with partial derivatives in all three directions. In that 
case, other short-hand notations are often introduced. 

Laplacian operator 

The first example we need of a short-hand notation for partial derivatives in multiple directions 
is the so-called Laplacian operator, 2∇ , also sometimes called “del squared”. This is also one 
of the operators in so-called vector calculus, though we will defer a more detailed discussion of 
vector calculus in general to a later Appendix C. In Cartesian coordinates, the Laplacian can be 
written 

 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂
 (A.71) 

                                                           
12 Actually, to get a unique solution to the wave equation, not only would we have to know the values of 
the displacement of the string at some time, but also the velocities. For example, for some pulse-like 
distortion in the middle of a long string, if we do not know the vertical velocity of the points on the 
string, we do not know whether the pulse is moving left or right. In fact, if one merely distorts the string 
in some fixed pulse shape (i.e., with no initial velocity), two pulses will head off in opposite directions. 
This point is quite important in understanding why the time-dependent Schrödinger equation is 
constructed the way that it is. 
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Some authors use the notation Δ  for the Laplacian instead of 2∇ , though we will not use that 
notation in this book. 

The wave equation in three spatial dimensions can be written 

 
( ) ( ) ( ) ( )2 2 2

2 2 2 2 2

, , , , , , , , , , , ,1 0
x y z t x y z t x y z t x y z t
x y z c t

φ φ φ φ∂ ∂ ∂ ∂
+ + − =

∂ ∂ ∂ ∂
 (A.72) 

or, using the Laplacian notation, 

 ( ) ( )2
2 2

, , ,1, , , 0
x y z t

x y z t
c t

φ
φ

∂
∇ − =

∂
 (A.73) 

Often in working with such equations, we will regard lists of variables such as x, y, z, and t, as 
being obvious, and will omit them, giving  

 2
2 2

1 0
c t

φφ ∂
∇ − =

∂
 (A.74) 

This three-dimensional wave equation is also used extensively in classical physics. With some 
simplifying assumptions, it describes a broad range of acoustic and electromagnetic waves.  

Partial differential equations in two or three spatial dimensions are often solved by making 
specific assumptions about the solutions on an entire bounding surface. A boundary condition 
in which the value of the function is set to some specific values (often zero) on some boundary 
is called a Dirichlet boundary condition. A boundary condition where the derivative or 
gradient of the function is set to zero on the boundary is called a Neumann boundary condition. 
We will not, however, have to make use of this notation in this book. 

Gradient  

At this point, we can also introduce another “vector calculus” operator, the gradient of a scalar 
function ( , , )f x y z , which we can write as  

 grad f f ff f
x y z

∂ ∂ ∂
∇ ≡ = + +

∂ ∂ ∂
i j k  (A.75) 

If we were thinking of the function ( ),h x y  that was the height of a hill, with x and y as the 
east and north coordinate directions, for example, then the gradient in two dimensions, i.e., 

 xy
h hh
x y

∂ ∂
∇ = +

∂ ∂
i j  (A.76) 

would be a vector whose magnitude at any point was telling us the magnitude of the slope of 
the hill (actually the maximum slope in any direction), and whose direction was telling us the 
direction in which the hill was sloping (i.e., the direction at that point in which the uphill slope 
was maximum). We can see, therefore, why this operation is called the gradient. Note that this 
operation of taking the gradient turns a scalar function into a vector function; though there is 
no “bold” character in it, f∇  is a vector.  

Note that with the symbol ∇  (known as “del” or “nabla”), and also with other similar symbols 
such as the Laplacian ( 2∇ ) above, we do allow ourselves to put subscripts on the symbol if we 
need to clarify exactly what coordinates we are considering.  
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Notation for derivatives with respect to time 

Simple or partial differential equations very often involve derivatives with respect to time. In 
those cases, a short-hand notation is sometimes used, with the number of dots above a variable 
indicating the order of differentiation with respect to time, i.e., 

 daa
dt

≡� , and 
2

2

d aa
dt

=��  (A.77) 

in simple differential equations, and a similar notation but with partial derivatives in partial 
differential equations. It will presumably be obvious from the context whether the notation is 
meant to represent simple or partial differentiation. 

A.7 Summation notation 

Instead of writing 

 1 2 3 4S a a a a= + + +  (A.78) 

for the sum of the four numbers a1, a2, a3, and a4, we can instead use the “short-hand” of the 
summation notation, in any of the equivalent forms 

 
4

1 1,2,3,4 1,...,4
j j j

j j j
S a a a

= = =

= ≡ ≡∑ ∑ ∑  (A.79) 

which in words could be stated “the sum from j equal to 1 to four of aj”. Where it is already 
obvious what the range of j is, or if we mean to state that the relation holds no matter what the 
range of j is, we might omit the explicit range in the sum, writing 

 j
j

S a= ∑  (A.80) 

We can also have sums over more than one index. For example, we might have some second 
list of numbers b1, b2, and b3, and we might want to add up all the products of all of the 
numbers a and b. Written out explicitly, that sum would be 

 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

4 1 4 2 4 3

R a b a b a b
a b a b a b
a b a b a b
a b a b a b

= + +

+ + +
+ + +
+ + +

 (A.81) 

We could write Eq. (A.81) as a pair of nested sums where we might imagine we perform the 
sum on the right first, i.e., adding the terms in the order shown in Eq. (A.81) 

 
4 3

1 1
j k

j k
R a b

= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑  (A.82) 

But we know that, at least for such a finite sum of presumably finite numbers, it does not 
matter what order we do the addition, so there is no need to specify that order. Hence we can 
write any of the following (or other variants in the spirit of Eqs. (A.79) or (A.80)): 

 
4 3 3 4

,
1 1 1 1 ,

j k j k j k j kj k
j k k j j k

R a b a b a b a b
= = = =

= = ≡ ≡∑∑ ∑∑ ∑ ∑  (A.83) 
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where in the last two forms in Eq. (A.83) we are presuming that the range of j and of k is 
already known or understood. As long as the ranges of the summation indices (i.e., the 
quantities like j and k that index the terms in the sum) are understood or are implicit, any 
reasonably clear notation can be used here for the sums. It is also quite possible, of course, to 
have a sum over a single term with multiple indices, such as Σj,k cjk, as might occur, for 
example, if we wanted to sum all the elements in a matrix (see below for a discussion of 
matrices). 

Some authors use a convention that a sum is automatically understood to be performed over 
any repeated index, i.e., that 

 jk km jk km
k

a b a b≡ ∑  (A.84) 

but we will not use that notation in this book.  

A.8 Integral calculus 

Integration in one variable 
We expect that the reader is familiar with elementary integral calculus, at least in one variable. 
The reader will remember that the formal concept of integration can be understood as the area 
under a curve representing a function, at least if the function is always positive. The simple 
picture of integration in this way is shown in Fig. A.6. In the way we use integration, if the 
function ( )f x  becomes negative, we assign negative area to the bars, and it is quite possible 
(and very useful in quantum mechanics) for integration defined this way to result in zero net 
area. In this view of integration, we are formally defining the integral in Fig. A.6 as 

 ( )
2

1
0

lim
x

jx jx

f x dx f x
Δ →

⎛ ⎞
≡ Δ⎜ ⎟

⎝ ⎠
∑∫  (A.85) 

Here we understand that, for a specific value xΔ  there are 2 1( ) /jN x x x= − Δ  values of j. The 
area of a specific rectangular bar is jf xΔ , where jf  is, for example, the average of the 
function at the two edges of the bar. For such a definition, we can at least intuitively see that 
the sum will converge to some measure of the area of the function (including the concept of 
negative areas as discussed above).13 The entity dx is called an infinitesimal (because it is 
infinitesimally small). 

                                                           
13 This form of integration by summing up the areas of vertically oriented bars in such a graph is known 
as Riemann integration. It does technically have a minor problem, which is that, if one of the bars 
happens to be right up against a singularity (a point where the function becomes infinite), the area of that 
particular bar would be infinite, no matter how small we took xΔ  to be. This could be the case even for 
functions that do actually have a finite total area despite their singularities. The formal solution to this is 
instead to perform the integration by taking horizontal slices rather than vertical ones, and this is the 
essence of Lebesgue integration. Lebesgue integration is the formal type of integration used to decide 
whether some function is or is not integrable (loosely, does it have finite area). The term “Lebesgue 
integrable function” comes up a lot in the formal theory of quantum mechanics, though we will mostly 
avoid it here. For a clarification of what Lebesgue and Riemann integration mean, see, e.g., M. Reed and 
B. Simon Functional Analysis (Academic Press, San Diego, 1980) pp. 12-14  
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x2x1

 
Fig. A.6. Picture of integration as a sum of the areas of rectangular bars right up against one 
another, each of width Δx, and of heights f1, f2, f3, … etc. chosen to approximate the height of the 
function near the center of the bar. In this picture, the integral from x1 to x2 is the limit of the sum 
of the areas of the bars as the width Δx is shrunk to be arbitrarily small.  

It is quite common in simple calculus implicitly to consider the integral sign (∫ above) and its 
associated infinitesimal (dx above) as functioning as “brackets” round the expression between 
them, effectively enclosing everything that has to be integrated (f(x) above). This is not, 
however, a consistent notation. Some authors would consider 

 ( ) ( )
2 2

1 1

x x

x x

f x dx dx f x≡∫ ∫  (A.86) 

as equivalent statements. In fact, there are good reasons why sometimes we have to use the 
notation on the right14. The most consistent notation is to consider everything that is a function 
of the variable being integrated (e.g., of the variable x here) as being included in the 
integration, regardless of where it occurs in the expression. 

An integral with limits, e.g., x1 as the lower limit and x2 as the upper limit in the example 
above, is called a definite integral. Integration and differentiation are inverse operations of one 
another, so that, specifically, 

 ( ) ( )
b

a

df dx f b f a
dx

⎛ ⎞ = −⎜ ⎟
⎝ ⎠∫  (A.87) 

which is known as the fundamental theorem of calculus. Because of this inverse relation, the 
integral is sometimes known as the antiderivative, though we will not use that notation in this 
book.  

Sometimes it is possible for an integral to have meaning even if we do not specify the limits, as 
when we can write an analytic result or formula for the integral, such as 

                                                           
14 This notation becomes necessary when we want to consider integral operators. Suppose we want to 
write an expression that covers the idea that we will integrate everything to the right that is a function of x 
regardless of what those functions might be or before we specify what those functions are. A way to write 
that is to use the notation for this “integral operator” of the form ∫dx with the understanding that anything 
we put to the right that is a function of x is included in the integration. 
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 2 31
3

x dx x C= +∫  (A.88) 

Because we have not specified limits, we cannot evaluate an actual number for this integral, 
and it is called an indefinite integral. The result is said to be arbitrary within a constant of 
integration, which here is C.  

The quantity inside the integration, such as the function ( )f x  in Eq. (A.85), or the x2 in Eq. 
(A.88), is called the integrand.15  

Quite often in quantum mechanics, we may be evaluating integrals of complex numbers, 
though we will usually be performing the integral with respect to a real variable, such as 
position. Such integrals pose no additional mathematical problems, and could be considered as 
two integrals, one of the real part and one of the imaginary part of the integrand, which would 
bring us back to two integrals of real integrands.  

Volume integration 
In quantum mechanics, we will very often have to perform integrals over volumes. A simple 
example of a volume integral would be one that evaluates the magnitude of some volume, V. 
Then, we could imagine that we divided the volume up into very small “bricks”, or, more 
mathematically, rectangular-sided boxes or cuboids16, with lengths Δx, Δy, and Δz. Such boxes 
would each have volume V x y zΔ = Δ Δ Δ . If we merely counted up how many such boxes we 
could fit, exactly side by side, into the volume V, and multiplied by ΔV, we would have 
evaluated an approximation to the volume. In the limit as we made ΔV very small, we would 
expect our answer to become progressively more accurate. Mathematically, we could write this 
as 

 
0

lim
V jV

V dV V
Δ →

⎛ ⎞
= = Δ⎜ ⎟

⎝ ⎠
∑∫  (A.89) 

In this case, we might be imagining that all of our “bricks” had sequential numbers painted on 
them. We then progressively put the bricks into the volume in order. Then the index j is just 
the number on the bricks. We keep adding bricks until we can fit no more bricks in, and that is 
the limit on j in the sum. For each brick we add, we add ΔV to our sum. 

The notation in Eq. (A.89) is undoubtedly confusing. We have used V to be the name of the 
volume, so the notation ∫VdV in words is “the integral over the volume V”, and we are also 
using V as the value (e.g., in cubic meters) of the volume. This kind of practice is very 
common, however. 

                                                           
15 “Integrand” is an example of a Latin “gerundive” in English. Gerundives all have the sense in English 
of “requiring to be ..”, so “integrand” means “requiring to be integrated”. There are many other examples 
that occur in mathematics, and it may be easier to remember and understand them if one realizes they are 
all gerundives. Other mathematical examples include “operand”, which means “requiring to be operated 
on”, “subtrahend”, which means “requiring to be subtracted”, “dividend”, which means “requiring to be 
divided”, and “addend” which means “requiring to be added”. “Addend” is really the same as the word 
“addendum” that is used in non-mathematical contexts to describe something that needs to be added; in 
that case, the (singular) ending “um” that would be present in the actual Latin gerundives has survived 
into the English. 
16 Rectangular-sided boxes or cuboids are also known as rectangular prisms or rectangular 
parallelepipeds. We will mostly use the word “cuboid” here. 
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In practice, authors use various different notations instead of (or as well as) dV for the 
infinitesimally small volume element. Several equivalent ways of expressing a volume integral 
are therefore 

 3

V V V

dV d d≡ ≡∫ ∫ ∫r r  (A.90) 

Here the “vector” r is used as a short hand to remind us we are working with three dimensions. 
The middle notation could be criticized for losing track of the physical dimensions (i.e., meters 
cubed) of the integral. The middle and the right notations could be criticized for appearing to 
imply that the result of the integral is a vector, when in fact it is a scalar. Nonetheless, all of 
these are in use. We will mostly use the one on the right. The reason for not always using the 
simple dV is that we will often be using different r variables to describe the positions of 
different particles in our integrals, and we need to keep track of those in the integrations. 
Though those particles have different positions, they are probably all in the same volume. 

Volume integrals are, of course, also used less trivially to perform the integrals of other 
quantities over the volume. A simple, and useful example, is the integral of density ( )ρ r  (e.g., 
kilograms per cubic meter) – a quantity that might well be different at different points r – over 
volume to give the total mass mtot of the material in the volume, i.e.,  

 ( ) 3
tot

V

m dρ= ∫ r r  (A.91) 

We will perform this kind of integral often in quantum mechanics, where we will often be 
concerned with “probability density” rather than the mass density above.  

In practice with volume integrals, to evaluate them more conveniently we would like to be able 
to reduce them to the one-dimensional integrals for which we have so many analytic and 
numerical techniques. For example, if the volume V was itself a cuboid, with sides of length xL, 
yL, and zL, then we could convert the volume integral into a multiple integral, i.e., three 
“nested” or iterated one-dimensional integrals that we could perform one after another to 
evaluate the volume, i.e.,  

 
c L c L c L c L c L c L

c c c c c c

x x y y z z x x y y x x

L L L L L L
V x y z x y x

dV dzdydx z dydx z y dx z y x V
+ + + + + +

= = = = =∫ ∫ ∫ ∫ ∫ ∫ ∫  (A.92) 

Though it is highly desirable to break down volume integrals this way, whether it is easy to do 
so depends on the shape of the volume. For an arbitrary shape of volume, the length in the x 
direction depends on the y and z values, and so the limits on the individual integrals are not 
constants. While such non-constant limits can be handled at least numerically, they are 
generally awkward. For regular shaped objects, such as spheres or cylinders, such problems 
can usually be solved by changing to spherical or cylindrical coordinates, and we will discuss 
such coordinate systems in Appendix C. 

One mathematical question is whether it is possible to change the order of the integrations in 
multiple integrals. In practice for physical problems, we will normally interchange the order 
whenever we want, though there are some formal mathematical restrictions on this.17 

                                                           
17 In principle, care must be taken with the order of multiple integrals, and in the most general case the 
result can change if the order is changed. For the cases we consider in quantum mechanics and other 
physical systems, we can mostly ignore this formal difficulty. Certainly if we are integrating continuous, 
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We can, of course, also describe surface integrals in a similar way to the volume integrals 
above, and we can use a similar set of notations. In that case, we could be considering a set of 
tiles on a surface instead of a set of bricks in a volume. We would be using dA  as a surface 
area element, and would end up with double rather than triple integrals when converting them 
to iterated integral form. 

A.9 Matrices 

A matrix is a rectangular array of numbers. An M×N matrix has M rows and N columns. Rows 
are horizontal, and columns are vertical. When written out explicitly, the array is enclosed in 
square brackets. Commonly, when we want to write a symbol to represent a matrix, we choose 
simple capital letters (e.g., A), though there is no requirement to do so. In this book, we will 
put a “hat” over any symbol we use for a matrix, as in the Â  below.18  

The following is a 2×3 rectangular matrix. 

 
2 1 3ˆ
6 5 4

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (A.93) 

Since all matrices are by definition rectangular, when we say a matrix is rectangular we almost 
always mean it is not a square matrix, i.e., one that has equal numbers of rows and columns. 
The following matrix is a 2×2 square matrix.  

 
1.5 0.5ˆ
0.5 1.5

i
B

i
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (A.94) 

Note that the numbers or elements in the matrix can be real, imaginary, or complex numbers. 
In quantum mechanics, we will work almost exclusively with matrices that contain complex 
numbers, and we will work almost exclusively with square matrices. 

We index the elements in a matrix in “row-column” order, and we count from the top left 
corner. So we could write that A13 is the element in the first (top) row and third (from the left) 
column (i.e., the number -3) in matrix Â . It is common, though not universal, to use the same 
letter (A) for the elements as for the matrix. Sometimes the lower case version is used instead 
(e.g., a13) , though there is no fixed convention, and other symbols can be used. 

The leading diagonal or just the diagonal of a matrix is the diagonal from top left to bottom 
right. The diagonal is only really a meaningful concept for square matrices. The elements of 
value 1.5 in matrix B̂  above are therefore on the diagonal, and are called the diagonal 
elements. The elements that are not on the diagonal are often collectively called the off-

                                                                                                                                                         
finite, functions of multiple variables over finite ranges, there is no problem in interchanging the order of 
the integrals. Not all multiple integrals in quantum mechanics are of this type, but to the extent we 
believe the integrals of interest to us could be approximated to an arbitrary degree of accuracy by 
integrals of continuous, finite functions over finite, if large, ranges, then we can exchange order 
whenever we want. The formal criterion for being able to exchange the order of integrals is given by 
Fubini’s theorem in mathematics. 
18 We will also use this “hat” notation to refer to operators in this book. There is no confusion there 
because matrices are operators in the sense we use them in this book. Operators are discussed in greater 
detail in Chapter 4. 
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diagonal elements. The elements 12 0.5B i= −  and 21 0.5B i=  in (A.94) are therefore off-
diagonal elements. 

The particular case of a matrix that has only one row or only one column is called a vector. 
This vector concept is a generalization of the concept of a vector as used in geometry. A 
geometrical vector can be represented by a list of three numbers, these being its components 
along three coordinate axes. When we consider this generalized form of a vector, it can have 
any number of elements, and these also may be complex numbers (in contrast to geometrical 
vector components). We also have to specify whether the vector is a row vector, in which case 
it is written as a matrix with one row, e.g., 

  [ ]4, 2,5,7c = −  (A.95) 

or a column vector, in which case it is written as a matrix with one column, e.g., 

 

2 3
5 2
4
7 6

i
i

d
i

i

+⎡ ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥−
⎢ ⎥
− −⎣ ⎦

 

Technically, a vector is a matrix, but we will almost exclusively use the term vectors for such 
single-row or single-column matrices, and because of the way we use them in quantum 
mechanics, we will think of them differently and use a different set of symbols for them that 
we will introduce in Chapter 4.19 

An important manipulation with matrices and vectors is the transpose. It is most easily 
visualized as a reflection of the matrix or vector around a diagonal line running at 45° from top 
left to bottom right. It is usually notated with a superscript “T”. E.g., the transposes of the 
vectors and matrices above are 

 

[ ]

4
2 6

1.5 0.5 2ˆ ˆ1 5
0.5 1.5 5

3 4
7

2 3 5 2 4 7 6

T T T

T

i
A B c

i

d i i i i

⎡ ⎤
⎡ ⎤ ⎢ ⎥−⎡ ⎤⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥− ⎢ ⎥⎣ ⎦

⎣ ⎦

= + − + − − −

  (A.96) 

In this book, we will seldom if ever use the transpose, however. Instead, we will use a 
generalization of it called the Hermitian adjoint, the Hermitian transpose, the conjugate 
transpose, or sometimes simply just the adjoint. This Hermitian adjoint is the most useful 
generalization of the transpose when matrix and vector elements may be complex. To take the 
Hermitian adjoint, one takes the transpose and also takes the complex conjugate of all of the 
elements. The Hermitian adjoint is notated with a superscript “†”, where this symbol is called a 
“dagger”. As a way of remembering it, one can think of the dagger symbol as some kind of 
combination of the “T” for the transpose and the asterisk used to denote complex conjugation. 

                                                           
19 We do not think of vectors as operators when we use them in quantum mechanics, and we do not 
therefore put a hat over the symbols representing them. In fact, we will use a different notation, so-called 
Dirac notation to discuss them, and we introduce that in Chapter 4. 
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For matrices and vectors with real-numbered elements, the Hermitian adjoint and the transpose 
are the same operation.  

If we consider the elements of the matrix, then taking the Hermitian adjoint of a square matrix 
simply involves swapping the indices and taking the complex conjugate; the element in the nth 
row and mth column of the matrix †B̂ , i.e., †ˆ( )nmB  , is  

 †ˆ ˆ( )nm mnB B∗=  (A.97) 

For the matrix and vector above with complex elements, the Hermitian adjoints are 

 [ ]† †1.5 0.5ˆ 2 3 5 2 4 7 6
0.5 1.5

i
B d i i i i

i
−⎡ ⎤

= = − − − + − +⎢ ⎥
⎣ ⎦

 (A.98) 

Note, incidentally, that for the particular matrix B̂ , the Hermitian adjoint of B̂  is actually the 
same as B̂ , i.e., for †ˆ ˆB B= . A matrix that has this property is said to be Hermitian. Note that 
only some complex matrices have this property, but it is a particularly important property in 
quantum mechanics, and has some useful consequences (which we will discuss in Chapter 4). 

Matrix algebra 

As discussed so far, matrices are simply tables of numbers. What makes matrices useful is the 
algebra associated with them. The algebra of matrices is related to that of numbers but has 
crucially important differences. 

Addition and subtraction 

If and only if two matrices are of the same size, i.e., have the same number of rows and 
columns, then we can add them by simply adding the corresponding numbers. For example, for 
the two matrices F̂  and Ĝ   

 
1ˆ
2 1 3

i
F

i
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
   

5 4ˆ
6 7 8

i
G

i
⎡ ⎤

= ⎢ ⎥− +⎣ ⎦
 (A.99) 

we would have 

 
1 5 4 6 5ˆˆ ˆ
2 6 1 7 3 8 4 8 5

i i i
K F G

i i i
+ +⎡ ⎤ ⎡ ⎤

= + = =⎢ ⎥ ⎢ ⎥− + − + − +⎣ ⎦ ⎣ ⎦
 (A.100) 

In general, for the elements of the matrices, we have 

 ij ij ijK F G= +  (A.101) 

where i and j range over the number of rows and columns, respectively (i.e., i is 1 or 2, j is 1 or 
2).  

Subtraction follows the same procedure, but subtracting rather than adding. 

Multiplication 

Multiplication of matrices is the most important aspect of matrix algebra, and it requires some 
definition. It is most easily understood by first considering multiplication of a vector by a 
matrix. Suppose we have a column vector on the right of a matrix (see Fig. A.7(a)). Suppose 
the column vector has N “rows” or elements in it (here, 3). For the multiplication by a matrix 
to be defined, this number must match the number of columns in the matrix, so the matrix must 
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be an M×N (here, 2×3) matrix for some number of rows M (here, 2). To multiply the vector by 
the matrix, we can imagine that we first “pick up” the vector, then turn it anticlockwise by 90°, 
and lay it on top of the top row of the matrix (Fig. A.7(b)). Then we multiply each element of 
the vector by the corresponding element of the top row of the matrix, and add up all the results. 
We write that sum in the top element of the vector that will be the result of this multiplication 
operation. We then move the vector down one row in the matrix (Fig. A.7(c)), and repeat the 
multiplication and addition, writing the answer in the next element of the “output” vector, and 
so on, until we have performed this operation for all of the rows of the matrix to get the final 
result (Fig. A.7(d)).  

1 2 3

4 5 6

7
8
9

1 2 3

4 5 6

7 8 9 1 7
2 8
3 9
50

×
+ ×
+ ×
=

× × ×
50

1 2 3

4 5 6
7 8 9

4 7
5 8
6 9
122

×
+ ×
+ ×
=

× × ×
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122

7
8
9

1 2 3

4 5 6
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122

=
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=
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5050
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=
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122
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7
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9

7
8
9

1 2 3

4 5 6

1 2 31 2 3
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122

=
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(b)

(c)

(d)

 
Fig. A.7. Illustration of process of matrix-vector multiplication. 

Note that the result of multiplying an N element column vector by an M×N matrix is to 
generate an M element column vector. Note also that we do not use any “multiplication sign” 
in matrix algebra. We simply put the two quantities to be multiplied beside one another. 

We can also write this matrix-vector multiplication in a compact form using summation 
notation, in which case, for a vector c and a matrix Â  we have, for a “result” vector d,  

 m mn n
n

d A c= ∑  (A.102) 

Note that, with the “row-column” order of the indices, we end up summing over two adjacent, 
identical indices (here n). In our example above, n runs from 1 to 3, and m runs from 1 to 2.  

If we are multiplying a matrix by a matrix, we simply repeat this operation for each column of 
the matrix on the right (see below), working from left to right, for example, and write down the 
resulting columns in the resulting matrix, also working from left to right, for example. Hence, 
extending the above example, we would have 
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7 1

50 14 1 2 3
8 2

122 32 4 5 6
9 3

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 (A.103) 

since 1 1 2 2 3 3 14× + × + × =  and 4 1 5 2 6 3 32× + × + × = , and so on. 

For an N×P matrix Â  being multiplied by an M×N matrix B̂  to give a resulting matrix R̂ , 
i.e.,  

 ˆˆ ˆR BA=  (A.104) 

we can write this in summation notation as 

 mp mn np
n

R B A= ∑  (A.105) 

Note again that we have summed over the “internal” index n.  

Vector-vector multiplication is also meaningful provided the vectors have the same length and 
provided that one vector is a row vector and the other vector is a column vector. This rule 
follows directly from the discussion of matrix-matrix multiplication when we consider the 
multiplication of 1×N and N×1 matrices (which are, by definition, both vectors). There are two 
quite different possibilities for the form of the result depending on the order of the 
multiplication. Specifically, multiplying a 1×N on the left by an N×1 matrix on the right gives 
a single number (the same thing as a 1×1 matrix) as the result, e.g.,  

 [ ]
4

1 2 3 5 32
6

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

 (A.106) 

In summation form, such a multiplication of two vectors c and d would reduce to 

 n n
n

f c d= ∑  (A.107) 

where f is a number. Because such a multiplication reduces two vectors to a single number, it 
is sometimes referred to as an inner product. 

Multiplying an N×1 on the left by a 1×N matrix on the right, however, gives an N×N matrix, 
e.g.,  

 [ ]
4 4 8 12
5 1 2 3 5 10 15
6 6 12 18

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (A.108) 

In this case, in “summation” form, there is nothing to sum over – each of the elements in the 
matrix on the right is just the result of a single multiplication of two numbers, and we would 
have, for the elements of the resulting matrix F̂ , 

 mp m pF c d=  (A.109) 

Because such a multiplication generates an entire matrix from just two vectors, it is sometimes 
referred to as an outer product.  
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Incidentally, if we multiply a column vector d by its own Hermitian adjoint †d , the result †d d  
is the sum of the modulus squared of the elements, i.e.,  

 2†
n n n

n n
d d d d d∗= =∑ ∑  (A.110) 

which we can view as the square of the “length” of the vector d. This is a particularly useful 
property of the Hermitian adjoint, and we will discuss this also in Chapter 4. 

Commutative, associative and distributive properties 

Just like numbers, matrix multiplication is associative, i.e.,  

 ( ) ( )ˆ ˆ ˆ ˆˆ ˆCB A C BA=  (A.111) 

and it is distributive, i.e.,  

 ( )ˆ ˆ ˆ ˆ ˆˆ ˆA B C AB AC+ = +  (A.112) 

but it is not in general commutative, i.e., in general 

 ˆ ˆˆ ˆBA AB≠  (A.113) 

There can be specific matrices for which multiplication does commute (i.e., is independent of 
order), and such matrices have very specific and useful properties (as we will see in Chapter 
4), but we cannot in general simply interchange the order of matrix multiplication. This point 
is extremely important for quantum mechanics.  

Multiplication of a matrix or vector by a scalar (a number) simply means we multiply all the 
elements in the matrix or vector by the number. We can move that number about to anywhere 
we want inside any chain of matrix-matrix, matrix-vector, or vector-vector products because it 
does not matter to the final result which of the matrices or vectors is multiplied by the number; 
the net result will still be to multiply the entire result by the number. E.g., for some matrices Â  
and B̂ , some vector c and some number α 

 ˆ ˆ ˆˆ ˆ ˆABc A Bc AB cα α α= =  (A.114) 

Hermitian adjoint of a product 

A particularly useful algebraic manipulation for matrices that we will use extensively later on 
in the book (from Chapter 4 onwards) is that the Hermitian adjoint of a product is the product 
of the Hermitian adjoints with the order reversed in the multiplication. I.e.,  

 ( )† † †ˆ ˆˆ ˆAB B A=  (A.115) 

The proof of this is straightforward in the summation notation.20 

                                                           
20 Suppose ˆˆ ˆR AB= , so that the element mp mn npnR A B= ∑ . Hence 
 † * † † † †ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )pm mp mn np mn np nm pn pn nmn n n nR R A B A B A B B A∗ ∗ ∗= = = = =∑ ∑ ∑ ∑ .  
But this last sum is just the matrix element in the pth row and mth column in the matrix product † †ˆB̂ A . 
Hence † † † †ˆ ˆˆ ˆ ˆ( )R AB B A= = . 
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Inverse 

Another major difference with matrices compared to numbers is that there is no such operation 
as division in matrix algebra. Sometimes, a matrix can have an inverse (or, equivalently, the 
matrix is invertible.) The inverse of a matrix Â , if it exists, is written 1Â− , and it has the 
property 

 1ˆ ˆ ˆA A I− =  (A.116) 

where Î  is the identity matrix (of the appropriate size). The identity matrix is the matrix with 
the number “1” for all its diagonal elements, and “0” for all its off-diagonal elements. It is the 
formal analog for matrices of the number “1” in the algebra of ordinary numbers. The 3×3 
identity matrix is, for example, 

 
1 0 0

ˆ 0 1 0
0 0 1

I
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (A.117) 

The identity matrix (provided it is the correct size in each case to make the multiplication 
legal) formally has the property for any matrix Â   

 ˆ ˆ ˆˆ ˆAI IA A= =  (A.118) 

which can be viewed as a definition of the identity matrix. That definition might seem trivial, 
but, just as the number “1” is important for ordinary algebra, so the identity matrix is important 
for matrix algebra. 

Numbers and ordinary algebraic expressions do have the property analogous to Eq. (A.116), 
i.e., we can write, for any non-zero number x, the equation 1 1x x− = , and in that case we can 
also write 1 1/x x− = , but we can never write anything analogous to the reciprocal (i.e., 1/x) in 
matrix algebra. In matrix algebra, instead of dividing by a matrix, we have to multiply by the 
inverse (if there is one). The conditions under which a matrix has an inverse are quite 
restrictive, and many matrices do not have inverses. We will also discuss this point below 
when we discuss determinants. 

Linear equations and matrices 

Matrices give a particularly elegant way of writing systems of linear equations. For example, if 
we have two equations21 for straight lines 

 11 12 1

12 22 2

A x A y c
A x A y c

+ =
+ =

 (A.119) 

we can rewrite these as the matrix equation 

 11 12 1

21 22 2

ˆ A A cx x
A

A A cy y
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (A.120) 

                                                           
21 If the reader is more used to the form y mx c= + , it is straightforward to cast either of these two 
straight line equations in that form. For example, for the upper equation in (A.119) could be rewritten as 

11 12 1 12( / ) ( / )y A A x c A= − + . 



488 Appendix A  Background mathematics 

 

and, if we write b1 instead of x, and b2 instead of y, we could also write them in summation 
form as 

 
2

1
mn n m

n
A b c

=

=∑  (A.121) 

If we knew the inverse 1Â− of the matrix Â , then we would be able to solve the linear 
equations (A.119), because premultiplying both sides by 1Â− , we have 

 11 1

2

ˆ ˆ ˆ cx
A A A

cy
− − ⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (A.122) 

and so, using the definition of the inverse, Eq. (A.116), and the definition of the identity 
operator, Eq. (A.118) (i.e., that multiplying by the identity operator makes no change to any 
matrix or vector), we therefore have 

 11

2

ˆ cx
A

cy
− ⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (A.123) 

so that we can calculate the values of x and y that are the solutions of these two linear 
equations, (A.119). In this case, that solution means the point at which the two straight lines 
cross (if they do cross, and if they do not cross, the matrix will have no inverse).  

Hence, we can now understand that the operation of finding the inverse of a matrix is 
equivalent mathematically to solving a system of linear equations – if we know how to solve 
such systems of equations, we know how to calculate the inverse of a matrix. Conversely, 
knowing whether or not a matrix has an inverse tells us whether or not the corresponding 
system of linear equations is solvable. 

Determinant 

The determinant is a number that can be calculated for any square matrix (and it can only be 
calculated for square matrices). Determinants have many interesting and useful mathematical 
properties. The single most useful and important property of determinants for us is the 
following: 

If the determinant of a matrix is not zero, then the matrix has an inverse, and if a matrix has 
an inverse, the determinant of the matrix is not zero. I.e., a non-zero determinant is a 
necessary and sufficient condition for a matrix to be invertible. 

For this reason, determinants are also very useful for deciding whether systems of linear 
equations can have solutions. The determinant of a matrix Â  is written as 

 ( )
11 12 1

21 22 2

1 2

ˆdet

N

N

N N NN

A A A
A A A

A

A A A

=

"
"

# # % #
"

 (A.124) 

Some authors use the two vertical lines to denote the determinant even when using the symbol 
for the matrix, e.g., | Â |, but this notation can be confused with the modulus,22 so we avoid it. 

                                                           
22 It can also be confused with some notations for matrix norms, though we do not use those here.  
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There are at least two equivalent general formulae for calculating determinants (Leibniz’s 
formula and Laplace’s formula). It would take some space to explain those, and we will not 
need them for most of the book,23 so we omit them here. Also, in most numerical calculations, 
other techniques are used to calculate determinants.24 It is, however, very useful to know the 
explicit formulae for 2×2 and 3×3 matrices, so we state them here.  

 ( ) 11 12
11 22 12 21

21 22

ˆdet
A A

A A A A A
A A

= = −  (A.125) 

( )

( ) ( ) ( )

11 12 13

21 22 23

31 32 33

11 22 33 23 32 12 21 33 23 31 13 21 32 22 31

11 22 33 11 23 32 12 21 33 12 23 31 13 21 32 13 22 31

ˆdet
A A A

A A A A
A A A

A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A A A A

=

= − − − + −

= − − + + −

 (A.126) 

This 3×3 determinant is often visualized as in Fig. A.8 below, which is based on the expression 
in the second row of Eq. (A.126). Multiplications proceed from the top row towards the 
bottom row in the black elements. The multiplications corresponding to arrows going down 
and to the left have a minus sign associated with them. Note that the sign associated with the 
top elements is negative for the middle element. 
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Fig. A.8. Visualization of the process for multiplying elements for the determinant of a 3×3 
matrix. 

Note, incidentally, that the determinant contains every product of elements from different rows 
in which all the elements in the each product are also in different columns25, as can be seen 
from the expression in the third row of Eq. (A.126).  

                                                           
23 We do actually use Leibniz’s formula in Chapter 13 in connection with identical particle states, 
however. 
24 A standard approach is to use numerical technique of Gaussian elimination to turn the matrix into a so-
called triangular matrix (a matrix with zeros for all elements below the diagonal (an upper triangular 
matrix) or for all elements above the diagonal (a lower triangular matrix)) or LU decomposition to turn 
the matrix into the product of upper and lower triangular matrices. For triangular matrices, the 
determinant is the product of the diagonal elements, and for the product of two matrices, the determinant 
is the product of the individual determinants. 
25 If we always write the products in the order of the rows from top to bottom, i.e., in order of the first 
index in each element, then the sign of each product can be deduced from the ordering of the second 
index in the elements, i.e., the indices corresponding to the columns. If that order corresponds to an even 
number of “swaps” of the digits 1, 2, 3, …, from their original sequential order, then the sign of the 
product is positive (a so-called even permutation), but if that order corresponds to an odd number of 
swaps (an odd permutation), the sign is negative. This, in fact, is the essence of Leibniz’s formula for the 
determinant, and can be used to construct determinants of matrices of any size. 
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Eigenvectors and eigenvalues 

A particularly interesting and useful class of equations is the eigenequation. For matrices, such 
an equation is of the form 

 Âd dλ=  (A.127) 

where d is a vector, λ is a number, and Â  is a square matrix. When such an equation has 
solutions, they occur for specific values of λ, known as eigenvalues, and corresponding 
specific vectors d known as eigenvectors.  

Now, we can rewrite Eq. (A.127) as, first of all, 

 ˆ ˆAd Idλ=  (A.128) 

where we have inserted the identity matrix (of the same size as the matrix Â ). We can always 
do this because the identity matrix makes no change to the expression. Hence, we can further 
rewrite Eq. (A.127) as 

 ˆ 0Bd =  (A.129) 

where  

 ˆˆ ˆB A Iλ= −  (A.130) 

The matrix B̂  is just the matrix Â  with the number λ subtracted off every diagonal element. 
Incidentally, though it is common to use the notation as in Eq. (A.129), the “0” on the right 
hand side is actually not the number zero, but is in fact a zero vector with the same number of 
elements as the vector d, i.e., a vector with zeros for all of its elements.  

For Eq. (A.129) to have a solution for some non-zero vector d and for some λ, the matrix B̂  
must not have an inverse. Suppose B̂  did have an inverse, 1B̂− . Then we could multiply both 
sides by that inverse to obtain 

 1ˆ 0d B−=  (A.131) 

which would mean that multiplying the zero vector by the matrix 1B̂−  would give a non-zero 
vector d as the result. But there is no matrix (with finite elements) that can do this; any matrix 
multiplying the zero vector gives the zero vector as the result. Hence by reductio ad absurdum, 
the matrix B̂  cannot have an inverse.  

The fact that B̂  cannot have an inverse therefore gives a very simple condition for whether 
there is a solution to the eigenequation (A.127). Using a key property of the determinant, as 
discussed above, we must have 

 ( )ˆ ˆdet 0A Iλ− =  (A.132) 

Since we can write down an algebraic expression to evaluate the determinant, based only on 
the elements of the matrix, we can therefore tell directly from this expression, which is known 
as a secular equation, whether or not there is a solution. In practice, we use this secular 
equation to find the eigenvalues (if there are any) for which the equation has a solution, and 
then use those eigenvalues to deduce the eigenvectors. 

For example, for the matrix above in Eq. (A.94), Eq. (A.132) becomes 
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( ) ( ) ( )2 2

1.5 0.5 1 0 1.5 0.5 0
det det

0.5 1.5 0 1 0.5 1.5 0

1.5 0.5
det 1.5 (0.5 ) 0.5 1.5 0.25 0

0.5 1.5

i i
i i

i
i i

i

λ
λ

λ

λ
λ λ

λ

⎛ − ⎞ ⎛ − ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− = −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
⎛ − − ⎞⎡ ⎤

= = − − − = − − =⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

 (A.133) 

I.e., multiplying out, we have the quadratic equation 

 2 3 2 0λ λ− + =  (A.134) 

which is the secular equation for this problem. The roots of this equation are, by the usual 
quadratic solution,  

 1 1λ =  and 2 2λ =  (A.135) 

Now that we know the eigenvalues, we substitute them back into the eigenequation, and 
deduce the corresponding eigenvectors. Our eigenequation here is, as in Eq. (A.127), 

 1 1

2 2

1.5 0.5
0.5 1.5

d di
d di

λ
− ⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (A.136) 

where d1 and d2 are the components of the vectors we are trying to find. We can rewrite this as  

 1

2

1.5 0.5 0
0.5 1.5 0

di
di

λ
λ

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 (A.137) 

So, using the first eigenvalue, 1 1λ = , we have, explicitly, 

 1

2

0.5 0.5 0
0.5 0.5 0

di
di

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 (A.138) 

Writing this out again in the form of linear equations, we have two equations, 

 1 2

1 2

0.5 0.5 0
0.5 0.5 0

d id
id d

− =
+ =

 (A.139) 

From either one of these equations, we can directly now deduce that, in this eigenvector 
associated with this eigenvalue,  

 2 1d id=  (A.140) 

and so, choosing the value 1 for d1, we can write the first eigenvector  

 1

1
v

i
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (A.141) 

Note that we can multiply the eigenvector by any constant we want (or, equivalently, as we 
have done here, we can choose one of the components of the eigenvector arbitrarily), and it is 
still an eigenvector, so in the “length” of the eigenvector is arbitrary. This property is obvious 
from the original eigenequation, where we see that the eigenvector is still a solution if we 
multiply it (on both sides) by any constant. 

By similar algebra, but using the second eigenvalue 2 2λ = , we can find the second 
eigenvector, which we can write as 
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1
v

i
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (A.142) 

If we extend to larger matrices, we can see that the secular equation becomes a polynomial 
(actually of the same order of polynomial as the size N of the N×N of the matrix). For example, 
a 3×3 matrix can have 3 eigenvalues, and 3 associated eigenvectors.  

There are many other interesting and useful properties of matrices and determinants, but the 
properties discussed above are more than sufficient to start the study of quantum mechanics 
here. We will introduce other properties as needed throughout the book 

A.10 Product notation 

By analogy with the summation notation above, instead of writing 

 1 2 3 4P a a a a=  (A.143) 

we can instead write 

 
4

1
j

j

P a
=

= ∏  (A.144) 

where the upper case Greek “pi” (Π) stands for “product”. Similar conventions apply to the 
indices here as in the case of the summation notation. 

A.11 Factorial 

For a positive integer26 n greater than or equal to 1, the factorial function is defined as 

 
1

!
n

j

n j
=

≡ ∏  (A.145) 

where n! is pronounced “n factorial”, or, written out, 

 ( )( )! 1 2 2 1n n n n≡ − − × ×…  (A.146) 

and we also make the additional definition that 

 0! 1=  (A.147) 

so that the factorial function is then defined for n being an integer or zero. 

                                                           
26 Factorials can also be defined for non-integer (i.e., real) positive numbers. See the discussion of the 
gamma function in Appendix G 



 

 

Appendix B  
 
Background physics 

In this Appendix, we summarize the background elementary classical physics that we need to 
start the study of quantum mechanics in this book. Other physics will be introduced as required 
throughout the book. Probably, the student has already seen most of the physics here before, 
but this Appendix reviews the key items and notations.  

B.1 Elementary classical mechanics 

As we study quantum mechanics, some of the concepts and relations from elementary classical 
mechanics remain quite useful. In particular, the ideas of energy, momentum, and mass remain 
central concepts in quantum mechanics, especially in the non-relativistic quantum mechanics 
that is the subject of this book.1   

Elementary classical mechanics is sometimes called Newtonian classical mechanics. This 
name distinguishes it from Hamiltonian or Lagrangian classical mechanics (which are 
mathematically more sophisticated formulations of the same underlying physics), from 
relativistic (classical) mechanics, and from quantum mechanics. In such elementary, 
Newtonian mechanics, for a particle of mass m, the classical momentum p, which is a vector 
quantity because it has direction, is 

 m=p v  (B.1) 

where v is the (vector) velocity. The kinetic energy, which is the energy associated with 
motion, is given by 

 21. .
2

K E mv=  (B.2) 

In quantum mechanics, momentum is a more useful quantity than velocity2, and we prefer to 
think of classical kinetic energy as 

                                                           
1 By “non-relativistic” we mean here that any particles with mass must effectively be moving much 
slower than the velocity of light. Photons, though they travel at the velocity of light, have no mass, and 
we can still handle most of the physics of photons in quantum mechanics without having to deal with 
explicit relativistic physics. 
2 There are many reasons why we prefer momentum, but one simple one is that photons have momentum 
even though they have no mass and they travel at the velocity of light. 
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2

. .
2
pK E
m

=  (B.3) 

where strictly by p2 we mean the vector dot product ⋅p p . At least in classical mechanics, 
relations (B.2) and (B.3) are, of course, equivalent. 

Another important energy in elementary classical mechanics is the potential energy, usually 
denoted by the letter V when it is used in quantum mechanics3. Potential energy is defined as 
“energy due to position”, so we will usually write V as a function of position r, i.e., as V(r). 
We can only talk about potential energy if indeed that energy depends only on position, and 
not how we got there; fields that have this property, such as the ordinary gravitational field for 
objects near the surface of the earth, are called conservative fields or irrotational fields. 
Another way of stating this same conservative property is to say that that change in potential 
energy is zero round any closed path – that is, if we move an object round some path that 
brings it back to where it started, its potential energy will be the same as when it started. We 
will seldom be concerned with gravitational fields in quantum mechanics, but we will often 
consider electrostatic fields, and those fields are conservative.4 

The total energy is the sum of the potential and kinetic energies. When this energy is expressed 
as a function of position and momentum it is sometimes called the Hamiltonian. For a single 
classical particle, the total energy or Hamiltonian can therefore be written 

 ( )
2

2
pH V
m

= + r  (B.4) 

There is a more sophisticated form of classical mechanics that is built around the use of the 
Hamiltonian considered as a function of position and momentum, though we defer discussing 
that until Chapter 15. For the present, at least when we are thinking only about particles with 
mass, we can simply think of the Hamiltonian as the total energy, the sum of kinetic and 
potential energies. 

Note, incidentally, that the “zero” or “origin” we use for potential energy is always arbitrary. 
We can choose it to be what we want, as long as we are consistent. In both classical mechanics 
and quantum mechanics, there is no absolute origin for potential energy, and we only really 
work with differences in potential energy between one position and another. It makes no 
difference to any problem in classical or quantum mechanics at what position we say the 
potential energy is equal to zero. We do, however, typically make some specific choice in 
practice, at least to make it easy to do the algebra in the problem of interest. 

In Newtonian classical mechanics, we often use the concept of force. Indeed, Newton’s second 
law tells us that 

 m=F a  (B.5) 

where F is the force, and a is the acceleration.  

                                                           
3 Note that, although we use V for potential energy, we are not meaning an electrostatic potential in Volts, 
but rather an energy in Joules. This can be confusing, because quite often in the problems of interest to 
us, the potential energies are a result of electrostatic forces or energies. For a particle of charge q, the 
electrostatic potential energy in Joules is simply q × electrostatic potential energy in Volts, so this in not 
in practice a difficult conversion. 
4 Effects associated with static magnetic fields are, however, often not conservative. 
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It is also true that, in Newtonian classical mechanics we can write force as being equal to the 
rate of change of momentum, i.e., 

 d
dt

=
pF  (B.6) 

In quantum mechanics, we do find motion of particles that corresponds to Newton’s second 
law, but we cannot use that particular expression as a way to start out in quantum mechanics. 
Indeed, we seldom if ever use the idea of force, or Newton’s second law, directly in quantum 
mechanics. This is in part because we can also express force as the gradient of a potential 
energy, and hence knowledge of the potential energy everywhere contains all we need to know 
about forces5.  

Fpush x

Δx

 
Fig. B.9 Illustration of a ball pushed slowly up a plane by a force of magnitude Fpush x through a 
distance Δx. The x direction is parallel to the inclined plane. 

To understand the relation between force and potential energy, suppose we are trying to 
change the potential energy of a ball by pushing it slowly (and frictionlessly) up a hill, as 
shown in Fig. B.9. In this case, we will get a change, ΔV, in potential energy V resulting from 
exerting a force of magnitude Fpush x in the x-direction (here the direction along the surface of 
the hill, i.e., directly up hill) on the body through a distance Δx. As usual, the change ΔV is the 
product of force times distance, i.e.,  

 push xV F xΔ = Δ  (B.7) 

or, equivalently,  

 push x
VF
x

Δ
=

Δ
 (B.8) 

or, in the limit of very small changes in energy and correspondingly small distances, 

 push x
dVF
dx

=  (B.9) 

This is the force we have to apply to the ball to push it slowly uphill. This force is the opposite 
of the force Fx that is trying to push the ball downhill. If we stopped pushing the ball, it would 
accelerate downhill, pushed by this force  

 x
dVF
dx

= −  (B.10) 

                                                           
5 At least when we are considering only conservative fields such as electrostatic fields. 
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that is a result solely of the gradient, /dV dx , of the potential energy. Hence we can see that 
knowing the potential energy everywhere means we do not separately need the concept of 
force (at least force from potential energies). 

We can readily generalize an argument like this to three construct the force vector, F, 
considering inclines in three directions at right angles, to obtain 

 V V VV
x y z

⎡ ⎤∂ ∂ ∂
= −∇ ≡ + +⎢ ⎥∂ ∂ ∂⎣ ⎦

F i j k  (B.11) 

where i, j, and k are unit vectors in the three usual Cartesian coordinate directions and ∇ is 
called the gradient or “grad” operator, as discussed in Appendix A. 

The above discussion of elementary classical mechanics will be sufficient to start the 
discussion of quantum mechanics.  

B.2 Electrostatics 

Force and potential in uniform electric field 

In a uniform electric field E, the force on a charge q is 

 q=F E  (B.12) 

Note that a positive charge is pushed in the direction of the electric field. For an electric field 
zE  in the z direction, as the positively charged particle moves in the positive z direction, it is 

as if it is going downhill, and so its potential energy φ decreases. Using this fact and the fact 
that work is force times distance, for a simple one-dimensional case, we have a potential 
energy 

 ( ) zz qE dzφ = −∫   (B.13) 

For a constant field, the potential energy relative to that at 0z =  is therefore 

 ( ) zz qE zφ = −  (B.14) 

Coulomb’s law 

For two point charges of value Q1 and Q2 in free space, the force between them has a value 

 1 2
24 o

Q QF
Rπε

= −  (B.15) 

where R is the distance between them, and εo is the electric constant (otherwise known as the 
permittivity of free space). The force is repulsive (pushing them apart) if the signs of the 
charges are the same (which is why we have included the minus sign in Eq. (B.15)), and 
attractive if the charges have opposite signs. This relation, Eq. (B.15), is known as Coulomb’s 
law.  

Suppose initially that these two charges are a very large distance L apart. Then we imagine 
bringing the two charges together so that they end up with a separation distance r. The energy 
we will require to do that is the integral of the product of force times distance from separation 
L to separation r, i.e., 
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L L o o

Q Q Q Qr Fdz dz
z r L

φ
πε πε
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⎝ ⎠

 (B.16) 

Since L is chosen to be very large (or if we imagine the limit as the charges start infinitely far 
apart), then we can write that the electrostatic potential energy associated with the two charges 
being a distance r apart is 

 ( ) 1 2

4 o

Q Qr
r

φ
πε

=  (B.17) 

We are always free to choose the zero reference for any potential energy, and implicitly here 
we are choosing the zero potential energy when the charges are very far apart. 

B.3 Frequency units 

Frequency is the number of complete cycles per unit time (i.e., cycles per second) of an 
oscillation, and can also be described with the unit Hz (Hertz), which is equivalent to cycles 
per second. It is often indicated with the symbol f, or, more commonly in physics and quantum 
mechanics in particular, with the Greek letter ν (“nu”),  

Angular frequency, often indicated with Greek letter ω (“omega”), is equal to 2πν for a 
frequency ν. It is a common notation because it saves us writing the factor 2π  so many times 
in the algebra of oscillating systems. In fundamental angular units, by definition there are 2π  
radians in a circle (equivalent to 360 degrees). When thinking about oscillations, we are often 
thinking about something rotating in a circular motion. When viewed on an Argand diagram in 
the complex plane (see Appendix A), the function exp( )i tω , for example, corresponds to a 
point moving round a circle of unit radius at a rate of ω radians per unit time t. Angular 
frequency can therefore be thought of as the number of radians per second, and sometimes the 
units for it are written as rad/s. Angular frequency is also correctly and equivalently expressed 
in units of s-1 (“per second”). It is never expressed in Hz.  

B.4 Waves and diffraction 

We are familiar from daily life with waves propagating on the surface of water, for example. 
Classical waves like water waves can move in some direction even though there is no overall 
movement of the medium (e.g., water) itself in that direction. They can carry energy, and, 
especially for acoustic or electromagnetic waves, information. Waves have wave-fronts or 
phase-fronts, that are, loosely, the peaks that appear to be moving in some direction. The 
“height” of a wave at a given time and a given point in space is called the wave amplitude. 

The most ideal and simplest of waves are plane waves, in which the wave-fronts or phase-
fronts are straight lines in the case of waves on a two-dimensional surface like water, or are 
plane surfaces in the case of waves in three dimensions, like acoustic waves in air or 
electromagnetic waves in a vacuum or air. In the simplest cases, the phase-fronts are 
perpendicular to the direction of propagation of the waves. 

Ideal classical waves in some uniform medium can move essentially without change in their 
shape in time (e.g., some sort of pulse shape), in which case we say the wave propagation has 
no dispersion, and would behave the same way regardless of the wave amplitude (in which 
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case the wave is behaving in a linear fashion). Such ideal classical waves can usually be quite 
well described using the wave equations presented mathematically in Appendix A. 

It is often useful to consider monochromatic waves, which are waves in which every point on 
the wave is oscillating at the same frequency. In that case, factoring out the sinusoidal 
oscillation in time, the remaining spatial variation of the waves can usually be described by a 
Helmholtz wave equation, as discussed in Appendix A.  

(a)

(b)

(c)

(a)

(b)

(c)

 
Fig. B.10 Interference of two incident waves. (a) Snapshot of one incident plane wave on its own, 
with its propagation direction shown by the arrow. (b) Similar snapshot of a second plane wave 
on its own. (c) Result when both waves are present at once. Along the dashed lines, there is never 
any net wave amplitude – the waves interfere destructively to cancel out. At other points between 
the lines, constructive interference is seen, with larger amplitudes than for either wave on its own. 

Interference and standing waves 

A particularly important aspect of the behavior of waves is that, when two or more waves 
propagate into the same space, they show interference. This is sketched in Fig. A.5. Here two 
monochromatic waves of the same frequency are propagating in the same space; destructive 
interference is seen, with exact cancellation of the waves along the dashed lines, and 
constructive interference is also seen with larger total amplitudes at other points between the 
lines.  

In general with classical waves, the power per unit area or intensity in the wave is typically 
proportional to the time average of the square of the amplitude of the wave. Note that, even 
though each of the two waves has a positive, non-zero intensity, the net result of adding the 
two waves can be to generate regions of space where the intensity is higher than the sum of the 
two individual intensities and other regions of space where it is lower than either intensity, 
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including even regions where the intensity is zero. Hence, with waves one cannot simply add 
intensities. This point may be obvious for classical waves, but the analogous process with 
quantum mechanical waves, or more generally quantum mechanical amplitudes, is extremely 
important, and is responsible for many behaviors in quantum mechanics that are very 
surprising. 

The interference pattern of these two waves in Fig. A.5(c) is an example of a standing wave 
pattern. Even though both of the waves that have created the pattern are themselves 
propagating waves, the pattern in the vertical direction of Fig. A.5 (c) will appear to be 
“standing” in space – it will not move in any direction – even though the individual peaks and 
valleys in the constructive interference regions oscillate and move to the right.  

Another very simple and common example is standing waves in the one-dimensional case, as 
would be found on waves on a string. In standing waves on a string, the waves are reflected off 
the two fixed ends of the string, therefore guaranteeing equal and oppositely propagating 
waves to give the resulting standing wave. For example, adding equal and oppositely 
propagating cosine waves in one dimension gives 

 cos( ) cos( ) 2 cos( ) cos( )A t kz A t kz A t kzω ω ω+ + − =  (B.18) 

(where we have used the identity cos cos 2cos[( ) / 2]cos[( ) / 2]a b a b a b+ = + − ), which has the 
form of a standing wave in the z direction of form cos( )kz , with each point oscillating at 
frequency ω. Such a wave will have zeros or nodes at the points where cos( )kz  is zero (i.e., at 
points / 2 , 3 / 2 , 5 / 2 ,...z k k kπ π π=  etc.), and maxima or antinodes in the amplitude of the 
oscillations at the points where cos( )kz  is +1 or 1−  (i.e., at points 0, , 2 ,...z π π=  etc.). We 
can, incidentally, use the same terminology to refer to the positions of the dashed lines in Fig. 
A.5(c) as nodal lines, which are entire lines at which the amplitude is zero at all times.  

Diffraction 

One simple view of light is to consider light as being made up of rays, which are straight lines 
whose direction only changes when they encounter some mirror, prism, or lens. In that picture, 
a parallel bunch of rays would proceed in parallel for ever. Such a ray picture can be a useful 
approximate description if every object of interest is very much larger than the wavelengths 
involved, and if we do not try to propagate too far. With objects of scales comparable to the 
wavelengths involved, or where we look very closely at objects within lengths of the order of a 
few wavelengths or shorter, or where we try to propagate light beams over long distances, the 
ray picture breaks down, and we have to use a wave equation to describe what is happening.  

Very loosely, diffractive effects could be described as all those phenomena of waves that 
cannot be explained by a ray-like picture. Diffraction is certainly the unavoidable spreading of 
light beams, or of light from apertures, and it is certainly what limits the size of the smallest 
spot of light we can form with a given wavelength. Diffraction applies to all forms of waves 
obeying the wave equations of Appendix A. The spreading from diffraction is always less for 
smaller wavelengths (or higher frequencies) or for larger beams or apertures. Diffraction 
explains, for example, why in an audio system we only need one low-frequency loudspeaker 
(the “woofer”), but we use two high-frequency loudspeakers (the “tweeters”). The wavelength 
of low frequency sound is so large that it diffracts in all directions from any reasonable size of 
loudspeaker, but high-frequency sound is very directional, even from quite small loudspeakers. 
Hence the directional information for stereo perception of sound can be adequately conveyed 
from the two small “tweeters”. 
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We can write down a simple formula for the minimum total angle θ of spreading of a beam 
from an aperture, for example, which is, approximately, 

 / dθ λ∼  (B.19) 

where d is the width of the aperture. The precise proportionality constant here depends on 
one’s definition of the “width” of the beam (because the beam will not have hard edges), and 
on the precise geometry (e.g., slit, circular hole, square hole, etc.) of the aperture, but the 
proportionality constant is generally of order unity. 

In general, diffraction is not simply one effect that one can calculate from a formula, and, as 
mentioned above, is instead really all the effects that occur when solving the wave equation 
and that could not be explained by rays, especially those involving apertures, edges, and 
periodic arrays of scattering objects. One might call interference a separate effect, though 
interference is involved all the time in diffractive phenomena. 

All the effects of diffraction are automatically included if we solve the wave equation for the 
situation of interest. In general, however, diffraction effects can be quite difficult to calculate 
exactly because wave equations are difficult to solve exactly when one tries to include 
boundary conditions for objects. One simple principle that can often give a useful first 
approximation to diffractive effects is Huygens’ Principle, which states that one can calculate 
the next wave-front by presuming that each point on the previous wave-front is a source of 
spherically expanding waves. Though not absolutely exact6, it is actually quite an accurate 
principle (especially if we choose to make some minor adjustments to it), and we use it in the 
main text to discuss elementary diffractive effects.  

Incidentally, diffraction should not be confused with refraction which is the bending of light 
rays when they enter materials with different refractive index. Refraction exists both in the 
simple “ray” picture and in the more complete wave picture. Diffraction should also not be 
confused with dispersion. Dispersion is most commonly the different wave velocity seen for 
different wavelengths, frequencies, or colors of waves as a result of wavelength or frequency 
dependence of material properties. A prism shows dispersion because it separates out the 
different colors of light to different angles. Such dispersion can be understood from a ray 
picture of light as coming from the different refractive indices seen by the rays of different 
colors7.  

                                                           
6 Huygens’ principle was originally published in 1690 (a publication date that was substantially delayed 
because Huygens had wanted to translate the work from French to Latin before publishing it). Huygens’ 
principle is not quite correct, because it predicts backwards waves that do not exist. This problem was 
addressed in an ad hoc fashion by Fresnel, and the resulting Huygens-Fresnel theory of diffraction works 
very well for many simple wave problems. A rigorous solution, involving two different kinds of sources 
on the wavefront, is given by Helmholtz’ (and later Kirchhoff’s) integration of the wave equation. More 
recently (D. A. B. Miller, Optics Lett. 16, 1370-1372, (1991)) it has been shown that a different kind of 
single source works very well, restoring Huygens’ original concept. The simple spherical wave is, 
though, a good approximation for small angles if we are only interested in the wave propagation in the 
forward direction. 
7 It is also true that structures made from non-dispersive materials can show dispersion, especially if the 
material is patterned on a scale comparable to the wavelength, as in a diffraction grating, for example; in 
that case diffraction can be viewed as giving rise to dispersion. A full wave picture automatically 
includes all dispersion and diffraction effects, including dispersions other than angular ones, such as 
different phase shifts and time delays for different frequencies or pulse shapes 



 

 

Appendix C  
 
Vector calculus 

In this Appendix we summarize key definitions and relations in vector calculus. Some of these 
(the gradient and the Laplacian in Cartesian coordinates) have already been briefly introduced 
in Appendix A, Section A.6, but we will give a uniform and extended set of definitions here.  

C.1 Vector calculus operators 

Del or nabla operator 
In vector calculus, it is convenient to think of the ∇  operator, known as del or nabla, as 

 
x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂
i j k  (C.1) 

This gives a useful shorthand for writing down the other important vector calculus operators in 
Cartesian coordinates.  

Gradient 
The gradient operator operates on a scalar function ( , , )f x y z  to give a vector whose 
magnitude and direction are the slope or gradient of the scalar function at the point of interest. 
In Cartesian coordinates 

 grad f f ff f
x y z

∂ ∂ ∂
= ∇ = + +

∂ ∂ ∂
i j k  (C.2) 

Laplacian 

The Laplacian operator, also known as del squared, operates on a scalar function, giving a 
scalar result. It occurs in many physical problems, including electromagnetism and quantum 
mechanics. It is written in Cartesian coordinates as 

 
2 2 2

2
2 2 2

f f ff
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 (C.3) 

It is also meaningful to have the operator ∇ ⋅∇ , sometimes also written as 2∇ , operate on a 
vector function or vector field (see below), in which case, in Cartesian coordinates, we have 

 ( )
22 2

2 2 2
yx z

FF F
x y z

∂∂ ∂
∇ ⋅∇ = + +

∂ ∂ ∂
F i j k  (C.4) 
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i.e., it can be thought of as “del squared” operating on each of the vector components 
separately, leaving their vector directions. 

Vector field 
If we can associate a vector quantity F with every point (x, y, z) in space, then we can call F a 
vector field.  

There are many examples of vector fields in physics. Many are associated with the vector 
representing a force. For example, the gravitational field is the force vector (i.e., the magnitude 
and the direction) on a hypothetical mass of one kilogram at any point in space, and the electric 
field E is the force vector on a hypothetical charge of +1 Coulomb. Other examples are 
associated with flow. We can have a velocity vector field v that describes the velocity 
(magnitude and direction) of flow of some fluid, such as water or air. We can have flux fields, 
where flux is generally the “amount” of something,1 such as mass in a fluid, crossing unit area 
per second, where the vector direction of the field is the direction of the flow. A common 
example of a “flux” vector field is electric current density J (A/m2). Another class of examples 
is particle fluxes,2 such as the flux of electrons (number of electrons per unit area per second)) 
or atoms.  

Divergence 

In Cartesian coordinates, the divergence of a vector F is defined as 

 div yx z
FF F

x y z
∂∂ ∂

= ∇ ⋅ = + +
∂ ∂ ∂

F F  (C.5) 

We can visualize this Cartesian version in terms of the flux F of some quantity such as mass or 
charge through a small cuboidal box of sides δx, δy, and δz centered at some point 
( , , )o o ox y z as shown in Fig. C.11. Since F is the vector representing the flow of the quantity 
per unit area, an amount ( / 2, , )x o o oF x x y z y zδ δ δ+  leaves the box on the right. Here we note 
that the area of the right face of the box is y zδ δ . The quantity ( / 2, , )x o o oF x x y z y zδ δ δ+  is 
the component of the flux in the x-direction multiplied by the area perpendicular to the x-
direction. We can also think of this quantity as  

 , , , ,
2 2x o o o o o o yz
x xF x y z y z x y zδ δδ δ δ⎛ ⎞ ⎛ ⎞+ ≡ + ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
F A  (C.6) 

where yzδ A  is a vector whose magnitude is the area of the right surface of the box, and whose 
direction is outwards from the box. The amount arriving into the box on the left face is 
similarly ( / 2, , )x o o oF x x y z y zδ δ δ− , and so the net amount leaving the box through the left or 
right faces is 

                                                           
1 Historically, electric and, especially, magnetic fields are sometimes described in texts as “fluxes”, 
though in fact there is no specific physical quantity that we use for any other purpose that is flowing here. 
Such fields are sometimes visualized with “flux lines”, in which case the number of such lines crossing 
unit area perpendicular to the lines is the magnitude of the field at that point.  
2 Such particle fluxes often use j as the letter to indicate them, though this should not be confused with 
electric current (nor with the unit vector in the z direction). The flux may well be carrying electric 
current, but the particle flux is dealing with numbers not charge. 
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where we are assuming a very small box. We can repeat this analysis for each of the other two 
pairs of faces, and so, adding all three such equations of the form of Eq. (C.7) together, we can 
write for the total amount of flow leaving the small box, per unit volume of the box (i.e., 
dividing by V x y zδ δ δ δ= ) the expression Eq. (C.5) above. 
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Fig. C.11 Illustration of divergence as net flow in and out of a small box.  

We can also write this result in terms of the dot product with the area elements. Note that 
generally we define area vectors as having direction pointing outward to a surface, so the area 
vector for the left wall of the box points in the negative x-direction. Hence the flux entering the 
box through the left wall can be written as ( / 2, , ) yzo o ox x y zδ δ− − ⋅F A . This sign choice 
conveniently allows us to add up all such flux contributions for the six surfaces to obtain the 
same total as we would by adding up the three versions of Eq. (C.7) for the three different 
coordinate directions. We can then write the sum formally as a surface integral, and formally 
take the limit of a small volume to obtain the most general definition of the divergence  

 
0

lim S

V

d

Vδ δ→

⋅
∇ ⋅ ≡ ∫∫ F A

F w  (C.8) 

where in the integral we mean here that we are integrating over the closed surface S that 
bounds the volume δV. In general, the divergence is essentially the total flow out of a very 
small volume round about the point of interest, divided by that volume. 

Note that the result of the divergence of a vector is a scalar quantity.  

A vector field that has zero divergence is sometimes called solenoidal or divergenceless. 
Examples include the magnetic field B, which is divergenceless because there are thought to 
be no magnetic monopoles, and the mass flow of an incompressible fluid (because the fluid 
cannot be compressed, the amount of mass in any small volume cannot be changed, and so the 
amount of mass that leaves the volume must equal the amount that arrives into the volume).  

Gauss’s theorem 

This theorem, also known as the divergence theorem, states that 
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 ( ) .
V S

dV d∇ ⋅ =∫ ∫∫F F Aw  (C.9) 

where S is the surface bounding the volume V, where V is now not necessarily a small volume. 
This theorem means that the total surface flow out of some volume V (and therefore through its 
surface S) is equal to the volume integral of the divergence. Given the definitions above of the 
divergence, it can be visualized in terms of a set of small volumes or “bricks” that make up the 
total volume, with the flows in and out of the adjacent walls of the “bricks” cancelling each 
other, and therefore leaving the total net flow out of the volume depending only on the flow in 
and out of the “last” or outermost surfaces. Hence the addition of all of the divergences for the 
infinitesimal volumes is the same as the surface integral of the flow.  

Continuity equation 

If we have a conserved quantity that can flow, such as mass in a fluid, then it must obey a 
continuity equation, i.e., if the flux of the quantity is j, and the density of the quantity is ρ, then  

 
t
ρ∂

∇ ⋅ = −
∂

j  (C.10) 

This merely states that the amount of the quantity (e.g., mass) that flows out of a small volume 
per unit time must equal the reduction of the amount of the quantity in the small volume.  

Any particle flux field will obey a continuity equation if the particles cannot be created or 
destroyed (i.e., the number of particles is conserved); in this case, ρ will be the particle density 
(number of particles per unit volume). Electrical current densities obey continuity equations 
because charge cannot be created or destroyed, in which case ρ will be the charge density. 

Curl 

In Cartesian coordinates 

 curl y yx xz z
F FF FF F

y z z x x y
∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂⎛ ⎞≡ ∇ × = − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

F F i j k  (C.11) 

or in the determinant short-hand form, which is often easier to remember for curls, 

 

x y z

x y z
F F F

∂ ∂ ∂
∇× =

∂ ∂ ∂

i j k

F  (C.12) 

The curl can be visualized by considering the work done on an object pushed by a force F as 
we move the object round some very small closed path C. This can be illustrated in two 
dimensions (see Fig. C.12). Here we show a closed path made of four straight-line segments 
aligned with the x and y axes. On any given path segment, we can define a path vector whose 
length is the length of the path, and whose direction is along the path in a sense given by a 
chosen direction (here anti-clockwise) round this whole closed path.  

For any given path segment, the work done is given by the dot product δ⋅F s  of the force F 
and the path segment vector δ s . For example, on the horizontal path, the path element vector 
is of length δx and the path element vector is in the +ve x direction, i.e., the path vector can be 
written xδ i . Hence the work done on this path is 
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( , / 2) ( , / 2)o o x o ox y y x F x y y xδ δ δ δ− ⋅ = −F i . We can add the work done on all the other 
paths, noting that the top path is heading in the negative x-direction, and so will have a 
negative sign as we add these up. Similarly the left path is heading in a negative y-direction, 
and so it will have a negative sign in our sum. Hence, for the total work done in moving an 
object round this path, we have 
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which we can rewrite as 

 y xF F
W x y x y

x y
δ δ δ δ δ

∂ ∂
−

∂ ∂
�  (C.14) 

Hence, if we consider the curl now as being a vector perpendicular to the area (i.e., here, the xy 
plane) in the sense given by the right hand rule for the path (here therefore pointing out of the 
paper), and with a length given by the “work” δW done in taking an object round this path, 
dividing finally by the area A x yδ δ δ=  enclosed by the path, we would have the vector 
quantity, here pointing in the z direction, 

 y xF F
x y

∂⎛ ⎞∂
= −⎜ ⎟∂ ∂⎝ ⎠

w k  (C.15) 

We can see now that this is simply the z-direction component of the three-dimensional formula 
for the curl above (Eq. (C.11), consistent with this being the curl of a field that varies only in 
the xy plane. Hence the curl of F is the work done by the “force” F on an object in taking an 
object round a small closed path, divided by the area enclosed by the path, and given a vector 
direction determined by the right hand rule for the path. 
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Fig. C.12 Illustration of the contributions to the work done round a small rectangular path by a 
force F on an object taken round the path shown. 

The most general definition of the curl is in terms of the path integral round a closed path, and 
can be stated 

 ( )
0

ˆ. lim C

A

d

Aδ δ→

⋅
∇× ≡ ∫ F s

F n v  (C.16) 
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where the integral here is round the closed path C that surrounds the area δA, and n̂  is a unit 
vector perpendicular to the area and in the direction given by the right hand rule and the path 
C. 

Stokes theorem 

For a closed path S that is the perimeter of some surface A 

 ( )
C A

d d⋅ = ∇× ⋅∫ ∫∫F s F Av  (C.17) 

Here the symbols C d∫ sv  signify an integral taken along the closed path C that surrounds the 
surface A, with the chain of infinitesimal vectors ds  forming the path. The symbol A d∫∫ A  
similarly indicates a surface integral, in which the infinitesimal tiles dA  stitched together 
make up the whole surface A. The surface need not be flat. The vector direction assigned to the 
tiles is perpendicular to the surface, and in the same sense as the right-hand rule gives as we 
move round the path S, i.e., if we are looking the path S in such a way that going round the 
path corresponds to a clockwise direction, then the sense of the elements dA  is pointing 
outwards from the far side of the surface.  

It can be conceptually useful to visualize the Stokes theorem in terms of the curls as little loops 
that are stitched together, with their adjacent edges cancelling, so that the final sum effect of all 
of them corresponds to only the effect of the final outer edge. 

This theorem is also sometimes known as the Kelvin-Stokes theorem.  

C.2 Spherical polar coordinates 
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Fig. C.13 Coordinate definitions for spherical (r, θ, φ) coordinates 

In spherical polar coordinates, a point in space is defined in terms of its distance r from the 
origin of the coordinate system, and in terms of two angles, θ and φ. We have chosen here to 
show the notation more common in physical science and technology for spherical polar 
coordinates, in which the θ is the zenith angle (the angle from the z axis), and φ is the 
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azimuthal angle (the angle from the x axis, in the x-y plane)3. It is also common to use the 
opposite assignment of θ and φ for the angles. The reader therefore will have to look carefully 
when spherical polar coordinates are being used to see which convention is implied. 

In spherical polar coordinates, we can define orthogonal unit vectors r̂  (in the direction of 
radius outwards from the origin of the coordinate system), θ̂  and φ̂ , where the directions of 
these angular unit vectors can be chosen to be the directions shown by the arrows on the angles 
in Fig. A.5; in this order, they give a right-handed coordinate system. Note that these vectors 
are always orthogonal to one another, but, unlike in Cartesian coordinates, for different points 
in space, these unit vectors have generally different directions. 

Gradient 

 1 1ˆ ˆˆ
sin

f f ff
r r r

θ φ
θ θ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
r  (C.18) 

Laplacian 
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 (C.19) 

Divergence 

 ( ) ( )2
2

1 1 1sin
sin sinr

F
r F F

r r rr
φ

θ θ
θ θ θ φ

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
F  (C.20) 

Curl 
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Volume integral 

The infinitesimal volume element for volume integrals in spherical coordinates is 
2 sinr drd dθ θ φ  and the angular ranges for integration are 0 to π for the angle θ, and 0 to 2π 

for the angle φ. Hence a volume integral over a sphere of radius ro is of the form 

 
2

2

0 0 0

sin
or

r

I r drd d
π π

θ φ

θ θ φ
= = =

= ∫ ∫ ∫  (C.22) 

If there is no other integrand to include in this integral, this integral then correctly evaluates to 
the volume of a sphere of radius ro, which is 3(4 / 3) orπ . 

                                                           
3 To remember which angle is which between zenith and azimuthal, it may be simplest to note that zenith 
generally refers to the direction directly overhead or upwards (here the z axis, as in z for zenith), or in 
common English, the peak or highest point or “best”, and azimuthal angle is simply the other angle. 
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C.3 Cylindrical coordinates 

In cylindrical polar coordinates, a point in space is defined in terms of its projected distance ρ 
in the x-y plane from the origin of the coordinate system, its projected distance from the origin 
in the z direction, and the angle φ of the radius ρ from the x axis, as shown in Fig. C.14. Note 
that ρ here is different from the radius r in spherical polars; ρ is the radius in the plane. For 
simplicity here, we use the same angle convention in cylindrical coordinates (ρ, φ, z) as for 
spherical ones. Our cylindrical coordinate formulae below are therefore expressed using φ for 
the azimuthal angle.4  
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Fig. C.14 Coordinate definitions for cylindrical (ρ, φ, z) coordinates 

In cylindrical polar coordinates, we can define orthogonal unit vectors ρ̂  (in the direction of 
radius outwards in the x-y plane from the origin of the coordinate system), φ̂ , where the 
direction of this angular unit vector can be chosen to be the direction of the arrow on this angle 
in Fig. C.14, and ẑ , in the direction of the z axis;5 in this order, they give a right-handed 
system. Note that these vectors are always orthogonal to one another, but, unlike in Cartesian 
coordinates, for different points in space, the ρ̂  and φ̂  unit vectors have generally different 
directions. 

Gradient 

 1 ˆˆ ˆf f ff
z

ρ φ
ρ ρ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
z  (C.23) 

                                                           
4 It is more common in cylindrical coordinates to use θ for the (azimuthal) angle. Since there is only one 
angle involved in cylindrical coordinates, there is no confusion caused by the use of φ instead of θ for 
cylindrical coordinates, however, and it may be less confusing here in remembering the spherical 
coordinates to use φ for the azimuthal angle in both cases. 
5 We will use ẑ  here rather than k for the unit vector in the z direction because we are also using “hatted” 
unit vectors for the other directions. 
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Laplacian 
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Divergence 
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Curl 
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Volume integral 

The infinitesimal volume element for volume integrals in cylindrical coordinates is rdrd dzφ  
and the angular range for integration is from 0 to 2π for the angle φ. Hence a volume integral 
over a cylinder of radius ro and height zo is of the form 
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0 0 0

o or z

r z

I rdrd dz
π

φ

φ
= = =

= ∫ ∫ ∫  (C.27) 

If there is no other integrand to include in this integral, this integral then correctly evaluates to 
the volume of a cylinder of radius ro and height zo, which is 2

o or zπ . 

C.4 Vector calculus identities 

The following are important vector identities often used in electricity and magnetism and 
elsewhere 

 ( ) 0∇ ⋅ ∇× =F  (C.28) 

 0f∇×∇ =  (C.29) 

The above identity Eq. (C.29) means, incidentally, that any field that can be written as f= ∇F , 
that is, it can be derived from the gradient of a scalar function ( , , )f x y z  of position only (a 
scalar potential) has a curl of zero and is therefore by definition irrotational, which in turn 
means that the integral of the field round a closed path is zero, which in turn means that the 
field is also conservative. 

 ( ) ( ) ( )∇× ∇× = ∇ ∇ ⋅ − ∇ ⋅∇F F F  (C.30) 

The above identity Eq. (C.30) is used in the derivation of wave equations in electromagnetism. 

 ( ) ( ) ( )∇ ⋅ × = − ⋅ ∇ × + ⋅ ∇ ×F G F G G F  (C.31) 
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The above identity Eq. (C.31) is used in the derivation of the Poynting vector in 
electromagnetism. 

Another useful algebraic identity is 

 ( )
2 2 2 2∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

Ψ∇ Ψ − Ψ ∇ Ψ = Ψ∇ Ψ + ∇Ψ∇Ψ − ∇Ψ∇Ψ − Ψ ∇ Ψ

= ∇ ⋅ Ψ∇Ψ − Ψ ∇Ψ
 (C.32) 

 



 

 

Appendix D  
 
Maxwell’s equations and 
electromagnetism 

In this Section, we summarize some of the more advanced concepts in electromagnetism that 
are needed at various points in the book. 

D.1 Polarization of a material 

When we apply an electric field to a material, we pull on the electrons, and, in the opposite 
direction, on the positively charged nuclei of the atoms. The resulting movement1 of the 
electrons and nuclei in response to this electric field is the polarization of the material2.  

To be more precise in the definition of polarization, we should first discuss the idea of dipole 
moment. A typical way in which we view a dipole moment is to imagine that we have a pair of 
equal and opposite charges, of value +q and –q. We can separate them by some distance d, for 
example in the z direction, pushing the +q charge to larger (or more positive) z and the –q 
charge to smaller (or more negative) z. In general, any such pair of equal and opposite charges 
separated by some distance is called a dipole. Such a separation is exactly what we would get 
if we applied an electric field that pointed in the +ve z direction. Then we can say that we have 
a dipole moment, of magnitude qdμ = , pointed in the +ve z direction. In general, if the 
positive charge is displaced from the negative charge by a vector amount r, then the dipole 
moment is 

 q=μ r  (D.1) 

Note that the dipole moment μ is a vector quantity. 

                                                           
1 It is also possible to have a “built-in” polarization in a material that does not result from any applied 
external field. This happens in, for example, electrets that can hold a polarization at least semi-
permanently (electrets are commonly used in inexpensive microphones), ferroelectric materials that can 
have a permanent polarization, and in the spontaneous polarization of materials with specific kinds of 
crystal symmetries, such as GaN in its wurtzite crystal phase. 
2 We should state explicitly here that the term “polarization” in electromagnetism unfortunately also has a 
second quite different meaning, which is the vector direction of the electric (or sometimes magnetic) field 
in an electromagnetic wave. We will discuss that second meaning later in this Appendix. We can 
distinguish the two if necessary by talking about the polarization of the material in the first case, and the 
polarization of the wave in the second case. 
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Incidentally, though we do typically view a dipole moment in terms of equal and opposite 
charges, it is not actually necessary to have two kinds of charge in order to have a dipole 
moment. We could view the movement of a single charge of value q by a vector amount r as 
corresponding to the addition of a dipole; we can put the –q end of the dipole on top of the 
original position of the charge, thus cancelling the original charge, and the +q end of the dipole 
now sits at the new position of the charge. As far as the electrostatics are concerned, there is no 
difference between moving the charge q by r or creating the dipole q=μ r . 

In an actual material, we do not have just two simple point charges. Instead, we have many 
small elements of charge, possibly a continuous distribution in fact, each element of which is 
being moved as we apply the electric field. Often we do not even know exactly how the charge 
is distributed to start with in the material. All we really know is that, at least when looked at on 
some scale well above the size of the atoms, there is some dipole moment induced when we 
apply an electric field. One of the very convenient aspects about dipole moments is that we can 
add them as vectors to get one larger effective dipole moment. In fact, at our macroscopic 
scale, we really have no idea what all the small dipole moments are – all we see is one 
effective dipole moment for some small volume. For some volume large compared to the 
atoms, but small compared to macroscopic dimensions, we can simply consider this vector 
sum of dipole moments as being the effective dipole moment of that volume. It is then useful 
to define another quantity, which is the dipole moment per unit volume, and that vector 
quantity is called the polarization P.  

Often, especially for small applied electric fields E, the polarization P is approximately 
proportional to the electric field, and then we can define a proportionality constant χ (the 
Greek letter “chi”) called the susceptibility.3 Formally we write 

 oε χ=P E  (D.2) 

This notation is also useful when we consider non-linear materials, in which case we may 
expand χ in a power series. The constant εo is known as the permittivity of free space or the 
electric constant. It has no real physical meaning, and is there for historical reasons associated 
with the definition of units. 

In electromagnetism, another field D, the electric displacement, is defined as 

 oε= +D E P  (D.3) 

This definition leads to the definition of  the permittivity, ε, through the relation 

 r oε ε ε= ≡D E E  (D.4) 

where εr is called the relative permittivity. We see from these definitions that 

 1rε χ= +  (D.5) 

Both εr and χ are dimensionless quantities.  

D.2 Maxwell’s equations 

                                                           
3 In general, the polarization P need not be in the same direction as the electric field E that creates it. 
Such a situation can arise in materials with particular symmetries. In that case, χ has to be considered as a 
tensor rather than a scalar, though we will not have to consider such situations in this book.  
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Maxwell’s equations unify the electric and magnetic fields, and are commonly written as 

 ρ∇ ⋅ =D  (D.6) 

 0∇ ⋅ =B  (D.7) 

 
t

∂
∇× = −

∂
BE  (D.8) 

 
t

∂
∇× = +

∂
DH J  (D.9) 

where  

D is the displacement or electric displacement 

B is the magnetic flux density or magnetic induction or sometimes just the magnetic field 

E is the electric field 

H is the magnetic field 

ρ is the free electric charge density 

J is the free current density 

The fact that there is a zero on the right hand side of Eq. (D.7) expresses the fact that, as far as 
we know, there are no magnetic monopoles. 

The relation between E and D is discussed above (Eqs. (D.3) and (D.4)), where we also 
introduced the polarization P. Typically, polarization is viewed as the separation of bound 
charges, and currents are viewed as the motions of free charges. This distinction between 
bound and free charge often is practically useful, but it is ultimately arbitrary. We can use 
either current or polarization to describe the response of the material in fact, and this choice is 
a matter of taste. For example, the movement of charge to create a polarization is a current, and 
we can describe that current if we wish as a rate of change of polarization.  

We can also in general write the relation between B and H as 

 ( )oμ= +B H M  (D.10) 

where M is the magnetization. The magnetization is the magnetic response of the material to 
the applied magnetic field H.4 μo is the magnetic constant (or the permeability of free space). 
Just like the electric constant above, it has no real physical meaning, and is present for 
historical reasons of the definition of units. Similarly to the relation between D and E, we can 
define a permeability μ and a relative permeability μr through the relations 

 r oμ μ μ= ≡B H H  (D.11) 

                                                           
4 Some authors introduce a magnetic current density, just as J is an electric current density, to make the 
third and fourth Maxwell equations have the same form. The magnetic current density is not an 
unphysical concept (are not needed magnetic monopoles to have magnetic current), but just as we could 
choose to use either polarization or electric current or both in the electric case, so we can choose to use 
magnetization or magnetic current or both in the magnetic case. 
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Maxwell’s equations can also be written in integral forms using Gauss’s theorem and Stokes 
theorem. 

D.3 Maxwell’s equations in free space 

In free space, where there is no material to give a charge, a current, a polarization or a 
magnetization, we can write Maxwell’s equations as 

 0∇ ⋅ =E  (D.12) 

 0∇ ⋅ =B  (D.13) 
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∇× = −

∂
BE  (D.14) 

 o o t
ε μ ∂

∇× =
∂
EB  (D.15) 

In a (non-magnetic) dielectric with no free charge and no free currents, we can simply replace 
εo in Eq. (D.15) with r oε ε ε= .  

D.4 Electromagnetic wave equation in free space 

Using the identity 

 ( ) ( ) ( )∇× ∇× = ∇ ∇ ⋅ − ∇ ⋅∇F F F  (C.30) 

we have, from Eqs. (D.14) and (D.15), 

 

( ) ( )
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2o o

t

t
ε μ

∂
∇×∇× = − ∇×

∂
∂

= −
∂

= ∇ ∇ ⋅ − ∇ ⋅∇

E B

E

E E

 (D.16) 

Using Eq. (D.12), and writing 2∇ ⋅∇ ≡ ∇  (which is easy to see in Cartesian coordinates), we 
have the wave equation 

 
2

2
2 0o o t

ε μ ∂
∇ − =

∂
EE  (D.17) 

and we can derive a similar equation for B. We recognize this as being of the same form as 
wave equations we have studied previously (in Appendices A and B), and hence we see that 
the quantity  

 21/o o cε μ ≡  (D.18) 

where c is the velocity of light in free space.  

If we consider a non-magnetic isotropic dielectric with no free charge and no free currents, we 
can derive a similar wave equation, but with r o oε ε μ  instead of o oε μ  in Eq. (D.17). Hence the 
wave propagation velocity will now be  
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r o o

cv
nε ε μ

= =  (D.19) 

where 

  rn ε=  (D.20) 

is the refractive index. 

D.5 Electromagnetic plane waves 

A common simple situation is where we have a plane wave, i.e., one of the form 

 ( )expo i tω= ⋅ −⎡ ⎤⎣ ⎦E E k r  (D.21) 

for some constant vector Eo. (When representing real quantities by a complex exponential, the 
vector Eo may have a complex amplitude so it can represent different phases of the wave. At 
the end, we take the real part of the vector.) For a wave such as this, we can deduce directly by 
“following” some peak (e.g., in the real part) of the function in space as we change time, that 
the velocity is of this wave is of magnitude  

 v
k
ω

=  (D.22) 

and is in the direction of k. We can also write a similar expression for B.  

For the purposes of discussion, and without loss of generality, we can choose Cartesian 
coordinates so the direction of k is the z direction, and kz⋅ ≡k r . Note that nothing is changing 
in the x and y directions, and in particular any derivatives / x∂ ∂  and / y∂ ∂  will give zero 
results. Also, note that now / z ik∂ ∂ ≡E E . Now when we consider ∇× E , we therefore have 

 

ˆ ˆ ˆ ˆ ˆ ˆ
0 0

x y z
x y z

ik i
x y z

E E E
E E E

∂ ∂ ∂
∇× = ≡ ≡ ×

∂ ∂ ∂

x y z x y z
E k E  (D.23) 

and similarly i∇× = ×B k B . We note also that / t iω∂ ∂ ≡ −B B  and / t iω∂ ∂ ≡ −E E . Hence, 
from Eq. (D.14) we have 

 i iω× =k E B  (D.24) 

which means, from the basic properties of the vector cross-product, that the magnetic field B is 
perpendicular to the direction of propagation, and to the electric field. Similarly, from Eq. 
(D.15), 

 o oi iωε μ× = −k B E  (D.25) 

so the electric field is also perpendicular to the direction of propagation. Hence, for a plane 
electromagnetic wave in free space, the electric and magnetic fields are perpendicular to the 
direction of propagation and to each other. (The same results hold for waves in a uniform 
isotropic dielectric medium.) 
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D.6 Polarization of a wave 

A simple situation for a plane electromagnetic wave is where the electric field always is in one 
specific direction, for example, the x direction for a wave propagating in the z direction. We 
would then say that the wave is linearly polarized in the x direction.5 Any possible state of 
polarization of a plane wave can be described by the component of the electric field in the x 
direction and that in the y direction. If the two polarization components have the same phase, 
then the wave is linearly polarized, but at some angle relative to the x direction. It is also 
possible for the two components x and y to have different phases, in which case the wave is in 
general elliptically polarized. If the x and y components have the same amplitude, but differ in 
phase by 90º, then the wave is circularly polarized. There are two different senses of circular 
polarization (left or right circularly polarized) depending on which component is 90º ahead of 
the other. The two different circular polarizations can also be used to describe any possible 
state of polarization of a plane wave.  (See Section 14.1 for further discussion of polarizations.) 

D.7 Energy density 

If we imagine that we pull some charges apart from one another, because of the force between 
the charges, we will have changed the energy of the system overall. When we stretch a spring, 
we consider the energy to be stored in the spring, and we similarly consider that the energy 
associated with separating or bringing together charges is stored in the electric field. We can 
take a similar view for the energies associated with bringing magnets together, or of turning on 
and off electromagnets. We can construct a consistent picture of these various energies, at least 
for isotropic materials, if we assign energy densities6  

 21
2EU Eε=  (D.26) 

to the electric field and  

 21
2HU Hμ=  (D.27) 

to the magnetic field. 

D.8 Energy flow 

To understand energy flow in electromagnetic fields, we consider the so-called Poynting 
vector  

 = ×S E H  (D.28) 

                                                           
5 If we do not specify whether we are considering electric or magnetic field direction in discussing 
polarization, then we are discussing electric fields. We can also discuss magnetic field polarization if we 
wish, however, and in some more complicated situations (e.g., in some waveguides) only one or other of 
the electric or magnetic fields may have a definite polarization perpendicular to the propagation direction.  
6 See, for example, J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941) pp 104 – 
125, or P. Lorrain and D. Corson, Electromagnetic Fields and Waves, Second Edition (Freeman, San 
Francisco, 1970) pp 72 – 80 and pp 351-354 
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We consider the divergence of this vector, using the identity 
( ) ( ) ( )∇ ⋅ × = − ⋅ ∇× + ⋅ ∇ ×F G F G G F  (Eq. (C.31)). Hence, assuming isotropic materials with 

no free currents, and using equations (D.4), (D.8), (D.9), (D.11) 

 

( ) ( )

2 21 1
2 2

t t

E H
t

ε μ

ε μ

∇ ⋅ = − ⋅ ∇× + ⋅ ∇×

∂ ∂
= − ⋅ − ⋅

∂ ∂
∂ ⎛ ⎞= − +⎜ ⎟∂ ⎝ ⎠

S E H H E
E HE H  (D.29) 

The quantity on the right is just minus the rate of change of energy density. Hence, with our 
usual interpretation of the divergence, the vector S represents the flow of energy per unit area 
in the direction of S. 

This vector can be used to deduce the relation between electromagnetic field amplitudes and 
intensity (power per unit area) in electromagnetic waves. Suppose we have a monochromatic 
plane wave, linearly polarized in the x direction, and propagating in the z direction in a non-
magnetic dielectric with no free currents. Then choosing a cosine form (the actual phase of the 
wave does not matter in the end for this calculation), we have 

 ( )ˆ cosoE kz tω= −E x  (D.30) 

Then 

 ( )ˆ sinoE k kz tω∇× = − −E y  (D.31) 

We already know from the discussion of plane waves above that the B field must be polarized 
in the y direction and that it has the same phase as the E field, i.e., it must be of the form 

ˆ cos( )oB kz tω−y . Hence, using the Maxwell equation (D.8), we therefore have 

 ( ) ( )ˆ ˆcos sino oB kz t B kz t
t t

ω ω ω∂ ∂
∇× = − = − − = − −

∂ ∂
BE y y  (D.32) 

Equating our two results Eqs. (D.31) and (D.32) for ∇× E , and using our two expressions for 
v, Eqs. (D.19) and (D.22), so we can substitute / /k c nω = , we have 

 o o
nB E
c

=  (D.33) 

Hence, with oμ=B H  by definition in our non-magnetic medium, and using (D.18) to get rid 
of the oμ  in the expression, the Poynting vector becomes 

 ( )2 2ˆ sino oncE kz tε ω= −S z  (D.34) 

which, as we would expect, corresponds to energy flowing in the z direction. We can time-
average this over a cycle (the average of the sin2 term is ½), and finally write the intensity 
(power per unit area) flowing across a surface perpendicular to the z direction as 

 21
2 o oI nc Eε=  (D.35) 

This expression has a simple physical interpretation. The time averaged energy density in the 
electric field is 2(1/ 2) (1/ 2) oEε× , and there is an exactly equal amount of energy in the 
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magnetic field. Hence, since 2
r o onε ε ε ε= = , if we view this energy density as moving 

forward at a velocity /c n , we get the intensity of Eq. (D.35). 

We have derived the expression (D.35) presuming an electric field of the form 

 ( ) ( )( )ˆ cos Re expo oE kz t E i kz tω ω= − ≡ −⎡ ⎤⎣ ⎦E x  (D.36) 

which is a common approach in electrical engineering. Sometimes, especially in physics texts, 
an equivalent approach is to presume a field of the form 

 ( ) ( ){ } ( )ˆ ˆexp exp cos
2

o
o

E
i kz t i kz t E kz tω ω ω= − + − − ≡ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦E x x  (D.37) 

or more generally, allowing for some phase angle in the field by allowing oE  to be a complex 
constant,  
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≡ − +⎡ ⎤⎣ ⎦

E x

x

 (D.38) 

where the notation “c.c.” stands for “complex conjugate”. The expression for intensity remains 
unchanged, however. 

D.9 Modes 

One concept that appears at various points in this book is the idea of “modes”. This concept is 
one that arises in many different parts of engineering and physics, though it can be difficult to 
find a clear and broad definition in textbooks.7 We need the idea here especially when 
discussing electromagnetic fields and bosons, so we give a brief discussion of it here. 

Modes occur throughout classical physics. Perhaps the most common use there is in describing 
oscillations. A tightly stretched string, such as a violin or guitar string, can oscillate in a way 
that gives a stable, standing wave pattern (at least in the idealized case where we neglect any 
losses in the system). The different possible standing waves each have a sinusoidal form in 
space (exactly like the solutions of the particle in a box problem in Chapter 2 in this book).  

A characteristic of such a standing wave solution is that all points on the string are oscillating 
at the same frequency. Of course, we know mathematically from Chapter 2 that such a 
problem  is an eigenvalue problem. The standing waves are the eigenfunctions, and the various 
corresponding frequencies are related to the eigenvalues. (It is often the square of the 
frequency that is the actual eigenvalue in such classical oscillator problems. ) 

These different distinct ways of oscillating are called “modes” in such classical oscillating 
systems, or sometimes more specifically “normal modes”. The term “normal” here can be 
taken to refer to the fact that these modes can be mathematically orthogonal functions. 
Mechanical systems of many kinds have such oscillating modes (at least when we idealize 

                                                           
7 Many well-trained scientists and engineers, when asked, will say that they understand what a mode is, 
but will be unable to define the idea of modes, and will also be unable to remember where they learned 
the idea! 
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them to be loss-less oscillators with no energy dissipation). Examples include musical 
instruments that give notes of definite pitch or frequency, mechanical objects like girders and 
bridges, and all sorts of combinations of masses and springs. The vibrations of atoms in solids 
can also be described this way. Specifically, atoms in crystalline solids show a set of (normal) 
modes of oscillation that are known as the phonon modes of the crystal. These phonon modes 
themselves are typically calculated as the results of a classical model based on masses 
connected by springs. So far then, modes (of oscillation) are distinct (actually mathematically 
orthogonal) ways in which a system can oscillate in which each point in the system is 
oscillating at the same frequency.  

Modes occur in one other important classical context, which are modes of propagation of 
waves. Such a propagation mode can be a stable shape in which the wave propagates, such as 
in the modes of a waveguide. There, waves in the form of such a mode of a given waveguide 
will retain exactly the same cross-sectional shape as they move down the waveguide. Specific 
examples of such propagating modes include the modes of glass optical fibers and of metallic 
microwave transmission lines and hollow waveguides (at least if we idealize these waveguides 
to be loss-less). The underlying mathematics of such modes is similar to the oscillating modes, 
but this time the eigenvalue is a “propagation constant” rather than a frequency, and the 
eigenfunction is the cross-sectional shape of the wave. (Typically, such a mode will also be 
associated with a specific frequency, though there can be many different propagating modes, 
with different propagation constants, for a given frequency.) 

We can see from the above discussion that the common description that underlies the modes 
we have discussed is that they can be described as eigen problems. We could choose to make 
the following definition 

A mode is an eigenfunction of a Hermitian operator describing a linear physical system. 

Mathematically, we could write, using Dirac notation merely as a way of writing linear 
algebra, and not implying specifically any quantum mechanical aspect, 

 Â ψ λ ψ=  (D.39) 

Here Â  is the Hermitian operator describing the physical system, λ is an eigenvalue and ψ  
is a corresponding eigenfunction. (The use of λ as the eigenvalue is very common in 
mathematical texts, and should not be confused with the use in physics to represent the 
wavelength.) More commonly in mathematical texts such an equation will be written  

 Aψ λψ=  (D.40) 

Because the operator is Hermitian, the resulting modes have the very useful properties that 
they are orthogonal, they are complete, and they have real eigenvalues. Hence they are very 
useful as basis sets.  

As we come in this book to deal with quantization of the electromagnetic field in Chapter 15, 
we presume that the classical electromagnetic problem of the relevant modes has already been 
solved for the situation of interest. We will not go into such solutions here. Such problems are 
solved in depth elsewhere.8 

                                                           
8 See, e.g., A. Yariv, Quantum Electronics (2nd Edition) (Wiley, New York, 1975) for an introductory 
discussion of optical waveguide and laser resonator modes.  
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The definition can be generalized somewhat from the above,9 and this generalized definition 
covers nearly all uses of the idea of modes.10    

 

                                                           
9 Slightly more generally, modes can be the solutions of the generalized eigenvalue equation, of the form 
A Bψ λ ψ= , where A is Hermitian and B is an operator also. If B is a positive operator, i.e., one for which 

all of the eigenvalues are real and > 0, then this generalized problem can always be recast in the form of a 
simple eigenvalue equation again. In that case, we can see that, for example in the representation in 
which B is diagonal, we can easily define another diagonal operator B such that B B B=  - the 
diagonal elements of B  are just the square roots of the eigenvalues of B – and also a diagonal  inverse 
operator ( ) 1B −  with diagonal elements that are the reciprocals of the square roots of the eigenvalues. 
Simple algebra then shows that the equation A Bψ λ ψ= can be rewritten as Cφ λφ=  where Bφ ψ=  
and ( ) ( )1 1C B A B− −= , and C is also Hermitian (as is easily proved, since B, B , and ( ) 1B −  are 
all Hermitian). Such generalized eigen equations often occur when there is some non-uniformity in the 
physical problem. For example, the normal modes of a pair of different masses on springs have this kind 
of equation, and an electromagnetic problem with a spatially varying dielectric constant, such as in 
waveguides, or in photonic crystal or other dielectric photonic nanostructures, can also have this form. 
See also G. Strang, Linear Algebra and Its Applications (3rd Edition)  (Saunders/Harcourt Brace 
Jovanovich, New York, 1988), pp 343 – 345. 
10 In situations with loss, such as a lossy waveguide or a damped oscillator, the operator describing such a 
system, though linear, is typically not Hermitian. In that case, the eigenfunctions may not be orthogonal. 
Provided the loss is not too strong, however, the modes may well still be nearly orthogonal, and as such 
they may still be useful for approximate results. For example, the modes of a guitar string are lossy, 
because sound is radiated from them if for no other reason. Nonetheless, the concept of the modes of the 
string is still a useful one, mathematically and conceptually.  



 

 

Appendix E  
 
Perturbing Hamiltonian for optical 
absorption 

Here we will explain the origin of the relation 

 ˆ ˆ( , )p
o

eH t
m

≅ ⋅r A p  (E.1) 

for the perturbing Hamiltonian when we have an electromagnetic field, described by the vector 
potential A, interacting with an electron. There are four stages to this derivation. First we need 
to write the classical Hamiltonian for this interaction, and show why it is correct classically. 
This Hamiltonian is, for a particle of charge e, 

 ( )21
2 o

H e e
m

φ= − +p A  (E.2) 

Second, we have to change this classical Hamiltonian into a quantum mechanical one. Third, 
we have to make a choice (the choice of the Coulomb gauge in the vector potential). Fourth, 
and finally, we have to make an approximation (the neglect of terms ~ A2). 

E.1 Justification of the classical Hamiltonian  

The justification of the classical Hamiltonian comes from classical mechanics, and from the 
Lorentz force from elementary electromagnetism, which, for a charge of e  traveling with 
velocity v, is 

 e e= + ×F E v B  (E.3) 

To proceed, we need first to note or define of the relation between E and B and scalar (φ) and 
vector (A) potentials. From the Maxwell equation ∇ ⋅B , we know we can choose to write, for 
some vector function A,  

 = ∇×B A  (E.4) 

since, for any vector function A (with continuous derivatives), ( ) 0∇ ⋅ ∇× =A . From the 
Maxwell equation ( )/ t∇ × = − ∂ ∂E B , we have 

 
t

∂⎛ ⎞∇× = −∇×⎜ ⎟∂⎝ ⎠

AE  (E.5) 

or, equivalently,  
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 0
t

∂⎛ ⎞∇× + =⎜ ⎟∂⎝ ⎠

AE  (E.6) 

If the curl of some vector function is zero, it must be possible to express it as the gradient of a 
scalar function, φ. Hence we obtain 

 
t

φ∂
= − − ∇

∂
AE  (E.7) 

Hence we have shown that E and B can be expressed in terms of scalar (φ) and vector (A) 
potentials. (We will show below that φ can be identified with the normal scalar electrostatic 
potential.) 

Given the Lorentz force and these two definitions, Eqs. (E.4) and (E.7), there are at least two 
ways of deriving the Hamiltonian Eq. (E.2) . One argument from Lagrangian classical 
mechanics (see, e.g., Leech1) justifies the replacement of the momentum p by the “generalized 
momentum” e−p A . The second (see, e.g., Haken2, who gives a relatively complete proof), 
formally shows the consistency through Hamiltonian classical mechanics. We will not repeat 
these arguments here, but the reader should understand that Eqs. (E.3), (E.4), and (E.7) are all 
the additional information required to justify this classical Hamiltonian. 

E.2 Quantum mechanical Hamiltonian 

The transition to quantum mechanics can be made by replacing the classical momentum p with 
the operator i− ∇= . We also now add any additional potential energy terms, so we have the 
potential energy V instead of the purely electrostatic potential eφ. This form, leaving A as a 
normal vector quantity, is known as the semiclassical treatment of radiation; it is also possible 
to quantize the radiation field as well at this point, which would lead to a theory that would of 
itself predict spontaneous emission properly, for example, though we will not take that path 
here. The Hamiltonian therefore becomes 

 ( )21ˆ
2

H i e V
m

= − ∇ − +A=  (E.8) 

where we note now that this Hamiltonian is an operator rather than a scalar quantity. As 
always, this transition from classical mechanics to quantum mechanics cannot be proved in 
any formal sense; the justification is that it works. 

Now we can “multiply out” this Hamiltonian. We have carefully to retain the order of all 
“multiplications” because we are dealing with operators, not scalars, and operators do not 
necessarily commute (i.e., the order of operators matters). We obtain 
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i e e V
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= − ∇ − ⋅ − ∇ − +

−
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A A

A A A

= =

= =
 (E.9)  

                                                           
1 J. W. Leech, Classical Mechanics (Methuen, 1965) 
2 H. Haken, Light (Vol. 1), (North-Holland, Amsterdam, 1981) 
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The term in ∇ ⋅ A  requires some care. Remember that, in any use of this Hamiltonian operator, 
it is operating on some wavefunction ψ, i.e., it occurs in the form Ĥψ . Therefore, this 
particular term occurs in the form ( )φ∇ ⋅ A . But we can rewrite this as 

 ( ) [ ]ψ ψ ψ∇ ⋅ = ∇ ⋅ + ⋅∇A A A  (E.10) 

where we have used square brackets to make a distinction that [ ]∇ ⋅ A  is simply a number or 
an ordinary function, not something in which the gradient or divergence operator operates on 
anything to the right. Hence, from Eq. (E.9) and Eq. (E.10), we obtain 

 [ ]
2

2ˆ ˆ
2 2o

o o o

i e i e eH H
m m m

= + ⋅∇ + ∇ ⋅ +A A A= =  (E.11) 

where ˆ
oH  is the “unperturbed” Hamiltonian, i.e., the Hamiltonian for 0=A , i.e.,  

 
2

2

2o
o

H V
m

= − ∇ +
=  (E.12) 

E.3 Choice of gauge 

Though the relations Eq. (E.4) and Eq. (E.7) uniquely determine the fields B and E from the 
potentials A and φ, they are not sufficient to specify the potentials uniquely; this lack of 
uniqueness goes beyond simply adding constant vectors or numbers to these potentials (though 
obviously we can do that because the potentials only appear in derivative forms in these field 
equations). In particular, we can choose new potentials 

 new old ξ= − ∇A A  (E.13) 

 new old t
ξφ φ ∂

= +
∂

 (E.14) 

where ξ is any scalar function (with continuous derivatives) that we choose. (Choosing this 
function is known, for historical reasons, as choosing the gauge.) The new potentials Anew and 
φnew give the same fields E and B as the old potentials Aold and φold, as is easily checked by 
substitution into Eqs. (E.4) and (E.7) (note that ( ) 0ξ∇ × ∇ =  for all ξ ). Note that, in 
particular,  

 2
new old ξ∇ ⋅ = ∇ ⋅ − ∇A A  (E.15) 

which means we can set ∇ ⋅ A  to any value or function we want by appropriate choice of 
gauge. 

The most common choice of gauge is the so-called Coulomb gauge, in which  

 0∇ ⋅ =A  (E.16) 

With this choice, starting from the Maxwell equation / oρ ε∇ ⋅ =E , where ρ is the charge 
density and εo is the permittivity of free space, we obtain, using  

 ( )2 2 2

ot t
ρφ φ φ
ε

∂ ∂⎛ ⎞∇ ⋅ = −∇ ⋅ − ∇ = − ∇ ⋅ − ∇ = −∇ =⎜ ⎟∂ ∂⎝ ⎠

AE A   (E.17) 
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i.e., we then have that the scalar potential is the one that solves Poisson’s equation, and it can 
therefore be identified with the electrostatic potential. This choice of the gauge is the one we 
want; indeed, we have arguably already made this choice when we subsumed φ into the 
potential V in Eq. (E.8), since we intend V to be only a function of position. 

Note that, if we choose to define a monochromatic electromagnetic field at frequency ω 
entirely in terms of the vector potential A, which we sometimes do in calculations because of 
this ˆ⋅A p  Hamiltonian, then the resulting magnitude of the electric field is, from Eq. (E.7), 

ω=E A , which we can substitute in expressions for intensity in terms of electric field. 

E.4 Approximation to linear system 

We will only be interested here in the linear optical properties of the system; we can therefore 
choose to consider only small amplitudes of A, neglecting terms in A2. Hence, with this 
approximation, and with the Coulomb gauge, we can rewrite Eq. (E.11) as 

 ˆ ˆ
o

o

i eH H
m

= + ⋅∇A=  (E.18) 

or, formally defining 

 ˆ ˆ
o pH H H= +  (E.19) 

and substituting ˆ i= − ∇p = , we obtain the expression Eq. (E.1). 



 

 

Appendix F  
 
Early history of quantum mechanics 

The essential aspects of the quantum mechanics introduced in the first half of this book mostly 
come from the conceptual development of quantum mechanics from ~1900 to the early 1930’s. 
The following is a very brief (and substantially incomplete) chronology of some of the most 
cited early development. Of course, the whole history is much richer than this, and is worthy of 
a much deeper treatment. 

1900  Max Planck postulates that the energy in light comes in quanta of size hν, where h is 
Planck’s constant. This solves a famous problem of classical physics, the “ultraviolet 
catastrophe”, in which otherwise the thermal distribution of energy in light should keep 
on increasing without limit at ever shorter wavelengths. 

1905  Albert Einstein postulates the photon to explain the photoelectric effect. This now 
clearly introduces the concept of wave-particle duality for light. 

1913  Neils Bohr proposes the quantization of angular momentum, which gives the Bohr 
model of the hydrogen atom that, especially when further developed by Sommerfeld in 
1916 and by Debye, successfully explains major features of the hydrogen atom’s 
energy levels and spectra, though it leaves other aspects unexplained, especially why it 
is that the orbiting electrons of this model are not continuously emitting radiation. 

1922  Otto Stern and Walther Gerlach in their experiment show the quantized nature of 
electron spin, and additionally expose the key difficulty of the measurement problem in 
quantum mechanics. 

1924  Louis de Broglie proposes his hypothesis that the wavelength associated with a 
quantum mechanical particle is /h pλ =  where p is the particle momentum. 

1925  Werner Heisenberg proposes matrix mechanics as a mathematical basis for quantum 
mechanics. 

1926  Erwin Schrödinger proposes his wave equation, which explains hydrogen atom 
structure. (After some active debate, Schrödinger subsequently proves the Heisenberg 
and Schrödinger pictures are equivalent.)  

1927  Werner Heisenberg proposes the uncertainty principle. 

1927  Clinton Davisson and Lester Germer perform an experiment that confirms the wave 
nature of the electron and de Broglie’s hypothesis. 

1928  Paul Dirac gives the first solution of quantum mechanics consistent with special 
relativity, explaining spin.  
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1932  John von Neumann publishes a book on the mathematics of quantum mechanics that 
gives firm mathematical foundations to the subject. 

 

 

 



 

 

Appendix G  
 
Some useful mathematical 
formulae 

This Appendix lists many of the more useful mathematical formulae for quantum mechanical 
problems. For convenience, we have also collected here various of the less common formulae 
that are introduced in the book. 

G.1 Elementary mathematical expressions 

Quadratic equations 

 ( )( )2 2a b a b a b− = + −  (G.1) 

The solutions to the general quadratic equation 

 2 0ax bx c+ + =  (G.2) 

are 

 
2 4

2
b b acx

a
− ± −

=  (G.3) 

Taylor and Maclaurin series (power series expansion) 

The Taylor series  

 ( ) ( ) ( ) ( ) ( )2 2

21! 2! !

n n

n
a a a

x a x a x adf d f d ff x f a
dx ndx dx

− − −
= + + + + +… …  (G.4) 

gives a useful way of approximating a function near to some specific point x a= , giving a 
power series expansion in ( )nx a−  for the function near that point. For sufficiently small 
departures from the point (i.e., sufficiently small x a− ), we can retain just the first few (often 
just the first two) terms in the series. The largest n for which we retain the term in the above 
series would be the order of the power series approximation, so retaining just the first two 
terms above would give a first-order approximation, for example. 

The Maclaurin1 series 

                                                           
1 The distinguished Scottish mathematician, Colin Maclaurin, also took a prominent part in the ultimately 
unsuccessful defense of the city of Edinburgh when it was under attack in the Jacobite rebellion of 1745. 
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 ( ) ( )
2 2

2
0 0 0

0
1! 2! !

n n

n

x df x d f x d ff x f
dx ndx dx

= + + + + +… …  (G.5) 

is a special case of the Taylor series where we are expanding around the point 0x = . 

Power series expansions of common functions 
For small a, the Maclaurin expansions of various common functions are, to first order,  

 1 1 / 2a a+ + +� …  (G.6) 

 1 1
1

a
a

− +
+

� …  (G.7) 

 sin a a +� …  (G.8) 

 tan a a +� …  (G.9) 

 
2

cos 1
2
aa − +� …  (G.10) 

 exp 1a a+ +� …  (G.11) 

G.2 Formulae for sines, cosines, and exponentials 

Sine and cosine addition and product formulae 

 ( ) ( )2 2sin cos 1α α+ =  (G.12) 

 ( ) ( ) ( ) ( ) ( )sin sin cos cos sinα β α β α β± = ±  (G.13) 

 ( ) ( ) ( ) ( ) ( )sin sin cos cos sinα α α α α2 = −  (G.14) 

 ( ) ( ) ( ) ( ) ( )cos cos cos sin sinα β α β α β± = ∓  (G.15) 

 ( ) ( ) ( ) ( ) ( )2 2 2 2cos 2 cos sin 2cos 1 1 2sinα α α α α= − = − = −  (G.16) 

 ( ) ( )2 1cos 1 cos 2
2

α α= +⎡ ⎤⎣ ⎦  (G.17) 

 ( ) ( )2 1sin 1 cos 2
2

α α= −⎡ ⎤⎣ ⎦  (G.18) 

 ( ) ( ) ( ) ( )1cos cos cos cos
2

α β α β α β= − + +⎡ ⎤⎣ ⎦  (G.19) 

 ( ) ( ) ( ) ( )1sin sin cos cos
2

α β α β α β= − − +⎡ ⎤⎣ ⎦  (G.20) 

 ( ) ( ) ( ) ( )1sin cos sin sin
2

α β α β α β= − + +⎡ ⎤⎣ ⎦  (G.21) 
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 ( ) ( )cos cos 2cos cos
2 2

α β α βα β + −⎛ ⎞ ⎛ ⎞+ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (G.22) 

 ( ) ( )sin sin 2sin cos
2 2

α β α βα β + −⎛ ⎞ ⎛ ⎞+ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (G.23) 

 ( ) ( )cos cos 2sin sin
2 2

α β α βα β + −⎛ ⎞ ⎛ ⎞− = − ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (G.24) 

 ( ) ( )sin sin 2cos sin
2 2

α β α βα β + −⎛ ⎞ ⎛ ⎞− = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (G.25) 

Formulae of differential calculus 

Product rule 

 ( )d dv duuv u v
dx dx dx

= +  (G.26) 

Quotient rule 

 2

du dvv ud u dx dx
dx v v

−
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 (G.27) 

Chain rule 

 ( )( )d df dgf g x
dx dg fx

⎛ ⎞ ⎛ ⎞
= ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (G.28) 

Derivatives of elementary functions 

 1n nd x nx
dx

−=  (G.29) 

 ( ) ( )exp expd ax a ax
dx

=  (G.30) 

 ( ) 1lnd x
dx x

=  (G.31) 

 ( ) ( )sin cosd x x
dx

=  (G.32) 

 ( ) ( )cos sind x x
dx

= −  (G.33) 

 
1

2

sin 1

1

d x
dx x

−

=
−

 (G.34) 

 
1

2

tan 1
1

d x
dx x

−

=
+

 (G.35) 
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Integration by parts 

 
( ) ( ) ( ) ( ) ( )( )

b b
b

a
a a

dg x df x
f x dx f x g x g x dx

dx dx
⎛ ⎞ ⎛ ⎞

= −⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦
⎝ ⎠ ⎝ ⎠

∫ ∫  (G.36) 

where we use the common notation 

 ( ) ( ) ( )
b

a
h x h b h a= −⎡ ⎤⎣ ⎦  (G.37) 

and specifically here 

 ( ) ( ) ( ) ( ) ( ) ( )b

a
f x g x f b g b f a g a= −⎡ ⎤⎣ ⎦  (G.38) 

Some definite integrals 

 ( )2

0

sin
2

nx dx
π π

=∫  (G.39) 

 
( ) ( ) ( )

( ) ( )2 2
0

4/ 2 sin sin , for  odd

0 , for  even

nmx nx mx dx n m
n m n m

n m

π

π −
− = +

− +

= +

∫  

 
 (G.40) 

 ( ) ( )
0

sin cos 2 2 / 3d
π

θ θ θ = −∫  (G.41) 

 ( ) ( )
0

sin 2 cos 4 / 3d
π

θ θ θ =∫  (G.42) 

 3

0

4sin
3

d
π

θ θ =∫  (G.43) 

 ( )1/ 2

0

exp
2

t t dt π∞

− =∫  (G.44) 

 sin x dx
x

π
∞

−∞

=∫  (G.45) 

 
2sin x dx

x
π

∞

−∞

⎛ ⎞ =⎜ ⎟
⎝ ⎠∫  (G.46) 

 ( )2exp x dx π
∞

−∞

− =∫  (G.47) 

 2

1
1

dx
x

π
∞

−∞

=
+∫  (G.48) 
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G.3 Special functions 

Here we summarize some of the key mathematics related to some of the special functions that 
come up often in quantum mechanical problems, including the defining differential equations, 
some definitions, and some important expressions for the resulting solutions. For greater detail, 
and a definitive reference on a broad range of special functions, see M. Abramowitz and I. A. 
Stegun, "Handbook of Mathematical Functions" (National Bureau of Standards, Washington, 
1972). 

Bessel functions 

The standard defining equation for Bessel functions is 

 ( )
2

2 2 2
2 0d y dyx x x p y

dxdx
+ + − =  (G.49) 

with the solutions to this equation being ( )pJ x , a Bessel function of the first kind, and ( )pY x , 
a Bessel function of the second kind (also sometimes called a Neumann function, or a Weber 
function (though that name is also sometimes used for a different function)). p is called the 
order of the Bessel function; it can be any real or complex number. The Bessel function of the 
second kind goes to ∞  at r = 0, and can often therefore be discounted in the solution of many 
physical problems. The Hankel function is a complex combination of Bessel functions of the 
first and second kinds. 

We can write a power series expansion for Bessel functions of the first kind for integer or zero 
values of p 

 ( ) ( )
( )

2

0

1
! 1 2

m pm

p
m

xJ x
m m p

+
∞

=

− ⎛ ⎞= ⎜ ⎟Γ + + ⎝ ⎠
∑  (G.50) 

Note also that 

 ( ) ( 1) ( )p
p pJ x J x− = −  (G.51) 

If one starts out with an equation of the form 2 f Cf∇ = , writes the Laplacian operator in 
cylindrical coordinates, and separates variables, one can end up with an equation of the form of 
(G.49) for the radial part of the solution with p as an integer, and so integer-order Bessel 
functions occur often in cylindrically or circularly symmetric problems in physics and 
engineering, including waves on circular membranes such as drum heads, for example. 

The equation 

 
2

2 2
2 2

1 1 0
4

d y a p y
dx x

⎡ ⎤⎛ ⎞+ + − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (G.52) 

has solutions ( )py xJ ax=  and ( )py xY ax= . 

Airy functions 

The differential equation  

 
2

2 0d y xy
dx

− =  (G.53) 
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has solutions Ai(x) and Bi(x), which are called Airy functions. See Chapter 2, Section 2.11, for 
a graph of the resulting two solutions,. Airy functions can formally be written in terms of so-
called modified Bessel functions of ±1/3 fractional orders. They occur in problems in which a 
potential is varying linearly with distance, for example. 

Spherical Bessel functions 

The solutions of the equation 

 ( )
2

2 2
2 2 1 0d y dyx x x n n y

dxdx
⎡ ⎤+ + − + =⎣ ⎦  (G.54) 

are spherical Bessel functions of the first and second kinds, respectively 

 1/ 2( ) ( )
2n nj x J x

x
π

+=   and  1/ 2( ) ( )
2n ny x Y x

x
π

+=   (G.55)  

and a corresponding one of the second kind. These functions are called spherical Bessel 
functions. The first two spherical Bessel functions of the first kind are 

 ( )0
sin xj x

x
=  (G.56) 

 ( )2 2

sin cosx xj x
xx

= −  (G.57) 

Associated Legendre functions 

For the differential equation 

 ( ) ( ) ( ) ( )
2

2

1 sin 1 0
sin sin

d d m l l
d d

θ θ θ θ
θ θ θ θ

⎛ ⎞Θ − Θ − + Θ =⎜ ⎟
⎝ ⎠

 (G.58) 

there are solutions for 0, 1, 2, 3,l = …  with m ll ≤ ≤−  (m integer), which are 

 ( ) ( )cosm
lPθ θΘ =  (G.59) 

where ( )m
lP x  are the associated Legendre functions. (See Section 9.2 for more discussion.) 

Spherical harmonics 
The spherical harmonics ( ),lmY θ φ  are the solutions to the equation 

 ( ) ( ) ( )2
, , 1 ,lm lmY l l Yθ φ θ φ θ φ∇ = − +  (G.60) 

where 

  
2

2
, 2 2

1 1sin
sin sinθ φ θ

θ θ θ θ φ
⎡ ⎤∂ ∂ ∂⎛ ⎞∇ = +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

 (G.61) 

constitutes the θ and φ parts of the Laplacian in spherical coordinates. The spherical harmonics 
can be written in a normalized form as 

 ( ) ( ) ( )
( ) ( ) ( )

!2 1, 1 cos exp
4 !

m m
lm l

l mlY P im
l m

θ φ θ φ
π

−+
= −

+
 (G.62) 
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(See Section 9.2 for more discussion.) 

Hermite polynomials 

The solutions to the differential equation 

 
2

2 2 2 0d y dyx ny
dxdx

− + =  (G.63) 

for 0, 1, 2,n = …  are the Hermite polynomials 

 ( )ny H x=  (G.64) 

(See Section 2.10 for more discussion.)  

Associated Laguerre polynomials 

The solutions to the differential equation 

 ( ) ( )
2

2 2 1 1 0d L dLs s l n l L
dsds

− − + + − + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (G.65)  

where 0, 1, 2, 3,l = …  and the integer 1n l≥ + , are the associated Laguerre polynomials 

 ( ) ( ) ( )
( ) ( )0

!
1

! ! !

p
qj q

p
q

p j
L s s

p q j q q=

+
= −

− +∑  (G.66) 

(See Section 10.4 for more discussion.) 

Gamma function 
The Gamma function is defined for 0z >  as 

 ( ) ( ) ( )1 2 1 2

0 0

exp 2 expz zz t t dt t t dt
∞ ∞

− −Γ = − = −∫ ∫  (G.67) 

It is a function of a continuous variable that is very closely related to the factorial function. In 
fact, for n an integer or zero, 

 ( ) ( )1 !n nΓ = −  (G.68) 

and in general,  

 ( ) ( )1z z zΓ + = Γ  (G.69) 

A particularly useful result is that 

 ( )1/ 2 πΓ =  (G.70) 

and hence also therefore 

 ( ) 13/ 2 !
2 2
π ⎛ ⎞Γ = ≡ ⎜ ⎟

⎝ ⎠
 (G.71) 

which is a useful integral in normalizing Gaussian functions (see Eq. (G.44) above), and which 
also therefore allows us to define factorials for half integers. Hence, for example, we can write 
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 5 1 3 5!
2 2 2 2

π⎛ ⎞ = × × ×⎜ ⎟
⎝ ⎠

 (G.72)  

 



 

 

Appendix H   
 
Greek alphabet 

 

 

 

 

Upper  case Lower case Name 
Α α alpha 
Β β beta 
Γ γ gamma 
Δ δ delta 
Ε ε epsilon 
Ζ ζ zeta 
Η η eta 
Θ θ theta 
Ι ι iota 
Κ κ kappa 
Λ λ lambda 
Μ μ mu 
Ν ν nu 
Ξ ξ xi 
Ο ο omicron 
Π π pi 
Ρ ρ rho 
Σ σ sigma 
Τ τ tau 
Υ υ upsilon 
Φ φ phi 
Χ χ chi 
Ψ ψ psi 



 

 

Appendix I  
 
Fundamental constants 

 

Constant name Symbol Numerical value Δ Units 
Bohr magneton Bμ  9.274 008 99 x 10-24 37 J T-1 

Boltzmann constant Bk  1.380 6503 x 10-23 24 J K-1 

Electric constant oε  8.854 187 817… x 10-12 - F m-1 

Electron g factor eg  2.002 319 304 3737 82 - 
Electron rest mass em  9.109 381 88 x 10-31 72 kg 
Elementary charge e  1.602 176 462 x 10-19 63 C 
Fine structure constant α  7.297 352 533 x 10-3 27 - 
Magnetic constant oμ  4π x 10-7 - H m-1 

Planck’s constant h  6.626 068 76 x 10-34 52 J s 
Planck’s constant/2π =  1.054 571 596 x 10-34 82 J s 
Proton rest mass pm  1.672 621 58 x 10-27 13 kg 
Proton-electron mass ratio /p em m  1 836.152 6675 39 - 
Rydberg constant R∞  10 973 731.568 549 83 m-1 

 /R hc e∞  13.605 691 72 53 eV 
Speed of light in vacuum c  299 792 458 - m s-1 

The “Δ” quoted is the absolute value of the uncertainty in the last two digits of the quoted 
numerical value corresponding to one standard deviation from the numerical value given. 
Hence, for example, the possible values of Planck’s constant within one standard deviation of 
the best estimate shown lie between 6.626 068 24 and 6.626 069 28 J s.  

The speed of light in vacuum has been chosen to have the exact value shown, because the 
meter is now defined as the length of the path traveled by light in vacuum during the time 
interval of 1/299 792 458 of a second. The magnetic constant (also known as the permeability 
of free space) is chosen to have the value shown because it is an arbitrary constant that arises 
from the choice of the system of units, and the electric constant (also known as the permittivity 
of free space) then follows from it and the (chosen) velocity of light since by definition 

1/ o oc ε μ= , so all three of these quantities have no uncertainty by definition. The Bohr 
magneton is / 2B ee mμ = = . The fine structure constant is 2 / 4 oe cα πε= =  

These values are the CODATA Internationally recommended values as of 1998. Reference 
http://physics.nist.gov/cuu/Constants/index.html 
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H. Kroemer, Quantum Mechanics for Engineering, Materials Science, and Applied Physics 
(Prentice Hall, Englewood Cliffs, New Jersey, 1994) 
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1 Walt Harrison is also my next-door neighbor, making us possibly the only two next-door neighbors ever 
to have written quantum mechanics texts. 
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This book goes more deeply into the mathematics required for physics, including 
specifically that for quantum mechanics, in an accessible treatment.  

Background physics 

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (7thEdition) (Wiley, New 
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There are many excellent texts on electromagnetism, and most any one that covers Maxwell’s 
equations will be a sufficient background reference.  

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941) 

This is a classic early text, with many deep explanations.  

P. Lorrain and D. Corson, Electromagnetic Fields and Waves, Second Edition (Freeman, San 
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U. S. Inan and A. S. Inan, Engineering Electromagnetics (Addison Wesley Longman, Menlo 
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2000)  
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lists of formulae and relations.  

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Sixth Edition) 
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Memorization list 

These are the formulae most worth learning by heart from the book, grouped by Chapters, and 
listed by their description rather than by the formulae themselves so the reader can test his or 
her memorization of them. 

Chapter 2 

De Broglie’s formula relating wavelength and momentum for a particle with mass (Eq. (2.1)) 

The time-independent Schrödinger equation (Eq. (2.13)) 

The normalization integral for a wavefunction (Eq. (2.20)) 

The energy eigenvalues (Eq. (2.26)) and the corresponding normalized eigenfunctions (Eq. 
(2.29)) for the simple “infinite” particle in a box problem. 

The expression defining orthonormality of functions (Eq. (2.35) 

The expression for the expansion of a function on a basis set of functions (Eq. (2.36)) and the 
expression for the corresponding expansion coefficients (Eq. (2.37)) 

The energy eigenvalues for the harmonic oscillator (Eq. (2.81)) 

Chapter 3 

The relation between energy and frequency in quantum mechanics (Eq. (3.1)) 

The time-dependent Schrödinger equation (Eq. (3.2))  

The definition of group velocity (Eq. (3.31)) 

Probability of finding a quantum mechanical system in a given eigenstate, in terms of the 
expansion on the set of eigenstates of the quantity being measured (Eq. (3.46)) 

The expectation value of energy defined using the Hamiltonian operator and the wavefunction 
(Eq. (3.56)) 

The definition of the momentum operator (Eq. (3.74)) 

The position-momentum uncertainty principle (relation (3.88)) 

Chapter 4 

The expansion of a function on an orthonormal basis set, expressed in Dirac notation (Eq. 
(4.17)) 

The matrix corresponding to an operator expressed on a particular orthonormal basis (Eq. 
(4.59), noting in particular which way round the matrix elements are defined) 

The bilinear expansion of an operator in Dirac notation (Eq. (4.68)) 
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The identity operator expressed on a complete orthonormal basis in Dirac notation (Eq. (4.73)) 

The expression for the complex conjugate of an inner product in Dirac notation (Eq. (4.36) 

The expressions for the Hermitian adjoint of the product of two matrices or operators (Eq. 
(4.97)) and for the product of an operator (or matrix) and a (state) vector (Eq. (4.98)) 

The defining equation for an inverse operator (Eq. (4.90)) 

The defining equation(s) for a unitary operator (Eq. (4.92) or Eq. (4.108)) 

The formula for transforming a vector to a new basis using a unitary transformation operator 
(Eq. (4.94)) and the corresponding formula for transforming an operator to a new basis (Eq. 
(4.112)) noting in particular which way round this second formula is). 

The defining equation for a Hermitian operator (Eq. (4.114)) 

Chapter 5 

The definition of the commutator of two operators (Eq. (5.2)) 

The general form of the uncertainty principle (relation (5.23)) in terms of the remainder of 
commutation (Eq. (5.4)) 

The energy-time uncertainty principle (relation (5.33)) 

The rule for transitioning from a sum to an integral (Eq. (5.41)) 

For the optional Section 5.4 on Continuous eigenvalues and delta functions, the following are 
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