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Preface

This book is divided into two parts: Part One deals with nonrelativistic
quantum mechanics, from bound states of a single particle (harmonic
oscillator, hydrogen atom) to fermionic many-body systems. Part Two
is devoted to the theory of quantized fields and ranges from canonical
quantization to quantum electrodynamics and some elements of elec-
troweak interactions.

Quantum mechanics provides both the conceptual and the practical
basis for almost all branches of modern physics, atomic and molecu-
lar physics, condensed matter physics, nuclear and elementary particle
physics. By itself it is a fascinating, though difficult, part of theoretical
physics whose physical interpretation gives rise, still today, to surprises
in novel applications, and to controversies regarding its foundations.
The mathematical framework, in principle, ranges from ordinary and
partial differential equations to the theory of Lie groups, of Hilbert
spaces and linear operators, to functional analysis, more generally. He
or she who wants to learn quantum mechanics and is not familiar
with these topics, may introduce much of the necessary mathematics in
a heuristic manner, by invoking analogies to linear algebra and to clas-
sical mechanics. (Although this is not a prerequisite it is certainly very
helpful to know a good deal of canonical mechanics!)

Quantum field theory deals with quantum systems whith an infinite
number of degrees of freedom and generalizes the principles of quan-
tum theory to fields, instead of finitely many point particles. As Sergio
Doplicher once remarked, quantum field theory is, after all, the real the-
ory of matter and radiation. So, in spite of its technical difficulties, every
physicist should learn, at least to some extent, concepts and methods of
quantum field theory.

Chapter 1 starts with examples for failures of classical mechan-
ics and classical electrodynamics in describing quantum systems and
develops what might be called elementary quantum mechanics. The
particle-wave dualism, together with certain analogies to Hamilton-
Jacobi mechanics are shown to lead to the Schrödinger equation in
a rather natural way, leaving open, however, the question of interpre-
tation of the wave function. This problem is solved in a convincing
way by Born’s statistical interpretation which, in turn, is corroborated
by the concept of expectation value and by Ehrenfest’s theorem. Hav-
ing learned how to describe observables of quantum systems one then
solves single-particle problems such as the harmonic oscillator in one
dimension, the spherical oscillator in three dimensions, and the hydro-
gen atom.
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Chapter 2 develops scattering theory for particles scattered on
a given potential. Partial wave analysis of the scattering amplitude as
an example for an exact solution, as well as Born approximation for
an approximate description are worked out and are illustrated by ex-
amples. The chapter also discusses briefly the analytical properties of
partial wave amplitudes and the extension of the formalism to inelastic
scattering.

Chapter 3 formalizes the general principles of quantum theory, on
the basis of the empirical approach adopted in the first chapter. It
starts with representation theory for quantum states, moves on to the
concept of Hilbert space, and describes classes of linear operators
acting on this space. With these tools at hand, it then develops the de-
scription and preparation of quantum states by means of the density
matrix.

Chapter 4 discusses space-time symmetries in quantum physics,
a first tour through the rotation group in nonrelativistic quantum mech-
anics and its representations, space reflection, and time reversal. It also
addresses symmetry and antisymmetry of systems of a finite number of
identical particles.

Chapter 5 which concludes Part One, is devoted to important practi-
cal applications of quantum mechanics, ranging from quantum informa-
tion to time independent as well as time dependent perturbation theory,
and to the description of many-body systems of identical fermions.

Chapter 6, the first of Part Two, begins with an extended analy-
sis of symmetries and symmetry groups in quantum physics. Wigner’s
theorem on the unitary or antiunitary realization of symmetry transfor-
mations is in the focus here. There follows more material on the rotation
group and its use in quantum mechanics, as well as a brief excursion to
internal symmetries. The analysis of the Lorentz and Poincaré groups is
taken up from the perspective of particle properties, and some of their
unitary representations are worked out.

Chapter 7 describes the principles of canonical quantization of
Lorentz covariant field theories and illustrates them by the examples of
the real and complex scalar field, and the Maxwell field. A section on
the interaction of quantum Maxwell fields with nonrelativistic matter
illustrates the use of second quantization by a number of physically in-
teresting examples. The specific problems related to quantized Maxwell
theory are analyzed and solved in its covariant quantization and in an
investigation of the state space of quantum electrodynamics.

Chapter 8 takes up scattering theory in a more general framework by
defining the S-matrix and by deriving its properties. The optical theorem
is proved for the general case of elastic and inelastic final states and for-
mulae for cross sections and decay widths are worked out in terms of
the scattering matrix.

Chapter 9 deals exclusively with the Dirac equation and with quan-
tized fields describing spin-1/2 particles. After the construction of the
quantized Dirac field and a first analysis of its interactions we also ex-



Preface IX

plore the question to which extent the Dirac equation may be useful as
an approximate single-particle theory.

Chapter 10 describes covariant perturbation theory and develops the
technique of Feynman diagrams and their translation to analytic am-
plitudes. A number of physically relevant tree processes of quantum
electrodynamics are worked out in detail. Higher order terms and the
specific problems they raise serve to introduce and to motivate the con-
cepts of regularization and of renormalization in a heuristic manner.
Some prominent examples of radiative corrections serve to illustrate
their relevance for atomic and particle physics as well as their physical
interpretation. The chapter concludes with a short excursion into weak
interactions, placing these in the framework of electroweak interactions.

The book covers material (more than) sufficient for two full courses
and, thus, may serve as accompanying textbook for courses on quan-
tum mechanics and introductory quantum field theory. However, as the
main text is largely self-contained and contains a considerable number
of worked-out examples, it may also be useful for independent individ-
ual study. The choice of topics and their presentation closely follows
a two-volume German text well established at German speaking uni-
versities. Much of the material was tested and fine-tuned in lectures
I gave at Johannes Gutenberg University in Mainz. The book contains
many exercises for some of which I included complete solutions or gave
some hints. In addition, there are a number of appendices collecting
or explaining more technical aspects. Finally, I included some histor-
ical remarks about the people who pioneered quantum mechanics and
quantum field theory, or helped to shape our present understanding of
quantum theory.1

I am grateful to the students who followed my courses and to my
collaborators in research for their questions and critical comments some
of which helped to clarify matters and to improve the presentation.
Among the many colleagues and friends from whom I learnt a lot about
the quantum world I owe special thanks to Martin Reuter who also read
large parts of the original German manuscript, to Wolfgang Bulla who
made constructive remarks on formal aspects of quantum mechanics,
and to Othmar Steinmann from whom I learnt a good deal of quantum
field theory during my years at ETH and PSI in Zurich.

The excellent cooperation with the people at Springer-Verlag, no-
tably Dr. Thorsten Schneider and his crew, is gratefully acknowledged.

Mainz, December 2006 Florian Scheck

1 I will keep track of possible errata on
an internet page attached to my home
page. The latter can be accessed via
http://wwwthep.uni-mainz.de/staff.html
I will be grateful for hints to misprints
or errors.
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Part One

From the Uncertainty Relation
to Many-Body Systems



1 3

Quantum Mechanics
of Point Particles

Introduction

In developing quantum mechanics of pointlike particles one is faced
with a curious, almost paradoxical situation: One seeks a more gen-

eral theory which takes proper account of Planck’s quantum of action
h and which encompasses classical mechanics, in the limit h→ 0,
but for which initially one has no more than the formal framework
of canonical mechanics. This is to say, slightly exaggerating, that one
tries to guess a theory for the hydrogen atom and for scattering of
electrons by extrapolation from the laws of celestial mechanics. That
this adventure eventually is successful rests on both phenomenologi-
cal and on theoretical grounds.

On the phenomenological side we know that there are many ex-
perimental findings which cannot be interpreted classically and which
in some cases strongly contradict the predictions of classical physics.
At the same time this phenomenology provides hints at fundamen-
tal properties of radiation and of matter which are mostly irrelevant
in macroscopic physics: Besides its classically well-known wave na-
ture light also possesses particle properties; in turn massive particles
such as the electron have both mechanical and optical properties.
This discovery leads to one of the basic postulates of quantum theory,
de Broglie’s relation between the wave length of a monochromatic
wave and the momentum of a massive or massless particle in uniform
rectilinear motion.

Another basic phenomenological element in the quest for
a “greater”, more comprehensive theory is the recognition that meas-
urements of canonically conjugate variables are always correlated.
This is the content of Heisenberg’s uncertainty relation which, qual-
itatively speaking, says that such observables can never be fixed
simultaneously and with arbitrary accuracy. More quantitatively, it
states in which way the uncertainties as determined by very many
identical experiments are correlated by Planck’s quantum of action. It
also gives a first hint at the fact that observables of quantum mech-
anics must be described by noncommuting quantities.

A further, ingenious hypothesis starts from the wave properties
of matter and the statistical nature of quantum mechanical pro-
cesses: Max Born’s postulate of interpreting the wave function as
an amplitude (in general complex) whose absolute square represents
a probability in the sense of statistical mechanics.
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Regarding the theoretical aspects one may ask why classical
Hamiltonian mechanics is the right stepping-stone for the discovery
of the farther reaching, more comprehensive quantum mechanics. To
this question I wish to offer two answers:

(i) Our admittedly somewhat mysterious experience is that Hamil-
ton’s variational principle, if suitably generalized, suffices as a formal
framework for every theory of fundamental physical interactions.

(ii) Hamiltonian systems yield a correct description of basic,
elementary processes because they contain the principle of energy
conservation as well as other conservation laws which follow from
symmetries of the theory.
Macroscopic systems, in turn, which are not Hamiltonian, often pro-
vide no more than an effective description of a dynamics that one
wishes to understand in its essential features but not in every mi-
croscopic detail. In this sense the equations of motion of the Kepler
problem are elementary, the equation describing a body falling freely
in the atmosphere along the vertical z is not because a frictional term
of the form −κ ż describes dissipation of energy to the ambient air,
without making use of the dynamics of the air molecules. The first
of these examples is Hamiltonian, the second is not.

In the light of these remarks one should not be surprised in
developing quantum theory that not only the introduction of new,
unfamiliar notions will be required but also that new questions will
come up regarding the interpretation of measurements. The answers
to these questions may suspend the separation of the measuring
device from the object of investigation, and may lead to apparent
paradoxes whose solution sometimes will be subtle. We will turn
to these new aspects in many instances and we will clarify them
to a large extent. For the moment I ask the reader for his/her pa-
tience and advise him or her not to be discouraged. If one sets out
to develop or to discover a new, encompassing theory which goes
beyond the familiar framework of classical, nonrelativistic physics,
one should be prepared for some qualitatively new properties and in-
terpretations of this theory. These features add greatly to both the
fascination and the intellectual challenge of quantum theory.

1.1 Limitations of Classical Physics

There is a wealth of observable effects in the quantum world which
cannot be understood in the framework of classical mechanics or clas-
sical electrodynamics. Instead of listing them all one by one I choose
two characteristic examples that show very clearly that the description
within classical physics is incomplete and must be supplemented by
some new, fundamental principles. These are: the quantization of atomic
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bound states which does not follow from the Kepler problem for an
electron in the field of a positive point charge, and the electromagnetic
radiation emitted by an electron bound in an atom which, in a purely
classical framework, would render atomic quantum states unstable.
When we talk about “classical” here and in the sequel, we mean every
domain of physics where Planck’s constant does not play a quantitative
role and, therefore, can be neglected to a very good approximation.

Example 1.1 Atomic Bound States have Quantized Energies
The physically admissible bound states of the hydrogen atom or, for
that matter, of a hydrogen-like atom, have discrete energies given by the
formula

En =− 1

2n2

Z2e4

�2 µ with n = 1, 2, 3, . . . (1.1)

Here n ∈ N is called the principal quantum number, Z is the nuclear
charge number (this is the number of protons contained in the nucleus),
e is the elementary charge, �= h/(2π) is Planck’s quantum h divided
by (2π), and µ is the reduced mass of the system, here of the elec-
tron and the point-like nucleus. Upon introduction of Sommerfeld’s fine
structure constant,

α := e2

�c
,

where c is the speed of light, formula (1.1) for the energy takes the
form:

En =− 1

2n2 (Zα)
2µc2 . (1.1′)

Note that the velocity of light drops out of this formula, as it should1.
In the Kepler problem of classical mechanics for an electron of

charge e=−|e| which moves in the field of a positive point charge Z|e|,
the energy of a bound, hence finite orbit can take any negative value.
Thus, two properties of (1.1) are particularly remarkable: Firstly, there
exists a lowest value, realized for n = 1, all other energies are higher
than En=1,

E1 < E2 < E3 < · · · .
Another way of stating this is to say that the spectrum is bounded from
below. Secondly, the energy, as long as it is negative, can take only one
of the values of the discrete series

En = 1

n2 En=1 , n = 1, 2, . . . .

For n −→∞ these values tend to the limit point 0 .
Note that these facts which reflect and describe experimental find-

ings (notably the Balmer series of hydrogen), cannot be understood in
the framework of classical mechanics. A new, additional principle is

1 The formula (1.1) holds in the frame-
work of nonrelativistic kinematics,
where there is no place for the veloc-
ity of light, or, alternatively, where this
velocity can be assumed to be infinitely
large. In the second expression (1.1′)
for the energy the introduction of the
constant c is arbitrary and of no conse-
quence.
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2 As of here we shorten the numeri-
cal values, for the sake of convenience,
to their leading digits. In general, these
values will be sufficient for our esti-
mates. Appendix A.8 gives the precise
experimental values, as they are known
to date.

missing that excludes all negative values of the energy except for those
of (1.1). Nevertheless they are not totally incompatible with the Kepler
problem because, for large values of the principal quantum number n,
the difference of neighbouring energies tends to zero like n−3,

En+1− En = 2n+1

2n2(n+1)2
(Zα)2µc2 ∼ 1

n3 for n→∞ .
In the limit of large quantum numbers the spectrum becomes nearly
continuous.

Before continuing on this example we quote a few numerical values
which are relevant for quantitative statements and for estimates, and to
which we will return repeatedly in what follows.

Planck’s constant has the physical dimension of an action, (energy
× time), and its numerical value is

h = (6.6260755±40)×10−34 J s . (1.2)

The reduced constant, h divided by (2π), which is mostly used in prac-
tical calculations2 has the value

�≡ h

2π
= 1.054×10−34 J s . (1.3)

As h carries a dimension, [h] = E · t, it is called Planck’s quantum of
action. This notion is taken from classical canonical mechanics. We re-
mind the reader that the product of a generalized coordinate qi und
its conjugate, generalized momentum pi = ∂L/∂q̇i , where L is the La-
grangian, always carries the dimension of an action,

[qi pi ] = energy × time ,

independently of how one has chosen the variables qi and of which di-
mension they have.

A more tractable number for the atomic world is obtained from the
product of � and the velocity of light

c= 2.99792458×108 m s−1 ; (1.4)

the product has dimension (energy × length). Replacing the energy unit
Joule by the million electron volt

1 MeV= 106 eV= (1.60217733±49)×10−13 J

and the meter by the femtometer, or Fermi unit of length, 1 fm =
10−15 m, one obtains a number that may be easier to remember,

�c= 197.327 MeV fm , (1.5)

because it lies close to the rounded value 200 MeV fm.
Sommerfeld’s fine structure constant has no physical dimension. Its
value is

α= (137.036)−1 = 0.00729735 . (1.6)
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Finally, the mass of the electron, in these units, is approximately

me = 0.511 MeV/c2 . (1.7)

As a matter of example let us calculate the energy of the ground
state and the transition energy from the next higher state to the ground
state for the case of the hydrogen atom (Z = 1). Since the mass of the
hydrogen nucleus is about 1836 times heavier than that of the electron
the reduced mass is nearly equal to the electron’s mass,

µ= memp

me+mp
	 me ,

and therefore we obtain

En=1 = −2.66×10−5mec2 = −13.6 eV

and

∆E(n = 2→ n = 1)= E2− E1 = 10.2 eV .

Note that En is proportional to the square of the nuclear charge
number Z and linearly proportional to the reduced mass. In hydrogen-
like atoms the binding energies increase with Z2. If, on the other hand,
one replaces the electron in hydrogen by a muon which is about 207
times heavier than the electron, all binding and transition energies will
be larger by that factor than the corresponding quantities in hydrogen.
Spectral lines of ordinary, electronic atoms which lie in the range of vis-
ible light, are replaced by X-rays when the electron is replaced by its
heavier sister, the muon.

Imagine the lowest state of hydrogen to be described as a circular or-
bit of the classical Kepler problem and calculate its radius making use
of the (classical) virial theorem ([Scheck (2005)], Sect. 1.31, (1.114)).
The time averages of the kinetic and potential energies, 〈T 〉 = −E,
〈U〉 = 2E, respectively, yield the radius R of the circular orbit as fol-
lows:

〈U〉 = −(Ze)e

R
=− Z2e4

�2 µ , hence R = �2

Ze2µ
.

This quantity, evaluated for Z = 1 and µ= me, is called the Bohr Ra-
dius of the electron3.

aB := �2

e2me
= �c

αmec2 . (1.8)

It has the value

aB = 5.292×104 fm= 5.292×10−11 m .

Taken literally, this classical picture of an electron orbiting around
the proton, is not correct. Nevertheless, the number aB is a measure for
the spatial extension of the hydrogen atom. As we will see later, in try-
ing to determine the position of the electron (by means of a gedanken or

3 One often writes a∞, instead of aB,
in order to emphasize that in (1.8)
the mass of the nuclear partner is as-
sumed to be infinitely heavy as com-
pared to me.
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1− 1 q

p

Fig. 1.1. Phase portrait of a periodic
motion in one dimension. At any time
the mass point has definite values of
the coordinate q and of the momen-
tum p. It moves, in a clock-wise direc-
tion, along the curve which closes after
one revolution

thought experiment) one will find it with high probability at the distance
aB from the proton, i. e. from the nucleus in that atom. This distance
is also to be compared with the spatial extension of the proton itself
for which experiment gives about 0.86×10−15 m. This reflects the well-
known statement that the spatial extension of the atom is larger by many
orders of magnitude than the size of the nucleus and, hence, that the
electron essentially moves outside the nucleus. Again, it should be re-
marked that the extension of the atom decreases with Z and with the
reduced mass µ:

R ∝ 1

Zµ
.

To witness, if the electron is replaced by a muon, the hydrogen nucleus
by a lead nucleus (Z = 82), then aB(mµ, Z = 82) = 3.12 fm, a value
which is comparable to or even smaller than the radius of the lead nu-
cleus which is about 5.5 fm. Thus, the muon in the ground state of
muonic lead penetrates deeply into the nuclear interior. The nucleus can
no longer be described as a point-like charge and the dynamics of the
muonic atom will depend on the spatial distribution of charge in the
nucleus.

After these considerations and estimates we have become familiar
with typical orders of magnitude in the hydrogen atom and we may now
return to the discussion of the example: As the orbital angular momen-
tum � is a conserved quantity every Keplerian orbit lies in a plane. This
is the plane perpendicular to �. Introducing polar coordinates (r, φ) in
that plane a Lagrangian describing the Kepler problem reads

L = 1

2
µṙ2−U(r)= 1

2
µ(ṙ2+r2φ̇2)−U(r) with U(r)=−e2

r
.

On a circular orbit one has ṙ = 0, r = R= const, and there remains only
one time dependent variable, q ≡ φ. Its canonically conjugate momen-
tum is given by p= ∂L/∂q̇ = µr2φ̇. This is nothing but the modulus 	
of the orbital angular momentum.

For a periodic motion in one variable the period and the surface en-
closed by the orbit in phase space are related as follows. Let

F(E)=
∮

pdq

be the surface which is enclosed by the phase portrait of the orbit with
energy E, (see Fig. 1.1), and let T(E) be the period. Then one finds (see
e. g. [Scheck (2005)], exercise and solution 2.2)

T(E)= d

dE
F(E) .

The integral over the phase portrait of a circular orbit with radius R is
easy to calculate,

F(E)=
∮

pdq = 2πµR2φ̇ = 2π	 .
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In order to express the right-hand side in terms of the energy, one makes
use of the principle of energy conservation,

1

2
µR2φ̇2+U(R)= 	2

2µR2 +U(R)= E ,

which, upon solving for 	, yields

F(E)= 2π	= 2π
√

2µR2(E−U) .

The derivative with respect to E is given by

T(E)= dF

dE
= 2π

µR2√
2µR2(E−U)

= 2π
µR2

	
= 2π

φ̇
.

This is correct, though not a surprise! However, making use of the virial
theorem 2E = 〈U〉 = −e2/R, one obtains a nontrivial result, viz.

T(E)= 2π
√
µR3/2/e , or

R3

T 2 =
e2

(2π)2µ
,

which is precisely Kepler’s third law ([Scheck (2005)], Sect. 1.7.2).
There is an argument of plausibility that yields the correct energy

formula (1.1): First, note that the transition energy, upon division by h,
(En+1− En)/h, has the dimension of a frequency, viz. 1/time. Further-
more, for large values of n one has

(En+1− En)	 1

n3 (Zα)
2µc2 = dEn

dn
.

If one postulates that the frequency (En+1− En)/h, in the limit n −→
∞, goes over into the classical frequency ν = 1/T ,

lim
n→∞

1

h

dEn

dn
= 1

T
, (1.9)

one has T(E)dE = h dn. Integrating both sides of this relation gives

F(E)=
∮

pdq = hn . (1.10)

Equation (1.9) is an expression of N. Bohr’s correspondence prin-
ciple. This principle aims at establishing relations between quantum
mechanical quantities and their classical counterparts. Equation (1.10),
promoted to the status of a rule, was called quantization rule of Bohr
and Sommerfeld and was formulated before quantum mechanics proper
was developed. For circular orbits this rule yields

2πµR2φ̇ = hn .

By equating the attractive electrical force to the centrifugal force, i. e.
setting e2/R2 = µRφ̇2, the formula

R = h2n2

(2π)2µe2

for the radius of the circular orbit with principal quantum number n fol-
lows. This result does indeed yield the correct expression (1.1) for the
energy4.

4 This is also true for elliptic Kepler
orbits in the classical model of the hy-
drogen atom. It fails, however, already
for helium (Z = 2).
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5 For example, an electron moving on
an elliptic orbit with large excentricity,
seen from far away, acts like a small
linear antenna in which charge moves
periodically up and down. Such a micro-
emitter radiates electromagnetic waves
and, hence, radiates energy.

Although the condition (1.10) is successful only in the case of hy-
drogen and is not useful to show us the way from classical to quantum
mechanics, it is interesting in its own right because it introduces a new
principle: It selects those orbits in phase space, among the infinite set of
all classical bound states, for which the closed contour integral

∮
pdq

is an integer multiple of Planck’s quantum of action h. Questions such
as why this is so, or, in describing a bound electron, whether or not one
may really talk about orbits, remain unanswered.

Example 1.2 A Bound Electron Radiates
The hydrogen atom is composed of a positively charged proton and
a negatively charged electron, with equal and opposite values of charge.
Even if we accept a description of this atom in analogy to the Ke-
pler problem of celestial mechanics there is a marked and important
difference. While two celestial bodies (e. g. the sun and a planet, or
a double star) interact only through their gravitational forces, their
electric charges (if they carry any net charge at all) playing no role
in practice, proton and electron are bound essentially only by their
Coulomb interaction. In the assumed Keplerian motion electron and pro-
ton move on two ellipses or two circles about their common center of
mass which are geometrically similar (s. [Scheck (2005)], Sect. 1.7.2).
On their respective orbits both particles are subject to (positive or neg-
ative) accelerations in radial and azimuthal directions. Due to the large
ratio of their masses, mp/me = 1836, the proton will move very little
so that its acceleration may be neglected as compared to the one of the
electron. It is intuitively plausible that the electron in its periodic, ac-
celerated motion will act as a source for electromagnetic radiation and
will loose energy by emitting this radiation.5 Of course, this contradicts
the quantization of the energies of bound states because these can only
assume the magic values (1.1). However, as we have assumed again
classical physics to be applicable, we may estimate the order of mag-
nitude of the energy loss by radiation. This effect will turn out to be
dramatic.

At this point, and this will be the only instance where I do so,
I quote some notions of electrodynamics, making them plausible but
without deriving them in any detail. The essential steps leading to
the required formulae for electromagnetic radiation should be under-
standable without a detailed knowledge of Maxwell’s equations. If the
arguments sketched here remain unaccessible the reader may turn di-
rectly to the results (1.21), (1.22), and (1.23), and may return to their
derivation later, after having studied electrodynamics.

Electrodynamics is invariant under Lorentz transformations, it is
not Galilei invariant (see for example [Scheck (2005)], Chap. 4, and,
specifically, Sect. 4.9.3). In this framework the current density jµ(x) is
a four-component vector field whose time component (µ= 0) describes
the charge density �(x) as a function of time and space coordinates x,
and whose spatial components (µ = 1, 2, 3) form the electric current
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density j(x). Let t be the coordinate time, and x the point in space
where the densities are felt or measured, defined with respect to an in-
ertial system of reference K. We then have

x = (ct, x) , jµ(x)= [c�(t, x), j(t, x)] .
Let the electron move along the world line r(τ) where τ is the Lorentz
invariant proper time and where r is the four-vector which describes the
particle’s orbit in space and time. In the reference system K one has

r(τ)= [ct0, r(t0)] .
The four-velocity of the electron, uµ(τ) = drµ(τ)/dτ , is normalized
such that its square equals the square of the velocity of light, u2 = c2.
In the given system of reference K one has

cdτ = cdt
√

1−β2 with β = |ẋ| /c ,
whereas the four-velocity takes the form

uµ = (cγ, γv(t)) , where γ = 1√
1−β2

.

The motion of the electron generates an electric charge density and
a current density, seen in the system K. Making use of the δ-distribution
these can be written as

�(t, x)= e δ(3)[x−r(t)] ,
j(t, x)= ev(t) δ(3)[x−r(t)]

where v= ṙ. When expressed in covariant form the same densities read

jµ(x)= ec
∫

dτ uµ(τ) δ(4)[x−r(τ)] . (1.11)

In order to check this, evaluate the integral over proper time in
the reference system K and isolate the one-dimensional δ-distribu-
tion which refers to the time components. With dτ = dt/γ , with
δ[x0−r0(τ)] = δ[c(t− t0)]= δ(t− t0)/c, and making use of the decom-
position of the four-velocity given above one obtains

j0 = ec
∫

dt0
γ

cγ
1

c
δ(t− t0) δ

(3)[x−r(t0)] = c�(t, x) ,

j = ec
∫

dt0
γ
γv(t0)

1

c
δ(t− t0) δ

(3)[x−r(t0)] = j(t, x) .

The calculation then proceeds as follows: Maxwell’s equations are
solved after inserting the current density (1.11) as the inhomogeneous,
or source, term, thus yielding a four-potential Aµ = (Φ, A). This, in
turn, is used to calculate the electric and magnetic fields by means of
the formulae

E=−∇Φ− 1

c

∂A
∂t
, (1.12)

B=∇× A (1.13)
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time

space
P r ( )τ

Fig. 1.2. Light cone of a world point in
a symbolic representation of space �

3

(plane perpendicular to the ordinate) and
of time (ordinate). Every causal action that
emanates from the point r(τ) with the ve-
locity of light, lies on the upper part of the
cone (forward cone of P)

ct x

r

xr )t( 0

)( 0τ0ct

Fig. 1.3. The electron moves along
a timelike world line (full curve). The
tangent to the curve is timelike every-
where which means that the electron
moves at a speed whose modulus is
smaller than the speed of light. Its radi-
ation at r(τ0)= (ct0, r(t0)) reaches the
observer at x after the time of flight
t− t0 = |x−r(t0)|/c

6 The distinction between forward and
backward light cone, i. e. between fu-
ture and past, is invariant under the
proper, orthochronous Lorentz group.
As proper time τ is an invariant, the
four-potential Aµ inherits the vector na-
ture of the four-velocity uµ.

I skip the method of solution for Aµ and go directly to the result which
is

Aµ(x)= 2e
∫

dτ uµ(τ)Θ[x0−r0(τ)] δ(1){[x−r(τ)]2} . (1.14)

Here Θ(x) is the step, or Heaviside, function,

Θ[x0−r0(τ)] = 1 for x0 = ct> r0 = ct0 ,

Θ[x0−r0(τ)] = 0 for x0 < r0 .

The δ-distribution in (1.14) refers to a scalar quantity, its argument be-
ing the invariant scalar product

[x−r(τ)]2 = [x0−r0(τ)]2−[x−r(t0)]2 .
It guarantees that the action observed in the world point (x0 = ct, x)
lies on the light cone of its cause, i. e. of the electron at the space
point r(t0), at time t0. This relationship is sketched in Fig. 1.2. Ex-
pressed differently, the electron which at time t0 = r0/c passes the space
point r, at time t causes a four-potential at the point x such that r(τ)
und x are related by a signal which propagates with the speed of light.
The step function whose argument is the difference of the two time
components, guarantees that this relation is causal. The cause “electron
in r at time t0” comes first, the effect “potentials Aµ = (Φ, A) in x at
the later time t> t0” comes second. This shows that the formula (1.14)
is not only plausible but in fact simple and intuitive, even though we
have not derived it here.6

The integration in (1.14) is done by inserting

(x−r)2 = (x0−r0)2− (x−r)2 = c2(t− t0)
2− (x−r)2

and by making use of the general formula for δ-distributions

δ[ f(y)] =
∑

i

1

| f ′(yi)| δ(y− yi) , {yi : single zeroes of f(y)} .
(1.15)

In the case at hand f(τ)= [x−r(τ)]2 and d f(τ)/dτ = d[x−r(τ)]2/dτ =
−2[x− r(τ)]αuα(τ). As can be seen from Fig. 1.3 the point x of ob-
servation is lightlike relative to r(τ0), the world point of the electron.
Therefore Aµ(x) of (1.14) can be written as

Aµ(x)= e
uµ(x)

u · [x−r(τ)]
∣∣∣∣
τ=τ0

. (1.16)

In order to understand better this expression we evaluate it in the frame
of reference K. The scalar product in the denominator reads

u · [x−r(τ)] = γc2(t− t0)−γv · (x−r) .
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Let n̂ be the unit vector in the direction of the x− r(τ), and let |x−
r(τ0)| =: R be the the distance between source and point of observation.
As [x−r(τ)]2 must be zero, we conclude x0−r0(τ0)= R, so that

u · [x−r(τ0)] = cγR

(
1− 1

c
v · n̂

)
,

while Aµ(x)= [Φ(x), A(x)] of (1.16) becomes

Φ(t, x)= e

R(1−v · n̂/c)
∣∣∣∣
ret
, (1.17)

A(t, x)= ev/c

R(1−v · n̂/c)
∣∣∣∣
ret
.

The notation “ret” emphasizes that the time t and the time t0, when the
electron had the distance R from the observer, are related by t = t0+
R/c. The action of the electron at the point where an observer is located
arrives with a delay that is equal to the time-of-flight (R/c)7.

The potentials (1.16) or (1.17) are called Liénard-Wiechert poten-
tials.

From here on there are two equivalent methods of calculating the
electric and magnetic fields proper. One is to make use of the expres-
sions (1.17) and to calculate E and B by means of (1.12) and (1.13),
keeping track of the retardation required by (1.17).8 As an alternative
one returns to the covariant expression (1.16) of the vector potential and
calculates the field strength tensor from it,

Fµν(x)= ∂µAν−∂νAµ ,

(
∂µ ≡ ∂

∂xµ

)
.

Referring to a specific frame of reference the fields are obtained from

Ei = Fi0 , B1 = F32 (and cyclic permutations) .

The result of this calculation is (see e. g. [Jackson (1999)])

E(t, x)= e
n̂−v/c

γ 2(1−v · n̂/c)3 R2

∣∣∣∣
ret
+ e

c2

n̂×[(n̂−v/c)× v̇]
(1−v · n̂/c)3 R

∣∣∣∣
ret

(1.18)
≡ Estat+ Eacc , (1.19)

B(t, x)= (
n̂× E

)∣∣
ret . (1.20)

As usual β and γ are defined as β = |v|/c, γ = 1/
√

1−β2. As above,
the notation “ret” stands for the prescription t = t0+ R/c. The first term
in (1.18) is a static field in the sense that it exists even when the elec-
tron moves with constant velocity. It is the second term Eacc

9 which is
relevant for the question from which we started. Only when the electron
is accelerated will there be nonvanishing radiation.

7 retarded, retardation derive from the
French le retard= the delay.

8 This calculation can be found e.g.
in the textbook by Landau and Lif-
shitz, Vol. 2, Sect. 63, [Landau, Lifs-
chitz (1987)].

9 “acc” is a short-hand for accelera-
tion, (or else the French accélération).
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The flux of energy that is related to that radiation is described by the
Poynting vector field

S(t, x)= c

4π
E(t, x)× B(t, x) ,

this being the second formula, besides (1.14), that I take from elec-
trodynamics and that I do not derive here. In order to understand this
formula, one may think of an electromagnetic, monochromatic wave in
vacuum whose electric and magnetic fields are perpendicular to each
other and to the direction of propagation k̂. It describes the amount of
energy which flows in the direction of k̂, per unit of time.

Imagine a sphere of radius R, at a given time t0, with the electron
at its center. The Poynting vector S is used for the calculation of the
power radiated into the cone defined by the differential solid angle dΩ
as follows

dP = |S| R2 dΩ .

The velocity of the electron in the circular orbit that we assumed for the
ground state of hydrogen, has the modulus

|v|
c
=

√
2Ekin

mec2 = α= 0.0073

(see (1.6)) and, hence, lies well below the velocity of light. In the ap-
proximation v2� c2 the leading term in (1.18) is

E	 e

c2

n̂× (n̂× v̇)

R

∣∣∣∣
ret
,

and, making use of the identity a× (b× c) = b(a · c)− c(a · b), the
Poynting vector field simplifies to

S	 c

4π
E2n̂ .

The power radiated into the solid angle dΩ is approximately

dP

dΩ
	 c

4π
R2 E2 	 e2

4πc3

∣∣n̂× (n̂× v̇)
∣∣2 = e2

4πc3 v̇2 sin2 θ .

Here θ is the angle between v̇ and n̂. Integration over the complete solid
angle,∫

dΩ . . .=
2π∫

0

dφ

π∫
0

sin θ dθ . . .=
2π∫

0

dφ

+1∫
−1

dz . . . , (z = cos θ) ,

gives the result

P =
∫

dΩ
dP

dΩ
	 2

3

e2

c3 v̇2 . (1.21)
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This formula is perfectly suited for our estimates. The exact, relativistic
formula deviates from it by terms of the order of v2/c2. When there is
no acceleration this latter formula gives P = 0, too.

On a circular orbit of radius aB we have

|v̇| = v2

aB
= aBω

2 ,

where ω is the circular frequency. The period of the orbit is

T = 2π

ω
= 2πaB

|v| =
1

α

2πaB

c
= 1.52×10−16 s . (1.22)

These data are used to calculate the fraction of the binding energy
which is radiated after one complete revolution,

PT

|En=1| =
8π

3
α3 = 3.26×10−6 . (1.23)

Thus, after one period the (classical) electron has lost the energy

3.26×10−6 |En=1|
to the radiation field. Referring to (1.22) this means that in a very
short time the electron lowers its binding energy, the radius of its or-
bit shrinks, and, eventually, the electron falls into the nucleus (i. e. the
proton, in the case of hydrogen).

Without performing any dedicated measurement, we realize that the
age of the terrestrial oceans provides evidence that the hydrogen atom
must be extraordinarily stable. Like in the first example classical physics
makes a unique and unavoidable prediction which is in marked contra-
diction to the observed stability of the hydrogen atom.

Quantum theory resolves the failures of classical physics that we il-
lustrated by the two examples described above, in two major steps both
of which introduce important new principles that we shall develop one
by one in subsequent chapters.

In the first step one learns the quantum mechanics of stationary
systems. Among these the energy spectrum of the hydrogen atom will
provide a key example. For a given, time independent, Hamiltonian sys-
tem one constructs a quantum analogue of the Hamiltonian function
which yields the admissible values of the energy. The energy spectrum
of hydrogen, as an example, will be found to be given by{

En =− 1

2n2

e4

�2µ , (n = 1, 2, 3, . . . ), and all E ∈ [0,∞)
}
.

(1.24)

The first group (to the left) describes the bound states and corre-
sponds to the classical finite, circular and elliptic orbits of the Kepler
problem. In the limit n→∞ these energies tend to E = 0. Every state n
has a well-defined and sharp value of the energy.
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The second group (to the right) corresponds to the classical scatter-
ing orbits, i. e. the hyperbolic orbits which come in from spatial infinity
and return to infinity. In quantum mechanics, too, the states of this
group describe scattering states of the electron-proton system where
the electron comes in with initial momentum |p|∞ =√2µE along the
direction p̂. However, no definite trajectory can be assigned to such
a state.

In the second step one learns how to couple a stationary system of
this kind to the radiation field and to understand its behaviour when
its energy is lowered, or increased, by emission or absorption of pho-
tons, respectively. All bound states in (1.24), except for the lowest state
with n = 1, become unstable. They are taken to lower states of the same
series, predominantly through emission of photons, and eventually land
in the stable ground state. In this way the characteristic spectral lines
of atoms were understood that had been measured and tabulated long
before quantum mechanics was developed.

The possibility for an initial state “i”, by emission of one or more
photons, to go over into a final state “ f ” not only renders that state un-
stable but gives it a broadening, i. e. an uncertainty in energy which is
the larger, the faster the decay will take place. If τ denotes the average
lifetime of the state and if τ is given in seconds, the line broadening is
given by the formula

Γ = �
τ
= �c
τc
= (

6.58×10−16/τ
)

eV , (1.25)

a formula to which we return later in more detail. The ground state,
being absolutely stable, is the only bound state which keeps the sharp
energy eigenvalue that one found in the first step, in solving the original
stationary problem without taking account of the radiation field.

1.2 Heisenberg’s Uncertainty Relation
for Position and Momentum

Consider a Hamiltonian system of classical mechanics, described by the
Hamiltonian H = T +U , with U an attractive potential. The fact that
after its translation to quantum mechanics this sytem exhibits an en-
ergy spectrum bounded from below, E ≥ E0 where E0 is the energy
of the ground state, is a consequence of a fundamental principle of
quantum theory: Heisenberg’s uncertainty relations for canonically con-
jugate variables. We discuss this principle first on an example but return
to it in a more general framework and a more precise formulation in
later sections when adequate mathematical tools will be available.

Dynamical quantities of classical mechanics, i. e. physical observ-
ables in a given system, are described by real, in general smooth
functions F(q, p) on phase space. Examples are the coordinates qi , the
components p j of momentum of a particle, the components 	i or the
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square �2 of its orbital angular momentum, the kinetic energy T , the
potential energy U , etc. Expressed somewhat more formally any such
observable maps domains of phase space onto the reals,

F(q1, . . . , q f , p1, . . . , p f ) : P−→R . (1.26)

For instance, the function qi maps the point (q1, . . ., q f , p1, . . ., p f )∈P
to its i-th coordinate qi ∈R.

Real functions on a space can be added, they can be multiplied, and
they can be multiplied with real numbers. The result is again a function.
The product F ·G of two functions F and G is the same as G · F, with
the order reversed. Thus, the set of all real function on phase space P
is an algebra. As the product obeys the rule

F ·G−G · F = 0 (1.27)

this algebra is said to be commutative. Indeed, the left-hand side con-
tains the commutator of F and G whose general definition reads

[A, B] := A · B− B · A . (1.28)

Expressed in more physical terms, the relation (1.27) says that two
dynamical quantities F and G can have well-determined values sim-
ultaneously and, hence, can be measured simultaneously. To quote an
example in celestial mechanics, the three coordinates as well as the
three components of momentum of a body can be measured, or can
be predicted, from the knowledge of its orbit in space. This statement
which seems obvious in the realm of classical physics, no longer holds
in those parts of physics where Planck’s constant is relevant. This will
be the case if our experimental apparatus allows to resolve volumina in
phase space for which the products ∆qi∆pi of side lengths in the di-
rection of qi and in the direction of the conjugate variable pi are no
longer large as compared to �. In general and depending on the state
of the system, observables will exhibit an uncertainty, a “diffuseness”.
Measurements of two different observables, and this is the essential and
new property of quantum theory, may exclude each other. In such cases
the uncertainty in one is correlated with the uncertainty in the other ob-
servable. In the limiting cases where one of them assumes a sharp, fixed
value, the other is completely undetermined.

1.2.1 Uncertainties of Observables

An observable may be known only within some uncertainty, which is
to say that in repeated measurements a certain weighted distribution of
values is found. This happens in classical physics whenever one deals
with a system of many particles about which one has only limited infor-
mation. An example is provided by Maxwell’s distribution of velocities
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in a swarm of particles described by the normalized probability distri-
bution

dw(p)= 4π

(2πmkT )3/2
e−βp2/2m p2 dp with β = 1

kT
.

In this expression k denotes Boltzmann’s constant and T is the tempera-
ture. This distribution gives the differential probability for measuring the
modulus p≡ |p| of the momentum in the interval (p, p+ dp). It is nor-
malized to 1, in accordance with the statement that whatever the value
of p is that is obtained in an individual measurement, it lies somewhere
in the interval [0,∞).

More generally, let F be an observable whose measurement yields
a real number. The measured values f may lie in a continuum, say in
the interval [a, b] of the real axis. In the example above this is the in-
terval [0,∞). The system (we think here of a many-body system as
in the example) is in a given state that we describe by the normalized
distribution

�( f ) with

b∫
a

�( f )d f = 1 (1.29)

In cases where the measured values of F are discrete and belong to
the series of ordered real numbers f1, f2, . . . , the distribution (1.29) is
replaced by a series of probabilities w1, w2, . . . ,

wi ≡w( fi) with the condition
∑
i=1

wi = 1 , (1.30)

where wi ≡ w( fi) is the probability to find the value fi in a measure-
ment of F. The state of the system is defined with reference to the
observable F and is described by the distribution �( f ) or by the set of
probabilities {w( fi)}, respectively.

Before moving on we note that this picture, though strongly simpli-
fied, shows all features which are essential for our discussion. In general
one will need more than one observable, the distribution function will
thus depend on more than one variable. For instance, in a system of N
particles the coordinates and the momenta(

x(1), . . . , x(N ); p(1), . . . , p(N )
)

≡
(

q1, q2, . . . , q3N ; p1, p2, . . . , p3N

)
are the relevant observables which replace the abstract F above, and
which are used to define the state. The distribution function

�(q1, q2, . . . , q3N ; p1, p2, . . . , p3N )

is now a function of 6N variables.
Now, let G be another observable, evaluated as a function of the

values of F. For the example of the N body system this could be the
Hamiltonian function

H(q1, q2, . . . , q3N ; p1, p2, . . . , p3N )
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which is evaluated on phase space and which yields the energy of the
system. In our simplified description we write G( f ) for the value of the
observable G at f .

A quantitative measure for the uncertainty of the measured values
of G is obtained by calculating the mean square deviation, or standard
deviation, that is, the average of the square of the difference of G and
its mean value 〈G〉, viz.

(∆G)2 :=
〈
{G−〈G〉}2

〉
=

〈
G2

〉
−〈G〉 2 . (1.31)

The second form on the right-hand side is obtained by expanding the
curly brackets〈
{G−〈G〉}2

〉
=

〈
G2

〉
−2 〈G〉 〈G〉+〈G〉 2 .

Depending on whether we deal with a continuous or a discrete distribu-
tion of values for F we have

〈G〉 =
∫
�( f )G( f )d f or 〈G〉 =

∑
i

wi G( fi) . (1.32)

Inserting into (1.31) one obtains the expressions

(∆G)2 =
∫ (

G( f )−
∫

G( f ′)�( f ′)d f ′
)2

�( f )d f

for the continuous distribution, and

(∆G)2 =
∑

i

wi

⎛⎝G( fi)−
∑

j

w j G( f j)

⎞⎠2

for the discrete case, respectively.
We summarize this important concept:

Definition 1.1

The uncertainty, or standard deviation, of an observable in a given
state is defined to be the square root of the mean square devia-
tion (1.31),

∆G :=
√〈

G2
〉−〈G〉 2 . (1.33)

If the observable F takes only one single value f0, i.e when

�( f )= δ( f − f0) or wi ≡w( fi)= δi0 , (1.34)

then the uncertainty (1.33) is equal to zero. In all other cases ∆G has
a nonvanishing, positive value. As an example, we calculate the standard
deviation of the kinetic energy Tkin = p2/2m for Maxwell’s distribution
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Fig. 1.4. Classical Maxwell distribution
of velocities 4/

√
πx2 exp(−x2)

of momenta given above. Substituting x = p
√
β/(2m) the distribution

becomes

dw(x)= 4√
π

x2 e−x2
dx .

This function is shown in Fig. 1.4. The mean values of T 2
kin and of Tkin

are calculated as follows〈
T 2

kin

〉
= 4

β2
√
π

∞∫
0

x6 e−x2
dx = 15

4

1

β2 =
15

4
(kT )2 ,

〈Tkin〉 = 4

β
√
π

∞∫
0

x4 e−x2
dx = 3

2β
= 3

2
kT .

From these expressions the standard deviation of the kinetic energy is
obtained

∆Tkin ≡∆
(

p2

2m

)
=

√
3

2
kT .

It becomes the larger the higher the temperature.

1.2.2 Quantum Mechanical Uncertainties
of Canonically Conjugate Variables

After this excursion to classical mechanics of N body systems we re-
turn to quantum mechanics of a single particle. In classical mechanics
the state of the particle can be characterized, at a given time, by sharp,
well-defined values for all its coordinates qi and all components pk
of its momentum. In quantum mechanics these observables are subject
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to uncertainties ∆qi and ∆pk, respectively, which obey a fundamental
inequality. Let the uncertainty, or standard deviation, be defined as in
(1.33) of Definition 1.1 by the difference of the mean value of the square
and of the square of the mean value,

∆qi =
√〈
(qi)2

〉− 〈
qi
〉

2 , ∆p j =
√〈
(p j)2

〉− 〈
p j
〉

2 .

For the moment we put aside important questions such as: which kind
of average is meant here? how should we proceed in calculating the
uncertainties in a given state? The uncertainties are the results of meas-
urements on a given quantum mechanical state, and, as such, they are
perfectly classical quantities. Yet, the inner dynamics of the system is
such that the uncertainties fulfill certain correlated inequalities which
limit their measurement in a fundamental way. Indeed, they obey

Heisenberg’s uncertainty relation for position and momentum:
Let

{qi , (i = 1, 2, . . . , f )}
be a set of coordinates of a Lagrangian or Hamiltonian system with f
degrees of freedom. Let

pk = ∂L
∂q̇k

, k = 1, 2, . . . , f

be their canonically conjugate momenta. In a given state of the sys-
tem the results of any measurement will allways be such that they are
compatible with the following inequalities for the standard deviations
of coordinates and momenta:

(∆pk)(∆qi)≥ 1

2
� δik . (1.35)

This statement is both strange and remarkable and requires some
more comments and remarks.

Remarks
1. For the time being we have in mind only the ordinary coordinates

x= {q1, q2, q3} and momenta p= {p1, p2, p3} of a particle. The un-
certainty relation (1.35) is formulated for the more general case of
generalized coordinates and their canonically conjugate momenta in
a mechanical system with f degrees of freedom. In doing so we as-
sume that the system is such that the Legendre transform is regular
(see [Scheck (2005)], Sect. 5.6.1), which is to say that the system can
be described equivalently as a Lagrangian system {q, q̇, L(q, q̇, t)},
or as a Hamiltonian system {q, p, H(q, p, t)}. The relationship to
concepts of classical canonical mechanics is remarkable, but note
that the condition (1.35) goes far beyond it. We will return to this
in more detail later.
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2. Coordinates or momenta in a physical quantum state of a single
particle exhibit a distribution, or variation, this being a concept
of (classical) statistical physics. This implies, in general, that it is
not sufficient to perform a single measurement in a given state of
the particle. Rather one will have to perform very many identical
measurements on that single, given state, in order to determine the
distribution of experimental values and to calculate the standard de-
viation from them.

3. To take an example for the uncertainty relation imagine an experi-
ment which allows to restrict the coordinate qi to the interval ∆
by means of a slit in the i-direction. The corresponding uncertainty
in pi is then at least �/2∆. The more one localizes the particle in the
i-direction the greater the distribution of values in the conjugate mo-
mentum. In the limit ∆→ 0 the momentum cannot be determined at
all.

4. It is clear from the preceding remark that the state of the particle can
by no means be a curve in phase space P. Such a curve would imply
that at any given time both coordinates and momenta have definite,
sharp values, i. e. that we would have ∆qi = 0 and ∆pi = 0. Al-
though repeated measurements of these observables, e. g. in the time
interval (0, T ), would yield the time averages

qi = 1

T

T∫
0

dt qi(t) , (qi)2 = 1

T

T∫
0

dt (qi)2(t) , etc.

the uncertainties would still be zero. This means that in accepting
Heisenberg’s uncertainty relations we leave the description of the
state in phase space. The (quantum) state of the particle which is
contained in the symbolic notation 〈· · · 〉 must lie in a larger, and
more abstract space than P.

5. Consider the extreme case where the component qi has the fixed
value 〈qi〉 = ai and, hence, where 〈(qi)2〉 = (ai)2. Since its conjugate
momentum pi , by virtue of the inequality (1.35), is completely un-
determined we certainly cannot have 〈pi〉 = bi and 〈(pi)

2〉 = (bi)
2. If

upon repeated measurements of the i-th coordinate the state answers
by “the observable qi has the value ai”, that same state cannot return
one single value bi in a measurement of the conjugate momentum,
otherwise both standard deviations would vanish, in contradiction
to the uncertainty relation. This leads to the conjecture that the co-
ordinate qi and the momentum pi are represented by quantities qi

and p
i
, respectively, which act on the states in some abstract space

and which do not commute, in contrast to their classical counter-
parts. Indeed, we will soon learn that in quantum mechanics they
fulfill the relation

[p
i
, qk] = �

i
δki . (1.36)
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Objects of this kind may be differential operators or matrices but
certainly not smooth functions. For example, one verifies that the
following pairs of operators obey the relations (1.36):{

p
i
=+�

i

∂

∂qi
, qk = qk

}
, and (i)

{
p

i
= pi , q

k =−�
i

∂

∂pk

}
. (ii)

In the first example the momentum is a differential operator, the co-
ordinate is a function, i. e. an operator which acts by “multiplication
with the function qi”. Indeed, one finds

�

i

∂

∂qi
[qk f(. . . , qi , . . . , qk, . . . )]−qk �

i

∂ f

∂qi

= �
i
δki f(. . . , qi , . . . , qk, . . . ) .

In the second example the momentum is an ordinary function while
the coordinate is a differential operator. In this case one has

pi

(
−�

i

∂

∂pk

)
f̂ (. . . , pi , . . . , pk, . . . )

−
(
−�

i

)
∂

∂pk
[pi f̂ (. . . , pi , . . . , pk, . . . )]

= �
i
δki f̂ (. . . , pi , . . . , pk, . . . ) .

These remarks to which one will return repeatedly in developing the
theory further, raise a number of questions: What is the nature of the
states of the system and, if this is known, how does one calculate mean
values such as 〈· · · 〉? What is the nature of the abstract spaces which are
spanned by physically admissible states of a system? If coordinates and
momenta are to be represented by operators or some other set of non-
commuting objects, then also all other observables that are constructed
from them, will become operators. What are the rules that determine the
translation of the classical observables to their representation in quan-
tum mechanics?

The answers to these questions need more preparatory work and
a good deal of patience. Before we turn to them let us illustrate the
physical significance of (1.35) by means of three examples.
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1.2.3 Examples for Heisenberg’s Uncertainty Relation

Example 1.3 Harmonic Oscillator in one Dimension
The harmonic oscillator in one spatial dimension is described by the
Hamiltonian function

H = p2

2m
+ 1

2
mω2q2 ≡ 1

2

[
z2

2+ z2
1

]
where z2 := p√

m
, z1 := √mωq .

Suppose the oscillator is replaced by the corresponding quantum system
(by replacing q and p by operators). The average of H in a state with
energy E is

E = 〈H〉 = 〈p
2〉

2m
+ 1

2
mω2

〈
q2

〉
≡ 1

2

[ 〈
z2

2

〉
+
〈
z2

1

〉 ]
.

The obvious symmetry q↔−q and p↔−p suggests that the mean
values of these variables vanish, 〈q〉 = 0, 〈p〉 = 0. If this is the case we
have

(∆q)2 =
〈
q2

〉
, (∆p)2 =

〈
p2
〉
,

and (1.35) yields the inequality〈
z2

2

〉 〈
z2

1

〉
= ω2

〈
q2

〉 〈
p2
〉
≥ �

2

4
ω2 .

Even if the reader does not accept the conjecture 〈q〉 = 0, 〈p〉 = 0 at
this point the estimate just given remains true. Indeed, from (1.31) one
concludes that 〈G2〉 ≥ (∆G)2 and, therefore, that〈

q2
〉 〈

p2
〉
≥ (∆q)2(∆p)2 ≥ �

2

4
.

This is sufficient for the following sequence of inequalities to hold true

0≤ 1

2

(√〈
z2

2

〉−√〈
z2

1

〉)2

= 〈H〉−
√〈

z2
1

〉 〈
z2

2

〉≤ E− �ω
2
.

They show that the energy is bounded from below, E0 � E with E0 =
�ω/2. We will see below that this is precisely the energy of the lowest
state. Now, if indeed E = E0 = �ω/2, then〈

z2
1

〉
=

〈
z2

2

〉
= �ω

2
,

in agreement with the virial theorem which requires 〈Tkin〉 = 〈U〉 = E/2
for the case of the oscillator potential.
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Thus the energy spectrum of the oscillator is bounded from below
because of Heisenberg’s uncertainty relation for position and momen-
tum. The lowest state with energy E = �ω/2 and with the properties〈

p2
〉
= 1

2
m�ω and

〈
q2

〉
= 1

2

�

mω
is marginally compatible with that relation. Since in quantum mechan-
ics the oscillator can never come to a complete rest one says that its
motion in the ground state consists in zero point oscillations. The en-
ergy E0 of the ground state is called the zero point energy. Even in
its lowest state both potential and kinetic energies exhibit nonvanishing,
though minimal deviations. This is an intrinsic and invariant property of
the oscillator.

Example 1.4 Spherical Oscillator
In classical mechanics the spherical oscillator is described by the Hamil-
tonian function

H = p2

2m
+ 1

2
mω2r2 .

If converted to cartesian coordinates

H =
3∑

i=1

p2
i

2m
+ 1

2
mω2 ,

3∑
i=1

(qi)2 ,

it is seen to be equivalent to the sum of three linear oscillators, all
three with the same mass and the same circular frequency ω. Thus, the
analysis of the previous example can be applied directly. The standard
deviations of the coordinate qi and the conjugate momentum pi are cor-
related, the ones of pairs (qk, pl) with different indices k �= l are not.
Therefore, repeating the estimate of Example 1.3 yields the inequality

0≤ E−3
�ω

2
.

The lowest state has the energy E = E0 = 3�ω/2. This system has three
degrees of freedom each of which contributes the amount �ω/2 to the
zero point energy.

Example 1.5 Hydrogen Atom
An analogous, though rougher, estimate for the hydrogen atom shows
that, here too, the uncertainty relation is responsible for the fact that the
energy spectrum is bounded from below. Using polar coordinates in the
plane of the classical motion the Hamiltonian function reads

H = p2
r

2µ
+ 	2

2µr2 −
e2

r
,

(see [Scheck (2005)], Sect. 2.16), where pr is the momentum canoni-
cally conjugate to r, 	 is the modulus of the (conserved) orbital angular
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momentum. Although the mean value of pr does not vanish we can
make use of the property 〈p2

r 〉 ≥ (∆pr)
2 to estimate the mean value

of H , for nonvanishing 	, as follows

E = 〈H〉 (	= 0)= 〈p
2
r 〉

2µ
− e2

〈
1

r

〉
>

�2

8µ(∆r)2
− e2

(∆r)
.

In this estimate we have used the uncertainty relation (∆pr)(∆r)≥ �/2
and we have approximated the term portional to 1/r by 1/(∆r). The
right-hand side is a function of (∆r). Its minimum is attained at the
value

(∆r)= �2

4µe2 .

If this is inserted in the expression above we see that the energy must
be bounded from below by at least E > (−2µe4/�2). The right-hand
side is four times the value (1.1) of the true energy of the ground
state – presumably because our estimate is not optimal yet. The result
shows, however, that it is again the uncertainty relation between position
and momentum that prevents binding energies from becoming arbitrarily
large.

1.3 The Particle-Wave Dualism
Energy E and momentum p of classical physics are understood to be
properties of mechanical bodies, i. e., in the simplest case, of point-like
particles of mass m. For such a particle these two kinematic quantities
are related by an energy–momentum relation which reads

E = p2/2m or E =
√

c2 p2+ (mc2)2 (1.37)

in the nonrelativistic and the relativistic case, respectively. In contrast to
this, a circular frequency ω= 2π/T , with T the period, and a wave vec-
tor k, whose modulus is related to the wave length λ by k = 2π/λ, are
attributes of a monochromatic wave which propagates in the direction k̂.
The frequency ω and the wave number k are related by a dispersion
relation ω= ω(k).

The interpretation of the photoelectric effect and the derivation of
Planck’s formula for the spectral distribution of black body radiation
show that light appears in quanta of energy which are given by the
Einstein–Planck relation

E = hν . (1.38)

This relation is quite remarkable in that it relates a particle property,
“energy” E, with a wave property, “frequency” ν, via Planck’s constant.
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The energy of a monochromatic electromagnetic wave is proportional
to its frequency. Thus, light, or any other electromagnetic radiation for
that matter, besides its well-known wave character, also has particle
properties which will be particularly important when the number n of
photons of a given energy is small. In such cases the light quanta, or
photons, must be treated liked point particles of mass mphoton = 0. As
we will see later this is a direct consequence of the long–range na-
ture of the Coulomb potential UC(r)= const/r. According to the second
equation of (1.37) the photon must be ascribed a momentum, its en-
ergy and its momentum being related by (1.37) with mass zero, viz.
E = c|p|. On the other hand, when light propagates in vacuum, its fre-
quency and wave length are related by νλ= c, where c is the speed
of light. Therefore, the Einstein–Planck relation (1.38) is translated to
a formula relating the modulus of the momentum to the wave length,
viz.

|p| Photon = h

λ
.

This dual nature of electromagnetic radiation on one side, and the
diffraction phenomena of free massive elementary particles, on the
other, lead Louis de Broglie10 to the following fundamental hypothesis:

In close analogy to light which also possesses particle properties, all
massive objects, and, in particular, all elementary particles exhibit
wave properties. To a material particle of definite momentum p one
must ascribe a monochromatic wave which propagates in the direc-
tion of p̂ and whose wave length is

λ= h

p
where p= |p| (de Broglie, 1923) . (1.39)

This wave length is called de Broglie wave length of the material
particle.

We comment on this hypothesis by the following

Remarks

1. If Planck’s constant were equal to zero, h = 0, we would have λ= 0
for all values of p. The particle would then have no wave nature
and could be described exclusively by classical mechanics. There-
fore, one expects classical mechanics to correspond to the limit of
short wave lengths of quantum mechanics. We conjecture that this
limiting situation is reached somewhat like in optics: Geometric op-
tics corresponds to wave optics in the limit of short waves. If the
wave length of light is very small as compared to the linear dimen-
sion d of the object on which it is scattered, optical set-ups such
as slits, screens, or lenses, can be described by means of simple

10 The name is pronounced “Broj”, see
e. g. Petit Larousse, Librairie Larousse,
Paris.
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ray optics. If, on the other hand, λ	 d, i. e. if the wave length is
comparable to typical linear dimensions of the set-up, there will be
diffraction phenomena.

2. Quantum effects will be noticeable when the de Broglie wave
length λ is of the same magnitude as the linear dimensions d which
are relevant in a given situation. As an example, consider the scat-
tering of a particle with momentum p on a target whose size is d.
Whenever λ� d, i. e. if dp� h, classical mechanics will be applica-
ble – though here as a limiting form of quantum mechanics. In other
terms, one expects to find classical mechanics as the limit h −→ 0
of quantum mechanics. However, if λ	 d we expect to find new and
specific quantum effects.

3. Of course, the particle nature, in the strict sense of classical mech-
anics, and the postulated wave nature of matter are not readily
compatible. Rather, particle properties and wave properties must be
complementary aspects. Both aspects are essential in the description
of matter particles. This assertion, although still somewhat vague for
the time being, is described by Bohr’s principle of complementar-
ity.

4. By associating a wave to a particle the uncertainty relation receives
an interpretation in terms of wave optics: a monochromatic wave
corresponds to a fixed value of p. Such a wave is nowhere local-
ized in space. Conversely, if one wishes to construct an optical signal
which is localized in some finite domain of space, one will need an
appropriate superposition of partial waves taken from a certain spec-
trum of wave lengths. The smaller, i. e. the more localized this wave
packet is, the broader the spectrum of contributing wave lengths
must be, or, through de Broglie’s relation, the larger the range of
momenta must be chosen.

1.3.1 The Wave Function and its Interpretation

On the basis of de Broglie’s hypothesis we associate to a particle such
as the electron a wave function ψ(t, x). If this electron has a sharp value
of momentum p this wave function will be a plane wave of the form

ei(p·x/�−ωt) = ei(k·x−ωt)

where k is the wave vector, k = |k| is the wave number, and ω= ω(k)
is a function still to be determined. In accordance with the uncertainty
relation such a plane wave is nowhere localized in space and, for this
reason, it is not obvious how to interpret it physically. It would be more
helpful if ψ were a strongly localized wave phenomenon. Indeed, we
could compare such a wave packet at time t to the position in space
that the particle would pass at this time if it were described by clas-
sical mechanics. With this idea in mind we write the wave function as
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a superposition of plane waves

ψ(t, x)= 1

(2π)3/2

∫
d3k ψ̂(k)ei(k·x−ωt) (1.40)

by choosing the function ψ̂(k) such that it is concentrated around a cen-
tral value, say k0. The numerical factor in front of (1.40) is chosen in
order to render the Fourier transform between ψ(t, x) and ψ̂(k) symmet-
ric. Expanding around the wave vector k0, we have

k · x= (k−k0) · x+k0 · x ,
ω(k)	 ω(k0)+(k−k0) ·∇|k ω(k)|k=k0

= ω0+(k−k0) ·k0

k0

dω

dk

∣∣∣∣
k=k0

.

In this expansion we set k ≡ |k| and k0 ≡ |k0|, the gradient with respect
to the three components of k is replaced by the derivative with respect
to its modulus k = |k|, ∇k = (∇k|k|)d/dk, by means of the chain rule.
In this approximation (1.40) takes a form that is easily interpreted:

ψ(t, x)	 1

(2π)3/2
ei(k0·x−ω0t)A(x− k̂0v0t)

with

A(x− k̂0v0t)=
∫

d3k ψ̂(k)ei(k−k0)(x−k̂0v0t)

and

v0 = dω

dk

∣∣∣∣
k=k0

.

The wave function just obtained may be understood as follows: The
amplitude A is determined by the distribution ψ̂(k). It moves with ve-
locity v0. If one dealt with a theory of (classical) waves one would call
this the group velocity while ω/k would be said to be the phase velocity.
Relating v0 to the momentum, by virtue of de Broglie’s relation (1.39),
one has

dω

dk

∣∣∣∣
k=k0

= v0 = p0

m
= �k0

m
.

Upon integration, the functions ω(k0) or, somewhat more generally,
ω(k) are seen to be given by

ω(k)= �k
2

2m
or E ≡ �ω(k)= p2

2m
. (1.41)

Thus, we recover the well-known nonrelativistic relation between en-
ergy and momentum and, hence, fix the dispersion relation ω= ω(k).
Note that the connection between particle and wave properties was used
several times.

The superposition (1.40) that was chosen, mimicks the analogous
classical situation. It describes an object localized at time t which moves
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with the group velocity v0, equal to the velocity of the classical par-
ticle. However, as we shall discover soon, the localization cannot last for
long. The well-localized wave packet at time t disperses in the course
of time. In constructing the packet we have tacitly assumed that differ-
ent wave functions can be superimposed linearly – a property which is
in agreement with the interference phenomena observed in experiment.
The question of interpretation of the wave function, for the time being,
remains unanswered. This is the question of how to derive measurable,
testable predictions from the knowledge of ψ(t, x).

In a next step we show that a wave function of the type (1.40) sat-
isfies the differential equation

i�ψ̇(t, x)=− �
2

2m
∆ψ(t, x) . (1.42)

Proof

As the function ψ̂(k) in (1.40) is localized, the integral exists. Differen-
tiation with respect to time or space coordinates, and integration can be
interchanged. Making use of (1.41) for ω, we have

ψ̇ =−i
�

2m

1

(2π)3/2

∫
d3k k2ψ̂(k)ei(k·x−ωt) .

Replacing two of the factors in the integrand as follows,

k2 ei(k·x−ωt) =−∆x ei(k·x−ωt) ,

and taking the Laplace operator out of the integral gives the differential
equation (1.42).

Having derived (1.42) we have found the Schrödinger equation for
the case of force-free motion. This is a homogeneous, linear differen-
tial equation: It is homogeneous because it does not contain a source
term independent of ψ. Linearity means that if ψ1(t, x) and ψ2(t, x) are
solutions then also any linear combination

ψ(t, x)= c1ψ1(t, x)+ c2ψ2(t, x) with c1, c2 ∈C
is a solution. The statement that two different solutions can interfere
is an expression of the superposition principle. This principle has far
reaching observable consequences.

Equation (1.42) is first order in the time variable. This means that
a given initial distribution ψ(t0, x) fixes the wave field for all times. Be-
ing of second order in derivatives with respect to space coordinates, this
equation cannot be Lorentz covariant (but it is Galilei invariant). This is
not really surprising because we obtained (1.41) by making use of the
nonrelativistic relation between velocity and momentum.
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1.3.2 A First Link to Classical Mechanics
In the spirit of the eikonal approximation in optics we attempt to solve
(1.42) by means of the ansatz

ψ(t, x)= ψ0 exp
[ i

�
S(t, x)

]
(1.43)

where ψ0 is a complex constant. The time derivative and the Laplacian
applied to this give, respectively,

i�ψ̇ =−∂S
∂t
ψ0 exp

[ i

�
S(t, x)

]
=−∂S

∂t
ψ ,

∆ψ =
[
− 1

�2 (∇S)2+ i

�
∆ S

]
ψ0 exp

[ i

�
S(t, x)

]
.

Upon insertion in (1.42) one obtains a differential equation for S(t, x),

∂S

∂t
+ 1

2m
(∇S)2 = i

�

2m
∆ S .

If the function S is such that the term on the right-hand side may be
neglected, this is seen to be the Hamilton–Jacobi differential equation
for the case of the Hamiltonian function H = p2/2m,

H̃ = H

(
∂S

∂qi
, qk, t

)
+ ∂S
∂t
= 0

with the well-known formulae

pi = ∂S
∂qi , Qk = ∂S

∂Pk
, S = S(q, α, t) ,

and with Pk = αk = const (see [Scheck (2005)], Sect. 2.35 where this
particular canonical transformation is denoted by S∗). In mechanics one
learns that the general solution is

S(x,α, t)= α · x− α2

2m
t+ const

and that it describes uniform, rectilinear motion, as expected,

x− α

m
t = β .

The particle trajectories are perpendicular to the surfaces S(x,α, t) =
const. This result is interesting in that it says that these surfaces are the
wave fronts of the wave function ψ. In the approximation made above
the classical orbits are orthogonal trajectories of the wave fronts ψ(t, x).

Remark
The ansatz (1.43) is the starting point for a systematic expansion
in powers of �, i. e. a series of approximations around the classical
limit. This is called the WKBJ-method where the short-hand stands for
Wentzel, Kramers, Brillouin, and Jeffreys.
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Fig. 1.5. A Gaussian wave packet (1.49)
(in one dimension) while moving to
the right in this picture, broadens in
the course of time. The three curves
show the shape of the wave packet as
a function of the space coordinate x,
at t = 0, at t = τ(b), and at t = 2τ(b),
where τ = mb2/�

1.3.3 Gaussian Wave Packet
For the sake of simplicity we first consider wave functions in one spatial
dimension, denoted x. Plane waves are chosen as follows

ψk(t, x)= 1√
2π

ei(kx−ωt) = 1√
2π

ei/�(px−Et)

with ω= �k2/(2m), the normalization being chosen such that∫
dx ψ∗k′(t, x)ψk(t, x)= δ(1)(k− k′) .

Appendix A.1 gives a summary of the properties of δ-distributions and
indicates how this improper integral is to be understood and how it is
evaluated. The wave packet is taken to be

ψ(t, x)= 1√
2π

∫
dk ψ̂(k)ei(kx−ωt) . (1.44)

Taking the Fourier transform of this ansatz, assuming the integrals to
exist, yields

ψ̂(k)= 1√
2π

∫
dx ψ(t, x)e−i(kx−ωt) . (1.45)

At time t = 0 the wave function is assumed to be a Gaussian wave
packet, of the form

ψ(t = 0, x)= αe−x2/(2b2) eik0x ,

where α is a complex constant that we fix as follows:

α= 1

b1/2π1/4 eiϕα .
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With this choice of the factor α the distribution ψ∗ψ = |ψ|2 is normal-
ized to 1, it has the shape sketched in Fig. 1.5. Its width is

Γ |(0,x) = 2b
√

ln 2	 1.665 b ,

the index (0, x) being added in order to point out that this is the width at
time t = 0 and in coordinate space. In order to check the normalization
and to calculate the Fourier transform we need the Gauss integral which
is calculated as follows

Gauss integral: In a first step calculate the integral
∞∫
−∞

dx e−x2

by taking its square. This yields a double integral over two indepen-
dent cartesian variables which may be identified with two orthogonal
variables x and y. In turn, this double integral is converted to polar
coordinates in the (x, y)-plane and takes a form which is integrated
in an elementary way, viz.⎛⎝ ∞∫

−∞
dx e−x2

⎞⎠2

=
∞∫
−∞

∞∫
−∞

dx dy e−(x2+y2)

=
2π∫

0

dφ

∞∫
0

dr r e−r2 = π .

Let a be a positive real number, or else a complex number with posi-
tive real part, and let b and c be two arbitrary complex numbers. Then
one obtains

∞∫
−∞

dx e−(ax2+2bx+c) =
√
π

a
e(b

2−ac)/a . (1.46)

The latter formula follows from the one obtained in the first step by
completing the argument of the exponential to a complete square,

ax2+2bx+ c= a(x+ b

a
)2− b2−ac

a
and by substituting u =√a(x+b/a).

This result is used to verify that
∞∫
−∞

dx |ψ(0, x)| 2 = 1

and, likewise, that ψ̂(k) is also normalized to 1.
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Making use of the formula (1.46) one calculates the Fourier trans-
form (1.45) for the distribution ψ(0, x) as given above,

ψ̂(k)= αb exp

[
−1

2
(k− k0)

2b2
]
, (1.47)

α being the same parameter as before. Inserting this result in (1.44) one
calculates the wave function for arbitrary times, making use once more
of the Gauss integral. The result is

ψ(t, x)= αb√
b2+ i�t/m

exp

[
− x2

2(b2+ i�t/m)

]
× exp

[
i
k0x−�k2

0t/(2m)

1+ i�t/(mb2)

]
. (1.48)

This somewhat cumbersome formula is understood better if one calcu-
lates its absolute square, viz.

|ψ(t, x)| 2 = |α|2√
1+�2t2/(m2b4)

exp

[
− (x−�k0t/m)2

b2[1+�2t2/(m2b4)]
]
.

(1.49)

The expression (1.49) in coordinate space, and the corresponding ab-
solute square |ψ̂(k)|2 in momentum space that follows from it, are
now easy to interpret: The tip of the wave packet moves with velocity
�k0/m. Inserting |α|2 = 1/(b

√
π) its width is seen to be proportional to

b

√
1+ �

2t2

m2b4 (in coordinate space) ,

while the distribution |ψ̂(k)|2 in momentum space has constant width,

1

b
(in momentum space) .

Two properties can be read off these formulae:

1. If one wishes to prepare a sharply localized packet in coordinate
space, at time t = 0, then one must choose b as small as possible. In
this case the corresponding distribution in momentum space is nec-
essarily broad. In turn, the packet will have a large spatial extension
already at t = 0 if its momentum space representation is strongly lo-
calized around the central value k0. Both situations are in accord
with Heisenberg’s uncertainty relation (1.35).

2. In the course of time the wave packet in coordinate space broadens
(independently of whether one extrapolates to the future or to the
past of t = 0). Writing the factor characterizing the width as follows

b

√
1+ �

2t2

m2b4 = b

√
1+ t2

τ2(b)
with τ(b)= m

�
b2 ,
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one sees that the width will double after the time t =√3τ(b) as com-
pared to what it was at t = 0. In Fig. 1.5 I have plotted the quantity
(1.49) for t0 = 0, for t1 = τ(b), and for t2 = 2τ(b), as a function of x,
with the choice of parameters k0 = 1, b= 1 (in arbitrary units).

It is instructive to estimate more quantitatively the dispersion of the
wave packet. For an electron the characteristic time during which the
width increases to the double of its initial value, is

t =√3τ(b)	 1.5×10−26 fm−2s b2 .

Suppose that the wave packet assigned to an electron, at time t = 0,
had the width b= 1 fm . The width will be twice its initial value after
1.5×10−26 s, a very short time indeed.

Let us compare this to a tennis ball with mass m = 0.1 kg, taken to
be a wave packet of length b= 6 cm= 6×1013 fm, at time t = 0. The
time it will take to double its size is√

3τ(b)= 1642 fm−2s b2 = 5.91×1030 s	 1.9×1023 years .

Thus, there is no reason to worry about the validity of macroscopic,
classical mechanics!

1.3.4 Electron in External Electromagnetic Fields
Classically, an electron subject to external electromagnetic fields is de-
scribed by the Hamiltonian function

H(p, x, t)= 1

2m

(
p− e

c
A(t, x)

)2+ eΦ(t, x) (1.50)

(see, e. g., [Scheck (2005)], Sect. 2.16). Here e denotes its electric
charge, A and Φ are the vector and scalar potentials, respectively, the
electric and the magnetic fields being derived from them by means of
the formulae (1.12) and (1.13), respectively. The corresponding differ-
ential equation of Hamilton and Jacobi reads

1

2m

(
∇S− e

c
A
)2+ eΦ+ ∂S

∂t
= 0 .

Furthermore, one has the equations

ẋi = ∂H

∂pi
= 1

m

∂S

∂xi
− e

mc
Ai .

It seems reasonable to require that this classical differential equation
follow from its quantum analogue, by means of the ansatz (1.43) and by
expanding in powers of �, very much as in the previous case of force-
free motion. One then sees that a possible generalization of (1.42) could
be11

i�ψ̇(t, x)= 1

2m

(
�

i
∇− e

c
A
)2

ψ(t, x)+ eΦψ(t, x) . (1.51)

11 The “dot” applied to the function ψ
is a short-hand for the partial derivative
with respect to time. This generally ac-
cepted convention should not give rise
to confusion because the coordinates x
on which ψ depends too, as such, are
not functions of time.
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For vanishing external fields, A≡ 0, Φ ≡ 0, it is identical with (1.42).
Furthermore, one easily verifies, upon inserting the ansatz (1.43), that it
yields the correct Hamilton–Jacobi equation, at the order O(�0), when
the fields do not vanish.

The following discussion gives further support to the ansatz (1.51).
At the same time it takes us closer towards an interpretation of the wave
function ψ(t, x). We proceed in two steps.
1) Consider first the case A≡ 0, with only the scalar potential different
from zero. The conjectured differential equation (1.51) simplifies to

i�ψ̇(t, x)=
(
− �

2

2m
∆+eΦ(t, x)

)
ψ(t, x) . (1.52)

As we know already that the absolute square |ψ(t, x)|2 must be related
to localization of the electron in space, it seems plausible that the in-
tegral of this positive-semidefinite quantity, weighted with the external
potential Φ, is proportional to the potential energy of the electron in the
external field. Thus, we assume

e
∫

d3x |ψ(t, x)| 2Φ(t, x)= Epot

(where, possibly, a constant of proportionality might have to be in-
serted). The average force acting on the electron is then obtained from
the integral over the gradient field of Φ,

〈F〉 = −e
∫

d3x |ψ| 2∇Φ(t, x) .

If for |x|→∞ the wave function tends to zero sufficiently rapidly such
that all surface terms vanish at infinity, we shift the operator ∇ over to
|ψ|2 = ψ∗ψ, by partial integration, and obtain

〈F〉 = +e
∫

d3x
[
(∇ψ∗)ψ+ψ∗(∇ψ)]Φ(t, x) .

We show next that this expression is also equal to

d

dt

(∫
d3x ψ∗�

i
∇ψ

)
=

∫
d3x ψ̇∗�

i
∇ψ+

∫
d3x ψ∗�

i
∇ψ̇

provided use is made of (1.52) for ψ, as well as its complex conjugate
for ψ∗. The terms containing the Laplace operator cancel by virtue of∫

d3x (∆ψ∗∇iψ−ψ∗∇i ∆ψ)

=
∑

k

∫
d3x

(−∇kψ
∗∇k∇iψ+∇kψ

∗∇i∇kψ
)= 0 ,
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using partial integration. The terms containing the scalar potential Φ
also cancel except for the one in which the operator ∇ acts on the func-
tion Φ. This term reduces to

1

i�
e
∫

d3x ψ∗�
i
(∇Φ)ψ .

Putting these results together we obtain the equation

〈F〉 = d

dt

∫
d3x ψ∗�

i
∇ψ ≡ d

dt
〈p〉 .

In the second part of this equation we have tentatively identified the in-
tegral with the average of the momentum. This interpretation receives
further support by calculating the time derivative of Epot, making use
of (1.52), viz.

eΦψ =−�
i
ψ̇+ �

2

2m
∆ψ

as well as of its complex conjugate:

d

dt
Epot = e

∫
d3x

(
ψ̇∗ψ Φ+ψ∗ψ̇ Φ)

= �
2

2m

∫
d3x

(
ψ̇∗∆ψ+ (∆ψ)∗ψ̇)

= �
2

2m

∫
d3x

(
ψ̇∗∆ψ+ψ∗∆ ψ̇)

= d

dt

(
�2

2m

∫
d3x ψ∗∆ψ

)
.

It is suggestive to interpret the right-hand side as the kinetic energy, but
for the sign

Ekin =− �
2

2m

∫
d3x ψ∗∆ψ ,

such that the total energy is represented by

E = Epot+ Ekin =
∫

d3x ψ∗
{
− �

2

2m
∆+eΦ

}
ψ

and is constant in time. The operator in curly brackets would then be
the analogue of the classical Hamiltonian function. In particular, its first
term would take the role of the classical kinetic energy p2/(2m). This
is compatible with the identification of the momentum above because
the square of the operator in the integral for p gives

�

i
∇ · �

i
∇ =−�2

∆ .
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2) Next we consider a situation where both A and Φ are different from
zero. In view of the relation of the wave function to the observables that
we wish to establish, we define the following densities:

�(t, x) := ψ∗(t, x)ψ(t, x)= |ψ(t, x)| 2 , (1.53)

j(t, x) := 1

2m

{
ψ∗(t, x)

(
�

i
∇− e

c
A
)
ψ(t, x)

+
[(
�

i
∇− e

c
A
)
ψ(t, x)

]∗
ψ(t, x)

}
(1.54)

= �

2mi

[(
ψ∗∇ψ− (∇ψ∗)ψ)− i2e

�c
Aψ∗ψ

]
.

By construction both the scalar density (1.53) and the vectorial den-
sity (1.54) are real. If it is true that the operator (�/i)∇ represents the
(canonical) momentum, then

�

i
∇− e

c
A

must be the kinematic momentum.
We start by calculating the divergence of the current density (1.54).

We find

∇ · j = 1

2m

{
−i�

[
ψ∗∆ψ− (∆ψ∗)ψ]

−2e

c
A
[
(∇ψ∗)ψ+ψ∗(∇ψ)]− 2e

c
(∇ · A)ψ∗ψ

}
= i

2m�

{
ψ∗

(
�

i
∇− e

c
A
)2

ψ−
[(
�

i
∇+ e

c
A
)2

ψ∗
]
ψ

}
.

(In the last step two terms proportional to A2 were added and subtracted
in order to obtain perfect squares.)

This becomes a remarkable result when we also calculate the time
derivative of the scalar density (1.53), by making use of the differential
equation (1.52) for ψ and for ψ∗,
∂�

∂t
= ψ̇∗ψ+ψ∗ψ̇

=− i

2m�

{
ψ∗

(
�

i
∇− e

c
A
)2

ψ−
[(
�

i
∇+ e

c
A
)2

ψ∗
]
ψ

}
.

Indeed we obtain the continuity equation relating the densities (1.53)
and (1.54):

∇ · j+ ∂�
∂t
= 0 . (1.55)
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On the basis of this result one might be tempted to interpret the
density (1.53) as the electric charge density, and the vectorial density
(1.54) as the electric current density of the moving charged particle.
However, as one realizes after a moment of thought, this interpretation
is in conflict with observation: Upon integration over the whole three-
dimensional space one would obtain the total electric charge

Qe.m. =
∫

d3x |ψ(t, x)| 2 .
We know that this must be a multiple of the elementary charge |e|.
Thus, we would have to require Qe.m. =±n|e|. For an electron, more
specifically, we would choose the negative sign and n = 1. As a conse-
quence, a localized fraction of the integral∫

V

d3x |ψ| 2 ,

obtained by integrating over a finite volume V , would represent a cer-
tain fraction of that integer charge. This contradicts experiment: A free
electron carrying a fraction of its charge has never been observed.

There is further, perhaps even more convincing evidence against this
interpretation. As this interpretation is purely classical, all diffraction
phenomena of matter waves would be of the same nature as those of
classical optics. In particular, interference patterns would always be per-
fect and complete, no matter how low the intensity of the incoming
wave. A single electron which is scattered on two or more slits in
a wall, would give rise to a complete interference pattern on a screen
behind the slits, though with strongly reduced intensity. This is in con-
tradiction with experiment. What one really observes is a statistical
phenomenon. Any single electron hits a well-defined point on the screen
(which cannot be predicted, though!). The interference pattern appears
only after some time, after having a large number of identically pre-
pared electrons scatter in the same experimental set-up.

1.4 Schrödinger Equation
and Born’s Interpretation of the Wave Function

Return for a while to the differential equation (1.42) which is used to
describe the motion of free particles. Setting

ψ(t, x)= e−(i/�)Etψ(x) (1.56)

it goes over into the differential equation

1

2m

(
�

i
∇
)2

ψ(x)= Eψ(x) .
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Plane waves of the form

ψ(x)= 1

(2π)3/2
eikx = 1

(2π)3/2
e(i/�)px (1.57)

are seen to be solutions of this equation provided

E = p2

2m
= �

2k2

2m
,

i. e. provided E and p obey the energy-momentum relation (1.37) valid
for nonrelativistic kinematics.These simple calculations and the consid-
erations of the previous section lead to the conjecture that quantum
mechanics assigns differential operators to energy and momentum, re-
spectively, such that

E←→ i�
∂

∂t
, p←→ �

i
∇ . (1.58)

Indeed, by this formal replacement the nonrelativistic energy-momentum
relation goes over into the differential equation (1.42).

Consider next the differential equation (1.51) for a charged particle
in electromagnetic fields. For simplicity, we study the case A≡ 0 and
assume the scalar potential Φ to be independent of time. Inserting once
more the ansatz (1.56) gives

E = p2

2m
+U(x) with U(x)= eΦ(x) .

Again, this is nothing else than the energy-momentum relation in the
presence of an external potential. In an autonomous system of classical
mechanics this equation describes the conserved total energy which is
the sum of the kinetic and of the potential energies. In mechanics it is
interpreted in the sense that in any point of the classical orbit x(t) the
momentum is adjusted such that |p| = √2m[E−U(x(t))]. In quantum
mechanics there are no orbits because of the uncertainty relation be-
tween position and momentum so that this interpretation can no longer
hold. On the other hand, our experience with classical mechanics tells
us that the electric potential energy eΦ(x) can equally well be replaced
by a more general potential energy U(x) describing other forces than the
electric ones. In doing so the equation (1.52) is generalized to a funda-
mental differential equation of nonrelativistic quantum mechanics:

i�ψ̇(t, x)=
(
− �

2

2m
∆+U(t, x)

)
ψ(t, x) (E. Schrödinger, 1926) .

(1.59)
This equation is the time-dependent Schrödinger equation. Its right-
hand side contains the analogue of the classical Hamiltonian function
H = p2/(2m)+U(t, x). Therefore, the Schrödinger equation can also be
written as follows

i�ψ̇(t, x)= Hψ(t, x) with H =
(
− �

2

2m
∆+U(t, x)

)
.
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Note that H , which is no longer a function on phase space, becomes an
operator acting on wave functions ψ(t, x).

In those cases where the function U does not depend on time, one
inserts (1.56) into (1.59) and obtains the time-independent Schrödinger
equation

Eψ(x)=
(
− �

2

2m
∆+U(x)

)
ψ(x) . (1.60)

These two equations, their generalization to more than one particle
and to other degrees of freedom than position and momentum, will be
the subject of a detailed analysis in what follows.

In the previous section we argued that the wave function cannot
and should not be understood to be a classical wave. Rather, we con-
cluded that, in a sense to be made more precise, it contains statistical
information about an individual particle, and, as a consequence, that it
cannot yield deterministic predictions for a single particle. Only a very
large number of events obtained under identical conditions, can be com-
pared to theoretical predictions. The statistical interpretation which is
suggested here, is made more precise by the following fundamental pos-
tulate:

Postulate

If ψ(t, x) is a solution of the Schrödinger equation (1.59), then
|ψ(t, x)|2 is the probability density for detecting the particle de-
scribed by this equation in the point x of space, at time t.

This probabilistic interpretation of Schrödinger wave functions was
first proposed by Max Born. In view of a wider range of applications
to be dealt with below we formulate the postulate in a somewhat more
general form:

Born’s Interpretation for the Wave Function: |ψ|2(t) is the proba-
bility density to find the system at a given time t in the configuration
described by ψ.

Note the important step initiated by this postulate: The quantum dy-
namics of the particle, or, for that matter, of a more general system, is
contained in the wave function ψ which fulfills the Schrödinger equa-
tion (1.59) (in this form, or in a form adapted to more general systems).
This equation has many features familiar from classical dynamics but,
a priori, it tells us little on how to extract physics from its solutions and,
in particular, how to derive physical observables from it. The postulate
of Born says that |ψ|2 is a probability density. This means that

|ψ(t, x)| 2 d3x ,

in the case of a single particle, is the probability to find the particle at
time t in the volume element d3x around the point x in space.



42 1Quantum Mechanics of Point Particles

We encounter here a probability distribution similar to (1.29) of
Sect. 1.2.1, though in a radically different context: There, we dealt with
a ensemble of very many particles, described by classical mechanics.
Our knowledge of the ensemble is incomplete but can be improved at
any time, at least in principle. Here, a complex function ψ(t, x) is the
source of the observable density |ψ|2 that, qualitatively speaking, we
cannot penetrate any further. As we remarked earlier, this function is
strictly deterministic in the sense that a given initial distribution ψ(t0, x)
fixes the wave function for all times (as long as one does not run into
possible singularities of U(t, x)). Nevertheless, in general, it does not
allow for a definite prediction for the individual particle (or, more gen-
erally, for an individual event). Only after having performed very many
measurements on a set of identically prepared particles can one compare
to predictions that are obtained by a well-defined prescription from the
density |ψ|2.

One discovers here a way of describing physical phenomena which
is fundamentally new as compared to classical, non-quantum physics:
a statistical description that does not allow, as a matter of principle, to
focus and improve indefinitely on the information about the system un-
der consideration up to the point where states are points in phase space.
In other terms, unlike in classical mechanics, a point of phase space has
no physical meaning in quantum mechanics.

This way of proceeding raises deep questions which go far beyond
the familiar framework of classical physics. Therefore, it will need great
care and solid preparation to answer them. I advise the reader, if he
or she is one of them, to first study in depth the postulates of quan-
tum mechanics, their consequences and their experimental tests, without
prejudice. In doing so one will not forget the fundamental questions
raised by quantum theory but will establish solid ground for pondering
them.

The statistical interpretation of the wave function, a quite bold step
indeed, clarifies the situation almost at once. In a natural way it leads to
a number of new concepts which are decisive for the predictive power
of the theory and the description of experiments. If |ψ(t, x)|2 is the
probability density of Born’s interpretation, then the integral∫

V

d3x |ψ(t, x)| 2

over a closed domain V of R3 is the probability to find the particle in
this volume at time t. As the particle, at any time, must be somewhere in
space, integrating over the whole space must yield the answer “with cer-
tainty”, i. e. the probability 1. Thus, it is natural to impose the condition
of integrability∫

d3x |ψ(t, x)| 2 = 1 . (1.61)
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Wave functions which are interpreted in a statistical sense, must be
square integrable. Expressed in mathematical symbols,

ψ(t, x) ∈ L2(R3) ,

where L2(R3) is the space of complex, square integrable functions
over R3.

The current density defined in (1.54) describes then the flux of prob-
ability. That is to say, if one calculates the surface integral of the normal
component of j(t, x) over the surface Σ enclosing the volume,∫

Σ

dσ j(t, x) · n̂ ,

one obtains the probability per unit of time for a particle to cross the
surface Σ. If the integral is positive the particle left the volume. If it is
negative the particle penetrated this closed domain.

The continuity equation (1.55) expresses in mathematical terms the
conservation of the probability to find the particle somewhere in space,
at any time. This is seen as follows. Consider the time derivative of the
probability density �(t, x) = ψ∗(t, x)ψ(t, x), integrated over the entire
space. Making use of the continuity equation (1.55) one has

d

dt

∫
d3x �(t, x)=

∫
d3x

∂

∂t
�(t, x)=−

∫
d3x ∇ · j(t, x) .

If the wave function ψ vanishes sufficiently rapidly for |x| →∞ then
the integral on the right-hand side can be converted to a surface integral
of the normal component of j. This surface being at infinity the surface
integral vanishes. Thus, one obtains the conservation law

d

dt

∫
d3x �(t, x)= 0 . (1.62)

The probability of finding the particle somewhere in space is indepen-
dent of time. This means that the particle can neither be created nor can
it disappear. If the wave function is normalized at some initial time t0
it remains normalized for all times. This remark shows why it is im-
portant that the Schrödinger equation (1.59) be of first order in the time
derivative. It is this fact which guarantees the important property (1.62).

Born’s interpretation of the wave function clarifies at once the statis-
tical nature of the interference of matter waves. Suppose, for simplicity,
that the initial state is prepared, at time t = t0, as a linear combination
of two solutions ψ1 and ψ2 of the Schrödinger equation,

ψ(t, x)= c1ψ1(t, x)+ c2ψ2(t, x) with c1, c2 ∈C .
The absolute square of this function is given by

|ψ(t, x)| 2 = |c1| 2 |ψ1(t, x)| 2+|c2| 2 |ψ2(t, x)| 2
+2 Re[c∗1c2ψ

∗
1 (t, x)ψ2(t, x)]
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12 An arrangement of detectors which
covers the entire solid angle is also
called a “4π detector”.

and describes the probability density for detecting the particle. As
compared to an analogous classical situation the third term is new. It
indicates that the wave functions ψ1 and ψ2 interfere, through coher-
ent superposition. The sum of the individual probabilities of the first
two terms can be enhanced or weakened by the interference term. In
an extreme situation the interference term cancels the first two terms
altogether.

Interference phenomena are familiar from the theory of classical
waves. The statistical interpretation of the quantum wave function is
new. It says that a single particle, at time t > t0, can be recorded
by a given, space-fixed detector with probability between 0 and 1.
This probability may even be zero locally, whenever the interference
is perfect and destructive. Imagine a particle state prepared at t = 0,
x = 0. Suppose that this point is surrounded by a sphere whose sur-
face is equipped homogeneously with devices that allow to detect the
particle.12 At some time t > 0 an individual particle will be detected
somewhere on the surface of the sphere, in one of the detectors, but it is
impossible to predict which detector that will be. The predicted interfer-
ence pattern will only appear, through the rates at which the detectors
will fire, after very many identical measurements. A detector in a max-
imum of the interference pattern will give the highest rates, another
detector in a minimum will give the lowest rate. In the case of com-
plete and destructive interference, a detector in a minimum will never
fire because the probability density vanishes at its position.

In quantum mechanics a harmonic time dependence such as in (1.56)
means that the state described by the wave function ψ is a stationary
state. Indeed, all physically relevant densities do not depend on time.
In contrast to classical mechanics, wave functions of this type describe
time independent states and are not oscillatory solutions.

As we will see shortly the requirement that ψ(t, x) be square
integrable is the decisive boundary condition for solutions of the
Schrödinger equation. For example, the discrete energy spectra which
are the analogues of the classical finite orbits, follow from it. We sum-
marize the boundary condition obtained from the physical arguments
discussed above, as follows:

Born boundary condition: Only square integrable, normalized solu-
tions are admissible and can be interpreted in terms of physics.

In actually solving the Schrödinger equation one often uses the fol-
lowing alternative condition:

Schrödinger boundary condition: In the whole domain of their def-
inition physically realizable solutions must be uniquely defined and
bounded.

This condition is not identical with Born’s condition. A wave func-
tion that satisfies the Born boundary condition is not always bounded.



11.5 Expectation Values and Observables 45

These two types of boundary conditions are relevant for important
parts of quantum physics and will be illustrated by various applications.
Nevertheless, their significance must be put in perspective. The careful
reader will have noticed that the plane waves (1.57) are not square in-
tegrable. Wave functions of this type will be needed for the description
of scattering states and must be understood as limiting expressions of
normalized wave packets.

Furthermore, there are many quantum processes in which particles
are created or annihilated. Examples are provided by the emission of
a photon in the transition from an excited atomic state to the ground
state, e. g.

( H-atom, n = 2)−→ ( H-atom, n = 1)+γ .

Another example is pair annihilation of an electron and a positron into
two photons

e−+ e+ −→ γ+γ′ .

In processes of this kind the “conservation of the probability” will still
be valid in a generalized form, though certainly not in the simple one
described in (1.62).

1.5 Expectation Values and Observables
The probability density (1.53) is a real, measurable, hence classical
quantity. Although of a very different origin than the densities (1.29)
which describe a many particle system in statistical mechanics, it will
enter, in much the same way, the calculation of averages of observables.
In the simplest case let F(x) be an observable which depends on the co-
ordinates only, i. e. which is a real function of x over phase space. The
average of this quantity in the state described by the wave function ψ
is calculated in the same way as in (1.32):

〈F〉 ψ(t)=
∫

d3x F(x) |ψ(t, x)| 2 ≡
∫

d3x ψ∗(t, x)F(x)ψ(t, x) .

In the case of a function which depends on x only, the second integral
is trivially equal to the first because F(x) or F(t, x) commute with ψ
or ψ∗. However, if the observable also depends on momenta, i. e. on
the remaining coordinates in phase space, F = F(t, x, p), then more care
is needed. Indeed, if the conjecture (1.58) holds true, i. e. if the classi-
cal momentum variable is replaced by the nabla operator, then also F
becomes an operator,

F = F

(
x,
�

i
∇
)
.
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In this situation we must take care of the fact that F no longer com-
mutes with ψ and ψ∗, and must make sure that the average is a real,
not a complex number. As we will see in a moment, only the second
form of the average fulfills this condition.

Because of the basic conceptual differences, as compared to the
classical statistical mechanics, that we worked out in some detail, the
quantum mechanical average has a different formal and physical con-
tent. It is called expectation value and is defined as follows:

Definition 1.2 Expectation Value

Let F(x, p) be a classical physical observable, defined on the phase
space of a single particle system. From this function an operator is
constructed by replacing p by (�/i)∇,

F

(
x,
�

i
∇
)
,

in such a way that the quantity

〈F〉 ψ(t) :=
∫

d3x ψ∗(t, x)F
(

x,
�

i
∇
)
ψ(t, x)≡ (ψ, Fψ) (1.63)

is real. This quantity is said to be the expectation value of the ob-
servable F in the state ψ. It yields the experimental value of the
observable, i. e. the value that one will find, in the sense of statistics,
after very many measurements under similar conditions.

Remarks

1. It would be more consistent to mark the symbol that stands for an
operator constructed from the classical function F in a special way.
For instance, one could write F for the operator, and F for the
classical function. However, in most cases it will be clear from the
context whether we have in mind the function or the associated op-
erator. For this reason I make this typographical distinction only in
exceptional cases.

2. In the second form of (1.63) I have used a notation that reminds the
mathematically inclined reader of a scalar product. Although of no
relevance for the moment this will gain special significance later.

3. The condition of reality 〈F〉ψ = 〈F〉∗ψ means that one must have∫
d3x ψ∗(t, x)F

(
x,
�

i
∇
)
ψ(t, x)

=
∫

d3x

[
F

(
x,
�

i
∇
)
ψ(t, x)

]∗
ψ(t, x) .
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Operators which have this property are called self-adjoint. As one
verifies by partial integration the simple examples

x (position) ,
�

i
∇ (momentum) ,

�= �
i

x×∇ (orbital angular momentum)

fulfill this condition. Here is an example:∫
d3x ψ∗�

i
∇ψ =−�

i

∫
d3x(∇ψ)∗ψ =+

∫
d3x

(
�

i
∇ψ

)∗
ψ .

For other observables the “translation” of the classical function on
phase space to their associated, self-adjoint operators needs a careful
discussion. The following section begins this analysis.

1.5.1 Observables as Self-Adjoint Operators on L2(R3)

The notion of observable is a familiar one in classical mechanics. In
mechanics it is represented by a real function on phase space and de-
scribes a quantity that can be measured with some physical apparatus.
The dynamics of the system under consideration tells us which observ-
ables are relevant for its analysis. In particular, the dynamics tells us
how many observables are needed for a complete description of the sys-
tem. Hamiltonian systems whose dynamics is defined by the knowledge
of the Hamiltonian function, are used as landmarks for orientation in the
transition to quantum mechanics. As we noticed in the previous section
the observables of quantum mechanics which take over the role of their
classical analogues, must yield real expectation values. This is indeed
the case if these operators are self-adjoint. This property is made more
precise by the following definition:

Definition 1.3

An operator F, defined on the space L2(R3) of square integrable
functions, is said to be self-adjoint if its action on sufficiently many
elements ϕ of this space is well-defined and if∫

d3x ϕ∗Fϕ =
∫

d3x (Fϕ)∗ϕ (1.64)

holds for all such elements ϕ ∈ L2(R3). (For further details see later.)

Using the notation of a scalar product, cf. right-hand side of (1.63),
this property takes the form

(ϕ, Fϕ)= (Fϕ, ϕ) (1.65)
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whose general significance will be clarified by a later, more detailed
mathematical analysis. The property (1.64) entails that every expecta-
tion value of the observable F is real,

〈F〉 ψ = 〈F〉 ∗ψ .
The following list gives a few examples for observables.

xk←→ xk ,

pk←→ �i
∂

∂xk
,

p2

2m
←→− �

2

2m
∆ ,

x× p←→ �
i

x×∇ ,

x · p←→ �
2i
{x ·∇ +∇ · x} ,

A · p←→ �
2i
{A ·∇ +∇ · A} .

The left column shows the classical function on phase space while the
right column gives the corresponding self-adjoint operator.

Remarks

1. Of course, for a given operator one must investigate on which ele-
ments ϕ ∈ L2(R3) it is well-defined. In this way one identifies the
domain of definition of the operator. We will come back to these
questions in more detail later. For the moment the heuristic approach
described above may be sufficient

2. Among the examples just given the last two are particularly note-
worthy. They show that the product of a vector field v(x) and the
momentum p must be replaced by �/2i times the symmetric com-
bination of v ·∇ and ∇ ·v. It is understood that the gradient acts on
all functions to the right in accordance with the product rule. In the
second term, for instance, this action is

∇ ·v(x)ψ(x)= ψ(x)[∇ ·v(x)]+v(x) · [∇ψ(x)] .
If one retained only the first, or the second, term the operator con-
structed in this way would not be self-adjoint.

3. The examples given here raise the question of uniqueness in trans-
lating classical observables to self-adjoint operators. In essence, the
answer to this question is the following: In general, the transition
from a real function on phase space which might describe a clas-
sical observable, to a self-adjoint operator is not unique. That is to
say, it may happen that there is more than one such operator cor-
responding to the given classical function on phase space. In such
cases a further principle fixing the choice may be necessary. In itself,
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this statement will not surprise the reader because quantum mechan-
ics is expected to be the embracing theory which contains classical
mechanics as a limiting case.
The dynamical variables relevant for point-like particles, as a rule,
are polynomials in x and p, whose degree is smaller than or equal
to 2. For functions of this type there is generally only one way of
choosing a self-adjoint operator. Thus, it seems that in cases relevant
in practice, the translation leads to a uniquely defined operator.

4. The property of self-adjointness (1.64) or (1.65) implies that for two
different elements ϕn , ϕm of L2(R3) one has∫

d3x ϕ∗m Fϕn =
∫

d3x (Fϕm)
∗ϕn

or, when written in terms of scalar products,

(ϕm, Fϕn)= (Fϕm, ϕn)= (ϕn, Fϕm)
∗ .

The proof will be given below when further mathematical tools will
be available. Note that in general (ϕm, Fϕn) are complex numbers,
in contrast to the expectation values (ϕm, Fϕm) which are real. We
know by now that in physics this second example describes the re-
sult of a large number of measurements of the observable F in the
state described by ϕm . The possibly complex number (ϕm, Fϕn),
with m �= n, will enter the calculation of the probability of the state
ϕn to make a transition to the state ϕm under the action of the ob-
servable F.

5. A specific example that we study in the next section will illustrate
a general property of the space of functions L2(R3): this space can
be described by means of a basis of functions

{ϕn(x)|n = 1, 2, . . . } .
A basis of this type spans the space L2(R3), in a sense known from
linear algebra. If this is so the numbers (ϕm, Fϕn) are the entries of
an infinite-dimensional matrix

Fmn = (ϕm, Fϕn) ,

which is hermitean13, which is to say that its entries fulfill the rela-
tions Fmn = F∗nm .

6. All operators listed in the table are linear, i. e. with ϕ1, and ϕ2 ele-
ments of L2(R3) and with arbitrary complex constants c1, c2, they
fulfill

F(c1ϕ1+ c2ϕ2)= c1 Fϕ1+ c2 Fϕ2 , c1, c2 ∈C ,
ϕ1, ϕ2 ∈ L2(R3) . (1.66)

The class of linear operators plays a central role in quantum mechan-
ics. Linear operators are used not only for describing observables (in
which case they must be self-adjoint) but also for the analogues of

13 Called so after Charles Hermite (1822–
1901), the French mathematician.
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classical canonical transformations (in which case they are unitary).
In the context of time reversal, or reversal of motion, we will also
encounter antilinear operators. These are operators for which (1.66)
is replaced by

F(c1ϕ1+ c2ϕ2)= c∗1 Fϕ1+ c∗2 Fϕ2 . (1.67)

Note that the right-hand side contains the complex conjugate c-num-
bers.

Returning to the Schrödinger equation (1.59) one sees that, indeed,
it has the general form

i�ψ̇(t, x)= Hψ(t, x) , (1.68)

where H is the self-adjoint Hamilton operator, or Hamiltonian for
short, which is obtained from the classical Hamiltonian function by the
procedure described above. As an example consider the Hamiltonian
function (1.50) which describes the electron in external fields. In accord
with the first remark above it is replaced by the self-adjoint Hamilton
operator

H = 1

2m

(
�

i
∇− e

c
A
)2

+ eΦ (1.69)

= 1

2m

(
−�2

∆−�
i

e

c
∇ · A− �

i

e

c
A ·∇ + e2

c2 A2
)
+ eΦ .

Note, in particular, the replacement of p · A by half the sum of p · A and
A · p, needed to make H hermitean.

1.5.2 Ehrenfest’s Theorem

Let F be a hermitean operator, defined on the space L2(R3) of complex,
square integrable functions, and which corresponds to a classical, pos-
sibly time dependent, observable F(t, x, p). Let 〈F〉 be its expectation
value in some state ψ which is a solution of the Schrödinger equation
(1.68) with the Hamiltonian

H =
(
− �

2

2m
∆+U(t, x)

)
.

By making use of the equations

ψ̇ =− i

�
Hψ and ψ̇∗ = i

�
Hψ∗
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the time derivative of the expectation value is expressed in terms of the
commutator of the Hamiltonian and the observable as follows

d

dt
〈F〉 = ∂〈F〉

∂t
+
∫

d3x
{
ψ∗Fψ̇+ ψ̇∗Fψ

}
= ∂〈F〉

∂t
+ i

�

∫
d3x ψ∗{HF− FH}ψ

=
〈
∂F

∂t

〉
+ i

�
〈[H, F]〉 .

The second term of the integral initially contains the factor (Hψ∗) (Fψ).
The operator H is moved to the right of ψ∗, without further change,
because it is self-adjoint.

I insert here an important remark: The same equation applies also to
the time derivative of arbitrary matrix elements of F

(ϕm, Fϕn)=
∫

d3x ϕ∗m Fϕn ,

so that we may write it as an identity relating operators,

d

dt
F = ∂F

∂t
+ i

�
[H, F] . (1.70)

(This conclusion may need a more careful mathematical analysis,
though.) This equation is said to be the Heisenberg equation of mo-
tion. It has a striking similarity to a well-known equation of classical
mechanics,

d

dt
F(t, x, p)= ∂F(t, x, p)

∂t
+{H(t, x, p), F(t, x, p)}

([Scheck (2005)], Sect. 2.32), in which {·,·} denotes the Poisson bracket

{ f, g} = ∂ f

∂pi

∂g

∂qi −
∂ f

∂qi

∂g

∂pi
.

Apparently, in the process of quantization the Poisson bracket of the
Hamiltonian function H with the observable F is replaced by the com-
mutator of the Hamiltonian H with the operator F according to the rule

{H, F} ←→ i

�
[H, F] . (1.71)

The constant � which appears in the denominator is perhaps not too
surprising in the light of the following remark: Strictly speaking, the
analogy should be formulated the other way around, quantum mech-
anics being expected to be the more general framework that embraces
classical mechanics. Suppose we expand the commutator [H, F], as
well as the operators H und F themselves in powers of �. At order (�)0

we will obtain the commutator of two ordinary functions which, of
course, vanishes. The order (�)1, however, will contain first derivatives
which do not commute and which are likely to be the ones appearing in
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the Poisson bracket. The factor 1/� drops out and so does the factor i
because momenta are replaced by −i times first derivatives.

There is an application of the equation proven above, viz.

d

dt

〈
F
〉= 〈

∂F

∂t

〉
+ i

�

〈[H, F]〉 ,
which is of special importance for physics:

Ehrenfest’s Theorem: The expectation values of position and mo-
mentum in a quantum mechanical system which corresponds to
a classical Hamiltonian system of mechanics, satisfy the classical
equations of motion. In the case of a single particle described by

H = p2/(2m)+U(t, x)

the equations of motion read

d

dt

〈
x
〉= 1

m

〈
p
〉
, (1.72)

d

dt

〈
p
〉
=− 〈∇U

〉
. (1.73)

For the sake of clarity, and as an exception, we distinguished for a while
the functions H , F, on phase space, and the operators H , F, respect-
ively. From here on we return to the former, less pedantic notation.

Proof of the theorem
Neither the position operator nor the momentum operator depend on
time. In calculating the commutators of the Hamiltonian with these two
operators we make use, for the former, of the formula

[A2, B] = AAB− BAA = A[A, B]+ [A, B]A
and obtain

[H, xi ] = 1

2m
[p2

i
, xi] = 1

2m
2
�

i
p

i
,

so that
i

�
[H, x] = 1

m
p .

Taking the expectation value of this result proves the first part (1.72) of
the theorem. For the proof of its second part one calculates the commu-
tator

[H, p
i
] = −�

i

∂U

∂xi
, or

i

�
[H, p] = −∇U .

Inserting this result into the expectation value proves the second
half (1.73) of the theorem.
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1.6 A Discrete Spectrum:
Harmonic Oscillator in one Dimension

If a particle moves in an attractive potential U(x) there may exist bound
states. In classical physics this will happen whenever the particle is
“caught” in a potential well, i. e. if the function U is locally concave
and if the energy is chosen such that the particle cannot escape to spa-
tial infinity. Figure 1.6 shows an example for U(x) in one dimension,
though of no particular physical significance, which illustrates what we
mean by this.

For the examples of the one-dimensional harmonic oscillator and of
the spherical oscillator where

U(x)= 1

2
mω2x2 ,

U(r)= 1

2
mω2r2 , (r = |x|) ,

respectively, the particle is caught for any value of the energy E, and all
states are bound states. In the case of the attractive Coulomb potential

U(r)=−α
r

with r = |x| , α > 0 ,

bound states, i. e. finite (classical) orbits occur only for negative en-
ergies, E < 0. A particle on an orbit with positive energy possesses
enough kinetic energy for escaping to infinity and, hence, is not bound.

Fig. 1.6. Example of a potential in one
space dimension which classically al-
lows both for finite, bound orbits, and
for unbound trajectories on which the
particle can escape to infinity. Classi-
cally, the particle is confined whenever
it moves within the potential well on
the left of the picture
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14 This was not possible in the case
of the classical oscillator which does
not contain the dimensionful constant �.
Only in the example of the plane math-
ematical pendulum was there a refer-
ence energy, mg	.

In intervals of the energy where there are classical finite orbits the
corresponding quantum system may (but need not have) bound states. If
such states exist they belong to discrete values of the energy. The rea-
son for this to happen is that bound states must have localized, square
integrable wave functions. In general, Born’s boundary condition will be
satisfied, in the most favourable cases, only for selected, discrete values
of the energy. In the cases of the one-dimensional oscillator and of the
spherical oscillator all states are bound states, the energy spectrum is
found to be a fully discrete spectrum.

In the case of the attractive Coulomb potential there are bound states
and discrete energies only if E < 0, while states with positive energy
are not bound and can take any value E > 0 of the energy. The cor-
responding quantum mechanical energy spectrum consists of a discrete
part (E < 0), and a continuous part (E > 0). One says that this system
has a mixed spectrum.

In examples such as the repulsive Coulomb potential, or the spe-
cial case U ≡ 0, there are no bound states, neither in classical nor in
quantum mechanics. The spectrum then is fully continuous.

This section deals with a simple but especially important example
for a fully discrete spectrum: the harmonic oscillator in one dimension.
The hydrogen atom as an important example of a mixed spectrum, will
be analyzed in Sect. 1.9.5. The case of the fully continuous spectrum
will be illustrated by the study of plane waves in Sect. 1.8.4.

We return to the one-dimensional form of the Schrödinger equa-
tion (1.68), insert the Hamiltonian

H =− �
2

2m

d2

dx2 +
1

2
mω2x2 ,

and choose the stationary form of solutions

ψ(t, x)= e−(i/�)Etϕ(x) .

Equation (1.60) then takes the form

− �
2

2m
ϕ′′(x)+ 1

2
mω2x2ϕ(x)= Eϕ(x) (∗)

The constants �, m, and ω are combined to a reference energy and a ref-
erence length, respectively, as follows

�ω and b :=
√
�

mω
.

This suggests to replace both the energy and the variable x by dimen-
sionless variables

ε := E

�ω
and u := x

b
,

respectively.14 As one verifies immediately the stationary differential
equation (∗) takes the simple form

−ϕ′′(u)+u2ϕ(u)= 2εϕ(u) . (∗∗)
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For simplicity we keep the same symbol for the unknown function but
we write explicitly its dependence on the dimensionless variable u. The
problem to be solved is well defined: find all solutions of this ordinary
differential equation of second order which are everywhere finite and
square integrable, and determine those values of ε for which such solu-
tions exist. Instead of attacking the problem directly we use a seemingly
innocent trick which will turn out to be instructive, from the perspective
of physics, and will allow for alternative physical interpretations. Define
two differential operators

a† := 1√
2

(
u− d

du

)
= 1

b
√

2

(
x−b2 d

dx

)
, (1.74)

a := 1√
2

(
u+ d

du

)
= 1

b
√

2

(
x+b2 d

dx

)
. (1.75)

Neither of these operators is self-adjoint. Indeed, while id/du has this
property, d/du without the factor i does not. In turn, partial integration
shows that(

ϕ,
d

du
ϕ

)
=

((
− d

du

)
ϕ, ϕ

)
.

If two operators A and A∗ have the same domain of definition D and
if

(ϕ, Aϕ)= (A∗ϕ, ϕ) for all ϕ ∈D ,

the operator A∗ is said to be the adjoint operator of A. In this case
one also has (A∗)∗ = A, i. e. A is the adjoint of A∗. Thus, the opera-
tors A= d/du and A∗ = −d/du are adjoints of one another. The same
property is shared by the pair a and a†. If these operators were matri-
ces the hermitean conjugate of M would be denoted by M† – hence the
notation in (1.74) and (1.75).15

The product a†a is calculated as follows. Using the product rule for
differentials in the second term one finds

a†a = 1

2

(
u2− d

du
u+u

d

du
− d2

du2

)
= 1

2

(
u2−1− d2

du2

)
.

Thus, the differential equation (∗∗) takes the simple form(
a†a+ 1

2

)
ϕ(u)= εϕ(u) . (∗∗∗)

Note that the Hamiltonian now becomes remarkably simple, viz.

H = �ω
(

a†a+ 1

2

)
. (1.76)

In much the same way one calculates the product aa† of the two oper-
ators in the alternative order. One finds

aa† = 1

2

(
u2+1− d2

du2

)
.

15 In the mathematical literature adjoints
are usually denoted by a “star”, while
complex conjugates are marked with an
“over-bar”. In the literature on quantum
physics the star is traditionally used for
complex conjugates, the “dagger” for
adjoints, the over-bar being needed in
the theory of Dirac spinors.
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This and the previous result combined give the important commutator

[a, a†] ≡ aa†−a†a = 1 , (1.77)

supplemented by the obvious relations

[a, a] = 0 , [a†, a†] = 0 .

As the next step one shows that if ϕ(u) is a solution of (∗∗∗) pertain-
ing to the eigenvalue ε then the functions obtained from ϕ by the action
of a† or of a, are also solutions and pertain to the eigenvalues ε+1 and
ε−1, respectively. To see this take(

a†a+ 1

2

)(
a†ϕ

)
=

(
a†(a†a+1)+ 1

2
a†
)
ϕ =

(
ε− 1

2
+ 3

2

)
(a†ϕ)

= (ε+1)(a†ϕ) .

In the first step one replaces aa† = a†a+1 by means of (1.77), in the
second step we use the Schrödinger equation in the form of (∗∗∗) and
insert a†aϕ = (ε−1/2)ϕ. This shows that the wave function (a†ϕ) is
a solution and pertains to the eigenvalue ε+1.

In much the same way one verifies that(
a†a+ 1

2

)
(aϕ)= (ε−1)(aϕ)

This shows that (aϕ), if it does not vanish identically, is also a solution
and belongs to the eigenvalue ε−1. In other terms, by applying repeat-
edly the raising operator a† to a given solution ϕ with eigenvalue ε
one generates an infinite series of new solutions which belong to the
eigenvalues

ε+1, ε+2, ε+3, . . . .

Alternatively, one may apply the lowering operator a to the same solu-
tion ϕ and generate a series of further solutions with eigenvalues

ε−1, ε−2, . . . ,

except for the case where (aϕ) vanishes identically. Indeed, one finds
that this series stops after finitely many steps downward. The small-
est value of ε is ε0 = 1/2, all eigenvalues are contained in the formula
εn = 1/2+n with n ∈N0, i. e. n = 0, 1, 2, . . . . In order to show this, one
proves two properties:

1. All admissible values of ε must be positive: Making use of (∗∗∗)
one calculates the integral
+∞∫
−∞

du ϕ∗(u)a†aϕ(u)=
(
ε− 1

2

) +∞∫
−∞

du ϕ∗(u)ϕ(u)

=
(
ε− 1

2

) +∞∫
−∞

du |ϕ(u)| 2 .
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By partial integration, the operator a† is moved in front of ϕ∗(u) so
that the integral becomes

+∞∫
−∞

du [aϕ(u)]∗[aϕ(u)] =
+∞∫
−∞

du |[aϕ(u)]| 2 ≥ 0 ,

and is found to be positive semi-definite. This is compatible with
the previous expression only if the factor (ε−1/2) in front of the
integral is greater than or equal to zero, i. e. if ε� 1/2.

2. The eigenfunction pertaining to the lowest eigenvalue ε0 must fulfill
the relation [aϕ0(u)] ≡ 0: If this were not so then also (aϕ0) would
be a solution with eigenvalue ε0−1 – in contradiction to the assump-
tion which was that ε0 should be the lowest eigenvalue.
As a result we obtain the spectrum

εn =
(

n+ 1

2

)
, i. e. En =

(
n+ 1

2

)
�ω ,

n ∈N0 (n = 0, 1, 2, . . . ) . (1.78)

Indeed, the lowest state has exactly the minimal energy which was
found to be marginally compatible with Heisenberg’s uncertainty
relation, cf. Sect. 1.2.3, Example 1.3. The remaining part of the spec-
trum is remarkably simple. All eigenvalues are equidistant, their
difference is given by the quantum of energy �ω.

What is the shape of the corresponding eigenfunctions and what are
their properties? In order to answer these questions consider first the
ground state (ε0 = 1/2, ϕ0) whose wave function follows from the con-
dition

[aϕ0(u)] = 0 , i. e.

(
u+ d

du

)
ϕ0(u)= 0 .

One sees that ϕ0 must be proportional to e−u2/2. Returning to the di-
mensionful variable x, normalizing |ϕ0(x)|2 to 1, and making use of the
Gaussian integral of Sect. 1.3.3, one obtains the result

ϕ0(x)= 1

b1/2π1/4 e−x2/(2b2) . (1.79)

Note that, generally, wave functions whose arguments are points in
d spatial dimensions, i. e. x ∈ Rd , and which are to be interpreted in
the spirit of Born’s postulate, must carry the physical dimension 1/Ld/2

where L stands for “Length”. Thus, on R3 the dimension must be
1/L3/2, while in our one-dimensional example it must be 1/L1/2.

The higher states are generated from ϕ0 by repeated action of a†, i. e.

εn = n+ 1

2
: ϕn = const a†a†a† · · · a†︸ ︷︷ ︸

n times

ϕ0
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Defining the following polynomials, called Hermite polynomials

Hn(u) := eu2/2
(

u− d

du

)n

e−u2/2 = eu2/2
(√

2 a†
)n

e−u2/2 ,

(1.80)

the eigenfunctions are seen to be given by

ϕn(x)= Nn e−x2/(2b2)Hn

( x

b

)
.

The factor Nn must be determined such that |ϕn(x)|2 is normalized to 1.
Before turning to the calculation of Nn we collect a few properties of
the polynomials defined in (1.80).

Hermite Polynomials:

1. Hn(u) is a real polynomial of degree n, the coefficient of un is 2n .
This is seen as follows

eu2/2
(

u− d

du

)n

e−u2/2 =
n∑

m=0

(
n

m

)
(−)mun−m eu2/2 dm

dum e−u2/2

=
n∑

m=0

(
n

m

)
(−)mun−m eu2/2((−)mum+ . . . )e−u2/2

=
[

n∑
m=0

(
n

m

)]
un+O(un−1)= 2nun+O(un−1) .

2. There is an equivalent definition that one finds in some books on
special functions, viz.

Hn(u)= eu2
(
− d

du

)n

e−u2
.

The equivalence to the formula given above can be verified as fol-
lows

eu2/2
(

u− d

du

)n

e−u2/2 = eu2
[

e−u2/2
(

u− d

du

)
eu2/2

]n

e−u2

= eu2
(
− d

du

)n

e−u2
.

The first step becomes obvious when one writes the factors of the
square brackets [. . . ]n side by side. In a second step one notes that
u− d/du when acting on eu2/2, gives zero so that, by the product
rule, only the derivative −d/du survives, acting to the right.

3. The first six polynomials are

H0(u)= 1 , H3(u)= 8u3−12u ,
H1(u)= 2u , H4(u)= 16u4−48u2+12 ,
H2(u)= 4u2−2 , H5(u)= 32u5−160u3+120u .
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4. Replacing u by −u, one sees that

Hn(−u)= (−)n Hn(u) .

The polynomials of even order are even under space reflection (or
parity) Π : x −→−x, polynomials of odd order are odd.

5. The Hermite polynomials are orthogonal to one another in the fol-
lowing, generalized sense:

∞∫
−∞

du Hm(u)Hn(u)e
−u2 = 0 for all m �= n . (1.81)

This new kind of orthogonality will be a separate subject in the next
section. Here a most direct way of proving orthogonality is to make
use of the Schrödinger equation in the form of (∗) and to use the her-
miticity of H . If m �= n then also Em �= En . Multiplying the equation
Hϕn = Enϕn by ϕ∗m from the left and integrating over all space, one
obtains, in a short-hand notation,

(ϕm, Hϕn)= En(ϕm, ϕn)= (Hϕm, ϕn) .

In the second step the self-adjoint operator H is shifted to ϕ∗m , by
partial integration. As ϕm is a solution with energy Em , too, and as
Em is real, the right-hand side may be continued as follows:

(Hϕm, ϕn)= Em(ϕm, ϕn) .

As the energies Em and En are assumed to be different, these
equations are compatible only if (ϕm, ϕn)= 0. This is precisely the
claim (1.81).
In the next section we prove further properties of Hermite polynomi-
als which also apply to other, similarly defined sets of polynomials,
in a more general framework.

6. For many practical calculations and in various applications it is
useful to introduce a generating function for Hermite polynomials.
Generally speaking, one talks about a generating function of the set
of polynomials {Pn(u), n = 0, 1, . . . } if there is a function g(u, t) of
two variables u and t such that

g(u, t)=
∞∑

n=0

an Pn(u)t
n (1.82)

with given constant coefficients an . In many cases the polynomials
of a given class are defined by giving the generating function and
the coefficients.
Here we do not proceed in this way. Instead, we start from the ex-
pression given in Remark 2 above which followed from a physical
argument, and derive a generating function for Hermite polynomials.
As one easily sees[

dn

dun
e−(t−u)2

]
t=0
= (−)n dn

dun
e−u2



60 1Quantum Mechanics of Point Particles

so that the Hermite polynomials can be transformed to

Hn(u)= eu2
[

dn

dun
e−(t−u)2

]
t=0
.

Function theory teaches us that the n-th derivative of an analytic
function at the point z0 can be expressed by the integral

f (n)(z0)= n!
2πi

∮
f(z)

(z− z0)n+1 dz ,

taken over a closed contour which encloses the point z0 once and
with counter-clockwise orientation. Taking z0 = 0 and using f(z)=
exp[−(z−u)2] yields

Hn(u)= eu2 n!
2πi

∮
e−(z−u)2

zn+1 dz = n!
2πi

∮
eu2−(z−u)2

zn+1 dz .

Construct then the series
∞∑

n=0

1

n!Hn(u)t
n = 1

2πi

∞∑
n=0

∮
eu2−(z−u)2

z

(
t

z

)n

dz

= 1

2πi

∮
eu2−(z−u)2

z− t
dz = eu2−(t−u)2 = e2tu−t2

,

where in the last step Cauchy’s integral theorem was used. This
shows that, indeed,

g(u, t)= e2tu−t2

is a generating function for Hermite polynomials.
It remains to determine the normalization factor Nn for arbi-

trary n. An elegant way of calculating this normalization consists in
first choosing the constant in

ϕn = const (a†)nϕ0

such that ϕn is normalized in the same way as ϕ0. Instead of using
an explicit notation containing the integral over x, I use the same
short-hand notation as in (1.63). In one dimension it reads

(ϕ, Fϕ)≡
∞∫
−∞

dx ϕ∗(x)Fϕ(x) .

By n-fold partial integration one has

(ϕn, ϕn)= const.
(
(a†)nϕ0, (a

†)nϕ0
)= const.

(
ϕ0, (a)

n(a†)nϕ0
)
.

The expectation value on the right-hand side,

(ϕ0, a a · · · a︸ ︷︷ ︸
n

a†a† · · · a†︸ ︷︷ ︸
n

ϕ0)
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is calculated by inserting repeatedly the commutator (1.77), aa† =
a†a+1, such as to shift the right-most operator a past all opera-
tors a†, until it hits ϕ0. This last term vanishes because a annihi-
lates ϕ0. The commutation of neighbours yields n times the 1 and
there remains

n(ϕ0, a a · · · a︸ ︷︷ ︸
(n−1)

a†a† · · · a†︸ ︷︷ ︸
(n−1)

ϕ0) .

Let then the second operator a migrate, by commutation with its
neighbours, as far right as possible. This time one obtains a fac-
tor (n−1). This process is continued until all a are taken to the right
of all a†. At the end of this procedure there remains the factor

n(n−1)(n−2) · · · 1= n! ,
showing that

ϕn = 1√
n!(a

†)nϕ0

is normalized to 1. Inserting then the formula (1.79) for ϕ0 and the
definition (1.80) of Hermite polynomials shows that the wave func-
tions

ϕn(x)= 1

b1/2

1√
π1/22nn! e

−x2/(2b2)Hn

( x

b

)
(1.83)

are correctly normalized. From this result and from the result (1.81)
we conclude that the solutions ϕn are normalized and orthogonal (in
the generalized sense), or, for short, that they are orthonormal,

(ϕm, ϕn)≡
∞∫
−∞

dx ϕ∗m(x)ϕn(x)= δmn .

Note that in the case we discuss here the solutions ϕm can be chosen
real. Thus, there is no need for the complex conjugation mark on the
left function. As one sees immediately, if ϕm is a solution then also
all functions{

eiαϕm |α ∈R
}

are solutions with the same eigenvalue Em . These alternative eigen-
functions are indistinguishable as far as physics is concerned. No
expectation value, i. e. no result of any real measurement, is modified
by the phase factor. The more general question as to when solutions
of the Schrödinger equation can be chosen real is related to the be-
haviour of the solutions with respect to time reversal.

The wave function of the lowest state is written down in (1.79).
The three solutions of (∗) which follow this one and which are nor-
malized to 1 read explicitly:

ϕ1(x)=
√

2

b1/2π1/4

( x

b

)
e−x2/(2b2) , (1.84)
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Fig. 1.7. Graphs of the wave func-
tions (1.79), (1.84) – (1.86) pertaining to
energy eigenvalues E0 = �ω/2, E1 =
3�ω/2, E2 = 5�ω/2, and E3 = 7�ω/2
of the harmonic oscillator in one di-
mension, respectively, as a function
of u = x/b

ϕ2(x)= 1

b1/22
√

2π1/4

[
4
( x

b

)2−2

]
e−x2/(2b2) , (1.85)

ϕ3(x)= 1

b1/24
√

3π1/4

[
8
( x

b

)3−12
( x

b

)]
e−x2/(2b2) . (1.86)

Figure 1.7 shows the graphs of ϕ0 up to ϕ3. This picture shows
a striking pattern regarding the number and the position of the zeroes
on which we comment in the next section, in a more general con-
text. Figure 1.8 shows the graphs of the probability densities |ϕn|2,
n = 0, 1, 2, 3.

Remark A Representation of the Heisenberg Algebra
The action of the raising and lowering operators on a given wave func-
tion ϕn follows from the normalization (ϕ0, ϕ0)= 1 derived above

ϕn = 1√
n! a

† · · · a†︸ ︷︷ ︸
n

ϕ0 .

They are found to be as follows

a†ϕn =
√

n+1 ϕn+1 , aϕn =√n ϕn−1 .

Thus, their matrix elements are

(ϕm, a
†ϕn)=

√
n+1 δm,n+1 , (ϕm, aϕn)=√n δm,n−1 .
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Fig. 1.8. Squares of the wave functions
shown in Fig. 1.7. These are the proba-
bility densities in the four lowest oscil-
lator states

It is instructive to calculate the matrices of the position and the momen-
tum operators from these elements. By inverting (1.74) and (1.75) one
obtains

q ≡ x =
√
�

2mω
(a†+a)= b

1√
2
(a†+a) ,

p≡ �
i

d

dx
=

√
�mω

2
i(a†−a)= �

b

i√
2
(a†−a) ,

where b=√
�/(mω), as before.

Denoting the matrix representations of q and p by {q} and {p}, re-
spectively, and numbering rows and columns by n = 0, 1, 2, . . . , one
finds

{q} = b
1√
2

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 . . .

1 0
√

2 0 . . .

0
√

2 0
√

3 . . .
0 0

√
3 0 . . .

...
...

...
...
. . .

⎞⎟⎟⎟⎟⎟⎠ ,
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{p} = �
b

i√
2

⎛⎜⎜⎜⎜⎜⎝
0 −1 0 0 . . .

1 0 −√2 0 . . .

0
√

2 0 −√3 . . .
0 0

√
3 0 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠ .
We calculate the commutator of p and q by taking the commutator of
these matrices. The result has a very simple structure

[{p}, {q}]= �
2

i

⎛⎜⎝−2 0 . . .

0 −2 . . .
...

...
. . .

⎞⎟⎠= �
i

1l .

This result is nothing else than a matrix representation of the rela-
tion (1.36). Thus, it is equivalent to the commutator in coordinate space[
�

i

∂

∂x
, x

]
= �

i
.

The set of operators {qi, pk|i, k = 1, . . . , f }, endowed with the prod-
uct defined by the commutator, [·,·], and which fulfill the fundamental
commutators

[qi , qk] = 0 , [pi , pk] = 0 , [pi , q
k] = �

i
δki

is called the Heisenberg algebra. This algebra is the analogue of the
fundamental algebra of Poisson brackets

{qi , qk} = 0 , {pi , pk} = 0 , {pi , q
k} = δki ,

well-known from mechanics (s. [Scheck (2005)], Sect. 2.31).
The matrices that were computed above belong to what is called

a representation. These matrices are infinite-dimensional and span a par-
ticular representation of the Heisenberg algebra in one space dimension.
They are interesting both for a historical and a mathematical reason.

Heisenberg developed his version of quantum mechanics in pre-
cisely this form. For this reason, in the early development of quan-
tum mechanics, Heisenberg’s approach was called matrix mechanics.
It was E. Schrödinger who subsequently proved the equivalence of
matrix mechanics to the wave mechanics developed by him and by
L. de Broglie.

From a mathematical point of view our example is interesting be-
cause it illustrates the fact that the Heisenberg algebra has no physically
relevant finite-dimensional matrix representations. It can neither be real-
ized by finite-dimensional matrices nor by bounded operators (see, e. g.,
[Thirring (1981)], [Blanchard and Brüning (2003)]).
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1.7 Orthogonal Polynomials in One Real Variable
The properties of Hermite polynomials that we discovered in the con-
text of the harmonic oscillator, are so important and at the same time
so general that we wish to place them in a larger framework and de-
rive and discuss them in greater generality. In this context, the notion
of generalized orthogonality that appeared in the example (1.81) is of
paramount importance:

Definition 1.4 Generalized Orthogonality

Assume the following data to be given
1. an interval I = [a, b] ⊂R on the real axis and
2. a positive-semidefinite function � :R−→R which is strictly posi-

tive on I , and whose growth for large absolute values of x is
moderate, or, expressed in symbols,

�(x)≥ 0 ∀x ∈R , �(x) > 0 ∀ x ∈ [a, b] ,
�(x)eα|x| ≤ c<∞ for appropriately chosen α, ∀ x .

The function � is called the density, or weight function. An infinite
sequence of polynomials Pk(x), k = 0, 1, 2, . . . , constructed in such
a way that

b∫
a

dx �(x)Pm(x)Pn(x)= δmn , (1.87)

is said to be orthogonal and normalized with respect to the interval
[a, b] and the weight function �(x).

A special feature of this definition is that there exists an explicit pro-
cedure of constructing this sequence of polynomials, for given interval I
and weight function �. For any pair (I, �) (obeying certain conditions)
there is a set of orthogonal polynomials. Once these polynomials are
constructed one defines the functions

ϕk :=
√
�(x) Pk(x) (1.88)

(which, in general, are no longer polynomials) and concludes that they
are orthogonal and normalized, in a generalized sense, viz.

(ϕm, ϕn)≡
b∫

a

dx ϕ∗m(x)ϕn(x)= δmn . (1.89)

(For the time being we only consider real polynomials and, therefore,
real functions. It then makes no difference whether we write ϕ∗m or ϕm
in the integral. We keep the complex conjugation of the left factor in
view of the more general case of complex valued functions.)
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Construction of the Polynomials (Gram-Schmidt Method)
Let the symbol ( f, g) denote the integral (1.89) over the interval [a, b].
Define

gk(x) :=
√
�(x) xk , k = 0, 1, 2, . . . and

f0(x)= g0(x) , f1(x)= g1(x)− ( f0, g1)

( f0, f0)
f0(x) .

One verifies that ( f1, f0)= 0 and that

( f1, f1)= (g1, g1)− ( f0, g1)
2

( f0, f0)
.

Furthermore, one defines

f2(x)= g2(x)− ( f0, g2)

( f0, f0)
f0− ( f1, g2)

( f1, f1)
f1

and verifies that ( f2, f0)= 0 and ( f2, f1)= 0. This construction is con-
tinued so that, for arbitrary k,

fk(x)= gk(x)−
k−1∑
l=0

( fl, gk)

( fl, fl)
fl(x) .

One confirms that all previously defined functions with l = 0, 1, . . . ,
k−1, are orthogonal to fk, ( fk, fl)= 0.

By construction ( fn, fn) > 0. It follows that the functions

ϕn(x) := fn(x)√
( fn, fn)

are orthogonal and normalized to 1. The weight function, by assump-
tion, is strictly positive on the interval I . Therefore, by dividing by the
square root of the weight function, one obtains the orthogonal polyno-
mials that were to be constructed,

Pn(x)= ϕn(x)√
�(x)

. (1.90)

The construction just described implies

Lemma 1.1

Let Qm(x) be a polynomial of degree m. This polynomial can be
expressed as a linear combination of the orthogonal polynomials con-
structed above,

Qm(x)=
m∑

l=0

cl Pl(x) .

For all degrees n > m one has

b∫
a

dx �(x)Qm(x)Pn(x)= 0 , (n > m) .
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Examining once more Fig. 1.7 which shows the first four Hermite
polynomials, two properties are striking: the number and the position
of the zeroes. The function ϕ0 has no zero at all, ϕ1 has exactly one
zero, ϕ2 has two, and ϕ3 has three zeroes. Furthermore, these zeroes
are entangled: the zero of ϕ1 lies between the two zeroes of ϕ2, while
those of ϕ2 lie between the zeroes of ϕ3. Even though Fig. 1.7 shows the
wave functions of the harmonic oscillator, not the Hermite polynomi-
als proper, this observation applies also to the latter. This remark hints
at a general property of all orthogonal polynomials as clarified by the
following two theorems. Recall that a real polynomial of degree n has
n zeroes. In case some of these are not real, the complex zeroes occur
in pairs of complex conjugate values (fundamental theorem of analysis).

Theorem 1.1

The polynomial Pn(x) has exactly n real simple zeroes in the in-
terval I = [a, b].
Theorem 1.2

The zeroes of Pn−1(x) separate the zeroes of Pn(x). In other
terms, given two neighbouring zeroes of Pn(x), there is exactly one
zero of Pn−1 which lies between the two.

The proof of Theorem 1.1 constructs a contradiction: Consider all
real zeroes of odd order of Pn(x) (that is, the simple, triple, etc. zeroes)
situated at the points αi , with

α1 < α2 < · · ·< αh .

Assume that h is smaller than n. From these construct an auxiliary poly-
nomial

Qh(x)= (x−α1)(x−α2) · · · (x−αh) .

On the whole interval I the product of this auxiliary polynomial and
of Pn has the property: either Qh(x)Pn(x)� 0 or Qh(x)Pn(x)� 0. Ob-
viously, it does not vanish identically. Therefore, the integral over I ,

b∫
a

dx �(x)Qh(x)Pn(x) ,

is either positive or negative but is not equal to zero. This contra-
dicts Lemma 1.1, except if h = n. This proves Theorem 1.1.

The proof of Theorem 1.2 rests on two lemmata:

Lemma 1.2

The polynomial Qk(λ, x)= Pk(x)+λPk−1(x) has exactly k real and
simple zeroes for all real λ.
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The number of real zeroes of Qk(λ, x) either is k, or is smaller than or
equal to (k−2). Assume Qk to have the following real zeroes of odd
order

α1 < α2 < · · ·< αh with h ≤ k−2 .

Using these values construct another auxiliary polynomial,

Rh(x)= (x−α1)(x−α2) · · · (x−αh) .

Again, for the product one concludes that Rh(x)Qk(λ, x) � 0 or
Rh(x)Qk(λ, x)� 0, for all x. This contradicts Lemma 1.1 which implies
that

b∫
a

dx Rh(x)Qk(λ, x)= 0 .

The contradiction is avoided only if h = k. This shows that Lemma 1.2
holds true.

Lemma 1.3

There is no point xi ∈ I , where both Pk(xi)= 0 and Pk−1(xi)= 0.

If there were such a point one would have Qk(λ, x = xi) = 0 for
all λ. One could then choose

λ0 := − P′k(xi)

P′k−1(xi)
,

and would conclude that Qk(λ0, x = xi)= 0 and Q′k(λ0, x = xi)= 0. In
other terms, this polynomial would have a double zero in xi – in con-
tradiction to Lemma 1.2.

One then proves Theorem 1.2 as follows: Suppose the theorem is not
true. Then there must be two zeroes α and β of Pn(x), Pn(α)= 0=
Pn(β) with α < β, such that

Pn(x) �= 0 for all x ∈ (α, β) and
Pn−1(x) �= 0 for all x ∈ [α, β] .

For all x ∈ [α, β] the polynomial Qn(λ, x)= Pn(x)+λPn−1(x) then has
the zero

λ0(x) := − Pn(x)

Pn−1(x)
.

Furthermore, one has λ0(x = α)= 0= λ0(x = β), but λ0(x) �= 0 for all
x ∈ (α, β). Therefore, the function λ0(x) has the same sign everywhere
in the open interval (α, β), and it reaches an extremum in some point
x0 ∈ (α, β). At this point one has

dλ0(x)

dx

∣∣∣∣
x=x0

= 0 .
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Consider then the polynomial, vanishing by construction,

Qn(λ0(x), x)= Pn(x)+λ0(x)Pn−1(x)= 0 .

Taking its derivative with respect to x and choosing x = x0, one con-
cludes

Q′n(λ0(x0), x0)= P′n(x0)+λ0(x0)P
′
n−1(x0)= 0 ,

Thus, Qn(λ0(x0), x) has a zero of second order at x = x0. As this con-
tradicts Lemma 1.2 Theorem 1.2 is true.

The set of functions {ϕn} is not only orthogonal (in the sense of Def-
inition 1.4) and normalized but is also complete. This notion is a direct
generalization of the notion of completeness for systems of base vectors
in finite-dimensional vector spaces. The precise definition is the follow-
ing:

Definition 1.5

A set of orthonormal functions {ϕn} is said to be complete, if every
square integrable function h(x) for which (ϕn, h) = 0 for all n,
vanishes identically. This is equivalent to the statement that square
integrable functions f(x) can be expanded in the basis of func-
tions {ϕn}.

The statement made in this definition is proved by means of function
theory. If (ϕn, h)= 0 ∀n then

b∫
a

dx
√
�(x)xnh(x)= 0 .

This is so because xn can be written as a linear combination of P0
to Pn . Consider then the complex function

F(p) :=
b∫

a

dx
√
�(x)h(x)eipx .

As this function is analytic16 one calculates its derivatives by differen-
tiating the integrand with respect to p,

F(m)(p) :=
b∫

a

dx
√
�(x)h(x)xm eipx .

Specializing to the point p= 0 one has

F(m)(0) :=
b∫

a

dx
√
�(x)h(x)xm = 0 for all m .

16 In cases where the interval I = [a, b]
extends to infinity, F(p) is defined only
for | Im p|<α where α is the parameter
that controls the growth of the weight
function �(x), cf. Definition 1.4.
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Thus, F(p) vanishes identically and so does the integrand
√
�(x)h(x).

As � is strictly positive on the interval one concludes that h(x) vanishes
identically.

Example 1.6
The set of Hermite polynomials Hn(u) is orthogonal on the inter-
val (−∞,+∞) and with the weight function e−u2

. Dividing them by√
π1/22nn! renders them normalized to 1. The two theorems on the ze-

roes are illustrated by Fig. 1.7.

Example 1.7
Choose the interval (a = −1, b = 1) and the weight function �(x) =
Θ(x−a)−Θ(x−b), i. e. such that it equals 1 on the interval but van-
ishes outside. The Gram–Schmidt procedure then yields the Legendre
polynomials Pl(x ≡ cos θ) with 0 ≤ θ ≤ π. Traditionally the Legendre
polynomials are not normalized to 1. Rather, they are defined in such
a way that Pl(x = 1)≡ Pl(θ = 0)= 1 for all values of l. There are
general formulae for Legendre polynomials (such as the formula of Ro-
drigues). Nevertheless, it may be a good exercise to construct, say, the
first six of them explicitly, by means of the Gram–Schmidt procedure.
(The reader is encouraged to do so!) One finds

P0(x)= 1 , P1(x)= x , P2(x)= 1

2
(3x2−1) , P3(x)= 1

2
(5x3−3x) ,

P4(x)= 1

8
(35x4−30x2+3) , P5(x)= 1

8
(63x5−70x3+15x) .

Some of their general properties are

Pl(1)= 1 , Pl(−x)= (−1)l Pl(x) , P2l+1(0)= 0 .

If we supplement them by the factor
√
(2l+1)/2, the Legendre polyno-

mials are normalized to 1,

+1∫
−1

dx

√
2l+1

2
Pl(x)

√
2l′ +1

2
Pl′(x)= δll′ .

Figure 1.9 illustrates the theorems on their zeroes and shows some
examples of normalized polynomials

√
(2l+1)/2Pl(x) in the interval

[−1,+1].
Every function f(θ) which is regular in the interval 0≤ θ ≤ π can

be expanded in terms of Legendre polynomials:

f(θ)=
∞∑

l=0

cl Pl(cos θ) . (1.91)
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Fig. 1.9. Graphs of the first six Leg-
endre polynomials, normalized to 1,
as functions of x = cos θ, this means
that P̃	(x)=√(	+1/2) P	(x) are plot-
ted here

With x = cos θ, dx =− sin θ dθ, and with the normalization described
above, the expansion coefficients are given by

cl = 2l+1

2

π∫
0

sin θ dθ Pl(cos θ) f(θ) . (1.92)

We will meet further examples of orthogonal polynomials in later
sections.

Remarks
1. The results of this section lead to a better understanding of the

quantized harmonic oscillator that we studied in Sect. 1.6 in great
detail. Since the Hermite polynomials are not only orthogonal but
also complete, the wave functions (1.83) provide a complete and or-
thonormal system of functions. They span an infinite-dimensional
space of functions, the space of square integrable functions L2(R)
over R1. Every element of this space can be expanded in terms of
the ϕn .

2. It is the property of completeness, Definition 1.5, which justifies,
a posteriori, calling the integral

(ϕm, ϕn)≡
∞∫
−∞

dx ϕ∗m(x)ϕn(x)= δmn

a scalar product. Indeed, an integral of this type fulfills all condi-
tions imposed on a scalar product: If the functions ϕn are real or
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17 Both expressions are derived from
their German names, where “eigen”
stands for “proper”. In French eigenval-
ues are called valeurs propres, eigen-
functions, or eigenvectors are called
fonctions/vecteurs propres.

can be chosen real (this was the case for the harmonic oscillator) the
product is symmetric. If they are complex one has the relation

(ϕn, ϕm)= (ϕm, ϕn)
∗ .

The product (ϕm, ϕn) is nondegenerate because any f for which
(ϕn, f )= 0 for all n, vanishes identically.

3. Their is a great deal of analogy to linear algebra of finite-dimensional
vector spaces. If we compare the expansion of an element v ∈ V in a
d-dimensional vector space in terms of a basis êi , with the expansion
of a function f ∈ L2(R) in terms of the basis ϕn , i.e

v=
d∑

i=1

ci êi with f(x)=
∞∑

k=0

ckϕk(x) ,

then the roles of the expansion coefficients and of the bases are
seen to be the same. Also the rules by which the coefficients are
calculated from the scalar products of v and f with êi and ϕn , re-
spectively, are very similar.
Of course, there are significant differences to the case of finite-
dimensional vector spaces when going over to infinite-dimensional
function spaces. To quote just one important difference, in the lat-
ter case the notion of convergence must be studied carefully. For the
moment, however, we emphasize the similarities because they are
helpful in visualizing the wave functions of a self-adjoint quantum
system.

1.8 Observables and Expectation Values
1.8.1 Observables With Nondegenerate Spectrum
Consider an observable F(p, x) which possesses a complete system of
orthonormal wave functions obeying the following differential equation,

F

(
p= �

i
∇, x

)
ϕn(x)= λnϕn(x) . (1.93)

The (real) numbers λn are called eigenvalues, the wave functions ϕn(x)
are called eigenfunctions of the observable F(p, x), with ϕn being the
eigenfunction that belongs to the eigenvalue λn .17 This nomenclature
stems from linear algebra. For instance, every real, symmetric m×m-
matrix {Mik} has m real eigenvalues and eigenvectors both of which are
obtained by solving the linear system of equations

m∑
k=1

Mikc(n)k = µnc(n)i n = 1, 2, . . . ,m .
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To quote an example from physics recall the inertia tensor J= {Jik} in
mechanics of rigid bodies which is a real, symmetric 3×3-matrix. The
system of linear equations

3∑
k=1

Jikω
(n)
k = Inω

(n)
i

yields the moments of inertia I1, I2, I3, the eigenvalues of J, while the
corresponding eigenvectors ω(n) define the orthogonal directions of the
principal axes of inertia, i. e. those axes for which the angular velocity
and the angular momentum have the same direction.

For the sake of clarity, the definitions introduced above are summar-
ized as follows:

• Orthonormal: means that the eigenfunctions are mutually orthogonal
and, in view of their probabilistic interpretation, are normalized to 1,

(ϕm, ϕn)≡
∫

d3x ϕ∗m(x)ϕn(x)= δmn .

• Nondegenerate: one says that a spectrum is nondegenerate if all
eigenvalues are different, λm �= λn for m �= n. In other terms, this
means that for each eigenvalue there is exactly one eigenfunction ϕn .
In turn, one will say that eigenvalues are degenerate whenever for
fixed n there is a sequence of eigenfunctions

ϕn,1, ϕn,2, · · ·ϕn,kn ,

all of which obey the differential equation (1.93) for the same eigen-
value λn . We exclude this case for the moment but return to it, as
well as to its physical interpretation in Sect. 1.8.3.

• Completeness: One says that a set of orthonormal functions is com-
plete if every square integrable function can be expanded in terms of
its elements ϕn ,

ψ(t, x)=
∞∑

n=0

cn(t)ϕn(x) with

cn(t)=
∫

d3x ϕ∗n(x)ψ(t, x)≡ (ϕn, ψ)(t) . (1.94)

This series converges in the mean, that is to say, it converges in the
following sense

lim
N→∞

∫
d3x

∣∣∣∣∣ψ(t, x)−
N∑

n=0

cn(t)ϕn(x)

∣∣∣∣∣
2

= lim
N→∞

(∫
d3x |ψ| 2−

N∑
n=0

|cn| 2
)
= 0 .
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Here is an example for an operator with the properties just summar-
ized: Suppose F is the Hamiltonian of a harmonic oscillator in three
spatial dimensions,

H =− �
2

2m
∆+1

2
m[ω2

1(x
1)2+ω2

2(x
2)2+ω2

3(x
3)2] ,

the circular frequencies ωi being chosen so that they are pairwise
relative irrational. Clearly, H can be written as the sum of three one-
dimensional operators with different frequencies. For the latter we can
use the results of Sect. 1.6. The spectrum of the eigenvalues of H reads

En1,n2,n3 =
3∑

i=1

(
ni + 1

2

)
�ωi .

By assumption it is nondegenerate.
The (differential) operator F(p, x) is supposed to represent an ob-

servable and, therefore, must be self-adjoint. Indeed, if it has this
property then the eigenvalues are real:

(ϕn, Fϕn)= λn = (Fϕn, ϕn)= λ∗n ,
where we use the same argument as the one following (1.81).

As an example for a further property of self-adjoint operators we
prove the relation announced in Remark 3 in Sect. 1.5.1 for n �= m,

(ϕm, Fϕn)≡
∫

d3x ϕ∗m Fϕn =
∫

d3x (Fϕm)
∗ϕn

≡ (Fϕm, ϕn) . (1.95)

Take ψ=uϕn+vϕm with arbitrary complex constant coefficients u,v∈C
and consider G, somewhat more generally than hitherto, a self-adjoint
operator defined on the system of functions {ϕn}.This observable G is
also defined on ψ and one has the relation∫

d3x ψ∗Gψ−
∫

d3x (Gψ)∗ψ ≡ (ψ,Gψ)− (Gψ,ψ)= 0 .

Inserting here the decomposition ψ = uϕn+vϕm yields

u∗v
[∫

d3x ϕ∗nGϕm−
∫

d3x (Gϕn)
∗ϕm

]
+uv∗

[∫
d3x ϕ∗m Gϕn−

∫
d3x (Gϕm)

∗ϕn

]
= 0 .

As u and v are arbitrary the two expressions in square brackets must
vanish independently. This proves the claim.

The eigenfunctions ϕn of the observable F provide a basis of the
infinite-dimensional space of square integrable functions. Another ob-
servable G can equally well be replaced by its matrix representation in
this basis,

Gmn := (ϕm,Gϕn)
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which inherits the property

Gmn = G∗nm or, in matrix notation, G=G† .

The matrix G equals the complex conjugate of its transposed. It is said
to be hermitean. The representation by an infinite-dimensional matrix is
equivalent to the representation by a differential operator. The matrix is
said to be hermitean, the operator is called self-adjoint. Because of this
equivalence the properties “hermitean” and “self-adjoint” are often used
as synonyms.

Let us return to the observable F whose eigenvalues and eigen-
functions are assumed to be known from (1.93). Suppose an arbitrary
physical state ψ is expanded as in (1.94). The norm of ψ is obtained
from∫

d3x |ψ(t, x)| 2 = 1=
∞∑

n=0

|cn(t)| 2 .

The expectation value of the observable F in the state ψ is then given
by

〈F〉 ψ =
∫

d3x ψ(t, x)∗Fψ(t, x)=
∞∑

n=0

λn |cn(t)| 2 .

These formulae, together with Born’s interpretation of the wave function
suggest the following interpretation:

The set of eigenvalues λn of the self-adjoint operator F is the set
of possible values that one will find in any particular single meas-
urement of the observable F. If the measurement of F is done on
a quantum mechanical state described by the wave function ψ, the
probability to find a specific eigenvalue λq is given by |cq(t)|2.

This means in practice that if one performs measurements of F on
very many, identically prepared systems characterized by the wave func-
tion ψ, then in each individual measurement one will find one of the
eigenvalues λn . The set of all measurements will follow a distribution
of eigenvalues weighted with the probabilities |cn|2. The mean-square
deviation (1.31) of the observable F in the state ψ is calculated from

(∆F)2 =
〈
(F−〈F〉 ψ)2

〉
ψ =

∞∑
i=0

|ci | 2
⎛⎝λi −

∞∑
j=0

λ j
∣∣c j

∣∣ 2

⎞⎠2

� 0 .

As a result for expectation values, that is, for the outcome of very many
individual measurements, this is a classical result. It can be compared
directly with the general statistical information of Sect. 1.2.1. If we set
wi ≡ |ci |2 this corresponds to what was called the discrete distribution
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in Sect. 1.2.1. In particular, we can sharpen the observation made in re-
lation to (1.34): The mean square deviation of the observable F in the
state ψ vanishes if and only if ψ is an eigenstate of F. In this case only
one of the coefficients, ck, has the absolute value 1, all others are equal
to zero,

|ck| = 1, cn = 0 for all n �= k .

It is instructive to prove this statement as follows: We assume that ψ
belongs to the domain on which F is defined, and that the result of
the action of F, φ = Fψ also belongs to that domain. Assume φ to be
different from zero. We then have〈

F2
〉
ψ = (ψ, F2ψ)= (Fψ, Fψ)= (φ, φ) and 〈F〉 2

ψ = (ψ, φ)2 .
Therefore, the mean square deviation is〈

F2
〉
ψ−〈F〉 2

ψ =
([φ− (ψ, φ)ψ], φ)� 0 .

In the left entry of the scalar product the projection of φ onto ψ is sub-
tracted from φ. The analogous expression in a vector space and with
a, b ∈ V would read (using the abbreviation â = a/|a|)(

b− (â ·b)â) ·b� 0 .

In both cases the expressions on the left-hand side of the inequalities
vanish precisely if b is parallel to a, and if φ is proportional to ψ,
φ = λψ, respectively. In the latter case ψ is an eigenfunction of F. Fi-
nally, if φ vanishes identically, the claim is trivially true.

This section concludes with the following remarks:

Remarks
1. The quantum state is equivalently described by the wave function
ψ(t, x) over the coordinate space R3, or by the set of expansion co-
efficients {cn(t)}. The knowledge of all cn(t) completely determines
ψ(t, x).

2. Measured values are always of the form
∫
ψ∗ . . . ψ, or, as one also

says, they are sesquilinear in the wave function. Therefore, two wave
functions ψ(t, x) and eiαψ(t, x), where α is a real number, cannot be
distinguished by measurements. The set

ψ := {eiαψ|α ∈R}
is called a unit ray. Below, when we will explore the spaces on
which the wave functions ψ are defined, as well as the symmetries
that act on them in these spaces, unit rays will appear in the context
of projective representations.

3. A measurement of an observable can be used as a means to prepare
a quantum state. Like in a filter one selects a specific eigenvalue λk
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at time t0, and rejects all others. At this time the state of the system
is

ψ(t0, x)= ϕk(x) .

Its time evolution is described by the time-dependent Schrödinger
equation (1.59). In particular, let F describe a time independent, con-
served quantity. Then F commutes with the Hamiltonian H . If ϕn is
an eigenfunction of F then also (Hϕn) is an eigenfunction of F,

F(Hϕn)= HFϕn = λn(Hϕn)

and pertains to the same eigenvalue λn . As the eigenvalues are non-
degenerate one concludes

Hϕn = Enϕn

with real En . As a consequence, the expansion coefficients in (1.94)
fulfill the differential equations

ċn = (ϕn, ψ̇)=− i

�
(ϕn, Hψ)=− i

�
(Hϕn, ψ)=− i

�
Encn .

Thus, the time dependence of cn is harmonic, i. e.

cn(t)= cn(t0)e
−(i/�)En(t−t0) ,

the probabilities |cn(t)|2 are independent of time.

1.8.2 An Example: Coherent States
Unfortunately the cases that we discussed until now are still somewhat
academic because we studied exclusively stationary, stable states about
which not much can be measured. This situation will change only when
we know how to describe the scattering of two systems on one another,
or when we learn to quantize the radiation field and to couple it to
hitherto stationary systems such as oscillators, hydrogen atoms etc. It
is only by observation of scattering processes, in the first case, or of
emission and absorption of γ -rays, in the second case, that characteristic
properties of quantum systems can be verified by experiment.

The following example is a little more realistic insofar as it describes
a state with a nontrivial evolution in time, i. e. a state that has more than
just harmonic dependence on time. Let ϕn be, once more, the basis of
eigenfunctions (1.83) of the harmonic oscillator in one dimension, and
let

ψ(t, x)=
∞∑

n=0

cn(t)ϕn(x)

be a time dependent state which is constructed following the model
of (1.94). The time dependence of the expansion coefficients is har-
monic, as shown in Sect. 1.8.1, Remark 3, which is to say

cn(t)= cn(0)e
−(i/�)Ent = cn(0)e

−(i/2)ωt e−inωt ,
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and where we have inserted the formula (1.78) for the energy. Let
z(0)= r e−iφ(0) be an arbitrary complex number, written in terms of its
modulus and a phase. For the sake of convenience we have chosen a mi-
nus sign in front of the phase. Choosing the coefficients at time zero to
be

cn(0)=
(

1√
n! z(0)

n
)

e−r2/2 ,

the wave function ψ is seen to be normalized to 1 at time t = 0, and,
thus, also for all times,

∞∑
n=0

|cn(0)| 2 =
( ∞∑

0

1

n!(r
2)n

)
e−r2 = 1 .

If we set

z(t)= r e−iφ(t) = r e−i[ωt+φ(0)] and φ(t)= ωt+φ(0) ,
then ψ reads

ψ(t, x)= e−r2/2 e−iωt/2
∞∑

n=0

1√
n! z

n(t) ϕn(x) .

Whenever r �= 0, obviously, ψ is not an eigenstate of the energy. How-
ever, in the limit r→ 0 it goes over into the ground state of the
harmonic oscillator. In order to explore its physics content we calculate
the expectation values of the coordinate x and of the momentum p, as
well as their standard deviations (∆x) and (∆p), respectively. Introduc-
ing the raising and lowering operators of Sect. 1.6, x and p are given
by

x = b
1√
2
(a†+a) , p= �

b

i√
2
(a†−a) ,

while the action of a† and of a on the eigenfunctions is

(ϕm, a
†ϕn)=

√
n+1 δm,n+1 , (ϕm, aϕn)=√n δm,n−1 .

The expectation value of x in the state ψ is calculated as follows:

〈x〉 ψ = b√
2

e−r2

( ∞∑
n=0

z∗ n+1zn
√

n+1√
(n+1)!n! +

∞∑
n=1

z∗ n−1zn√n√
(n−1)!n!

)

= b√
2

e−r2
e+r2

(z∗ + z)= rb
√

2 cos[ωt+φ(0)] .

The expectation value of p follows from Ehrenfest’s theorem (1.72)

〈p〉 ψ = m
d

dt
〈x〉 ψ =−�

√
2

b
r sin[ωt+φ(0)] .
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These intermediate results, in themselves, are quite interesting: the ex-
pectation values of ω

√
m x and of p/

√
m move on a circle with radius

r
√

2�ω≡√2Ecl in phase space and with angular velocity ω,

ω
√

m 〈x〉 ψ = r
√

2�ω cos[ωt+φ(0)] ,
1√
m
〈p〉 ψ =−r

√
2�ω sin[ωt+φ(0)] .

The time dependent state ψ(t, x) belongs to the class of coherent states.
It comes closest to a classical oscillator motion with energy Ecl = r2�ω.
As a quantum mechanical state it does not have a fixed, well-defined
energy. The probability to find the eigenvalue En = (n+1/2)�ω in
a measurement of the energy is

w(En)= r2n e−r2

n! .

It is independent of time and has its maximum at

n = r2 , i. e. at En=r2 =
(

r2+ 1

2

)
�ω .

Except for the zero point energy the maximum has the value of the cor-
responding classical energy.

It is instructive to investigate this coherent state in more detail. We
calculate the operator

x2 = 1

2
b2(a†a†+a†a+aa†+aa)= b2

2
(a†a†+2a†a+1+aa)

and, from this, the expectation value〈
x2
〉
ψ = 1

2
b2

{
1+

〈
a†a†+2a†a+aa

〉
ψ

}
= 1

2
b2

{
1+r2

[
z∗ 2(t)+2z∗(t)z(t)+ z2(t)

]}
= 1

2
b2+2r2b2 cos2[ωt+φ(0)] .

This calculation is not difficult. As a matter of example, I show a typical
intermediate step. The raising operator, when applied twice to ψ, yields

a†a†ψ = e−r2/2
∞∑

n=0

zn

√
n!
√
(n+2)(n+1)ϕn+2(x) .

One takes the scalar product of this with ψ, i. e. one multiplies with ψ∗
from the left and integrates over x. Making use of the orthogonality of
the base functions ϕn , the expectation value is found to be〈

a†a†
〉
ψ = e−r2

∞∑
n=0

z∗ n+2zn√(n+2)(n+1)√
(n+2)!n! = e−r2

e+r2
z∗ 2(t) .
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With the results obtained so far the mean square deviation and the stan-
dard deviation are found to be

(∆x)2 =
〈
x2
〉
ψ−〈x〉 2

ψ =
1

2
b2 , so that (∆x)= b√

2
.

The expectation value of p2 is calculated in much the same way,〈
p2
〉
ψ = �

2

2b2

{
1+4r2 sin2[ωt+φ(0)]

}
,

so that the standard deviation is

(∆p)= �

b
√

2
.

This is an interesting result: the product of the standard deviations of x
and p has the value

(∆x)(∆p)= �
2
.

This is the minimum allowed by Heisenberg’s uncertainty relation
(1.35). It equals the product of the uncertainties in the (stationary)
ground state of the harmonic oscillator. The coherent state is not station-
ary, it moves along the classical orbit in phase space and is marginally
compatible with the uncertainty relation.

Finally, we calculate the standard deviation (∆E) of the energy. The
expectation values of H and of H2 are

〈H〉 ψ = 1

2m

〈
p2
〉
ψ+ 1

2
mω2

〈
x2
〉
ψ =

(
r2+ 1

2

)
�ω ,〈

H2
〉
ψ =

(
1

4
+2r2+r4

)
(�ω)2 ,

respectively, so that the standard deviation is found to be

(∆E)≡ (∆H)= r(�ω) .

There is an interesting observation in connection with the uncertainty
of the energy. Classically, one would calculate the period of the motion
from the formula

t(x)− t(x0)=
√

m

2

x∫
x0

dx′ 1√
E−mω2x′ 2/2

,

(cf. [Scheck (2005)], Sect. 1.21), where the integral would have to be
taken over a complete revolution. In the quantum system the position
can be given only with the uncertainty (∆x). Therefore, the calculation
of the period must have an uncertainty, too, which follows from this
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formula when one integrates over the interval 2(∆x),

∆T =
√

m

2

(∆x)∫
−(∆x)

dx′ 1√
E−mω2x′ 2/2

= 2

ω
arcsin

(
(∆x)ω

√
m√

2E

)
	 2
(∆x)
√

m√
2E

.

The approximation in the last line is applicable when (∆x) is suffi-
ciently small. This quantity was calculated for the coherent state ψ
above. Inserting these results and restricting to values of r large as com-
pared to 1/

√
2, one finds ∆T 	 1/(rω), so that the product of (∆E) and

of (∆T ) becomes

(∆E)(∆T )	 r(�ω)
1

rω
= � .

The uncertainties of the energy and of the period are correlated by
Planck’s constant. The better the period is known the larger the un-
certainty in the energy. Note, however, that the correlation of the
uncertainties of energy and time is of a different nature than the one
between position and momentum, the reason being that time plays the
role of a parameter, and is not an operator.

1.8.3 Observables with Degenerate, Discrete Spectrum
For reasons that will become clear below an observable with a nonde-
generate spectrum, like the one developed in Sect. 1.8.1, is rather the
exception in physical situations. Consider the example of the harmonic
oscillator in R3 and assume the three circular frequences to be equal.
The Hamiltonian reads

H =− �
2

2m
∆+1

2
mω2

3∑
i=1

(xi)2 =− �
2

2m
∆+1

2
mω2r2 ,

its eigenvalues are

EN =
(

N+ 3

2

)
�ω with N = n1+n2+n3 .

One easily verifies that although for N = 0 there is only one eigenstate,
there are three for N = 1, six for N = 2, ten for N = 3, etc. The degree
of degeneracy grows rapidly with N .

In classical mechanics the following setting is known: Given a Hamil-
tonian function H ≡ F0 which has no explicit time dependence, and
a set of time independent constants of the motion F1, F2, . . . , all of
which are in involution. This is to say that the Poisson brackets of the Fi
with H , and all brackets of every Fi with every Fj vanish. An example
is provided by the two-body system with central potential, viz.

H = p2

2m
+U(r) , F1 = P , F2 = �2 , F3 = 	3
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where p and P denote relative and center-of-mass momenta, respect-
ively. This set fulfills the assumption. If there are sufficiently many of
such constants of the motion, or, more precisely, if there are f of them,
f being the number of degrees of freedom, then the system is integrable
(this is one of Liouville’s theorems).

In quantum mechanics we expect an analogous situation to be one
where a time independent Hamiltonian is given, and where there exist
further (time independent) observables F1, F2, . . . whose commutators
vanish,

[H, Fi ] = 0 , [Fi, Fj ] = 0

The physical significance of the first of these relations is that each one
of these observables is a constant of the motion, cf. (1.70). Mathemat-
ically speaking it says that one can choose the eigenfunctions of the
self-adjoint operator H such that they are also eigenfunctions of the ob-
servables Fi and vice versa. In other terms, one can find a basis ψn
which has the property that the matrices (ψm, Hψn) and (ψp, Fiψq)
can be brought to diagonal form simultaneously. The second part of
the assumption guarantees that it is possible to construct simultaneous
eigenfunctions for H and all Fi , or to find a basis in which H as well
as the observables Fi are represented by diagonal matrices.

A typical case will be one where the observable F has a discrete,
but degenerate spectrum. The operator F then obeys the equation

F

(
p= �

i
∇, x

)
ϕnk(x)= λnϕnk(x) , (1.96)

with eigenvalues which have the property

λm �= λn for n �= m ,

but where there is more than one eigenfunction belonging to the eigen-
value λn . If the degree of degeneracy is kn then there are kn linearly
independent functions

ϕn1(x), ϕn2(x), · · · , ϕnkn (x)

which belong to the eigenvalue λn . Suppose the set of eigenfunc-
tions ϕnk to be orthonormal and complete. The orthogonality and nor-
malization condition reads∫

d3x ϕ∗nkϕn′k′ = δnn′δkk′ .

A square integrable wave function defined on the same domain can be
expanded in this basis,

ψ(t, x)=
∞∑

n=0

kn∑
k=1

cnk(t)ϕnk(x) .
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The coefficients cnk(t) are obtained by the formulae

cnk(t)=
∫

d3x ϕ∗nk(x)ψ(t, x) .

The normalization of ψ follows from the equation∫
d3x |ψ(t, x)| 2 =

∑
n,k

|cnk(t)| 2 = 1 ,

the expectation value of F in the state ψ is given by

〈F〉 ψ =
∞∑

n=0

λn

kn∑
k=1

|cnk(t)| 2 .

We now assume that F commutes with H , [H, F] = 0, and that
the two operators have the same domain of definition. If ϕnk is an
eigenfunction of F belonging to the eigenvalue λn , then (Hϕnk) is also
eigenfunction of F for the same eigenvalue,

F (Hϕnk)= λn (Hϕnk) .

A way to visualize this situation is the following: The base func-
tions ϕnk with fixed n span a subspace which is characterized by the
eigenvalue λn of F and which has dimension kn . The state (Hϕnk) is an
element of this subspace. Therefore, as the basis is complete, it must be
possible to decompose this state in terms of the ϕnk with fixed n,

(Hϕnk)=
kn∑

k′=1

ϕnk′Hk′k ,

where H≡ {Hk′k} is the kn× kn hermitean matrix representation of H
in the subspace belonging to λn ,

Hk′k = (ϕnk′, Hϕnk)= H∗kk′ .

This finite-dimensional, hermitean matrix is diagonalized by means of
a unitary matrix U,

U†HU= 0
H with U†U= 1l ,

or, when written in components,

kn∑
j,k=1

U∗ji HjkUkl = Enlδil .

A little calculation shows that in the new basis defined by

ψnl(x)=
kn∑

j=1

ϕn j(x)Ujl
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both F and H are diagonal, i. e.

Fψnl = λnψnl and Hψnl = Enlψnl .

Although somewhat schematic the example shows what is the reason
for the degeneracy and the multiple indices of the wave function: The
wave functions ψnl are eigenfunctions of the two commuting opera-
tors F and H both of which have (in our example) discrete spectra. The
indices on ψ serve to count these spectra.

Here is another example which may serve as an exercise for the
reader and which may help in learning some calculational techniques.
(We come back to this example below, in the context of problems with
spherical symmetry.)

Example 1.8 Spherical Oscillator
At the beginning of this section we mentioned the example of the har-
monic oscillator with equal circular frequencies in three space dimen-
sions. In classical mechanics it is described by a spherically symmetric
Hamiltonian function, in quantum mechanics by a spherically symmet-
ric Hamiltonian operator. Therefore, one expects the orbital angular
momentum to play an important role in determining the states of the
system in classical and quantum mechanics, respectively. We treat this
important aspect in the framework of a general analysis of orbital angu-
lar momentum in Sect. 1.9. The section is meant to give a first example
for commuting observables which are at the root of the degeneracy of
the eigenvalues of the Hamiltonian.

We represent the spherical oscillator as the sum of three linear os-
cillators and make use of the raising and lowering operators (1.74)
and (1.75), for each of the spatial coordinates. With the expres-
sion (1.76) the Hamiltonian can be written in the form

H =
(

3∑
i=1

a†i ai + 3

2

)
�ω .

The pairs of operators (a†i , ai) refer to the cartesian directions in space.
The obey the commutation rules (1.77) for every i = 1, 2, or 3, but they
commute for different values of the indices, viz.

[ai , a
†
k] = δik , [ai , ak] = 0 , [a†i , a†k] = 0 .

The eigenfunctions of the Hamiltonian are given by the products

ϕn1n2n3(x)=
1√

n1!n2!n3!(a
†
1)

n1(a†2)
n2(a†3)

n3ϕ0(x
1)ϕ0(x

2)ϕ0(x
3)

(1.97)

with ϕ0 as given in (1.79). It is useful to define the following operators:

N1 = a†1a1 , N2 = a†2a2 , N3 = a†3a3 , Nik = a†i ak for i �= k .
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All these operators do not change the total energy

En1n2n3 = �ω
(

n1+n2+n3+ 3

2

)
and, thus, commute with the Hamiltonian. As far as the operators Ni are
concerned this is obvious. Regarding Nik one may wish to verify

[H, Nik] = �ω[a†i ai +a†kak, a
†
i ak] = �ω(a†i ak−a†i ak)= 0 .

The first three operators Ni are diagonal in the basis (1.97). Indeed, the
interpretation of Ni is easy to find out by calculating its action on the
state (1.97),

a†i ai ϕn1n2n3(x)= ni ϕn1n2n3(x) .

It reproduces the wave function with the eigenvalue ni , and it measures
the number of quanta �ω which are excited in the degree of freedom i.
For reasons to become clear later it is called number operator for quanta
or particles of the species i. The operators Nik, in turn, change the
eigenfunctions because they lower nk by one, while increasing ni by
one. For example, in the basis used here N12 has the matrix representa-
tion

(ϕn′1n′2n′3, N12ϕn1n2n3)=
√

n2(n1+1)δn′1,n1+1δn′2,n2−1 .

This example becomes more conspicuous and better interpretable if one
calculates the components of the orbital angular momentum. By the for-
mulae (1.74) and (1.75) one finds

	3 = x1 p2− x2 p1 = i
�

2
{(a†1+a1)(a

†
2−a2)− (a†2+a2)(a

†
1−a1)}

= i�{N21− N12} .
The two other components follow from this by cyclic permutation of the
indices 1, 2, 3, so that

	1 = i�{N32− N23} , 	2 = i�{N13− N31} .
All three components commute with H , but they do not commute
among themselves. For instance, one has

[	1, 	2] = −�2[a†3a2−a†2a3, a
†
1a3−a†3a1] = −�2{−a†1a2+a†2a1} = i�	3 .

Clearly, the two remaining commutators follow from this one by cyclic
permutation, giving

[	2, 	3] = i�	1 , [	3, 	1] = i�	2 .

Dividing by � one obtains precisely the commutators for the generators
of the rotation group in three real dimensions:[

	i

�
,
	 j

�

]
= i

3∑
k=1

εijk
	k

�
.
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The calculation of �2 is a little more involved, one finds

�2 = 	2
1+	2

2+	2
3

= �2 {2(N1+ N2+ N3+ N1 N2+ N2 N3+ N3 N1)

− N2
32− N2

23− N2
13− N2

31− N2
21− N2

12

}
.

Inspection of this operator shows that it commutes with H , too, but that
the eigenfunctions of H found previously are not eigenfunctions of �2.
Finally, one shows that �2 commutes with every component. The fol-
lowing case is sufficient to show this:

[�2, 	3] = [	2
1, 	3]+ [	2

2, 	3]
= 	1[	1, 	3]+ [	1, 	3]	1+	2[	2, 	3]+ [	2, 	3]	2 = 0 .

The conclusion is that a set of commuting observables consists of H ,
of �2, and one of the three components of the orbital angular momen-
tum, say 	3. This explains, at least to some extent, the degeneracy of the
eigenvalues of H , noticed above. In Sect. 1.9 below we will learn how
to construct common eigenfunctions of these three operators, in a more
concrete setting. Finally, note that this result is completely analogous
to the corresponding classical situation: there the functions on phase
space H , �2, and 	3, are in involution. We just have to replace the com-
mutators by Poisson brackets.

1.8.4 Observables with Purely Continuous Spectrum
Besides the observables with fully discrete spectrum there are also ob-
servables whose spectrum is purely continuous, as well as observables
which possess a mixed spectrum consisting of a discrete series and
a continuous interval. One says that the spectrum is fully continuous if
it is not countable, i. e. if the eigenvalue equation of the observable A
reads

A

(
p= �

i
∇, x

)
ϕ(x, α)= αϕ(x, α) (1.98)

and if α can take any value in an interval I ⊂R. The momentum oper-
ator provides an example, viz.

p= �
i

d

dx
.

For simplicity it is written in one space dimension only and, as an ex-
ception, the operator is underlined in order to distinguish it from its
eigenvalues p. In this case the eigenvalue equation (1.98) reads

pϕ(x, p)= pϕ(x, p) with p ∈ (−∞,+∞) .
The eigenfunction which belongs to the eigenvalue p is proportional to
exp(ipx/�). Obviously, it is not square integrable. In order to find out
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something about its normalization we first note that the naïve expression

1

2π

∞∫
−∞

dx ei(α−β)x = δ(α−β) (1.99)

is neither a Riemann nor a Lebesgues integral, and can only be under-
stood as a tempered distribution, that is to say, roughly speaking, as
a functional δ[ f ] which yields a finite, nonsingular, result only when
weighted with sufficiently “tamed” functions f .18 Some important prop-
erties of tempered distributions are summarized in Appendix A.1. In
particular, it is shown that definitions can be adjusted such that the for-
mal rules are the same as for genuine functions. In particular, Dirac’s
δ-distribution has the property, for sufficiently smooth functions f ,

δ[ f ] ≡
∞∫
−∞

dα δ(α−β) f(α)= f(β) .

In practical applications one must take care of two of its properties: (a)
the normalization factor 1/(2π) on the left-hand side of (1.99) is essen-
tial; (b) the distribution δ(z) carries a physical dimension whenever its
argument z has a dimension. Indeed, one convinces oneself that

if dim[z] = D then dim[δ(z)] = 1

D
.

This is so because, formally,
∞∫
−∞

dz δ(z)= 1 ,

must come out without dimension.
The formula (1.99) and the normalization can be obtained by a for-

mal limiting process from true Riemann integrals to distributions. As
this can be understood without further knowledge of distributions I in-
sert a digression on the following example:

Example 1.9 Plane Waves in a Limit
The set of functions{

ϕm(x)= 1√
a

ei(2πm/a)x
∣∣∣∣ a, x ∈R, m = 0,±1,±2, . . .

}
(1.100)

form an orthonormal system in the intervall I = [−a/2,+a/2]. Indeed,
we have
+a/2∫
−a/2

dx ϕ∗m(x)ϕn(x)= sin(n−m)π

(n−m)π
= δnm .

18 In this book we only use tempered
distributions. For this reason we hence-
forth talk about distributions, for short,
and omit the adjective tempered.
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A periodic function f(x) with period a, f(x+a) = f(x), can be ex-
panded in this basis

f(x)= 1√
a

+∞∑
m=−∞

cm ei(2πm/a)x = 1

a

+∞∑
m=−∞

g
(m

a

)
ei(2πm/a)x ,

where the function g of ym := m/a is given by

g(ym)=
+a/2∫
−a/2

dx e−i(2πm/a)x f(x)≡
+a/2∫
−a/2

dx e−i2πym x f(x) .

If one performs the formal transition a→∞, one has

ym = m

a
, ym+1 = m+1

a
, and ym+1− ym = 1

a
−→ dy .

The sum over m goes over into an integral over y,

1

a

+∞∑
m=−∞

−→
+∞∫
−∞

dy .

Thus, one obtains

f(x)=
+∞∫
−∞

dy g(y)ei2πyx , g(y)=
+∞∫
−∞

dx e−i2πyx f(x) .

Finally, substituting u := √2πx, and v := √2πy, one has

f(u)= 1√
2π

+∞∫
−∞

dv g(v)eivu , g(v)= 1√
2π

+∞∫
−∞

du e−ivu f(u) .

It is tacitly assumed that these integrals exist, i. e. that f(x) decreases
sufficiently rapidly at infinity. These formulae represent what is called
Fourier transformation in one dimension and its inverse. The base func-
tions (1.100) go over into the functions{

1√
2π

eivu
∣∣∣∣ v, u ∈R} .

The orthogonality relation

+a/2∫
−a/2

dx ϕ∗m(x)ϕn(x)= δnm

is replaced by the normalization (1.99) which is to be understood in the
sense of a distribution.
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The result of this example can be applied directly to the construction
of the eigenfunctions of the momentum operator. If the normalization of
the eigenfunctions of p is chosen to be

ϕ(x, p)= 1

(2π�)1/2
e(i/�)px , (1.101)

the generalized orthogonality relation reads
∞∫
−∞

dx ϕ∗(x, p′)ϕ(x, p)= δ(p′ − p) “Orthogonality” . (1.102)

The δ-distribution replaces the Kronecker deltas in the scalar product
(ϕm, ϕn) = δmn and inherits the physical dimension 1/(dimension of
momentum). As the relation is to be interpreted as a functional over the
space of the p-variables which, qualitatively speaking, yields nonsingu-
lar expressions only upon integration over p or p′, on says that (1.101)
is normalized in momentum scale.

In practice it may happen that one has to deal with eigenfunctions of
energy, not of momentum, so that the plane waves must be normalized
in the energy scale, instead of the momentum scale. The substitution
required for this is illustrated by the following example. Formally, one
has

δ(p− p′)= δ[p(E)− p(E′)] =
(∣∣∣∣ dp

dE

∣∣∣∣
E=E′

)−1

δ(E− E′) .

Thus, if one must normalize to δ(E− E′) then the wave function which
was normalized according to δ(p− p′) must be multiplied by the square
root of∣∣∣∣ dp

dE

∣∣∣∣ .
With nonrelativistic kinematics p=√2mE, the wave function (1.101)
becomes

ϕ(x, E)= 1

(2π�)1/2
m1/4

(2E)1/4
e(i/�)px .

It is then normalized in the energy scale, viz.
∞∫
−∞

dx ϕ∗(x, E′)ϕ(x, E)= δ(E′ − E) .

The wave function (1.101) is symmetric in the variables x and p.
Therefore, the analogue of the orthogonality relation (1.102) is

(completeness) .

∞∫
−∞

dpϕ∗(x′, p)ϕ(x, p)= δ(x′ − x) (1.103)
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Indeed, this relation is an expression for the completeness of plane
waves. This may be verified by means of the analogous relations in the
purely discrete case of Sect. 1.8.1. Restricting them, for simplicity, to
one coordinate one finds

(orthogonality) ,

+∞∫
−∞

dx ϕ∗m(x)ϕn(x)= δmn (1.104)

(completeness) .
∞∑

n=0

ϕ∗n(x′)ϕn(x)= δ(x′ − x) (1.105)

The second relation can be derived in a formal manner as follows: Since
the basis ϕn is complete every ψ can be expanded

ψ(x)=
∞∑

n=0

cnϕn(x)=
∞∑

n=0

∞∫
−∞

dx′ ϕ∗n(x′)ϕn(x)ψ(x
′) .

Interchanging summation and integration, with the understanding that
this is a relation between distributions, the equation is consistent only
if (1.105) holds true. This justifies calling (1.105) a completeness rela-
tion.

It is not difficult to generalize the results of this section to three
space dimensions. Plane waves which are normalized in the momentum
scale, are given by

ϕ(x, p)= 1

(2π�)3/2
e(i/�)p·x .

If one prefers to work in the energy scale instead, it is convenient to
write the momentum in spherical polar coordinates, i. e. to express p
in terms of its modulus p≡ |p| and polar angles θp and φp. In these
coordinates one has

d3 p= p2 dpd(cos θp)dφp , and

δ(p′ − p)= 1

p′ p
δ(p′ − p)δ(cos θp′ − cos θp)δ(φp′ −φp) .

As before, the δ-distribution for the moduli of the momenta is con-
verted to a δ-distribution for the energies by means of the relation
E = p2/(2m).

A third case which occurs frequently is the case of a mixed spec-
trum, i. e. of a spectrum which has both a discrete part and a con-
tinuous part. An example of special importance for physics is the
spectrum (1.24) of the hydrogen atom. The hydrogen atom belongs to
the class of problems with a central field in R3. This needs, as a prepa-
ration, the analysis of orbital angular momentum in quantum mechanics,
and the separation into radial and angular motion. These are subjects to
which we now turn.
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1.9 Central Forces and the Schrödinger Equation

Very much like in classical mechanics the problems with central forces
belong to a class of applications of quantum mechanics which is of
great theoretical and practical importance. If the forces are continuous
functions they can be expressed as (negative) gradient fields of spher-
ically symmetric potentials U(r). Like in the classical case the prime
example is a system of two bodies which interact via a central force
F= F(r)r̂ with F(r)=−dU(r)/dr, where r = r1−r2 is the relative co-
ordinate, and r = |r| is its modulus. The separation into center-of-mass
and relative motion is done in the same way as in classical mechanics
and will not be repeated here. Besides the force-free center-of-mass mo-
tion which is separated from the rest, one obtains an effective one-body
problem whose Hamiltonian depends on the relative coordinate only
and which contains the potential and the reduced mass. For simplicity
we denote the latter with the symbol m and investigate the stationary
Schrödinger equation (1.60) with

H =− �
2

2m
∆+U(r) .

The general strategy in solving problems of this kind is much the same
as in mechanics. One separates the relative motion into purely radial
motion in the variable r, and angular motion in the variables θ and φ,
making use of the fact that the modulus of the angular momentum
as well as one of its projections are conserved. Clearly, because of
the Heisenberg uncertainty relations for the variables r, θ, φ and their
canonically conjugate momenta pr , pθ , pφ one can no longer talk about
“orbits”, and one cannot even claim that the motion takes place in
a plane. Nevertheless, there are similarities between the classical and the
quantum mechanical cases, even though the results will be technically
different and of a different physical significance. We start by studying
the orbital angular momentum and show how the Schrödinger equation
is reduced to a differential equation in the radial variable alone. The ra-
dial differential equation is then solved for three examples of particular
importance.

1.9.1 The Orbital Angular Momentum:
Eigenvalues and Eigenfunctions

The orbital angular momentum x× p is an observable with three com-
ponents whose operator representation in coordinate space is found by
means of the substitution rules

xi �−→ xi , pk �−→ �i
∂

∂xk
.
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As the momentum is proportional to �, it is convenient to take out a fac-
tor � in the definition of the operator of orbital angular momentum, viz.

�� := x× p so that � := 1

i
x×∇ . (1.106)

Its components and the square of its modulus which then have no phys-
ical dimension, are, respectively,

	1 = 1

i

(
x2 ∂

∂x3 − x3 ∂

∂x2

)
,

	2 = 1

i

(
x3 ∂

∂x1 − x1 ∂

∂x3

)
,

	3 = 1

i

(
x1 ∂

∂x2 − x2 ∂

∂x1

)
,

�2 = 	2
1+	2

2+	2
3 .

One verifies that these operators are all self-adjoint.
From the commutation rules for coordinates and derivatives[

xi ,
∂

∂xk

]
=−δik = i2δik

one derives the commutator of 	1 with 	2. One finds

[	1, 	2]=
(

x1 ∂

∂x2 − x2 ∂

∂x1

)
= i	3 . (1.107)

Clearly, this commutator is continued to two more commutators by
cyclic permutation of the indices. Therefore, the general result reads[

	i , 	 j
]= i

∑
k

εijk	k (1.108)

The symbol ε denotes the antisymmetric tensor in dimension three
which has the value +1 (−1) if the set (i, j, k) is an even (odd)
permutation of (1, 2, 3), and which vanishes whenever two or more
indices are equal. The commutator of the square �2 with any of the
components was calculated in Sect. 1.8.3. It follows from the formula
[A2, B] = A[A, B]+ [A, B]A and is found to be zero,[

�2, 	i

]
= 0 . (1.109)

The results (1.107) – (1.109) have the following physical interpre-
tation: Only the square of the modulus and one component can be
measured simultaneously, while the remaining two components cannot
have sharp values. The convention, up to exceptions, is to choose �2

and 	3, or, expressed differently, to choose the 3-axis of the system of
reference in a direction singled out by the specific physical system one
is studying. This privileged axis is often called axis of quantization.
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Before turning to the calculation of the eigenvalues and to the con-
struction of the common eigenfunctions of �2 and 	3 it is useful to work
out a few more commutators. Examples are

[	i, x j ] = i
∑

k

εijkxk , [	i , p j ] = i
∑

k

εijk pk .

It is important to note that every commponent of angular momentum
commutes with the modulus r of the position vector, as well as with
the modulus of the momentum. This is verified, in the first case, by

[	i, r] = 1

i

∑
m,n

εimnxm
[
∂

∂xn
, r

]
= 1

i

∑
m,n

εimnxm xn

r
= 0 .

In the last step the contraction of the totally antisymmetric ε-tensor
with the symmetric form xm xn gives zero. Thus, all components and �2

commute with any differentiable function of r. Similarly, the three com-
ponents and �2 commute with any smooth function of |p|. This shows
that[

	i,
p2

2m
+U(r)

]
= 0 and

[
�2,

p2

2m
+U(r)

]
= 0 .

The physical interpretation is that the modulus and the components
of orbital angular momentum are constants of the motion whenever
the potential is spherically symmetric. However, as the components do
not commute with one another there exist common eigenfunctions only
for H , �2 and one of the three components such as, e. g., 	3. Adding the
total momentum P of the two-body system to this list, the result is seen
to correspond precisely to the classical situation where

H = p2

2m
+U(r) , P , �2 , and 	3

are in involution (cf. [Scheck (2005)], Sect. 2.37.2, example (iii)).
Since every component 	i commutes with the variable r, none of

them can contain derivatives with respect to r. This observation suggests
using spherical polar coordinates

x1 = r sin θ cosφ , x2 = r sin θ sinφ , x3 = r cos θ

and to write the operators 	i and �2 as differential operators in the angu-
lar variables θ and φ. We now show that they are given by the following
expressions

	1 = i

{
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

}
,

	2 = i

{
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

}
,

	3 =−i
∂

∂φ
. (1.110)
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�2 =−
{

1

sin2 θ

∂2

∂φ2 +
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)}
. (1.111)

In fact, one could have guessed the third of (1.110) because one knows
from classical physics that �	3 is the variable canonically conjugated
to φ. Therefore, their commutator (1.36) must be

[�	3, φ] = −i� .
Indeed, this result is obtained if the derivatives with respect to φ are
written in terms of derivatives with respect to cartesian coordinates, by
means of the chain rule,

∂

∂φ
= ∂x

1

∂φ

∂

∂x1 +
∂x2

∂φ

∂

∂x2 =−x2 ∂

∂x1 + x1 ∂

∂x2 = i	3 .

In much the same way one expresses the partial derivative with respect
to θ in terms of cartesian partial derivatives thereby finding the relation

∂

∂θ
= i (−	1 sinφ+	2 cosφ) .

A further trick is to note that the following operator is zero

x ·�= 	1x1+	2x2+	3x3 = 0 .

Dividing by x3 and substituting polar coordinates gives the result

tan θ(cosφ	1+ sinφ	2)=−	3 = i
∂

∂φ
.

Thus, there are two linearly independent equations for 	1 and 	2 whose
solution gives the first two formulae (1.110).

The proof of the formula (1.111) is made easier if instead of the
cartesian components 	1 and 	2 one introduces the linear combinations

	± := 	1± i	2 = e±iφ
{
± ∂
∂θ
+ i cot θ

∂

∂φ

}
These operators are called ladder operators. Their product can be writ-
ten as follows

	±	∓ = 	2
1+	2

2± i (	2	1−	1	2)= 	2
1+	2

2±	3 .

The product 	+	− is obtained by careful differentiation, using the chain
rule,

	+	− = eiφ
{
∂

∂θ
+ i cot θ

∂

∂φ

}
e−iφ

{
− ∂
∂θ
+ i cot θ

∂

∂φ

}
=− ∂

2

∂θ2 − i
1− cos2 θ

sin2 θ

∂

∂φ
− cot θ

∂

∂θ
− cot2 θ

∂2

∂φ2 .

The formula (1.111) follows from this result and from the relation

�2 = 	+	−+	2
3−	3 .
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In a next step we derive the eigenvalues and the eigenfunctions
of the operators 	3 and �2. The interpretation of the commuta-
tors (1.108), (1.109) and their relation with the rotation group SO(3) in
three real dimensions, as well as with its covering group SU(2), will be
dealt with later, cf. Sect. 4.1 and Sect. 6.2.1.

Eigenvalues and Eigenfunctions of �3: The eigenfunctions of 	3 fulfill
the differential equation

	3 f(φ)=−i
∂

∂φ
f(φ)= m f(φ) .

Obviously, they are proportional to eimφ where m is a real number. Such
a function must allow for a quantum mechanical interpretation which is
to say that it must be invariant under a complete rotation of the system
of reference about the 3-axis, i. e. under R3(2π),

f(φ+2π)= f(φ) .

This requirement of uniqueness of the wave function implies that the
eigenvalue m of 	3 must be a positive or negative integer, or zero,

m = 0,±1,±2,±3, . . . .

Alternatively one may argue that f(φ) is defined on the unit cir-
cle S1, not on the real axis. Therefore, it must be well-defined on S1

which is to say that f(φ+2π) must equal f(φ). Whether one uses the
uniqueness condition for the wave function, or the requirement that it
be well defined on S1, leads to the same conclusion: the solutions nor-
malized to 1 on the interval [0, 2π] are

fm(φ)= 1√
2π

eimφ .

The normalization follows from the analysis of the functions (1.100) in
Sect. 1.8.4. Indeed, for integer values of m and m′ one has

2π∫
0

dφ f ∗m′(φ) fm(φ)= 1

2π

2π∫
0

dφ ei(m−m′)φ

= eiπ(m−m′) sin[π(m−m′)]
π(m−m′)

= δmm′ .

Regarding the eigenvalue equation of the operator �2, (1.111), we try
an ansatz whereby the eigenfunction factorizes in a function of θ and
another function f(φ) of φ alone,

�2Y(θ) f(φ)= λY(θ) f(φ) .

Inserting (1.111) and dividing by the product Y(θ) f(φ) gives

1

f(φ)

d2 f(φ)

dφ2 +
sin2 θ

Y(θ)

[
1

sin θ

d

dθ

(
sin θ

dY(θ)

dθ

)
+λY(θ)

]
= 0 .
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The first term depends only on φ, while the second term depends only
on θ. This observation explains why the formerly partial derivatives ∂
are now replaced by ordinary derivatives d, and shows that the separa-
tion into a function of θ and a function of φ is justified. The solutions
f(φ) were derived above, so that there remains a differential equation
for Y(θ). It reads

1

sin θ

d

dθ

(
sin θ

dY(θ)

dθ

)
+
(
λ− m2

sin2 θ

)
Y(θ)= 0 .

Substituting z := cos θ and making use of dz =− sin θ dθ, this equation
becomes

d

dz

(
(1− z2)

dY(z)

dz

)
+
(
λ− m2

1− z2

)
Y(z)= 0 . (1.112)

This is a differential equation which is known from the theory of spher-
ical harmonics and which belongs to the class of differential equations
of Fuchsian type. Their general form is

d2y(z)

dz2 +
P0(z− z0)

z− z0

dy(z)

dz
+ P1(z− z0)

(z− z0)2
y(z)= 0 , (1.113)

where P0 and P1 are polynomials in (z− z0) (or Taylor series which
converge in the interval of definition). The singularities of its coefficient
functions are characteristic for this type of differential equation: The
function that multiplies the first derivative of y(z) has a pole of first or-
der in z = z0, the function multiplying the homogeneous term has a pole
of second order in the same point. This type of differential equation
occurs in many different eigenvalue problems of quantum mechanics.
Their solutions can be constructed explicitly in terms of series in the
variable (z− z0).

In the case at stake (1.112) the differential equation reads

d2Y

dz2 −
2z

(1− z)(1+ z)

dY

dz
+ λ(1− z)(1+ z)−m2

(1− z)2(1+ z)2
Y = 0 .

As is obvious from its explicit form it has Fuchsian singularities both
at z = 1 and at z = −1. These are the boundaries of the interval of
definition of z = cos θ. Thus, in view of their physical interpretation,
one must search for solutions which are regular at the two bound-
aries z =±1.

The theory of spherical harmonics shows that this condition can only
be met if the eigenvalue λ is of the form

λ= 	(	+1) with 	= 0, 1, 2, . . .

and if m and 	 fulfill the inequality m2 � 	2. The solutions of (1.112)
which correspond to these eigenvalues are regular in the whole inter-
val [−1,+1]. In the case m = 0 (1.112) coincides with the differential
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equation of Legendre polynomials (cf. Example 1.7). These polynomials
are obtained from the formula of Rodrigues

P	(z)= 1

2		!
d	

dz	

(
z2−1

)	
(formula of Rodrigues) . (1.114)

For m � 0 the solutions can be written in terms of derivatives of
Legendre polynomials as follows,

Pm
	 (z)= (−)m(1− z2)m/2

dm

dzm
P	(z) , (1.115)

with P	(z) as defined in (1.114). These solutions are called associated
Legendre functions of the first kind. Obviously, they are no longer poly-
nomials in z.

Collecting the solutions in the two angular variables one obtains the
eigenfunctions Y	m(θ, φ) of �2,

Y	m(θ, φ)=
√
(2	+1)

4π

(	−m)!
(	+m)! P

m
	 (cos θ)eimφ . (1.116)

These are called spherical harmonics and they have the following prop-
erties:

1. The complex conjugate functions are obtained from the relation

Y∗	m(θ, φ)= (−)mY	−m(θ, φ) . (1.117)

The restriction to m � 0 of (1.115) is circumvented by this symme-
try. Equivalently, the index m of (1.115) can be replaced by |m|.

2. The spherical harmonics provide a complete system of orthogonal
and normalized functions on S2, the sphere with radius 1 in R3.
Writing dΩ = dφ sin θ dθ their orthogonality relation reads∫

dΩ Y∗	′m′(θ, φ)Y	m(θ, φ)= δ	′	δm′m , (1.118)

while their completeness is expressed by

∞∑
	=0

+	∑
m=−	

Y	m(θ, φ)Y
∗
	m(θ

′, φ′)= δ(φ−φ′)δ(cos θ− cos θ ′) .

(1.119)

3. They are simultaneous eigenfunctions of �2 and of 	3, the eigenval-
ues being

�2Y	m = 	(	+1)Y	m , 	= 0, 1, 2, . . .
	3Y	m = mY	m , m =−	,−	+1, . . . , 	−1, 	 . (1.120)

The square of the modulus takes the values 	(	+1) with 	 ∈ N0,
while the 3-component takes one of the (2	+1) integer values be-
tween m =−	 and m = 	.
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θ θθ

αα

φ φ

n̂

1x

3x

n̂
,

,

,

Fig. 1.10. Two unit vectors in �
3 are

defined by their polar angles (θ, φ) and
(θ ′, φ′), respectively. They span the rel-
ative angle α. The first two pairs appear
on the left-hand side of the addition
theorem (1.121) while the angle α is
the argument of the Legendre polyno-
mial on the right-hand side

4. Given a direction n̂ in space defined by the angles (θ, φ), and an-
other direction n̂′ with angular coordinates (θ ′, φ′), let α denote the
angle spanned by these unit vectors, i. e. n̂ · n̂′ = cosα as sketched in
Fig. 1.10. Then

4π

2	+1

+	∑
m=−	

Y∗	m(θ ′, φ′)Y	m(θ, φ)= P	(cosα) . (1.121)

This important relation is called the addition theorem for spherical
harmonics.

We conclude this section with a few remarks and an example.

Remarks

1. Every square integrable function F(θ, φ) on S2 can be expanded in
terms of spherical harmonics,

F(θ, φ)=
∞∑
	=0

+	∑
m=−	

Y	m(θ, φ)c	m

where the expansion coefficients are given by

c	m =
∫

dΩ Y∗	m(θ, φ)F(θ, φ)

=
2π∫

0

dφ

π∫
0

sin θ dθ Y∗	m(θ, φ)F(θ, φ) .

2. The action of the operators 	± on Y	m is worked out by means of
the formulae (1.115) and (1.114). With

z = cos θ ,
∂

∂θ
=−(1− z2)1/2

∂

∂z
, cot θ = z√

1− z2
,

and taking account of the normalization in (1.116), straightforward
calculation yields the result

	±Y	m =
√
	(	+1)−m(m±1)Y	,m±1 . (1.122)

The operator 	+ does not take out of the subspace with fixed 	, but it
raises the eigenvalue of 	3 by 1. Analogously, the operator 	− lowers
the eigenvalue of 	3 by one unit. This is the reason why these opera-
tors are called ladder operators. Note, in particular, that the chain of
eigenstates of �2 and of 	3 which are obtained from Y	m by repeated
action of 	+, does indeed stop at m = 	. Similarly, the descending
chain (	−)nY	m stops at m =−	.
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3. Denoting temporarily the state Y	m by the short-hand ψ, one sees
that the expectation values of the components

	1 = 1

2
(	++	−) , 	2 = i

1

2
(	−−	+)

vanish,

〈	1〉 ψ = 〈	2〉 ψ = 0 , (ψ ≡ Y	m) .

The expectation values of their squares do not vanish, however. They
may be obtained as follows:〈

	2
1+	2

2

〉
ψ =

〈
�2−	2

3

〉
ψ = 	(	+1)−m2 .

As no particular direction perpendicular to the 3-axis is singled out,
one concludes that the expectation values of 	2

1 and of 	2
2 are equal.

This implies that〈
	2

1

〉
ψ =

〈
	2

2

〉
ψ = 1

2
[	(	+1)−m2] .

Nevertheless, it is certainly instructive to do this calculation more
directly. One writes 	2

1 in terms of the ladder operators

	2
1 =

1

4
(	2++	2−+	+	−+	−	+)

and calculates the expectation value of the right-hand side. The op-
erators 	2+ and 	2− give no contribution because they raise/lower Y	m
to Y	,m±2 and because the latter functions are orthogonal to Y	m .
The expectation values of the remaining, diagonal, operators 	+	−
and 	−	+, follow from (1.122) so that〈

	2
1

〉
ψ = 1

4

[√
	(	+1)− (m−1)m

√
	(	+1)−m(m−1)

+√
	(	+1)− (m+1)m

√
	(	+1)−m(m+1)

]
= 1

2
[	(	+1)−m2] .

Thus, the standard deviation of 	1 and of 	2 is the same for both,

(∆	1)= (∆	2)= 1√
2

√
	(	+1)−m2 .

Note that this deviation is different from zero even when |m| takes
its maximal value |m| = 	, i. e. even in a situation when the classical
angular momentum is completely aligned along the 3-axis.19

4. A description of quantum angular momentum by a vector that takes
discrete, quantized directions, should be considered with caution.
Indeed, the calculation of the previous remark shows that measure-
ments of a component of angular momentum perpendicular to the
3-axis will yield eigenvalues +q and −q with equal probabilities, q
being in the set q ∈ {−	, . . . ,+	}.

19 In the early days of atomic physics
this was called the “stretched case”.
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Example 1.10
The result (1.122) shows that the ladder operators 	± have the following
matrix representation in the basis of spherical harmonics:

(	±)	′m′,	m ≡ (Y	′m′, 	±Y	m)=
√
	(	+1)−m(m±1)δ	′	δm′,m±1 .

These infinite-dimensional matrices decompose into square blocks along
the main diagonal, one block of dimension (2	+1)× (2	+1) for every
eigenvalue of �2. Rows and columns are numbered by 	 and m, taking
	= 0, 1, 2 . . . in increasing order, and m = 	, 	−1, . . . ,−	, for fixed 	,
in decreasing order. Thus, rows and columns are marked by

(	,m)= (0, 0), (1, 1), (1, 0), (1,−1),
(2, 2), (2, 1), (2, 0), (2,−1), (2,−2) · · · .

For example, in the subspace characterized by 	= 1 one obtains

(�2)1m′,1m =
⎛⎝ 2 0 0

0 2 0
0 0 2

⎞⎠ ,

(	+)1m′,1m =
⎛⎝ 0
√

2 0
0 0

√
2

0 0 0

⎞⎠ , (	−)1m′,1m =
⎛⎝ 0 0 0√

2 0 0
0
√

2 0

⎞⎠ .
The matrix representations of 	1 and 	2 are obtained from these by the
formulae of the remarks above. Including the matrix representation of 	3
they are

(	1)1m′,1m = 1

2

⎛⎝ 0
√

2 0√
2 0

√
2

0
√

2 0

⎞⎠ ,

(	2)1m′,1m = i
1

2

⎛⎝ 0 −√2 0√
2 0 −√2

0
√

2 0

⎞⎠ ,

(	3)1m′,1m =
⎛⎝ 1 0 0

0 0 0
0 0 −1

⎞⎠ .
Striking features of this result are that 	1 is represented by a real matrix,
all its entries being positive, while the matrix 	2 is purely imaginary.
(	3 is chosen diagonal. As it is hermitean it is automatically real.) This
need not be so in general. These specific properties are a consequence
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of a choice of phases to which we come back later (so-called Condon-
Shortley phase convention).

Given this representation a few more exercises can be done. One
confirms that the commutator of the matrices of 	1 and 	2 does indeed
yield i 	3. Calculation of the eigenvalues and eigenfunctions of 	1 in the
subspace requires the characteristic polynomial to vanish,

det(	1−µ 1l)= det

⎛⎝ −µ 1/
√

2 0
1/
√

2 −µ 1/
√

2
0 1/

√
2 −µ

⎞⎠=−µ(µ2−1)= 0 .

As expected the eigenvalues are µ= 1, 0,−1. The corresponding eigen-
functions are obtained by solving the homogeneous system of linear
equations

1√
2

⎛⎜⎝ 0 1 0

1 0 1

0 1 0

⎞⎟⎠
⎛⎜⎜⎝

c(µ)1

c(µ)0

c(µ)−1

⎞⎟⎟⎠= µ
⎛⎜⎜⎝

c(µ)1

c(µ)0

c(µ)−1

⎞⎟⎟⎠ , µ= 1, 0 or −1 .

Except for possible phase factors the eigenvectors are

c(±1) = 1

2
(1,±√2, 1)T , c(0) = 1√

2
(1, 0,−1)T .

This means that the eigenfunctions of 	1 which pertain to the eigenval-
ues µ=+1 and µ=−1, respectively, are

ψ′	=1,µ=±1 =
1

2
(Y11±

√
2Y10+Y1,−1) ,

while the eigenfunction pertaining to µ= 0 is

ψ′	=1,µ=0 =
1√
2
(Y11−Y1,−1) .

All three of them are normalized to 1, any two of them are orthogonal.

1.9.2 Radial Momentum and Kinetic Energy
The result (1.111) represents the operator �2 as a differential operator
on the surface of S2. The expression in curly brackets of (1.111) also
appears as part of the Laplace operator if the latter is given in spherical
polar coordinates, viz.

∆= 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2

[
1

sin2 θ

∂2

∂φ2 +
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
.

In turn, the Laplace operator is contained in the operator describing the
kinetic energy. Therefore, the kinetic energy can be written in the form

Tkin =− �
2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2 	
2
]
.
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The similarity to the decomposition of the classical kinetic energy into
a radial and an angular part

(Tkin)cl = (p
2
r )cl

2m
+ (�

2)cl

2mr2 (classical)

is remarkable and raises the question whether there exists an opera-
tor associated to the radial variable pr which would yield the first,
r-dependent term of Tkin.

For the classical radial momentum we could write

(pr)cl = x · p
r
.

Replacing naïvely p by �∇/i produces an operator which is not self-
adjoint. A better try is to start from the classically equivalent, sym-
metrized expression

1

2

(x
r
· p+ p · x

r

)
which, upon quantization, becomes

�

2i

(x
r
·∇ +∇ · x

r

)
= �

2i

[
2

x
r
·∇ +

(
∇ · x

r

)]
.

The two terms are evaluated as follows:

1

r
x ·∇ =

∑
i

xi

r

∂r

∂xi

∂

∂r
=

∑
i

(xi)2

r2

∂

∂r
= ∂

∂r
,

(
∇ · x

r

)
= 2

r
.

Putting these formulae together the new operator is

pr = �
i

(
∂

∂r
+ 1

r

)
= �

i

1

r

∂

∂r
r . (1.123)

This operator acts on the integrable functions over the interval r ∈
[0,∞). Unfortunately it is not self-adjoint either, but it is symmetric.
The meaning of this term is the following: The original operator is
defined on the positive real half-axis R+\{0}. Its adjoint, however, is
defined on the whole real axis. The domain of definition of the adjoint
differs from the one of the original operator, so that here D ⊂D†. In
Definition 3.6 of selfadjointness (Chap. 3) the requirement will be that
the domains of definition must be the same, D =D†. This is not the
case here. (A more detailed discussion may found, e. g., in [Galindo and
Pascual (1990)] vol I, Sect. 6.2.)
The commutator of pr with r is

[pr , r] = �i .
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Very much like in classical mechanics it stands for the momentum
canonically conjugate to r. Finally, one calculates its square and finds,
indeed,

p2
r =−�2

(
∂

∂r
+ 1

r

)2

=−�2
(
∂2

∂r2 +
2

r

∂

∂r

)
=−�2 1

r2

∂

∂r

(
r2 ∂

∂r

)
.

Thus, the decomposition of the kinetic energy into kinetic energy of ra-
dial motion and of angular motion that is well known from classical
physics, also applies to the corresponding operators of quantum mech-
anics,

Tkin = p2
r

2m
+ �

2�2

2mr2 (quantum operators) . (1.124)

(Note that the factor �2 shows up explicitly only because the operator
of angular momentum (1.106) was defined by extracting �.)

Perhaps the most important consequence of this decomposition,
from a physical point of view, is the observation that the second term
in (1.124) can be interpreted as a potential of the centrifugal force. In
a problem with central field, described by the Hamiltonian

H = p2
r

2m
+ �

2�2

2mr2 +U(r) (1.125)

the centrifugal potential will compete with the true, attractive or repul-
sive, potential U(r) – in close analogy to the classical situation. This is
seen very clearly if stationary eigenfunctions of H separate in radial and
angular variables,

ψα	m(x)= Rα(r)Y	m or ψ	m(α, x)= R(α, r)Y	m (1.126)

The quantum numbers 	 and m play the same role as before while
α characterizes the radial motion and depends on the nature of the po-
tential U(r). In the first of (1.126) α is a denumerable, discrete quantum
number (examples are provided by the spherical oscillator and by the
bound part of the hydrogen spectrum). In the second of (1.126) α is
a continuous variable (examples are the force-free motion, and the un-
bound states in the hydrogen atom). The operator �2, acting on Y	m ,
answers by the eigenvalue 	(	+1), the operator p2

r only acts on the
radial function Rα(r), while the action of all other terms is just multipli-
cation by real numbers. Dividing the whole equation by Y	m one obtains
the differential equation

− �
2

2m

1

r2

d

dr

(
r2 dR(r)

dr

)
+
(
�2	(	+1)

2mr2 +U(r)

)
R(r)= ER(r) .

(1.127)

This equation describes the radial dynamics which is governed by the
effective potential

Ueff(r)= �
2	(	+1)

2mr2 +U(r) ,
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O

p

b x

Fig. 1.11. A particle of classical mech-
anics moving with momentum p at the
distance b from the parallel through
the origin O, possesses a well-defined
orbital angular momentum. This angu-
lar momentum lies perpendicular to the
plane of the drawing (pointing away
from the observer) and has the modulus
|	cl| = b|p|

in close analogy to the corresponding classical situation. For instance,
an attractive potential U(r) acts in competition with the repulsive cen-
trifugal potential so that the radial wave functions, for increasing 	, are
pushed away from small values of r, and, thus, are screened more and
more from the influence of the true potential. The problems that will
be dealt with in the following sections provide good illustrations of this
interpretation.

1.9.3 Force Free Motion with Sharp Angular Momentum

In a situation where there is no (true) potential, U(r)≡ 0, three com-
muting observables may be chosen. For example, one chooses

1. either the set

{p1, p2, p3}

2. or the set

{H, �2, 	3} .
In the first case H is not listed explicitly because its eigenvalues E =
p2/(2m) are fixed as soon as those of all three operators pi are given.

The two alternatives exclude each other because, even though �2

and 	3 commute with p2, they do not commute with the three compo-
nents pi . With the choice 1. the plane waves of Sect. 1.8.4 are seen to
be simultaneous eigenfunctions of the three observables. A particle of
mass m moves with given momentum p along the straight line defined
by the direction p̂. With the second alternative, choice 2., the particle
is in a state with fixed energy, i. e. with fixed modulus p := |p| of the
momentum, and with sharp values 	(	+1) and m for the square of the
orbital angular momentum and its component 	3 along an arbitrarily
chosen 3-axis, respectively. At first sight this seems to be very different
from classical kinematics: There, a particle which comes in with mo-
mentum p and impact parameter b, has the orbital angular momentum

�cl = x× p with |�cl| = bp

relative to the origin O. This is sketched in Fig. 1.11. One might argue
that the origin could be chosen differently and, as a consequence, that
the orbital angular momentum is not well-defined. This is true. How-
ever, if the plane waves are taken to be the (asymptotic) incoming states
in describing scattering on a central potential U(r) then the origin O
is the center of the force so that � is a physically well defined observ-
able. Yet, the relationship between impact parameter and orbital angular
momentum is not completely lost in quantum mechanics. We will show
this by means of the stationary solutions of the radial differential equa-
tion (1.127) to whose construction we turn next.
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Defining

k2 := 2mE

�2 , � := kr , (1.128)

the radial equation (1.127) with U(r)≡ 0 turns into the following dif-
ferential equation in the dimensionless variable �:

1

�2

d

d�

(
�2 dR(�)

d�

)
− 	(	+1)

�2 R(�)+ R(�)= 0 . (1.129)

Working out the first term one sees immediately that this equation is of
Fuchsian type (1.113) with pole position z0 = 0. Solutions of this dif-
ferential equation which are to be interpreted as probability amplitudes,
must not be singular at �= 0 where the coefficient functions have poles
of first and second order, respectively. This condition can be tested by
trying the ansatz

R(�)= �α f(�) with f(0) �= 0 finite .

Substitution yields a differential equation for f(�), viz.

�α f ′′ +2(α+1)�α−1 f ′

+
[
α(α−1)�α−2+2α�α−2−	(	+1)�α−2+�α

]
f = 0 .

Comparing the terms of this equation as �→ 0, yields the algebraic
condition

α(α+1)= 	(	+1) ,

whose solutions are α = 	 and α =−	−1.20 Obviously, in describing
scattering states with sharp angular momentum we must choose the first
solution which is regular at �= 0.

Note that the differential equation (1.129) for R(�), or (1.130) for
Z(�) (see just below), are well known from the theory of Bessel func-
tions.

In the mathematical literature on Special Functions [Abramowitz
and Stegun (1965)] one finds either the differential equation (1.129) of
spherical Bessel functions, or a somewhat different form which is ob-
tained from it by the substitution

Z(�)=√�R(�) .

It reads

Z ′′(�)+ 1

�
Z ′(�)+

[
1− (	+1/2)2

�2

]
Z(�)= 0 (1.130)

and is called Bessel’s differential equation.

For lack of space we do not dwell upon the theory of Bessel func-
tions. Rather, we merely quote solutions of (1.129) and describe their
relevant properties.

20 In the theory of differential equations
of Fuchsian type the coefficient α is
called characteristic exponent.



106 1Quantum Mechanics of Point Particles

The solutions which are regular at the origin �= 0 are called spher-
ical Bessel functions, they are given by

j	(�)= (−�)	
(

1

�

d

d�

)	 sin�

�
(1.131)

The first three functions read explicitly

j0(�)= sin�

�
, j1(�)= sin�

�2 −
cos �

�
,

j2(�)= 3 sin�

�3 − 3 cos �

�2 − sin�

�
.

Their behaviour in the limit �→ 0 is the one expected on general
grounds, viz.

�→ 0 : j	(�)∼ �	

(2	+1)!! , (1.132)

the double factorial in the denominator being defined by

(2	+1)!! := (2	+1) · (2	−1) · · · 5 ·3 ·1 .
The asymptotic behaviour for �→∞ is

�→∞ : j	(�)∼ 1

�
sin

(
�−	π

2

)
. (1.133)

The examples 	= 0, 1 and 2 given above may be useful in testing the
two limits for small and large values of �, respectively.

Summarizing our formulae, the eigenfunctions which are common to
the operators {H, �2, 	3}, and which are regular at r = 0 are

ψ	m(k, x)= j	(kr)Y	m(θ, φ) . (1.134)

A complete stationary solution of the Schrödinger equation reads

Ψ	m(k, t, x)= e−(i/�)Et j	(kr)Y	m(θ, φ) ,

where E = �2k2/(2m). Its asymptotic form follows from (1.133),

r→∞ : (1.135)

Ψ	m(t, k, x)∼ 1

2ikr

[
ei(kr−(	π/2)−(Et/�))−e−i(kr−(	π/2)+(Et/�))

]
Y	m .

As we will see in the analysis of scattering states in Chap. 2, the first
term describes outgoing spherical waves while the second describes in-
coming spherical waves.

The solutions (1.134) are said to be partial waves of fixed angular
momentum 	. They are not eigenfunctions of the momentum operator p.
To the contrary, as we show below, eigenfunctions of momentum con-
tain all values of 	. Nevertheless, the relation of the angular momentum
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to the impact parameter is not lost completely. Indeed, in studying the
graph of the spherical Bessel function j	(kr) one discovers that this
function, for 	� 1, has a pronounced maximum at

�= kr 	
(
	+ 1

2

)
,

i. e. practically at the point where the relation between 	 and the
impact parameter holds true (cf. [Abramowitz and Stegun (1965)],
Sect. 10.1.59). Fig. 1.12 shows the function j2

	=10(�), while Fig. 1.13
shows its square multiplied by �2. In this example j10 is obtained either

0,01

0,008

0,006

0,004

0,002

0 5 10 15 20 25 30ρ
Fig. 1.12. Square of the spherical Bessel
function with 	= 10 as a function of
�= kr

Fig. 1.13. Square of j10(�) multiplied
with �2, as a function of �= kr
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from (1.131) or through repeated application of the formula

j	(�)=
(
− d

d�
+ 	−1

�

)
j	−1(�) , 	≥ 1 .

Thus, it is correct to state that the centrifugal potential displaces the 	-th
partial wave from the origin, the more the higher the value of 	. In de-
scribing scattering from a (true) potential U(r) high partial waves feel its
influence less than low partial waves, even if the potential is attractive.

At this point, the reader might ask about the relationship between the
simultaneous eigenfunctions of the first set of operators, {p1, p2, p3},
and those of the second set, {H, �2, 	3}. The answer to this question
is contained in an important formula which gives the expansion of the
plane wave in terms of partial waves. With p= �k, and k = |k|, as be-
fore, it reads

eik·x = 4π
∞∑
	=0

i	 j	(kr)
+	∑

m=−	
Y∗	m(θk, φk)Y	m(θx, φx) . (1.136)

The arguments of the first spherical harmonic are the angular coor-
dinates of the vector k, the arguments of the second spherical harmonic
are those of the vector x. The physical interpretation of this formula is
that a plane wave contains all partial waves 	= 0, 1, 2, . . . . Likewise,
for every value of 	, it contains all values of m unless the momentum
vector points in the 3-direction. In this is the case, we have θk = 0 and
φk = 0. The formulae (1.115) and (1.116) show that

Y	m(θk = 0, φk = 0)=
√

2	+1√
4π

δm0 .

In this case the plane wave and its expansion reduce to

eikx3 =
∞∑
	=0

i	
√

4π(2	+1) j	(kr)Y	0(θx, φx)

=
∞∑
	=0

i	(2	+1) j	(kr)P	(cos θx) .

This is an important result:

Although a plane wave contains all partial waves 	, the projection of
the orbital angular momentum onto the direction of the momentum
is equal to zero for all partial waves, m	 = 0.
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Proof of the formula (1.136)
In a first step take k to point along the 3-direction. In this case axial
symmetry implies that the expansion of a plane wave in terms of spher-
ical harmonics only contains contributions with m	 = 0,

eikx3 =
∞∑
	=0

G	(r)Y	m=0(θ, φ) ,

whereby the functions G	(r) are to be calculated from

G	(r)=
∫

dΩ Y∗	0 eikx3 =
2π∫

0

dφ

π∫
0

sin θ dθ Y∗	0(θ)eikr cos θ .

Rather than working out this integral in all details one resorts to a trick:
One calculates the leading term for asymptotically large values of r and
compares to the asymptotics (1.133) of the spherical Bessel functions.
By partial integration in the variable z := cos θ one obtains

G	(r)= 2π

⎡⎣ 1

ikr

+1∫
−1

dz Y	0(z)(ikr eikrz)

⎤⎦
= 2π

ikr

⎡⎣[
Y	0(z)e

ikrz
∣∣∣+1

−1
−
+1∫
−1

dz
dY	0
dz

eikrz

⎤⎦ .
Partial integration of the second term in square brackets generates fur-
ther inverse powers of r so that, to leading order, only the first term
contributes. This term becomes

r→∞ :
G	(r)∼

√
4π(2	+1)

2ikr
[eikr − (−1)	 e−ikr]P	(z = 1)+O[(kr)−2]

=
√

4π(2	+1)

2ikr
i	
(

ei(kr−	(π/2))− e−i(kr−	(π/2))) P	(z = 1)

+O[(kr)−2] .
Compare now to the asymptotics of (1.133). The expansion in terms
of spherical harmonics being unique, the formula for exp(ikx3) given
above holds true. One then substitutes

Y	0(θ)=
√

2	+1

4π
P	(cos θ)

in this formula. Finally, if k does not point along the 3-axis the formula
holds with the replacement cos θ �−→ cosα, where α denotes the angle
between k and x. At this point one uses the addition theorem (1.121)
thus obtaining the result (1.136). This concludes the proof.

The expansion (1.136) of the plane wave in terms of solutions with
sharp 	 and which are regular at the origin is useful in determining the
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normalization of the functions (1.134). One has, successively,∫
d3x e−i(k′−k)·x = (2π)3δ(3)(k−k′)

= (2π)
3

kk′
δ(k− k′)δ(cos θ− cos θ ′)δ(φ−φ′)

= (4π)2
∑
		′

i	(−i)	
′∑

mm′
Y∗	m(k̂)Y	′m′(k̂′)δ		′δmm′

∞∫
0

r2 dr j	(kr) j	′(k
′r)

= (4π)2δ(cos θ− cos θ ′)δ(φ−φ′)
∞∫

0

r2 dr j	(kr) j	(k
′r) .

(The short-hand notation k̂, k̂′ stands for the angular coordinates of k
and of k′, respectively.) In the last two steps the sum over 	′ and m′ was
carried out, and the completeness relation (1.119) of spherical harmon-
ics was used. By comparison of coefficients one obtains the important
formula

∞∫
0

r2 dr j	(kr) j	(k
′r)= π

2kk′
δ(k− k′) . (1.137)

Spherical Bessel functions are orthogonal but they are not normalizable
in the usual sense. Like plane waves they are normalized, in a more
general manner, to δ-distributions in the modulus of the momentum or,
equivalently, in the energy scale (cf.Sect. 1.8.4).

This section concludes with a few statements on further solutions
of the differential equation (1.129) that are relevant for the theory of
scattering.

Solutions of linear, homogeneous, ordinary differential equations of
second order such as (1.129) can be expressed as superpositions of two,
linearly independent, fundamental solutions. The spherical Bessel func-
tion (1.131) being one choice, the function

n	(�)=−(−�)	
(

1

�

d

d�

)	 cos �

�
, (1.138)

being linearly independent of j	(�), is another one. The set of these
functions with 	 = 0, 1, . . . are called spherical Neumann functions.
They have the expected behaviour in the limit �→ 0,

�→ 0 : n	(�)∼−(2	−1)!!
�	+1 . (1.139)

At infinity their behaviour is similar to the one of spherical Bessel func-
tions but for a shift by π/2,

�→∞ : n	(�)∼−1

�
cos

(
�−	π

2

)
. (1.140)
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Another choice of a fundamental system, instead of { j	(�), n	(�)}, is
provided by the spherical Hankel functions. They are defined as follows

h(±)	 (�) := (−�)	
(

1

�

d

d�

)	 e±i�

�
, (1.141)

their relation to the former set being

j	(�)= 1

2i
[h(+)	 (�)−h(−)	 (�)] , n	(�)=−1

2
[h(+)	 (�)+h(−)	 (�)] .

As both Hankel functions contain the spherical Neumann functions their
behaviour at the origin is singular. In turn, their asymptotic properties
are simple:

�→∞ : h(±)	 (�)∼ 1

�
e±i[�−	(π/2)] .

As this is the behaviour of outgoing and incoming spherical waves,
respectively, it is plausible that this basis will play a special role in scat-
tering problems.

1.9.4 The Spherical Oscillator
The spherical oscillator is an example for a problem with central field
with a purely discrete spectrum. The spherically symmetric potential
reads

U(r)= 1

2
mω2r2 ,

the differential equation (1.127) for the radial part of the motion is

− �
2

2m

1

r2

d

dr

(
r2 dRα(r)

dr

)
+
[
�2	(	+1)

2mr2 +1

2
mω2r2

]
Rα(r)= ERα(r) .

(1.142)

Like in Sect. 1.6 it is useful to introduce the reference length b and the
dimensionless energy variable ε which were defined by

b=
√
�

mω
= �c√

mc2�ω
, ε= E

�ω
. (1.143)

The variable r is replaced by the dimensionless variable

q := r

b
.

The radial differential equation then goes over into

1

q2

d

dq

(
q2 dR(q)

dq

)
−
(
	(	+1)

q2 +q2
)

R(q)=−2εR(q) .

Instead of trying to solve this equation in its full generality it is help-
ful to first collect the conditions to be imposed on its solutions from
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a physical perspective. Like in the force-free case, Sect. 1.9.3, every
physically interpretable solution must remain finite at r→ 0. Like in
that example, the substitution

R(q)= qα f(q) with f(0) �= 0 ,

yields the algebraic condition

α(α+1)= 	(	+1), i. e. either α= 	 or α=−	−1 .

For bound states only the first value α= 	 of the characteristic exponent
is admissible. We note that this result holds for all other central fields
for which limr→0 r2U(r)= 0. The physical reason for this is that the be-
haviour for r→ 0 is dominated by the centrifugal potential as long as
the true potential U(r) is less singular than that at the origin.

Taking out the “centrifugal factor” q	, the above differential equation
is modified to

f ′′(q)+2
	+1

q
f ′(q)+ (2ε−q2) f(q)= 0 .

(The calculation is the same as in Sect. 1.9.3.) As a striking property
of this second form of the radial equation one notices that it remains
unchanged by the replacement q→−q. This means that the solutions
depend on q2, not on q. Of course, this property is a consequence of the
potential being quadratic in r. This observation suggests to substitute the
variable once more by taking

z := q2 =
( r

b

)2
, f(q)≡ v(z) . (1.144)

Making use of the formulae

q =√z ,
d

dq
= 2
√

z
d

dz
,

d2

dq2 = 2
d

dz
+4z

d2

dz2

the differential equation for v(z) is seen to be

v′′(z)+ 	+3/2

z
v′(z)+

(
ε

2z
− 1

4

)
v(z)= 0 . (∗)

At this point one may wish to pause and to ponder a further require-
ment imposed by physics: the wave function of bound states should be
square integrable. This is a strong condition on their asymptotic be-
haviour at r→∞, that will be of key importance in the analysis of
bound states in the hydrogen atom. For large values of z, the differential
equation reduces to the approximate form

v′′(z)− 1

4
v(z)	 0 ,

which is independent of 	 and of ε. This equation would be easy to
solve if it described the whole problem. Indeed, solutions would be

v(z)	 e±z/2 = e±r2/(2b2) .
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The solution which grows exponentially is not compatible with (∗) be-
cause the term in the first derivative of v(z) would be positive, requiring
the parameter ε to be negative. As the potential energy is everywhere
positive, the total energy, being the sum of the expectation values of
kinetic and potential energies, must be positive. This implies that all
solutions decrease like exp[−r2/(2b2)], independently of their angular
momentum 	 and of their energy. This result should not be surprising
for two reasons: the potential increases quadratically for r→∞ so that
the wave function must decrease in this limit. On the other hand, we
know that the spherical oscillator can be decomposed into three linear
oscillators with equal frequencies, cf. Sect. 1.8.3, whose wave functions
have precisely this property.

If the exponential behaviour at infinity is extracted as well, by sub-
stituting

v(z)= e−z/2w(z) ,

the newly defined function w(z) should turn out to be something
very simple such as, presumably, polynomials in z. Although this is
somewhat tedious and, perhaps, tiring for the reader to follow, it is
worthwhile to make a last substitution aiming at converting the differen-
tial equation for v(z) to one for w(z). The method being rather general,
this step of the calculations is useful also for other problems. We note

v′(z)=
[
−1

2
w(z)+w′(z)

]
e−z/2 ,

v′′(z)=
[

1

4
w(z)−w′(z)+w′′(z)

]
e−z/2

and insert these formulae, thereby obtaining a differential equation
for w(z):

zw′′(z)+
(
	+ 3

2
− z

)
w′(z)+ 1

2

(
ε−	− 3

2

)
w(z)= 0 .

This equation is well-known from the theory of Special Functions. Its
general form is

zw′′(z)+ (c− z)w′(z)−aw(z)= 0 , (1.145)

where c and a are real or complex constants. It is called Kummer’s
equation. As it is of central importance for quantum mechanics we
devote a whole section of Appendix A.2 to a summary of its most im-



114 1Quantum Mechanics of Point Particles

21 The notation “hypergeometric” is
meant to remind that it is built follow-
ing the model of the geometric series;
it is called “confluent” because it is the
result of the junction, or “confluence”,
of two first-order poles. This transition
from Gauss’ hypergeometric function to
the confluent hypergeometric function
is explained and is carried out in Ap-
pendix A.2.

portant properties. There one learns that the solution which is regular
at z = 0 can be written as an infinite series which reads

1 F1(a; c; z)= 1+ a

c
z+ a(a+1)

2! c(c+1)
z2+ . . .+ (a)k

k! (c)k zk+ . . . ,
(1.146)

and where the following abbreviation is used

(λ)0 = 1 , (λ)k = λ(λ+1)(λ+2) . . . (λ+ k−1) , λ= a, c .

The function defined by the series (1.146) is called the confluent hyper-
geometric function.21 Among its most remarkable properties we note the
following:

1. In the sense of function theory the series given above defines an en-
tire function which is to say that it converges for all finite values in
the complex plane of the variable z. At infinity, in general, it has an
essential singularity. This property is illustrated by the example a= c
for which

1 F1(a; a; z)=
∞∑

k=0

1

k! z
k = ez .

2. If a equals a negative integer or zero,

−a ∈N0 ,

the series terminates after a finite number of terms, and 1 F1(a=−n;
c; z) is a polynomial of degree n.

3. At infinity there exists an asymptotic expansion in 1/z for 1F1(a;c; z)
which is important for many applications in quantum mechanics. It
is derived in Appendix A.2 where we show that it is

|z| →∞ , a fixed , c fixed

1 F1(a; c; z)∼ Γ(c)

Γ(c−a)
e±iπaz−a

[
1+O

(
1

z

)]
+ ezza−c Γ(c)

Γ(a)

[
1+O

(
1

z

)]
. (1.147)

The upper sign in the first term applies for −π/2 < arg z < 3π/2,
the lower sign applies for −3π/2< arg z <−π/2. The symbol Γ(x)
denotes the Gamma function, i. e. the generalized factorial, whose
salient properties are also collected in Appendix A.2.

Applying this information to the third form of the differential equa-
tion of the spherical oscillator, one obtains

a =−1

2

(
ε−	− 3

2

)
,

c= 	+ 3

2
: w(z)= 1 F1

[
−1

2

(
ε−	− 3

2

)
; 	+ 3

2
; z

]
.
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Clearly, the second term of the asymptotic expansion (1.147) is po-
tentially dangerous because it grows exponentially and, therefore, may
destroy the good behaviour of the radial function noted above. One sees
that this catastrophy can only be avoided if the second term is absent
altogether, that is, if the factor multiplying it vanishes. The Gamma
function has no zeroes for real argument. However, it has first-order
poles at zero and at all negative integers. Therefore, if Γ(a) which ap-
pears in the denominator, has a pole position at a then the exponentially
growing term is absent. The important conclusion is that the radial wave
function is square integrable and, thus, amenable to a statistical interpre-
tation, only if a =−n with n ∈N0. This implies that the eigenvalues ε
are quantized and must obey the formula ε= 2n+	+3/2.

The result of this analysis is the following. The eigenvalues of the
Hamiltonian are

En	 =
(

2n+	+ 3

2

)
�ω , n = 0, 1, 2, . . . . (1.148)

The radial functions carry the quantum numbers α ≡ (n, 	) and are
given by

Rn	(r)= Nn	r
	 e−r2/(2b2)

1 F1

(
−n; 	+ 3

2
; r2

b2

)
, (1.149)

where Nn	 denotes the normalization. Without delving into its calcula-
tion 22 I merely quote the result:

Nn	 = (−)n 1

b	+3/2

√
2Γ(n+	+3/2)

Γ(	+3/2)
√

n! . (1.150)

(The sign (−)n is physically irrelevant. I have chosen this sign for the
purpose of rendering the coefficinet of the highest power of r positive.)

Remarks
1. As expected the energy formula contains the term 3�ω/2, i. e. one

term �ω/2 for each of the three degrees of freedom. This is the zero
point energy which is a direct consequence of the uncertainty rela-
tion. The oscillator can never have an energy lower than this value.

2. The allowed values of the energy are En	 = (Λ+ 3/2)�ω with
Λ= 2n+	 which shows that for Λ� 1 they are multiply degener-
ate. This degeneracy is due in part to the projection of the angular
momentum because for fixed 	 the states with m =−	,m =−	+
1, . . . ,m =+	 all have the same energy. (The Hamiltonian does not
depend on 	3.) Part of the degeneracy must have a dynamical origin
and must be a pecularity of the potential being proportional to r2.
For example, the state which has Λ= 2 has a sixfold degeneracy
because this value is obtained from either (n = 0, 	 = 2) or from
(n = 1, 	= 0). Counting the m-degeneracy there are 5+1= 6 states
which have the same energy.

22 Integrals with confluent hypergeomet-
ric functions, powers and exponentials,
are known. They are found in good
tables of integrals in the context of La-
guerre polynomials.
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3. The derivative term in the radial equation (1.142) is written in
a manifestly self-adjoint form. Indeed, if Rn	(r) and Rn′	′(r) are two
different radial functions, one has (noting that these functions are
real!)

∞∫
0

r2 dr Rn′	′(r)
1

r2

d

dr

(
r2 dRn	(r)

dr

)

−
∞∫

0

r2 dr Rn	(r)
1

r2

d

dr

(
r2 dRn′	′(r)

dr

)
= 0 .

Now, write the radial equation (1.142) once fo Rn	, and once more
for Rn′	, with possibly different values of n but with the same value
of 	. Then multiply the first by Rn′	 from the left, the second by Rn	
from the left, integrate over the entire interval [0,∞), ∫∞0 r2 dr . . . ,
and subtract the results. What remains in the difference is the term

(En′	− En	)

∞∫
0

r2 dr Rn′	(r)Rn	(r)= 0 .

If n′ �= n, then (En′	− En	) �= 0, and the integral must vanish. This
means that the radial functions with the same value of 	 are orthog-
onal. For different values 	 �= 	′ there remains the term

∞∫
0

r2 dr Rn′	′(r)
�2

2mr2 [	(	+1)−	′(	′ +1)]Rn	(r) ,

the radial functions are no longer orthogonal. In this case the orthog-
onality is taken care of by other factors of the whole wave function

ψn	m(x)= Nn	Rn	(r)Y	m(θ, φ) ,

so that one always has

∞∫
0

r2 dr
∫

dΩψ∗n′	′m′(x)ψn	m(x)= δnn′δ		′δmm′ .

4. In atomic and nuclear spectroscopy states with 	 = 0 are called
s-states, states which have 	 = 1 are called p-states, while states
which have 	= 2 are called d-states. Originally, these labels served
the purpose of characterizing atomic spectral lines, with “s” stand-
ing for “sharp”, “p” for “principal”, “d” for “diffuse”. From 	= 3
on up atomic states are labelled following the alphabet, that is to
say, f -states have 	= 3, g-states have 	= 4, h-states have 	= 5, etc.
Using this notation the first four radial functions are, from (1.149)



11.9 Central Forces and the Schrödinger Equation 117

and (1.150),

E = 3

2
�ω : R0s(r)= 2√

π1/2b3
e−r2/(2b2) ,

E = 5

2
�ω : R0p(r)=

√
8√

3π1/2b3

( r

b

)
e−r2/(2b2) ,

E = 7

2
�ω : R0d(r)= 4√

15π1/2b3

( r

b

)2
e−r2/(2b2) ,

E = 7

2
�ω : R1s(r)=

√
8√

3π1/2b3

[( r

b

)2− 3

2

]
e−r2/(2b2) .

Figure 1.14 shows the graphs of these functions. Among these, and
in accord with the discussion above, only R0s and R1s are orthogo-
nal.

5. On the basis of our knowledge of the one-dimensional linear oscil-
lator we conclude that the system of eigenfunctions of the spherical
oscillator

ψn	m(x)= Nn	Rn	(r)Y	m(θ, φ)

provides a complete, orthonormal set of square integrable functions
over R3. This is important to know because this base system can be
used in expansions of other, square integrable wave functions. Nu-
clear theory frequently makes use of this fact.
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Fig. 1.14. The radial wave functions of
the spherical oscillator (1.148), multi-
plied by r, for the states 0s, 0p, 0d, and
1s, as functions of r/b
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1.9.5 Mixed Spectrum: The Hydrogen Atom
We are now well prepared, through the experience of Sects.1.9.3 and
1.9.4, to derive in a few steps the energy spectrum and the corre-
sponding wave functions of the hydrogen atom. Let m denote the
reduced mass, as before, let r be the modulus of the relative coordi-
nate, r̂ ≡ (θ, φ) its angular coordinates, and let � be the relative orbital
angular momentum. Like in classical mechanics the center-of-mass S
behaves like a pointlike particle of total mass M which moves freely.
Thus, the eigenvalues of the corresponding term in the Hamiltonian

(H)S = P2

2M

are ES = P2/(2M), the corresponding wave functions are plane waves.
The Hamiltonian of relative motion reads

(H)rel = p2
r

2m
+ �

2�2

2mr2 −
e2

r
. (1.151)

In order to determine simultaneous eigenfunctions of the set of ob-
servables

H , �2 , and 	3

we start from the factorization form (1.126), by setting

ψα	m(x)= Rα	(r)Y	m(x̂) or ψ	m(α, x)= R	(α, r)Y	m(x̂)

for the discrete or the continuous part of the spectrum, respectively. The
radial equation (1.127) becomes

1

r2

d

dr

(
r2 dR(r)

dr

)
−
(
	(	+1)

r2 − 2me2

�2r
− 2mE

�2

)
R(r)= 0 .

Unlike in the previous examples we first substitute R(r) as follows

u(r) := rR(r) .

This substitution has no other purpose than to simplify the radial differ-
ential equation. Indeed, it contains no longer any first derivative because

1

r2

d

dr

(
r2 d

dr

u(r)

r

)
= u′′

r
−2

u′

r2 +2
u

r3 +
2

r

(
u′

r
− u

r2

)
= u′′

r
.

Furthermore, all radial integrals
∫

r2 dr are replaced by
∫

dr. The radial
equation becomes

d2u(r)

dr2 −
[
	(	+1)

r2 − 2me2

�2r
− 2mE

�2

]
u(r)= 0 .

As the potential tends to zero as r→∞, states with positive energy can
escape to infinity and, therefore, will be similar to the force-free solu-
tions of Sect. 1.9.3. However, the Coulomb potential being of infinite
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range, these states will be sensibly deformed even for large values of r.
States with negative energy, in turn, must be fully localized because, if
this were not so, the kinetic energy would have negative values at very
large radii. Therefore, like in classical mechanics, these states must be
bound states. For these reasons we analyze the cases E > 0 and E < 0
separately. We begin by the latter case:

Bound States: Introducing B :=−E, the binding energy, κ := √2m B/�
a wave number, and the dimensionless constant

γ := me2

�2κ
= e2

�c

√
mc2

2B

the variable r is replaced by the dimensionless variable

� := 2κr . (1.152)

The radial equation then reads

d2u(�)

d�2 −
[
	(	+1)

�2 − γ
�
+ 1

4

]
u(�)= 0 . (∗∗)

Very much like in the previous examples, in a first step, one analyzes
the behaviour of u(�) at the origin, and at infinity. As we substituted
R(r) = u(r)/r the solutions regular at the origin must have the be-
haviour

�→ 0 : u(�)∼ �	+1v(�) .

In turn, for asymptotically large values of � the differential equa-
tion (∗∗) simplifies so that its approximate solutions are

�→∞ : u(�)∼ a(B)e−(1/2)�+b(B)e+(1/2)� .
Note that both terms are admissible, a priori, in contrast to the spherical
oscillator. The first term which decays exponentially, is welcome, while
the second must certainly be absent in order to preserve square integra-
bility. This raises the question of whether there are special values of the
binding energy B (remember E =−B!) for which the coefficient b(B)
vanishes.

The example of the spherical oscillator taught us that it is advisable
to extract from the wave function its asymptotic forms both for small
and for large values of the radial variable. This is achieved by the ansatz

u(�)= �	+1 e−1/2�w(�) .

Equipped with the experience of the previous examples, (∗∗) is easily
converted to a differential equation for the function w(�). Who is sur-
prised to find once more Kummer’s equation (1.145)? Its specific form
in the present application reads

�w′′(�)+ (2	+2−�)w′(�)− (	+1−γ )w(�)= 0 .



120 1Quantum Mechanics of Point Particles

Comparing to the general form (1.145) we see that a and c are

a = 	+1−γ , c= 2	+2 .

The solution regular at the origin is

w(�)= 1 F1(	+1−γ ; 2	+2 ;�) .
The asymptotic representation (1.147) of the confluent hypergeometric
function shows that its second term which grows like e+�, would de-
stroy the exponential decay of u(�) at infinity unless the factor that
multiplies this term vanishes,

1

Γ(a)
= 1

Γ(	+1−γ ) = 0 .

This happens precisely when −a ∈N0 or, in detail,

	+1−γ =−n′ , n′ = 0, 1, 2, . . . .

Unlike the case of the spherical oscillator one defines

n := n′ +	+1 , so that n = 1, 2, 3, . . . . (1.153)

The integer n is called principal quantum number. If n′ ∈ N0 then
n ∈N, excluding the zero. It follows from the definition (1.153) that,
for given n, the orbital angular momentum 	 can only take one of the
values

	= 0, 1, . . . , n−1 .

This tells us, in the interplay of the repulsive centrifugal potential and
the attractive Coulomb potential, that the orbital angular momentum
must not be too large if there are to be bound states.

The eigenvalues of the energy follow from the condition γ = n. They
have the remarkable property that they only depend on n, but not on 	,
viz.

En ≡−Bn =−me4

�2

1

2n2 =−
1

2n2α
2mc2 . (1.154)

This is indeed the discrete part of the hydrogen spectrum quoted
in (1.24). As a new property one sees that the degree of degeneracy is

n−1∑
	=0

+	∑
m=−	

1=
n−1∑
	=0

(2	+1)= n2 .

In addition to the directional degeneracy which yields a factor (2	+1)
there is a further, dynamical, degeneracy which is specific to the 1/r po-
tential.

The eigenfunctions of the Hamiltonian, normalized to 1, are as fol-
lows

ψn	m(x)= Rn	(r)Y	m(x̂)≡ 1

r
yn	(r)Y	m(x̂)



11.9 Central Forces and the Schrödinger Equation 121

where

yn	(r)=
√

(	+n)!
aB(n−	−1)!

1

n(2	+1)!�
	+1 e−�/21F1(−n+	+1; 2	+2;�) ,

(1.155)

and where aB denotes the Bohr radius (1.8). Upon insertion of the val-
ues of the energy obtained above, the variable � is seen to be equal
to 2/n times the ratio of r and of the Bohr radius,

�= 2κr = 1

�

√−2mEnr = 2αmc2

n�c
r = 2r

naB
.

I skip the calculation of the normalization in (1.155). The integrals con-
taining powers, exponentials, and confluent hypergeometric functions
which are needed for this calculation, are found e. g. in [Gradshteyn and
Ryzhik (1965)].

While the energy only depends on the principal quantum number n
the radial wave functions depend on both n and the orbital angular mo-
mentum 	. Like in the case of the spherical oscillator one notes that two
radial wave functions are orthogonal only for equal values of 	 and dif-
ferent values of n, but not for different values of 	. In the latter case,
orthogonality of the entire wave function is taken care of by the spher-
ical harmonics.

Here are the normalized radial functions for n = 1, 2, 3, using the
spectroscopic notation for the orbital angular momentum:

R1s(r)= 2

a3/2
B

e−(r/aB) ,

R2p(r)= 1

r

1

a1/2
B 2
√

6

(
r

aB

)2

e−(r/2aB) ,

R2s(r)= 1

r

1

a1/2
B

√
2

(
r

aB

)[
1− 1

2

(
r

aB

)]
e−(r/2aB) ,

R3d(r)= 1

r

1

a1/2
B 3
√

5!

(
2r

3aB

)3

e−(r/3aB) ,

R3p(r)= 1

r

√
2

a1/2
B 3
√

3

(
2r

3aB

)2 [
1− 1

4

(
2r

3aB

)]
e−(r/3aB) ,

R3s(r)= 1

r

1

a1/2
B

√
3

(
2r

3aB

)[
1−

(
2r

3aB

)
+ 1

6

(
2r

3aB

)2
]

e−(r/3aB) .

Figure 1.15 shows the first three s-functions {r · Rns(r), n = 1, 2, 3},
Fig. 1.16 shows their squares r2 R2

ns(r), as functions of r expressed in
units of aB. In order to interpret these graphs we calculate the expecta-
tion values of rα for the three states and with α an integer, positive or
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Fig. 1.15. Graphs of the functions
yns(r)= rRns of the hydrogen atom n =
1, 2, 3 as functions of (r/aB). These
states are pairwise orthogonal
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Fig. 1.16. Radial probability densities
r2 R2

ns(r) of the first three s-states of
Fig. 1.15, as functions of (r/aB). The
angular part is Y00 = 1/

√
4π and, hence,

is isotropic. Therefore, these densities,
completed by spherical symmetry and
multiplied by 1/(4π), yield the full
densities

negative, power. One finds the following results〈
rα

〉
1s = aαB

1

2α+1 (α+2)! ,〈
rα

〉
2s = aαB

1

2
(α+2)!

(
1+ 3

4
α+ 1

4
α2

)
,

〈
rα

〉
3s = aαB

3α

2α+1 (α+2)!
(

1+ 7

6
α+ 23

36
α2+ 1

6
α3+ 1

36
α4

)
.
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Fig. 1.17. Graphs of the radial eigen-
functions, multiplied by r, of the states
(n = 3, 	), 	 = 0, 1, 2, as functions of
the variable (r/aB)

For α= 0 the right-hand sides are equal to 1, in agreement with the nor-
malization of the wave functions. For α = 1 and α= 2 these formulae
give

〈r〉 1s = 3

2
aB , 〈r〉 2s = 6aB , 〈r〉 3s = 27

2
aB〈

r2
〉

1/2
1s =

√
3 aB ,

〈
r2
〉

1/2
2s =

√
42 aB ,

〈
r2
〉

1/2
3s = 3

√
23 aB ,

respectively. As the abscissa of Fig. 1.16 shows the ratio r/aB one may
mark the numbers just obtained on this axis, and thereby interpret the
graphs of the (radial) probabilities r2 R2

ns.
Evaluating the results for α=−1 one finds for all three examples〈

1

r

〉
ns
= 1

n2

1

aB
.

This is a result one could have guessed in advance. Indeed, it follows
from the virial theorem which yields 〈U(r)〉n	 = 2En for the case of
a 1/r-potential.23

Figures 1.17 and 1.18 show the graphs of the radial functions for the
same value n = 3 of the principal quantum number and for 	= 2, 1, 0,
i. e. the functions rR3d(r), rR3p(r), and rR3s(r), and of their squares,
respectively, as functions of r/aB. (Note that these functions are not or-
thogonal.)

In contrast to the case of the spherical oscillator this first set of wave
functions is not complete. What is missing to obtain completeness are
the eigenfunctions of the Hamiltonian which correspond to positive en-
ergies. To these we now turn.

23 Note that I have used the virial the-
orem of classical mechanics, and have
replaced the averages by expectation
values as suggested by Ehrenfest’s the-
orem, Sect. 1.5.2. In fact one proves the
virial theorem for expectation values di-
rectly (cf. Exercise 1.11).
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Fig. 1.18. Radial probability densities
r2 R2

3	(r) in the states shown in Fig. 1.17.
The full spatial densities are obtained
by multiplying the wave function of the
s-state by 1/(4π), the one of the p-state
by |Y1m(θ, φ)|2, and the one of the d-
state by |Y2m(θ, φ)|2

Eigenstates in the Continuum: If the energy is positive then

k :=
√

2mE

�

is the wave number that is to be associated to the electron whenever it
moves asymptotically far from the origin, the center of the force field.
The constant γ of bound states is replaced by the definition

γ := − e2√m

�
√

2E
,

or, somewhat more generally,

γ := −me2

�2k
= Z Z ′e2

�v
, (1.156)

where Z and Z ′ are the charge numbers of the two particles that scatter
off one another, v= �k/m =√2E/m being their relative velocity. In the
case of hydrogen we have Z = 1, Z ′ = −1, hence the choice of the sign
in the definition. Taking again � := 2kr, the radial equation reads

d2u(�)

d�2 −
[
	(	+1)

�2 + γ
�
− 1

4

]
u(�)= 0 . (�= 2kr) (∗∗∗)

In comparing to (∗∗) note the different sign of the last term in
square brackets. While the regular solution starts like �	+1, as be-
fore, this sign change causes the oscillatory behaviour to become
exp (±i�/2)= exp (±ikr) at infinity. This suggests the ansatz

u(�)= ei�/2�	+1w(�) ,
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thus obtaining the differential equation

�w′′(�)+ (2	+2+ i�)w′(�)+ (i(	+1)−γ)w(�)= 0 .

This is almost, but not quite, Kummer’s equation (1.145). Closer exam-
ination shows, however, that it is sufficient to substitute

z := −i�

to obtain that differential equation with the constants

a = 	+1+ iγ and c= 2	+2 .

The solution regular at the origin is

w(z =−i�)=w(−2ikr)= N	 1 F1(	+1+ iγ ; 2	+2; z)
where N	 is a constant that remains to be determined. The asymptotics
for r→∞ is of particular interest. It is read off the formula (1.147):
Writing

Γ(	+1+ iγ)= |Γ(	+1+ iγ)| eiσ	 ,

thereby defining what is called the Coulomb phase σ	, one has

1 F1 ∼ Γ(2	+2)

Γ(	+1−iγ)
(+2ikr)−	−1−iγ+ Γ(2	+2)

Γ(	+1+iγ)
e−2ikr(−2ikr)−	−1+iγ

= Γ(2	+2)

|Γ(	+1− iγ)|
1

(2kr)	+1 e−ikr e(πγ/2)

×
[
i−	−1 ei[kr−γ ln(2kr)+σ	] + (−i)−	−1 e−i[kr−γ ln(2kr)+σ	]

]
= Γ(2	+2)

|Γ(	+1− iγ)| e
(πγ/2) 2

(2kr)	+1 e−ikr 1

2i

×
[

ei[kr−γ ln(2kr)−	(π/2)+σ	] − e−i[kr−γ ln(2kr)−	(π/2)+σ	]
]
.

If we choose the normalization N	 as follows

N	 = |Γ(	+1− iγ)|
2Γ(2	+2)

e−πγ/2 ,

the radial function obtains an asymptotic behaviour

u	(�= 2kr)= N	 ei�/2�	+1
1 F1(	+1+ iγ , 2	+2 ,−i�) (1.157)

which is similar to the asymptotics of the free solutions

�→∞ : u	(�)∼ sin
(

kr−	π
2
−γ ln(2kr)+σ	

)
.

It differs from the asymptotics of the spherical Bessel functions by the
constant scattering phase

σ	 = Γ(	+1+ iγ)

and by the phase −γ ln(2kr), with a logarithmic dependence on r which
is characteristic for the 1/r-dependence of the potential.
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Fig. 1.19. Energy spectrum of the hy-
drogen atom. Besides the degeneracy
due to the magnetic quantum num-
ber m which is typical for all cen-
tral field problems, the discrete values
with negative E exhibit a dynamical
	-degeneracy: for given principal quan-
tum number n all levels with 	= 0 up
to 	= n−1 have the same energy. The
discrete part of the spectrum has the
limiting value E = 0. At this point the
continuum of positive energies starts

The complete wave function with positive energy and with definite
values of 	 and m reads

ψ	m(E, x)= R	(E, r)Y	m(x̂)≡ 1

r
u	(E, r)Y	m(x̂)

with, as noted above,

u	(E, r)≡ u	(�) ,

the normalization being chosen according to the needs of the specific
situation one is studying.

Remarks
1. The energy spectrum of hydrogen is the classical example for

a mixed spectrum. It consists of a countably infinite, discrete, set of
values, with a limit point at zero, and of a continuum of positive val-
ues starting at E = 0. Besides the degeneracy in the projection m of
orbital angular momentum the discrete spectrum exhibits a dynam-
ical degeneracy which grows strongly with n. This is sketched in
Fig. 1.19. This dynamical degeneracy is lifted as soon as the radial
dependence of the spherically symmetric potential deviates from 1/r.
This happens, for instance, if nuclei of hydrogen-like atoms are no
longer described by point charges Ze but by charge distributions of
finite spatial extension.
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2. Only the combined set of wave functions (1.155) with negative
eigenvalues, and (1.157) with positive energies are complete. The
two parts taken separately, are not. Although rarely done, there may
be situations where to use the eigenfunctions of the hydrogen Hamil-
tonian as a basis for calculations in atomic physics. In such a case
one must first normalize the eigenfunctions (1.157) in the energy
scale and must use both groups of eigenfunctions. The completeness
relation then reads

∞∑
n=1

n−1∑
	=0

+	∑
m=−	

ψn	m(x)ψ∗n	m(x′)

+
∞∫

0

dE
∞∑
	=0

+	∑
m=−	

ψ	m(E, x)ψ∗	m(E, x′)= δ(x− x′) .

3. The confluent hypergeometric functions contained in the eigenfunc-
tions (1.155) of the bound states are polynomials which are identical
with the associated Laguerre polynomials, up to the normalization,

L2	+1
	+n (�)=−

[(	+n)!]2
(n−	−1)!(2	+1)! 1 F1(−n+	+1, 2	+2, �) .

These polynomials are defined as follows:
Laguerre polynomials:

Lµ(x)= ex dµ

dxµ
(e−x xµ)=

µ∑
ν=0

(−)ν
(
µ

ν

)
µ!
ν! x

ν ;

Associated Laguerre polynomials:

Lσµ(x)=
dσ

dxσ
Lµ(x) .

In practical calculations one often uses the associated Laguerre poly-
nomials, instead of the confluent hypergeometric, because there are
useful recurrence relations for them which are useful in simplifying
integrals.
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Scattering of Particles
by Potentials

Introduction

The three prototypes of spectra of self-adjoint operators, the dis-
crete spectrum, with or without degeneracy, the continuous spec-

trum, and the mixed spectrum, as well as the corresponding wave
functions, contain important information about the physical systems
that they describe. Yet, from a physicist’s point of view, the results
obtained until now remain somewhat academic as long as we do not
know how to render the information they contain visible by means of
concrete experiments. For example, the static spectrum of the Hamil-
tonian describing the hydrogen atom and the spatial shape of its
stationary wave functions, a priori, are not observable for us, the
macroscopic observers, as long as the atom is not forced to change
its state by interaction with external electromagnetic fields or by in-
teraction with scattering beams of electrons. In other terms, the pure
stationary systems that we studied so far, must be subject to nonsta-
tionary interactions in set-ups of realistic experiments which allow
for preparation and detection, before we can decide whether or not
these systems describe reality. As this question is of central impor-
tance I insert here a first chapter on the description of scattering
processes in what is called potential scattering, before turning to the
more formal framework of quantum theory.

2.1 Macroscopic and Microscopic Scales
In studying classical macroscopic systems our experience shows that
it is always possible to perform observations without disturbing the
system: In observing the swinging pendulum of an upright clock we
measure its maximal elongation, its period, perhaps even the velocity at
the moment of passage through the vertical, a stop-watch in our hand,
by just “looking” at it and without interfering, to any sizable degree,
with the motion of the pendulum. Even extremely precise measurements
on satellites or on planets by means of radar signals and interferometry
are done with practically no back-reaction on their state of motion. This
familiar, almost obvious fact is paraphrased by the statement that the
object, i. e. the isolated physical system that one wishes to study, is sep-
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arated from the observer and his measuring apparatus in the sense that
back-reactions of the measuring procedure on the object are negligible.
The perturbation of the system by the measurement either is negligibly
small, or can be corrected for afterwards. In particular, the system is
obviously not influenced by the mere fact of being observed.

There is a further aspect that we should realize: The length scales
and the time scales of macroscopic processes are the typical scales of
our familiar environment, or do not differ from them much, that is, do
not go beyond the realm of what we can imagine based on our day-to-
day experience. Examples are the milliseconds that matter in sportive
competitions, or the very precise length measurements in micro mech-
anics.

Matters change when the object of investigation is a microcospic
system such as a molecule, an atom, an atomic nucleus, or a single
elementary particle:

1. Every measurement on a micro system is a more or less intrusive in-
tervention that can strongly modify the system or even destroy it. As
an example, think of an atom described by a wave function ψ(t, x).
If this atom is bombarded by a relatively “course” beam such as,
e. g., an unpolarized light beam, one intuitively expects the subtle
phase correlations that are responsible for the interference phenom-
ena of the wave function, to be partially or completely destroyed.
In fact, the impossibility of separating measuring device and object
belongs to the most difficult aspects of quantum theory.

2. Furthermore, the spatial and temporal scales of typical quantum pro-
cesses, in general, are small as compared to spatial distances or time
intervals of experiments set up to detect them. An example may il-
lustrate this: The size of a hydrogen atom is of the order of the
Bohr radius (1.8), that is about 10−10 m. This is a very small quan-
tity as compared to the distance of the hydrogen target from the
source emitting the incoming beam that is used to investigate the
atom, as well as from the detector designed to detect the scattered
beam. A similar remark applies to the temporal conditions in atoms.
Characteristic times of an atom are defined by the transition ener-
gies,

τ(m→ n)= 2π

c

�c

Em− En
.

For the example of the (2p→ 1s)-transition in hydrogen this time
is τ(2→ 1)≈ 4×10−16 s – a time interval which is very short as
compared to the time scales in a typical experiment.

The general conclusion from these considerations is that in general
we can only observe asymptotic states, realized long before or long
after the process proper, and at large spatial distances from it. More
concretely this means the following: We wish to investigate a quan-
tum system which, when isolated, is a stationary one, by means of
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a beam of particles. The system is the target, the particles are the
projectiles which are directed onto the target, or which are seen in a de-
tector after the scattering has taken place. The interaction process of
the beam and the system happens within a time interval ∆t around,
say, t = 0. It is localized within a volume V of space around the ori-
gin x= 0 that is characterized by the radius R0. At time t→−∞ the
beam is constructed in a controlled way at an asymptotically large dis-
tance from the target. The beam and the target in this configuration
define what is called the in-state (abbreviation for “incoming state”). For
t→+∞ the scattered particles, or more generally the reaction products
of the scattering process, are identified in the detector which also has an
asymptotically large distance from the target. The scattered particles, to-
gether with the target in its final state, are in what one calls the out-state
(abbreviation for “outgoing state”).

Other situations where we actually can perform measurements are
provided by systems which are stationary by themselves but which are
unstable because of interactions with other systems. For example, the
2p-state of hydrogen is unstable because it decays to the 1s-state by
emission of a photon, the typical time for the transition being on the
order of 10−9 s. In this example the in-state is the atom in its excited
2p-state, the out-state consists of the outgoing photon and the atom in
the stable ground state. In this example, too, our information on the
(unstable) quantum system stems from an asymptotic measurement, the
decay products being detected a long time after the decay process hap-
pened and very far in space.1

As a general conclusion we note that experimental information on
quantum mechanical systems is obtained from asymptotic, incoming or
outgoing states. We cannot penetrate the interaction region proper and
cannot interfere with the typical time scale of the interaction. In quan-
tum mechanics of molecules, atoms, and nuclei, the important methods
of investigation are: scattering of particles, i. e. electrons, protons, neu-
trons, or α particles, on these systems; excitation and decay of their
excited states by interaction with the electromagnetic radiation field.

Scattering processes which can be dealt with by means of the notions
and methods developed in Chap. 1, are the subject of this chapter. The
interaction with the radiation field requires further and more comprehen-
sive preparation and is postponed to later chapters. Likewise, scattering
theory in a physically more general, mathematically more formal frame-
work will be taken up again later.

2.2 Scattering on a Central Potential

We assume that a potential U(x) is given which describes the interaction
of two particles and which is spherically symmetric and has finite range.

1 Of course, the unstable state must
have been created beforehand and one
may ask why the preparation procedure
is not taken to be part of the in-state,
or under which condition this becomes
a necessity. The answer is a qualita-
tive one: The total decay probability
of the unstable state, when multiplied
by �, yields the energy uncertainty,
or width Γ of the unstable state. If
Γ � Eα, i.e if the width Γ is small as
compared to the energy Eα of the state
then this state is quasi-stable. The pro-
cess used to prepare it can be separated
from the decay process.
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Somewhat more formally this means

U(x)≡U(r) with r = |x| , lim
r→∞[rU(r)] = 0 . (2.1)

Spherically symmetric potentials such as

U(r)=U0Θ(r0−r) or U(r)= g
e−r/r0

r
,

the first of which vanishes outside of the fixed radius r0, while the
second decreases exponentially, fulfill this condition. The Coulomb po-
tential

UC(r)= e1e2

r

does not. The aim is to investigate the scattering of a particle of mass
m on the potential and to calculate the corresponding differential cross
section. (Note that in the case of the two-body system m is the reduced
mass.) The differential cross section is an observable, i. e. a classical
quantity. Its definition is the same as in classical mechanics (cf. [Scheck
(2005)], Sect. 1.27): It is the ratio of the number dn of particles which
are scattered, in the unit of time, into scattering angles between θ and
θ+ dθ, and of the number n0 of incoming particles per unit of area
and unit of time. In other terms, one determines the number of par-
ticles that were actually scattered, and normalizes to the incoming flux.
In contrast to the classical situation these numbers are obtained from
the current density (1.54) (with A≡ 0) describing the flow of probabil-
ity, via Born’s interpretation, not from classical trajectories (which no
longer exist).

The correct way of proceeding would be to construct a state com-
ing in along the 3-direction as a wave packet at t =−∞ which clusters
around the average momentum p= pê3, then to calculate the time evo-
lution of this wave packet by means of the Schrödinger equation, and
eventually analyze the outgoing flux at t→+∞. As this is tedious and
cumbersome, one resorts to an intuitive method which is simpler and,
yet, leads to the correct results. One considers the scattering process
as a stationary situation. The incoming beam is taken to be a station-
ary plane wave, while the scattered state is represented by an outgoing
spherical wave. At asymptotic distances from the scattering center the
wave field then has the form

r→∞ : ψSomm(x)∼ eikx3+ f(θ)
eikr

r
, k = 1

�
|p| , (2.2)

whose first term is the incoming beam with momentum p= pê3 = �kê3
while the second is the outgoing spherical wave. This ansatz is called
Sommerfeld’s radiation condition.

The role of the (in general) complex amplitude f(θ) is clarified by
calculating the current densities of the incoming and outgoing parts.
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It is useful, here and below, to denote the skew-symmetric derivative
of (1.54) by a symbol of its own,

f ∗(x)
↔∇ g(x) := f ∗(x)∇g(x)−[∇ f ∗(x)]g(x) (2.3)

where f and g are complex functions which are at least C1 (once con-
tinuously differentiable). For the incoming wave one finds

jin = �

2mi
e−ikx3 ↔∇ eikx3 = �k

m
ê3 = vê3 ,

with vê3 the velocity of the incoming particle.
Using spherical polar coordinates for which

∇ =
(
∂

∂r
,

1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)
,

and the following expressions for the gradient of ψ = f(θ)eikr/r

(∇ψ)r =
∂ψ

∂r
=

(
− 1

r2 +
ik

r

)
f(θ)eikr ,

(∇ψ)θ =
1

r

∂ψ

∂θ
= 1

r2

∂ f(θ)

∂θ
eikr , (∇ψ)φ = 0 ,

the outgoing current density is easily calculated,

jout = �k
m

| f(θ)|2
r2 êr + �

2mi

1

r3 f ∗(θ)
↔∇ f(θ)êθ .

The first term, upon multiplication by the area element r2 dΩ of
a sphere with radius r and center at the origin, yields a probability cur-
rent in the radial direction proportional to | f(θ)|2. The second term,
in contrast, yields a current decreasing like 1/r which must be ne-
glected asymptotically. The flux of particles across the cone with solid
angle dΩ in an outgoing radial direction becomes (for large values of r)

jout · êrr2 dΩ = �k
m

| f(θ)|2
r2 r2 dΩ (r→∞) .

Normalizing to the incoming flux, the differential cross section is found
to be

dσel = jout · êrr2 dΩ

| jin| = | f(θ)| 2 dΩ .

This result clarifies the physical interpretation of the amplitude f(θ):
This amplitude determines the differential cross section

dσel

dΩ
= | f(θ)| 2 . (2.4)
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The function f(θ) is called scattering amplitude. It is a probability am-
plitude, in the spirit of Born’s interpretation. The square of its modulus
is the differential cross section and, hence, is a classical observable. As
we will see soon it describes elastic scattering. The total elastic cross
section is given by the integral taken over the complete solid angle

σel =
∫

dΩ | f(θ)| 2 = 2π

π∫
0

sin θ dθ | f(θ)| 2 . (2.5)

Before continuing with a discussion of methods that allow to calculate
the scattering amplitude and the cross sections we add a few comple-
ments to and comments on these results.

Remarks

1. The result obtained for the asymptotic form of jout shows that it was
justified to call the two terms in (1.135), Sect. 1.9.3, outgoing and
incoming spherical waves, respectively.

2. In the two-body problem with central force, the variable r is the
modulus of the relative coordinate, m is the reduced mass,

m �−→ m1m2

m1+m2
, and θ �−→ θ∗

is the scattering angle in the center-of-mass system. Thus, the ampli-
tude f(θ) is the scattering amplitude in the center-of-mass system.

3. The potential U(r) must be real if the Hamiltonian is to be self-
adjoint. If this is so, then there is only elastic scattering. No matter
how it is scattered, the particle must be found somewhere in the final
state, or, in the spirit of quantum mechanics, the probability to find
the particle somewhere in space must be conserved. Therefore, the
expression (2.4) describes the differential cross section for elastic
scattering, the expression (2.5) gives the integrated elastic cross sec-
tion.
However, there are processes where the final state is not the same
as the initial state. An electron which is scattered on an atom, may
loose energy and may leave behind the atom in an excited state.
A photon used as a projectile may be scattered inelastically on
the atom, or may even be absorbed completely. In those cases one
says that the final state belongs to another channel than the initial
state. Besides the real potential responsible for elastic scattering, the
Hamiltonian must also contain interaction terms which allow to cross
from the initial channel to other, inelastic channels. Loosely speak-
ing, in such a situation the total probability is distributed, after the
scattering, over the various final state channels. In Sect. 2.6 we will
develop a bulk method for describing such a situation without know-
ing the details of the reaction dynamics.



22.2 Scattering on a Central Potential 135

4. Even though the ansatz (2.2) is intuitively compelling, in a strict
sense the ensuing calculation is not correct. The condition (2.2) as-
sumes a stationary wave function where both the incoming plane
wave and the outgoing spherical wave are present at all times. In par-
ticular, when one calculates the current density (1.54) there should
be terms arising from the interference between the incoming and
outgoing parts. Instead, in our calculation of the current densities
we proceeded as if at t =−∞ there was only the plane wave, and
at t =+∞ there will be only the scattered spherical wave. Although
this derivation rests on intuition and, strictly speaking, is not cor-
rect, it yields the right result. This is so because the plane wave is
but an idealization and should be replaced by a suitably composed
wave packet. We skip this painstaking calculation at this point and
just report the essential result: One follows the evolution of a wave
packet which at t→−∞ described a localized particle with aver-
age momentum p= pê3. For large positive times and at asymptotic
distances there appears an outgoing spherical wave with the shape
assumed above. There are indeed interference terms between the ini-
tial state and the final state, but, as these terms oscillate very rapidly,
integration over the spectrum of momenta renders them negligibly
small. Except for the forward direction, that is for scattering where
p′ = p, the ansatz (2.2), together with the interpretation given above,
is correct.

5. It is instructive to compare the quantum mechanical description with
the theory of elastic scattering in classical mechanics. The defini-
tion of the differential cross section, of course, is the same (number
of particles per unit of time scattered into the solid angle dΩ, nor-
malized to the incoming flux). The physical processes behind it are
not the same. The classical particle that comes in with momentum
p = pê3 and impact parameter b, moves on a well-defined trajec-
tory. It suffices to follow this orbit from t =−∞ to t =+∞ to find
out, with certainty, where the particle has gone. In quantum mech-
anics we associate a wave packet to the particle which, for example,
contains only momenta in the 3-direction and which, at t = −∞,
is centered at a value p = pê3. Values for its 3-coordinate can be
limited within what the uncertainty relation allows for. As the par-
ticle has no momentum components in the 1- and the 2-directions,
or, in other terms, since p1 and p2 have the sharp values 0, the
position of the particle in the plane perpendicular to the 3-axis is
completely undetermined. At t→+∞ quantum mechanics yields
a probability for detecting the particle in a detector which is posi-
tioned at a scattering angle θ with respect to the incoming beam. It is
impossible to predict where any individual particle will be scattered.
The probability dσel/dΩ which is defined by the complex scatter-
ing amplitude f(θ) will be confirmed only if one allows very many
particles to scatter under identical experimental conditions.
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2 Assuming the restriction (2.1) the
amplitude f is square integrable, in-
deed. In the case of the Coulomb po-
tential the amplitude is singular in the
forward direction θ = 0, its behaviour
being like 1/ sin θ, and, hence, is no
longer square integrable. Nevertheless,
the scattering amplitude can still be
expanded in terms of Legendre polyno-
mials. However, the series (2.6) is no
longer convergent in the forward direc-
tion, and the expression (2.7) for the
integrated cross section diverges.

2.3 Partial Wave Analysis
Clearly, the scattering amplitude must be a function of the energy
E = �2k2/(2m) of the incoming beam, or, what amounts to the same,
a function of the wave number k. Whenever this dependence matters
we should write, more precisely, f(k, θ) instead of f(θ). The cross sec-
tion has the physical dimension [area]. Hence, the scattering amplitude
has dimension [length]. In the physically allowed region θ ∈ [0, π] or
z ≡ cos θ ∈ [−1,+1], and for fixed k, the amplitude f(k, θ) is a non-
singular, in general square integrable function of θ.2 Therefore, it may
be expanded in terms of spherical harmonics Y	m(θ, φ). However, as
it depends on θ, by the spherical symmetry of the potential, and does
not depend on φ, this expansion contains only spherical harmonics
with m = 0, Y	0, which are proportional to Legendre polynomials,

Y	0 =
√

2	+1

4π
P	(z = cos θ) .

As a consequence one can always choose an expansion in terms of Leg-
endre polynomials,

f(k, θ)= 1

k

∞∑
	=0

(2	+1)a	(k)P	(z) . (2.6)

The factor 1/k is introduced in order to keep track of the physical di-
mension of the scattering amplitude, the factor (2	+1) is a matter of
convention and will prove to be useful. The complex quantities a	(k)
which are defined by (2.6) are called partial wave amplitudes. They are
functions of the energy only (or, equivalently, of the wave number). The
spherical harmonics are orthogonal and are normalized to 1. Therefore,
the integrated cross section (2.5) is

σel(k)= 4π

k2

∑
	,	′

√
(2	+1)(2	′ +1) a	(k)a

∗
	′(k
′)
∫

dΩ Y∗	′0Y	0

which, by the orthogonality of spherical harmonics, simplifies to

σel(k)= 4π

k2

∞∑
	=0

(2	+1) |a	(k)| 2 . (2.7)

Like the formulae (2.4) and (2.5) these expressions are completely
general, and make no use of the underlying dynamics, i. e. in the case
being studied here, of the Schrödinger equation with a central poten-
tial U(r).

We now show that the amplitudes a	(k) are obtained by solving the
radial equation (1.127) for all partial waves. The arguments presented in
Sect. 1.9.3 and the comparison to the analogous classical situation show
that this is not only an exact method for studying elastic scattering but
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that it is also particularly useful from a physical point of view. By as-
sumption the potential has finite range, i. e. it fulfills the condition (2.1).
In the corresponding classical situation a particle with a large value of
angular momentum 	cl stays further away from the origin r = 0 than
a particle with a smaller value of 	cl, and the action of the potential on
it is correspondingly weaker. Very much like in classical mechanics the
quantum effective potential

Ueff(r)= �
2	(	+1)

2mr2 +U(r) ,

for large values of 	, is dominated by the centrifugal term. Thus, one
expects the amplitudes a	 to decrease rapidly with increasing 	, so that
the series (2.6) and (2.7) converge rapidly.

If the 	-th partial wave is taken to be

R	(r)Y	m = u	(r)

r
Y	m

the radial function u	(r) obeys the differential equation

u′′	(r)−
(

2m

�2 Ueff(r)− k2
)

u	(r)= 0 , (2.8)

(see also Sect. 1.9.5). At the origin, r = 0, the radial function must be
regular. This means that we must choose the solution which behaves
like R	 ∼ r	, or u	 ∼ r	+1, respectively, in the neighbourhood of the ori-
gin. For r→∞ the effective potential becomes negligible as compared
to k2 so that (2.8) simplifies to the approximate form

r→∞ : u′′	(r)+ k2u	(r)≈ 0 .

Therefore, the asymptotic behaviour of the partial wave must be given
by

r→∞ : u	(r)∼ sin
(

kr−	π
2
+ δ	(k)

)
. (2.9)

The phase δ	(k) which is defined by this equation is called the scatter-
ing phase in the partial wave with orbital angular momentum 	.

The following argument shows that the asymptotic form (2.9) is very
natural: On the one hand, the function u	(r) is real (or can be chosen
so) if the potential U(r) is real. Under the same assumption the scat-
tering phase must be real. On the other hand, the asymptotics of the
force-free solution is known from the asymptotics (1.133) of spherical
Bessel functions (which are regular at r = 0),

u(0)	 (r)= (kr) j	(kr)∼ sin
(

kr−	π
2

)
.

If the potential U(r) is identically zero all scattering phases are equal
to zero. Therefore, the scattering phases “measure” to which extent the
asymptotic, oscillatory behaviour of the radial function u	(r) is shifted
relative to the force-free solution u(0)	 (r).
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There remains the problem of expressing the scattering amplitude,
or, equivalently, the amplitudes a	(k) in terms of the scattering phases.
In solving this problem, the idea is to write the unknown scattering so-
lution ψ(x) of the Schrödinger equation in terms of a series in partial
waves,

ψ(x)=
∞∑
	=0

c	 R	(r)Y	0(θ)= 1

r

∞∑
	=0

c	 u	(r)Y	0(θ) (2.10)

and to choose this expansion such that the incoming spherical wave
αin e−ikr/r which is contained in it for r→∞, coincides with the in-
coming spherical wave contained in the condition (2.2). We begin with
the latter: Expanding the plane wave in terms of spherical harmonics
(cf. (1.136)),

eikx3 =
∞∑
	=0

i	
√

4π(2	+1) j	(kr)Y	0 ,

and making use of the asymptotics (1.133) of the spherical Bessel func-
tions,

j	(kr)∼ 1

kr
sin

(
kr−	π

2

)
= 1

2ikr
(eikr e−i	π/2− e−ikr ei	π/2) ,

the piece proportional to e−ikr/r can be read off. The outgoing spherical
wave, on the other hand, in (2.2), in addition to the term proportional to
the scattering amplitude f(θ), also contains a piece of the plane wave
that can be read off from the same expression. This is to say that the
Sommerfeld condition (2.2) is rewritten in terms of spherical waves as
follows:

ψSomm(x)∼− e−ikr

2ikr

( ∞∑
	=0

i	
√

4π(2	+1) ei	π/2Y	0

)

+ eikr

2ikr

( ∞∑
	=0

i	
√

4π(2	+1) e−i	π/2Y	0+2ik f(θ)

)
.

This is to be compared to the representation (2.10) for the scattering
solution for r→∞ which becomes, upon inserting (2.9) once more,

ψ(x)∼− e−ikr

2ir

( ∞∑
	=0

c	 e−iδ	 ei	π/2Y	0

)
+ eikr

2ir

( ∞∑
	=0

c	 eiδ	 e−i	π/2Y	0

)
.

The incoming spherical waves in ψSomm and in ψ are equal provided
the coefficients c	 are chosen to be

c	 = i	

k

√
4π(2	+1) eiδ	 .
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For the rest of the calculation one just has to compare these formulae.
Inserting the result for c	 into the outgoing part of (2.10), one finds

f(θ)= 1

k

∞∑
	=0

e2iδ	−1

2i

√
4π(2	+1)Y	0

= 1

k

∞∑
	=0

e2iδ	−1

2i
(2	+1)P	(cos θ) ,

where use is made of the relation

Y	0(θ)=
√

2	+1

4π
P	(cos θ) .

Comparison with the general expansion (2.6) yields the following exact
expression for the amplitudes a	(k) as functions of the scattering
phases,

a	(k)= e2iδ	−1

2i
= eiδ	(k) sin δ	(k) . (2.11)

Applications and Remarks

1. It was indeed useful to define the amplitudes a	 by extracting an ex-
plicit factor (2	+1) in (2.6). The so-defined amplitudes then have
moduli which are smaller than or equal to 1. The second equation
in (2.11) is correct because the phase δ	 is real.3

2. The result (2.11) for the partial wave amplitudes which follows from
the Schrödinger equation, has a remarkable property: The imaginary
part of a	 is positive-semidefinite

Im a	(k)= sin2 δ	 ≥ 0 .

Calculating the elastic scattering amplitude (2.6) in the forward di-
rection θ = 0, where P	(z = 1)= 1, its imaginary part is seen to be

Im f(0)= 1

k

∞∑
	=0

(2	+1) Im a	(k)= 1

k

∞∑
	=0

(2	+1) sin2 δ	(k) .

In turn, the integrated elastic cross section (2.7) is found to be

σel(k)= 4π

k2

∞∑
	=0

(2	+1) sin2 δ	(k) .

In the case of a real potential there is elastic scattering only, the in-
tegrated cross section (2.7) is identical with the total cross section.
Comparison of the results just obtained yields an important relation

3 This remark is important because the
same analysis can be applied to the
case of a complex, absorptive potential.
In this case the scattering phases are
complex functions. The first part of the
formula (2.11) still applies, the second
part does not.
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4 Indeed, this term was coined in clas-
sical optics. It was known, in a different
context, before quantum mechanics was
developed.

between the imaginary part of the elastic scattering amplitude in the
forward direction and the total cross section, viz.

σtot = 4π

k
Im f(0) . (2.12)

This relationship is called the optical theorem.4 Loosely speaking it
is a consequence of the conservation of (Born) probability.

3. As we will see in Sect. 2.6 and in Chap. 8, the optical theo-
rem also holds in more general situations. When two particles,
A and B, are scattered on one another, besides elastic scattering
A+ B −→ A+ B, there will in general be inelastic processes as
well, in which one of them, or both, are left in excited states,
A+ B −→ A+ B∗, A+ B −→ A∗ + B∗, or where further particles
are created, A+ B −→ A+ B+C+· · · . As a short-hand allowed
final states are denoted by “n”. The optical theorem then relates the
imaginary part of the elastic forward scattering amplitude at a given
value of the energy, to the total cross section at this energy,

σtot =
∑

n

σ(A+ B −→ n) .

The more general form of the optical theorem (2.12) is

σtot(k)= 4π

k
Im fel(k, θ = 0) ,

the quantity k being the modulus of the momentum k∗ in the center-
of-mass system.

2.3.1 How to Calculate Scattering Phases
The asymptotic condition (2.9) can be interpreted in still a different way
that, by the same token, gives a hint at possibilities of obtaining the
scattering phases. As the potential has finite range the interval of defi-
nition of the radial variable r splits in an inner domain where the (true)
potential U(r) is different from zero, and an outer domain where either
it vanishes or becomes negligibly small, and where only the centrifu-
gal potential is active. Thus, in the outer domain every solution u	(r)
is a linear combination of two fundamental solutions of the force-free
case. For instance, these may be a spherical Bessel function j	(kr) and
a spherical Neumann function n	(kr), so that

u	(k, r)= (kr)
[

j	(kr)α	(k)+n	(kr)β	(k)
]
,

(for r such that U(r)≈ 0) .

One now takes this formula to large values of r, and compares the
asymptotic behaviour (2.9) with the asymptotics of the spherical Bessel
and Neumann functions (1.133) and (1.140), respectively. Using the ad-
dition formula for Sines
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sin
(

kr−	π
2
+ δ	(k)

)
= sin

(
kr−	π

2

)
cos δ	(k)+ cos

(
kr−	π

2

)
sin δ	(k)

then yields an equation for the scattering phase which is

tan δ	(k)= β	
α	
. (2.13)

This shows that the differential equation for the radial function must be
solved only in the inner domain of the variable r: One determines the
solution regular at r = 0, e. g. by numerical integration on a computer,
and follows this solution to the boundary of the outer domain. At this
point one writes it as a linear combination of j	 and n	, and reads off
the coefficients α	 and β	 whose ratio (2.13) yields the scattering phase
in the interval [0, π/2].

Here are some examples of potentials for which the reader may wish
to determine the scattering phases:

1. The spherically symmetric potential well

U(r)=U0Θ(r0−r) ; (2.14)

2. The electrostatic potential

U(r)=−4πQ

⎛⎝1

r

r∫
0

dr ′ �(r ′)r ′2+
∞∫

r

dr ′�(r ′)r ′
⎞⎠ , (2.15)

which is obtained from the charge distribution

�(r)= N
1

1+ exp[(r− c)/z] (2.16)

with normalization factor

N = 3

4πc3

[
1+

(πz

c

)2−6
( z

c

)3 ∞∑
n=1

(−)n
n3 e−nc/z

]−1

.

The distribution (2.16) is often used in the description of nuclear
charge densities. The parameter c characterizes the radial extension
while the parameter z characterizes the surface region. Its specific
functional form is also known from statistical mechanics which is
the reason why it is usually called Fermi distribution. Figure 2.1
shows an example applicable to realistic nuclei where z is very small
as compared to c.

3. The Yukawa potential, that we mentioned in the introduction to
Sect. 2.2,

UY (r)= g
e−r/r0

r
. (2.17)
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Fig. 2.1. Illustration of the model (2.16)
for a normalized charge distribution.
In the case shown here, c� z. The
example shows the distribution with
c = 5 fm, z = 0.5 fm. The parameter c
is the distance from the origin to the
radius where the function �(r) has
dropped to half its value at r = 0. The
two points where it assumes 90% and
10% of its value in r = 0, respectively,
are situated at r90 = c−2z ln 3 and at
r10 = c+2z ln 3, respectively. They are
separated by the approximate distance
t ≡ 4z ln 3≈ 4.394z.

We will show later that this potential describes the interaction of two
particles which can exchange a scalar particle of mass M = �/(r0c)
(c denotes the speed of light). The name is due to H. Yukawa who
had postulated that the strong interactions of nucleons were due to
the exchange of particles with spin 0, the π-mesons, long before
these particles were actually discovered. The length r0 = �c/(Mc2)
is interpreted as the range of the potential. It is the Compton wave
length of particles of mass M. These remarks emphasize that the ex-
ample (2.17) may have a deeper significance for physics than the
pure model potentials (2.14), (2.15) and (2.16).

Consider now two potentials of finite range, U(1) and U(2), and
compare their scattering phases. For equal values of the energy the cor-
responding radial functions obey the radial differential equations

u( j)′′
	 (r)−

[
2m

�2 U( j)
eff (r)− k2

]
u( j)
	 (r)= 0 , j = 1, 2 ,

where the effective potentials differ only by the true, dynamical poten-
tials

U(2)eff (r)−U(1)eff (r)=U(2)(r)−U(1)(r) .

Both radial functions are assumed to be regular at r = 0. As we are
factoring 1/r, this means that u( j)

	 (0)= 0 ( j = 1, 2). Compute then the
following derivative, making use of the differential equations for u(1)	
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and u(2)	 ,

d

dr

(
u(1)	 u(2)′	 −u(2)	 u(1)′	

)= u(1)	 u(2)′′	 −u(2)	 u(1)′′	

= 2m

�2

(
U(2)−U(1)

)
u(1)	 u(2)	 .

Taking the integral over the interval [0, r], one has

u(1)	 (r)u
(2)′
	 (r)−u(2)	 (r)u

(1)′
	 (r)

= 2m

�2

r∫
0

dr ′
(

U(2)(r ′)−U(1)(r ′)
)

u(1)	 (r
′)u(2)	 (r

′) .

In the limit of r going to infinity, and using the asymptotic form (2.9) as
well as its derivative on the left-hand side of this equation, one obtains
an integral representation for the difference of scattering phases:

k sin(δ(1)	 − δ(2)	 )=
2m

�2

∞∫
0

dr
(
U(2)(r)−U(1)(r)

)
u(1)	 (r)u

(2)
	 (r) .

(2.18)

This formula is useful for testing the sensitivity of high, interme-
diate, and low partial waves to the potential, by letting U(1) and U(2)

differ but little. Instead of the scattering phases themselves one calcu-
lates the change in any given partial wave as a function of the change
in the potential.

Alternatively one may consider a situation where U(2) vanishes iden-
tically, i. e. where the corresponding radial functions are proportional to
spherical Bessel functions,

u(2)	 (r)= (kr) j	(kr) .

With δ(1)	 ≡ δ	 and δ(2)	 = 0 the integral representation reduces to

sin(δ	)=−2m

�2

∞∫
0

r dr U(r)u	(r) j	(kr) . (2.19)

The Yukawa potential (2.17) may serve as an illustration of this formula.
For the sake of simplicity we assume this potential to be weak enough
so that the corresponding radial function can be approximated by the
force-free solution,5

u(Y)	 (r)≈ (kr) j	(kr) .

5 This approximation is nothing but the
first Born approximation that is studied
in more detail in Sect. 2.4.1 below.
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6 The function Q	(z) and the Legendre
polynomial P	(z) form a fundamental
system of solutions of the differential
equation (1.112) with λ= 	(	+1) and
m = 0. In contrast to P	(z) the func-
tion Q	(z) is singular in z = 1, the
singularity being a branch point. For all
values |z|> 1 of the argument Q	(z) is
a one-valued function.

With this assumption one has

sin δ(Y)	 ≈−
2mk

�2

∞∫
0

r2 dr UY (r) j2
	 (kr)

=−2mkg

�2

∞∫
0

r dr e−r/r0 j2
	 (kr)

=−mgπ

�2k

∞∫
0

d� e−�/(kr0) J2
	+1/2(�)

=−mg

�2k
Q	

(
1+ 1

2(kr0)2

)
.

In this derivation the variable �= kr is introduced, and the spherical
Bessel function is written in the standard form of Bessel functions found
in monographs on special functions, viz.

j	(�)=
(
π

2�

)1/2

J	+1/2(�) .

The last step makes use of a known definite integral which is found, e. g.
in [Gradshteyn and Ryzhik (1965)], Eq. 6.612.3. Here, Q	 is a Legen-
dre function of second kind whose properties are well known.6 These
functions are known to decrease rapidly both for increasing 	 and for in-
creasing values of the argument ≥ 1, cf., e. g., [Abramowitz and Stegun
(1965)], Fig. 8.5.

2.3.2 Potentials with Infinite Range: Coulomb Potential

The Coulomb potential violates the condition (2.1). This means that its
influence is still felt when the particle moves at very large distances
from the scattering center. This is seen very clearly in the asymptotics
of the partial waves, derived in Sect. 1.9.5, which in addition to the con-
stant phase σ	, contain an r-dependent, logarithmic phase −γ ln(2kr)
multiplied by the factor (1.156),

γ = Z Z ′ e2m

�2k
. (2.20)

The scattering solutions of the Coulomb potential certainly do not obey
the radiation condition (2.2). Both the outgoing spherical wave and the
plane wave are modified due to the long range of the potential, and the
formulae of partial wave analysis derived above, cannot be applied di-
rectly. A similar statement holds for any spherically symmetric potential
which, though different from the (1/r)-behaviour in the inner domain,
approaches the Coulomb potential for large values of r. An example is
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provided by the electrostatic potential corresponding to the charge dis-
tribution (2.16) in example 2. of Sect. 2.3.1. In order to solve this new
problem we proceed in two steps:

In the first step we show that the condition (2.2) is modified to

r→∞ : ψ ∼ ei{kx3+γ ln[2kr sin2(θ/2)]} + fC(θ)
ei[kr−γ ln(2kr)]

r
,

(2.21)

with r-dependent, logarithmic phases both in the incoming wave and
in the outgoing spherical wave, and calculate the scattering ampli-
tude fC(θ) for the pure Coulomb potential.

In the second step we study spherically symmetric potentials which
deviate from the (1/r)-form in the inner region but decrease like 1/r in
the outer region, in other words, which approach the Coulomb potential
for r→∞. In this case it is sufficient to calculate the shift of the scat-
tering phases relative to their values in the pure Coulomb potential, and
not relative to the force-free case.

Step 1: Although we already know the scattering phases for the
Coulomb potential from Sect. 1.9.5 it is instructive to calculate the
scattering amplitude directly, using a somewhat different method. In-
deed, the (nonrelativistic) Schrödinger equation can be solved exactly
in a way adapted to the specific scattering situation at hand.7 With
k2 = 2mE/�2, U(r)= Z Z ′ e2/r, and with the definition (2.20) for γ , the
stationary Schrödinger equation (1.60) reads(

∆+k2− 2γk

r

)
ψ(x)= 0 . (2.22)

This is solved using parabolic coordinates

ξ =
√

r− x3 , η=
√

r+ x3 , φ

and by means of the ansatz

ψ(x)= cψ eikx3
f(r− x3)= cψ eik(η2−ξ2)/2 f(ξ2) ,

in which cψ is a complex number still to be determined. As before,
the direction of the incoming, asymptotic momentum is taken to be the
3-direction. Since no other, perpendicular direction is singled out in the
in-state and since the potential is spherically symmetric, the scattering
amplitude does not depend on φ. Surprisingly, the differential equa-
tion (2.22) separates in these coordinates, too. The variable ξ2 = r− x3

is denoted by u, first and second derivatives with respect to that variable
are written f ′ and f ′′, respectively. Then, for i = 1, 2:

∂ψ

∂xi
= eikx3

f ′(u) ∂r
∂xi
= eikx3

f ′(u) x
i

r
,
∂2ψ

∂(xi)2

= eikx3
[

f ′′ (x
i)2

r2 + f ′
(

1

r
− (x

i)2

r3

)]
.

7 This no longer holds true when the
relativistic form of the wave equation is
used.
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The derivatives with respect to x3 give

∂ψ

∂x3 = eikx3
[

ik f + f ′(u)
(

x3

r
−1

)]
,
∂2ψ

∂(x3)2

= eikx3

[
−k2 f +2ik f ′

(
x3

r
−1

)
+ f ′′

(
x3

r
−1

)2

+ f ′
(

1

r
− (x

3)2

r3

)]
.

Inserting these formulae in (2.22) one obtains(
u

d2

du2 + (1− iku)
d

du
−γk

)
f(u)= 0 .

This differential equation is again of Fuchsian type and appears to be
very close to Kummer’s equation (1.145). The identification becomes
perfect if one replaces the variable u by the variable v := iku. Indeed,
the differential equation then becomes

v
d2 f(v)

dv2 + (1−v)
d f(v)

dv
+ iγ f(v)= 0 .

The solution which is regular at r = 0 is

f(v)= cψ 1 F1(−iγ ; 1 ; v)= cψ 1 F1[−iγ ; 1 ; ik(r− x3)] .
The asymptotics of the confluent hypergeometric function is obtained
from the formula (1.147),

1 F1 ∼ 1

Γ(1+ iγ)
eπγ [ik(r−x3)]iγ+ 1

Γ(−iγ)
eik(r−x3)[ik(r−x3)]−iγ+1 .

Setting

iiγ = e−πγ/2

and choosing the coefficient cψ as follows

cψ = Γ(1+ iγ)e−πγ/2 ,
the solution ψ takes the asymptotic form postulated above

ψ ∼ ei{kx3+γ ln[k(r−x3)]} − Γ(1+ iγ)

Γ(1− iγ)

γ

k(r− x3)
ei{kr−γ ln[k(r−x3)]} .

Inserting r− x3 = r(1− cos θ) = 2r sin2(θ/2) shows that this is the
asymptotic decomposition, (2.21), into an incoming, but deformed
plane wave, and an outgoing, deformed spherical wave. The complex
Γ -function is written in terms of modulus and phase,

Γ(1± iγ)= |Γ(1+ iγ)| e±iσC ,

so that the scattering amplitude for the pure Coulomb potential is seen
to be

fC(θ)=− γ

2k sin2(θ/2)
ei{2σC−γ ln[sin2(θ/2)]} . (2.23)
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This amplitude contains a phase factor that depends on the scattering
angle, and which is characteristic for the long range of the Coulomb po-
tential. This phase factor drops out of the differential cross section (2.4)
for which one obtains

dσel

dΩ
= γ

2

4k2

1

sin4(θ/2)
=

(
Z Z ′ e2

4E

)2
1

sin4(θ/2)
, (2.24)

where the definition (2.20) and E = �2k2/(2m) were used. The result
(2.24) is called the Rutherford cross section. Note that it agrees with the
corresponding expression of classical mechanics (cf. [Scheck (2005)],
Sect. 1.27). This important formula was essential in analyzing the scat-
tering experiments of α particles on nuclei, performed by Rutherford,
Geiger, and Marsden from 1906 on. These experiments proved that nu-
clei are practically point-like as compared to typical radii of atoms.

Step 2: Consider now a spherically symmetric charge distribution which
is no longer concentrated in a point but is localized in the sense that
it lies inside a sphere with a given, finite radius R. One calculates the
electrostatic potential by means of the formula (2.15) and notes that
for values r > R it coincides, either completely or to a very good ap-
proximation, with the pure Coulomb potential but deviates from it for
values r < R. It should be clear immediately, in the light of the gen-
eral discussion of Sect. 2.3, that high partial waves are insensitive to
these deviations. The information on the precise shape of the charge dis-
tribution is contained in the low and intermediate partial waves. This
suggests to design the partial wave analysis for these cases such that it
is not the force-free case but the Coulomb potential which is taken as
the reference potential. This means that the phase shift analysis should
be designed such as to yield the difference

δ	 = δU(r)− δC
between the true phase and the Coulomb phase.

2.4 Born Series and Born Approximation

We emphasize again that the expansion in terms of partial waves is an
exact method to calculate the cross section for spherically symmetric
potentials which, in addition, has the advantage of making optimal use
of the information about the range of the potential. In the case of poten-
tials which are not spherically symmetric but may be expanded in terms
of spherical harmonics the cross section can also be computed by ex-
panding the scattering amplitude in partial waves. However, this method
becomes technically complex and cumbersome, and looses much of the
simplicity and transparency it has for spherically symmetric potentials.
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8 The latter case can also be viewed
as the limit of the former in which the
mass of the heavier partner is very large
as compared to the one of the lighter
partner.

The Born series that we describe in this section, does not have this
disadvantage. It yields an exact, though formal, solution of the scatter-
ing problem by means of the technique of Green functions, and can
equally well be applied to potentials with or without spherical symme-
try. Its most stringent disadvantage is the fact that beyond first order
it is not very practicable and becomes cumbersome. The first iteration,
or first Born approximation, in turn, is easy to calculate and allows for
simple and convincing physical interpretation, but it violates the optical
theorem.

The starting point is again the stationary Schrödinger equation (1.60)
in the form

(∆+k2)ψ(x)= 2m

�2 U(x)ψ(x) , (2.25)

where k2 = 2mE/�2. If one deals with a two-body problem the param-
eter m is the reduced mass; if one studies scattering of a single particle
on a fixed external potential then m is just the mass of that particle.8

The differential equation (2.25) is solved by means of Green functions,
i. e. of functions (more precisely: distributions) G(x, x′), which obey the
differential equation

(∆+k2)G(x, x′)= δ(x− x′) .
The well-known relation

(∆+k2)
e±ik|z|

|z| = −4πδ(z)

shows that the general solution can be given in the form

G(x, x′)=− 1

4π

1

|x− x′|
[
aeik|x−x′| + (1−a)e−ik|x−x′|] .

Formally, the differential equation (2.25) then has the solution

ψk(x)= eik·x+ 2m

�2

∫
d3x′G(x, x′)U(x′)ψk(x′) . (2.26)

It is formal because the differential equation (2.25) is replaced by an
integral equation which contains the unknown wave functions both on
the left-hand side and in the integrand of the right-hand side. Never-
theless, it has two essential advantages: The constant a in the Green
function can be chosen such that the scattering solution fulfills the right
boundary condition, which in our case is the Sommerfeld radiation con-
dition (2.2). Furthermore, if the strength of the potential is small in
some sense, this integral equation can be used as the starting basis for
an iterative solution, i. e. an expansion of the scattering function around
the force-free solution (the plane wave).

The correct asymptotics (2.2) is reached with the choice a= 1. This
is seen as follows: Define r := |x|, r ′ := |x′|, and assume the poten-
tial U(x′) to be localized. As r goes to infinity one has

r� r ′ : ∣∣x− x′
∣∣=√

r2+r ′ 2−2x · x′ ≈ r− 1

r
x · x′ .
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The scattering function takes the asymptotic form

r→∞ : ψk(x)∼ eik·x− 2m

4π�2

eikr

r

∫
d3x′ e−ik′x′U(x′)ψk(x′) .

The reader will have noticed that we defined kx/r =: k′ in this expres-
sion. Indeed, the momentum of the scattered particle is �k′. It moves
in the direction of x/r and, because the scattering is elastic, one has
|k′| = |k|.

By the same token, this result yields a general formula for the scat-
tering amplitude, viz.

f(θ, φ)=− 2m

4π�2

∫
d3x e−ik′·xU(x)ψk(x) . (2.27)

(As this equation no longer contains the point of reference x, the inte-
gration variable x′ was renamed x.)

This equation is an interesting result. If the potential has a strictly
finite range we need to know the exact scattering function only in the
domain where U(x) is sizeably different from zero.9

If one knew the exact scattering solution this formula would yield
the exact scattering amplitude. Although this ambitious goal cannot
be reached, the formula serves as a basis for approximation methods
which are relevant for various kinematic conditions. One of these is the
Born series which is obtained from an iterating solution of the inte-
gral equation (2.26). The idea is simple: one imagines the potential as
a perturbation of the force-free solution

ψ
(0)
k = eik·x

such that in a decomposition of the full wave function

ψk(x)=
∞∑

n=0

ψ
(n)
k (x)

the n-th term is obtained from the (n−1)-st by means of the integral
equation (2.26), i. e.

ψ
(n)
k (x)=− 1

4π

2m

�2

∫
d3x′ e

ik|x−x′|

|x− x′| U(x
′)ψ(n−1)

k (x′) , n ≥ 1

(2.28)

Even without touching the (difficult) question of its convergence, one
realizes at once that this provides a method of representing the scat-
tering amplitude as a series whose structure is very different from the
expansion in terms of partial waves. While in the latter one expands in
increasing values of 	, the former is an expansion in the strength of the
potential.

9 An approximation which makes use
of this fact and which is particularly
useful for scattering at high energies, is
provided by the eikonal expansion. The
reader will find an extended descrip-
tion of this method in, e. g., [Scheck
(1996)], Chap. 5, and illustrated by ex-
plicit examples.
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2.4.1 First Born Approximation
It is primarily the first and simplest approximation which matters for
practical applications. It consists in truncating the series (2.28) at n = 1.
In this case the full scattering function in the integrand of the right-hand
side of (2.27) is replaced by ψ(0)k = exp(ik · x) so that one obtains

f (1)(θ, φ)=− 2m

4π�2

∫
d3x e−ik′·xU(x)eik·x .

Introducing the momentum transfer

q := k−k′ with |k| = ∣∣k′∣∣= k , q̂ = (θ, φ) ,
the first Born approximation for the scattering amplitude reads

f (1)(q)=− 2m

4π�2

∫
d3x eiq·xU(x) . (2.29)

This formula tells us that in first Born approximation the scattering
amplitude is the Fourier transform of the potential with respect to the
variable q.

The formula (2.29) simplifies further if the potential has spherical
symmetry, U(x)≡U(r). One inserts the expansion (1.136) of exp(iq · x)
in terms of spherical harmonics and notes that by integrating over dΩx
only the term with 	 = 0 survives. This follows from the fact that
Y00 = 1/

√
4π is a constant and that∫

dΩx Y	m(x̂)=
√

4πδ	0 δm0 .

Thus, one obtains the expression

f (1)(θ)=−2m

�2

∞∫
0

r2 dr U(r) j0(qr) (2.30)

where

q ≡ |q| = 2k sin(θ/2) , and where j0(u)= sin u

u

is the spherical Bessel function with 	= 0 (s. Sect. 1.9.3). The func-
tional dependence of the scattering amplitude could be written as f(q),
or, even more precisely, f(q2) because the result (2.30) shows that it
depends only on the modulus of q and is invariant under the exchange
q→−q. As an alternative, one may express q by the scattering angle θ
and write the scattering amplitude in the form

f (1)(θ)=− m

�2k sin(θ/2)

∞∫
0

r dr U(r) sin[2kr sin(θ/2)] .
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We illustrate this result by the following example.

Example 2.1
Let us return to the Yukawa potential (2.17),

UY (r)= g
e−µr

r
, where µ= 1

r0
.

The following integral is obtained in an elementary way

∞∫
0

dr e−µr sin(αr)= α

µ2+α2 .

With α= 2k sin(θ/2) the formula (2.30) yields

f (1)Y (θ)=−2mg

�2

1

4k2 sin2(θ/2)+µ2 . (2.31)

Two properties of the result (2.31) should be noticed

1. In the limit µ→ 0 (though not allowed), and with g = Z Z ′e2 and
�2k2 = 2mE, the amplitude becomes

f (1)C (θ)=− Z Z ′e2

4E

1

sin2(θ/2)
.

This is the scattering amplitude for the pure Coulomb potential, ex-
cept for the phase factor in (2.23). Its absolute square gives the
correct expression (2.24) of the differential cross section.

2. There is a well-known expansion of 1/(z− t) in terms of Legendre
polynomials and Legendre functions of the second kind, (see [Grad-
shteyn and Ryzhik (1965)], Eq. 8.791.1)

1

z− t
=
∞∑
	=0

(2	+1)Q	(z)P	(t) .

Write the amplitude (2.31) as

f (1)Y (θ)=− mg

�2k2

1

2 sin2(θ/2)+µ2/(2k2)

=− mg

�2k2

1

1+µ2/(2k2)− cos θ
,

set 1+µ2/(2k2)= z and cos θ = t. This yields

f (1)Y (θ)=− mg

�2k2

∞∑
	=0

Q	

(
1+ µ

2

2k2

)
P	(cos θ) .
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One now compares this with the general expansion in terms of par-
tial waves (2.6) and notices that the coefficients of this series are

a	 = eiδ	 sin δ	 ≈ sin δ	 =−mg

�2k
Q	

(
1+ µ

2

2k2

)
and that they agree with the example (2.19) in Sect. 2.3.1. Note that
here and in that example, the scattering phases δ	 are small.

Remark
The results (2.27) and (2.30) show that the scattering amplitude in first
Born approximation is real, i. e. Im f (1) = 0. This is in contradiction
with the optical theorem. The first Born approximation does not respect
the conservation of probability.

2.4.2 Form Factors in Elastic Scattering
The first Born approximation leads in a natural way to a new notion,
called form factor, which is important for the analysis of scattering ex-
periments. This section gives its definition and illustrates it by a few
examples. The question and the idea are the following: Suppose a lo-
calized distribution �(x) of elementary scattering centers is given whose
interaction with the projectile is known. If we know the scattering
amplitude for the elementary process, i. e. for the scattering of the
projectile off a single, isolated elementary scattering center, can we cal-
culate the scattering amplitude off the distribution �(x)?

The answer to this question is simple if the Born approximation is
sufficiently accurate for the calculation of the scattering amplitudes. In
this case, the amplitude for the distribution is equal to the product of
the elementary scattering amplitude and a function which depends only
on the density �(x) and on the momentum transfer q. We show this by
means of an example:

Suppose the projectile is scattered by a number A of particles whose
distribution in space is described by the density �̃(x)= A�(x). This is
to say that∫

d3x �̃(x)= A and
∫

d3x �(x)= 1 .

It is customary to normalize the density �(x) to 1, i. e. to take out an
explicit factor A. Let the elementary interaction be described by the
Yukawa potential (2.17). The potential created by all particles, with their
density �(x), then is, using µ= 1/r0

U(x)= gA
∫

d3x′ e
−µ|x−x′|

|x− x′| �(x
′) . (2.32)

It obeys the differential equation

(∆x −µ2)U(x)=−4πA�(x) . (2.33)
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In first Born approximation the scattering amplitude F(1) describing
scattering on the distribution �(x) is given by the formula (2.29), upon
insertion of the potential (2.32). The exponential function is replaced by
the identity

eiq·x =− 1

q2+µ2 (∆x −µ2)eiq·x .

The differential operator (∆x −µ2) is shifted to U(x), by partially inte-
grating twice, and the differential equation (2.33) replaces the potential
by the density. One obtains the expression

F(1)(q)= A f (1)Y (θ) · F(q) (2.34)

for the scattering amplitude. The first factor is the elementary ampli-
tude (2.31), the second factor is defined by

F(q)=
∫

d3x eiq·x�(x) . (2.35)

This factor which depends on the density �(x) and on the momentum
transfer only, is called form factor. Its physical interpretation is clarified
by its properties the most important of which are summarized here:

Properties of the Form Factor:

1. If it were possible to measure the form factor for all values of the
momentum transfer then the density would be obtained by inverse
Fourier transform,

�(x)= 1

(2π)3

∫
d3q e−iq·x F(q)

The density �(x) describes a composite target such as, e. g., an
atomic nucleus composed of A nucleons. If the interaction of the
projectile with the individual particle in the target is known (in our
example this is a nucleon), the form factor measures the spatial dis-
tribution of the target particles.

2. Scattering in the forward direction, q = 0, tests the normalization

F(q = 0)= 1 .

If the target is point-like, i. e. has no spatial extension at all, the form
factor equals 1 for all momentum transfers,

�(x)= δ(x)−→ F(q)= 1 ∀q .
3. For a spherical density, �(x)= �(r) where r := |x|, the formulae for

the form factor simplify further. Like in the derivation of (2.30) one
shows that the form factor only depends on q2 (q := |q|),

F(q)≡ F(q2)= 4π

q

∞∫
0

r dr�(r) sin(qr) , (2.36)
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the density being given by the inversion of this formula:

�(r)= 4π

(2π)3r

∞∫
0

q dqF(q) sin(qr) .

Expanding (2.36) for small values of q, one has

F(q)≈ 4π

∞∫
0

r2 dr�(r)− 4π

6
q2

∞∫
0

r2 dr r2�(r)= 1− 1

6
q2

〈
r2
〉
.

The first term is independent of q and is equal to 1 (using the nor-
malization as defined above). The second term contains the mean
square radius〈

r2
〉
:= 4π

∞∫
0

r2 dr r2�(r) , (2.37)

which is characteristic for the given distribution �(x). If the density
is not known, but the scattering amplitude and, hence, the form fac-
tor, are measured for small values of q, the mean square radius is
obtained from the first derivative of the form factor by q2,〈

r2
〉
=−6

dF(q2)

dq2 . (2.38)

That is to say, in order to obtain the root-mean-square radius one
plots the form factor as a function of q2, reads off the slope at the
origin, and multiplies by (−6).

Example 2.2
The following density is normalized to 1,

�(r)= 1

π3/2r3
0

e−r2/r2
0 , 4π

∞∫
0

r2 dr �(r)= 1 .

It is easy to verify that it leads to the form factor

F(q2)= e−q2r2
0/4 .

The mean square radius is found to be〈
r2
〉
= 3

2
r2

0 ,

so that the form factor and the density can be written equivalently as

F(q2)= e−(1/6)〈r2〉q2
, and �(r)= 3

√
6

4

1

(π〈r2〉)3/2 e−(3/2)r2/〈r2〉

respectively.
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This example is more than an academic one. Indeed, to a good
approximation, the function �(r) describes the distribution of electric
charge in the interior of a proton, with〈

r2
〉

Proton = (0.86×10−15 m)2

as a typical value for the mean square radius as obtained from electron
scattering on protons.

Remarks

1. Although the definition of the form factor is based on Born ap-
proximation it has a more general significance. When the potential
becomes too strong for Born approximation to be applicable, this
will be felt in a deformation of the partial waves (in comparison to
the force-free case) which is the stronger the smaller 	 is. Neverthe-
less, the information on the distribution of the scattering centers that
is contained in the scattering amplitude, is not modified in any essen-
tial way. Thus, there are methods which allow to isolate this effect
and to define an effective Born approximation which enables one to
draw conclusions on the density �(x) from the form factor (2.35).

2. The case of the Coulomb potential which is of infinite range must
be treated with special care. Although this is mathematically not cor-
rect, we let the parameter µ in the formulae for the Yukawa potential
tend to zero. This limit gives the correct scattering amplitude, ex-
cept for the characteristic logarithmic phases, and, hence, the correct
differential cross section. This cross section then takes the form

dσ

dθ
=

(
dσ

dθ

)
point

F2(q) , (2.39)

the first factor being the cross section for a point-like target, i. e.(
dσ

dθ

)
point
=

(
Z Z ′e2

4E

)2
1

sin4(θ/2)
,

while F(q) is the electric form factor (2.35) of the target. The density
�(x) now is the charge density and is normalized to 1 provided the
total charge Q = Z ′e is factored.

Example 2.3
Assume the charge distribution of an atomic nucleus to be given by the
homogeneous density

�(r)= 3

4πr3
0

Θ(r0−r) .

Equation (2.36), by elementary integration, yields the form factor

F(q2)= 3

(qr0)3
[sin(qr0)− (qr0) cos(qr0)] = 3

(qr0)
j1(qr0) ,
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where j1(z) is the spherical Bessel function with 	= 1, cf. Sect. 1.9.3.
This function has zeroes at the points

z1 = 4.493 , z2 = 7.725 , z3 = 10.904, . . . .

While the cross section for the point charge has no zeroes, the cross
section for scattering on a homogeneous charge density has zeroes at
the values of the product qr0 = 2kr0 sin(θ/2) given above. These are ar-
tifacts of Born approximation. Yet, they are not unphysical: An exact
calculation of the cross section will differ from Born approximation
only by the varying deformation of individual partial waves. As a result,
the zeroes are “smeared out”, that is, they are replaced by minima of the
cross section which are less pronounced than the zeroes of Born approx-
imation and are shifted slightly as compared to those. These minima
are called diffraction minima, they contain essentially the same physical
information as the zeroes obtained in first Born approximation.

2.5 *Analytical Properties of Partial Wave Amplitudes
Up to this point all important concepts of scattering theory were intro-
duced. As far as observables are concerned these were carried over from
classical to quantum mechanics, all other concepts were new. In par-
ticular, we developed some practical methods for calculating scattering
amplitudes and cross sections.

Quantum theoretic scattering theory has a number of further aspects
which need more comprehensive analysis and which become important
in various applications. Among them we list the following

1. Generalization to the case where, besides elastic scattering, also scat-
tering into inelastic channels is possible.

2. The more general expression of the optical theorem announced
above, and its relation to the conservation of probability.

3. A formal, operator theoretic description of potential scattering which
makes extensive use of the theory of integral equations.

4. A more detailed description of scattering on composite targets, i. e.
the calculation of the scattering amplitude for a target composed of
elementary constituents, from the amplitude for the individual scat-
tering centers.

5. The analysis of scattering processes, by means of Heisenberg’s scat-
tering matrix, in which the projectiles may have relativistic velocities
and where the dynamics and the kinematics allow for creation or
annihilation of particles.

6. The analytical properties of scattering amplitudes and their conse-
quences for the physics of scattering.

Some of these subjects will be taken up later when the concepts and
methods will be ready that are needed to treat them. At this stage I
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sketch one of these topics which gives a good impression for the rich-
ness of quantum scattering theory: the analytic properties of scattering
amplitudes for definite values of the angular momentum 	 (i. e. item 6
on our list). This section which makes use of some function theory,
is slightly more difficult than the previous ones and this is why it is
marked by an asterisk. This also means that there is no harm if one
decides to skip it in a first reading.

The starting point is the differential equation (2.8) for the radial
function u	(r). We repeat it here, for the sake of convenience:

u′′	(r)−
(
	(	+1)

r2 + 2m

�2 U(r)− k2
)

u	(r)= 0 , k2 = 2mE

�2 .

(2.40)

As this equation is homogeneous we can normalize the solution which
is regular at r = 0 such that

u	(r)= r	+1 f	(r) with f	(r = 0)= 1 ,

that is, we take out the centrifugal tail and put the remainder to 1 at the
origin.

2.5.1 Jost Functions
In this section we study the analytic properties of the wave function,
of the scattering phase δ	, and of the scattering amplitude, as functions
of k2, taken as a variable in the complex plane. What do we know about
the differential equation (2.40)? It is of Fuchsian type, (1.113). The reg-
ular solution is free of the singularities that the coefficients of (1.113)
have at r = 0. As is obvious, the coefficients are analytic functions
of the complex variable k2. The boundary conditions imposed on u	
(the condition at r = 0 and the asymptotics for r→∞) are analytic as
well. One can then show that the solutions are analytic functions of k2.
Hence, we write u	(r)≡ u	(r, k2), in order to emphasize this property,
and formulate their asymptotic behaviour as follows,

r→∞ : u	(r, k
2)∼ ϕ(−)	 (k2)eikr +ϕ(+)	 (k2)e−ikr . (2.41)

The functions ϕ(±)	 (k2) are called Jost functions.10 Comparison to the
asymptotic formula (2.9),

u	 ∼ 1

2i
[ei(−	π/2+δ	) eikr − ei(	π/2−δ	) e−ikr]

yields the relation of the scattering phase to the Jost functions

S	(k
2) := e2iδ	 = (−)	+1− ϕ

(−)
	 (k2)

ϕ
(+)
	 (k2)

. (2.42)

In a physical scattering process, i. e. for real k, the definition (2.41)
implies that the Jost functions are complex conjugates of each other.

10 After Res Jost (1918 – 1990), who de-
veloped the mathematical foundations
of scattering theory in a series of im-
portant publications.
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Indeed, with a real potential the radial function u	(r, k2) is real and,
hence,

ϕ
(+)
	 (k2)= [ϕ(−)	 (k2)]∗ (k real) .

One of the reasons why these functions are important is the fact that
one can derive and understand the analytic properties of the function
S	(k2) (just defined) and of the partial wave amplitude a	(k2) from the
Jost functions. The following remarks and examples may serve to illus-
trate this statement.

When the energy is negative, E, then also k2 < 0 and k = iκ, with
real κ, is pure imaginary. The asymptotic form (2.41) then has a term
that decreases exponentially, and a term that grows exponentially. There
will be a bound state with energy E = En < 0 if the wave function is
square integrable, i. e. if the second term is absent. This means that

ϕ(+)
(

k2 =−2m|En|
�2

)
= 0 (k = iκ pure imaginary) .

As a consequence the function S	(k2) defined in (2.42) has a pole at this
point. A more detailed analysis of the singularities of the partial wave
amplitude a	 will show where this pole is situated.

2.5.2 Dynamic and Kinematic Cuts
Here and below we analyze partial wave amplitudes which already con-
tain the factor 1/k of the expansion (2.6), i.e we write

f(k, θ)=
∞∑
	=0

(2	+1) f	(k)P	(cos θ) with f	 := 1

k
a	 ,

a	 being defined by (2.11). The amplitude f	 is studied both as a func-
tion of k2 and of k. The convention is that k as a square root of k2 is
always chosen such that it has positive imaginary part. Furthermore, the
potential in (2.40) is assumed to be the bare Yukawa potential (2.17). As
u	(r, k2) is analytic, f	(k2) is analytic as long as one stays clear of the
negative real half-axis of k2.

Note that the asymptotic form (2.41) holds under the assumption that
the two first terms in the parentheses of (2.40) (centrifugal and true
potentials) are negligible against k2. If k2 =−κ2, i. e. is negative real,
the first term in (2.41) decreases like e−κr . If it does so more rapidly
than this, one can no longer neglect the potential which decreases like
e−r/r0 . Therefore, it seems plausible that the Jost function ϕ(−)	 (k2) is no
longer defined. Indeed, one can show that this function has a singular-
ity at k2

c =−κ2
c =−1/(4r2

0) and is not defined below this point, k2 < k2
c .

Qualitatively speaking, the value κc is the point where the exponen-
tally growing part, when multiplied by the term e−r/r0 of the potential,
equals the exponentially decreasing term,

e(κc−1/r0)r = e−κcr .
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The interval [−∞,−1/(4r2
0)] of the negative real half-axis in the com-

plex k2-plane is called left cut, or dynamical cut.
Let us analyze the dynamical cut by means of first Born approxima-

tion. We showed in Sect. 2.4.1 that the amplitude which belongs to the
angular momentum 	, in first Born approximation, is given by

f	(k
2)≡ a	

k
=− mg

�2k2 Q	

(
1+ 1

2(kr0)2

)
.

The Legendre function of the second kind Q	(z) is known to be an ana-
lytic function of z if the complex plane is cut from −1 to +1 along the
real axis. It is singular on the cut [−1,+1]. As a matter of illustration,
we quote the first three Legendre functions of the second kind,

Q0(z)= 1

2
ln

(
z+1

z−1

)
, Q1(z)= z

2
ln

(
z+1

z−1

)
−1 ,

Q2(z)= 3z2−1

4
ln

(
z+1

z−1

)
− 3z

2
,

whose singularity structure is evident.
The point−1 corresponds to k2 = k2

c =−1/(2r0)
2, while the point+1

corresponds to the infinity in the k2-plane that we choose to lie at−∞. This
shows that the amplitude f	(k2), in first Born approximation, already ex-
hibits the left cut. The position of this cut depends on r0 and, hence, on the
range of the potential.

It is not difficult to compute the discontinuity of f	(k2) across the
cut [−1,+1]. In Sect. 2.4.1, Example 2.1, we quoted the expansion

1

z− t
=
∞∑
	′=0

(2	′ +1)Q	′(z)P	′(t)=
∞∑
	′=0

√
4π(2	′ +1)Q	′(z)Y	′0(θ, φ)

with t = cos θ. This equation can be solved for Q	 by multiplying with
Y∗	m(θ, φ), and integrating over the entire solid angle. Making use of the
orthogonality of the spherical harmonics, we have

Q	(z)= 1√
4π(2	+1)

∫
dΩ

1

z− cos θ
Y	0(θ, φ)= 1

2

+1∫
−1

dt
P	(t)

z− t
.

The discontinuity then follows from

f	(k
2+ iε)− f	(k

2− iε)=− mg

�2k2 [Q	(z+ iε)−Q	(z− iε)]
and the formula

1

w± iε
=P

1

w
∓ iπδ(w) (2.43)

with w= z− t and, as before, z = 1−1/(2(kr0)
2). The formula refers to

the evaluation of integrals along the real axis. The pole at w= 0 of the
left-hand side is shifted to the upper or to the lower half-plane, respect-
ively. The right-hand side contains the principal value11 and Dirac’s

11 As a reminder: The principal value is
half the sum of the integrals for which
the integration path is deformed once
above, once below the point 0.
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(I)

(II)
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v

Im k2

Re k2

Fig. 2.2. Because of the kinematic cut
the origin of the complex k2-plane is
a branch point of order 1. The scatter-
ing amplitude with fixed 	 is defined
on a two-sheet Riemann surface. The
physical and the unphysical sheets are
denoted by (I) and (II), respectively

δ-distribution. Inserting this formula into the expression for the disconti-
nuity, the contribution of the principal value cancels out and one obtains

f	(k
2+ iε)− f	(k

2− iε)= iπ
mg

�2k2 P	
(

1+ 1

2(kr0)2

)
.

As a result we note that the position of the left cut is determined by the
range, its discontinuity by the strength g of the potential. This is the
reason why this cut is called dynamical cut.

The partial wave amplitude f	 exhibits yet another cut whose nature
is purely kinematical. This is the reason it is called kinematic cut. In
order to show this we return to the Jost functions and study them both
in the complex k2-plane and in the complex k-plane.

The asymptotic expansion (2.41) is not defined in the point k2 = 0.
Physically speaking, the reason is that at this point the centrifugal
term and the potential cannot be neglected as compared to k2. Let
z := k2 = r eiα with r very small, α positive and small, too. After a com-
plete rotation about the origin this becomes z �−→ z′ = r ei(α+2π), while
its square root becomes k =√z �−→ k′ = −k. At the same time the two
Jost functions, taken as functions of k, exchange their roles,

ϕ
(+)
	 (k)= ϕ(−)	 (−k) .

It follows from this observation that the point k2 = 0 is a two-sheeted
branch point (one also says a branch point of order 1). Let us investigate
in somewhat more detail this singularity and the Riemann surface that
is related to it. To do so we define

φ	(k) := ϕ(−)	 (k2) .

This function is analytic in the upper half-plane Im k> 0, cut along the
interval [i/(2r0),+i∞] of the imaginary axis. If k is replaced by −k,
the solution u	(r, k2) remains unchanged. However, the two exponential
functions in its asymptotic expansion (2.41) are interchanged. From this
follows an important relation for the Jost functions,

φ	(k)= φ	(−k)

which shows that the analytic continuation of φ	(k) to the lower half-
plane Im k < 0 is precisely the function ϕ(+)	 (k2). This function has no
other singularities in that half-plane.

We conclude that the manifold of the k2 is a two-sheeted Riemann
surface whose sheets, for fixed k2, are distinguished by the two values
of k. This surface is sketched in Fig. 2.2. The two sheets are tangent to
each other along the positive real axis. In scattering theory the custom-
ary nomenclature is the following:

Sheet (I) with Im k > 0 is called the physical sheet, sheet (II) with
Im k < 0 is the unphysical sheet.
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2.5.3 Partial Wave Amplitudes as Analytic Functions
The formula (2.11) for the partial wave amplitude, upon insertion of the
definition (2.42), gives the scattering amplitude in terms of the S-matrix,

f	(k
2)= a	

k
= 1

2ik
[S	(k2)−1] .

Thus, f	(k2) is seen to be a function of the two Jost functions. There-
fore, the analytic properties of f	(k2) can be deduced from the analytic
properties of the Jost functions. By convention and for the sake of clar-
ity let us denote the function (2.42) by S	(k2) on the first, physical
sheet, and by S	(k2) its continuation to the second, unphysical sheet.
Consider a point v on the physical sheet (i. e. the square root of k2+ iη),

z = k2+ iη≡ r eiα , v=√z =√r eiα/2 ,

and its neighbour v =√z∗ = √r e−iα/2 (square root of k2− iη) on the
unphysical sheet. The other square root of z, w=−v, lies on the un-
physical sheet, while the other root of z∗, w=−v, lies on the physical
sheet. The four points {v, v,w,w} are shown in Fig. 2.2 on the Riemann
surface of complex k2, and in Fig. 2.3 in the complex k-plane.

The function (2.42), taken on the unphysical sheet, is given by

S	(k
2)= (−)	+1ϕ

(−)
	 (−k)

ϕ
(+)
	 (−k)

= (−)	+1ϕ
(+)
	 (k)

ϕ
(−)
	 (k)

= 1

S	(k2)
. (2.44)

This relation provides the key for analytic continuation of the ampli-
tude f	 from the physical to the unphysical sheet. Indeed, the amplitude
on the second sheet is

f 	(k
2)= 1

2ik
[S	(k2)−1] = 1

2ik

(
1

S	
−1

)
= f	(k2)

1+2ik f	(k2)
.

Thus, f 	(k
2) is expressed in terms of the same amplitude on the first

sheet. (Note that a first minus sign in the transformation is compen-
sated by another minus sign: in performing the analytic continuation the
factor 1/k goes over into k =−k.) This analysis shows, in particular,
that f	 has the left cut [−∞,−1/(2r0)

2] both on the first and on the
second sheets.

2.5.4 Resonances
We know from Sect. 2.5.1 that poles on the negative real half-axis in the
complex k2-plane correspond to genuine bound states. We now want to
show that poles that appear on the second, unphysical sheet play a phys-
ical role, too.

In a first step we show that the function S	(k2) (studied both in the
first and the second sheets) takes complex conjugate values for complex
conjugate arguments k2, i. e. that

S	[(k2)∗] = [S	(k2)]∗ . (2.45)
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Fig. 2.3. The function φ	(k)= ϕ(−)	 (k2)

is analytic in the cut k-plane. The
points marked here are the same as in
Fig. 2.2

The differential equation (2.40) has real coefficients. Hence, its solu-
tions obey the relation

u	(r, k
2)= {u	[r, (k2)∗]}∗ .

The left-hand side has the asymptotic behaviour (2.41). If v=√
k2+ iη

is the root of k2 then the root of (k2)∗ (which also lies in the first sheet)
equals w=−v=−v∗. Therefore, the asymptotics of the right-hand side
is

r→∞ : u	[r, (k2)∗] ∼ ϕ(−)	 [(k2)∗]e−ik∗r +ϕ(+)	 [(k2)∗]eik∗r .

Comparing this to the complex conjugate of (2.41) yields

ϕ
(±)
	 [(k2)∗] = [ϕ(±)	 (k2)]∗ ,

so that the assertion (2.45) holds true. For any pair of two points in the
first or the second sheet whose positions are symmetric with respect to
the real axis, the function S	 takes complex conjugate values.

Suppose the function S	(k2) has a first-order pole in

v , positive square root of k2 = k2
0− iΓ/2 ,

where k0 and Γ are real. By the symmetry (2.45) it then has also a pole
in

w , negative square root of k2 = k2
0+ iΓ/2 ;

both of which lie in the second sheet. The relation (2.44) implies that
S	(k2) has zeroes in the points v and w of the first sheet, see Fig. 2.3.
If one approaches the point k0 of the real, positive axis from above, it
is clear that the variation of S	, as a function of k2, is dominated by the
pole in v and by the zero in v. Thus, in the neigbourhood of k0 one can
write

S	(k
2)= k2− k2

0− iΓ/2

k2− k2
0+ iΓ/2

S(n.r.)
	 (k2)

where the “nonresonant” function S(n.r.)
	 is slowly varying. The factor

(k2− k2
0− iΓ/2)(k2− k2

0+ iΓ/2) is a pure phase factor. As the product
has the form indicated in (2.42), the second factor must also be a pure
phase. Thus, both factors can be written as follows

k2− k2
0− iΓ/2

k2− k2
0+ iΓ/2

= e2iδ(res)
	 , S(n.r.)

	 = e2iδ(n.r.)
	 ,

where the “resonant” phase is given by

δ
(res)
	 = arctan

(
Γ/2

k2
0− k2

)
. (2.46)
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The other phase, δ(n.r.)
	 , is a parametrization of the nonresonant ampli-

tude, and is a slowly varying function of k2. Inserting this in (2.11) the
partial wave amplitude is

f	(k)= 1

k
ei(δ(res)

	 +δ(n.r.)
	 ) sin(δ(res)

	 + δ(n.r.)
	 ) . (2.47)

It is not difficult to interpret these results. Suppose first that the nonres-
onant phase is negligibly small as compared to the resonant phase. If
we let k2 run through an interval I on the real axis that includes the
point k2

0, the phase δ(res)
	 runs from nearly zero to values close to π,

while at k2 = k2
0 it takes the value π/2. The amplitude

f	(k
2)≈ f (res)

	 = 1

k
eiδ(res)
	 sin δ(res) =−1

k

Γ/2

k2− k2
0+ iΓ/2

runs through the curve sketched in Fig. 2.4, in the complex plane for f	.
For k2 = k2

0 it is pure imaginary and has the value i/k. The special role
of this point becomes clear if we note that the cross section (2.7) for
a partial wave 	,

σ	(k
2)= 4π(2	+1)

∣∣∣ f	(k
2)

∣∣∣ 2 = 4π(2	+1)

k2

Γ 2/4

(k2− k2
0)

2+Γ 2/4

is proportional to |a(res)
	 (k2)|2, and if we plot this quantity over k2 in the

interval I . Indeed, Fig. 2.5 shows that this function has a sharp maxi-
mum at the point k2 = k2

0. For k2 = k2
0±Γ/2 it takes half the value of

the maximum. A graph of this type is called Breit–Wigner curve, or
Lorentz curve.

The pole at (k2
0, iΓ/2) leads to a resonance in the partial wave cross

section σ	, the quantity Γ is the width of the resonance. It is not difficult

1
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Fig. 2.4. With increasing k2 the ampli-
tude a	 = k f	 runs along a curve in
the complex plane that crosses the point
(0, i) for k2 = k2

0. In the example shown
here, we chose k2

0 = 10, Γ = 4 (in arbi-
trary units)
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Fig. 2.5. Resonance curve of |a	|2 =
k2| f	|2 as a function of k2. The pa-
rameters are chosen as in Fig. 2.4, i.e.
k2

0 = 10, Γ = 4

to find out qualitatively how these results change when the nonreso-
nant phase is not small, or when the contributions of other partial waves
	′ �= 	 to the cross section (2.7) are not negligible. I just mention in
passing that there are methods which allow to reconstruct the individual
partial wave amplitudes from experimental data and thereby to check
whether one of these exhibits a resonance of this type at some value k2

0
in the physical range. Like bound states, resonances contain physical
information on the potential.

2.5.5 Scattering Length and Effective Range

This section is devoted to a discussion of two notions of special impor-
tance for scattering at very low energies: the scattering length and the
effective range.

With decreasing energy the modulus k of the momentum tends to
zero. With some more mathematics one can show rigorously that when
k→ 0, the amplitude a	, (2.11), tends to zero like k2	+1 . I skip
the proof of this result but give a plausibility argument based on the
formula (2.19) for sin δ	 and on simple dimensional analysis. The po-
tential U(r), as well as the kinetic energy �2k2/(2m) have dimension
[energy]. The left-hand side of (2.19) being dimensionless, this must
also be true for its right-hand side which can be written in terms of the
ratio of potential to kinetic energy, viz.

∞∫
0

(kr)d(kr) u	(r) j	(kr)
U(r)

�2k2/(2m)
.
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We already know that for

r→ 0 : u	(r)∼ r	+1 , j	(kr)∼ (kr)	 ,

and, of course, that the product (kr) carries no dimension. Thus, in or-
der to balance physical dimensions, u	 must behave like (kr)	+1. This
shows that the integral goes to zero for k→ 0. More specifically, for
small k, it is proportional to k2	+1. If this is so then, as k tends to zero,

k→ 0 : f	 = 1

k
eiδ	 sin δ	 ≈ 1

k
sin δ	 ≈ 1

k
δ	 ∼ k2	 .

This consideration shows that it is meaningful to define the limit

lim
k→0

(
f	(k)

k2	

)
= lim

k→0

(
δ	(k)

k2	+1

)
=: a(	) . (2.48)

The quantities a(	) determine the cross section at the threshold, i. e.
at very small positive energy. They are called scattering lengths. This
nomenclature is somewhat inaccurate because only a(	=0) really has the
dimension of a length L . For 	= 1 the amplitude a(1) is a volume, the
more general a(	) has dimension L2	+1.

The expansion in small values of k can be pushed one step further.
For this purpose define the function

R	(k) := 1+ ik f	(k)

f	(k)
= k

1+ i eiδ	 sin δ(	)

eiδ	 sin δ	
= k cot δ	 .

The analytical properties of this function, when understood as a function
of the complex variable k, are derived from those of the amplitude f	.
For our discussion the most relevant feature is that the function R	(k),
in contast to f	(k), does not have the right, or kinematic, cut. This is
shown as follows. Starting from the specific form (2.11) of the ampli-
tude one sees that

1

f ∗	 (k)
− 1

f	(k)
= k

eiδ− e−iδ

sin δ
= 2ik .

Thus, if one calculates the discontinuity of R	 one finds that it vanishes,

R∗	(k)− R	(k)=
(

1− ik f ∗	 (k)
f ∗	 (k)

− 1+ ik f	(k)

f	(k)

)
= k(2i−2i)= 0 ,

the discontinuity of 1/ f	 (which is not zero) is cancelled.
With k→ 0, R	(k) behaves like k−2	. From this fact and the fact

that R	 has no cut on the real positive axis one concludes that the prod-
uct r2	R	(k) can be expanded around the origin,

k2	R	(k)= k2	+1 cot δ	(k)= 1

a(	)
+ 1

2
r(	)0 k2+O(k3) . (2.49)

The first term contains the scattering length defined in (2.48). The sec-
ond term contains the new parameter r(	)0 , called effective range. (Note
that r(	)0 has physical dimension [length] only for s-waves.)
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The formula (2.49) is a good approximation for sufficiently low val-
ues of k. The following example serves to illustrate these concepts and
their usefulness at low energies.

Example 2.4
We consider s-wave scattering in an attractive square-well potential,
U(r)=−U0Θ(R−r), in which case (2.40) reduces to

u′′(r)+
(

k2+ 2m

�2 U0Θ(R−r)

)
u(r)= 0 .

The index 	= 0 is dropped, for convenience. In the outside domain,
r > R, the relation between wave number and energy is, as before,
k2 = 2mE/�2. Inside the radius R we define

κ2 := k2+K2 where K2 := 2mU0

�2 .

The inner solution which is regular at r = 0, is seen to be u(i)(r) =
sin(κr). For the outer solution we write u(o)(r)= sin(kr+δ), with δ still
to be determined. The requirement that the wave function and its first
derivative be continuous at r = R,

u(i)′

u(i)

∣∣∣∣∣
r=R

= u(o)′

u(o)

∣∣∣∣∣
r=R

(2.50)

yields the condition

k cot δ= κ+ k tan(kR) tan(κR)

tan(κR)−√
1+K2/k2 tan(kR)

.

This result is expanded in k2 and is compared to (2.49). The scattering
length and the effective range then are found to be

a(0) =−R+ 1

K
tan(K R) , r(0)0 = R− 1

3

R3

(a(0))2
+ 1

K2a(0)
.

The scattering amplitude f	=0 proper is easily expressed in terms
of scattering length and effective range. Writing sin δ = 1/

√
1+u2,

cos δ= u/
√

1+u2, and u ≡ cot δ one has

f0 = 1

k
eiδ sin δ= 1

u− i
≈ a(0)

1− ia(0)k+a(0)r(0)0 k2/2
.

This amplitude has poles on the negative real axis in the complex
k2-plane which correspond to the bound states in this potential. If one
wants to know the exact values of their energy one would have to solve
the condition (2.50), with k = i

√
2m(−E), either analytically or numer-

ically. However, if the term of the denominator containing the effective
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range is small, the pole, or bound state, is obtained from 1− ia(0)k
= 1+a(0)

√
2m(−E)= 0. Thus,

E ≈− �2

2m(a(0))2

gives an approximate value for the binding energy.

2.6 Inelastic Scattering and Partial Wave Analysis
Examination of the differential equation for the radial function u	(r)
in the form of (2.8) or of (2.40) shows that a real, attractive or re-
pulsive potential leads to real scattering phases. In these cases there is
only elastic scattering. If, on the other hand, the initial state can make
transitions to other states that differ from it, there will be both elastic
and inelastic scattering amplitudes whose absolute square yield the cross
sections for the various inelastic channels. Loosely speaking, the elastic
final state will be “depopulated” in favour of new, inelastic channels.
Whether such channels are “open”, and, if so, how many there are, de-
pends on the dynamics of the scattering process and of the energy of the
incoming state. For example, an electron which scatters on an atom, can
lift this atom to an excited discrete state,

e+ (Z, A)−→ (Z, A)∗ + e′ ,
if its energy is high enough as to furnish the finite, discrete difference
E(Z, A)∗ − E(Z, A).

An exact quantum theoretic description would have to be a multi-
channel calculation of the transition probabilities into all channels, the
elastic one as well as all open inelastic channels, by solving a finite
number of coupled wave equations. Depending on the kind and on the
complexity of the system on which the scattering takes place, this may
be an extensive, technically challenging calculation. If, on the other
hand, one is primarily interested in the back-reaction onto the elastic
channel, there is a simpler bulk procedure to parametrize the partial
wave contributions to (2.6). The key to this method is provided by the
optical theorem (2.12) which says that the total cross section

σtot = σel+σabs

is proportional to the imaginary part of the elastic scattering amplitude
in the forward direction,

σtot = σel+σabs = 4π

k
Im fel(k, θ = 0) . (2.51)

The elastic cross section, integrated over the whole solid angle, is given
by

σel=
∫

dΩ | fel| 2= 4π

k2

∞∑
	=0

(2	+1) |a	(k)| 2= 4π
∞∑
	=0

(2	+1) | f	(k)| 2 .
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The remainder σabs is the sum of all cross sections into inelastic chan-
nels open at the given energy. It represents the absorption out of the
elastic channel.

So far, we did not prove the optical theorem in this general form
because we did not yet develop all tools needed for its proof. In the
theory of potential scattering the theorem follows essentially from the
conservation of probability: if the particle can be scattered away from
the elastic channel, the probability to find it somewhere in one of the
kinematically (and dynamically) allowed final states must be equal to 1.

The expansion in partial waves being so useful and well adapted to
the physics of scattering, it is suggestive to define total, elastic, and ab-
sorption cross sections for each partial wave 	,

σ
(	)
el := 4π(2	+1) | f	(k)| 2 ,
σ
(	)
tot :=

4π

k
(2	+1) Im f	(k) ,

σ
(	)
abs := σ(	)tot −σ(	)el .

Note that we have made use of the optical theorem in the second defini-
tion. As σ(	)(tot) ≥ σ(	)el there follows an important condition on the partial
wave amplitudes:

Im f	(k)≥ k | f	(k)| 2 . (2.52)

The condition (2.52) is called positivity condition. This condition im-
plies that f	(k) must have the general form

f	(k)= 1

2ik
(e2iδ	(k)−1) (2.53)

where δ	 is a phase which may be complex, and whose imaginary part
must be positive or zero. This is shown as follows:

The polar decomposition of the complex function 1+2ik f	 is writ-
ten as follows

1+2ik f	 = η	 e2iε	 with η	 = e−2 Im δ	 , ε	 = Re δ	 .

(The factor 2 in the exponent is introduced for convenience in order to
facilitate comparison with the results of Sect. 2.3.) One calculates

Im f	 = 1

2k
[1−η	 cos(2ε	)] , | f	| 2 = 1

4k2 [1+η2
	−2η	 cos(2ε	)] .

The positivity condition (2.52) implies the inequalities

1≥ 1+η2
	

2
or 0≤ η2

	 ≤ 1 .

This was precisely the assertion: If η	 = 1, then Im δ	 = 0; if η	 < 1,
then Im δ	 > 0. The quantity η	, which, by definition, is positive semi-
definite and which obeys the inequality

0≤ η	 ≤ 1 (2.54)
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is called inelasticity. Indeed, qualitatively speaking, the inelasticity is
a measure for the amount taken out of the 	-th partial wave of elastic
scattering, due to absorption.

The result (2.53) with the property (2.54) is quite remarkable: The
same form (2.11) for the amplitude f	 = a	/k was obtained from the
Schrödinger equation, though with real potentials and, hence, real scat-
tering phases. In deriving the more general formulae of this section we
need no more than the optical theorem (2.51)!

The cross sections of fixed partial wave, defined above, when written
as functions of the inelasticity and the real scattering phase, are given
by

σ
(	)
tot =

2π

k2 (2	+1)[1−η	 cos(2ε	)] , (2.55)

σ
(	)
el =

π

k2 (2	+1)[1+η2
	−2η	 cos(2ε	)] , (2.56)

σ
(	)
abs = σ(	)tot −σ(	)el =

π

k2 (2	+1)[1−η2
	] . (2.57)

The interpretation of the results (2.55) – (2.57) is simple:

1. If η	 = 1 there is no absorption at all in this partial wave. The in-
elastic contribution vanishes, the elastic cross section (2.57) equals
the total cross section (2.55),

σ
(	)
abs = 0 , σ

(	)
el = σ(	)tot .

In this case the scattering phase δ	 is real, and (2.53) can be written
in the form known from (2.11),

f	(k)= 1

k
eiδ	 sin δ	 .

2. The other extreme case is η	 = 0. The absorption is maximal in the
partial wave with angular momentum 	. This does not mean that
there is no elastic scattering at all! Rather, the elastic and the inelas-
tic cross sections are equal. The results (2.55) – (2.57) which were
derived from the optical theorem, give the result

σ
(	)
abs = σ(	)el =

1

2
σ
(	)
tot .

The scattering amplitude proper is pure imaginary and is equal to

f	 = i

2k
.

3. A case of interest is one where there is a resonance in the 	-th par-
tial wave, accompanied by absorption. The resonance curve Fig. 2.4
remains qualitatively similar to the case without absorption. How-
ever, it no longer intersects the ordinate in the point i (or i/k), but at
a smaller value from which the inelasticity can be read off.
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The Principles
of Quantum Theory

Introduction

This chapter develops the formal framework of quantum mechan-
ics: the mathematical tools, generalization and abstraction of the

notion of state, representation theory, and a first version of the pos-
tulates on which quantum theory rests.

Regarding the mathematical framework quantum mechanics makes
extensive use of the concept of Hilbert space, of the theory of linear
operators which act on elements of this space, and of more general
functional analysis. In themselves these are important and compre-
hensive fields of mathematics whose even sketchy description would
go far beyond the scope of this book. For this reason I adopt a some-
what pragmatic approach introducing all definitions and methods of
relevance for quantum mechanics but skipping some of the detailed
justifications. Some of the general concepts are made plausible and,
to some extent, are visualized by means of matrix representations.
Even though these matrices will often be infinite dimensional, this
approach allows to adopt, by analogy, methods familiar from linear
algebra.

3.1 Representation Theory
Observables, by definition, are classical quantities. In quantum mech-
anics they are represented by self-adjoint oprators. In the physical
examples that we studied up to this point, the eigenfunctions of such
operators define systems of base functions which are orthogonal, and
either square integrable (and hence normalizable to 1) or normalizable
to δ-distributions. Regarding the corresponding spectrum of eigenvalues
there are three possibilities:

1. The spectrum may be pure discrete. Examples are the square of the
orbital angular momentum �2, and one of its components, say 	3.
Both operators are defined on S2, the sphere with unit radius in R3,
their eigenfunctions Y	m(θ, φ) are orthonormal and complete.
The Hamiltonian of the spherical oscillator is another example,

H =− �
2

2m
∆+1

2
mω2r2 . (3.1)
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It is defined on R3, its spectrum and its eigenfunctions were derived
in Sect. 1.9.4.

2. The spectrum may be pure continuous. Examples are provided by
the operator of momentum of a particle p, the position operator x,
and the operator of kinetic energy p2/(2m).

3. Finally, the spectrum may have both discrete as well as continuous
parts. An important example is the Hamiltonian describing the hy-
drogen atom,

H =− �
2

2m
∆−e2

r
, (3.2)

that we studied in Sect. 1.9.5. More examples are provided by the
Hamiltonians for one-particle motion where the potential is U(r)=
−U0Θ(R0−r), i. e. an attractive well of finite radius. Like in the hy-
drogen atom there are bound states with E < 0 and states with E > 0
which belong to the continuum.

Let ψα(x), or, more generally, ψα(t, x) be the quantum state of a physi-
cal system which is characterized by the quantum number(s) α. Indeed,
α may stand for more than just one quantum number as exemplified by
the discrete bound states of the hydrogen atom where α is a short-hand
notation for the triple (n, 	,m). The Fourier transform of ψα

ψ̃α(t, p)= 1

(2π�)3/2

∫
d3x exp

(
− i

�
p · x

)
ψα(t, x)

is unique. It provides a means of expanding the physical wave function

ψα(t, x)= 1

(2π�)3/2

∫
d3 p exp

(
+ i

�
p · x

)
ψ̃α(t, p)

in terms of eigenfunctions of the momentum operator

ϕ(p, x)= 1

(2π�)3/2
exp

( i

�
p · x

)
. (3.3)

The fact that these are not square integrable and, hence, not normaliz-
able in the usual sense, plays no special role because completeness can
be formulated equally well by means of δ-distributions. The function
ψ̃α(t, p) is as suitable for describing the state with quantum num-
bers “α” as was the function ψα(t, x). Therefore, when considering the
wave function ψ̃α(t, p) one says one is using the momentum space rep-
resentation, while when using ψα(t, x), one says that one is working in
the position or coordinate space representation.

Representing the state “α” in coordinate space, the original Born in-
terpretation of |ψα(t, x)|2 applies, i. e. |ψα(t, x)|2 d3x is the probability
for finding the particle at time t in an infinitesimal neighbourhood of the
point x. By analogy |ψ̃α(t, p)|2 d3 p is the probability to detect the par-
ticle at time t with a momentum in a ε-neighbourhood of the point p in
momentum space.
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Let A be an observable whose spectrum of eigenvalues is assumed to
be fully discrete and, for simplicity, whose eigenvalues are not degener-
ate. The eigenvalues are denoted by an , the eigenfunctions are denoted
by ϕn , viz.

Aϕn(x)= anϕn(x) .

The system of functions {ϕn} is complete and normalized to 1. If a given
state vector ψα(t, x) is (absolutely) square integrable as well, it can be
expanded in the base {ϕn},

ψα(t, x)=
∑

n

ϕn(x)c(α)n (t) with c(α)n (t)=
∫

d3x ϕ∗n(x)ψα(t, x) .

At any time the set of all expansion coefficients {c(α)n (t)} gives
a complete description of the state α. In a measurement of the ob-
servable A in the state described by ψα, the quantity |c(α)n (t)|2 is the
probability to find the eigenvalue an of A.

If the spectrum of A is degenerate one must also sum over the base
states spanning the subspace of fixed eigenvalue an . The Hamiltonian of
the spherical oscillator (3.1) provides an example of a purely discrete,
degenerate spectrum in which case an ≡ En	 and

ϕν(x)= Rn	(r)Y	m(θ, φ) , ν ≡ (n, 	,m) .
In case A has a spectrum that includes both a discrete and a continuous
part, the expansion of the wave function reads, in a somewhat symbolic
but suggestive notation,

ψα(t, x)=
∑
ν

d(α)ν (t)ϕν(x)+
∫

dν d(α)(t, ν)ϕ(ν, x) .

The classical example of this case is the Hamiltonian (3.2) which de-
scribes the hydrogen atom.

As a first result we note that the state “α” is represented alternatively
by the data

ψα(t, x) or ψ̃α(t, p) or

{c(α)n (t)} or {d(α)ν (t), d(α)(t, ν)} . (3.4)

This observation suggests to introduce a more abstract concept of
“quantum state”, by stripping it off any specific representation. In turn,
in concrete considerations or in practical calculations, this freedom may
be used to select the representation which is adapted best to the situ-
ation at stake. As a perhaps even more important bonus, this abstract
concept of quantum state allows to also treat systems for which there is
no classical analogue.
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In a certain sense the transformations between different, but equiva-
lent representations are analogous to the canonical transformations in
mechanics of Hamiltonian systems. Similar to the situation in mechan-
ics the physical system (that is, its quantum wave function) is invariant.
Its representation in one of the concrete bases sketched above is a kind
of “choice of coordinates” which may be more or less fortunate but, in
any case, should be adapted to the specific problem. Of course, we will
have to work out more precisely the transformation of wave functions
and of operators from one representation to another. Before we do so,
however, we wish to introduce a notation which is particularly useful
for practical purposes and, at the same time, takes good account of the
abstract nature of a quantum state.

3.1.1 Dirac’s Bracket Notation
In many situations it is useful to write a quantum state characterized by
the quantum number(s) α in a symbolic notation as |α〉, independently
of its specific representations (3.4). This notation is due to Dirac who
called this symbol a “ket”, and its dual 〈α| a “bra” – thereby allud-
ing to the word bracket, broken up in two pieces, i. e. 〈· · · | · · · 〉 into
〈· · · | and | · · · 〉. It is instructive to go a little deeper into this nota-
tion: As the Schrödinger equation is a homogeneous, linear differential
equation, linear combinations of its solutions are again solutions. Thus,
a physical state in one of the forms (3.4), is a (generalized) vector in
a linear vector space over the complex numbers C. The four represen-
tations (3.4) have in common the property of linearity, and the physical
content which is coded in the quantum numbers α. They differ only in-
sofar as the state is given either by a square integrable function over
coordinate space R3

x , or by such a function over momentum space R3
p,

or as a column vector with an infinite number of components. Dirac’s
notation | · · · 〉 summarizes the invariant information on the state, its
vector nature and its physical content, but stands, in fact, for all rep-
resentations. If |α〉 is a vector, and 〈β|α〉 is the complex number∫

d3x ψ∗β(t, x)ψα(t, x) or
∫

d3 p ψ̃∗β(t, p)ψ̃α(t, p) or

∞∑
n=0

c(β) ∗n c(α)n ,

depending on the representation one has chosen, this implies that 〈β|
is a linear form which acts on vectors |α〉, thereby yielding a complex
number. This is to say that 〈β| is dual to |α〉. For example, in coordinate
space |α〉 is the wave function ψα(t, x) while 〈β| represents the inegral
operator∫

d3x ψ∗β(t, x) •
which acts on the slot marked by a “bullet”.
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Dirac’s notation is a somewhat pragmatic way of writing which is
useful for many practical calculations. This is the reason it is widely
used in everyday physics. The mathematical literature makes less use
of it, probably because it is not unique1 and could possibly give rise
to misunderstanding in some situations. In what follows we shall often,
though not everywhere, make use of it. Here we illustrate the “bra” and
“ket” language by some simple examples:

Example 3.1
Let |n〉 characterize the base system that belongs to the fully discrete,
initially non-degenerate, spectrum of eigenvalues of some observable A.
Then 〈m|n〉 = δmn . The expansion of a physical state in terms of this
basis which in coordinate space has the form ψα(t, x)=∑

ϕn(x) a(α)n (t),
takes the abstract, representation-free form

|α〉 =
∑

n

|n〉 〈n|α〉 .

In this series 〈n|α〉 is the expansion coefficient corresponding to the
state “n”. For instance, in coordinate representation one has

〈n|α〉 = (ϕn, ψα)=
∫

d3x ϕ∗n(x)ψα(t, x)= 〈α|n〉∗ .

The expansion of a “bra” reads correspondingly

〈β| =
∑

m

〈m|β〉∗ 〈m| .

The scalar product of two states in this notation,

〈β|α〉 =
∑
n,m

〈m|β〉∗ 〈n|α〉 δmn =
∑

n

〈β|n〉 〈n|α〉 ,

is realized by the formula∫
d3x ψ∗β(t, x)ψα(t, x)=

∑
n

a(β) ∗n a(α)n

where the left-hand side holds in coordinate space while the right-hand
side holds in the A-representation.

In those cases where the basis belongs to an observable with a dis-
crete, but degenerate spectrum, or to an observable with a mixed
spectrum, the sum over n must be replaced by a multiple sum, or by
a sum plus an integral, respectively. The common eigenfunctions of �2

and of 	3 are an example for the first case and, in Dirac’s notation are
written as |	m〉. The second case is illustrated by the eigenfunctions of
the hydrogen Hamiltonian.

1 For instance, |n〉 could stand for the
base system ϕn(x) of stationary eigen-
functions of the one-dimensional har-
monic oscillator but could also be any
other, fully discrete system with some
other Hamiltonian.



176 3The Principles of Quantum Theory

Example 3.2
In the bra and ket notation the completeness relation takes the symbolic,
yet immediately intelligible form

∞∑
n=0

|n〉 〈n| = 1l and
∑

n

|n〉 〈n|+
∫

dν |ν〉 〈ν| = 1l (3.5)

for the purely discrete and the mixed cases, respectively. If one decided
to write the second expression in coordiante space, it would read∑

n

ϕn(x)
∫

d3x′ ϕ∗n(x′) •+
∫

dν ϕn(ν, x)
∫

d3x′ ϕ∗n(ν, x′) •

=
∫

d3x′ δ(x− x′) • .
The “bullet” marks an empty slot, in other terms stands in lieu of the
wave function on which this expression acts. Obviously, this explicit
way of writing is less transparent than the more general, abstract no-
tation.

The completeness relation in a complex, infinite-dimensional vector
space is written in an analogous way: Let {en} with ei = (0, · · · 0, 1,
0, · · · , 0)T be a system of base vectors (with a 1 as the i-th entry),
spanning this space. Then we have

∞∑
n=1

|n〉 〈n| =
∞∑

i=1

eie
†
i

=
∑

i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
1
0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
0 . . . 0 1 0 . . .

)
=

⎛⎜⎜⎜⎝
1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
...
...
...
. . .

⎞⎟⎟⎟⎠= 1l ,

in close analogy to finite dimensional vector spaces.

Example 3.3
Expectation values or more general, nondiagonal matrix elements of op-
erators are written as 〈β|A|α〉. In coordinate space this expression is
the familiar integral over R3 of Chap. 1. If one considers such a matrix
element of the product of two operators A and B, the following, some-
what formal calculation uses the completeness relation for expressing
matrix elements of the product in terms of products of matrix elements
of individual operators,

〈β| AB |α〉 = 〈β| A 1l B |α〉 =
∑

n

〈β| A |n〉 〈n| B |α〉 .
One often makes use of this way of reducing a product to individual
operators.
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Example 3.4
The generalization to improper states, i. e. to states which are not nor-
malizable to 1, poses no particular problem. We denote by |x〉 and
by |p〉 the eigenfunctions of the operator x and the operator p, respect-
ively, in Dirac’s notation. We then have〈

x′
∣∣x〉= δ(x′ − x) ,

〈
p′
∣∣p
〉= δ(p′ − p) .

The expansion coefficients of a physical state “α” in terms of eigenfunc-
tions of x take the form 〈x|α〉 and are identical with ψα(t, x), i. e. the
coordinate representation of the wave function. In this light the formula

〈x|p〉 = 1

(2π�)3/2
exp

( i

�
p · x

)
= 〈p|x〉∗

is immediately understandable: The left-hand side is the coordinate
space representation of the wave function |p〉, the right-hand side is the
complex conjugate of the momentum space representation of the eigen-
function |x〉 of the position operator.

3.1.2 Transformations Relating Different Representations
In changing the representation of states the operators that act on these
states must be transformed as well. As a first orientation one should re-
call the description of finite dimensional vector spaces in linear algebra.
Let V be a real vector space of dimension n, ê= {êk}, k = 1, . . . n, an
orthonormal basis, êi · êk = δik. Every orthogonal transformation R takes
it to a new orthonormal basis,

ê �−→ f̂ = Rê , RT R= 1l .

Observables over a R-vector space are real, symmetric matrices whose
action on an arbitrary element a =∑

k êkc(a)k is as follows

Aa =
∑

k

(Aêk)c
(a)
k =

∑
ik

Aikêic
(a)
k with Aik = êi · (Aêk) .

With RT = R−1 the observable in the new basis is

Ãik = f̂i · (A f̂k)=
∑
pq

Ri p Rkq Apq = (RAR−1)ik ,

that is to say that the operator transforms according to the rule

A �−→ Ã= RAR−1 .

This rule is easy to remember: Reading the product on the right-hand
side in the order in which the matrices act, i. e. from right to left, R−1

“rotates back” to the old basis, where A acts as before. Finally the result
is taken back to the new basis by the “rotation” R.

Matters are similar in vector spaces over C, the difference be-
ing that the orthogonal transformation R is replaced by a unitary U,
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i. e. UU† = 1l = U†U, where U† denotes the transposed and complex
conjugate matrix. As we saw in Sect. 1.8.1 observables are no longer
real-symmetric but complex hermitean matrices.

Let us begin by an example: Let Qk, k = 1, 2, 3, be the three op-
erators of position in a cartesian basis. As they commute among each
other their action on every solution ψ(x) of the Schrödinger equation
in coordinate space is

Qkψ(x)= xkψ(x) .

One says that Qk act multiplicatively. Expanding these functions in
terms of eigenfunctions (3.3) of the momentum operator one obtains

Qk
∫

d3 pϕ(p, x)ψ̃(p)=
∫

d3 pϕ(p, x)xkψ̃(p)

=−�
i

∫
d3 pϕ(p, x)

∂

∂pk
ψ̃(p) .

Here we inserted the relation

exp
( i

�
p · x

)
xk = �

i

∂

∂pk
exp

( i

�
p · x

)
and performed partial integration with respect to the variable pk. This
equation holds for all x. By inverse Fourier transformation one con-
cludes that

Qkψ̃(p)=−�
i

∂

∂pk
ψ̃(p) . (3.6)

Thus, in momentum space the operator Qk is represented by the first
derivative with respect to pk, in analogy to the component Pk of
momentum in coordinate space which is realized as first derivative
by xk, see (1.58) and Sect. 1.8.4. Note, however, the difference in signs
in (1.58) and in (3.6).

Let A be an observable with a purely discrete, non-degenerate spec-
trum whose eigenfunctions are ϕn(x). The state ψ may be expanded in
the basis of these eigenfunctions, so that

Qkψ(x)= Qk
∑

n

ϕn(x)cn =
∑

n

xkϕn(x)cn .

In turn, xkϕn(x) is again a square integrable function and, hence, can
also be expanded in the basis ϕn . Denoting the expansion coefficients
by X(k)mn one has

xkϕn(x)=
∑

m

ϕm(x)X(k)mn with X(k)mn =
∫

d3x ϕ∗m(x)xkϕn(x) .

This result has the following interpretation: in the A-representation the
state ψ(x) appears in the form of a (in general infinite dimensional)
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vector c= (c1, c2, . . . )
T , the position operator Qk is represented by the

matrix X(k) =
{

X(k)mn

}
and we have

Qkc= X( j)c or Qk(cn)
T =

(∑
n

X(k)mncn

)T

. (3.7)

As a result we note that the operator Qk which describes the k-th
cartesian component of the position operator, may appear in quite dif-
ferent forms:

– In coordinate space as the function xk, acting multiplicatively.
– In momentum space as a differential operator,

−�
i

∂

∂pk
.

– In the space spanned by the eigenfunctions of the observable A as
the infinite dimensional matrix

X(k)mn =
∫

d3x ϕ∗m(x)xkϕn(x) .

It is instructive to continue on this example by considering another
cartesian component, say Pj , of the momentum operator. In coordinate
space it is (�/i)(∂/∂x j), in momentum space it is the function p j (acting
multiplicatively), in the space spanned by the eigenfunctions of A it is
the matrix

P( j)
mn =

∫
d3x ϕ∗m(x)

�

i

∂

∂x j
ϕn(x) .

Obviously, the symbols Qk and Pj denote these operators in all rep-
resentations, which is to say, they are an abstract notation for what is
essential about these operators. For instance, Heisenberg’s commutation
relations, in abstract notation, are

[Pj , Qk] = �
i
δ jk 1l , [Q j , Qk] = 0 , [Pj , Pk] = 0 , (3.8)

where 1l is either the number 1 or the infinite-dimensional unit matrix.
When spelled out, their concrete realization is

– in coordinate space: [Pj , Qk] = �
i

∂

∂x j
xk− xk �

i

∂

∂x j
= �

i
δ jk ;

– in momentum space: [Pj , Qk] = p j

(
−�

i

∂

∂pk

)
−
(
−�

i

∂

∂pk

)
p j

= �
i
δ jk ;

– in “A-space”:
∑

l

[
P( j)

ml X(k)ln − X(k)ml P( j)
ln

]= �
i
δ jkδmn .
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It is not difficult to convert any one of these three representations into
one of the two others. For example, in transforming from coordinate
space to the A-representation one makes use of formulae of the type∫

d3x ϕ∗m(x)
�

i

∂

∂x j
xkϕn(x)=

∫
d3x ϕ∗m(x)

�

i

∂

∂x j

∑
l

ϕl(x)X
(k)
ln

=
∑

l

P( j)
ml X(k)ln .

In position space and in momentum space the relations (3.8) re-
fer to the commutator of a function and a differential operator. In the
space spanned by the eigenfunctions of A they mean the commutator of
two matrices. This statement which basically is simple, sheds light on
an important historical step in the development of quantum mechanics.
While Erwin Schrödinger treated quantum mechanics of nonrelativis-
tic atomic systems by means of the differential equation that bears his
name, Werner Heisenberg, together with Max Born and Pascual Jor-
dan, developed the same theory in the framework of what was called
matrix mechanics. The two approaches turned out to be just two differ-
ent representations of one and the same theory, on the one hand what
we now call the “coordinate space representation”, on the other hand
what is called the “A-representation”. It was Schrödinger who proved
the equivalence of his and Heisenberg’s approaches, shortly after the
birth of quantum mechanics.

3.2 The Concept of Hilbert Space

In Chap. 1 we studied important examples of self-adjoint Hamiltoni-
ans, and introduced the notions of orthogonality in function spaces and
of completeness of base systems. In the previous section we studied
formally different but physically equivalent representations of opera-
tors which describe observables. Here we wish to learn more about the
spaces in which physical wave functions live. Central to this endeavour
is the concept of Hilbert space. In many respects it corresponds to our
conception of finite dimensional vector spaces, in others it is markedly
different, due to its dimension being infinite. Of course, a detailed and
mathematically rigorous treatment would go far beyond the scope of
this book and would lead us astray for a while from the physical aspects
of quantum theory that we wish to learn and to understand. Therefore,
I restrict this text to a somewhat cursory and, in some respects, qualita-
tive discussion. Those who wish to study these matters in greater depth
are referred to the literature in mathematics and mathematical physics.

We start with a few remarks which are meant to clarify what we
need for a formulation of the principles of quantum mechanics, and
which will help to motivate the subsequent definitions.
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Remarks
1. A striking property of Schrödinger’s wave functions is, on one hand,

that they are defined over our physical time axis Rt and over the
usual physical space R3

x where experiments are done, but, on the
other hand, that they live in function spaces H where they have
certain remarkable properties (such as, for instance, being square
integrable). In a more scholarly language, ψα(t, x) is defined over
Rt×R3

x but is an element of H . This raises the question of how the
wave function ψα will react when we perform, e. g., Galilei trans-
formations in space such as translations, rotations, or special Galilei
transformations which leave the dynamics (formulated by means of
a Hamiltonian) invariant. This question which leads to interesting
statements both of principle and practical use, will be taken up ex-
tensively below.
Note, however, that there are systems without classical analogues
and to which wave functions are ascribed that have no, or only in-
direct, relation to the space-time of physics. This situation will be
encountered in the description of spin, i. e. of intrinsic angular mo-
mentum of particles.

2. A central principle of quantum mechanics is the superposition prin-
ciple, which says that with two different solutions ψα and ψβ of
the Schrödinger equation any linear combination λψα+µψβ , with
λ,µ ∈ C two complex numbers, is also a solution. Therefore, the
spaces in which wave functions are defined, must be linear spaces
which is to say they must be vector spaces over C.

3. Recalling Born’s interpretation of the wave function, Sect. 1.4, or
generalizations thereof, it is clear that the spaces H must carry
a metric structure, it must be possible to define, or to measure, the
norm or the length of a state ψ. For, if we ask for the probability
to measure the eigenvalue an of the observable A in the normalized
state ψ, this is equivalent to asking about the scalar product (ϕn, ψ)
of the eigenfunction of A corresponding to an and of the state ψ. In
other words, one is asking for the projection of ψ onto ϕn , i. e. for
the angle included between these two functions.

4. Both the metric and the geometric structure are obtained by the cor-
rect definition of the scalar product of wave functions (or, more
generally, of state vectors). By the same token, a general, formal
framework is provided where expectation values are well-defined
which, as we know, represent physical observables and which are
essential for the interpretation of the theory.
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3.2.1 Definition of Hilbert Spaces

The previous remarks, hopefully, were helpful in preparing and motivat-
ing the following definition:

Definition 3.1 Hilbert Space

(I) A Hilbert space H is a linear vector space over the complex
numbers C.
Addition of elements f ∈H and g ∈H exists, f +g ∈H , and
has the usual properties, i. e. it is associative, there is a null
element, for which f +0= f for all f ∈H , and for every f
there is an element (− f ) such that f + (− f )= 0. Multipli-
cation with complex numbers is well-defined, it is associative
and distributive.

(II) On H a scalar product is defined

(·,·) : H ×H −→C : f, g �−→ ( f, g) ,

which has the following properties:
The scalar product ( f, g) of two elements f, g ∈H is C-linear
in its second argument,

( f, g1+ g2)= ( f, g1)+ ( f, g2) , (3.9a)
( f, λg)= λ( f, g) , λ ∈C . (3.9b)

The scalar product of an element ( f, f ) with itself is positive
definite. It is zero if and only if f is the null element,

( f, f )≥ 0 ∀ f , ( f, f )= 0⇐⇒ f = 0 . (3.10)

When one interchanges its arguments the scalar product takes
its complex conjugate value,

(g, f )= ( f, g)∗ . (3.11)

(III) The space H is complete, i. e. every Cauchy series f1, f2, . . .
converges to a limit f which is an element of H ,

fn −→ f , if lim
n→∞‖ fn− f ‖ = 0 . (3.12)

(IV) The space H has countably infinite dimension.

Comments on the axioms (I) – (IV). The properties (3.9a), (3.9b)
and (3.11) imply that the scalar product is antilinear in its first entry,
which is to say that

(µ1 f1+µ2 f2, g)= µ∗1( f1, g)+µ∗2( f2, g) , fi, g ∈H , µi ∈C .
If the scalar product were real then, by (3.10) and (3.11), it would de-
fine a positive definite bilinear form. Being linear in the second entry,
but antilinear in the first, it is said to be a positive definite sesquilinear
form.
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Definition 3.2

1. Two elements f and g in H are said to be orthogonal, if their
scalar product vanishes,

( f, g)= 0 f and g orthogonal . (3.13)

2. The scalar product defines a norm

‖ f ‖ := ( f, f )1/2 norm of f ∈H . (3.14)

Equation (3.13) takes up the concept of othogonality of functions
that we studied extensively in Chap. 1, in a more general framework. In
close analogy to finite dimensional vector spaces one proves

Schwarz’ inequality: |( f, g)| ≤ ‖ f ‖ · ‖g‖ , (3.15)

and the

triangle inequality: | ‖ f ‖−‖g‖ | ≤ ‖ f + g‖ ≤ ‖ f ‖+‖g‖ . (3.16)

If f1, f2, . . . , fN is a set of orthogonal elements of H which are nor-
malized to 1, one has Bessel’s inequality

N∑
n=1

|( fn, g)| 2 ≤ ‖g‖ 2 for all g ∈H . (3.17)

The norm ‖ f ‖ is the (generalized) length of the vector f ∈H . By
Schwarz’ inequality (3.15) the ratio |( f, g)|/(‖ f ‖ ‖g‖)=: cosα defines
the angle comprised by the vectors f and g.

We note in passing that a space which has the properties (I) and (II)
only, is called pre-Hilbert space.

Axiom (III) makes use of the notion of Cauchy series which may be
summarized as follows: A set of functions forms a Cauchy series if for
every ε > 0 there is a positive integer N such that

‖ fn− fm‖< ε for all n,m > N .

In fact, it is the requirement (III) which turns a pre-Hilbert space into
a full Hilbert space.

The axiom (IV) is not really necessary. In fact, in the mathematical
literature a space which fulfills (I) – (III) – irrespective of its dimension
– is called a Hilbert space. As a rule, the Hilbert space(s) of quantum
theory are infinite dimensional, so axiom (IV) is included to remind us
of this observation. In many applications we will deal with finite dimen-
sional Hilbert spaces but note that these are subspaces of a “physical”,
infinite dimensional Hilbert space. In what follows and in the examples
we will distinguish, if necessary, finite dimensional and infinite dimen-
sional situations.

In the context of axiom (III) a certain type of convergence was made
use of, called strong convergence. We note in passing that, unlike the
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finite-dimensional case, there are further definitions of convergence in
infinite dimensional spaces which are distinct from strong convergence.

The following examples serve to illustrate the definition of Hilbert
spaces. In particular, they show to which extent these spaces resemble
the vector spaces familiar from linear algebra.

Example 3.5
The set of all infinite dimensional, complex vectors for which the sum
of absolute squares of their components is convergent

a = (a1, a2, a3, . . . )
T with

∞∑
n=1

|an| 2 <∞ ,

is a linear vector space over C provided addition of elements and mul-
tiplication by complex numbers λ ∈C are defined as usual, i. e.

a+b= c⇐⇒ cn = an+bn , λa = (λan)
T .

It is obvious that the condition of convergence is met for λa if it is
fulfilled for a. It is less obvious for the sum of two elements: One has

|an+bn| 2≤ | |an|+|bn| | 2+| |an|−|bn| | 2= 2
( |an| 2+|bn| 2

)
<∞ ,

and, therefore,
∑ |cn|2 <∞.

The scalar product

(a, b) :=
∞∑

n=1

a∗nbn

has the properties (3.9a–3.11), and the result fulfills the condition of
convergence. Indeed,

|(a, b)| ≤
∑

n

|an| |bn| ≤ 1

2

∑
n

( |an| 2+|bn| 2
)
.

One shows, furthermore, that this vector space is complete. If its di-
mension were finite, say equal to N , one would refer to the fact that
the field of real numbers R and, hence, also the direct product RN of
N copies of it, are complete. In infinite dimension things are not so sim-
ple. One must consider genuine Cauchy series and show that the limit of
any such series is an element of the same vector space. Finally, one de-
fines a countably-infinite base system ê(i) = (. . . , δni , . . . )

T by choosing
the i-th entry equal to 1, all others equal to 0. This vector space fulfills
all axioms of Definition 3.1 and, therefore, is a Hilbert space.

If one chooses the dimension of this space to be finite, n=1, 2, . . . , N ,
the condition of convergence is unnecessary. The so-defined N-dimensional
vector space is a Hilbert space (fulfilling axioms (I) – (III)). Quantum
mechanics often makes use of such spaces, for instance, in describing
eigenstates of orbital angular momentum or of spin, though they appear
as subspaces of a big Hilbert space with infinite dimension.
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Example 3.6
The second example, in a first step, is chosen finite dimensional. Let
MN(C) be the set of all N× N-matrices with complex entries, N ∈N.
Addition of elements and multiplication by complex numbers,

A,B ∈ MN(C) : C= A+B⇐⇒ C jk = A jk+ B jk

makes it a C-vector space. An obvious candidate for the scalar product
of A and B is the trace of the product of the hermitean conjugate matrix
A† = (A∗)T with B,

(A,B) := tr(A†B)=
N∑

j,k=1

A∗jk B jk .

(Note the unusual position of indices of the first factor A which is due
to its being transposed.) Indeed, it fulfills the properties (3.9a–3.11). As
the set of complex N× N matrices MN(C) is isomorphic to CN2

and
as this multiple direct product of C with itself has this property, the so-
defined vector space is complete. Thus this provides another example of
Hilbert space.

In a second step, one may let the dimension N go to infinity. Ob-
viously, one must then restrict the set to those matrices whose trace is
finite, and one must examine Cauchy series of matrices more carefully.

Example 3.7
Consider the set of all complex-valued functions ψ(x) over three-
dimensional space R3 whose absolute square admits a Lebesgue mea-
sure,∫

d3x |ψ(x)| 2 <∞ .
Take the scalar product of two such functions ψ and χ to be

(ψ, χ) :=
∫

d3xψ∗(x)χ(x) .

The following estimate∫
d3x

∣∣ψ∗(x)χ(x)∣∣ ≤ 1

2

[∫
d3x |ψ(x)| 2+

∫
d3x |χ(x)| 2

]
shows that this scalar product is well-defined. Addition ψ+χ and mul-
tiplication λψ by complex numbers make this set a linear vector space
over C. Indeed, the absolute square of the sum of two elements is finite
because |ψ(x)+χ(x)|2 ≤ 2(|ψ(x)|2+|χ(x)|2) is finite.

It is more difficult to prove directly the completeness of this space.
For our purposes it may be sufficient to hint at the examples of complete
systems {ϕn(x)} of orthonormal functions developed in Chap. 1 which
were used as bases for an expansion of elements ψ,χ of this space.
Hence, it is plausible that all axioms (I) – (IV) are fulfilled. Obviously,



186 3The Principles of Quantum Theory
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Fig. 3.1. A rotation �
3 in three-dimen-

sional, physical space induces a unitary
transformation in Hilbert space. The
figure shows the example of a rotation
about the 3-axis by the angle α. The
state with definite values of 	 and m re-
acts to this rotation by the phase factor
exp(−imα)

2 In the example this unitary transfor-
mation is diagonal. This will not be so
in the general case.

this Hilbert space of square integrable functions over R3 is of special
importance for wave mechanics. It is denoted by L2(R3).

Example 3.8 (Interplay of Position Space and Hilbert Space)
Here is a simple example which shows the reaction, alluded to above,
of elements of Hilbert space L2(R3) to transformations in R3, i. e.
which illustrates the interplay between the space of physics, where
we perform measurements, and the space of quantum wave functions.
Consider the eigenfunctions of the Hamiltonian for the spherical oscilla-
tor of Sect. 1.9.4. The functions ψn	m(x)= Rn	(r)Y	m(θ, φ) are defined
over R3 or, more precisely, over R+× S2: The variable r takes its val-
ues on the positive real half-axis, the variables θ and φ refer to the
unit sphere S2 in R3. The knowledge of these coordinates and of the
quantum number m implies that a particular frame of reference K was
chosen. Of course, we can change this reference system. As the Hamil-
tonian refers to a given center of force it would not be reasonable to
perform space translations of K. However, a different orientation in
space of the frame of reference is a meaningful alternative, thus re-
placing K by a new system K′ which is obtained from the original
by a rotation R, x �→ x′ = Rx. How does the base function ψn	m react
to this rotation? The answer in the most general case is derived be-
low, in Sect. 4.1 where we study angular momentum in quantum theory.
For the purpose of this example we consider the simple case illustrated
by Fig. 3.1: Let K′ be obtained from K by a rotation about the 3-axis,
by the angle α. Comparing polar coordinates of the new system of ref-
erence and those in the old system one has

r �→ r ′ = r , θ �→ θ ′ = θ , φ �→ φ′ = φ−α
so that the wave function in K′ and K, respectively, are related as fol-
lows

ψn	m �−→ ψ′n	m(x′)= e−imαψn	m(x) .

Writing the basis as one symbol Ψ = {ψn	m}, one has

Ψ (x) �−→ Ψ ′(x)= U(α)Ψ (x)

where the unitary matrix is

U(α)= diag(1, eiα, 1, e−iα, e2iα, eiα, 1, e−iα, e−2iα, . . . ) ,

U†(α)U(α)= 1l .

This simple result is interesting: An orthogonal transformation R ∈ SO(3)
of the system of reference in R3 induces a unitary transformation of the
basis in Hilbert space.2 The result suggested by this elementary example
is not surprising if one keeps in mind the following fact: Both systems
Ψ and Ψ ′ are orthonormal and complete; they refer to two systems of
reference which are connected by a rotation R, described, say, by Euler
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angles (φ, θ, ψ). Therefore, the transformation between the two systems
must be unitary,

ψ′n	m′ =
	∑

m=−	
U(	)m′m(φ, θ, ψ)ψn	m ;

only then are the functions ψ′n	m′ orthogonal and normalized to 1. The
unitary matrix of transformation is a function of the Euler angles that
will be calculated and analyzed in Chap. 4.

3.2.2 Subspaces of Hilbert Spaces

As an example we consider the Hilbert space L2(S2) spanned by the
eigenfunctions Y	m(θ, φ) of �2 and 	3. Its dimension is infinite since
the quantum number 	 runs through zero and all naturals. This Hilbert
space decomposes into an infinite series of finite dimensional subspaces
whose dimension is (2	+1), which are characterized by fixed eigenval-
ues 	(	+1) of �2, and which are spanned by the base functions Y	m
with m =−	,−	+1, . . . ,+	. Situations like this occur frequently in
quantum theory. As they are important for the understanding of physical
quantum systems let us consider the concept of subspace more closely.

Definition 3.3

A subset Hi ⊂H of a Hilbert space is said to be a subspace of H
if

1. Hi a sub-vector space of H , and if
2. Hi is closed in H .

If the subspace is equipped with the restriction of the metric of H
to Hi , then Hi is itself a Hilbert space.

Another way of phrasing these criteria is this: Every finite linear
combination

∑
λnψn of elements ψn ∈Hi is again an element of Hi ,

and Hi is closed.
As the “big” Hilbert space has a metric, the orthogonal complement

of any subspace (or some other subset W of H , for that matter) is well-
defined. It is the set of all those elements of H which are orthogonal to
every element of the subspace (or the more general subset, respectively),

W⊥ = {
f ∈H

∣∣(g, f )= 0 for all g ∈W
}
.

The set W⊥ is said to be the orthogonal complement of W in H .
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Fig. 3.2. Symbolic representation of the
decomposition of an element f ∈H into
two orthogonal components f (1) ∈H1,
and f (2) in the orthogonal comple-
ment H⊥1 . Note the analogy to the
decomposition of a vector over �

2 into
two orthogonal components

If W is a subspace Hi of Hilbert space the important decomposition
theorem applies:

Theorem 3.1 Decomposition Theorem

Every element f ∈H can be written in a unique way as the sum
of an element f (i) ∈Hi and an element f (i)⊥ ∈H⊥i of the orthogonal
complement,

f = f (i)+ f (i)⊥ .
The norm of the component which lies in the orthogonal comple-
ment, is given by

‖ f (i)⊥ ‖ = inf
g∈Hi
‖ f − g‖ .

It is instructive to highlight the close analogy to the decomposition of
an element of Euclidean space R2 into two orthogonal components: Fig-
ure 3.2 shows this decomposition f = f (1)+ f (2) of an element f ∈R2.
If we identify the abscissa with the subspace H1 ≡R, the orthogonal
complement H⊥1 corresponds to the ordinate. We have f (1)⊥ = f (2), the
length of this element is the usual geometric distance to the 1-axis.

3.2.3 Dual Space of a Hilbert Space and Dirac’s Notation

Returning to Dirac’s bra and ket notation I begin with an example
that is known from linear algebra and from mechanics: Let M be a fi-
nite dimensional, real, differentiable manifold equipped with a metric
g = {gik}. Let Tm M be the tangent space, T∗m M the cotangent space
at the point m ∈ M, v = {vk} and w= {wi} two elements of the tan-
gent space. The metric evaluated with v and w, g(w, v), gives a real
number

∑
i,k w

i gikv
k. This means that

∑
i w

i gik, or, written differently,
g(w, •) is a linear form which acts on elements of Tm M, that is to
say, is an element of the cotangent space. It is easy to show that the
mapping w �−→ g(w, •) is bijective. When expressed in the language of
coordinates this means that to a given tangent vector v = (v1, v2, . . . )
there corresponds the unique element v∗ = (∑i v

i gi1,
∑

i v
i gi2, . . . ) of

the cotangent space, and, vice versa, that to each u∗ ∈ T∗m M there cor-
responds the tangent vector u = (∑k gikuk). The vector spaces T∗m M
and Tm M are isomorphic. The isomorphism being established by the
metric, one also says that they are metrically equivalent. These well-
known facts can be translated to Hilbert spaces.

Let H be a Hilbert space, H∗ the dual space. By definition the dual
space contains all linear and continuous functionals T :H→C which
when applied to elements of H , yield complex numbers. The property
of linearity is immediately clear. Continuity means that the function-
als T are bounded, i. e. for all g ∈H there is a finite real number c such
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that |T(g)| ≤ c ‖g‖. Such functionals can be assigned a norm by taking

‖T‖ = sup
{ |T(g)| ∣∣ g ∈H , ‖g‖ ≤ 1

}
for all g ∈H whose norm is equal to or less than 1. By analogy to the
case discussed above one is led to try the functionals T f := ( f, • ) with
f ∈H whose action on an arbitrary element g ∈H produces the com-
plex number T f (g)= ( f, g). Obviously, these functionals are linear. By
the inequality (3.15) and for all g one has∣∣T f (g)

∣∣= |( f, g)| ≤ ‖ f ‖ ‖g‖ .
Thus, continuity is guaranteed. It is not difficult to show that the norm
of T f equals the norm of f ,∥∥T f

∥∥= ‖ f ‖ .
In order to see this consider the action of T f onto the vector f/‖ f ‖
which is normalized to 1:

T f

(
f

‖ f ‖
)
= 1

‖ f ‖( f, f )= ‖ f ‖ ≤ sup
{ ∣∣T f (g)

∣∣ , ‖g‖ ≤ 1
}

= ∥∥T f
∥∥≤ ‖ f ‖ .

Hence, as ‖T f ‖ is both less than or equal to and greater than or equal
to ‖ f ‖, it is equal to ‖ f ‖.
Matters are clarified by the following theorem by Riesz and Fréchet:

Theorem 3.2 (Riesz and Fréchet)

For every functional T ∈H∗, acting on the elements of the Hilbert
space H , there is one and only one element f ∈H such that
T = T f = ( f, • ) and ‖T‖ = ‖ f ‖.

(For a proof of this theorem see, e. g. [Blanchard and Brüning (2003)].)
The theorem establishes that the dual of a Hilbert space is isomor-

phic to it. Indeed, the mapping

Γ :H −→H∗ : f �−→ T f with T f (g)= ( f, g)

is an isometry, because ‖Γ( f )‖ = ‖T f ‖ = ‖ f ‖ and, hence, is injective.
The Theorem 3.2 shows that it is also surjective.

Notice the close analogy to the example studied above: In the ex-
ample it is the metric g which maps the isomorphic vector spaces Tm M
and T∗m M onto one another. Here, the isomorphism between H and H∗
is effected by the mapping Γ , that is to say, again by means of the scalar
product. There is a difference, however: Because of the property

Γ(µ1 f1+µ2 f2)= µ∗1Γ( f1)+µ∗2Γ( f2) ,

the mapping Γ is an anti-isomorphim. The isomorphism H∗ 	H pro-
vides the justification, a posteriori, of Dirac’s bracket notation which
was introduced heuristically in Sect. 3.1.1. To every ket |α〉 ≡ |ψ(α)〉,
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element of the Hilbert space H , the mapping Γ associates the func-
tional Tα = 〈ψ(α)| ≡ 〈α|. The action of Tα on a state |β〉 is Tα(|β〉)=
〈α|β〉, and is given by the scalar product.

3.3 Linear Operators on Hilbert Spaces
A linear operator O maps the Hilbert space H , or parts thereof, onto
itself, this mapping being C-linear. The action of O on two vectors
f1, f2 ∈H being defined, we have

O(µ1 f1+µ2 f2)= µ1O( f1)+µ2O( f2) , µi ∈C (linearity) .

The definition of an operator must contain, on the one hand, a rule
which says how it acts on a given f , and, on the other hand, a do-
main D of elements in H on which it acts. This domain is a subset
of H , i. e. a subset { fλ ∈H} which is such that every linear combina-
tion

∑
cλ fλ of its elements belongs to it. Therefore, when talking about

a linear operator what is really meant is the pair (O,D) consisting of
the operator and its domain of definition D ,

O : D −→H : f ∈D �−→ g ∈H .

If the domain of definition of O is dense in H , i. e. if the closure
of D equals H , D =H , the operator is said to be densely defined. The
set of all nonvanishing elements f of H which are images of elements
g ∈D , is called the range of the operator. The set of all g ∈D which
are mapped to the null element is called the kernel of the operator.

The domain of definition of those operators which are relevant for
physics, is always related to the concrete physical situation and its de-
scription, and we need not go into more academic examples which may
be important for the theory of linear operators on Hilbert spaces. Fur-
thermore, we are usually on the safe side if we assume the operators
appearing in quantum mechanics to be densely defined.

Definition 3.4 Bounded Operator

An operator O which is defined everywhere on H is said to be
bounded if for all f ∈H the inequality

‖O f ‖ ≤ c ‖ f ‖ (3.18)

holds where c is a positive constant.
If the operator O is bounded one defines a norm for it by taking

the supremum of (Og,Og)= ‖Og‖2 in the set of all states normal-
ized to 1:

‖O‖ := {
sup ‖Og‖ ∣∣ g ∈D with ‖g‖ = 1

}
. (3.19)

Operators for which (3.18) does not hold and, hence, which can-
not be ascribed a norm, are said to be unbounded. Quantum mechanics
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makes use of both bounded and unbounded operators. For instance,
one shows that the position operator xi is unbounded on H = L2(R3),
the Hilbert space of square integrable functions over three-dimensional
space.

Important examples are provided by operators which bear the names
of Hilbert and Schmidt. Given a function of two arguments x, y ∈ R3

which is square integrable in both arguments,
∫

d3x
∫

d3 y K(x, y) <∞.
Then, if g(x) is square integrable, then also

f(y)=
∫

d3x K(y, x)g(x)

is a square integrable function. The mapping from g to f , written as
f =Kg, is an integral operator and is called a Hilbert-Schmidt operator.

3.3.1 Self-Adjoint Operators

To operators of quantum mechanics one associates adjoints. For in-
stance, the creation operator a† in the theory of the quantum oscillator
is the adjoint of the annihilation operator a. Whenever an operator de-
scribes an observable the adjoint and the original must have the same
domain of definition and, hence, are identical. For example, the number
operator N = a†a of the oscillator is an observable and is equal to its
adjoint. Matters are made more precise by the following definitions and
comments.

Definition 3.5 Adjoint Operator

Given an operator (O,D) whose domain of definition is dense in H .
Consider the scalar products ( f,Og) with g ∈D . The set of all f ,
for which there is an element f ′ ∈H such that ( f,Og)= ( f ′, g), for
all g ∈D , defines the domain D† of the adjoint operator O†. Let
O† f = f ′. Scalar products then follow the rule

( f,Og)= (O† f, g)= (g,O† f )∗ . (3.20)

Remarks
1. In the mathematical literature the adjoint operator is marked by an

asterisk, i. e. O∗, while complex conjugate numbers are marked by
an “over-bar”, i. e. λ. I use consistently the standard notation of
the physical literature where adjoint operators, as well as hermitean
conjugate matrices, are written with the “dagger” symbol †, while
complex conjugate numbers are written λ∗. It seems reasonable to
adhere to this tradition because the “over-bar” will be needed in
relativistic quantum field theory of spin-1/2 particles where it has
a different meaning.
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2. It is important that D be dense in H . The adjoint operator is
uniquely defined and different from zero only if this condition is
fulfilled.

3. If the operator O has an inverse operator O−1 and if the domains
D(O) and D(O−1) both are dense in H then one has

(O†)−1 = (O−1)† ,

as expected intuitively.
4. Let ϕi ∈ L2(R3) be square integrable wave functions which are

defined on all of H = L2(R3), and let O = µ · ∇ where µ =
(µ1, µ2, µ3) is a triple of complex numbers. The definition (3.20)

(ϕm,Oϕn)= (O†ϕm, ϕn)

and a partial integration in each of the three variables xi shows that
the adjoint is O† =−µ∗ ·∇. In particular, if the coefficients µk are
pure imaginary the adjoint operator and the original are identical.

Definition 3.6 Self-Adjoint Operator

An operator which coincides with his adjoint, O† ≡O, is called self-
adjoint. In this case one has D† =D and O f =O† f for all f ∈D .
In particular, for all f and g in the domain of definition D one has

(g,O f )= (Og, f )= ( f,Og)∗ . (3.21)

All expectation values ( f,O f ) are real.

These definitions become particularly transparent if a given opera-
tor O admits an “A-representation”, i. e. if it is represented by a matrix
O= {Oik} (usually infinite dimensional). Its adjoint is obtained by re-
flection on the main diagonal and by complex conjugation, viz.

O† = (OT )∗ , (O†)ik = O∗ki .

A self-adjoint operator is represented by a hermitean matrix, O†=O.
Its entries in the diagonal are real, the entries outside the main diagonal
are pairwise complex conjugates, i. e. O∗ki = Oik.

Example 3.9
The self-adjoint operators 	1, 	2, and 	3 describe the cartesian com-
ponents of orbital angular momentum. In the basis of the states
|	m〉 ≡ Y	m they are given by the matrices:

(Y	′m′, 	1 Y	m)= 1

2
δ	′	

√
	(	+1)−mm′

{
δm′,m−1+ δm′,m+1

}
(Y	′m′, 	2 Y	m)= i

2
δ	′	

√
	(	+1)−mm′

{
δm′,m−1− δm′,m+1

}
(Y	′m′, 	3 Y	m)= m δ	′	δm′m .
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Exchanging the quantum numbers 	′m′ ↔ 	m exchanges the two terms
in the curly brackets of 	1 and 	2. The former matrix is real and, hence,
symmetric, the latter is pure imaginary. With this change of sign its ad-
joint is seen to be equal to the original matrix. The matrix describing 	3
is diagonal and real. (Note that these formulae are taken from Sect. 1.9.1
and, specifically, from (1.122).)

Example 3.10
The three Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3.22)

provide examples of operators acting on elements of a Hilbert (sub-)
space with dimension 2. They are used in the description of the rota-
tion group in quantum mechanics and, in particular, of particles with
spin 1/2. All three matrices (3.22) are hermitean, σ†i = σi . Their eigen-
values are 1 and −1. The corresponding eigenfunctions are easily
determined. Choose the eigenvectors (1, 0)T and (0, 1)T of σ3 as the
basis, so that an arbitrary, normalized element of H reads

α

(
1
0

)
+β

(
0
1

)
with |α| 2+|β| 2 = 1 .

The states with α =±β and |α| = 1/
√

2 are eigenstates of σ1 and be-
long to the eigenvalues 1 and −1, respectively. Likewise, the states
with α=±iβ are the analogous eigenstates of σ2.

As was shown in Sect. 1.8 the operators which describe observables
belong to the class of self-adjoint operators. The following statements
apply to them:

Theorem 3.3 Eigenvalues and Eigenvectors of Observables

1. The eigenvalues of a self-adjoint operator are real.
2. Two eigenvectors which belong to different eigenvalues λ1 �= λ2

are orthogonal.

Proof
1. Let O f = λ f , where f is different from the null element. As the
squared norm ( f, f ) is different from zero the relations (3.21) allow to
conclude

λ= ( f,O f )

( f, f )
= (O f, f )

( f, f )
= ( f,O f )∗

( f, f )
= λ∗ .

2. Let O f1 = λ1 f1 and O f2 = λ2 f2. Then the chain of equations

λ1( f2, f1)= ( f2,O f1)= (O f2, f1)= λ2( f2, f1)

holds true. If λ1 �= λ2, the scalar product of f1 and f2 must vanish,
( f2, f1)= 0.
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The case where there is more than one eigenvector with a given
eigenvalue is dealt with in the following definition.

Definition 3.7 Eigenspace

The eigenvectors of a self-adjoint operator O which belong to the
same eigenvalue λ, are elements of a subspace Hλ of H , called
eigenspace for the eigenvalue λ. The dimension of this subspace is
equal to the degree of degeneracy of the eigenvalue λ.

Example 3.11
We remind the reader of two examples that were studied in Chap. 1:

1. The spectrum of the operator �2 is 	(	+1) where 	 runs through
the naturals and zero, {	} = (0, 1, 2, . . . ). Every fixed value 	 has
(2	+1)-fold degeneracy. The subspace H	 is spanned by the spher-
ical harmonics Y	m with the given 	 and with m in the set −	,−	+
1, . . . ,+	.

2. Except for the ground state, the eigenvalues of the energy of the
spherical oscillator are degenerate. The subspace with fixed en-
ergy (1.148) is spanned by the eigenfunctions for all triples of
eigenvalues (n, 	, m) which give this energy, i. e. for which 2n+	
has a fixed value and m has one of the values −	,−	+1, . . . ,+	.

3.3.2 Projection Operators

Operators which project onto subspaces Hλ of the kind considered
above, belong to a particularly important class of self-adjoint opera-
tors. As we shall see soon their physical interpretation is in terms of
“Yes–No” experiments, and they are essential in the general definition
of quantum states. Their importance for mathematics lies in the fact that
they allow for a rigorous description of the spectra of physically relevant
operators, even when these operators are not bounded.

For simplicity, we begin with the example of a Hilbert space spanned
by the eigenfunctions of an observable whose spectrum is purely dis-
crete. The notation is chosen such as to remind us of the examples of
the previous section, and with the aim of illustrating the new concepts
and definitions.

Definition 3.8 Projection Operator

If Hλ ⊂H is a subspace of Hilbert space of dimension K and if {ϕk},
k = 1, 2, . . . , K is an orthonormal system spanning Hλ, the projec-
tion of an arbitrary vector f ∈H into the subspace Hλ is defined by

Pλ f :=
K∑

k=1

ϕk(ϕk, f ) . (3.23)



33.3 Linear Operators on Hilbert Spaces 195

The relation to observables of importance for physics should be ob-
vious: The real number λ may be viewed as the degenerate eigenvalue
of an observable O whose degree of degeneracy is K . For example, the
operator P	 describes the projection onto the subspace H	 of fixed 	,
spanned by the eigenfunctions ϕk ≡ Y	m of 	3 with m =−	, . . . ,+	.
Note, however, that nothing prevents us from choosing other eigenfunc-
tions such as, for instance,

{ψm} = {eigenfunctions of �2, 	 fixed, and of 	α=	1 cosα+	2 sinα} ,
the definition (3.23) being independent of the specific choice of the
basis. Indeed and more generally, with ϕk =∑

m ψm(ψm, ϕk) one finds

Pλ f =
∑
m,m′

∑
k

ψm(ψm, ϕk)(ϕk, ψm′)(ψm′, f )=
∑

m

ψm(ψm, f ) .

Both sets of eigenfunctions are orthonormal and both span the same
space Hλ.

Using Dirac’s notation, the definition (3.23) takes the form

Pλ =
K∑

k=1

|ϕk〉 〈ϕk| =
K∑

k=1

|ψk〉 〈ψk|

which shows again that Pλ does not depend on the basis one has chosen.
Projection operators are self-adjoint. The square of a projection

operator equals the operator. One says that projection operators are
idempotent,

P†λ = Pλ (a) , P2
λ = Pλ (b) . (3.24)

These assertions are easily proven: (a): With two arbitrary vectors f
and g, and by definition (3.23) one calculates

(Pλg, f )=
∑

k

(ϕk, g)
∗(ϕk, f )=

∑
k

(g, ϕk)(ϕk, f )= (g, Pλ f ) .

(b): As the base functions ϕk are orthonormal, applying the projection
operator twice gives

Pλ(Pλ f )=
∑
k′,k
ϕk′(ϕk′, ϕk)(ϕk, f )=

∑
k′,k
ϕk′δk′k(ϕk, f )= Pλ f .

The second equation (3.24) tells us that Pλ has the only eigenvalues 0
and 1. Its physical interpretation is this: If one asks whether a state
f ∈H has components with eigenvalue λ of the observable (this is the
question whether there is a finite probability to find the eigenvalue λ in
a measurement) the answer is “Yes” if the eigenvalue is 1, and “No” if
the eigenvalue is 0.
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Matters become particularly simple in the case of finite dimensional
Hilbert spaces. Let us return to the Example 3.10 of Sect. 3.3.1. As one
easily convinces oneself, the operators

P+ = 1

2
(1l+σ3)=

(
1 0
0 0

)
, P− = 1

2
(1l−σ3)=

(
0 0
0 1

)
are projection operators. They fulfill P2+ = P+, P2− = P−, and project
onto mutually orthogonal subspaces, i. e. P+P− = 0 = P−P+, and
P++ P− = 1l. These operators project onto the two eigenvectors, re-
spectively, of the hermitean operator σ3.

3.3.3 Spectral Theory of Observables
A theorem of central importance in the theory of linear operators on
Hilbert space says that every self-adjoint operator can be represented
by means of its eigenvalues and of the projection operators which
project onto the corresponding subspaces. This representation is called
the spectral representation. It is uniquely defined and allows for a uni-
fied description of bounded and unbounded operators, of operators with
purely discrete spectra, with mixed spectra, and with purely continuous
spectra alike. As a detailed discussion of the theorems relevant for this
topic would go beyond the scope of this chapter, we restrict the discus-
sion to qualitative arguments and a few instructive examples.

The following example shows what the main questions are. Let A
be an operator with purely discrete spectrum {λi}. Every eigenvalue λi
defines a subspace Hi of H whose dimension equals the degree of de-
generacy of the eigenvalue one considers. Denoting the eigenfunctions
which belong to a given λi by ϕi,k, k = 1, . . . , Ki , the projection oper-
ator to Hi is given by

Pi =
Ki∑

k=1

ϕi,k(ϕi,k, • )≡
Ki∑

k=1

|i, k〉 〈i, k| ,

(the second form using the bracket notation). The subspaces Hi are
pairwise orthogonal. Hence, the sum of two projection operators Pi+ Pj
with i �= j is again a projection operator (reader please verify!). As the
eigenfunctions of A are complete, the sum of all subspaces equals the
identity on H ,

∞∑
i=1

Pi = 1l .

Thus, one has found a sort of partition of unity in H .
For a given state f ∈H one has

f =
∞∑

i=1

Pi f , A f =
∞∑

i=1

λi Pi f .
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This implies, in particular, that the expectation value of the operator A
in the state f can be expressed in terms of the spectrum of eigenvalues
of A and of the corresponding projection operators

〈A〉 f ≡ ( f, A f )=
∑

i

λi( f, Pi f )=
∑

i

λi( f, P2
i f )=

∑
i

λi ‖Pi f ‖ 2 .

In particular, calculating the expectation value of the unity in the state f
one has

( f, 1l f )= 1= ‖ f ‖ 2 =
∑

i

( f, Pi f )=
∑

i

‖Pi f ‖ 2 .

This formula is easy to interpret if one recalls its analogue in a finite
dimensional vector space: The square of the length of a vector equals
the sum of the squares of its orthogonal components.

The eigenvalues of operators A whose spectrum is pure discrete, can
be ordered, λ1 < λ2 < . . . . In all cases of relevance for physics this
spectrum is bounded from below, i. e. there is a smallest, finite eigen-
value. All Hamiltonians that we studied in Chap. 1 have this property.
This leads one to define a spectral family of projection operators by
also ordering the corresponding projection operators Pλi , and by taking
the sum of all projectors for which the corresponding eigenvalue λi is
smaller than or equal to a given real number,

E(µ) :=
∑

i,(λi≤µ)
Pi with µ ∈R . (3.25)

As the Pi project onto mutually orthogonal subspaces, the opera-
tor E(µ) is again a projection operator. Its expectation value in
a state f ∈H(

f, E(µ) f
)= ∑

i,(λi≤µ)
( f, Pi f )

is a real, monotonous, non decreasing function of the real variable µ. In
our example it is a step function because every time µ passes an eigen-
value λ j it increases by a finite amount (unless, by coincidence f has
no component in H j ).

There is a natural ordering relation for projection operators

Pj > Pi , if H j ⊃Hi .

It states that Pj is “bigger” than Pi if the subspace Hi onto which Pi
projects, is contained in H j as a genuine subspace. Indeed, for all
f ∈H one has ( f, Pj f )≥ ( f, Pi f ). The family defined in (3.25) for the
observable A has this property: E(µ′)≥ E(µ) holds whenever µ′ > µ.
Furthermore, one has always limε→0 E(µ+ ε) = E(µ), or, expressed
in words, in approaching the real number µ from above, E(µ+ ε)
goes over into the projection operator E(µ). For µ = −∞ one has
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E(−∞)= 0 because at this point the spectrum has not yet begun. On
the other hand, at µ=+∞ the full spectrum is exhausted and, there-
fore, E(+∞)= 1.

Though we still work here in the framework of the simple example
of an observable with discrete spectrum, it is plausible that these con-
cepts can be applied to more general cases of observables with mixed
or continuous spectra. Indeed, the properties introduced above are part
of the definition of a general spectral family:

Definition 3.9 Spectral Family

A spectral family is a set of projection operators E(µ) which depend
on a real variable µ and have the properties

E(µ′)≥ E(µ) for µ′ >µ
lim
ε→0+

E(µ+ε)= E(µ) , E(−∞)= 0 , E(+∞)= 1 .

The benefit of this concept for quantum theory is twofold: On the
one hand, it allows to define the spectrum of eigenvalues of an observ-
able in a way which is applicable equally well to the discrete case, to
the mixed case, and to the continuous case. This definition is:

Definition 3.10 Spectrum of Eigenvalues

The spectrum of eigenvalues is the set of all values for which the
spectral family is not constant.

Indeed, discrete eigenvalues are the points on the real axis where
the spectral family is discontinuous. A – possibly piecewise – continu-
ous spectrum occurs where E(µ) is a continuous function which is not
constant and does not decrease.

On the other hand, Definition 3.9 allows to write integrals over the
spectra of observables such that the three categories need no longer be
distinguished. The expectation value ( f, E(µ) f ) of E(µ) in the state
f ∈H is a function which is bounded but not necessarily continuous.
As µ increases, this function is either piecewise constant (this hap-
pens for µ between two successive discrete eigenvalues), or increases
monotonously (in the continuum). As it is confined to the interval be-
tween 0 and 1, it is bounded and, therefore, has the properties which are
needed in defining Stieltjes integrals such as, e. g.,

+∞∫
−∞

d( f, E(µ) f )= ‖ f ‖ 2 = 1 ,

+∞∫
−∞

d( f, E(µ) f )µ= ( f, A f )≡ 〈A〉 f .
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Remarks
I do not define this integral in any detail. Rather, I give two examples
which are directly related to the physical context and which illustrate
the calculus involving Stieltjes integrals.

1. Suppose the real function g(x) (which is meant to be the ana-
logue of ( f, E(µ) f )) is piecewise constant on the interval [a, b] of
the real axis. Suppose further that it is discontinuous in the points
c0 = a, c1, . . . , cp = b as sketched in Fig. 3.3, and that its value in
the interval (ck−1, ck) is g(x)= gk. Define the differences δ0 = g1−
g(a), δ1 = g2− g1, . . . , δp = g(b)− gp. Finally, let f(x) be a func-
tion which is continuous in the interval [a, b]. The Stieltjes integral
receives contributions only at the points where g(x) is discontinuous.
In our example it is given by

b∫
a

dg f(x)=
p∑

i=0

f(ci)δi .

2. Let f(x) and g(x) be continuous functions in [a, b], with g(x) also
differentiable. In principle the definition of the Stieltjes integral re-
quires a series of refinements of the partition of [a, b], and a proof
of the convergence of the result. In the first example a further refine-
ment of the interval’s partition would not be meaningful because it
is defined by the discontinuities of g(x), so that the result would not
change. However, if g(x) is continuous the partition can be refined
indefinitely. Then, by the mean-value theorem applied to the differ-
ences of the values of g, g(xk+1)−g(xk)= g′(ξk)(xk+1− xk), with ξk
an intermediate value between xk and xk+1, one arrives at the usual
Riemann integral,

b∫
a

dg(x) f(x)=
b∫

a

g′(x)dx f(x) .

5c

1g
2g

3g
4g 5g

)a(g

a 1c 2c 3c 4c 2pc − 1pc − pcb ==0c
x

g(x)
1pg −

pg g(b)

Fig. 3.3. A non-decreasing, piecewise
constant function g(x) in the interval
[a, b], (arbitrary example) whose Stielt-
jes integral is taken
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The results obtained above in terms of expectation values and
of integrals over expectation values, can be written symbolically∫ +∞
−∞ dE(µ) f = f and

∫ +∞
−∞ µdE(µ) f = A f or, even more abstractly,

in the form of equations for operators,

1l=
+∞∫
−∞

dE(µ) , A =
+∞∫
−∞

µ dE(µ) . (3.26)

This abstract formulation receives deeper significance in the light of an
important theorem in the theory of linear operators on Hilbert space:

Theorem 3.4 Spectral Theorem

Every self-adjoint operator (A,D) with D ⊂H admits a uniquely
defined spectral family (Definition 3.9), with

D =
⎧⎨⎩ f ∈H

∣∣∣∣∣∣
+∞∫
−∞

µ2 d( f, E(µ) f) <∞
⎫⎬⎭ ,

its action on vectors in the domain of definition being

A f =
+∞∫
−∞

µdE(µ) f with f ∈D .

Conversely, any operator which is defined by the integral over a spec-
tral family is self-adjoint.

3.3.4 Unitary Operators
A bounded linear operator A :H (1)→H (2) which maps a given Hilbert
space H (1) to itself or to another Hilbert space H (2) and which con-
serves the norm,

‖A f ‖H (2) = ‖ f ‖H (1) for all f ∈H (1) ,

is called an isometry.
As one realizes easily, A†A is the identity 1lH (1) on the initial

space H (1), while AA† is a projection operator on H (2): It projects
onto the range of A. If the range of A coincides with the entire image
space H (2) one calls the operator a unitary operator. As unitary opera-
tors are of great importance in quantum theory they are given a symbol
of their own, U . They are defined as follows:

Definition 3.11 Unitary Operator

A linear and bounded operator U :H (1)→H (2) which is isometric
and surjective, i. e. which conserves the norm and whose range is the
whole of H (2), is called unitary.
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Unitary operators have a number of properties that we summarize as
follows:

1. For any unitary operator U there is an inverse U−1 and an adjoint
operator U†, both of which are unitary and which fulfill U−1 =U†,
i. e. the adjoint is the inverse of U .

2. The products of U and its adjoint are the identities on the original
space and on the target space, respectively,

U†U = 1lH (1) , UU† = 1lH (2) .

3. If U :H (2)→H (3) and V :H (1)→H (2) are unitary, their product
(UV ) :H (1)→H (3) is unitary and one has

(UV )† = V †U† .

4. If the target space can be identified with the original space – this,
in fact, is the rule in quantum mechanics – and if ϕn is a countably
infinite basis of H , then every unitary operator U has a matrix repre-
sentation Unm = (ϕn,Uϕm). These matrices are unitary in the sense
known from linear algebra, i. e.

UU† =U†U = 1l or
∑

i

U∗imUin = δmn .

For the sake of illustration let us consider these properties in the
case where the two spaces in the Definition 3.11 can be identified. With
this definition and for any pair of elements f, g ∈H the scalar prod-
uct ( f, g) as well as the norms ‖ f ‖ and ‖ f −g‖ are invariant under the
mapping U ,

(U f,Ug)= ( f, g) , ‖U f ‖ = ‖ f ‖ , ‖U( f − g)‖ = ‖( f − g)‖ .
As the scalar product, by definition, is nondegenerate, this means that
different originals f �= g have different images f ′ =U f �= g′ =Ug. The
mapping U is surjective. Therefore, it has an inverse U−1 and one con-
cludes

(U f, g)= (U f,UU−1g)= ( f,U−1g) for all f, g ∈H .

This shows, indeed, that U−1 =U†. One also sees that (U†)† =U , and,
hence, that U is linear. Furthermore, the norm of a unitary operator
exists and has the value ‖U‖ = 1, cf. (3.19). Finally, one has

( f, (UV )g)= ( f,U(Vg))= (U† f, Vg)= (V †(U† f ), g)

= ((UV )† f, g) ,

which proves the property 3.
In a sense unitary operators are generalized rotations. Rotations in

the customary physical space are intimately interwoven with a group
of unitary transformations in Hilbert space. This will be clarified when
studying the rotation group in Chap. 4. Note that we came across a first
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example in Sect. 3.2.1: Rotations R3(α) about the 3-axis in R3 in-
duce unitary transformations U(α) which belong to a one-parameter
group. Indeed, we have U(α = 0) = 1l, U(α2)U(α1)= U(α1+α2) and
U−1(α)=U(−α)=U†(α). With due mathematical scrutiny one shows
that for any such unitary operator which can be deformed continuously
into the identity 1l there is a traceless, self-adjoint operator J such
that U can be written as the exponential series

U(α)= exp(−iαJ) with J† = J , tr J = 0 .

In analogy to the rotations in R3 the hermitean operator J is called gen-
erator of infinitesimal unitary transformations.

Example 3.12
The Pauli matrices (3.22) are distinguished by the fact that they are both
hermitean and unitary. Their trace is zero. Exponential series in (iασk)
are also unitary matrices. Examples are

eiφσ3 = 1l cosφ+ iσ3 sinφ =
(

eiφ 0
0 e−iφ

)
,

eiθσ2 = 1l cos θ+ iσ2 sin θ =
(

cos θ sin θ
− sin θ cos θ

)
.

Note that we have used the fact that all even powers of σk are equal to
the unit matrix, (σk)

2n = 1l, while for all odd powers (σk)
2n+1 = σk.

3.3.5 Time Evolution of Quantum Systems

A first important example of a unitary operator follows directly from
the time dependent Schrödinger equation (1.59). Assume, for simplicity,
that the Hamiltonian in

i�ψ̇(t, x)= Hψ(t, x)

is independent of time. Construct from it the operator

U(t, t0) := exp
(
− i

�
H(t− t0)

)
. (3.27)

This is a unitary operator which describes the time evolution of a quan-
tum state by a unitary mapping of the initial configuration ψ(t0, x) to
the field distribution ψ(t, x) at a time earlier or later than t0,

ψ(t, x)=U(t, t0)ψ(t0, x) . (3.28)

The operator (3.27) itself obeys the Schrödinger equation,

i�U̇(t, t0)= i�
d

dt
U(t, t0)= HU(t, t0) , (3.29)
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with initial condition U(t0, t0)= 1l. For an infinitesimal time difference
we have

ψ(t, x)≈ ψ(t0, x)+ dψ

dt

∣∣∣∣
t0

(t− t0)=
(

1l− i

�
H(t− t0)

)
ψ(t0, x) .

If the time difference (t− t0) is finite the evolution may be thought of as
very many successive infinitesimal steps, making use of Gauss’ formula
for the exponential function, viz.

lim
n→∞

(
1l− i

�
H

t− t0
n

)n

= exp
(
− i

�
H(t− t0)

)
.

Remarks

1. The restriction to time independent Hamiltonians is not really es-
sential. When the Hamiltonian H depends on time the Schrödinger
equation i�U̇ = HU applies as before, and the evolution is still
described by (3.28). However, the evolution operator no longer is
a simple exponential series. It satisfies the integral equation

U(t, t0)= 1l− i

�

t∫
t0

dt′H(t′)U(t′, t0) , with U(t0, t0)= 1l ,

(3.30)

which is equivalent to (3.29) and which may be solved by an itera-
tive procedure.

2. It is well-known from mechanics that the Hamiltonian function can
be interpreted as the generator for infinitesimal canonical transfor-
mations which “boosts” the system along its physical orbit. The
construction (3.27) and the formula (3.28) show that the Hamiltonian
operator of quantum mechanics has a similar interpretation: It boosts
the wave function locally.

3.4 Quantum States
Having prepared the ground by assembling the necessary mathemati-
cal tools we can now tackle some questions of central importance for
physics: the preparation and detection of quantum states in experiment.
We have learnt that states of quantum mechanical systems bear wave
properties and, hence, that they can exhibit interference phenomena.
Let us first recall what we know about wave phenomena in classical
physics. In describing classical waves one distinguishes coherent and
incoherent situations. Electromagnetic radiation, i. e. visible light, laser
beams, radio waves or the like, is realized in rather different forms. For
instance, light may be fully polarized, or partially polarized, or not po-
larized at all, depending on how it was prepared. There is polarization if
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the wave contains only one polarization component, or if there are fixed
phase relations between different components. In turn, if there is no po-
larization, this means that the components are incoherent, i. e. have no
phase correlation at all.

3.4.1 Preparation of States

Quantum mechanics has many similarities to classical wave theory.
There are states which are capable of interference without restriction,
and, hence, which exhibit the constructive and destructive interference
phenomena which are typical for quantum theory. Every state of this
kind spans a one-dimensional subspace of Hilbert space. A state of this
kind is fixed up to a constant phase and is described by the equivalence
class of wave functions{

eiσψ
}
, σ ∈R

which form a unit ray. This phase degree of freedom is taken care
of automatically if one uses the projector onto the corresponding one-
dimensional subspace,

Pψ = ψ(ψ, •)≡ |ψ〉 〈ψ| .
The expectation value of an observable O in a fully interfering state is
calculated as described in Chap. 1. Assume O to be bounded and as-
sume ϕn to be an orthonormal base system that spans H . Then

(ψ,Oψ)=
(
ψ,O

∞∑
n=1

ϕn(ϕn, ψ)

)
=
∞∑

n=1

(ϕn, ψ)(ψ,Oϕn)

=
∞∑

n=1

(ϕn, PψOϕn)= tr(PψO) . (3.31)

The sum over n converges absolutely for bounded operators O. In the
case of unbounded operators one recurs to the spectral family (3.25) of
the operator O, see also (3.26), and defines the Stieltjes Integral

tr(PψO) :=
∫
µd tr(PψE(µ)) . (3.32)

Now, let A be another observable which describes a simple, idealized
“source” and let α be one of its eigenvalues. The state ψ is created
through a measurement of A by fixing the eigenvalue α. As before,
Sect. 3.3.2, the projection operator to the subspace with fixed eigen-
value α of A is denoted by Pα. Then the following alternatives must
be considered:
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1. The eigenvalue α is not degenerate. In this case Pψ = Pα, the state ψ
is equal to the eigenstate ϕα of A, modulo constant phases, which
belongs to α.

2. The eigenvalue α is degenerate, its degree of degeneracy is Kα. The
corresponding subspace Hα has dimension Kα, it is spanned by the
eigenfunctions{ϕαi , i = 1, . . . , Kα} (or any other unitarily equivalent
base system). The state ψ, or, for that matter, Pψ is prepared by
a measurement of A and by sorting out the eigenvalue α. But how
is it to be described?

One might be tempted to try the ansatz

Pψ = Pχ with χ = ϕα j or χ =
Kα∑
i=1

ϕαi ci ,

where ci are complex numbers fulfilling the normalization condition∑
i |ci |2 = 1. Yet, as one verifies immediately, this approach cannot

be correct: The state described by Pχ contains components with well-
defined phase relations and, hence, is apt to interferences without
restriction. Apparently it contains more information than what was pre-
pared by the measurement.

An example may be helpful in illustrating this point. Suppose that
we had developed an apparatus which allows to measure the eigenvalue
	(	+1) of the squared orbital angular momentum and that we had ap-
plied a filter which is transparent only for the eigenvalue 	= 1. Thus,
this source prepares a state which is known to lie in the subspace H	=1
but about which nothing else is known. Every coherent superposition
of the base states Y1m , χ =∑

Y1mcm , would contain information about
the spatial orientation of angular momentum. For example, a state χ
with c+1 = 1/

√
2, c0 = 0, and c−1 =−1/

√
2 would also be eigenstate

of 	1 with eigenvalue µ= 0, (Cf. the Example 1.10 in Sect. 1.9.1), even
though we did not impose this additional information. Similarly, a state

χ = 1√
N

∑
m=−1,0,+1

Y1mcm , N = |c−1| 2+|c0| 2+|c+1| 2 ,

where we choose |c−1| = |c0| = |c+1|, would contain the following
phase-dependent information about the expectation values of the com-
ponents 	1, 	2, and 	3

〈	3〉 χ = 1

N
(|c+1| 2−|c−1| 2)= 0 ,〈

	1/2
〉
χ =
√

2

N
Re / Im(c∗+1c0+ c∗0c−1) .

This contradicts our intuition. If we set out to prepare a state which
carries the quantum number 	 = 1 but for which all directions are
equivalent, then the expectation values of all three components must be
equal and, in fact, equal to zero!3

3 The formulae of this example are
written in such a way that one can
easily specialize to the eigenfunctions
of 	1 or 	2, and check that they yield
the correct eigenvalues.
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This example suggests the solution of our problem: If, indeed, no
more than the information “α” is available about the prepared state, it
must be described by an incoherent statistical mixture of components,
in much the same way as in classical, unquantized physics. This means,
that to every substate ϕαi we must associate a real, positive-semidefinite
weight wi such that

0≤wi ≤ 1 ,
Kα∑
i=1

wi = 1 . (3.33)

The real number wi is the probability that a given particle is found in
the state ϕαi , or, more precisely, in the unit ray Pαi = |ϕαi〉〈ϕαi |. These
classical probabilities do not interfere. The expectation value of an ob-
servable O in a state described in this fashion, is given by

〈O〉 ψ =
Kα∑
i=1

wi(ϕαi ,Oϕαi) . (3.34)

The actual values of the weights wi depends on the history of the quan-
tum state that was sent through the filter “A” – an important aspect that
will be taken up further below.

Let us return once more to the example studied above in which
the filter generated the value 	= 1. If there are reasons to assume that
in the so-prepared state all directions are equivalent then the weight
factors w+1, w0, and w−1 must be equal for all three substates and,
by the normalization (3.33), must have the value 1/3. The expecta-
tion value (3.34) then is 〈O〉ψ =∑

m(Y1m,OY1m)/3. Indeed, with this
choice the expectation values of all components 	k are equal to zero

〈	1〉 ψ = 〈	2〉 ψ = 〈	3〉 ψ = 0 .

In the case of 	1 and 	2 this follows from the formulae Sect. 1.9.1, in
the case 	3 the contributions of m =+1 and of m =−1 cancel.

We summarize once more the previous, still preliminary results.
A quantum state is sent through the “A”-filter which identifies the
eigenvalue α of A and which is transparent only for components which
have this property. We define the operator

W :=
∑

i

wi Pαi with 0≤wi ≤ 1 ,
∑

i

wi = 1 . (3.35)

The weight wi which is real and positive-semidefinite, represents
a classical probability (not dependent on any interferences) to find the
substate with quantum numbers (α, i) in a subsequent measurement. Its
value depends on the nature of the state before the preparing measure-
ment α. The operator W is called statistical operator. It provides the
most general description of a quantum state. In case only one single
weight is different from zero and, by the normalization (3.35), is equal
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to 1, say wk = 1, wi = 0 for all i �= k, the state is fully susceptible to in-
terference. For that reason, it is called a pure state. Examples for pure
states are provided by the wave functions derived in Chap. 1 which were
normalizable solutions of the Schrödinger equation. In turn, if at least
two weights, say wk and w j , are different from zero then the state can
exhibit interferences only within the components (α, k) and (α, j), re-
spectively, but not between these two. A state of this kind is called
mixed state, or mixed ensemble. In either case the expectation value of
an observable O, in the state described by the statistical operator W , is
given by the trace of the product of O and W ,

〈O〉 = tr(OW) , 〈1l〉 = tr(1l W)= tr W = 1 .

The second formula expresses the normalization of the state.

3.4.2 Statistical Operator and Density Matrix
The concept of state elaborated by the arguments and the examples of
the previous section is made more precise by the following postulate:

Postulate 3.1 Description of Quantum States

A quantum state is described by a statistical operator W . This op-
erator is a convex linear combination of projection operators with
real, nonnegative coefficients. It is self-adjoint and is normalized to 1,
i. e. fulfills the condition tr W = 1. The outcome of measurements of
physical observables O are described by the expectation value

〈O〉 = tr(WO) . (3.36)

The trace of its square W2 contains the information whether the
state is a pure state or a mixed ensemble. If tr W2 = tr W = 1 the
state is a pure state; if tr W2 < tr W and, hence, tr W2 < 1 the state
is a mixed state.

Remarks

1. Recall that the trace of an operator is calculated as exemplified
by (3.31), (3.32), and (3.34).

2. The convex sum of N objects Oi is defined by

N∑
i=1

wiOi , with
N∑

i=1

wi = 1 .

It is a weighted sum with positive-semidefinite factors 0�wi � 1.

It would be worth a more precise mathematical analysis how to
calculate such traces, if they exist, and to justify that if tr W2 < 1
there is no pure state. Both questions will become intuitively clear
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when we study a matrix representation of W , instead of the opera-
tor itself. Let B be a self-adjoint operator which is defined on the
given Hilbert space and whose spectrum is fully discrete. Its eigenfunc-
tions ψm provide a basis of H , which means that we can go over to
the “B”-representation of the statistical operator W , in the spirit of rep-
resentation theory (Sect. 3.1),

�mn = (ψm,Wψn) . (3.37)

The matrix � obtained in this way is called density matrix. Its properties
are summarized in the following definition.

Definition 3.12 Density matrix

The density matrix is a matrix representation of the statistical opera-
tor in an arbitrary basis of Hilbert space. Its properties are:

1. It is hermitean �† = �, its eigencalues are real, positive-semidefinite
numbers between 0 and 1, 0≤w j ≤ 1, i. e. � is a positive matrix.

2. It obeys the invariant inequality

0< tr �2 ≤ tr �= 1 . (3.38)

3. It serves to characterize the quantum state by the following crite-
ria:

1. If tr �2 = tr �= 1 the state is a pure state,
2. if tr �2 < tr �= 1 the state is a mixed state.

4. Expectation values of an observable O, in the B-representation,
are given by the trace of the product of � and the matrix repre-
sentation Opq of the observable,

〈O〉 = tr(�O)=
∑
m,n

Omn�nm . (3.39)

Let us return to the preparing measurement via the eigenvalue α of A
and let us expand the states ϕαi in terms of the eigenstates of B,

ϕαi =
∑

m

ψmc(αi)
m

where c(αi)
m = (ψm, ϕαi). We then find

�mn =
∑

i

wi(ψm, Pαiψn)=
∑

i

wi(ψm, ϕαi)(ϕαi, ψn)

=
∑

i

wi c(αi)
m c(αi) ∗

n .

Taking the trace gives

tr �=
∑

i

wi

∑
m

∣∣∣c(αi)
m

∣∣∣ 2 =
∑

i

wi = 1 ,
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while the trace of the square gives

tr �2 =
∑
i,k

wiwk

∑
mn

c(αi)
m c(αi) ∗

n c(αk)
n c(αk) ∗

m

=
∑
i,k

wiwkδαi,αk =
∑

i

w2
i ≤

∑
i

wi = 1 .

If the basis ψm is chosen to coincide with that of the eigenfunctions ϕβ j
of the “filter” A, then �, though an infinite dimensional matrix, has
nonvanishing entries only in the subspace H (α) which pertains to the
eigenvalue α. In this subspace it is diagonal and has the explicit form
�= diag

(
w1, w2, . . . , wKα

)
.

Example 3.13
In the two-dimensional Hilbert space spanned by the eigenvectors of σ3,
(3.22), define

�=
(
w+ 0
0 w−

)
= 1

2
(1l+Pσ3) ,

with w++w− = 1 and P := w+−w− so that the number P lies be-
tween −1 and 1. The trace of � equals 1 while the trace of �2 equals
(1+ P2)/2. Indeed,

�2 = 1

2

(
1

2
(1+ P2) 1l+Pσ3

)
,

whose trace receives a factor 2 from the unit matrix, while tr σ3 = 0. If
P =±1 the density matrix describes pure states, if |P|< 1 it describes
mixed ensembles. In particular, if P = 0 the weights of the two base
states are equal.

Consider now the observable O := σ3/2 (in Chap. 4 we will learn
that it represents the 3-component of spin of a spin-1/2 particle). Its ex-
pectation value in the state defined by � follows from tr(�σ3)=w+−w−
= P. The states with (w+ = 1, w− = 0) and (w+ = 0, w− = 1) are pure
states. The first of these describes particles which are fully polarized
in the positive 3-direction, the second describes particles polarized in
the negative 3-direction. A state for which both weights are different
from zero describes a particle beam with partial polarization. In the
special case w+ = w− and, hence, P = 0, this beam is unpolarized. In
a measurement of the observable O the probabilities to find the eigen-
values +1/2 or −1/2 are the same.

At this point it may be useful to return for a while to the dis-
cussion of classical probabilities with positive semi-definite weights in
Sect. 1.2.1, and to note the differences to the quantum case. As we have
learnt how to calculate the expectation values in the components of
a statistical ensemble the questions posed towards the end of Sect. 1.2.2
now are answered.
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3.4.3 Dependence of a State on Its History
In Sect. 3.4.1 we left the question unanswered of how to obtain the
weights wi which determine the incoherent mixture of eigenstates with
quantum numbers α of the “filter” A. The answer to this question which
is worked out in this section, leads to new aspects which may be sur-
prising but are typical for quantum theory.

Of course, before its preparation by means of the observable A, the
system is in a quantum state that may be a pure or a mixed state. In
order to cover the most general case we assign a statistical operator W (i)

to the inital state (“i” for initial) which satisfies the Postulate 3.1. We
send this state through the filter α, as described in the two preceding
sections, i. e. by shielding all eigenvalues different from α, and construct
the statistical operator W ( f ) (“ f ” for final) which describes the prepared
state. Let

Pα :=
Kα∑
i=1

Pαi

be the projection operator to the subspace Hα which corresponds to the
possibly degenerate eigenvalue α of A. With these definitions and nota-
tions the relation between the statistical operators before and after the
preparing measurement is given by

W ( f ) = PαW (i)Pα/ tr(PαW (i)Pα) . (3.40)

The numerator of this formula contains the projection Pα to the sub-
space Hα, to the right and to the left of W (i). The denominator is a real
number which is chosen such that W ( f ) is normalized. The following
arguments show that (3.40) does indeed describe the desired prepara-
tion:

1. The product PαW (i)Pα is a self-adjoint operator on H , its trace
is real and positive. Therefore, the operator W ( f ) is self-adjoint.
As for all eigenvalues β of A which are different from α, one
has W ( f )Pβ = 0, its action is different from zero only in the sub-
space Hα. For states in Hα, on the other hand, we have

W ( f )ϕα j = N
Kα∑

k=1

ϕαk(ϕαk,W (i)ϕα j)

where the normalization factor

N = 1

tr(PαW (i)Pα)
= 1∑Kα

k=1(ϕαk,W (i)ϕαk)

is real and positive.
2. Let χm =∑Kα

i=1 ϕαic
(m)
i be an arbitrary element of Hα, Pχm the cor-

responding projection operator. The probability to find the system in
this state, is given by tr(W (i)Pχm ) before, by tr(W ( f )Pχm ) after the
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preparation. Since the preparation fixes only the eigenvalue α but no
further property, these two probabilities must be proportional, with
a constant of proportionality which is independent of the element χm
that was chosen. In other terms, for all χm, χn ∈Hα the condition

tr(W (i)Pχm )

tr(W (i)Pχn )
= tr(W ( f )Pχm )

tr(W ( f )Pχn )

must be fulfilled.
3. The eigenvalues and eigenvectors of W ( f ) are obtained by diag-

onalizing the matrix (ϕαk,W (i)ϕα j), and by multiplying the result
by the normalization factor N . For every element χ ∈Hα one has
(χ,W ( f )χ)= N(χ,W (i)χ)≥ 0. Thus, the requirement 2 is fulfilled.
This last equation says also that W ( f ) is positive, i. e. that its
eigenvalues, the weights w( f )

j , are positive semi-definite. Finally, as

tr W ( f ) = 1, the sum of the weights is one,
∑Kα

j=1w
( f )
j = 1.

The formula (3.40) ist best illustrated by some examples. It allows
for various possibilities of preparing quantum states:

1. A state that was pure before the preparation may remain to be a pure
state. This happens, for example if the initial state is an eigenstate
of A, i. e. if W (i) = Pβk. The filter “α” either confirms this state, or
gives zero,

W ( f ) = δαβW (i) .

2. Filtering an initially mixed state may produce a pure state. For in-
stance, the filter could choose from W (i) =∑

µ wµPµ the specific
state with quantum numbers (µk) in Hµ.

3. Conversely, a pure state can be turned into a mixed ensemble. Qual-
itatively speaking, this will happen if one does measure the filter
observable A, that is to say, if one records the measured eigenvalue
for each individual event, but allows part or all of the spectrum to
go through the filter.
For this purpose consider two observables E and F which, for
simplicity, are assumed to have discrete spectra, but which do not
commute. The eigenfunctions of E are denoted by ϕµ ≡ |µ〉, those
of F by ψa ≡ |a〉. Let the observable F be the filter, and let this
filter be exposed to the pure state W (i) = Pµ, eigenstate of E. As
[E, F] �= 0, the operators E and F have no common eigenfunctions.
Decomposing the given eigenstate of E in terms of eigenfunctions
of F, one has

Pµ ≡ |µ〉 〈µ| =
∑
a a′

c(µ)a c(µ) ∗a′ |a〉
〈
a′
∣∣ .

The preparation filter F is designed such that it selects a subset ∆ of
eigenvalues of F without actually measuring the eigenvalue for each
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individual event. This means that on the right-hand side of the for-
mula (3.40) we must insert the projection operator P∆ =∑

a∈∆ Pa.
One then calculates

W ( f ) = P∆W (i)P∆
tr(P∆W (i)P∆)

= 1

tr(P∆W (i)P∆)

∑
a∈∆

∑
a′∈∆
|a〉

∑
b,b′

c(µ)b c(µ) ∗b′ 〈a|b〉 〈b′|a′〉
〈
a′
∣∣

= 1∑
a∈∆ |c(µ)a |2

∑
b,b′∈∆

|b〉 c(µ)b c(µ) ∗b′
〈
b′
∣∣ . (3.41)

The state prepared in this manner still has fixed phase relations.
Hence, like the initial state, it is a pure state. This is confirmed by
verifying that the trace of W ( f ) 2 is equal to 1,

tr W ( f ) 2 =
∞∑

d=1

〈d|W ( f ) 2 |d〉

= 1(∑
a∈∆ |c(µ)a |2

)2

∑
b∈∆

∣∣∣c(µ)b

∣∣∣ 2
∑
b′∈∆

∣∣cµb′∣∣ 2 = 1 .

In turn, if the preparation is designed such that the eigenvalues of
the filter F are measured, one by one, and all those which do not
fall in the interval ∆ are rejected, then (3.41) must be replaced by

W ( f ) = 1∑
a∈∆ |c(µ)a |2

∑
b∈∆
|b〉

∣∣∣c(µ)b

∣∣∣ 2 〈b| . (3.42)

This is a statistical mixture because
∑

b∈∆ |c(µ)b |4 < (
∑

a∈∆ |c(µ)a |2)2
and, therefore, the trace tr W ( f ) 2 < 1 is smaller than one. By the
measurement of F all phase relations are destroyed, the states b ∈∆
are contained in the final state with the real weights

wb = |c(µ)b |2∑
a∈∆ |c(µ)a |2

, b ∈∆ .

We meet here a characteristic property of quantum mechanics which
seems very peculiar from a classical viewpoint: If in the preparation
process the actual values of the filter observable F are recorded, then
all phase correlations are lost, and the new, final state is a mixed
ensemble. In either case, (3.41) and (3.42), at least some informa-
tion on the state before the preparation is conserved. In the first case,
through the expansion coefficients c(µ)b with b ∈∆, in the second
case through the relative weights wb. The case where only one single
eigenstate of F goes through, all others being rejected, is an ex-
ception. In this case W ( f ) = Pb, all information on the state of the
system before the preparation measurement is lost. That nature does
indeed work in this way is confirmed by experiment.
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3.4.4 Examples for Preparation of States

Assuming the observables E and F to have discrete spectra is no serious
restriction and we drop this assumption in what follows. We study two
examples in which the initial state is an eigenstate of p, the momentum
operator,

|µ〉 ≡ |p〉 = 1

(2π�)3/2
eip·x/� .

The “filter”, i. e. the observable serving the purpose of preparation is
taken to be F = �2. These observables do not commute. However, we
know from Sect. 1.9.3 how to relate the eigenfunctions of p with those
of �2, cf. (1.136).

Example 3.14
Let the filter F be set up such that only one single eigenvalue 	(	+1) is
accepted but the corresponding m-values are not discriminated. Before
preparation we have

W (i) = Pp = |p〉 〈p| =
∑
	′m′

∑
	′′m′′

d	′m′d
∗
	′′m′′

∣∣	′m′〉 〈	′′m′′∣∣ ,
where the coefficients are obtained from (1.136)

d	m = 4π

(2π�)3/2
i	 j	(kr)Y∗	m (̂p) with k = 1

�
|p| .

We must insert Pα ≡ P	 =∑	
m=−	 |	m〉〈	m| in the formula (3.40) for

the operator W ( f ). Then, calculating W ( f ) as in (3.41) one finds

W ( f ) = 1∑
m |d	m |2

	∑
m,m′=−	

d	md∗	m′ |	m〉
〈
	m′

∣∣ .
Of course, we already know that this still is a pure state. However, it

is instructive to confirm this in the present example in another, more di-
rect way. If the 3-direction is taken along p, p= pê3, only partial waves
with m = 0 contribute,

Y	m (̂p)= Y	m(θ = 0, φ)=
√

2	+1

4π
δm0 .

In this case we find W ( f ) = |	 0〉〈	 0| which obviously describes a pure
state.

Example 3.15
Choose the 3-direction to be along the direction of the momentum,
p= pê3. Assume that the filter records the values of 	 but does not
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shield any of them. When all values of 	 are collected in this way we
have, like in (3.42),

W ( f ) = 1∑∞
	=0 |d	 0|2

∞∑
	=0

|d	 0| 2 |	 0〉 〈	 0| with

|d	 0| 2 = 4π

(2π�)3
(2	+1) j2

	 (kr) .

It is illuminating to analyze these formulae more closely, by mak-
ing use of known properties of Bessel functions. First one notes that∑∞

0 (2	+1) j2
	 (kr)= 1, cf. [Abramowitz and Stegun (1965)] (10.1.50),

and, hence, that

W ( f ) =
∞∑
	=0

(2	+1) j2
	 (kr) |	 0〉 〈	 0| ≡

∞∑
	=0

w	 |	 0〉 〈	 0| .

Let us fix the product (kr) and ask where w	 assumes a maximum,
as a function of 	. For values of 	 which are not too small, the for-
mula (10.1.59) of [Abramowitz and Stegun (1965)] yields the answer:
The first maximum of j2

	 (z), and, hence, of w	, occurs at z ≈ (	+1/2).
Thus, we recover in an approximate way the classical relation between
the modulus of the orbital angular momentum and the impact parameter

pr = �kr(= 	cl)≈ �
(
	+ 1

2

)
.

This is the relation that we found in Sect. 1.9.3 in the analysis of free
solutions of the radial Schrödinger equation.

3.5 A First Summary

At this point of the development we established a good deal of the
foundations on which quantum theory rests. Before turning to further
important applications it seems appropriate to halt for a while, and to
summarize some of the essential features which are typical for quan-
tum theory. I do this by means of a list of key concepts, each of which
is accompanied by a short abstract.

Observables: By definition, observables describe measurable, hence
classical variables. To every observable there corresponds a uniquely
defined, self-adjoint operator. These operators are defined on Hilbert
space, or parts thereof, whose elements are used to describe states of
physical systems. Their eigenvalues which are real, correspond to the
set of values that one will find in individual measurements.
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Quantization: In most cases, canonical mechanics serves as a model
for the quantization of classical observables. One postulates Heisen-
berg commutators for pairs of canonically conjugate variables. The
prime example are the commutators (3.8) for coordinates and mo-
menta.
An alternative is provided by path integral quantization to which we
turn in Sect. 3.7.
States: In the most general case a quantum state is described by
a statistical operator (3.35), expectation values of observables in this
state being given by (3.36). An equivalent description is provided by
the density matrix, Definition 3.12, which is a matrix representation
of the statistical operator. The criterion (3.38) serves the purpose of
distinguishing between pure and mixed states. Quantum mechanics
makes quantitative predictions only for ensembles, i. e. either for very
many, identically prepared, systems, or for a very large number of
measurements on a single system which is always prepared in exactly
the same way.
Preparation measurements: The statistical operator is fixed by a
“filter”, i. e. by way of measuring an observable and by a choice of its
eigenvalues. The relation between the initial state, described by W (i),
and the final state prepared by the filter and described by the statis-
tical operator W ( f), is given by the formula (3.40). If the projection
operator Pα in (3.40) projects onto a one-dimensional subspace, the
prepared state is a pure state. However, while information on this
state is optimal, any knowledge on the state before preparation gets
lost. Only if the prepared state is a mixed ensemble does it still con-
tain (though only partial) information on its past.
Time Evolution: The evolution of a quantum system is deter-
mined by its Hamiltonian H . In classical mechanics the Hamiltonian
function is the generating function for those infinitesimal canoni-
cal transformations which boost the system along its physical orbits.
The quantum Hamiltonian, in turn, determines the evolution map-
ping U(t, t0) which transports the initial distribution of a Schrödinger
field at time t0 to its present form at time t. The operator U(t, t0)
is a solution of the Schrödinger equation in the form of (3.29), or,
equivalently, of the integral equation (3.30). The time dependence of
the expectation values of an observable O is given by the follow-
ing prescription. If W denotes the statistical operator which describes
a state prepared at time t0 then, as time goes by, this state evolves
under the influence of the Hamiltonian H in such a way that meas-
urements of the observable O, at times t �= t0, are given by

〈O〉 t = tr[U(t, t0)WU(t, t0)
†O] . (3.43)
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Remarks
The experience gained in Chap. 1 and Chap. 2 shows that this set of pos-
tulates is sufficient for treating a number of important applications of
quantum mechanics. Yet, two important questions remain unanswered:

The first of these is about the completeness of the description. What
we have in mind here is that we do not know yet how many, mutually
commuting observables are needed to describe a given physical system.
In other words, this is the question how many commuting observables
must be known to define a pure state such as a beam of identically pre-
pared electrons. The answer is given by still another postulate that we
will be able to state only after having developed the description of the
spin of particles.

The second question concerns states of many identical, hence in-
distinguishable, particles. The answer to this question is contained in
a fundamental relation between the nature of the spin, integer or half-
integer, of a particle, and the symmetry of many particle wave functions
under permutations of identical particles. It will be seen later that in
our four-dimensional world there is only the alternative of Bose-Einstein
statistics for particles with integer spin, or Fermi-Dirac statistics for par-
ticles with half-integer spin. This is the content of the spin-statistics
theorem, first derived by Fierz and by Pauli, to which we return later
in this book (cf. Sect. 4.3.4 and Part Two).

3.6 Schrödinger and Heisenberg Pictures
From all examples studied up to this point we are used to see the time
evolution of a quantum system in its wave function that obeys the time
dependent Schrödinger equation. Observables O, in contrast, seem to
be fixed by the quantization procedure once and forever and, therefore,
seem to be independent of time. This is in accord with classical physics:
the system moves, as time goes on, but observables are defined by appa-
ratus which is static. If we analyze the quantum mechanical description
more closely we discover that this view of matters is only one of several
possibilities.

Measurable, hence, testable information is contained solely in expec-
tation values. These, however, are calculated by means of the general
formula (3.43). Now, if the trace in (3.43) exists, it is cyclic in the fac-
tors of its arguments. For example, we could write

tr
{[

U(t, t0)WU(t, t0)
†
]

O
}
= tr

{
W

[
U(t, t0)

†OU(t, t0)
]}
.

Here, I inserted square brackets in view of the following considerations.
The description of the state discussed above is equivalent to defining

the product

Wt := [U(t, t0)WU(t, t0)
†] (Schrödinger picture) (3.44)
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to be the statistical operator which represents the system at time t.
Whenever one decides to shift the entire time dependence into the wave
function, or, more generally, the statistical operator, one says one is
using the Schrödinger picture.

It is equally well possible to “distribute” the evolution operator and
its hermitean conjugate in such a way that we define

[U(t, t0)†OU(t, t0)] =:Ot (Heisenberg picture) . (3.45)

While the statistical operator (or the wave function) now is independent
of time, the time evolution is contained in the operator Ot . The mea-
surable quantities proper remain unchanged by this new definition. If
one shifts the entire time dependence to the operators which represent
physical observables, one says one is working in the Heisenberg picture.

The Schrödinger equation which describes the time evolution, takes
a somewhat different form in the two pictures. As one easily verifies,
using the Schrödinger picture it reads

Ẇt =− i

�
[H,Wt] , (3.46)

while, when using the Heisenberg picture it becomes

Ȯt = i

�
[H,Ot] . (3.47)

Note the characteristic change of sign in these equations. The differen-
tial equation (3.47) holds for operators in the Heisenberg picture and is
called Heisenberg equation of motion. Note its analogy to the equation

d

dt
f(q, p)= {H, f(q, p)} ,

in classical, canonical mechanics which expresses the change in time of
a dynamical quantity defined on phase space, by the Poisson bracket
of the Hamiltonian function and the observable, cf. [Scheck (2005)]
(2.128). For example, using an “energy representation”, i. e. the A-
representation in the sense of Sect. 3.1, with A a Hamiltonian with
a fully discrete spectrum, one has

(ϕn,Otϕm)= e−i/� (Em−En)t(ϕn,O0ϕm) .

This yields a matrix representation with typical harmonic time depen-
dence in the transition frequencies

ωmn = Em− En

�
.

It was this description that Heisenberg made use of in developing his
matrix mechanics.

Further Comments: Only expectation values are observable and,
hence, physically relevant. Therefore, we have the freedom to read the
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formula (3.43) in still another way. Suppose the Hamiltonian that de-
scribes a given system is the sum of a time-independent part H0 and
an additional term H ′ which explicitly depends on time, H = H0+H ′.
Both operators, H0 and H ′, are self-adjoint. Inserting the identity

1l= e−iH0t/� eiH0t/�

in two positions, and making use of the cyclic property of the trace, one
has

〈O〉 t = tr
(

eiH0t/�U(t, t0)WU(t, t0)
† e−iH0t/� eiH0t/�O e−iH0t/�

)
.

Define then the modified evolution operator

U(int)(t, t0) := exp
( i

�
H0t

)
U(t, t0) ,

and the modified observable

O(int)
t := exp

( i

�
H0t

)
O exp

(
− i

�
H0t

)
.

These operators are seen to obey the differential equations

Ȯ(int)
t = i

�
[H0,O

(int)
t ] , and

i�U̇(int) = eiH0t/�(H−H0)e
−iH0t/�U(int) = H ′U(int) , (3.48)

respectively. The purely harmonic time dependence which is due to the
time independent operator H0, is shifted to the operators. The true time
dependence which is due to the operator H ′, is contained in the modi-
fied evolution operator. The formula (3.43) takes the form

〈O〉 t = tr(U(int)WU(int) †O(int)) . (3.49)

In many applications one takes H0 to describe an unperturbed, in some
cases solvable, system, while H ′ describes interactions and is often
interpreted as a perturbation. With this idea in mind one calls this rep-
resentation the interaction picture.

3.7 Path Integrals
There is an alternative to the canonical quantization described in Chap. 1
which is due to Dirac and to Feynman: quantization by path integrals.
Although this is not of central importance for nonrelativistic quantum
theory of point particles, it has become an important technique, over
the last decades, in covariant quantum field theory as well as in other
fields of physics. As its application to quantum field theory is subtle and
mathematically difficult to grasp, it is worthwhile to study the basic idea
and work out simple examples, in a first step, in the by now well-known
context of quantum mechanics.

We start with a few preliminaries.
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3.7.1 The Action in Classical Mechanics
Among the canonical transformations of classical mechanics the ones
generated by functions of the old coordinates and the new momenta,
viz.{

q, p, H(q, p, t)
}
→ S(q, P, t)→

{
Q, P, H̃(Q, P, t)

}
(3.50)

are the primary tool in deriving the Hamilton-Jacobi differential equa-
tion as well as in describing infinitesimal canonical transformations.
The relation between the old and new phase space description is given
by (with the notation q = (q1, q2, . . . , q f ), P = (P1.P2, . . . , Pf ) etc.,
f being the number of degrees of freedom),

Qi = ∂S

∂Pi
, pk = ∂S

∂qk
, H̃(Q, P, t)= H+ ∂S

∂t
(3.51)

Suppose the Hamilton-Jacobi differential equation

H̃(Q, P, t)= H(q, p= ∂S
∂q
, t)+ ∂S

∂t
= 0 (3.52)

is solved so that S becomes a function of the f coordinates q and f
integration constants α= (α1, . . . , α f ). Then the new momenta and co-
ordinates are given by

Pk = αk , Qi = ∂S(q, α, t)
∂αi

= const. =: βi ,

respectively, the latter of which is then solved for q = q(α, β, t).
Let us assume that the Legendre transformation exists which links

the Hamiltonian function to the Lagrangian, and let us calculate the total
time derivative of the generating function,

d S

d t
= ∂S
∂t
+

f∑
i=1

∂S

∂qi
q̇i =

[
−H(q, p, t)+

f∑
i=1

pi q̇i

]
pi=−∂H/∂qi

.

Eliminating the variables p on the right-hand side, by expressing them
in terms of q and q̇, transforms the expression in square brackets into
the Lagrangian, evaluated along solutions of the equations of motion.
Taking the integral with respect to time t then yields

S(q, α, t)=
t∫

t0

dt′ L(q, q̇, t′) . (3.53)

Note that the integrand is a function of solutions q = q(t) of the equa-
tions of motion and of their velocities q̇(t), so that the integral (3.53) is
what is called Hamilton’s principal function in mechanics. We shall call
it the action for short, in what follows. It should not be confused with
the action functional

I[q] =
t2∫

t1

dt L(q, q̇, t)
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which is at the heart of Hamilton’s variational principle. There q and q̇
are independent variables and I[q] is a functional, not a function of q(t)
and its derivative.

As an example consider the generating function

S(q,α, t)= α ·q− 1

2m
α2t+ c

which applies to the case of free motion of a particle with mass m in
three-dimensional space. The solutions to be inserted in S are

q(t)= β+ α

m
t ,

so that the function S and its time derivative are

S(q,α, t)= α2

2m
t+α ·β+ c ,

d S(q,α, t)
d t

= α · q̇− 1

2m
α2 = α2

2m
.

The Lagrangian being equal to L = (1/2)mq̇2 = α2/2m, the action
(3.53) is found to be

S(q,α, t)= α2

2m
(t− t0) .

The interpretation of the integration constants is obvious: α is the mo-
mentum of the particle, β its initial position in space.

3.7.2 The Action in Quantum Mechanics

In what follows the distinction between operators and their eigenvalues
is important. Therefore, for a while operators such as p=−i�∂/∂q are
underlined, while their eigenvalues in p|p〉 = p|p〉 are denoted by ordi-
nary Latin letters. (As no confusion will arise for the Hamiltonian, we
continue to write H for this operator, in order not to burden the no-
tation too much.) As an example consider the position operator in the
Heisenberg picture (3.47),

q
t
= e(i/�)Htq

0
e−(i/�)Ht

and, for the sake of clarity, denote its eigenvalue at time ti by qi , i. e.
q

ti
|qi〉 = qi |qi〉. Perform then the following calculation

q2q1 〈q2|q1〉 = 〈q2| q†t2q
t1
|q1〉

= 〈q2| e(i/�)Ht2q
0

e(i/�)H(t1−t2)q
0

e(−i/�)Ht1 |q1〉
= 〈q2(t2)| q0

e(i/�)H(t1−t2)q
0
|q1(t1)〉

= q2q1 〈q2(t2)| e(i/�)H(t1−t2) |q1(t1)〉 .
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Note that the first two lines deal with eigenstates in the Heisenberg pic-
ture while the last two contain Schrödinger states |q(t)〉. The conclusion
from this calculation is the relation

〈q2|q1〉 = 〈q2(t2)| e−(i/�)H(t2−t1) |q1(t1)〉 (3.54)

which shows that the Hamiltonian boosts from the position q1(t1) at
time t1 to the position q2(t2) assumed at time t2.

In fact, and more generally, this observation is not restricted to the
position operator and its eigenfunctions. For instance, let

H = p2

2m
+U(q) (3.55)

be a one-particle Hamiltonian, |a(t1)〉 and |b(t2)〉 two solutions of the
time dependent Schrödinger equation Hψ = (i/�)ψ̇ (not necessarily
stationary eigenstates of H). Then the transition amplitude of |a(t1)〉
into |b(t2)〉, under the influence of the Hamiltonian, is given by the gen-
eralization of (3.54),

〈b(t2)|a(t1)〉 = 〈b| e−(i/�)H(t2−t1) |a〉 . (3.56)

The idea of the method of path integrals is to divide the unitary “boost-
ing” of |a(t1)〉 from time t1 to time t2 into very many, but small steps
in time and to make use of the superposition principle of quantum
mechanics. In this way the system is allowed to evolve from an initial
configuration to a final configuration by means of a weighted sum over
all possible intermediate configurations. An example in one spatial di-
mension suffices to demonstrate the principle of the method. Thus, we
study the Hamiltonian (3.55) restricted to one variable q,

H = p2

2m
+U(q) . (3.57)

Let |q〉 and |p〉 be eigenstates of q and of p, respectively, both of which
are normalized in a distributional sense, viz.〈

q′
∣∣q〉= δ(q′ −q) ,

〈
p′
∣∣p
〉= δ(p′ − p) , with (3.58a)

〈q|p〉 = 1√
2π�

e(i/�)pq , 〈p|q〉 = 1√
2π�

e−(i/�)pq . (3.58b)

For an arbitrary (Heisenberg) state |a〉, and generalizing (3.58b) one
would define the amplitudes

a(q) := 〈q|a〉 , ã(p) := 〈p|a〉 , (3.58c)

and likewise for |b〉.
For a very small time lapse t2− t1 = ∆t the evolution operator

in (3.56) can be approximated as follows

e−(i/�)H∆t 	 e−(i/�)(p
2/2m)∆t e−(i/�)U(q)∆t . (3.59)
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Although eA+B �= eA eB, the correction terms to the approximation
(3.59), by the Campbell-Hausdorff formula

eA eB = eC(A,B) with

C(A, B)= A+ B+ 1

2
[A, B]

+ 1

12
[[A, B] , B]+ 1

12
[[B, A] , A]+· · · , (3.60)

are of the order (∆t)2 and must be omitted if one works consistently at
first order. Indeed, in (3.59) the next-to-leading term is proportional to[

p2,U(q)
]
(∆t)2

and, hence, is negligible.
As an example we calculate the transition amplitude

〈q2(t+∆t)|q1(t)〉 	 〈q2| e−(i/�)(p2/2m)∆t e−(i/�)U(q)∆t |q1〉
by formally inserting the completeness relation

∫
d3 p|p〉〈p| twice, once

to the left of the exponentials, once to their right. The potential en-
ergy U(q) acts multiplicatively so that the operator q can be replaced
by q1 when acting to the right. As to the first exponential one has

∞∫
−∞

dp

∞∫
−∞

dp′
〈
q2
∣∣p′

〉 〈
p′
∣∣ e−(i/�)(p

2/2m)∆t |p〉 〈p|q1〉

= 1

2π�

∞∫
−∞

dp

∞∫
−∞

dp′ e−(i/�)(p2/2m)∆tδ(p′ − p)e(i/�)p
′q2 e−(i/�)pq1

= 1

2π�

∞∫
−∞

dp e−(i/�)(p2/2m)∆t e−(i/�)p(q1−q2)

=
√

me−iπ/2

2π�∆t
e(i/�)m(q1−q2)

2/(2∆t) .

In this calculation the relations (3.58b) are inserted and the integral for-
mula (1.46) is used. Thus, the transition amplitude in our example is
found to be

〈q2(t+∆t)|q1(t)〉 	
√

me−iπ/2

2π�∆t
exp

i

�

{m(q2−q1)
2

2∆t
−∆tU(q1)

}
	

√
me−iπ/2

2π�∆t
exp

i

�

{m(q2−q1)
2

2∆t
−∆t

U(q1)+U(q2)

2

}
.

The expression in the curly brackets of the exponential is seen to be
the product of the Lagrangian, evaluated along a solution, and of ∆t.



33.7 Path Integrals 223

But this is nothing but the action. Indeed, along the classical orbit
q(t′)	 q1+ ((t′ − t)/∆t)(q2−q1), so that

S=
q2=q(t+∆t)∫
q1=q(t)

dt′ L(q, q̇)	 m(q2−q1)
2

2∆t
−∆t

U(q1)+U(q2)

2
,

and the transition amplitude is

〈q2(t+∆t)|q1(t)〉 	
√

me−iπ/2

2π�∆t
e(i/�)S(q2,q1) . (3.61a)

At this point the superposition principle of quantum mechanics comes
into play. The transition amplitude is calculated for a finite time inter-
val by letting the system evolve from the initial configuration qi(ti) to
the final configuration q f (t f ) by a succession of very many steps of the
kind of (3.61a). Let

q0 ≡ qi t0 ≡ ti , qn ≡ q f , tn ≡ t f , t j = ti + j

n
(t f − ti) .

Then the transition amplitude is given by

〈
q f (t f )

∣∣qi(ti)
〉= lim

n→∞

∫ n−1∏
k=1

dqk

n−1∏
j=0

〈
q j+1(t j+1)

∣∣q j(t j)
〉

= lim
n→∞

∫ n−1∏
k=1

dqk

(
nme−iπ/2

2π�∆(t f − ti)

)n/2

exp
{ i

�

t f∫
ti

dt L(q, q̇)
}
.

(3.61b)

It is customary to write this formula in a somewhat symbolic way as
follows

〈
q f (t f )

∣∣qi(ti)
〉= ∫

D[q] exp
{ i

�

t f∫
ti

dt L(q, q̇)
}
, (3.61c)

the integration “measure” D[q] being defined by the limit which is
written more explicitly in (3.61b).

Remarks

1. Clearly, only the initial and the final configurations (in our example
these are the positions qi and q f ) are given. We have no informa-
tion along which paths the system evolves between them, unless one
takes the limit �→ 0.

2. In the limit �→ 0 the exponential in the integrand oscillates rapidly
and, thus, gives a sizeable contribution only if the action S stays ap-
proximately constant. This happens if S is stationary and, hence, if
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q(t) follows the classical orbit that links qi to q f . Thus, in this limit
one recovers Hamilton’s principle.

3. By the superposition principle the path integral from “i” to “ f ” can
be split into two or more steps. For instance, with ti < tk < t f , one
has ∫

D[q]e(i/�)S fi =
∫

dq(t)
∫

D[q]e(i/�)S fk

∫
D[q]e(i/�)Ski .

(3.62)

For an infinitesimal change of the action one finds

δ
〈
q f (t f )

∣∣qi(ti)
〉= i

�

∫
D[q]e(i/�)S fiδS fi .

For example, for t �→ t+ δt, δS =−Hδt from (3.51), and

δ 〈q(t+ δt)|q(t)〉 = − i

�
〈q(t+ δt)| H |q(t)〉 δt . (3.63)

Clearly, this is the Schrödinger equation.
4. The generalization of our one-dimensional example to three spatial

dimensions is obvious and is not worked out here.
5. Path integrals for quantum theory are treated in a number of mono-

graphs such as, e. g., [Feynman, Hibbs (1965)], [Dittrich, Reuter
(2001)]. Tables of worked integrals were given by [Kleinert (1990)],
[Grosche, Steiner (1998)].

3.7.3 Classical and Quantum Paths
Let t be some intermediate time between the initial time ti and the final
time t f ,

ti < t< t f .

As we saw above the superposition principle imposes the composition
law (3.62) for the path integral. This may be applied to matrix elements
of operators: With A(t) an operator in the Heisenberg representation one
obtains〈

q f (t f )
∣∣ A(t) |qi(ti)〉 =

〈
q f

∣∣ e−(i/�)H(t f−t)A0 e−(i/�)H(t−ti) |qi〉
=

∫
dq′

∫
dq′′

∫
D[q] e(i/�)S(q f ,t f ;q′′,t)

× 〈
q′′

∣∣ A0
∣∣q′〉 ∫ D[q] e(i/�)S(q

′,t;qi ,t) . (3.64)

This formula and the composition law (3.62) may be applied to the po-
sition operator taken at the ordered times t1, t2, . . . , tn all of which are
inside in the interval (ti, t f ),

ti < t1 < t2 < · · ·< tn < t f .



33.7 Path Integrals 225

One finds〈
q f (t f )

∣∣ q(t1)q(t2) · · · q(tn) |qi(ti)〉

=
∫

D[q] (q(t1)q(t2) . . . q(tn)) exp
{ i

�

t f∫
ti

dt L(q, q̇)
}
. (3.65)

This result illustrates quite well the nature of the path integral in quan-
tum physics. Indeed, if � were very small, or was sent to zero, then only
the stationary action would contribute which is realized for the classical
solution of the Euler-Lagrange equation that joins qi to q f . The same
particle in the quantum world where � is a nonzero finite quantum of
action, is allowed to travel along all kinds of paths that join qi to q f .
These paths which the particle may choose, are weighted by the expo-
nential of the action exp{(i/�)S fi}. The concept of a particle orbit is no
longer applicable. Yet, the quantum states still carry some features of
the classical dynamics.

These few examples indicate that the method of path integrals
emphasizes another aspect of quantum mechanics but is not of cen-
tral importance for its formulation. Things change when one turns to
quantum field theory: Although formally and mathematically less well
founded, path integrals belong to the important tools in that domain and,
as a consequence, are used in many theoretical analyses.
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Space-Time Symmetries
in Quantum Physics

Introduction

The transformations in space and in time which belong to the
Galilei group play an important role in quantum theory. In some

respect and for some aspects, their role is new as compared to clas-
sical mechanics. Rotations, translations, and space reflection induce
unitary transformations of those elements of Hilbert space which are
defined with respect to the physical space R3 and to the time axis Rt .
Reversal of the arrow of time induces an antiunitary transformation
in H . Invariance of the Hamiltonian H of a quantum system under
Galilei transformations implies certain properties of its eigenvalues
and eigenfunctions which can be tested in experiment. This chapter
deals, in this order, with rotations in R3, space reflection, and time
reversal. A further and more detailed analysis of the rotation group
is the subject of Chap. 6 in Part Two.

4.1 The Rotation Group (Part 1)
Consider a Hilbert space and a countably infinite basis {ϕν(x)} thereof.
The functions {ϕν(x)} are defined over the physical space R3. Being el-
ements of H they are orthogonal and normalized to 1. Given a physical
wave function ψ =∑

ν ϕνaν, the vector (a1, a2, . . . )
T is a specific rep-

resentation of this state. Every transformation R ∈ SO(3), or R ∈ O(3),
interpreted as a passive transformation in R3 (i. e. a rotation of the frame
of reference) induces a unitary transformation in H such that

{aν} �−→
{

a′µ =
∑
ν

Dµν(Θi)aν ; DD† = D†D= 1l

}
. (4.1)

As the physical state ψ does not depend on the base used for its ex-
pansion, this implies that the base functions are contragredient to the
expansion coefficients, that is to say, transform according to (D−1)T .

4.1.1 Generators of the Rotation Group

The infinite dimensional matrices D depend on the Euler angles {Θi} ≡
(φ, θ, ψ), or any other parametrization of the rotation in space. They are
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elements of the unitary, in general reducible, representations of the ro-
tation group in Hilbert space. The eigenfunctions Rh.o.

n	 (r)Y	m(x̂) of the
spherical oscillator, Sect. 1.9.4, provide an example of an orthonormal
system which is defined with reference to a coordinate system in R3. An
example for the unitary transformation which is induced by a rotation
about the 3-axis was discussed in Sect. 3.2.1.

The elements of SO(3) are continuous functions of the angles and
can be continuously deformed into the identical mapping 1l. Therefore,
they can be written as exponential series in three angles and three gen-
erators for infinitesimal rotations, see [Scheck (2005)]. If, for example,
we choose a Cartesian basis in the physical space, denote the angles
by ϕ= (ϕ1, ϕ2, ϕ3), and the generators by J = (J1, J2, J3), where the
matrices Jk are given by

J1 =
⎛⎝ 0 0 0

0 0 −1
0 1 0

⎞⎠ , J2 =
⎛⎝ 0 0 1

0 0 0
−1 0 0

⎞⎠ , J3 =
⎛⎝ 0 −1 0

1 0 0
0 0 0

⎞⎠ ,
then a passive rotation in R3 reads

x′ = exp(−ϕ · J)x .
Thus, the aim is to find an analogous decomposition of the correspond-
ing, induced, transformation D in the form of an exponential series in
the rotation angles and the generators.

The matrices Ji are antisymmetric, or, if interpreted as matrices
over the complex numbers C, are antihermitean, which is to say that
they fulfill the relations J†k =−Jk. As we know from mechanics their
commutators are [J1, J2] = J3, with cyclic permutation of their indices.
These antihermitean matrices can easily be replaced by hermitean ones
by using, instead of the Jk, the matrices iJk, viz.

J̃k := iJk .

Their commutators are now [̃J1, J̃2] = ĩJ3 with the characteristic factor i
on the right-hand side. The commutator of two hermitean matrices is
antihermitean, the factor i turns the result into a hermitean matrix.

For reasons that will become clear below, we replace the Cartesian
frame of reference in R3 and its unit vectors (ê1, ê2, ê3) by what are
called spherical coordinates and spherical base vectors. These are de-
fined as follows

ζ1 := − 1√
2
(ê1+ iê2) , ζ0 := ê3 , ζ−1 := + 1√

2
(ê1− iê2) . (4.2)

One verifies that they fulfill the symmetry and orthogonality relations

ζ∗m = (−)mζ−m , ζ∗m · ζm′ = δmm′ . (4.3)

This definition is motivated by the following argument: If in the ex-
pression for a position vector one transforms the base to the linear
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combinations (4.2), and makes use of spherical polar coordinates, one
sees that

x= x1ê1+ x2ê2+ x3ê3

=− 1√
2
(x1+ix2)

(
− 1√

2

)
(ê1−iê2)+ 1√

2
(x1−ix2)

1√
2
(ê1+iê2)+x3ê3

= r

(
− 1√

2
sin θ eiφζ∗1 +

1√
2

sin θ e−iφζ∗−1+ cos θζ∗0
)
.

Making use of the formulae (1.116) for the spherical harmonics with
	= 1, this becomes

x= r

√
4π

3
(Y11ζ

∗
1 +Y1−1ζ

∗−1+Y10ζ
∗
0 ) ,

the linear combinations x1± ix2 being proportional to Y1±1, x3 propor-
tional to Y10. By the symmetry relations of (4.3) and of (1.117) one
has∑

m

Y1mζ∗m =
∑

m

Y∗1mζm .

The decomposition of an arbitrary vector a over R3 in terms of a spher-
ical basis has always this same form, viz.∑

m

amζ∗m =
∑

m

a∗mζm .

The relation between the basis ζ∗ ≡ (ζ∗1 , ζ∗0 , ζ∗−1)
T and the Cartesian

basis ê≡ (ê1, ê2, ê3)
T , from which we started, is given by a matrix A,

ζ∗ =Aê, which is easily determined. This matrix A and its inverse A−1

are given by

A= 1√
2

⎛⎝−1 i 0
0 0

√
2

1 i 0

⎞⎠ , A−1 = 1√
2

⎛⎝−1 0 1
−i 0 −i
0
√

2 0

⎞⎠ .
Transforming the generators J̃k to this basis by working out ÃJkA−1,
one finds

ÃJ1A−1 = 1

2

⎛⎝ 0
√

2 0√
2 0

√
2

0
√

2 0

⎞⎠ , ÃJ2A−1 = i

2

⎛⎝ 0 −√2 0√
2 0 −√2

0
√

2 0

⎞⎠ ,

ÃJ3A−1 =
⎛⎝ 1 0 0

0 0 0
0 0 −1

⎞⎠ . (4.4)

These matrices are seen to be identical with the ones we found in
Example 1.10, Sect. 1.9.1, for angular momentum 	= 1. A characteristic
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property of this representation is that the 3-component is diagonal (and,
hence real), the 1-component is real and positive, the 2-component is
pure imaginary. It is this coincidence which motivates the choice of the
spherical basis.

Of course, the commutators of the matrices J̃k are unaffected by
this change of basis. What we have achieved, however, is to render the
3-component diagonal. This is different from the Cartesian basis from
which we started and where none of the three generators had this prop-
erty.

From here on we adopt the convention to choose the generators of
the rotation group to be hermitean. For simplicity we choose the same
symbol for them, i. e. Jk instead of J̃k. Passive and active rotations then
read

exp(−iϕ · J) , exp(+iϕ · J) ,
respectively, with ϕ · J = ϕ1J1+ϕ2J2+ϕ3J3 in the Cartesian basis. The
generators fulfill the commutation relations

[J1, J2] = iJ3 (and cyclic permutations) , (4.5)

or, alternatively,

[Ji , Jk] = i
3∑

l=1

εiklJl . (4.6)

when using the totally antisymmetric ε-symbol in three dimensions,
with εikl = 1 for all even permutations of (1, 2, 3), εikl =−1 for all odd
permutations, and zero otherwise.

4.1.2 Representations of the Rotation Group
The action (4.1) in Hilbert space which is induced by a rotation in R3,
also applies to the generators: If D(R) denotes the unitary transforma-
tion induced by R, then D(Jk) is the hermitean matrix which represents
the generator Jk in Hilbert space. It has the same dimension as D(R),
n = dim D. Written differently we have

D(R(ϕ))= exp[iϕ ·D(J)] = lim
k→∞

(
1ln×n + i

k
ϕ ·D(J)

)k
, (4.7)

where we inserted Gauss’ formula

ex = lim
k→∞

(
1+ x

k

)k

for the exponential series, with a matrix valued argument here.
Obviously, the generators fulfill the commutation relations (4.5),

or (4.6), in any representation. As a matter of example, consider the
first commutator (4.5): It is obtained by performing successively two
rotations, the first about the 1-axis, the second about the 2-axis, i. e.
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R(η ê2)R(ε ê1), and by inverting these transformations in the other,
“wrong”, order, that is R(−η ê2)R(−ε ê1), as sketched in Fig. 4.1. The
result of these four infinitesimal transformations is found to be a rota-
tion about the 3-axis by the angle (εη), hence of second order,

R(−η ê2)R(−ε ê1)R(η ê2)R(ε ê1)= R(−εη ê3) .

This is verified by calculating the product of the four exponential series
to second order in ε and η. All linear and pure quadratic terms cancel,
while the mixed term yields εη(J1J2−J2J1). In turn, by drawing care-
fully the figure shown in Fig. 4.1 one sees that there results a rotation
about the 3-axis by the angle (εη) so that one concludes

1l+εη(J1J2−J2J1)= 1l+iεη J3 ≈ exp(iεη J3) .

Thus, one could have derived the commutator (4.5) from this figure
without even calculating the matrices Jk explicitly. Obviously, the same
relation must hold also for the representation of the generators in Hilbert
space, viz.

[D(J1),D(J2)] = iD(J3) (and cyclic permutations of 1, 2, 3) .
As this is so one can simplify the explicit notation D(Jk) by replacing
it by the symbol Jk of the generator itself, with the understanding that
it stands for all representations. This is what we do in the sequel.

The representation (4.4) which was obtained from the analysis of the
rotation group in three-dimensional space R3, and, hence, follows from
the very definition of this group, is called the defining representation.
The one-dimensional representation in which J1 = J2 = J3 = 0, is called
the trivial representation.

Further representations are obtained by the analogy to the orbital an-
gular momentum that we studied in Sect. 1.9.1: The components of or-
bital angular momentum obey the commutation rules (1.107) which are
the same as those for the generators Jk. In Sect. 1.9.1 we showed that
one can always choose �2 and one component, say 	3, simultaneously
diagonal, and that the eigenvalues of �2 and of 	3 are given by 	(	+1)
and by m, respectively, with 	 ∈ N0 and m =−	,−	+1, . . . , 	. This
allows for two conclusions: One the one hand we found a countably
infinite tower of representations in subspaces of Hilbert space whose
dimension is (2	+1) (with integer 	), and in which the rotation matri-
ces (4.7) and the generators are represented by unitary and hermitean
(2	+1)× (2	+1)-matrices, respectively. On the other hand we showed
that angular momentum is intimately related to the rotation group. The
components of angular momentum generate infinitesimal rotations, their
commutators are those of the Lie algebra of the rotation group.

The problem to be solved is now clearly defined. Firstly, one must
construct all representations which are compatible with (4.5), and, sec-
ondly, all unitary matrices D(R(ϕ)) which span these representations.
The first part of this program can be carried out completely on the basis
of the commutators (4.5) only. The second part needs further tools that
are developed in Part Two of this book.

1´

2

Fig. 4.1. A rotation by the angle ε about
the 1-axis, followed by a rotation by
the angle η about the new 2-axis, but
then inverted in the other, “wrong” or-
der, takes the 3-axis back to its initial
position. However, the 1-axis and the
2-axis are taken to 1′ and to 2′, respect-
ively. Thus, the result is a rotation by
the angle (εη) about the 3-axis
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Fig. 4.2. If it is irreducible, the rotation
matrix D has the structure of a se-
quence of square blocs along the main
diagonal. Only entries within these blocs
can be different from zero, all entries
outside the blocs vanish, for every rota-
tion in �

3. The blocs themselves cannot
be decomposed any further

1 Note that this definition is not com-
pletely congruent with the definition of
the spherical basis: the “+” component
does not have the characteristic minus
sign, and the normalization factor 1/

√
2

is absent here.

With the example of orbital angular momentum in mind, cf. Sect. 1.9.1,
one defines the square J2 and the ladder operators1 J±,

J2 := J2
1+J2

2+J2
3 , J± := J1± iJ2 . (4.8)

While J2 commutes with all components and, hence, also with J±, the
remaining commutators are (reader please verify!)

[J3, J±] = ±J± , [J+, J−] = 2J3 . (4.9)

The operators J2 and J3 are hermitean, the ladder operators are not.
Instead, they are adjoints of each other, J†+ = J−. The following two
formulae are quite useful for subsequent calculations,

J2 = J+J−+J2
3−J3 , J2 = J−J++J2

3+J3 , (4.10)

they are easily verified by means of (4.5).
We will use the following, equivalent notations for the rotation R(ϕ)

in Hilbert space

D(R)≡ D(R(ϕ))≡ D(ϕ) .
As J2 commutes with all components it commutes also with D(ϕ),

[J2,D(ϕ)] = 0 .

This commutator is important because of the following implication:
If J2 is chosen to be diagonal the infinite dimensional matrix D(R) must
have a form where only entries contained in square blocs along the main
diagonal are different from zero, as sketched in Fig. 4.2. Each of these
blocs pertains to one of the eigenvalues of J2, their dimension is equal
to the degree of degeneracy of the eigenvalues of J2. If, in turn, D(R)
has this bloc-diagonal form for all rotations R, this matrix is said to be
irreducible. The matrices D span a unitary, irreducible representation of
the rotation group. This is a consequence of the following lemma:

Schur’s lemma. Let D(R) and D′(R) be two matrices of dimension
n and n′, respectively, which are unitary and irreducible, and which
depend on the rotations R ∈ SO(3). Furthermore, let M be a matrix
with n columns and n′ rows, which fulfills the relation

MD(R)= D′(R)M for all R ∈ SO(3) . (∗)
Then one of the following two alternatives holds true: Either M van-
ishes, M= 0, or n = n′ and det M �= 0. In the second case D(R) and
D′(R) are equivalent.

Proof

Multiply the hermitean conjugate of (∗), D†M† =M†D′ † by D from the
left, and by D′ from the right, thus obtaining M†D′ =DM†. Multiplying
this equation from the left by M and making use, in a second step, of
the original equation (∗), one obtains

MM†D′(R)=MD(R)M† = D′(R)MM† . (∗∗)
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As D′(R) is irreducible by assumption, the product MM† must be
a multiple of the n′ ×n′ unit matrix, MM† = c 1l. The constant c is real
because the product MM† is hermitean. There are then three possibili-
ties:

(a) n = n′, c �= 0: In this case det M �= 0 and, thus,

D′(R)=MD(R)M−1 ,

which says that D and D′ are equivalent.
(b) n = n′ and c= 0: One now has

∑
k Mik M∗jk = 0, and specifically

for i = j one finds
∑

k |Mik|2 = 0. This means that M as a whole van-
ishes.

(c) n < n′ (or n > n′): In this case one enlarges the n′ ×n-matrix M
to a square n′ ×n′ matrix N by inserting n′ −n columns all of whose
entries are 0. Then one has NN† =MM† and det N= 0. This implies
c = 0, so that M = 0 as before. (The same conclusion is reached if
n > n′. In this case just interchange D and D′.) This proves Schur’s
lemma.

Our aim is to derive the algebraic properties of all representations
of the rotation group, starting from the commutators (4.6) or from the
equivalent commutators (4.9), .

Let |βm〉 be a common eigenstate of the operators J2 and J3, with
β the eigenvalue of the first, and m the eigenvalue of the second op-
erator. As [J2, J±] = 0, one generates further eigenstates of J2 by the
action of J+ or of J− on |βm〉 which belong to the same eigenvalue β,
unless the action of J± on |βm〉 gives the null vector. The nonvanish-
ing states obtained in this way are again eigenstates of J3. Indeed, by
the first commutator (4.9), one finds

J3(J± |βm〉)= J±[(J3±1) |βm〉] = (m±1)(J± |βm〉) .
The state J+|βm〉 = const |β,m+1〉 is an eigenstate of J3 and pertains
to the eigenvalue (m+1). It is not normalized to 1, though. Like-
wise J−|βm〉 = const |β,m−1〉 is an eigenstate of J3 for the eigenvalue
(m−1). The squared norm of these new eigenstates are easily calcu-
lated by means of the formulae

J±J∓ = J2−J2
3±J3

which follow from (4.10). With J†+ = J− one obtains

‖J+ |βm〉‖ 2 = 〈βm| J−J+ |βm〉 = (β−m2−m) ‖|βm〉‖ 2 ,

‖J− |βm〉‖ 2 = 〈βm| J+J− |βm〉 = (β−m2+m) ‖|βm〉‖ 2 ,

from which one deduces the inequalities

β−m(m+1)≥ 0 , β−m(m−1) ≥ 0 . (+)

The series of eigenvalues . . . ,m−2,m−1,m,m+1,m+2, . . . of J3
must be bounded from above and from below because otherwise the in-
equalities (+) would be violated. With increasing m the series terminates
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if and only if there is a largest value mmax =: j for which β− j( j+1)
= 0. Similarly, for decreasing m the series terminates if and only if
there is a lowest value mmin such that β−mmin(mmin−1) equals zero.
Thus, if we set β = j( j+1) we obtain the condition

mmin(mmin−1)= j( j+1) .

This condition is met for mmin =− j provided j is positive. The sec-
ond root of this equation, m′min = j+1, must be rejected because mmin
cannot exceed the value mmax = j which is the largest, by assumption.

Finally, one realizes that the series of m values which proceeds in
steps of 1, contains both the smallest value mmin =− j and the largest
value mmax =+ j if and only if j is either an integer, or a half-integer.
In all other cases the increasing series generated by J+ would miss the
decreasing series generated by J−, and neither of them would ever ter-
minate.

As a result, the eigenvalues of J2 and of J3 are

J2 | jm〉 = j( j+1) | j,m〉 , J3 | jm〉 = m | jm〉 (4.11a)

j = 0,
1

2
, 1,

3

2
, 2, . . . , m =− j,− j+1, . . . , j . (4.11b)

As expected the values of j include the series of integers 0, 1, 2, . . . ,
by now well known from the analysis of orbital angular momentum.
In addition, one has a complete set of orthonormal eigenfunctions
spanning these representations. What is new and surprising are the
half -integer values of j among which the so-called spinor represen-
tation, j = 1/2, is particularly important and will be studied further
below.

By construction, these representations are unitary and irreducible.
They are realized in finite dimensional subspaces of Hilbert space
whose dimensions are d = (2 j+1). Notations and dimensions for the
first three values of j are as follows:

Remarks
1. We return for a moment to the Cartesian components of angular mo-

mentum, J1 = (J++J−)/2, J2 =−i(J+−J−)/2, and make use of
a phase convention in which the matrix elements of J1 are real and
positive, while the elements of J2 are pure imaginary. We then have〈

m′
∣∣ J1 |m〉 = 1

2

√
j( j+1)−m′m (δm′,m+1+ δm′,m−1) ,〈

m′
∣∣ J2 |m〉 = −i(m′ −m)

〈
m′

∣∣ J1 |m〉 , (4.12)〈
m′

∣∣ J3 |m〉 = mδm′,m .

Note that the second of these equations is obtained from the com-
mutator J2 =−i[J3, J1].
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2. How do we proceed in case the eigenstates of J3 contain a further
degeneracy, that is to say, in case the common eigenfunctions of J2

and of J3 have the form |α jm〉, where α= 1, 2, . . . , km?
In this case one shows, in a first step, that the degrees of degener-
acy km are all equal, i. e. km ≡ k for all m ∈ [− j,+ j]. In a second
step one notices that the representation can be reduced further into
k representations each of which has (2 j+1) elements. First step: We
have∑

α′
〈α j,m+1| J+

∣∣α′ jm〉 〈
α′ jm

∣∣ J− |α j,m+1〉

= j( j+1)−m(m+1) ,

and summing over α,∑
α,α′
〈α j,m+1| J+

∣∣α′ jm〉 〈
α′ jm

∣∣ J− |α j,m+1〉

= km+1[ j( j+1)−m(m+1)] .
The same reasoning applied to the product with the two factors in-
terchanged, yields∑

α,α′
〈α jm| J−

∣∣α′ j,m+1
〉 〈
α′ j,m+1

∣∣ J+ |α jm〉

= km[ j( j+1)−m(m+1)] .
As the left-hand sides are equal one concludes km+1 = km . Thus, one
obtains the same degree of degeneracy k ≡ km for all m.
Second step: Define

〈α j,m+1| J+
∣∣α′ jm〉=√

j( j+1)−m(m+1)U(m)
αα′ ,〈

α′ jm
∣∣ J− |α j,m+1〉 =√

j( j+1)−m(m+1)U(m)†
α′α

where U(m) is a unitary k×k matrix. Choose then a new basis,

|β jm〉 =
∑
α

V (m)βα |α jm〉 with V(m) = 1l U( j−1)U( j−2) . . .U(m) .

The matrix representation of J+ in the new basis is obtained from
the former one by the unitary transformation V(m+1)U(m)V(m)†. By
the choice of V(m) this product is seen to be the k× k unit mat-
rix so that 〈β j,m+1|J+|β′ jm〉 = √ j( j+1)−m(m+1) δββ′ , with
β = 1, 2, . . . , k. Analogous formulae are obtained for the remaining
operators.
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θ

θ

φ φ

ψ

ψ

Fig. 4.3. Definition of Eulerian angles
which is customarily used in quan-
tum mechanics (a definition that differs
from the preferential choice in classical
mechanics). The intermediate position
of the 2-axis is the axis for the second
rotation
2 In [Scheck (2005)] these angles are
denoted by α, β, and γ , respectively,
while the ones of the traditional con-
vention of mechanics are denoted by Φ,
Θ, and Ψ . The relation between the
two choices is given in [Scheck (2005)],
Eq. (3.39).

4.1.3 The Rotation Matrices D (j)

The algebraic construction of the preceding section which was based on
the Lie algebra (4.6) or (4.9) of the rotation group (not on the group
proper), yields the eigenvalue spectra (4.11a) of the square of the an-
gular momentum and of one component. There remains the problem to
construct the infinite dimensional matrices D(R), i. e. the unitary trans-
formations in Hilbert space which are induced by the rotations R. The
complete solution of this problem is postponed to Part Two. Here, I re-
strict the analysis and discussion to some general properties as well as
to the case of j = 1/2 which can be dealt with in an elementary way.

Conventions
1. Nomenclature: The matrices D(R) are called representation coeffi-

cients of the rotation group. As this name is cumbersome one often
calls them simply “rotation matrices” or, more simply, “D-matrices”.

2. Condon-Shortley phase convention: The representation (4.12) is
based on a specific choice of phases which goes back to the con-
struction of the matrices for the ladder operators. This is seen
by returning to the construction of representations of the Lie al-
gebra (see preceding section): Indeed, in determining the states
J±| jm〉 = c±| j,m±1〉 only the square of the norm ‖J±| jm〉‖2 is
fixed, the phases of the coefficients c± remain undetermined. The
phases that were chosen in (4.12) followed from the decision to
choose the matrix elements of the raising and lowering operators
real,〈

j ′m′
∣∣ J± | jm〉 = [ j( j+1)−m(m±1)]1/2δ j ′ jδm′,m±1 . (4.13)

This phase convention which is due to Condon and Shortley, is the
generally accepted convention in the theory of the rotation group.

3. D-Matrices as Functions of Euler angles: It is useful to parametrize
the rotation in R3 by Euler angles. One should note, however, that in
quantum theory one uses a definition which is not identical with the
traditional choice made in classical mechanics. The two definitions
differ in the choice of the axis for the second rotation. For details
see [Scheck (2005)], Sect. 3.10. Figure 4.3 shows the choice made
in this book: First a rotation about the (original) 3-axis by the an-
gle φ, then a rotation about the intermediate 2-axis by the angle θ,
and finally a rotation about the (new) 3-axis by the angle ψ.2

It follows from Schur’s lemma that by diagonalizing J2 the D-matrix
decomposes into square blocs along the main diagonal. Each of these
blocs belongs to one of the values of j, its dimension is d = (2 j+1).
By counting the values of j in increasing order and by ordering the
values of m in decreasing order, from m =+ j to m =− j, in every
subspace H ( j), the qualitative scheme of Fig. 4.2 is replaced by the



44.1 The Rotation Group (Part 1) 237

more precise decoding⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D(0)0,0 0 0 0 0 0 · · ·
0 D(1/2)1/2,1/2 D(1/2)1/2,−1/2 0 0 0 · · ·
0 D(1/2)−1/2,1/2 D(1/2)−1/2,−1/2 0 0 0 · · ·
0 0 0 D(1)1,1 D(1)1,0 D(1)1,−1 · · ·
0 0 0 D(1)0,1 D(1)0,0 D(1)0,−1 · · ·
0 0 0 D(1)−1,1 D(1)−1,0 D(1)−1,−1 · · ·
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For every finite value of j, and parametrizing the rotation by means
of Euler angles, the rotation reads

D( j) = exp(iψJ3) exp(iθJ2) exp(iφJ3) . (4.14)

As J3 is chosen diagonal this implies for the matrix elements

D( j)
m′m(ψ, θ, φ)= eim′ψ d( j)

m′m(θ)e
imφ , (4.15)

where d( j)
m′m(θ)= 〈 jm′| exp(iθJ2)| jm〉 is a function of the second Eu-

ler angle only. In choosing to parametrize the rotation by means of
Euler angles, instead of Cartesian angles, the benefit is obvious: The
construction of the D-matrices is reduced to the calculation of the
matrices d(θ).

4. Phase convention for D-Matrices: While the choice of phases in the
representation (4.12) of the generators is generally accepted, this is
unfortunately not so for D-matrices. In consulting one or the other of
the many monographs on the rotation group in quantum mechanics,
the reader, if she or he is one of them, is advised to check carefully
the conventions adopted in the monograph and to work out carefully
the relation to his or her own conventions.
In this book I adopt conventions which are in agreement with what
is generally accepted in linear algebra, so that one can easily recon-
struct them at any moment. Suppose we expand a physical state Ψ
in terms of a base system ϕ jm of eigenfunctions of J2 and J3,

Ψ =
∑

j

∑
m

ϕ jm a( j)
m .

The functions ϕ jm are the basis, the coefficients a jm are the expan-
sion coefficients. A rotation in R3, R ∈ SO(3), induces the unitary
transformation

a′ ( j)
m′ =

∑
m

D( j)
m′m(R)a

( j)
m (4.16)
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3 There are authors who choose to
transform the basis by D. The expan-
sion coefficients then transform by D∗.
Some authors modify the standard rule
for matrix multiplication. A good rea-
son to compare matters very carefully!

of the vectors a = (a( j)
j , a

( j)
j−1, . . . , a

( j)
− j)

T , that is, of the expansion
coefficients. This implies that the basis transforms by the mapping
(D−1)T (R) which is contragredient to D(R). The physical state stays
invariant

∑
jm′ ϕ

′
jm′ a

′ ( j)
m′ =

∑
jm ϕ jm a( j)

m . As D is unitary, its inverse

equals its adjoint. The subsequent transposition takes it to D( j) ∗
m′m , so

that for every j, one obtains

ϕ′jm′ =
∑
m′′

D( j) ∗
m′m′′(ψ, θ, φ) ϕ jm′′ .

By (4.16) and by adopting the Condon-Shortley convention (4.12)
the phases of the D-matrices are fixed uniquely. Many books,
though unfortunately not all, treating this topic make use of these
conventions.3

4.1.4 Examples and Some Formulae for D-Matrices
In the subspace with j = 0 we have D(0) = 1. A state vector or an oper-
ator with j = 0 is a scalar under rotations. Thus, it remains unmodified
by a rotation R ∈ SO(3).

In the fundamental representation, j = 1/2, the formulae (4.12) yield
the matrix representations

J1 = 1

2

(
0 1
1 0

)
, J2 = 1

2

(
0 −i
i 0

)
, J3 = 1

2

(
1 0
0 −1

)
(4.17)

for the components of the angular momentum operator. Except for the
factor 1/2 these are precisely the Pauli matrices (3.22). We calculate
the matrix d(1/2)(θ) of (4.15) by writing the exponential series and by
making use of the fact that all even powers of σ2 are equal to the unit
matrix, all odd powers are equal to σ2, see Sect. 3.3.4, Example 3.12,

d(1/2)(θ)= exp

(
i
θ

2
σ2

)
= 1l cos

θ

2
+ iσ2 sin

θ

2

=
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
.

With this result the complete D-matrix for j = 1/2 is given by

D(1/2)(θ)=
(

cos(θ/2)ei(ψ+φ)/2 sin(θ/2)ei(ψ−φ)/2
− sin(θ/2)e−i(ψ−φ)/2 cos(θ/2)e−i(ψ+φ)/2

)
. (4.18)

The result (4.18) has a truly remarkable property: Performing
a rotation in R3 by the angle 360◦ = 2π, by choosing for instance
(ψ = 0, θ = 0, φ= 2π), changes nothing in that space. However, the in-
duced transformation D(1/2)(0, 0, 2π) is not the identity! Instead, it is
D(1/2)(0, 0, 2π)=− 1l. Thus, only after having performed successively
two such complete rotations does one return to the identity, for example
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D(1/2)(0, 0, 4π) = + 1l. This peculiar property is characteristic for all
half-integer values of j, it will be understood better when developing
the second part of the theory of the rotation group. We just remark that
it has an important implication for the description of indistinguishable
partices with half-integer spin but postpone this topic for the moment.

I quote here the general formula for d( j), without derivation. Details
will be worked out in Part Two. One finds the following expression

d( j)
nm(θ)=

∑
p

(−)p
√
( j+n)! ( j−n)! ( j+m)! ( j−m)!

( j−n− p)! ( j+m− p)! p! (p+n−m)!

×
(

cos
θ

2

)2 j−n+m−2p (
sin
θ

2

)2p+n−m

. (4.19)

The sum over p has a finite number of terms, the smallest and the
largest value being determined by the factorials in the denominator. As
is well-known, q! = Γ(q+1). The Gamma function Γ(z) has first or-
der poles at z = 0,−1,−2, . . . . Thus, its inverse 1/Γ(z) has zeroes in
these points on the negative real axis. This means that whenever p is ei-
ther so large, or so small that one of the terms in round brackets in the
denominator of (4.19) becomes negative, the sum terminates.

From the general formula (4.19) one deduces the following symme-
try properties of the d-functions

d( j)
mn(θ)= (−)n−m d( j)

nm(θ)

d( j)
−n,−m(θ)= (−)n−m d( j)

nm(θ)

d( j)
n,−m(θ)= (−) j−n d( j)

nm(π− θ) . (4.20)

If j is an integer, j ≡ 	, there is a close relationship between the D-
functions and the spherical harmonics. One finds

Y	m(θ, φ)=
√

2	+1

4π
D(	)0,m(0, θ, φ) . (4.21)

4.1.5 Spin and Magnetic Moment of Particles with j = 1/2
It is an empirical fact that the elementary particles observed in nature
are characterized not only by their mass m and by a well defined charge
but also by an intrinsic angular momentum s, called spin, which, in con-
trast to orbital angular momentum, is independent of the state of motion
of the particle. This intrinsic angular momentum is an inner, invariant
property of the particle. For example, the electron, the muon, the pro-
ton, and the neutron all carry spin 1/2. This means that they are to be
classified in the fundamental representation of the rotation group and, if
all other features in the state of motion are kept fixed, that they can have
two states, |1/2,+1/2〉 and |1/2,−1/2〉, the first of which describes the
spin oriented along the positive 3-direction, while the second describes
the orientation along the negative 3-direction.
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The physical manisfestation of the spin 1/2 of these particles is
through the corresponding magnetic moment which is proportional to
the Bohr magneton µ(i)B of the particle,

µ= g(i)µ(i)B
1

2
with µ

(i)
B :=

e�

2mic
. (4.22)

Here g(i) is the gyromagnetic ratio whose value, for charged particles,
should have the approximate value 2, e is its charge, i. e. e=−|e| for
the electron e− and the muon µ−, e= |e| for the positron e+, for the
positive myon µ+, and for the proton. The factor 1/2 is nothing but
mmax: Indeed, the self-adjoint operator to be associated to the magnetic
moment, is given by

µ= g(i)µ(i)B s , (4.23)

and one defines the observable µ as being the largest eigenvalue of the
operator (4.23).

The following argument shows that the Bohr magneton is the natural
unit for magnetic moments to be associated to elementary particles. We
calculate the magnetic moment which is related to the orbital motion of
an electron bound in its atomic state. The magnetic moment M is given
by the space integral of the magnetization density m(x) which, in turn,
is determined by the electric current density j(x), viz.

M=
∫

d3x m(x) with m(x)= 1

2c
x× j(x) .

Inserting the expression

j(x)= �
i

e

2m
[ψ∗∇ψ− (∇ψ)∗ψ]

for the electric current density, one sees that the magnetization density
contains the operator �,

m(x)= e�

4mc
[ψ∗�ψ+ (�ψ)∗ψ] .

Thus, the magnetic moment caused by the orbital motion is proportional
to the expectation value of �,

M= e�

2mc
〈�〉 , (4.24)

an expression which contains the Bohr magneton, indeed.
For the rest, classical electrodynamics tells us that this magnetic mo-

ment interacts with external magnetic fields B via the term −M · B.
Therefore, if H0 denotes the Hamiltonian that describes the atom, the
presence of an external magnetic field will modify it to

H = H0− e�

2mc
� · B
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Of course, the intrinsic magnetic moment (related to the spin) interacts
with the external field, too. Also, the two moments, the orbital and the
spin magnetic moments, interact with each other. The interaction of the
spin magnetic moment with the external field is proportional to s · B,
its interaction with the magnetic moment generated by the orbital mo-
tion is proportional to � · s. Inserting the correct factors the interaction
Hamiltonian reads

H = H0− e�

2mc
� · B− g

e�

2mc
s · B+ �2

2m2c2

1

r

dU(r)

dr
� · s . (4.25)

The second and third terms on the right-hand side reflect the interaction
of the orbital and the spin magnetic moments with the field, respect-
ively, the fourth term describes the spin-orbit coupling which manifests
itself in what is called the fine structure of spectral lines. The factor in
front of it contains the derivative of the spherically symmetric potential.
It follows from the relativistic dynamics of the hydrogen atom.

Remarks
1. The spin of the electron was discovered through the magnetic mo-

ment attached to it and the interaction of this moment with in-
homogeneous magnetic fields (experiment by Stern and Gerlach).
Furthermore, the two values of s3 play an important role in explain-
ing the structure of the electronic shells of atoms, as well as, more
generally, in the relation between the spin of the electron and the
statistics that many electron systems obey (Pauli principle). This led
to one of the basic postulates of relativistic quantum theory to which
we will return in Part Two. It says that elementary particles are to be
classified by irreducible representations of the Poincaré group which
correspond to fixed mass and definite spin. The spin is always de-
fined in the rest system of the particle where its linear momentum
and, hence, also its orbital angular momentum vanish. Qualitatively
speaking, one investigates the reaction of the particle at rest to rota-
tions of the frame of reference.

2. The operator µ which represents the intrinsic magnetic moment
of the electron, with respect to rotations in R3, must be a vec-
tor operator, that is to say, it must transform like x or like
{Y1m |m =−1, 0,+1}. In the rest system the only nonvanishing vec-
tor operator is the operator of spin s. Therefore, the magnetic
moment must be proportional to the spin operator, µ∝ s.

3. The g-factor, or gyromagnetic ratio, hints at a deeper physical struc-
ture of particles. A relativistic version of quantum mechanics yields,
at first, the value g= 2. However, one finds that this value can (and
will) be modified by the interactions that the particle is subject to. In
the case of the electron, or, by analogy, of the muon, this is the in-
teraction with the Maxwell radiation field. In lowest approximation
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4 The series (4.27) is named after the
mathematicians A. Clebsch (1833 – 1872)
and P. Gordan (1837 – 1912).

one finds

g(e) ≈ g(µ) ≈ 2+ α
π
. (4.26)

4. The nucleus of the hydrogen atom itself is an elementary particle
with spin 1/2. Thus, it too, carries a magnetic moment related to its
spin,

µ(p) = g(p)
|e|�

2mpc
s , with g(p) = 5.586 ,

whose absolute value is smaller by a factor g(p)me/(g(e)mp) 	
1.5×10−3 than the absolute value of the electron’s magnetic mo-
ment. Its interaction with the moment of the electron causes the
hyperfine structure observed in the spectra of the hydrogen atom.

4.1.6 Clebsch-Gordan Series and Coupling of Angular Momenta
Vectorial addition of two angular momenta j1 and j2 to a resulting, total
angular momentum J = j1+ j2 is well known from classical physics.
The analogous operation in quantum mechanics, for irreducible repre-
sentations of the rotation group, is of great theoretical and practical
interest. The problem is the following: Given two unitary, irreducible
representations spanned by the states | j1,m1〉 and | j2,m2〉, respectively,
the corresponding D-matrices being D( ji), i = 1, 2. The states formed by
the products | j1,m1〉| j2,m2〉 provide a unitary representation, too, but
this representation is reducible. This can be seen, for instance, by real-
izing that these states transform with the product D( j1)×D( j2) which, in
the general case, does not have the structure of square blocs along the
main diagonal which cannot be reduced further. On the other hand, the
union of all representations is complete, and it must be possible to ex-
pand the product states in terms of irreducible representations, i. e., in
a somewhat symbolic notation,

D( j1)×D( j2) =
∑

J

D(J) . (4.27)

This series is called Clebsch-Gordan series.4

If |JM〉 denote the eigenstates of the commuting operators J2 =
( j1+ j2)2 and J3 = (j1)3+ (j2)3, this series is written in the form

|JM〉 =
∑

m1,m2

( j1m1, j2m2|JM) | j1m1〉 | j2m2〉 . (4.28)

The expansion coefficients ( j1m1, j2m2|JM) are called Clebsch-Gordan
coefficients. Alternative notations for Clebsch-Gordan coefficients are
C( j1m1, j2m2|JM), or C( j1 j2 J |m1m2 M), or, even shorter, (m1m2|JM).
They are the entries of the unitary matrix which maps the orthonormal
product basis | j1,m1〉| j2,m2〉 to the new, orthonormal base states |JM〉.
In Part Two we will show that, as a consequence of the Condon-
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Shortley phase convention (4.12), the Clebsch-Gordan coefficients be-
come real, which is to say that the transformation matrix is even
orthogonal. This implies that the inverse of (4.28) is effected by the
transposed matrix, so that the product states can be written as follows

| j1m1〉 | j2m2〉 =
∑
J,M

( j1m1, j2m2|JM) |JM〉 . (4.29)

By comparing the series (4.28) and its inverse (4.29) one sees that the
notation (m1m2|JM) is the most concise in expressing the change of
basis. The values of j1 and of j2 are fixed anyway, and their repetition
in the coefficients is redundant. Explicit methods that allow to calculate
these coefficients are explained in Chap. 6, Part Two.

Already at this stage, before even calculating the Clebsch-Gordan
coefficients explicitly, one can determine the values of the total angu-
lar momentum J and of its 3-component M that are possible for given
values of j1 and j2. This is achieved by the following arguments:

1. The operator J3 is the sum of the 3-components of j1 and of j2. Ap-
plying this operator to the two sides of (4.28) shows that one must
have M = m1+m2.

2. It is obvious that the largest value of M is obtained if one chooses
m1 = j1 and m2 = j2, so that M = j1+ j2. The corresponding value
of J must be J = j1+ j2: A smaller value contradicts the proper-
ties (4.11a), (4.11b) of the representations, a larger value is excluded
because then there would be states with M>m1+m2, in contradic-
tion with the assumption.

3. Considering the next lower value M = j1+ j2−1, there are two
possibilities to choose the quantum numbers mi , either (m1 = j1,
m2 = j2−1) or (m1 = j1−1,m2 = j2). One linear combination of
the corresponding product states belongs to total angular momentum
J= j1+ j2, the corresponding eigenstate |J= j1+ j2,M= j1+ j2−1〉
is obtained from the state |J = j1+ j2,M = j1+ j2〉 by applying the
lowering operator J− = (j1)−+ (j2)−. The other linear combination
which is orthogonal to the first, must belong to a multiplet which has
J = j1+ j2−1.

4. The example ( j1 = 3/2, j2 = 1) sketched in Fig. 4.4, shows that this
process continues: For M = j1+ j2−2 there are three possibilities to
choose the pair (m1,m2). Two orthogonal combinations of product
states with | j1m1〉 and | j2m2〉 belong to the two values of J , deter-
mined previously. The third linear combination which is orthogonal
to the first two, opens a new multiplet which carries J = j1+ j2−2.
This contruction terminates when the value j = | j1− j2| is reached.
For example, assume like in Fig. 4.4 that j1 > j2. Then, for M = j1−
j2−1 one possible choice is missing (the one with m1 = j1 and
m2 =− j2−1), so that no new multiplet opens up. (Of course, the
other case, j2 > j1, is reduced to the first by interchanging the two
angular momenta.)

M
=

J

1
M

-
=

J

2
M

-
=

J

Fig. 4.4. Construction of the coupled
states |JM〉 for the example j1 = 3/2,
j2 = 1. Starting from the state |J, J〉
one constructs first the multiplet which
has J = j1+ j2. With every step in M
(to the left in the figure) there emerges
a new multiplet until one has reached
J = | j1− j2|
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As a result we note the rules:

m1+m2 = M , j1+ j2− J = n , n ∈N0

j1+ j2 ≥ J ≥ | j1− j2| . (4.30)

The first of these repeats the statement that the 3-components must
be added; the second and third, taken together, are said to form the
triangle rule for angular momenta. By writing J ≡ j3 they can be
written in an equivalent, symmetric form:

j1+ j2+ j3 = n , j1+ j2 ≥ j3 ≥ | j1− j2| (cyclic) .

(4.31)

(Note that we used the fact that 2J is always a nonnegative integer.)

Remarks

1. The rules (4.30), (4.31) show a certain analogy to the restrictions
that one has to observe in adding ordinary vectors. At the same time,
they also take account of the pecularities of “quantum angular mo-
mentum”.

2. Every Clebsch-Gordan coefficient which violates these selection
rules, vanishes.

3. It is easy to verify that the product basis comprises the same num-
ber of independent orthonormal elements as the coupled basis |JM〉.
Assuming j1 > j2, without restricting the generality of the argument,
we find

j1+ j2∑
J=| j1− j2|

(2J+1)= [2( j1+ j2)+1]+ [2( j1+ j2−1)+1]+ . . .

+[2( j1− j2)+1] = (2 j2+1)(2 j1+1) .

This is precisely the number of product states.
4. The Clebsch-Gordan coefficients, being real, are the entries of or-

thogonal matrices. More precisely, they obey the orthogonality rela-
tions∑
m1m2

( j1m1, j2m2|JM)( j1m1, j2m2|J ′M′)= δJJ ′δMM′ , (4.32)

∑
JM

( j1m1, j2m2|JM)( j1m′1, j2m′2|JM)= δm1m′1δm2m′2 . (4.33)
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5. I quote here two symmetry relations which apply when two of
the angular momenta are interchanged. The proof is deferred to
Part Two. Taking J ≡ j3 they read

( j2m2, j1m1| j3m3)= (−) j1+ j2− j3( j1m1, j2m2| j3m3) , (4.34)

( j1m1, j2m2| j3m3)= (−) j1−m1

√
2 j3+1

2 j2+1
( j1m1, j3−m3| j2−m2) .

(4.35)

6. There are simple cases in which the construction by means of raising
and lowering operators sketched above, can be done “by hand”. Ex-
amples are the coupling of two spin-1/2 states, and the coupling of
angular momentum and spin of an electron, ( j1 = 	, j2 = 1/2). (The
reader is encouraged to try these cases.)

4.1.7 Spin and Orbital Wave Functions

The eigenfunctions of spin, J = 1/2, span a two-dimensional subspace
of Hilbert space. The D-matrices are given in (4.18), the matrix repre-
sentation of the spin operators is given in (4.17). Adopting the conven-
tional notation, s instead of J, we have s = σ/2 where σ = (σ1, σ2, σ3)
stands for the three Pauli matrices. For the sake of completeness and as
a starting point for calculations with spinors I repeat here these matrices
and their properties

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
; (4.36)

σ
†
i = σi , σiσ j = δij + i

∑
k

εijkσk . (4.37)

The second equation in (4.37) summarizes the information that the
square of any Pauli matrix is the unit matrix, σ2

i = 1l, and that the com-
mutator of two different matrices is given by

[σi, σ j ] = 2i
∑

k

εijkσk ,

in agreement with the more general form (4.6), (note the factor 1/2 in
the definition s = σ/2!).

There are three alternative notations for the normed eigenstates of s3
which belong to the eigenvalues 1/2 and −1/2, respectively. They are

(χ+, χ−) or

(∣∣∣∣1

2
,+1

2

〉
,

∣∣∣∣1

2
,−1

2

〉)
or

[(
1
0

)
,

(
0
1

)]
.
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Eigenstates of s1, or of s2, or of the projection of the spin onto an
arbitrary direction n̂ all have the form

χ = 1√|a1|2+|a2|2
[

a1

(
1
0

)
+a2

(
0
1

)]
. (4.38)

Combining the orbital wave functions ψν(t, x) of an electron with its
spin functions χ± yields a total wave function Ψ = (ψ+, ψ−)T which
has two components. In general, it no longer factorizes in an orbital
and a spin part. Rather, it is a linear combination of product states∑
νms

cνmsψνχms . For example, this will happen when the orbital wave
functions are eigenfunctions of orbital angular momentum while Ψ is
meant to describe eigenstates of total angular momentum j = �+ s.

Given two such composite wave functions, say Ψ(i) = (ψ(i)+ , ψ(i)− )T
with i = 1, 2, their scalar product is

(Ψ (1), Ψ (2))=
∫

d3x Ψ(1) † 1l Ψ(2)=
∫

d3x
[
ψ
(1)∗
+ ψ

(2)
+ +ψ(1)∗− ψ

(2)
−

]
.

The probability density to find the electron at time t at the position x,
and in the eigenstate |1/2,ms〉 of s3 is given by |ψms |2. In turn, the
function |ψ+|2+|ψ−|2 describes the probability density to find the elec-
tron in the world point (t, x), irrespective of the orientation of its spin
in space.

An example for a factorizing state is provided by the plane wave
which describes a polarized electron with (linear) momentum p,

1

(2π�)3/2
ei p·x/�χ .

This example is a special case of the following more general situation.

4.1.8 Pure and Mixed States for Spin 1/2
In the two-dimensional subspace of H , and using the basis of eigen-
states of s3 = σ3/2, define the density matrix

�(0) =
(
w+ 0
0 w−

)
= 1

2
(1l+ζ σ3) with ζ =w+−w− .

By definition w++w− = 1 (this relation was used above), both num-
bers being real. The expectation values of the components of the spin
operator are found to be

〈s1〉 = 0= 〈s2〉 , 〈s3〉 = tr
(
�(0)

σ3

2

)
= 1

2
ζ .

In calculating these traces use was made of the formulae

tr σi = 0 , tr(σiσk)= 2δik

which follow from (4.37). If w+ = 1 and, hence, w− = 0 (or if w+ = 0
and w− = 1), then �(0) describes a pure state of complete polarization
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along the positive (or negative) 3-direction. Any other choice of the real
weights corresponds to a mixed state in which the particle is only par-
tially polarized, or not polarized at all. In these cases the two spin states
do not interfere. Specifically, the choice w+ = w− = 1/2 describes an
unpolarized state, the probabilities to find the spin in positive or nega-
tive 3-direction are equal.

Consider a physical state which is a statistical mixture of eigenstates
of the operator � · n̂, where n̂= (sin θ cosφ, sin θ sinφ, cos θ) is a unit
vector in 3-space, and with given weigths w+ and w−. In a frame of
reference whose 3-direction is directed along n̂ the density matrix is
the same as above, �|K = diag(w+, w−). The same density matrix ex-
pressed with respect to the original frame K0 is obtained by the rotation
relating K to K0, i. e. by

�|K0
= D(1/2) †(ψ, θ, φ) �|K D(1/2)(ψ, θ, φ) ,

where the D-matrix is given by (4.18). When calculating the product
D(1/2) †σ3D(1/2), the Euler angle ψ is seen to drop out. One obtains the
result

�|K0
= 1

2

[(
1 0
0 1

)
+ (w+−w−)

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

)]
= 1

2
[1l+(w+−w−)n̂ ·σ] . (4.39)

Note that the half angles which are the arguments of D(1/2), by the
well-known addition theorems for trigonometric functions, are replaced
by the full angles θ and φ.

The result (4.39) is interpreted easily and gives rise to a few in-
teresting comments. First of all, one verifies the general properties of
a density matrix (we omit the reference to K0),

�† = � , tr �= 1 , tr(�2)= 1

2
[1+(w+−w−)2] =w2++w2− ≤ 1 .

In doing this calculation one makes use of the second formula in (4.37)
to show that (n̂ ·σ)(n̂ ·σ)= n̂2 = 1. Of course, use is made of the nor-
malization condition w++w− = 1. If one of the weights equals 1 while
the other vanishes, then tr �2 = tr �= 1. Thus, the density matrix de-
scribes a pure state. In all other cases � describes a statistical mixture.

In some considerations it is useful to define the vector

ζ := (w+−w−)n̂ (4.40)

and to write the density matrix as follows,

�= 1

2
(1l+ζ ·σ) .

For example, calculating the expectation value of the spin operator in
the state described by the density matrix �, yields, as expected,

〈s〉 = 1

2
〈σ〉 = 1

2
tr(�σ)= 1

2
ζ .
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The polarization points in the direction of ζ . With |〈s〉|max = 1/2, the
degree of polarization is equal to

P := |〈s〉|
|〈s〉|max

= |ζ| = w+−w−
w++w− . (4.41)

The square of the norm of ζ is equal to (w+−w−)2 = (1−2w−)2 and
is equal to or smaller than 1. By the same token, the formula (4.41)
yields the relevant observable that is determined by experiment: One
measures the number N+ of particles which are polarized along the di-
rection of ζ as well as the number N− of particles polarized in the
opposite direction. One then takes the difference N+− N− of these
numbers and normalizes to their sum, viz.

P = N+− N−
N++ N−

. (4.42)

A numerical example may serve to illustrate these results. Suppose one
measures the polarization (4.41) to be 40%. In order to take account of
this experimental result one must choose w+ = 0.7, and w− = 0.3. The
trace of �2 equals 0.58 and, hence, is smaller than 1.

4.2 Space Reflection and Time Reversal
in Quantum Mechanics

The example of the rotation group showed that symmetries under trans-
formations in space and time play an important role in quantum mech-
anics and, as compared to classical physics, present some novel aspects.
In nonrelativistic quantum mechanics the relevant symmetry group is
the Galilei group, in relativistic quantum (field) theory, to be treated in
Part Two, it is the Poincaré group, in both cases including reflection in
space and reversal of the direction of time. The consequences of the
invariance of a given theory under space-time symmetries that follow
from the theorem of E. Noether, are best worked out in the frame-
work of second quantization. Although this topic is dealt with later in
Part Two, I discuss space reflection and time reversal already at this
point of the development.

4.2.1 Space Reflection and Parity
One can show that reflection of the axes in the physical space R3

x �−→ x′ = −x , t �−→ t′ = t

induces a unitary transformation � in Hilbert space. An important the-
orem of E. Wigner says that every symmetry S of a quantum system
induces in a unique way a tranformation of unit rays in Hilbert space

{ψ} �−→ S{ψ}
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which is either unitary or antiunitary. This theorem is spelled out in
Part Two. If ψ(i)U =Uψ(i) is a unitary transformation induced by a sym-
metry of the physical system, then all transition matrix elements fulfill
the relation

〈ψ(i)U |ψ(k)U 〉 = 〈ψ(i)|ψ(k)〉 . (4.43)

In the case of antiunitary realization of the symmetry the mapping
ψ
(i)
S = Sψ(i) implies the relations

〈ψ(i)S |ψ(k)S 〉 = 〈ψ(i)|ψ(k)〉∗ = 〈ψ(k)|ψ(i)〉 (4.44)

for all i and k.
If the states transform under space reflection according to

ψ(x) �−→ ψ′(x′)=�ψ(−x) ,

then the observables will have the transformation behaviour

O �−→ Õ =� O �−1 .

It is obvious that expectation values are invariant (ψ,Oψ)= (ψ′, Õψ′).
The properties of the operator � are

�2 = 1l , � =�† =�−1 . (4.45)

This operator is called parity operator. It is unitary and self-adjoint. Its
eigenvalues are +1 and −1. An eigenstate with eigenvalue +1 is called
a state with even parity, an eigenstate with eigenvalue −1 is said to be
a state with odd parity.

The actions of the parity operator on the operators of position, of
momentum, of orbital angular momentum, and of spin are, respectively,

�Q�−1 =−Q , �P�−1 =−P , (4.46)

���−1 =+� , �s�−1 =+s . (4.47)

The two formulae (4.46) are a direct consequence of the definition of
space reflection. The first of the formulae (4.47) follows from the clas-
sical expression �= Q× P for the orbital angular momentum: Indeed,
as both Q and P are odd, their vector product � must be even. Both
of (4.47) leave the commutation rules (4.5) invariant. This is remark-
able in view of the fact that these rules are nonlinear. Their left-hand
side contains two operators, while their right side contains only one! Of
course, the result is in agreement with the well-known relationship be-
tween O(3) and SO(3) which says that every element of O(3) whose
determinant is −1 can be written as the product of an element of SO(3)
and of space reflection.

The action of � on a wave function with spin projection ms is seen
to be

�ψms (t, x)= ψms (t,−x) .
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5 The precise statement is: If an initial
state which is even under �, by the ac-
tion of some interaction, goes over into
a final state which exhibits a correlation
of this kind, the parity-odd observable
is a measure for the amount of par-
ity violation. In contrast, if the electron
in the initial state had already a lon-
gitudinal polarization, then there is not
necessarily parity violation. What mat-
ters is the change of state.

The action on an eigenfunction of orbital angular momentum is

�Rα(r)Y	m(θ, φ)= Rα(r)Y	m(π− θ, π+φ)= (−)	Rα(r)Y	m(θ, φ) .

The sign (−)	 arises from the following observations: The mapping
θ �→ (π− θ) means that z ≡ cos θ is replaced by − cos θ =−z. Inspec-
tion of the formulae (1.114) and (1.115) shows that the factors (z2−1)	

and (1− z2)m/2 remain unchanged, while the derivative d/dz is multi-
plied by (−1), d/dz �→ −d/dz. Therefore, the associated Legendre
function Pm

	 (1.115) obtains the factor (−)	+m . On the other hand, the
factor eimφ gets multiplied by (−)m . The product of these sign factors
gives indeed (−)	 and we obtain the important relation

�Y	m(θ, φ)= (−)	Y	m(θ, φ) . (4.48)

What is the role of the parity operation � in the dynamics of a sys-
tem described by the Hamiltonian H? The operator of kinetic energy
is proportional to the Laplace operator ∆ which is invariant under
space reflection. Asking whether or not � is a symmetry of the theory
is equivalent to asking whether the interaction has a well-defined be-
haviour under parity. For example, any spherically symmetric potential
as well as the spin-orbit interaction

U(r) and f(r)� · s ,
respectively, are even with respect to �. A velocity dependent term of
the kind

g(r)� ·q ,
with q a momentum or momentum transfer, would be odd.

Whenever there is an interaction which is neither even nor odd,
e. g. being the sum of an even and an odd part, there will be observ-
ables which are odd, and, hence, which signal violation of invariance
under parity. Examples for observables of this kind are the spin-
momentum correlations. These are observables which are proportional
to the (scalar) product of an even and an odd observable such as

2
1

|p| 〈s〉 · p=: Pl .

This observable describes the longitudinal polarization of an electron.5

Nature makes use of such interactions: The weak interaction with
charged currents which is responsible, e. g., for β-decay of nuclei, vio-
lates parity. Here, parity violation is even maximal, the observable
effects are as large as they can possibly be.

If the Hamiltonian which appears in the Schrödinger equation is
such that it commutes with the parity operator, [H,�] = 0, the eigen-
functions of H (i. e. the solutions with fixed energy) can be chosen
such that they are also eigenfunctions of the parity operator, with eigen-
value +1 or −1. For instance, the eigenfunctions of the spherical oscil-
lator, Sect. 1.9.4, and, likewise, the eigenfunctions of the bound states of
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the hydrogen atom, Sect. 1.9.5, are eigenfunctions also of �. The eigen-
value of � is fixed by the value of 	. All states with 	= 0, 2, 4, . . . are
even, all states with 	= 1, 3, 5, . . . are odd.

This observation is of paramount importance for the discussion of
selection rules. In a transition from the initial state ψi to the final
state ψ f , by the action of an operator O, we have

(ψ f ,Oψi)= (ψ f ,�
−1�O�−1�ψi)= (�ψ f , Õ�ψi) .

If ψ f and ψi are eigenfunctions of � and pertain to the eigenvalues
(−)Π f and (−)Πi , respectively, and if Õ = (−)ΠO O, the transition mat-
rix elements can be different from zero only if

(−)Πi+ΠO = (−)Π f .

The parity of the initial state multiplied by the parity of the operator
must equal the parity of the final state.

Electric multipole transitions in atoms provide important examples.
The transition amplitude is proportional to matrix elements of the form〈

n′	′m′
∣∣ jλ(kr)Yλµ |n	m〉

where jλ with λ ∈N is a spherical Bessel function, and k is the wave
number of the emitted light quanta. A matrix element of this kind must
vanish if the parities do not match, that is to say, if the selection rule

(−)	(−)λ = (−)	′

is not fulfilled. Electric dipole transitions have λ= 1, and the selection
rule requires the initial and the final states to have different parities.
A 2p-state of hydrogen which by (4.48) is parity-odd, can make an elec-
tric dipole transition to the 1s-state which has even parity. This is not
possible for a 2s-state because it has even parity.

Of course, there are further selection rules, beyond parity. For ex-
ample, the orbital angular momenta 	, λ, and 	′ must fulfill the triangle
rule (4.30) and one must have m+µ=m′. These remarks and examples
illustrate why space reflection takes a fundamentally different and more
important role in quantum mechanics of particles than in classical mech-
anics of point particles.

4.2.2 Reversal of Motion and of Time

Time reversal t �−→−t in the physical spacetime is the prime example
for a symmetry transformation which in Hilbert space is represented by
an antiunitary operator T. The reason for this will become clear soon.
However, we first give the precise definition of antiunitary operators and
collect a few of their properties.
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Definition 4.1 Antiunitary Operator

An operator K which maps the Hilbert space bijectively onto itself,
is said to be antiunitary if it has the following properties

1. K[c1 f (1)+ c2 f (2)] = c∗1[K f (1)]+ c∗2[K f (2)] , c1, c2 ∈C ,
2. ‖ f ‖2 = ‖K f ‖2 for all f (1), f (2), f ∈H .

One easily proves the following properties:

Theorem 4.1 Antiunitary Operators

1. With f, g ∈H any two elements one has

(K f,Kg)= (g, f )= ( f, g)∗ . (4.49)

2. The product of two antiunitary operators K(1) and K(2) is unitary.
3. The product of an antiunitary operator and a unitary operator is

again antiunitary.

Remarks

1. The relation (4.49) is identical with (4.44), quoted in Sect. 4.2, which
relates different transition amplitudes. One proves the relation (4.49)
by evaluating

(
K(c f f + cgg),K(c f f + cgg)

)
for arbitrary complex

numbers c f and cg, making use of property 2 in the definition, and
by comparing coefficients. Indeed, by property 1(

K(c f f + cgg),K(c f f + cgg)
)

= ∣∣c f
∣∣ 2(K f,K f )+ ∣∣cg

∣∣ 2(Kg,Kg)

+ c f c∗g(K f,Kg)+ c∗f cg(Kg,K f ) .

By property 2 this is equal to

= (
(c f f + cgg), (c f f + cgg)

)= ∣∣c f
∣∣ 2( f, f )+ ∣∣cg

∣∣ 2(g, g)

+ c∗f cg( f, g)+ c f c∗g(g, f ) .

As c f and cg can be chosen at will one concludes (K f,Kg) =
(g, f ).

2. As a corollary of the assertion 3 in Theorem 4.1 one notes that every
antiunitary operator can be written as the product of a unitary oper-
ator and a fixed antiunitary operator K(0), K= UK(0).

3. The operator K(0) may be chosen to be “complex conjugation”, that
is to say, the operator which does no more than to replace every
complex number (also called a c-number) by its complex conjugate.

4. In classical physics time reversal is equivalent to reversal of the
sense of motion. Indeed, the relation (4.44) or (4.49) means that ini-
tial and final states are interchanged. Thus, it seems plausible that
time reversal is effected by an antiunitary operator.
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5. In turn, if we already know that time reversal is represented by an
antiunitary symmetry transformation in Hilbert space, then (4.44)
implies a simple rule: Time reversal, applied to a transition matrix
element, either means that initial and final states must be inter-
changed, or that all c-numbers must be replaced by their complex
conjugates.

We work out the action of the transformation

t �→ t′ = −t , x �→ x′ = x

on the Schrödinger equation. Let

ψ(t, x) �−→ ψ′(t′, x)= Tψ(t, x) , (t′ = −t) .

If H has no explicit time dependence, the operator T must be deter-
mined such that the Schrödinger equation remains form invariant, that
is,

i�
d

dt′
ψ′(t′, x)= Hψ′(t′, x) or − i�

d

dt
Tψ(t, x)= HTψ(t, x) .

As long as ψ is a scalar, hence a one-component wave function, this
requirement is met if the operator T acts by complex conjugation K(0),

Tψ(t, x)=K(0)ψ(t, x)= ψ∗(t, x) . (4.50)

Thus the time reversed wave function satisfies the complex conjugate
Schrödinger equation.

If the wave function contains also a spin-1/2, that is to say, if it is
a two-component vector Ψ = (ψ+, ψ−)T (cf. Sect. 4.1.7), then T can be
taken to be of the form

T= UK(0) (4.51)

where U is a unitary transformation still to be determined. Thus, its
action will be

T
(
ψ+
ψ−

)
= U

(
ψ∗+
ψ∗−

)
.

The unitary transformation U is obtained by the following argument:
With Ψ = (ψ+, ψ−)T also Ψ ∗ = (ψ∗+, ψ∗−)T is a spinor representation
of the rotation group. While the former transforms under rotations
with D(1/2), cf. Sect. 4.1.3, the latter, Ψ ∗, transforms with D(1/2) ∗. How-
ever, this is consistent only if the relation

UD(1/2)U† = D(1/2) ∗ , i. e. Uσ∗j U† =−σ j

is satisfied. The matrix σ2 is pure imaginary. It obviously commutes
with itself, but anticommutes with σ1 and with σ3. Therefore U must
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be proportional to σ2. The conventional choice is the following

T= UK(0) with U= iσ2 =
(

0 1
−1 0

)
. (4.52)

A look at the formula (4.18) tells us that U, in reality, is a rotation about
the 2-axis, by an angle π,

U= iσ2 = D(1/2)(0, π, 0)= eiπσ2/2 .

This result calls for two comments.

1. The same reasoning may be applied to any representation of the
rotation group in which the generators are (2 j+1)× (2 j+1) matri-
ces Ji , i = 1, 2, 3. The rotation D( j)(0, π, 0) takes J1 and J3 to their
negatives, but leaves invariant J2, viz.

UJ1/3U−1 =−J1/3 , UJ2U−1 =+J2 .

With the phase convention (4.12) the 1- and 3-components are real,
while the 2-component is pure imaginary. Therefore, for all three of
them we have

UJ∗i U−1 =−Ji , i = 1, 2, 3 , (4.53)

which hold in all representations. Thus, time reversal is realized by
the antiunitary transformation T= UK(0).

2. The matrix U is real (hence, in fact, orthogonal) and commutes with
the operation of complex conjugation. Therefore, applying time re-
versal twice, one obtains

T2 = UK(0)UK(0) = U2K(0) 2 = exp(i2πJ2)= (−)2 j 1l .
Thus, for integer angular momentum one has T2 =+ 1l, while for
half-integer angular momentum one finds T2 =− 1l. In particular, in
a system containing N particles with spin 1/2 (fermions) one finds

T2 = (−)N 1l .

If the Hamiltonian of this system commutes with time reversal,
this factor has an important consequence: From Hψ = Eψ fol-
lows H(Tψ)= E(Tψ) which means that if ψ is a solution of the
Schrödinger equation then also Tψ is a solution and has the same
energy E as the original. If the number of particles N is even one
can always manage to have (Tψ)=ψ. However, if N is odd the two
states ψ and Tψ are different. This means that the eigenvalues of the
Hamiltonian H for a system with an odd number of fermions are al-
ways degenerate. The degree of degeneracy is even, hence, at least
equal to 2. This statement is called Kramer’s theorem.

Under the action of time reversal one obtains relations which are
analogous to (4.46) and to (4.47), and which read

TQT−1 =+Q , TPT−1 =−P , (4.54)

T�T−1 =−� , TsT−1 =−s . (4.55)
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An external electric field is invariant under time reversal, while
a magnetic field B goes over into −B. The relative sign between
E and B is immediately clear if one recalls the Lorentz force F =
e(E+v× B/c) and notes that the velocity v is odd. If H0 commutes
with T, then the Hamiltonian (4.25), as a whole, is invariant under time
reversal. Note that we apply time reversal both to the observables of
the electron and to the external fields. If instead we had kep the exter-
nal fields unchanged then the terms H0 and � · s would be even, but the
terms � ·B and s ·B would be odd. An electron which crosses a fixed ex-
ternal magnetic field does not follow the same trajectory when t �→ −t.

Suppose T commutes with H . The action of time reversal on the
evolution operator (3.27) then is

TU(t, t0)T=T exp
(
− i

�
H(t−t0)

)
T= exp

(
+ i

�
H(t−t0)

)
=U†(t, t0) .

This is the quantum theoretic analogue of the classical equivalence be-
tween time reversal and reversal of the motion.

4.2.3 Concluding Remarks on T and �

The rotation group being a subgroup of the Galilei and of the Poincaré
groups, plays an important role in both nonrelativistic quantum mechan-
ics and quantum field theory. As this is a continuous group, invariance
of the dynamics of a given system under rotations about an (arbitrary)
axis n̂ implies conservation of the projection of the angular momentum
onto that axis – in close analogy to the analogous situation in classical
physics (theorem of E. Noether). Indeed, if ϕ(x) is an eigenfunction of
a given Hamiltonian H , than the transformed, “rotated” wave function

ϕ′(x′)= Dn̂(α)ϕ(x)= exp[iα(J · n̂)]ϕ(x)
is an eigenfunction of H , for all values of the angle of rotation α, if and
only if

[H, (J · n̂)] = 0 ,

i. e. if the projection of J onto the given direction commutes with the
Hamiltonian. If this holds true for all directions the angular momentum
as a whole is conserved.

In contrast to rotations and translations, time reversal and space
reflection are discrete transformations. Invariance of the dynamics of
a physical system with respect to � or to T does not lead to new con-
served quantities, but implies certain selection rules. These selection
rules are a characteristic feature in the quantum world, and are new as
compared to classical physics. Parity selection rules in the case of �,
and Kramer’s theorem in the case of T provide good examples.

There is another, far reaching aspect which comes in addition to
the two discrete transformations studied above: Relativistic quantum
physics predicts, somewhat loosely speaking, that for every elementary
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6 In nonrelativistic quantum mechanics
there exists an analogue for the particle-
antiparticle relation. For example, in
a many body system consisting of N
fermions in an external, attractive po-
tential the ground state (i. e. the state
of lowest energy) is a state where the
particles are distributed over the lowest
bound states, in accord with the Pauli
principle. Excited states of the sys-
tem contain configurations where one
or several particles are taken out of
a bound state, creating a “hole”, and are
lifted to a formerly unoccupied state.
The relation of hole states to occupied
particle states is somewhat like the re-
lation of antiparticles to particles.

particle there exists an antiparticle. Particles and antiparticles have the
same mass and the same spin but they differ in the sign of all additively
conserved quantum numbers.6 An example for an additive quantum
number is the electric charge q/|e|, expressed in units of the elementary
charge: An electron has charge −1, the positron being its antiparticle,
has charge +1. Electric charge is universally conserved. Therefore, in
any reaction process the sum of all charges in the initial state equals
the sum of all charges in the final state.

Conversely, a particle which is identical with its own antiparticle,
can have no additively conserved quantum numbers. This is the case for
the photon which carries no electric charge and which, indeed, coincides
with its antiparticle. Furthermore, one learns that quantum field theory
can be formulated in a way which is completely symmetric in particles
and antiparticles, and that it is a matter of pure convention whether one
calls the electron “particle”, the positron “antiparticle”, or vice versa. In
order to take proper and formal account of the particle-antiparticle rela-
tionship one defines one further discrete transformation C, called charge
conjugation, which replaces every particle (antiparticle) by its antipar-
ticle (particle), without changing any of its other dynamical attributes
such as linear momentum, spin, or the like. For example, its action on
the state of an electron is

C : |e−, p,ms〉 �−→ eiηC |e+, p,ms〉 , (4.56)

Note that there can be a phase factor eiηC in this mapping.
It turns out that charge conjugation is intimately related to space re-

flection and to time reversal. A fundamental theorem in quantum field
theory, discovered by G. Lüders and W. Pauli, and proven in its most
general form by R. Jost, says that a theory which is Lorentz covariant
and fulfills certain conditions of locality and causality, is invariant under
the product

�CT=:Θ (4.57)

of space reflection, charge conjugation, and time reversal [Streater and
Wightman (1964)]. Thus, if the theory fulfills these conditions but is not
invariant under one of the three discrete transformations, it must vio-
late one of the remaining two. Here is an example which illustrates this
important relation.

Example 4.1 Decay of Charged Pions

A positively charged pion π+, after a mean life of about 2.6×10−8 s,
decays predominantly into a positive muon and a muonic neutrino,

π+ −→ µ++νµ .

The pion has no spin. Seen from the pion’s rest system the muon and
the neutrino have opposite and equal (spatial) momenta, as sketched
in Fig. 4.5. The plane wave decribing the relative motion of the particles
in the final state contains all values of the orbital angular momentum 	,
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a)

b) c)

C (   C)

Fig. 4.5a – c. The figure shows the de-
cay π+ −→ µ++ νµ, in part (a), as
well as the processes which are ob-
tained from it by the action of charge
conjugation C, and of the product of C
and of space reflection �. The pro-
cess (c) is observed in nature, the pro-
cess (b) is not

cf. (1.136), but all partial waves have vanishing projection onto the line
along which the particles escape, m	 = 0. (Recall that we showed this in
Sect. 1.9.3!) Take this direction to be the 3-axis (axis of quantization).
As the projection J3 of the total angular momentum (which is the sum
of orbital and spin angular momenta) is conserved, and as all m	 vanish,
the projections of the spins m(µ)s and m(ν)s must be equal and opposite.
Neutrinos having their spin oriented opposite to their momentum, the
m quantum numbers must be the ones shown in Fig. 4.5a.

Applying charge conjugation C to this process yields the new pro-
cess shown in Fig. 4.5b: A negatively charged pion goes over into a µ−
with its spin antiparallel to its momentum, and a muonic antineutrino
whose spin is antiparallel to its momentum, too. This process was never
observed. Experiment tells us that neutrinos occur always with their spin
antiparallel to the momentum, while antineutrinos come always with
their spin parallel to the momentum. Another way of expressing the
same observation is this: Define helicity, or “handedness” to be the pro-
jection

h := s · p
|p| . (4.58)

The empirical observation is that neutrinos always come with negative
helicity, antineutrinos with positive helicity. Now, while it seems pro-
hibitively difficult to measure this observable directly with neutrinos,
this measurement is possible for their charged partners. One deduces
the helicity of the neutrino or the antineutrino, respectively, from the
conservation of J3, as described above.

If, in addition, one applies space reflection to the (unobserved) pro-
cess of Fig. 4.5b, or, equivalently, if one acts with the product C � on
the initial process of Fig. 4.5a, then one obtains the decay process shown
in Fig. 4.5c. Indeed, this is a process which is seen in experiment and,
hence, which is physically allowed!

The mere fact that one observes a nonvanishing spin-momentum cor-
relation of the kind of (4.58), or s · p/E, which is odd under � but even
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7 The precise statement is the follow-
ing: A particle with nonvanishing mass
which is created in β-decay, or in some
other related process, has longitudinal
polarization (i. e. along the positive or
negative direction of its momentum).
The degree of polarization assumes the
maximal value Pl = ±v/c. If the par-
ticle has no mass, then this goes over
into Pl =±1, the helicity is h =±1/2.

under T, is an indication that the weak interactions which cause the de-
cay do not conserve parity. The experimental finding is that for leptons
(electrons, neutrinos, muons, etc.) this correlation even takes the largest
possible value. This means that violation of parity invariance must be
maximal.7 The example shows, furthermore, that the weak interaction
also violates invariance under charge conjugation C in a maximal way.
Only the combined transformation C � is a symmetry of the interac-
tion.

4.3 Symmetry and Antisymmetry
of Identical Particles

The quantum mechanics of a single particle that was the subject of
Chap. 1 can be generalized to systems of many particles in a simple
manner and in close analogy to classical mechanics. I show this in
quite some detail on the example of two-body systems, and then, in
a second step, extend the results to systems with a finite number N of
particles. As compared to classical mechanics, a fundamentally new as-
pect will come into play when these particles are identical particles. In
micro-physics, as a matter of principle, identical particles are indistin-
guishable. The analysis of this fact, together with Born’s interpretation
of the wave function, implies that the total wave function of the N-
particle system carries a specific symmetry character with respect to
interchange of particles. Furthermore, the type of exchange symmetry it
has is related to the spin class of the particles. Particles with half-integer
spin have another exchange symmetry than particles with integer spin.

4.3.1 Two Distinct Particles in Interaction
Take the hydrogen atom as an example: it is composed of an electron
which has electric charge −|e|, and mass mec2 = 0.511 keV, and a pro-
ton which has charge +|e|, and mass mpc2 = 938.3 MeV. Hence, we
deal with two distinct particles whose properties differ. We consider two
particles with masses m1 and m2, respectively, which interact via a cen-
tral force. The central force is conservative, and, hence, may be derived
from a potential U(r) with r := |x(2)− x(1)| the modulus of the relative
coordinate. A Hamiltonian describing this system then has the form

H =− �
2

2m1
∆
(1)− �

2

2m2
∆
(2)+U(r) . (4.59)

The particle index (i) attached to the Laplace operators indicates that
derivatives are to be taken with respect to the coordinates x(i).

The kinematics of the problem is the same as in classical mechanics:
Center-of-mass and relative coordinates are, respectively,8

X := 1

m1+m2
(m1x(1)+m2x(2)) , r := x(2)− x(1) .
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The corresponding canonically conjugate momenta are, respectively,

P := p(1)+ p(2) , p := 1

m1+m2
(m1 p(2)−m2 p(1)) .

If µ= m1m2/(m1+m2) denotes the reduced mass, then we also have
p= µṙ.

The dynamics is different. The transformation

(x(1), x(2), p(1), p(2)) �−→ (X, r, P, p)

implies that the two physical particles are replaced by two fictitious but
equally independent particles, one of which has the mass M := m1+m2
and the phase space variables (X, P), while the other has mass µ
and the phase space variables (r, p). Following the rules developed
in Chap. 1 the momenta must be replaced by self-adjoint differential op-
erators as follows

P −→ �
i
∇(X) , p−→ �

i
∇(r) .

These operators and the position operators fulfill the commutation rela-
tions

[Pi, Xk] = �
i
δki = [pi , r

k] , [Pi, r
k] = 0= [pi , Xk] ,

[Pi, Pk] = 0= [pi , pk] , [Xi , Xk] = 0= [ri , rk] .
This prescription is verified by the following calculation. Making use of
the chain rule for differentials one shows that

∇(1) = m1

M
∇(X)−∇(r) , ∇(2) = m2

M
∇(X)+∇(r) .

Squaring these operators, multiplying the result for the first operator
by 1/(2m1), for the second by 1/(2m2), and adding, one finds

1

2M

(∇(X))2+ 1

2

(
1

m1
+ 1

m2

) (∇(r))2 = 1

2M
∆
(X)+ 1

2µ
∆
(r) .

Thereby, the Hamiltonian (4.59) takes the expected form

H =− �
2

2M
∆
(X)− �

2

2µ
∆
(r)+U(r)≡ H(X)+H(r) . (4.60)

It separates into the (force-free) motion of the center-of-mass and an ef-
fective one-body problem in the relative motion. Stationary solutions of
the Schrödinger equation may be assumed to factor as follows,

Ψ(X, r, spins)= ψ(X)ϕ(r)χ(s(1), s(2)) , (4.61)

8 In view of Jacobi coordinates for
N particles I choose here r to point
from particle 1 to particle 2. Note, how-
ever, that in [Scheck (2005)], Sects.
1.7.1 and 1.7.3, I used r = x(1)− x(2)

instead.
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9 K.G.J. Jacobi, Crelles Journal für
reine und angewandte Mathematik
XXVI, 115–131 (1843).

where χ is a wave function which describes the spin(s) of the two
particles. For example, if the total state is an eigenstate of the center-
of-mass momentum P, then

Ψ(X, r, spins)= exp
( i

�
P · X

)
ϕ(r)χ(s(1), s(2)) .

At the same time the stationary Schrödinger equation is decomposed
into two additive parts, and the eigenvalue of energy is the sum of the
kinetic energy of the center-of-mass and the energy of the relative mo-
tion, E = P2/(2M)+ Erel. The full dynamics is contained, apart from
free motion of the center-of-mass, in the Schrödinger equation for rela-
tive motion,

H(r)ϕ(r)=
(
− �

2

2µ
∆
(r)+U(r)

)
ϕ(r)= Erelϕ(r) .

Thus, we are taken back to the central field problems for one single
particle that we discussed extensively in Chap. 1.

The spin function χ, in turn, for given spins s(1) and s(2) is to be
constructed as described previously.

Remarks
As long as all particles are different from each other, the generaliza-
tion to N> 2 is obvious and follows the corresponding rules of classical
mechanics. Suppose the external forces are potential forces, and, thus,
are described by potentials Un(x(n)). Suppose further that the inter-
nal forces are central forces described by potentials Umn(|x(m)− x(n)|).
Then a typical Hamiltonian reads

H =
N∑

n=1

(
− �

2

2mn
∆
(n)+Un(x(n))

)
+ 1

2

N∑
m �=n=1

Umn

(∣∣∣x(m)− x(n)
∣∣∣) .

(4.62)

Its stationary eigenstates depend on all coordinates {x(n)} and, if occa-
sion arises, on the spins of the participating particles,

Ψ = Ψ(x(1), s(1); x(2), s(2); . . . ; x(n), s(n)) .
The interpretation of this wave function follows from Born’s interpreta-
tion.

If all external forces are zero it is appropriate to separate the
center-of-mass motion and to introduce Jacobi coordinates9 {r(i),π(i)},
cf. [Scheck (2005)], Exercise 2.24. In the notation used here, these are

r( j) = x( j+1)− 1

M j

j∑
i=1

mi x(i) , r(N) = 1

MN

N∑
i=1

mi x(i) , (4.63)

π( j) = 1

M j+1

⎛⎝M j p( j+1)−m j+1

j∑
i=1

p(i)

⎞⎠ , π(N) =
N∑

i=1

p(i) .

(4.64)
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In these formulae M j is the sum of the first j masses, M j =∑ j
i=1 mi ,

the index j running from 1 to N−1. It is also of interest to determine
the inverse formulae of (4.64). They are

p(1) =−π(1)−
N−1∑
j=2

m1

M j
π( j)+ m1

MN
π(N)

p(2) = π(1)−
N−1∑
j=2

m2

M j
π( j)+ m2

MN
π(N)

p(3) = π(2)−
N−1∑
j=3

m3

M j
π( j)+ m3

MN
π(N)

p(4) = π(3)−
N−1∑
j=3

m4

M j
π( j)+ m4

MN
π(N)

...

=
...

p(N) = π(N−1) + mN

MN
π(N) .

The variables (r( j),π( j)) are canonically conjugate variables, and so are
the original variables (x(k), p(k)).

4.3.2 Identical Particles with the Example N = 2

When the particles are identical and hence indistinguishable, the de-
scription of the N-particle system receives a fundamentally new feature.
While in the classical, macroscopic realm it is perfectly conceivable to
“mark” and to identify individual particles, as a matter of principle, this
is not possible for micro-particles such as electrons, protons, π mesons,
or photons. This strict indistinguishability is emphasized by the Born in-
terpretation of quantum wave functions from which one concludes that,
in general, it is impossible to predict the outcome of a measurement for
one single particle. The predictions of quantum mechanics are probabili-
ties. They apply only to a large number of identically prepared particles.
Wave functions or self-adjoint operators which single out, in some way
or other, one particular particle in an ensemble of N identical ones,
cannot be physically meaningful. We discuss these matters first for the
example of two particles, N = 2.

Let Ψ(x(1),m(1)s ; x(2),m(2)s ) be an arbitrary two-particle wave func-
tion. Any single-particle observable, constructed according to the rules
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of Sect. 1.5, must be of the form

O =O

(
�

i
∇(1), x(1)

)
+O

(
�

i
∇(2), x(2)

)
where the second term differs from the first solely by the replace-
ment (x(1)←→ x(2), p(1)←→ p(2)) and, if it contains spin degrees of
freedom, by simultaneous exchange of the spin operators. In case of
a two-body observable, for which the interaction term (4.62) provides
an example, this operator must be invariant when the two particles are
interchanged with all their attributes.

The construction just sketched is an acceptable rule for obtaining
one-body observables which are symmetric in the two identical par-
ticles. Alternatively, one may introduce the permutation operator Π12
which acts as follows:

Π12Ψ(x(1),m(1)s ; x(2),m(2)s )= Ψ(x(2),m(2)s ; x(1),m(1)s )

and whose properties are

Π2
12 = 1l , Π

†
12 =Π12 .

Its eigenvalues are +1 and −1. In the first case its eigenstates are
symmetric under exchange, in the second case they are antisymmetric.
A one-particle observable is obtained by the rule

O =O

(
�

i
∇(1), x(1)

)
+Π12 O

(
�

i
∇(1), x(1)

)
Π
†
12 .

Suppose a pure state Ψ is being prepared by measuring an observ-
able of this kind. The state is described by the projection operator PΨ
such that this operator commutes with Π12, [Π12, PΨ ] = 0. This means,
in turn, that if Ψ is an eigenstate of PΨ , then so is Π12Ψ . Thus,

Π12Ψ = zΨ with z =±1 .

The state prepared in this way must be either symmetric or antisym-
metric under exchange of the two particles. As the Hamiltonian of
the two-body system itself is symmetric when the particles are inter-
changed, it commutes with Π12, [H,Π12] = 0. The same conclusion
applies to the operator (3.27) of temporal evolution of the system,

[Π12,U(t, t0)] =
[
Π12, exp

(
− i

�
H(t− t0)

)]
= 0 .

The symmetry character with respect to interchange of particles is not
changed by the evolution in time. An initially symmetric state will
remain to be symmetric for all times, an antisymmetric state stays
antisymmetric forever. States which are neither symmetric nor antisym-
metric, cannot be physical states. Also, from a physical point of view,
it is not meaningful to superpose symmetric and antisymmetric states.
We illustrate these conclusions by a few examples.
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Example 4.2
The Hamiltonian (4.59) of a sytem with two identical particles with
spin s may contain an internal central force, described by a potential
U(r) with r := |x(2)−x(1)|, but is assumed to contain no external forces.
If one separates the kinematics into center-of-mass and relative motion,
in agreement with (4.60), the wave function that describes the center-
of-mass, by definition, is symmetric when the particles are interchanged.
The wave function for relative motion is written in a factorized form in
spherical polar coordinates,

ψα	m(r)= Rα(r)Y	m(θ, φ) , r = x(2)− x(1) .

Finally, the spin wave functions are coupled to total spin S= s(1)+ s(2),
viz.

|SM〉 =
∑

m1,m2

(sm1, sm2|SM) |sm1〉 |sm2〉 .

In R3 the exchange of the two particles implies the replacements

Π12 : r �−→ r , θ �−→ π− θ , φ �−→ φ+π mod 2π .

Obviously, the action of this mapping is the same as the action of space
reflection, Sect. 4.2.1. While the radial function remains unchanged, the
spherical harmonic receives the sign (−)	. Thus, one has

Π12 : ψα	m(r) �−→ ψα	m(−r)= (−)	ψα	m(r) . (4.65)

The spin function, in turn, receives its sign from the relation (4.34), viz.

Π12 : |SM〉 �−→ (−)2s−S |SM〉 . (4.66)

Consider then the two characteristic cases:

1. Two particles with spin s = 1/2: According to the selection rules
(4.30) the total spin S can have only the values 1 and 0. The eigen-
states |SM〉 are constructed by means of the ladder operators (4.8)
and the relations (4.13), whose action in the spinor representation is
given by

J+
∣∣∣∣1

2
,−1

2

〉
=

∣∣∣∣1

2
,+1

2

〉
,

J−
∣∣∣∣1

2
,+1

2

〉
=

∣∣∣∣1

2
,−1

2

〉
, J±

∣∣∣∣1

2
,±1

2

〉
.= 0

For the case of the triplet representation their action is

J± |1,∓1〉 = √2 |1, 0〉 , J± |1, 0〉 =
√

2 |1,±1〉 .
Proceeding like in Sect. 4.1.6 and as sketched in Fig. 4.4, one starts
from the two-body state with S=M=1, |1,1〉=|1/2,+1/2〉|1/2,+1/2〉,
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and applies the lowering operator J− = J(1)− +J(2)− to it, thus obtain-
ing

|1,+1〉 =
∣∣∣∣1

2
,+1

2

〉 ∣∣∣∣1

2
,+1

2

〉
,

|1, 0〉 = 1√
2

(∣∣∣∣1

2
,+1

2

〉 ∣∣∣∣1

2
,−1

2

〉
+
∣∣∣∣1

2
,−1

2

〉 ∣∣∣∣1

2
,+1

2

〉)
,

|1,−1〉 =
∣∣∣∣1

2
,−1

2

〉 ∣∣∣∣1

2
,−1

2

〉
. (4.67)

The state which has S= 0 is given by a linear combination which is
orthogonal to the state |1, 0〉 in (4.67),

|0, 0〉 = 1√
2

(∣∣∣∣1

2
,+1

2

〉 ∣∣∣∣1

2
,−1

2

〉
−
∣∣∣∣1

2
,−1

2

〉 ∣∣∣∣1

2
,+1

2

〉)
. (4.68)

The three states (4.67) are symmetric, the state (4.68) is antisymmet-
ric under exchange of the two particles. This agrees with the more
general rule (4.66) which yields the sign (−)1−S.
The action of exchange on the orbital wave function and the spin
function taken together, is seen to be

Π12 : ψα	m(r)
∣∣∣∣(1

2
,

1

2

)
SM

〉
�−→ (−)	+S−1 ψα	m(r)

∣∣∣∣(1

2
,

1

2

)
SM

〉
.

(4.69)

2. Two particles with spin s = 1: According to the rules (4.30) the
total spin can take the values S = 2, 1, 0. One starts from the state
|2,+2〉 = |1,+1〉|1,+1〉 and constructs from it the entire multiplet
with S= 2, by means of the ladder operator J−. The state |1,+1〉 is
determined using its orthogonality to the state |2,+1〉). The remain-
ing triplet states follow from this state, as before. Finally, the state
|0, 0〉 is obtained by using its orthogonality to |2, 0〉 and to |1, 0〉. In
summary, one obtains for total spin S = 2:

|2,±2〉 = |1,±1〉 |1,±1〉
|2,±1〉 = 1√

2
(|1,±1〉 |1, 0〉+ |1, 0〉 |1,±1〉) (4.70)

|2, 0〉 = 1√
6
(|1, 1〉 |1,−1〉+2 |1, 0〉 |1, 0〉+ |1,−1〉 |1, 1〉) ,

for total spin S = 1:

|1,±1〉 = 1√
2
(± |1,±1〉 |1, 0〉∓ |1, 0〉 |1,±1〉)

|1, 0〉 = 1√
2
(|1, 1〉 |1,−1〉− |1,−1〉 |1, 1〉) , (4.71)
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and for total spin S = 0:

|0, 0〉 = 1√
3
(|1, 1〉 |1,−1〉−|1, 0〉 |1, 0〉+|1,−1〉 |1, 1〉) . (4.72)

The states (4.70) and (4.72) are seen to be symmetric while
the state (4.71) is antisymmetric, in agreement with the general
rule (4.66). Regarding the symmetry of the total, orbital and spin,
wave function one has

Π12 : ψα	m(r) |(1, 1)SM〉 �−→ (−)	+S ψα	m(r) |(1, 1)SM〉 .
(4.73)

Before turning to a discussion of the relation between the spin of
identical particles and their statistics which fixes the allowed signs
in (4.69) and in (4.73), we generalize the results of this section to
more than two particles.

4.3.3 Extension to N Identical Particles
Given a system of N identical particles with spin s, the general analysis
of the preceding section applies to any pair (i, j) of them. As a con-
sequence, it seems obvious that every observable is symmetric in all
particles, i. e. that it commutes with the interchanging operation Πij for
all i and j. Only those states of the N-particle system can be physically
meaningful which are either completely symmetric, or completely anti-
symmetric under all permutations. Let us explain these matters in more
detail: Let Π be a permutation of the N particles,

Π : (1, 2, 3, . . . , N) �−→ (
Π(1),Π(2),Π(3), . . . ,Π(N)

)
,

and let (−)Π be its sign. Permutations are generated by interchanging
immediate neighbours. They are called even, and their sign is positive,
if the number of neighbour exchanges is even. They are odd, and have
a minus sign if the number of neighbour exchanges is odd. For example,
the permutation (1, 2, 3, 4) �→ (4, 1, 2, 3) is odd because it needs three
exchanges of neighbours to reach the second ordering from the first.

Let Ψ(1; 2; 3; . . . ; N) be a solution of the Schrödinger equation for
N identical particles, the particle number “i” being a short-hand nota-
tion for the coordinates and the spin quantum numbers of a particle.
A completely symmetric wave function is generated by the rule

ΨS = NS

∑
Π

Π Ψ(1; 2; 3; . . . ; N) , (4.74)

while a completely antisymmetric wave function is obtained by the pre-
scription

ΨA = NA

∑
Π

(−)Π Π Ψ(1; 2; 3; . . . ; N) . (4.75)
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Table 4.1. Properties of a few elemen-
tary or composite particles. Charges are
in units of the elementary charge

Fermions

particle symbol charge spin

electron e− −1 1/2
positron e+ +1 1/2
proton p 1 1/2
neutron n 0 1/2
Bismuth 209Bi 83 9/2
muon µ− −1 1/2
antimuon µ+ +1 1/2
electron- νe 0 1/2
neutrino νe 0 1/2
up-quark u +2/3 1/2
down-quark d −1/3 1/2
strange-quark s −1/3 1/2

Bosons

particle symbol charge spin

photon γ 0 1
W±-bosons W± ±1 1
Z0-boson Z0 0 1

Higgs boson H 0 0
Helium nucleus α 2 0
pions π±, π0 ±1, 0 0

10 The names go back to two physi-
cists of the 20th century: Enrico Fermi
(1901 – 1954), Italo-American, and
Satyendra Nath Bose (1894 – 1974),
from India.

In these formulae NS and NA are normalization factors which in both
cases must be determined such that ΨS and ΨA, respectively, are nor-
malized to 1.

4.3.4 Connection between Spin and Statistics
Particles whose spin is half-integer, i. e. who carry spin s = 1/2,
3/2, 5/2,. . . , are called fermions; Particles whose spin is integer, i. e.
s = 0, 1, 2, . . . , are called bosons.10 Note that it makes no difference
whether the particles are elementary building blocs of nature such as
an electron or a quark, or composite particles such as a proton p, the
charged and neutral pions π± and π0, respectively, atoms or atomic
nuclei, whose spin, in reality, is the resulting sum of the spins and or-
bital angular momenta of their constituents. We show some examples
for fermions and bosons in Table 4.1.

There is a deep relation, for every quantum system of N identical
particles, between their spin class, bosonic or fermionic, and the sym-
metry of its physical states under permutations of the particles:

Exchange Symmetry of N-Fermion- /N-Boson-States:
For any permutation Π of the particles, the physical states of
N fermions are multiplied by (−)Π . Such states are of the type
of (4.75). Indeed, with Π ◦Π ′ =:Π ′′, one has

ΠΨ = NA

∑
Π ′
(−)Π ′Π ◦Π ′Ψ(1; . . . ; N)

= (−)ΠNA

∑
Π ′′
(−)Π ′′Π ′′Ψ(1; . . . ; N)

= (−)ΠΨ . (4.76)

The physical states of N bosons are totally symmetric under any per-
mutation of the particles. They are of the type of (4.74) so that one
has

ΠΨ = Ψ . (4.77)

Before turning to the foundations on which this fundamental rule rests,
let us explain it in some more detail, and illustrate it by some simple
examples. The first part of the rule which concerns fermions, for the
case N = 2, implies that every state must be antisymmetric when the
two particles are exchanged with all their attributes. For the example
Example 4.2 of Sect. 4.3.2 this means that in (4.69) only those values
of S and 	 are admissible whose sum is even. The spin singlet can only
occur when 	= 0, 2, . . . , while the spin triplet requires 	= 1, 3, . . . .

The second part which concerns bosons, for N = 2, says that
in (4.73), too, only S+	= even is admissible. With S= 0 or S= 2 the
orbital angular momentum 	 must have even-integer values, for S= 1 it
must have odd-integer values.
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Of course, the fermionic case is of special interest because of the
alternating signs. Suppose, for instance, the Hamiltonian to be the sum
of N copies of a one-body Hamiltonian H(n), H =∑N

n=1 H(n), whose
stationary solutions ϕαk (n) and eigenvalues Eαk are known,

H(n)ϕαk(n)= Eαk ϕαk (n) .

The N-particle wave function

Ψ(1; 2; · · · ; N)= ϕα1(1)ϕα2(2) . . . ϕαN (N) ,

although it is an eigenfunction of H pertaining to the eigenvalue E =∑N
k=1 Eαk , does not obey the symmetry rule (4.76). It will do so only if

we distribute the N fermions onto the normed states ϕα1 , ϕα2 , . . . , ϕαN

in all possible ways and provide every permutation with the sign that
pertains to it. Thus, the correct antisymmetrized product wave function,
normalized to 1 must be constructed as follows:

ΨA = 1√
N! det

⎛⎜⎜⎜⎝
ϕα1(1) ϕα2(1) . . . ϕαN (1)
ϕα1(2) ϕα2(2) . . . ϕαN (2)
...

...
. . .

...

ϕα1(N) ϕα2(N) . . . ϕαN (N)

⎞⎟⎟⎟⎠ . (4.78)

This product state is especially remarkable by the fact that it vanishes
whenever αi = αk for i, k ∈ (1, 2, . . . , N), that is, whenever two of the
one-particle states are the same. This is a manifestation of

Pauli’s Exclusion Principle: In a system of identical fermions two
(or more) particles can never be in the same one-particle state.
Expressed differently: One-particle states in a product state have oc-
cupation number 0 or 1. A given such state ϕαk may be unoccupied,
or may contain at most one fermion of a given species.

It is precisely this restriction which is the defining property of
Fermi-Dirac statistics. There is an intrinsic connection between the half-
integral spin class of identical particles, i. e. their property of having
half-integral spin, and the Fermi-Dirac statistics they obey.

If one wishes to determine the ground state of H for our example,
there is no other possibility than to take the determinant (4.78) of the
first N (energetically) lowest states. More qualitatively speaking: one
fills the first N states with identical fermions by putting exactly one par-
ticle into each of these one-particle states. This model is the basis for
building the electronic shells of atoms, as well as for the shell model
of nuclei with protons and neutrons. The next example illustrates this
construction:
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Fig. 4.6. The first eleven lowest one-
particle levels in a simple shell model
for nuclei. The number Λ is a short-
hand notation for Λ = 2n+ 	+ 3/2,
n j is is the number of particles in the
state |n	 j〉, N is the total number of
particles of the example. The horizon-
tal full lines are the occupied levels, the
dashed levels are empty

Example 4.3
In a system of N identical fermions with spin 1/2 consider the one-
particle potential given by

U(r)= 1

2
mω2r2−C � · s−D�2 .

This was the first ansatz for the shell model of nuclei which was able
to explain the shell closures in especially stable nuclei, the so-called
magic numbers. Note that the potential is assumed to be the same for
all particles. The parameters C and D are positive constants. Choosing
a basis | jm〉, the orbital angular momentum and the spin being coupled
to j = �+ s, and writing the spin-orbit coupling in the form

� · s = 1

2
( j2−�2− s2) ,

one realizes that this operator is already diagonal. With the re-
sult (1.148) for the energies of the spherical oscillator, the eigenvalues
of the one-particle Hamiltonian are given by the following expression,

En	 = �ω
(

2n+	+ 3

2

)
− C

2

[
j( j+1)−	(	+1)− 3

4

]
−D	(	+1) .

This spectrum of one-particle energies is drawn in Fig. 4.6. For every
value of j there are (2 j+1) substates | jm〉. If one sets out to fill this
potential with N identical fermions such as to construct a product state
with the lowest energy, one must start at the bottom of the spectrum
and fill each state |n	 j〉 with 2 j+1 particles. Figure 4.6 shows the ex-
ample N = 20, where the states 0s1/2 to 1s1/2 are filled while all states
higher than these remain unoccupied. The corresponding, properly an-
tisymmetrized wave function is given by the determinant (4.78) which
contains the first, lowest, one-particle states.

For bosons matters are completely different: If for a system of
N bosons we assume a Hamiltonian, like above, which is the sum
of N copies of some one-particle operator, H =∑

n H(n), then the
rule (4.77) allows to place arbitrarily many particles into a given
one-particle state (Eαk , ϕαk ). This condition is in accord with Bose-
Einstein statistics. The energetically lowest state is the one in which
all N particles are put into the lowest one-particle state (E0, ϕ0).
This phenomenon is called Bose-Einstein condensation, its existence at
macroscopic scales was confirmed in recent years, in a series of beau-
tiful experiments. Note, however, that the theoretical description cannot
be as simple as it may seem here, because, for large numbers of par-
ticles, the mutual interaction of the particles cannot be neglected.

The connection between spin and statistics, developed here in an em-
pirical and heuristic way, is the content of a theorem which goes back
to M. Fierz and W. Pauli,
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Spin-Statistics Theorem: All particles with half-integer spin obey
Fermi-Dirac statistics, all particles with integer spin obey Bose-
Einstein statistics.

Some Comments on the Spin-Statistics Theorem:

1. The two types of statistics are known from the quantum mechanical
description of gases which consist of independently moving, identi-
cal bosons or fermions, respectively, and which are in an equilibrium
state under specific macroscopic conditions such as temperature,
chemical potential, and total volume. The particles are distributed
among the given one-particle states with energies εi and with occu-
pation numbers ni , so that for the total number N of particles and
total energy E one has∑

i

ni = N ,
∑

i

niεi = E .

In the case of bosons the occupation number, for every level i, can
take any value between 0 and N . If ni ≥ 2 the ni ! permutations of
the bosons are indistinguishable. In the case of fermions, in turn, the
occupation numbers ni can take only the values 0 or 1.

2. For simplicity, let us consider the case of two bosons, or of two
fermions. The symmetry relations (4.76) and (4.77), respectively, or,
equivalently, the spin statistics theorem state that under exchange
a two-body state fulfills the relation

Ψ(2, 1)= (−)2sΨ(1, 2) , (4.79)

with s the spin of the particles. Note that in this operation the two
particles are exchanged with all their attributes, position and spin. If
the spin is integer the wave function is symmetric, if it is half-integer
the wave function is antisymmetric.

It is a striking feature of the rotation group that a rotation of the
frame of reference by the angle 2π, when applied to the spin function
of a single particle, produces exactly this sign: For integer spin there
is no sign change, while for half-integer spin there is a minus sign,
cf. Sect. 4.1.4. Thus, rotating the spin of one of the particles by 2π,
or, as an equivalent operation, rotating the spins of both particles about
the same axis by the angle π, one obtains the same sign as in (4.79).
Indeed, it turns out that in the proof of the spin-statistics theorem the
symmetry character of a two-body function of identical particles eventu-
ally goes back to this sign. The proofs by Fierz and by Pauli hold in the
framework of Lorentz covariant field theory and of what is called sec-
ond quantization. The essential argument is as follows: One shows that
it is only possible to construct a local, Lorentz covariant quantum field
theory which respects all conditions imposed by causality (i. e. which
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guarantees propagation of physical actions with velocities smaller than
or equal to the speed of light), if bosons obey Einstein-Bose statis-
tics, fermions obey fermi-Dirac statistics. We return to these matters in
Part Two.
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Applications of Quantum Mechanics

Introduction

Quantum mechanics provides the basis for most fields of modern
physics and there are many well advanced methods of practi-

cal solution of specific and topical problems. These methods which
may be perturbative or nonperturbative, often are specific to the var-
ious disciplines, and it would go far beyond the scope of a textbook
to discuss them extensively and in due detail. For instance, atomic
and molecular physics make extensive use of variational calculus and
of many-body techniques the latter of which are of great importance
also for the physics of condensed matter and for nuclear physics.
Elementary particle physics, in turn, makes use of covariant pertur-
bation theory as well of various kinds of nonperturbative approaches.
There are numerous methods to treat scattering off composite targets
at low, intermediate, and high energies (optical potential, Green func-
tion techniques, eikonal approximation).

Exact solutions are often approximated by numerical procedures
such as integration of differential equations, diagonalization of large
matrices in truncated Hilbert spaces, discretization and simulation by
means of Monte Carlo methods, etc., which are adapted for the prob-
lem one wishes to study. In this chapter we first sketch the possible
application of quantum mechanics to information theory. We then
discuss nonrelativistic perturbation theory in its time independent and
its time dependent versions. Finally, we give an introduction to se-
lected techniques for treating systems of many interacting fermions.
Relativistic, Lorentz covariant perturbation theory will be dealt with
in Part Two.

5.1 Correlated States and Quantum Information
The principles of quantum mechanics were formulated and laid down in
Chap. 3. In particular, the description of quantum states by means of sta-
tistical operators or, equivalently, by density matrices was discussed in
detail and illustrated by a number of instructive examples. So one might
be tempted to say that there is little to be added to what we worked
out in Chap. 3, from the point of view of basic principles, and all there
is left to do is to develop practical methods for solving concrete prob-
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lems of quantum mechanics which go beyond the few exactly solvable
ones. Although the practical methods often are by no means simple and
open up a wide field reaching far into modern research, the basic prin-
ciples and the interpretation of quantum mechanics, after some further
reflection, have perplexing consequences which often are different from
expectations based on classical physics and which are testable in ex-
periment. This is why we insert, as a first application, a discussion of
nonlocalities in quantum mechanics, correlations, entangled states, as
well as a short excursion to quantum information. All of these are topics
of modern research and one should expect to see rapid progress forth-
coming in the years to come.

5.1.1 Nonlocalities, Entanglement, and Correlations
The simplest quantum states of a system of N particles are the ones
which are direct products of one-particle states such as

Ψ(0)(1, 2, . . . , N)= |ψ1(1)〉 |ψ2(2)〉 · · · |ψN (N)〉 . (5.1)

For simplicity we number the states from 1 to N , irrespective, for the
moment, of what they are dynamically and whether some of them are
the same or not. The arguments (xi , si) comprising the coordinates and
spins, plus further attributes if the need arises, are also summarized by
just writing “i” instead. The product state (5.1) is an element of the
Hilbert space

H =H (1)⊗H (2)⊗· · ·H (N) ≡
N⊗

i=1

H (i) .

A product state of the kind of (5.1) is said to be separable with respect
to the factors in H . To illustrate the special nature of the state Ψ(0) let
us define the one-body density in a more general N-body state Ψ by the
expectation value

�(x) := 1

N
〈Ψ |

N∑
i=1

δ(xi − x) |Ψ 〉 . (5.2)

Specializing to Ψ = Ψ(0) the density is just the sum of the one-body
densities for everyone of the states in the product,

�(0)(x)= 1

N

N∑
i=1

|ψi(x)| 2 .

Its integral over the whole three-dimensional space gives 1,∫
d3x �(x)= 1 ,

if all single-particle wave functions are normalized to unity.
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In most realistic situations where quantum mechanics is at work,
the wave function of a many-body sytem is not of the simple product
type (5.1). Any state which is not separable, is called entangled state.1

Here are some arguments and examples that illustrate why this is so. As
we will learn in Sect. 5.4 a product state such as Ψ(0) may be a useful
starting approximation in analyzing a many-body system but as soon as
there are interactions between the particles of the system, the eigenstates
of their total Hamiltonian will be a coherent superposition of product
states,

|Ψ 〉 =
∑

n1,n2,... ,nN

cn1n2...nN

∣∣ψn1(1)
〉 ∣∣ψn2(2)

〉 · · · ∣∣ψnN (N)
〉
, (5.3)

with complex coefficients cn1n2...nN . States of this kind are entangled.
Even though this is a pure state, in the terminology of quantum mech-
anics, Chap. 3, it correlates any chosen individual “i” with the quantum
states of all others j �= i. In fact, if one considers the particle i in iso-
lation, by integrating out all other particles, one will find a density
matrix whose square has a trace less than 1 and, hence, which describes
a mixed state.

Even if there is no interaction between them, but if the particles are
identical, there will be correlations due to the spin-statistics theorem.
The determinant state (4.78) provides a good example for an entan-
gled state whose entanglement is due to the Pauli principle. In order to
work this out more explicitly we consider the example of two identical
fermions:

Example 5.1 Two Identical Fermions
Consider two identical fermions with spin 1/2 to be placed into two or-
thogonal and normalized single-particle wave functions ψ1 and ψ2. If
their spins are coupled to the triplet state S = 1 the total spin function
(4.67) is symmetric. Hence their orbital wave function must be antisym-
metric. Denoting the spatial coordinates of the particles by x and y, and
dropping the spin degrees of freedom, their orbital wave function must
be

Ψ(x, y)= 1√
2
{ψ1(x)ψ2(y)−ψ1(y)ψ2(x)} . (5.4)

This is an entangled state which is correlated due to the Pauli principle.
This correlation is made more explicit by calculating beyond the one-
body density (5.2) the two-body density defined as follows

�(x, y) := 1

N(N−1)
〈Ψ |

N∑
n �=m=1

δ(xn− x)δ(xm− x) |Ψ 〉 . (5.5)

The normalization factor is introduced for convenience: The number
of ordered pairs 12, 13, . . . ,1N , 23, . . . ,2N , etc. is N(N−1)/2; if
the pairs in inverse order, 21, 31, . . . ,N1, . . . , are added, this number

1 The name was coined by E. Schrö-
dinger who called them (in German)
“verschränkt”, i. e. entangled.
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becomes N(N−1). Calculating the one- and two-body densities (5.2)
and (5.5), for the example (5.4) one finds

�(x)= 1

4

∫
d3x1

∫
d3x2

[
ψ∗1 (x1)ψ

∗
2 (x2)−ψ∗1 (x2)ψ

∗
2 (x1)

]
[δ(x1− x)+ δ(x2− x)] [ψ1(x1)ψ2(x2)−ψ1(x2)ψ2(x1)]

= 1

2

{
|ψ1(x)| 2+|ψ2(x)| 2

}
, (5.6)

i. e. the expected result. For the two-body density one finds

�(x, y)= 1

4

∫
d3x1

∫
d3x2

[
ψ∗1 (x1)ψ

∗
2 (x2)−ψ∗1 (x2)ψ

∗
2 (x1)

]
[δ(x1− x)δ(x2− y)+ δ(x2− x)δ(x1− y)]
[ψ1(x1)ψ2(x2)−ψ1(x2)ψ2(x1)]

= 1

2

{|ψ1(x)| 2 |ψ2(y)| 2−ψ∗1 (x)ψ∗2 (y)ψ1(y)ψ2(x)+(x↔y)
}
,

(5.7)

where the last term is obtained from the first two by exchanging the
arguments x and y.

In order to work out the correlations contained in (5.5) more clearly,
it is useful to define the two-body correlation function C(x, y) by the
equation

N(N−1)�(x, y)=
{

1+C(x, y)
}

N2�(x)�(y) . (5.8)

In the example of N = 2 one finds from the results (5.6) and (5.7)

C(x, y)=− |ψ∗1 (x)ψ1(y)+ψ∗2 (x)ψ2(y)|2(|ψ1(x)|2+|ψ2(x)|2
) (|ψ1(y)|2+|ψ2(y)|2

) . (5.9)

As the following discussion shows this result is quite instructive. For co-
inciding arguments the correlation function is seen to be equal to −1,
C(x, x)=−1, which says that �(x, x) vanishes and the probability to
find the two identical fermions in the same position is equal to zero.
In the other extreme, suppose the two wave functions ψ1 and ψ2 to be
localized in different regions of space. Then as x �= y, the correlation
function C(x, y) tends to zero, and the two-body density is approxi-
mately proportional to the product of the one-body densities.

Before concluding this example three further comments seem in or-
der. First, one should note that we assumed ψ1 and ψ2 to be orthogonal.
This need not necessarily be so. If these states are not orthogonal the
one-body density is modified to

�(x)= 1

2

{
|ψ1(x)| 2+|ψ2(x)| 2−2Re

(
ψ∗1 (x)ψ2(x) 〈ψ2|ψ1〉

}
,

(5.10a)
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while the two-body density is as before

�(x, y)= 1

2

{|ψ1(x)| 2 |ψ2(y)| 2−ψ∗1 (x)ψ∗2 (y)ψ1(y)ψ2(x)+(x↔y)
}
.

(5.10b)

In either case, with orthogonal or nonorthogonal ψ1 and ψ2, one verifies
that

∫
d3y �(x, y)= �(x). Second, if the orbital wave functions are not

confined each to a finite domain, the presence of a second particle is
felt under all circumstances. For example, assuming them to be plane
waves,

〈x|ψ1〉 = ce(i/�)p·x , 〈y|ψ2〉 = ce(i/�q)·y with c= (2π�)−3/2 ,

the two-body correlation function (5.8) is found to be

C(x, y)=−1

2

{
1+ cos ((q− p) · (x− y))

}
.

It equals −1 both for y = x and for q = p but does not go to zero
for large separations of the particles. Third, one should note that in the
example (5.9) the particles are free, and the correlations are due exclu-
sively to the Pauli exclusion principle. In a realistic picture, there will
be interactions between the particles which will also cause two-body
correlations. These might be called dynamical correlations.

In the further discussion, and for reasons to become clear below, let
us stay with systems of only two particles. Assume the two particles
a and b to be in a correlated, entangled state such as

|Ψ 〉 = 1√
2

{|a : (+); b : (−)〉± |a : (−); b : (+)〉} , (5.11)

where (+) and (−) denote two eigenstates of a given observable. Ex-
amples for such states are the spin-singlet and the spin-triplet states,
(4.68) and (4.67), of two fermions where the symbolic notation “(±)”
is replaced by spin up and spin down, respectively along a given direc-
tion n̂ in space,

(+)≡ (
sn̂ = 1

2

)
, (−)≡ (

sn̂ =−1

2

)
.

For instance, the decay π0→ e+e−, in the pion’s rest system, would
produce the electron and the positron with equal and opposite spatial
momenta and in the spin-singlet state. Indeed, a by now well-known
argument tells us that all partial waves of the plane wave describing
the relative momentum have vanishing projection quantum number onto
the direction of that momentum, m	 = 0. Therefore, the spin compo-
nents of e+ and e− must sum to zero.2 Another example is provided
by the decay of the neutral pion into two photons, π0→ γγ, which is
its predominant decay mode. Here again the two photons move apart
back to back, with equal and opposite momenta, but their spins are cor-
related due to the principle of conservation of total angular momentum.

2 The decay π0→ e+e−, for dynami-
cal reasons, is a rather rare bird and
hence difficult to measure. It is very
small as compared to the dominant de-
cay into two photons, π0→ γγ. The
neutral pion has a heavier sister, called
η, that has a better chance to decay into
an e+e− or a µ+µ− pair.
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Situations of the kind just described exhibit a typical property of
quantum mechanics which escapes explanation in terms of classical
statistical considerations. The individual states of the two particles are
correlated due to conservation of momentum and of angular momen-
tum, even though, in the course of time, they separate spatially. In the
framework defined by Born’s interpretation of the wave function there
is no way to tell which of the particles in the final state will be in the
(+) state or in the (−) state, respectively. On the other hand, as soon as
the state of one of them is determined by a measurement, the state of the
other is known instantaneously. In discussions of correlated, spatially
separated states and in quantum information it is customary to install
two imagined observers, Lady A, called Alice, and Sir B, called Bob,
far away from each other, who set out each to measure her or his share
of the correlated state. For example, Alice finds an electron with spin
along a given direction n̂. The result of her measurement tells her that
Bob who sits at the other end of an arrangement where the decaying
pion was in the middle between them, must find a positron whose spin
is antiparallel to n̂ – independently of whether or not he actually makes
a measurement.

One might argue that Lady A and Sir B should rather do what the
rules of quantum mechanics require them to do, that is, to repeat the
same measurement very many times under identical conditions. Indeed,
in doing so, they will both find the answers (+) and (−) with equal
probabilities. However, nothing prevents them to do their measurements
event by event, to record the answers in a long list, and eventually come
together and compare their results, event by event. Note that there is no
reason to worry about possible violations of causality in this compari-
son. If Alice wishes to communicate her result to Bob right after she has
completed her measurement, she can do so only by sending him signals
which travel (at most) at the speed of light.

These simple conclusions become even stranger if we ask Alice to
measure the spin of the electron along any other direction û. She must
find, and we know that for sure, spin up and spin down with equal prob-
abilities. As soon as she finds e. g. spin up along û she knows (and
may tell us and Bob) that his particle is a positron which is spin down
along û. If Bob does his measurement still with n̂ as his quantization
axis, the spin down state along û is a coherent linear superposition of
spin up and spin down along n̂,

|ψ〉 B = α+
∣∣+1

2

〉
n̂+α−

∣∣−1
2

〉
n̂ , with (5.12)(

α+
α−

)
n̂

= D(1/2)(φ, θ, ψ)
(

0
1

)
û

, and hence

α+ = sin(θ/2)ei(ψ−φ)/2 , α− = cos(θ/2)e−i(ψ+φ)/2 ,
where (φ, θ, ψ) are the Euler angles relating Bob’s frame of reference
to Alice’s. This is strange because it is known that the spin operators
σ · n̂ and σ · û do not commute unless û= n̂.
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Considerations of this type gave rise to a famous work by Einstein,
Podolsky, and Rosen (EPR)3 who introduced the notion of element of
physical reality and who suggested that quantum mechanics was incom-
plete. The theory would be incomplete if there were one or more hidden
variables such that what we actually observe would correspond to an
average over some (unknown) distribution. An excellent description of
the arguments of EPR, in an extended version developed by D. Bohm,
as well as the theoretical and experimental resolution of the apparent
paradox can be found, e. g. in [Basdevant and Dalibard (2002)] and in
[Aharonov and Rohrlich (2005)].

In essence, one can derive inequalities for correlation functions
which are different in quantum mechanics as such, as opposed to quan-
tum mechanics supplemented by hidden variables. This is the content
of inequalities discovered by J. Bell. Recent experiments which decided
the issue in favour of plain quantum mechanics are also described in the
literature quoted above.

The following example, although formally similar to Example 5.1,
emphasizes the peculiar nature of correlated two- or more particle states.

Example 5.2 Nuclear isospin
Proton and neutron are baryons and, by convention, are assigned baryon
number B = 1. Starting from the observation that they have almost the
same mass, viz.

mp = 938.27 MeV , mn = 939.56 MeV ,

Heisenberg postulated that proton and neutron were in fact the same
particle, appearing as two substates of a doublet. The simplest group
providing this possibility being SU(2), it was postulated that nuclear in-
teractions were approximately invariant under this group called nuclear
isospin or strong interaction isospin. More precisely, the assumption is
that proton and neutron are members of a doublet with isospin I = 1/2
such that

p≡ ∣∣I = 1
2 ; I3 =+1

2

〉
, n≡ ∣∣I = 1

2 ; I3 =−1
2

〉
.

The electric charges (in units of the elementary charge) are obtained
from the formula

Q(i)= 1
2 B(i)+ I3(i) , i = p or n .

In this picture of nuclear forces it was thought that the deviations from
exact isospin invariance were due to electromagnetic interactions. It is
then natural to classify nuclear ground and excited states by means of
multiplets of SU(2). For example, a deuteron in the ground state must
have its proton and neutron coupled to total isospin zero,

|I = 0, I3 = 0〉 = 1√
2

{∣∣∣I (1) = 1
2 , I (1)3 =+1

2 ; I (2) = 1
2 , I (2)3 =−1

2

〉
−
∣∣∣I (1)= 1

2 , I (1)3 =−1
2 ; I (2)= 1

2 , I (2)3 =+1
2

〉}
. (5.13)

3 It is said to be the reference with
the highest number of quotations in
physics.
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Obviously, this state is of the same kind as the more general state (5.11).
In a deuteron proton and neutron are bound, hence confined to a small
domain in space, and it seems impossible to detect them spatially sep-
arated. However, it is perfectly possible to prepare a state of the kind
of (5.13) in which proton and neutron move apart from each other. Re-
turn then to our two characters, Lady A and Sir B, and ask for instance
Alice to identify the particle that moves towards her by measuring its
electric charge. If she finds that particle to be a neutron, she will know
immediately that Bob’s particle is a proton, independently of whether
he actually does measure the charge or not. If, however, she repeats her
measurement a great number of times she will find, in the long run, an
equal number of protons and neutrons.

Like in Example 5.1 Bob and Alice, when comparing their measure-
ments afterwards, event by event, will be puzzled by the correlation they
discover. Nevertheless there is no conflict with causality because, in or-
der for Alice to tell Bob what she found in any particular event, she
needs to send him signals which travel at most at the speed of light.

5.1.2 Entanglement, More General Considerations

The correlations and nonlocalities inherent to quantum mechanics can
also be made visible in the statistical operator or density matrix for-
malism for states of two or more particles. Although it is difficult to
formalize entanglement for completely general pure or mixed quantum
states, states of two subsystems of a somewhat more general nature than
the ones discussed above, can be analyzed as follows. Consider two sys-
tems A and B in a quantum state described by superpositions of a finite
number of states, possibly more than 2. Their wave function has the
form

|Ψ 〉 =
p∑

m=1

q∑
n=1

cmn |φm〉A |ψn〉 B , (5.14)

where the states φm are part of an orthonormal basis of HA, while the
states ψn belong to an orthonormal basis of HB.

The state (5.14) can be transformed to a diagonal form which comes
closest to the two-state, two-particle wave function (5.11). For this
purpose we study the p×q–matrix C= {cmn}. Without restriction of
generality we assume p� q. Write the matrix C as a product of three
matrices as follows,

C= U†DV , (5.15a)

U and D being p× p-matrices, V a p×q matrix. If V has the property
VV† = 1lp then the product of C and its conjugate is

CC† = U†DVV†D†U= U†DD†U . (5.15b)
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Obviously, U can be chosen to be the unitary p× p-matrix which diag-
onalizes the hermitean matrix CC†,

U
(

CC†
)

U† = DD†

so that DD† is a p× p diagonal matrix with real positive semidefinite
entries,

DD† = diag(w1, w2, . . . , wp) , wi � 0 . (5.15c)

This allows us to define the matrix D by the square root of DD†,
D= diag(

√
w1, . . . ,

√
wp) . (5.15d)

Regarding the other hermitean product of C and its conjugate one ob-
tains

V
(

C†C
)

V† = D†D= diag(w1, . . . , wp, 0, . . . , 0) . (5.15e)

In the special case p = q Equation (5.15a) is the well-known diago-
nalization prescription of an arbitrary complex matrix by two unitaries
(also called a bi-unitary transformation). The general case p< q is illus-
trated by Fig. 5.1 which shows the p×q rectangular shape of C, and the
p×q rectangular V. The product VV† is the p-dimensional unit mat-
rix, VV† = 1lp, while V†V is the p-dimensional unit matrix embedded
in a diagonal q×q-matrix whose remaining elements are zero,

V†V=
⎛⎜⎝1lp 0 · · ·

0 0 · · ·
...
...
. . .

⎞⎟⎠
In case Hp is a subspace of Hq the matrix V†V is seen to be the projec-
tor from Hq to Hp. An example may help to illustrate these formulae.

Example 5.3 Two-Particle State with Coupled Spins
Let A be a particle with spin 1/2, B a particle with spin 1, and let the
magnetic substates be numbered as usual,

A : i = 1 : m1 =+1

2
, i = 2 : m1 =−1

2
,

B : k = 1 : m2 =+1 , k = 2 : m2 = 0 , k = 3 : m2 =−1 .

For a state such as (5.14) with general coefficients cik

|Ψ 〉 =
2∑

i=1

3∑
k=1

cik
∣∣ j1 = 1

2 , i
〉

A | j2 = 1, k〉 B (5.16)

one obtains

CC† =
(

A11 A12

A∗12 A22

)
, with

A jj =
∣∣c j1

∣∣ 2+ ∣∣c j2
∣∣ 2+ ∣∣c j3

∣∣ 2 , j = 1, 2 ,

A12 = c21c∗11+ c22c∗12+ c23c∗13 .

C p

q

pV

V+

Fig. 5.1. The matrices C and V , in gen-
eral, are rectangular having p lines and
q columns
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The unitary U is obtained by diagonalizing this matrix whose eigenval-
ues are

w1

w2
= 1

2
(A11+ A22)± 1

2

√
(A11− A22)2+4 |A12| 2 .

Suppose the state (5.16) is the one where the two spins are coupled to
an eigenstate |JM〉 of total angular momentum, say with M = 1/2, then
only c12 and c21 are different from zero and are equal to the appropriate
Clebsch-Gordan coefficients, viz.

c12 = (1
2

1
2 , 1 0|J 1

2) , c21 = (1
2 − 1

2 , 1 +1|J 1
2) ,

while c11 = c22 = c33 = c13 = c23 = 0. The eigenvalues of (CC†) are
w1 = |c21|2 and w2 = |c12|2, the unitary matrix U is

U=
(

0 1
1 0

)
,

its effect on the states of A being a renumbering of the first two of them.
The matrix V is calculated by means of (5.15a),

V= D−1UC=
(

c21/
√
w1 0 0

0 c12/
√
w2 0

)
.

One verifies that VV† = diag(1, 1)≡ 1l2, while V†V= diag(1l2, 0).
In the example as well as in the general case (5.14) the effect of the

unitary U in HA is the passage from the original basis |φm〉A to a new
basis, say |ηk〉A. Simultaneously, the basis |ψn〉B of HB is projected by
means of V onto another basis |χk〉B such that the total state becomes

|Ψ 〉 =
r∑

k=1

√
wk |ηk〉A |χk〉 B , (5.17)

where r �min {p, q} and
r∑

k=1

wk = 1 . (5.18)

In the example r = 2, the transformation from (5.14) to (5.17) is simply
|η1〉 = |φ2〉, |η2〉 = |φ1〉 while the states |ψn〉 remain unchanged.

The procedure just described is due to E. Schmidt and is called the
singular value decomposition of a rectangular matrix. The real positive-
semidefinite wk are called Schmidt weights, the number r of them which
are different from zero is called the Schmidt rank.

The result (5.17) has some interesting consequences.
First, the state (5.17) as such is still a pure state. It is entangled if

and only if its Schmidt rank r is greater than 1.
The second consequence concerns the statistical operator of the

state (5.14) which by (3.35) is given by

WA,B = |Ψ 〉 〈Ψ | =
r∑

k=1

wk(|ηk〉 〈ηk|)A⊗ (|χk〉 〈χk|)B . (5.19a)
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If for some reason the subsystem B is not observed, one should take
the trace over all states of that particle. This yields a reduced statistical
operator which describes only particle A, viz.

W red
A = tr

B
(WA,B)=

r∑
k=1

wk(|ηk〉 〈ηk|)A . (5.19b)

Likewise, if particle A is integrated over because it is not observed, then
the operator (5.19a) reduces to

W red
B = tr

A
(WA,B)=

r∑
k=1

wk(|χk〉 〈χk|)B . (5.19c)

If the Schmidt rank is greater than or equal to 2 then either W red
A ,

(5.19b), or, depending on the experimental set-up, the statistical oper-
ator W red

B , (5.19c), are convex sums of projection operators and, hence,
describe mixed states. This is remarkable: In most classical situations
we are able to study subsystems in isolation from everything else (“the
rest of the Universe” as Feynman put it) because physical phenomena
are strictly local. For a planet taken in isolation it suffices to know the
local force fields that act on it if one sets out to study its equation of
motion. In contrast, entangled states contain nonlocalities which, upon
integrating out partial subsystems, turn a pure state into a reduced mixed
state.

Third, the analysis of (5.14) shows that a two-state subsystem A,
p= 2, may be entangled with an arbitrarily large subsystem B, q> 2,
the singular value series (5.17) will have at most two terms.

5.1.3 Classical and Quantum Bits
In the realm of classical physics information can be encoded in pack-
ages of simple yes and no, or “true” and “false” answers. Classical bits4

take the values 1 (yes–true), and 0 (no–false), messages of any kind are
represented by strings of bits. For example, in ASCII (American Stan-
dard Code for Information Interchange) the name Max Born is encoded
as follows

Letter Coding Letter Coding

M 0100 1101 B 0100 0010
a 0110 0001 o 0110 1111
x 0111 1000 r 0111 0010

n 0110 1110

Binary coding is well adapted to computing because the Boolean
algebra of bits is easily implemented by electronics, for instance by as-
signing the charged and uncharged states of a capacitor the bit values 4 The word bit stands for binary digit.
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N

S

Fig. 5.2. The pure states of a quan-
tum bit are points on the sphere S2.
The north pole N corresponds to the
classical 0-bit, the south pole S to the
classical 1-bit

5 An excellent introduction to the quan-
tum aspects of information and compu-
tation is provided by the review arti-
cle Galindo A., Martín-Delgado, M. A.,
Rev. Mod. Phys. 74 (2002) 2.

1 and 0, respectively. Every letter of the alphabet, every digit in the
decimal system, as well as any other symbol that is used, can be rep-
resented as a string of bits. These strings are distinguishable classical
macroscopic states. The information contained in a package of strings
can be read without modifying it, it can be replicated, it can be trans-
mitted from A to B, and, if the need arises, it can be processed on
a computer. In particular, there is no obstruction of principle against
replicating or cloning information contained in a package of strings.

In the realm of quantum physics it seems natural to define the
analogue of the classical bit by means of two-dimensional quantum sys-
tems. Quantum systems with two relevant states are realized, e. g., by
the two spin orientations of a particle with spin 1/2 whose orbital wave
function is given, or by photons in a fixed dynamical state and their
two polarization states, or by some atomic system for which two spe-
cific states can be isolated from the rest of its dynamics. The Hilbert
space of such a two-state system is isomorphic to C2, and admits a basis
{|+〉, |−〉}. An arbitrary element |ψ〉 ∈H 	C2 is a linear combination
of these basis states with complex coefficients. Taking into account the
freedom of choosing phases of wave functions, the state |ψ〉 is seen to
depend on two parameters, say θ and φ,

|ψ〉 = cos(θ/2) |−〉+ e−iφ sin(θ/2) |+〉 . (5.20)

(This is formula (5.12) with ψ =−φ, the third Euler angle being irrele-
vant.) The state (5.20) is a realization of what is called a quantum bit, or
qubit in analogy to the classical bit. Consequently, a string of n qubits
is an element of the Hilbert space H (n) 	⊗nC

2 =C2n whose natural
basis is

|−〉⊗· · ·⊗ |−〉︸ ︷︷ ︸
n−k

⊗|+〉⊗· · ·⊗ |+〉︸ ︷︷ ︸
k

, k = 0, 1, . . . , n .

At first sight, as compared to the classical bit, a qubit seems to con-
tain much more information because |ψ〉 describes an infinity of states
all of which lie on the unit sphere S2 parametrized by θ and φ. This
is illustrated in Fig. 5.2: The space of pure states for a quantum bit
is parametrized by the points on the sphere S2. The north pole corre-
sponds to the classical 0-bit, the south pole corresponds to the classical
1-bit. In the quantum world qubits are linear superpositions of these two
states, the angle θ caracterizing the ratio of the moduli of the two com-
ponents, the angle φ their relative phase. Loosely speaking, an infinity
of intermediate answers somewhere between “no” and “yes” seem pos-
sible. However, because of the nonlocality of quantum mechanics and
the intricacies of entanglement, matters are not so simple.5 We illustrate
this by a particularly striking property of qubits and strings of qubits.
While classical information encoded in strings of bits, in principle, can
be copied perfectly, this is not true for quantum information. One cannot
make a duplicate of a qubit whose state is unknown, without perturbing
the original in a uncontrollable way. This is the content of
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The no-cloning theorem of Wootters and Zurek6

The argument is the following: Let |ψ(o)1 〉 be an initial quantum state
of which one tries to create a copy by means of some copying device.
The copier initially is in a known “blanc” state |φ(c)0 〉 – comparable to
the white paper in a copying machine. The cloning procedure should
produce the transition∣∣∣ψ(orig)

1

〉
⊗
∣∣∣φ(copy)

0

〉
−→

∣∣∣ψ(orig)
1

〉
⊗
∣∣∣ψ(orig)

1

〉
, (5.21)

that is, it should transform the initial known (but neutral) state |φ(copy)
0 〉

into a perfect copy of the original |ψ(orig)
1 〉. Of course, the same cloning

procedure applied to another state |ψ(orig)
2 〉, orthogonal to the first,

should work in exactly the same way, viz.∣∣∣ψ(orig)
2

〉
⊗
∣∣∣φ(copy)

0

〉
−→

∣∣∣ψ(orig)
2

〉
⊗
∣∣∣ψ(orig)

2

〉
. (5.22)

Consider then a third state∣∣∣ψ(orig)
3

〉
= 1√

2

(
c1

∣∣∣ψ(orig)
1

〉
+ c2

∣∣∣ψ(orig)
2

〉)
(5.23)

and create a copy of it by means of the same copying machine,∣∣∣ψ(orig)
3

〉
⊗
∣∣∣φ(copy)

0

〉
−→

∣∣∣ψ(orig)
3

〉
⊗
∣∣∣ψ(orig)

3

〉
. (5.24)

Quantum theory tells us that the cloning transitions (5.21), (5.22), (5.24)
are effected by the unitary evolution operator which is obtained from
some Hamiltonian, and, therefore, cannot depend on the original that
one wishes to copy. Thus, by the superposition principle, the result in
copying the state (5.24) must be∣∣∣ψ(orig)

3

〉
⊗
∣∣∣φ(copy)

0

〉
−→ 1√

2

(
c1

∣∣∣ψ(orig)
1

〉
⊗
∣∣∣ψ(orig)

1

〉
+ c2

∣∣∣ψ(orig)
2

〉
⊗
∣∣∣ψ(orig)

2

〉)
. (5.25)

This state is an entangled state and is definitely different from |ψ(orig)
3 〉⊗

|ψ(orig)
3 〉. No cloning is possible.
Duplication of a qubit is only possible if it is in a known state, say

|ψ1〉 = |−〉 or |ψ2〉 = |+〉. In other terms, if the qubit is in an unknown
superposition such as (5.20) which is to be transmitted from A to B,
a spy may intercept it and analyze it but he or she will not remain un-
noticed because of the impossibility to copy the information and send
a perfect copy on to B.

A somewhat more general formulation of the no-cloning theorem
goes as follows.

We distinguish three Hilbert spaces, the space H (orig) containing the
state to be copied, the reservoir H (copy) containing the initial “white”
state onto which one tries to print a copy, and H (roU) describing the

6 W.K. Wootters, and W.H. Zurek, Na-
ture 299 (1982) 802.
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“rest of the Universe”, i. e. the environment. Let U be the unitary evo-
lution operator which induces the transition

U
∣∣∣ψ(orig)

〉
⊗
∣∣∣φ(copy)

0

〉
⊗|Ω0〉 →

∣∣∣ψ(orig)
〉
⊗
∣∣∣ψ(orig)

〉
⊗ ∣∣Ωψ 〉 (5.26)

for every state |ψ(orig)〉 ∈H (orig). We have allowed for the possibility
that, while copying the original state, the environment moves from its
initial state |Ω0〉 to some other, excited state |Ωψ〉. While U must be
independent of the state that we wish to copy, the final state of the en-
vironment may depend on the original. Compare then the action of U
on two different originals,

U
∣∣∣ψ(orig)

i

〉
⊗
∣∣∣φ(copy)

0

〉
⊗|Ω0〉

→
∣∣∣ψ(orig)

i

〉
⊗
∣∣∣ψ(orig)

i

〉
⊗ ∣∣Ωψi

〉
, i = a or b , (5.27)

and take the scalar product of this action on |ψ(orig)
a 〉 with its action on

|ψ(orig)
b 〉. All states involved being normalized to 1, and U being unitary

this scalar product is

〈ψ(orig)
b |ψ(orig)

a 〉 = 〈ψ(orig)
b |ψ(orig)

a 〉2 〈Ωψb|Ωψa〉 . (5.28)

The moduli of the transition amplitudes 〈ψ(orig)
b |ψ(orig)

a 〉 and 〈Ωψb|Ωψa〉
are smaller than or equal to 1. Therefore, the result (5.28) tells us that
the transition amplitude from a to b either vanishes, or is equal to 1,

〈ψ(orig)
b |ψ(orig)

a 〉 = 0 or 1 . (5.29)

While a known quantum state can be copied at will it is impossible to
create a copy of two different states which are not orthogonal to one
another.

Whether or not states may be copied approximately is a different
matter. For this question and as well as questions regarding storage and
retrieval of information in (future) quantum computers we refer to the
literature quoted above.

In concluding this section it is instructive to recall the basic prin-
ciples which cause the nonlocalities of the quantum world, entangle-
ment, and, in particular, the impossibility to intercept and copy quantum
messages. For that, note that we used (quantum) Hamiltonian theory in
an essential way: the evolution operator which derives from a Hamil-
tonian, is unitary. The superposition principle, which is to say linearity
of the Schrödinger equation, are essential, and so is the probabilis-
tic interpretation of quantum mechanics. No new features of quantum
mechanics were invoked, but, as the examples showed, quantum infor-
mation is different from classical information and exhibits perplexing
and perhaps surprising features.
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5.2 Stationary Perturbation Theory

Suppose one wishes to solve an eigenvalue problem of the stationary
Schrödinger equation Hψ = Eψ that is expected to differ but little from
some known, exactly solvable case, H0ψ

(0) = E0ψ
(0). One assumes an

expansion in terms of the difference (H−H0)=: H1, called the pertur-
bation, solves the Schrödinger equation by iteration expecting the series
one obtains to approach the exact solution. Depending on whether the
unperturbed spectrum is nondegenerate or degenerate, this expansion is
of a different nature. The results of this iterative solution, though of
limited accuracy in practice, are instructive and can be well interpreted.
Therefore, perturbation theory is of great value for estimates and for
understanding the physics of a given problem.

5.2.1 Perturbation of a Nondegenerate Energy Spectrum

Let H0 be a Hamiltonian whose energy spectrum and corresponding
eigenfunctions are known. Assume the spectrum to be nondegenerate
and, for the sake of simplicity, to be purely discrete. Thus, for every
eigenvalue there is exactly one wave function,

H0 |n〉 = E(0)n |n〉 . (5.30)

Consider then a system which is described by the Hamiltonian

H = H0+εH1 (5.31)

and which, in some sense, “lies close” to the unperturbed system de-
scribed by H0. The term εH1 is interpreted as a perturbation of the
eigenstates of H0. The real and positive constant ε plays the role of
an order parameter which is used for book-keeping but has no other
purpose or physical significance. Its integer powers εn characterize
successive perturbative corrections by their relative magnitude. When
comparing coefficients in the perturbation series, ε will be seen to
cancel out. Therefore, one may use the parameter ε for classifying per-
turbative contributions of successive orders, but may safely set it equal
to 1 in the end.

The aim of perturbation theory is to determine approximately the
eigenvalues E and the eigenfunctions ψ of the full Hamiltonian H ,
Hψ = Eψ, from the knowledge of the perturbation H1, the wave func-
tions |n〉, and the spectrum {E(0)n }. Inserting the decomposition (5.31)
into the Schrödinger equation this means that one must solve the fol-
lowing equation:

(E−H0)ψ = εH1ψ . (5.32)
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We write the energy and the wave function as formal series in ε,

E = E(0)+εE(1)+ε2 E(2)+ . . . , and (5.33)

ψ =
∞∑

m=0

cm |m〉 with cm = c(0)m +εc(1)m +ε2c(2)m + . . . . (5.34)

Inserting the expansion (5.34) into (5.32) and taking the scalar product
of this equation with the unperturbed state 〈k|, one obtains an algebraic
system of equations,

(E− E(0)k )ck = ε
∞∑

m=0

〈k| H1 |m〉 cm . (5.35)

Inserting then the expansions (5.33) for E, and (5.34) for cm , this equa-
tion becomes

[(E(0)− E(0)k )+εE(1)+ε2 E(2)+ . . . ][c(0)k +εc(1)k +ε2c(2)k + . . . ]
=

∑
m

〈k| H1 |m〉 [εc(0)m +ε2c(1)m + . . . ] . (5.36)

Note that the right-hand side carries one more power of ε than the left-
hand side. The correction terms in (5.33) and (5.34) are obtained by
identifying all terms of (5.36) which are multiplied by the same power
of ε. We work this out more explicitly for the first three orders.

Order Zero O(ε0): Equation (5.36) reduces to the equation (E(0)−
E(0)k )c

(0)
k = 0. If we are interested in the perturbation of the state with

quantum number n the solution is obvious;

E(0) = E(0)n ; c(0)n = 1 ; c(0)m = 0 ∀ m �= n . (5.37)

First Order O(ε1): The terms of first order in (5.36) yield the algebraic
equation

(E(0)n − E(0)k )c
(1)
k + E(1)c(0)k = 〈k| H1 |n〉 c(0)n

which is solved for k = n and for k �= n, respectively,

1. k = n:

E(1) = 〈n| H1 |n〉 . (5.38)

To first order the displacement of the energy is given by the expec-
tation value of the perturbation H1.

2. k �= n: Inserting the result (5.37) of order zero, i. e. c(0)n = 1, c(0)k = 0,
one obtains

c(1)k = 〈k| H1 |n〉 /(E(0)n − E(0)k ) . (5.39)

The coefficient c(1)n , at first, seems to remain undetermined. Note, how-
ever, that in any case it must be chosen such that the wave function ψ
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is normalized to 1. To the order ε1 this condition is met if

c(0)n +εc(1)n = 1+εc(1)n = eiaε ≈ 1+aε

with a real. The choice of a fixed value of a is seen to propagate
through the whole perturbative series. It leads to a constant phase factor
which multiplies ψ as a whole. Such a phase is not observable. There-
fore, without restriction of generality one may set a = 0, i. e.

c(1)n = 0 . (5.37’)

Second Order O(ε2): To this order (5.36) yields an equation that deter-
mines the correction of second order of the energy and of the expansion
coefficients c(2)k ,

(E(0)n − E(0)k )c
(2)
k + E(1)c(1)k + E(2)c(0)k =

∑
m

〈k| H1 |m〉 c(1)m .

Once more, one distinguishes the cases k = n and k �= n,

1. k = n: Making use of the results obtained in first order one has

E(2) =
∑
m �=n

|〈n| H1 |m〉| 2/(E(0)n − E(0)m ) . (5.40)

2. k �= n: The formulae for the expansion coefficients in second order
are rather more complicated. One finds for k �= n:

c(2)k =
∑
m �=n

〈k|H1|m〉〈m|H1|n〉
(E(0)n − E(0)m )(E

(0)
n − E(0)k )

− 〈n|H1|n〉〈k|H1|n〉
(E(0)n − E(0)k )

2
.

(5.41)

The corresponding coefficient with k = n follows from the normal-
ization condition for ψ,

c(2)n =−
1

2

∑
k �=n

|〈k|H1|n〉|2
(E(0)n − E(0)k )

2
. (5.42)

The details of deriving (5.41) and (5.42) are left as an exercise.

Remarks
1. It is not difficult to guess the extension to a partially or completely

continuous spectrum: In the expressions obtained above the sums
over intermediate states are replaced by sums and/or integrals. It is
important to keep in mind that one must always sum over a complete
set of intermediate states. For example, in the case of the hydro-
gen atom we know that the bound states, by themselves, are not
complete. Thus, it would be wrong to restrict the calculation of the
perturbation of second order to these states only. The states in the
continuum that we studied in Sect. 1.9.5 do contribute as well.
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7 For example, if |n〉 are states with
definite momentum the transition ampli-
tude 〈m|H1|n〉 must fulfill the principle
of momentum conservation. Nonrela-
tivistic perturbation theory takes virtual
intermediate states only out of their
“energy shell”. This will be different in
relativistic, Lorentz covariant perturba-
tion theory where virtual particles are
taken out of the mass shell p2c2 =
E2− c2 p2 = m2c4, both in their energy
and their momentum.

2. Perturbation theory of first order is applicable and quantitatively
sufficient if the perturbation is small compared to typical energy dif-
ferences of the unperturbed spectrum, that is, if

|〈n| εH1 |m〉| �
∣∣∣E(0)n − E(0)m

∣∣∣ . (5.43)

Obviously, the coefficients (5.39) measuring the admixtures are dif-
ferent from zero only if the operator H1 connects the state |n〉 (this
is the state whose perturbation we calculate) to the state |k〉. There
may be obstructions from selection rules! Even in case the state |k〉
is admixed, the coefficient (5.39) is the smaller the further away the
state lies on the energy scale.

3. The formula (5.40) for the energy shift to second order has a nice
interpretation. The numerator

|〈n| H1 |m〉| 2 = 〈n| H1 |m〉 〈m| H1 |n〉
may be understood as a transition from the state |n〉 to a virtual
intermediate state |m〉, and the return from there to |n〉, or, symbolic-
ally, n→m→ n. This transition is said to be virtual because initial
and final states do not have the same energy. Such a transition vio-
lates the principle of energy conservation and, therefore, cannot be
physical. Note, however, that all other selection rules such as angu-
lar momentum, parity, and the like, are respected.7 Here again, the
contribution is the smaller the further away the admixed state. The
result (5.40) is particularly interesting in the case where |n〉 is the
ground state of H0. As now E(0)n is the smallest eigenvalue of H0 the
formula (5.40) receives only negative contributions. One concludes:
In second order of perturbation theory the ground state is always
lowered.

4. In practice, the higher orders of perturbation theory are not very rel-
evant. Indeed, as soon as the perturbation is too strong for first and
second order to be adequate, it is advisable to determine the exact
energy spectrum by other means – for instance, by diagonalization
in a suitable basis of Hilbert space.

5. The parameter ε of (5.31) is introduced for convenience and for the
sake of clarity because it highlights the successive orders of per-
turbation theory. It does not appear in the results and, hence, may
formally be set equal to 1 in the final formulae.

6. Nowadays the formulae (5.41) are rarely made use of in practice, in
contrast to the equations (5.38)–(5.40) which are so important that
one should remember them by heart. This is so because in practically
all cases which require a higher accuracy one resorts to other, more
direct methods of solution.

7. The calculation of the matrix elements 〈n|H1|m〉 of the perturbation,
taken between given eigenstates |n〉 and |m〉 of H0, is an essen-
tial element in the formulae of perturbation theory. In many cases
of practical relevance to molecular, atomic, or nuclear physics, the
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unperturbed Hamiltonian contains a central field, and its eigenfunc-
tions can be taken to be products of radial functions R(r) and of
functions describing spin and orbital angular momentum. In those
cases it is advisable to expand the perturbation in terms of spherical
tensor operators, i. e. in terms of operators T κµ which transform un-
der rotations like an eigenstate of angular momentum with quantum
numbers (κ, µ). In other terms, these are operators which transform
by the matrices D(κ). The advantage of this way of proceeding lies
in the observation that matrix elements of the kind of〈

j ′m′
∣∣ T κµ

∣∣ jm
〉

can be evaluated analytically by means of known techniques of
the rotation group. These techniques are developed in Part Two.
In particular, they allow to read off immediately important se-
lection rules due to angular momentum and parity conservation.
Furthermore, they reduce the calculation of the matrix elements to
one-dimensional integrals over radial functions which may be done
analytically or by means of standard numerical procedures.

5.2.2 Perturbation of a Spectrum with Degeneracy
As before, the eigenvalues and eigenfunctions of H0 are assumed to be
known. In contrast to the previous case, the eigenvalues may now be
degenerate. If, for simplicity, we consider the case of a purely discrete
spectrum, this means that the starting point is

H0 |n, α〉 = E(0)n |n, α〉 , α= 1, 2, . . . , kn . (5.44)

The perturbed stationary Schrödinger equation (H0+ εH1)ψ = Eψ is
solved by means of the ansatz

E = E(0)+εE(1)+ . . . , ψ = ψ(0)+εψ(1)+ . . . , (5.45)

and by comparing terms of the same order in ε.

Order Zero O(ε0): In this order one has

H0ψ
(0) = E(0)n ψ

(0) .

While the energy remains at the value E(0)n , the corresponding eigenstate
will be a linear combination of base functions |n, α〉, α= 1, 2, . . . , kn ,
which pertain to this eigenvalue of H0 and which span the subspace Hn ,

E0 = E(0)n , ψ(0) =
kn∑
α=1

c(n)α |n, α〉 . (5.46)

The coefficients c(n)α are fixed in the next order.

First Order O(ε1): To this order one obtains

H0ψ
(1)+H1ψ

(0) = E(0)ψ(1)+ E(1)ψ(0) .
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Taking the scalar product of this equation with 〈n, β|, and noting that〈
n, β

∣∣∣ H0

∣∣∣ψ(1)〉= E(0)n

〈
n, β

∣∣∣ψ(1)〉
(here H0 is acting on the left-hand state!), and that 〈n, β|n, α〉 = δβα,
one obtains a system of linear equations for the unknown coefficients,
viz.

kn∑
α=1

[ 〈n, β| H1 |n, α〉− E(1)δβα
]

c(n)α = 0 . (5.47)

Equation (5.47) has the form of a secular equation as it is known from
celestial mechanics. The corrections of first order of the eigenvalues fol-
low from the requirement that this system be soluable, i. e.

det

(
〈n, β| H1 |n, α〉− E(1) 1lkn×kn

)
= 0 , (5.48)

Finally, the expansion coefficients c(n)α are calculated by solving (5.47)
for each eigenvalue, one by one. The characteristic polynomial (5.48)
has kn real solutions. The corresponding eigenfunctions are kn linear
combinations of the states |n, α〉 with fixed n. The degeneracy of the
unperturbed problem may be lifted totally or partially.

Remarks
1. The restriction to a purely discrete spectrum is purely technical.

Which of the matrix elements of H1, within the subspace with
fixed n, actually are different from zero depends on the selection
rules that H1 obeys.

2. The set of all eigenfunctions |k, α〉 of H0 provides a basis of the
Hilbert space in which the problem is defined. If one starts from the
more general ansatz

ψ =
∑

n

kn∑
β=1

c(n)β |n, β〉

and replaces the operator H1 by its matrix in this representation, then
the analogue of (5.47) even yields the exact solution of the problem.

5.2.3 An Example: Stark Effect

A characteristic feature of the hydrogen spectrum is its 	-degeneracy:
All bound states with the same principal quantum number n have the
same energy, independently of the value 	= 0, 1, . . . , n−1 of the or-
bital angular momentum. So, for example, one has E(2p)= E(2s). This
dynamical degeneracy which is a property of the 1/r-potential acting
here, is lifted in hydrogen-like atoms because the electrostatic poten-
tial no longer has the exact 1/r dependence. In order to understand this
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suppose that the nucleus of a hydrogen-like atom can be represented by
a homogeneous charge distribution

�(r)= 3Ze

4πR3Θ(R−r) .

The potential which is felt by the electron and in which it moves then
is

r ≤ R : U(r)=− Ze2

R

[
3

2
− 1

2

( r

R

)2
]
,

r > R : U(r)=− Ze2

r
.

Making use of the formula (5.38) one easily estimates that both the 2s
state and the 2p state experience upward shifts, as compared to the pure
Coulomb potential. However, the shift of the 2s state is larger than the
shift of the 2p state because the latter is driven out of the nucleus by
its centrifugal tail and, therefore, feels less of the difference between
the pure Coulomb and the hydrogen-like potentials. Thus, the former
degeneracy is lifted.

Let H0 be the Hamiltonian which describes the unperturbed hydro-
gen atom, or a hydrogen-like atom,

H0 =− �
2

2m
∆+U(r) ,

and let the perturbation be caused by a constant external electric field
which acts along the 3 direction. This field couples to the dipole mo-
ment of the atom,

E= Eê3 , H1 =−d · E=−d3 E . (5.49)

The operator of the electric dipole moment reads d = −ex, or, upon
transformation to a spherical basis, defined by d±1 =∓(d1± id2)/

√
2,

d0 = d3,

dµ =−e

√
4π

3
rY1µ . (5.50)

Converting the field E to the same basis,

E+1 =− 1√
2
(E1+ iE2) , E−1 = 1√

2
(E1− iE2) , E0 = E3 ,

the scalar product becomes

d · E=
∑
µ

d∗µEµ =
∑
ν

dνE∗ν .

Provided the perturbation is small, and this is the case if the exter-
nal field is small as compared to a typical internal field of the atom,
E� Ei ≈ e/a2

B ≈ 5×109 V/cm, the formalism developed above is ap-
plicable. We distinguish two cases:
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1. Hydrogen-like Atoms: In these atoms the first order contribution van-
ishes because all matrix elements 〈n	m|d3|n	m〉 are equal to zero by
parity conservation: The matrix element

∫
dΩ Y∗	mY10Y	m vanishes

because Y10 is odd under space reflection while the product |Y	m |2
is even. Therefore, there is no Stark effect in hydrogen-like atoms
which would be linear in the external field.
A splitting of levels occurs only in second order perturbation theory.
Indeed, by (5.40) one obtains:

∆E(2) =
∑

n′	′m′

〈n	m|d · E|n′	′m′〉〈n′	′m′|d · E|n	m〉
En	− En′	′

=
∑
n′	′

∑
µν

EµE∗ν
∑
m′

〈n	m|dν|n′	′m′〉〈n′	′m′|d∗µ|n	m〉
En	− En′	′

.

The numerator of this expression contains, among others, the prod-
uct of the matrix elements

〈Y	m |Y1ν |Y	′m′ 〉 and 〈Y	′m′ |Y1,−µ |Y	m〉 ,
where use was made of the relation (1.117). As these are simultan-
eously different from zero only if the two selection rules m′ +ν =m
and m−µ=m′ are fulfilled, one concludes that µ= ν. One then has

∆E(2) = 1

3
E2

∑
n′	′m′

〈n	m|d|n′	′m′〉 · 〈n′	′m′|d|n	m〉
En	− En′	′

≡ −E2α

2
.

(5.51)

This formula shows that the Stark effect in hydrogen-like atoms is
quadratic in the external field. The constant of proportionality α is
a characteristic property of the atom and is called electric polariz-
ability.

2. Hydrogen Atom: We study the example of the subspace with princi-
pal quantum number n = 2. This space contains four orthogonal and
normalized base states,

|1〉 ≡ |2s,m = 0〉 , |2〉 ≡ |2p,m = 0〉 ,
|3〉 ≡ |2p,m =+1〉 , |4〉 ≡ |2p,m =−1〉 ,

all of which belong to the same eigenvalue E(0) =−α2mec2/8. In
this situation we must appeal to perturbation theory with degeneracy,
that is, the wave function must be of the form

ψ =
4∑
α=1

cα |α〉 . (5.52)

All diagonal matrix elements of the perturbation H1 vanish, cf. (5.49)
and (5.50), 〈α|H1|α〉 = 0 (by parity conservation). Among the non-



55.2 Stationary Perturbation Theory 293

diagonal matrix elements only two are different from zero, and, in
fact, are equal,

〈1| H1 |2〉 = 〈2| H1 |1〉 = −e

√
4π

3
E 〈2s,m = 0| rY10 |2p,m = 0〉 .

This matrix element is calculated using eigenfunctions of the hydro-
gen atom. One finds the result

∆12 ≡ 〈1| H1 |2〉 = −3eaB E . (5.53)

The explicit form of the secular equation (5.48) for the total Hamil-
tonian H = H0+H1, expressed in the basis |1〉 . . . |4〉, is

det

⎛⎜⎜⎜⎝
E(0)− E(1) ∆12 0 0
∆12 E(0)− E(1) 0 0

0 0 E(0)− E(1) 0
0 0 0 E(0)− E(1)

⎞⎟⎟⎟⎠= 0 .

(5.54)

The four solutions are easily determined, they are

E(1)1/2 = E(0)±∆12 , E(1)3 = E(1)4 = E(0) . (5.55)

Thus, the original degeneracy is lifted only partially. The levels 1
and 2 are shifted by an amount which is linear in the modulus of
the electric field. The corresponding eigenfunctions follow from the
system of equations (5.47). One finds

ψ1 = 1√
2
(|1〉+ |2〉) , ψ2 = 1√

2
(|1〉− |2〉) . (5.56)

Note that the result (5.56) provides an example for the observation
that two degenerate states are mixed strongly, in fact, completely,
by a nondiagonal perturbation, independently of the strength of the
matrix element ∆12.

5.2.4 Two More Examples: Two-State System,
Zeeman-Effect of Hyperfine Structure in Muonium

We discuss two more examples both of which correspond to specific
physical situations and are of practical importance:

A Two-Level System with Variable Perturbation. Given a Hamilton-
ian H = H0+ H1 which has the following properties: Among others,
H0 has two stationary eigenstates |ni(0)〉, i = 1, 2, pertaining to the
eigenvalues E1 and E2, respectively. In the subspace spanned by this
basis, H1 is represented by a matrix 〈ni(0)|H1|n j(0)〉 = x AMij where A
is a real number, and M a hermitean matrix whose trace is 1 and whose
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determinant is 0. The parameter x can be tuned from the value 0 to the
value 1.

The properties det M= 0 and tr M= 1 imply that without loss of
generality, this matrix can be written as

M=
(

cos2 α0 cosα0 sinα0

cosα0 sinα0 sin2 α0

)
.

In the basis |ni(0)〉 the Hamiltonian H = H0+H1 has the explicit form

H=
(

E1+ x A cos2 α0 x A cosα0 sinα0

x A cosα0 sinα0 E2+ x A sin2 α0

)
.

Its eigenvalues follow from the quadratic equation

λ2−λ tr M+det M= 0

and, hence, are easily determined,

λ1/2 = 1

2
(Σ+ x A)

∓ 1

2

√
(Σ− x A)2−4(E1 E2+ E1x A sin2 α0+ E2x A cos2 α0) ,

where the abbreviation Σ = E1+ E2 is used. For the determination of
the corresponding eigenstates let us make a digression which will turn
out to be helpful for the interpretation of the system: Instead of the un-
perturbed basis |ni(0)〉 we use the basis in which H1 is diagonal and has
the form H1 = diag(x A, 0). This new basis is given by(

ν1

ν2

)
=

(
cosα0 sinα0

− sinα0 cosα0

)(
n1(0)
n2(0)

)
, (5.57)

or, in a shorter notation, |νi〉 =∑
k Vik(α0)|nk(0)〉. Both bases, |νi〉 and

|nk〉, by their physical role, are distinguished bases: The states |ni(0)〉
are the eigenstates of the unperturbed Hamiltonian; |ν1〉 in turn is the
state in which the perturbation x A acts, while in the state |ν2〉 it is not
active.

The matrix V is unitary and, being real, is even orthogonal. In the
new basis the Hamiltonian becomes H̃ = V(α0)HVT (α0). Using the
abbreviations Σ = E1+ E2 (as before), and ∆ := E2− E1 (new), and
introducing trigonometric functions of the double angle, one obtains

H̃= 1

2
(Σ+ x A)

(
1 0
0 1

)
+ 1

2

(
x A−∆ cos 2α0 ∆ sin 2α0

∆ sin 2α0 −x A+∆ cos 2α0

)
.

(5.58)

Obviously, the eigenvalues are the ones we have given above. However,
in the new representation they may be written in an alternative form:

λ1/2 = 1

2

{
(Σ+ x A)∓

√
(∆ cos 2α0− x A)2+∆2 sin2 2α0

}
. (5.59)
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It is useful to express the corresponding eigenstates in the basis( |ν1〉 , |ν2〉
)T
.

They depend on the actual value of x. Therefore, we write them as( |n1(x)〉 , |n2(x)〉
)T

by inverting the formula (5.57), and by replacing α0 by α(x). This x-
dependent angle is determined from

V†(α(x)) H̃ V(α(x))= diag(λ1, λ2) .

Using the representation (5.58) one shows that α(x), when expressed in
terms of α0, is given by :

cos 2α(x)= ∆ cos 2α0− x A√
(∆ cos 2α0− x A)2+∆2 sin2 2α0

. (5.60)

These results are beautifully interpretable. First, like in case 2 of
Sect. 5.2.3, we note that if the unperturbed levels are degenerate,
i. e. if ∆ = 0, then by (5.60), even a tiny perturbation x A leads to
cos 2α(x)=±1, that is, to maximal mixing of the states |ν1〉 and |ν2〉. If
the unperturbed eigenvalues are different from each other we can take
E2 > E1, without loss of generality, hence ∆> 0, and α0 < π/4. The
formulae (5.60) and (5.59) show that the perturbed system behaves dif-
ferently, depending on whether A is positive or negative.

We discuss the more interesting case A > 0: For x = 0 we have
λi = Ei , α(0) = α0. If we let x grow from 0 to 1, and if we
assume that A > ∆ cos 2α0, then the eigenvalues λ(x) follow the
graphs shown in Fig. 5.3. They start at the unperturbed eigenvalues E1
and E2, respectively, and move towards each other until the point
x = ∆ cos 2α0/A, but there they do not cross. Rather, for increas-
ing x beyond that point, they move apart again. At the same time
the states |νi〉 exchange their roles. This is seen as follows: As-
sume α0 to be small, but the perturbative term A to be large as
compared to ∆ cos 2α0. At x = 0, according to (5.57), the basis is
|n1(0)〉 ≈ |ν1〉, |n2(0)〉 ≈ |ν2〉. At the point x = 1 and with our assump-
tion A� ∆ cos 2α0 the formula (5.60) gives α(x = 1) ≈ π/2. Equa-
tion (5.57) now gives |n2(0)〉 ≈ |ν1〉, |n1(0)〉 ≈ |ν2〉. Thus, the two states
have exchanged their physical content!

A possibly important application of this analysis is found in the
dynamics of electron neutrinos |νe〉 which are produced in the sun’s in-
terior, in a chain of reactions, which eventually leads to fusion of four
hydrogen atoms into Helium 4He (by the so-called pp-cycle). It seems
plausible that the states νe and νµ which are created and annihilated in
weak interactions, are not identical with eigenstates of mass, and that
they are orthogonal mixtures of mass eigenstates.8 In the application to
this example H0 is the mass operator whith eigenvalues m2

1 and m2
2,

|ν1〉 is identical with |νe〉, |ν2〉 with |νµ〉. A νe created in the sun’s in-
terior feels a somewhat different interaction with matter in the sun than

0,002

0,001

0,999

0,998

1

x
0 0,2 0,4 0,6 0,8

Fig. 5.3. Energy levels (5.59) of Ex-
ample 5.1 with cos 2α0 = 0.99 and
E1 = 0.998, E2 = 1, A = 0.002 (arbi-
trary units). With increasing strength x
of the perturbation the two eigenval-
ues initially move towards each other.
However, instead of crossing at x ≈
∆ cos 2α0/a, they move apart again.
Meanwhile, the corresponding eigen-
states practically exchange their roles

8 In the weak interactions leptons al-
ways interact in pairs of a charged,
electron-like partner, and an uncharged
neutrino as well as their antiparticles.
There are three families of such pairs:
(e−, νe), (µ−, νµ), and (τ−, ντ). For
simplicity, we restrict the analysis of
solar neutrinos to the first two of these
families.
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a νµ. In the example the term A is the additional interaction felt by νe,
not by νµ, while the parameter x is proportional to the local density of
the sun. If the relevant parameters fulfill the conditions described above
this would mean that a νe which was created deep inside the sun, on its
way to the sun’s surface, would be “rotated” into a νµ.

Low energy νe’s are detected on earth through inverse β-decay.
Typical processes which were investigated are the transformation of
Chlorine to Argon, or from Gallium to Germanium,

νe+ 37
17Cl −→ 37

18Ar+ e− , νe+ 71
31Ga −→ 71

32Ge+ e− ;
(the number in subscript gives the charge number of the element, the
superscript shows the mass number of the isotope). In contrast, low en-
ergy muonic neutrinos νµ remain sterile, hence invisible because in the
analogous processes νµ+ 37Cl or νµ+ 71Ga a muon µ− would have
to be created. The mass of the muon is approximately 200 times the
value of the electron’s mass, mµc2 = 106 MeV. The energy of neutrinos
from the sun takes values no more than 7.2 MeV at most. The binding
energies of the two nuclei involved differ by amounts on the order of
a few MeV. Therefore, conservation of total energy forbids the creation
of muons. This physically charming mechanism could help in explain-
ing why terrestial experiments find fewer νe than predicted theoretically
without mixing [Scheck (1996)].

Zeeman Effect of Hyperfine Structure in Muonium. Muonium is
a perfect hydrogen-like atom consisting of a positive muon µ+ and an
electron e−. As the muon has a mean-life of about 2.2×10−6 s and as
this time is very long as compared to typical time scales of atomic tran-
sitions, these atoms can be produced copiously in experiment and can be
analyzed in detail by means of high frequency techniques. The calcula-
tion of the interaction energy, as a function of the external homogeneous
magnetic field, provides a simple, and physically instructive, application
of quantum mechanical perturbation theory.

We choose the 3-direction along the homogeneous magnetic field,
B= Bê3. The Hamiltonian reads

H = H0−[µ(µ)+µ(e)] · B− 8π

3
µ(µ) ·µ(e) δ(r) .

Here H0 is the unperturbed Hamiltonian (1.151) of the hydrogen atom if
the reduced mass m =mµme/(mµ+me) is inserted there. The second
term describes the coupling of the two magnetic moments to the exterior
field, while the third term is the interaction of one of the magnetic mo-
ments with the magnetic field created by the other. The δ-distribution in
the third term is derived either from classical electrodynamics (cf. [Jack-
son (1999)]), or from the Dirac equation in a nonrelativistic approxi-
mation. It says that the two magnetic moments couple only when the
particles are at the same point in space. The operators µ(µ) and µ(e)
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are as defined in (4.23). (Recall that the magnetic moment is defined
by the eigenvalue of (4.23) for maximal ms quantum number.) If

µ
(i)
B =

|e|�
2mic

, i = e,µ,

denotes the Bohr magneton of the particle i, then the magnetic moment
of the muon, and the corresponding operator are, respectively,

µ(µ)= g(µ)µ(µ)B
1

2
, and µ= 2µ(µ)s(µ) .

The muon’s magnetic moment is positive, while the one of the electron
is negative. Thus, the Hamiltonian reads

H = H0−
(− ∣∣∣g(e)∣∣∣ µ(e)B s(e)3 + g(µ)µ(µ)B s(µ)3

)
B

+ 16π

3

∣∣∣g(e)∣∣∣ (µ(e)B )
2µ(µ)

µ
(e)
B

δ(r) (s(e) · s(µ)) . (5.61)

In transforming the third term we have introduced the ratio µ(µ)/µ(e)B
because the investigation of muonium allows to determine the magnetic
moment of the muon (in units of the electronic Bohr magneton which
is known) to high accuracy.

It is not difficult to estimate that typical matrix elements of the terms
by which H and H0 differ, are very small as compared to the differences
of the eigenvalues of H0. Therefore, the lowest order of perturbation
theory is perfectly adequate.

We treat this system in the basis |FM〉 of eigenstates of total spin
F= s(e)+ s(µ) which in this case can take the values F = 1 and F = 0.9

Taking B = 0, in a first step, the expectation value of H in the
ground state of hydrogen, in the spin state |FM〉, is easily calculated
by means of the formula

s(e) · s(µ) = 1

2
(F2− s(e) 2− s(µ) 2) :

〈1s, FM| H |1s, FM〉 B=0 = E1s+ 16π

3

∣∣∣g(e)∣∣∣ (µ(e)B )
2µ(µ)

µ
(e)
B

∣∣ψ1s(0)
∣∣ 2

× 1

2

(
F(F+1)− 3

4
− 3

4

)
.

The square of the wave function taken at relative position r = 0 is∣∣ψ1s(0)
∣∣ 2 = ∣∣R1s(0)Y00

∣∣ 2 = 4

a3
B

1

4π
= 1

πa3∞

(
1+ me

mµ

)−3

,

where we use the notation a∞ for the Bohr radius (1.8) and make ex-
plicit the effect of the reduced mass. It is convenient to introduce here
the Rydberg constant

Ry∞ = α
2mec2

2hc
,

9 I have chosen the traditional notation
of atomic physics. In atomic physics
one studies the hyperfine structure and
its Zeeman effect for an electron with
total angular momentum j = �+ s and
for the nucleus with spin I. The states
of the combined system are classi-
fied by the resulting angular momentum
F= j+ I.



298 5Applications of Quantum Mechanics

so that

〈1s, FM| H |1s, FM〉 B=0

= E1s+ 8

3
α2hcRy∞

µ(µ)

µ
(e)
B

∣∣∣g(e)∣∣∣(1+ me
mµ

)−3 1

2

[
F(F+1)− 3

2

]
.

This formula yields the difference of the energies of the eigenstates
with F = 1 and F = 0 at vanishing field B = 0, ∆E = E(1s, F = 1)−
E(1s, F = 0) or, after division by h, the difference of the corresponding
frequencies

∆ν = 1

h
∆E = 8

3
α2cRy∞

µ(µ)

µ
(e)
B

∣∣∣g(e)∣∣∣ (1+ me
mµ

)−3

. (5.62)

If the magnetic field is switched on, the energies of the two states |F=1,
M =±1〉 are seen to be

〈1,M =±1| H−H0 |1,M =±1〉
= 1

4
h∆ν+ 1

2
M
( ∣∣∣g(e)∣∣∣ µ(e)B − g(µ)µ(µ)B

)
B (∗)

In contrast, in the subspace with M = 0 spanned by |10〉 and |00〉, the
operators s(i)3 are not diagonal. Rows and columns being numbered by
the base states |10〉 and |00〉, and introducing the abbreviation (5.62),
the following matrix is to be diagonalized in this subspace

W=
(

E1s+ (1/4)∆E W12

W21 E1s− (3/4)∆E

)
.

The matrix element W12 = 〈10| . . . |00〉 receives contributions only from
the second term in (5.61). Making use of the spin functions (4.67)
and (4.68) one finds

W12 =W21 = 1

2

(
g(µ)µ(µ)B +

∣∣∣g(e)∣∣∣ µ(e)B

)
B .

The eigenvalues are obtained from the characteristic polynomial

λ2− (tr W)λ+ (det W)= 0 .

It is useful to introduce the dimensionless variable

x := 1

∆E
(g(µ)µ(µ)B +

∣∣∣g(e)∣∣∣ µ(e)B )B , (5.63)

so that the roots of this equation become

λ1/2 = E1s− 1

4
∆E± 1

2
∆E

√
1+ x2 .

The upper sign applies to the case F = 1, the lower sign to the case
F = 0. Both cases are summarized by a factor (−)F+1 in front of the
square root.
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Note that the results for the states |1±1〉 given above, may also be
written as functions of the variable x: The following unified formula
applies to all four eigenstates,10

E(F,M)= E1s− 1

4
∆E− g(µ)µ(µ)B MB+ (−)F+1 1

2
∆E

√
1+2Mx+x2 .

(5.64)

This formula is of central importance in analyzing measurements
of the transition frequencies in the ground state of muonium. The fre-
quencies [E(F,M)− E1s]/h are drawn in Fig. 5.4 as functions of the
applied magnetic field in the following way: One defines the functions
yF,M(x) := [E(F,M)− E1s]/∆E so that

yF,M(x)=−1

4
− g(µ)µ(µ)B

g(µ)µ(µ)B +|g(e)|µ(e)B

Mx+(−)F+1 1

2

√
1+2Mx+x2 .

The frequencies proper as well as the transition frequencies between dif-
ferent substates (at fixed x) are obtained from Fig. 5.4 by multiplying
with ∆ν =∆E/�. For example, one easily confirms that the sum of the
transition frequencies ν12 and ν34 yields the hyperfine interval ∆ν, for
any value of the magnetic field. The physical importance of this quantity
lies in the fact that it is sensitive to radiative corrections characteristic
for quantized electrodynamics, and to bound state effects. Its measure-
ment allows for a test of the corresponding theoretical predictions. As
frequencies can be measured to very high precision these tests are very
sensitive. In particular, the hyperfine interval ∆ν contains the magnetic
moment of the positive muon and serves to determine this quantity.

We conclude this example with two comments:

Remarks
1. For very large values of the magnetic field, i. e. x� 1, the hyper-

fine interaction in (5.61) is negligible as compared to the interaction
with the field. In this case the states may be classified again by the
quantum numbers of the uncoupled basis of spin states. This limiting
situation is alluded to by the arrows in the right part of Fig. 5.4
which show the alignment of the electron’s and the muon’s spins
along the direction of B, that is along the 3-axis.
A closer look at this figure shows that, as it is drawn here, it can-
not be correct: The magnetic moment of the electron is negative and,
therefore, its interaction energy with the external field is positive, in
accord with what the figure shows. However, the magnetic moment
of the muon is positive and, hence, its interaction energy with the
field is negative. Therefore, the state with m2 =+1/2 must lie be-
low the state with m2 =−1/2. This is seen to be correct in the lower
right part of the figure, but not in its upper right part! In fact, the
upper two branches of the diagram intersect not only in x = 0 but
also in the point xC ≈ mµ/me. Thus, by continuing the drawing to

1,5

0

0,5

0,5

1

1

1,5

0 0,5 1 1,5 2,52

12

34

(e)( )

Fig. 5.4. Zeeman-effect of hyperfine
structure in muonium, (5.64). We plot
the dimensionless functions yF,M =
[E(F,M)− E1s ]/∆E, ∆E being the
spacing between the hyperfine levels
F = 1 and F = 0, as functions of the
exterior magnetic field. This field ap-
pears in the dimensionless variable x,
(5.63). For large values of x the up-
per two branches cross a second time
(this cannot be seen in this figure,
though, because of the large mass ratio
mµ/me)

10 Alternatively this problem can be
solved in the basis |s(e),m1〉|s(µ),m2〉
in which case one obtains this general
formula. This was the original approach
chosen by Breit and Rabi.
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very large values of x, the state with m1 =+1/2 and m2 =−1/2, in-
deed, is found to lie higher in energy than the one with (m1 =+1/2,
m2 =+1/2).

2. The formula describing the Zeeman effect of hyperfine structure was
derived by G. Breit and I. Rabi for s-states in Alkali atoms. As the
derivation follows the same lines as our example, I quote here this
more general case. Let µ( j) denote the atomic magnetic moment in
the state with j = 1/2 (this is the sum of the orbital angular mo-
mentum and of the spin of the electron). The atom’s nucleus carries
angular momentum I and its magnetic moment is denoted by µ(I ).
The Hamiltonian then reads

H = H0−
(

1

j
µ( j)j3+ 1

I
µ(I )I3

)
B+ f(r) j · I .

As before, the states with total angular momentum are denoted
by |FM〉 (this is the sum of the angular momenta of the electron and
the nucleus). The energy difference between the two hyperfine levels
with F = I ± (1/2) now is

∆E = E

(
F = I + 1

2

)
− E

(
F = I − 1

2

)
= 1

2
〈 f 〉 (2I +1) .

The magnetic field is replaced by the analogous dimensionless vari-
able

x = 1

∆E

(
−1

j
µ( j)+ 1

I
µ(I )

)
.

The formula of Breit and Rabi then reads
E− E0

∆E
=− 1

2(2I +1)
− µ(I )/I

µ( j)/ j+µ(I )/I
Mx

±
√

1+4M/(2I +1)x+ x2 , (5.65)

where the upper sign applies to F= I+ j, the lower sign to F= I− j.
The expectation value 〈 f 〉 is to be taken in the ground state whose
unperturbed energy is E0. The reader is invited to draw the examples
of 6Li (I = 1) and of 7Li (I = 3/2) in a figure analogous to Fig. 5.4,
and to interpret the figure.

5.3 Time Dependent Perturbation Theory
and Transition Probabilities

As we just showed in Sects. 5.2.1 und 5.2.2 the perturbation H1 of
a system described by the Hamiltonian H0 may lead to a displacement
of the energies of the initial system, and to mixing of the corresponding
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wave functions. However, it may also cause the system to make a tran-
sition to another state, yet by respecting all conservation laws including
the principle of energy conservation. Here is an example:

Suppose the unperturbed Hamiltonian contains two additive terms
the first of which describes a hydrogen-like atom with its stable bound
and continuum states, while the second contains the free radiation field
and describes free electromagnetic waves in vacuum. Suppose further
that a term is added to H0 which describes the interaction of the elec-
trons of the atom with the radiation field. In the initial state the atom
is assumed to be in its ground state, the unpaired electron having the
binding energy E0 =−B. Furthermore, assume that there is a photon
whose energy is sufficiently large so that Eγ = �ω > B. If the photon
is absorbed, the electron is kicked out of its bound state and is taken to
a state in the continuum with energy E′ = (Eγ− B) > 0.

This raises several questions. Given an incoming beam of photons
with energy Eγ, and a target consisting of many such atoms, how does
one proceed in calculating the probability per unit of time, for the atom
to make this transition, and how large is it? If the matrix elements of the
interaction H1 are small as compared to typical energy differences of
the unperturbed system, is it possible to analyze the absorption process
in a perturbation series?

5.3.1 Perturbative Expansion of Time Dependent Wave Function
The problem to be solved is the following: At time t0 the system is in
the state Ψ(t0)= |n0〉. For instance, the initial state consists of an atom
in its ground state and a beam of photons with energy Eγ. Find the state
Ψ(t)=U(t, t0)|n0〉 which, in the course of time, emanates from the ini-
tial state under the action of the perturbation H1. For this purpose we
expand the solutions of the time dependent Schrödinger equation

i�Ψ̇ (t)= HΨ(t)= (H0+H1)Ψ(t) (5.66)

in terms of a basis of solutions of the stationary Schrödinger equation,

H0 |n〉 = En |n〉 ,
which contains the initial state |n0〉. As we know from Sect. 1.8.1,
Remark 3, stationary states have harmonic time dependence, viz.

|n〉 : e−(i/�)En(t−t0) |n〉 .
Written in a somewhat formal notation the ansatz for the time dependent
solution must be

Ψ(t)=
∑∫

cn(t)e
−iEn(t−t0)/� |n〉 ,

where the hybrid symbol “sum/integral” hints at the fact that many, or
all of these states lie in a continuum. Inserting this expansion and mak-
ing use of the orthogonality of the base states |n〉 yields a system of
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coupled ordinary differential equations of first order for the time depen-
dent coefficients. This system is seen to be of the form

ċn(t)=− i

�

∑∫
〈n| H1 |m〉 e−iωmntcm(t) . (5.67)

The energy differences that occur in these equations are replaced by the
corresponding transition frequencies,

ωmn := (Em− En)/� .

The system of equations (5.67) must be solved with initial condition
cn(t0)= δnn0 .

If H1 is “small”, in a certain sense, the system of equations (5.67)
can be solved by iteration, taking

cn(t)=
∞∑
ν=0

c(ν)n (t) .

The ν-th approximation is obtained by inserting the preceding one i. e.
c(ν−1)

n , on the right-hand side of (5.67) and by integrating over time.
(This ordering of terms becomes particularly transparent if one writes
εH1, instead of H1, ενc(ν)n instead of c(ν)n . As ε drops out of the final
equations, one may safely take this parameter to 1 at the end.) Thus,
one obtains

c(ν)n (t)=−
i

�

∑∫ t∫
t0

dtν 〈n| H1(tν) |m〉 e−iωmntνc(ν−1)
m (tν) . (5.68)

In many cases only the first iteration is relevant. It reads

c(1)n (t)=−
i

�

t∫
t0

dt1 〈n| H1(t1) |n0〉 eiωnn0 (t1−t0) . (5.69)

The second approximation contains two integrations and reads

c(2)n (t)=
(
− i

�

)2 ∑∫ t∫
t0

dt2

t2∫
t0

dt1 〈n| H1(t2) |i〉 eiωni(t2−t0)

×〈i| H1(t1) |n0〉 eiωin0 (t1−t0) . (5.70)

It is relevant in those cases where the transition from the state |n0〉
to the state |n〉 is impossible in first order because the matrix elem-
ent 〈n|H1|n0〉 does not obey the selection rules and hence vanishes. We
met an example for this situation towards the end of Sect. 4.2.1: If H1
is supposed to describe an electric dipole transition and if we wish to
calculate the transition 2s→ 1s, the first order (5.69) vanishes. A tran-
sition of this kind which is forbidden in first order, will be possible in
second order provided among the virtual intermediate states |i〉 there are
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one or more states whose transition matrix elements to |n0〉 and to |n〉
are both different from zero. Such a process being of second order in
the perturbation will be less frequent than a comparable process which
is allowed in first order.

Without restriction of generality the initial time t0 may be taken to
be the origin, i. e. we set t0 = 0. Before turning to evaluate the first
approximation (5.69) we note that, alternatively, one may use the inter-
action picture, introduced in Sect. 3.6, by replacing H1(t) by

H(int)
1 (t)= e(i/�)H0t H1(t)e

−(i/�)H0t .

In every matrix element of H(int)
1 taken between eigenstates of H0, the

exponential containing H0 acts both on the right and on the left states
so that

〈p| H(int)
1 (t) |q〉 = 〈p| e(i/�)H0t H1(t)e

−(i/�)H0t |q〉
= eiωpqt 〈p| H1(t) |q〉 .

This means that in (5.70) the operator H1 can be replaced by H(int)
1 ,

provided, at the same time, the exponential functions are replaced by 1.
In (5.70) the operator H1 or H(int)

1 acts once at time t1, once at
time t2, but the integrations must be done such that the condition t2 > t1
is respected. In the product H1(t2)H1(t1) the time arguments are ordered
in increasing order from right to left. Note that

t∫
0

dt2

t2∫
0

dt1 H1(t2)H1(t1)=
t∫

0

du1

t∫
u1

du2 H1(u2)H1(u1)

or, upon defining the time-ordered product,

P
(
H1(t2)H1(t1)

) := H1(t2)H1(t1)Θ(t2− t1)

+H1(t1)H1(t2)Θ(t1− t2) , (5.71)

the same double integral is equal to

1

2!
t∫

0

dt2

t∫
0

dt1 P
(
H1(t2)H1(t1)

)
.

In the case considered here the original integral occurs just twice, hence
the factor 1/2. If one generalizes the definition (5.71) to a product of
k operators which act at k times ordered from right to left, in increasing
order, then the corresponding k-fold integral is equal to

t∫
0

dtk

tk∫
0

dtk−1

tk−1∫
0

dtk−2 · · ·
t3∫

0

dt2

t2∫
0

dt1 A(tk) . . . Z(t1)

= 1

n!
t∫

0

dtk

t∫
0

dtk−1 · · ·
t∫

0

dt1 P
(

A(tk) . . . Z(t1)
)
.
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11 After Freeman Dyson, mathematician
and physicist, professor emeritus at the
Institute for Advanced Studies, Prince-
ton, USA.

When applied to the second order expression (5.70) this contribution
can be written in a much simplified and compact form by also inserting
the completeness relation∑∫

|i〉 〈i| = 1l .

Thus, one obtains

c(2)n (t)=
(
− i

�

)2 1

2!
t∫

0

dt2

t∫
0

dt1 〈n|P
(
H(int)

1 (t2)H
(int)
1 (t1)

) |n0〉 .

(5.72)

It is obvious how to generalize this to the order k; the expression that
is obtained in this way is called the Dyson series.11

5.3.2 First Order and Fermi’s Golden Rule
We calculate the first iteration in more detail, using the abbreviation
ω≡ ωnn0 in (5.69) and choosing t0 = 0 as before. In many cases H1
does not depend on time explicitly. The integral over time in (5.69) can
then be calculated directly. The expression for the probability, per unit
of time, to pass from the state n0 to the state n under the influence
of H1,

w(n0→ n)≈ 1

t

∣∣∣c(1)n (t)
∣∣∣ 2 , (5.73)

contains the function of time and of transition frequency ω

1

t

∣∣∣∣∣∣
t∫

0

dt′ eiωt′
∣∣∣∣∣∣
2

= 2(1− cosωt)

tω2 =: I(t, ω) . (5.74)

In the limit t→∞ this function becomes a well-known (tempered) dis-
tribution. In order to see this consider a smooth function of g(ω) which
at infinity decays faster than any power, as well as the integral

+∞∫
−∞

dω g(ω)I(t, ω)

= lim
ε→0

+∞∫
−∞

dω
g(ω)

ω(ω+ iε)

{
1

t
(1− eiωt)+ 1

t
(1− e−iωt)

}
.

In this integral I have deformed the path of integration along the real
axis of the complex ω plane in such a way that it avoids the singularity
at the origin via the lower half-plane. As shown in Fig. 5.5, regarding
the first term in curly brackets, this integration path is supplemented by
the half circle at infinity in the upper half-plane. Regarding the second
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term in curly brackets, the contour is closed by the half circle at infinity
in the lower half-plane. In this way it is guaranteed that in either case
the integrands vanish on these half circles. The integration running now
over closed contours, one applies Cauchy’s integral theorem which says
that if the contour encloses the pole at ω=−iε, the integral equals the
residue of the integrand, multiplied by 2πi. This is what happens with
the first term: The residue is(

1− eiωt

ωt

)
ω=0
=−i ,

and the contribution of the integral is 2πi(−i)= 2π. The second term
gives no contribution because the pole lies outside the contour. Thus,
one finds that
+∞∫
−∞

dω g(ω)I(t, ω)= 2πg(0)

so that, when integrating over ω, the function I(t, ω) acts in the same
way as the distribution 2πδ(ω),

I(t, ω)∼ 2πδ(ω) . (5.75)

Indeed, in the limit of large times, t→∞, the function (5.74) turns
into the distribution 2πδ(ω). This is seen very clearly in Fig. 5.6 which
shows I(t, ω) for a finite value of t yet large as compared to 1/ω. Note
that the limit of large times corresponds to the experimental situation.
As we explained previously, detection of the transition is done at a time
which is practically infinite as compared to time scales which are char-
acteristic for the microscopic process.

As a matter of application we consider the transition from a discrete
state to a final state which lies in the continuum. Discrete states be-
ing eigenstates of energy, are given in the energy representation and are
normalized to 1. In contrast, continuum states, as a rule, are defined in
the momentum representation and are normalized to the δ-distribution.
Thus, one has typically

〈
k
∣∣k′〉= 1/(g(k))δ(k− k′) where g(k) is a real,

positive-definite function. An example may clarify this. Using spherical
polar coordinates in momentum space, k= (k, θk, φk), the eigenstates of
momentum are normalized as follows,

〈k′|k〉 = δ(k′ −k)= 1

kk′
δ(k′ − k)δ(cos θk′ − cos θk)δ(φk′ −φk) .

Hence, in this case g(k)= k2. Clearly, the states in the continuum must
be normalized in the energy scale, not in the k-scale. The energy is
a known function E = E(k) of the modulus k of k. The transformation
that this requires is done as follows. The projector onto a domain ∆ of
states |k〉 is given by

P∆ =
∫
∆

dk |k〉 g(k) 〈k| .

Fig. 5.5. Application of Cauchy’s inte-
gral theorem in the calculation of the
integral

∫∞
−∞ dωg(ω)I(t, ω) with g(ω)

a smooth function and I(t, ω) as defined
in (5.74). The figure shows the complex
ω-plane (twice). The path of integration
[−∞,+∞] is deformed at ω= 0; it is
supplementd by a semi-circle at infin-
ity, once in the upper half-plane, once
in the lower half-plane

10
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6

4

2

0 1 23 –1–2

I(t, )ω

Fig. 5.6. The function I(t, ω) has a max-
imum at ω = 0 which becomes the
more pronounced the larger t is chosen.
The figure shows I(t, ω) for t = 10 as
a function of ω. In the limit t→∞ it
tends to 2πδ(ω)
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Transforming to the energy scale then gives

P∆ =
∫
∆(E)

dE |k〉 �k(E) 〈k| where �k(E)= g(k)
dk

dE
. (5.76)

The function �k(E) is called level density of the states |k〉 with en-
ergy E(k).

Assembling the formulae (5.69), (5.73), (5.74), and (5.75) one ob-
tains the transition probability per unit of time

w(n0→ k)≈ 1

�2

∫
dE

∣∣ 〈k| H1 |n0〉
∣∣2�k(E)2πδ(ω) .

Finally, inserting the relation ω = (E− E0)/� from which δ(ω) =
�δ(E− E0) follows, one obtains the final result

w(n0→ k)≈ 2π
∣∣ 〈k| H1 |n0〉

∣∣2�k(E = E0)/� . (5.77)

This formula is also called

Fermi’s Golden Rule: The transition probability per unit of time is
proportional to the square of the matrix element between the initial
and final states and to the level density of final states at the en-
ergy E = E0.

Note that the principle of energy conservation is explicit in the re-
sult (5.77). All other conservation laws are hidden in the matrix element
〈k|H1|n0〉.

5.4 Stationary States of N Identical Fermions
Among the many-body problems that quantum mechanics deals with,
systems consisting of a finite number of identical fermions are es-
pecially important for condensed matter physics, atomic physics, and
nuclear physics. This is the principal reason why I restrict this section to
systems of this kind and discuss the simplest methods for determining
energies and wave functions of their ground states. By the same token
this provides a basis on which the more specialized and refined proce-
dures of many-body physics build that are being used in these fields of
physics.

5.4.1 Self Consistency and Hartree’s Method
Let a system of N identical fermions be described by a Hamiltonian
which, besides the kinetic energies, contains potential energies Ui as
well as interaction potentials Uij between pairs of particles,

H =
N∑

i=1

(Ti +Ui)+
N∑

i< j=1

Uij . (5.78)
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In the description of the electronic shell of an atom the attractive
terms Ui are determined by the electric field created by the atomic nu-
cleus while Uij is the repulsive Coulomb interaction of the electrons
among themselves. Analogous situations are met in condensed matter
physics: For example, in a lattice electrons move in an average pe-
riodic potential while experiencing the mutual Coulomb repulsion. In
nuclear physics Ui represents an average potential which yields the
single-particle spectra of protons or neutrons (shell model of nuclei),
while Uik is the effective residual interaction which is not taken into
account in the average potential.

Assume, in a first step, that there are no single-particle potentials Ui .
The simplest method to determine approximately the energy and the
wave function of the ground state could consist in trying a product of
initially unknown single-particle wave functions ψi ,

Ψ(1, 2, · · · , N)= ψ1(x(1), s(1)) · . . . ·ψN (x(1), s(1))

which then are determined from the requirement that the expectation
value 〈Ψ |H|Ψ 〉 be a minimum under the subsidiary condition that Ψ
remain normalized to 1, 〈Ψ|Ψ 〉 = 1.

One varies the product wave function by varying independently the
single-particle functions, ψi �→ψi+δψi . The subsidiary condition is in-
troduced by means of a Lagrange multiplier. Thus, the condition to be
fulfilled is

〈δΨ | H |Ψ 〉−λ 〈δΨ|Ψ 〉 = 0 .

For the sake of clarity, the variation of the wave function number i is
written ηi = δψi(x(i), s(i)), and all spin arguments are suppressed. The
above condition then reads∫

d3x(i)η∗i Tiψ
(i)+

∑
j �=i

∫
d3x(i)

∫
d3x( j )η∗i ψ∗j (x( j ))Uijψi(x(i))ψ j(x( j ))

−λ
∫

d3xiη
∗
i ψi(x(i))= 0 .

As the variations ηi are entirely arbitrary, this equation is fulfilled if
the one-particle wave functions satisfy the following system of coupled
equations⎡⎣Ti +

∑
j �=i

∫
d3x( j )ψ∗j (x( j ))Uijψ j(x( j ))

⎤⎦ψi(x(i))= εiψi(x(i)) .

(5.79)

For fixed i this is seen to be a Schrödinger equation with a single-
particle effective potential that is generated by all other particles j �= i.
One would try to solve this system of equations by an iterative proce-
dure until the single-particle functions that it yields agree with the ones
one uses to calculate the effective potential. If this is achieved one says
that the solution is self consistent.
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This first attempt is somewhat unfortunate for two reasons: First,
the wave functions ψi and ψk belong to different potentials and, hence,
are not orthogonal. Second, the product wave function Ψ is not anti-
symmetrized. In fact, it has no definite symmetry character at all and,
hence, cannot satisfy the spin-statistics relation. Both difficulties can be
avoided if, from the beginning, one assumes an antisymmetrized prod-
uct of wave functions, that is, a Slater determinant (4.78) as the trial
function. This modified procedure can be formulated in a particularly
transparent way if one makes use of the method of second quantization.

5.4.2 The Method of Second Quantization

The idea of this method is simple: Instead of working with self-
consistent one-particle wave functions (which are still to be deter-
mined!) in position space and in close analogy to the case of the har-
monic oscillator (cf. Sect. 1.6) one introduces creation and annihilation
operators a†i and ai for particles in the state |0, 0, . . . , 0, i, 0, . . . 〉 ≡
|ϕi(x(i))〉 which act on a “vacuum”, i. e. a state which contains no par-
ticles at all. A two-particle state where one particle is placed in the
state ϕi , the other in the state ϕk, for example, then reads

a†i a†k |0, 0, . . . 〉 .
The eigenvalues of the operators Ni = a†i ai and Nk = a†kak are the num-
ber of particles in the state i and k, respectively. In order for such
a two-particle state to be antisymmetric we must have a†ka†i |0, 0, . . . 〉 =
−a†i a†k |0, 0, . . . 〉 i. e. the two creation operators must anticommute. In-
deed, with

{ A , B } := AB+ BA (5.80)

denoting the anticommutator, and postulating the commutation rules for
creation and annihilation operators

{ai , a
†
k} = δik , {ai , ak} = 0= {a†i , a†k} , (5.81)

the product states describe antisymmetric product wave functions. This
can be seen, on the one hand, by commuting any two particles. Indeed,

a†N a†N−1 . . . a
†
k . . . a

†
i . . . a

†
2a†1 = (−)πa†N a†N−1 . . . a

†
i . . . a

†
k . . . a

†
2a†1 ,

whereπ is the specific permutation which maps (1, 2, . . . , i, . . . , k, . . . N)
to (1, 2, . . . , k, . . . , i, . . . N). In this action one must take care that the par-
ticles are interchanged with all their attributes (position, spin, etc.).

On the other hand one shows by means of the relations (5.81) that
every counting or number operator fulfills the relation

Ni(Ni −1)= a†i ai(a
†
i ai −1)= 0 .
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This implies that Ni has the only eigenvalues 0 and 1. Thus, the state i
can either be empty, or be occupied by one single particle – in agree-
ment with the Pauli principle.

The antisymmetrized product states that we just constructed are ele-
ments of what is called a Fock space.

Let O be a single-particle operator, U(i, j ) a two-body interaction,
and define

〈i|O |k〉 :=
∫

d3x ϕ∗i (x)Oϕk(x) , (5.82)

〈ij|U |kl〉 :=
∫

d3x
∫

d3y ϕ∗i (x)ϕ∗j (y)U(x, y) (5.83)

[ϕk(x)ϕl(y)−ϕk(y)ϕl(x)] ,
where we have suppressed spin degrees of freedom, for the sake of clar-
ity. (Note that the right-hand wave function in (5.83) is antisymmetric
but is not normalized to 1.) With these definitions one now shows that
in passing from the position space representation to a representation in
Fock space, the one-body and two-body operators must be translated by
the rules

O �−→
∑

ik

〈i|O |k〉 a†i ak ,
∑
i< j

U(i, j ) �−→ 1

4

∑
ij,kl

〈ij|U |kl〉 a†i a†jalak .

(5.84)

Note, in particular, the ordering of the last two indices in the second
formula of (5.84)!

Denote by |Ω〉 the vacuum state, that is, the state which contains no
particles at all. As a matter of example, we prove the rule (5.84) for the
case of two-body states

Ψa = a†ma†n |Ω〉 and Ψb = a†pa†q |Ω〉 ,
the general case following from this. We have

〈Ψb|O |Ψa〉 =
∑

ij

〈i|O | j〉 〈Ω| aqapa†i a ja
†
ma†n |Ω〉 .

Any annihilation operator applied to the vacuum (to the right) gives
zero, ai |Ω〉 = 0. Likewise, every creation operator a†i applied to 〈Ω|
(to the left) gives zero, 〈Ω|a†i = 0. Therefore, the strategy must be to
shift the operator a†i to the left by means of the relations (5.81) un-
til it hits 〈Ω|, and, likewise, to let the operator a j move to the right
by exchanges of neighbours until it hits the vacuum state. This simple
calculation shows that

〈Ω| aqapa†i a ja
†
ma†n |Ω〉 = δi pδ jmδnq+ δiqδ jnδm p

− δiqδ jmδpn− δi pδ jnδmq .

The states Ψa and Ψb can differ at most by one state. Clearly, we would
have expected this result and the previous one if we had calculated the
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same matrix element in position space, by means of antisymmetrized
wave functions:

2∑
i=1

〈Ψb|O(i) |Ψa〉 = 1

2

∫
d3x(1)

∫
d3x(2)[ϕ∗p(1)ϕ∗q(2)−ϕ∗p(2)ϕ∗q(1)]

×
2∑

i=1

O(i)[ϕm(1)ϕn(2)−ϕm(2)ϕn(1)] .

Here we have used the abbreviations i ≡ x(i) for the arguments. We
note, furthermore, that it would have been sufficient to antisymmetrize
only one of the two wave functions in these formulae. The reason for
this is the fact that the operator is symmetric in the two particles.

The same remark also applies to the two-body matrix elements
(5.83): As the operator is symmetric in all particles it is sufficient to
choose only one of the states to be antisymmetric. Clearly, in this case,
the states Ψa and Ψb can differ by no more than two single-particle
states. Otherwise the matrix element vanishes. The proof of the second
formula in (5.84) follows the same strategy as above: In the expectation
value

〈Ω| anam(a
†
i a†jalak)a

†
pa†q |Ω〉

the creation operators a†i and a†j are moved to the left, the annihilation
operators al and ak are moved to the right, by means of the canonical
anticommutators (5.81), until they act on the vacuum. The result is to
be compared with (5.83).

Consider the special case |Ψa〉 = |Ψb〉 = a†pa†q|Ω〉. In this example
one obtains the linear combination

〈pq|U |pq〉−〈pq|U |qp〉
of two-body matrix elements. The first of these is called the direct in-
teraction, the second is called exchange interaction. If the one-particle
wave functions do not overlap much then the exchange interaction is
small as compared to the direct interaction. This is typical for atomic
states of electrons. However, if they overlap strongly then exchange in-
teraction and direct interaction are of the same order of magnitude. This
situation occurs in the shell model of nuclei.

Remarks

1. The calculation of expectation values of monomials of creation and
annihilation operators in the vacuum state |Ω〉 is a combinatorial
problem which one solves by means of a theorem of G.C. Wick,
cf. Sect. 5.4.5.

2. There are always as many creation operators as there are annihila-
tion operators so that the total number N of particles is the same
in all states of the system as a whole. The action of an operator of
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the form a†i ak may be visualized as the action of lifting a particle
from the state k to the state i. The method of second quantization
changes in no way the physical content of the theory. Its only pur-
pose is to simplify calculations and to guarantee that the states are
properly antisymmetrized.

3. Unfortunately the remark about antisymmetry applies only to pure
product states, but not to linear combinations of such states. For
example, if single-particle states must be coupled to total angular
momentum, then, in general, the coupled states must be antisym-
metrized again.

5.4.3 The Hartree-Fock Equations

We start from the assumption that N identical fermions occupy N single-
particle states such that their wave function Ψ is a determinant of the
type of (4.78), or, upon using second quantization, an antisymmetrtic
product state of the form

a†1a†2 · · · a†N |Ω〉 .
The single-particle levels which are to be determined, are assumed to be
the lowest in energy. In analogy to Hartree’s method we vary the wave
function Ψ , or, equivalently, its complex conjugate Ψ ∗, by requiring that
the variation of the energy of the ground state vanish, i. e. δ(Ψ, HΨ)= 0.
Clearly, the variation of the single-particle states can only involve ad-
mixtures of states with m > N ,

ψn �−→ ψn+ηψm , n ≤ N , m > N , η� 1 .

The reason for this is that any admixture of an occupied state, m < N ,
leaves the Slater determinant (4.75) unchanged. Variation of, say, Ψ ∗
with n ≤ N and m > N , means that we must have

δΨ ∗ = η 〈Ψ | a†nam : η(Ψ, a†nam HΨ)
!= 0 .

Inserting the Hamiltonian H the variation yields the condition∑
ij

〈i| T | j〉 (Ψ, a†nama†i a jΨ)+ 1

4

∑
ij,kl

〈ij|U |kl〉 (Ψ, a†nama†i a†jalakΨ)

= 0 .

The first term of this equation is different from zero only if i = m and
j = n. For the second term to be different from zero there are only the
choices (i =m, k= n, j = l), ( j =m, l = n, i = k), ( j =m, k= n, i = l),
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and (i =m, l = n, j = k), of which the first two contribute with a posi-
tive sign, the latter two with a negative sign. In summary one obtains

〈m| T |n〉+ 1

4

N∑
j=1

{ 〈m j|U |n j〉+〈 jm|U | jn〉

−〈 jm|U |n j〉−〈m j|U | jn〉 }= 0 .

Returning to the definition (5.83), one realizes that the last three terms
are all equal to the second term so that the same equation comes in
a shorter version and reads

〈m| T |i〉+
N∑

j=1

〈m j|U |ij〉 = 0 , i, j ≤ N , m > N . (5.85)

At this point it is useful to define the one-particle operator

Hs.c. :=
∑
m,n

⎛⎝〈m| T |n〉+ N∑
j=1

〈m j|U |n j〉
⎞⎠ a†man , (5.86)

though without restriction on the indices m and n. Indeed, by rela-
tion (5.85) all matrix elements of the operator Hs.c. relating an occupied
to an unoccupied state are equal to zero. (The index “s.c.” stands for self
consistent, see below.)

The fact that all matrix elements 〈p|Hs.c.|k〉 with p> N and k < N
vanish implies that one can diagonalize the Hamiltonian Hs.c. separately
in the space of all occupied states and in the space of the unoccu-
pied states. Assuming this diagonalization to be carried out one is led
to a new basis of single-particle states |α〉 which pertain to the eigen-
values εα. In this new basis one obtains

〈σ | T |τ〉+
N∑
α=1

〈ασ |U |ατ〉 = εσ δστ . (5.87)

Note that here either both states are occupied, i. e. σ, τ < N , or both are
unoccupied, i. e. σ, τ > N .

Clearly, the ground state Ψ of the system must be the specific prod-
uct state in which the N particles occupy the N lowest states of the new
basis, i. e. the eigenstates of Hs.c.. Its energy is

E0 = 〈Ψ | Hs.c. |Ψ 〉 =
N∑
σ=1

〈σ | T |σ〉+ 1

2

N∑
σ,τ=1

〈στ |U |στ〉

=
N∑
σ=1

εσ − 1

2

N∑
σ,τ=1

〈στ |U |στ〉 . (5.88)

The Hamiltonian (5.86) is called the Hartree-Fock operator. The equa-
tions (5.87) are called Hartree-Fock equations.
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It is instructive to rewrite these equations in coordinate space rep-
resentation. In doing so, and recalling the definition of the two-body
interaction (5.83), one sees that one would have to solve the following
system of coupled Schrödinger equations

Tψα(x)+U(x)ψα(x)−
∫

d3x′W(x, x′)ψα(x′)= εαψα , (5.89)

where the two potential terms are defined by

U(x)=
N∑
σ=1

∫
d3x′ψ∗σ (x′)U(x, x′)ψσ(x′) , (5.90)

W(x, x′)=
N∑
σ=1

ψ∗σ (x′)U(x, x′)ψσ(x) . (5.91)

Note that while the first of these is a local interaction the second is
a nonlocal one.

Remarks

1. The two potentials contain the wave functions that one wishes to
determine, and, a priori, it is not obvious how to tackle the sys-
tem (5.89) of integro-differential equations. One might try an iter-
ative procedure: Insert a set of trial wave functions ψ(0)α (x) in (5.90)
and (5.91), and then solve these equations such as to obtain im-
proved solutions ψ(1)α (x). These, in turn, must be inserted in the
potential terms for a new round of solving the equations (5.89)
yielding further improved solutions ψ(2)α (x). This iterative process
will have to be continued until the point where the wave functions
ψ
(n−1)
α (x) that are inserted in (5.90) and (5.91) practically coincide

with the new solutions ψ(n)α (x) obtained from (5.89). A set of solu-
tions which meets this condition, is said to be self consistent, hence
the nomenclature introduced above.

2. In contrast to Hartree’s method (5.79) described in Sect. 5.4.1 the
term with σ = α no longer needs to be excluded because in this case
the direct and the exchange terms cancel.

3. Two arbitrary solutions ψα and ψβ of (5.89) which pertain to dif-
ferent eigenvalues, are orthogonal – in contrast to the Hartree equa-
tions (5.79) where they are not.

4. In practice one will not solve the system (5.89) of coupled equa-
tions (5.89) in coordinate space. Rather, one will try to reduce this
sytem to a problem of diagonalizing finite dimensional matrices. Let
|a〉, |b〉, . . . be an arbitrary basis of Fock spaces (though selected
from a practical point of view), and let ψα(x) =∑

ϕa(x)c
(α)
a be
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Fig. 5.7. The ground state of a system
of N fermions as obtained by means
of the Hartree-Fock method, presum-
ably yields a realistic approximation if
the highest occupied state n = N is sep-
arated from the first unoccupied state
n+1 by an energy gap. (The spectrum
shown here is purely ficticious)

the expansion of the unknown solution in this basis. Then the sys-
tem (5.89) is equivalent to∑

a

(
〈b| T |a〉+

N∑
d=1

〈bd|U |ad〉
)

c(α)a = εαc(α)b . (5.92)

A system of algebraic equations of the kind of (5.92) must also be
solved by iteration until the states {c(α)a }T which are used as input,
coincide, for all practical purposes, with the solutions of (5.92). Of
course, this is nothing but a reformulation of the problem described
above, in Remark 1. The advantage of this matrix representation
is that in practice it might be sufficient to truncate the problem to
a finite-dimensional subspace of states, the so-called model space.
The system of equations (5.92) is then finite-dimensional and can be
solved by repeated diagonalization of finite matrices.

The method just described yields at the same time the occupied and the
unoccupied levels of the model space. It is difficult to judge the qual-
ity of the approximate solutions. Qualitatively speaking, in a favourable
case one expects to find a single-particle spectrum of the kind sketched
in Fig. 5.7 which has the distinctive feature that the highest occupied
and the lowest unoccupied levels are separated by an energy gap ∆
which is sizeably greater than typical level spacings in the occupied and
in the unoccupied parts of the spectrum. This conjecture is supported by
the observation that a single-particle excitation from α< N to β> N , in
first and second order of perturbation theory, respectively, is suppressed
by an energy denominator on the order of ∆ or more.

5.4.4 Hartree-Fock Equations and Residual Interactions

The Hartree-Fock method as described in the preceding section, yields
an approximate ground state described by an antisymmetric product
wave function, that is, by a Slater determinant of single-particle states.
For the sake of brevity, I call such a state a Fock state and write the
symbol |F〉 for it. The true ground state of the N-Fermion system whose
energy might be lower than the one of the product state, will no longer
be a product of single-particle wave functions. Instead it will be a super-
position of different Fock states which differ from |F〉 by excitation(s)
of one, or two, or more, particles into formerly unoccupied states of |F〉.
Accordingly, these excited states are called one-particle, two-particle,
etc. excitations.

In what follows I denote by |Ψ 〉 the initially unknown, true ground
state. Define then one-particle and two-particle densities, respectively, in
the true ground state:

�nm := 〈Ψ | a†man |Ψ 〉 , (5.93)

�nmsr := 〈Ψ | a†r a†s anam |Ψ 〉 . (5.94)
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The basis chosen in these definitions is arbitrary and need not be the
basis of Hartree-Fock solutions. With a change of basis,

a′ †i =
∑

n

〈n|i〉 a†n , a′i =
∑

n

〈n|i〉∗ an =
∑

n

〈i|n〉 an

and taking account of the completeness relation written in the form∑
n

〈i|n〉 〈n| j〉 = δij

the trace of � is seen to be invariant as it should.
One then shows: If the N-particle state is a Slater determinant |F〉

and if the densities in a state of this kind are denoted by super-
scripts (F), then tr �(F ) = N , (�(F ))2 = �(F ). For any one-particle op-
erator O one has

〈F|O |F〉 = tr
(
�(F )O

)
.

The first and second assertions follow from the equation∑
n

an |F〉 〈F| a†n = 1lN×N ,

which in turn is easy to prove. The sum over n is independent of the
basis one chooses so that we may assume we transformed everything to
the basis of Hartree-Fock states. Hence, the trace of the last expression
is

tr
∑

n

an |F〉 〈F| a†n = 〈F|
N∑

n=1

a†nan |F〉 = N .

If we now calculate the square �2, we find indeed

[(�(F ))2]m p =
∑

n

〈F| a†man |F〉 〈F| a†nap |F〉 = 〈F| a†map |F〉 = �(F )m p .

The third relation is proved easily if one inserts the one-body operator
in the notation of second quantization, viz.

〈F|O |F〉 = 〈F|
∑
i, j

〈i|O | j〉 a†i a j |F〉 = tr(�(F )O) .

With the definitions (5.93) and (5.94) the expectation value of the
Hamiltonian in the true ground state |Ψ 〉 is given by

〈Ψ | H |Ψ 〉 =
∑

ij

〈i| T | j〉 �ij + 1

4

∑
ij,kl

〈ij|U |kl〉 �lk ji .

If the N-particle state is a Slater determinant, |Ψ 〉 ≡ |F〉, then we have

�
(F )
lk ji = �(F )l j �

(F )
ki −�(F )li �

(F )
k j ,
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so that

〈F| H |F〉 =
∑

ij

〈i| T | j〉 �(F )ij +
1

2

∑
ij,kl

〈ij|U |kl〉 �(F )l j �
(F )
ki . (5.95)

The Hartree-Fock method can equivalently be formulated in this rep-
resentation by requiring that the Slater determinant |F〉 be chosen such
that the expectation value of H is minimal. For that purpose choose
a general variation to be

|F〉 �−→ ∣∣F′〉= (1l+iεO) |F〉
where O is an arbitrary self-adjoint one-particle operator and ε a posi-
tive infinitesimal. Then〈

F′
∣∣ H

∣∣F′〉= 〈F| H |F〉− iε 〈F| [O, H] |F〉
and the variational condition leads to the requirement

〈F| a†αaβH−Ha†αaβ |F〉 = 0 . (5.96)

The commutator which appears in this formula is calculated to be

[a†αaβ, H] =
∑

j

〈β| T | j〉 a†αa j −
∑

i

〈i| T |α〉 a†i aβ

+ 1

2

⎛⎝∑
jkl

〈β j|U |kl〉 a†αa†jalak−
∑
ijl

〈ij|U |αl〉 a†i a†jalaβ

⎞⎠ .
The expectation value of this somewhat lengthy expression must be

set equal to zero in the minimum of the energy. The following definition
renders it somewhat more transparent and easier to interpret. Let

〈m| T +Γ |n〉 ≡ 〈m| T |n〉+
∑

s,t≤N

〈ms|U |nt〉 �(F )ts (5.97)

be the Hartree-Fock Hamiltonian, the sum over s and over t covering
only the occupied states. The condition (5.96) then says that∑

n≤N

〈β| T +Γ |n〉 �(F )nα −
∑
m≤N

�
(F )
βm 〈m| T +Γ |α〉 = 0

must vanish. Equivalently, the condition to be imposed is

[T +Γ, �(F )] = 0 with (�(F ))2 = �(F ) , tr �(F ) = N . (5.98)

We will return to these equations in Sect. 5.4.6 below.
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5.4.5 Particle and Hole States,
Normal Product and Wick’s Theorem

The ground state of a system of N fermions which are not free but inter-
act via the potential U with one another, can certainly not be described
by a pure product wave function, i. e. a Slater determinant. Therefore,
the energy formula as estimated by means of the Hartree-Fock equa-
tions, cannot be the final answer. Furthermore, the excited states of
the system will not be the simple one particle-one hole excitations that
follow from the Hartree-Fock solution. Rather, they will be linear com-
binations of such states, or may even contain excitations of more than
one particle.

Many of the procedures that are used to treat many-body problems
start from the idea that the Hartree-Fock ground state is to be interpreted
as the “vacuum” on which to build a perturbative treatment of the true
quantum states of the system. With this picture in mind it seems rea-
sonable to assign to the perturbative ground state a special symbol of
its own, viz.

|Ω〉 := a†1a†2 · · · a†N |0〉 ,
and, more importantly, to define all creation and annihilation operators
with reference to that state. As for i > N a particle can be created, that
is, the particle can be put into the state i, the definition and the action of
the operators a†i and ai remain unchanged. This is different for i ≤ N ,
where one can only remove a particle from a formerly occupied state,
or, equivalently, one can create a hole in the set of occupied states. If
we wish to have a unified description of the two cases then it is manda-
tory to define new operators ηi all of which annihilate the state |Ω〉,
ηi |Ω〉 = 0. This goal is reached as follows:

Definition 5.1 Particle and Hole States

1. If i > N let

η
†
i := a†i , ηi := ai . (5.99)

2. If i ≤ N let

η
†
i := ai , ηi := a†i . (5.100)

For all operators, i > N and i ≤ N , one then has

ηi |Ω〉 = 0 , {ηi , η
†
i } = δij .

Remark
Note that this definition anticipates the extension of many-body theory
to genuine quantum field theory. In the present context the action of η†i
means no more than placing a particle in the state i, whenever i > N ,
or taking out a particle whenever i ≤ N . All one-particle operators are
of the form

∑
Oikη

†
i ηk and, therefore, can do no more than to move
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a particle from one state to another. An analogous statement applies to
two-particle operators which act in such a way that the total number of
particles is conserved.

Both many-body quantum mechanics and quantum field theory make
use of analytic, diagrammatic methods which, in essence, work in the
spirit of perturbation theory as developed in Sect. 5.2. These methods
are diagrammatic because to every term in the perturbative expansion
one associates a diagram in which the interaction is represented by
points (so-called vertices), while creation and annihilation of particles
are represented by lines which emanate from vertices, or end in them.
The rules of perturbation theory define the translation from diagrams
to analytic expressions. The establishment of the rules and the analytic
evaluation of a specific contribution in a given order of perturbation
theory require some combinatorics for which there is an important the-
orem.

A set of creation and annihilation operators will be denoted, without
distinction, by Ai, A j , . . . . For every product of a finite number of such
operators one defines the normal product

Definition 5.2 Normal Product

A normal product of a given set of operators Ai , A j , . . . , Am

:Ai A j · · · Am: := (−)π Ax Ay · · · Az , (5.101)

is obtained by dividing the set into two groups, one of which contains
only creation operators while the other contains only annihilation op-
erators. The second group as a whole is placed to the right of the first
group, hence acting first. Furthermore, the normal product carries the
sign of the permutation which takes the operators from their initial
distribution to the normal ordering.

Normal products have the following properties:

〈Ω| :A1 A2 · · · An: |Ω〉 = 0 , (5.102)
:A1 A2 · · · An:=−:A2 A1 · · · An: , (5.103)
:(A1+ A2)A3 · · · An:= :A1 A3 · · · An:+ :A2 A3 · · · An: . (5.104)

Definition 5.3 Contraction

The contraction of two creation or annihilation operators is the dif-
ference of the original product and their normal product

A1 A2 := A1 A2− :A1 A2: . (5.105)

If, in addition, the operators depend on time then one defines instead

A1 A2 := T(A1 A2)− :A1 A2: , (5.106)

where T denotes time ordering, times increasing from right to left.



5Stationary States of N identical Fermions 319

The normal product is a real number and one has

A1 A2 = 〈Ω| A1 A2 |Ω〉 .
More generally, one talks about a contracted normal product if in a nor-
mal product one or more pairs of operators are already contracted.
The following example where the operators A1 and A3, as well as A4
and Am , are contracted, clarifies the matter and shows how to manipu-
late expressions of this kind:

:A1 A2 A3 A4 · · · Am An:= (−)π A1 A3 A4 Am:A2 A5 · · · An: .

Here (−)π is the phase which is obtained by extracting the pairs of
contracted operators from the product of the example.

The following theorem describes the combinatorics for the case of
arbitrary operator products.

Theorem 5.1 Wick’s Theorem

A given product of creation and annihilation operators is equal to the
sum of all its contracted normal products, that is to say,

A1 A2 · · · An = :A1 A2 · · · An:+ :A1 A2 A3 · · · An:+ . . .
+ :A1 A2 · · · Am An:+ :A1 A2 A3 · · · An:+ . . .
+ :A1 A2 A3 · · · Am An:+ . . . .

(5.107)

The proof of this theorem is by induction and goes as follows. For
n = 2 the formula (5.107) holds by the very definition (5.105) of the
contraction of two operators,

A1 A2 = :A1 A2:+ A1 A2 .

Assume now the theorem to hold for some n ≥ 2 and assume the prod-
uct A1 · · · An to be supplemented by one more operator B. If B is an
annihilation operator and if it placed at the far right, then the product
of B with any other operator is already in normal form. This means that
the contraction of B with any other operator vanishes. Equation (5.107),
assumed to hold for n, is multiplied by B from the right. Furthermore,
B can be taken inside all normal products. As the contraction of B with
any other operator vanishes, the formula (5.107) also holds for n+1.

If B is a creation operator we place it at the far left and note that
the arguments of the first case apply here as well.

Finally, if B is a polynomial in creation and annihilation operators
one makes use of the properties (5.102) – (5.104) which hold for or-
dinary products, for normal products, as well as for contractions. This
proves the theorem.
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5.4.6 Application to the Hartree-Fock Ground State

We turn back to the creation and annihilation operators of the single-
particle states of an arbitrary basis. The Definition 5.3 shows that the
contraction of a†i with a j is nothing but the one-body density. Therefore,
for all one-body operators we have

a†man = �nm+ :a†man: .

Regarding two-body operators such as the ones which appear in the
Hamiltonian of the N-particle system, one applies Wick’s theorem to
them and thereby obtains

a†i a†jalak = �l j�ki −�li�k j +�l j:a
†
i ak:+�ki:a

†
jal:

−�li:a
†
jak:−�k j :a

†
i al:+ :a†i a†jalak: . (5.108)

On the basis of these results the general Hamiltonian

H =
∑

ij

〈i| T | j〉 a†i a j + 1

4

∑
ijkl

〈ij|U |kl〉 a†i a†jalak

is written in terms of the one-body density and of normal products, viz.

H =
∑

ij

〈i| T | j〉 (�ij + :a†i a j :)+ 1

2

∑
ijkl

〈ij|U |kl〉 �ki�l j

+
∑
ijkl

〈ij|U |kl〉 �l j:a
†
i ak:+ 1

4

∑
ijkl

〈ij|U |kl〉 :a†i a†jalak: .

In deriving this formula we made use of the antisymmetry of the
two-body matrix element: Indeed, the first two terms on the right-hand
side of (5.108) give the same contribution. Likewise, the four terms that
follow all yield the same contribution.

Introducing the densities of the Hartree-Fock state, making use of
the expression (5.95) and of the definition (5.97), one obtains

H = E0+
∑

ij

〈i| T +Γ | j〉 :a†i a j :+ 1

4

∑
ijkl

〈ij|U |kl〉 :a†i a†jalak: .

(5.109)

Note that this expression contains only normal products. It simplifies
even further if the basis is chosen to be the Hartree-Fock basis of self-
consistent single-particle states for which

〈i| T +Γ | j〉 = εiδij

holds, and if one takes the Hartree-Fock ground state to be the new
vacuum state |Ω〉. For particle states we have

:η†i ηi:= a†i ai , i > N ,
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but for hole states we have

:η†jη j :=−:a†ja j : , j ≤ N .

In view of these relations it is useful to define

ε̃i := εi for i > N , ε̃i := −εi for i ≤ N . (5.110)

Thus, in the basis of Hartree-Fock states the Hamiltonian reads

H = E0+
∑

i

ε̃iη
†
i ηi + 1

4

∑
ijkl

〈ij|U |kl〉 :a†i a†jalak: . (5.111)

This result is the starting point for further analysis of the N-fermion
system. Its physical interpretation is clear: The first term E0 on the
right-hand side is the energy of the ground state in Hartree-Fock approx-
imation. The second term contains the single-particle energies which are
obtained by solving the self-consistent Hartree-Fock equations (5.89)
or (5.92). It describes the single-particle excitations of the system
(which, however, are not eigenstates of the Hamiltonian). This part of
the Hamiltonian could be termed the shell model approximation. The
third term, finally, is what is called the residual interaction.

The residual interaction is dealt with by means of diagrammatic
methods. In a first step one introduces the graphical representation of
particle and hole states that is given in Fig. 5.8 in tabular form. All
full lines describe particles or holes linked to a vertex which in turn
symbolizes the two-particle interaction. A creation operator is drawn as
a half-line going upwards from the vertex, an annihilation operator ap-
pears as a half-line going downwards from the vertex. For a particle
the arrow points towards the vertex if it is annihilated, it points away
from the vertex if it is created. For hole states analogous rules apply
with the direction of the arrow reversed. Note that the direction of the
arrows matters for the balance of the conserved quantities in the matrix
elements.

The generic cases may be classified as follows:

1. i, j, k, l > N: All four indices pertain to unoccupied states. The
residual interaction equals

+1

4

∑
ijkl

〈ij|U |kl〉 η†i η†jηlηk

and is represented in Fig. 5.9a. Note that I have expanded the vertex
somewhat such as to exhibit more clearly the direct and the exchange
interactions which are contained in the matrix element. For example,
if there is a contribution of second order whose analytic form is the
product of two matrix elements between the ground state and a one
particle - one hole excitation |Φ〉
〈Ω| H |Φ〉 〈Φ| H |Ω〉 ,

its diagrammatic representation is the one of Fig. 5.9b.

iη

iη iη

iη
†

†

Fig. 5.8. Table summarizing the transla-
tion of creation and annihilation oper-
ators a†i and ai , respectively, to analo-
gous operators for holes when i ≤ N ,
and for particles when i > N . The ar-
rows define the rules of how to ap-
ply conservation laws, depending on
whether the particle or hole state moves
into the vertex, or away from it
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ii j

lk

i j

lk

-

b)a)
Fig. 5.9. (a) If in the residual inter-
action of (5.111) all four states are
unoccupied states, then all four opera-
tors are particle operators, k and l are
incoming, i and j are outgoing. The
vertex is magnified such as to exhibit
the direct contribution and the exchange
term. (b) Diagrams describing the vir-
tual transition from the ground state
to an excited state and back, the ex-
cited state being a particle-hole exita-
tion. Here too there is a direct term and
an exchange contribution

k l

Fig. 5.10. Representation analogous to
the one of Fig. 5.9: Here all four states
are occupied states, all four operators
are hole operators. The orientation of
the arrows follows the rules of Fig. 5.8

2. i, j, k, l ≤ N: All four states are occupied states. The residual inter-
action then reads

+1

4

∑
ijkl

〈ij|U |kl〉 η†l η†kηiη j

and is visualized by the vertex of Fig. 5.10.
3. i, k> N , j, l ≤ N: Two states are unoccupied, two are occupied, and

the residual interaction is

−1

4

∑
ijkl

〈ij|U |kl〉 η†i η†l η jηk .

This case is represented by the vertex in Fig. 5.11a. Except for the
sign the particle-hole interaction equals the particle-particle or hole-
hole interaction, respectively. Terms of this class, for instance, allow
for the the diagrams of Fig. 5.11b the first of which corresponds to
the matrix element

〈ij|U |ij〉 ,
while the second corresponds to the matrix element

〈ij|U | ji〉 .
Both of them describe dynamical correlations in the ground state of
the system.

We sketch the lines along which the analysis of the N-fermion system
is pursued further: In principle the exact solutions of the Schrödinger
equation may be obtained by diagonalization of the residual interaction
in the Fock space of all single-particle states as obtained in the first step
of the Hartree-Fock procedure. Of course, this is impossible in practice,
and one has to resort to refined approximation methods. Such meth-
ods are known by the names of Tamm-Dancoff method, time-dependent
Hartree-Fock procedure, Bogoliubov’s method for pairing forces etc.
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i j

i

jb)

Fig. 5.11. (a) In this example i and k
are unoccupied, j and l are occupied
states; the orientation of the arrows fol-
lows the rules of Fig. 5.8. (b) For k = i
and j = l there are two diagrams repre-
senting the particle-hole interaction

They go beyond perturbation theory in the sense that they sum certain
classes of diagrams exactly. These methods which are standard tech-
niques of the nonrelativistic N-body quantum theory, are the subject of
more specialized monographs on many-body quantum theory, nuclear
theory, or condensed matter theory.
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Symmetries and Symmetry Groups
in Quantum Physics

Introduction

When one talks about discrete or continuous groups which are to
describe symmetries of quantum systems, one must first iden-

tify the objects on which the elements of these groups are acting. In
the case of the Galilei or the Lorentz groups an element g ∈ G acts
on points of space-time. One has the choice of interpreting a given
element g as an active or as a passive transformation. The active in-
terpretation is the right choice if one wants to compare, or to map
onto each other, two identical physical processes which are located
in different domains of space-time. In turn, the passive interpretation
is the right one whenever one and the same physical process is to be
studied from the viewpoint of two different frames of reference.

The discussion in Chap. 4 showed that transformations in space
and/or time induce unitary (or antiunitary) transformations in Hilbert
space. The action of a symmetry transformation g ∈ G, acting on
points in space-time, entails the action U(g) on elements of Hilbert
space. The cases quoted above are called external symmetries. An
important example is provided by the rotation group G = SO(3), in-
terpreted as a group of passive transformations: Any of its elements
g ∈ G, parametrized e. g. by three Eulerian angles (φ, θ, ψ), rotates
the frame of reference about its origin such that any point whose
coordinates are (t, x) with respect to the original system, has coor-
dinates (t′, x′) with respect to the new system, related to the former
by

(t, x)−→
g
(t′, x′) : t′ = t , x′ = R(φ, θ, ψ)x .

A wave function ψ jm(t, x) which is an eigenfunction of angular mo-
mentum and of its 3-component, is transformed by the unitary matrix
D( j) ∗(φ, θ, ψ), cf. Sect. 4.1.3.

There are symmetry actions in Hilbert space which have no rela-
tion to space-time and which concern only inner properties of a phys-
ical system. A well-known example is the (approximate) symmetry
that relates the proton and the neutron, and which maps isometrically
dynamical states of one to identical states of the other.

This raises a number of basic questions: Which among the phys-
ical states of quantum systems can be related by symmetry actions,
which cannot? Is it true that in Hilbert space symmetry operations

Contents

6.1 Action of Symmetries
and Wigner’s Theorem . . . . . . . . 328

6.2 The Rotation Group (Part 2) . . 335

6.3 Lorentz- and Poincaré Groups . 380
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φ

Fig. 6.1. When acting on the points of
the plane �

2 the rotation group SO(2)
moves them on circles whose center is
the origin. The origin itself is a fixed
point of this action

are always represented by unitary or antiunitary transformations?
Why are continuous groups necessarily realized by unitary represen-
tations? We will answer the first question by establishing, in the first
place, which states may appear as components in a coherent super-
position and which cannot. The second question is the subject of an
important theorem by E. Wigner.

We then continue, at a more advanced level, the analysis of the
rotation group which is the prime example of a Lie group in quan-
tum mechanics. The experience with the rotation group then provides
some experience which helps understanding the role of further com-
pact continuous groups describing inner symmetries. The last section
treats the Poincaré group and some of its representations which are
of central importance for the classification of particles by mass and
spin.

6.1 Action of Symmetries and Wigner’s Theorem
A simple example for the action of a possible symmetry is provided by
the group SO(2) of rotations about the origin in the plane M =R2. In-
terpreted as an active transformation R(φ) ∈ SO(2) moves every point
x �= 0 ∈ M on the circle with radius r = ‖x‖ as sketched in Fig. 6.1. The
origin stays invariant (it is a fixed point of the action). A characteristic
property of this group of transformations is the invariance of the norm
and of the scalar product,

‖x‖ =
√

x2 , 〈x|y〉 = x · y .
If the Lagrangian function or the Hamiltonian function of a physical
system is invariant under this group, then SO(2) is a symmetry of the
dynamics of this system.

In the Hilbert space of the physical states of a quantum system a rep-
resentation U(g) of the group element g acts on unit rays

{ψ(i)} =
{

eiαψ(i)
∣∣∣α ∈R}

in such a way that with ψ(i)U = U(g)ψ(i) and ψ(k)U = U(g)ψ(k) one has
the relation∣∣∣〈ψ(i)U

∣∣∣ψ(k)U

〉∣∣∣= ∣∣∣〈ψ(i)∣∣∣ψ(k)〉∣∣∣
for all transition amplitudes. Again, if g leaves invariant the Hamilton-
ian of the system then, with ψ a solution of the Schrödinger equation,
U(g)ψ is also a solution. The group G describes a symmetry of the
system.
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6.1.1 Coherent Subspaces of Hilbert Space

As worked out in Part One the superposition principle is one of the
most important rules of quantum mechanics. With any two solutions ψα
and ψβ of the Schrödinger equation every coherent linear combination
λψα+µψβ , with λ,µ ∈C, is a solution. If ψα and ψβ are pure states
then this linear combination is a pure state, too, that is, a state which
will exhibit interferences without any restriction. In turn, in order to de-
fine a pure state and to prepare it by means of measurements, one needs
a set of observables all of which commute with each other. Our previous
experience shows that a pure state for identically prepared electrons is
identified if one of the following sets of four observables is chosen and
if each observable has a definite value,

{p1, p2, p3, s3} or {x1, x2, x3, s3}
or

{
E = p2/(2m), �2, 	3, s3

}
. (6.1)

In the first case, for instance, the electrons are described in position
space by a plane wave with momentum p and the spinor with eigen-
value ms of the projection s3 of spin onto the 3-axis,

ψms (t, x)= 1

(2π�)3/2
e−i/�(Et−p·x) χms ,

(
E = p2

2m

)
.

Obviously, this is a pure state. As there is no other information and
as no further information is needed, the wave function ψms (t, x) yields
a complete description of the state of electrons with momentum p and
spin projection ms.

In the second and third examples (6.1) the wave functions in position
space are given by, respectively,

δ(x− x(0)) χms , and

√
2

π�
k e−i/�Et j	(kr)Y	m	 χms .

In the second example the wave function describes an electron which
is located at the point x(0), while in the third example the electron has
sharp values of 	 and m	. In both cases the spin projection is fixed.

Nevertheless, this picture is incomplete, the description of quantum
states, strictly speaking, must be supplemented by further statements.
For example, what we just said about the sets of observables (6.1) ap-
plies equally well to the description of positrons. The eigenfunctions of
the observables which pertain to different eigenvalues, may at any time
be linearly combined. The linear combinations yield again pure states
for electrons or positrons which are physically realizable. However, if
one tries to mix a state ψ(e)ms (t, x) which describes electrons, with a state
ψ
(e)
ms (t, x) describing positrons, then this linear combination is not a re-

alistic physical state. The reason for this is that the electric charge is
a strictly conserved quantity, with respect to all interactions, in conflict
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1 The story of lepton number is more
complicated: The lepton number re-
ferred to in the text is the sum of
individual lepton numbers for the three
families of leptons which are known,
L = Le+ Lµ+ Lτ . For example, the
electron has Le(e)= 1, Lµ(e)= Lτ (e)=
0, while the muon µ− has Le(µ

−)= 0,
Lµ(µ−)= 1, Lτ (µ−)= 0. It seems that
all three lepton numbers are conserved
separately.

2 This is certainly known to hold in
a very good approximation as wit-
nessed by the stability of the hydrogen
atom, demonstrated, e. g., by the age of
terrestrial oceans! Note, however, that
there are theories in which B and L
no longer are strictly conserved, while
their difference B− L still is.

with the fact that the electron and the positron are eigenstates with dif-
ferent electric charges.

Similarly, a mixture of states ψ(e)ms of positrons with states ψ(p)ms of
protons is not admissible. Indeed, although these particles carry the
same spin and the same electric charge they differ by two further,
charge-like quantum numbers, the baryon number B and the lepton
number L . The positron has (B = 0, L = −1)1, but the proton has
(B = 1, L = 0). Both B and L , presumably, are additively conserved
quantities2.

Likewise, it does not seem meaningful to mix states with integer an-
gular momentum and states with half-integer angular momentum. The
Bose nature of the first, and the Fermi nature of the second do not
change under the temporal evolution of the dynamics. If one insisted on
trying a superposition of a wave function ΦS obeying Bose statistics,
with a wave function χJ obeying Fermi statistics, Ψ+ =ΦS+χJ , with
2S = 2n and 2J = 2m+1, then this linear combination, after a com-
plete rotation D(0, 2π, 0) of the frame of reference, would go over into
Ψ− =ΦS−χJ . To be indistinguishable, the total wave functions Ψ+ and
Ψ− would have to belong to the same unit ray. This, however, is pos-
sible only when either the first or the second term vanishes identically.

For the sake of fixing the spin-statistics relationship of a wave
function we introduce a grading ΠS := (−)∂ with ∂(Φ)= 0 for every
bosonic state, ∂(Ψ)= 1 for every fermionic state. Bosonic states belong
to the value ΠS(Φ)=+1, fermionic states belong to ΠS(Ψ)=−1. Elec-
tric charge Q, baryon number B, lepton number L , and, possibly, the
three lepton numbers L f , f = e, µ, τ , are additively conserved. Addi-
tive conservation of a quantity such as electric charge implies that in
any reaction and in every decay process,

A+ B −→ C1+C2+ . . .+Cm , or A −→ B1+ B2+ . . .+ Bn

the total charge of the initial state must equal the sum of charges in the
final state, respectively,

Q(A)+Q(B)=
m∑

i=1

Q(Ci) , or Q(A)=
n∑

i=1

Q(Bi) .

The Fermi-Bose grading ∂ is also additively conserved, though
modulo 2. This is equivalent to the statement that the spin-statistics
characteristics ΠS is conserved multiplicatively. The operators Q, B,
L , ΠS differ from operators such as those of the sets (6.1) by the fact
that it is not admissible to mix eigenstates with different eigenvalues
of Q or of B, etc. For example, a state containing a pion and a nu-
cleon which has eigenvalue 0 of the charge operator Q, eigenvalue +1
of B, and eigenvalue 0 of L , may well be a linear combination of π− p
and π0n, viz.

Ψ = c1
∣∣π− p

〉+ c2

∣∣∣π0n
〉
, c1, c2 ∈C ,
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where the pion and the nucleon are in fixed dynamical orbital states
which need not be specified any further. As ususal, in a measurement of
the individual charges, |c1|2 is the probability to find a π− and a pro-
ton, while |c2|2 is the probability to find a neutral pion and a neutron.
In contrast, it would not be physically meaningful to admix to this state
components such as c3|π+n〉, or c4|π−π0〉. In the first case the total
charge of the admixture would be +1, in the second case the total
baryon number would be 0, both components differing from the original
state.

These statements which derive from experiment, tell us that there
are no observables which connect states with different eigenvalues of
Q or B or another additively conserved quantity of this kind. In a two-
body system such as a pion plus a proton, there may well be self-adjoint
operators O12 which have the effect of raising the charge of the first
particle by one unit while simultaneously lowering the charge of the
second by one unit, such that the total charge remains unchanged. For
instance, the scattering operator describing the charge exchanging reac-
tion

π− + p−→ π0 + n ,

does have this property. However, there can be no such operator which
would change the sum of the charges.

Another example is provided by the process

e+ + e− −→ p + p ,

in which an electron-positron pair is annihilated, and a proton-antiproton
pair is created. The total lepton number as well as the total baryon num-
ber are equal to zero before and after the reaction, L(e−)+ L(e+)=
1−1, L(p)+ L(p)= 0+0, B(e−)+ B(e+)= 0+0, B(p)+ B(p)= 1−1,
even though the quantum numbers of the individual particles do
change.

In the light of these examples one realizes that the observables Q, B,
L , ΠS, must differ in a qualitative sense from the observables con-
tained in (6.1). Apparently, the Hilbert space decomposes into subspaces
which are labelled by the eigenvalues of these operators, the superposi-
tion principle applies only to each of the subspaces separately but does
not hold for states which are elements of different subspaces. This leads
to the following definition:

Definition 6.1 Superselection Rule

A unit ray is said to be physically admissible if the projection opera-
tor Pψ which projects onto this ray is an observable. If a self-adjoint
operator which represents an absolutely conserved quantity, divides
unit rays into two classes, the physically realizable and the phys-
ically inadmissible ones, one says that it defines a superselection
rule.
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3 J.C. Wick, A.S. Wightman, and E.P.
Wigner, Phys. Rev. 88, 101 (1952).

Remarks

1. These restrictions on the validity of the superposition principle seem
intuitively obvious and, surely, the reader would have resisted any
temptation to mix states with different total electric charges, with
well-defined phase relations. Yet, the problem of superselection rules
was clarified in a systematic way only relatively late3. Expressed
differently, one could make the following observation: If two unit
rays which are described by the projection operators PΨ and PΦ,
are separated by a superselection rule, then for any observable one
has 〈Ψ |O|Φ〉 = 0. If one insisted on constructing the state λΨ +µΦ
then the expectation value of O in this state would be |λ|2〈O〉Ψ +
|µ|2〈O〉Φ . Therefore, no distinction would be possible from the
mixed ensemble described by the statistical operator W = wΨ PΨ +
wΦPΦ , with wΨ = |λ|2 and wΦ = |µ|2.

2. From a physical point of view it seems reasonable to assume that the
observables Q, B, etc. which define the superselection rules of quan-
tum theory, commute with one another. If this is indeed so then these
operators may be chosen simultaneously diagonal. The Hilbert space
thereby splits into orthogonal subspaces each of which is character-
ized by a set of definite eigenvalues of these operators. Any such
subspace within which the superposition principle holds without re-
striction, is called a coherent subspace.

3. In the case assumed in the previous remark observables map co-
herent subspaces onto themselves. Systems which are different from
each other, i. e. which correspond to different eigenvalues of the set
of operators that defines the superselection rules, live in mutually or-
thogonal spaces and cannot interfere. In turn, self-adjoint operators
which map a coherent subspace onto itself and which commute with
all observables, are necessarily proportional to the identity on that
space.

6.1.2 Wigner’s Theorem
Let us assume that quantum mechanics contains only superselection
rules which are compatible with one another. In other words, all
strictly conserved observables that define superselection rules and,
hence, whose eigenstates cannot be linearly combined, commute. The
Hilbert space then decomposes into mutually orthogonal, coherent sub-
spaces Hc which are characterized by the eigenvalues of these ob-
servables, that is to say, subspaces which pertain to definite values
c≡ {Q, B, L, ∂, . . . } of electric charge, baryon number, lepton number,
spin-statistics relation, etc.

Let unit rays temporarily be denoted by bold symbols, in an abbre-
viated notation,

Ψ (i) ≡
{
ψ(i)

}
=

{
eiαψ(i)

∣∣∣α ∈R} , ψ(i) ∈Hc . (6.2)
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As explained in the introduction to this section a symmetry action g ∈ G
is a bijective mapping of unit rays

Ψ (i) −→
g

Ψ (i)g ,

which is such that the modulus of the transition amplitudes is conserved,∣∣∣〈ψ(i)g

∣∣∣ψ(k)g

〉∣∣∣= ∣∣∣〈ψ(i)∣∣∣ψ(k)〉∣∣∣ , (6.3)

ψ(i) ∈ Ψ (i) , ψ(k) ∈ Ψ (k) , ψ(i)g ∈ Ψ (i)g , ψ
(k)
g ∈ Ψ (k)g .

In many cases, the images ψ(i)g and ψ(k)g are elements of the same
coherent subspace Hc as their originals. Alternatively there are cases
where they belong to the conjugate coherent subspace Hc which differs
from Hc by the property that all additively conserved quantum numbers
are replaced by their opposites, i. e. Q→−Q, B→−B, etc. In par-
ticular, this is the case if the symmetry operation contains either charge
conjugation C, or the product Θ :=ΠCT of time reversal T, of C, and
of space reflection Π. By which kind of mapping of elements of Hilbert
space the symmetry action is realized, is still an open question at this
point. In general this mapping need neither be linear nor antilinear, that
is, neither (λψ)g = λψg nor (λψ)g = λ∗ψg, ψ ≡ψ(i) or ψ(k), need hold.
However, as only unit rays are physically distinguishable, phases of the
states ψ ∈ Ψ being irrelevant, the remaining freedom can be utilized to
establish the following important theorem:

Theorem 6.1 Unitarity – Antiunitarity of Symmetry Actions

A symmetry action Ψ −→
g

Ψ g, Ψ ∈Hc, Ψ g ∈Hc or Hc, which has

the property (6.3), can always be realized as a mapping

Ψ g = V(g)Ψ (6.4)

which is additive and norm conserving, i. e. for which

V(g)(Ψ (i)+Ψ (k))= V(g)Ψ (i)+V(g)Ψ (k) and
∥∥∥V(g)Ψ (i)

∥∥∥ 2

=
∥∥∥Ψ (i)∥∥∥ 2

holds. This mapping is fixed uniquely, up to a phase factor. It is either
unitary or antiunitary.

Remarks

1. This theorem which was first proved by Wigner, ascertains that the
symmetry G acts on elements of a given coherent subspace Hc by
unitary or antiunitary transformations V(g). Thereby Hc is mapped
onto itself, or, as in the case of C and of Θ, onto the conjugate co-
herent subspace Hc.
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2. Which of the two possibilities allowed by the theorem, the unitary or
the antiunitary realization, is the right one, depends on the dynam-
ics of the system one is studying. In the case of time reversal T the
Schrödinger equation stays form invariant only if V is antiunitary,
cf. Part One, Sect. 4.2.2.
In turn, if G is a Lie group, then the action must be given by unitary
transformations,

g ∈ G : V(g)≡ U(g) with U†(g)U(g)= 1l .

The reason for this is that the product of g1 and g2 is realized by
the action U(g1)U(g2)=U(g1g2). In particular, every element g ∈ G
can be written as the square of another element g0 so that by the
group property

U(g0)U(g0)= U(g2
0)= U(g) .

If one had chosen the antiunitary action, then the product V(g0)V(g0)
of the two antiunitary transformations would be unitary, cf. Theo-
rem 4.1 in Sect. 4.2.2. This would contradict the initial choice.

3. Only unit rays, not their individual elements, are physically relevant.
Therefore, the representation U(g) of an element g ∈ G, where G
is a Lie group, initially, is only determined up to a phase factor. In
particular, for the product of two elements one has

U(g1)U(g2)= eiϕ(g1,g2)U(g1g2) ,

where the phase may depend on g1 and g2. A representation of this
kind which is fixed up to a phase factor, is called projective rep-
resentation. However, as there is the freedom to adjust the phase
factor for every unitary representation U(g) appropriately, it is al-
ways possible, within each connected component of the group G,
to convert the projective representation into an ordinary representa-
tion. In case the group G as a whole is simply connected, one can
choose eiϕ(g) = 1. If it is multiply connected one can only achieve
eiϕ(g) =±1, that is to say, the representation may possibly have dif-
ferent signs in the individual connected components.

4. Symmetry actions are important in relation with the dynamics of
physical systems, i. e. with regard to their interactions. Consider
a system whose dynamics is described by the Hamiltonian H . The
time evolution of states ψ(t, x) is given by

ψ(t, x)= e−i/�Htψ(0, x)

cf. Part One, Sect. 3.3.5. If the symmetry action does not reverse
the direction of time the operator describing the time evolution must
map the transformed states onto each other, too, viz.

ψg(t, x)= e−i/�Htψg(0, x) , ψg(t, x)= U(g)ψ(t, x) . (6.5)
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The mapping U(g) must be time independent, linear, and unitary. In
particular, we must have

U−1(g)e−i/�HtU(g)= e−i/�Ht (6.6a)

and hence

[H,U(g)] = 0 . (6.6b)

An antiunitary realization V(g) of the symmetry would map states
with positive energy onto states with negative energy. Furthermore,
a mapping U(g) which does not commute with H is not a meaning-
ful symmetry action because the Hamiltonian generates translations
in time. The mapping ψ→ ψg would not be independent of the
frame of reference.
If the symmetry does reverse the arrow of time, then instead of (6.5)
one has

ψg(t, x)= e+i/�Htψg(0, x) , ψg(t, x)= V(g)ψ(t, x) (6.7)

and in lieu of (6.6a)

V−1(g)ei/�HtV(g)= e−i/�Ht . (6.8)

In this situation V must be antiunitary, i. e. it must take the form of
a product V=K(0)U of complex conjugation and a unitary. With this
choice one obtains [H,V] = 0.

5. The reader will find a simple heuristic proof of Wigner’s theorem
in [Messiah (1964)], going back to Wigner’s original proof. A more
detailed and complete proof was given by V. Bargmann.4

6.2 The Rotation Group (Part 2)
In this section we take up the rotation group and its specific role in
quantum mechanics. First, we show that it is not the group of rotations
in three real dimensions,

SO(3) =
{

R real 3×3-matrices |R†R= 1l , det R= 1
}

(6.9)

but rather the unimodular group in two complex dimensions

SU(2) =
{

U complex 2×2-matrices |U†U= 1l , det U= 1
}

(6.10)

which is relevant for the description of spin and angular momentum.
We then study more systematically the unitary representations of SU(2),
derive from them the D-matrices. The latter are utilized to derive the
Clebsch-Gordan series and further quantities related to Clebsch-Gordan
coefficients.

4 V. Bargmann, J. Math. Phys. 5, 862
(1964).
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6.2.1 Relationship between SU(2) and SO(3)
The group SU(2) is defined to be the group of unimodular unitary 2×2-
matrices with complex entries. As one verifies easily every element U ∈
SU(2) can be written in the form

U=
(

u11 ≡ u u12 ≡ v
u21 =−v∗ u22 = u∗

)
with |u|2+|v|2 = 1 (6.11)

where u and v are complex numbers subject to the normalization con-
dition as indicated. Indeed, one has

U† =
(

u∗ −v
v∗ u

)
and U†U=

( |u|2+|v|2 u∗v−vu∗
v∗u−uv∗ |v|2+|u|2

)
= 1l2×2 .

Writing the complex entries u and v in terms of their real and imag-
inary parts, u = x1+ ix2 and v= x3+ ix4, the normalization condition
becomes

∑4
i=1 x2

i = 1. This shows that these parameters define points
on the unit sphere S3 in R4. Every element of SU(2) is determined by
four real numbers which are the coordinates of points on S3. It is not
difficult to convince oneself that this manifold is simply connected, that
is to say, that there is only one class of closed loops which can be con-
tracted to a point. To see this choose two open neighbourhoods S3 \{N}
and S3 \ {S} on S3 which are mapped into two charts R3 by stereo-
graphic projection, once from the north pole N , once from the south
pole S. The image of any closed loop on S3 is a closed loop in one of
the charts. This image in R3 can always be contracted to a point. As
the mapping from the sphere to the charts is bijective and continuous
in both directions, the same statement holds for the original loop. This
proves that the group SU(2) is a simply connected manifold.

Any element U ∈ SU(2) can also be written as an exponential series
in a hermitean and traceless 2×2-matrix h,

U = exp{ih} with h† = h , tr h = 0 . (6.12)

The three Pauli-matrices σi are themselves hermitean, have vanishing
trace, and are linearly independent. On the other hand, a hermitean and
traceless matrix h depends on only three real parameters. Therefore, any
such matrix h can be written as a real linear combination of the Pauli
matrices

h =
3∑

i=1

αiσi , αi ∈R . (6.13)

This decomposition which the reader is invited to prove as an exercise,
is made plausible by the following reasoning: The matrix h is diag-
onalized by means of a unitary transformation. As it has trace zero its
eigenvalues are equal and opposite. They are a and −a, so that the uni-
tary matrix U which is transformed to diagonal form simultaneously,
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becomes U′ = diag(eia, e−ia), its determinant is equal to 1. Both the
trace and the determinant are invariant under unitary transformations.
Therefore, the original matrix U has the correct properties.

Interpreting the three real numbers as the components of a vector
α= (α1, α2, α3) and taking α= |α|, the matrix U can be written as fol-
lows,

U= exp

{
i

3∑
i=1

αiσi

}
= 1l2×2 cosα + i

α
α ·σ sinα

= 1

α

(
α cosα+ iα3 sinα (α2+ iα1) sinα
−(α2− iα1) sinα α cosα− iα3 sinα

)
. (6.14)

This relation is verified in Exercise 6.3 by direct computation. The
following simple argument makes it plausible. In the special case α=
(0, 0, α) it follows from the property σ2n

3 = 1l2×2 and σ2n+1
3 = σ3, and

by writing the exponential series explicitly,

exp {iασ3} =
∞∑

n=0

i2n

(2n)!α
2n 1l2×2+i

∞∑
m=0

i2m

(2m+1)!α
(2m+1)σ3

= cosα 1l2×2+i sinα σ3 .

The general case with α pointing in an arbitrary direction, is reduced
to this special case by first performing a rotation in R3 which takes
α to α′ = (0, 0, α), inserting, in a second step, the exponential se-
ries, and, finally, by reversing the rotation. As the three Pauli matrices
σ = (σ1, σ2, σ3) transform in the same way5 and since the scalar product
is invariant, one obtains the result (6.14).

While the group SU(2) is singly connected, the rotation group SO(3)
is known to be doubly connected. Two different geometric proofs of
this statement are given, e. g., in Chap. 5 of [Scheck (2005)]. The two
groups have the same Lie algebra. The relationship between SU(2)
and SO(3) is summarized in the statement that SU(2) is the universal
covering group of SO(3). What this means is clarified by an explicit
construction:

Let x be some vector in R3, X a traceless, hermitean 2×2-matrix,
which is built from the components of x and the three Pauli matrices σ ,

x ←→ X := σ · x≡ x1σ1+ x2σ2+ x3σ3 =
(

x3 x1− ix2

x1+ ix2 −x3

)
.

(6.15)

What this correspondence tells us is that the space R3 and the space of
hermitean and traceless 2×2-matrices are isomorphic.

One verifies that the determinant of this matrix, except for the sign,
equals the squared norm of x, det X=−x2. Furthermore, an arbitrary

5 We come back to this when dis-
cussing spherical tensors in Sect. 6.2.5.
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unitary transformation U ∈ SU(2), when applied to the hermitean mat-
rix X,

X′ = U X U† , (6.16)

yields another such matrix which by (6.15) is associated to a vector x′.
The determinant of X being invariant, det X′ = det X, one concludes that
x′ has the same length as x. Thus, the vector x′ can differ from x only
by a rotation, x′ =Rx with R ∈ SO(3). This provides a correspondence
of rotations R ∈ SO(3) with elements U ∈ SU(2) that we need to explore
in more detail.

To every U ∈ SU(2) there corresponds a unique R ∈ SO(3) such that
with X′ = UXU† one has x′ = Rx. Conversely, for every R ∈ SO(3)
there is a U(R) ∈ SU(2) such that with X′ = UXU† one again has
x′ = Rx; if U(R) is the pre-image of R, then so is −U(R).

Remark
In the terminology of group theory the relation between SU(2) and
SO(3) is described as follows. The group H := {1l,− 1l} is an invariant
subgroup of the group G = SU(2), that is, for all g ∈ G one has

g H g−1 = H ,

or, in somewhat more detail, to every h1 ∈ H and every g ∈ G there is
an element h2 ∈ H which fulfills the relation h1g= gh2. If G possesses
an invariant subgroup H then the cosets {gH} form also a group. This
group is called factor group and is denoted by G/H . That this is indeed
so is confirmed by verifying the group axioms:

(i) The composition is defined to be multiplication of cosets. Indeed,
one has

(g1 H)(g2 H)= g1(Hg2)H = g1(g2 H)H = g1g2 H .

The product of two cosets is again a coset.
(ii) Multiplication of cosets is associative.
(iii) The subgroup H as a whole takes the role of the unit element.

Indeed, one calculates

H(gH)= (Hg)H = (gH)H = g(HH)= gH .

(iv) The inverse of gH is g−1 H .

Using the terminology of this remark the correspondence ±U→ R
established above, shows that SO(3) is isomorphic to the factor group
which is obtained from the cosets of the invariant subgroup {1l,− 1l}
of SU(2),

SO(3) ∼= SU(2) / {1l,− 1l} . (6.17)

Using Euler angles, for a specific example, every rotation in R3 can
be written as a product R(φ, θ, ψ) = R3(ψ)Rη(θ)R3(φ). Therefore, it
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is sufficient to know the pre-images of a rotation about the 3-axis and
about the 2-axis. These are, in the case of the 3-axis,

± ei(φ/2)σ3 =±
(

eiφ/2 0
0 e−iφ/2

)
,

(and likewise for the third rotation by the angle ψ), and

± ei(θ/2)σ2 =±
(

cos θ/2 sin θ/2
− sin θ/2 cos θ/2

)
in the case of the 2-axis. It is not difficult to verify that the for-
mula (6.16) correctly describes the corresponding rotation. Let us test
this for the second, somewhat more complicated case by calculating
the product on the right-hand side of (6.16): With U(θ)= exp{i(θ/2)σ2}
and introducing the abbreviations x+ = x1+ ix2, x− = x1− ix2, one
finds

U(θ)XU†(θ)=
(

cos θ/2 sin θ/2
− sin θ/2 cos θ/2

)(
x3 x−
x+ −x3

)(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)

=

⎛⎜⎜⎜⎜⎝
x3(cos2 θ

2 − sin2 θ
2 )

+(x++ x−) sin θ2 cos θ2

−2x3 sin θ2 cos θ2
−x+ sin2 θ

2 + x− cos2 θ
2

−2x3 sin θ2 cos θ2
−x− sin2 θ

2 + x+ cos2 θ
2

x3(sin2 θ
2 − cos2 θ

2 )

−(x++ x−) sin θ2 cos θ2

⎞⎟⎟⎟⎟⎠
=

(
x3 cos θ+ x1 sin θ −x3 sin θ+ x1 cos θ− ix2

−x3 sin θ+ x1 cos θ+ ix2 −(x3 cos θ+ x1 sin θ)

)
.

Solving for the cartesian components one recovers the familiar formu-
lae

x′ 1 = x1 cos θ− x3 sin θ

x′ 2 = x2

x′ 3 = x1 sin θ+ x3 cos θ .

Note, in particular, that the half angles in U in the product on the right-
hand side of (6.16) turn into integer arguments by means of well-known
addition theorems for trigonometric functions.

Combining the three rotations one obtains

U(R)= exp{i(ψ
2
)σ3} exp{i(θ

2
)σ2} exp{i(φ

2
)σ3} =

(
u v

−v∗ u∗

)
,

(6.18)

where the complex entries u and v are

u = ei/2(ψ+φ) cos
θ

2
, v = ei/2(ψ−φ) sin

θ

2
, (6.19)

thus recovering the general parametrization (6.11).



340 6Symmetries and Symmetry Groups in Quantum Physics

6.2.2 The Irreducible Unitary Representations of SU(2)
The group SU(2) is the relevant Lie group for the description of angular
momentum in quantum physics. This section constructs the irreducible
unitary representations of this group by means of an explicit procedure.
Let

U=
(

u v

−v∗ u∗

)
with |u| 2+|v| 2 = 1

be an arbitrary element of SU(2). Let this element act on vectors
(c1, c2)

T , i. e. on objects living in the space C2,(
(c1)U

(c2)U

)
= U(u, v)

(
c1

c2

)
=

(
uc1+vc2

−v∗c1+u∗c2

)
. (6.20)

Furthermore, for every fixed value of j define the following set of
homogeneous polynomials of degree j in the components c1 and c2,

f ( j)
m := (c1)

j+m(c2)
j−m

√
( j+m)!( j−m)! , j = 0,

1

2
, 1,

3

2
, 2, . . . , (6.21)

m =− j,− j+1, . . . ,+ j .

Note that the exponents j±m are integers if and only if j is either in-
teger or half-integer, and if m takes one of the listed values. In these
cases the definition (6.21) is meaningful. For example, for the first three
values of j these polynomials are

j = 0 : f (0)0 = 1 ,

j = 1

2
: f (1/2)1/2 = c1 , f (1/2)−1/2 = c2 ,

j = 1 : f (1)1 = c2
1√
2
, f (1)0 = c1c2 , f (1)−1 =

c2
2√
2
.

The transformation U ∈ SU(2) maps the polynomials (6.21) with
a fixed j onto polynomials of the same class. Therefore, these polyno-
mials may serve as a basis for a (2 j+1)-dimensional representation.
The problem then is to find the (2 j+1)× (2 j+1)-matrix D( j)(u, v)
which realizes this transformation.

Inserting the action (6.20) one finds, step by step,

( f ( j)
m )U = 1√

( j+m)!( j−m)! (uc1+vc2)
j+m(−v∗c1+u∗c2)

j−m

=
∑
µ,ν=0

1√
( j+m)!( j−m)!

( j+m)!
µ!( j+m−µ)!

( j−m)!
ν!( j−m−ν)! ·

× (uc1)
j+m−µ(vc2)

µ(−v∗c1)
j−m−ν(u∗c2)

ν

=
∑
µ,ν=0

√
( j+m)!( j−m)!

( j+m−µ)!µ!( j−m−ν)!ν!u
j+m−µu∗ νvµ(−v∗) j−m−ν

× c2 j−µ−ν
1 cµ+ν2 .
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In the second step the binomial expansion in round parentheses was
written out explicitly. The sums over µ and ν start at zero; they end
whenever the argument of one of the factorials in the denominator be-
comes negative6. It remains to express the right-hand side of the last
equation in terms of the functions f ( j)

m (c1, c2). This is achieved by
setting j−µ− ν =: m′ because then the exponent of c1 has the re-
quired form 2 j−µ− ν = j+m′, while the exponent of c2 goes over
into µ+ν = j−m′. As expected one finds the relation

( f ( j)
m )U =

∑
m′

D( j)
mm′(u, v) f ( j)

m′ ,

where the matrix we wish to determine is obtained from the above cal-
culation, viz.

D( j)
mm′(u, v)=

∑
µ

√
( j+m)!( j−m)!( j+m′)!( j−m′)!

( j+m−µ)!µ!( j−m′ −µ)!(m′ −m+µ)! ·

× u j+m−µ(u∗) j−m′−µvµ(−v∗)m′−m+µ . (6.22)

Before we analyze the formula (6.22) any further we collect the fol-
lowing statements:

(i) It is obvious that the polynomials f ( j)
m are linearly independent.

(ii) Calculating | f ( j)
m |2 and summing over m, we find

∑
m

∣∣∣ f ( j)
m

∣∣∣ 2 =
∑

m

|c j+m
1 c j−m

2 |2
( j+m)!( j−m)!

= 1

(2 j)!
{
|c1| 2+|c2| 2

}2 j =
∑

m

∣∣∣( f ( j)
m )U

∣∣∣ 2 .

The squared norm ( f ( j)
m , f ( j)

m )=∑
m | f ( j)

m |2 is invariant under uni-
tary transformations. Note that this result justifies, a posteriori, the
normalization factor in the definition (6.21). This implies that the
representations (6.22) are unitary.

(iii) Finally, one shows that these representations are also irreducible,
by means of the formula (6.22). This goes as follows:
The result (6.22) contains some special cases. For any m, but
m′ = j fixed, the index µ must be zero so that

D( j)
m,m′= j(u, v)=

√
(2 j)!

( j+m)!( j−m)!u
j+m(−v∗) j−m (6.23)

6 Replace, for instance, ( j+m−µ)! =
Γ( j+m−µ+ 1) and note that the
Gamma function Γ(z) has first-order
poles in z = 0, z = −1, z = −2, . . . .
Hence, its reciprocal has zeroes in these
points.
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Fig. 6.2. Eulerian angles in a definition
where the second rotation is about the
intermediate position of the 2-axis

On the other hand, taking u = eiα/2, v= 0, one has, for all values
of m and m′,

D( j)
mm′(e

iα/2, 0)= δmm′ e
imα .

If a (2 j+1)× (2 j+1)-matrix A commutes with D( j)
mm′(e

iα/2, 0) it
must be diagonal Amm′ = amδmm′ . If A commutes with all trans-
formations D( j)(u, v) one has, in particular,

am D( j)
m j(u, v) = D( j)

m j a j for all m .

Equation (6.23) tells us that D( j)
m j is different from zero for all m

and arbitrary arguments u, v. Thus, one concludes am = a j for
all m. This means, in other terms, that a matrix which com-
mutes with D( j)(u, v) for all u, v is a multiple of the unit matrix.
This also means that the representations D( j)(u, v) are irreducible
(cf. Part One, Sect. 4.1.2.).

This is an important result: The expression (6.22) yields irre-
ducible, unitary representations of SU(2) as functions of Eulerian an-
gles (φ, θ, ψ) in the definition of Fig. 6.2. The algebraic analysis of
Sect. 4.1.2 tells us that these are all representations there are.

Replacing u and v as indicated in (6.19), and collecting the expo-
nentials in the variables φ and ψ, one obtains

D( j)
mm′(ψ, θ, φ)= eimψ d( j)

mm′(θ) eim′φ , where (6.24)

d( j)
mm′(θ)=

∑
µ

(−)m′−m+µ
√
( j+m)!( j−m)!( j+m′)!( j−m′)!

( j+m−µ)!µ!( j−m′ −µ)!(m′ −m+µ)!

×
(

cos
θ

2

)2 j+m−m′−2µ (
sin
θ

2

)m′−m+2µ

.

This formula is written in a slightly different form by choosing
m′ −m+2µ= m−m′ +2r that is, by replacing µ by m−m′ +r. Not-
ing that (−)2m′−2m = +1, independently of whether the indices are
integer or half-integer, the set of functions d( j)(θ) take their final form

d( j)
mm′(θ)=

∑
r

(−)r
√
( j+m)!( j−m)!( j+m′)!( j−m′)!

( j+m′ −r)!(m−m′ +r)!( j−m−r)!r!

×
(

cos
θ

2

)2 j+m′−m−2r (
sin
θ

2

)m−m′+2r

. (6.25)

This is the expression that we quoted in Sect. 4.1.4, without proof.
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Remarks

1. Symmetry relations: Using the explicit formula (6.25) it is not dif-
ficult to prove the symmetry relations quoted in Part One. They are

d( j)
mm′(θ)= (−)m

′−md( j)
m′m(θ) , (6.26)

d( j)
−m′,−m(θ)= (−)m

′−md( j)
m′m(θ) , (6.27)

d( j)
m′,−m(θ)= (−) j−m′d( j)

m′m(π− θ) . (6.28)

2. Haar measure and orthogonality: Integration over Eulerian an-
gles dR = �(φ, θ, ψ)dφdθ dψ must be defined such that for any
fixed rotation R0 and for R′ = R0R one has dR′ = d (R0R)= dR.
This is a consequence of the group property of SU(2). The func-
tion �(φ, θ, ψ) follows from the Jacobian of the transformation from
R≡ (φ, θ, ψ) to R′ ≡ (φ′, θ ′, ψ′). Indeed, a simple geometric con-
struction shows that (cf. Exercise 6.4)

∂(φ, θ, ψ)

∂(φ′, θ ′, ψ′)
= sin θ ′

sin θ

from which follows the relation between dR and dR′:

dR=�(φ, θ, ψ)∂(φ , θ , ψ )
∂(φ′, θ ′, ψ′)

dφ′ dθ ′ dψ′ = �(φ , θ , ψ )
�(φ′, θ ′, ψ′)

sin θ ′

sin θ
dR′ .

As a consequence, up to a multiplicative constant, �(φ, θ, ψ)= sin θ,
the choice dR= sin θ dφdθ dψ fulfills the requirement. This integral
measure is called Haar measure for the group SU(2).

Let X be an arbitrary (2 j+1)× (2 j+1)-matrix. Define the mat-
rix

M :=
∫

dR D( j ′)(R)X(D( j)(R))−1

where the integral is taken over the whole range of the Euler angles.
Then, for all rotations S, one obtains

MD( j)(S)= D( j ′)(S)M . (6.29)

This assertion is proven by using the group property of the D-func-
tions and by making use of the integration measure derived above.
We calculate the right-hand side

D( j ′)(S)M

=
∫

dR D( j ′)(S)D( j ′)(R) X (D( j)(R))−1(D( j)(S))−1 D( j)(S)

=
(∫

dR D( j ′)(SR) X (D( j)(SR))−1
)

D( j)(S)=MD( j)(S) .
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If D( j) and D( j ′) are not equivalent, then Schur’s lemma tells us
that M vanishes for every choice of X. We make use of this freedom
by choosing X pq = δpkδlq , thus obtaining

Mmn=
∫

dR D( j ′)
mk (R)(D

( j)(R))−1
ln =

∫
dR D( j) ∗

nl (R)D( j ′)
mk (R)=0 .

Thus, the D-functions pertaining to different values of j are orthog-
onal.

In turn, if D( j) and D( j ′) are equivalent, that is, if j ′ = j, then
Schur’s lemma shows that D( j) = D( j ′) and that M is a multiple of
the unit matrix, M= c 1l. Written in more detail, we have

Mmn =
∫

dR D( j)
mk(R)D

( j)(R)−1
ln = c δmn .

The normalization constant c is obtained by calculating the trace
of M,

tr M=
∑

m

∫
dR (D( j)(R))−1

lm D( j)
mk(R)= c (2 j+1)

= δlk
∫

dR = δlk
2π∫

0

dψ

π∫
0

sin θ dθ

2π∫
0

dφ = 8π2 δlk .

We thus obtain an important formula: the orthogonality relation for
D-functions

2π∫
0

dψ

π∫
0

sin θ dθ

2π∫
0

dφ D( j ′) ∗
mm′ (ψ, θ, φ)D

( j)
µµ′(ψ, θ, φ)

= 8π2

2 j+1
δ j ′ jδm′µ′δmµ . (6.30)

Note its similarity to the orthogonality relation of spherical harmon-
ics.

Example 6.1
Let R be the rotation that takes the original 3-direction into the
“i-direction”. Let b(λ) denote the eigenfunctions of the square of the
orbital angular momentum, for the eigenvalue 	= 1, and of the compo-
nent 	i . The relation between these functions and the eigenfunctions a(λ)

of 	3, as well as the relation between the operators 	i and 	3 are given
by, respectively,

b(λ) = D(1) †(R)a(λ) , 	i = D(1) †(R) 	3 D(1)(R) .
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From the general formula (6.25) one obtains

d(1)(θ)=
⎛⎜⎝ cos2 θ

2

√
2 sin θ2 cos θ2 sin2 θ

2
−√2 sin θ2 cos θ2 cos2 θ

2 − sin2 θ
2

√
2 sin θ2 cos θ2

sin2 θ
2 −√2 sin θ2 cos θ2 cos2 θ

2

⎞⎟⎠

= 1

2

⎛⎝ 1+ cos θ
√

2 sin θ 1− cos θ
−√2 sin θ 2 cos θ

√
2 sin θ

1− cos θ −√2 sin θ 1+ cos θ

⎞⎠ .
Consider two special cases:

a) 	i ≡ 	1: To obtain this choice one must choose D(1)(0, π/2, 0). One
then finds

D(1)(0,
π

2
, 0)= 1

2

⎛⎝ 1
√

2 1
−√2 0

√
2

1 −√2 1

⎞⎠ , 	1 = 1√
2

⎛⎝ 0 1 0
1 0 1
0 1 0

⎞⎠ ,

b(1) = 1

2

⎛⎝ 1√
2

1

⎞⎠ , b(0) = 1

2

⎛⎝−
√

2
0√
2

⎞⎠ , b(−1) = 1

2

⎛⎝ 1
−√2

1

⎞⎠ .
This is the result obtained in Sect. 1.9.1, up to a phase factor (−1)
in b(0).
b) 	i ≡ 	2: Here the choice must be D(1)(π/2, π/2, 0). One finds

D(1)(
π

2
,
π

2
, 0)= 1

2

⎛⎝ i
√

2 −i
−i
√

2 0 −i
√

2
i −√2 −i

⎞⎠ , 	2= 1√
2

⎛⎝0 −i 0
i 0 −i
0 i 0

⎞⎠ ,

b(1) = 1

2

⎛⎝ −i√
2

i

⎞⎠ , b(0) = 1

2

⎛⎝ i
√

2
0

i
√

2

⎞⎠ , b(−1) = 1

2

⎛⎝ −i
−√2

i

⎞⎠ .
Remarks

1. The unitary irreducible representations (6.22) are one-valued func-
tions over the parameter manifold S3 of the group SU(2). These are
the representations which we need for describing angular momentum
and, more specifically, spin in quantum theory. Using (6.19) they are
expressed in terms of Eulerian angles which, as we know, are de-
fined in ordinary space R3. One then obtains the functions (6.24)
and (6.25) which are one-valued functions for integer j ≡ 	 but two-
valued functions for half-integer values, j = (2n+1)/2.
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In particular, the relation between SU(2) and SO(3) noted in (6.17)
says that the two elements 1l and − 1l of SU(2) are mapped onto
the identity in SO(3). The element − 1l ∈ SU(2) is parametrized by
(u =−1, v = 0). (According to (6.18) and (6.19) this corresponds,
e. g., to the choice (ψ = 0, θ = 0, φ= 2π) of Euler angles.) Inserting
this into (6.22) one obtains D( j)

mm′(u =−1, v= 0)= δmm′(−1)2 j . The
action of the rotation R3(φ = 2π)= 1l3×3 on a quantum state with
angular momentum j is the identity only if j is an integer. In other
terms, representations of SU(2) are representations of SO(3) if and
only if j is an integer.
This observation reveals a remarkable feature of physics. Indeed,
nature could have restricted her choice to representations of SO(3)
only, that is, to representations with integer values of angular mo-
mentum. The existence of spin 1/2 as well as of higher values
of half-integer spin shows that, indeed, it is the group SU(2),
not SO(3), which describes angular momentum in quantum theory.

2. The two groups SU(2) and SO(3) whose close relation was worked
out above, have isomorphic Lie algebras. Indeed, the Lie algebra
of SU(2) is generated by the matrices (σk/2) which obey the com-
mutation relations[(σi

2

)
,
(σ j

2

)]
= i

∑
k

εijk

(σk

2

)
. (6.31)

These commutators follow from the well-known formula

σiσ j = δij + i
∑

k

εijkσk , (6.32)

that we first encountered in Sect. 4.1.7.
The Lie algebra of the rotation group SO(3) is generated by the op-
erators Ji , i = 1, 2, 3, cf. Sect. 4.1.1. Their commutators are[

Ji , J j
]= i

∑
k

εijk Jk . (6.33)

The isomorphism of the Lie algebras (6.31) and (6.33) means that
locally, in the neighbourhood of the identity, the two groups are iso-
morphic. However, if we compare them globally, e. g. by studying
continuous deformations of the group elements that lead back to the
starting element, the two groups are seen to be different. The above
analysis shows the relationship between them.

3. The D-functions satisfy a system of differential equations of first
order in Euler angles from which the solutions D( j)

κm (φ, θ, ψ) may
be obtained, as an alternative. This system is obtained by consider-
ing the product of a finite rotation and an infinitesimal one in two
different orderings, i. e.

eiε·J D(R)= D(R1) , and D(R) eiη·J = D(R2) .

One takes the differentials of the first equation with respect to
the components εi , of the second with respect to ηi , in the limit
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ε= 0= η where the two rotations become the same, R1 = R2. We
denote the Eulerian angles by the common symbol θm ≡ (φ, θ, ψ). In
a first step one expresses the differentials ∂/∂εi and ∂/∂ηk in terms
of differentials with respect to θm . The partial derivatives ∂θm/∂εi
and ∂θm/∂ηk which are needed for this calculation, are best obtained
from a good drawing.7 Regarding the factors depending on φ and
on ψ one obtains the equations

∂D( j)
κm

∂ψ
= i κD( j)

κm ,
∂D( j)

κm

∂φ
= i m D( j)

κm , (6.34)

thus confirming the decomposition (6.24). The matrix elements
d( j)
κm (θ) are found to obey the system of coupled differential equa-

tions√
j( j+1)−κ(κ∓1)d( j)

κ∓1,m =
κ cos θ−m

sin θ
d( j)
κm ± dd( j)

κm

dθ
(6.35)√

j( j+1)−m(m±1)dκ,m±1 = κ−m cos θ

sin θ
d( j)
κm ± dd( j)

κm

dθ
. (6.36)

This system is solved as follows: For κ =m = j and with the upper
sign, Equation (6.36) gives

0= j
1− cos θ

sin θ
d( j)

jj +
dd( j)

jj

dθ
.

Its solution supplemented by the condition d( j)
jj (θ = 0)= 1 is easily

seen to be

d( j)
jj (θ)=

(
1+ cos θ

2

) j

=
(

cos
θ

2

)2 j

.

All other matrix elements d( j)
κm (θ) are obtained by recurrence,

using (6.35) with the upper sign, and (6.36) with the lower sign.
The following comment is of interest for the example worked
out right after these remarks. The first-order differential equa-
tions (6.34), (6.35), and (6.36) can be combined to obtain a differ-
ential equation of second order for the D-functions. It reads8

−
{
∂2

∂θ2+cot θ
∂

∂θ
+ 1

sin2 θ

(
∂2

∂ψ2+
∂2

∂φ2−2 cos θ
∂2

∂ψ∂φ

)}
D( j)(φ, θ, ψ)

= j( j+1)D( j)(φ, θ, ψ) . (6.37)

4. We already know that the D-functions span a system of orthogonal
functions, cf. (6.30). Making use of the self-adjoint equations (6.34)
and (6.37) one can show, in addition, that this system is also com-
plete (see, e. g., [Fano and Racah (1959)]). Therefore, any square
integrable function of Eulerian angles can be expanded in this basis.

7 This calculation is found, e. g., in
Appendix E of [Fano, Racah (1959)].

8 Note, however, that it carries less
information than the system of equa-
tions (6.34)–(6.36). This is similar to
the wave equation of electromagnetic
theory which contains less information
than the system of Maxwell’s equations.
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Furthermore, it is now easy to verify the formula (4.21) that we
quoted in Part One.

Y	m(θ, φ)=
√

2	+1

4π
D(	)om(0, θ, φ) (6.38)

We summarize this important result: The functions{√
2 j+1

8π2 D( j)
κm (φ, θ, ψ)

}
, j = 0,

1

2
, 1,

3

2
, . . . ;

κ, m =− j,− j+1, . . . ,+ j (6.39)

provide a complete system of orthogonal functions in the space of
Eulerian angles. We also note that one makes frequent use of this
fact in atomic and nuclear physics. For example, the calculation of
angular correlations in decays of unstable states is simplified by
using the properties of D-functions.

Example 6.2 Symmetric Top
The free symmetric top of classical mechanics can be quantized in
a canonical way by postulating Heisenberg commutation relations for
the Euler angles (φ, θ, ψ) and their canonically conjugate momenta
(pφ, pθ , pψ),[

Pm ≡ pθm , Qn ≡ θn
]= �

i
δmn .

In a position space representation where Eulerian angles are the coordi-
nates, the momenta act by differentiation, viz.

pφ =−i�
∂

∂φ
, pθ =−i�

∂

∂θ
, pψ =−i�

∂

∂ψ
.

Writing partial differentials in an abbreviated notation, i. e. ∂φ ≡
∂/∂φ etc., and extracting, as before, a factor � in defining angular
momenta, the components of angular momentum along cartesian, body-
fixed axes read (cf., e. g., [Scheck (2005)], Eq. (3.89))

�L1 = 1

sin θ
(pφ− pψ cos θ) sinψ+ pθ cosψ

=−i�

[
1

sin θ
(∂φ−∂ψ cos θ) sinψ+∂θ cosψ

]
,

�L2 = 1

sin θ
(pφ− pψ cos θ) cosψ− pθ sinψ

=−i�

[
1

sin θ
(∂φ−∂ψ cos θ) cosψ−∂θ sinψ

]
, (6.40)

�L3 = pψ =−i�∂ψ .
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The square of the angular momentum L2 is obtained from these expres-
sions,

�
2L2 = �2

{
L

2
1+ L

2
2+ L

2
3

}
=−�2

{
∂2

∂θ2+cot θ
∂

∂θ
+ 1

sin2 θ

(
∂2

∂ψ2+
∂2

∂φ2−2 cos θ
∂2

∂ψ∂φ

)}
.

(6.41)

The differential operator of second order that appears in (6.41) is
seen to be the same as the one of the differential equation (6.37). There-
fore, the D-functions with integer values j ≡ L are eigenfunctions of
the quantum top. We pursue this important observation by constructing
a Hamiltonian for the symmetric top and by studying its energy spec-
trum.

The classical Hamiltonian describing the symmetric top, i. e. a top
whose moments of inertia fulfill I1 = I2 �= I3,

Hclass. = 1

2I1 sin2 θ

(
pφ− pψ cos θ

)2+ 1

2I1
p2
θ +

1

2I3
p2
ψ

(cf. [Scheck (2005)], Eq. (3.90)), by the quantization procedure just de-
scribed, is replaced by an operator in the variables (φ, θ, ψ) and their
derivatives. The corresponding stationary Schrödinger equation is writ-
ten in terms of the square of the angular momentum and its projection
onto the symmetry axis. Making use of (6.40) one obtains

HΨ(φ, θ,ψ)= �2

{
L2− L

2
3

2I1
+ L

2
3

2I3

}
Ψ(φ, θ,ψ)= EΨ(φ, θ,ψ) .

(6.42)

Comparison with the differential equation (6.37) shows that the
eigenfunctions Ψ can be written in terms of D-functions with inte-
ger values of j. The precise relationship requires a further symmetry
argument. Given the shape of the symmetric top there are different pos-
sibilities to choose the axes of the intrinsic, body-fixed system. Clearly,
the eigenfunctions in (6.42) should not depend on any specific choice.
It is not difficult to realize that every choice of the body-fixed axes can
be reached by combining the following standard transformations: A ro-
tation about the 1-axis by the angle π, a rotation about the 3-axis by
the angle π/2, and by cyclic permutations of the three axes. Using the
symmetry properties of the D-functions derived above, one sees that the
eigenfunctions of the symmetric top, normalized to 1, are given by

Ψ(φ, θ,ψ)≡ ΨLmκ(φ, θ, ψ)

=
√

2L+1

16π2(1+ δκ0)

(
D(L)κm (φ, θ, ψ)+ (−)L D(L)−κm(φ, θ, ψ)

)
.

(6.43)
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Fig. 6.3. Energy spectrum of a quan-
tized symmetric top

9 A. Bohr, Dan. Mat.-Fys. Medd. 26,
No. 14 (1952), A. Bohr and B.R. Mot-
telson, Dan. Mat.-Fys. Medd. 27, No. 16
(1953) and 30, No. 1 (1955). The theo-
retical work of Aage Bohr, son of Niels
Bohr, and of Ben Mottelson on the col-
lective rotational and vibrational excita-
tions of strongly deformed nuclei was
awarded the Nobel prize 1975. They
shared the prize with the experimental-
ist James Rainwater.

10 S. Flügge and A. Weiguny, Z. Physik
171, 171 (1963), A. Weiguny, Z. Physik
186, 227 (1965).

The quantum number L = 0, 1, 2, . . . runs through zero and all posi-
tive integers, m and κ belong to the set of values known from the
analysis of ortbital angular momentum, i. e. m, κ =−L,−L+1, . . . , L .
The eigenvalues of the Hamiltonian (6.42) depend on the modulus of the
angular momentum and on its projection onto the symmetry axis only.
They are

ELκ = �2
{

L(L+1)−κ2

2I1
+ κ

2

2I3

}
. (6.44)

This result plays an important role in the description of diatomic
molecules and in the collective model of atomic nuclei which in their
ground state exhibit a permanent deformation (deviation from spheri-
cal shape)9. Strongly deformed nuclei are found in the group of Rare
Earth and of Transuranium elements. They are either prolate, i. e. have
the shape of a cigar, or are oblate, i. e. have a disc-like shape. Their
third moment of inertia I3 seems to vanish or at least to be very small
as compared to I1, so that, classically speaking, these nuclei primarily
rotate about axes which are perpendicular to the symmetry axis.

There is a pecularity when the projection of the angular momentum
onto the symmetry axis vanishes. The eigenfunctions (6.43) with κ = 0
are different from zero only for L an even integer number. The eigen-
values (6.44) are

EL = �2 L(L+1)

2I1
, L = 0, 2, 4, . . . . (6.45)

A typical rotational spectrum of this sort is shown in Fig. 6.3.
Strictly speaking the idea of a rigid body is incompatible with

Heisenberg’s uncertainty relation between position and momentum.
Take as a model for the classical rigid body a set of mass points which
are held fixed relative to each other by appropriately chosen forces. Af-
ter quantization these mass points will exhibit small oscillations about
their classical positions, in close analogy to the ground state of the
harmonic oscillator, cf. Sect. 6.2.3. The problem posed by this remark
was investigated and solved both for the case of the quantum mechan-
ical three-body problem and for the more general case of the N-body
system10.

6.2.3 Addition of Angular Momenta
and Clebsch-Gordan Coefficients

In this section we take up once more the question of coupling two
or more angular momenta. We prove some properties of the Clebsch-
Gordan series and indicate methods of calculating Clebsch-Gordan
coefficients.

The Problem and Some Preliminaries: Representations of a compact
Lie group G such as, e. g., SU(n), SO(m) etc. are also representations



66.2 The Rotation Group (Part 2) 351

of the corresponding Lie algebra Lie(G) (often denoted by gothic let-
ters such as g, su(n), so(m) etc.). Indeed, in Sect. 4.1.2 we derived the
representations of SU(2) from the properties of its Lie algebra, with-
out making explicit use of the group itself. In doing so, however, some
care is appropriate, as exemplified by the following remarks. (i) The
representations of the Lie algebra of the group G =U(1) have the spec-
trum R, without any further restriction, while the group proper admits
only integer eigenvalues m ∈ Z because the eigenfunctions exp{imφ}
must be one-valued. (ii) The comparison of SU(2) with SO(3) whose
Lie algebras are isomorphic, showed that their Lie algebra correctly
yields both the integer and the half-integer eigenvalues j, without
distinction. In both cases the irreducible unitary representations charac-
terized by the quantum numbers ( j,m) are one-valued representations
of the covering group SU(2). However, with respect to SO(3), only the
representations with integer j ≡ 	 are one-valued.

Let us start with a short summary of the problem posed by the ad-
dition of angular momenta: The product states | j1m1〉| j2m2〉 obtained
from the base states | j1m1〉 and | j2m2〉 span a representation which,
in contrast to its individual factors, is reducible. The factors span irre-
ducible subspaces H ( ji) whose dimensions are, respectively, (2 j1+1)
and (2 j2+1). Under a rotation R in R3 their elements transform like
D( j1)(R) and D( j2)(R), respectively. Thus, the (reducible) product space
has dimension (2 j1+1)(2 j2+1), its elements transform by the product
D( j1)(R)D( j2)(R). The problem to be solved is to expand the product
state in terms of irreducible representations, that is, in a symbolic nota-
tion, to construct the series

j1⊗ j2 =
∑
⊕J (6.46)

In other terms and at the level of base states, the problem is to find
the unitary transformation which maps product states to eigenstates
of total angular momentum J2 = ( j1+ j2)

2 and of the 3-component
J3 = (j1)3+ (j2)3,

|JM〉 =
∑

m1,m2

( j1m1, j2m2|JM) | j1m1〉 | j2m2〉 . (6.47)

Here |JM〉 denotes an eigenstate of J2 and of J3 with eigenvalues
J(J+1) and M, respectively.

Are Products of Representations Themselves Representations? In
a somewhat more general framework consider an algebra A which may,
but need not, be a Lie algebra. Let �V and �W be two representations
on vector spaces V and W , respectively, such that an element a ∈A is
mapped to �V (a) in V , to �W (a) in W . The action of a on an element
v ∈ V and on an element w ∈W then is �V (a)v and �W (a)w, respect-
ively. In the case of matrix representations (this is the case we are
considering here) this action is defined by the product of a matrix and
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a (column) vector. Considering now the set of all products vw, a linear
action of a can only be given by the sum of tensor products

�(a)= �V (a)⊗1lW + 1lV ⊗�W (a) (6.48)

The question then is whether and under which conditions (6.48) is again
a representation of the algebra. The product that is part of the defi-
nition of the algebra is denoted symbolically by •. The ansatz yields
a representation if and only if for the product a•b of any two elements
a, b ∈A

�V/W (a •b)= �V/W (a)•�V/W (b) implies �(a •b)= �(a)•�(b) .

In general, this does not hold: Indeed, by (6.48), one has

�(a)•�(b)= �V (a)•�V (b)⊗1lW + 1lV ⊗�W (a)•�W (b)

+�V (a)•�W (b)+�V (b)•�W (a) .

The first two terms yield the right answer �(a•b) but the last two do not
unless they are zero. If the algebra is a Lie algebra (A, •)= (g, [ , ])
whose product is the commutator, the unwanted terms cancel out,
and (6.48) does yield a representation.

Comment on Notations: In the old mathematics literature and in much
of the physics literature the reducible product representation whose base
elements are | j1m1〉| j2m2〉, are denoted by the symbol × of the di-
rect product. (Every base element of the first representation space V is
multiplied with every base element of the other space W . Every mat-
rix element D( j1)

κ1m1 is multiplied with every matrix element D( j2)
κ2m2 .) In

the modern mathematical literature this case is written as tensor prod-
uct V ⊗W with base elements v⊗w, while the symbol × means that
V ×W is the set of elements (v,w) with two entries (which are not
multiplied). Strictly speaking, the series (6.47) should be denoted as fol-
lows

|JM〉 =
∑

m1,m2

( j1m1, j2m2|JM) | j1m1〉⊗ | j2m2〉 .

Since at the level of the eigenstates there should not arise any confusion
I stick to the simpler notation of (6.47), omitting the ⊗-sign. For oper-
ators, however, the correct notation of the tensor product as in (6.48) is
essential.

Covariance and Contravariance: Base vectors such as ϕ( j) ≡ {ϕ( j)
m }

and expansion coefficients a( j) ≡ {a( j)
m } representing a physical state

transform by contragredience, cf. Sect. 4.1.3, that is to say, if the latter
transform with respect to rotations by D( j) then the transformation law
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for the basis is given by
(
D−1

)T = D∗. Thus, in a short-hand notation
we have

a′ ( j) = D( j)a( j) , ϕ′ ( j) = D( j) ∗ϕ( j) .

These transformation rules make sure that the physical state

Ψ =
∑

j

ϕ′ ( j) ·a′ ( j) =
∑

j

ϕ( j)D( j) †D( j)a( j) =
∑

j

ϕ( j) ·a( j)

does not depend on the choice of the basis.
Of course, the Clebsch-Gordan coefficients should be defined in such

a way that they apply universally to SU(2) and can be tabulated or cal-
culated by means of standard computer routines. In order to fulfill this
requirement one defines these coefficients in such a way that they apply
to cogredient objects, i. e. to quantities that transform in the same way
under rotations. In other terms, both factors must either transform by D
or by D∗.

For the sake of clarity we call the base elements covariant, the ex-
pansion coefficients contravariant. Let the Clebsch-Gordan coefficients
be defined as in (6.47) so that they couple covariantly transforming ob-
jects such as | j1m1〉 and | j2m2〉. We note, however, that we will also
have to deal with cases where the Clebsch-Gordan series is needed for
contragredient objects, i. e. for the coupling of a covariant and a con-
travariant set. This will be the case, for example, when particle-hole
states, or states consisting of a particle and an antiparticle, will have
to be constructed which are eigenstates of total angular momentum. An
example may help to clarify this problem.

Let the one-particle states of an atom be classified by j and m, the
eigenvalues of angular momentum (vector sum of orbital angular mo-
mentum and of spin) and of its 3-component, respectively. Assume these
states to be occupied by electrons up to the limit energy EF . If one ex-
cites an electron from the occupied state | j1m1〉 with energy E1 < EF
to a formerly unoccupied state | j2m2〉 with energy E2 > EF one obtains
a particle-hole excitation whose angular momentum state is

| j1m1〉 | j2m2〉 .

Its second factor is covariant but the first factor is contravariant. There-
fore, the Clebsch-Gordan series needed to transform this product basis
to a basis of total angular momentum cannot be applied directly. Indeed,
one must first convert the “wrong” transformation behaviour of the hole
state | j1m1〉 in such a way that both factors become cogredient, i. e. be-
come covariant with respect to rotations. As we now show the solution
to this problem is easy. We prove the following lemma:
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Lemma 6.1

A covariantly transforming set b( j) ≡ {b( j)
m ,m =+ j, . . . ,m =− j}, by

the unitary transformation

U0 := D( j)(0, π, 0) , (6.49)

is mapped to a contravariantly transforming set b̃
( j) ≡ {b̃( j)m,m =

+ j, . . . ,m = − j}. Conversely, the same transformation maps a con-
travariant set to a covariant set.

Proof

If the assertion is correct then b̃
( j) =U0b( j). Let U be an arbitrary uni-

tary transformation acting on b( j),

U b( j) = b( j) ′ .

Denote the action of the same transformation on b̃
( j)

by Ũ,

b̃
( j) ′ = Ũ b̃

( j)
.

If b̃
( j)

is contragredient to b( j) and if this is to hold for b̃
( j) ′

and b( j) ′,
too, then one must have

Ũ=
(

U−1
)T = U∗ and U∗ = U0 U U−1

0 .

Special cases are provided by the unitary transformations U= D( j)(R)
induced by rotations R in ordinary space. In this case the above require-
ments read

U0 D( j)(R)U−1
0 = D( j) ∗(R) for all R ∈ SO(3) .

Writing D( j) as an exponential series in the generators J = {J1, J2, J3}
these conditions translate to

U0 D( j)(R)U−1
0 = eiϕU0 JU−1

0 = D( j) ∗(R)= e−iϕJ∗ , or (6.50)

U0Jk+J∗kU0 = 0 , k = 1, 2, 3 . (6.51)

The latter condition (6.51), indeed, is fulfilled if use is made of the
Condon-Shortley phase convention, cf. Sect. 4.1.3. In this convention
J1 and J3 are real while J2 is pure imaginary: The unitary U0 being in-
duced by a rotation about the 2-axis by the angle π, takes J1 to −J1, J3
to −J3, but leaves J2 unchanged. This shows that (6.51) is fulfilled and
thus proves the assertion.

Within the Condon-Shortley phase convention the unitary map U0
takes a very simple form. Setting θ = π the formula (6.25), or, even sim-
pler, the symmetry relation (6.28) yields the explicit form of this matrix,
viz.

(U0)m′m ≡ D( j)
m′m(0, π, 0)= (−) j−m′ δm′,−m . (6.52)



66.2 The Rotation Group (Part 2) 355

Let us return once more to the example of a particle-hole excita-
tion. The correct coupled state which is an eigenstate of total angular
momentum and its 3-component, is found to be

|JM〉 =
∑

m1m2

(−) j1+m1( j1,−m1; j2,m2|JM) | j1,−m1〉 | j2m2〉 .

A hole in a level with quantum numbers ( j1,m1) behaves like a particle
in the state ( j1,−m1) supplemented by the characteristic sign (−) j1+m1 .

Clebsch-Gordan Coefficients are Real: The transformation U0 has the
canonical form (6.49) or (6.52) which applies to all irreducible represen-
tations. Its action on the left-hand side of (6.47) reads

(U(J )0 )M′M = D(J )M′M(0, π, 0) ,

Its action on the right-hand side (6.47) is

(U0)m′1m′2,m1m2
= D( j1)

m′1m1
(0, π, 0)D( j2)

m′2m2
(0, π, 0) .

Let C be an arbitrary unitary transformation. By the very definition
of U0 we have, as a general rule, C∗U0 = U0C or C∗U0C† = U0. The
specific matrix which serves the purpose of the coupling (6.47), i. e.
whose entries are the Clebsch-Gordan coefficients, is a special case of
such a unitary transformation so that

C∗U0C† = U(J )0 .

In this particular case the matrices U(J )0 and U0, in addition, are equiva-
lent which is to say that they fulfill

CU0C† = U(J )0 .

These two relations are compatible only if C is real, hence orthogonal.
Obviously, this result is relevant for many practical purposes and we
summarize it here:

Theorem 6.2

In the framework of the Condon-Shortley phase convention for the
generators of the rotation group the Clebsch-Gordan coefficients are
real.

This result presents the following advantages:

(i) Two cogredient objects are coupled in the same way, independently
of whether both are covariant or both contravariant;

(ii) The matrix C is orthogonal, which means that∑
J,M

( j1m1, j2m2|JM)
(
JM| j1m′1, j2m′2

)= δm1m′1δm2m′2 ;
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(iii) The entries ( j1m1, j2m2|JM) can be calculated once and for ever.
As they are real, they may be obtained by means of simple com-
puter routines, or may be listed in tables.

6.2.4 Calculating Clebsch-Gordan Coefficients;
the 3 j-Symbols

The results of the preceding section provide a possibility of principle
for calculating the Clebsch-Gordan coefficients. The following formula
which is due to E. Wigner, should be immediately clear:

( j1µ1, j2µ2| jµ) ( j1m1, j2m2| jm)
= 2 j+1

8π2 (6.53)

×
2π∫

0

dψ

π∫
0

sin θ dθ

2π∫
0

dφ D( j) ∗
µm (φ, θ, ψ)D

( j1)
µ1m1(φ, θ, ψ)D

( j2)
µ2m2(φ, θ, ψ) .

Doing this integral, solving for the coefficients, and making use of the
normalization condition∑

m1m2

( j1m1, j2m2| jm)2 = 1

and of the convention ( j1,m1 = j1; j2,m2 = j− j2| j,m = j) ≥ 0, one
obtains an explicit formula for the Clebsch-Gordan coefficients. This
particular method, however, is somewhat cumbersome and I skip it as
well as some more practicable alternatives for calculating the Clebsch-
Gordan coefficients in the framework of the Lie algebra of SU(2). They
are worked out, e. g., in [Fano and Racah (1959)]. I merely quote the
final result

( j1m1, j2m2| j3m3)= δm1+m2,m3

√
2 j3+1∆( j1, j2, j3)

∑
r

(−)r

×
√
( j1+m1)!( j1−m1)!( j2+m2)!( j2−m2)!( j3+m3)!( j3−m3)!

r!( j1+ j2− j3−r)!( j1−m1−r)!( j3− j2+m1+r)!
× 1

( j2+m2−r)!( j3− j1−m2+r)! . (6.54)

This formula contains a symbol ∆( j1, j2, j3) which is symmetric in all
three angular momenta and which is defined by

∆( j1, j2, j3)=
√
( j1+ j2− j3)!( j2+ j3− j1)!( j3+ j1− j2)!

( j1+ j2+ j3+1)! . (6.55)

This quantity is different from zero only if the arguments of the three
factorials in the numerator are greater than or equal to zero, that is, if

Max (( j1− j2), ( j2− j1))≤ j3 ≤ j1+ j2 (6.56)
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holds true. This is the triangle rule for angular momenta that we en-
countered in Sect. 4.1.6. The structure of the expression (6.54) is quite
remarkable: It consists in a finite sum of terms each of which is the
square root of a rational number. This fact is often used in their prac-
tical evaluation and in writing computer routines for Clebsch-Gordan
coefficients.

The symmetry relations (4.34) and (4.35) cf. Sect. 4.1.5, are ob-
tained directly from (6.54): Except for the Kronecker δ and for
the denominator all factors are invariant under arbitrary permuta-
tions of the pairs ( ji,mi). We denote the denominator temporarily by
N( j1,m1; j2,m2| j). Replacing the summation index r by r = j1+ j2−
j3− s the denominator becomes

( j1+ j2− j3− s)!s!( j3− j2−m1+ s)!( j1+m1− s)!
( j3− j1+m2+ s)!( j2−m2− s)!
≡ N( j2,m2; j1,m1| j) .

By the same replacement the sign factor in (6.54) goes over into
(−) j1+ j2− j3(−)−s. As s is always an integer there follows the symmetry
relation

( j2m2, j1m1| j3m3)= (−) j1+ j2− j3 ( j1m1, j2m2| j3m3) . (6.57)

Similarly, replacing r by r = j1−m1− t the denominator becomes

( j1−m1− t)!( j2− j3+m1+ t)!
t!(( j3− j2+ j1− t)!( j2+m2− j1+m1+ t)!
× ( j3−m1−m2− t)! ≡ N( j1,m1; j3,−(m1+m2)| j2) ,

the sign factor becomes (−) j1−m1(−)t . As m3 = m1+m2 one obtains
the second symmetry relation

( j1m1, j2m2| j3m3)= (−) j1−m1

√
(2 j3+1)

(2 j2+1)

( j1,m1; j3,−m3| j2,−m2) . (6.58)

In practice, the Clebsch-Gordan coefficients are used, in this form,
whenever their normalization∑

m1m2

( j1m1, j2m2| j3m3)
(

j1m1, j2m2| j ′3m′3
)= δ j3 j ′3δm3m′3

matters. On the other hand, their symmetry properties and the selection
rules which are coded in them, become more transparent and are eas-
ier to remember if one introduces the 3 j-symbols which are defined as
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follows(
j1 j2 j3

m1 m2 m3

)
= δm1+m2+m3,0 (−) j1− j2−m3∆( j1, j2, j3)

∑
r

(−)r

×
√
( j1+m1)!( j1−m1)!( j2+m2)!( j2−m2)!( j3+m3)!( j3−m3)!

r!( j1+ j2− j3−r)!( j1−m1−r)!( j3− j2+m1+r)!
× 1

( j2+m2−r)!( j3− j1−m2+r)! . (6.59)

They are related to the Clebsch-Gordan coefficients by the formula

( j1m1, j2m2| j3m3)= (−) j2− j1−m3
√

2 j3+1

(
j1 j2 j3

m1 m2 −m3

)
.

(6.60)

Their properties follow directly from the properties of Clebsch-Gordan
coefficients. We summarize them here:

Properties of the 3 j-Symbols

(i) The 3 j-symbols (6.59) are equal to zero whenever one of the se-
lection rules

j1+ j2+ j3 = n , n ∈N0 , (6.61)
| j1− j2| ≤ j3 ≤ j1+ j2 (cyclic) ,

m1+m2+m3 = 0 , (6.62)

is not fulfilled.
(ii) They are invariant under cyclic permutations of the columns(

j1 j2 j3
m1 m2 m3

)
=

(
j2 j3 j1

m2 m3 m1

)
(cyclic) . (6.63)

In odd (or anticyclic) permutations of their columns they receive
a sign factor which depends on the sum j1+ j2+ j3,(

j2 j1 j3
m2 m1 m3

)
= (−) j1+ j2+ j3

(
j1 j2 j3

m1 m2 m3

)
(anticyclic) .

(6.64)

(iii) The same factor appears when the signs of all three mi are
changed simultaneously,(

j1 j2 j3
−m1 −m2 −m3

)
= (−) j1+ j2+ j3

(
j1 j2 j3

m1 m2 m3

)
. (6.65)
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(iv) The orthogonality of the Clebsch-Gordan coefficients is inherited
by the 3 j-symbols for which it reads

∑
m1m2

(
j1 j2 j

m1 m2 m

)(
j1 j2 j ′

m1 m2 m′

)
= 1

2 j+1
δ jj ′δmm′ . (6.66)

(v) Some special cases of relevance for atomic and nuclear physics are(
j j ′ 0

m m′ 0

)
= (−)

j−m

√
2 j+1

δ jj ′δm,−m′ ,

(
j 1 j
−m 0 m

)
= (−) j−mm√

j(2 j+1)( j+1)
, (6.67)

(
j 2 j
−m 0 m

)
= (−) j−m 3m2− j( j+1)√

(2 j−1) j(2 j+1)( j+1)(2 j+3)
.

(vi) An interesting special case occurs when all three magnetic quan-
tum numbers are zero. Denoting the three angular momenta
(which in this case are integers!) by a, b, and c, one has(

a b c
0 0 0

)
= 0 if a+b+ c= 2m+1 , (6.68)

(
a b c
0 0 0

)
=∆(a, b, c) (−)nn!

(n−a)!(n−b)!(n− c)! (6.69)

if a+b+ c= 2n .

(vii) While the definition of the Clebsch-Gordan coefficients for SU(2)
are generally accepted there are differing definitions for the 3 j-
symbols in the literature. For example, the V -coefficients of [Fano
and Racah (1959)] are related to the 3 j-symbols (6.59) by(

a b c
α β γ

)
= (−)a+b+c V

(
a b c
α β γ

)
.

Other definitions and conventions may be found in [Fano and
Racah (1959)].

6.2.5 Tensor Operators and Wigner–Eckart Theorem

A set of operators {T (κ)µ }, κ ∈N0, µ ∈ (−κ,−κ+1, . . . , κ) which trans-
forms contravariantly under rotations R3 (thus, by D(κ)), or else trans-
forms covariantly (i. e. by D(κ) ∗), is called a tensor operator of rank κ.
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Here is an example: The operator |x1− x2|−1 is invariant with re-
spect to rotations. However, if it is expanded in terms of multipoles,

1

|x1− x2| =
∞∑
	=0

4π

2	+1

r	<
r	+1
>

+	∑
m=−	

Y∗	m(x̂1)Y	m(x̂2) , (6.70)

then it appears to be the invariant product of two tensor operators of
rank 	,

T (	)m (x)=
√

4π

2	+1
rλY	m(x̂)

where r = |x| and λ= 	 or λ=−	−1.
A further example is provided by the three components of angular

momentum. Written in the spherical basis, viz.

J±1 =∓ 1√
2
(J1± iJ2) , J0 = J3 ,

they form a tensor operator of rank 1.
Tensor operators are always defined with reference to a frame in R3

and, therefore, they depend on x, explicitly or implicitly. Thus, un-
der a rotation a covariant tensor operator transforms according to the
rule

T (κ) ′µ (x′)=
κ∑

ν=−κ
D(κ) ∗µν (φ, θ, ψ) T (κ)ν (x) . (6.71)

Matrix elements of an operator of this kind, taken between eigen-
states of the square and of the 3-component of angular momentum, have
an especially simple structure: Their dependence on all magnetic quan-
tum numbers is solely contained in a sign and a 3 j-symbol. In other
terms, all such matrix elements are proportional to one another, their ra-
tios have universal values which do not depend on the specific nature of
the operator. This is the content of an important theorem.

Theorem 6.3 Theorem of Wigner and Eckart

The matrix elements of a tensor operator between eigenstates of an-
gular momentum are given by the universal formula

〈JM| T (κ)µ
∣∣J ′M′〉= (−)J−M

(
J κ J ′
−M µ M′

) (
J
∥∥∥T (κ)

∥∥∥ J ′
)
.

(6.72)

The proportionality factor
(
J‖T (κ)‖J ′

)
, common to all of them, is in-

dependent of the magnetic quantum numbers. It is called the reduced
matrix element.
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Proof
The following proof is somewhat heuristic but has the advantage of em-
phasizing the physical content of the theorem [Fano and Racah (1959)].
It proceeds in two steps.

1. Consider first an irreducible tensor field T (κ)µ (x) which has the same
form and the same functional dependence in every frame of refer-
ence. This is a tensor field for which

T (κ)µ (x
′)=

∑
ν

D(κ) ∗µν T (κ)ν (x)

holds. Here, the argument x stands for possibly more than one sin-
gle argument. An example for such a tensor field is given by the
spherical harmonics T (	)m (x)≡ Y	m(x̂) which, indeed, have the same
explicit functional form in all coordinate systems which differ by
rotations about the origin. Writing

∫
d3x for the possibly multi-

dimensional integral
∫

d3x1 d3x2 · · · , we have for all κ �= 0

F(κ)µ :=
∫

d3x T (κ)µ (x)= 0 . (6.73)

This assertion is proved by rotating the coordinate system, x �→ x′
=Rx, and by calculating its effect on the constant tensor F(κ)µ . One
has

F(κ)µ =
∫

d3x′ T (κ)µ (x′)=
∑
ν

D(κ) ∗µν (R)
∫

d3x T (κ)ν (x)

=
∑
ν

D(κ) ∗µν (R) F(κ)ν .

The set F(κ)µ is a tensor whose (2κ+1) components are the same in
every frame of reference. As the matrices D(κ) are irreducible, the
components F(κ)µ must vanish for all κ �= 0.

2. Making use of the Clebsch-Gordan series (6.47) and of its inverse,
the matrix element 〈JM|T (κ)µ |J ′M′〉 is expressed, step by step, in
terms of irreducible spherical tensors to which the above result ap-
plies. In order to simplify matters we use the symbolic notation
[T (κ)⊗ S(λ)](σ)ν for the coupling of two spherical tensors. Further-
more, the expression (−)J−Mψ∗JM is written as φJ,−M , by defining
φJM := (−)J+Mψ∗J,−M . These conventions should help to understand
the following calculation:

〈JM| T (κ)µ
∣∣J ′M′〉= ∫

d3x ψ∗JM(x) T (κ)µ (x) ψJ ′M′(x)

= (−)J−M
∫

d3x φJ,−M

∑
λσ

(κµ, J ′M′|λσ)
[
T (κ)⊗ψJ ′

](λ)
σ

= (−)J−M
∑
τω

∑
λσ

(κµ, J ′M′|λσ)(J,−M, λσ |τω) F(τ)ω ,
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11 There exist tables of 3 j-symbols but
they may also be calculated directly
from (6.59).

where the abbreviation

F(τ)ω =
∫

d3x
[
φJ ⊗[T (κ)⊗ψJ ′ ](λ)

](τ)
ω

is used. This constant tensor, by (6.73), is equal to zero unless τ =
ω= 0. In this case, using (J,−M, λσ |00)= (−)J+M/

√
2J+1 δJλδMσ ,

the product of the two Clebsch-Gordan coefficients becomes∑
λσ

(κµ, J ′M′|λσ)(J,−M, λσ |00)

= (−)
J+M

√
2J+1

(κµ, J ′M′|JM)= (−)J+M(−)J ′−κ−M
(

J κ J ′
−M µ M′

)
.

This is the formula given in (6.72) if the reduced matrix element is
defined as follows(

J
∥∥∥T (κ)

∥∥∥ J ′
)
:= (−)J−κ+J ′

∫
d3x

[
φJ ⊗[T (κ)⊗ψJ ′ ](λ)

](0)
0
.

(6.74)

This completes the proof of the theorem.

Remarks

1. The proof of the theorem shows that it holds only for operators
whose matrix elements 〈JM|T (κ)µ |J ′M′〉 do not depend on the choice
of the frame of reference. The interaction of a magnetic moment µ
with a fixed external magnetic field B provides a counter-example
because this field singles out an invariant direction in space. In this
case the theorem can only be applied to one of the two factors.

2. Although the reduced matrix element may be calculated from its def-
inition (6.74), it is often simpler to calculate the full matrix element
for one specific set of magnetic quantum numbers and to divide by
the corresponding 3 j-symbol11 and the phase factor. We give some
examples below.

3. The states |JM〉 of a quantum system, in general, contain also radial
functions. The integral over the radial variable(s) is absorbed in the
reduced matrix element. Furthermore, |JM〉 may be a coupled state
such as, for instance, an eigenstate of the sum of orbital angular mo-
mentum and spin, [	⊗ s](J ). Yet, the operator may refer to only one
of the two parts. In these cases the calculation of the reduced mat-
rix element may be a little more involved but can be done once and
for ever, the results may be tabulated in a compendium.

4. The Wigner-Eckart theorem not only reduces the calculation of very
many, viz. (2J +1)(2κ+1)(2J ′ +1), matrix elements to a single
one, it also yields and exhibits the selection rules, via the 3 j-symbol,
that follow from conservation of angular momentum. Indeed, it is
immediately clear that J , J ′, and κ must obey the triangle rule, and
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that the sum of the magnetic quantum numbers of the initial state
and of the operator must equal the magnetic quantum number of the
final state, M = µ+M′. Further selection rules which follow from
the conservation of parity, or which are due to specific properties
of the radial functions, are contained in the reduced matrix element
and, therefore, are less obvious.

5. In general, tensor operators are bosonic operators, that is, κ is an in-
teger number. They are classified by representations of SO(3), and
they are tensor operators with respect to SO(3) (not only with re-
spect to SU(2)).

Example 6.3 Quadrupole Interaction in Deformed Nuclei
As long as the electron in an atom does not penetrate the nucleus, that
is to say, if in (6.70) the variable r< is the radial variable of a proton in
the nucleus, while r> is the one of the electron, the quadrupole piece in
the electrostatic interaction between the electron and the proton is given
by

UE2 =−4π e2

5

r2
n

r3
e

∑
m

Y∗2m(x̂e)Y2m(x̂n) .

The expectation value of this interaction in the ground state of the nu-
cleus and a given atomic state of the electron, factorizes in the two
components. We consider here only the nuclear part. Traditionally the
static quadrupole moment is defined as follows

Q0 :=
√

16π

5
e

∞∫
0

dr
∫

dΩ �JJ (x)r2Y20(θ, φ) ,

where the proton density in the state with M = J

�JJ (x)= 〈J,M = J |
Z∑

n=1

δ(x− xn) |J,M = J〉

has to be inserted. Written differently, the static quadrupole moment is

Q0 =
√

16π

5
e 〈J, J |

Z∑
n=1

r2
nY20(x̂n) |J, J〉 . (6.75)

This quadrupole moment is called the spectroscopic quadrupole moment
because it is visible in the quadrupole hyperfine structure of atomic
spectra.

The more general matrix elements which appear in the interaction
with the electron, are expressed in terms of the quadrupole moment by



364 6Symmetries and Symmetry Groups in Quantum Physics

12 There are strongly deformed nuclei
in nature whose ground state has spin
zero. Their quadrupole moment, then
called intrinsic quadrupole moment, can
be made visible only in their excita-
tions, i. e. the rotational spectra of the
Example 6.2.

the Wigner-Eckart theorem,〈
JM′

∣∣ Q |JM〉 =
√

16π

5
e
〈
JM′

∣∣∑
n

r2
nY2µ(x̂n) |JM〉

= Q0(−)J−M′
(

J 2 J
−M′ µ M

)(
J 2 J
−J 0 J

)−1

.

This result as well as the formula (6.75) for the quadrupole moment
tell us that (J, 2, J ) must obey the triangle rule. Thus, one must have
J ≥ 1 and M′ = µ+M. Only those nuclei whose ground state has
spin J ≥ 1 can have a static, spectroscopic quadrupole moment.12 The
quadrupole hyperfine structure is proportional to expectation values in
the states |JM〉. By the Wigner-Eckart theorem, and inserting the third
of the formulae (6.67), one obtains

〈JM| Q |JM〉 = Q0
3M2− J(J+1)

J(2J−1)
.

Unfortunately, this formula does not yet allow to predict the spec-
troscopic quadrupole splitting. The reason is that even if the spin of the
electron may be neglected, its orbital angular momentum 	 and the nu-
clear spin J must be coupled to total angular momentum F. Now, in
order to obtain the matrix element 〈(	J )F,MF |UE2|(	J )F,MF〉 from
the Wigner-Eckart theorem one needs the corresponding reduced mat-
rix element ((	J )F‖UE2‖(	J )F). In the next section we will show how
the latter is obtained.

Example 6.4 Spin Operator in Spin-Orbit States
Let j+ := 	+1/2 and j− := 	−1/2. The aim of this example is to cal-
culate the reduced matrix elements(

(	
1

2
) j± ‖σ‖ (	1

2
) j±

)
=: (±‖σ‖±) ,(

(	
1

2
) j± ‖σ‖ (	1

2
) j∓

)
=: (±‖σ‖∓) ,

where we introduced abbreviations as indicated. Three special cases
must be evaluated:

1. The state which has m	 = 	 and ms =+1/2 reads |	, 	〉|1/2, 1/2〉,
and one has

〈 j+,m = j+| σ0 | j+,m = j+〉 = 1=
(

j+ 1 j+
− j+ 0 j+

)
(+‖σ‖+) .

Inserting here the second formula (6.67) and the value j+ = 	+1/2
one obtains the first result:

(+‖σ‖+)=
√
(2	+2)(2	+3)

2	+1
.
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2. By the action of the lowering operator J− onto | j+, j+〉 one finds
the state

| j+, j+−1〉= 1√
2	+1

{√
2	 |	, 	−1〉 |1/2, 1/2〉+|	, 	〉 |1/2,−1/2〉

}
and, from this, the state which is orthogonal to it,

| j−, j− = j+−1〉
= 1√

2	+1

{
− |	, 	−1〉 |1/2, 1/2〉+√2	 |	, 	〉 |1/2,−1/2〉

}
.

The matrix element of σ0 in the state | j−, j−〉 is then found to be

〈 j−, j−| σ0 | j−, j−〉= 1√
2	+1

(1−2	)=
(

j− 1 j−
− j− 0 j−

)
(−‖σ‖−) .

Here too, one inserts the second formula (6.67) as well as j−=	−1/2
to obtain

(−‖σ‖−)=−√2	(2	−1) .

3. Using the states | j+, j−〉 and | j−, j−〉 constructed in 2. one calcu-
lates

〈 j−, j−| σ0 | j+, j−〉 = − 2
√

2	√
2	+1

=
(

j− 1 j+
− j− 0 j−

)
(−‖σ‖+) .

The 3 j-symbol with j− = j+−1 which appears in this formula, has
the explicit value −1/

√
j+(2 j++1)=−1/

√
(2	+1)(	+1). Insert-

ing this yields

(−‖σ‖+)= 2
√

2	(	+1)= (+‖σ‖−) .
Thus, all three reduced matrix elements are calculated.

6.2.6 *Intertwiner, 6 j- and 9 j-Symbols
This section contains some more advanced material and may be skipped
in a first reading. If one does so one should just note the definitions of
6 j- and 9 j-symbols which are used in the next section.

In order to make optimal, practical use of the techniques of the rota-
tion group and of the Wigner-Eckart theorem a last step is still missing
in the analysis of coupled quantum states. As a rule, the eigenstates of
total angular momentum are composed of more than two individual an-
gular momenta which, furthermore, may be coupled in various orders.
An example will help to elucidate this remark: Suppose Z electrons
are placed in the bound states of a given attractive potential and as-
sume the interaction between them to be small. The one-particle states
then carry definite orbital angular momentum and spin quantum num-
bers. The states |FM〉 of the total system, for fixed eigenvalues of total
angular momentum F2 and its 3-component F3 can be constructed,
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for example, by coupling all orbital angular momenta 	1, 	2, . . . , 	Z to
a total orbital angular momentum L , all spins to a total spin S, and,
eventually, by coupling these to the state |(L S)FM〉. Alternatively, one
may first couple the orbital angular momentum and the spin of each
electron to a resulting angular momentum, |(	i, si) ji,mi〉, and then, in
a second step, couple j1, j2, . . . , jZ to F and M such as to form a state
|( j1, j2, . . . , jZ)FM〉. The first choice is called 	s-coupling, the second
is called jj-coupling. Obviously, other, mixed couplings are also pos-
sible.

It should be clear that these constructions lead to different but
equivalent representations of the rotation group which, hence, are con-
nected by unitary transformations. Therefore, the aim must be to con-
struct these unitary transformations for the rotation group for a few
especially relevant cases.

Representations of a Lie group G are also representations of its
Lie algebra g, cf. Sect. 6.2.3. In the theory of Lie algebras transfor-
mations of this kind are called intertwiner, because, indeed, they twine
or twist together different representations in the following sense: Given
a representation �V on the vector space V and a representation �W
on the vector space W . Denote the action of the element a ∈ g of the
Lie algebra by RV (a) when acting in V , by RW (a) in W . A linear map
ϕ : V →W which commutes with the action of the Lie algebra,

ϕ ◦ RV (a)= RW (a)◦ϕ for all a ∈ g ,
is called an intertwiner. In the case of the rotation group these maps fol-
low from the knowledge of the Clebsch-Gordan series and can be given
explicitly. We describe two situations of use in practice:

Three Angular Momenta in Different Coupling Schemes: Suppose
three angular momenta j1, j2, j3 are coupled in two different ways, viz.[

[ j1⊗ j2]( j12)⊗ j3
]( j) =: A ,

[
j1⊗ [ j2⊗ j3]( j23)

]( j) = : B ,

where we use a symbolic notation that should be immediately clear.
Written more explicitly a state of the first set reads

|( j12, j3) jm〉 =∑
m1,m2,m3

( j1m1, j2m2| j12m12)( j12m12, j3m3| jm)| j1m1〉| j2m2〉| j3m3〉 ,

while a state of the second set which carries the same values of j and m
reads

|( j1, j23) jm〉 =∑
m′1,m′2,m′3

(
j1m′1, j23m23| jm

)(
j2m′2, j3m′3| j23m23

)∣∣ j1m′1
〉∣∣ j2m′2

〉∣∣ j3m′3
〉
.
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In the first case the selection rules for magnetic quantum numbers are
m12 = m1+m2 and m = m1+m2+m3, in the second case they are
m23 = m′2+m′3 and m = m′1+m′2+m′3. Both sets span the representa-
tion space characterized by j and m. The mapping from the first to the
second basis

|σ jm〉 =
∑
τ

Cστ |τ jm〉 , with σ ≡ ( j1, j23) and τ ≡ ( j12, j3)

is given by the scalar products Cστ = 〈τ jm|σ jm〉 and is calculated from
the decompositions given above. Replacing the Clebsch-Gordan coeffi-
cients by 3 j-symbols, by way of the relation (6.60), one finds

Cστ ≡ 〈( j12, j3) jm|( j1, j23) jm〉
=√

2 j12+1 (2 j+1)
√

2 j23+1

×
∑

m1m2m3

(−) j2− j1−m12(−) j3− j12−m(−) j23− j1−m(−) j3− j2−m23

×
(

j1 j2 j12

m1 m2 −m12

)(
j12 j3 j

m12 m3 −m

)
×

(
j1 j23 j

m1 m23 −m

)(
j2 j3 j23

m2 m3 −m23

)
.

Note that use was made of the selection rules for the m-quantum num-
bers as well as of the orthogonality of the states | jimi〉.

Strictly speaking, we could have written the mapping matrix in the
form

〈
σ j ′m′

∣∣τ jm
〉
, with different values of the total angular momentum

and its 3-component. Yet, both sets of states A and B are irreducible.
Although they are eigenstates of different sets of commuting operators,
all of them are eigenstates of J2 = (∑

Ji
)2 and of J3 =∑

Ji 3. There-
fore, the map from A to B is diagonal in j and m. An even more
important observation is that the transformation matrix C= {Cστ} does
not depend on m at all. Indeed, under the action of rotations in R3, both
the set A and the set B transform by the unitary D( j)(R). This means
that C commutes with D( j)(R) for all R and, therefore, cannot depend
on m. Thus, the expression obtained above is written more precisely

Cστ = 〈( j12, j3) j|( j1, j23) j〉 ,

that is, without any reference to the magnetic quantum number m.
The mapping from one coupling scheme to another is of universal

nature and, therefore, is independent of the specific choice of the basis
in the subspace with fixed value of j. Therefore, it seems appropri-
ate to account for this universal property by a definition of its own.
In the case at hand, with three angular momenta, one extracts the fac-



368 6Symmetries and Symmetry Groups in Quantum Physics

Fig. 6.4. The 6 j-symbol has a chance
of being different from zero only if the
four triples marked by “bullets” obey
the triangle rule

1

1

2

2

3

3

Fig. 6.5. Symmetries of the 6 j-symbols
illustrated by a regular tetraeder: Oppo-
site edges correspond to the columns of
the symbol; the sides of each triangular
surface fulfill the triangle rule

tor
√

2 j12+1
√

2 j23+1 as well as a sign factor which is symmetric in
all j’s,

〈( j12, j3) j|( j1, j23) j〉 =:
(−) j1+ j2+ j3+ j

√
2 j12+1

√
2 j23+1

{
j1 j2 j12

j3 j j23

}
. (6.76)

The symbol in curly brackets which is defined by this equation, is called
6 j-symbol.

The 6 j-symbols can be expressed as sums over products of 3 j-
symbols, from the formulae just given. A more useful, explicit formula
was derived by G. Racah. This formula which exhibits the selection
rules and the symmetries of 6 j-symbols, reads{

j1 j2 j3
l1 l2 l3

}
=∆( j1, j2, j3)∆( j1, l2, l3)∆(l1, j2, l3)∆(l1, l2, j3)

×
∑

r

(−)r(r+1)! [(r−( j1+ j2+ j3))! (r−( j1+l2+l3))!
×(r− (l1+ j2+ l3))! ((r− (l1+ l2+ j3))!
×( j1+ j2+ l1+ l2−r)!( j2+ j3+ l2+ l3−r)!
×( j3+ j1+ l3+ l1−r)!]−1 . (6.77)

The sum over r contains only a finite number of contributions because
the terms of the sum vanish as soon as one of the arguments in the fac-
torials of the denominator is negative. The first four factors contain the
triangle symbol (6.55) and guarantee that the four triples of angular mo-
menta on which they depend obey the triangle rule (6.56). If one marks
those entries of a 6 j-symbol by a “bullet” which are subject to this rule
one obtains the simple scheme of Fig. 6.4.

This scheme and the explicit formula (6.77) yield the

Symmetry Relations of 6 j-Symbols:

(i) The 6 j-symbol is invariant under any permutation of its rows.
(ii) It stays invariant if in two of the columns the upper entries are

exchanged with the lower entries, while leaving the third column
unchanged. So, for example, one has{

j1 l2 l3
l1 j2 j3

}
=

{
j1 j2 j3
l1 l2 l3

}
.

(iii) The symmetry relations of 6 j-symbols with respect to permuta-
tions correspond to the symmetries of a regular tetrahedron under
exchange of its edges. In Fig. 6.5 the edges are marked by the six
angular momenta contained in the 6 j-symbol{

j1 j2 j3
l1 l2 l3

}
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in such a way that each triangle is associated to one of the triples
( j1, j2, j3) etc., the three pairs of opposing edges corresponding to
the columns of the 6 j-symbol.

(iv) Whenever one of the entries equals zero the symbol simplifies
greatly. For example, one finds{

j1 j2 j3
l1 l2 0

}
=

(−) j1+ j2+ j3δ j1l2δ j2l1δ( j1, j2, j3)
1√

(2 j1+1)(2 j2+1)
,

where the symbol δ( j1, j2, j3) stands for the requirement that j1,
j2, and j3 fulfill the triangle rule (6.56). It is equal to 1 when this
rule is fulfilled, and is zero in all other cases. (One should not con-
found it with the symbol ∆( j1, j2, j3) of (6.55).)

(v) The transformation matrix C is unitary (or orthogonal, respect-
ively),∑

j23

〈( j12, j3) j|( j1, j23) j〉 〈( j1, j23) j
∣∣( j ′12, j3) j

〉= δ j12 j ′12
.

Furthermore, by the group property it is associative,∑
j13

〈( j12, j3) j|( j13, j2) j〉 〈( j13, j2) j|( j1, j23) j〉 =

〈( j12, j3) j|( j1, j23) j〉 .
From this follow two relations for 6 j-symbols which read, in
a somewhat simplified notation,∑

c

(2c+1)

{
a b c
d e f

}{
a b c
d e g

}
=δ fgδ(a, e, f )δ(d, b, f )

1

2 f+1
,

(6.78)

∑
c

(−)c+ f+g(2c+1)

{
a b c
d e f

}{
a b c
e d g

}
=

{
a e f
b d g

}
.

(6.79)

The δ-symbol containing three arguments is equal to 1 if these
obey the triangle rule (6.56), it vanishes in all other cases.

Three and Four Angular Momenta Coupled to Zero: The 3 j- and
6 j-symbols come into play also when one couples three or four angu-
lar momenta to total angular momentum zero. This observation turns
out to be useful in applications of the Wigner-Eckart theorem. We first
consider the case[
[ j1⊗ j2]( j12)⊗ j3

](0)
0
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and note that we must have j12 = j3. The triple product is easily eval-
uated[
[ j1⊗ j2]( j12)⊗ j3

](0)
0
=

∑
m′s

(−) j3+m3

√
2 j3+1

( j3,−m3| j1m1, j2m2)| j1m1〉| j2m2〉 | j3m3〉 .
Comparing this with the other coupling which is possible[

j1⊗[ j2⊗ j3]( j23)
](0)

0
=

∑
m′s

(−) j1−m1

√
2 j1+1

( j1,−m1| j2m2, j3m3)| j1m1〉| j2m2〉 | j3m3〉 ,
the relation (6.58) shows the two right-hand sides to be equal. Thus, the
triple product is associative and may be written in the simplified form
[ j1⊗ j2⊗ j3](0)0 . Note, however, that in general it is not commutative.
Indeed, one shows easily that

[ j3⊗ j1⊗ j2](0)0 = (−)2 j3 [ j1⊗ j2⊗ j3](0)0

[ j2⊗ j3⊗ j1](0)0 = (−)2 j1 [ j1⊗ j2⊗ j3](0)0 .

As the sum j1+ j2+ j3 is always an integer, the sign will change only
if the angular momentum in the middle position, by the permutation,
turns from an integer to a half-integer, or vice versa. This implies that
the quantity

(−)2 j2 [ j1⊗ j2⊗ j3](0)0 ,

(thus multiplied by the phase factor (−)2 j2 of the middle angular
momentum) is invariant under cyclic permutations of its arguments,
and obtains the phase factor (−) j1+ j2+ j3 under anticyclic permutations.
These are precisely the sign rules of 3 j-symbols and, indeed, one finds

(−)2 j2 [ j1⊗ j2⊗ j3](0)0 = (−) j1+ j2+ j3

(
j1 j2 j3

m1 m2 m3

)
.

Thus, the 3 j-symbols describe the coupling of three angular momenta
to total angular momentum zero.

As we now show, an analogous statement holds for the coupling of
four angular momenta coupled to total angular momentum zero, involv-
ing 6 j-symbols instead of 3 j-symbols. We consider the following two
couplings[
[ j1⊗ j2]( j12)⊗[ j3⊗ j4]( j34)

](0)
0
,

[[
[ j1⊗ j2]( j12)⊗ j3

]( j123)⊗ j4

](0)
0
.

The two schemes are seen to be products of three angular momenta
coupled to zero, j12, j3, and j4. As shown above this product is asso-
ciative. Therefore, the two products are the same. Of course, the same
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conclusion applies to the products of four where j2 and j3 are inter-
changed,[
[ j1⊗ j3]( j12)⊗[ j2⊗ j4]( j34)

](0)
0
=

[[
[ j1⊗ j3]( j13)⊗ j2

]( j132)⊗ j4

](0)
0
.

We conclude that there are only two genuinely different ways of
coupling the product of four to zero (the schemes where j1 and j2 are
interchanged and/or where j3 and j4 are interchanged, differ only by
signs). We write them, in a shorter notation,

[ j12⊗ j34](0)0 and [ j13⊗ j24](0)0 .

The mapping that relates them reduces to 〈( j12, j3) j4|( j13, j2) j4〉,
i. e. a transformation known from (i) above. With (6.76) one obtains

〈( j12, j34) 0 |( j13, j24) 0〉 = 〈( j12, j3) j4|( j13, j2) j4〉
=√

(2 j12+1)(2 j13+1)

(−) j12+ j13+ j2+ j3

{
j1 j2 j12

j4 j3 j13

}
.

The 6 j-symbols come into play in the case of four angular momenta
which are coupled to zero in different ways. We now turn to the de-
termination of these mappings between different coupling schemes in
cases where the total angular momentum is not zero.

Four Angular Momenta in Different Couplings: Clearly, it is al-
ways possible to couple neighbouring angular momenta in different
orderings such as, e. g., ( j2⊗ j1)( j12) instead of ( j1⊗ j2)( j12). By the re-
lation (6.57) this can cause at most a sign change (−) j1+ j2− j12 . For this
reason we have not distinguished these simple exchanges of neighbours.
When we now study recouplings of four angular momenta we will not
keep track of the permutations of neighbours either.

The experience gained in the preceding paragraph shows that matters
simplify considerably if one classifies the coupling schemes of irre-
ducible products of four with respect to products of five of rank zero.
As an example, consider the product [ j12⊗ j34]( j). It corresponds to
the product of five angular momenta

[[ j12⊗ j34]( j)⊗ j5
](0)

, coupled to
zero, hence with j = j5. As the product of three with rank zero is asso-
ciative, it may be written in the simplified notation

[
j12⊗ j34⊗ j5

](0).
In analogy the product of four

[[ j12⊗ j3]( j123)⊗ j4
]( j5) corresponds to

the scheme
[[[ j12⊗ j3]( j123)⊗ j4

]( j5)⊗ j5
](0)

which, in turn, is equiva-

lent to [[ j12⊗ j3]⊗ [ j4⊗ j5]](0), i. e. to the associative product of three
angular momenta [ j12⊗ j3⊗ j45](0).

These examples show that any product of five which has rank zero
can be written as a product of three composed of two pairs and a single
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angular momentum. The various coupling schemes differ only by the
choice of pairs and by the ordering of its three factors. Except for ex-
change of neighbours this means that the intertwiners are classified in
three types that we now analyze, one after the other.

(a) 〈( j12 j34 j5) 0 |( j12 j3 j45) 0 〉 ,

(b) 〈( j12 j34 j5) 0 |( j1 j23 j45) 0 〉 ,

(c) 〈( j12 j34 j5) 0 |( j13 j24 j5) 0 〉 .

Type (a): As j12 remains unchanged, this map reduces to the recoupling
of products of four with rank zero (that is to say, j12, j3, j4, and j5
coupled to zero), or to the equivalent mapping 〈( j34 j5) j12|( j3 j45) j12〉 of
products of three with rank j12.
Type (b): These mappings are products of two mappings of type (a).
This is seen best by means of an example:

〈( j12 j34 j5) 0 |( j1 j23 j45) 0 〉 = 〈( j12 j34 j5) 0 |( j12 j3 j45) 0 〉
〈( j12 j3 j45) 0 |( j1 j23 j45) 0 〉

= 〈( j34 j5) j12|( j3 j45) j12〉
〈( j12 j3) j45|( j1 j23) j45〉 .

Type (c): These mappings decompose into products of three recoupling
transformations of products of three where one has to sum over the rank
of the factor in the middle. For instance,〈

( j12 j34 j5) 0
∣∣( j13 j24 j5) 0

〉=∑
j45

〈
( j34 j5) j12

∣∣( j3 j45) j12
〉〈
( j12 j3) j45

∣∣( j13 j2) j45
〉〈
( j2 j45) j13

∣∣( j24 j5) j13
〉
.

The left-hand side is equivalent to

〈( j12 j34) j|( j13 j24) j〉 , (6.80)

hence a transformation which was analyzed in the first case dealt with
above. Inserting its results and taking account of the fact that there j12
and j3, or j1 and j23, respectively, were coupled to j, while here it is
the pairs ( j12, j34) and ( j13, j24), respectively, which are coupled to j, it
is immediately clear that (6.80) is given by a product of six 3 j-symbols
(instead of four 3 j-symbols as there). Again, it seems appropriate to
replace this product by a new definition, the 9 j-symbols:⎧⎨⎩

j1 j2 J1

j3 j4 J2

j5 j6 J

⎫⎬⎭ : =∑
m′s

(
j1 j2 J1

m1 m2 M1

)(
j3 j4 J2

m3 m4 M2

)

×
(

j5 j6 J
m5 m6 M

)(
j1 j3 j5

m1 m3 m5

)
×

(
j2 j4 j6

m1 m4 m6

)(
J1 J2 J
M1 M2 M

)
. (6.81)
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Equipped with the experience gained so far it is not difficult to de-
rive the symmetries of 9 j-symbols. Let Σ :=∑6

1 ji+ J1+ J2+ J denote
the sum of all nine angular momenta. Then one has the following

Symmetry Relations for 9 j-Symbols:

(i) A 9 j-symbol can be different from zero only if the three angular
momenta in each row and in each column obey the triangle rela-
tion (6.56).

(ii) A 9 j-symbol is invariant under cyclic permutations of its columns
as well as under cyclic permutations of its rows.

(iii) An odd permutation of its columns, or of its rows, multiplies the
9 j-symbol by the phase factor (−)Σ . In particular, if two columns
or two rows are equal, and if Σ is an odd integer, the 9 j-symbol
vanishes.

(iv) If one of its entries is equal to zero then the 9 j-symbol reduces to
a 6 j-symbol. For example, one has{

j1 j2 J
j4 j3 j

}
= (−) j2+ j3+ j+J

√
(2J+1)(2 j+1)

⎧⎨⎩
j1 j2 J
j3 j4 J
j j 0

⎫⎬⎭ .
(6.82)

Very much like the 3 j- and 6 j-symbols the 9 j-symbols are universal
objects of SU(2), independent of any choice of basis, and, thus, may
be tabulated as well. The practical use of these intertwiner mappings
will be seen when deriving the relations for reduced matrix elements to
which we turn in the next section.

6.2.7 Reduced Matrix Elements in Coupled States

In the framework of perturbation theory, or in calculating transition
probabilities, one often encounters matrix elements of two-body inter-
actions with coupled eigenstates of angular momentum. For example,
the tensor operator T (κ1), acting on particle “1”, and the tensor oper-
ator S(κ2), acting on particle “2”, may appear coupled to a new tensor
operator

M(κ)(1, 2)=
[
T (κ1)(1)⊗ S(κ2)(2)

](κ)
, (6.83)

which reads, when written in components,

M(κ)
µ (1, 2)=

+κ1∑
τ=−κ1

+κ2∑
σ=−κ2

(κ1τ, κ2σ |κµ) T (κ1)
τ (1) S(κ2)

σ (2) . (6.84)

Applying the Wigner-Eckart theorem to matrix elements between
coupled states of the type |( j1 j2)J )〉, at first, leads to reduced matrix



374 6Symmetries and Symmetry Groups in Quantum Physics

elements such as(
( j1 j2)J

∥∥M(κ)(1, 2)
∥∥( j ′1 j ′2)J ′

)
.

Clearly, in order to express these as functions of reduced matrix ele-
ments of one-body operators(

j1
∥∥T (κ1)(1)

∥∥ j ′1
)
,

(
j2
∥∥S(κ2)(2)

∥∥ j ′2
)

which either are known, or may be easier to calculate in practice, one
must “decouple” again the states and the operators. With this in mind
one will not be surprised to discover that these relations involve the
intertwiner transformations studied in the preceding section. The fol-
lowing formulae are of great practical importance. They all follow from
the recoupling transformations studied above. For details of their deriva-
tion I refer to the literature, e. g., [de Shalit and Talmi (1963)].

One must distinguish two cases:
(a) If, as assumed above, the two operators act on two different systems,
one has(

( j1 j2)J
∥∥∥M(κ)(1, 2)

∥∥∥ ( j ′1 j ′2)J ′
)
=

√
(2J+1)(2κ+1)(2J ′ +1)

⎧⎨⎩
j1 j2 J
j ′1 j ′2 J ′
κ1 κ2 κ

⎫⎬⎭
×
(

j1
∥∥∥T (κ1)(1)

∥∥∥ j ′1
) (

j2
∥∥∥S(κ2)(2)

∥∥∥ j ′2
)
. (6.85)

The reduced matrix elements of the individual operators T (κ1), or
S(κ2), in coupled states are given by the formulae(

( j1 j2)J
∥∥∥T (κ1)(1)

∥∥∥ ( j ′1 j ′2)J ′
)
= (−) j1+ j2+J ′+κ1

√
(2J+1)(2J ′ +1)

×
(

j1
∥∥∥T (κ1)(1)

∥∥∥ j ′1
){ j1 J j2

J ′ j ′1 κ1

}
δ j2 j ′2 ,

(6.86)(
( j1 j2)J

∥∥∥S(κ2)(2)
∥∥∥ ( j ′1 j ′2)J ′

)
= (−) j1+ j ′2+J+κ2

√
(2J+1)(2J ′ +1)

×
(

j2
∥∥∥S(κ2)(2)

∥∥∥ j ′2
){ j2 J j1

J ′ j ′2 κ2

}
δ j1 j ′1 .

(6.87)

An important special case is one where the two operators T (κ1)

and S(κ2) are coupled to a scalar. In this case it is useful to replace the
expression (6.83) by a scalar product which is defined as follows(

T (κ) · S(κ)
)
:= (−)κ√2κ+1

[
T (κ)⊗ S(κ)

](0)
0
, (6.88)
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and which is equal to

= (−)κ√2κ+1
∑
τ,σ

(κτ, κσ |00) T (κ)τ S(κ)σ =
+κ∑
µ=−κ

(−)µT (κ)µ S(κ)−µ .

The formula (6.85) then reduces to the special case(
( j1 j2)J

∥∥∥(T (κ) · S(κ))∥∥∥( j ′1 j ′2)J ′
)
=(−) j2+J+ j ′1

√
2J+1 δJJ ′

{
j1 j2 J
j ′2 j ′1 κ

}
×

(
j1
∥∥∥T (κ)

∥∥∥ j ′1
) (

j2
∥∥∥S(κ)

∥∥∥ j ′2
)
.

(6.89)

In general, the angular momenta ji and j ′k of the formulae (6.85)–
(6.89) are accompanied by further quantum numbers αi and α′k, re-
spectively. In (6.85) and in (6.89) these just go through, down to the
individual reduced matrix elements so that ji is to be replaced by αi, ji
(and likewise for the primed quantities). In formula (6.86), however, one
has the additional condition α2 = α′2, while in formula (6.87) one must
have α1 = α′1.

(b) If the two operators act on the same system, i. e. if one has[
T (κ1)(i)⊗ S(κ2)(i)

](κ) = T (κ)(i) , (6.90)

and if the angular momenta are accompanied by further quantum num-
bers α, then one has(

α j
∥∥∥M(κ)(i)

∥∥∥α′ j ′)= (−) j+κ+ j ′√2κ+1
∑
α′′ j ′′

(
α j

∥∥∥T (κ1)(i)
∥∥∥α′′ j ′′)

×
(
α′′ j ′′

∥∥∥S(κ2)(i)
∥∥∥α′ j ′){

κ1 κ2 κ

j ′ j j ′′

}
.

(6.91)

The sum over j ′′ runs through all values which are allowed by the 6 j-
symbol, that is, which are compatible with the triangle rules (κ1, j, j ′′)
and ( j ′, κ2, j ′′).

This section concludes with some formulae that the reader is invited
to confirm, and which will be needed in many examples of practical rel-
evance.

Special Cases:

– If the operator T (κ)0 is self-adjoint then we have(
J
∥∥∥T (κ)

∥∥∥ J ′
)
= (−)J−J ′

(
J ′

∥∥∥T (κ)
∥∥∥ J

)∗
. (6.92)
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– As a consequence of the conventions adopted in the Wigner-
Eckart theorem the reduced matrix element of the unity is not equal
to 1 but is(

J ‖ 1l ‖ J ′
)= δJJ ′

√
2J+1 . (6.93)

– For the operators of the angular momentum itself one has

(J ‖ J ‖ J)=√
J(J+1)(2J+1) . (6.94)

Applying this to the spin operator of the electron the right-hand
side is equal to

√
3/2. Thus, for the operator σ = 2s one has

(1/2‖σ‖1/2)=√6.
– The reduced matrix elements of spherical harmonics taken between

eigenstates of �2 are(
	 ‖Yλ ‖ 	′

)= (−)	√
4π

√
(2	+1)(2λ+1)(2	′ +1)

(
	 λ 	′
0 0 0

)
.

(6.95)

– The reduced matrix element of spherical harmonics in states in
which the orbital angular momentum and the spin are coupled to
total angular momentum j is equal to(

(	
1

2
) j ‖Yλ ‖ (	′ 1

2
) j ′

)
= (−)

j+1/2

√
4π

√
(2 j+1)(2λ+1)(2 j ′ +1)

×
(

j λ j ′
1/2 0 −1/2

)
1+ (−)	+λ+	′

2
.

(6.96)

Regarding the formulae (6.95) and (6.96) the following remark is
appropriate: The last factor on the right-hand side of (6.96) re-
flects the selection rule due to parity. Indeed, it is equal to 1 if
(−)	′(−)λ = (−)	; it vanishes in all other cases. The same selection
rule in (6.95) is hidden in the 3 j-symbol which according to (6.64)
is equal to zero whenever 	+λ+	′ is odd. If spin and orbital an-
gular momentum are coupled in the ordering (1/2 	) j then (6.96) is
modified by a phase that follows from the symmetry relation (6.57).

– Let T be an arbitrary vector operator (i. e. a tensor operator of
rank 1). Its matrix elements between states pertaining to the same
value of J are proportional to the corresponding matrix elements of
the angular momentum operator,

〈αJM|T ∣∣α′ JM′
〉= 〈αJM| (J ·T) |α′ JM〉

J(J+1)
〈JM| J ∣∣JM′

〉
. (6.97)

Note, however, that the operator T may also have nonvanishing mat-
rix elements between states with different values J and J ′ – in
contrast to the operator J. The formula (6.97) only holds within the
subspace with a given value of J .
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6.2.8 Remarks on Compact Lie Groups
and Internal Symmetries

The rotation group SU(2) is not only of central importance for the
description of spin. It also provides a prototype model which is help-
ful as a landmark in the study of other symmetry groups in quantum
physics. Finite-dimensional Lie groups, and among them, more specif-
ically, the compact Lie groups, are applied to nuclear and elementary
particle physics in various interpretations. For example, the group SU(2)
is useful in describing the charge symmetry of proton, neutron, and
composite states thereof. In this variant one talks about (strong interac-
tion) isospin, having in mind the empirical symmetry observed in the
interactions of nucleons. This symmetry has no relation to space and
time but refers to an extension of Hilbert space whose basis is character-
ized by internal degrees of freedom. Symmetries of this kind are called
internal symmetries.

Further compact Lie groups of relevance for physics are: the
groups SU(3), SU(4), or, more generally, the unitary groups SU(n) in
n complex dimensions. Many of the techniques that one has learnt in
studying the example of SU(2), with due care and caution, can be gener-
alized to higher groups. One studies irreducible unitary representations
by first constructing a maximal set of commuting operators which are
the analogues of J2 and J3, and whose eigenvalues serve to classify the
representations. There exist Clebsch-Gordan series, that is, decomposi-
tions of the tensor product of two representations in terms of irreducible
representations, and there exists the generalization of the Wigner-Eckart
theorem. We sketch here an example which illustrates some similarities
with the rotation group but also shows some essential differences.

Example 6.5 The Group SU(3)
The group SU(3), the unimodular group in three complex dimensions,
is defined as follows

SU(3) =
{

U complex 3×3-matrices |U†U= 1l , det U= 1
}
.

(6.98)

Simple counting shows that its elements depend on 8 unrestricted real
parameters: Any complex 3×3-matrix initially depends on 9 complex,
or 18 real entries. The condition U†U= 1l, when written out explicitly,
is seen to yield 3 real and 3 complex equations (diagonal and nondiag-
onal elements, respectively). In addition, the condition det U= 1 yields
one more real equation (why is this only one condition?). In total, there
remain 18− (9+1)= 8 parameters. As one is dealing with a compact
group these parameters can be chosen to be generalized Euler angles.
Therefore, they lie in intervals (0, π) or (0, 2π). (Note that more gener-
ally, the elements of SU(n) depend on n2−1 real parameters.) Thus, the
corresponding Lie algebra su(3) has 8 generators λ1, . . . , λ8, for which
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13 After Murray Gell-Mann who, along
with Yuval Ne’eman, proposed the
SU(3) flavour classification of mesons
and baryons, cf. Gell-Mann, M., Ne’e-
man, Y.: The Eightfold Way (Benjamin,
New York 1964).

the following choice is a convenient one

λ1 =
⎛⎝ 0 1 0

1 0 0
0 0 0

⎞⎠ , λ2 =
⎛⎝ 0 −i 0

i 0 0
0 0 0

⎞⎠ , λ3 =
⎛⎝ 1 0 0

0 −1 0
0 0 0

⎞⎠ ,

λ4 =
⎛⎝ 0 0 1

0 0 0
1 0 0

⎞⎠ , λ5 =
⎛⎝ 0 0 −i

0 0 0
i 0 0

⎞⎠ , λ6 =
⎛⎝ 0 0 0

0 0 1
0 1 0

⎞⎠ , (6.99)

λ7 =
⎛⎝ 0 0 0

0 0 −i
0 i 0

⎞⎠ , λ8 = 1√
3

⎛⎝ 1 0 0
0 1 0
0 0 −2

⎞⎠ .
(These matrices are called Gell-Mann matrices13.)

The matrices (6.99) are linearly independent, they all have trace
zero. Every element of the Lie algebra su(3), i. e. every traceless her-
mitean 3×3-matrix, can be expressed as a linear combination of these
matrices. Obviously, they were constructed in analogy to the Pauli
matrices which one recognizes as being embedded in λ1, λ2, and λ3,
and likewise in λ4, λ5, and (λ3+

√
3λ8)/2, as well as in the group of

three λ6, λ7, and (−λ3+
√

3λ8)/2. Defining the generators in analogy
to SU(2) by

Ti := 1

2
λi , i = 1, 2, . . . , 8 , (6.100)

they are seen to have the following normalization and to fulfill the com-
mutation rules

tr (Ti Tk)= 1

2
δik , [Ti , Tj ] =

∑
k

fijkTk . (6.101)

The constants fijk are the structure constants of SU(3). The structure
constants are antisymmetric in all three indices and have the values

ijk 123 147 156 246 257 345 367 458 678
fijk 1 1/2 −1/2 1/2 1/2 1/2 −1/2

√
3/2
√

3/2
. (6.102)

All structure constants which do not appear explicity here, either are
related to the ones in the table by even or odd permutations, or vanish.

As analogues of the operator J2 in SU(2) the group SU(3) con-
tains two operators which commute with all generators. They are called
Casimir operators. (They are not written down here.) The diagonal,
mutually commuting generators λ3 and λ8, the analogues of J3, are con-
tained in the set (6.99). In applications to particle physics, instead of λ8,
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or T8, one prefers to define

Y := 2√
3

T8 =
⎛⎝ 1/3 0 0

0 1/3 0
0 0 −2/3

⎞⎠ .
The fundamental representation is three-dimensional. It is denoted

by 3 and contains the states14

3 : (T3,Y) = (12 ,
1

3
) , (−1

2
,

1

3
) , (0,−2

3
) .

Plotting these states in a diagram whose axes are T3 and Y yields the
triangle (u, d, s) shown in Fig. 6.6. A further fundamental representation
has the quantum numbers

3 : (T3,Y) = (−1

2
,−1

3
) , (

1

2
,−1

3
) , (0,

2

3
) .

This is the triangle (u, d, s) of Fig. 6.6. In contrast to SU(2) where the
doublet and its conjugate are equivalent, the representations 3 and 3 are
not equivalent. The first of them is said to be the triplet representation,
the second is said to be the antitriplet representation of SU(3).

As for the rotation group all other unitary irreducible representations
of SU(3) can be obtained from the 3 and the 3 (in the old literature this
was called the spinor method.) Without delving into the details I quote
here the most relevant Clebsch-Gordan series for SU(3). They read

3⊗3 = 1⊕8 , 3⊗3 = 3a⊕6s , 3⊗3⊗3 = 1a⊕8⊕8⊕10s .
(6.103)

The numbers printed in boldface give the dimension of the irreducible
representation. Like in the rotation group the 1 is called the singlet,
the 8 is new and is called the octet, and so is the 10 which is called
the decuplet representations. The suffix “a” or “s” says that the corre-
sponding representation is antisymmetric or symmetric, respectively, in
the two factors of the left-hand side. The second Clebsch-Gordan series
in (6.103), for instance, is analogous to the coupling of two spin-1/2
states in SU(2) which yields the antisymmetric singlet (whose dimen-
sion is 1) and the symmetric triplet (with dimension 3). Thus, if one
used the same notation as above, one would write 2⊗2 = 1⊕3 for
SU(2).

The first and the third Clebsch-Gordan series of (6.103) are new. In
particular, the third series shows that in decomposing a tensor product,
a representation may occur more than once. In this example it is the
octet which comes in twice on the right-hand side. This also means that
in the analogue of the Wigner-Eckart theorem there can be more than
one reduced matrix element with given quantum numbers with respect
to SU(3).

In elementary particle physics the octet, i. e. the adjoint represen-
tation of SU(3), serves to classify some of the stable or quasi-stable,

T

Y

3

2/3

1/3

−1/3

−2/3

1/2−1/2

s

s

u d

Fig. 6.6. The triplet representation 3 and
the antitriplet 3 of SU(3), realized here
by quark states (u, d, s) and antiquark
states (u, d, s), respectively

1

1

11

−

−
−

1/2 1/2

Fig. 6.7. Octet or adjoint representa-
tion 8 of SU(3). It contains two doub-
lets (T = 1/2, T3 =±1/2) with Y =±1,
one triplet (T=3, T3=+1, 0,−1) with
Y=0, and one singlet (T = 0, T3 = 0)
with Y = 0

14 For example, these are interpreted
as the quantum numbers of the up-,
down-, and strange-quarks in the quark
model of strongly interacting particles.
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1

1

11

Fig. 6.8. The decuplet representation 10
of SU(3). When resolved in terms of
multiplets of the T -subgroup SU(2)T it
contains one quartet with Y = 1, one
triplet with Y = 0, one doublet with
Y =−1, and one singlet with Y =−2

1

1

11

2

3/2 3/21/21/2

−

− −−

Fig. 6.9. The representation 10 also con-
tains one quartet, one triplet, one doub-
let, and one singlet with respect to the
subgroup SUT (2). Like in the case of
the representations 3 and 3 it is not
equivalent to the representation 10

15 Th. Bröcker und T. tom Dieck; Rep-
resentations of Compact Lie Groups,
Springer, 1985, Theorem (6.4).

strongly interacting particles, the mesons and baryons. The decuplet 10
and its conjugate 10 describe further multiplets of quasi-stable and un-
stable baryons. Thus, a further Clebsch-Gordan series of SU(3) which
is relevant for particle physics, is

8⊗8 = 1⊕8⊕8⊕10⊕10⊕27 . (6.104)

In this case, too, the octet shows up twice on the right-hand side. The
octet, the decuplet, and the antidecuplet are illustrated in Figs. 6.7 to
6.9. The eigenvalues of T3 and of Y are read on the abscissa and on
the ordinate, respectively. The quantum number (I) is obtained from the
number 2I+1 of states in each horizontal line, with I(I+1) the eigen-
value of I2 = T 2

1 +T 2
2 +T 2

3 .

Remark
Perhaps, among all Lie groups, the group SU(2) is the most significant
for physics. Thus, one should not be surprised that it plays a special role
also from a mathematical point of view. Indeed, it has the distinctive
property that the transformation U0, (6.49), exists in all its representa-
tions. Looking back at its matrix representation (6.52) one realizes that
U0 is a symmetric bilinear form for integer j, an antisymmetric bilin-
ear form for half-integer j. There is a theorem in the theory of compact
Lie groups which rests on this condition and which says that all repre-
sentations with integer angular momentum are real, in essence, that is to
say they are unitarily equivalent to a real form, while all representations
with half-integer eigenvalues are of quaternionic type15.

The first of these assertions is illustrated by Sect. 4.1.1 where we
started from a real representation of rotations with j = 1. For half-
integer values j = (2n+1)/2, in turn, the preceding paragraphs taught
us that the conjugate spinor representation is equivalent to the original
spinor representation – unlike the case of, say, SU(3)! Keeping in mind
the special role of the transformation (6.49) for quantum physics may
be helpful, for mathematically oriented readers, in illustrating the rather
abstract notions used in the book by Bröcker und tom Dieck (1985) and
in understanding better the proof of this theorem given there.

6.3 Lorentz- and Poincaré Groups
In any approach to (special-)relativistic quantum physics one must an-
alyze the Lorentz and Poincaré groups in the light of quantum theory.
These groups are noncompact Lie groups. Their representation theory is
more involved than that of a compact group such as SU(2) and it would
take too much space to go into much detail here. Therefore, we concen-
trate on the most essential question, from a physical point of view, of
how to describe quantum states with given masses and spins (particles,
nuclei, atoms).
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6.3.1 The Generators of the Lorentz and Poincaré Groups
The elements of the Poincaré group contain two entries (Λ, a) the
first of which, Λ, is a real 4×4-matrix and belongs to the proper,
orthochronous Lorentz group L↑+. The second argument a is a con-
stant four-vector which describes translations in space and time. With
x and x′ points in Minkowski space one has

x′ =Λx+a , or, in components, x′µ =Λµνxν+aµ , (6.105)

where use is made of the sum convention which says that one should
sum over any pair of equal and contragredient indices. That is to say,
the first term on the right-hand side is to be supplemented by

∑3
ν=0.

The homogeneous part Λ of the transformation obeys the condition

ΛT gΛ = g , (6.106)

with g = diag(1,−1,−1,−1) denoting the metric tensor of Minkow-
skian spacetime. The decomposition theorem for proper orthochronous
Lorentz transformations (see e. g. [Scheck (2005)]) tells us that every
such transformation Λ ∈ L↑+ can be written uniquely as the product of
a rotation and a boost. Furthermore, it was shown that these factors are
expressed in terms of three generators each, i. e., in the real notation
used in mechanics,

Λ = exp (−ϕ · J) exp
(
λŵ ·K)

.

In quantum physics it is more convenient to use a hermitean form for
the generators of rotations (cf. Sect. 4.1.1), and an antihermitean form
for boosts, viz.

J̃k := iJk , K̃ j := −iK j .

Inserting these definitions, but omitting the tilda for the sake of clarity,
one has

Λ = exp (iϕ · J) exp
(
iλŵ ·K)

(6.107)

Using this convention, the generators in the defining representation are

J1 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞⎟⎟⎟⎠ , J2 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

⎞⎟⎟⎟⎠ , J3 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞⎟⎟⎟⎠ .
(6.108)

K1 =

⎛⎜⎜⎜⎝
0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ , K2 =

⎛⎜⎜⎜⎝
0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ , K3 =

⎛⎜⎜⎜⎝
0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

⎞⎟⎟⎟⎠ .
(6.109)
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The commutation rules for these generators are given by

[J1, J2] = iJ3 , [J1,K1] = 0 ,

[J1,K2] = iK3 , [K1,K2] = −iJ3 , (6.110)

supplemented by the same commutators with the indices cyclically per-
muted. The first commutator is familiar from the analysis of the rotation
group. The second says that a rotation about a given axis commutes
with all boosts whose velocity points along that axis: Indeed, the ro-
tation changes only components perpendicular to the axis of rotation
but these are precisely the ones which remain unchanged under a spe-
cial transformation. The third commutator expresses the fact that the
triple (K1,K2,K3)=: K forms a vector operator. For an interpretation
of the most interesting fourth commutator see Sect. 4.5.2 of [Scheck
(2005)].

The inhomogeneous part of the Poincaré group can also be expressed
in terms of generators if, instead of the components xµ, one introduces
homogeneous coordinates yµ. These are obtained by supplementing the
components (x0, x1, x2, x3) by a fifth, inert, component and by replac-
ing the first four by yµ := y4xµ. A Poincaré transformation then takes
the form

y′µ =Λµνyν+ y4aµ , (µ= 0, 1, 2, 3) y′ 4 = y4 .

Let indices run from 0 to 4, that is to say, take

y′M = Λ̃M
N yN , (M = 0, 1, 2, 3, 4) , (6.111)

and write

Λ̃ =
(
Λ
µ
ν aµ

0 1

)
. (6.112)

Then homogeneous Lorentz transformations and translations are in-
cluded in a single scheme. A pure translation has the form (with Λ= 1l)⎛⎜⎜⎜⎜⎜⎝

y′ 0
y′ 1
y′ 2
y′ 3
y′ 4

⎞⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 a0

0 1 0 0 a1

0 0 1 0 a2

0 0 0 1 a3

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
y0

y1

y2

y3

y4

⎞⎟⎟⎟⎟⎟⎠ .

Choosing the coefficients aµ infinitesimally small and writing

y′ ≈
(

1l+i
3∑
ν=0

aνPν

)
y ,
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the generators Pν for translations in space and time are readily obtained:
iPν are 5×5-matrices with a 1 in position ν of the last column and
zeroes elsewhere.16 For instance one has

P0 =−i

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ .
The commutation rules for these generators and the generators

Ji und K j are easily evaluated. Denoting as usual spacetime indices by
Greek letters, and pure space indices referring to R3 by Latin letters,
one obtains[

Pµ,Pν
]= 0 ,

[
Ji,P j

]= i εijk Pk , [Ji,P0]= 0 ,[
Ki,P j

]=−i δij P0 [Kk,P0]=−iPk .

While the generators Ji and K j refer to three-dimensional space R3

only and, hence, do not have a simple transformation law with respect to
boosts, the set of generators Pµ form a four-vector with respect to L↑+.
Converting this covariant vector to a contravariant one,

Pλ = gλµPµ

these commutators become[
Pµ,Pν

]= 0 (6.113)[
Ji ,P j

]
= i εijk Pk ,

[
Ji ,P0

]
= 0 , (6.114)[

Ki ,P j
]
=−i gij P0 ,

[
Kk,P0

]
= i Pk . (6.115)

The first of these reflects the fact that all translations in space or time,
being elements of Abelian groups, commute. The commutators (6.114)
tell us that P = (P1,P2,P3) is a vector operator, and that the energy re-
mains unchanged under rotations in R3. Regarding (6.115) the left-hand
commutator says that Ki commutes with P j as long as i �= j, but that
a boost along a given direction does not commute with a translation in
the same direction. The right-hand commutator in (6.115), finally, tells
that a “boosted” state has different energies before and after a special
Lorentz transformation.

The components Pµ may be contracted to obtain the invariant P2 =
PµPµ = (P0)

2− P2 which commutes with all generators,[
P2,Pµ

]
= 0 ,

[
P2, Ji

]
= 0 ,

[
P2,Ki

]
= 0 . (6.116)

16 Translations form Abelian groups, the
generators Pν commute with one an-
other, cf. (6.113). Thus, a finite transla-
tion can be written in the form
exp{i∑ν aνPν}.
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As we shall see, in the representations which are relevant for quantum
physics, the operator P describes the momentum, while cP0 represents
the energy. As a consequence, P2/c2 will be the square m2 of a mass.

This description of the group L↑+ and of the translations has a techni-
cal disadvantage: While the generators Ji , K j , Pi and P0 have obvious
geometric and physical interpretations, their definition assumes a sep-
aration of spacetime into a physical position space R3 and a time Rt
measurable in the laboratory. This is somehow in conflict with the idea
of covariance because, in Special Relativity, what we call “space” and
what we call “time” depends on the chosen class of reference systems.
As is well-known, a boost mixes time and space coordinates and, there-
fore, changes the splitting of spacetime into R3 and Rt . There is no such
problem with the inhomogeneous part of the Poincaré group because
any set Pµ that one may choose transforms like a four-vector under L↑+.
In this sector covariance is explicit. Therefore, we may restrict our anal-
ysis to the homogeneous part of the Poincaré group, i. e. to the proper
orthochronous Lorentz group, and construct a manifestly covariant form
of its generators which should replace the set (J, K).

Suppose we write the (real) Lorentz transformation Λ ∈ L↑+ in the
neighbourhood of the identity 1l as follows

Λµν ≈ δµν + αµν .
The matrix of the coefficients for a boost along the 1-direction and for
a rotation about the 3-axis, for example, then is, respectively,

αµν =

⎛⎜⎜⎜⎝
0 ε 0 0
ε 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ , and αµν =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 ε 0
0 −ε 0 0
0 0 0 0

⎞⎟⎟⎟⎠ .
In either case the covariant tensor of rank two, defined by

αµν = gµµ′α
µ′
ν ,

is antisymmetric,

αµν+ανµ = 0 . (6.117)

With g= diag(1,−1,−1,−1) the two examples are, respectively,

αµν =

⎛⎜⎜⎜⎝
0 ε 0 0
−ε 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ , and αµν =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 −ε 0
0 ε 0 0
0 0 0 0

⎞⎟⎟⎟⎠ .
Obviously, the real tensor αµν is a covariant tensor with respect to

the group L↑+ which contains the parameters of the infinitesimal boost
and the infinitesimal rotation, respectively. A new form of the generators
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behaving properly under L↑+ is obtained if we introduce a set of 4×4-
matrices Mµν which are also antisymmetric,

Mµν + Mνµ = 0 , (6.118)

and which are defined such that infinitesimal transformations can be
written in the form

Λ ≈ 1l+ i

2

3∑
µ,ν=0

αµνMµν = 1l+i
∑
µ<ν

αµνMµν . (6.119)

Because of their antisymmetry (6.118) there are precisely 6 matrices of
this kind, i. e. the same number as with the choice (J, K). The relation
between the new and the previous form of the generators is easily es-
tablished once a class of reference systems is chosen which fixes the
splitting of spacetime into R3 and Rt .

If we choose α01 = ε=−α10, and all others equal to zero, we obtain

Λ ≈ 1l+i εK1 = 1l+i εM01 .

If we choose α12 =−ε=−α21, then

Λ ≈ 1l+i ε J3 = 1l−i εM12 .

Therefore, the relation between the two sets of generators is

K j =M0 j , J3 =−M12 (and cyclic permutations) . (6.120)

The commutators of the Mµν with the generators Pν and their mutal
commutators are found to be (see Exercise 6.13)[

Mµν,Pσ
]=−i

(
Pµgνσ −Pνgµσ

)
, (6.121)[

Mµν,Mστ
]= i

(
Mµσgντ +Mντgµσ −Mµτgνσ −Mνσgµτ

)
.

(6.122)

As an easy exercise one confirms that the relations (6.121) agree with
the commutators (6.114) and (6.115), and that (6.122) agrees with
(6.110). Of course, in calculating the commutators with Pµ one must
again introduce homogeneous coordinates (6.111) and must write the
Lorentz transformations (6.112) and their generators Mµν as 5×5-
matrices by filling the fifth row and the fifth column with zeroes.

Remarks

1. When constructing unitary, reducible or irreducible, representations
of the Poincaré group the generators Ji or Mij , as well as Pµ, are
replaced by hermitean matrices or self-adjoint operators which obey
the same commutation rules (6.113)–(6.114), (6.116), or (6.121) and
(6.122), respectively. Strictly speaking we should denote them by
new symbols such as U(Ji), U(Pµ). Note that, up to exceptions that
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will be mentioned explicitly, we will refrain from doing so and will
use the same notations as before. A similar comment concerns the
generators K j and Mµ=0,i , respectively, which are antihermitean.

2. One might be surprised to find the generators K j and M0i to be anti-
hermitean, not hermitean. Let us temporarily denote all generators,
Ji and K j , by Tn without distinction and consider an infinitesimal
Lorentz transformation generated by Tn ,

Λ ≈ 1l+i εTn ,

cf. (6.107). We then have ΛT = (1l+iεTn)
T = 1l−iεT†n . The condi-

tion (6.106) yields the equation

g Tn−T†n g= 0 .

If the generator is a component of the angular momentum, then the
metric g acts like the (negative) unit matrix and the condition re-
duces to Ji −J†i = 0. If, in turn, the generator is a component of K ,
then, as one easily verifies, gKi +Kig = 0, which means that the
above condition is fulfilled only if K†i =−Ki .
Obviously, the same argument applies to the generators Mik and M0i

which are nothing but different notations for the components of
J and K , respectively.

3. If one replaces the Ji and Ki by the linear combinations

Ai := 1

2
(Ji + i Ki) , Bi := 1

2
(Ji − i Ki) , (6.123)

then a simple calculation shows that every Ai commutes with
every B j while the components of A as well as those of B fulfill
the commutation relations of su(2), the Lie algebra of SU(2), viz.[

Ai,A j
]= i εijkAk ,

[
Bi,B j

]= i εijkBk ,
[
Ai,B j

]= 0 .
(6.124)

This is an interesting result: On the one hand all generators A and B
now are hermitean, in agreement with Wigner’s theorem and with
the Remark 2 in Sect. 6.1.2. On the other hand it shows that the
proper orthochronous Lorentz group has the structure of a direct
product

SU(2) × SU(2) . (6.125)

In particular, it possesses two inequivalent spinor representations,(
1

2
, 0

)
and

(
0,

1

2

)
, or (2, 1) and (1, 2) ,

if instead of the angular momentum we give the dimension of the
representations (cf. Sect. 6.2.8).
The action of space reflection Π = diag(1,−1,−1,−1) leaves the
generators Ji invariant, while the generators Ki change sign,

ΠJiΠ
−1 = Ji , ΠKiΠ

−1 =−Ki .
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This means that the generators Ai and Bi exchange their roles, and
the two spinor representations are mapped onto each other. As both
the group L↑+ and space reflection (or parity) play important roles in
quantum physics both kinds of spinors will be needed in the descrip-
tion of fermions with spin 1/2.

6.3.2 Energy-Momentum, Mass and Spin
The generators Pµ and Mµν are used to construct the scalar

P2 = PµPµ = (P0)2− P2 , (6.126)

having the physical dimension of (mc)2, and the four-vector

Wσ := 1

2
εµνλσMµνPλ . (6.127)

This vector is called the spin vector of Pauli und Lubanski. Here εµνλσ
is the totally antisymmetric Levi-Cività symbol in four dimensions, sup-
plemented by the convention

ε0123 = +1 (6.128)

It equals +1 if the indices are an even permutation of (0123), it equals
−1 if they are an odd permutation of (0123).17. (It should be clear that
we use here the sum convention aµbµ ≡∑3

µ=0 aµbµ.) If µ= 0 then
ε0ijk = εijk, i. e. it equals the corresponding antisymmetric symbol in di-
mension 3 (where cyclic permutations are even permutations.)

If we choose a class of reference systems which single out the time
coordinate then

W0 = 1

2
εijkεijlJlPk = J · P . (6.129)

From the definition (6.127) and by the antisymmetry of the ε-symbol
one concludes

Wσ Pσ = 0 .

Furthermore, one easily verifies the following commutators:[
Wσ ,Pµ

]= 0 ,
[
Mµν,Wσ

]=−i
(
Wµgνσ −Wνgµσ

)
. (6.130)

The second commutator (6.130) follows from the observation that Wσ

is a four-vector and, therefore, must have the same commutation rules
with Mµν as Pσ . The commutators of the components follow from this:

[Wλ,Wσ ] = 1

2
εαβγλ

{[
Mαβ,Wσ

]
Pγ +Mαβ

[
Pγ ,Wσ

]}
= −iεαβγλ

(
Wαδβσ −Wβδασ

)
Pγ

= −iελσαγWαPγ . (6.131)

17 Note that permutations are always
defined by means of neighbour ex-
changes. An even permutation from
(0123) to (nm pq) is one that needs an
even number of exchanges of neigh-
bours. Unlike in dimension 3, cyclic
permutations in dimension 4 are not
even!
The convention (6.128) which is not
adopted generally in the literature, im-
plies that ε0123 =−1.
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Taking the square W2 :=WσWσ yields another invariant which
commutes with all Pµ and with Mµν. In total we obtain six operators
which mutually commute and, thus, which may be used for classifying
representations of the Poincaré group:

Pµ (µ= 0, 1, 2, 3) , W2 , and one component Wλ . (6.132)

Instead of the four components Pµ one may alternatively use only
three of them together with the square P2. Note, however, that only
one component of W may be contained in the set (6.132) because the
components do not commute – in analogy to the discussion of the com-
ponents of ordinary angular momentum. Clearly, the components Pµ

must be the operators of energy and momentum while angular momen-
tum and/or spin must be hidden in W2 and Wσ . Working out the precise
relationship is the purpose of the section immediately following this
one.

6.3.3 Physical Representations of the Poincaré Group
The description of elementary objects of microphysics such as atoms,
nuclei, or elementary particles, builds upon a postulate which is due to
E. Wigner. For simplicity we shall call any such object a particle. The
postulate then reads as follows.

Postulate Classification of Particles

Particles are classified by eigenvalues of mass and spin, i. e. by
the eigenvalues of P2 and of W2, the spin taking only integer or
half-integer values. The dynamical states of free particles can be
characterized by the eigenvalues of the four operators Pµ of the en-
ergy and the momentum, and by one component of spin.

Write the eigenvalues of P2 as m2c2, where m is the invariant rest
mass of the particle. Then P0 has eigenvalue E/c, the three-vector P
has eigenvalues p, with E and p the energy and the momentum, re-
spectively, in a class of systems of reference in which the time axis is
given

(E/c)2+ p2 = m2c2 .

Interestingly enough it turns out that one must distinguish the two
possible alternatives of massive particles, m �= 0, and of massless par-
ticles, m = 0, the analysis of their representations being rather different.

The Case m �= 0: Every massive particle possesses a rest system. In
other terms, if it is given in a state with momentum p one can al-
ways find a special Lorentz transformation which transforms to the
particle’s rest frame where its four-momentum is (mc, 0)T . In the rest
system the eigenvalue of W0 is zero by (6.127) because Pλ contributes
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only for λ= 0, while the ε-tensor vanishes whenever two indices are
equal. Regarding the spatial components, the definition (6.127), together
with (6.120) and p0 =mc yield the relation Wi =mc Ji . From this one
concludes that the commutators are[(

Wi

mc

)
,

(
W j

mc

)]
= i

3∑
k=1

εijk

(
Wk

mc

)
and, in particular, that W2/(mc)2 has eigenvalues j( j+1). Let n be
a spacelike unit vector which is perpendicular to p, i. e. which ful-
fills n2 =−1 and (n · p)= 0. In the rest system it must have the form
0
n= (0, n̂)T so that n2 =−n̂2 =−1 and

1

mc
(W ·n)= J · n̂=: Jn̂ .

Denote the eigenvalue of this operator in the rest system by µ. As the
(Lorentz-) scalar product (W ·n) is an invariant under all Λ ∈ L↑+, µ is
its eigenvalue in all systems of reference. Of course, the set of values
that this eigenvalue can take, is well-known to us from the study of the
rotation group. It is

µ = − j,− j+1, . . . , j−1, j .

In summary, we note the following: The spin of a massive particle
is described, in a Lorentz invariant manner, by the operators

1

(mc)2
WσWσ = 1

(mc)2
W2 and

1

mc
(W ·n) . (6.133)

Pictorially speaking this means that in order to measure the spin of
a massive particle one must go to its momentaneous rest system and
perform all kinds of rotations in R3. If its state responds by D( j) then
the particle carries spin j; the admissible values of the projection of the
spin onto an arbitrary axis in R3 are the numbers − j,− j+1, . . . , j
that are well-known from nonrelativistic quantum mechanics.

The Case m= 0: A massless particle has no rest system, in vacuum
it moves always with the velocity of light and, for a massive observer,
there is no causal way of “catching” the particle. Therefore, the analy-
sis of the previous section cannot be applied to this case. This essential
difference can also be seen from a group theoretical point of view:

A massive particle has timelike four-momenta, p= (E/c, p)T with
p2 > 0, and, thus, can always be brought to rest. The maximal subgroup
of the Lorentz group L↑+ which leaves invariant its four-momentum
(mc, 0)T , obviously, is the full rotation group.

A massless particle has lightlike four-momenta, p= (E/c= |p|, p)T

with p2 = 0. The maximal subgroup of L↑+ which leaves this mo-
mentum invariant, is the one-parameter group of rotations about the
direction p̂ which, obviously, is smaller than the full rotation group.
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Therefore, it is not surprising that the spin of a massless particle is de-
fined differently than for a massive particle, and has different properties.

Imagine that we are in a representation in which the massless par-
ticle takes an arbitrary but fixed eigenvalue p of P. Our aim is to find
the operators which describe the spin of the massless particle. In order
to express the components of Wλ we introduce a system of base vectors

(n(0), n(1), n(2), n(3))

the first of which, n(0), is timelike, the others being spacelike, and
which are pairwise orthogonal, (n(α) ·n(β))= 0 for α �= β. Furthermore,
they are taken to be normalized to ±1, with n(0) 2 = 1, n(i) 2 = −1
(i = 1, 2, 3), and n(1) and n(2) to be orthogonal to p,

(p ·n(1)) = 0 = (p ·n(2)) .
One verifies that n(3) is the following linear combination of p and
of n(0)

n(3) = 1

(p ·n(0)) p−n(0) .

For example, if we chose the frame of reference such that p =
(q, 0, 0, q)T then the base vectors could be

n(0) = (1, 0, 0, 0)T , n(1) = (0, 1, 0, 0)T ,
n(2) = (0, 0, 1, 0)T , n(3) = (0, 0, 0, 1)T .
A base system of this kind is orthogonal and complete in the follow-

ing sense(
n(α) ·n(β)

)
= gαβ (orthogonality) (6.134)

n(α)σ gαβn(β)τ = gστ (completeness) , (6.135)

(where we again make use of the sum convention).
Define new operators J(σ) through the expression

Wλ = J(σ)gστn
(τ)
λ . (6.136)

From the orthogonality relation (6.134) one has

J(µ) =Wλ n(µ) λ ≡ (W ·n(µ)) .
One concludes from this formula that J(0) and J(3) are equal and oppo-
site since, with (W · p)= 0, one has

J(0)+J(3) = (W ·n(0))+
(

W ·
[

1

(p ·n(0)) p−n(0)
])
= 0 .

Thus, the (four-)square of the angular momentum is

J2 = J(0) 2−J(1) 2−J(2) 2−J(3) 2 =−
(

J(1) 2+J(2) 2
)
.
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In the next step one proves that the operators J(i), i = 1, 2, 3, fulfill
the following commutators[

J(1), J(2)
]
= 0 ,

[
J(2), J(3)

]
=−i (p ·n(0)) J(1) ,[

J(3), J(1)
]
=−i (p ·n(0)) J(2) . (6.137)

We begin with the first commutator and calculate[
J(1), J(2)

]
= n(1) λn(2)σ [Wλ,Wσ ]

=−i ελσαβ n(1) λn(2)σWα pβ

=−i ελσαβ n(1) λn(2)σn(ν)αgµνJ(µ) pβ ,

where we used the commutator (6.131) and the definition (6.136). The
index ν can only take the values 0 and 3, because otherwise the ε-tensor
which is antisymmetric, is contracted with the product of two equal base
vectors which is symmetric, thus giving zero. For the remaining values
ν = 0 and ν = 3, using J(3) =−J(0) and g00 = 1=−g33 one obtains[

J(1), J(2)
]
= i ελσαβ n(1) λn(2)σ (n(3)α+n(0)α)pβJ(3) .

However, as (n(3) α+n(0) α) is proportional to pα and, hence, since the
symmetric product pα pβ is contracted with the antisymmetric ε-tensor
the commutator is equal to zero.

Among the two remaining commutators we calculate the second, as
an example,[

J(2), J(3)
]
= n(2) λn(3)σ [Wλ,Wσ ]

=−i ελσµν n(2) λn(3)σWµ pν

=−i ελσµν n(2) λn(3)σn(β)µgαβJ(α) pν .

Inserting here p= (p ·n(0))(n(3)+n(0)) one sees that only the second
term can contribute. This also means that β can only take the value 1.
Inserting this and commuting indices such that the base vectors appear
in increasing order yields with g11 =−1[

J(2), J(3)
]
=−i ενµλσn(0) νn(1) µn(2) λn(3) σ (p ·n(0)) J(1) .

The factor ενµλσn(0) νn(1) µn(2) λn(3) σ is seen to be the determinant of
the 4×4-matrix constructed with the base vectors and is equal to 1.
This proves the second commutator. The proof of the third commutator
goes along the same lines.

Finally, if we set

S(i) := − 1

(p ·n(0))J
(i) ,
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then the commutators (6.137) go over into a form that is well-known
from Euclidean geometry, viz.[

S(1),S(2)
]
= 0 ,

[
S(2),S(3)

]
= i S(1) ,

[
S(3),S(1)

]
= i S(2) .

(6.138)

This algebra is isomorphic to the Lie algebra of the Euclidean group
in two real dimensions. S(1) and S(2) correspond to the generators for
translations along the 1- and 2-directions, respectively, S(3) corresponds
to the generator of rotations around the origin, cf. Exercise 6.11. Much
like for the rotation group this information is sufficient to construct the
representations which are suitable candidates for classifying massless
particles. It will turn out, however, that in addition to our experience
with the rotation group we will need one further empirical information
for that purpose.

It comes as a surprise that with (6.134) the operator

W2 = J2 =−
(
(J(1))2+ (J(2))2

)
can take any negative value. Apparently this operator is not quantized.
As in nature there are no physical states with continuous spin, one
postulates that the physical states of a massless particle pertain to the
eigenvalue w2 = 0 of the operator W2 =WσWσ . The conditions follow-
ing from this additional, empirical postulate

w2 = 0 , p2 = 0 , (w · p) = 0

allow to draw an important conclusion: The four-vectors w and p must
be collinear,

w = h p . (6.139)

The factor of proportionality h is called the helicity. The word is derived
from the notion of helix and refers to a sense of rotation with respect
to some given direction. This sense of rotation is defined by the cor-
relation between the spin alignment and the spatial momentum of the
massless particle. This is best understood if one returns to a class of
frames in which the time axis is fixed. According to (6.129) one then
has W0 = p · J. Denote the operator whose eigenvalues are h by the
bold symbol h. With (6.139) one also has W0 = p0h, where p0 = |p|,
so that one concludes

h= p · J/ |p| . (6.140)

The operator h describes the projection of the angular momentum onto
the spatial momentum of the particle. In principle, it contains both
orbital and spin angular momenta. However, since we know that the
projection m	 of the orbital angular momentum onto p always vanishes
(cf. Sect. 1.9.3), it describes the projection of the spin onto the direction
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of flight. A massless particle having no rest system, this is the only pos-
sibility to define the spin of the particle. One says that s= |h| is the spin
of the massless particle.

What are the eigenvalues of the spin so defined? Is there an ana-
logue to the magnetic quantum number? If w= h p, as imposed by the
empirical condition above, the operators J(1) and J(2) have the eigen-
values 0. The eigenvalue of J(3) is −(p ·n(0))h which means that the
eigenvalue of S(3) is h. To obtain more information it is instructive to
study the action of space reflection onto the helicity operator (6.140).
The operator J is invariant, while p changes sign. Therefore, helicity is
what is called a pseudoscalar, i. e. a quantity which is invariant under
rotations but changes sign under the action of space reflection. As a con-
sequence of this observation, the spin s is seen to admit two polarization
states, +h and −h, which are related by space reflection. Finally, as S(3)

generates rotations about the direction of p and since wave functions
of bosons must be one-valued, those of fermions must be two-valued,
the quantum number s can take only integer and half-integer values,
respectively,

s = 0,
1

2
, 1,

3

2
, 2, . . . .

Remarks

1. It is interesting to note that helicity is an invariant under L↑+ only for
massless particles. Trying the same definition for a massive particle
one realizes that (6.140) is no longer invariant under special Lorentz
transformations (boosts).

2. The photon is the best known, most certainly massless particle. Ac-
cording to the definition given above its spin is 1. The two distinct
orientations h =+1 and h =−1 are realizable in physics because
the electromagnetic interaction is not only invariant with respect
to L↑+ but also with respect to space reflection Π. Classically, these
two “magnetic” states correspond to plane waves with right- or left-
circular polarization.

3. For many years one thought that the three neutrinos νe, νµ, and ντ ,
all of which carry spin 1/2, were strictly massless. Nowadays there
is experimental evidence that all or some of them have nonvanishing
masses, though very small as compared to the masses of their elec-
trically charged partners e, µ, and τ . If they were strictly massless
we would classify them by their helicity states. Neutrinos participate
in the weak interactions about which we know that they are not in-
variant under Π. Thus, it seems plausible, that only one of the two
helcity states is physically realized.

4. The case of spin s = 1/2 is somewhat special insofar as both a mas-
sive, and a massless spin-1/2 fermion shows two orientations of the
spin. This shows an essential difference from a particle with spin
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s = 1 (or any higher integer or half-integer spin). If the spin-1 par-
ticle is massive the spin has three physically possible orientations
ms = 1, ms = 0, and ms =−1. If it is massless there are only two
physical states, h =+1 and h =−1. More generally, a particle with
nonvanishing mass M and spin s ≥ 1 possesses the 2s+1 substates
well-known from the rotation goup. If its mass is zero its helicity has
only the eigenvalues h = s and h =−s. As we shall see in our dis-
cussion of the Dirac equation the limit mass→ 0 is continuous in
the case of spin-1/2 particles but is discontinuous for particles with
s ≥ 1.

6.3.4 Massive Single-Particle States and Poincaré Group

Though anticipating a little I wish to add one more topic to the repre-
sentation theory of the preceding section: the explicit action of Poincaré
transformations on single-particle states. In doing so I make use of sec-
ond quantization that was introduced in Sect. 5.3.2 and to which I return
in more detail in the next chapter.

The particle is assumed to have a nonvanishing mass M and to
carry spin s. Any other quantum numbers which might be needed to
characterize its state but which are irrelevant for this discussion, are
summarized by the symbol α. The aim is to work out the action U(Λ, a)
of an arbitrary Poincaré transformation (Λ, a) on the state |α; s m; p〉.
For this purpose we make use of the following

Remark
In the present context it is important to keep in mind the difference be-
tween passive and active interpretations of symmetry transformations.
Take the example of rotations in space R3. The passive interpretation
assumes that the frame of reference is rotated while the physical ob-
ject is kept unchanged; In the active interpretation it is that object which
is rotated while the frame is kept fixed. Thus, an active rotation, when
expressed in terms of Eulerian angles, has the form

R= eiJ3ψ eiJ2θ eiJ3φ .

With the conventions introduced in Sect. 4.1.3 the D-matrices are given
by

D( j)
mµ(ψ, θ, φ)= 〈 jm|R | jµ〉 , (6.141)

in agreement with (6.18). Note that in Part One rotations were always
interpreted as passive transformations. Furthermore, we noted that base
states transform by

| jm〉 ′ =
∑
m′

D( j) ∗
mm′

∣∣ jm′
〉
.
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A passive rotation is described by the inverse of the above, active one,
viz.

R−1 = e−iJ3φ e−iJ2θ e−iJ3ψ

Thus, the formula just given is equivalent to

| jm〉 ′ ≡ U(R−1) | jm〉 =
∑
m′

D( j) ∗
mm′

∣∣ jm′
〉=∑

m′

(
D( j) †

)
m′m

∣∣ jm′
〉
,

(Note that in the last expression summation is over the first index).
Replacing the passive rotation by an active one, means replacing R−1

by R, and D−1 = D( j) † by D( j). Therefore, one has

U(R) | jm〉 =
∑
m′

D( j)
m′m(ψ, θ, φ)

∣∣ jm′
〉
, (6.142)

(summing again over the first index). A remark which is relevant for
what follows is this: One should realize that the action of the Poincaré
transformations is an active one. For instance, the action of U(L(p)) on
a particle state really means actively “boosting” from the rest system to
four-momentum p.

With this comment in mind we return to the construction of repre-
sentations of Poincaré transformations. In the rest system of the particle
the eigenstates of s2 and of s3 are∣∣∣∣α; s m; 0

p
〉

with
0
p= (Mc, 0, 0, 0)T .

Writing proper orthochronous Poincaré transformations as (Λ, a), with
Λ ∈ L↑+, and a the four-vector of time and space translation, and denot-
ing by U their representations in the space of single-particle states, an
active rotation R ∈ SO(3) acts as follows:

U (R, 0)

∣∣∣∣α; s m; 0
p
〉
=

∑
m′

D(s)m′m(R)

∣∣∣∣α; s m′
0
p
〉
.

If that same state is boosted, by means of the special Lorentz transfor-
mation L(p) to a momentum p then

|α; s m; p〉 = U (L(p), 0)

∣∣∣∣α; s m; 0
p
〉
.

The result is a state of the massive particle carrying spin quantum
numbers (s,m) and moving with four-momentum p. As one sees very
clearly, the spin of a massive particle is defined with reference to its rest
system.

We now have all tools ready that are needed to answer the question:
What is the action of an arbitrary Poincaré transformation U(Λ, a) on
the state |α; s m; p〉?
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Λp

(m,o)

(p
=m

)
2

2

0

p

Fig. 6.10. The momentum p of a mas-
sive particle is reached by boosting it
from the rest system as sketched in the
figure. In the second step an arbitrary
proper, orthochronous Lorentz transfor-
mation is applied to it, taking p to Λp.
Finally, the transformed momentum is
boosted back to the rest system

18 There should be no reason for con-
fusion if I use the same notation R for
rotations, in �

3 as well as in �
4. Of

course, the correct notation in space-
time is R = diag (1,R).

Homogeneous Transformations (a = 0): It is convenient to first con-
sider the proper orthochronous transformations only and to set a = 0.
In this case one has

U(Λ, 0) |α; s m; p〉 = U(Λ, 0)U(L(p), 0)

∣∣∣∣α; s m; 0
p
〉
.

defining pΛ =Λp and making use of the group property in the repre-
sentation at stake, one has

U(Λ, 0)U(L(p), 0)= U (L(pΛ))U
(

L−1(pΛ)ΛL(p)
)
.

Applying this to the state |α; s m; p〉 one obtains

U(Λ, 0) |α; s m; p〉 = U (L(pΛ))U
(

L−1(pΛ)ΛL(p)
) ∣∣∣∣α; s m; 0

p
〉
.

A sketch may help to visualize the action of the product L−1(pΛ)ΛL(p)
on a state in the rest system. The first (rightmost) factor L(p) boosts the
particle from a state of rest (Mc, 0, 0, 0)T to a state with momentum p.
Then, the Lorentz transformation Λ acts on this state by taking p to
pΛ =Λp. Finally, the inverse of L(pΛ =Λp) takes the particle back
to a state of rest. All three values of the momentum lie on the upper
branch of the hyperboloid

(
0
p)2 = p2 = (Λp)2 = (Mc)2 .

As the particle is at rest both before and after the round trip sketched
in Fig. 6.10 the product of the three Lorentz transformations must be
a pure, active rotation18

L−1(pΛ =Λp)ΛL(p) := RW . (6.143)

This resulting rotation is called Wigner rotation.
Its action on the state in the rest system is, according to (6.142),

U
(

L−1(Λp)ΛL(p)
) ∣∣∣∣α; s m; 0

p
〉
=

∑
m′

D(s)m′m(RW )

∣∣∣∣α; s m′; 0
p
〉
.

Finally, the remaining transformation U (L(pΛ)) can be shifted past
the matrix elements of the rotation matrix D(s), and one obtains the pre-
liminary result

U(Λ, 0) |α; s m; p〉 =
∑
m′

D(s)m′m(RW )
∣∣α; s m′; (Λp)

〉
.

This “shifting” needs a little reflection. The action of the Wigner rota-
tion results in a linear combination of the states |sm〉 whose coefficients
are elements of the corresponding D-matrix. The remaining special
Lorentz transformation whose argument is pΛ, does not change these
coefficients. It just boosts the momentum to the value pΛ.



66.3 Lorentz- and Poincaré Groups 397

Translations: We now include translations in space and time. By the
group property one has

U(Λ, a)= U(1l, a)U(Λ, 0) .

The operator exp{i/� aµPµ} is the unitary operator which describes the
action of the translation (1l, a), pµ is the eigenvalue of Pµ, and (a · p)
is the eigenvalue of (a ·P). Therefore, one obtains

U(1l, a) |α; s m; p〉 = e(i/�)(a·p) |α; s m; p〉 .
Composing the two parts one obtains the desired result

U(Λ, a) |α; s m; p〉 = ei/�(a·pΛ) (6.144)∑
m′

D(s)m′m

(
L−1(pΛ)ΛL(p)

) ∣∣α; s m′; pΛ
〉
,

where the abbreviation pΛ =Λp was used.

When is the Representation (1.144) Unitary? It is obvious that the
representation (6.144) is irreducible. But is it also unitary? In or-
der to answer this question one must know the normalization of the
single-particle states |α; s m; p〉. The particle, being free, moves on
its mass shell, that is to say, its four-momentum fulfills the condi-
tion p2 = (Mc)2, its time component p0 is fixed by the modulus of
the spatial momentum, (p0)2 = (Mc)2+ p2. If the plane waves were
normalized to a simple δ-distribution as in nonrelativistic quantum
mechanics then this normalization would depend on the frame of ref-
erence and, hence, would not be very useful. However, one shows that
the product of p0 and δ(p− p′) is invariant both under rotations and un-
der special Lorentz transformations, hence, under the whole group L↑+,
see Exercise 6.12. This result suggests to introduce a L↑+-invariant nor-
malization, the covariant normalization. We define it as follows〈

p′
∣∣p
〉= 2p0 δ(p− p′) . (6.145)

Written out in more detail for single-particle states it reads〈
α′; s′m′; p′

∣∣α; sm; p
〉= δα′αδs′sδm′m 2

√
(Mc)2+ p2 δ(p′ − p) .

(6.146)

One now shows that, indeed, the representations (6.144) are unitary,
i.e that in the space of single-particle states

U†U= 1l= UU† .

For the sake of simplicity we drop the quantum numbers α, α′ and use
the following abbreviations for the Wigner rotations

RW = L−1(Λp)ΛL(p) , R′W = L−1(Λp′)ΛL(p′) .
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We calculate the scalar product of two states constructed according
to (6.144),〈

s′m′; p′
∣∣U†(Λ, a)U(Λ, a) |sm; p〉 =∑

µ

∑
µ′

D(s) ∗
µ′m′(R

′
W )D

(s)
µm(RW ) e−i (p′Λ·a) ei (pΛ·a) 〈s′µ′; p′Λ

∣∣sµ; pΛ
〉
.

The last factor in this expression is evaluated by means of (6.146)
and is found to be equal to〈

s′µ′; p′Λ
∣∣sµ; pΛ

〉= δs′sδµ′µ 2
√
(Mc)2+ p2

Λ δ(p
′
Λ− pΛ)

= δs′sδµ′µ 2
√
(Mc)2+ p2 δ(p′ − p) .

In the second step the invariance of p0δ(p′ − p) was used. The Kro-
necker symbols contribute only for s′ = s and µ′ =µ. The δ-distribution
in the spatial momenta is different from zero only if the spatial mo-
menta p′ and p are equal. However, in this case also the two rotations
are the same and one obtains∑

µ

D(s) ∗
µm′ (RW )D

(s)
µm(RW )=

∑
µ

(
D(s) †(RW )

)
m′µ

(
D(s)(RW )

)
µm

= δm′m .
From these results one concludes〈
s′m′; p′

∣∣U†(Λ, a)U(Λ, a) |sm; p〉 = 〈
s′m′; p′

∣∣sm; p
〉
. (6.147)

This proves the unitarity of the representation (6.144).
The representation (6.144) with s= 1/2 will be a good starting point

for the construction of the force-free Dirac equation. We return to this
topic in Chap. 9 below.
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Quantized Fields
and their Interpretation

Introduction

This chapter deals with the quantum theory of systems with an in-
finite number of degrees of freedom and provides elements of

quantum field theory. A classical field such as the real scalar field,
a Maxwell field, or some continuous mechanical system, when sub-
ject to the rules of quantum theory, turns into a field operator which
can create or annihilate quanta of this field and which describes the
kinematics and the spin properties of these quanta. This step allows
to extend scattering theory to processes in which quanta, or par-
ticles, are created or annihilated, and, thus, which do not necessarily
conserve particle numbers. Canonical quantization is based on a for-
malism making use of Lagrange densities which are constructed in
view of a mild generalization of Hamilton’s variational principle of
point mechanics. Hence, it is not difficult to build in, or take care of,
symmetries and invariances of the theory. In particular, creation and
annihilation of particles by interaction terms which determine reac-
tions and decay processes, will always be in accord with the selection
rules of the theory.

Perhaps the simplest and most transparent approach to the the-
ory of free quantized fields is canonical quantization as developed
by Born, Heisenberg, and Jordan. It was obtained by its close anal-
ogy to the quantization of mechanical systems with a finite number
of degrees of freedom. An alternative, more intuitive approach makes
use of path integrals and was developed by Dirac and Feynman. In
this chapter we concentrate mainly on the first of these because the
canonical formalism is of great practical importance. Path integral
quantization of fields is an important topic on its own, and would go
beyond the scope of this book. I advise to consult the monographs
listed in the bibliography.

7.1 The Klein-Gordon Field
In a sense to be described more precisely the Klein-Gordon equation is
an analogue of the force-free Schrödinger equation. It reads

�φ+κ2φ = 1

c2

∂2

∂t2φ−�φ+κ2φ = 0 , with κ = mc

�
(7.1)
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The differential operator � that it contains is the generalization of the
Laplace operator to Minkowskian spacetime. Its explicit form in terms
of the time and space coordinates of an arbitrarily chosen frame of ref-
erence, and the characteristic relative minus sign between the second
time and space derivatives follow from the Lorentz invariant contraction
of the partial derivatives ∂/∂xµ and ∂/∂xµ. Resolved in time and space
coordinates these are

∂µ ≡ ∂

∂xµ
=

(
∂

∂x0 ,∇
)
, ∂µ ≡ ∂

∂xµ
=

(
∂

∂x0 ,−∇
)
, (7.2)

from which one obtains

�= ∂µ∂µ = ∂2

(∂x0)2
−�= 1

c2

∂2

∂t2 −� . (7.3)

The constant in the second term of (7.1), except for a factor 2π, is the
inverse of the Compton wave length of a particle with mass m,

1

κ
= λ

(m)

2π
= �

mc
= �c

mc2 .

This means that processes in which this particle participates, are char-
acterized by the length (�c)/(mc2) = (197.33 MeV/mc2) fm. For in-
stance, in the case of a charged π-meson which has the mass mπ± =
139.57 MeV this length is equal to 1.41 fm.

Note that up to this point already two physical assertions are made:
The Klein-Gordon equation is the relativistic analogue of the force-free
Schrödinger equation, and λ(m) is a length which is relevant for physical
processes. Before I continue with the main matter I wish to illustrate
these two statements.

1. Try to solve the Klein-Gordon equation (7.1) by means of the fol-
lowing ansatz

f p(x)= f p(t, x)= e−(i/�)p·x = e−i/�(cp0t−p·x) ,
where p= (p0, p) is an arbitrary four-vector endowed with the phys-
ical dimension of a momentum. Then from (7.1) there follows the
condition

p2 = (p0)2− p2 = (mc)2 . (7.4)

Thus, the fourth component p0 is fixed in terms of the spatial
momentum p and the mass m. The component p0 which car-
ries the physical dimension (energy/c) may be replaced by the
energy E = c p0 which then satisfies the known relativistic energy-
momentum relation

E =
√
(cp)2+ (mc2)2 .

This is a simple but important result: If one expands an arbitrary
solution φ(x) in terms of plane waves f p(x), this expansion will
contain only momenta which obey the condition (7.4). Every partial



77.1 The Klein-Gordon Field 401

solution must lie on the mass shell of the particle with mass m. The
main purpose of the Klein-Gordon equation is to guarantee that the
free particle satisfies the relativistic energy-momentum relation. It is
in this sense that, indeed, it is analogous to the Schrödinger equation
without forces

i�
∂ψ(t, x)
∂t

=− �
2

2m
�ψ(t, x)

which, by the same ansatz f p(t, x), yields the nonrelativistic relation
E = p2/(2m) between energy and momentum. To this observation
I wish to add the following comment:

Remark
A free particle which carries spin s is described by a set of fields
which contain the information about that spin s and its projection quan-
tum number s3. Calling the fields of this set simply “components” of
a single-particle field one concludes:

Every component of a field which describes a free particle with spin s
must satisfy the Klein-Gordon equation.

The Klein-Gordon equation guarantees the correct relation between
energy and momentum. However, by itself, it does not suffice to de-
scribe the spin content of a (multi-component) field. An example
taken from electrodynamics may illustrate this. Both the electric and
the magnetic field fulfill the wave equation in vacuum(

1

c2

∂2

∂t2 −�

)
F(t, x)= 0 ,

which tells us, in the language of particle physics, that the photon
is massless. The relative orientation of the magnetic and the elec-
tric fields which is characteristic for Maxwell theory, follow from
Maxwell’s equations proper which contain more information than the
wave equation. Again, speaking like in particle physics, only the full
set of Maxwell’s equations show that the photon carries helicity 1.

2. The Klein-Gordon equation follows from the Lagrange density

LKG(φ, ∂µφ)= �c1

2
[∂µφ(x)∂µφ(x)−κ2φ2(x)]

= �c1

2
[∂µφ(x)gµν∂νφ(x)−κ2φ2(x)] . (7.5)

Taking the partial derivatives with respect to φ and to ∂µφ and in-
serting into the Euler-Lagrange equation,
∂LKG

∂φ
−∂µ ∂LKG

∂(∂µφ)
=−�c

(
κ2φ+∂µ∂µφ

)
= 0 ,

indeed, yields the Klein-Gordon equation.
The Lagrange density (7.5) must have the physical dimension (en-
ergy/volume). With the factor as given here this is correct if the
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field φ(x) has the dimension (length)−1 – unlike solutions ψ(t, x) of
the Schrödinger equation whose physical dimension is (length)−3/2.
What is the reason for this difference? I wish to give three answers
to this question:

(a) Firstly, some reflection shows that the solutions φ(x) of
the Klein-Gordon equation, unlike in nonrelativistic quantum
mechanics, cannot be interpreted as being probability ampli-
tudes and that, therefore, they must not necessarily have the
same dimension as those of the Schrödinger equation. In con-
trast to the latter the Klein-Gordon wave functions cannot be
probability amplitudes in the sense of Born’s interpretation.
A first reason for this is the fact that the Klein-Gordon equa-
tion is a differential equation of second order, not first order,
in time. Besides the second initial condition that has to be
imposed on solutions of the Klein-Gordon equation the proof
of the conservation of probability in Sect. 1.4 no longer goes
through. Another, deeper reason is that the Klein-Gordon field,
like any other field in relativistic quantum theory, describes
both particle and antiparticle degrees of freedom. Therefore,
the Klein-Gordon equation can no longer be interpreted as
a single-particle theory.

(b) As we will show in the next section, a meaningful, Lorentz co-
variant scalar product of normalizable solutions of the Klein-
Gordon equation is given by

(φ1, φ2)= i
∫

d3x
{
φ∗1(x)∂0φ2(x)−

(
∂0φ
∗
1(x)

)
φ2(x)

}
(x0 = const) .

It is reasonable to require scalar products to have no dimen-
sion. As ∂0 carries dimension (1/length) the solutions φi(x)
must have the dimension found above.

(c) On the other hand, in admitting also complex valued solutions
of the Klein-Gordon equation, we will find that the electro-
magnetic four-current density is given by

jµ(x)= Q ec iφ∗(x)
↔
∂µ φ(x)

where e is the elementary charge and Q a dimensionless posi-
tive or negative integer number. (The symbol for the derivative
stands for the skew-symmetric partial derivative acting to the
right and to the left. Its definition is repeated in (7.9) below.)
If this expression is correct then, indeed, φ must have the di-
mension (length)−1.

To LKG we add an interaction term Lint =−�cφ(x)�(x) where �(x)
represents an external source whose physical interpretation will soon
become clear by way of an example. The Euler-Lagrange equation
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following from the new Lagrange density reads

�φ+κ2φ =−�(x) , (7.6)

with �(x) taking the role of an external source for the Klein-
Gordon field φ(x). As an example we consider a static, point-like
source of strength g, i. e. �(x)= g δ(x). For static solutions of (7.6),
φ(x) = φ(x), and with �ψ(x)= −�ψ(x) this differential equation
goes over into(

�−κ2
)
φ(x)= g δ(x) . (7.7)

This latter equation is solved best by first determining its Fourier
transform: Using

φ(x)= 1

(2π)3/2

∫
d3k eik·xφ̃(k)

the differential equation (7.7) is turned into an algebraic equation(
k2+κ2

)
φ̃(k)=−g

1

(2π)3/2
,

whose solution is obvious. The inverse Fourier transform is obtained
by integration using spherical polar coordinates in R3

k . With r = |x|
and k = |k| one has

φ(x)=− g

(2π)3

∫
d3k

eik·x

k2+κ2

=−2π
g

(2π)3

∞∫
0

k2 dk
eikr − e−ikr

(k2+κ2)ikr
=− g

4π

e−κr

r
.

Assume the source to be a nucleon whose mass is large as compared
to m and which is located at the point x0. In an arbitrary point x it
creates the field

φ(0)(x)=− g

4π

e−κ|x−x0|

|x− x0| .

Consider now the Hamilton density of the interaction Hint =−Lint
as well as the interaction energy (obtained by integrating over the
whole space), Hint =

∫
d3x Hint(x). Inserting �(1)(x) = g δ(x− x1)

one obtains

Hint = �c
∫

d3x φ(0)(x)�(1)(x)=−�c g2

4π

e−κ|x1−x0|

|x1− x0| . (7.8)

This energy which may be interpreted as the interaction energy of
two (very heavy) nucleons, is called Yukawa potential1. The strength
of this interaction is characterized by the parameter g2/(4π), its

1 After H. Yukawa who in 1936 pre-
dicted the existence of π-mesons from
an interpretation of nuclear forces by
the exchange of mesons, and from the
range of these forces.
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N N

N N

Fig. 7.1. A π-meson of mass mπ is
exchanged between two nucleons of
mass mN . If mN �mπ holds true then
the nucleons can be regarded as inert
external sources in the Klein-Gordon
equation

range by 1/κ = λ(m)/(2π). In Fig. 7.1 it is represented schematically
by full incoming and outgoing lines for the two nucleons, and by
a dashed line joining two vertices for the π-meson.

7.1.1 The Covariant Normalization
It is useful to introduce an abbreviation for partial derivatives acting
to the right and to the left with a relative minus sign (see also (2.3)
of Sect. 2.2),

f
↔
∂µ g := f

(
∂g

∂xµ

)
−
(
∂ f

∂xµ

)
g . (7.9)

Let φn(x) and φm(x) be square integrable solutions of the Klein-Gordon
equation whose quantum numbers are denoted symbolically by n and m,
respectively. Define a scalar product by the following integral with
a fixed value of the time coordinate x0

(φn, φm)|x0 = i
∫

d3x φ∗n(x)
↔
∂0 φm(x) . (7.10)

As one easily confirms, the integral (7.10) has the properties of
a scalar product: It is linear in the second argument, and antilinear in
the first. It fulfills the relations

(φn, φm)
∗ = (φm, φn) , (φm, φm)≥ 0 ,

and for fixed φ0, and for all φn it vanishes if and only if φ0 is the null
element.

Although the integral (7.10) seems to assume the choice of a class of
reference systems which define the time axis, the definition is Lorentz
covariant. What really matters in this formula is the integration over
a spacelike three-dimensional hypersurface in spacetime. A surface Σ
of this kind is characterized by the property that any two arbitrarily cho-
sen points x ∈Σ and y ∈Σ are spacelike with respect to each other.
In our conventions this means that (x− y)2 < 0. The three-dimensional
hypersurface Σ0 that one obtains by choosing a fixed section in time,
x0 = const., is a specific example.

The property of a hypersurface to be spacelike is a Lorentz invari-
ant feature. The covariance is proven if we succeed in showing that
in (7.10) the section Σ0 can be continuously deformed into any other
spacelike hypersurface Σ without changing the value of the integral.
This is shown as follows.

Let nµ(x) be the local normal to the surface in the point x ∈Σ
whose orientation is positive timelike, i. e. for which n2 = 1, n ∈ V+x ,
with V+x denoting the future light cone at x. In the case of Σ0 this is
nµ = (1, 0, 0, 0)T , and the integral in (7.10) can be written as∫
Σ0

dσ nµφ∗n(x)
↔
∂µ φm(x) ,
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where dσ is the three-dimensional volume element d3x. Suppose that
Σ0 is locally and continuously deformed into another spacelike hyper-
surface Σ such as the one that we sketched in Fig. 7.22. Consider then
the difference of the integrals over Σ and over Σ0. Gauss’ theorem
relates this difference to an integral over the four-dimensional volume
enclosed by Σ and Σ0,∫

Σ

dσ nµφ∗n(x)
↔
∂µ φm(x)−

∫
Σ0

dσ nµφ∗n(x)
↔
∂µ φm(x)

=
∫

V(Σ−Σ0)

d4x ∂µ
(
φ∗n(x)

↔
∂µ φm(x)

)
.

The integrand of the volume integral on the right-hand side is easy to
evaluate because φn and φm are solutions of the Klein-Gordon equation,

∂µ
(
φ∗n(x)

↔
∂µ φm(x)

)
= (∂µφ∗n)(∂µφm)+φ∗n�φm− (�φ∗n)φm

− (∂µφ∗n)(∂µφm)

= (κ2−κ2)φ∗nφm = 0 .

This shows that the scalar product (7.10) has the same value for any
spacelike hypersurface that approaches Σ0 smoothly at infinity. This
proves the assertion.

7.1.2 A Comment on Physical Units
In many parts of relativistic quantum theory and of quantum field theory
one can spare much writing by using what are called natural units, in-
stead of the customary physical units such as the SI-system, or the older
cgs-system. They all have in common that Planck’s constant � and the
velocity of light c take the value 1.

� = 1 , c = 1 . (7.11)

With the following arguments in mind one will quickly get used to
this class of conventions. Note, first, that the convention (7.11) does
not completely fix physical units because, while fixing relative units
of length, time, momentum, and energy, it leaves the absolute scale
undetermined. Indeed, writing dimensionful physical quantities, when
expressed in natural units, with a subscript “nat”, and denoting the phys-
ical dimension of an observable A as usual by [A], then one has, with
c= 1

[ xnat ] = [ tnat ] , [ pnat ] = [ Enat ] .
If, in addition, one chooses �= 1 then energy and momentum have the
inverse unit of length and time, viz.

[ pnat ] = [ Enat ] = [ xnat ]−1 = [ tnat ]−1 .

∑

∑

0

x0

x→

Fig. 7.2. A spacelike hypersurface, i.e.
a three-dimensional submanifold of
spacetime in which any two points are
relatively spacelike, is obtained from
the time section Σ0 by local continuous
deformation

2 As the fields decrease sufficiently fast
at infinity there is no restriction of gen-
erality in assuming Σ to approach Σ0
smoothly at spatial infinity.
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This also holds for any pair of canonically conjugate variables (q, p)
whose product is known to have the dimension of an action. But action
has no dimension in natural units. Thus, with �= 1, one has

[ pnat ] = [ qnat ]−1 .

The missing scale is fixed by choosing a physical unit for the en-
ergy. This may be the MeV, that is, 106 eV, (where 1 eV is the energy
that an elementary charge gains in passing through a potential difference
of 1 Volt). It could also be the rest mass mc2 =̂ mnat of some elem-
entary particle. For example, in quantum electrodynamics which deals
primarily with electrons and photons, it seems reasonable to introduce
the rest mass of the electron mec2 = 0.511 MeV as the scale for ener-
gies. Another example is the physics of π-mesons and nucleons at low
energies where the rest mass of the charged pions mπc2 = 139.57 MeV
is an obvious candidate for the energy scale.

If one does not work in a restricted domain of physics such as the
ones just mentioned it is more sensible to stay with the unit eV and mul-
tiples thereof. Common notations for powers of ten of the electron Volt
are

1 meV= 10−3 eV, 1 keV= 103 eV, 1 MeV= 106 eV,

1 GeV= 109 eV, 1 TeV= 1012 eV.

They are called, in the order given, milli-, kilo-, mega-, giga-, and tera-
electron Volt.

If at the end of a calculation one wishes to return to conventional
units the following formulae for lengths, times, and cross sections are
helpful

l fm =̂ �c · lnat MeV−1

t s =̂ �c
c
· tnat MeV−1 (7.12)

σ fm2 =̂ (�c)2 · σnat MeV−2 ,

together with the numerical value

�c= 197.3270 MeV fm= 197.3270×10−15 MeV m .

Masses are expressed in MeV, the relation between their notation in nat-
ural units and physical units is simply mnat =̂ mc2. Two examples may
clarify the conversion:

A state which has the mean life τ = 8.4×10−17 s (this is the mean
life of neutral pions π0) has an uncertainty in energy, or width, given
by

Γ = �c
c

1

τ
= 7.836 eV .
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A cross section that was measured or calculated to be σnat =
1 GeV−2, when expressed in millibarn (1 barn= 10−28 m2), is equal to

σ = σnat ·10 (�c)2mbarn= 0.3894 mbarn .

A further simplification that we shall make use of in the sequel, con-
cerns the choice of units in Maxwell’s equations of electrodynamics.
Denoting as usual electric and magnetic fields by (E, H), respectively,
displacement and magnetic induction fields by (D, B), respectively, then
Maxwell’s equations and the Lorentz force read, in any system of units,

∇ · B(t, x)= 0 ∇× E(t, x)+ f1
∂B(t, x)
∂t

= 0 (7.13)

∇ ·D(t, x)= f2 �(t, x) ,∇×H(t, x)− f3
∂D(t, x)
∂t

= f4 j(t, x) ,

(7.14)
F(t, x)= e (E(t, x)+ f1 v× B(t, x)) . (7.15)

In the vacuum the two types of fields are related by

D= ε0 E , B= µ0 H . (7.16)

The dielectric constant ε0 and the magnetic permeability µ0 of the vac-
uum are always chosen such that f1 = f3. The continuity equation

∂�(t, x)
∂t

+∇ · j(t, x)= 0 ,

which follows from the two inhomogeneous Maxwell equations (7.14),
yields the relation f4 = f2 f3 = f2 f1. Using the sytem of Gauss’ units,
for example, one has

f1 = f3 = 1

c
, f2 = 4π , f4 = f1 f2 = 4π

c
, ε0 = µ0 = 1 .

This particularly transparent sytem of units simplifies even further if one
is allowed to set c= 1, and if one rescales charge and current densities
such that all factors 4π in (7.14) are made to disappear. This is achieved
if the observables of Maxwell’s theory are replaced by natural quantities
defined as follows

Enat := 1√
4π

EGauss , Bnat := 1√
4π

BGauss ,

�nat :=
√

4π �Gauss , jnat :=
√

4π jGauss . (7.17)

With this convention and with c= 1 all constants fi in (7.13)–(7.15) are
now equal to 1. As a consequence of the choice (7.17) the field strength
tensor Fµν is rescaled by the same factor as the fields E, . . . , D, and the
Lagrange density of Maxwell theory takes the form

L=−1

4
(Fnat)µν(Fnat)

µν

i. e. the customary factor 1/(16π) is replaced by 1/4.
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Together with the choice �= 1 one sees that at the end of a cal-
culation the square of the elementary charge in natural units must be
replaced by Sommerfeld’s fine structure constant following the rule

e2
nat = 4πα , where α= 1/137.036 . (7.18)

In natural units the Bohr radius and the energies of bound states in hy-
drogen are, respectively,

(aB)nat = 1

αmnat
=̂ �c

αmc2 , (En)nat =−α2 1

2n2 mnat =̂ −α2 1

2n2 mc2 .

The Compton wave length of a particle with mass m reads λ =
h/(mc) =̂ 2π/mnat, the constant κ of the Klein-Gordon equation (7.1)
is simply replaced by mnat, and the Yukawa potential reads e−mnatr/r.

Unless stated otherwise we will employ natural units in the sequel
but will suppress the subscript “nat” from here on. Planck’s constant �,
however, will be written explicitly if the transition to classical physics
matters, or if the structure of a quantum theoretic expression is to be
analyzed as a power series in �.

7.1.3 Solutions of the Klein-Gordon Equation
for Fixed Four-Momentum

Expressed in natural units the Lagrange density (7.5) and the Klein-
Gordon equation (7.1) read

LKG = 1

2
[∂µφ(x)∂µφ(x)−m2φ2(x)] ,

�φ(x)+m2φ(x)= 0 .

The solutions with fixed values of the momentum p= (E, p)T that we
considered above, take the form

f p(x)= 1

(2π)3/2
e−ip·x , with p0 = E p =

√
m2+ p2 . (7.19)

These solutions are not square-integrable but can be normalized to
δ-distributions. As one easily verifies they are orthogonal and normal-
ized in the following sense. For fixed but arbitrarily chosen time x0 one
finds

i
∫

d3x f ∗p′(x)
↔
∂0 f p(x)= 2E p δ(p− p′) , (7.20)∫

d3x f p′(x)
↔
∂0 f p(x)=

∫
d3x f ∗p′(x)

↔
∂0 f ∗p (x)= 0 . (7.21)

The left-hand side of the formulae (7.20) and (7.21) is the generalization
of the covariant scalar product (7.10) to solutions which are not nor-
malizable in the ordinary sense. The right-hand side is identical with
the covariant normalization (6.145) in momentum space that was in-
troduced in the context of representations of the Poincaré group. Of
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course, the invariance of the scalar product proven in Sect. 7.1.1 shows
that this normalization does not depend on the choice of the frame
of reference. Nevertheless, it is instructive to clarify this fact directly,
by working in momentum space. Indeed, taking the components of the
four-momentum p to be unconstrained variables, that is, assuming no
relation between them, it is clear that an integral

∫
d4 p � is Lorentz in-

variant provided the integrand � itself is an invariant. However, for any
free physical state one must require p to lie on the mass shell p2 =m2

and its time component p0 to be positive in every frame. (Free particles
always have positive energy.) These conditions are fulfilled if the inte-
gral is modified by means of suitable constraints, viz. by replacing the
integrand as follows,∫

d4 p � �−→
∫

d4 p δ(p2−m2)Θ(p0) � .

The question then is whether the δ-distribution and the step function
respect the invariance. The first factor, δ(p2−m2), is invariant while
the second factor, Θ(p0), taken in isolation, is not. For instance, if p
were a spacelike vector then there would exist Lorentz transformations
Λ ∈ L↑+ which reverse the sign of the time component p0. The product
of the two factors, in turn, is invariant because the δ-distribution restricts
the vector p to a hyperboloid whose two shells lie within the forward
light cone (future), and within the backward light cone (past), respect-
ively. A proper orthochronous Lorentz transformation leaves these two
shells invariant, cf. Fig. 7.3, and, hence, cannot map a positive p0 > 0
onto a negative p0 < 0, or vice versa.
If we choose a class of reference frames which single out the zero com-
ponent, then, with E p =

√
p2+m2, we use the well-known formula for

the δ-distribution of a function of x, δ( f(x)), (see Appendix A.1)

δ(p2−m2)= δ
(
(p0)2−(p2+m2)

)
= 1

2p0

{
δ(p0−E p)+δ(p0+E p)

}
and perform the integral over the variable p0. The step function insures
that only positive values of p0 contribute and one obtains∫

d4 p δ(p2−m2)Θ(p0) · · · =
∫

d3 p

2E p
· · · .

This argument shows that d3 p/(2E p) is an invariant volume element on
the mass shell p2 = m2 and that, indeed, the normalization of single-
particle states must be as given in (6.145) and in (7.20).

Remarks

1. Clearly, only the factor E p really matters. The factor 2 seems natural
in view of the skewsymmetric derivative (7.20) but by no means it is
compulsory. Indeed, some authors use normalization to 2E p only for
bosons but normalize to E p/m in the case of fermions, where m is

p

p

°

→

Fig. 7.3. The two shells of the mass hy-
perboloid p2 = m2 in a representation
in momentum space. Only the upper
shell corresponds to physically allowed
states
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the rest mass of the fermion that is considered. In this book I choose
normalization to 2E p throughout, both for bosons and for fermions.

2. Using covariant normalization the volume element in momentum
space is

d3 p

2E p
instead of d3 p .

As a consequence, the formulae for cross sections and Fermi’s
Golden Rule which depend on the density of states in the final states,
must be modified correspondingly. The single-particle states with
momentum p and spin quantum numbers (s, µ) that we denote by
|p; s, µ〉 then no longer are normalized to 1 (or to a δ-distribution
whose factor is 1). Their covariant normalization reads〈

p′; s, µ′∣∣p; s, µ〉= δµµ′2E p δ(p− p′) . (7.22)

The completeness relation, in a formal notation, is modified to∑
σ

∫
d3q

2Eq
|q; s, σ〉 〈q; s, σ | = 1l . (7.23)

This is easily confirmed by the formal calculation∑
σ

∫
d3q

2Eq
|q; s, σ〉 〈q; s, σ|p; s, µ〉

=
∑
σ

∫
d3q |q; s, σ〉 δσµδ(q− p)= |p; s, µ〉 .

7.1.4 Quantization of the Real Klein-Gordon Field
We noted earlier that, in contrast to those of the Schrödinger equation,
the solutions of the Klein-Gordon equation cannot be probability ampli-
tudes. Born’s interpretation of a normalizable solution φ(t, x) makes no
physical sense. However, if we understand the solutions in the sense of
second quantization, i. e. if we construct operator-valued solutions of the
Klein-Gordon equation then we obtain quasi automatically a physically
convincing interpretation.

Consider the field φ(x) as a genuine scalar with respect to Poincaré
transformations, not as one of the components of some field with nonva-
nishing spin. In other terms, in the perspective of representation theory
of the Poincaré group, cf. (6.144), it is meant to describe a particle with
spin s = 0. We return to the Lagrange density (7.5) for a real field φ(x)
and define the generalized, canonically conjugate momentum,

π(x) := ∂L

∂(∂0φ)
= ∂0φ(x) . (7.24)

Obviously, this definition is inspired by classical canonical mechanics,
the canonically conjugate pair (q, p) being replaced by (φ(x), π(x)).
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One then constructs

H̃ = π∂0φ−L= 1

2

{
(∂0φ)(∂0φ)+ (∇φ)2+m2φ2

}
and, by Legendre transformation of this function, obtains the Hamilton
density

H(φ, π)= 1

2

{
π2(x)+ (∇φ)2+m2φ2

}
. (7.25)

In close analogy to the transition from classical to quantum point
mechanics, summarized by the prescription for conversion of Poisson
brackets to commutators,

{pi, qk} = δik �−→ i

�
[pi , qk] = δik ,

canonical quantization of classical fields builds upon the following
postulate:

Postulate 7.1

In the realm of quantum theory the real-valued functions φ(x) and
π(x) are replaced by operator-valued distributions Φ(x) and Π(x), re-
spectively, which in any frame of reference and for equal times, obey
the commutator relations

i

�

[
Π(x),Φ(x′)

]
x0=x0 ′ = δ(x− x′) (7.26)

[
Φ(x),Φ(x′)

]
x0=x0 ′ = 0= [

Π(x),Π(x′)
]

x0=x0 ′ . (7.27)

Before working out the consequences of the quantization rules (7.26)
with the aim of clarifying the physical roles of Φ and Π, I add a few
further remarks:

Remarks

1. In this section and for the sake of clarity, operator-valued functions
are denoted by Greek capital letters. Later on this convention will
not be applied everywhere but it will always be clear from the con-
text whether one is dealing with functions or with operators. It is
common usage in quantum field theory to call complex functions
φ(x) etc. c-number valued, while the operators Φ(x) which are ob-
tained from them are said to operator-valued. Needless to add that
units will mostly be such that �= 1.

2. By imposing equal times in (7.26) it seems as if one preferred
certain frames of reference while destroying Lorentz covariance.
That this is not so will be shown explicitly below. The rule (7.26),
together with the covariant normalization of single-particle states
yields an invariant formalism. To witness, one could modify the
quantization rule already at this point such that it stays manifestly
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covariant, by choosing an arbitrary spacelike hypersurface Σ instead
of the hyperplane x0 = x′0.

3. This mode of quantization rests in an essential way on classical
mechanics. Without the notion of Lagrange density, and the canoni-
cally conjugate momentum that follows from it, it would be difficult
to guess the commutation rules.

4. In the example studied here the Legendre transform of the Lagrange
density exists. However, in cases where this is not so, one must study
quantization with constraints, a topic that we do not enter, for lack
of space.

The Hamiltonian H = ∫
d3x H(x) is obtained from the Hamilton

density by integration over the whole space, keeping the time coordi-
nate fixed. One then calculates the commutators of H with Φ, with Π,
and with arbitrary polynomials in these operators. For example, one has

[H,Φ(x)] =
∫

y0=x0

d3 y [H(y),Φ(x)] = 1

2

∫
d3y [Π2(y),Φ(x)]y0=x0

=−i
∫

d3 yΠ(y)y0=x0δ(y− x)=−iΠ(x)=−i∂0Φ(x) .

This calculation makes use of the analogue of the elementary manipu-
lation

[p2, q] = ppq−qpp= p(−i+qp)− (i+ pq)p =−2ip

of point (quantum) mechanics. In much the same way one finds

[H,Π(x)] = −i ∂0Π(x)

and, similarly, for a polynomial F(x) in the variables Φ and Π

[H, F(x)] = −i ∂0 F(x) .

The analogy to the equations of motion

d f

d t
= {H, f } , and

d F

d t
= i

�
[H, F]

of classical mechanics (with Poisson brackets), and of quantum mech-
anics (with commutators), respectively, is obvious. As we are working
in a Lorentz covariant framework (explicitly or implicitly), it seems
plausible that H is the time-component of a set of four operators
Pν = (P0 = H, Pi) which define the energy-momentum operator of the
theory, and that the space components Pi are also given by space inte-
grals of corresponding densities. Indeed, if one constructs the classical
tensor field of energy and momentum

T µν = ∂L

∂(∂µΦ)
∂νΦ− gµνL , (7.28)
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then one sees that ∂µT µν = 0 holds for all solutions of the Euler-
Lagrange equation, and that the Hamilton density is the time-time
component of this tensor field, H = T 00. Its space components are the
missing momentum densities. Making use of the Klein-Gordon equation
these densities and their space integrals are calculated to be

P i =−Π(x) (∇Φ)i , P =−
∫

d3x Π(x)∇Φ .
The commutator of the operator P with a polynomial F(x) in Φ and Π
is calculated in the same way as the one of H with F,

[P, F(x)]=−
∫

d3y [Π(y)∇Φ(y), F(x)]y0=x0 = i ∇F(x) .

By the definition (7.2) the commutators calculated above are summar-
ized in a covariant notation[

Pµ, F(x)
]=−i ∂µF(x) . (7.29)

These are Heisenberg’s equations of motion in a Lorentz covariant form.

We note that the Heisenberg equations of motion can also be written
in an integral form. Let x und y be arbitrarily chosen points of space-
time. Then the following translation formula holds

F(y)= eiP·(y−x)F(x)e−iP·(y−x) , (7.30)

(see Exercise 7.2). Working out the Taylor expansion of F about the
point y = x one easily confirms that (7.29) follows from the translation
formula (7.30). One of the prime uses of the translation formula is to
reduce operator-valued functions, or distributions with an arbitrary ar-
gument y to the same quantities at a fixed reference point x such as,
e. g., x = 0. We shall make frequent use of this possibility.

7.1.5 Normal Modes, Creation and Annihilation Operators
The aim of this section and the following one is to clarify the physical
role of the operator Φ(x). A first idea that comes to mind is to expand
the, to some extent, arbitrary operator Φ in terms of a complete sys-
tem of solutions which carry simple, easily interpretable single-particle
quantum numbers. A set of special relevance is given by the plane
waves (7.19) which are known to describe the free motion of particles
with mass m and given eigenvalues of momentum p on the mass shell
(p0)2 = p2+m2 = E2

p. We define

Φ(x)=
∫

d3 p

2E p

[
f p(x)a(p)+ f ∗p (x)a†(p)

]
, (7.31)

where the integral contains the invariant volume element. Obviously, the
operature nature of Φ in (7.31) is taken over by the coefficients a(p)



414 7Quantized Fields and their Interpretation

and a†(p), the latter being the adjoint of a(p). The specific combination
of the terms in square brackets follows from the requirement that before
quantization Φ(x) be a real field, and after quantization be a self-adjoint
operator. The relations (7.20) and (7.21) allow to express the operators
a(p) and a†(p) in terms of Φ. With x0 being an arbitrary but fixed time
one obtains

a(p)= i
∫

d3x f ∗p (x)
↔
∂0 Φ(x) , a†(p)=−i

∫
d3x f p(x)

↔
∂0 Φ(x) .

(7.32)

If Φ(x) fulfills the free Klein-Gordon equation then these operators are
independent of time. We check this for a(p):

∂0a(p)= i
∫

d3x
[

f ∗p (x)∂2
0Φ(x)− (∂2

0 f ∗p )Φ(x)
]

= i
∫

d3x
[

f ∗p (x)�Φ(x)− (� f ∗p (x))Φ(x)
]
= 0 .

In the last step one transforms either the first or the second term by two
partial integrations. There are no boundary contributions provided Φ de-
creases sufficiently fast at spatial infinity. (In case this assumption is not
fulfilled replace f p(x) by localized wave packets.)

The commutators of the operators a(p) and a†(q) are obtained
from (7.31), the formulae (7.32), and the orthogonality of the basis.
Here is an example of this calculation:[

a(p), a†(q)
]
= − i2

∫
d3x

∫
d3 y f ∗p (x) fq(y)

↔
∂

∂x0

↔
∂

∂y0 [Φ(x),Φ(y)]

= i2
∫

d3x
∫

d3 y f ∗p (x)(∂0 fq(y)) [∂0Φ(x),Φ(y)]

+ i2
∫

d3x
∫

d3 y (∂0 f ∗p (x)) fq(y) [Φ(x), ∂0Φ(y)] .

By the definition (7.24) and the postulate (7.26) one has

[∂0Φ(x),Φ(y)]=−iδ(x− y) , [Φ(x), ∂0Φ(y)]=+iδ(x− y) .

Inserting this one sees that one of the integrations can be carried out,
e. g. the integration over y, so that[

a(p), a†(q)
]
= i

∫
d3x f ∗p (x)

↔
∂0 fq(x)= 2E pδ(p−q) .

The commutator [a(p), a(q)] is calculated along the same lines, and is
found to be zero. We summarize this important result:[

a(p), a†(q)
]
= 2E pδ(p−q) , (7.33)

[a(p), a(q)] = 0=
[
a†(p), a†(q)

]
. (7.34)
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The analogy to the one-dimensional harmonic oscillator, Sect. 1.6, is ob-
vious. However, in contrast to that case, there is an infinity of oscillators
each of which is characterized by an eigenvalue of the momentum (and
hence of energy). This conclusion is corroborated by a calculation of the
Hamiltonian and of the operator of spatial momentum in terms of a(p)
and a†(p).

The Hamilton density is given in (7.25) where Π(x) is to be calcu-
lated by means of (7.24). Inserting the expansion (7.31) and making use
of the orthogonality of the basis f p(x), one finds

H = 1

2

∫
d3 p

2E p
E p

{
a†(p)a(p)+a(p)a†(p)

}
. (7.35)

In much the same way the operator of spatial momentum is represented
in terms of the operators a und a†. One finds

P = 1

2

∫
d3 p

2E p
p
{

a†(p)a(p)+a(p)a†(p)
}
. (7.36)

Before we continue with a further analysis of these expressions we
recapitulate the formalism of second quantization for bosons that we
first discussed in Part One, Sect. 1.6.

For simplicity and for the sake of illustration, we replace the de-
pendence of creation and annihilation operators on the momentum p by
a discrete index, and assume that they fulfill the following commutators

[ai , a
†
k] = δik , [ai , ak] = 0= [a†i , a†k] . (7.37)

These commutation rules are formally similar to the rules (7.33)
and (7.34) except that their right-hand side is a finite c-number while
the right-hand side of (7.33) is a distribution.

Define the self-adjoint operators

Ni := a†i ai , N :=
∑

i

Ni ,

the first of which is called particle number operator of the kind i, while
the second is called total particle number. Let their eigenstates be de-
noted by

|νi〉 , or |ν1, ν2, . . . , νi, . . . 〉
such that one has Ni |νi〉 = νi |νi〉 and N |ν1, ν2, . . . , νi, . . . 〉 =
(
∑
νi) |ν1, ν2, . . . , νi, . . . 〉, and, hence, N |ν1, ν2, . . . , νi, . . . 〉 =

ν | ν1, ν2, . . . , νi, . . . 〉 with ν =∑
i νi . All states are assumed to be

normalized to 1. First, one notes that

〈ν| Ni |ν〉 = νi = 〈ν| a†i ai |ν〉 = ‖ai |ν〉‖ 2 .

Hence, νi is positive or zero, νi ≥ 0. Furthermore, one confirms the
commutators

[Ni, ak] = −akδik , [N, ak] = −ak ,

[Ni, a
†
k] = a†kδik , [N, a†k] = a†k .
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One concludes that if |ν〉 is an eigenstate of Ni and N then also ai |ν〉
and a†i |ν〉 are eigenstates of Ni and N , and belong to eigenvalues shifted
by −1 and by +1, respectively. For example, one has

Ni (ai |ν〉)= ai(Ni −1) |ν〉 = (νi −1)(ai |ν〉) ,
Ni (a

†
i |ν〉)= a†i (Ni +1) |ν〉 = (νi +1)(a†i |ν〉) .

As noted above, the eigenvalues must be positive or zero. Therefore,
one necessarily has νi ∈N0 and thus also ν ∈N0. In summary, only the
values

ν = n , νi = ni with n = 0, 1, 2, . . . , ni = 0, 1, 2, . . . (7.38)

are admissible. In turn, if this were not so, the Hamiltonian (7.35) would
have arbitrarily negative eigenvalues! At the same time this shows that
there exists a state |0〉 pertaining to the smallest eigenvalue of N which
has the property

ai |0〉 = 0 for all i .

One easily convinces oneself that the operators Oi := aia
†
i and

O :=∑
i aia

†
i have properties which are very similar to those of Ni

and N . Their eigenvalues differ from the eigenvalues of Ni and N by
one unit. Therefore, a Hamiltonian of the form

∑
i Ei{a†i ai +aia

†
i }/2

differs from H =∑
i Eia

†
i ai only by a constant which, however, is infi-

nite. On the other hand, only differences of eigenvalues are observable
and, hence, physically relevant. The constant, though infinite, is ex-
pected to drop out from all observable effects.

This physically irrelevant difficulty would have been avoided if, from
the start, one had defined all operators in normal order, i. e. if one
had replaced all monomials in creation and annihilation operators by
the corresponding normal products in which all creation operators are
grouped to the left of all annihilation operators. In fact, this is what we
shall do in the sequel.

Thus, the Hamilton density (7.25) is replaced by the normal ordered
expression

H(φ, π)= 1

2
:
{
π2(x)+ (∇φ)2+m2φ2

}
: , (7.39)

and the momentum density is replaced by the normal product

P i =−:Π(x) (∇Φ)i : . (7.40)

Repeating the calculation that led to the expressions (7.35) and (7.36)
one now obtains

H =
∫

d3 p

2E p
E p a†(p)a(p) =

∫
d3 p

2E p
E p N(p) , (7.41)

P =
∫

d3 p

2E p
p a†(p)a(p) =

∫
d3 p

2E p
p N(p) , (7.42)
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where N(p) is the number operator of particles with momentum p and
corresponds to the operator Ni of the example.

The ground state |0〉 which is annihilated by all operators of type
a(p), i. e. for which a(p)|0〉 = 0 for all p, is an eigenstate of H and
of P, all four eigenvalues being equal to zero. A state which is obtained
from the ground state by application of the creation operator a†(q), has
energy Eq and spatial momentum q. Indeed, one finds

H
(
a†(q) |0〉

)
=

∫
d3 p

2E p
E p a†(p)a(p)a†(q) |0〉

=
∫

d3 p

2E p
E p a†(p)(2Eq)δ(p−q) |0〉 = Eq

(
a†(q) |0〉

)
,

and, in a similar way, also

P
(

a†(q) |0〉
)
= q

(
a†(q) |0〉

)
.

As the relation E2
q−q2 = m2 holds true the state a†(q)|0〉 ≡ |q〉 must

be the free state of a single particle of mass m, energy Eq , and spatial
momentum q. This state is normalized covariantly since, using (7.33),
one shows〈

q′
∣∣ q

〉= 〈0| a(q′)a†(q) |0〉 = 2Eq δ(q′ −q) .

Letting two or more creation operators act on the ground state yields
many-body states of the kind(

a†(p1)
)n p1

(
a†(p2)

)n p2 · · · |0〉 ,
which are invariant under any permutation of the creation operators but
are not yet normalized. They are elements of a Hilbert space which is
generated by the Hilbert space H1 of single-particle states, by taking
products with total particle number N and taking the infinite sum over
all N ,

H =
∞∑

N=0

⊕ (H1⊗H1⊗ . . .⊗H1)︸ ︷︷ ︸
N

=
∞∑

N=0

⊕ (H1)
⊗N .

Let n(p) be the number of particles with energy-momentum p, and
let the corresponding normalized state be denoted by |n(p)〉. The nor-
malization of the states is obtained from the relations

a†(p) |n(p)〉 =√
n(p)+1 |n(p)+1〉 ,

a(p) |n(p)〉 =√
n(p) |n(p)−1〉 . (7.43)

One finds

|n(p1)n(p2) · · · 〉 =
∏
pi

1√
n(pi)!

(
a†(pi)

)n(pi) |0〉 . (7.44)
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Remarks

1. The physical interpretation of the operators a†(p) and a(p) in the
expansion (7.31) should now be clear: The first of them creates a sin-
gle particle which carries four-momentum p with p2 = m2. With
respect to a given frame of reference this particle has the spatial
momentum p and the energy E p =

√
m2+ p2. Its adjoint operator

a(p) annihilates a particle from the same kinematic state. The cor-
responding solutions of the Klein-Gordon equation are the plane
waves (7.19) which are normalized as in (7.20) and (7.21). If instead
we used the modified wave functions

φ̃(p) := 1√
2E p

f p (7.45)

in momentum space and their Fourier transforms φ(x) in posi-
tion space then they would be normalized like wave functions of
Schrödinger theory,

(φ′, φ)=
∫

x0=t0

d3x φ′ ∗(x)φ(x) .

The complex function φ(x) obtained in this way, is to be interpreted
as the probability amplitude for finding the particle at time t0 in the
position x.

2. In this section we discuss the classical and quantum Klein-Gordon
field, real or hermitean, respectively. Therefore, the single-particle
states |p〉 carry no further attributes beyond energy and momen-
tum. In the perspective of representation theory of the Poincaré
group the single-particle states |p〉 = a†(p)|0〉 obey the transforma-
tion rule (6.144) with s = 0.
If the particles have a nonvanishing spin, if they are electrically
charged, or carry any other quantum property, the creation and an-
nihilation operators must contain these quantum numbers. The spin
states of massive particles are the irreducible representations (6.144)
of the Poincaré group that we studied in Chap. 6. In the case
of massless particles one must use the helicity representations
of Sect. 6.3.3. Examples we shall study further below are the com-
plex scalar field, the photon (Maxwell) field, and the Dirac field.

3. As the creation operators a†(pi) all commute, the state (7.44) is au-
tomatically symmetric under exchange of any two excitations. For
example, in a two-body state one has∣∣p j , pk

〉= a†(p j)a
†(pk) |0〉 = a†(pk)a

†(p j) |0〉 =
∣∣pk, p j

〉
.

The free particles whose states we constructed above, satisfy Bose-
Einstein statistics.

4. The set of plane waves (7.19) provide but one of many possibilities
for expanding the quantized field in terms of a complete and nor-
malized basis. Depending on the specific physical situation another
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such base system may be more suitable than plane waves. Here is an
example of great importance in atomic and nuclear physics: In tran-
sitions between bound states of an atom, or a nucleus which, besides
their energy, are classified by angular momentum and parity, photons
are created or absorbed which are in states with good total angu-
lar momentum and definite parity. In such a situation it is suggestive
to expand the photon field in terms of a complete, normalized sys-
tem of eigenstates of angular momentum and parity, instead of plane
waves. This requires introducing creation and annihilation operators
for photons which carry these attributes.
Suppose we had expanded the self-adjoint scalar field in terms of the
orthogonal and appropriately normalized base system {φn(α)}. The
commutation rules (7.33) and (7.34) are then replaced by

[am(α), a
†
n(β)] = (φm(α), φn(β)) , (7.46)

[am(α), an(β)] = 0 , (7.47)

the right-hand side of (7.46) containing the scalar product of the
base functions with respect to which the creation and annihilation
operators are defined. Whether this basis has a proper normaliza-
tion, or whether the scalar product yields a distribution like in the
example (7.33), (7.34), does not make any difference.

5. The general translation formula (7.30) is particularly useful for the
analysis of single-particle matrix elements. Choose, for instance,
x = 0, and consider matrix elements of a field operator between
single-particle states with four momenta q and q′, respectively. Then,
from (7.30), one obtains〈

q′
∣∣ F(y) |q〉 = 〈

q′
∣∣ eiP·y F(0)e−iP·y |q〉 = e−i(q−q′)·y 〈q′∣∣ F(0) |q〉 .

(7.48)

In this formula P stands for the operator of four-momentum while q
or q′ are its eigenvalues in the two states. Thus, if one knows the
matrix element 〈q′|F(0)|q〉 at the point x = 0 or any other point of
spacetime, then (7.48) allows to “transport” it to any other point y.
An example of practical use is provided by the divergence of a four-
current density Jµ(y). The following calculation〈

q′
∣∣∂µ Jµ(y)|q〉=∂µ

〈
q′
∣∣Jµ(y)|q〉=−i(q−q′)µ

〈
q′
∣∣Jµ(0)|q〉 e−i(q−q′)·y

leads to the important formula〈
q′
∣∣ ∂µ Jµ(0) |q〉 = −i(q−q′)µ

〈
q′
∣∣ Jµ(0) |q〉 . (7.49)

Note that it is q−q′, that is, the momentum transfer from the initial
state |q〉 to the final state |q′〉 which appears on the right-hand side
of (7.49). Why is this formula important?
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In many situations it will not be possible to really calculate the mat-
rix elements 〈q′|Jµ(0)|q〉 because the operator Jµ(y) is not known
explicitly. However, its one-particle matrix element 〈q′|Jµ(0)|q〉,
having a well-defined transformation behaviour under Lorentz trans-
formations, parity, and time reversal, can be decomposed in terms
of all covariants which can be constructed from the momenta (and,
if the particle carries spin, from the spin functions) which are
compatible with this transformation behaviour. Furthermore, if the
divergence ∂µ Jµ(y) is known (for example, it may be zero, or may
be proportional to some known scalar field), then (7.49) yields ad-
ditional constraints for this decomposition. A simple but typical
example is found in Exercise 7.4.

7.1.6 Commutator for Different Times, Propagator
The quantization rule (7.26), (7.27) which leads to the commutators
(7.33), (7.34) is Lorentz covariant. This assertion is confirmed by a cal-
culation of the commutator of the field Φ(x) with the same field Φ(y)
taken at some other, arbitrary point of spacetime.

Inserting the expansion (7.31) at two stages of the calculation, and
making use of the commutators (7.33) and (7.34) one finds step by step

[Φ(x),Φ(y)]= 1

(2π)3

∫
d3q

2Eq

∫
d3 p

2E p[(
a(q)e−iqx +a†(q)eiqx

)
,
(

a(p)e−ipx +a†(p)eipx
)]

= 1

(2π)3

∫
d3q

2Eq

∫
d3 p

2E p{[
a(q), a†(p)

]
e−iqx+ipy+

[
a†(q), a(p)

]
eiqx−ipy

}
= 1

(2π)3

∫
d3q

2Eq

{
e−iq(x−y)− eiq(x−y)

}
.

The integral obtained on the right-hand side, strictly speaking, is a tem-
pered distribution. As this is an important quantity that appears in
various contexts in quantum field theory it is given a definition of its
own. With the abbreviation z = x− y one defines the distribution

∆0(z;m) := − i

(2π)3

∫
d3q

2Eq

(
e−iqz− eiqz)∣∣∣∣

q0=Eq

. (7.50)

It is called the causal distribution for mass m and has the following
properties:

(a) It satisfies the Klein-Gordon equation(
�+m2

)
∆0(z;m)= 0 , (7.51)
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(b) At z0 = 0, i. e. for equal times x0 = y0 it vanishes for any z

∆0(z
0 = 0, z;m)= 0 , (7.52)

(c) Its partial derivative with respect to z0, taken at z0 = 0, equals
Dirac’s δ-distribution but for a sign,

∂

∂z0 ∆0(z;m)|z0=0 =−δ(z) , (7.53)

(d) With respect to simultaneous reflection in space and time z �→ −z
it is antisymmetric,

∆0(−z;m)=−∆0(z;m) , (7.54)

(e) It vanishes for all spacelike values of z, i. e. for all z2 < 0,

∆0(z;m)= 0 for z2 < 0 . (7.55)

The properties (a)–(d) follow directly from the defining expression
(7.50) and are easily verified. The proof of property (e) may be done
by means of the following argument:

The distribution ∆0 is Lorentz invariant. This is seen directly from
the explicit representation (7.50). Alternatively, one may consult the
equivalent representation

∆0(z;m)=− i

(2π)3

∫
d4q e−iqzδ(q2−m2)

(
Θ(q0)−Θ(−q0)

)
(7.56)

The distinction between positive and negative q0 is invariant for time-
like q. Indeed, the condition q2 = m2 which follows from the distri-
bution δ(q2−m2) shows that q is timelike. Therefore, the integrand is
invariant, and so is the unrestricted volume element d4q. If z2 < 0 as re-
quired in (e) then one can always find a frame of reference in which the
time coordinate vanishes, z′ 0 = 0. Then, by (b) one has ∆0 = 0. Thus,
by its Lorentz invariance, it vanishes for all spacelike values of z, i. e.,
in our convention for the Minkowski metric, for all z2 < 0.

We note the result of the calculation performed above:

[Φ(x),Φ(y)]= i∆0(x− y;m) . (7.57)

This result, among others, has two important properties: The commu-
tator of Φ(x) and Φ(y) is a distribution and is Lorentz invariant. It
vanishes for spacelike values of the difference x− y. This is an expres-
sion of the causality of the theory, or, as one says more precisely, of its
micro-causality or locality. Indeed, the property (e) says that the field
operators commute whenever their arguments are relatively spacelike,
that is to say, x and y cannot communicate in a causal way.

We now turn to a quantity of central importance for the covariant
version of perturbation theory: the particle propagator. Turning back to
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Fig. 7.4a,b. The two terms of the time-
ordered product (7.58) describe (a) The
creation of a particle at the point y
and its annihilation at x which is later
than y; (b) Creation at x and sub-
sequent annihilation at y, in the case
y0 > x0

3 It would seem unfortunate to talk
about “positive energy term” because
then its adjoint would refer to negative
energies, instead of negative frequen-
cies. Free particles (or antiparticles)
with mass m always have positive en-
ergy.

the expansion (7.31) with the plane waves (7.19) inserted there, one
finds the field operator Φ(x) to be the sum

Φ(x)=Φ(+)(x)+Φ(−)(x)
of a positive frequency part Φ(+), containing all terms of the kind
ap e−ip0x0

eip·x, and a negative frequency part Φ(−), which contains
the corresponding conjugate terms a†p e+ip0x0

e−ip·x. The nomenclature
“positive frequency” is chosen because the time dependence e−ip0x0

has
the familiar form e−i/�Et of a state with positive energy of quantum
mechanics3. If the field operator Φ(x) acts on the ground state, called
vacuuum, to the right, Φ(x)|0〉, then only the negative frequency part
contributes, Φ|0〉 =Φ(−)|0〉. If it acts to the left then only the positive
frequency part contributes, 〈0|Φ = 〈0|Φ(+). Thus, the expectation value
of the product of two field operators is given by

〈0|Φ(x)Φ(y) |0〉 = 〈0|Φ(+)(x)Φ(−)(y) |0〉 .
Assuming the time x0 to be later than the time y0, as sketched
in Fig. 7.4a, this term would describe the creation of a particle at the
point y of spacetime, and the annihilation of the same particle at the
point x. From the point of view of nonrelativistic perturbation theory it
seems plausible that a process of this kind is the intermediate state in
a contribution of second order. If this is so there exists also the analo-
gous process with y0 > x0 where the particle is created at x and is
annihilated at y, cf. Fig. 7.4b.

The two contributions can be combined in an elegant way by or-
dering creation and annihilation in the form of a time-ordered product
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defined by

T Φ(x)Φ(y) :=Θ(x0− y0)Φ(x)Φ(y)+Θ(y0− x0)Φ(y)Φ(x) . (7.58)

The expectation value of this product in the ground state (the vacuum
state)

〈0| T Φ(x)Φ(y) |0〉
= 〈0|Θ(x0− y0)Φ(x)Φ(y)+Θ(y0− x0)Φ(y)Φ(x) |0〉 (7.59)

relates creation in one point with annihilation in some other, later, point
of spacetime. This synthesis is called the propagator and takes a re-
markable form:

〈0| T Φ(x)Φ(y) |0〉 = i

(2π)4

∫
d4k e−ik(x−y) 1

k2−m2+ iε
≡ PF(x− y;m) . (7.60)

Before analyzing this expression in detail let us prove (7.60). A start-
ing point for the proof is provided by two integral representations of the
Heaviside, or step, function. They are

Θ(u)= 1

2πi

+∞∫
−∞

dλ
eiλu

λ− iε
, Θ(−u)=− 1

2πi

+∞∫
−∞

dλ
eiλu

λ+ iε
. (7.61)

Their proof rests on the Cauchy integral theorem and is deferred to the
exercises (s. Exercise 7.5).

Performing a calculation analogous to the one at the beginning of
this section one finds

〈0|Φ(x)Φ(y) |0〉 = 1

(2π)3

∫
d3q

2Eq
e−iqz , with z = x− y ,

where the momentum q is on the mass shell q2 = m2. Multiplying by
the step function Θ(x0− y0) and using the first of its integral represen-
tations (7.61) one has

〈0|Φ(x)Φ(y)Θ(x0− y0) |0〉 = 1

i(2π)4

+∞∫
−∞

dλ
eiλu

λ− iε

∫
d3q

2Eq
e−iqz .

The idea then is to write the integration over the three-momentum q and
over the auxiliary variable λ in such a way that they turn into one com-
mon integral over an unrestricted four-momentum which no longer lies
on the mass shell. In order to achieve this let

k0 := Eq−λ , k := q .

Although the energy which pertains to the three-momentum k is the
same as the one that pertains to q, i. e. Ek =

√
k2+m2 = Eq , the
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4 Strictly speaking, the integrals that
one is dealing with are tempered dis-
tributions. However, all definitions for
tempered distributions are chosen such
that formal calculus follows the same
rules as the calculus with functions and
genuine integrals. This remark shows
that the derivation of (7.60) as given
here is correct.

Lorentz invariant (k0)2−k2 remains unrestricted. The integration over λ
becomes integration over k0,
+∞∫
−∞

dλ �−→−
−∞∫
+∞

dk0 =+
+∞∫
−∞

dk0 .

In summary, one now has to integrate over the four independent vari-
ables k0, k1, k2, k3. Inserting the definitions one obtains

〈0|Φ(x)Φ(y)Θ(x0− y0) |0〉 = − i

(2π)4

∫
d4k

e−ikz

2Ek(Ek− k0− iε)
.

The second term of (7.59) which contains the other time ordering, is
transformed in an analogous manner. One uses the second representa-
tion (7.61), sets now k0 := Eq+λ, k= q, and replaces k by −k in the
integral that one obtains. One then finds

〈0|Φ(y)Φ(x)Θ(y0− x0) |0〉 = − i

(2π)4

∫
d4k

e−ikz

2Ek(Ek+ k0− iε)
.

The two integrals are combined, the sum of the integrands giving

1

2Ek

(
1

Ek− k0− iε
+ 1

Ek+ k0− iε

)
= 1

E2
k − (k0)2−2iEkε

+O(ε2) .

The difference in the denominator of the right-hand side is E2
k− (k0)2 =

m2+k2− (k0)2 =m2−k2. The infinitesimal quantity ε is no more than
a prescription how to deform the path of integration in the complex
λ-plane. The term 2Ekε plays the same role as ε and may be replaced
by the latter. Thus, the formula (7.60) is proven4.

Remarks

1. Besides the causal distribution ∆0, (7.50), the Klein-Gordon equa-
tion has another distribution-valued solution linearly independent of
the former. This solution can be written as follows:

∆1(z;m)= 1

(2π)3

∫
d3q

2Eq

(
e−iqz+ eiqz)∣∣∣∣

q0=Eq

. (7.62)

It is called acausal distribution for mass m, because for spacelike
argument, z2 < 0, it does not vanish. Indeed, and in contrast to the
property (d) of ∆0 it is symmetric, ∆1(−z;m)=∆1(z;m), and the
proof given for (e) no longer goes through.

2. The time-ordered product (7.58) arranges the field operators Φ
form right to left, with increasing time arguments, following the
popular saying “the early bird catches the worm”. Its expectation
value (7.59) sums up two contributions which were distinct in non-
relativistic perturbation theory.
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3. The propagator PF(x− y;m), (7.60), in position space, is given in
the form of a Fourier transform. In momentum space and up to nu-
merical factors, its representation is given by 1/(k2−m2+ iε). It
comes in whenever a spinless particle described by the field Φ is
exchanged between two external lines. Consider, for example, the
diagram of Fig. 7.1. It looks like a perturbative contribution of sec-
ond order of the kind well-known from nonrelativistic perturbation
theory. However, there is an essential difference: While in the latter
the intermediate state violates only energy conservation but obeys all
other selection rules, in the former the particle is taken off its mass
shell p2 =m2. Its virtual four-momentum k which is the integration
variable, does not lie on the hyperboloid for mass m. Neither energy
conservation not momentum conservation are fulfilled.

4. The preceding remark should not be surprising in a Lorentz co-
variant theory where the splitting of a four-momentum into what is
called energy and what is called momentum depends on the frame
of reference. Therefore, it is very plausible that in covariant per-
turbation theory the propagator holds a central role and that the
denominator k2−m2+ iε replaces the energy denominator E− E0
of quantum mechanical perturbation theory. This observation will
receive further support in the next section which deals with the com-
plex scalar field.

7.2 The Complex Klein-Gordon Field

Like in the Sections 7.1.4 to 7.1.6 we stay with the description of free
particles with spin zero, i. e. we interpret the classical field φ(x) and
its quantized partner Φ(x) as before, but allow for φ = φ1+ iφ2 to be
complex. The field operator Φ(x) no longer is self-adjoint. The classical
Lagrange density which must still be real, then has the form

LKG(φi , ∂µφi)≡LKG(φ, φ
∗, ∂µφ, ∂µφ∗) (7.63)

= ∂µφ∗(x)∂µφ(x)−m2φ∗(x)φ(x).

One has the choice of either defining the two real fields φ1 and φ2, i. e.
the real and imaginary parts of the complex field φ(x), to be the inde-
pendent degrees of freedom, or, alternatively, to interpret the full field φ
and the complex conjugate field φ∗ as the independent variables. With
regard to the physical interpretation the second choice is more transpar-
ent.

Both fields, φ and φ∗, satisfy the Klein-Gordon equation with
mass m. The momentum canonically conjugate to φ is given by

φ(x)←→ π(x)= ∂LKG

∂(∂0φ)
= ∂0φ∗ ,
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while for φ∗ it reads

φ∗ ←→ π∗ = ∂0φ .

The Hamilton density (7.25) is replaced by

H(φ, φ∗, π, π∗)= π∗(x)π(x)+∇φ∗(x) ·∇φ(x)+m2φ∗(x)φ(x) .
(7.64)

The quantization of this model is determined by the Postulate 7.1 ac-
cording to which[

Π(x),Φ(x′)
]

x0=x′ 0 =−i δ(x− x′)= [
Π∗(x),Φ∗(x′)

]
x0=x′ 0 ,

(7.65)

all other commutators vanishing. One confirms that the commutators
with the Hamiltonian H = ∫

d3x H(x) are

[H,Φ(x)]=−iΠ∗(x)=−i∂0Φ(x) , [H,Π(x)]=−i∂0Π(x) , etc

as expected.
As the field operator Φ(x) is not self-adjoint the expansion in terms

of normal modes analogous to (7.31), contains two terms which are no
longer adjoints of each other. One has

Φ(x)=
∫

d3 p

2E p

[
f p(x)a(p)+ f ∗p (x)b†(p)

]
≡Φ(+)(x)+Φ(−)(x) ,

(7.66)

its adjoint being given by

Φ†(x)=
∫

d3 p

2E p

[
f ∗p (x)a†(p)+ f p(x)b(p)

]
≡Φ† (−)(x)+Φ† (+)(x) .

(7.67)

Suppose one inserted the plane waves (7.19), and decomposed the field
operators in positive and negative frequency parts, the first of which
contains the operators a(p) or b(p), the second of which contains the
operators a†(p) or b†(p), respectively. A calculation completely analo-
gous to the case of the real field shows that the quantization rules (7.65)
lead to the commutators[

a(p), a†(q)
]
= 2E p δ(p−q)=

[
b(p), b†(q)

]
, (7.68)

[a(p), a(q)] = 0= [b(p), b(q)] , [a(p), b(q)]= 0=
[
a(p), b†(q)

]
.

(7.69)

As before we define the quantized form of the Hamiltonian and of
the momentum operator by normal products, cf. (7.39) and (7.40). Thus,
it is not surprising to find expressions for the Hamiltonian and the mo-
mentum which are entirely analogous to (7.41) and (7.42), respectively.
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They are

H =
∫

d3 p

2E p
E p

[
a†(p)a(p)+b†(p)b(p)

]
, (7.70)

P =
∫

d3 p

2E p
p
[
a†(p)a(p)+b†(p)b(p)

]
. (7.71)

These results suggest the same interpretation of creation operators
a†(q) and b†(q) as in Sect. 7.1.5: when applied to the vacuum state both
create one-particle states with momentum q and energy Eq of spinless
bosons which satisfy Bose-Einstein statistics.

What is it then that renders the two types of particles different from
each other?
In order to answer this question we must study more carefully the in-
variances of the Lagrange density (7.63). As we know from classical
field theory the fact that eigenstates of H can be classified by energy
and momentum, lastly, is a consequence of the homogeneity of the
Lagrange density in space and time, via the theorem of E. Noether. Ob-
viously, the Lagrange densities of the real as well as the complex field
have this property. However, the density (7.63) has a further, rather ob-
vious, symmetry: If one multiplies the field φ by a complex number
with modulus 1, hence its complex conjugate by the complex conjugate
number, then LKG, (7.63), remains unchanged. A transformation of this
sort,

φ(x) �−→ φ′(x)= eiαφ(x) ,

φ∗(x) �−→ φ′ ∗(x)= e−iαφ∗(x) , α ∈R , (7.72)

is called global gauge transformation5. As it leaves the Lagrange den-
sity invariant it entails one further conservation principle. It will turn out
that it is this conserved quantity that allows to distinguish the excitations
generated by a† and by b†.

Choosing the real parameter α infinitesimal, |α| � 1, the result
(7.72) is seen to be a variation of the degrees of freedom φ and φ∗

φ′ = φ+ δφ , φ′ ∗ = φ∗ + δφ∗ , with δφ = iαφ , δφ∗ = −iαφ∗ ,
which leaves LKG invariant. Using δ(∂µφ)= ∂µ(δφ) one then has

0= δL= ∂L
∂φ
δφ+ ∂L

∂(∂µφ)
∂µ(δφ) + h.c.

= iα

{(
∂

∂xµ
∂L

∂(∂µφ)
φ+ ∂L

∂(∂µφ)
∂µφ

)
− (
φ↔ φ∗)}

= iα∂µ

(
∂L

∂(∂µφ)
φ− (

φ↔ φ∗)) .
In the second step use is made of the equation of motion
∂L

∂φ
= ∂

∂xµ
∂L

∂(∂µφ)

5 The term “gauging” is used here in
a figurative sense but alludes to genuine
gauging, or rescaling, of a (real) met-
ric, gµν(x) �→ g′(x) = exp{λ(x)}gµν(x).
In fact, this was the context within
which Hermann Weyl invented the no-
tion of gauge transformation in 1919.
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It follows from this that

jµ(x) := −i

(
∂L

∂(∂µφ)
φ− ∂L

∂(∂µφ∗)
φ∗

)
(7.73)

fulfills the continuity equation ∂µ jµ(x)= 0. Inserting the Lagrange den-
sity (7.63) one obtains in our example

jµ(x)= i φ∗(x)
↔
∂µ φ(x) . (7.74)

(Except for a numerical factor this is the form of the electromagnetic
current density announced at the beginning of Section 7.1.) If the fields
decrease sufficiently fast at spatial infinity then the continuity equation
implies that the space integral of the time component

Q :=
∫

d3x j0(x) (7.75)

is a conserved quantity, i. e. that ∂0 Q = 0 holds.
At this point we replace the classical fields φ and φ∗ by the field

operators as constructed by means of the postulate 2.1. We also replace
the classical current density (7.74) by the normal-ordered operator

Jµ(x)= i :Φ†(x)
↔
∂µ Φ(x): . (7.76)

Inserting again the expansions (7.66) and (7.67) as well as the plane
waves (7.19) one finds a simple, yet important result:

Q =
∫

d3 p

2E p

[
a†(p)a(p)−b†(p)b(p)

]
. (7.77)

It tells us that the states a†(q)|0〉 and b†(q)|0〉 differ by the eigenvalue
of Q: The first state carries the eigenvalue +1, the second carries the
eigenvalue −1. This suggests to interpret Q as the operator which de-
scribes the electric charge. For that it suffices to multiply it by the
elementary charge. The two types of excitations, the ones generated
by a† and the ones generated by b†, pertain to the same value of mass
and have the same kinematic properties, but carry equal and opposite
electric charge. This is the first hint at the possibility of using a complex
field to describe simultaneously particles and antiparticles.

By repeating the calculation that led to (7.57) in the real case one
finds the slightly modified result[

Φ(x),Φ†(y)
]
= i∆0(x− y;m) . (7.78)

The explicit form (7.60) of the propagator which holds for the com-
plex field is of particular interest,

〈0| T Φ(x)Φ†(y) |0〉 .
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(Q = +1) (Q = 1)−

Fig. 7.5a,b. Like in Fig. 7.4 the two
terms of the time-ordered product de-
scribe once the propagation from y
to x, once from x to y. Note, however,
that if in the first case (a) it is a par-
ticle that propagates virtually, then in
the second case (b) it is an antiparticle

Depending on the time ordering of the points x and y, different positive
and negative frequency parts contribute here:

x0 > y0 : 〈0|Φ(+)(x)Φ† (−)(y) |0〉
x0 < y0 : 〈0|Φ† (+)(y)Φ(−)(x) |0〉 .

The first term is of the type 〈0|aa†|0〉 and describes the propagation of
a particle from y to x, the second term is of the type 〈0|bb†|0〉 and
describes the propagation of an antiparticle from x to y, as sketched
in Fig. 7.5. The propagator describes the two virtual processes, creation
and annihilation of a particle and of an antiparticle, respectively, without
regard to the time ordering. Thus, the two contributions are contained in
one single expression!

Of course, this interpretation of the propagator remains an academic
one as long as the particle and the antiparticle are free particles which
do not interact with any others. So far there are no physically testable
predictions. The following example serves the purpose of filling this
gap.

Example 7.1
The coupling of an electrically charged scalar field to the Maxwell field
is obtained by the principle of minimal coupling, i. e. by the replacement

∂µ �−→ ∂µ+ iqAµ (7.79)

where Aµ(x) is a vector potential which yields the electric and magnetic
Maxwell fields while q is a multiple of the elementary charge. Inserting
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q k´− k´− q

+

+

+

Fig. 7.6a,b. Time flows from bottom to
top. In (a) a virtual π+ is exchanged,
in (b) a virtual π−, the antiparticle
of π+, is exchanged. Note that the roles
of incoming and outgoing photons can
be exchanged

this into the kinetic term of LKG, (7.63) yields

∂µΦ
†∂µΦ �→

(
(∂µ− iqAµ)Φ

†
)
(∂µ+ iqAµ)Φ

= ∂µΦ†∂µΦ−qJµAµ+q2Φ†ΦAµAµ , (7.80)

with Jµ(x) the operator of current density defined in (7.76). Anticipat-
ing later developments we suppose that the field Aµ(x) is also quan-
tized, according to the Postulate 7.1, and is written as a sum of positive
and negative frequency parts, Aµ = A(+)µ + A(−)µ . The first term con-
tains annihilation operators cλ(k) (k denotes the momentum, λ stands
for the spin) for photons with momentum k and polarization λ. The
second term contains the corresponding creation operator c†λ(k) and cre-
ates photons with the same properties. All this is in complete analogy
to the scalar field discussed previously. Resolving the second term on
the right-hand side of (7.80) with respect to its content in creation and
annihilation operators,

JµAµ =
(
Φ† (−)+Φ† (+)

) ↔
∂µ

(
Φ(−)+Φ(+)

) (
A(+)µ + A(−)µ

)
∝

(
a†+b

) (
b†+a

) (
c+ c†

)
,

one realizes that it describes absorption, or emission of a photon on
a scalar particle, say a π+. To second order in the charge e this inter-
action term describes, for example, the elastic scattering process

π+(q) + γ(k)−→ π+(q′) + γ(k′) , (q+ k = q′ + k′) ,
in the way drawn in Fig. 7.6. This figure shows time running upwards,
from bottom to top. Initially, there is an incoming state π+, γ with
four-momenta q and k, respectively. The final state contains the two out-
going particles with momenta q′ and k′, respectively. Furthermore, there
are two different intermediate states: In Fig. 7.6a the intermediate state
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consists of the incoming and outgoing photons plus a virtual π+ that
carries the momentum (q− k′)= (q′ − k), while the intermediate state
in Fig. 7.6b contains the incoming and the outgoing π+ as well as a vir-
tual π− with momentum (k−q′), but no photon. In every time section
t = const. the total charge is equal to +1. This example confirms very
clearly that the propagator sums up the two virtual processes and does
not distinguish the temporal order of interactions and vertices.

We will find a completely analogous situation when we study the in-
teraction of fermions with photons with the exception that the current
density has a somewhat different structure. Therefore, the interaction
term of the example is a prototype which is characteristic for quantized
electrodynamics.

The third term on the right-hand side of (7.80) comes in only in
the case of charged bosons. As it is bilinear both in the boson and
the photon fields it describes a kind of contact interaction whereby two
massive scalar particles and two photons are hooked to the same space-
time point, without the occurence of a propagator. This contribution
which is drawn in Fig. 7.7 is often called the seagull term6.

Remarks

1. The interpretation of b†-type excitations as the antiparticles of the
a†-type excitations receives a better physical basis from the principle
of minimal coupling: Indeed, the two vertices in Fig. 7.6b show the
processes of pair annihilation and pair creation, respectively,

π+ + π− −→ γ , γ −→ π+ + π− ,
which are only allowed if π+ and π− have equal and opposite
charges. As they have the same mass they are antiparticles of one
another.

2. The theory developed up to this point is completely symmetric in
particles and antiparticles, the states b†(q)|0〉 and a†(q)|0〉 are kine-
matically identical. They differ only by the sign of their charge.
However, this sign can be changed by modifying the definition of the
electromagnetic current density (7.76), simply by replacing e by −e.
Thus, we conclude:

What we call particle and what we call antiparticle is a matter of
convention.

3. The arguments we gave with regard to the invariance of the La-
grange density under global gauge transformations (7.72) do not
tell us whether the conserved “charge” (7.75) really is the electric
charge. In fact, there is the possibility that the particles described
by the field operator Φ, beyond the electric charge, carry further,
additively conserved, quantum numbers. Whether or not this is the
case is a question of the interactions and of their structure. Hints

+

+

Fig. 7.7. The contact interaction
Φ†(x)Φ(x)Aµ(x)Aµ(x) allows for the
creation and/or annihilation of two pho-
tons and two π particles. Of course,
this happens in such a way that electric
charge is conserved

6 Turning one’s head to the right, and
barring too much artistic scrutiny, one
will recognize a seagull in Fig. 7.7.
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at additive charges often come from experiments testing conserva-
tion laws. For example, besides π-mesons, there exists a set of four
K -mesons K0, K−, K0, and K+, which carry the charges indicated
in the superscript, but also carry a further quantum number S, called
strangeness. The K+ and the K− are antiparticles of one another,
and so are the K0 and the K0. Assigning the value S=−1 to the K−
and the K0 (this is the conventional choice in particle physics), then
K+ and K0 carry the value S= 1. This quantum number was discov-
ered empirically. It is found to be additively conserved in strong and
electromagnetic interactions. It can change, however, in weak inter-
actions, and does so following a well-defined pattern. This implies,
for example, that in a reaction with strong interaction

A+ B −→ C+D+ E ,

in which particles with strangeness participate, the sum of the eigen-
values of S must be the same in the initial and the final states,
S(A)+ S(B)= S(C)+ S(D)+ S(E). In decays such as

(a) π+ −→ π0+ e++νe (b) K+ −→ π0+ e++νe ,

which are caused by weak interactions, the strangeness remains un-
changed, branch (a), or changes by one unit, branch (b), (the positron
and the neutrino carry no strangeness).

7.3 The Quantized Maxwell Field

The Maxwell field is an obvious candidate for trying the principle
of canonical quantization. As compared to the previous examples, the
real and the complex Klein-Gordon fields, it exhibits two new, inti-
mately related properties. The photon which is the field quantum of
the quantized form of electrodynamics, has no mass and, hence, sat-
isfies the Klein-Gordon equation for mass zero. As it is massless, in
accord with Sect. 6.3.3, it is to be described by its helicity whose eigen-
values are h = 1 and h = −1. (A massive particle with spin s = 1
would possess three spin degrees of freedom!) In the classical, not yet
quantized form of the theory these helicity states correspond to left-
and right-circular polarization. This is equivalent to the statement that
electromagnetic plane waves have only transverse but no longitudinal
polarization.

7.3.1 Maxwell’s Theory in the Lagrange Formalism

The essential dynamical variable of the free Maxwell field in vacuum is
the tensor field of electromagnetic field strenghts,
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Fµν(x)=

⎛⎜⎜⎜⎝
0 −E1(x) −E2(x) −E3(x)

E1(x) 0 −B3(x) B2(x)
E2(x) B3(x) 0 −B1(x)
E3(x) −B2(x) B1(x) 0

⎞⎟⎟⎟⎠ (7.81)

which satisfy the homogeneous and inhomogeneous Maxwell equations,
in natural units,

εµνστ∂
νFστ (x)= 0 , (7.82)
∂µFµν(x)= jν(x) . (7.83)

We briefly confirm that this form of the equations which is manifestly
Lorentz covariant, agrees with Eqs. (7.13) and (7.14) of Sect. 7.1.2. Given
Fµν the electric and magnetic fields are, respectively,

Ei(x)=−F0i(x) , Bi(x)=−1

2
εijk F jk(x) ,

where εijk is the antisymmetric Levi-Civita tensor in three dimensions
and the sum convention is used. The homogeneous equations with
µ= 0, F jk =−ε jkl Bl , and ε0ijk = εijk

7

εijk∂
i F jk =−εijkε jkl∂

i Bl = 0 ,

All indices appearing in contragredient pairs are to be summed, Latin
indices running from 1 to 3. As εijkε jkl = 2δil , the first homogeneous
equation (7.13) follows.

Choosing µ= i, precisely one of the other indices of εiνστ must be
zero. For example, one has εi0 jk =−εijk and εij0k = εijk. Therefore, one
obtains

εi0 jk∂
0 F jk+εij0k∂

j Fok = εijkε jkl∂
0 Bl+εijk(−∂ j)(−Ek)

= 0= ∂0 Bi + (∇× E)i .

This is seen to be the second of the homogeneous equations (7.13) with
f1 = 1.

It is even simpler to reproduce the inhomogeneous equations:
From (7.83), inserting the operator (7.2) with ν = 0, one has

∂i Fi0(x)= j0(x) or ∇ · E(x)= �(x) .
This is the first equation (7.14) with D = E and f2 = 1. Furthermore,
for ν = i, we have

∂0 F0i +∂k Fki =− ∂

∂x0 Ei −εkil∂k Bl = ji =−
(
∂

∂x0 E−∇× B
)i

,

which is seen to be the second equation (7.14) with f3 = f4 = 1.
Expressing the field strength tensor field by means of a (four-)

potential field Aµ(x),

Fµν(x)= ∂µAν(x)−∂νAµ(x) , (7.84)
7 Note that we had chosen the conven-
tion ε0123 =+1.
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the homogeneous equations (7.82) are fulfilled automatically. The in-
homogeneous Maxwell equations are shown to be the Euler-Lagrange
equations of the following Lagrange density

L(Aα, ∂µAα, jµ) := −1

4
Fµν(x)F

µν(x)− jµ(x)A
µ(x) . (7.85)

This is confirmed by a little calculation. Writing the kinetic term as

−1

4
FαβgαµgβνFµν =−1

4

(
∂αAβ−∂βAα

)
gαµgβν

(
∂µAν−∂νAµ

)
,

and noting that all indices must be summed, one realizes that the deriva-
tive terms (∂σ Aτ ) appear in four places. Therefore, the derivative of the
Lagrange density by this term is

∂L

∂(∂σ Aτ )
=−1

4

(
4∂σ Aτ −4∂τ Aσ

)=−Fστ .

The partial derivative by the potential itself is ∂L/∂Aσ =− jσ , so that
the Euler-Lagrange equations are

∂L

∂Aσ
−∂σ

(
∂L

∂(∂σ Aτ )

)
= 0=− jσ (x)+∂σ Fστ (x) .

These are the inhomogeneous Maxwell equations.

Remarks

1. When the definition (7.84) is expressed in terms of electric and mag-
netic fields one obtains the familiar relations

Ei(x)= Fi0(x)= ∂i A0−∂0 Ai =−
(

∇A0+ ∂

∂x0 A
)i

,

Bi(x)=−1

2
εijk F jk =−1

2
εijk

(
∂ j Ak−∂k A j

)
= (∇× A)i .

(Note that {∂ j} = −{∂ j} = −∇.)
2. The Lagrange density (7.85) provides an example for a classical field

theory with more than one real field. In a symbolical, more gen-
eral notation we can write the corresponding Lagrange density as
L(φ(i), ∂µφ

(i)) where i = 1, 2, . . . , n serves to number the fields.
In the case at hand there are four real fields, (A0, A1, A2, A3),
which, in addition, have a well-defined transformation behaviour un-
der Lorentz transformations. Every one of the fields φ(i) fulfills an
Euler-Lagrange equation.
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3. The expression (7.28) for the energy-momentum field that was in-
troduced in Sect. 7.1.4 translates as follows: One calculates the
derivative

∂νL(φ(i), ∂µφ
(i))=

∑
i

{
∂L

∂φ(i)

∂φ(i)

∂xν
+ ∂L

∂(∂µφ(i))

∂(∂µφ
(i))

∂xν

}

=
∑

i

{(
∂µ

∂L

∂(∂µφ(i))
+ ∂L

∂(∂µφ(i))
∂µ

)
∂νφ(i)

}

= ∂µ
{∑

i

∂L

∂(∂µφ(i))
∂νφ(i)

}
.

In the second step ∂L/∂φ(i) is replaced by means of the equation
of motion. Alternatively, the same partial derivative can be written
simply

∂νL(φ(i), ∂µφ
(i))= gνµ∂µL(φ

(i), ∂µφ
(i)) .

A conservation law is obtained by taking the difference of the two
expressions

∂µT
µν(x)= 0 with

T µν =
∑

i

∂L

∂(∂µφ(i))
∂νφ(i)− gµνL . (7.86)

4. In the vacuum, i. e. without external sources, the two kinds of fields
E(x) and B(x) obey the wave equation, i. e. the Klein-Gordon equa-
tion for mass m = 0. If one chooses the class of Lorenz gauges8,
∂µAµ(x)= 0, then also Aµ(x) satisfies the wave equation. This im-
plies that the quantized form of the theory will describe massless
particles.

5. As it should, the Lagrange density (7.85) is invariant with respect
to proper orthochronous Lorentz transformations. Thus, the corre-
sponding equations of motion are Lorentz covariant. Furthermore,
the Lagrange density is invariant under space reflection and time re-
versal. This property is a physical one because it can be tested in the
interaction of the Maxwell fields with matter (which comes in by its
current density jµ).

6. In addition, the Lagrange density (7.85) is invariant under local
gauge transformations

Aµ(x) �−→ A′µ(x)= Aµ(x)−∂µχ(x) (7.87)

where χ(x) is a Lorentz scalar, differentiable function. This is ob-
vious for the first term in (7.85) because Fµν(x) does not change
when (7.87) is applied to Aµ. The second term which describes
the interaction with the current density jµ(x) changes by the term
jµ(x)∂µχ(x). Using partial integration this term is converted to
(∂µ jµ(x))χ(x) up to possible boundary terms at infinity. These

8 This condition was first found by
Ludvig Valentin Lorenz (1829 – 1891),
a Danish physicist, long before Hen-
drik Antoon Lorentz’ times to whom
this relation is often but erroneously at-
tributed.
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boundary terms do not contribute if the current density vanishes suf-
ficiently fast at infinity. As the current density satisfies the continuity
equation the additional term equals zero.

7.3.2 Canonical Momenta, Hamilton- and Momentum Densities
The generalized momenta canonically conjugate to Aµ(x) are calculated
in analogy to the prescription (7.24). One finds

π0(x)= ∂L

∂(∂0 A0)
≡ 0 , πi(x)= ∂L

∂(∂0 Ai)
=−F0i = Ei . (7.88)

The momentum conjugate to A0 is identically zero, the momentum con-
jugate to Ai is seen to be the i-th component of the electric field. One
then calculates the Hamilton density and the momentum density as fol-
lows. With

FµνFµν =−FµνFνµ =− tr
({Fαν}{Fνβ})= 2

(
B2− E2

)
,

with the spatial canonical momenta πi , and with Ei =−∂Ai/∂x0−∇i A0
one obtains

H =−πi ∂Ai

∂x0 −L= E · (E+∇A0)+ 1

2
(B2− E2)+ jµAµ

= 1

2
(B2+ E2)+ jµAµ+ E ·∇A0 .

The Hamilton function is obtained by integration over the whole space.
The contribution of the last term of the result for H is calculated as
follows,∫

d3x E ·∇A0 =−
∫

d3x (∇ · E) A0 =−
∫

d3x j0(x)A0(x) .

Eventually, these equations yield

H =
∫

d3x H =
∫

d3x

{
1

2

(
B2+ E2

)
− j · A

}
. (7.89)

The first term on the right-hand side is the well-known field energy,
the second term is the interaction energy of the fields with the given
electromagnetic currents.

The Hamilton density just calculated is nothing but the component
H = T 00 of the energy-momentum tensor field (7.86). The momentum
density is obtained from the latter and is found to be

P k = T 0k =
∑

i

π(i)∂kφ(i) =
3∑

j=1

E j
(
∂A j

∂xk

)
= E ·

(
∂A
∂xk

)
. (7.90)

We will analyze this expression further below, in the framework of
quantization.
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7.3.3 Lorenz- and Transversal Gauges
As mentioned before, by choosing the class of Lorenz gauges

∂µAµ(x) = 0 , (7.91)

the inhomogeneous equations (7.83) yield the equation of motion

�Aµ(x)= jµ(x) . (7.92)

This is an inhomogeneous Klein-Gordon equation for mass zero. Its
external source contains the current density of matter. Note that the con-
dition (7.91) does not fix the gauge completely. Indeed, further gauge
transformations (7.87) preserving the Lorenz condition (7.91) can be
found. They must be generated by gauge functions χ(x) which are so-
lutions of the homogeneous wave equation �χ(x) = 0. Clearly, these
additional gauge transformations leave the equation of motion (7.92)
form invariant.

At this point there is a bifurcation into two rather different paths
along which to pursue the analysis of the quantized radiation field:
A manifestly covariant approach which raises interesting conceptual
questions, or a frame-dependent approach which hides the covariance
but underpins more clearly the physical content of the theory. Depend-
ing on which direction one chooses the same theory will exhibit rather
different facets. As this is of great importance for the physical under-
standing we dwell for a while on this aspect in a couple of remarks
which also serve to motivate the next steps of our analysis.

Remarks

1. In a strict sense, only the field strengths, i. e. the entries of the
tensor field Fµν are observable. Yet, after quantization, the auxil-
iary field Aµ seems to be the natural candidate for the description
of the photon. However, matters do not really match. We already
know that photons have strictly no mass and, as they are de-
scribed classically by a vector field, presumably carry spin s = 1.
The general analysis described in Sect. 6.3.3 says that massless
particles have to be described by their helicity, not by the spin
of nonrelativistic quantum theory. It also says that massless vec-
tor particles have two, not three, spin degrees of freedom, viz.
the components h = 1 and h = −1. The vector field Aµ(x), ini-
tially, has four degrees of freedom – obviously too many. Indeed,
an arbitrary vector field which transforms like a four-vector un-
der Lorentz transformations, contains the spins s = 1 and s = 0,
and it is plausible that the spin-0 part is contained in its (four-)
divergence. It is precisely this part which is set equal to zero by
the Lorenz condition (7.91). The three remaining degrees of freedom
would be appropriate if the vector particle had a nonvanishing mass
because then the spin would have the usual three independent orien-
tations in space. In the case of the photon only two spin projections
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are physical so that there is still one degree of freedom too much.
This conclusion is reflected in the freedom of gauge that remains
after imposing the condition (7.91).

2. Maxwell’s equations (7.82) and (7.83) as well as the condition (7.91)
and the equation of motion (7.92) are manifestly Lorentz covariant.
Qualitatively speaking, this means that these equations have a well-
defined transformation behaviour under Lorentz transformations and
that they are form invariant. Talking about gauges and gauge fix-
ing there are two, formally different frameworks in which one can
work. One may choose any further gauge transformation such that
all relevant equations remain manifestly covariant. This approach has
advantages when deriving general properties of the classical theory
and its quantized partner. The prize that one has to pay is that one
will have to work with unphysical degrees of freedom which disap-
pear from the theory only in the final step of calculating observables.
Alternatively, the remaining gauge freedom may be used to eliminate
the redundant degree of freedom from the start. We will see, how-
ever, that in doing so one unavoidably breaks manifest covariance.
The advantage of this approach is that it deals only with physical
degrees of freedom and, at every step, is amenable to physical in-
terpretation in a transparent manner. As a disadvantage it renders
calculations in higher orders of perturbation theory cumbersome, if
not impossible. Of course, all genuine observables such as, e. g.,
cross sections, come out the same, irrespective of the framework one
has chosen.

As our first aim is to understand the physical meaning of quantized
electromagnetism, we choose here the second alternative, that is, we
abandon explicit covariance in favour of a formalism that makes use of
physical fields only. We return to quantization in a manifestly covariant
formulation in Sect. 7.5 below.

The freedom of gauging in

Aµ �−→ A′µ = Aµ−∂µχ(x)
is chosen such as to render the spatial part of the vector field A′µ di-
vergenceless. Assume the original field Aµ had a nonvanishing spatial
divergence ∇ · A and choose the gauge function to be

χ(x)≡ χ(t, x)= 1

4π

∫
d3 y

1

|x− y|∇y · A(t, y) .

Then, with �(1/|x− y|)=−4πδ(x− y) one has �χ =−∇ · A so that
one concludes ∇ · A′ = ∇ · A+�χ = 0. From here on one remains
within the class of gauge potentials Aµ which fulfill the condition

∇ · A(x)= 0 . (7.93)
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A gauge of this class is called a transverse gauge, or Coulomb gauge.
Inserting this in the equation of motion (7.83) with ν = 0 one obtains

�A0(x)− ∂
2 A0(x)

∂(x0)2
=−�A0(x)= j0(x) .

A solution of this differential equation (Poisson equation) is known
from electrostatics, viz.

A0(t, x)= 1

4π

∫
d3y

j0(t, y)
|x− y| .

If one is concerned with a free Maxwell field, i. e. if the external sources
jµ are identically zero, the field A0 can be made to vanish

A0(x) ≡ 0 .

In order to achieve this choose the gauge transformation

A′µ = Aµ−∂µψ and ψ =
x0∫

0

dt′ A0(t′, x) .

The Lorenz condition which led to the equation of motion (7.92) can
always be imposed. However, transforming the field A0 to zero (whose
conjugate momentum vanishes identically) is possible only in the theory
in vacuum, i. e. without external sources.

While the magnetic field is always transversal, i. e. fulfills the con-
dition ∇ · B= 0, the electric field

E=−∇A0−∂0 A≡ E‖ + E⊥
has both a parallel and a transverse component,

∇× E‖ = 0 , ∇ · E⊥ = 0 .

They are defined by space or time derivatives of the vector potential A
as given above.

In a Coulomb gauge the results obtained are used to transform the
electric part of the field energy in (7.89) as follows. One has∫

d3x E2 =
∫

d3x (E2‖ + E2⊥)−2
∫

d3x ∇A0 · E⊥ .
The second term does not contribute because, by partial integration, the
nabla operator is shifted to E⊥. Furthermore, one has∫

d3x E2‖ =
∫

d3x (∇A0)2 =
∫

d3x ∇ · (A0∇A0)−
∫

d3x A0�A0 ,

the first term of which vanishes, while the second is rewritten by means
of �A0 =− j0. Inserting the solution for A0 given above, one obtains∫

d3x E2‖ =
∫

d3x
∫

d3 y
j0(t, x) j0(t, y)

4π|x− y| .
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With these results the Hamilton function (7.89) becomes

H =
∫

d3x

{
1

2

(
B2+ E2⊥

)
− j · A

}
+ 1

2

∫
d3x

∫
d3 y

j0(t, x) j0(t, y)
4π|x− y|

=
∫

d3x

{
1

2

(
(∇× A)2+

(
∂A
∂x0

)2
)
− j · A

}

+ 1

2

∫
d3x

∫
d3y

j0(t, x) j0(t, y)
4π|x− y| . (7.94)

This result is remarkable by the fact that, besides the field energy of
the transverse fields and the interaction between spatial current density
and vector potential, the Hamilton function H contains an instantan-
eous Coulomb interaction (last term). Note that the form (7.94) of the
Hamilton function is an exact result.

7.3.4 Quantization of the Maxwell Field
Let us accept that Aµ(x) is the field which is appropriate for the
description of photons but, for the reasons described above, let us con-
strain it by gauge conditions such as (7.91) or (7.93). If we try to
quantize this field by blindly applying the Postulate 7.1 we run into
a contradiction: The time component π0(x) being identically zero, we
would obtain the requirement[

πi(x), A j(y)
]

x0=y0
=−i δij δ(x− y)=−i δij

1

(2π)3

∫
d3k eik·(x−y) .

(7.95)

This postulate is in conflict with the first inhomogeneous Maxwell equa-
tion (without external source). Differentiating (7.95) by x, its left-hand
side becomes (Gauss’ law)

∇x

[
Ei(t, x), A j(t, y)

]
= 0 ,

while its right-hand side yields a nonvanishing expression

−i
3∑

i=1

∂i δ
ij δ(x− y)= 1

(2π)3

∫
d3k k j eik·(x−y) �= 0.

This contradiction can be resolved by a modification of the quantization
rule for the Maxwell field. Assume[

πi(x), A j(y)
]

x0=y0
= i

(2π)3

∫
d3k eik·(x−y)

(
δij − kik j

k2

)
. (7.96)

As we shall soon learn, the expression which appears on the right-hand
side does not fall from heaven. Indeed, the specific linear combination
in the integrand will be seen to be the sum over the physically allowed
helicity states of the photon.
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By direct analogy to the expansion (7.31) in terms of the base func-
tions (7.19) we write

A(t, x)= 1

(2π)3/2

∫
d3k

2k0

∑
λ

ελ(k)
[
cλ(k)e−ikx+ c†λ(k)e

ikx
]
,

(7.97)

where, as usual, kx = k0x0−k ·x, and where k0 = |k| =: ωk is the (phys-
ical) energy of a photon with spatial momentum k. The vector behaviour
of A is carried over to the polarization directions ελ = (ε1

λ, ε
2
λ, ε

3
λ)

whose number is determined by the transversality condition. Using
a Coulomb gauge, for instance, Eq. (7.93) and the ansatz (7.97) yield
the condition

ελ(k) ·k= 0

whose significance is easily understood. The spatial vector k defines the
direction in which a monochromatic wave with wave number |k| propa-
gates. The polarization of this wave must be transversal to this direction,
i. e. the index λ can take only two values, say, λ = 1 and λ = 2, as
sketched in Fig. 7.8. For these one has

ελ(k) ·ελ′(k)= δλλ′ .
Defining, in addition to the two previous components, ε3(k) := k̂=
k/|k|, one also has

3∑
λ=1

εi
λ(k)ε

j
λ(k)= δij .

If one sums over the two first values only one obtains the important
relation

2∑
λ=1

εi
λ(k)ε

j
λ(k)= δij −

kik j

k2 .

This is the sum over spins that appears in the integrand of (7.96). In
view of the explicit calculations that follow it is convenient to introduce
an additional convention:

ε1(−k)=−ε1(k) , ε2(−k)=+ε2(k) . (7.98)

As a consequence of this convention, one has

ελ(k) ·ελ′(−k)= (−)λ δλλ′ . (7.99)

Furthermore, the corresponding spherical basis then satisfies a relation
which is familiar from the theory of spherical tensor operators, viz.

∓ 1√
2
{ε1(−k)± i ε2(−k)} = ± 1√

2
{ε1(k)∓ i ε2(k)} .

1

2

ε

ε

Fig. 7.8. The vector k defines the direc-
tion of propagation of the plane wave.
Its polarization can only be perpendic-
ular to this direction, that is, it must be
a linear combination of ε1 and ε2
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The operators cλ(k) and c†λ(k) are obtained from the expansion (7.97)
in a manner which is completely analogous to the formulae (7.32). One
finds

cλ(k)= i

(2π)3/2

∫
d3x eikx

↔
∂0 ελ(k) · A(x) , (7.100)

c†λ(k)=−
i

(2π)3/2

∫
d3x e−ikx

↔
∂0 ελ(k) · A(x) . (7.101)

These formulae are obtained as follows. By the choice A0 = 0 one has
πi = Ei =− Ȧi . Construct then

ωk

∫
d3x eikxελ · A= (2π)3/2 1

2

(
cλ(k)+ (−)λc†λ(−k)e2iωkx0

)
,

i
∫

d3x eikxελ · Ȧ= (2π)3/2 1

2

(
cλ(k)− (−)λc†λ(−k)e2iωkx0

)
,

and take the sum of the two equations,

cλ(k)= 1

(2π)3/2

∫
d3x eikxελ(k)

(
ωk A(x)+ iȦ(x)

)
.

Now, the expression within parentheses in the integrand equals i times
the left-right derivative given in (7.100). The formula (7.101) is the her-
mitean conjugate of (7.100).

In the next step one uses these formulae to calculate the commuta-
tors for the operators cλ(k) and c†λ(k).[

cλ(k), c
†
λ′(k
′)
]
= 1

(2π)3

∫
d3x eikx

∫
d3y e−ik′y

3∑
m,n=1

εm
λ (k) ε

n
λ′(k
′)

× [(
ωk Am(x)+i Ȧm(x)

)
,
(
ω′k An(y)−i Ȧn(y)

)]
x0=y0

=− i(ωk+ω′k)
(2π)3

∫
d3x eikx

∫
d3y e−ik′y

×
3∑

m,n=1

εm
λ (k) ε

n
λ′(k
′)
[
πm(x), An(y)

]
x0=y0 .

At this point one inserts the commutator (7.96)[
πm(x), An(y)

]
x0=y0 = i

(2π)3

∫
d3q eiq·(x−y)

(
δmn− qmqn

q2

)
,

then takes the integral over x and over y, and makes use of the relations∫
d3q δ(k−q)δ(q−k′)= δ(k−k′) ,

3∑
m,n=1

(
δmn− kmkn

k2

)
εm
λ (k) ε

n
λ′(k)= ελ(k) ·ελ′(k)= δλλ′ .
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The commutator between cλ(k) and cλ′(k′) is obtained in the same man-
ner. In summary one obtains[

cλ(k), c
†
λ′(k
′)
]
= 2ωk δλλ′ δ(k−k′) , (7.102)[

cλ(k), cλ′(k
′)
]= 0=

[
c†λ(k), c

†
λ′(k
′)
]
. (7.103)

On the basis of what we learned in studying the scalar field, the in-
terpretation of these results seems clear: The operators c†λ(k) and cλ(k)
are creation and annihilation operators, respectively, for one-photon
states with momentum k and polarization λ. Their energy is ωk = |k|.
The one-particle states

|k, λ〉 = c†λ(k) |0〉
are covariantly normalized, i. e.〈

k′, λ′
∣∣k, λ〉= 2ωk δλλ′ δ(k−k′) .

In order to consolidate this interpretation, however, we should cal-
culate the Hamiltonian and the momentum operator for the free photon
field.

7.3.5 Energy, Momentum, and Spin of Photons
We split the Hamilton function (7.94) into a purely field dependent term
and the interaction terms with charge and current densities of matter,
H = H0+ Hint. After (canonical) quantization H0 is replaced by the
normal-ordered operator

H0 = :
∫

d3x

{
1

2

(
(∇× A)2+

(
∂A
∂x0

)2
)}

: . (7.104)

A little calculation using the expansion (7.97) yields the result
(cf. Exercise 7.7)

H0 =
2∑
λ=1

∫
d3k

2ωk
ωk c†λ(k)cλ(k) . (7.105)

The momentum operator is obtained from the formula (7.90)

P k = :E ·
(
∂A
∂xk

)
:=−:

(
Ȧ+∇A0

)
·
(
∂A
∂xk

)
:=−:Ȧ ·

(
∂A
∂xk

)
: ,

(keeping track of the fact that A0 was transformed to zero). Inserting
(7.97) and integrating over all space one finds

P =
2∑
λ=1

∫
d3k

2ωk
k c†λ(k)cλ(k) . (7.106)



444 7Quantized Fields and their Interpretation

9 In the case of Einstein’s equations for
the gravitation field the analogous anal-
ysis shows that the graviton is massless
and has spin/helicity 2.

It is now easy to verify that the interpretation given above was cor-
rect, that is to say, that one has

H |k, λ〉 = ωk |k, λ〉 , P |k, λ〉 = k |k, λ〉
with ωk = |k|.

It remains to identify the spin carried by the single-particle states
|k, λ〉.

7.3.6 Helicity and Orbital Angular Momentum of Photons

The basis that we used in the expansion (7.97) of the quantized photon
field is the complete system of (covariantly normalized) plane waves.
If one talks about spin and orbital angular momentum one must keep
in mind that although the plane wave contains all values of the orbital
angular momentum, from 	= 0 to 	=∞, the projection m	 of any par-
tial wave onto the direction k̂ of propagation equals zero, cf. Sect. 1.9.3.
Furthermore, the general analysis of representations of the Poincaré
group tells us that massless particles do not have spins in the sense
of nonrelativistic quantum theory but are characterized by their helic-
ity which takes only two values h =±s (no matter what the value of
s� 1/2 is). This was found to be a consequence of the observation that
the relevant subgroup of the Lorentz group leaves invariant the spatial
momentum k of the massless particle. What then could be more natural
than to study the behaviour of its quantum states under rotations about
the axis defined by k?9

It is appropriate to replace the unit vectors ε1 and ε2 by the spherical
basis

ζ± := ∓ 1√
2
(ε1± iε2) . (7.107)

If one now performs a rotation about the axis k̂ by the angle φ then ζ+
and ζ− transform according to

ζ± �−→ ζ ′± = e±iφ ζ± .

The handedness of a particle with spin s was defined earlier by the pro-
jection of its spin onto the direction of the momentum, h = s · k̂. It is
then clear that the photon carries the helicities +1 and −1. Thus, ac-
cording to the definition given in Sect. 1.3.3, s = |h|, one concludes:

The photon carries spin 1.

Another basis which may be used in expanding the quantized photon
field, is provided by the eigenfunctions of angular momentum (orbital
angular momentum plus spin). For instance, this is the appropriate
choice when one studies emission and absorption of photons in atomic
or nuclear states which are classified by angular momentum and parity.
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For example, a photon emitted in the transition∣∣n′, (	′, s) j ′
〉−→ |n, (	, s) j〉

carries (total) angular momentum J which together with j and j ′ satis-
fies the triangle rule. Furthermore, the parity of the photon state is equal
to the product of the parities of initial and final state. This gives rise to
selection rules for transitions in atoms or nuclei.

Base states with definite angular momentum for photons are con-
structed as follows. Assuming harmonic time dependence

A(t, x)= e−ik0t A(x)

in the equation of motion (7.92) without external sources, and making
use of the energy-momentum relation k0 = |k| ≡ κ, the vector field A(x)
satisfies the differential equation(

�+κ2
)

A(x)= 0 . (7.108)

This is the well-known Helmholtz equation. The aim then is to find so-
lutions of this equation which are eigenfunctions of angular momentum
and have definite parity.

A very useful tool for this purpose is provided by the vector spheri-
cal harmonics which are obtained by coupling ordinary spherical har-
monics and the elements of the spherical basis. Adding to the unit
vectors (7.107) a third one

ζ0 := ε3 (7.109)

one obtains the spherical basis ζµ, µ= 1, 0,−1 whose properties are

ζ∗µ = (−)µζ−µ , ζ∗µ · ζµ′ = δµµ′ . (7.110)

The vector spherical harmonics are defined by

T J	M(θ, φ) :=
∑
m,µ

(	m, 1µ |JM) Y	m(θ, φ) ζµ . (7.111)

Obviously, they transform like irreducible spherical tensors of rank J ,
and, in addition, have vector character in R3. Their behaviour with re-
spect to space reflection is

T J	M(π− θ, φ+π)= (−)	 T J	M(θ, φ) : (7.112)

They fulfill the orthogonality relation∫
dΩ

(
T∗J ′	′M′ ·T J	M

)= δJ ′ Jδ	′	δM′M . (7.113)

The result (7.113) follows from the orthogonality of the Y	m , from
(7.110), and from the unitarity of the Clebsch-Gordan coefficients. Fi-
nally, one verifies that the set T J	M(θ, φ) is a complete orthonormal
system.
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We return to the Helmholtz equation, assuming a factorized form for
its solutions

AJ	M(r)= R	(r) T J	M(θ, φ) .

The Laplace operator in spherical polar coordinates reads

�= 1

r2

∂

∂r

(
r2 ∂

∂r

)
− �2

r2 ,

cf. Sect. 1.9.2. Inserting this in (7.108) and introducing the dimension-
less variable � := κr one obtains a differential equation for the function
R	(r) which depends on the radial variable only,

1

�2

d

d�

(
�2 dR	(�)

d�

)
− 	(	+1)

�2 R	(�)+ R	(�)= 0 .

This is the differential equation for spherical Bessel and Hankel func-
tions that we first met in Sect. 1.9.3. The solutions regular at the origin
r = 0 are the spherical Bessel functions j	(κr). In turn, the spherical
Hankel functions h(±)	 (κr) are the solutions which oscillate at infinity
like e±i(�−	(π/2))/�. Both classes of solutions fulfill the relation

∞∫
0

r2 dr f	(κ
′r) f	(κr)= π

2κκ′
δ(κ−κ′) .

Let R(r) be an arbitrary smooth function of r and let F be the vector
field

F(r) :=∇ (R(r)YL M(θ, φ)) .

The aim is to expand this vector field in terms of the basis T J	M . The
nabla operator is a tensor operator of rank 1. Thus, expressing it in
terms of the spherical basis and denoting its components by ∇µ, one
has (cf. Exercise 7.8)[

	3,∇µ
]= µ∇3 ,

[
	±,∇µ

]=√
2−µ(µ±1) ∇µ±1 .

The same relation is written by means of 3 j-symbols if one uses the
decomposition of � in the spherical basis. One has[

	m,∇µ
]= (−)m−µ√6

(
1 1 1

m+µ −m −µ
)
∇µ+m .

It is then clear that the decomposition of F can only contain values of J
which obey the triangle rule ∆(L, 1, J) with L and 1. The parity of F
is (−)L+1. Because of the property (7.112), the expansion can contain
only those base functions which have 	= L±1. Finally, one finds that
J takes the value L only.

The nabla operator can be decomposed into a radial and a tangent
part,

∇ = x (x ·∇)− x× (x×∇)= x
∂

∂r
− i

r
(x×�) .
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These formulae and some angular momentum algebra are used to
prove the so-called gradient formula

∇ (R(r)YL M(θ, φ))=−
√

L+1

2L+1

(
dR(r)

dr
− L

r
R(r)

)
TL L+1M

+
√

L

2L+1

(
dR(r)

dr
+ L+1

r
R(r)

)
TL L−1M .

(7.114)

The two terms which contain the derivative R′(r) come from the radial
part, the terms in 1/r come from the tangent part. The reason why they
are grouped as done in (7.114) is that the spherical Bessel and Hankel
functions fulfill the relations(

d

d�
− 	
�

)
R	(�)= R	+1(�)

(
d

d�
+ 	+1

�

)
R	(�)= R	−1(�) .

This renders the gradient formula quite transparent when applied to
these special functions.

Two solutions of the Helmholtz equation with definite angular mo-
mentum and which are regular at r = 0, are

(i) the electric multipole fields

A(E)L M =−
√

L

2L+1
jL+1(κr)TL L+1M+

√
L+1

2L+1
jL−1(κr)TL L−1M ,

(7.115)

(ii) the magnetic multipole fields

A(M)L M = jL(κr)TL L M . (7.116)

One confirms that they have a number of properties of particular impor-
tance for applications:

1. Both types of fields satisfy the transverse gauge condition (7.93), i. e.

∇ · A(E/M)
L M = 0 ,

and, hence, are admissible solutions. Using these solutions in the
analogue of the expansion (7.97) of the field operator A in terms
of creation and annihilation operators, one obtains creation (annihila-
tion) operators for photons in states with definite angular momentum
and definite parity;

2. For L = 0 both solutions are identically zero. There are no transverse
multipole fields with total angular momentum zero;

3. Applying space reflection, the field A(E)L M takes the sign (−)L+1,
while A(M)L M takes the sign (−)L .
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10 The transition (2s→ 1s) is possible
through emission of two photons, or
through a small relativistic term, unless
it is induced by collisions with other
atoms.

Applying these properties to the interaction j · A, and noting that
the current density j is odd under space reflection, one obtains selec-
tion rules for transitions between states with given angular momenta and
parities. These selection rules are:

(a) The angular momenta Ji , J f , and L of initial and final states, re-
spectively, and of the multipole photon satisfy the triangle relation
∆(Ji, L, J f ). There are no monopole transitions L = 0;

(b) A photon of type (L, (E)) changes the parity by the factor (−)L ;
(c) A photon of type (L, (M)) changes the parity by the factor (−)L+1.

A few examples for the interaction of the radiation field with hy-
drogen, or hydrogen-like atoms, may help to illustrate these results.
The transition (2p→ 1s) is a pure E1-transition, i. e. an electric dipole
transition, because the selection rules fix L = 1 and parity (−). In the
nonrelativistic description no isolated photon can be emitted in the tran-
sition from 2s to 1s because there is no multipole field10 with L = 0.
A transition (3d→ 1s) necessarily is an E2-transition. However, we
meet here a pecularity of atomic physics which is easy to understand
and that I wish to explain briefly. The light emitted by ordinary atoms
has wave lengths which are large as compared to typical dimensions of
the atom, λ� aB. This, in turns, means that the argument κr of the
spherical Bessel functions, over atomic distances, remains small as com-
pared to 1, (κr)� 1. The transition probabilities depend on the matrix
elements of the fields (7.115) or (7.116) between initial and final states.
The radial functions Rn	 and Rn′	′ in the radial part 〈n	| j	(κr)|n′	′〉
of the matrix elements, for increasing r, decrease to very small values
while (κr) is still small. Therefore, the Bessel function can be approxi-
mated by its behaviour for small values of the argument,

j	(κr)∼ (κr)	

(2	+1)!! .
This shows that the radial matrix elements suppress higher values of 	
in favour of smaller ones. Thus, an E2-transition such as the one
between 3d and 1s in hydrogen is strongly suppressed. It is more
favourable to make the detour via the 2p-state

3d −→ 2p −→ 1s ,

through two E1-transitions.
In a muonic atom the relative length scales are less pronounced, as

one easily confirms, so that E2-transitions such as (3d→ 1s) become
perfectly observable.

Likewise, in nuclear physics length scales are not so clearly ordered.
Typical transitions have energies in the range of MeV. If one calcu-
lates κ from this and estimates the product κR, with R the radius of the
nucleus, one will find cases where (κr) is comparable with 1. Indeed,
nuclear spectroscopy reveals higher multipoles with sizeable intensi-
ties.
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7.4 Interaction of the Quantum Maxwell Field
with Matter

This section deals with the interaction of the radiation field with elec-
trons in matter in a framework still akin to nonrelativistic perturbation
theory. That is to say, while the creation and annihilation of photons
is described by means of the field operator (7.97), the quantum states
of the electron still are solutions of the Schrödinger equation, transi-
tion probabilities and cross sections are calculated like in nonrelativistic
quantum theory. This somewhat old-fashioned treatment illustrates the
physical interpretation in a particularly simple way. In Chap. 10 it will
be replaced by the modern covariant perturbation theory.

The simplest case is the interaction of the radiation field with a sys-
tem of N nonrelativistic electrons whose Hamiltonian has the form

H0 =
N∑

i=1

p(i) 2

2m
+

N∑
i< j=1

U(i, j) .

The coupling to the photon field is derived from the rule (7.79) with
q =−e the (negative) elementary charge. Thus, the operator p=−i∇
is to be replaced by p−q A. The Hamiltonian then becomes

H = H0+
N∑

i=1

{
− q

2m

(
p(i)·A(t, x(i))+A(t, x(i))·p(i)

)
+ q2

2m
A2(t, x(i))

}
≡ H0+Hint . (7.117)

Adding the interaction of the magnetic field with the magnetic moment
of the electron, H is supplemented by the term

Hspin
int =−

N∑
i=1

q

2m
σ (i) ·

(
∇× A(t, x(i))

)
. (7.118)

Upon insertion of the expansion (7.97) of the field operator A in these
expressions, one sees that, to first order in O(q), the terms linear in A
create or annihilate a single photon, while to second order in O(q), the
quadratic term in A scatters a photon from an incoming to an outgoing
state or else, creates or annihilates two photons.

7.4.1 Many-Photon States and Matrix Elements

The calculation of matrix elements of the field operator (7.97) needs
a little more care than the simple example of Sect. 7.1.5 because multi-
photon states, instead of a standard norm, have a distribution-valued
normalization. We study a few cases which are needed for the calcu-
lations to be done below.
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11 This is a detailed calculation which
becomes more systematic by Wick’s
theorem, cf. Theorem 5.1.

The normalization of a state containing one single photon with mo-
mentum q and polarization λ, follows from the commutator (7.102),

c†λ(q) |0〉 ≡
∣∣∣(q, λ)1〉 : 〈

(q′, λ′)1
∣∣∣(q, λ)1〉= 2ωqδλ′λδ(q

′ −q) .

Integrating and summing over the attributes of the left-hand state this
implies∑

λ′

∫
d3q′

2ω′q

〈
(q′, λ′)1

∣∣∣(q, λ)1〉= 1 .

A state containing two photons c†λ(q)c
†
µ(p)|0〉 which carry different mo-

menta, has the squared norm

〈0| cµ′(p′)cλ′(q′)c†λ(q)c†µ(p) |0〉 = 2ωq2ωp
{
δλ′λδ(q

′−q)δµ′µδ(p
′−p)

+ δλ′µδ(q′ − p)δµ′λδ(p
′ −q)

}
.

This is easily shown by applying the commutation rules (7.102)
and (7.103) several times in such a way that all annihilation operators
are shifted to the right, while all creation operators are moved to the
left11. If the two momenta are equal, p= q, and if λ=µ, then the right-
hand side is equal to

2! (2ωq)
2δλ′λδµ′λδ(q

′ −q)δ(p′ −q) .

In other terms, the state∣∣∣(q, λ)2〉= 1√
2!

(
c†λ(q)

)2 |0〉

is correctly normalized provided some care is taken. One cannot calcu-
late the squared norm of this state because the square of a δ-distribution
is ill-defined. However, one can evaluate the scalar product

1√
2!

∫
d3q1

2ωq1

∫
d3q2

2ωq2

〈0| cλ(q1)cλ(q2)

∣∣∣(q, λ)2〉= 1 .

A state of n photons with momentum q and polarization λ is given by∣∣(q, λ)n 〉= 1√
n!

(
c†λ(q)

)n |0〉 . (7.119)

It is normalized in the same sense as above, i. e. one has

1√
n!

∫
d3q1

2ωq1

. . .

∫
d3qn

2ωqn

〈0| cλ(q1) · · · cλ(qn)
∣∣(q, λ)n 〉= 1 .

This multiple integral is precisely the one needed in the calculation
of transition matrix elements. Indeed, recall some formulae of nonrela-
tivistic perturbation theory: A given operator O acts on the normalized
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state (7.119). The question then is to which, possibly different, final
states it can lead. In order to answer this question we calculate∑

λ1

· · ·
∑
λn

· · ·
∫

d3q1

2ωq1

· · ·
∫

d3qn

2ωqn

· · ·〈0| cλ1(q1)· · ·cλn (qn)· · ·O
∣∣(q, λ)n 〉

and express the final state(s) by means of states normalized as in (7.119).
So, for instance,

c†λ(q)
∣∣(q,λ)n 〉=√n+1

∣∣(q,λ)n+1〉 , cλ(q)
∣∣(q,λ)n 〉=√n

∣∣(q,λ)n−1〉 .
These are the formulae (7.43), the corresponding transition amplitudes
being〈
(q,λ)n+1

∣∣c†λ(q) ∣∣(q,λ)n 〉=√n+1 ,
〈
(q,λ)n−1

∣∣cλ(q) ∣∣(q,λ)n 〉=√n .
(7.120)

These are the relevant formulae for emission and absorption of single
photons, the topic to which we now turn.

7.4.2 Absorption and Emission of Single Photons
As a first example consider the absorption of a photon γ(q, λ) on an
initial state |i〉 which may be thought to be a bound atomic state, under
the influence of the interaction (7.117). For simplicity, we assume that
before the absorption only photons of the same kind are present, if at
all. We calculate the amplitude for the transition into a final state | f 〉
which may be another bound state or a state in the continuum,

|A〉 −→ |B〉 , |A〉 ≡ ∣∣i; (q, λ)n 〉 , |B〉 ≡ ∣∣ f ; (q, λ)n−1〉 .
At order O(q) and with p( j) =−i∇( j) one has

〈B| Hint |A〉 = − q

2m

1

(2π)3/2∑
µ

∫
d3k

2ωk

N∑
j=1

〈B| εµ(k)
(

2p( j)−k
)

cµ(k)e−ikx |A〉

The second term on the right-hand side does not contribute because
of εµ · k= 0. The first term contains the second of the matrix ele-
ments (7.120) so that, upon insertion, one obtains

〈B| Hint |A〉 = − q

m

1

(2π)3/2
√

n
N∑

j=1

〈 f | eiq·x( j)
p( j) ·ελ |i〉 e−iq0t ,

(7.121)

with n the number of photons before the absorption. The amplitude for
the transition in which a photon γ(q, λ) is emitted,

|A〉 −→ |C〉 , |A〉 ≡ ∣∣i; (q, λ)n 〉 , |C〉 ≡ ∣∣ f ; (q, λ)n+1〉 ,



452 7Quantized Fields and their Interpretation

12 Presumably, no one would be tempted
to treat the radiation emitted by an
FM-radio station in the framework of
quantum electrodynamics. As one eas-
ily estimates, the number of emitted
photons per unit of volume is many
orders of magnitude and, hence, very
large as compared to 1.

is calculated in much the same way

〈C| Hint |A〉 = − q

m

1

(2π)3/2
√

n+1
N∑

j=1

〈 f | e−iq·x( j)
p( j) ·ελ |i〉 eiq0t .

(7.122)

These results are remarkable as such and warrant the following com-
ment:

Remark
In the early times of quantum theory absorption and emission of pho-
tons was treated in the framework of a semi-classical theory of radia-
tion. While in the classical, unquantized theory of radiation transition
probabilities are proportional to the square of the amplitude |A|2, the
quantized theory shows them to be proportional to n, the number of
photons in the state (q, λ). Intuitively one expects classical and quantum
descriptions to give the same answers for large numbers of photons,12

n� 1. The matrix element (7.121) for absorption is proportional to
√

n.
Thus, if in the semi-classical theory one defines

A(abs)
cl = 1

(2π)3/2
√

n ελ e−iq·x ,

then one obtains the correct answer, even for small n. This is no longer
true when one deals with a process of emission. In this case one would
have to define

A(emi)
cl = 1

(2π)3/2
√

n+1 ελ eiq·x

in order to get the correct quantum theoretic answer. However, this is
not the conjugate of the absorption potential. Conversely, the complex
conjugate of A(abs)

cl would give the right answer only in the limit n� 1.
This difference becomes a marked one for n = 0, i. e. in the case where
there is no photon at all in the initial state. The classical description
would have Acl = 0 and there would be no emission of photons. The
state |A〉 could not go over into the state |C〉 by emission of a photon.
In contrast, the quantum theoretic formula (7.122) yields a nonvanishing
probability even for n = 0, for the state |A〉 to emit a photon. This is the
reason why the early, semi-classical theory needed to distinguish spon-
taneous emission from induced emission. The quantum theoretic result
(7.122) contains both, no distinction between spontaneous and induced
emission is necessary.

Example 7.2
We calculate the probability for E1-transitions between circular orbits
(i. e. orbits with 	= n−1) in hydrogen or in hydrogen-like atoms,

|n; 	= n−1〉 −→ ∣∣n′ = n−1; 	′ = n′ −1= n−2
〉+γ(k)
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in the limit of long wave lengths, |k|r� 1. The relevant matrix element
is given in (7.122), the transition probability is calculated by the Golden
Rule (5.77). In energy representation, and with covariant normalization
the phase space factor in this formula reads

�(ωk)dωk dΩ = d3k

2ωk
= ω

2
k dωk

2ωk
dΩ ,

the second form of which is expressed in spherical polar coordinates,
with ωk = |k|. As a result one has �(ωk)= ωk/2. Thus, as there is only
one electron that can change its state, the probability is

dW

dΩ
=2π

q2

2m2(2π)3
1

2	+1

∑
m,m′

∣∣〈n′; 	′m′∣∣ e−iq·x p ·ελ |n; 	m〉
∣∣2 ωk dΩ .

The following comment is in order: The energy of the photon now
equals the difference of the binding energies of initial and final states,

ωk =∆E = En− En−1 =−1

2

(
1

n2 −
1

(n−1)2

)
(Zα)2m

= 2n−1

2n2(n−1)2
(Zα)2m .

As no measurement of the magnetic quantum number is made, one must
take the incoherent sum over all m and m′. Furthermore, since all mag-
netic substates of the initial state are equally probable, one must divide
by the statistical factor (2	+1).

In the approximation of long wave lengths one has (κr)� 1. There-
fore, the exponential can be replaced by 1, exp{−ik · x} ≈ 1. The re-
maining matrix element of the momentum operator can be reduced to
a matrix element of the position operator, provided the potential U com-
mutes with x. Using[

p2, x
]
=−2i p ,

the operator p is replaced by the commutator of H0 with x so that〈
n′; 	′m′∣∣ p |n; 	m〉 = i m

〈
n′; 	′m′∣∣ [H0, x] |n; 	m〉

= i m (En′ − En)
〈
n′; 	′m′∣∣ x |n; 	m〉

= i mωk
〈
n′; 	′m′∣∣ x |n; 	m〉 .

Before calculating the matrix element of x we evaluate the sum over
the helicities of the emitted photon (provided these are not measured
in the experiment) and do the integral over the polar angles. The mat-
rix element 〈n′; 	′m′|x|n; 	m〉 is a real vector on R3 which is drawn in
Fig. 7.9 together with k̂ and the two spin vectors ε1 and ε2. Define

cos θλ := 〈n
′; 	′m′|x|n; 	m〉 ·ελ
|〈n′; 	′m′|x|n; 	m〉| .

Fig. 7.9. The direction of propagation of
the emitted photon, its two admissible
polarizations, and the transition matrix
element of the position operator, drawn
as vectors on space �

3
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These functions are decomposed in terms of the spherical coordinates
of the direction which is defined by the matrix element of x,

cos θ1 = sin θ cosφ , cos θ2 = sin θ sinφ .

We then have

dW

dΩ
= q2ω3

k

8π2

1

2	+1

∑
m,m′

∑
λ

∣∣〈n′; 	′m′∣∣ x |n; 	m〉∣∣ 2 cos2 θλ

= q2ω3
k

8π2

1

2	+1

∑
m,m′

∣∣〈n′; 	′m′∣∣ x |n; 	m〉∣∣ 2 sin2 θ .

Integrating over the solid angle one finds∫
dΩ sin2 θ = 2π

∫
d(cos θ) (1− cos2 θ)= 8π

3
.

With q2 = e2 = 4πα, cf. (7.18), the integrated probability is found to be

W = 4

3
αω3

k
1

2	+1

∑
m,m′

∣∣〈n′; 	′m′∣∣ x |n; 	m〉∣∣ 2 . (7.123)

The remaining matrix element is calculated in a general and trans-
parent way by means of the Wigner-Eckart theorem and of a few
formulae of angular momentum algebra. Writing the vector x in the
spherical basis,

xµ = r

√
4π

3
Y1µ(θ, φ) , µ= 1, 0,−1 ,

the Wigner-Eckart theorem (6.72) yields the expression〈
n′; 	′m′∣∣ r

√
4π

3
Y1µ |n; 	m〉

=
√

4π

3

〈
n′; 	′∣∣ r |n; 	〉 (−)	′−m′

(
	′ 1 	

−m′ µ m

) (
	′‖Y1‖	

)
.

In the sums over the absolute square the two 3j-symbols give a fac-
tor 1, after summing over m, m′, and µ, and using the orthogonality
relation (6.66). There remains

1

2	+1

∑
m,m′

∣∣〈n′; 	′m′∣∣x|n; 	m〉∣∣2= 1

2	+1

4π

3

〈
n′; 	′∣∣ r |n; 	〉2(	′‖Y1‖	

)2
.

The reduced matrix element of Y1 is given by the formula (6.95). Here
it yields the value(

	′ = 	−1‖Y1‖	
)=−√ 3	

4π
.
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At this point we specialize to n′ = n−1, 	′ = 	−1, and obtain

W = 4

3
αω3

k
	

2	+1
〈n−1; 	−1| r |n; 	〉 2 , (7.124)

or, inserting all factors � and c,

W = 4

3
αc

(
∆E

�c

)3
	

2	+1
〈n−1; 	−1| r |n; 	〉 2 .

The radial matrix element, finally, is calculated using the radial func-
tions of the hydrogen atom (1.155). In order to express everything in
terms of the principal quantum number n of the initial state we replace
	 by 	= n−1. We then find

〈n−1; n−2| r |n; n−1〉 = aB
22n+1nn+1(n−1)n+2

(2n−1)2n
√

2(2n−1)(n−1)
.

Collecting all partial results the final result is found to be

Γ ≡ �W(E1; n→ n−1)= 24nn2n−4(n−1)2n−2

3(2n−1)4n−1 α5mc2 Z4 .

(7.125a)

Alternatively, with reference to the electron mass this may be written as
follows

W(E1; n→ n−1)= α
5mec2

3�

24nn2n−4(n−1)2n−2

(2n−1)4n−1

m

me
Z4

= 5.355×109s−1 24nn2n−4(n−1)2n−2

(2n−1)4n−1

m

me
Z4 .

(7.125b)

This result warrants a more detailed analysis and some comments:

Remarks

1. The transition probability per unit of time, when multiplied by �,
is the width of the (unstable) state (n, 	). Together with the analo-
gous quantity of the final state, this defines the measurable line
width. The line width is proportional to the mass m. To very good
approximation this mass equals the mass of the electron. If the elec-
tron is replaced by some other, heavier charged particle such as the
muon µ− (mµ/me = 206.77), or the antiproton p (m p̄/me = 1836),
the width increases essentially linearly with the mass. The time
that the particle needs for the transition, correspondingly, decreases
with 1/m. Comparing heavy atoms with light atoms, i. e. large and
small values of the nuclear charge number Z, one sees that transition
times in heavy atoms are shorther by the factor (Zlight/Zheavy)

4.
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13 A notable exception where this cor-
rection cannot be neglected are preci-
sion measurements by means of high-
frequency spectroscopy. Such measure-
ments are done in view of detect-
ing radiative corrections as predicted
by quantum electrodynamics. They are
sensitive to even very small effects.

2. In order to get a feeling for orders of magnitude, one should calcu-
late the average transition time from the formula

τ(E1; n→ n−1)= 1

W(E1; n→ n−1)

≈ 1.867×10−10 (2n−1)4n−1

24nn2n−4(n−1)2n−2

me

m
Z−4 s .

For (2p → 1s) and m = me one finds τ(E1; 2p → 1s) ≈
1.59×10−9/Z4 s, while for a muon this time is about two hundred
times shorter, τ(E1; 2p→ 1s)≈ 7.71×10−12/Z4 s. These numbers
can be used to estimate the total time that a muon captured with
a high value of n needs to run through the whole cascade down to
the 1s-state.

3. There is a correction to the formula (7.125a) which is negligible for
electrons13 but may become important for heavier particles. Its phys-
ical origin is easy to understand. When an atom makes a spontan-
eous E1-transition by emission of a photon, both charged partners,
the electron (with charge q =−e) and the nucleus (charge Ze) con-
tribute to the dipole transition. Indeed, both of them move relative
to the common center of mass. As a consequence of this remark the
dipole operator must be replaced as follows

− ex �−→−e

(
1+ (Z−1)m

m+m A

)
x , (7.126)

where m A is the mass of the nucleus (see Exercise 7.9).
4. Of course, one could have done the same calculation using the multi-

pole fields (7.115) by taking the limit (κr)� 1 there. Indeed, the re-
sult (7.124) is a special case of a general formula for Eλ-transitions
between states with angular momenta (Ji,Mi) and (J f ,M f ), re-
spectively, in the approximation of long wave lengths. This formula
reads

W(Eλ; n, Ji → n′, J f )= 8πcα
λ+1

λ(2λ+1)!!
(
∆E

�c

)2λ+1

B(Eλ) ,

(7.127)

with the reduced probability B(Eλ) containing the radial matrix
element and the matrix element of the spherical harmonics,

B(Eλ)= 1

2Ji +1

∑
Mi ,M f

∣∣〈J f M f
∣∣ rλYλµ |Ji Mi〉

∣∣ 2 . (7.128)

The latter is again analyzed by means of the Wigner-Eckart theorem.
5. There are analogous formulae for magnetic transitions which go

back to the interaction terms (7.117) and (7.118). Finally, it is not
difficult to extend these results to cases where (κr) is no longer small
as compared to 1. The essential difference is that the radial parts now
contain the full spherical Bessel functions instead of the approxima-
tion (κr)	/((2	+1)!!).
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7.4.3 Rayleigh- and Thomson Scattering

Consider the scattering of a photon on an electron,

γ(k, λ)+ e(i)−→ γ(k′, λ′)+ e( f )

for small values of the momentum transfer |k−k′| under the action of
the interaction (7.117). For simplicity, the spin interaction (7.118) is ne-
glected. This process is not only a nice application of the theory of the
quantized radiation field in interaction with matter, it also plays a fun-
damental physical role:
(a) The special case of elastic scattering ω = ω′, | f 〉 = |i〉, called
Rayleigh scattering, provides the basis for explaining the blue color of
the sky during the day and its reddening in the evening.
(b) Furthermore, in the limit of very small momentum transfer one
obtains the (classical) scattering cross section for Thomson scattering,
which is proportional to e4, where q = (−e) is the physical charge of
the electron. This is important because quantum electrodynamics distin-
guishes the bare charge of the electron from its observable charge. The
starting parameter q0 that appears in the Lagrange density is modified
by radiative corrections so that, at each order of perturbation theory, the
physical, observable charge q must be identified anew. One says that the
charge is renormalized from its bare value. Quantum electrodynamics
has the special feature, as compared to other gauge theories, that it pos-
sesses a classical limit. Quite generally, renormalization refers to some
energy scale µ which is a physical scale at which the charge q(µ) is
measured. The limit of Thomson scattering is important because it tells
us that the scale µ= 0 is a natural one for quantum electrodynamics
and because it yields the physical charge at this scale.

Encouraged by this motivation we apply – for the last time! – non-
relativistic perturbation theory.

The initial and final states of the electron are given the summary
notation |i〉 and | f 〉, respectively, its virtual intermediate states are writ-
ten |n〉. The energy of the photon before and after the scattering are
denoted by

ω= |k| , and ω′ = ∣∣k′∣∣ .
In first order of perturbation theory only the second term on the

right-hand side of (7.117) can contribute because this is the only term
that contains two field operators A. One of these annihilates the incom-
ing photon, the other creates the outgoing photon. In turn, the terms
p · A and A · p are linear in A and, therefore, contribute only in second
order. However, checking their factors one realizes that the two con-
tributions obtained in first and second order perturbation theory, are
proportional to q2 ≡ e2. Thus, expanding in terms of the physically
relevant parameter α = e2/(4π) both contribute at the same level: the
amplitude is of order α, the cross section, hence, of order α2. The two
contributions are calculated as follows.
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Fig. 7.10. (a) Time flows from bot-
tom to top; a photon is absorbed, an-
other one is emitted at the same point;
(b) and (c): the contributions of second
order

1. The term in A · A:
This is the “seagull” term that we met previously in Example 7.1 and
in Fig. 7.7 and which we repeat in Fig. 7.10a). Keeping only terms
which contain one creation and one annihilation operator, and mak-
ing use of (7.97), one has〈

f ; k′λ′∣∣ e2

2m
A · A |i; kλ〉 ≡ c(1)(t)

= e2

2m

1

(2π)3

∫
d3q

2ωq

∫
d3 p

2ωp

∑
α,β

εα(q) ·εβ(p)

× 〈
f ; k′λ′∣∣ c†α(q)cβ(p)e

i(ωq−ωp)t e−i(q−p)·x

+cα(q)c
†
β(p)e

−i(ωq−ωp)t ei(q−p)·x |i; kλ〉

= e2

2m

1

(2π)3

∫
d3q

2ωq

∫
d3 p

2ωp

∑
α,β

× {
δ(q−k′)δαλ′δ(p−k)δβλ+ δ(p−k′)δβλ′δ(q−k)δαλ

}
×(2ωk′)(2ωk)e

i(ω′−ω)t 〈 f | e−i(k′−k)·x |i〉 ελ′(k′) ·ελ(k) .
The momentum transfer (k−k′) is chosen to be small so that the
exponential function can be approximated, e−i(k′−k)·x ≈ 1, thus sim-
plifying this lengthy formula enormously. As 〈 f |i〉 = δ fi one has

c(1)(t)= 〈
f ; k′λ′∣∣ e2

2m
A · A |i; kλ〉

= e2

m

1

(2π)3
ελ′(k

′) ·ελ(k)ei(ω′−ω)t δ fi .

This approximation is realistic because the electron is bound in an
atomic state. Assuming the momentum transfer to be small means
that the wave length is large as compared to atomic dimensions.
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2. The terms linear in A:
On the basis of the general formula (5.72) and in the same approx-
imation of long wave lengths e−i(k′−k)·x ≈ 1 as before, these terms
are seen to contribute as follows

c(2)(t)= (−i)2
( e

m

)2 1

(2π)3

t∫
0

dt2

t2∫
0

dt1
∑∫

×
{
〈 f | p ·ελ′ |n〉 ei(E f−En+ω′)t2 〈n| p ·ελ |i〉 ei(En−Ei−ω)t1

+ 〈 f | p ·ελ |n〉 ei(E f−En−ω)t2 〈n| p ·ελ′ |i〉 ei(En−Ei+ω′)t1
}

= i
( e

m

)2 1

(2π)3

t∫
0

dt2 ei(E f−Ei+ω′−ω)t2

×
∑∫ { 〈 f |p·ελ′ |n〉〈n|p·ελ|i〉

En− Ei −ω +〈 f |p·ελ|n〉〈n|p·ελ′ |i〉
En− Ei +ω′

}
.

The “sum/integral” symbol stands for the sum over discrete interme-
diate states, and the integral over states in the continuum, both cases
being denoted symbolically by |n〉.
Both terms, c(1)(t) and c(2)(t), are proportional to eiω̃t with
ω̃= E f +ω′ − Ei −ω, with E f = Ei in the first case. The calcula-
tion of the transition probability per unit of time requires to evaluate
the distribution

1

t

∣∣∣∣∣∣
t∫

0

dt′ eiω̃t

∣∣∣∣∣∣
2

≡ I(t, ω̃)

for t going to infinity. As shown in Sect. 5.2 this yields the distribu-
tion

2π δ(ω̃) .

Upon integration over the energy ω′ of the outgoing photon this
distribution guarantees the principle of energy conservation, ω̃= 0.
Therefore, to order e4, the transition probability is

dW

dΩ
= 2π

∫
dω′

∣∣∣c(1)+ c(2)
∣∣∣ 2δ(E f +ω′ − Ei −ω)�(ω′) ,

where, as before, �(ω′)= ω′/2 is the density of the photonic final
states. The differential cross section is obtained from this by dividing
by the incoming flux of photons, the flux factor being

2ω

(2π)3
,
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14 This flux factor would be 1 if the
wave function were simply eik·x. If
the covariantly normalized plane waves
(7.19) are employed which have the
property (7.20), then it is 2Ek/(2π)3.

as a consequence of covariant normalization14. The cross section
reads

dσ

dΩ
=

(
e2

4πm

)2 (
ω′

ω

) ∣∣∣∣δ fi ελ′(k
′) ·ελ(k)

− 1

m

∑∫ (〈 f |p ·ελ′ |n〉〈n|p ·ελ|i〉
En− Ei −ω +〈 f |p ·ελ|n〉〈n|p ·ελ′ |i〉

En− Ei +ω′
)∣∣∣∣2 .

(7.129)

This formula is due to Kramers and Heisenberg.
The diagrams of Fig. 7.10b) and c) allow for an interpretation of the
last two terms on the right-hand side of (7.129): The denominator
of the first of them is the difference of the energy of the intermedi-
ate state (electron in the state |n〉, no photon) and the energy of the
initial state (electron in state |i〉, incoming photon), En− (Ei +ω).
In the second term the intermediate state is composed of the elec-
tron in |n〉, and of the incoming and outgoing photons. The energy
difference (intermediate state− initial state) is equal to

(En+ω+ω′)− (Ei +ω)= En− Ei +ω′ ,
in agreement with the formulae of perturbation theory in second or-
der.

The following remarks serve to analyze this important formula and to
illustrate its application in specific physical situations.

Remarks

1. The first of the two factors has physical dimension (length)2. Adding
the correct factors � and c, and taking account of the fact that e2 is
expressed in natural units, one has

r0 := e2

4πm
=̂ α �

mc
= 2.82 fm= 2,82×10−15 m . (7.130)

In the earlier literature this length is often called the classical elec-
tron radius.

2. Rayleigh scattering, by definition, is elastic scattering for which
| f 〉 = |i〉, E f = Ei , and ω′ = ω. In order to tailor the Kramers-
Heisenberg formula (7.129) such that it fits this case, we make use
of the completeness relation

1l=
∑∫
|n〉 〈n|

in order to transform |. . . |2 such that it resemble the second term.
Furthermore, we use the commutators[

xi, p j
]= i δij ,

[
p2, x

]
=−2i p ,
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to convert matrix elements of the momentum operator to matrix ele-
ments of the position operator and vice versa, cf. Example 7.2 above,

〈b| p |a〉 = i m(Eb− Ea) 〈b| x |a〉 .
This yields, in a first step,

ελ′ ·ελ = 1

i

∑∫
{〈i| x ·ελ′ |n〉〈n| p ·ελ |i〉−〈i| p ·ελ′ |n〉〈n| x ·ελ |i〉}

= 2

m

∑∫ 1

ωni
〈i| p ·ελ′ |n〉 〈n| p ·ελ |i〉 ,

with ωni := En− Ei . In a second step the two terms within the abso-
lute bars on the right-hand side of (7.129) are combined as follows

δ fi ελ′ ·ελ− 1

m

∑∫ (〈 f |p ·ελ′ |n〉〈n|p ·ελ|i〉
ωni −ω +{

ω↔−ω, λ↔ λ′})
=− 1

m

∑∫ (
ω 〈 f |p ·ελ′ |n〉〈n|p ·ελ|i〉

ωni(ωni −ω) +{
ω↔−ω, λ↔ λ′}) .

In the approximation assumed above one has ω�ωni and, therefore,

ω

ωni(ωni ∓ω) ≈
ω

ω2
ni

(
1± ω

ωni

)
.

The 1 in parentheses does not contribute, due to the completeness
relation. Indeed, one has∑∫ 1

ω2
ni

(〈i| p ·ελ′ |n〉 〈n| p ·ελ |i〉−〈i| p ·ελ |n〉 〈n| p ·ελ′ |i〉)

= m2
∑∫

(〈i| x ·ελ′ |n〉 〈n| x ·ελ |i〉−〈i| x ·ελ |n〉 〈n| x ·ελ′ |i〉)
= m2 〈i| [(x ·ελ′), (x ·ελ)] |i〉 = 0 .

The next, nonvanishing term of the expansion yields the final result:

dσ

dΩ

∣∣∣∣
Rayleigh

=

=
(r0

m

)2
ω4

∣∣∣∣∣∑
∫

1

ω3
ni

(〈i|p·ελ′ |n〉〈n|p·ελ|i〉+〈i|p·ελ|n〉〈n|p·ελ′ |i〉)
∣∣∣∣∣
2

= (mr0)
2ω4

∣∣∣∣∑∫ 1

ωni
(〈i|x·ελ′ |n〉〈n|x·ελ|i〉+〈i|x·ελ|n〉〈n|x·ελ′ |i〉)

∣∣∣∣2.
(7.131)

This formula provides the basis for explaining the colours of the sky.
The atmosphere contains uncoloured gases, in fact, gases whose typ-
ical transition frequencies ωni lie in the ultraviolet spectrum. When
we talk about colours of the sky we have in mind wave lengths λ in
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the visible range which, as one knows, are much larger than those
in the ultraviolet domain. Thus, the frequencies are ω� ωni , and,
hence, the Rayleigh formula is applicable to the atmosphere. The es-
sential result is that the cross section is inversely proportional to the
fourth power of the wave length

dσ

dΩ

∣∣∣∣
Rayleigh

∝ 1

λ4 .

Light that has a long wave length is scattered less than light of short
wave length. If we look up to the sky at noon, avoiding to look di-
rectly into the sun, we see primarily light scattered on molecules
of the air which, by Rayleigh’s formula, is predominantly of short
wave length, i. e. blue. At dawn or at dusk, in turn, there is no harm
in looking to the sun. Because of its tangent orbit the light of the
sun traverses a much thicker layer of air than when the sun is at the
zenith. On its way through the air mostly blue tones are scattered off
the light’s trajectory. Therefore, what we see is predominantly red or
reddish. Recall that Eos, the goddess of the dawn, was characterized
by Homer as rhododactylos, i. e. indeed rosy-fingered.

3. The other limiting case of elastic scattering applies when the wave
length of the scattered light is very small as compared to the spatial
size of the atom on which it is scattered, λ� d, i. e. if ω� ωni . In
this case one has

ω� 〈n|p|i〉
2

2m
,

which implies that the second term on the right-hand side of (7.129)
is negligible as compared to the first term. The scattering amplitude
is given almost exclusively by the “seagull” graph of Fig. 7.10a),

f ≈ r0δ fiελ′ ·ελ .
The scattering cross section that follows from this amplitude de-
scribes Thomson scattering(

dσ

dΩ

)∣∣∣∣
Thomson

= r2
0 |ελ′ ·ελ|2 . (7.132)

As we emphasized previously this provides an experimental possi-
bility to determine the physical electric charge, i. e. the fine structure
constant α(0) at the reference scale µ= 0.

4. There remains the question of how to describe elastic or inelastic
scattering in situations where the light crosses one of the charac-
teristic frequencies of the atom on which it is scattered, i. e. when
ω≈ ωni . In such cases one talks about resonance scattering or reso-
nance fluorescence. The formula (7.129) of Kramers and Heisenberg
can no longer be correct because the second term on its right-hand
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side has a pole at every constellation where ω= En− Ei . While the
ground state |i〉 may safely be assumed to be stable, the excited
state |n〉 exhibits a certain uncertainty of its energy, due to spontan-
eous emission, to Doppler effect, and, depending on the density of
the scattering gas, to atomic collisions. If Γn is the resulting total
width of the state |n〉 this means that the denominator of this term
must be replaced as follows

En− Ei −ω �−→ (En− iΓn/2)− Ei −ω . (7.133)

The additional term which is completely negligible in the two
limiting cases discussed above, provides a summary description of
radiation damping. More about the phenomenon of resonance fluo-
rescence and about other special cases of the Kramers-Heisenberg
formula can be found in [Sakurai (1984)].

7.5 Covariant Quantization of the Maxwell Field
In this section we return to the remarks of Sect. 7.3.3 and work out
the alternative of a manifestly covariant quantization of electrodynam-
ics. The basic idea of this approach as well as its somewhat surprising
properties are not difficult to understand. As it provides the basis
for covariant perturbation theory in quantum electrodynamics and for
the technique of Feynman diagrams, one should not skip it. In turn,
I marked by an asterisk some more formal developments which con-
tribute to a deeper understanding but are not so important for practical
matters. One can skip those in a first reading without risking to get stuck
in the subsequent analysis.

7.5.1 Gauge Fixing and Quantization
The vanishing of the momentum canonically conjugate to A0(x) was
the first difficulty into which one ran by naïve application of canon-
ical quantization to the Maxwell field, cf. (7.88). This problem was
circumvented in Sect. 7.3 by making use of the gauge freedom of the
classical theory in a very special way: On the one hand one imposed
the gauge condition (7.93), i. e. ∇ · A= 0, which filtered the transverse,
physical degrees of freedom. On the other hand, the potential A0(x) was
set to zero in vacuum, i. e. outside all sources, and this pathological
degree of freedom disappeared from the theory altogether. The free the-
ory and the interaction with matter then decomposed into one term that
contains only transverse quantized fields, and the unquantized, instant-
aneous Coulomb interaction.

As the Lorenz condition (7.91) must be handled with care already
at the classical level, it seems appropriate to impose it only after quant-
ization, as a constraint on the physical states of the theory. One way
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of effecting this is not to assume from the start that the divergence
∂µAµ(x) vanishes but, rather, to introduce it in the Lagrange density
like a scalar field that has no kinetic energy. That is to say, one re-
places (7.85) by

L(Aα, ∂µAα, jµ) := − 1

4
Fµν(x)F

µν(x)− jµ(x)A
µ(x)

− 1

2
Λ

(
∂µAµ(x)

)2
. (7.134)

The factor Λ is taken to be real and positive, Λ ∈R+ \ {0}. The equa-
tions of motion which follow from the Lagrange density (7.134) as its
Euler-Lagrange equations, replace (7.92) by

�Aµ(x)− (1−Λ)∂µ (∂νAν(x)
)= jµ(x) . (7.135)

There is an immediate and interesting consequence of this equation. As-
suming Aµ(x) to be at least C3 and taking account of the continuity
equation ∂µ jµ(x)= 0, the divergence of the equation (7.135) yields

�∂µAµ− (1−Λ)� (
∂νAν(x)

)=Λ�
(
∂νAν(x)

)= 0 . (7.136)

Thus, the divergence ∂νAν(x) satisfies the Klein-Gordon equation with
mass zero. In spite of the fact that we are dealing with an interacting
theory, (∂νAν(x)) is a massless free scalar field.

Defining now the momenta πµ which are canonically conjugate to
the Aµ, none of them is identically zero,

Aµ(x)←→ πµ(x)=−F0µ−Λgµ0 (∂νAν(x)
)

= Fµ0−Λgµ0 (∂νAν(x)
)
. (7.137)

According to the rules of canonical quantization, Postulate 7.1, one has[
Aµ(x), π

ν(y)
]

x0=y0 = i δ νµδ(x− y) ,

or, converting the covariant index µ to a contravariant one by means of
the metric tensor,[

Aµ(x), πν(y)
]

x0=y0 = i gµνδ(x− y) . (7.138)

To these one adds the commutators of the fields as well as of the mo-
menta among themselves,[

Aµ(x), Aν(y)
]

x0=y0 = 0= [
πµ(x), πν(y)

]
x0=y0 . (7.139)

The commutation rules for the fields and their time derivatives fol-
low from the postulates (7.138) and (7.139). They read[

Ȧµ(x), Ȧk(y)
]

x0=y0
= i gµ0Λ−1

Λ
∂k

xδ(x− y) ,[
Ȧµ(x), Aν(y)

]
x0=y0 = i gµν

(
1+ 1−Λ

Λ
gµ0

)
δ(x− y) . (7.140)
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They are derived as follows: For simplicity, we drop temporarily all sub-
scripts “x0 = y0”. It follows from (7.139) that all spatial derivatives of
the fields commute,

[∂i Aµ, ∂ j Aν] = 0 .

One uses these commutators and the expressions obtained previously for
π0 and πi , viz.

π0 =−Λ( Ȧ0−
∑

j

∂ j A j) ,

πi = Fi0 = ∂i A0−∂0 Ai ≡ ∂i A0− Ȧi ,

in evaluating a first group of commutators,

[A0, π0] = −Λ[A0, Ȧ0] = i δ(x− y) , [A0, πi ] = −[A0, Ȧi] = 0 ,

[Ai, π0] = −Λ[Ai, Ȧ0] = 0 , [Ak, πi ] = −[Ak, Ȧi] = i gikδ(x− y) .

The commutators between Ȧµ and Ȧν are verified in a similar manner.
Thus, the commutator [π0, πi ] = 0 implies

0= [ Ȧ0−
∑

j

∂ j A j, ∂i A0− Ȧi]

= [ Ȧ0, ∂i A0]+ [
∑

j

∂ j A j, Ȧi]− [ Ȧ0, Ȧi]

=
⎛⎝ 1

Λ
i∂i

y+ i
∑

j

δij∂
j
x

⎞⎠ δ(x− y)−[ Ȧ0, Ȧi]

= i
Λ−1

Λ
∂i

xδ(x− y)−[ Ȧ0, Ȧi] .
In much the same way one proves the implication

[πi, πk] = 0 (⇒ [ Ȧi, Ȧk] = 0 .

Thus, all commutators (7.140) are proven.
The second group of the commutators (7.140) is particularly inter-

esting: Indeed, they give[
Ȧ0(x), A0(y)

]
x0=y0

=+i
1

Λ
δ(x− y) ,[

Ȧi(x), Ak(y)
]

x0=y0
=−i δik δ(x− y) .

Comparing with the commutator (7.26) for scalar fields,[
Φ̇(x),Φ(y)

]
x0=y0 =−i δ(x− y) ,

it seems as though the commutator between Ȧ0 and A0 had the wrong
sign or, expressed differently, as if the field and its conjugate momentum
had exchanged their roles! We will clarify the implications of this sign
below.
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7.5.2 Normal Modes and One-Photon States
In expanding the four field operators Aµ in terms of plane waves, of
creation and annihilation operators, four polarization directions ε(λ)µ (k),
λ= 0, 1, 2, 3 are needed. In order to construct the latter we return to the
analysis of massless particles in the framework of the Poincaré group
and introduce the basis n(α) that was defined in Chap. 6. Let

ε(0)(k)≡ t , with t2 = 1, t0 > 0 ;
ε(1)(k)=n(1), ε(2)(k)=n(2) , with ε(i)(k)·ε( j)(k)=−δij , i, j=1, 2 ;

ε(3)(k)= 1

(k · t)k− t .

These base vectors fulfill the orthogonality and completeness relations
(6.134) and (6.135), respectively, viz.

(ε(λ) · ε(λ′))= gλλ
′
, (7.141)

ε(λ)µ gλλ′ε
(λ′)
ν = gµν . (7.142)

The polarizations ε(1)(k) and ε(2)(k) are orthogonal to k and t,
(ε(i) · t) = 0 = (ε(i) · k) for i = 1, 2, and correspond to the transverse
polarizations of Sect. 7.3.4. The polarizations ε(0) and ε(3) are called
timelike and longitudinal, respectively. Their sum is proportional to k,

ε(0)µ (k)+ε(3)µ (k)=
1

(k · t)kµ .
Regarding the field operators Aµ, one follows the examples (7.31) and
(7.97) by assuming an expansion in terms of plane waves (or any other
complete base system),

Aµ(x)= 1

(2π)3/2

∫
d3k

2ωk

3∑
λ=0

{
ε(λ)µ (k)c

(λ)(k)e−ikx + h.c.
}
, (7.143)

where h.c. stands for the hermitean conjugate of the first term. The
negative frequency part contains the operators c(λ) †(k) and the polariza-
tions ε(λ) ∗µ . (The complex conjugate signs matter if in R3 a spherical
basis is used, instead of a cartesian basis.) We use covariant normaliza-
tion in which case the volume element is d3k/(2ωk) and ωk = |k| the
energy of the photon. Inserting these formulae in the postulated com-
mutators a by now well-known calculation yields[

c(λ)(k), c(λ
′) †(k′)

]
=−2ωk gλλ

′
δ(k−k′) , (7.144)[

c(λ)(k), c(λ
′)(k′)

]
= 0 . (7.145)

The interpretation of the operators c(λ) †(k) and c(λ)(k) is reached
by formal application of the analysis of Sect. 7.1.5: The first of them
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creates a photon with momentum k and polarization λ, while the sec-
ond annihilates a photon in that same state. Note, however, that while
we rediscover the physical photons of Sect. 7.3 in the transverse modes
λ= 1 and λ= 2 , the scalar photons with λ= 0 and the longitudinal
photons with λ= 3 are unphysical degrees of freedom. With gii =−1
the polarizations λ= 1, 2, 3 give the “right” sign on the right-hand side
of (7.144), but for λ= 0 there is a minus sign.

The commutator of Aµ(x) and Aν(y) for arbitrary spacetime points
x and y is obtained from the commutation rules for the creation and
annihilation operators. One finds[

Aµ(x), Aν(y)
]=−i gµν∆0(x− y;m = 0) . (7.146)

This result shows once more that the Lorenz condition is incompat-
ible with the postulated quantization procedure. Indeed, from (7.146)
one concludes[

∂µAµ(x), Aν(y)
]=−i ∂ν∆0(x− y;m = 0) �= 0 .

The commutator (7.146) is proportional to the causal distribution (7.56).
It vanishes whenever x and y are spacelike relative to each other. For
space indices µ= ν = j the right-hand side of (7.146) has precisely the
form of the equation (7.57) (including the correct sign) which holds for
the case of the real scalar field. For µ= ν = 0 it has the opposite sign.
The significance of this sign is seen best on an example: Let a scalar
photon be in the state∣∣λ= 0, f̃

〉= ∫
d3k

2ωk
f̃ (k)c(0)†(k) |0〉 ,

with f̃ (k) a L2-integrable function. The squared norm of this state is〈
λ= 0, f̃

∣∣λ= 0, f̃
〉= ∫

d3k

2ωk

∫
d3k′

2ωk′
f̃ ∗(k′) f̃ (k) 〈0| c(0)(k′)c(0)†(k) |0〉

=
∫

d3k

2ωk

∫
d3k′

2ωk′
f̃ ∗(k′) f̃ (k)(−2ω′k)δ(k−k′)

=−
∫

d3k

2ωk

∣∣ f̃ (k)
∣∣ 2

and, hence, negative!

7.5.3 Lorenz Condition, Energy and Momentum
of the Radiation Field

All of the peculiar properties noted above are related, directly or in-
directly, to the Lorenz condition. This condition cannot be fulfilled as
an operator condition but it should appear in the observable aspects of
the theory, as a physical constraint. This raises the question whether the
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classical condition (7.91) can be replaced by some weaker requirement.
This could be, for instance, the following

Postulate 7.2

Let |ψ〉 be a physically realizable state of the theory. The Lorenz
condition is required to hold for the expectation value of any such
state.

〈ψ| ∂µAµ(x) |ψ〉 != 0 . (7.147)

Note that this is not equivalent to requiring the operator ∂µAµ(x) it-
self to vanish identically. We noted above that this requirement is too
strong and leads to an inconsisteny. However, the condition (7.147) is
already satisfied if the positive frequency part of ∂µAµ(x) annihilates
the state,(

∂µAµ(x)
)(+) |ψ〉 = 0.

Indeed, if this is the case, then every expectation value vanishes,

〈ψ| ∂µAµ(x) |ψ〉 = 〈ψ|
{(
∂µAµ(x)

)(−)+ (
∂µAµ(x)

)(+)} |ψ〉 = 0 .

This modified condition is meaningful: Even in the presence of inter-
action with matter the divergence fulfills the Klein-Gordon equation
(7.136) of a massless, free scalar particle. Therefore, the division into
positive and negative frequency parts is well-defined.

It is now easy to work out the consequences of the Postulate 7.2. As
by assumption ε(1) · k = 0= ε(2) · k, one has

(
∂µAµ(x)

)(+) =−i
1

(2π)3

∫
d3k

2ωk
e−ikx

∑
λ=0,3

c(λ)(k)kµ ε
(λ)µ(k) .

Therefore, the condition (7.147) is equivalent to(
k · ε(0)(k)c(0)(k)+ k · ε(3)(k)c(3)(k)

)
|ψ〉 = 0 ,

or, as ε(3) = k/(k · t)−ε(0) and k2 = 0, to[
c(0)(k)− c(3)(k)

]
|ψ〉 = 0 . (7.148)

This condition says that the unphysical longitudinal and scalar photons
of the covariant theory are correlated in a specific manner. If at all,
every physical state contains as many of either kind. The bonus is seen
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when calculating the Hamiltonian of the theory. By the established tech-
niques that we need not repeat here, one obtains

H =−
3∑

λ,λ′=0

gλλ
′
∫

d3k

2ωk
ωkc(λ)†(k)c(λ

′)(k),

=−
∫

d3k

2ωk
ωkc(0)†(k)c(0)(k)+

3∑
λ=1

∫
d3k

2ωk
ωkc(λ)†(k)c(λ)(k)

i. e. an operator whose spectrum, a priori, is not positive. However, if
one calculates its expectation value in an arbitrary physical state which
fulfills the condition (7.147), this operator counts only the contributions
of the physical transverse photons,

〈ψ| H |ψ〉 =
∫

d3k

2ωk
ωk

2∑
λ=1

〈ψ| c(λ) †(k)c(λ)(k) |ψ〉 ,

the negative contributions of the scalar photons are compensated by
those of the longitudinal photons.

An analogous result is found for the operator of momentum,

〈ψ| P |ψ〉 =
∫

d3k

2ωk
k

2∑
λ=1

〈ψ| c(λ) †(k)c(λ)(k) |ψ〉 .

The program of canonical quantization is concluded by the calcula-
tion of the propagator. One finds the result

〈0| TAµ(x)Aν(y)|0〉 = − i

(2π)4

∫
d4k

e−ik·(x−y)

k2+ iε

[
gµν+1−Λ

Λ

kµkν

k2+ iε

]
.

(7.149)

Then denominator (k2+ iε) is understood if one recalls that the photon
has no mass. The additional terms in square brackets are new and possi-
bly unfamiliar because they depend on the parameter Λ. As a comment
which remains qualitative at this point, one might say this: Terms in mo-
mentum space which are multiplied by kµ, become partial derivatives ∂µ
in position space. The interaction always contains the operator Aµ con-
tracted with the electromagnetic current density jµ. As the latter is
conserved, it seems plausible that the terms depending on Λ do not con-
tribute. Therfore, one has some freedom in choosing this parameter.

A look at the equations (7.140) shows that an obvious choice
is Λ= 1. This gauge fixing is called Feynman gauge. In this gauge the
propagator (7.149) has the form expected from rather general considera-
tions. Similarly, the limit Λ→∞ is a special case because it yields an
expression which comes very close to the propagator in the Coulomb
gauge, cf. (7.96). This choice is called Landau gauge. The value Λ= 0
leads to ill-defined expressions (7.140), in accord with our previous
experience which taught us that covariant quantization is incompatible
with the Lorenz condition.
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7.6 *The State Space of Quantum Electrodynamics
The results of the preceding section are intriguing. On the one hand,
we found that the same theory which within the class of Coulomb
gauges could be quantized consistently and in agreement with general
principles, contains unphysical degrees of freedom in its manifestly co-
variant quantum form: the scalar and the longitudinal photons. On the
other hand, the two species conspire through the relation (7.148) in such
a way that physical states always contain equal numbers of them. This
correlation and the negative squared norm of scalar photon states imply
that the contributions of the scalar photons cancel those of the longi-
tudinal photons. Hence, these degrees of freedom are not observable
asymptotically.

This seems strange: One has the choice of formulating the same
theory in a transverse gauge, at the expense of manifest Lorentz co-
variance, or in a manifestly covariant form. With the first choice there
are only physical degrees of freedom, i. e. transverse photons and in-
stantaneous Coulomb interactions, with the second choice one inherits
two unphysical degrees of freedom. The results which can be tested by
experiment, are the same in the two cases.

One can work out this equivalence and, once this is done, apply
the manifestly covariant formalism in practice, without further scruples.
However, one may feel uneasy in doing so because the underlying state
space no longer is a Hilbert space. The aim of this section is to in-
vestigate this larger space as well as the formal framework of quantum
electrodynamics.

7.6.1 *Field Operators and Maxwell’s Equations

Upon quantization the components of the tensor field of electromagnetic
field strengths Fµν(x) become operator-valued, tempered distributions,
i. e. taking

Fµν(g)=
∫

d4x Fµν(x)g(x) , g ∈ S ,

where S denotes the space of smooth, strongly decreasing functions,
these operators Fµν(g) are defined on a dense subset D ⊂H . The vac-
uum Ω as well as the image of D by Fµν(g) are assumed to lie in D .
Then the states

Fαβ(g1)F
γδ(g2) · · ·Ω

are well-defined and lie in the same domain of Hilbert space. The
field operators are taken to be Poincaré covariant, i. e. transform under
x �→Λx+a according

Fαβ(Λx+a)=ΛαµΛβν U(Λ, a)Fµν(x)U−1(Λ, a) .
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Furthermore, we assume micro-causality to hold in the form[
Fµν(x), Fαβ(y)

]= 0 for (x− y)2 < 0 ,

cf. (7.57). Note that here we consider only the electric and magnetic
field operators, not the potentials which are no observables.

Even these modest constraints on physical degrees of freedom of the
theory are hampered by difficulties. In order to see this consider the
vacuum expectation value(

Ω, Fµν(x)Ω
)=: f µν(x) .

Under translations of the argument and using the invariance of the vac-
uum expectation value one has

f µν(x+a)= (
Ω, Fµν(x+a)Ω

)= (
Ω,U(a)Fµν(x)U−1(a)Ω

)
= f µν(x) .

The quantity f µν must be a tensor of rank two which is invariant under
translations, f µν(x+a)= f µν(x). This is possible only if it is propor-
tional to gµν. On the other hand, f µν =− f νµ, and one concludes that
f µν(x) vanishes identically.

Before discussing in which way the assumptions must be modified in
order to avoid this catastrophy, let us show this: One could be tempted
to try to work with the unobservable operators Aµ, instead of the oberv-
ables Fµν, and to abandon the requirement of micro causality only for
them, by not imposing [Aµ(x), Aν(y)] for all (x− y)2 < 0. This attempt
goes wrong as well. This is the content of a theorem of Strocchi15. De-
fine the Fourier transforms of the fields and the test functions by

Fµν(p)= 1

(2π)5/2

∫
d4x Fµν(x)eipx, Aµ(p)= 1

(2π)5/2

∫
d4x Aµ(x)eipx,

g(p)= 1

(2π)3/2

∫
d4x g(x)e−ipx , g(x) ∈ S , g(p) ∈ S .

In case the Fourier transforms of Fµν and Aµ exist, we have the Parse-
val equation∫

d4 p Fµν(p)g(p)=
∫

d4x Fµν(x)g(x)

as well as the analogous equation for Aµ. The Maxwell equations (7.82)
and (7.83) without external sources translate to momentum space as fol-
lows

εµνστ pνFστ (p)= 0 , (7.150)
pµFµν(p)= 0 . (7.151)

In momentum space the relation between Aµ and Fµν reads

Fµν(p)=−i
(

pµAν(p)− pνAµ(p)
)
. (7.152)

15 F. Strocchi, Phys. Rev. 162 (1967)
1429.
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Theorem of Strocchi

Let the action of Aµ on the vacuum be well-defined, Aµ(g)Ω.
Furthermore assume Aµ to transform covariantly with respect to
Poincaré transformations, i. e.

Aµ(Λx+a)=ΛµνU(Λ, a)Aν(x)U†(Λ, a) .
Then neither Aµ(p) nor Fµν(p) exist.

Proof
One first shows that the expectation value of the product of Aµ(p) and
Aν(q) can be written as follows

〈Ω| Aµ(p)Aν(q) |Ω〉 = δ(4)(p+q) 〈Ω| Aµ(0)Aν(q) |Ω〉 (2π)3/2

≡ δ(4)(p+q)Dµν(q) .

This is a consequence of covariance and of U†(a)= U(−a). One has

〈Ω|Aµ(p)Aν(q)|Ω〉 = 1

(2π)5

∫
d4x

∫
d4y e−ipx eiqy 〈Ω|Aµ(x)Aν(y)|Ω〉

= 1

(2π)5

∫
d4x

∫
d4 y e−ipx eiqy

×〈Ω|U(x)Aµ(0)U(y− x)Aν(0)U(−y) |Ω〉 ,
Let z := y− x. As the vacuum is translation invariant, one has
〈Ω|U(x)= 〈Ω| and U(−y)|Ω〉 = U†(z)|Ω〉 and, hence,

〈Ω| Aµ(p)Aν(q) |Ω〉 = 1

(2π)5

∫
d4x

∫
d4z e−i(p+q)x eiqz

×〈Ω| Aµ(0)Aν(z) |Ω〉
= (2π)3/2δ(4)(p+q) 〈Ω| Aµ(0)Aν(q) |Ω〉 .

The quantity Dµν thus defined is seen to be a covariant distribution.
As such it may be decomposed in terms of the two covariants that are
available here, gµν and qµqν:

Dµν(q)= gµνD1(q)+qµqνD2(q) ,

where D1(q) and D2(q) must be Poincaré invariant distributions. Cal-
culate then the expectation value

〈Ω| Aµ(p)Fνσ (q) |Ω〉 = −i δ(4)(p+q)
{(

qνgµσ −qσgµν
)

D1(q)

+ (
qµqνqσ −qνqµqσ

)
D2(q)

}
.

The second term is zero. Contracting with qσ and using the inhomogen-
eous Maxwell equations (7.151), one obtains

qσ 〈Ω| Aµ(p)Fνσ (q) |Ω〉 = 0=−i δ(4)(p+q)
(

qνqµ−q2gµν
)

D1(q) .
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The resulting condition
(
qνqµ−q2gµν

)
D1(q) = 0 allows conclusions

about the support of the distribution D1(q). Firstly, it must be contained
in the set of points for which qνqµ−q2gµν vanishes,

supp D1 ⊂
{(

qνqµ−q2gµν
)
= 0

}
.

Furthermore, it must be invariant under Poincaré transformations. These
conditions are met by the point q = 0 only, that is, supp D1 = {0}.
A distribution of this kind can only contain Dirac’s δ-distribution (or in-
variant derivatives thereof). So let us try D1(q)= c δ(4)(q)16. With this
choice one has

〈Ω| Aµ(p)Fνσ (q) |Ω〉 = const. δ(4)(p+q)δ(4)(q)
(
qνgµσ −qσgµν

)
,

from which one derives the expectation value

〈Ω|Fµσ(p)Fντ(q)|Ω〉 = const. δ(4)(p+q)δ(4)(q)

×(pµqνgστ−pσqνgµτ−pµqτgσν+pσqτgµν
)
.

The expression in parantheses on the right-hand side vanishes at p=−q
and q = 0. Furthermore, as Fµν is hermitean, we have Fµν(−q) =
Fµν †(q). Thus, one concludes

〈Ω| Fµν †(q)Fµν(q) |Ω〉 = ‖Fµν(q) |Ω〉 ‖2 = 0 ,

so that the fields vanish altogether. This proves the theorem.

We already know a first way out of this dilemma: Making use of
its gauge invariance the theory is reformulated in a way which hides
its covariance – but, of course, without touching its physical content! –
and works with its physical degrees of freedom only. In this version the
theory is defined on a genuine Hilbert space Hphys. of physical states.

There is an other solution which leads to the same observable pre-
dictions while keeping the manifest covariance. In essence, it consists
in embedding the Hilbert space in a larger space

Hphys. ⊂H ,

which is no longer a Hilbert space. This is the topic of the next section.

7.6.2 *The Method of Gupta and Bleuler

Support of Fµν(p): The support of Fµν(p) is the light cone p2 = 0.
To see this, contract the homogeneous Maxwell equations (7.150)

pαFβγ (p)+ pβFγα(p)+ pγ Fαβ(p)= 0

with pα and insert the inhomogeous equations (7.151)

pα pαFβγ (p)=−pβ pαFγα(p)+ pγ pαFβα(p)= 0 .

16 The ansatz D1 = c�qδ
(4)(q) is ex-

cluded as well. To see this calculate∫
d4q (qµqν − q2gµν)D1g(q) ∝ g(0),

which may be different from zero –
in contradiction with the conclusion
reached above.
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17 It is not obvious that the commutator
is indeed a c-number. This needs a de-
tailed proof.

The result just obtained,

p2 Fβγ (p)= 0 , (7.153)

says that the support of Fβγ (p) is the set of points p2 = 0, i. e. pre-
cisely the light cone. Splitting into contributions on the positive and on
the negative light cone yields

Fµν(p)= δ+(p)F̂µν(p)+δ−(p)F̂µν(−p)≡ F(+)µν(p)+F(−)µν(p) ,

where δ± stand for the two terms with positive and negative p0. (cf. Ex-
ercise 7.10),

δ±(p) :=Θ(±p0) δ(p2) .

Let P be the operator of four-momentum, p its eigenvalues. The
translation formula (7.30), the definition of the Fourier transforms, and
the fact that the vacuum carries no momentum are used to show that
Fµν(p)|Ω〉 is an eigenstate of P pertaining to the eigenvalue −p,

P Fµν(p) |Ω〉 = −pFµν(p) |Ω〉 .
Inserting the decomposition Fµν = F(+) µν+F(−) µν this result can hold
only for the second term, or, in other terms, the positive frequency part
annihilates the (perturbative) vacuum,

F(+)µν(p) |Ω〉 = 0 .

The commutator of Fαβ(p) and Fστ (q) has the form17[
Fαβ(p), Fστ (q)

]= δ(4)(p+q)Mαβστ (q) (δ+(q)− δ−(q)) ,
where Mαβστ is an abbreviation for the expression

Mαβστ =−gασqβqτ + gατqβqσ + gβσqαqτ − gβτqαqσ .

This tensor of rank four is fixed by its properties: It must be antisym-
metric in the pair (α, β) and in the pair (σ, τ). In either factor Fαβ

or Fστ it satisfies the Maxwell equations. Furthermore, terms which
contain the invariant tensor εαβστ are excluded because they have the
wrong behaviour with respect to the parity operation. Returning to
spacetime this means that[

Fαβ(x), Fστ (y)
]= i Mαβστ (∂y)∆0(x− y;m = 0) ,

with ∆0 the causal distribution (7.56) for mass zero. Thus, the commu-
tator of the observable field strenghts is causal.

Remark
The remaining inhomogeneous Maxwell equations (7.151) follow from
the homogeneous equations (7.150), the support condition (7.153), and
from one of the inhomogeneous equations such as, e. g., pνF0ν(p)= 0.
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State Space with Indefinite Metric: Let H be a space equipped with
a nondegenerate scalar product (ψi , ψ j), that is to say, in a short-hand
notation,

(ψi, ψi0)= 0 ∀ ψi ∈H (⇒ ψi0 = 0 .

However, the scalar product need not be positive-definite. Suppose po-
tentials Aµ are introduced so that one has as in (7.152)

Fµν(p)=−i
(

pµAν(p)− pνAµ(p)
)
.

Gauge transformations translate to momentum space according to

Aµ(p) �−→ Aµ(p)+ ipµχ(p) .

The field operators are assumed to satisfy the requirements:

(a) The operators Aµ are covariant, i. e. the Poincaré transformation
(Λ, a) is unitarily represented with reference to the scalar product
of H , and yields the known transformation behaviour of the Aµ;

(b) The fields Fµν(p), as well as Aµ(p), have their support on the light
cone.

From p2 Aµ(p)= 0 one concludes

0= pν(p
νAµ(p))=−ipνFµν(p)+ ipµ

(−ipνAν(p)
)
.

Defining −ipνAν(p)=: B(p), the spacetime representation of the latter
is the divergence B(x)= ∂µAµ(x). The equation pνFµν(p)= pµB(p)
tells us that the inhomogeneous Maxwell equations (7.151) are restored
provided

B(p)Hphys. = 0 (7.154)

holds true. This condition is the same as (7.147) which was formulated
on spacetime.

The vacuum expectation value of the product of two operators Aµ is
written as

〈Ω| Aµ(p)Aν(q) |Ω〉 = δ(4)(p+q)δ−(q)
(
αgµν+βqµqν

)
.

The first parameter must have the value α = −1 in order to yield
the correct expectation value of the product of two Fµν. The second
parameter β reflects the freedom of choosing gauges and remains un-
determined. Inserting (7.152) one has

〈Ω| Fµα(p)Fνβ(q) |Ω〉 = − pµqν 〈Ω| Aα(p)Aβ(q) |Ω〉
− pαqβ 〈Ω| Aµ(p)Aν(q) |Ω〉
+ pµqβ 〈Ω| Aα(p)Aν(q) |Ω〉
+ pαqν 〈Ω| Aµ(p)Aβ(q) |Ω〉 .

Choose β = 0, thus fixing the gauge, so that

〈Ω| Aµ(p)Aν(q) |Ω〉 = −δ(4)(p+q)δ−(q)gµν .
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This yields the expression for 〈Ω|Fµα(p)Fνβ(q)|Ω〉 given above. Also
here, one realizes that 〈Ω|A0(p)A0(p)|Ω〉, while being a squared norm,
is not positive.

The operator Aµ is decomposed in terms of positive and negative
frequency parts, too,

Aµ(p)= δ+(p) Âµ(p)+ δ−(p) Âµ(−p)≡ A(+) µ+ A(−) µ

and then is quantized in the canonical way,[
Âµ(p), Âν (q)

]
= 0 , (7.155)[

Âµ(p), Âν †(q)
]
=−2ωpgµν δ(p−q) . (7.156)

Decomposing the operators Aµ in terms of polarizations, as before,

Aµ(p)=
3∑
λ=0

A(λ)(p)ε(λ) µ(p)

and choosing the basis as we did above, one sees that the divergence is
proportional to the difference of A(0) and A(3)

B(p)=−ip0
(

A(0)(p)− A(3)(p)
)
=: −ip0 B(p) .

All components Fµν except for F03 depend on the transvers operators
A(1) and A(2) only. For the exceptional component one has

F03(p)=−ip3
(

A(3)(p)− A(0)(p)
)
= ip3 B(p) .

The commutators of the transverse operators Â(1,2) and B̂ (these are the
operators which remain after separating off δ+ and δ−) are all equal to
zero,[

B̂(p), Â(1,2)(q)
]
= 0=

[
B̂(p), Â(1,2) †(q)

]
,[

B̂(p), B̂(q)
]
= 0=

[
B̂(p), B̂

†
(q)

]
.

Embedding of the Physical States: Let H ′ ⊂H be the subspace gen-

erated by successive application of the creation operators Â(1,2) † and B̂
†

on the state |Ω〉. As the divergence is a free field, and keeping track
of the commutators, one finds that B̂(p)H ′ = 0. Therefore, for any two
elements φ,ψ ∈H ′ one has

〈φ| B̂ |ψ〉 = 0= 〈φ| B̂† |ψ〉 i. e. 〈φ| B |ψ〉 = 0 .

For example, this statement holds for |φ〉 ∈H ′ and for |ψ〉 = B̂
†|φ〉, in

which case

〈ψ| B̂† |φ〉 = ‖ψ‖2 = 0 .
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Thus, there are states in H ′ whose norm is equal to zero. Call H0 the
subspace spanned by these states,

H0 =
{
ψ | ‖ψ‖2 = 0

}⊂H ′ .
The space H ′ cannot yet be the physical state space because it
contains states whose norm vanishes. On the other hand, if one re-
stricted the states to the space H⊥ which is generated by the operators
Â(1) † and Â(2) †, then this choice would not suffice for two reasons:
The space H⊥ is not Lorentz invariant; furthermore, there are field
strengths Fµν (these are observables!) which lead out of this space.

We are now well prepared for the last step that is needed to iden-
tify the physical states. Let P (Fµν) be a polynomial in the field
operators Fµν, and let |φ〉, |ψ〉 ∈H ′ be two arbitrary states in H ′. Mea-
surable quantities are always of the form

〈φ|P (Fµν) |ψ〉 , |ψ〉 , |φ〉 ∈H ′ .
For an arbitrary pair of elements of H0, |ψ0〉, |φ0〉 ∈H0, one has

〈φ+φ0|P (Fµν) |ψ+ψ0〉 = 〈φ|P (Fµν) |ψ〉+〈φ0|P (Fµν) |ψ+ψ0〉
+〈φ|P (Fµν) |ψ0〉 .

The second and the third term on the right-hand side are equal to zero.
As an example, we show this for the second term: The result of the ap-
plication of P (Fµν) on |ψ+ψ0〉 ∈H ′ is contained in H ′. Now, |φ0〉 is

generated by applying B̂ to an element |ψ〉 ∈H ′, so that 〈φ0| = 〈ψ|B̂.
However, B̂ acting on any element of H ′ gives zero. Therefore, one sees
that

〈φ+φ0|P (Fµν) |ψ+ψ0〉 = 〈φ|P (Fµν) |ψ〉 .
This allows for an important conclusion:

Physical Space of Quantum Electrodynamics: In H ′ define the equiv-
alence classes of all states whose difference is in H0,

Hphys. = H ′/H0 . (7.157)

This is the physical space of the quantized Maxwell fields.

In conclusion, this clarifies the structure of the state space of quan-
tum electrodynamics: When applying manifestly covariant quantization
one must construct the theory in the space H which, although a lin-
ear space, is not a Hilbert space because of its indefinite scalar product.
It is only at the end of a calculation that one restricts to the phys-
ical in- and out–states. That this is possible is due to the fact that
scalar and longitudinal degrees of freedom always appear in the linear
combination A(0)(p)− A(3)(p). The contributions of the scalar and the
longitudinal, unphysical, fields cancel. This method was developed first
by S.N. Gupta and K. Bleuler.
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Scattering Matrix and Observables
in Scattering and Decays

Introduction

As an interlude in the analysis of canonical field quantization,
this section describes important concepts of scattering theory for

Lorentz covariant quantum field theories that will be needed for the
calculation of observables such as scattering cross sections and decay
probabilities. The framework thus provided which rests on general,
physically plausible assumptions, though fairly general is somewhat
abstract. This is the reason why, in a first step, I turn back to nonrel-
ativistic scattering theory, a topic that the reader is already familiar
with. This theory is reformulated and formalized in such a way that
the notions used in the covariant theory where particle creation and
annihilation are allowed, are motivated by the analogy to the nonrel-
ativistic case. As a bonus we will obtain formulae which allow to
convert the (complex) transition amplitudes obtained from a pertur-
bation series, into formulae for cross sections or decay widths.

8.1 Nonrelativistic Scattering Theory
in an Operator Formalism

As a preparation to the definition of the scattering matrix, a notion of
central importance in quantum field theory, we take up potential scatter-
ing on the basis of the Schrödinger equation. This leads to the definition
of the T -matrix and, by the same token, yields the relation between the
T -matrix and the scattering amplitude f(θ).

8.1.1 The Lippmann-Schwinger Equation

The stationary Schrödinger equation in position space has the form,
using natural units,

(H0− (E−U(x)) ψ(x)= 0 , with H0 =− 1

2m
� (8.1)

The solutions of the force-free equation, i. e. with U(x)= 0, with energy
E = k2/2m, are the plane waves

φ(k, x)= eik·x .
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The way they are normalized here, they are orthogonal and complete in
the following sense,∫

d3x φ∗(k′, x)φ(k, x)= (2π)3δ(k′ −k) , (8.2)∫
d3k φ∗(k, x′)φ(k, x)= (2π)3δ(x′ − x) . (8.3)

The scattering solutions of the full Schrödinger equation which con-
tain an outgoing or an incoming spherical wave e±iκr/r are denoted by
ψout(k, x) and ψin(k, x), respectively. In these expressions κ = |k| is the
modulus of the spatial momentum long before or long after the scatter-
ing, respectively. In this notation the integral equation equivalent to the
Schrödinger equation reads, cf. (2.26),

ψout/in(k, x)= φ(k, x)+
∫

d3x′ Gout/in
0 (x, x′)U(x′)ψout/in(k, x′) .

(8.4)

Note that the definition of the Green function is somewhat modified,
viz.

Gout/in
0 (x, x′)=− m

2π

e+/−iκ|x−x′|

|x− x′| (8.5)

The choice of the factor in front has no other purpose than to free the
second term in (8.4) from all factors that differ from 1. This is useful
when one writes this equation in a way independent of the representa-
tion. The two signs in (8.5) express the different asymptotics of ψ: As
we noted in Sect. 2.4 the plus sign asymptotically yields an outgoing
spherical wave, while the minus sign yields an incoming spherical wave.
As an equivalent representation, the Green functions can be written as
Fourier integrals, viz.

Gout/in
0 (x, x′)= 2m

(2π)3

∫
d3k′ eik′·(x−x′)

κ2−κ′ 2+/− iε
.

We prove this formula for the positive sign, for the sake of an example.
It is useful to introduce spherical polar coordinates for the integration
variable,

d3k′ = κ′ 2 dκ′ sin θk dφk ≡ κ′ 2 dκ′ dΩ
and to take the 3-axis in the direction of x−x′. Write |x−x′| = �. Then
one has∫

d3k′ eik·(x−x′)

κ2−κ′ 2+ iε
= 2π

∞∫
0

κ′ 2 dκ′ eiκ′�− e−iκ′�

(κ2−κ′ 2+ iε)iκ′�

=−π
∞∫
−∞

dκ′ (eiκ′�− e−iκ′�)κ′

(κ′ −κ− iε)(κ′ +κ+ iε)i�
.



88.1 Nonrelativistic Scattering Theory in an Operator Formalism 481

Note that κ is positive. Apply now Cauchy’s integral theorem in the fol-
lowing way. The integral over exp{iκ′�} is closed by a semi-circle in
the upper half of the complex κ′-plane. Thus, one obtains the residue of
the pole at κ′ = κ+ iε, multiplied by 2πi. The integral over the second
term with exp{−iκ′�} is closed by means of a semi-circle in the lower
half-plane and yields the residue of the pole at κ′ = −κ− iε, multiplied
by 2πi. Taking care of the orientation of the contour integrals one sees
that one obtains the same contribution as in the first case. Thus, the sum
of the two contributions is∫

d3k′ eik·(x−x′)

κ2−κ′ 2+ iε
=−2π2 eiκ�

�
;

which, upon insertion, yields the result given above.
The integral equation (8.4) contains the same information as (8.1),

but it is supplemented by the given asymptotics of the scattering wave.
In what follows our aim is to write this equation as an operator equa-
tion, in a form independent of the representation. The operator which
is the inverse of the operator (E− H0) is denoted by (E− H0)

−1. Its
eigenfunctions are the plane waves, its eigenvalues follow from

(E−H0)
−1φ(k′, x)= 1

E− E′
φ(k′, x)= 2m

k2− k′ 2
φ(k′, x) ,

provided the energies are chosen such that E′ �= E and E′ > 0. Using
this operator the differential equation (8.1) and the integral equa-
tion (8.4) can also be rewritten:

ψ(k, x)= (E−H0)
−1U(x)ψ(k, x) ,

ψout/in(k, x)= φ(k, x)+ (E−H0± iε)−1U(x)ψout/in(k, x) .

The second of these equations deserves a comment. The functions (8.5)
are Green functions for the operator (E− H0± iε)−1 in the following
sense: Write the integral equation (8.4) as

ψout/in(k, x)=φ(k, x)

+
∫

d3x′ (E−H0± iε)−1 δ(x′−x)U(x′)ψout/in(k, x′) ,

insert here the completeness relation (8.3), and note that the functions φ
are eigenfunctions of the inverse operator,

(E−H0± iε)−1 φ(k′, x)= (
E− E′ ± iε

)−1
φ(k′, x) .

This then leads back to the original form (8.4).
Even though, so far, all equations were written in position space they

can be formulated in a form that is independent of this specific rep-
resentation. Denote the operators (8.5) by Gout

0 and Gin
0 when written

in representation-free form, and write the plane waves as |φk〉, and the
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scattering states as |ψout/in〉. The relation to the representation in posi-
tion space is recovered by means of

〈x|Gout/in
0 | x′〉 = Gout/in

0 (x, x′) ,
〈x | ψout/in〉 = ψout/in(k, x) , 〈x | φk〉 = eik·x .

Thus, in position space the action of these Green operators on states |ψ〉
is given by the integral

〈x|Gout/in
0

∣∣ψout/in
〉= ∫

d3x′ 〈x|Gout/in
0

∣∣x′〉 〈x′∣∣ψout/in
〉

=
∫

d3x′ Gout/in
0 (x, x′)ψout/in(k, x′) .

The operators Gout
0 and Gin

0 are adjoint of one another, (Gout
0 )
† = Gin

0 .
Defining

Gout/in
0 = (E−H0± iε)−1 , (8.6)

the formula (8.4) takes the abstract form∣∣∣ψout/in
〉
= |φk〉+Gout/in

0 U
∣∣∣ψout/in

〉
. (8.7)

This equation is called the Lippmann-Schwinger equation.
Instead of the Green functions Gout/in

0 which belong to the operators
(E−H0± iε)−1 one may as well use the Green functions which pertain
to (E−H± iε)−1 with H = H0+U . They are

Gout/in := (E−H± iε)−1 (8.8)

The relation between G and G0 follows from the operator identity

A−1− B−1 = B−1(B− A)A−1 ,

by inserting in a first time (A = E−H± iε, B = E−H0± iε) such as
to obtain the relation

Gout/in = Gout/in
0 +Gout/in

0 UGout/in , (8.9)

in a second time (A = E−H0± iε,B = E−H± iε) to obtain the rela-
tion

Gout/in
0 = Gout/in−Gout/inUGout/in

0 . (8.10)

If one inserts the second of these into the Lippmann-Schwinger equation
one obtains another form of this equation which is relevant for many
applications, viz.∣∣ψout/in〉= |φk〉+Gout/in U |φk〉 . (8.11)

This form of the Lippmann-Schwinger equation differs from (8.7) by
the second term on the right-hand side where G0 is replaced by G and
where the free solution replaces the full scattering solution.
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8.1.2 T-Matrix and Scattering Amplitude
In the second form (8.11) of the Lippmann-Schwinger equation the
scattering state |ψout/in〉 is generated by the action of one of the two
operators

�out/in := 1l+Gout/in U (8.12)

on the force-free solution |φk〉, |ψout/in〉 = �out/in|φk〉. The operators
�out and � in are called Møller operators1.

In natural units, i. e. with �= 1, and using the “bracket” notation the
scattering amplitude (2.27) reads

f(θ, φ)=− m

2π
〈φk′ |U

∣∣ψout〉 .
It is determined by the matrix element

Tk′k := 〈φk′ |U
∣∣ψout〉= 〈φk′ |U�out |φk〉 . (8.13)

Thus, the relation between the scattering amplitude and the matrix elem-
ent Tk′k reads

f(θ, φ)=− m

2π
Tk′k . (8.14)

This suggests to define the corresponding T -operator by

T :=U �out . (8.15)

In the present context this operator describes purely elastic scattering,
but, more importantly for our purposes, it can be generalized to inelas-
tic scattering and to relativistic, Lorentz covariant scattering theory. In
particular, the relation (8.14) between the scattering amplitude whose
square yields the cross section, and the matrix element of the operator T
between initial and final states, remains the same. We will make use of
this relation, among others, in the derivation of the optical theorem.

Let us dwell for a while upon the subject of nonrelativistic scattering
theory, and derive an integral equation for T itself, as well as a third
form of the Lippmann-Schwinger equation which contains T. One has

T=U�out =U
(
1l+GoutU

)
=U+UGout

0 U
(
1l+GoutU

)
=U+UGout

0 T .

In the first line of this calculation the definition (8.15) of T and the def-
inition (8.12) of �out are inserted. In the second line use is made of
the relation (8.9) for Gout. The integral equation for the T-matrix that
I repeat here,

T=U+UGout
0 T (8.16)

is determined by the free Green function Gout
0 and the potential U .

The scattering solution on the right-hand side of the Lippmann-
Schwinger equation (8.7) is expressed in terms of the Møller opera-

1 They were introduced by Christian
Møller, Danish physicist (1904–1980).
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tor �out, |ψout/in〉 =�out/in|φk〉. Recalling the definition (8.15) of the
operator T, a third form of the Lippmann-Schwinger equation is ob-
tained:∣∣ψout〉= |φk〉+Gout

0 T |φk〉 . (8.17)

This equation is a good starting point, still in the framework of poten-
tial theory, when one wishes to study multiple scattering of a projectile
on a target composed of many scattering centers. As an adequate de-
scription of this subject is beyond the scope of this book I refer to the
literature on multiple scattering (see, e. g., [Scheck (1996)]).

8.2 Covariant Scattering Theory
The analysis presented in the preceding section was mostly of a some-
what formal character and we did not go into a more rigorous mathe-
matical treatment of the relevant operators and of the integral equations
they satisfy. An analogous comment applies to the Lorentz covariant
scattering theory to be dealt with here: We do not dwell on a deeper
mathematical analysis and justification. Rather we concentrate on down-
to-earth results which are of the greatest use in practical perturbative
quantum field theory. Indeed, the outcome will be formulae which al-
low to relate matrix elements of the scattering matrix with expressions
for cross sections and decay widths, both of which are measurable in
realistic experiments.

8.2.1 Assumptions and Conventions

As a rule, the processes to be described in quantum field theory concern
transitions between stable or quasi-stable states which are prepared long
before, and/or are detected long after the interaction proper. We will as-
sume these asymptotic in- and out-states to be free, i. e. noninteracting
one- or many-body states which are elements of Hilbert spaces of the
type

H =
∞∑

N=0

⊕ (H1)
⊗N ,

(cf. Sect. 7.1.5). The states will be denoted by their occupation numbers.
This representation in “second quantization” takes account of the pos-
sibility of particle annihilation and creation, in accord, of course, with
the selection rules of the theory. Examples are the reactions

e++ e− −→ e++ e− , e++ e− −→ γ +γ ,
e++ e− −→ e++ e−+γ ,
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as well as the decay processes

µ− −→ e−+νµ+νe , n −→ p+ e−+νe .

We shall consistently make use of covariant normalization (7.22),〈
p′; s, µ′∣∣p; s, µ〉= 2E pδµ′µδ(p− p′) , E p =

√
m2+ p2 ,

irrespectively of whether we deal with bosons or fermions. As con-
sequences of this convention, integration over momenta is done with
invariant volume element d3 p/(2E p), the completeness relation takes
the form (7.23), the number of particles with momentum p per unit of
volume is 2E p/(2π)3.

8.2.2 S-Matrix and Optical Theorem

Although scattering theory is described using an essentially stationary
picture it is useful to distinguish the incoming states, as produced by
a preparation measurement, from the final states which are measured in
detectors. In a realistic situation the initial state will either be a one-
particle state, in the case of a decay process, or a two-particle state,
consisting of the projectile and the target. The final state, in turn, can
contain many free particles, typically,

A (unstable)−→ C+D+ E+ . . . ,
A+ B −→ C+D+ E+ F+ . . . .

The initial state A or A+ B will be considered to be an in-state, the final
state C+D+ E+ . . . to be an out-state, even in cases where both are
represented by stationary plane waves, and not by wave packets. This
description is summarized schematically as follows:

Let
{|ψin

α 〉
}

be an orthonormal system of in-states,
{|ψout

α 〉
}

an analo-
gous sytem of out-states, both of which are assumed to be complete.
What is the probability amplitude for finding a specific final state in
a given initial state? The answer to this question is obtained by ex-
panding the given in-state in the basis of the out-states. The probability
amplitude is given by the (in general complex) matrix element

Sβα =
〈
ψout
β

∣∣∣ψin
α

〉
, with

∣∣ψin
α

〉=∑
β′

Sβ′α
∣∣ψout
β′

〉
.

If, as assumed here, the two asymptotic base systems are complete, and
denoting initial and final states by i and f , respectively, then the matrix
S= {

S fi
}

is unitary,

S† S= 1l= S S† . (8.18)

The assumption stated above is called asymptotic completeness. This
property is essential in proving the unitarity of the S-matrix.
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In a theory which contains no interaction at all the S-matrix is diago-
nal and, with an appropriate choice of phases, it is equal to the identity,
S= 1l. The physical interpretation of this case is simple: the particles
just pass by one another whithout any mutual influence. Every prepared
in-state is found unchanged in the set of the outgoing states. However,
in reality there are interactions between the particles of the theory. It is
then meaningful to subtract the trivial part S(0) = 1l from the S-matrix.
This subtraction yields the reaction matrix

R fi := S fi − δ fi , or R= S − 1l . (8.19)

As we shall see in Chap. 10 covariant perturbation theory, as exempli-
fied by the method of Feynman rules, yields precisely the R-matrix.
Note that the diagonal term in (8.19) occurs only if initial and final
states are identical. Independently of which theory one is dealing with,
the R-matrix must always be proportional to a four-dimensional δ-distri-
bution which guarantees conservation of the total four-momentum,
P( f ) = p(C)+ p(D)+ p(E)+· · · = P(i), where P(i) = p(A) for a decay of
particle A, P(i) = p(A)+ p(B) in a reaction A+ B→ C+D+ E+ . . . .
It is useful to extract this δ-distribution from R by a further definition.
Extracting also a factor i (2π)4 (which is a matter of convention) one
has

R fi =: i (2π)4δ(P(i)− P( f )) T fi . (8.20)

The matrix T which is defined by this equation is called the scattering
matrix. The next section will show that the formulae for decay widths,
for cross sections, and other observables are functions of entries of this
matrix. The intrinsic logic of these definitions may be summarized as
follows:

– The S-matrix S tells us whether the theory describes interactions
at all, by checking whether or not it is different from the identity.
A theory which yields the S-matrix S= 1l is called trivial;

– Rules of covariant perturbation theory such as the Feynman rules for
quantum electrodynamics, yield the matrix R, not T. This is so be-
cause at each vertex energy and momentum are conserved so that R
can be different from zero only if the total initial momentum P(i)

equals the total final momentum P( f );
– The decay width Γ(i→ X) of an unstable particle, and the cross

section for a reaction A+ B→ X are proportional to |TXi |2 and
to |TX,(A+B)|2, respectively, but not to |R fi |2 which would be ill-
defined.

The unitarity of the S-Matrix implies the relation

R+R† =−R†R (8.21)
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for the R-matrix. This, in turn, means that the scattering matrix satisfies
the relation

i
(

T†−T
)
= (2π)4T† T .

This third form of the unitarity relation is to be understood as exempli-
fied by a typical transition i→ f where it reads

i
(

T †fi −T fi

)
= (2π)4

∑∫
T †fnTni δ

(4)
(

P(n)− P(i)
)
. (8.22)

Here the sum/integral contains all intermediate states which are com-
patible with the selection rules and the conservation laws of the theory.
Before illustrating this important relation by the example of elastic scat-
tering of two particles, and before deriving the optical theorem from the
unitarity relation, a few comments seem in order.

Remarks

1. It is important to realize, very much like initial and final states |i〉
and | f 〉 are on their mass shells, all intermediate states |n〉 in (8.22)
are physical states, i. e. lie on their respective mass shells. This is un-
like perturbation theory where intermediate states are virtual states,
i. e. states which are not on their mass shell.

2. In passing from (8.21) to (8.22), as well as in the calculation of
|R fi |2 further down, one is faced with the square of the δ-distribution
for energy-momentum conservation which is not defined. This is not
a real problem but rather an artefact due to the fact that one de-
scribed scattering states by plane waves. A more careful analysis
shows that a description by means of localized wave packets does
not run into this difficulty and, yet, yields the same results for ob-
servables.

3. A more subtle problem is the following. In the definition of the
S-matrix it is assumed that all particles participating in a given re-
action are massive. Only in this case is the vacuum separated by
a finite gap in energy from the hyperboloid of the smallest mass in-
volved. An example is sketched in Fig. 8.1. This assumption is called
the spectrum condition. Matters change fundamentally as soon as
physical particles without mass are involved. (In fact, this is the rule
rather than the exception.) For example, in quantum electrodynamics
every electron is accompanied by a flight of photons with very small
energy so that, strictly speaking, there are no isolated one-electron
states. Through its coupling to the radiation field the electron be-
comes what is sometimes called an infraparticle. In this situation
the S-matrix is not well-defined in the way described above. The
problem is of physical, not only technical nature. Indeed, realistic
detectors can never define or measure states with arbitrarily sharp
energy. Rather, they always have a certain finite resolution. There-
fore, such detectors cannot separate the state of a single electron

22

Fig. 8.1. Surface of physical four-mo-
menta of a massive particle. The vac-
uum (p0 = 0, p= 0) is separated in en-
ergy from the hyperboloid p2 = m2 of
the particle with the smallest mass
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2 O. Steinmann, Acta Physica Austri-
aca, Suppl. XI, (1973) 167; Fortschr.
Physik 22 (1974) 367; Scattering of In-
fraparticles.

without any photons from a state of the same electron in which there
are in addition soft photons, i. e. photons with very small energy.
There exists a modified definition of the S-matrix which copes with
this empirical situation,2 but it is not very tractable and, hence, not
very useful in practice.
Concrete calculations in the framework of perturbation theory usu-
ally apply an intuitive method which is somewhat of a recipe but
yields correct answers. One calculates the process at stake (cross
section, decay width, or the like) as if there were isolated electrons,
muons, etc., at a given order O(αn) in the fine structure constant α,
and notices that the expressions thus obtained contain divergencies,
called infrared divergencies. In a second step, one calculates the
closely related process in which besides the electron (muon), one or
more soft photons are emitted, to the same order in α. This process
also contains an infrared divergence. One then integrates the second
process over all momenta of the emitted photon(s) which are in the
range permitted by the experimental resolution. Adding the results,
the bare process and the accompanying radiative process, one finds
that their infrared divergencies cancel. The realistically measurable
observable comes out perfectly finite.
Of course, these divergencies must first be regularized, that is,
must be replaced by finite expressions in a consistent way so that
well-defined results are obtained. This is often done by temporar-
ily assigning a finite mass mγ to the photon, and to take the limit
mγ → 0 at the end. As the infrared divergence is due to the mass-
lessness of the photon, it is avoided when the photon is given a mass.

4. In spite of the problem discussed above the concept of the S-matrix
is extremely fruitful. It serves to formalize the principle that the the-
ory should focus on those objects which are observable. In the case
of scattering the microscopic interaction region proper is not acces-
sible. The physical information is contained in the relation between
the preparation of the quantum system long before the scattering,
far from the interaction region, and the detection of the scattering
products, a long time after the scattering, and again at asymptotic
distances. Thus, the reader will not be surprised to learn that this
concept was invented by W. Heisenberg.

In Chap. 2 we derived the optical theorem in the framework of po-
tential theory. In a step which goes far beyond this, one proves this
theorem in its most general form, from the unitarity of the S-matrix,
(8.18). We start from (8.22) and analyze first elastic scattering of two
particles,

A+ B −→ A+ B : p+q = p′ +q′ ,

with p2 = p′ 2 = m2
A, q2 = q′ 2 = m2

B. When written out in more detail,
(8.22) reads
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i
[
T∗(p, q|p′, q′)−T(p′, q′|p, q)]
= (2π)4

∑
spins

∫
d3 p′′

2E p′′

∫
d3q′′

2Eq′′
δ(4)(p+q− p′′ −q′′)

×T∗(p′′, q′′|p′, q′)T(p′′, q′′|p, q) .
This expression assumes that the intermediate states are reached by
elastic scattering and, therefore, holds only below the first inelastic
threshold. For example, it is applicable to the process π++ p→ π++ p
in the range of energies in the center-of-mass system which remain be-
low the mass of the resonance N∗++. In contrast, it is not applicable to
the process π−+ p→ π−+ p because here, even at very low energies,
charge exchange π−+ p→ π0+n is kinematically possible.

It is useful to explore the unitarity relation in the center-of-mass
sytem because it takes a particularly simple form in that system and
because the comparison to the corresponding nonrelativistic situation
becomes especially transparent. As in this frame of reference we have
p+q = 0= p′ +q′, the spatial momenta are chosen as follows

(p= κ , q =−κ) , (p′ = κ′ , q′ = −κ′) , |κ| = ∣∣κ′∣∣≡ κ .
The integration variables p′′ and q′′ are replaced by

Q := 1

2
(q′′ − p′′) , P := p′′ +q′′

the Jacobian being ∂(Q, P)/∂(q′′, p′′) = 1 and, hence, d3 p′′ d3q′′ =
d3 Q d3 P. Carrying out the integral

∫
d3 P, one obtains p′′ +q′′ = 0 or

Q = q′′. Introduce polar coordinates for Q,

d3 Q = x2 dx dΩQ ,

and calculate the following integrals
∞∫

0

x2 dx
∫

dΩQ
T∗T

4
√

x2+m2
A

√
x2+m2

B

× δ(1)(
√

x2+m2
A+

√
x2+m2

B−
√
κ2+m2

A−
√
κ2+m2

B) .

The integral over the modulus x of Q is done by means of the well-
known formula∫

dx f(x)δ(g(x))=
∑

i

1

|g′(xi)| f(xi) , xi : simple zeroes of g(x)

(see Appendix A.1). One has

g=
√

x2+m2
A+

√
x2+m2

B−
√
κ2+m2

A−
√
κ2+m2

B

and, setting xi = κ, one obtains

g′
∣∣
xi
=

∣∣∣∣∣∣ x√
x2+m2

A

+ x√
x2+m2

B

∣∣∣∣∣∣
xi=κ

= κ

E A EB
(E A+ EB) .
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Upon insertion of the inverse of this expression, the product E A EB can-
cels out. The denominator contains the sum E A+ EB =: E, i. e. the total
energy in the center-of-mass sytem. Inserting into the unitarity relation
yields

2 Im T(κ′, κ)= (2π)4 κ
4E

∑
spins

∫
dΩκ′′T

∗(κ′′, κ′)T(κ′′, κ) .

When this formula is applied to forward scattering, κ′ = κ, one obtains
the optical theorem in its application to purely elastic scattering: The
imaginary part of the forward scattering amplitude is proportional to
the total elastic cross section which in this case equals the total cross
section.

In the special case of potential scattering that we treated in Chap. 2
the relation between scattering amplitude and cross section was given
by

Im f(E, θ = 0)= κ

4π
σelastic = κ

4π

∫
dΩκ′′

∣∣ f(κ′′, κ)
∣∣2 .

Comparison to the result obtained above yields an important formula re-
lating the scattering amplitude f(E, θ) and an element of the T -matrix,

f(κ′, κ)≡ f(E, θ)=
(

8π5

E

)
T(κ′, κ) . (8.23)

In the next step we allow for inelastic channels to be open, i. e. ex-
tend the result to energies which are above the first inelastic threshold.
The unitarity relation then reads

i
[
T∗(p, q|p′, q′)−T(p′, q′|p, q)]=(2π)4∑

spins

∑
n

∫
d3k1

2E1

d3k2

2E2
. . .

d3kn

2En

× δ(4)(p+q− k1− k2 . . .− kn)

×T∗(k1, k2, . . . , kn|p′, q′)T(k1, k2, . . . , kn|p, q) ,
where sums and integrals are taken over all intermediate states which
respect energy-momentum conservation and which are allowed by the
selection rules. In the forward direction (p′ = p, q′ = q), writing “n” as
a short-hand for the n-particle intermediate state, the relation becomes

Im T(p, q|p, q)= 2κE

(2π)6
∑

n

σ(p+q→ n)= 2κE

(2π)6
σtot . (8.24)

We need to comment on this result in a little more detail. It should intu-
itively be clear that the multiple integral of the squared T -amplitude is
proportional to the partial integrated cross section σ(p+q→ n). What
is missing, however, is the correct factor which normalizes the cross
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section to the incoming flux. In the next section we will show that
σ(p+q→ n), correctly normalized, is given by the formula:

σ(p+q→ n)= (2π)
10

4κE

∫
d3k1

2E1

d3k2

2E2
. . .

d3kn

2En

×
∑
spins

δ(p+q− k1− . . .− kn) |T(k1, . . . , kn|p, q)|2 .

This was the result that we inserted above. Finally, replacing the T -am-
plitude by the scattering amplitude, by means of (8.23), one obtains the
final form of the optical theorem

Im f(E, θ = 0)=
( κ

4π

)
σtot(E) . (8.25)

Remarks

1. Note that the left-hand side of the optical theorem contains the
amplitude for elastic scattering in the forward direction, while the
right-hand side contains the total cross section for all final states
which are allowed at the given center-of-mass energy E. This the-
orem provides a powerful relation, indeed. For instance, it tells us
that the imaginary part of the elastic forward scattering amplitude is
always positive.

2. While the optical theorem for potential scattering seems to follow
from the Schrödinger equation and its specific properties, the deriva-
tion given here shows that it rests on more fundamental principles.
The theorem is a direct consequence of the unitarity of the S-matrix.
This property, in turn, is proven from asymptotic completeness.

3. The optical theorem is of great importance for experimental physics.
The total cross section at the energy E, in principle, is easy to mea-
sure. One needs no more than to measure the transmission of a beam
through the target.

4. Returning to the earlier form (8.24) of the optical theorem, one sees
that both the total cross section, and the element of the T -matrix
are Lorentz invariants. Regarding the factor κE one notices that E
is nothing but the square root of the invariant s := (p+q)2, while
for κ one derives the following invariant expression

κ = 1

2
√

s

√
(s−m2

A−m2
B)

2−4m2
Am2

B

= 1

2
√

s

√(
s− (m A+m B)2

) (
s− (m A−m B)2

)
, (8.26)

(see Exercise 8.1). The Lorentz invariance of T , in turn, is a conse-
quence of covariant normalization.
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8.2.3 Cross Sections for two Particles

Assume for the moment that the spatial momenta of the two incoming
particles of the reaction

A (p) + B (q)−→ 1 (k1) + 2 (k2) + . . .+ n (kn)

are collinear, i. e. that p and q are parallel. In experiment this assump-
tion holds true if one of the particles (called the target) is at rest while
the other particle (called the projectile) moves towards it, or if the two
particles move towards each other with equal and opposite momenta. In
the first case, one deals with the kinematics of the laboratory system, in
the second case with the kinematics of the center-of-mass system. Of
course, any other colliding beam constellation is also allowed in which
the particle’s momenta are collinear (for example, have opposite direc-
tions) but do not have equal magnitude.

The assumption of collinearity is no real restriction because, on the
one hand, the cross section is an invariant, and, on the other hand, be-
cause two momenta which are arbitrarily oriented in space can always
be made collinear, by means of a Special Lorentz transformation. Thus,
one will proceed as follows: In a first step one constructs the cross sec-
tion in a collinear situation as described above. One then expresses the
result exclusively in terms of Lorentz invariant variables. Finally, de-
pending on the specific experimental situation, one expresses the cross
section in the appropriate system of reference

It looks as though the cross section dσ(i→ f ) were proportional
to |R fi |2, with R fi as defined in (8.19). However, blindly inserting
the definition (8.20) of the T -matrix leads to an ill-defined expression:
The square of the distribution δ(P(i)− P( f )), with P(i) = p+q and
P( f ) = k1+k2 . . .+kn is not defined. This problem has its origin in our
describing scattering like a stationary process and in using plane waves
both for the in-states and for the out-states. Plane waves are present
“everywhere” in space and with the same density. If, instead, one de-
scribes the scattering process by means of incoming wave packets for
the target and for the projectile, and takes the limit of plane waves only
at the end, then one can show that this is equivalent to the prescription∣∣R fi

∣∣2 �−→ (2π)4δ(P(i)− P( f ))
∣∣T fi

∣∣2 . (8.27)

All other parts in the formulae for cross sections are the same as before,
when plane waves are used instead of wave packets. Note that a similar
comment applies to decay widths.

As noted earlier, the covariant normalization implies that there are
2E A/B/(2π)3 particles of the species A or B in the unit volume, re-
spectively. Given their relative velocity vAB the flux factor by which we
must divide, is given by

2E A

(2π)3
2EB

(2π)3
|vAB| . (8.28)
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Collecting the formulae (8.27) and (8.28) as well as the density of final
states d3ki/(2Ei) of particle number i, the (multiple) differential cross
section reads

d3nσ fi(A+ B→ 1+2+ . . .+n) (8.29)

= (2π)
10δ(P(i)− P( f ))

2E A2EB|vAB|
∣∣T fi

∣∣2 n∏
i=1

d3ki

2Ei
.

Although, as such, it does not yet represent anything measurable, this is
a master formula because it can be adapted to any possible experimental
set-up with two incoming particles. Indeed, for this purpose it suffices
to integrate over all momenta which either are fixed by the kinematics
or which are not measured in the specific experiment. If the incom-
ing and/or outgoing particles have nonvanishing spins and if these are
not measured, then one must average incoherently over the spin orien-
tations of the incoming particles(s) and sum (again incoherently) over
those of “i”.

We analyze first the flux factor in the denominator of (8.29). Assum-
ing, as before, p and q to be collinear, one has

E A EB |vAB| =
√
(p ·q)2− p2q2 =

√
(p ·q)2−m2

Am2
B .

This is easily shown: With pq = E A EB − p · q = E A EB ∓ |p||q|,
vA= p/E A, and vB=q/EB as well as m2

A=E2
A− p2 and m2

B=E2
B−q2,

one has

(p ·q)2 = m2
Am2

B+ E2
A E2

B

[
v2

A+v2
B∓2 |vA| |vB|

]
= m2

Am2
B+ E2

A E2
B (vA−vB)

2 ;
Here, collinearity was used in two places. This proves the assertion√

(p ·q)2−m2
Am2

B = E A EB |vA−vB| ≡ E A EB |vAB| .
Obviously, this flux factor is a Lorentz scalar. In the earlier literature it
was often called the Møller-factor. By introducing the Lorentz invari-
ant variable s := (p+q)2 it can be expressed in terms of s and of the
masses m A and m B, or, alternatively, in terms of the modulus κ of the
spatial momentum, (8.26), in the center-of-mass sytem,

E A EB |vAB| = 1

2

√(
s−m2

A−m2
B

)2−4m2
Am2

B = κ
√

s . (8.30)

Both forms are useful for practical applications .

Example 8.1
Two spinless charged particles are scattered elastically due to their
electromagnetic interaction. The target (particle “2”) is assumed to be
a spinless atomic nucleus which is characterized by its form factor
F(K)(Q2). The projectile is taken to be an electron (particle “1”) which
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1

Fig. 8.2. A (spinless) electron is scat-
tered elastically on a spinless nucleus,
by exchange of a virtual photon

has no inner structure and whose spin is neglected, for simplicity. In this
case the formula (8.29) reads

d6σ = (2π)
10δ(4)(p+q− k1− k2)

4κ
√

s

∣∣T fi
∣∣2 d3k1

2E1

d3k2

2E2
.

We calculate the differential cross section dσ/dΩ∗ for scattering of the
electron in the center-of-mass system. Integration over the spatial mo-
mentum k1 yields

d3σ

dΩ∗ dκ′
= (2π)10

16κ
√

sE1 E2

∣∣T fi
∣∣2 δ(1)(W− E1− E2)κ

′ 2 ,

with W =
√

m2
A+κ′ 2+

√
m2

B+κ′ 2. The quantity κ′ denotes the mod-
ulus of the spatial momentum in the final state. By the remaining
δ-distribution it contributes only for κ′ = κ. Integration over κ′, or,
equivalently, over W , using

dκ′ = dκ′

dW
dW = E1 E2

κ′(E1+ E2)
dW ,

with κ′ = κ and E1+ E2 =W =√s, yields

d2σ

dΩ∗
= 1

16s
(2π)10

∣∣T fi
∣∣2 .

Note that here we use a somewhat pedantic notation: As dΩ∗ =
d(cos θ∗)dφ∗ the expression given above, strictly speaking, yields
a doubly differential cross section. It is common practice to write it sim-
ply as

dσ

dΩ∗
,

independently of whether the azimuth φ is relevant or whether one in-
tegrates over this angle. Of course we rush to take up that convention!

The Feynman rules of quantum electrodynamics that will be derived
in Chap. 10, yield the following expression for the R-matrix element
of Fig. 8.2 for the process studied here:

R fi = i3(−e2)(2π)4
∫

d4 Q δ(p− k1−Q)δ(q+Q− k2)

×〈k1| jµ(0) |p〉 −gµν

Q2
〈k2| jν(0) |q〉 . (8.31)

In this formula one recognizes the photon propagator (7.149) in the
Feynman gauge, and the electromagnetic current operator jµ(x), not-
ing that the elementary charge +e (for the nucleus) and −e (for the
electron) are factored. At each vertex there is a four-dimensional δ-dis-
tribution which serves to balance the four-momenta. The momentum Q
of the virtual photon is integrated over. This latter integral fixes the in-
tegrand at the value Q = p− k1. As one has

δ(p− k1−Q)δ(q+Q− k2)= δ(Q− (p− k1))δ((p+q)− (k1+ k2))
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there remains the δ-distribution for energy-momentum conservation, as
expected, that was extracted explicitly from the T -matrix in the defini-
tion (8.20). The numerical factors follow from the perturbation series
and from those multiplying the propagators, cf. Chap. 10.

The matrix elements of the electromagnetic current density can be
analyzed further. The current density behaves like a Lorentz vector. As
the nucleus of the example has no spin, there remain only the four-
vectors q and k2, or, alternatively, their sum and their difference, that
can be used as covariants in an expansion of the matrix element. Making
use of the translation formula (7.48) one writes

〈k2| jµ(0) |q〉 ≡ 1

(2π)3

{
F(K)(Q2)(q+ k2)µ+G(K)(Q2)(q− k2)µ

}
,

Q = q− k2 ,

so that the vector nature of the matrix elements is taken up by (q+ k2)µ
and by (q− k2)µ, while the form factors F(K)(Q2) and G(K)(Q2) are
Lorentz scalar functions. These form factors can only depend on the
variable Q2 because any other invariant kinematic variable such as
(q+ k2)

2, or q ·k2 is linearly dependent on Q2, q2, and k2
2, the latter two

of which are constant, q2 = k2
2 = m2

B. (The dependence of form factors
on the mass of the particle is never written explicitly.)

Recalling the formula (7.49) for the divergence ∂µ jµ(x) = 0, one
sees that the second form factor must vanish identically, G(K)(Q2)≡ 0.
Concerning the first of them, F(K)(Q2), one can determine its value at
Q2 = 0. Using (7.48) one has

〈k2| jµ(x) |q〉 = 1

(2π)3
F(K)(Q2)e−i(q−k2)x(q+ k2)µ .

Since jµ(x) is conserved, the space integral of its time component is
a constant. In the present case, after having extracted the elementary
charge, this is the nuclear charge number Z. Thus, with covariant nor-
malization,

〈k2|
∫

d3x j0(x) |q〉 = Z 〈k2|q〉 = Z 2Eqδ(q−k2) .

Furthermore, the integral on the left-hand side can be calculated di-
rectly, making use of the translation formula and the covariant decom-
position of the matrix element,

〈k2|
∫

d3x j0(x) |q〉 =
∫

d3x e−i(q−k2)x 〈k2| j0(0) |q〉

= (2π)3δ(q−k2)
1

(2π)3
F(K)(Q2 = 0) 2Eq .

Comparing the two formulae yields the result F(K)(0) = Z. Note, fi-
nally, that F(K)(Q2) is the electric form factor of a spinless nucleus that
we studied in Sect. 2.4.2 in a more general framework.3

3 It is not obvious that the Lorentz
scalar form factor F(Q2) can be iden-
tified with the form factor in nonrel-
ativistic scattering theory. In fact, this
identification is correct because here
we work in the center-of-mass system
where p = −q and k1 = −k2. In the
limit of the momenta going to zero
one lands directly in the nonrelativistic
kinematic configuration.
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The same kinematic analysis also applies to the electron, with q re-
placed by p, and k2 by k1. As the charge (−e) was already extracted
one obtains F(e)(0)= 1. As long as we are allowed to treat the electron
as a genuine point particle the electric form factor has the same value 1
at all momentum transfers, F(e)(Q2)= 1.

The T -matrix element follows from the definition (8.20). With the
above results it is equal to

T fi =− Ze2

(2π)6
F(K)(Q2)

Q2 ((p+ k1) · (q+ k2)) .

At this point it is useful to replace all scalar products by the Lorentz
invariant variables

s := (p+q)2 = (k1+ k2)
2 , t := (p− k1)

2 = (k2−q)2 (8.32)

and to express the cross section in a form which is independent of the
frame of reference. That is to say, instead of dσ/dΩ∗ one calculates the
expression dσ/dt. In the center-of-mass one has t =−2κ2(1− cos θ∗).
Integration over the azimuth of the volume element dΩ∗ = d(cos θ∗)dφ∗
is trivial, noting that |T fi |2 is independent of it. One finds

dσ

d(cos θ∗)
= dσ

dt

dt

d(cos θ∗)
= 2κ2 dσ

dt

and inserts here the invariant (8.30) for κ2. In a similar way one calcu-
lates

(p+ k1) · (q+ k2)= 2(s−m2
A−m2

B)+ t .

Finally, one inserts e2 = 4πα and obtains the final result

dσ

dt
= π (Zα)

2|F(K)(t)|2
t2

[
2(s−m2

A−m2
B)+ t

]2

(s−m2
A−m2

B)
2−4m2

Am2
B

. (8.33)

This invariant expression can now be evaluated in every frame of
reference which is either given or is singled out by the experimental ar-
rangement. For example, consider the laboratory system and assume the
rest mass m A ≡ me of the electron to be small as compared to its en-
ergy and, of course, in comparison with the mass m B of the nucleus. In
this situation, and with q = (m B, 0)T , p= (E, p)T , k1 = (E′, k1)

T , and
|p| ≈ E, |k1| ≈ E′, one has

s ≈ m2
B+2m B E ,

t ≈−2EE′(1− cos θ)=−2E2 1− cos θ

1+ (E/m B)(1− cos θ)
,

dt

d(cos θ)
≈ 2E2

(1+ (E/m B)(1− cos θ))2
.

The relationship between E′ and E that was inserted here, viz.

E′ = E

1+ (E/m B)(1− cos θ)
,
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follows from the energy balance with m A ≈ 0. One now calculates

dσ

dΩ
= 1

2π

dt

d cos θ

(
dσ

dt

)
Lab
.

The result is found to be

dσ

dΩ
= (Zα)

2|F(k)(Q2)|2
E2(1− cos θ)2

[1+ (E/2m B)(1− cos θ)]2

[1+ (E/m B)(1− cos θ)]2 .

Disregarding terms in (E/m B) (these are typical recoil terms) one rec-
ognizes the well-known Rutherford cross section(

dσ

dΩ

)
Rutherford

= (Zα)2

E2(1− cos θ)2
=

(
Zα

2E

)2 1

sin4(θ/2)
,

multiplied by the square of the electric form factor of the nucleus. The
cross section (8.33), when multiplied by the square of the charge Z = 2
and by the form factor of the α-particle, applies, for instance, to elastic
scattering of α-particles on a spinless nucleus.

8.2.4 Decay Widths of Unstable Particles
Matrix elements of the T -matrix serve also to describe the decay of
a single unstable particle into n particles with four-momenta as indi-
cated here,

A (q)−→ 1 (k1) + 2 (k2) + . . . + n (kn)

provided the decay is kinematically allowed and fulfills all selection
rules. The 3n-fold differential decay rate reads

d3nΓ fi = (2π)4δ(k1+ k2+ . . .+ kn−q)
(2π)3

2Eq

∣∣T fi
∣∣ 2

n∏
i=1

d3ki

2Ei
.

(8.34)

As before, and as the need arises, one must sum over the spin orien-
tations of the particles of the final state, and/or, if the unstable particle
carries nonvanishing spin, one must average over its spin orientations.
In either case it is the experimental set-up that must be consulted.

Perhaps, the structure of the formula (8.34) needs no further ex-
planation: it contains a δ-distribution which takes care of energy and
momentum conservation. One divides by 2Eq/(2π)3 because one con-
siders the decay rate for one unstable particle per volume element.
Finally, every particle of the final state has its phase space density
d3ki/(2Ei).

Remarks

1. Like (8.29) the formula (8.34) does not represent an observable as
such. In order to obtain observable quantities one must first integrate
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or sum over all those variables which are fixed by the conservation
laws and, hence, are redundant.

2. Although the master formula (8.34) is correct its justification is only
a qualitative one. More rigorously, the kinematic state |q; s〉 of an
unstable particle cannot be an in- or an out-state because the particle
decays after a finite mean lifetime. However, it is perfectly mean-
ingful to talk about a quasi-stable particle if the uncertainty of the
energy which is caused by the decay probability, is small as com-
pared with the rest mass, Γ �m A.

3. In certain applications it is useful to analyze more closely the phys-
ical dimensions of the quantities contained in (8.34). As Γ fi has
dimension (energy), the δ-distribution has dimension (energy)−4, and
d3ki/(2Ei) has dimension (energy)2, one concludes that[∣∣T fi

∣∣ 2
]
= (energy)2(3−n) .

Thus, in two-body decays |T fi |2 has dimension (energy)2, while in
three-body decays the same quantity has no dimension.

Example 8.2 Two-body Decay

With respect to the rest system of the decaying particle, q = (M, 0)T ,
the two particles in the final state have fixed energies and equal and
opposite three-momenta,

k1 = (E1, κ) , k2 = (E2,−κ) ,

where the energies Ei and the modulus κ := |κ| fulfill the relations

E1+ E2 = M , E1 =
√

m2
1+κ2 , E2 =

√
m2

2+κ2 . (8.35)

Upon integration over k2 one obtains

d3Γ(A→ 1+2)= (2π)7

8ME1 E2
|T(A→ 1+2)| 2δ(E1+ E2−M)d3k1 .

One then converts to spherical polar coordinates d3k1 = κ2 dκ dΩ∗, and
notes that E2

1 = m2
1+κ2 implies the relation κ dκ = E1 dE1, so that the

integral over κ becomes an integral over E1. As E2 depends on κ, or,
what is equivalent, on E1, we also need the derivative of the argument
of the δ-distribution, evaluated at its simple zero. This derivative reads

d

dE1
(E1+ E2−M)= 1+ dE2

dκ

dκ

dE1
= E1+ E2

E2
= M

E2
.

Inserting this and integrating over the azimuth (note that the decay prob-
ability cannot depend on this angle) one finds

dΓ(A→ 1+2)= (2π)
8κ

8M2
|T(A→ 1+2)| 2 d(cos θ∗) . (8.36)
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What does the angle θ∗ refer to? If the unstable particle A has no spin,
or if it carries a nonvanishing spin but is unpolarized, then the angle θ∗
is not a physically relevant one. The decay then is isotropic, that is,
all directions along which the particles of the final state may fly, are
equally probable. In these cases one integrates over θ∗, thus obtaining
the following formula for the total decay probability,

Γ(A→ 1+2)= (2π)
8κ

4M2
|T(A→ 1+2)| 2 . (8.37)

This formula, too, is a Lorentz invariant. In order to exhibit this property
more clearly one expresses the modulus of the spatial momentum in the
center-of-mass system by the three masses: The energy balance (8.35)
yields

κ = 1

2M

√
(M2−m2

1−m2
2)

2−4m2
1m2

2 . (8.38)

In a situation where the particle A carries spin s and is polarized
along the 3-direction, the angle θ∗ is the angle between the expecta-
tion value of s3 and the spatial momentum of the decay products. The
differential decay probability describes the correlation between the spin
of A and the direction of the momentum κ̂. It then contains physically
relevant information4.

The decay π0→ γ +γ may serve as an example. In this process
the neutral pion decays into two photons by electromagnetic interaction,
although this happens via possibly complicated hadronic intermediate
states. The pion is a spinless particle, the photons have spin 1 (helicity).
By means of simple arguments involving the conservation laws rele-
vant for this decay, one shows that the T -matrix element must have the
form5,

T(π0→ γ +γ)= e2

(2π)9/2
2F

M
εαβστε

α
1ε
β
2 kσ1 kτ2

where M ≡ mπ0 , where εi denotes the polarization of the photon “i”,
ki its momentum. As before, F is a Lorentz scalar form factor which
in the present case must be constant because, according to (8.38), the
momentum has the fixed value κ = M/2. The factors 2 and 1/M are
introduced by convention, the latter, in particular, with the intention to
render the form factor dimensionless. This form factor F parametrizes
our ignorance about the possible virtual intermediate states in the tran-
sition of the π0 to the two photons. In calculating the absolute square
of the amplitude, summing over the polarizations of the photons,

2∑
λ1=1

2∑
λ2=1

∣∣εµνστεµ1 εν2kσ1 kτ2
∣∣ 2 ,

4 If the initial state is a pure eigen-
state of parity then a nonvanishing spin-
momentum correlation is a signal that
the interaction that is responsible for
the decay, does not conserve parity, see
also Sect. 4.2.1.

5 A detailed analysis can be found,
e. g., in [Scheck (1996)], Sect. 4.2.
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the sums over the spins are replaced by
2∑
λ=1

ε(λ)α ε
(λ)
β �−→−

4∑
λ,λ′=0

ε(λ)α gλλ′ε
(λ′)
β

which, by (7.142) is equal to −gαβ. All terms of the difference of these
two expressions, when contracted with the totally antisymmetric sym-
bol εαβγδ, give zero. Thus, summing the absolute square over the spins
yields a result proportional to

εµνστε
µναβkσ1 k1αkτ2k2β =−2

(
δασδ

β
τ − δβσδατ

)
kσ1 k1αkτ2k2β

= 2(k1 · k2)
2 = 1

2M4 .

Inserting these intermediate results, taking care of the replacement
e2 = 4πα and of the fact that the decay rate must be divided by 2! be-
cause the two photons are indistinguishable, one finds

Γ(π0→ γ +γ)= πα2 |F| 2 M (M ≡ mπ0) . (8.39)

The decay width was determined by experiment (this is the same as the
decay rate when natural units are used) and was found to have the value
Γexp = 7.85 eV. From this number one extracts the value F = 1.86×
10−2 for the form factor.

Example 8.3 Three-Body Decay
Consider the decay of a particle A into three particles,

A −→ 1 (k1) + 2 (k2) + 3 (k3) .

Going to the rest system of A and integrating (8.34) over one of the
three momenta, say k3, one has

d6Γ = (2π)
7κ1κ2

16ME3
|T(A→ 1+2+3)| 2

δ(E1+ E2+ E3−M)dE1 dE2 dΩ1 dΩ2 ,

with

E3 =
√

m2
3+ (k1+k2)2 , κi := |ki | , i = 1, 2 .

In a next step one may integrate dΩ1, and by choosing k1 as the di-
rection of reference, by using axial symmetry about this direction, one
may also integrate over the azimuth of the remaining solid angle. One
then obtains

d3Γ = (2π)
9κ1κ2

8ME3
|T(A→ 1+2+3)| 2

× δ(E1+ E2+ E3−M)dE1 dE2 d(cos θ) ,

where now one must insert

E3 =
√

m2
3+κ2

1 +κ2
2 +2κ1κ2 cos θ .
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At this point it is useful to replace the variables (E1, E2, cos θ) by
(E1, E2, E3), the Jacobian of this transformation being

∂(E1, E2, cos θ)

∂(E1, E2, E3)
= E3

κ1κ2
.

In a last step one replaces E2 and E3 by their sum W := E2+ E3 and
their difference w := E2− E3, noting that ∂(w,W)/∂(E2, E3)= 2, and
integrates over W . This yields the double differential decay rate

d2Γ = (2π)
9

16M
|T(A→ 1+2+3)| 2 dE1 dw (8.40)

which is a genuine observable. The total decay rate is obtained by inte-
gration over the kinematic ranges of E1 and w.

Remarks

1. In the previous examples one may have noticed that every external
particle yields a factor (2π)−3/2 in the T -matrix element, this fac-
tor going back to our choice of normalization of one-particle states.
Indeed, this factor is characteristic for external particle lines and
will be contained in one of the Feynman rules of perturbation the-
ory. By this rule |T(A→ 1+2)|2 receives the factor (2π)−9, while
|T(A→ 1+2+3)|2 receives the factor (2π)−12.

2. In contrast to two-body decays, the particles in the final state of
a three-body decay have no fixed energy (with respect to the rest sys-
tem of the decaying particle). From a historical point of view, the
β-decay of atomic nuclei provides an important case. Examples of
three-body decays are the triton decay

3 H −→3 He+ e−+νe ,

or the decay of a negatively charged muon,

µ− −→ e−+νµ+νe ,

whose neutrinos are not easily detected. In both cases the electron
has a continuous energy spectrum ranging from a minimal value to
the maximally allowed energy. For instance, for muon decay one has

me ≤ Ee ≤
m2
µ+m2

e

2mµ
.

On the basis of this observation (and assuming the principle of
energy-momentum conservation) Wolfgang Pauli postulated the ex-
istence of the electron neutrino νe.

3. Like cross sections differential decay rates may be expressed in
terms of Lorentz invariant quantities, keeping in mind that |T |2, by
itself, is invariant. This presents the advantage that they may then be
tailored to fit any given frame of reference. In particular, one can cal-
culate the kinematic and dynamic characteristics of decay in flight.



502 8Scattering Matrix and Observables in Scattering and Decays

8.3 Comment on the Scattering of Wave Packets
The physically realistic in-states which are prepared in experiment are
best modeled by wave packets which are localized in the neighbourhood
of the spatial momenta p and q, respectively. In a two-particle reaction
A+ B→ 1+2+ . . .+n the initial state then has the form

|A, B〉 in =
∫

d3 p′

2E p′

∫
d3q′

2Eq′
ϕ̃A(p′) ϕ̃B(q′)

∣∣p′, q′
〉
,

where the wave packets are covariantly normalized to 1,∫
d3 p′

2E p′

∣∣̃ϕA(p′)
∣∣ 2 = 1 ,

(and similarly for the second particle). The Fourier components are cho-
sen such that the wave packets are centered in p and in q, respectively.
If one defines the Fourier transform by

ϕ(x)= 1

(2π)3/2

∫
d3 p√
2E p

eipx ϕ̃(p) ,

then the absolute square of ϕ(x) is normalized to 1,∫
d3x |ϕ(x)| 2 = 1 .

With T denoting the T -matrix, as before, the out-state which con-
tains n particles, is characterized by the function

φ(k1, . . . , kn)= i(2π)4
∫

d3 p′

2E p′

∫
d3q′

2Eq′
δ(Pf − p′ −q′)

×〈k1, . . . , kn| T
∣∣p′, q′

〉
ϕ̃A(p′) ϕ̃B(q′) .

These formulae are sufficient for a realistic calculation of the transi-
tion probability that is not hampered by the spurious problem of having
to take the square of a δ-distribution. For lack of space we do not work
out this case here (see, e. g., [Goldberger and Watson (1964)]). We just
note that it yields precisely the result obtained in (8.29) that was at the
basis of the examples of the preceding section.

Remarks

1. Although the details of this calculation (that we skipped) are some-
what cumbersome, they show that the problem of the “squared
δ-distribution” was an artefact of the unrealistic choice of basis, viz.
of plane waves. If one works with properly prepared wave packets
from the start the problem does not occur.

2. All one-particle states, independently of whether they are contained
in the in- or out-states, or in one of the intermediate states, are on
their physical mass shells. Therefore, it makes no difference whether
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such states are denoted by their four-momentum, that is by |p〉 etc.,
or by their spatial momentum, that is by |p〉 etc. As the reader sees
I made use of this freedom on various occasions.
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Particles with Spin 1/2
and the Dirac Equation

Introduction

In order to identify the spin of a massive particle one must go to
its rest system, perform rotations of the frame of reference, and

study the transformation behaviour of one-particle states. This pre-
scription was one of the essential results of Chap. 6. Furthermore, the
spin 1/2 (electrons, protons, other fermions) is decribed by the fun-
damental representation of the group SU(2). The eigenstates of the
observables s2 and s3 transform by the D-matrix D(1/2)(R) which is
a two-valued function on R3. If one-fermion states with momentum p
have the form |α; 1/2,m; p〉 where α summarizes all attributes other
than the spin, its projection, and the momentum, then the formula
(6.144) expresses the action of an arbitrary Poincaré transformation
on this state. In the active interpretation, and with �= 1, it reads

U(�, a)
∣∣α; 1

2
,m; p

〉= (9.1)

eia·(�p)
∑
m′

D(1/2)m′m

(
L−1(�p)�L(p)

) ∣∣α; 1

2
,m′; (�p)

〉
.

Here � ∈ L↑+ is a proper orthochronous Lorentz transformation,
and a is the constant four-vector of translation in time and space.
The origin of this somewhat ascetic formula (9.1) was explained
in Sect. 6.3.4. For this reason a short summary may be sufficient at
this point: The first factor exp{ia · (�p)} represents the action of the
translation. The second factor contains the product

L−1(�p)�L(p)=: RW , (9.2)

i. e. a three-step round-trip on the mass shell p2 = M2, namely, (1)
from the rest system to the point p, effected by the boost L(p), (2)
from there to the point �p, by the action of �, (3) and, finally, the
return to the rest system. The product of the three moves is a ro-
tation in the rest system, called Wigner rotation. The 2×2-matrix
D(1/2) is unitary and has determinant 1. It is an element of SU(2),
D(1/2) ∈ SU(2).
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What follows is the attempt to take apart, so to speak, the argu-
ment of this D-function, that is, to write the latter as a product of
three 2×2-matrices,

D(1/2)
(

L−1(�p)�L(p)
)
= A

(
L−1(�p)

)
A (�) A (L(p)) .

(9.3)

It turns out that, in general, these matrices no longer belong to SU(2)
but that they are elements of SL(2,C), the special linear group in two
complex dimensions. As a consequence, the spin states in a Lorentz
covariant quantum theory are no longer to be found (only) in repre-
sentations of SU(2), but, rather, in those of the larger group SL(2,C).
In contrast to SU(2) the group SL(2,C) contains two inequivalent
spinor representations. Although these transform alike under rotations
R ∈ L↑+, they have different transformation behaviour with respect to
Special Lorentz transformations L ∈ L↑+.

The two inequivalent spinor representations are related to each
other by the operation of space reflection (parity). Since space reflec-
tion is known to be an important symmetry operation in the quantum
theory of elementary particles it will become clear that the de-
scription of massive spin-1/2 particles involves both types of spinor
representations. This explains why solutions of the Dirac equation
have four components, not two, even though they describe particles
with spin 1/2.

On the basis of this experience it is not difficult to construct
a linear equation in momentum space which describes force-free
fermions. Transformed back to position space, this yields a linear
differential equation of first order in space and time coordinates
which, in a sense to be analyzed more closely, is an analogue of the
Schrödinger equation without external forces. This equation which
was discovered by Dirac, supplemented by the interaction with the
Maxwell radiation field, is then studied in detail. Perhaps the most
important result will be that the Dirac equation cannot be interpreted
as a relativistic wave equation of one-particle theory (or, at least, only
in a rather limited range of applications). This is its main difference
from the Schrödinger equation which has a perfectly consistent inter-
pretation in terms of nonrelativistic quantum mechanics and Born’s
interpretation of the wave function.

It is only in the framework of field quantization that the Dirac
equation has a consistent and physically convincing interpretation.
One is led, in a rather natural way, to quantize the Dirac field follow-
ing the rules of the Klein-Gordon and the Maxwell fields and, thus,
to introduce creation and annihilation operators for fermions and their
antiparticles. This will provide the second building block for the fully
Lorentz covariant form of quantum electrodynamics.
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9.1 Relationship between SL(2, C) and L↑+
It is no accident that the title of this section sounds alike the one
of Sect. 6.2.1. Indeed, the analysis that follows here is a direct gener-
alization of the correspondence (6.17) that established the relationship
between SU(2) (which is a subgroup of SL(2,C)) and the rotation
group SO(3) (which, in turn, is a subgroup of L↑+).

Every hermitean 2×2-matrix whose trace vanishes, can be written
as a linear combination of the three Pauli matrices, with real coeffi-
cients. If we add to the set of the Pauli matrices a fourth one,

σ(0) :=
(

1 0
0 1

)
, (9.4)

i. e. the unit matrix, then every hermitean 2×2-matrix (with arbitrary
trace) can be written as a real linear combination of{

σµ
} := (

σ(0), σ
)
,

(
σ†µ = σµ

)
, (9.5)

where σ = (
σ(1), σ(2), σ(3)

)
are the usual Pauli-matrices,

σ(1) =
(

0 1
1 0

)
, σ(2) =

(
0 −i
i 0

)
, σ(3) =

(
1 0
0 −1

)
. (9.6)

Note that we changed the notation of the Pauli matrices slightly, writing
σ(i) instead of σi , for i = 1, 2, 3, in order to emphasize that, together
with the unit matrix σ(0), the object (9.5) now carries a Lorentz index.
This will become clear from the following construction.

Let x be an arbitrary covariant vector on Minkowski spacetime, and
x = (

x0, x
)T

its representation in a given frame of reference. To this
vector let there correspond a 2×2-matrix X constructed from the com-
ponents of x and the matrices σµ,

x←→ X := σµxµ =
(

x0+ x3 x1− ix2

x1+ ix2 x0− x3

)
. (9.7)

This matrix is hermitean but, unlike linear combinations of Pauli matri-
ces only, is no longer traceless. As one easily sees the (Lorentz invari-
ant) squared norm of x equals the determinant of X,

x2 = det X= (x0)2− (x3)2− (x1− ix2)(x1+ ix2)= (x0)2− x2 .

The correspondence (9.7) shows that the space of the vectors x and the
set H(2) of hermitean 2×2-matrices are isomorphic.

Perform then a transformation � ∈ L↑+ on x,

x �−→ x′ =�x

and consider the hermitean matrix X′ that corresponds to x′ by the def-
inition (9.7). There must exist a nonsingular matrix A(�) such that one
has

X �−→ X′ = A(�)X A†(�) . (9.8)
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What are the properties of this matrix A(�)? On the one hand one
must have x′ 2 = x2, i. e. det X′ = det X from which one concludes that
the determinant of A must have the modulus 1, | det A| = 1. On the
other hand, every � ∈ L↑+ can be deformed continuously into the iden-
tity 1l ∈ L↑+. The partner A(�) of � must follow this deformation and
must go over into ± 1l2×2. Both, + 1l and − 1l, in even dimensions, have
determinant +1. These two observations suggest the natural condition

det A= 1 . (9.9)

The complex 2×2-matrices whose determinant has the value 1, form
a group which is called special linear group, or unimodular group

SL(2,C) := {A ∈ M2(C)| det A= 1} . (9.10)

The similarity of this definiton to the case of SU(2) is striking. Indeed,
returning to the definition (6.10), one sees that it differs from (9.10)
only by the requirement of unitarity of the elements. Obviously, SU(2)
is a subgroup of SL(2,C). This is in perfect accord with the state-
ment that the rotation group SO(3) is a subgroup of the proper or-
thochronous Lorentz group L↑+. Indeed, the relation between the proper
orthochronous Lorentz group L↑+ and the special linear group SL(2,C)
is closely analogous to the relation between the rotation group SO(3)
and the unimodular group SU(2).

Given a matrix A(�) that fulfills the condition (9.9) and maps x to x′
according to (9.8), then, obviously, the matrix −A(�) yields the same
mapping. In other terms, the factor group SL(2,C)/ {1l,− 1l} is isomor-
phic to the proper orthochronous Lorentz group,

L↑+ ∼= SL(2,C)/ {1l,− 1l} . (9.11)

This is a direct generalization of the isomorphism (6.17) discussed
in Sect. 6.2.1.

At this point recall the decomposition theorem for proper ortho-
chronous Lorentz transformations (see, e. g., [Scheck (2005)], Chap. 4):
Every � ∈ L↑+ can be written in a unique way as the product

� = L(v)R(θ)

of a rotation and a Special Lorentz transformation where θ stands for
the set of three angles of rotation, and v is a three-velocity. The originals
±A(R) of the rotation R are given by (6.18),

A(R)= exp{i 1

2
σ · θ} . (9.12)

For Special Lorentz transformations the correspondence looks as fol-
lows. Let

v= v̂ tanhλ , and ζ = λv̂
(λ= tanh−1 |v| is the rapidity parameter). One then has

L(v)←→±A(L(v)) , A(L(v))= exp{1
2

σ · ζ} . (9.13)
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This is proven as follows. By an appropriate rotation the 3-direction can
always be made to coincide with the direction of v. In this case A(L)=
diag

(
eλ/2, e−λ/2

)
and

X′ = AXA† =
(

eλ/2 0
0 e−λ/2

)(
x0+ x3 x1− ix2

x1+ ix2 x0− x3

)(
eλ/2 0

0 e−λ/2

)
=

(
eλ(x0+ x3) x1− ix2

x1+ ix2 e−λ(x0− x3)

)
.

Indeed, solving for the cartesian components one finds

x′ 0 = x0 coshλ+ x3 sinhλ , x′ 1 = x1 , x′ 2 = x2 ,

x′ 3 = x0 sinh λ+ x3 coshλ ,

i. e. the well-known formulae for a Special Lorentz transformation along
the 3-axis.

Remarks

1. The correspondence between L↑+ and SL(2,C) is established expli-
citly by

�←→±A=± exp{1
2

σ · ζ} exp{i 1

2
σ · θ} (9.14)

with six real parameters θ and ζ . It is important to note that the ex-
ponential series which represents a Special Lorentz transformation
contains no factor i. As one easily verifies, this part can also be writ-
ten as

A(L(v))= 1l cosh(λ/2)+σ · v̂ sinh(λ/2) .

2. While the matrix A(R) is unitary the matrix A(L(v)) is hermitean,
its determinant is equal to 1,

A(R)A†(R)= 1l2×2 , A(L(v))= A†(L(v)) , det A(L(v))= 1 .

This result is a reflection of the decomposition theorem for Lorentz trans-
formationsmentionedabove. It tellsus thateveryelementA ∈ SL(2,C)can
be decomposed into a unitary matrix and a hermitean matrix with determi-
nant 1. One notices the analogy to the decomposition of complex numbers
into phase factor and modulus.

9.1.1 Representations with Spin 1/2
The formula (9.14) yields a representation of SL(2,C) in a two-
dimensional space. In this representation the corresponding Lie algebra
is generated by the elements

Ji = 1

2
σ(i) , K j = i

2
σ( j) . (9.15)
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One confirms that their commutators are precisely the ones given
in (6.110), viz.[

Ji , Jk

]
= i εiklJl ,

[
Ji ,Kk

]
= i εiklKl , [Ki,Kk]=−i εiklJl .

(9.16)

Define the following constant element of SL(2,C)

ε := i σ(2) =
(

0 1
−1 0

)
= exp{i(π/2)σ(2)} . (9.17)

One verifies that it has the properties ε−1 = εT =−ε. What is striking
about this definition is that ε is the same as the transformation U0 for
j = 1/2 that was introduced in Sect. 6.2.3

ε= U(1/2)0 = D(1/2)(0, π, 0) ,

and which is known to map covariant quantities to contravariant ones,
and vice versa. The relation (6.51) then shows immediately that

ε σ∗µ ε−1 =
(
σ(0),−σ

)
=: σ̂µ (9.18)

holds true, the star denoting complex conjugation (like in Chap. 6). It
is useful, as was done here, to denote this set of matrices by the new
symbol σ̂µ.

Applying the relation (9.18) to rotations �=R, i. e. to A(R) one has

εA∗(R) ε−1 = A(R) .

The matrices A and A∗ are related by an equivalence relation, they are
unitarily equivalent. In other terms, if we considered the subgroup of
rotations, then there would be only one spinor representation. Matters
are different for Special Lorentz transformations �=L(v). Indeed, with
� = L(v)R(θ) one finds

εA∗(LR) ε−1 = ε e(−i/2)σ∗·θ e(1/2)σ
∗·ζ ε−1

= ε e(−i/2)σ∗·θ (ε−1ε) e(1/2)σ
∗·ζ ε−1

= e(i/2)σ ·θ e−(1/2)σ ·ζ ≡ Â .

Comparing this with (9.14) one realizes that here one is dealing with
a spinor representation in which the generators are represented by

J′i =
1

2
σ(i) , K′j =−

i

2
σ( j) , (9.19)

and which differs from (9.15) by the sign of the generators for Special
Lorentz transformations. It is easy to check that the generators (9.19)
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obey the commutation rules (9.16). This spinor representation is not
equivalent to the representation (9.15). (They are equivalent only when
the Lorentz group is restricted to its subgroup of rotations.)

Of particular interest is the observation that the transition from (9.15)
to (9.19), and vice versa, is effected by space reflection: Indeed, un-
der this mapping K behaves like a vector, i. e. changes its sign, while
J transforms like an axial vector, i. e. does not change sign. Thus,
the two inequivalent spinor representations of the proper orthochronous
Lorentz group are related by the operation of space reflection.

Summarizing, we note that A(Λ) and Â(Λ) yield spinor representa-
tions which are not equivalent. They take the role of the unique spinor
representation D(1/2)(R) of the rotation group in nonrelativistic quan-
tum theory. Very much like for the rotation group, the transition to
contragredience, i. e. the mapping relating covariant and contravariant
quantities, is effected by U0 = D(1/2)(0, π, 0)= ε. Expressed in formu-
lae, this is(

AT
)−1 = εA εT ,

(
ÂT

)−1 = ε Â εT ,
(
εT = ε−1

)
. (9.20)

We shall make use of these relations below.

9.1.2 *Dirac Equation in Momentum Space

I have marked this section by an asterisk because it addresses, in the
first place, the more theoretically minded reader. Its primary aim is to
derive the force-free Dirac equation, starting from representation theory
of the Lorentz group and, specifically, from its two nonequivalent spinor
representations. Of course, one may skip some of this material and go
directly to (9.30), (9.31) and (9.32) which define Dirac spinors and the
linear equations they satisfy, respectively.

The first problem posed above is solved by now: the D-matrix
in (9.1) can indeed be taken apart as sketched in (9.3). However, the
factors of this decomposition, in general, are no longer unitary. With
this in mind we return to the analysis of the spinor representations
of Sect. 6.3.4 elaborating the case s = 1/2 in more detail. In contrast
to Sect. 6.3.4 we use here the passive interpretation of Poincaré and
Lorentz transformations. That is to say, the spin-1/2 fermion in its quan-
tum state |s, 1/2; p〉 is fixed, while it is the frame of reference which is
transformed. For example, if L(p) is a Special Lorentz transformation
with momentum p then

U(L(p)) |s,m; p〉 = ∣∣s,m; 0
p
〉

equals the spinor in the rest system. If one wishes to visualize this
transformation one might say that the frame of reference in which the
fermion had momentum p is replaced by another one which moves
along with the particle. With this passive interpretation the action of the
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arbitrary Lorentz transformation Λ on the fermion state is given by (in
a somewhat simplified notation)

U(Λ−1) |s,m; p〉 = U(Λ−1)U(L−1
p )U(Lp) |s,m; p〉

= U(Λ−1)U(L−1
p )

∣∣∣∣s,m; 0
p
〉

= U(L−1
Λp)U

(
LΛp�

−1L−1
p

) ∣∣∣∣s,m; 0
p
〉

= U
(

LΛp�
−1L−1

p

)
|s,m;Λp〉 .

With the conventions used in this book the representation of rotations
fulfill the relations

U(R−1)= D∗(R−1)=
(

D−1(R)
)∗ = DT (R) .

Note that for spinors the matrix U is either A or Â, depending on
which of the two representations is considered. Thus, with the decom-
position (9.3), D(RW )=A(L−1

Λp)A(Λ)A(Lp) for the Wigner rotation we
obtain for the first spinor representation

DT (R)= AT (Lp)AT (Λ)AT (L−1
Λp) . (9.21)

U(Λ−1)|1/2,m; p〉=
∑
m′

(
AT(Lp)AT(Λ)AT(L−1

Λp)
)

mm′
∣∣1/2,m′;Λp

〉
.

The corresponding equation for the other representation looks alike,
with all A replaced by Â. Taking the inverse of the equations (9.20),
multiplying by εT from the left, and by ε from the right, one obtains

εT AT ε= A−1 , εT ÂT ε= Â−1 .

One multiplies (9.21) by εT from the left and inserts the identity
ε εT = 1l in three places. In this way, the transposed matrices are re-
placed by the original matrices, their arguments are replaced by their
inverse. This yields

U(Λ−1)
∑
m′′

(
εT

)
mm′′

∣∣1/2,m′′; p
〉=

∑
m′

(
A(L−1

p )A(Λ
−1)A(LΛp) ε

T
)

mm′
∣∣1/2,m′;Λp

〉
, (9.22)

as well as the analogous equation where all matrices A are replaced
by Â.
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Although, at first, it may look complicated, this transformation rule
is quite remarkable. Indeed, it suffices to define

φ̃m(p) :=
∑
m′

(
A(Lp) ε

T
)

mm′
∣∣1/2,m′; p

〉
(9.23)

χ̃m(p) :=
∑
m′

(
Â(Lp) ε

T
)

mm′
∣∣1/2,m′; p

〉
(9.24)

to obtain spinors which are covariant with respect to Lorentz transfor-
mations. To see this, multiply (9.22) with A(Lp) from the left and insert
the definitions (9.23) and (9.24). Then one obtains (suppressing the pro-
jection quantum numbers and the summation indices)

U(Λ−1) φ̃(p)= A(Λ−1) φ̃(Λp) (9.25)

U(Λ−1) χ̃(p)= Â(Λ−1) χ̃(Λp) . (9.26)

In this way we have constructed spinors which transform covariantly
under Lorentz transformations. Furthermore, one sees that φ̃ and χ̃ are
linearly dependent. As a consequence, there exists an equation which
relates the two types of covariant spinor fields and which is easily de-
rived: Eliminate the factor εT |1/2,m; p〉 from (9.24) and from (9.23) to
obtain

χ̃(p)= Â(Lp)A−1(Lp)̃φ(p)

Without restriction of generality the 3-axis of R3 may be chosen along
the direction of the space part p of p. One then has

A−1 (Lp
)= (

e−λ/2 0
0 eλ/2

)
,

where λ denotes the rapidity which is related by some well-known
equations to the relativistic γ -factor and the modulus of the three-
velocity,

coshλ= γ = p0

m
, sinhλ= γv= p0

m

|p|
p0 =

|p|
m
,

or to the energy p0 =√
m2+ p2, the spatial momentum p, and the

mass m of the particle. One calculates

Â
(
Lp

)= εA∗
(
Lp

)
ε−1

=
(

0 1
−1 0

)(
eλ/2 0

0 e−λ/2

)(
0 −1
1 0

)
=

(
e−λ/2 0

0 eλ/2

)
.



514 9Particles with Spin 1/2 and the Dirac Equation

1 We often write the unit matrix in di-
mension n in the shorter notation 1ln ,
instead of 1ln×n , or, in case the dimen-
sion is obvious from the context, just 1l.

Using these results one concludes

Â
(
Lp

)
A−1 (Lp

)= (
e−λ 0
0 eλ

)
= 1

2

{(
eλ+ e−λ 0

0 eλ+ e−λ

)
−
(

eλ− e−λ 0
0 − (

eλ− e−λ
) )}

= 1l2 cosh λ−σ(3) sinhλ= 1

m

(
p0σ(0)− p3σ(3)

)
−→ 1

m

(
p0σ(0)− p ·σ

)
.

In the last line the result was generalized in an obvious way to the case
where the momentum p points in an arbitrary direction. Thus, one ob-
tains

mχ̃(p)=
(

p0σ(0)− p ·σ
)
φ̃(p) .

Making use of the relation (p0σ(0)+ p ·σ)(p0σ(0)− p ·σ) = p2 1l2 =
m2 1l2 one concludes, without further calculation, that

mφ̃(p)=
(

p0σ(0)+ p ·σ
)
χ̃(p)

must also hold. These two relations can be written in a more transparent
form by making use of the definitions (9.5) and (9.18),{

σµ
}= (

σ(0), σ
)
,

{
σ̂µ

}= (
σ(0),−σ

)
,

as well as of the corresponding contravariant versions that are obtained
by the action of the metric,{

σµ
}= (

σ(0),−σ
)
,

{
σ̂µ

}= (
σ(0), σ

)
.

The above relations then read

mχ̃(p)= pµσ̂µ φ̃(p)= pµσ̂
µ φ̃(p) , (9.27)

mφ̃(p)= pµσµ χ̃(p)= pµσ
µ χ̃(p) .

An even more compact form of the equations for φ̃(p) and χ̃(p) is ob-
tained by means of the following definitions. Let

γµ :=
(

0 σµ

σ̂µ 0

)
, (9.28)

or, when spelled out in components,1

γ 0 :=
(

0 1l2
1l2 0

)
, γ i :=

(
0 −σ(i)
σ(i) 0

)
. (9.29)
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(Note that the entries are themselves blocs of 2×2-matrices.) Finally,
the two spinors φ̃(p) and χ̃(p) are put together to form a spinor with
four components

u(p) :=
(
φ̃(p)
χ̃(p)

)
. (9.30)

The two equations which were obtained above and which relate the two
types of two-spinors then take the compact form(

γµ pµ−m 1l4×4
)

u(p)= 0 . (9.31)

Before continuing on this, it is useful to collect some properties of
the matrices γµ which are defined by (9.28). Take the product σµσ̂ν,
add to it the same product with the indices interchanged. By the proper-
ties of the Pauli matrices this gives zero whenever µ �= ν. For µ= ν= 0
one obtains twice the unit matrix, while for µ= ν= i one obtains minus
twice the unit matrix. These cases are summarized in the formula

σµσ̂ν+σνσ̂µ = 2gµν 1l2×2 .

When transcribed to the γ -matrices one obtains an important relation

γµγν+γνγµ = 2gµν 1l4×4 . (9.32)

Thus, the square of γ 0 equals the positive 4×4 unit matrix, the square
of γ i , i = 1, 2, 3, equals the negative unit matrix. As defined in (9.28)
the matrix γ 0 is hermitean, while the three matrices γ i are antiher-
mitean. As γ 0, by (9.32), anticommutes with γ i , these relations are(

γ 0
)† = γ 0 ,

(
γ i
)† =−γ i , but γ 0

(
γ i
)†
γ 0 = γ i . (9.33)

Contracting the relation (9.32) with pµ and with pν, one finds

1

2
pµ pν

(
γµγν+γνγµ)= p2 1l4×4 = m2 1l4×4 .

Thus, the operator γµ pµ has the eigenvalues (+m) and (−m), both of
which have multiplicity 2. From this one concludes that there exists an-
other four-component spinor v(p) which is linearly independent of u(p)
and which satisfies the equation(

γµ pµ+m 1l4×4
)
v(p)= 0 . (9.34)

The set of two equations (9.31) and (9.34) constitute the Dirac equation
in momentum space.
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2 Coquereaux, R., Lectures on Clif-
ford Algebras (Trieste 1982); Choquet-
Bruhat, Y., DeWitt-Morette, C., Dillard-
Bleick, M., Analysis, Manifolds, and
Physics (North-Holland Publ. Amster-
dam 1982).

3 There should be no confusion if for
once we write the Minkowski product
somewhat more pedantically as p0q0−
p ·q = (p, q).
4 In the general case the real Clifford
algebra Cl(V n) over the n-dimensional
real vector space V n has the dimension

n′∑
k=0

(
n
k

)
= 2n ,

thus, in the present case, the dimension
is 16.

Remarks

1. The action of translations on the spinors (9.23) and (9.24) is the
same as the one on the original states |s,m; p〉. This is the reason
why we restricted our discussion to the special case a = 0. It is ob-
vious from the construction given above that the Dirac equation is
covariant. Thus, there is no need to verify this property, neither here
nor in position space representation.

2. Besides the four matrices γµ one defines one further 4×4-matrix as
follows

γ5 := iγ 0γ 1γ 2γ 3 =
(

1l2 0
0 − 1l2

)
. (9.35)

This matrix is hermitean. As one easily verifies, it anticommutes
with all four γµ,

γ5γ
µ+γµγ5 = 0 . (9.36)

Note that there is no difference between γ5 and γ 5, the subscript 5
being no Lorentz index.

3. The matrices γµ and γ5, endowed with the product (9.32), generate
an algebra that belongs to the class of Clifford algebras. We wish to
sketch this important notion by means of the example we are study-
ing here. For a more systematic study we refer to the literature.2 The
Minkowski space M4, understood as a four-dimensional R-vector
space, admits the scalar product (p, q) = p0q0− p ·q. A cartesian
basis {êµ} of this vector space fulfills the relations

(êµ, êν)= gµν ,

that is, one has (ê0, ê0)= 1, (êi, êi)=−1, and (êµ, êν)= 0 whenever
µ �= ν. One defines a new product p q of vectors p, q ∈ M4 which is
associative and, with respect to addition, is distributive. It satisfies
the condition3

q p+ p q = 2(p, q) . (9.37)

The resulting algebra of all (finite) sums and products is called Clif-
ford algebra over M4. It is denoted by Cl

(
M4

)
. When expressed in

the basis one has

êµêν+ êν êµ = 2gµν , êν êµ =−êµêν for µ �= ν , q2 = (q, q) .
The Clifford algebra is also a vector space whose basis can be cho-
sen as follows:{

1, êα, êαêβ(α < β), êαêβ êγ (α < β < γ), ê0ê1ê2ê3
}
.

This explicit form of the basis allows to determine the dimension of
this space. One has4

1+4+6+4+1= 24 .
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The Dirac γ -matrices, independently of how they are represented,
satisfy these relations, the product being the ordinary matrix product.
They generate a basis of Cl(M4) which often is chosen to be:

ΓS = 1l4 , ΓP = iγ5 ,

Γ αV = γα , Γ αA = γαγ5 ,

Γ
[α,β]
T = i

2
√

2

(
γαγβ−γβγα) . (9.38)

The letters in the subscript are abbreviations for Scalar, Pseu-
doscalar, Vector, Axial vector, and Tensor covariants, respectively,
and refer to different types of couplings of fermions to spin-1
bosons.
Furthermore, the Clifford algebra Cl(M4) is a graded algebra,
its elements can be classified into even and odd elements, de-
pending on whether they commute with γ5, or anticommute with
that matrix. With [A, B] = AB− BA denoting the commutator,
{A, B} = AB+ BA the anticommutator, the basis given in (9.38) has
the properties

[ΓS, γ5]= 0 , [ΓP, γ5]= 0 , [ΓT , γ5]= 0 ,

{ΓV , γ5} = 0 , {ΓA, γ5} = 0 .

Thus ΓS, ΓP , and ΓT are even, while ΓV and ΓA are odd. The mat-
rix γ5 takes the role of a grading automorphism of the algebra. These
seemingly abstract properties are important for physics. For instance,
the couplings of fermions to gauge bosons in the gauge theories of
electromagnetic, weak, and strong interactions are always of vector
or axial vector type. All Yukawa couplings, i. e. couplings to bosons
with spin zero, are of scalar or pseudoscalar type.

4. Consider the linear combinations

P+ = 1

2

(
1l+γ5

)
, P− = 1

2

(
1l−γ5

)
. (9.39)

As one easily verifies, these are projection operators. Indeed, they
obey the rules

P2+ = P+ , P2− = P− , P+P− = 0= P−P+ , P++ P− = 1l .

They project the four-spinors u(p) and v(p) to their upper and lower
two components, respectively. The physical significance of these
projections will become clear once we will have obtained explicit
solutions of the Dirac equation.

5. As the γ -matrices often are contracted with four-vectors it is cus-
tomary to use a new symbol, called the slash, viz.

/p ≡ γµ pµ .

We shall make use of this useful abbreviation on many occasions
below.
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6. Using the definition (9.18) one verifies that v(p), too, may be ex-
pressed in terms of the spinors defined in (9.23) and (9.24),

v(p)=
(
εχ̃∗(p)
−ε̃φ∗(p)

)
.

As we will see further below this relation is an expression of charge
conjugation, i. e. of the mapping of fermion states to antifermion
states.

7. The representation (9.28), or (9.29), of the γ -matrices is what may
be termed a natural representation because it was obtained from
the spinor representations of the Lorentz group. It is also called
high-energy representation because of the fact that the two two-
component equations for φ̃(p) and for χ̃(p) decouple completely in
the limit E p ≡ p0� m. Without changing the content of the Dirac
equation in any respect, one can always subject u(p) and v(p) to
a nonsingular linear transformation S which reshuffles its compo-
nents

u(p) �−→ u′(p)= S u(p) , v(p) �−→ v′(p)= S v(p) ,

and, at the same time, introduce transformed γ -matrices

γ ′µ = SγµS−1

such that the Dirac equation (9.31) or (9.34) remains form invariant.
Obviously, the relation (9.32) remains unchanged. As an example
choose

S= 1√
2

(
1l2 1l2
1l2 − 1l2

)
= S−1 , (9.40)

where 1l2 denotes the 2×2 unit matrix. One obtains

γ ′ 0 =
(

1l2 0
0 − 1l2

)
, γ ′ i =

(
0 σ(i)

−σ(i) 0

)
, γ ′5 =

(
0 1l2
1l2 0

)
.

(9.41)

This representation is called the standard representation. It is par-
ticularly useful in cases where one studies weakly relativistic motion
and where one wishes to expand in terms of v/c. Atomic and nuclear
physics make frequent use of this representation. As an exercise, the
reader is invited to verify the properties (9.33) for this representa-
tion. The reason for this is that (9.40) is not only nonsingular but
also unitary.

All representations which are generated from the natural repre-
sentation by a unitary transformation S have the specific property

γ 0 (γα)† γ 0 = γα . (9.42)

We have suppressed the prime on the γ -matrices because this prop-
erty concerns a whole class of representations.
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8. As an example for the preceding remark let us consider the class
of Majorana representations whose defining property is that all γ -
matrices are pure imaginary,(

γ (M)α
)∗ = −γ (M)α . (9.43)

Given any of the representations constructed in Remark 7 above,
choose the transformation

S(M) := 1√
2
γ 0(1l+γ 2)

which is seen to be unitary by means of the formulae

(1l+γ 2 †)γ 0 † = (1l−γ 2)γ 0 = γ 0(1l+γ 2) .

Starting from the natural, or high-energy, representation (9.28) one
has

S(M)
HE =

1√
2

(
σ(2) 1l2
1l2 −σ(2) .

)
The corresponding Majorana representation is found to be

γ
(M) 0
HE =

(
σ(2) 0

0 −σ(2)
)
, γ

(M) 1
HE = i

(
σ(3) 0

0 σ(3)

)
,

γ
(M) 2
HE =

(
0 σ(2)

−σ(2) 0

)
, γ

(M) 3
HE =−i

(
σ(1) 0

0 σ(1)

)
,

γ
(M)
HE 5 =

(
0 σ(2)

σ(2) 0

)
. (9.44)

In turn, starting from the standard representation (9.41) one has

S(M)
St =

1√
2

(
1l2 σ(2)

σ(2) − 1l2

)
.

The corresponding Majorana representation reads

γ
(M) 0
St =

(
0 σ(2)

σ(2) 0

)
, γ

(M) 1
St = i

(
σ(3) 0

0 σ(3)

)
,

γ
(M) 2
St =

(
0 −σ(2)
σ(2) 0

)
, γ

(M) 3
St =−i

(
σ(1) 0

0 σ(1)

)
,

γ
(M)
St 5 =

(
σ(2) 0

0 −σ(2)
)
. (9.45)

Note that in accord with the Condon-Shortley phase convention the
Pauli matrix σ(1) is real positive, σ(2) is pure imaginary, and σ(3) is
real and diagonal. Therefore, all five γ -matrices of the representa-
tions (9.44) and (9.45), indeed, are pure imaginary.
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9.1.3 Solutions of the Dirac Equation in Momentum Space
After having aquired a certain virtuosity in converting different repre-
sentations of the γ -matrices into one another, we choose one of them
and determine explicit solutions for fixed four-momentum p. As a first
test we verify that the two linear systems of equations (9.31) and (9.34)
are soluable. Indeed, the determinants vanish,

det(/p−m 1l)= det(/p+m 1l)=
(
(p0)2− p2−m2

)2 = (p2−m2)2 = 0 ,

provided the momentum is on its mass shell.
The simplest approach consists in constructing solutions in the par-

ticle’s rest system, using the standard representation. The standard
representation (9.41) has the distinctive property that in the rest frame
p = (m, 0)T the spinor uSt(p) takes the form (χ(1), 0, 0)T with χ(1)

a two component spinor as we know it from nonrelativistic quantum
mechanics. This is shown by evaluating the Dirac equation (9.31) with
an ansatz (χ(1), χ(2))T at p= 0, χ(i) denoting two-component spinors,

m

(
0 0
0 1l2

)(
χ(1)

χ(2)

)
= 0.

It is obvious that χ(2) must vanish identically, χ(2) ≡ 0, while χ(1) ≡ χ
is the spin function of a nonrelativistic particle.

Similarly, (9.34) is first solved for v(0)= (φ(1), φ(2))T , in which case
this equation reduces to

m

(
1l2 0
0 0

)(
φ(1)

φ(2)

)
= 0 .

In this case φ(1) must vanish identically, φ(1) ≡ 0, while φ(2) ≡ φ is
a nonrelativistic spinor.

In a second step the solutions u(0)= (χ, 0)T and v(0)= (0, φ)T are
boosted to arbitrary three-momentum p by means of the following trick.
One makes use of the relations

(/p±m 1l)(/p∓m 1l)= p2−m2 = 0 ,

in order to verify that the spinors

u(p)= N (/p+m 1l) u(0)
v(p)=−N (/p−m 1l) v(0)

satisfy the equations (9.31) and (9.34), respectively. Except for the nor-
malization constant N which can be chosen at will, these solutions are
unique. The minus sign in the expression for v(p) is chosen for con-
venience because, upon insertion of the γ -matrices (9.41) in

(/p±m 1l4)= (γ 0 p0−γ i pi ±m 1l4)=
(
(p0±m) 1l2 −σ · p

σ · p −(p0∓m 1l2)

)
,
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the solutions take the explicit form

u(p)= N

(
(p0+m)χ

σ · pχ
)

(9.46)

v(p)= N

(
σ · pφ

(p0+m) φ

)
. (9.47)

The normalization factor N must be chosen such that both solutions are
normalized covariantly,

u†(p)u(p)= 2p0 = v†(p)v(p) . (9.48)

We demonstrate this calculation on the example of the solutions u(p).
Let the spinor χ be normalized to 1, χ†χ = 1. Then

u†(p)u(p)= N2 (
χ†(p0+m) χ†σ · p ) ( (p0+m)χ

σ · pχ
)

= N2{(p0+m)2+ p2} = 2p0(p0+m)N2 .

Thus, the condition (9.48) fixes the normalization factor to be

N = 1√
p0+m

. (9.49)

We conclude this section with some supplements and remarks.

Remarks

1. Of course, the spinors χ(i) carry a magnetic quantum number
for which one often writes r = 1 when ms = +1/2, r = 2 when
ms = −1/2. Hence, the Dirac spinors should be written more ex-
plicitly u(r)(p) and v(s)(p), r, s = 1, 2, and the normalization con-
dition (9.48) is to be supplemented by the orthogonality in this
quantum number, viz.

u(r) †(p)u(s)(p)= 2p0δrs = v(r)†(p)v(s)(p) . (9.50)

In some calculations to follow below another ortogonality relation
will be needed. It reads

u(r) †(p)v(s)(−p)= 0 (9.51)

and is easily verified from the explicit solutions.
2. The case of massless particles is also interesting for the following

reason: In contrast to spins higher than 1/2, the limit m→ 0 can be
taken directly in the solutions (9.46) and (9.47). This is so because
the number of states of a spin-1/2 particle with m �= 0 is equal to the
number of helicity states of a spin-1/2 particle without mass. This
is different for the case of particles with spin s ≥ 1 where the mas-
sive particle has (2s+1) possible orientations of its spin while the
massless particle has no more than the two helicity states h =±s,
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5 The helicity of massless particles
with spin 1/2 is often defined as

h′ := σ · p/ |p| ,
hence, differing from h by a factor of 2.
Its eigenvalues then are ±1.

cf. Sect. 6.3.3, case m = 0. Taking m = 0 in the solutions (9.46), one
has (9.47) with p0 = |p| and with

h = 1

2

σ · p
p0 ,

u(p,m = 0)=
√

p0

(
χ

2h χ

)
v(p,m = 0)=

√
p0

(
2h φ
φ

)
.

Turning to the natural, or high-energy representation the first of these
spinors becomes

uHE(p,m = 0)=
√

p0

2

(
(1l2+2h)χ
(1l2−2h)χ

)
.

For the choice of the eigenvalue h = +1/2 the lower component
vanishes, for the choice h =−1/2 the upper component vanishes.5

Analogous statements apply to the spinors v(p,m = 0). This is in
accord with the original form of the Dirac equation (9.27): The two
equations in (9.27) decouple if m is set to zero. Massive particles
can come very close to this remarkably simple limit: In any kine-
matic situation in which the energy is large as compared to the rest
mass, p0� m, the solutions can be taken to be eigenstates of he-
licity, in very good approximation. The natural representation (9.28)
of the γ -matrices is best adapted to this situation because the two
equations (9.27) (nearly) decouple. This justifies, a posteriori, why
this representation is also called high-energy representation.

3. As we shall learn in Sect. 9.2.3 the spinors u(p) and v(p) are to
be associated to pairs of spin-1/2 particles which are antiparticles
of one another. Note, however, that the correct identification of the
spin states requires some care. The Majorana representation (9.45) is
helpful in clarifying this relation. Applying the transformation S(M)

St
to the solutions (9.46) and (9.47) one obtains the expressions

u(M)
St (p)=

N√
2

(
(p0+m+σ(2)σ·p)χ , ((p0+m)σ(2)−σ·p)χ

)T
,

v
(M)
St (p)=

N√
2

(
((p0+m)σ(2)+σ·p)φ , (−(p0+m)+σ(2)σ·p)φ

)T
.

(We write p0+m for (p0+m) 1l2, for the sake of simplicity.) We
now wish to show that, in essence, v is obtained from the complex
conjugate of u. For this purpose take u∗(p) and use (σ(2))2 = 1l2 as
well as the relation

σ(2)σσ(2) =−σ∗ .
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This is obtained from (9.18) which, in turn, is closely related to the
transformation U0 that was analyzed in Sect. 6.2.3. One finds

u(M) ∗
St (p)= N√

2

(
((p0+m)σ(2)+σ · p)(σ(2)χ∗) ,

(−(p0+m)+σ(2)σ · p)(σ(2)χ∗)
)T

= −iN√
2

(
((p0+m)σ(2)+σ · p)(εχ)∗ ,

(−(p0+m)+σ(2)σ · p)(εχ)∗
)T
,

where, in the second step, the definition (9.17) was inserted. Except
for the factor (−i) this is precisely the solution v(p) if the two-
component spinor φ is replaced by (εχ)∗. Thus, if u(p) describes
the spin state of a particle which reduces to the spinor χ in the rest
frame, then its image u∗(p) describes the corresponding antiparticle.
Its spinor in the rest frame is (εχ)∗. In other terms, writing both the
momentum p and the two-component spinor in the argument, then
for every Majorana representation one has

u(M) ∗
St (p, χ)= v(M)

St (p,−iεχ∗) , v
(M) ∗
St (p, φ)= u(M)

St (p, iεφ
∗) .
(9.52)

4. We turn to the interesting question of how to obtain invariants (with
respect to the Lorentz group) from the spinors u(p) and v(p). We
give the answer first in the high-energy representation (9.28) of
the γ -matrices, and translate them to other representations later.
The normalization condition (9.48) shows that products such as u†u
or v†v are proportional to the energy. This is to say that such prod-
ucts transform like the time component of a four-vector. Returning
to the two-component spinors φ̃(p) and χ̃(p) one sees that both χ̃†φ̃
and φ̃†χ̃ are invariant under all Λ ∈ L↑+. For instance, by means of
(9.25) and (9.26) one has

χ̃ ′ †φ̃′ = χ̃† Â†(Λ−1)A(Λ−1) φ̃ = χ̃†
(
εAT ε−1

)
A φ̃ .

Here the hermitean conjugate of the definition Â= εA∗ε−1 was in-
serted. Finally, the transposed of the relation (9.20) together with
εT = −ε shows that εAT ε−1 = A−1. This proves the invariance
χ̃ ′ †φ̃′ = χ̃†φ̃. The invariance of φ̃†χ̃ is shown in an analogous way.
Applying now the explicit representations (9.29) and (9.35) one re-
alizes that the two independent invariants above can be expressed in
terms of u(p) and its hermitean conjugate (or, alternatively, in terms
of v(p) and v†(p)) as follows:

χ̃†φ̃ = 1

2

(
u†(p)γ 0u(p)+u†(p)γ 0γ5u(p)

)
,

φ̃†χ̃ = 1

2

(
u†(p)γ 0u(p)−u†(p)γ 0γ5u(p)

)
.
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Consider, in addition, space reflection and time reversal: These dis-
crete operations interchange the spinors φ̃ and χ̃. This implies that
u†(p)γ 0u(p) is invariant under all Lorentz transformations and,
hence, is a genuine Lorentz-scalar, while u†(p)γ 0γ5u(p) changes
sign under space reflection and, hence is a Lorentz pseudoscalar.
This observation motivates a special notation which is quite useful
in the calculus of Dirac spinors: The product of u† or of v† with γ 0,
respectively, is denoted as follows

u(p) := u†(p)γ 0 , v(p) := v†(p)γ 0 . (9.53)

How does this definition translate to other representations of the
γ -matrices? The answer is easy to verify: The definition (9.53) re-
mains meaningful, that is to say, u′(p)u′(p) and v′(p)v′(p) are
Lorentz scalars, if the substitution matrix S is unitary.
Note that this definition of the “over-bar” is a generally accepted one
in relativistic quantum theory. This is the reason why in the physics
literature complex conjugation is denoted by an asterisk and not by
the overbar which is customary in the mathematical literature.
As an exercise one calculates the products u(p)u(p) and v(p)v(p)
for the solutions (9.46) and (9.47). One finds

u(r)(p)u(s)(p)= 2m δrs , v(r)(p)v(s)(p)=−2m δrs . (9.54)

Indeed, these are genuine invariants.

9.1.4 Dirac Equation in Spacetime and Lagrange Density
It is not difficult to translate the Dirac equation (9.31) and (9.34) to
Minkowski spacetime. The solutions{

u(r)(p)e−ipx , v(r)(p)eipx
}
, r = 1, 2 , p ∈R3 ,

form a complete base system with respect to the spin degrees of free-
dom and to the momenta. Therefore, a Dirac spinor ψ(x) which depends
on space and time, can be expanded in terms of this basis, viz.

ψ(x)=
2∑

r=1

∫
d3 p

2p0

{
a(r)(p)u(r)(p)e−ipx+b(r)∗(p)v(r)(p)eipx

}
.

(9.55)

The coefficients a(r)(p) and b(r)(p) are complex numbers which depend on
the spin orientation and on the momentum, px denotes the usual product
in Minkowski space, px = p0x0− p · x, with p0 =√

m2+ p2 the energy.
As u(r)(p) and v(r)(p) are four-component spinors, also ψ(x) is a four-
component Dirac spinor, ψ(x)= (ψ1(x), ψ2(x), ψ3(x), ψ4(x))T .

In the product m ψ(x) replace mu(p) and mv(p) by means of the
equations (9.31) and (9.34), respectively, then make use of the identities

/pe−ipx = iγµ∂µ e−ipx , −/peipx = iγµ∂µ eipx ,
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and extract γµ∂µ from the integral. On the right-hand side this yields
the linear combination iγµ∂µψ(x) of first derivatives of the func-
tion ψ(x). Thus, one obtains the Dirac equation in spacetime(

iγµ∂µ−m 1l
)
ψ(x)= 0 . (9.56)

It is equivalent to and replaces the two equations (9.31) and (9.34) in
momentum space. By using the “slash”-notation and suppressing the ex-
plicit 4×4 unit matrix the Dirac equation takes the elegant and compact
form

(i/∂−m) ψ(x)= 0 .

Like in (9.53) one defines the adjoint spinor

ψ(x) := ψ†(x)γ 0

and derives the adjoint form of the Dirac equation as follows. Multi-
ply the hermitean conjugate of the Dirac equation (9.56) by γ 0 from the
right and insert (γ 0)2 = 1l4 at the appropriate position, to obtain(

ψ†(x)γ 0)γ 0
(

iγµ †∂µ−m
)
γ 0 = 0 .

Use then the property (9.42) to obtain

ψ(x)
(
iγµ

←
∂µ +m 1l

)= 0 or ψ(x)
(
i
←
/∂ +m 1l

)= 0 . (9.57)

(The arrow indicates that the derivative acts on the function on the left

of the operator, i. e. ψ
←
/∂= (

∂µψ
)
γµ, not to be confused with the right-

left derivative f
↔
∂ g= f∂g− (∂ f)g!).

It is not difficult to test the general condition which says that every
component of the field ψ(x) obeys the Klein-Gordon equation (cf. the
remark in Sect. 7.1): If the operator

(
i/∂+m

)
acts from the left on the

Dirac equation (9.56), then with(
i/∂+m 1l

)(
i/∂−m 1l

)= (−∂µ∂µ−m2) 1l

one obtains the Klein-Gordon operator �+m2 and the differential equa-
tion(

�+m2)ψ(x)= 0 .

Indeed, this equation holds for every component ψα(x), α= 1, 2, 3, 4.

A Lagrange density for the Dirac field is constructed along the fol-
lowing lines. We know that ψψ is a Lorentz invariant. Furthermore,
one shows that ψγµψ transforms like a contravariant Lorentz vector

(see Exercise 9.2) so that ψγµ
↔
∂µ ψ is a Lorentz scalar. The following

invariant complies with all requirements that a Lagrange density must
fulfill,

LD = ψ(x)
( i

2
γµ
↔
∂µ −m 1l

)
ψ(x) . (9.58)
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Indeed, with this choice of factors and relative sign it yields the cor-
rect equations of motion. In analogy to the case of the scalar field one
does not vary real and imaginary parts of the field but, rather, the field ψ
itself and its adjoint ψ. If one does so, one finds e. g.

∂L

∂ψα
=

( i

2
γµ∂µψ−mψ

)
α
,

∂L

∂(∂µψα)
=

(
− i

2
γµψ

)
α
.

When these are inserted in the Euler-Lagrange equation one obtains

∂L

∂ψα
−∂µ

(
∂L

∂(∂µψα)

)
= (

iγµ∂µψ−mψ
)
α
= 0 , α= 1, 2, 3, 4 .

This is the Dirac equation (9.56). If, in turn, one varies the field ψ, then
one finds the adjoint Dirac equation (9.57).

From a physical point of view the free Dirac equation is not very
informative: True, it guarantees the correct dispersion relation for en-
ergy and momentum, it is Lorentz covariant, and describes the spin
content covariantly. But, as long as no interaction is introduced, it does
not predict anything that is observable. This we can change very easily,
however, by introducing the coupling of the Dirac field to electromag-
netic fields. At the same time this modification prepares the first step in
the interpretation of the Dirac spinor ψ.

We apply the minimal substitution rule as explained in Sect. 7.2, i. e.
replace the derivatives of the Dirac spinors as follows

∂µψ �−→
(
∂µ+ iqAµ

)
ψ , ∂µψ �−→

(
∂µ− iqAµ

)
ψ , (9.59)

Applying these rules to the Lagrange density (9.58) and adding the La-
grange density of the free Maxwell field, one obtains

L=LD+Lγ −qψ(x)γµψ(x)Aµ(x) , with Lγ =−1

4
FµνFµ .

(9.60)

One recognizes the close relationship to the more general form (7.85)
of Lagrange densities. Furthermore, one obtains an expression for the
electromagnetic current density of the particle described by the Dirac
equation:

jµ(x)= qψ(x)γµψ(x) . (9.61)

The Lagrange density (9.60) with q =−|e|, i. e. the negative elementary
charge, provides the basis for quantum electrodynamics with electrons
and photons.

The Dirac equation, by the principle of minimal substitution, be-
comes(

i/∂−q /A−m 1l
)
ψ(x)= 0 . (9.62)

The equation now contains the interaction with external electromagnetic
potentials and, therefore, makes predictions about the scattering of pho-
tons on charged fermions which are observable.



99.1 Relationship between SL(2, � ) and L↑+ 527

For every solution ψ(x) of this equation there is a Dirac field ψC(x)
which satisfies the equation of motion(

i/∂+q /A−m 1l
)
ψC(x)= 0 . (9.63)

Note that this differential equation differs from (9.62) by the sign
of the charge. In a Majorana representation the equation (9.63) is
nearly obvious: It suffices to take the complex conjugate of the equa-
tion (9.62), to make use of the property γ (M)µ ∗ =−γ (M)µ and to choose
ψC(x)= cψ(x) with c ∈C.

Already this simple example shows that the Dirac theory for
fermions with electric charge q predicts the existence of a partner which
has the same mass but opposite charge. To every fermion there is an
antiparticle: for the electron the positron, for the muon µ− the an-
timuon µ+, for the proton p the antiproton p, etc. We shall see, after
having quantized the Dirac field, that the theory not only predicts the
existence of antiparticles, but, in addition, is completely symmetric in
both, the particle and its partner. Therefore, it is a matter of convention
what we call a particle and what we call an antiparticle.

Starting from the high-energy representation (9.28) the spinor

ψC(x)= iγ 2ψ∗(x)= iγ 2γ 0(ψ(x))T (9.64)

is shown to be a solution of (9.63). Indeed, if one takes the complex
conjugate of (9.62), inserts the identity (iγ 2)2 = 1l in front of ψ∗, and
multiplies the equation obtained in this way by (iγ 2) from the left, then
one has

(iγ 2)
(−iγµ ∗∂µ−qγµ ∗Aµ−m 1l

)
(iγ 2)(iγ 2ψ∗(x))= 0 .

By the definition (9.64) and using the relation

(iγ 2)γµ ∗(iγ 2)=−γµ , (9.65)

the equation (9.63) follows. We note that (9.65) holds in any repre-
sentation of the γ -matrices which is obtained from the high-energy
representation by a transformation S which, in addition to be unitary, is
also real (that is to say which is orthogonal).6 An example is provided
by the standard representation (9.41). The mapping from ψ to ψC and
its inverse is called charge conjugation.

Since the adjoint spinor fields ψ seem to play a special role it often
is convenient to make use of the second form of (9.64). The operator of
charge conjugation then contains the matrix C= iγ 2γ 0 whose properties
are

C= iγ 2γ 0 =−C−1 =−C† =−CT . (9.66)

Note that twofold application of charge conjugation leads back to the
original spinor,

(ψC)C = iγ 2(iγ 2ψ∗)∗ = γ 2 γ 2 ∗ψ = ψ .

6 This property no longer holds after
transforming to the corresponding Ma-
jorana representations. This is the rea-
son why in such representations ψC is
not given by (9.64).
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Furthermore, there are situations where the action of charge conjugation
on a one-particle state brings to light, in addition, a phase ηC which is
characteristic for the particle one is describing. But even if this happens
one can arrange for the square of this phase to be 1, η2

C = 1, without
restriction.

If a scalar quantum field equals its hermitean adjoint, φ†(x)= φ(x),
then it describes an electrically neutral boson with spin zero which is
identical with its antiparticle. For a spin-1/2 particle the analogous con-
dition is

ψC(x) = ±ψ(x) . (9.67)

A Dirac field which has this property describes what is called a Ma-
jorana particle. Majorana particles are identical with their antiparticle
and carry no electric charge or, for that matter, any other additively
conserved quantum number. Whether or not there are such particles in
nature is still an open issue.

A similar analysis of the action of time reversal T on the free Dirac
equation shows that for every solution there is a time-reversed spinor
field ψT which is also a solution. In the representation (9.28) as well as
in any other representation obtained from it by an orthogonal transfor-
mation S one has

ψT(x)= T
(
ψ(Tx)

)T
, T= iγ5γ

2 , Tx = (−x0, x) . (9.68)

The following properties of T are verified by direct calculation,

T=−T−1 =−T† =−TT . (9.69)

From a physical point of view the combined symmetry opera-
tions CΠ and CΠT =Θ are particularly important. Note that we
described these symmetries previously in the context of Wigner’s the-
orem in Sect. 6.1.2.

9.2 Quantization of the Dirac Field

The investigation of spinor representations of SL(2,C) led us in an ele-
gant and transparent way to the free Dirac equation which describes the
relativistic states of motion of a fermion as well as its spin degrees of
freedom in a covariant form. The equation of motion also gave a first
hint at the fact that to every spin-1/2 particle there corresponds an anti-
particle. Without having “asked” her, the Dirac equation yields a second
class of solutions which seem to have negative energies. This peculiar
result can be emphasized by reformulating the Dirac equation in a form
which is analogous to the Schrödinger equation. For this purpose con-
sider the Dirac equation on spacetime. Upon multiplication of (9.56)
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by γ 0 from the left one obtains

i
∂

∂t
ψ(t, x)= Hψ(t, x) , with H =−i

3∑
i=1

(γ 0γ i)∇i +mγ 0 . (9.70)

In the standard representation (9.41) there is a conventional notation
which is generally accepted since the times of Dirac. One defines

β := γ 0
St =

(
1l2 0
0 − 1l2

)
, α := βγ i

St =
(

0 σ

σ 0

)
, (9.71)

so that (9.70) can also be written as

i
∂

∂t
ψ(t, x)= (−i α ·∇+mβ

)
ψ(t, x) . (9.72)

This differential equation is called the Hamiltonian form of the Dirac
equation. The fact that this equation admits negative, arbitrarily large
energies, expressed more concisely, means that the “Hamiltonian”
H =−i α ·∇+mβ has a spectrum which is unbounded from below. In
the perspective of quantum mechanics this is a very peculiar, if not in-
acceptable result.

This is another example for a problem purely of physics: The
equation of motion was derived from general and deep mathematical
principles. It has all important properties following from very general
considerations. But it does not disclose how it is to be interpreted.

Yet, already at this level, we have at least two hints which will
lead to the correct interpretation and, hence, to a solution of appar-
ent contradictions. On the one hand, the considerations given above
and the Hamiltonian formulation (9.72) fit with a one-particle theory, in
close analogy to the Schrödinger equation for a single particle in non-
relativistic motion. On the other hand, charge conjugation hints at the
antiparticle which comes along with the particle. The key for solving the
puzzle is here: The Dirac equation, with or without interactions, cannot
be a theory for the isolated single particle. Rather, by its very nature, it
must contain features of a many-body theory. This remark suggests to
subject the Dirac field to the rules of canonical quantization, that is, to
interpret the field ψ as an operator which creates and annihilates par-
ticles and antiparticles. As we will see all pecularities then disappear
and the apparent contradictions are resolved.

9.2.1 Quantization of Majorana Fields
We take as our starting point the Dirac equation in spacetime and use
the natural representation (9.28) of the γ -matrices. Like in momentum
space, cf. (9.30), the spinor field ψ(x) is written in terms of two-
component spinor fields φ(x) and χ(x),

ψ(x)=
(
φ(x)
χ(x)

)
, (9.73)
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whose transformation behaviour under Lorentz transformations is given
by the analogues to (9.25) and (9.26). Here again, the Dirac equation
is a comprehensive notation for the algebraic two-component equa-
tions (9.27) which upon translation to spacetime, become coupled dif-
ferential equations,

i σµ∂µχ(x)= mφ(x) (9.74)
i σ̂µ∂µφ(x)= mχ(x) . (9.75)

In this context we recall the definition of the σ-matrices:{
σµ

}= (
σ(0),−σ

)
,

{
σ̂µ

}= (
σ(0), σ

)
.

As Hermann Weyl had discovered this form of the Dirac equation for
the case m = 0, before Dirac’s work, it seems appropriate to call these
equations the Weyl-Dirac equations.

In the natural representation (9.28) one has

i γ 2 =
(

0 −iσ(2)

iσ(2) 0

)
=

(
0 −ε
ε 0

)
,

charge conjugation acting on ψ(x) yields

ψC(x)=
(

0 −ε
ε 0

)
ψ∗(x)=

(−εχ∗(x)
εφ∗(x)

)
.

Therefore, when we consider a Majorana field with the choice of sign
ψC(x)= ψ(x) we have

φ(x)=−εχ∗(x) , χ(x)= εφ∗(x) .
The equations of motion (9.74) and (9.75) are replaced by a single one
for which one may choose either

i σµ∂µχ(x)=−mεχ∗(x) or i σ̂µ∂µφ(x)= mεφ∗(x) ,

the two being equivalent. A Lagrange density which yields these equa-
tions as its Euler-Lagrange equations, can be chosen to be

LM = φ†(x) i

2
σ̂µ
↔
∂µ φ(x)+ m

2

(
φT (x)εφ(x)−φ†(x)εφ∗(x)

)
.

This is easily confirmed. Indeed, one has

∂LM

∂φ∗
= i

2
σ̂µ∂µφ−mεφ∗ , ∂LM

∂
(
∂µφ∗

) =− i

2
σ̂µφ .

Subtracting the divergence ∂µ(· · · ) of the second equation from the first,
one obtains

∂LM

∂φ∗
−∂µ

(
∂LM

∂
(
∂µφ∗

))= îσµ∂µφ−mεφ∗ = 0 .
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The Lagrange density serves to define the momentum canonically con-
jugate to φ(x),

π(x) := ∂LM

∂
(
∂0φ

) = i

2
φ∗σ̂ (0) = i

2
φ∗ . (9.76)

One draws two conclusions from these calculations: Firstly, the Ma-
jorana field has only one degree of freedom φ(x) (of course, being
a two-component spinor, it contains the components φ1 and φ2), all
other fields are related to φ. Secondly, the canonically conjugate mo-
mentum equals φ∗ which, in turn, can be expressed in terms of φ by
means of the Weyl-Dirac equation.

In the framework of canonical quantization we expect the commuta-
tor of φ and π to be a c-number, i. e. not an operator. Thus, commutators
or anticommutators of two spinor operators A und B have the form[

Aα, Bβ
]
± = AαBβ± BβAα = cαβ

with α, β = 1, 2 or α, β = 1, 2, 3, 4, depending on whether they act on
two-spinors or on four-spinors. If we write this commutator while sup-
pressing the components, i. e. in the form [A, B]±, then the result is
a 2×2- or 4×4-matrix, respectively, whose entries are c-numbers.

In the example of the Majorana field it sufficient to discuss the com-
mutator (or anticommutator) of the field φ(x) at the point x with φ(y)
at the point y of spacetime. All other (anti)commutators are obtained
from this one by charge conjugation, or by the action of the equation
of motion. Thus, let us try the quantization rule

[φ(x), φ(y)]= t∆(x− y;m) (9.77)

and determine the c-number valued matrix on the right-hand side. Based
on the experience of Chap. 7 one expects this ansatz to be Lorentz
covariant and to satisfy micro-causality. The left-hand side contains
two operators which are classified by the spinor representation of the
first kind of L↑+, their transformation behaviour under Λ ∈ L↑+ is well-
known. If the quantization rule (9.77) is to be covariant with respect
to Lorentz transformations, the 2×2-matrix t must be an invariant
tensor with respect to SL(2,C). Furthermore, if the rule is supposed
to be (micro)causal then ∆(x− y;m) must be the causal distribution
∆0(x− y;m) for the mass m that we studied in Sect. 7.1.6.

The tensor ε (cf. (9.20)) is the only invariant tensor of SL(2,C).
Therefore, the right-hand side must be proportional to the product
ε∆0(x− y;m). Now, upon exchange of the two operators φ(x) and φ(y)
in (9.77) the tensor ε is replaced by εT =−ε while (x− y) is replaced
by (y− x). The causal distribution ∆0 being antisymmetric, cf (7.54),
the product of ε and ∆0(x− y;m) is symmetric under exchange of the
two fields. As a consequence the ansatz (9.77) contains a contradiction
and cannot be maintained: Indeed, for φ(x)←→ φ(y) the left-hand side
is antisymmetric but the right-hand side is symmetric.
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7 Many textbooks follow this historical
path and find a Hamiltonian which con-
tains terms of the kind

∑
i Ei(a

†
i ai−bib

†
i)

where a†i creates particles, b†i creates
antiparticles in the states “i”. Then one
postulates that these operators fulfill an-
ticommutation rules, not commutators,
such that the expression for the energy
is transformed to

∑
i Ei(a

†
i ai +b†i bi)

which assigns positive energies both to
particles and to antiparticles. Regarding
the result, this is correct and, further-
more, it also yields the Pauli exclu-
sion principle. However, this method
is unsatisfactory because one cures the
symptoms instead of modifying the the-
ory at its roots.

Is this state of affairs a catastrophy? Are there modifications of the
quantization rule which resolve the contradiction?

If one insists on a commutator then there is no other choice than to
replace ∆0 by ∆1(x− y;m), (7.62), which is symmetric under exchange
of x and y. However, one would then inherit a new, rather unwanted
property: The commutator of φ(x) with φ(y), for space-like distances
of x and y would not vanish. In other terms, the field φ(x) would dis-
turb the field φ(y) even in constellations where x and y are not causally
related. At this microscopic level one might be tempted to ignore this
deficiency for a while and to continue along the lines prescribed by
canonical quantization. If one does so the spinor field is expanded in
terms of creation and annihilation operators for particles with spin 1/2,
as in the previous cases. However, one discovers a Hamiltonian whose
spectrum is unbounded from below and one does not get rid of the prob-
lem of “negative energies.”7

The only physically meaningful alternative is to replace the com-
mutator on the left-hand side of (9.77) by the anticommutator. Then,
indeed, both sides are symmetric under exchange, and the right-hand
side satisfies the requirement of micro-causality. This modified ansatz is
consistent and physically acceptable. Thus, using the notation {·, ·} for
the anticommutator, {A, B} = AB+ BA, we postulate

{φ(x), φ(y)} = c(M)ε∆0(x− y;m) , (9.78)

where c(M) is a complex number that has to be determined. For this pur-
pose let the operator îσµ∂x

µ act on (9.78) from the left and insert the
Weyl-Dirac equation for φ(x). This yields{

φ∗(x), φ(y)
}= c(M) i

m
ε−1σ̂µε ∂x

µ∆0(x− y;m) .
Choosing the two time arguments to be equal, x0 = y0, the spatial
derivatives of the distribution ∆0 are equal to zero while the time
derivative, according to (7.53), is given by

∂x
0∆0(x− y;m)∣∣x0=y0 =−δ(x− y) .

Inserting this one obtains{
φ∗(x), φ(y)

}∣∣
x0=y0 =−c(M) i

m
1l2 δ(x− y) .

The left-hand side is hermitean and positive. Therefore, c(M) must lie on
the upper part of the imaginary half-axis. Thus, we choose

c(M) = i m . (9.79)

At this point we leave the quantization of the Majorana field. The quant-
ization rule (9.78) with c(M) = im leads to a consistent and physically
satisfactory theory. We show this for the more general case of the un-
constrained Dirac field which contains the Majorana field as a special
case.
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9.2.2 Quantization of Dirac Fields
In contrast to the case of Majorana fields, the two-spinors φ and χ in
a Dirac field are independent degrees of freedom. Nevertheless, the ar-
guments against quantization by commutators are very similar to the
ones given for Majorana fields. We start by constructing a Lagrange
density and derive the canonical momenta such as to identify the rel-
evant commutators or anticommutators. A possible choice is

LD = i

2

(
φ†(x)σ̂µ

↔
∂µ φ(x)+χ†(x)σµ

↔
∂µ χ(x)

)
−m

(
χ†(x)φ(x)+φ†(x)χ(x)

)
.

One easily verifies that the Euler-Lagrange equations which pertain to
this Lagrange density are identical with the equations of motion (9.74)
and (9.75).

The momenta canonically conjugate to φ and χ are seen to be (again
written in two-component form)

πφ(x)= i

2
φ∗(x) , πχ(x)= i

2
χ∗(x) .

The right-hand sides are related to χ∗ and φ∗, respectively, via the
Weyl-Dirac equations. Therefore, it suffices to consider the commutator,
or anticommutator, of φ(x) and χ†(y). Like in the preceding section we
first try the commutator, i. e.[

φ(x), χ†(y)
]
= c∆0(x− y;m) .

Application of charge conjugation to the left-hand side of this equation
yields[−εχ∗(x), εφ(y)]=−ε [χ∗(x), φ(y)] ε−1 = c∆0(y− x;m)

=−c∆0(x− y;m) .
Note that in the second step the above ansatz was inserted, while in the
third step the antisymmetry of ∆0 was used. As the right-hand side of
the ansatz remains unchanged, there is a contradiction unless c= 0.

Here again, there are two possibilities of resolving the contradiction:
Either one insists on the commutator and replaces the causal distribu-
tion ∆0 by ∆1(x− y;m), but then runs into the same difficulties as
with commutators for Majorana fields. Or one replaces commutators by
anticommutators. With this second choice all inconsistencies disappear
and the theory has a physically meaningful interpretation. This idea is
worked out in what follows.

On the basis of these considerations it seems natural to postulate{
φ(x), χ†(y)

}
= i m∆0(x− y;m) . (9.80)

The constant is chosen in accord with the Majorana case which is con-
tained in (9.80) by the choice χ∗ = εφ.
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We now show that the four-component field operator ψ(x) and its
adjoint ψ†(y) satisfy a causal anticommutator for arbitrary spacetime
points x and y which reads{

ψ(x), ψ†(y)
}
= i

(
mγ 0+ iγµγ 0∂x

µ

)
∆0(x− y;m) . (9.81)

Proof
When expressed in terms of the two-component spinors of (9.73) the
4×4-matrix (9.81) can be written in terms of four 2×2-blocs of anti-
commutators,{

ψ(x), ψ†(y)
}
=

( {
φ(x), φ†(y)

} {
φ(x), χ†(y)

}{
χ(x), φ†(y)

} {
χ(x), χ†(y)

} ) .
The entries are 2×2-matrices all of which can be reduced to the ansatz
(9.80). This is obvious for the nondiagonal blocs while for the blocs
in the diagonal one makes use of the Weyl-Dirac equations. Thus,
by (9.74) one has{

φ(x), φ†(y)
}= i

m
∂x
µ

{
σµχ(x), φ†(y)

}=−σµ∂x
µ∆0(x− y;m) .

Likewise, by (9.75) one obtains{
χ(x), χ†(y)

}= i

m
∂x
µ

{
σ̂µφ(x), χ†(y)

}=−σ̂µ∂x
µ∆0(x− y;m) .

As a result one finds{
ψ(x), ψ†(y)

}
= i

(
iσµ∂x

µ m 1l2
m 1l2 îσµ∂x

µ

)
∆0(x− y;m) .

Upon rewriting this in terms of the matrices γ 0 and γµ in the represen-
tation (9.28) this is seen to be precisely the form asserted in (9.81). �

In order to obtain still another form of the anticommutator of the
Dirac field and its adjoint we write the anticommutator (9.81) more ex-
plicity in components. It then reads{

ψα(x), ψ
†
λ(y)

}= i
(

mγ 0+ iγµγ 0∂x
µ

)
αλ
∆0(x− y;m) ,

α, λ= 1, . . . 4 .

We multiply this result from the right by (γ 0)λβ and take the sum
over λ. This yields{

ψα(x), ψ(y)β
}= i

(
m 1l4+iγµ∂x

µ

)
αβ
∆0(x− y;m) ,
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or, in a more compact notation,{
ψ(x), ψ(y)

}= i
(
m 1l+iγµ∂x

µ

)
∆0(x− y;m) . (9.82)

This quantization rule has a number of important implications that
we wish to work out next and which will be useful in clarifying their
physical interpretation.

Choosing equal times, x0 = y0, and making use of the well-known
properties of the distribution ∆0, one finds{

ψα(x), ψ
†
β(y)

}∣∣∣
x0=y0

= δαβδ(x− y) . (9.83)

This formula is understood better if one recalls that by (9.58) the mo-
mentum canonically conjugate to ψ is

πψ = ∂LD

∂(∂0ψ)
= i

2
ψ† .

The formal analogy to the quantization of the Klein-Gordon field is
obvious and, in fact, suggests to decompose the operators ψ(x) and
ψ(x) in terms of normal modes. As we know the solutions with given
momentum and spin orientation, the following expansion in terms of
creation and annihilation operators seems appropriate

ψα(x)= (9.84)

1

(2π)3/2

2∑
r=1

∫
d3 p

2E p

[
a(r)(p) u(r)α (p)e

−ipx+b(r) †(p) v(r)α (p)e
i px

]
.

Taking the hermitean conjugate of this expansion, and multiplying
by γ 0 from the right, one has

ψ(x)α = (9.85)

1

(2π)3/2

2∑
r=1

∫
d3 p

2E p

[
a(r) †(p) u(r)α (p)e−ipx+b(r)(p) v(r)α (p)ei px

]
.

The spinor nature α = 1, . . . , 4 of theses field operators is taken over
by the solutions u(r)(p) etc. while their operator nature is trans-
ferred to a(r)(p), b(r)(p), and their adjoints. One integrates over
all three-momenta using the invariant volume element d3 p/(2E p),
E p =

√
p2+m2, and sums over the two orientations of the spin. These

inverse formulae which allow to calculate the operators a(r)(p) and
b(r)(p) from ψ and ψ, read

a(s)(p)= 1

(2π)3/2

∫
d3x eipx

4∑
α=1

u(s) †α (p)ψα(x) (9.86)

b(s)(p)= 1

(2π)3/2

∫
d3x eipx

4∑
α,β=1

ψα(x)γ
0
αβv

(s)
β (p) , s = 1, 2 .

(9.87)
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Here the relations (9.50) and (9.51) were used. Calculating now the
anticommutators of these operators and their adjoints, one obtains a re-
markably simple result:{

a(r)(p), a(s) †(q)
}= 2E pδrsδ(p−q)= {

b(r)(p), b(s) †(q)
}
, (9.88){

a(r)(p), a(s)(q)
}= 0= {

b(r)(p), b(s)(q)
}
, (9.89){

a(r)(p), b(s)(q)
}= 0= {

a(r)(p), b(s) †(q)
}
. (9.90)

The interpretation of these operators follows from the experience with
bosonic fields gained in Chap. 7 as well as from the nonrelativistic sys-
tems of fermions that we studied in Sect. 5.3.2. Thus one concludes:

(i) The operators a(r) †(q) and b(r) †(p) create one-particle states both
of which carry momentum p and spin orientation r,

a(r) †(p) |0〉 = |(a); p, r〉 ,
b(r) †(p) |0〉 = |(b); p, r〉 .

These states are normalized covariantly, i. e. one has

〈q, s|p, r〉 = 2E pδrsδ(q− p) .

(ii) The operators a(r)(p) and b(r)(p) are the corresponding annihila-
tion operators.

(iii) The occupation numbers of such states can only take the values 0
or 1. States containing two different creation operators such as

a(r) †(p)a(s) †(q) |0〉
are antisymmetric upon exchange (r, p)↔ (s, q). The quantized
Dirac field describes two species of particles which obey the Pauli
principle and which have identical kinematic and spin degrees of
freedom. It only remains to find out by which additional property
they differ.

9.2.3 Electric Charge, Energy, and Momentum
In Sect. 9.1.4 we introduced the coupling of the Dirac field to the elec-
tromagnetic field by means of the rule (9.59) of minimal coupling. This
allowed to identify the current density (9.61). The factor q in front is
chosen to be 1, a choice that for applications is equivalent to having all
charges come in as multiples of the elementary charge. One confirms
that jµ = ψ(x)γµψ(x) is conserved by making use of the equations of
motion (9.56) and (9.57). Indeed, one has

∂µ jµ(x)= (
∂µψ(x)γ

µ
)
ψ(x)+ψ(x)(γµ∂µψ(x))= im(1−1)ψψ = 0 .
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Under the assumption that the fields vanish at infinity sufficiently
rapidly this continuity equation implies that the charge operator

Q :=
∫

d3x j0(x) (9.91)

is a constant of the motion, i. e. dQ/dt = 0. After quantization and upon
replacement of the classical current density by the normal-ordered op-
erator

jµ(x) := :ψ(x)γµψ(x): , (9.92)

one discovers an expression for Q in terms of number operators for
particles and antiparticles which is familiar from Sect. 2.2, viz.

Q =
2∑

r=1

∫
d3 p

2E p

[
a(r) †(p)a(r)(p)−b(r) †(p)b(r)(p)

]
. (9.93)

It confirms the conjecture made in Sect. 9.1.4: The particles which are
created by a†, and the particles created by b†, differ by the sign of their
electric charge. Before continuing on this interpretation let us make up
for the calculation that leads to (9.93). Inserting the expansion (9.84) as
well as its hermitean conjugate, one finds

Q = :
∫

d3x ψ†(x)ψ(x):=
2∑

r=1

2∑
s=1

∫
d3 p

2E p

∫
d3q

2Eq

:
(
δ(q− p)a(r)†(p)a(s)(q)u(r)†(p)u(s)(q)

+δ(p+q)a(r)†(p)b(s)†(q)u(r)†(p)v(s)(q)

+δ(p+q)b(r)(p)a(s)(q)v(r)†(p)u(s)(q)

+δ(p−q)b(r)(p)b(s)†(q)v(r)†(p)v(s)(q)
)

: ,

where, so far, only the integration over R3 was performed. By the δ-dis-
tributions the spatial momenta in the first and in the fourth term must
be equal, p= q, and, hence, also E p = Eq . One of the two integrations
then collapses while the other yields the orthogonality relation (9.50).
Regarding the second and third terms, one concludes that q =−p (but
again Eq = E p), so that one of the integrations is dropped while the
other, by (9.51), gives zero. Thus, only the first and the fourth terms
contribute. When taking the normal order, finally, the first term remains
unchanged because the creation operator is already on the left of the
annihilation operator. In the fourth term, however, the creation opera-
tor must be shifted to the left, past the annihilation operator. This yields
a minus sign und proves the expression (9.93) for the charge operator.
The energy-momentum tensor field (7.86) is calculated from the La-
grange density (9.58). In particular, the energy density is the time-time
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component of this tensor field and is found to be

H(x)= T 00(x)= :ψ(x)
(− i

2
γ · ↔∇ +m 1l

)
ψ(x):

= :ψ†(x)
(− i

2
α· ↔∇ +mβ

)
ψ(x): ,

where, in the second step, the representation (9.71) was used. Integrat-
ing over the whole space the derivative can be shifted entirely to the
right by means of partial integration,

H =
∫

d3x H(x)= :
∫

d3x ψ†(x)
(−iα ·∇+mβ

)
ψ(x): ,

thus obtaining an expression which is akin to (9.72).
The momentum density is given by the time-space components

of T µν,

T 0k(x)= i

2
:ψ(x)γ 0

↔
∂k ψ(x):=− i

2
:
(
ψ†(x)

↔∇ ψ(x))k: .

As above, upon integrating over R3 the derivatives can be shifted to the
factor on the right such that one obtains

P =−i :
∫

d3x ψ†(x)∇ψ(x): .
By a calculation which is practically the same as for the charge op-

erator, energy and momentum are expressed in terms of creation and
annihilation operators, as follows:(

H, P
)= 2∑

r=1

∫
d3 p

2E p

(
E p, p

)[
a(r) †(p)a(r)(p)+b(r) †(p)b(r)(p)

]
.

(9.94)

This concludes the interpretation of the quantum version of the Dirac
field. In summary, we found:

One-Particle States of the Dirac Field: Let |0〉 denote the vacuum
state, i. e. the state which is annihilated by all operators a(s)(q) and
b(s)(q),

a(s)(q) |0〉 = 0= b(s)(q) |0〉 .
The one-particle states created from the vacuum,

a(r) †(p) |0〉 and b(r) †(p) |0〉
are eigenstates of the operators

(
H, P

)
with eigenvalues E p =√

p2+m2 and p, respectively, and with spin orientation r (the
same for both). Furthermore, they are eigenstates of the charge op-
erator Q pertaining to the eigenvalues +1 and −1, respectively.
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If one of them is called particle state then the other describes the
antiparticle state. The occupation number of a state with eigenval-
ues (E p, p, r, q =±1) can only be 1 or 0. States containing several
fermions with distinct quantum numbers are antisymmetric under
permutations.

9.3 Dirac Fields and Interactions
The fundamental interactions, i. e. the weak, electromagnetic, and strong
interactions, all have vector or axial vector character. This is to say, the
basic vertices schematically have the structure

ψ(x)Γ µψ(x)Aµ(x) , with Γµ = γµ or= γµγ5 .

This structure entails correlations of spins and helicities of the partici-
pating incoming or outgoing particles which are characteristic for the
interaction. For this reason we work out in more detail the description
of the spin of fermions and then proceed to an analysis of vertices in
fundamental interactions.

9.3.1 Spin and Spin Density Matrix
In nonrelativistic quantum mechanics a beam of identical spin-1/2
particles with momentum p which is partially or fully polarized, is de-
scribed by a density matrix �. Let n̂ be the direction of the polarization,
let w+ be the weight of the state which is polarized in the positive di-
rection, w− the weight of the state polarized in the negative direction.
As worked out in Sect. 4.1.8 one has

�= 1

2

(
1l+ζ ·σ) , with ζ = (w+−w−) n̂ .

The density matrix is the convex sum of two terms

�=w+ |̂n,+〉 〈̂n,+| + w− |̂n,−〉 〈̂n,−| , w++w− = 1 .

The expectation value of spin is calculated as usual, viz.

〈s〉 = 1

2
ζ .

This expectation value which, as we know, is a classical observable,
is easily generalized to relativistic kinematics. One just has to boost the
axial vector (0, ζ) constructed in the rest system to a system in which
the particle has momentum p, by means of a Special Lorentz transfor-
mation. One obtains

s = Lp
(
0, ζ

)T =
(

p · ζ
m
, ζ+ p · ζ

m(E p+m)
p
)T

. (9.95)
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This four-vector is orthogonal to the four-momentum p. Up to the sign
its square equals ζ2 and, hence, has a value between −1 and 0,

s · p= 0 , s2 =−ζ2 , −1≤ s2 ≤ 0 .

Hence, the degree of polarization is

P =
√
−s2 = w+−w−

w++w− =w+−w− .
The next goal is to construct spin density matrices for particles and

antiparticles which generalize the nonrelativistic density matrix given
above. For this purpose consider spinors u(p) and v(p) pertaining to
momentum p and to mass m describing states that are fully polarized
along the direction n̂. Clearly, with given n̂, there is a vector s, like
in (9.95), but here with full polarization. In order to avoid any confusion
we assign to it a new symbol,

n = Lp
(
0, n̂

)T =
(

p · n̂
m
, n̂+ p · n̂

m(E p+m)
p
)T

. (9.96)

Analogously to s it fulfills n2 =−1 and n · p= 0. If we were in the rest
system (p= 0) this would mean that, in the standard representation and
given the solutions (9.46) and (9.47), we would have

u(0)u(0)= 2m

(
1/2

(
1l2+σ · n̂) 0

0 0

)
,

v(0)v(0)= 2m

(
0 0
0 1/2

(
1l2−σ · n̂)

)
.

One shows that for arbitrary values of the momentum these expressions
are replaced by the following covariant formulae:

u(p)u(p)= 1

2

(
/p+m 1l

)(
1l+γ5/n

)
, (9.97)

v(p)v(p)= 1

2

(
/p−m 1l

)(
1l+γ5/n

)
. (9.98)

(Note that on the left-hand side of (9.97) and of (9.98) a column vector
is multiplied by a row vector so that the result is a 4×4-matrix. This
differs, e. g., from (9.54) where a row is multiplied by a column, giv-
ing the scalar product.) The proof of these formulae is the content of
Exercise 9.4 but we note that it is largely analogous to the derivation
of (9.81). Taking the sum over the two directions of polarization, i. e. the
sum of these expressions for +n̂ and for −n̂, they simplify and become∑

Spin

u(p)u(p)= (
/p+m 1l

)
, (9.99)

∑
Spin

v(p)v(p)= (
/p−m 1l

)
. (9.100)
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The results (9.97) and (9.98) which appear also in the calculation of
traces of squared amplitudes, allow to identify some important projec-
tion operators. The operators

Ω± := ± 1

2m
(/p±m 1l) (9.101)

are projection operators. Indeed, one finds

Ω++Ω− = 1l ,

Ω2± =
1

4m2

((
p2+m2) 1l±2m/p

)
=± 1

2m

(
/p±m 1l

)=Ω± .
Obviously, Ω+ projects onto the positive frequency part for given
momentum p, while Ω− projects onto the negative frequency part. Fur-
thermore, the operator defined by

Πn̂ := 1

2
(1l+γ5/n) , (9.102)

is the projection operator which projects onto the spin state polarized in
the positive n̂-direction. Indeed, one has

Π2
n̂ =

1

4

(
1l+2γ5/n+γ5/nγ5/n

)= 1

4

(
1l+2γ5/n−1l n2)= 1

2

(
1l+γ5/n

)=Πn̂ .

Here use was made of the fact that γ5 and /n anticommute and that
n2 =−1. In the special case p= 0 this operator goes over into the cor-
rect nonrelativistic result

Πn̂|p=0 =
1

2

(
1l2+σ · n̂ 0

0 1l2−σ · n̂
)
.

One shows that the projection operator Πn̂ commutes both with Ω+
as well as with Ω−. We verify one example:[

Πn̂,Ω+
]= 1

4m
(γ5/n/p−/pγ5/n)= 1

4m
γ5 (/n/p+/p/n)

= 1

4m
(/n/p+2p ·n−/n/p)= 0 .

In a similar way one verifies that
[
Πn̂,Ω−

]= 0 holds true.
The two types of projection operators can be combined such as to

obtain covariant density matrices for particles and for antiparticles, re-
spectively. For a system of particles with momentum p which carry
partial polarization ζ one multiplies the projector onto positive fre-
quencies by the spin projector which is obtained by replacing n̂ by ζ
(complete polarization), i. e. with n replaced by s,

�(+) = 2mΩ+
1

2
(1l+γ5/s)= 1

2
(/p+m 1l) (1l+γ5/s) . (9.103)

This operator has the following property

tr �(+) = 1

2
(m tr 1l4+ tr /p+m tr(γ5/s)+ tr(/pγ5/s))= 2m .
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Note that here only the first term contributes, the matrices of the second,
third, and fourth term having trace zero. Taking the square of (9.103)
one obtains

�(+) 2 = 1

4
(/p+m 1l)(1l+γ5/s)(/p+m 1l)(1l+γ5/s)

= 1

4
(/p+m 1l)2(1l+γ5/s)

2 = 1

4

(
2m2 1l+2m/p

)(
1l+2γ5/s− s2 1l

)
= m

(
/p+m 1l

)(1

2

(
1+ζ2) 1l+γ5/s

)= 4m2Ω+
1

2

(
1

2
(1+ζ2) 1l+γ5/s

)
,

i. e. an expression which is equal to 2m�(+) precisely if |ζ| = 1, i. e. if
there is maximal polarization. In turn, in the general case one has

tr

(
�(+) 2

(2m)2

)
= 1

2
(1+ζ2)≤ tr

(
�(+)

2m

)
= 1 .

The matrix �(+) is not hermitean but it fulfills the relation

γ 0 �(+) † γ 0 = �(+) ,
that we know from a similar property of the γ -matrices. From the
point of view of physics, this relation is perfectly acceptable because
�(+)† describes the parity-mirror state of �(+), i. e. the state which has
p �→ −p, but ζ �→ ζ (s. Exercise 9.5). On the other hand, if one multi-
plies �(+) by γ 0 from the left then the product γ 0�(+) is hermitean.

In a completely analogous manner one shows that the density matrix

�(−) =−2mΩ−
1

2
(1l+γ5/s)= 1

2
(/p−m 1l) (1l+γ5/s) . (9.104)

describes antiparticles with momentum p and polarization ζ .
The two operators (9.103) and (9.104), when multiplied by γ 0 from

the left, can be combined in a single definition, viz.

P(±) := γ 0�(±) = 1

2
(E 1l−p ·α±mβ) (1l+γ5/s) , (9.105)

where the standard representation and the definitions (9.71) were used
on the right-hand side. These matrices are also acceptable density matri-
ces for particles and antiparticles, respectively. They are hermitean,

P(±) † = P(±) ,

and their trace is

tr P(±) = 2E ,

reflecting the covariant normalization.
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Example 9.1 Extreme Relativistic Motion
Extreme relativistic motion, E� m, is of particular interest. It occurs
in typical experimental set-ups with very fast electrons, or with nearly
massless neutrinos. Let the 3-axis point along the direction of the spa-
tial momentum p of the particle and suppose the polarization vector ζ
of (9.95) is decomposed in terms of its longitudinal component ζl (along
p), and two transverse components ζ1

t and ζ2
t (perpendicular to p). The

density matrices (9.103) and (9.104) then go over into

�(±) ≈ 1

2
/p
{
1l−γ5

(±ζl 1l+ζ1
t γ

1+ ζ2
t γ

2)} . (9.106)

This is shown as follows. With E� m, with {pµ} ≈ E(1, 0, 0, 1), and
inserting (9.95) one has

�(±) ≈ 1

2

(
E(γ 0−γ 3)±m 1l

)(
1l+γ5

[ E

m
ζl(γ

0−γ 3)−ζ1
t γ

1−ζ2γ 2]) .
The potentially dangerous term, i. e. the one which is multiplied
by E2/m, is zero because γ5(γ

0−γ 3)=−(γ 0−γ 3)γ5 and because the
square(

γ 0−γ 3)2 = (
γ 0)2+ (

γ 3)2−{
γ 0, γ 3}

is equal to zero. The only terms that remain in the limit m→ 0, are

�(±) ≈ 1

2
E
(
γ 0−γ 3){1l+γ5

[∓ζl− ζ1
t γ

1− ζ2
t γ

2]} .
The factor in front of the right-hand side is nothing but /p because
p points in the direction of the 3-axis. This proves the formula (9.106).

The hermitean form of the density matrix whose trace is normalized
to 2E is obtained in much the same way. It is equal to

P(±) ≈ 1

2
γ 0/p

{
1l−γ5

(±ζl 1l+ζ1
t γ

1+ ζ2
t γ

2)} .
These density matrices describe electrons and positrons, respectively,

at very high energies which are polarized completely or partially, along
an arbitrary direction. Consider as an example a beam of electrons with
momentum p= |p|ê3 ≈ Eê3 which has the polarization P = w+−w−
along the 3-direction. The spin state of this beam is described by the
density matrix

�(+) ≈ 1

2
/p
{
1l−(w+−w−)γ5

}
. (9.107)

A beam of positrons which was prepared under identical conditions, has
the density matrix

�(−) ≈ 1

2
/p
{
1l+(w+−w−)γ5

}
. (9.108)
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Application to Neutrinos: We have the following empirical infor-
mation on the three neutrinos νe, νµ, and ντ that are produced or
annihilated in weak interactions: (i) In comparison to their charged part-
ners e−, µ−, and τ− they have very small masses; (ii) They exist only
in spin states which are fully polarized in a direction opposite to their
spatial momentum. This is to say that they are described by (9.107) with(
w+ = 0, w− = 1

)
. (This is equivalent to having ζl =−1, ζ1

t = 0= ζ2
t .)

If their mass were exactly equal to zero then these would be eigen-
states of helicity with eigenvalue −1. States of this kind, independently
of whether they are massive or massless, are called lefthanded, or left
chiral.

Their antiparticles νe, νµ, and ντ , in turn, appear only in spin states
which are completely aligned along the positive p-direction, or, using
the terminology just introduced, which are righthanded, or right chiral.
Thus, they are described by (9.108) with

(
w+ = 1, w− = 0

)
.

This is an important result of physics: The spin properties of both
neutrinos and antineutrinos are described by the density matrix

�(ν) = 1

2
/p
(
1l+γ5

)
. (9.109)

The reason why physical neutrinos are lefthanded, and antineutrinos
are righthanded, must be found in the dynamics of weak interactions.

Let us consider for a while neutrinos to be strictly massless. In
a world with massless particles the symmetry operations, within L↑+,
which leave the momentum p invariant, are the rotations about the di-
rection of p and the reflections on planes which contain this vector.
While these rotations do not change the helicity, the reflections turn
positive helicity into negative helicity and vice versa. For example, posi-
tive and negative helicity of photons are described by the polarization
vectors

ê+ =− 1√
2

(
ê1+ iê2

)
, and ê− = 1√

2

(
ê1− iê2

)
,

respectively, if their momentum points along the 3-direction. Rotations
about the 3-axis do not change them, but a reflection on, e. g., the (1, 3)-
plane interchanges ê+ and ê−. In other terms, the reflection changes the
orientation of the frame of reference unless the positive 3-direction is
simultaneously replaced by the negative 3-direction. The latter operation
again exchanges the helicities. Therefore, this argument applies also to
fermions.

Furthermore, one knows that electromagnetic interactions are invari-
ant under rotations as well as under space reflection, and, in particular,
under reflections on planes containing the momentum p. Therefore, it
is not surprising that photons of either helicity are physical photons. In
contrast to electromagnetism, the weak interactions are not invariant un-
der space reflection. To the contrary, in weak interactions mediated by
what are called charged currents one finds maximal parity violation. An
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example is provided by the decay

µ− −→ e−+νe+νµ
which involves the charged current linking e− with νe, and µ− with νµ,
and where maximal spin-momentum correlations are observed. There-
fore, the reflections described above cannot be admissible symmetry
operations in weak interactions. The two theoretically expected helic-
ities of neutrinos or of antineutrinos are not dynamically degenerate.
Thus, it is not really surprising to find only one of each pair: neutrinos
with positive helicity, and antineutrinos with negative helicities com-
pletely decouple from all observable physical processes.

These considerations may be supplemented by a further remark. If
parity Π is not a valid symmetry in weak interactions, then these in-
teractions cannot be invariant under charge conjugation either. Indeed,
as one easily shows, the charge conjugate density matrix of (9.109) is
equal to

�
(ν)
C (m = 0)= 1

2
/p
(
1l−γ5

)
.

This density matrix would describe righthanded neutrinos and left-
handed antineutrinos which are not found in nature. In turn, the com-
bined operation ΠC leaves the density matrix (9.109) unchanged. In-
deed, the combination of space reflection and charge conjugation is an
admissible symmetry of weak interactions.

9.3.2 The Fermion-Antifermion Propagator
In the framework of perturbative quantum field theory the propagator
for Dirac fields is perhaps the most important quantity. It combines the
exchange of particles and antiparticles in a Lorentz invariant way and is
obtained in much the same way as the propagator (7.60) for the Klein-
Gordon field. Denoting the positive and negative frequency parts of the
Dirac field (9.84) and of the adjoint field (9.85) by superscripts (+)
and (−), respectively, the vacuum expectation value of the time-ordered
product of two fields in the points x and y of spacetime is equal to

〈0| T ψ(x)αψ(y)β |0〉 =
〈0|ψ(x)(+)α ψ(y)

(−)
β Θ(x0−y0) |0〉−〈0|ψ(y)(+)β ψ(x)(−)α Θ(y0−x0) |0〉 .

Note that every positive frequency term acting on the vacuum to the
right, as well as any negative frequency term acting on the vacuum state
to the left, give zero. Furthermore, the fields of the second term are in-
terchanged. As we are dealing with fermions this explains the minus
sign. Before actually calculating the two terms let us give a physical in-
terpretation of them: In the first term a particle (i. e., in the notation of
creation and annihilation operators, a particle of the kind “a”) is created
in the world point y and is annihilated in the world point x, the time
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coordinate x0 being later than the time y0. In the second term in which
y0 is later than x0, an antiparticle (i. e. a particle of the kind “b”) is cre-
ated in the point x, and is annihilated in the point y. Needless to add
that these terms must contribute to physical amplitudes in such a way
that at every vertex the conservation laws of the theory are respected.

Inserting the expansions (9.84) and (9.85) one finds in a first step

〈0|ψ(x)αψ(y)β |0〉Θ(x0− y0)=
∑
r,s

∫
d3 p

2E p

∫
d3q

2Eq

1

(2π)3
e−ipx eiqyΘ(x0− y0)u(r)(p)αu(s)(q)β 〈0| a(r)(p)a(s) †(q) |0〉 .

The vacuum expectation value on the right-hand side yields 2E pδrsδ(p−q)
so that the integration over q, and the sum over s reduce the integrand to
q = p and s = r. Furthermore, according to (9.99) the product of the two
spinors in momentum space yields∑

r

u(r)(p)αu(r)(p)β =
(
/p+m 1l

)
αβ
.

Using the first of the integral representations (7.61) for the step func-
tion, and defining k0 := E p−λ, k := p (whereby also E p = Ek), one
obtains

〈0|ψ(x)αψ(y)β |0〉Θ(x0− y0)

=− i

(2π)4

∫
d4k e−ik(x−y)

(
Ekγ

0−k ·γ +m 1l
)
αβ

2Ek
(
Ek− k0− iε

) .

The second term of the time-orderd product is calculated in the same
way as the first, noting that here only the vacuum expectation value

〈0| b(r)(p)b(s) †(q) |0〉 = 2E p δrs δ(p−q)

contributes so that the spin sum over v-type spinors (9.100)∑
r

v(r)(p)βv
(r)(p)α =

(
/p−m 1l

)
αβ

has to be inserted. One now uses the second integral representation
(7.61) of the step function, and defines k0 := E p+λ, and k := p. Upon
replacing the integration variable k by −k, one obtains

〈0|ψ(y)βψ(x)α |0〉Θ(y0− x0)

= i

(2π)4

∫
d4k e−ik(x−y)

(
Ekγ

0+k ·γ −m 1l
)
αβ

2Ek
(−Ek− k0+ iε

) .
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Like in the case of the scalar field the sum of the two contributions
eventually yields a simple and covariant expression, viz.

〈0| T ψ(x)αψ(y)β |0〉 = −
i

(2π)4

∫
d4k e−ik(x−y)

× 1

2Ek

[(
Ekγ

0−k ·γ +m 1l
)
αβ

Ek− k0− iε
−

(
Ekγ

0+k ·γ −m 1l
)
αβ

Ek+ k0− iε

]

= i

(2π)4

∫
d4k e−ik(x−y)

(
/k+m 1l

)
αβ

k2−m2+ iε
.

Dropping the spinor indices we note the final result:

〈0| T ψ(x)ψ(y) |0〉 = i

(2π)4

∫
d4k e−ik(x−y)

(
/k+m 1l

)
k2−m2+ iε

≡−1

2
SF(x− y;m) . (9.110)

The symbol SF is a standard abbreviation for the fermion propagator.
The structure of the propagators (7.60), (7.149), and (9.110) are very
similar. The numerator of the integrand contains the spin sum which is
characteristic for the type of particle one is dealing with (scalar particle,
vector particle, or spin-1/2 fermion). The denominator always equals
[(virtual momentum)2 − (mass)2], and, by the term iε, gives a prescrip-
tion of how to deform the path of integration for k in its complex plane.

9.3.3 Traces of Products of γ -Matrices

In calculating cross sections or decay probabilities for processes in
which fermions are born or absorbed, one must calculate absolute
squares of amplitudes containing spinors u(p), v(q), etc. Calculations
of this kind become economic and elegant if one makes use of so-called
trace techniques. A simple example may illustrate the problem at stake.

Example 9.2
Suppose the process sketched in Fig. 9.1, i. e. a process wich describes
an incoming fermion with momentum q and the same fermion in the
outgoing state with momentum p, is described by the scattering ampli-
tude

T = Qµ u(p)Γ µu(q)≡ Qµ

4∑
β,σ=1

u(p)βΓ
µ
βσuσ (q) ,

where Qµ is a real four-vector (which, in general, depends on the mo-
menta of further particles), and where

Γµ = aγµ+bγµγ5 ≡ aΓ µV +bΓµA

µ µ

Fig. 9.1. A fermion with momentum q
comes in, it interacts with other par-
ticles whose influence is described im-
plicitly by the quantity Γµ, and then
leaves with momentum p
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is an arbitrary linear combination of base elements (9.38) of the Clifford
algebra Cl(M4). In analogy to the summation convention for Lorentz
indices it is useful to agree on summing over pairs of repeated spinor
indices, without writing the summation symbol explicitly. When taking
the absolute square of the amplitude T , one must calculate

|T | 2 = QµQν
(

u(p)Γ µu(q)
)(

u(p)Γ νu(q)
)∗

= QµQνu(p)β
(
Γµ

)
βσ

uσ (q)
(
u†(q)γ 0)

τ

(
γ 0(Γ ν)†γ 0

)
τα

uα(p)

= QµQνuα(p)u(p)β
(
Γµ

)
βσ

uσ (q)u(q)τ
(
γ 0(Γ ν)†γ 0

)
τα

In the first step we have made use of(
u(p)Γ νu(q)

)∗ = (
u†(p)γ 0Γ νu(q)

)∗
= u†(q)

(
Γ ν

)†(
γ 0)†u(p) , (

γ 0)† = γ 0

and, in the second step, have inserted
(
γ 0

)2 = 1l4. Inspection of the last
line shows that in summing over the (Dirac-)spinor indices α, β, σ , and
τ one must, in fact, calculate the trace of the product of the following
4×4-matrices,

u(p)u(p) , Γ µ , u(q)u(q) , γ 0(Γ ν)†γ 0 ,

the first and third of which are given by the formula (9.97). Thus, we
have to calculate

|T | 2 = QµQν
1

4
tr
{
(/p+m 1l)(1l+γ5/n f )

Γ µ(/q+m 1l)(1l+γ5/ni)γ
0(Γ ν)†γ 0

}
,

where ni characterizes the polarization of the incoming state, and n f the
polarization of the outgoing state. Of course, it is a matter of the experi-
mental set-up whether or not these polarizations must be kept track of.
If the incoming particle is unpolarized one must take the average over
the two spin orientations ni with equal weights. This is equivalent to
replacing the fourth and the fifth factors as follows

1

2
(/q+m 1l)(1l+γ5/ni)−→ (/q+m 1l) .

Likewise one has to decide whether the experiment is sensitive to
the polarization in the final state, or whether the outgoing fermion is
counted independently of its spin orientation. Regarding the first alter-
native, the quantity |T |2 yields probabilities to find the outgoing particle
with its spin pointing in the direction of +n̂ f , or of −n̂ f from which the
polarization can be calculated. In the second case where the spin is not
detected, one must replace the product of the first and second factors
according to the rule

1

2
(/p+m 1l)(1l+γ5/n f )−→ (/p+m 1l) .
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We also note that the elements ΓµV = γµ and ΓµA = γµγ5, by the prop-
erty (9.42) of the γ -matrices, have the same property, i. e.

γ 0(ΓµV/A

)†
γ 0 = ΓµV/A . (9.111)

Thus, in the simplest case, i. e. when the incoming particle is unpo-
larized and the spin of the outgoing particle is not detected, one has to
calculate∑

spins

|T | 2 = QµQν tr
{
(/p+m 1l)Γ µ(/q+m 1l)Γ ν

}
. (9.112)

In any event, with or without the spin degrees of freedom, one eventu-
ally will have to calculate a trace over products of γ -matrices. There are
general formulae for such traces. We derive and summarize them next.

The starting point is obtained from the relation (4.37) which yields
the symmetric sum of two Pauli matrices

σ(i)σ( j)+σ( j)σ(i) = 2δij 1l .

With our previous definitions {σµ} = (1l2,−σ) and {̂σµ} = (1l2, σ),
cf. Sect. 9.1.2, this implies the relation

σµσ̂ν+σνσ̂µ = 2gµν 1l2 .

When reformulated in terms of γ -matrices (9.28) it is seen to be equiva-
lent to (9.32), viz.

γµγν+γνγµ = 2gµν 1l4 .

All formulae for traces follow from this relation and from the rep-
resentation (9.28). However, as the trace is invariant under cyclic
permutations of its factors, these formulae hold in all representations.
Indeed, the transformation matrix S in the formula

γ ′µγ ′ν · · · γ ′τ = Sγµγν · · · γ τS−1

cancels out in the trace.
The following rules apply to traces of products of γ -matrices:

(i) The trace of the unit matrix is 4, the trace of γ5 vanishes,

tr 1l4 = 4 , tr γ5 = 0 , (9.113)

(ii) The trace of the product of an odd number of γ -matrices van-
ishes

tr
{
γαγβ · · · γ τ︸ ︷︷ ︸

2k+1

}= 0 . (9.114)
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This is shown by the following consideration: γµ in (9.28) is an
odd, bloc-like matrix in the sense of having nonzero entries only
in the off-diagonal blocs. In turn, the product of two γ -matrices
is even, that is, has nonzero entries in the diagonal blocs only.
As a consequence, all products with an even number of factors
are even, all products with an odd number of factors are odd
and, hence, have trace zero.

(iii) Generally, the trace of products with an even number 2n of fac-
tors is reduced to traces of 2n−2 factors by multiple application
of the anticommutator (9.32) and by the use of the cyclicity of
the trace. The formulae for two, four, and six factors read

tr
{
γαγβ

}= 4gαβ , (9.115)

tr
{
γαγβγσγ τ

}= 4
(
gαβgστ − gασgβτ + gατgβσ

)
, (9.116)

tr
{
γαγβγµγνγσγ τ

}= gαβ tr
{
γµγνγσγ τ

}
− gαµ tr

{
γβγ νγσγ τ

}+ gαν tr
{
γβγµγσγ τ

}
− gασ tr

{
γβγµγνγ τ

}+ gατ tr
{
γβγµγνγσ

}
, (9.117)

As an example verify (9.116) in detail: One has

1

4
tr
{
γαγβγσγ τ

}= 2gαβ
1

4
tr
{
γσγ τ

}− 1

4
tr
{
γβγαγσγ τ

}
= 2gαβgστ −2gασ

1

4
tr
{
γβγ τ

}+ 1

4
tr
{
γβγσγαγ τ

}
= 2gαβgστ −2gασgβτ +2gατ

1

4
tr
{
γβγσ

}− 1

4
tr
{
γβγσγ τγα

}
= 2gαβgστ −2gασgβτ +2gατgβσ − 1

4
tr
{
γβγσγ τγα

}
.

The last trace is the same as the one on the left-hand side so
that (9.116) follows.

(iv) Traces containing γ5: If γ5 is multiplied with one, two, or three
γ -matrices then the product has trace zero

tr
{
γ5γ

α
}= 0 , tr

{
γ5γ

αγβ
}= 0 , tr

{
γ5γ

αγβγσ
}= 0 .

(9.118)

The matrix γ5, (9.35), is proportional to the product of all
four γ -matrices γµ, µ= 0, 1, 2, 3. Therefore, the first and third
relations (9.118) follow from the rule (9.114). In the second
relation α and β either are equal in which case the second
of (9.113) applies, or they are different in which case both are
contained in γ5. By exchanges of neighbours one shifts them un-
til their square appears which is plus or minus the unit matrix.
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There remains the product of two γ -matrices whose Lorentz in-
dices necessarily are different. By the rule (9.115) the trace of
this product vanishes.
It is only in a product with four γ -matrices that there is a result
different from zero. It reads

tr
{
γ5γ

αγβγσγ τ
}= 4iεαβστ . (9.119)

One might be puzzled by the observation that the result of rule
(9.119) is pure imaginary, even though one is calculating the absolute
square of an amplitude, hence, a real quantity. In fact, this trace neither
occurs in isolation, nor in an expression where it is multiplied by one of
the real expressions (9.115)–(9.117). It does occur, however, when two
terms of the kind (9.119) are multiplied with one another. In practice,
the first statement follows from the fact that two of the indices of the
ε-symbol are contracted with the same kinematic variable. The product
of a symmetric tensor with the antisymmetric symbol ε gives zero.

When two terms of the kind of (9.119) are multiplied and are con-
tracted partially or completely, a useful formula is the following

εαβστεαβµν =−2
{
δσµδ

τ
ν− δσνδτµ

}
. (9.120)

For instance, let us return to the example (9.112) and choose
Γµ = γµ(1l−γ5), for the sake of illustration. Then one has∑

Spins

|T | 2 = QµQν tr
{
(/p+m 1l)γµ(1l−γ5)(/q+m 1l)γ ν(1l−γ5)

}
= QµQν2 tr

{
(/p+m 1l)γµ/qγν(1l−γ5)

}
= 2QµQν

[
tr
{
/pγµ/qγν

}− tr
{
γ5/pγ

µ/qγν
]}

= 8QµQν
[

pµqν− gµν p ·q+qµ pν− iεαµβν pαqβ
]

Here one made use of (1l−γ5)
2 = 2(1l−γ5) and (1l+γ5)(1l−γ5) = 0.

Only the first three terms in square brackets contribute and are real. The
fourth term which is pure imaginary, gives zero.

Example 9.3
Assume the scattering amplitude is obtained from the exchange of
a photon, with propagator (7.149), between two charged spin-1/2-
fermions. In the Feynman gauge the amplitude reads

T = c u(2)(p′2)γ
µu(2)(p2)

−gµσ
Q2+ iε

u(1)(p′1)γ
σu(1)(p1) ,

with Q = p1− p′1 = p′2− p2 and c a constant of no particular relevance
at this point. Taking the absolute value of the square of the amplitude,
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8 For concrete and realistic examples
see. e. g., A. Kersch und F. Scheck,
Nucl. Phys. B 263, 475, 1986.

averaged and summed over the spins in the initial and final states, re-
spectively, one obtains an expression of the form[

p′µ2 pν2+ (m2
2− p′2 · p2)g

µν+ pµ2 p′ ν2
]
gµσgντ[

p′ σ1 pτ1+ (m2
1− p′1 · p1)g

στ + pσ1 p′ τ1
]
.

Though in this example the contractions can be done directly, it may
be simpler to first simplify the traces. For example, the second factor in
square brackets was obtained from

1

4
tr
{
(/p′1+m1 1l)γ σ (/p1+m1 1l)γ τ

}
.

Considering the term proportional to gµν in the first factor and noting
that

gµνgµσgντ = gστ

one sees that in the term

gστ
1

4
tr
{
(/p′1+m1 1l)γ σ (/p1+m1 1l)γ τ

}
one has to sum the indices σ and τ . The remark is that there are for-
mulae which reduce the products by two factors and, hence, simplify
matters. These formulae read

gµνγ
µγν = 4 1l , gµνγ

µ/pγν =−2/p (9.121)

gµνγ
µ/p/qγν = 4 p ·q , gµνγ

µ/p/q/rγν =−2/r/q/p (9.122)

gµνγ
µ/p/q/r/sγν = 2

(
/s/p/q/r+/r/q/p/s) (9.123)

Again, these relations are proved by means of the basic anticommuta-
tor (9.32).

Remarks

1. It is certainly a good exercise to work out “by hand” the traces of the
somewhat schematic examples of this section as well as the lowest-
order processes to be discussed in the next chapter, by making use
of the rules given above. Nowadays, however, there are advanced al-
gebraic program packages which allow to evaluate traces of products
of γ -matrices on computers. One will prefer to use those in all cases
where the products contain many factors and/or if one wants to make
sure that the results are free of errors, of signs or other.

2. As an alternative, the trace techniques can be formulated for two-
component spinors, the products of γ -matrices being replaced by
products of the kind

σασ̂βσγ σ̂δ · · ·
in which σ-matrices and σ̂-matrices alternate8. In fact, in situations
where the masses may be neglected, calculations are often much
simpler than with γ -matrices.
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9.3.4 Chiral States and their Couplings to Spin-1 Particles
In this section we define chiral fermion fields, we explain their physical
role, and show in which way they occur in interaction terms of electro-
magnetic, weak, and strong interactions.

Definition 9.1 Chiral Fields

Let ψ(x) be a quantized Dirac spinor which is a solution of the Dirac
equation. The fields which are generated from it by the action of the
projection operators (9.39),(

ψ(x)
)

R := P+ψ(x)= 1

2

(
1l+γ5

)
ψ(x) , (9.124)(

ψ(x)
)

L := P−ψ(x)= 1

2

(
1l−γ5

)
ψ(x) , (9.125)

are called right chiral and left chiral fields.

The physical role of chiral fields will become clear through the
following remarks. We return to the natural, or high-energy, represen-
tation (9.28) and remind the reader of the explicit form (9.35) of γ5.
Inspection of the spinors (9.30) in momentum space shows that ψR is
identical with the two-component spinor φ̃(p), while ψL is identical
with the spinor χ̃(p), both of which fulfill the Weyl equations (9.27).
For high energies, E� m, or in cases where the mass is exactly zero,
these equations decouple and become9

pµσ̂
µφ̃(p,m = 0)= 0 , pµσ

µχ̃(p,m = 0)= 0 . (9.126)

Recalling the definition of σµ and of σ̂µ as well as of {pµ} = (E,−p)
with |p| = E, one sees that φ̃(p,m = 0) and χ̃(p,m = 0) are eigen-
states of the helicity with eigenvalues +1/2 and −1/2, respectively. In
the limit m→ 0 the chiral states go over into eigenstates of helicity.
The analogous statements apply to the spinor v(p), i. e. to eigenstates
of momentum of antiparticles.

The relation between the chirality of a particle and the polarization
along the direction of its spatial momentum can be worked out further.
We do this by means of an example that also clarifies the general case.

Example 9.4 Density Matrix for Left Chiral Field

The density matrix �(+), (9.103), was obtained from the matrix
u(p)u(p) of (9.97). Calculating in the same way the density matrix for
a particle in a left chiral state, i. e.

uL(p)= 1

2
(1l−γ5)u(p)

one obtains the corresponding density matrix

�
(+)
L = uL(p)uL(p)= 1

4

(
1l−γ5

)(
/p−m /n

)= P−
(
/p−m /n

)
P+ .

(9.127)

9 These are the original equations that
H. Weyl had proposed before the dis-
covery of the Dirac equation. Initially,
Weyl’s equations were critized and re-
jected because they are not invariant
under space reflection. Their role for
physics was recognized only much later,
after the discovery of parity violation in
the weak interactions in the year 1956.
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The proof of this formula is not difficult. With

uL(p)≡ u†L(p)γ
0 = 1

2
u†(p)(1l−γ5)γ

0 = 1

2
u(p)(1l+γ5) ,

inserting and working out the matrix (9.97), one finds

uL(p)uL(p)= 1

2
(1l−γ5)

1

2

(
/p+/pγ5/n+m 1l+mγ5/n

)1

2
(1l+γ5)

= 1

2
(1l−γ5)

1

2

(
/p−m/n+ (1l+γ5)m/n

)1

2
(1l+γ5) .

Here the term m/n was added and subtracted such as to obtain a factor
(1l+γ5) on the left of /n. When multiplied with the overall left factor
(1l−γ5) this gives zero. As γ5 anticommutes with /p and /n, the overall
factor (1l+γ5) on the right can be shifted to the left. This proves the
formula (9.127).

In order to interpret the result (9.127), consider the polarization
along the spatial momentum p, choosing the 3-direction parallel to this
momentum,

{pµ} = (E, 0, 0, p) , (p≡ |p|) , n̂= ±̂e3 .

Using the expression (9.96) for the four-vector n one has

m {nµ} =
(
±p, 0, 0,±(m+ p2

E+m

))T =±(p, 0, 0, E
)T
,

where p2 = E2−m2 = (E+m)(E−m) was inserted. Thus, the density
matrix is

�
(+)
L = 1

4

(
1l−γ5

)(
γ 0+γ 3)(E∓ p) . (9.128)

This result tells us that the relative probability to find the spin oriented
along the positive or the negative direction of spatial momentum, with
β = p/E, is given by

R := w(h =+1/2)

w(h =−1/2)
= E− p

E+ p
= 1−β

1+β . (9.129)

If the velocity of the fermion is close or equal to the speed of light then
this ratio is approximately equal to

R = 1−β2

1+β2 ≈
1

4γ 2 =
m2

4E2 ,

in agreement with our earlier statement that uL(p) with m = 0 describes
a state with helicity −1/2. In other terms, if a massive fermion is cre-
ated in a left-chiral state with high energy, E� m, then the state with
the spin oriented parallel to the momentum is suppressed by this ratio as
compared to the state in which the spin is antiparallel to the momentum.

An analogous result holds for the spinors P−v(p) which describe
antiparticles. Note, however, that this spinor represents right chiral
states because one has

P−
(
/p+m /n

)
P+ =: �(−)R . (9.130)
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Its interpretation is taken over from the previous case by exchang-
ing parallel and antiparallel spin orientations. For example, a massless
antiparticle which was created in this chiral state has helicity +1/2.
Thus, we summarize the correspondence of the projection operators P+
and P− to the chirality as follows:

P−v(p)≡ vR(p) , P+v(p)≡ vL(p) . (9.131)

The operator P+ projects onto right chiral particle, and onto left chiral
antiparticle states, while the operator P− projects onto left chiral par-
ticle, and onto right chiral antiparticle states.

Vector and Axial Vector Couplings: After having clarified the physi-
cal interpretation of the chiral fields (9.124) and (9.125) we consider the
typical interaction vertex of the Example 9.2

ψ(x)Γ µψ(x) with Γµ = γµ(a 1l+bγ5
)
. (9.132)

The projection operators being idempotent, and using γµγ5 =−γ5γ
µ

one has

Γµ = γµ(a 1l+bγ5
)= (a+b)γµP2++ (a−b)γµP2−

= (a+b)P−γµP++ (a−b)P+γµP− . (9.133)

Inspection of the expansions (9.84), and (9.85) in terms of creation and
annihilation operators shows that

(a1) an incoming particle with momentum p and spin projection r is
represented by a spinor u(r)(p),

(a2) an outgoing particle with (p′, r ′) by u(r ′)(p′),
(b1) an incoming antiparticle with (q, s) by v(s)(p),
(b2) an outgoing antiparticle with (q′, s′) by v(s

′)(p′) .

Depending on the choice of the external particles, this means that the
vertex ψ(x)Γ µψ(x) is replaced by the vertices in momentum space

u(r ′)(p′)Γ µu(r)(p) , v(s)(q)Γ µv(s
′)(q′) , u(r)(p)Γ µv(s)(q) ,

v(s)(q)Γ µu(r)(p) .

The first term stands for the scattering of a particle from (r, p) to
(r ′, p′), the second term stands for the scattering of an antiparticle from
(s, q) to (s′, q′). The third term describes the creation of a particle-
antiparticle pair, the fourth the annihilation of such a pair. Note that in
identifying the chirality it does not matter whether the two spinors refer
to the same particle or to two different particles. In the latter case one
would have to mark the spinors by a particle index, as we did in Ex-
ample 9.3. Recalling the relationships proved above,

P+/−u(r)(p)= u(r)R/L(p) , u(r)(p)P+/− = u(r)L/R(p) ,

P+/−v(s)(q)= v(s)L/R(q) , v(s)(q)P+/− = v(s)R/L(q)
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Fig. 9.2a – d. An arbitrary mixture of
vector and axial vector couplings corre-
lates the chiralities of the external par-
ticles as drawn in this figure: Example
(a) shows the scattering of a left chi-
ral electron, (b) the scattering of a right
chiral positron, (c) shows the creation
of an electron-positron pair, (d) the an-
nihilation of an electron-positron pair

one reads off an important selection rule for interactions which couple
to the vertex ψ(k)(x)Γ µψ(i)(x): (The indices i and k denote two, possi-
bly different, species of fermions. They are omitted when they refer to
the same particle.)

Selection Rule for Vector/Axial Vector Coupling: An interaction in
which two fermions couple through the operator

ψ(k)(x)γµ
(
a 1l+bγ5

)
, ψ(i)(x) (9.134)

conserves chirality if one the particles is incoming, the other is out-
going. If a particle-antiparticle pair is created or annihilated then this
happens with opposite chitalities, (see Fig. 9.2).

Remark
It is a standard convention in quantum electrodynamics to mark fermion
lines with arrows along the flow of negative charge. If in Fig. 9.2 one
follows these arrows then this selection rule says that at every vertex
chirality is conserved (relative to the direction of arrows), irrespective
of whether one is dealing with scattering, with pair creation, or pair
annihilation.

To the schematic examples of Fig. 9.2, we add three realistic cases
taken from electromagnetic and weak interactions:

Example 9.5 Electromagnetic Pair Creation
In lowest order perturbation theory the process e−+ e+ → µ−+µ+
is mediated by the exchange of a single virtual photon as shown
in Fig. 9.3. The coupling of charged fermions to photons being given
by (9.61) we must take a= 1, b= 0 in (9.132). The expression (9.133)
then shows that left- and right-chiral states couple with the same
strength. When an unpolarized beam of positrons collides with an un-
polarized beam of electrons the two possible constellations of chiralities
in the final state are created with the same weights. Therefore, the out-
going beams of µ− and µ+ are also unpolarized. In turn, if in the same
experiment one succeeds in accepting only those µ+ which have their
spin oriented along the momentum, then one knows that the accompa-
nying µ− is lefthanded. Indeed, in practice one uses a variant of this
process in which the muons are replaced by τ-leptons, i. e. the process
e−+ e+ → τ−+ τ+, to produce beams of polarized τ-leptons.

Example 9.6 The Decays π0→ e+e−, η→ µ+µ−, η→ e+e−

The selection rules due to chirality have an interesting application in
the decays of spin-0 mesons into two leptons that we work out in this
and the next example. The pions as well as the η-meson have spin zero.
They are unstable, strongly interacting hadrons whose masses are, in
MeV and in units of the electron mass, mπ0 = 134.98 MeV= 264.14 me,
mη = 547.3 MeV= 1071.0 me. When a meson in its rest frame decays
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into two particles then these move back-to-back with equal and opposite
three-momenta. For instance, in the case of the η, the kinematics is

q = (mη, 0, 0, 0)= (E1, k)+ (E2,−k) , Ei =
√

m2
i +k2 .

It is convenient to choose the 3-axis along the direction of k. In
the decay process the squared total angular momentum J2 and its
projection J3 are conserved. The angular momentum J, in the final
state, is the sum of the relative orbital angular momentum � of the
two particles and of their spins. The magnetic quantum numbers ful-
fill J3 = m	+m(1)s +m(2)s . As the decaying meson is at rest and has
spin zero, one has J3 = 0. Although the relative motion of the two
particles in the final state contains all values of the angular momen-
tum 	, the projection m	 onto the direction k vanishes for every partial
wave. This was shown in Sect. 1.9.3. Thus, the two quantum numbers
m(1)s and m(2)s whose sum must be zero, are nothing but the projec-
tions of their spins onto the spatial momentum. Therefore, there is
a physically interesting conflict between the conservation of angular
momentum and the selection rule (9.134) for chiralities: Angular mo-
mentum conservation implies that the spins are oriented in either of
the two constellations sketched in Fig. 9.4. As the meson carries no
lepton number, the fermions in the final state are antiparticles of one
another. The interaction is of the type of (9.132), more specifically, in
the present example we have a = 1 and b= 0. This interaction favours
the production of the pair with opposite chiralities. Therefore, the con-
stellations shown in Fig. 9.4 which are imposed by angular momentum
conservation, are suppressed by the factor (mi/E)2. Indeed, the decay
π0→ e+e− is extremely rare. The decay of the η-meson into a µ+µ−-
pair is approximately (mµ/me)

2 times more frequent than the decay
into an e+e−-pair, in spite of the fact that the available phase space is
smaller. If the masses of the fermions in the final state were exactly zero
the decay would be strictly forbidden.

Example 9.7 Weak Interaction with Charged Currents
In the weak interaction which is mediated by exchange of virtual
charged W±-bosons, the coupling to pairs of fermions such as (e−, νe),
(µ−, νµ), or (τ−, ντ ), is of the type of (9.132) with a = 1 and b=−1.
More explicitly, the vertices on which physical amplitudes depend, are

ψ(νe)(x)γµ
(
1l−γ5

)
ψ(e)(x) and ψ(e)(x)γµ

(
1l−γ5

)
ψ(νe)(x)

with analogous expressions for the other two lepton families. As here
the two particles are created or annihilated with different electric
charges, one says that the interaction takes place via charged currents.
Of course, the overall electric charge must be conserved in the scatter-
ing or the decay process. For instance, this requirement is fulfilled in
the decays

π+ → µ++νµ , π+ → e++νe , π
− → µ−+νµ , π− → e−+νe ,

−

−

−

−

+

+

+

+

Fig. 9.3. Creation of a µ+µ−-pair from
unpolarized beams of electrons and
positrons
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−

−

−

−

+

+

Fig. 9.4. If a meson with spin zero de-
cays into two fermions the spins must
point in opposite directions (conser-
vation of angular momentum). How-
ever, as the example shows a particle-
antiparticle pair, every vector or axial
vector coupling favours parallel orienta-
tion of the spins, in conflict with con-
servation of angular momentum. If the
masses of the fermions vanish then this
decay is not possible

For neutrinos which are (nearly or) exactly massless, chirality is (prac-
tically) identical with helicity. Therefore, neutrinos are always produced
lefthanded, antineutrinos are produced righthanded. As the decaying
meson has spin zero the same arguments concerning conservation of an-
gular momentum apply here, as in the previous example. Thus, in the
decay of the π+ the charged partner is created with longitudinal polar-
ization −1, while in the decay of the π− it is created with longitudinal
polarization +1, in conflict with the selection rule for vector/axial vec-
tor coupling which favours the opposite polarizations. Without knowing
the details of the dynamics these simple arguments suffice to predict that
the probabilities for the decays π+ → e+νe and π+ → µ+νµ have the
approximate ratio

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
≈ m2

e

m2
µ

=
(

0.511

105.658

)2

= 2.34×10−5 .

Though of the right order of magnitude, this is not quite correct as yet.
On the one hand, comparing to the general formula (8.37) there is a fac-
tor κ = (M2−m2)/(2M) with M =mπ and m =me or m =mµ. On the
other hand, the decay probability contains the absolute square of the
T -matrix element. The two factors taken together yield a factor propor-
tional to (1−m2/M2)2, so that one expects the ratio

Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
≈ m2

e

m2
µ

(
1− (me/mπ)2

1− (mµ/mπ)2
)2

= 1.28×10−4 . (9.135)

Indeed, this estimate lies very close to the experimental result which
is 1.23×10−4. In spite of the fact that the electronic decay offers the
larger phase space it is strongly suppressed as compared to the muonic
decay. If both the νe and the electron were strictly massless the decay
π+ → e+νe would not be possible.

Like the electromagnetic interaction the strong interactions are char-
acterized by pure vector couplings. In the weak interaction via charged
currents the W±-bosons couple by the term (9.132) with a =−b= 1,
in the weak interaction via neutral currents the Z0-boson couples by
similar terms, but with different coefficients a and b which depend on
the external fermions at the vertex. In all of these interactions chiral
fields play an important dynamical role. In particular, the selection rules
worked out above apply to the basic vertices.

Scalar and Pseudoscalar Couplings: We conclude this section with
a few remarks on those cases whose vertices contain sesquilinear terms
of the kind

ψ(x)Γψ(x) with Γ = c 1l+i dγ5 . (9.136)

For example, the mass terms in the Lagrange density (9.58) are of this
type, with c= 1 and d = 0, and so are the Yukawa couplings to scalar
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or to pseudoscalar (spin-0) particles whose vertices have, in the first
case, (c= 1, d = 0), in the second case, (c= 0, d = 1). As for vector and
axial vector couplings there are selection rules for chiralities but these
are different from, i. e. opposite to those of the previous case.

If one decomposes the quantum fields (9.84) and (9.85) into
their right chiral and left chiral components, ψ = P+ψ+ P−ψ and
ψ = ψP−+ψP+, then, by the analysis carried out above, one has

P+/−ψ(x)=
1

(2π)3/2

2∑
r=1

∫
d3 p

2E p

[
a(r)(p) u(r)R/L(p)e

−ipx+b(r) †(p) v(r)L/R(p)e
i px

]
,

ψ(x)P+/− =
1

(2π)3/2

2∑
r=1

∫
d3 p

2E p

[
a(r) †(p) u(r)L/R(p)e

−ipx+b(r)(p) v(r)R/L(p)e
i px

]
.

As the two terms in (9.136) commute with γ5 there remain only two
nonvanishing terms which read

ψ(x)Γψ(x)= ψ(x)P+ΓP+ψ(x)+ψ(x)P−ΓP−ψ(x) .
From these expressions and in comparison with the case of (9.132),

discussed above, one extracts the following rule:

Selection Rule for Scalar/Pseudoscalar Coupling: An interaction
to which two fermions couple by the operator

ψ(k)(x)
(
c 1l+i dγ5

)
ψ(i)(x) , (9.137)

changes the chirality when one of the particles is incoming, the other
is outgoing. If a particle-antiparticle pair is created or annihilated
then this happens with equal helicities.

This rule is illustrated in Fig. 9.5 by some typical vertices. If one
agrees on marking fermion lines by arrows in the direction of the flux
of negative charge, or, what amounts to the same, if

– for incoming particles the arrow points towards the vertex,
– for outgoing particles the arrow points away from the vertex,
– for incoming antiparticles the arrow points away from the vertex,
– for outgoing antiparticles the arrow points towards the vertex,

then the rule is: the chirality always changes at vertices with scalar or
pseudoscalar coupling.
To illustrate this case suppose the interaction in Example 9.7 contained
the operator c 1l+i dγ5, instead of γµ(a 1l−bγ5). In this case the branch-
ing ratio (9.135) would not be suppressed by the factor (me/mµ)2 and,
hence, would have the value 5.49, thus more than four orders of mag-
nitude larger than what one finds in experiment!

Fig. 9.5. A coupling which contains an
arbitrary linear combination of the op-
erators 1l and γ5, correlates the chiral-
ities of external lines as shown here.
The dashed lines symbolize a spin-
0 particle which may be a scalar or
a pseudoscalar. If the fermions are
strictly massless then the arrows repre-
sent helicities
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10 s. e. g. G.E. Brown and D.G. Raven-
hall, Proc. Roy. Soc. London A 208,
552, 1952.

11 If, in turn, one had a potential that
is a genuine Lorentz scalar then this
would be multiplied by β, and, hence,
would be added to the mass m. Such
scalar potentials are used in the de-
scription of strong interactions in, e. g.,
antiprotonic atoms.

9.4 When is the Dirac Equation
a One-Particle Theory?

After having demonstrated that the Dirac equation in its interpretation
differs markedly from the Schrödinger equation and that, strictly speak-
ing, it can only be understood in its quantized form as a theory of
particles and antiparticles, one might be surprised if, in spite of this ex-
perience, in this section we attempt to use it as a one-particle theory.
There are good reasons for this which refer to concrete physical situa-
tions.

In many problems of atomic and molecular physics where binding
energies are generally small as compared to rest masses and where rel-
ativistic corrections of the results of Schrödinger theory are still small,
it is perfectly legitimate to neglect degrees of freedom related to anti-
particles. For instance, it is reasonable to evaluate effects of genuine
radiative corrections (these are effects of higher order in α which are
predicted by quantum electrodynamics) with reference to the hydrogen
spectrum as obtained from the one-particle Dirac equation into which
the Coulomb potential is inserted. Similarly, the Dirac equation with ex-
ternal potential is well suited for the analysis of hydrogen-like atoms in
which the electron is replaced by a µ−, or an antiproton p. Formally
speaking, this approach is one in which one restricts the spectrum of
the Dirac operator with a potential to positive energies10 and in which
the degrees of freedom involving virtual electron-positron pairs are ne-
glected. In this approach one must keep in mind that a bound state with
binding energy B has the total energy E = m− B which stays positive
as long as B� m.

9.4.1 Separation of the Dirac Equation in Polar Coordinates

There is an elegant method, due to Dirac, which allows to reduce the
Dirac equation to a differential equation in the radial variable. One starts
from the Hamiltonian form (9.72) with an external, spherically symmet-
ric Coulomb potential U(r). Since U(r)= qΦ(r) is proportional to the
time component of Aµ = (Φ(r), 0) which was introduced into (9.62) by
the principle of minimal coupling, the potential U(r) appears multiplied
by γ 0. In passing to the form (9.70) of the Dirac equation an additional
factor γ 0 comes in so that, by (γ 0)2 = 1l4, the potential in (9.72) is
multiplied by the unit matrix 1l4.11 If one restricts solutions to stationary
states with positive energy,

Ψ(t, x)= e−iEtψ(x) ,

then the following differential equation has to be solved:

Eψ(x)=
(
−iα ·∇+U(r) 1l+mβ

)
ψ(x) , (9.138)
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the matrices α and β being defined in (9.71). Besides these matrices one
defines three more matrices,

S := (
γ5
)

Stα=
(

σ 0
0 σ

)
. (9.139)

The gradient operator is decomposed into radial part and orbital angular
momentum by

∇ = r̂ (̂r ·∇)− r̂× (̂r×∇)= r̂ (̂r ·∇)− i
1

r
r̂×� .

The scalar product of r̂ and ∇ (taken in this ordering!) equals ∂/∂r, and
one has

α ·∇ = α · r̂ ∂
∂r
− i

1

r
α · (̂r×�) .

The second term is transformed by means of a well-known relation for
Pauli matrices, see (4.37). For any two vectors a and b one has the re-
lation

(σ ·a)(σ ·b)= a ·b+ i σ · (a×b
)
. (9.140)

From this formula, and with α= γ5S and r̂ ·�= 0 one obtains

i α · (̂r×�)= i γ5S · (̂r×�)= γ5(S · r̂)(S ·�) and

α ·∇ = γ5(S · r̂)
(
∂

∂r
− 1

r
(S ·�)

)
.

The trick is to introduce an operator which contains the whole in-
formation on the orbital angular momentum �, the spin s = σ/2, and
the total angular momentum j = �+ s. This goal is achieved by Dirac’s
operator K which is defined as follows:

K := β (S ·�+1l4
) ≡ (

K (0) 0
0 −K (0)

)
. (9.141)

Properties of Dirac’s Operator:

1. The operator K (0) = σ · �+1l2 which is contained in Dirac’s oper-
ator K , can be expressed by the squares of all angular momenta
involved. With j = �+ s one has

K (0) = σ ·�+1l= 2s ·�+1l= j2−�2− s2+1l .

Obviously, its eigenfunctions are the coupled spin-orbit states

| j	m〉 =
∑

m	,ms

(
	,m	; 1/2,ms| jm

) |	m	〉 |1/2,ms〉

where |	m	〉 are spherical harmonics, and |1/2,ms〉 are eigenstates
of spin. Denoting its eigenvalues by −κ, i. e. K (0)| j	m〉 = −κ| j	m〉,
these are equal to

κ =− j( j+1)+	(	+1)− 1

4
.
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As one sees, these eigenvalues take positive as well as negative val-
ues.

2. The square of the operator K (0) is obtained by means of the for-
mula (9.140) which yields for a = b= � and with �×�= i�(

σ ·�)2 = �2−σ ·� .
Thus, the square of K (0) is found to be(

K (0)
)2 = �2+σ ·�+1l= j2− s2+1l .

Inserting the eigenvalues one sees that the square of κ is related to j
in a unique way, viz.

κ2 = j( j+1)− 3

4
+1= (

j+ 1

2

)2
.

Thus, the rules for calculating the eigenvalues 	 and j from a given
quantum number κ are

j = |κ|− 1

2
, (9.142)

for κ > 0 one has 	= κ , (9.143)
for κ < 0 one has 	=−κ−1 . (9.144)

In other terms, once a positive or negative integer κ is given, the
values of j and of 	 are fixed. In particular, the sign of κ defines
the coupling of spin and orbital angular momenta: If κ > 0, then
j = 	−1/2, if κ < 0, then j = 	+1/2. Therefore, it is appropriate
to denote the eigenstates of K (0) by |κ,m〉, instead of | j	m〉.

3. Thus, the eigenvalue and eigenfunctions of Dirac’s operator K ,
(9.141), are as follows

K

( |κ,m〉
|−κ,m〉

)
=−κ

( |κ,m〉
|−κ,m〉

)
. (9.145)

The number κ takes the set of values

κ =±1,±2,±3, . . . . (9.146)

Introducing the operator K into the stationary Dirac equation (9.138)
one obtains

Eψ(x)= Hψ(x)

with H =−iγ5S · r̂
(
∂

∂r
1l+1

r
1l−β 1

r
K

)
+U(r) 1l+βm . (9.147)

We show next that the operators H and K commute. For this pur-
pose it suffices to calculate the commutator of γ5S · r̂ = α · r̂ with
K = diag

(
(σ ·�+1l),−(σ ·�+1l)

)
. We have[(

0 σ · r̂
σ · r̂ 0

)
,

(
σ ·�+1l 0

0 −(σ ·�+1l)

)]
≡

(
0 −A
A 0

)
,

where A = (σ · r̂)(σ ·�+1l)+ (σ ·�+1l)(σ · r̂) .
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Making again use of the relation (9.140) and noting that r̂ ·�= 0, one
obtains

(σ · r̂)(σ ·�)+ (σ ·�)(σ · r̂)= i

r
σ · (r×�+�×r

)
,

where we took account of the fact that r = |x| and � commute. Note
that the sum in brackets on the right-hand side is not equal to zero
because � does not commute with r. Rather, recalling the commuta-
tor [	i, x j ] = iεijkxk (see Sect. 1.9.1), one has

�×r =−r×�+2ir .

Inserting this formula one sees that the auxiliary operator A van-
ishes. Thus, the commutator of H and K equals zero.
As [H, K ] = 0 there exist common eigenfunctions which can be cho-
sen to be products of radial functions and spin-orbit states. One
makes the ansatz

ψκ,m(x)=
(

gκ(r) |κ,m〉
i fκ(r) |−κ,m〉

)
. (9.148)

The factor i is a matter of convention. Its introduction is useful be-
cause the coupled differential equations for the radial functions gκ(r)
and fκ(r) then are real. In order to derive these equations one must
calculate the action of σ · r̂ on the functions |κ,m〉. One finds

(σ · r̂) |κ,m〉 = − |−κ,m〉 . (9.149)

The proof of this equation goes as follows: The operator (σ · r̂) is
a tensor operator of rank zero, and it is odd with respect to space
reflection. Therefore, (σ · r̂)|κ,m〉 must be proportional to |−κ,m〉.
Only this state has the same values of j and of m, and, upon com-
parison of (9.143) and of (9.144), differs by its parity from the state
|κ,m〉,
(σ · r̂) |κ,m〉 = α |−κ,m〉 .

From (9.140) one sees that (σ · r̂)2 = 1, the norm of the state
(σ · r̂)|κ,m〉 is equal to 1,

〈κ,m| (σ · r̂)2 |κ,m〉 = 1= |α| 2 .
In order to determine the coefficient α whose absolute value is 1,
it suffices to evaluate the relation between |κ,m〉 and |−κ,m〉 in
a special case. We choose r̂ = ê3 and θ = 0. Then one has

Y	m	(0, φ)=
√

2	+1

4π
δm	0 .

Inserting the definition of the coupled state |κ,m〉, with ms =m, one
finds the condition

2m
√

2	+1
(
	, 0; 1/2,m| jm)= α√2	̄+1

(
	̄, 0; 1/2,m| jm)

,
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where the quantum numbers take the values 	 = κ, 	̄ = 	− 1,
j = 	−1/2 if κ is positive, while they take the values 	= (−κ)−1,
	̄= 	+1 and j = 	+1/2 if κ is negative. The numerical values of
the Clebsch-Gordan coefficients

(
	,m	; 1/2,ms| jm

)
are given in the

table (note that they can be calculated directly, cf. Exercise 9.7),

j \ ms
1
2 −1

2

	+ 1
2

√
	+1/2+m

2	+1

√
	+1/2−m

2	+1

	− 1
2 −

√
	+1/2−m

2	+1

√
	+1/2+m

2	+1

One now takes m	 = 0, ms =m =±1/2 and confirms that for κ > 0
as well as for κ < 0 one obtains the same value α=−1. This proves
the relation (9.149).

Insert now (9.148) into (9.147) and use the relation (9.149), to obtain
a system of two coupled, homogeneous, and real differential equa-
tions for the radial functions, viz.

f ′κ(r)=
κ−1

r
fκ(r)−

(
E−U(r)−m

)
gκ(r) , (9.150)

g′κ(r)=−
κ+1

r
gκ(r)+

(
E−U(r)+m

)
fκ(r) . (9.151)

Two limiting cases are of special interest for physics: The limit of
energies which are very large as compared to the rest mass, and the
limit of energies which are very close to the rest mass.
(i) If E� m so that the mass term in (9.150), (9.151) can be ne-
glected, the radial functions fulfill the symmetry relations

g−κ(r)= fκ(r) , f−κ(r)=−gκ(r) . (9.152)

The upper and the lower components in (9.148) are of the same
order of magnitude. This limit is relevant, for example, when one
studies the scattering of electrons or muons on nuclei at energies
which are large as compared to their rest mass.
(ii) In weakly bound atoms the binding energy B in E = m− B is
small as compared to m, i. e. |E−m| �m. As the potential is small,
too, the second term on the right-hand side of (9.150) is suppressed
by a factor B/(2m) as compared to the second term on the right-
hand side of (9.151). One concludes that fκ(r) must be sizeably
smaller than gκ(r). Indeed, in the nonrelativistic limit of the hydro-
gen atom the “large” component gκ(r) tends to the corresponding
radial function of the Schrödinger equation while the “small” com-
ponent fκ(r) tends to zero.
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9.4.2 Hydrogen-like Atoms from the Dirac Equation
In this section it is shown that the radial equations (9.150), (9.151), with
the potential energy of point-like charges

U(r)=− Zα

r
can be solved exactly. In particular, the case of bound states, i. e. of
states with energy E < m, is of special interest.

For very large values of the radial variable r the potential U(r) and
the terms (κ±1)/r may be neglected. Then, from (9.150) one obtains
approximately

f ′κ(r)≈−(E−m)gκ(r)= (m− E)gκ(r) .

We differentiate (9.151), neglect all terms of the order O(1/r) and insert
the approximate equation for f ′κ(r), thus obtaining

g′′κ(r)≈ (m2− E2)gκ(r) .

As we are interested in bound states we have E < m, the difference
m2− E2 is real and positive. Thus, we define

λ :=
√

m2− E2 (9.153)

and note that the asymptotics of gκ(r) must be gκ(r) ∼ e−λr . The
asymptotic form of fκ(r) is the same but is multiplied by the factor√
(m− E)/(m+ E). Like in the nonrelativistic case it is useful to ex-

tract a factor 1/r. Therefore, one substitutes as follows

gκ(r)= 1

r
e−λr
√

m+ E
(
u(r)+v(r)) ,

fκ(r)= 1

r
e−λr
√

m− E
(
u(r)−v(r)) .

Again in analogy to the case of the Schrödinger equation one defines
a dimensionless variable

� := 2λr . (9.154)

Passing from (gκ, fκ) to the functions u and v the latter are found to
satisfy the system of differential equations

du

d�
=

(
1− ZαE

λ�

)
u(�)−

(
κ

�
+ Zαm

λ�

)
v(�) , (9.155)

dv

d�
=

(
−κ
�
+ Zαm

λ�

)
u(�)+ ZαE

λ�
v(�) . (9.156)

To find out the behaviour of the solutions in the neighbourhood of
r = 0 is not as simple as in the case of the Schrödinger equation where
this behaviour was determined by the centrifugal term 	(	+1)/r2.
One possibility could be to eliminate the “small” component fκ(r)
and to derive a differential equation of second order for the “large”
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component gκ(r). One would then find that this second-order differen-
tial equation contains the potential U(r) as well its square. The term
U2(r)= (Zα)2/r2 competes with the centrifugal term and, therefore, the
behaviour of the solutions at r = 0 is modified as compared to the non-
relativistic case.

There is a somewhat simpler approach, however. Let

u(�)= �γ φ(�) , v(�)= �γ χ(�) with φ(0) �= 0 , χ(0) �= 0 .

The exponent γ is determined from the system (9.155) and (9.156). At
the point �= 0 this system of differential equations yields a linear al-
gebraic system for φ(0) and χ(0) which reads

γ φ(0)=− ZαE

λ
φ(0)−

(
κ+ Zαm

λ

)
χ(0)

γ χ(0)=
(
−κ+ Zαm

λ

)
φ(0)+ ZαE

λ
χ(0) .

This is a homogeneous system which has a solution different from zero
if and only if its determinant equals zero,

det

(
γ + ZαE/λ κ+ Zαm/λ
κ− Zαm/λ γ − ZαE/λ

)
= 0 ,

that is to say, if γ 2−κ2+ (Zα)2 = 0. Of the two solutions of this equa-
tion only the positive square root

γ =
√
κ2− (Zα)2 . (9.157)

is admissible for the solutions to be regular at r = 0. Factoring out
the behaviour of the radial functions at r = 0, the differential equations
(9.155) and (9.156) yield a system of differential equations for φ(�)
and χ(�) which read

�
dφ

d�
=

(
�−

(
γ + ZαE

λ

))
φ(�)−

(
κ+ Zαm

λ

)
χ(�) (9.158)

�
dχ

d�
=−

(
κ− Zαm

λ

)
φ(�)−

(
γ − ZαE

λ

)
χ(�) . (9.159)

At this point it is instructive to pause for a while and to consider
the state of the analysis from a physical perspective. This also allows
to develop a strategy for what remains to be done. The functions φ(�)
and χ(�) are the remnants of the unknown functions fκ(r) and gκ(r), re-
spectively, after having extracted their asymptotics ∼ e−λr as well as
their behaviour near the origin ∼ rγ . By the obvious analogy to the
corresponding nonrelativistic problem one expects φ(�) and χ(�) to be
simple polynomials if fκ(r) and gκ(r) are to be L2-normed eigenfunc-
tions of H . That this is indeed true will be seen from the following
calculation which, at the same time, also yields the eigenvalues of the
energy and the eigenfunctions. For the sake of simplifying the notation
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a little, we temporarily set ZαE/λ=: σ and Zαm/λ=: τ . Differentiat-
ing, e. g., the differential equation (9.159) by �, one obtains

χ ′ +�χ ′′ = −(κ− τ)φ′ − (γ −σ)χ ′ .
The derivative φ′ is taken from (9.158). One eliminates φ by making
use once more of (9.159). These replacements yield

�χ ′′ + (2γ +1−�)χ ′ = χ
(
(γ −σ)+ 1

�

(−γ 2+σ2+κ2− τ2)) .
However, since −γ 2+κ2 = (Zα)2 and with σ2− τ2 =−(Zα)2 the sec-
ond term on the right-hand side vanishes. There remains a differential
equation of second order for the function χ(�) alone which reads

�χ ′′(�)+ (
2γ +1−�)χ ′(�)−(

γ − ZαE

λ

)
χ(�)= 0 . (9.160)

The equation (9.160) is nothing but Kummer’s differential equation (cf.
Appendix A.2.2)

zw′′(z)+ (c− z)w′(z)−a w(z)= 0 ,

whose solution regular at z = 0 is the well-known confluent hypergeo-
metric function, w(z)= 1 F1(a; c; z). Inserting the parameters (which are
real here)

a ≡ γ − ZαE

λ
, c≡ 2γ +1 .

the solution reads, up to a normalization factor,

χ(�)= 1 F1
(
γ − ZαE/λ; 2γ +1;�) . (9.161)

The other radial function φ(�) is obtained in the same way by deriving
the analogous differential equation of second order that it satisfies. One
finds Kummer’s differential equation also in this case. Alternatively and
more simply, φ(�) is obtained from (9.159) and the relation

z 1 F′1(a; c; z)+a 1 F1(a; c; z)= a 1 F1(a+1; c; z)
for the derivative of the confluent hypergeometric function. This calcu-
lation yields

φ(�)= ZαE/λ−γ
κ− Zαm/λ

1 F1
(
γ +1− ZαE/λ; 2γ +1;�) . (9.162)

From this point on the arguments are the same as in Schrödinger theory
for central field problems. The asymptotics of the function 1 F1

1 F1
(
a; c;�)∼ Γ(c)

Γ(c−a)
(−�)−a+ Γ(c)

Γ(a)
e��a−c

would ruin the exponential decay found above,

fκ(r) , gκ(r) ∼ e−λr = e−�/2
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if the second term could not be made to vanish. Simple inspection
shows that this is possible if and only if a is equal to zero, or to a neg-
ative integer, i. e. if

ZαE

λ
−γ = n′ , n′ ∈N0 , with λ=

√
m2− E2 . (9.163)

If this condition is fulfilled then, as expected, the function χ(�) is
a polynomial in �. If n′ ≥ 1, then this is also true for the function φ(�).
The case n′ = 0 is exceptional and must be analyzed separately. The
function 1 F1

(
1; 2γ +1;�) in (9.162) is no longer a polynomial and, as

a consequence, grows too strongly at asymptotic values. At the same
time the numerator of the overall factor on the right-hand side of (9.162)
is equal to zero. In this case the function φ(�) vanishes provided the de-
nominator of the overall factor is different from zero. This is precisely
what one has to check:

If γ = ZαE/λ, then

κ2 = γ 2+ (Zα)2 = (Zα)2λ
2+ E2

λ2 =
(

Zα
m

λ

)2

and, therefore, κ =±Zαm/λ. Choosing the positive value the denom-
inator of the factor vanishes, for the negative value it does not. This
implies a condition:
For n′ = 0 only the negative value of κ is admissible.

One easily sees that the principal quantum number n of the nonrel-
ativistic hydrogen atom is related to the quantum number n′ by

n = n′ + |κ| , n ∈N . (9.164)

The condition (9.163) for the energy yields a formula for the eigen-
values of the Hamiltonian H ,

En|κ| = m

⎧⎨⎩1+
(

Zα

n−|κ|+√
κ2− (Zα)2

)2
⎫⎬⎭
−1/2

. (9.165)

Here the quantum numbers n, κ, and j = |κ|−1/2 take the values

n ∈N ;
κ =±1 , ±2 , . . . ,−n ; (9.166)

j = 1

2
,

3

2
, . . . , n− 1

2
.

It is then easy to go back to the original radial functions fκ(r)
and gκ(r), and, by making use of well-known formulae for integrals
with exponentials, powers, and confluent hypergeometric functions, to
normalize them according to

∞∫
0

r2 dr
(

f 2
κ (r)+ g2

κ(r)
)= 1 .
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One finds the result

gnκ(r)= 2λN(n, κ)
√

m+ E �γ−1 e−�/2{
−(n−|κ|) 1 F1

(−n+|κ|+1; 2γ +1;�)
+
( Zαm

λ
−κ

)
1 F1

(−n+|κ| ; 2γ +1;�)} , (9.167)

fnκ(r)= −2λN(n, κ)
√

m− E �γ−1 e−�/2{
(n−|κ|) 1 F1

(−n+|κ|+1; 2γ +1;�)
+
( Zαm

λ
−κ

)
1 F1

(−n+|κ| ; 2γ +1;�)} , (9.168)

the normalization constant being N(n, κ) being given by

N(n, κ)= λ
m

1

Γ(2γ +1)

{ Γ(2γ +n−|κ|+1)

2Zα(Zαm/λ−κ)Γ(n−|κ|+1)

}1/2
.

(9.169)

The radial variable and the parameters are

�= 2λ r ,

λ=
√

m2− E2
n|κ| =

Zαm√
n2−2(n−|κ|)(|κ|−γ) , (9.170)

γ =
√
κ2− (Zα)2 .

In summary, the problem of bound states in the hydrogen atom and in
hydrogen-like atoms is solved completely. The states with positive en-
ergy which are in the continuum, are derived by the same procedure,
see Remark 4 below.

Remarks

1. The binding energies (9.165) depend on the principal quantum num-
ber n, on the absolute value of κ, but not on its sign. This means that
states with the same angular momentum j which belong to differ-
ent pairs of orbital angular momenta (	, 	̄), are degenerate in energy.
For example, the state with (n = 2, κ =−1, j = 1/2) contains the or-
bital angular momenta 	= 0 in the large component of (9.148) and
	̄= 1 in the small component. It corresponds to the nonrelativistic
2s1/2-state. In turn, the state with (n = 2, κ =+1, j = 1/2) contains
the orbital angular momenta 	= 1 and 	̄= 0, and corresponds to the
nonrelativistic 2p1/2-state.
The state (n = 2, κ = −2, j = 3/2) which is the analogue of the
2p3/2-state, has an energy higher than that of the “2p1/2”-state. As
κ =+2 is excluded, this state is nondegenerate. I have put the spec-
troscopic notation in quotation marks because the relativistic bound
states are no longer eigenfunctions of orbital angular momentum. In-
deed, they each contain two values, 	 and 	̄= 	±1. However, as the
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Fig. 9.6. Spectrum of binding energies
in a relativistic hydrogen-like atom (not
to scale). States with equal principal
quantum numbers and equal angular
momenta j stay degenerate

component with the radial function gnκ(r) is large as compared to its
partner fnκ(r), the value 	 pertaining to the large component may
be used to denote the state. One uses the nonrelativistic notation but
should keep in mind what it stands for.
In Fig. 9.6 we sketch the spectrum (9.165). Although the very
strong degeneracy of the nonrelativistic spectrum is lifted partially,
there remains the degeneracy of those levels which have the same
principal quantum number and the same total angular momentum
j = |κ|−1/2.

2. The weakly relativistic limit is attained by an expansion in terms of
powers of (Zα). For example, for the energy (9.165) one finds

En|κ| 	 m

{
1− (Zα)

2

2n2 −
(Zα)4

2n4

( n

|κ| −
3

4

)}
. (9.171)

The first term in curly brackets is the rest mass, the second term
yields the binding energy which is known from the nonrelativistic
theory. The third term represents the first relativistic correction and
is remarkable by the fact that it depends on Zα and on the angular
momentum j, but is independent of the mass. Therefore, in muonic
atoms and in electronic atoms the relativistic corrections to En|κ|/m
are the same. Keeping the principal quantum number n fixed, these
corrections are seen to be larger for small values of j than for large
values.
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In the same limit the “small” component fnκ(r) tends to zero, the
“large” component goes over into the corresponding nonrelativistic
wave function. More precisely: For κ > 0 the component gnκ(r) goes
over into the eigenfunction yn	(r)/r with 	= κ. For κ′ < 0 it goes
over into yn	̄(r)/r with 	̄= |κ′|−1. In comparison of κ = 	 and of
κ′ = −(	+1), this corresponds to the statement that the states with
(n, j = 	−1/2) and with (n, j = 	+1/2), in this limit, have the
same radial wave function.

3. Another case of practical importance is the one where the charge
density �(r) is still spherically symmetric but is no longer singular
in the origin. This happens when the nucleus of the atom has a finite
spatial extension in which case its charge density can be expanded in
a Taylor series around r = 0,

�(r)= �(0)+�(1) r+ 1

2!�
(2) r2+O(r3) . (9.172)

The corresponding potential is then also regular at r = 0,

U(r)= −4πZα2

⎧⎨⎩
∞∫

0

r ′ dr ′ �(r ′)− 1

6
�(0) r2

− 1

12
�(1) r3− 1

40
�(2) r4+O(r5)

}
. (9.173)

This potential has the shape of a parabola near the origin and, thus,
is no longer competing with the centrifugal terms in the differential
equations for f(r) and g(r). Therefore, the behaviour of these func-
tions at r = 0 no longer is rγ with γ as given in (9.157), but depends
only on κ.
Following the example of (9.160) one may derive differential equa-
tions (of second order) for f(r) and for g(r) separately, by working
on the sytem of equations (9.150), (9.151). If one does so one finds
that these new equations contain the centrifugal terms, respectively,

κ(κ−1)

r2 and
κ(κ+1)

r2 .

It is then appropriate to set

f(r)= rα
∞∑

n=0

anrn , g(r)= rβ
∞∑

n=0

bnrn , (a0 �= 0 , b0 �= 0) .

As a result one finds that the characteristic coefficients α and β fulfill
the equations

α(α+1)= κ(κ−1) , β(β+1)= κ(κ+1) .

For each sign of κ one selects those solutions of the pairs
α= (κ−1,−κ) and β = (κ,−κ−1) which are positive or zero. This
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means, in more detail, that the function g(r) starts like rκ when
κ > 0, and like r−κ−1 when κ < 0. Likewise for f(r): If κ > 0 it be-
haves like rκ−1, if κ < 0 like r−κ .
Thus, extracting their respective limiting forms near the origin,

κ > 0

{
gκ(r)=rκGκ(r) ,
fκ(r)=rκ−1 Fκ(r) ,

(9.174)

κ < 0

{
gκ(r)=r−κ−1 Fκ(r) ,
fκ(r)=−r−κGκ(r) ,

(9.175)

the radial functions Fκ(r) and Gκ(r) are seen to satisfy the following
system of differential equations of first order

dFκ(r)

dr
= (

U(r)− E+m sign κ
)
rGκ(r)

dGκ(r)

dr
=−1

r

{(
U(r)− E−m sign κ

)
Fκ(r)+

(
2 |κ|+1

)
Gκ(r)

}
.

(9.176)

This system must be solved with initial conditions

Fκ(0)= a0 , Gκ(0)=−U(0)− E−m sign κ

2|κ|+1
a0 , (9.177)

F′κ(0)= 0 G′κ(0)= 0 . (9.178)

A system of differential equations of the kind of (9.176) is well
suited for numerical integration, in those cases where no analytical
solution is found. The reader will find some hints at practical meth-
ods of integration and of determining eigenvalues of bound states,
e. g., in [Scheck (1996)]. Note that these procedures are relevant for
the analysis of muonic atoms.

4. There is no particular problem in solving exactly the radial equa-
tions (9.150) and (9.151) for a Coulomb-Potential U(r)∝ 1/r and for
positive energy, cf. [Scheck (1996)]. Scattering states in the field of
a pointlike charge are needed in phase shift analyses of scattering
of electrons on potentials with infinite range. We note, however, that
unlike the Schrödinger equation the Dirac equation does not yield
the classical Rutherford cross section.
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Elements of Quantum Electrodynamics
and Weak Interactions

Introduction

Quantum field theory in its application to electroweak and strong
interactions has two rather different facets: A pragmatic, empiri-

cal one, and an algebraic, systematical one. The pragmatic approach
consists in a set of rules and formal calculational procedures which
are extremely successful in their application to concrete physical pro-
cesses, but rest on mathematically shaky ground. The mathematically
rigorous approach, in turn, is technically difficult and not very use-
ful, from a practical point of view, for reaching results which can be
compared with phenomenology. Generally speaking, quantum field
theory quickly becomes rather technical if one wants to understand
it in some depth, and goes far beyond the scope of a textbook such
as this one. We refer to the many excellent monographs on this topic
some of which are listed in the bibliography.

This chapter introduces the most important calculational tech-
niques of quantum electrodynamics and illustrates its impressive
practical successes when confronted with experiment. Furthermore, it
is known that quantum electrodynamics is only one aspect of what
is called the standard model of electroweak and strong interactions.
A detailed description of this model and of its quantization would go
far beyond the size of this book. Nonetheless, this chapter concludes
with some remarks on the standard model and several examples of
weak interactions in tree approximation.

10.1 S-Matrix and Perturbation Series
We understand realistic quantum field theories (realistic in the sense of
describing physically interesting processes) almost exclusively in a per-
turbative framework. One starts from a well-defined and solvable theory
such as quantum field theory of free, noninteracting fields, or some
exact limit such as the theory of electrons in external fields, and con-
structs the physically relevant quantities from the interaction terms by
expansion in terms of “small” parameters. The expansion parameters
can be a set of coupling constants, or some momenta, or masses which
are typical for the processes one is studying. For example, scattering
processes with electrons and photons are expanded in terms of Som-
merfeld’s fine structure constant α, while for radiative corrections in

Contents

10.1 S-Matrix
and Perturbation Series . . . . . . 573

10.2 Radiative Corrections,
Regularization,
and Renormalization . . . . . . . . . 600

10.3 Epilogue:
Quantum Electrodynamics
in the Framework
of Electroweak Interactions . . 639
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1 In the early times the pioneers of
quantum field theory constructed the
perturbation series in the same way as
in quantum mechanics. Examples are
the calculation of vacuum polarization
by Uehling, and the analysis of the
Lamb shift by Bethe. (E.A. Uehling,
Phys. Rev. 8, 55, 1935; H.A. Bethe,
Phys. Rev. 72, 339, 1947). Thus the ad-
jective “modern” for the covariant for-
mulation.

bound states of atoms with charge number Z the expansion parameters
are (Zα) and the average momentum of the bound charged lepton. The
spirit of perturbation theory, to a large extent, is the same as in nonrela-
tivistic quantum mechanics, and results can often be interpreted in very
similar terms. Regarding techniques and specific difficulties, however,
there are important differences. Techniques are different because mod-
ern perturbation theory of quantum field theory is constructed such that
at every stage it is manifestly covariant1. The basic and very specific
difficulties of quantum field theory that do not occur in nonrelativistic
perturbation theory are due to the fact that every field theory describes
systems with an infinite number of degrees of freedom. A consequence,
among several others, is that the Heisenberg or Schrödinger pictures on
the one hand, and the interaction picture on the other (cf. Sect. 3.6),
no longer are unitarily equivalent so that calculations of the S-matrix,
without a more refined analysis, have no more than heuristic value.

The starting point is provided by a formal expansion of the S-matrix
in terms of products of the interaction H(int)

1 in the interaction picture
that we know from time dependent perturbation theory,

S= 1l+
∞∑

n=1

(−i)n

n!
+∞∫
−∞

dt1

+∞∫
−∞

dt2 · · ·
+∞∫
−∞

dtn

×T
(

H(int)
1 (t1)H

(int)
1 (t2) . . . H

(int)
1 (tn)

)
. (10.1)

The symbol T denotes time-ordering, with the time arguments increas-
ing from right to left. The idea is that the Hamiltonian of the theory can
be decomposed into a free, noninteracting term H0 whose eigenstates
are known, and an interaction term which in some sense is small. An
example is provided by quantum electrodynamics with electrons which
at the classical level is described by the Lagrange density (9.60) with
minimal coupling. In this case we have

L=Lγ +LD+L1 , with (10.2)

Lγ =−1

4
:FµνFµν: , (10.3)

LD = :ψ(x)
(1

2
iγµ

↔
∂ µ −me 1l

)
ψ(x): , (10.4)

L1 =−e :ψ(x)γµψ(x)Aµ(x): , (e=− |e|) . (10.5)

The Hamilton density is obtained from this by the rule explained in
Sect. 7.1.4, i. e. by constructing the canonically conjugate field mo-
menta, and the function

H̃ =
∑

i

πi∂0φ
i −L ,
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and by a subsequent Legendre transformation which eventually yields
the Hamilton density H(φi , πk). In the example above this is very sim-
ple: As L1 contains no derivatives one obtains H1 =−L1 and

H1 =
∫

d3x H1(x)= e
∫

d3x :ψ(x)γµψ(x)Aµ(x): .

Upon inserting this in (10.1) one obtains a Lorentz covariant series

S= 1l+
∞∑

n=1

(−i)n

n!
∫

d4x1

∫
d4x2 · · ·

∫
d4xn

×T
(
H1(x1)H1(x2) . . .H1(xn)

)
(10.6)

in increasing monomials in the Hamilton density of the interaction2.
This series is called Dyson series.

Before entering the more detailed analysis of this perturbative series
let us consider the general problem posed here, (though still quoting the
example of quantum electrodynamics with electrons). The equations of
motion that follow from the Lagrange density (10.2) are(

iγµ∂µ−m 1l
)
ψ(x)= e :γνψ(x)Aν(x): , (10.7)

�Aµ(x)= e :ψ(x)γµψ(x): . (10.8)

This is a system of coupled differential equations for the fermionic field
operator ψ(x) and the bosonic operator Aµ(x). Suppose, for a moment,
this system were exactly solvable and we knew its solutions, say ψ
and Aµ. Most certainly, these would turn out to be very complicated op-
erators, rather different from the free fields ψ and Aµ that are solutions
of the force-free Dirac equation and of the Maxwell equations with-
out external sources, respectively. For instance, the operator ψ would
do much more than create a free electron. The states it would create,
though carrying the quantum numbers of a single electron, would con-
tain an arbitrary number of photons. Likewise, Aµ would create states
which contain e+e−-pairs besides the isolated photon. We would neither
know the structure of the ground state of the exact theory nor in which
respect it differs from the perturbative vacuum of the theory without in-
teraction. On the basis of our experience with ground states of systems
of a finite number N of fermions (see Sect. 5.3) we presume that the
ground state of full quantum electrodynamics is a highly correlated state
that differs markedly from the perturbative vacuum.

Perturbation theory circumvents this inextricable problem by starting
from free fields and the perturbative vacuum, and by constructing the
effects of mutual interactions by a systematic expansion. However, one
has to struggle with problems of technical nature and of interpretation
that are unknown in the nonrelativistic N-body system. Furthermore,
several steps of this heuristic approach are of a formal nature and re-
quire much care and physical intuition in working out unique results
that can be tested by comparison with experiment.

2 Here and in what follows we omit
the superscript “(int)” that we used
above to denote the interaction picture.
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We now turn to the derivation of the Dyson series (10.1). One makes
use of the operator U(t, t0) which describes the temporal evolution in
the interaction picture and which is a solution of the Schrödinger equa-
tion with Hamiltonian H1, see Sect. 3.3.5,

iU̇(t, t0)= H1U(t, t0) .

Given the boundary condition U(t0, t0)= 1l this operator satisfies the in-
tegral equation

U(t, t0)= 1l−i

t∫
t0

dt′ H1(t
′)U(t′, t0) , (10.9)

which is solved by iteration, very much like in nonrelativistic quantum
theory. The formal solution reads

U(t, t0)= 1l−i

t∫
t0

dτ1 H1(τ1)

⎡⎣1l−i

τ1∫
t0

dτ2 H1(τ2)U(τ2, t0)

⎤⎦= . . .
= 1l+

∞∑
n=1

(−i)n
t∫

t0

dτ1

τ1∫
t0

dτ2 · · ·
τn−1∫
t0

dτn H1(τ1)H1(τ2) . . . H1(τn) .

The limits of integration tell us that the time arguments are ordered from
right to left, in increasing order, τ1 ≥ τ2 ≥ . . . ≥ τn−1 ≥ τn . This takes
account of the fact that H1(t) and H1(t′), taken at different times, pos-
sibly do not commute. All integrations can be extended to the interval
(t0, t) if one introduces a time ordering in the monomials of the inte-
grand and divides by n!. We show this for the example n = 2. In this
case one has

t∫
t0

dτ1

τ1∫
t0

dτ2 H1(τ1)H1(τ2)=
t∫

t0

dσ2

t∫
σ2

dσ1 H1(σ1)H1(σ2) .

If one replaces the integrands by the time-ordered product

T
(
H1(τ1)H1(τ2)

)
= H1(τ1)H1(τ2)Θ(τ1− τ2)+H1(τ2)H1(τ1)Θ(τ2− τ1) ,

and takes the two integrations over the whole interval from t0 to t, then
one obtains twice the double integral just above it. Thus, one can re-
place this integral by

1

2!
t∫

t0

dτ1

t∫
t0

dτ2 T
(
H1(τ1)H1(τ2)

)
,

which yields the same value. This argument is readily generalized to the
n-fold product in which case the multiple integral must be divided by n!.
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The S-matrix (10.1) is obtained by the simultaneous limit
(t0→−∞, t→+∞),

S= lim
t0→−∞

lim
t→+∞U(t, t0) .

As expected on general grounds, it contains a diagonal term 1l which
stands for “no scattering”, and a series in the interaction H1 and, hence,
in creation and annihilation operators of the quantum fields which are
contained in the interaction H1. Thus, when calculating matrix elements
S fi of the S-matrix between a given initial state |i〉 and a selected final
state | f 〉 the essential question will be how many particles are contained
in these states. In this way the number of creation operators and the
number of annihilation operators that are needed are fixed, and, thus, the
minimal order n of perturbation theory is defined at which the process
will happen.

In evaluating specific matrix elements S fi by means of the Dyson
series (10.6) one makes use of Wick’s theorem that we proved earlier,
in Sect. 5.4.5. We do not repeat this theorem here but illustrate its ap-
plication by a number of explicit examples that are worked out further
down.

10.1.1 Tools of Quantum Electrodynamics with Leptons
Quantum electrodynamics with electrons, muons, and τ-leptons is
a beautiful theory. It is not only the model theory for all renormalizable
quantum gauge theories, per se, it is also amazingly successful. In spite
of its lacking complete mathematical rigour, its predictions for radiative
corrections are well-defined and agree with all precision experiments
known today. In this section we collect the tools which, via the general
series expansion (10.6), define formal rules for covariant perturbation
theory. This provides the basis for the calculation and the discussion of
some important examples.

The defining Lagrange density reads

L=Lγ +
∑

f=e,µ,τ

L
( f )
D +L1 , (10.10)

where the symbol f is an abbreviation for the electron-positron field, or
the µ−µ+ field, or the τ−τ+field. The Lagrange density Lγ of the free
photon field is given by (10.3), while

L
( f )
D = :ψ( f )(x)

(1

2
iγµ

↔
∂ µ −m f 1l

)
ψ( f )(x): , (10.11)

L1 =−e
∑

f

:ψ( f )(x)γµψ( f )(x)Aµ(x): , (e=− |e|) . (10.12)

The interactions of any one of the charged leptons, e, µ, or τ , with the
radiation field are identically the same. Any differences in the observ-
ables can only be caused by the differences in their masses which are

me = 0.511 MeV , mµ = 105.66 MeV , mτ = 1777 MeV . (10.13)
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This empirical observation which holds as well for the weak interac-
tions of leptons, is called lepton universality. Their neutral partners
ν f = (νe, νµ, ντ ) do not couple to the Maxwell field because they carry
no electric charge. Charged leptons have no direct interactions among
each other. They talk to each other via the radiation field, and via their
weak interaction with W±- and Z-bosons. Uncharged leptons (the neu-
trinos) interact only through intermediate W±- and Z-bosons.

Inserting the expansion (7.143) for the photon field, and the expan-
sions (9.84) and (9.85) for the fermion field and its adjoint, respectively,
the characteristic interaction term of quantum electrodynamics

L1 =−e:ψ( f )(x)γµψ( f )(x)Aµ(x):

is seen to have the following structure in terms of creation and annihi-
lation operators a( f ), b( f ), a( f ) †, b( f ) †, for leptons of the family f , and
c, c† for the photon (suppressing spin degrees of freedom)

L1 ∼− e
{
. . . u f (q) a( f ) †(q)+ . . . v f (q) b( f )(q)

}
γµεµ(k)

×
{
. . . c(k)+ . . . c†(k)

}{
. . . u f (p)a

( f )(p)+ . . . v f (p)b
( f )†(p)

}
.

What matters here is the number of creation and annihilation opera-
tors contained in a product of field operators. In the present case there
are always two fermionic but only one photonic creation or annihila-
tion operators. Thus, in quantum electrodynamics there is one basic
vertex, linking a single photon line to two fermion/antifermion lines.
Furthermore, the terms in curly brackets represent the decompositions
into positive and negative frequency parts,

ψ = ψ(+)+ψ(−) , ψ = ψ(+)+ψ(−) , Aµ = (
Aµ

)(+)+ (
Aµ

)(−)
.

The following formulae apply to external fermions, incoming or outgo-
ing:

〈0|ψ( f )(x)
∣∣ f −(p, r)

〉= 〈0| (ψ( f )(x)
)(+) ∣∣ f−(p, r)

〉
= 1

(2π)3/2
u(r)f (p) e−ip·x , (10.14)〈

f +(p, s)
∣∣ψ( f )(x) |0〉 = 〈

f +(p, s)
∣∣ (ψ( f )(x)

)(−) |0〉
= 1

(2π)3/2
v
(s)
f (p) eip·x , (10.15)〈

f −(p, r)
∣∣ψ( f )(x) |0〉 = 〈

f −(p, r)
∣∣ (ψ( f )(x)

)(−) |0〉
= 1

(2π)3/2
u(r)f (p) eip·x , (10.16)

〈0|ψ( f )(x)
∣∣ f +(p, s)

〉= 〈0| (ψ( f )(x)
)(+) ∣∣ f+(p, s)

〉
= 1

(2π)3/2
v
(s)
f (p) e−ip·x . (10.17)
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Likewise, for incoming or outgoing external photons we have, respect-
ively,

〈0| Aµ(x) |k, λ〉 = 1

(2π)3/2
ε(λ)µ (k) e−ik·x , (10.18)

〈k, λ| Aµ(x) |0〉 = 1

(2π)3/2
ε(λ)µ (k) eik·x . (10.19)

Note that these must be physical photons which means that only the two
transverse states λ= 1 and λ= 2 (or linear combinations thereof) are
allowed.

When integrating over the momenta the exponentials in these for-
mulae yield δ-distributions for energy-momentum conservation at every
vertex. Furthermore, already at this point we take note of a factor
1/(2π)3/2 for every external particle, as well as of the fermion spinors
and the polarizations, respectively, which are as follows.

(f1) u(r)f (p) for every incoming f − with momentum p and spin orien-
tation r,

(f2) v
(s)
f (p) for every outgoing f+ with momentum/spin (p, s),

(f3) u(r)f (p) for every outgoing f − with momentum/spin (p, r),

(f4) v
(s)
f (p) for every incoming f+ with momentum/spin (p, s), and

(ph) ε(λ)µ (k) for an incoming or outgoing photon with momentum k and
polarization λ.

An internal, i. e. virtual photon which is exchanged between two
vertices, is represented by the propagator (7.149) in Feynman gauge

〈0| T Aµ(x)Aν(y) |0〉 = i

(2π)4

∫
d4k e−ik·(x−y) −gµν

k2+ iε
. (10.20)

This will be reflected by a simple rule in momentum space: Every in-
ternal photon line translates into the factor −gµν/(k2+ iε).

A virtual lepton f which propagates from x ∈ M4 to y ∈ M4 is rep-
resented by the propagator (9.110)

〈0|Tψ( f )(x)ψ( f )(y)|0〉= i

(2π)4

∫
d4 p e−ip·(x−y)

(
/p+m f 1l

)
p2−m2

f+iε
. (10.21)

Thus, in momentum space representation an internal fermion line comes
with the factor(

/p+m f 1l
)

p2−m2
f + iε

.

In summary, the series (10.6) and the above formulae provide the es-
sential tools which allow to formulate general rules for constructing
amplitudes describing specific processes of quantum electrodynamics.
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There is an obvious question which is much more subtle to answer:
What are the values of the masses m f in (10.11) and of the coupling
constant e, or α, in (10.12) that should be chosen? Indeed, it turns out
that if we insert here the physical masses m f as they are known from
experiment, and the physical charge e as measured in Thomson scat-
tering, cf. Sect. 7.4.3, these initial values are modified by contributions
in higher orders of perturbation theory. Therefore, we should expect,
in the course of the development, the Lagrange density (10.10) to be
supplemented by counterterms, in order to take account of these cor-
rections. If, for example, m(0)f are the original, bare masses, this means
that (10.11) must be replaced by

L
( f )
D + δm f :ψ( f )(x)ψ( f )(x): , where δm f = m f −m(0)f

is the difference of the measured mass m f and the starting parame-
ter m(0)f . This phenomenon of renormalization of masses and coupling
constants is not new and occurs also in nonrelativistic quantum theory
of N particles. However, there is an essential difference: In the quan-
tum N-body system the differences between the physical quantities and
the parameters of the defining theory are finite, while in a renormal-
izable quantum field theory they are usually infinite. In other terms,
since the physical values are finite, this means that the bare parameters
must be infinitely large. In fact, also the wave functions of the interact-
ing theory, obtained from perturbation theory, differ from those of the
free theory by infinitely large factors. These phenomena are called mass
renormalization, charge renormalization, and wave function renormal-
ization, respectively. They are the cause of a filigree of mathematical
subtleties of renormalizable quantum field theory and they imply aspects
of the theory which are not easy to visualize.

10.1.2 Feynman Rules for Quantum Electrodynamics
with Charged Leptons

In this section we first formulate the Feynman rules for perturbative
quantum electrodynamics in the form of a list of instructions on how to
translate diagrams into formulae. As is shown subsequently, the func-
tions, the factors, and the signs that have to be inserted, either follow
from the general principles described in Chap. 7 and Chap. 8, or from
the set of tools described above.

Rules for Amplitudes of Quantum Electrodynamics:

(R0) The Aim: The rules yield the second term of the symbolic de-
composition of the S-matrix into the diagonal part 1l and the reaction
matrix R,

S= 1l+R
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for the transition from the initial state “i” to the final state “ f ” that
one wishes to calculate, viz.

S fi = δ fi + R fi . (10.22)

The T -matrix whose elements are needed for the calculation of cross
sections or decay widths, cf. sections 8.2.3 and 8.2.4, is then obtained
by extracting the factor i(2π)4δ(Pf − Pi) from R fi where Pi and Pf
denote the sum of all four-momenta in the initial and final states, re-
spectively.

(R1) Diagrams: For a given process A+ B→ C+ D+· · · one
draws all connected diagrams of order n. External and internal lepton
lines are provided with arrows such that the direction of the arrows
coincides with the direction of flow of negative charge. The rules that
we formulated in Sect. 9.3.4 are equivalent to this: One defines who
should be termed particle (traditionally, in quantum electrodynamics
these are the e−, the µ−, and the τ−) and thus defines the corre-
sponding antiparticle. For a particle the arrow points towards the
vertex if it is incoming, and away from it when it is outgoing. For
an antiparticle the arrow leaves the vertex when it is incoming, and
enters the vertex when it is outgoing.

The factors of the following rules (R2) to (R4) are to be written
down from right to left, by following the direction of the arrow as
defined above.

(R2) External Lines: An incoming lepton f − is represented by the

spinor u(r)f (p), an outgoing lepton by the spinor u(r)f (p), whose argu-
ments are the given momenta and spin orientations. An antiparticle

f + is represented by v(r)f (p) if it is an incoming one, and by v(r)f (p)
if it is outgoing.
Every incoming or outgoing photon yields the real function ε(λ)µ (k),
with λ= 1, 2. The index µ is to be contracted with the factor γµ at
the vertex to which the photon is hooked (see next rule).

(R3) Vertices: At every vertex insert eγµ as well as a δ-distribution
for the four-momenta attached to this vertex, such that energy and
momentum are conserved.
For this balance one must first clarify the flow of the momenta (see
next rule).

(R4) Internal Lines: Every internal lepton line is represented by
the propagator in momentum space(

/p+m f 1l
)

p2−m2
f + iε

.

The direction of the virtual momentum p follows the arrows, that is,
it is the same as that of the flow of negative charge.
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Every internal photon line stands for the propagator in momentum
space

−gµν
k2+ iε

(provided the Feynman gauge is chosen). The indices µ and ν refer
to the two vertices on which the propagator hinges. They are to be
contracted with the matrices γµ and γν, respectively, that are there
by rule (R3).
(R5) Integrations: The analytical expression obtained from the
previous rules must be integrated over the momenta of all internal
lines. Note that the spin sums as well as the sum over lepton and
antilepton contributions are contained in the propagators. The inte-
grations over the internal momenta leaves us with a δ-distribution for
the difference Pi− Pf as an overall factor. This factor drops out when
passing from the R-matrix to the T -matrix.

(R6) Signs: (a) The amplitude T fi receives a factor (−)Π where Π
denotes the permutation of the leptons of the same species in the final
state.
(b) With L the number of closed lepton loops contained in the dia-
gram, the amplitude T fi receives the overall factor (−)L .

(R7) C-Invariance of Maxwell Theory: A closed loop of virtual
lepton lines to which an odd number of photons are attached, gives
no contribution.

(R8) Numerical Factors: The matrix element R fi with, in total, la
external lepton lines and ba external photon lines obtains the numer-
ical factor(

(2π)−3/2
)la+ba

.

In other terms, every external particle yields a factor (2π)−3/2, inde-
pendently of whether it is a fermion or a photon.
Let li denote the number of internal lepton lines, bi the number of
internal boson lines, and, as before, let n be the order. Then R fi re-
ceives the additional factor

in+li+bi (2π)4(n−li−bi) .

Note that these factors hold for the matrix element R fi . The mat-
rix element T fi which represents the physical amplitude (scattering
or decay) follows from R fi by separating the numerical factor i (2π)4

and the distribution δ(Pi − Pf ).

Rule (R1) talks about connected diagrams. These are diagrams
which are not composed of two or more disjoint parts. This restriction is
plausible because otherwise there would be contributions to the reaction
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matrix where particles would pass by one another without interacting.
Rule (R2) and the first numerical factor in (R8) are consequences of
the decompositions (7.143) and (9.84), (9.85) of the quantized fields in
terms of normal modes, as well as of the conventions we have chosen.
The second numerical factor in (R8) stems from the following contribu-
tions

– (−i)n from the Dyson series (10.6),
– the sign (−)n from the sign of the interaction term (10.12),
– a factor i from every lepton propagator (10.21) and every photon

propagator (10.20), so, in total, ili+bi ,
– a factor (2π)−4(li+bi) which stems from the propagators as well, and

a factor (2π)4 from every integration
∫

d4x with exponentials, i. e.,
in total, (2π)4n .

Regarding rule (R3) on vertices: Every vertex links three internal
or external lines, two of which are fermionic, the third being bosonic.
Both the propagators and the field operators proper yield exponentials
whose argument is x times the balance of the four-momenta at the ver-
tex. Upon integration over x one obtains 4π times a δ-distribution for
every vertex. The integration over the internal momenta, in turn, is done
without restriction.

The rule (R6a) is obvious because fermion fields of the same kind
anticommute. The rules (R6b) and (R7) need a more detailed analysis:
Consider the current density

jα(x)= :ψ(x)γαψ(x):
of a given, fixed lepton species “ f ”. Since in a closed loop only one and
the same lepton runs through, we omit the superscript f . As one realizes
easily the contribution of any such closed loop contains the factor

〈0| T jµ1(x1) jµ2(x2) . . . jµm (xm) |0〉 . (10.23)

In order to reduce this expression to a product of propagators (10.21)
one must reorder the field operators within the vacuum expectation
value until they appear in the order ψψψψ . . . . This procedure always
needs an odd number of permutations. For the sake of simplicity we
consider an example:

〈0| T ψ(x)α
(
γµ

)
αβ
ψβ(x)ψ(y)σ

(
γν

)
στ
ψτ(y) |0〉

= −(γµ)
αβ

(
γν

)
στ
〈0| T ψβ(x)ψ(y)σψτ(y)ψ(x)α |0〉

= −(γµ)
αβ

(
γν

)
στ
〈0| T ψβ(x)ψ(y)σ |0〉 〈0| T ψτ(y)ψ(x)α |0〉

Thus, for every closed loop there is a factor −1.
If m photon lines are attached to the loop, that is, if it contains
m vertices, then rule (R7) says that this number must be even. This
is a consequence of the invariance of the interaction with respect to
charge conjugation. Indeed, applying C to (10.23), and taking account

−

−

Fig. 10.1. (a) This diagram could con-
tribute to electron-muon scattering at
order n = 6. However, since an odd
number of photons are attached to the
electron loop, its contribution equals
zero. (b) This diagram describes a con-
tribution to light by light scattering of
the lowest order, n = 4. The contribu-
tion does not vanish because four pho-
tons couple to the loop
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X

−

Fig. 10.2. A virtual photon is being ex-
changed between the external potential,
symbolized by X, and the scattering
lepton f −

of the fact that the current operator is odd under charge conjugation,
C−1 jµ(x)C=− jµ(x), one obtains

〈0| T jµ1(x1) jµ2(x2) . . . jµm (xm) |0〉
= 〈0|C−1CT jµ1(x1) jµ2(x2) . . . jµm (xm)C−1C |0〉
= (−)m 〈0| T jµ1(x1) jµ2(x2) . . . jµm (xm) |0〉 .

This contribution vanishes if the number of vertices m is odd. Fig. 10.1a
shows an example for which the amplitude vanishes due to (R7), while
Fig. 10.1b shows another example which gives a nonvanishing contribu-
tion.

The Feynman rules are supplemented by a further rule which allows
to calculate scattering on an external Coulomb potential. This potential
is a model for a heavy charged particle, an atomic nucleus for instance,
on which the electron is scattered. In a process of this kind the en-
ergy must be conserved, but spatial momentum need not be conserved.
The heavy partner can absorb, or deliver, an arbitrary amount of mo-
mentum, without changing its state of rest in any appreciable manner.
A patient scattering partner of this sort is denoted by an X, as sketched
in Fig. 10.2.

The rule reads as follows

(R9) Scattering on an External Potential: The charged lepton and
the virtual photon are to be treated like in the rules (R1) to (R8), with
the exception of (R3). At the (only) vertex write a one-dimensional
δ-distribution for the energy (replacing the four-dimensional one of
rule (R3)). Furthermore, the factor eγµ must be replaced by

δµ0
Ze

(2π)3
�̃(k)
k2 , (10.24)

where �̃(k) is the form factor which corresponds to the charge density
�(x),

�̃(k)=
∫

d3x e−ik·x�(x)

the charge density being normalized to 1,
∫

d3x �(x)= 1.

The proof of this rule is the content of Exercise 10.1.

10.1.3 Some Processes in Tree Approximation

In this section we illustrate the Feynman rules of quantum electro-
dynamics by the processes
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(a): e∓+γ −→ e∓+γ ,
(b): e−+ e− −→ e−+ e− ,
(c): e−+ e+ −→ e−+ e+ ,
(d): e−+ e+ −→ γ +γ ,
(e): e−+ e+ −→ µ−+µ+ ,
(f): e−+ e+ −→ τ−+ τ+
which we calculate to lowest order, i. e. n = 2. In this order of perturba-
tion theory there are no internal loops yet. Therefore, the corresponding
diagrams look like the fir-trees that we used to draw when we were
children. Indeed, diagrams of this sort are called tree diagrams.

The process (a) is the Compton effect of the electron or positron,
(b) is called Møller scattering, (c) is called Bhabha scattering, all three
of them referring to well-known physicists of the twentieth century. The
process (d) is called pair annihilation in flight, while (e) and (f) are
pair creation processes from colliding electron and positron beams. The
latter series continues and includes e−e+ → pp̄, e−e+ → qq̄ (where q
denotes a quark), etc.

The reactions (c), (e), and (f) are of particular relevance for ex-
periments on e+e−-colliders because, on the one hand, they serve to
test quantum electrodynamics and the radiative corrections it predicts at
high energies, and, on the other hand, they are reference reactions for
the creation of hadrons by e−e+ pair annihilation. Regarding the second
perspective, one measures the ratio

R = dσ(e−e+ → qq̄)

dσ(e−e+ → µ−µ+)

of quark-antiquark and of muon-antimuon creation in order to investi-
gate hadronic physics.

Bhabha scattering (c) as well as pair annihilation often serve as an-
alyzing reactions for the polarization of the positron: One scatters the
incoming positrons, e. g. on a polarized iron foil and uses the spin de-
pendence of the cross sections for determining their polarization. Like-
wise, the spin dependence of Compton scattering (a) is used to measure
the polarization of photons. This shows that the reactions (a)–(f) yield
far more than topics of academic exercises!

Before analyzing these reactions in more detail let us work out some
of their general properties as well as possible relations between them.
For this purpose we consider the slightly more general case of a two-
body reaction A+ B→ C+D, the masses and four-momenta being as
indicated in parantheses,

A (m1, p1)+ B (m2, p2)−→ C (M1, q1)+D (M2, q2) . (10.25)
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Define the Lorentz invariant kinematic variables

s := (p1+ p2)
2 = (q1+q2)

2 , (10.26)

t := (p1−q1)
2 = (p2−q2)

2 , (10.27)

u := (p1−q2)
2 = (q1− p2)

2 , (10.28)

where use was made of the relation p1+ p2 = q1+q2 for energy-
momentum conservation. These variables which are called Mandelstam
variables are not linearly independent. Indeed, one has

s+ t+u = m2
1+m2

2+M2
1 +M2

2 , (10.29)

or, in words, their sum equals the sum of the squares of the four external
masses. This is easily verified by direct calculation: With

s = m2
1+m2

2+2p1 · p2 ,

t = m2
1+M2

1 −2p1 ·q1 ,

u = m2
1+M2

2 −2p1 ·q2

and p2−q1−q2 =−p1 one obtains

s+t+u = m2
1+m2

2+M2
1+M2

2+2m2
1−2p2

1 = m2
1+m2

2+M2
1+M2

2 .

The physical meaning of s and t is understood most easily by eval-
uating them in the center-of-mass system. Knowing that p1 =−p2 one
sees that s is the square of the total energy

s = (E p1 + E p2)
2 .

The variable t describes the transfer of momentum and, therefore,
is a function of the scattering angle in the center-of-mass system.
We study two special cases which may be sufficient for the ex-
amples (a)–(f):

(i) Pairs of equal masses in the initial and final states, i. e. m1 =m2 ≡
m and M1 = M2 ≡ M: Let κ and κ′ denote the modulus of the spa-
tial momentum before and after the scattering, respectively. One
then has

s = 4(m2+κ2)= 4(M2+κ′ 2) , (10.30)

t = m2+M2−2
√
(κ2+m2)(κ′ 2+M2)+2κκ′ cos θ

= m2+M2− s

2
+ 1

2

√
(s−4m2)(s−4M2) cos θ (10.31)

u = m2+M2− s

2
− 1

2

√
(s−4m2)(s−4M2) cos θ . (10.32)

(ii) Elastic scattering, m1 = M1 ≡ m, and m2 = M2 ≡ M:
As we are dealing with elastic scattering we now have κ = κ′.
A short calculation yields the formulae

κ = 1

2
√

s

√(
s− (m+M)2

)(
s− (m−M)2

)= κ′ , (10.33)
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s = m2+M2+2κ2+2
√
(κ2+m2)(κ2+M2) , (10.34)

t =−2κ2(1− cos θ) . (10.35)

The scattering process (10.25) which is sketched in Fig. 10.3a, can
be analyzed further in the light of possible symmetries, without disen-
tangling yet the interaction region in terms of perturbation theory. For
example, the particle D can be replaced by its antiparticle D by requir-
ing that it should be incoming, instead of outgoing. At the same time
A is replaced by A and is taken to be outgoing. This means that to the
process (10.25) one associates the process

B+D−→ C+ A ,

as shown in Fig. 10.3b). Formally, the amplitude for this process,
Fig. 10.3b), is obtained from the amplitude for (10.25), Fig. 10.3a), by
continuing q2 to −q2, and p1 to −p1. The variable t of the first process
turns into the s-variable of the second, while the s-variable of the first
becomes the physical t-variable of the second process. For this reason
the original reaction is called the s-channel reaction, while the second
which is obtained from the first by continuation of kinematic variables,
is called the t-channel reaction. On the analytical side this means the
following: Suppose one knows the amplitude of the s-channel reac-
tion (10.25) as a function of the variables s and t. Then the amplitude
for the corresponding t-channel reaction B+D→ C+ A is obtained by
exchanging s and t. More importantly, however, this crossing needs an-
alytic continuation of the amplitude to the correct physical domains of
the variables.

The t-channel reaction can also be viewed in a different orientation
of the momenta, that is to say, as the process A+C→ B+ D which
is the charge conjugate, inverse reaction of B+ D→ C+ A. This op-
eration which is called crossing, is especially interesting in those cases
where crossing the external lines yields again the same process. An ex-
ample is provided by Bhabha scattering

e−+ e+ −→ e−+ e+ ,
whose t-channel partner coincides with the original reaction. As a con-
sequence, the absolute square of the scattering amplitude, when ex-
pressed in terms of the invariant variables s and t, must be symmetric
under the exchange s↔ t.

Note that here we are talking about the corresponding relative anti-
particles, and, therefore, that it might be better to talk about the charge
conjugate partners. Charge conjugation changes the signs of all ad-
ditively conserved quantum numbers, including in particular electric
charge. Therefore, the selection rules for the t-channel reaction are ful-
filled precisely if they are fulfilled for the original reaction.

Returning to the general reaction (10.25), there is one more partner
of it: let the particle A and the antiparticle D of D be incoming, the

⇑
s-channel

⇐ t-channel

A B

C D

A B

C D
⎯

Fig. 10.3. (a) shows the reaction A+ B
→ C+ D in the s-channel; (b) shows
the reaction B+ D→ C+ A, i. e. the
t-channel related to the first reaction.
Here, the arrows at the outer lines do
not obey Feynman rules but refer to in-
coming and outgoing particles, respect-
ively. The bubble in the interaction area
stands for all diagrams contributing to
this process
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s-channel t-channel u-channel symmetry

e−e+ → γγ e±γ → e±γ e−γ → e−γ t↔ u
e−e− → e−e− e−e+ → e−e+ e−e+ → e−e+ t↔ u
e+e−→µ+µ− e−µ+→e−µ+ e−µ−→e−µ−
e−e+ → e−e+ e−e+ → e−e+ e−e− → e−e− s↔ t

Table 10.1. Some typical processes of
the leptonic quantum electrodynamics
with their crossed channels

a)

b)

−

1

1

1

2

2

2

2

2

2

1

1

1

Fig. 10.4. (a) The incoming photon is
swallowed by the incoming electron
which then runs on as a electron-
positron propagator with non-physical
momentum (p1+ p2) until it finally dis-
gorges the outgoing photon and returns
to its mass shell (b) The incoming elec-
tron first emits the outgoing photon and
then absorbs the incoming photon

particles C and B be outgoing, viz.

A+D−→ C+ B .

The process obtained in this way is called the u-channel reaction asso-
ciated to (10.25). In this case it is the variables s and u which exchange
their roles, while t keeps its role. Consider the example of Møller
scattering (b), e−+ e− → e−+ e−. Both the associated t-channel and
u-channel reactions yield the process e−+e+→ e−+e+. Therefore, the
absolute square of the amplitude for Møller scattering must by symmet-
ric under interchange of t with u.

The scattering processes that we study in this section are listed in
the table above, together with their t- and u-channel partners and their
possible symmetries in the variables s, t, and u.

The t−u symmetry in the first two rows of Table 10.1, and the s− t
symmetry in the last row are marked by boxes. These symmetries are
useful in short-cutting calculations. Crossing and the analytic continu-
ation that goes with it are useful also in cases where there is no such
symmetry because, starting from one out of a set of three associated
cross sections, they allow to deduce the other two.

Compton Scattering on Electrons and Positrons: To lowest order,
n = 2, scattering of a photon on an electron is described by the two
tree diagrams of Fig. 10.4 which, in terms of physics, say this: In the
diagram 10.4a) the incoming photon was absorbed before the outgoing
photon is emitted, while in the diagram 10.4b) the outgoing photon is
emitted before the incoming one was absorbed. The rules (R1) to (R8)
of the preceding section are easy to implement here. To order n = 2
the only connected diagrams are the ones sketched in Fig. 10.4. The in-
tegration over the internal momentum of the virtual electron/positron
line yields two δ-distributions. These are rewritten such that one obtains
the expected distribution δ(Pi− Pf ) of energy-momentum conservation,
and, at the same time fixes the momentum in the propagator. Consider
the example of the diagram 10.4a), for the sake of illustration. Denoting
the momentum of the virtual line by Q, rule (R3) requires the factor

δ(p1+ p2−Q)δ(Q− p2−q2)

= δ(Q− (q1+q2)
)
δ
(
(p1+ p2)− (q1+q2)

)
.
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Thus, it yields the expected δ-distribution for energy and momentum
conservation and it determines Q to be Q = p1+ p2. The second dia-
gram is worked out in the same manner. This means that we can
construct the T -matrix element directly and need not go via the func-
tion R fi .

We use a short-hand notation for the polarizations of the incoming
and outgoing photons, ε′ ≡ ε(λ′)µ (q2) and ε≡ ε(λ)ν (p2), suppress the spin
orientations of the in- and out-states of the electron, and write the elec-
tron mass as m1 ≡ m. The T -amplitude then reads

T(e−γ → e−γ)

=− e2

(2π)6
u(q1)

(
/ε′ (/p1+/p2)+m 1l

(p1+p2)2−m2 /ε+/ε
(/p1−/q2)+m 1l

(p1−q2)2−m2 /ε
′
)

u(p1)

=− e2

(2π)6
u(q1)

(
/ε′ (/p1+/p2)+m 1l

2p1 · p2
/ε−/ε(/p1−/q2)+m 1l

2p1 ·q2
/ε′
)

u(p1) .

(10.36)

In the second step we made use of the mass shell conditions p2
1=m2=q2

1
and p2

2 = 0= q2
2. Before actually calculating the cross section from this

amplitude I wish to add a few remarks:

Remarks

1. The invariance under gauge transformations in position space,
Aµ(x) �→A′µ(x)= Aµ−∂µχ(x), when translated to momentum space
(i. e. by Fourier transform), reads

Ãµ(k) �−→ Ã′µ = Ãµ(k)+ c kµ ,

where c is a number whose value is of no importance here (it is
proportional to χ̃(k)). This is equivalent to the rule that one should
make the replacement

εµ �−→ εµ+ c kµ (10.37)

in all amplitudes with external photons. If upon replacement of εµ
by kµ the amplitude yields a term that vanishes, then the gauge in-
variance of one’s calculation is verified.
Let us perform this simple test for the example of /ε �→ /p2 in the
amplitude (10.36): Replacing /ε by /p2 in the first term its numerator
yields /p1/p2+/p2/p1 = 2p1 · p2 and, using /p2/p2 = p2

2 = 0,(
/p1+/p2+m 1l

)
/p2 = 2p1 · p2−/p2/p1+m/p2 .

Applying then /p1 to u(p1) one obtains /p1u(p1)= mu(p1), so that
the last two terms on the right-hand side cancel when applied
to u(p1). Thus, one obtains

u(q1)/ε
′ /p1+/p2+m 1l

2p1 · p2
/p2u(p1)= u(q1) /ε

′ u(p1) .
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a)

b)
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Fig. 10.5. Compton scattering on the
positron: instructive as an example for
a process in tree approximation, though
experimentally quite exotic

Regarding the second term, the replacement /ε→ /p2 turns the numer-
ator into

/p2
(
/p1−/q2+m 1l

)= /p2
(
/q1−/p2+m 1l

)= 2p2 ·q1−/q1/p2+m/p2 .

Here the energy-momentum balance was used in the form p1−q2 =
q1− p2 from whose square one obtains p1 ·q2 = p2 ·q1. Letting
/q1 act on u(q1) to the left, and making use of the Dirac equation
u(q1)/q1 = mu(q1), yields

u(q1)

(
−/p2

(/p1−/q2)+m 1l

2p1 ·q2
/ε′
)

u(p1)=−u(q1) /ε
′ u(p1) .

Indeed, the sum of the two contributions gives zero.
The reader is invited to work out the second test of gauge invari-
ance where /ε′ is replaced by /q2 and where she or he should find
a vanishing result, too.

2. The test performed in the previous example refers to a general
property. For this reason terms in which ε(λ)µ (k) is replaced by kµ
are called gauge terms. As the process that we are studying here
contains only external, and hence transverse photons the ampli-
tude (10.36) contains only the polarizations λ= 1 and λ= 2. Never-
theless, in the calculation of |T |2 and of the sums over spins one
may include all four polarizations of the photons, i. e. the unphys-
ical degrees of freedom ε(0) and ε(3), as well. Indeed, it will turn
out that the latter yield gauge terms of the kind just described whose
contribution vanishes.

3. Compton scattering on the positron is treated in complete analogy
to the example above. The two diagrams of order n = 2 are drawn
in Fig. 10.5. Following the rules (R1)–(R8) they are transcribed into
a scattering amplitude which reads

T(e+γ → e+γ)

=− e2

(2π)6
v(p1)(

/ε′ (/q2−/p1)+m 1l

(p1−q2)2−m2 /ε+/ε
−(/p1+/p2)+m 1l

(p1+ p2)2−m2 /ε
′
)
v(q1)

=− e2

(2π)6
v(p1)(

−/ε′ (/q2−/p1)+m 1l

2p1 ·q2
/ε+/ε−(/p1+/p2)+m 1l

2p1 · p2
/ε′
)
v(q1) ,(10.38)

where, again, p2
2 = 0 = q2

2 and p2
1 = m2 = q2

1 were inserted. It is
a simple exercise to perform the analogous test of gauge invariance.
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We continue with the calculation of the differential cross section

dσ(e−γ → e−γ)= (2π)10δ(q1+q2− p1− p2)

1

4E p1 E p2 |v|
1

4

∑
r,s

∑
λ,λ′

∣∣T(e−γ → e−γ)
∣∣ 2 d3q1

2Eq1

d3q2

2Eq2

. (10.39)

The first factor right after the δ-distribution is due to the flux factor
(8.28), the second factor is due to the averaging over the polariza-
tions of the electron and the photon (there are two for each of them).
With (10.33), m1 =m, and M = 0 the modulus of the spatial momentum
is κ = (s−m2)/(2

√
s), and from (8.30) the flux factor becomes

4E p1 E p2 |v| = 4κ
√

s = 2(s−m2) .

Evaluation of the invariant squared momentum transfer t by means of
(10.35) yields

t =−
(
s−m2

)2

2s

(
1− cos θ

)
,

so that d(cos θ) can be expressed by dt. Since the cross section, when
averaged over spins, cannot depend on φ one integrates over this angle.
Thus,

2π d(cos θ)= 2π
d(cos θ)

dt
dt = 2π

2s

(s−m2)2
dt ,

and the differential cross dσ/dΩ can be converted to the invariant cross
section dσ/dt using

dσ

dt
= 2s

(s−m2)2

2π∫
0

dφ
dσ

dΩ
. (10.40)

The remaining procedure is now well defined: one calculates dσ/dΩ in
the center-of-mass sytem, expresses the result as a function of the in-
variants s and t, and inserts in (10.40). The resulting expression dσ/dt
is Lorentz invariant as a whole and, therefore, may later be evaluated in
any frame of reference which is defined by an experimental set-up.

The differential cross section in the center-of-mass sytem is obtained
by integration of the general formula (10.39) over the momentum q1 of
the outgoing electron and over the modulus κ′ of the momentum of the
outgoing photon. The integration

∫
d3q1 . . . is neutralized by the three

spatial δ-distributions so that, using spherical polar coordinates for q2,
d3q2 = κ′ 2 dκ′ dΩ, one obtains the intermediate result

dσ

dΩ
= (2π)10 1

2(s−m2)

×
∞∫

0

κ′ 2 dκ′ 1

(2Eq12κ′)
1

4

∑
Spins

|T | 2δ(1)(Eq1+κ′ −
√

s) .
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Here Eq2 = |q2| = κ′ was inserted and we made use of the fact that the
sum of the energies in the initial state equals

√
s (in the center-of-mass

sytem). The energy of the electron in the final state is Eq1 =
√
κ′ 2+m2

and there remains the integral

J ≡
∞∫

0

κ′ dκ′√
κ′ 2+m2

δ(1)(
√
κ′ 2+m2+κ′ −√s)

∑
|T | 2 .

Of course, J receives contributions only when

κ′ = s−m2

2
√

s
,

and we have to deal with an integral of the type
∫

dx f(x)δ
(
g(x)

)
which

one obtains from the formula (cf. Appendix A.1)

δ
(
g(x)

)=∑
i

1

|g′(xi)|δ(x− xi)

where the sum runs over simple zeroes only. One obtains

J =
∑
Spins

|T | 2 s−m2

2s
.

Collecting all factors, inserting (10.40), and taking into account that
in natural units e2 = 4πα, one finds

dσ

dt
= α2π

(s−m2)2

1

4

∑
Spins

∣∣∣∣ (2π)6e2 T

∣∣∣∣2 .
Finally, one calculates the spin sums of |T |2. We start from (10.36),

and insert s= (p1+ p2)
2, u = (p1−q2)

2 in the numerators, thus obtain-
ing

M ≡−(2π)
6

e2 T = ε(λ′)µ (q2) u(s)(q1)Q
µνu(r)(p1) ε

(λ)
ν (p2) with

Qµν = γµ /p1+/p2+m 1l

s−m2 γν+γν /p1−/q2+m 1l

u−m2 γµ .

As noted above, in principle, the sums over λ and over λ′ should com-
prise only the values 1 and 2. However, the following argument shows
that one may as well sum over all four polarizations, including the lon-
gitudinal and timelike polarizations, without modifying the value of the
cross section. As an example, we consider the incoming photon, the
case of the outgoing photon being very similar. The relation (7.142)
reads

ε(λ)µ (k) g
λλ̄
ε(λ̄)ν (k)= gµν .
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Using the formulae for ε(0)µ (k) and ε(3)µ (k) that were given in Sect. 7.5.2
above, one has

2∑
λ=1

ε(λ)µ (k)ε
(λ)
ν (k)=−gµν+ε(0)µ (k)ε(0)ν (k)−ε(3)µ (k)ε(3)µ (k)

=−gµν+ 1

k · t
(
kµtν+ tµkν− kµkν/(k · t)

)
.

The second term on the right-hand side contains three gauge terms, i. e.
terms which are proportional to either kµ or kν. Therefore, in the sums
over the polarizations of the incoming as well as the outgoing photon
the following replacements do not change the result:

2∑
λ=1

ε(λ)µ (p2)ε
(λ)
ν (p2) �−→−gµν ,

2∑
λ′=1

ε(λ
′)

σ (q2)ε
(λ′)
τ (q2) �−→−gστ .

(10.41)

This is a reflection of the general observation made earlier in Sect. 7.5.3:
the contributions of timelike and longitudinal photons cancel in the ob-
servables.

The sums over the spin orientations of the electron are performed by
means of the trace techniques. This yields

1

4

∑
Spins

|M| 2 = 1

4
tr
{
(/q1+m 1l)Qστ(/p1+m 1l)Q̃στ

}
= 1

4
tr
{
(/q1+m 1l)Qστ(/p1+m 1l)Qτσ

}
where the relation

Q̃στ ≡ γ 0(Qστ
)†
γ 0 = Qτσ

was inserted (note the position of the indices!). This relation is easily
verified.

Of course, at this point one must replace Qµν by its complete
expression, then work out the traces by means of the formulae
of Sect. 9.3.3, and write the result in terms of the variables s, t, and u.
Note, however, that one may halve the effort by making use of the sym-
metry s↔ u noted previously. In view of this symmetry we write

1

4

∑
spins

|M| 2 = a(s, u)+b(s, u)+a(u, s)+b(u, s) ,

where the functions a(s, u) and b(s, u) are given by

a(s, u)= 1

4

1

(s−m2)2

× tr
{
(/q1+m 1l)γµ(/p1+/p2+m 1l)γ ν(/p1+m 1l)γν(/p1+/p2+m 1l)γµ

}
,
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b(s, u)= 1

4

1

(s−m2)(u−m2)

× tr
{
(/q1+m 1l)γµ(/p1+/p2+m 1l)γ ν(/p1+m 1l)γµ(/p1−/q2+m 1l)γν

}
.

One then uses the formulae of Sect. 9.3.3 and, specifically, the summed
expressions (9.121)–(9.123), and converts the scalar products to the
variables s and u according to

p1 · p2 = q1 ·q2 = 1

2
(s−m2) , p1 ·q1 = m2− 1

2
t = 1

2
(s+u) ,

p1 ·q2 = q1 · p2 = 1

2
(m2−u) , p2 ·q2 =−1

2
t = 1

2
(s+u)−m2 .

In this way one obtains

a(s, u)= 2

(s−m2)2

{
4m4− (s−m2)(u−m2)+2m2(s−m2)

}
,

b(s, u)= 2m2

(s−m2)(u−m2)

{
4m2+ (s−m2)+ (u−m2)

}
.

Finally, the invariant cross section is found to be

dσ

dt
= 8πα2

(s−m2)2

{(
m2

s−m2 +
m2

u−m2

)2

+ m2

s−m2 +
m2

u−m2 −
1

4

(
s−m2

u−m2 +
u−m2

s−m2

)}
.

(10.42)

This result whose s↔ u-symmetry is obvious, is Lorentz invariant:
dσ is a physical quantity and, hence, cannot depend on the frame of
reference one has chosen, while the variables s, t, and u, by their very
definition, are Lorentz scalars.

Remarks

1. Noting that the iε term in the denominator of the electron-positron
propagator is irrelevant for tree diagrams, we dropped this pre-
scription from the start. However, as soon as the contribution of
a diagram contains integrations over genuine internal loops this rule
is important.
Although it certainly is instructive to calculate traces of the kind en-
countered here analytically and by means of paper and pencil, one
nowadays makes use of algebraic program packages which allow to
perform complicated traces in an efficient way.

2. The evaluation of the expression (10.42) in the laboratory system
(where the electron in the initial state is at rest) is of special interest
for experimental purposes. Let the energies of the photon before and
after the scattering be denoted by ω and by ω′, respectively, let the
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scattering angle be θL (this is the angle between the incoming and
the outgoing photons). With p1 = (m, 0)T one has

s = (p1+ p2)
2 = m2+2mω ,

t = (p1−q1)
2 = (q2− p2)

2 =−2ωω′(1− cos θL) ,

u = (p1−q2)
2 = m2−2mω′

= 2m2− s− t = m2−2mω+2ωω′(1− cos θL) .

The above equations for u yield a relation between ω′ and ω which
reads

ω′ = mω

m+ω(1− cos θL)
. (10.43)

In order to derive the cross section in the laboratory system from the
invariant (10.42) we need the derivative of t by cos θL. One has

t =−2ωω′(1− cos θL)=−2mω2 1− cos θL
m+ω(1− cos θL)

,

from which one concludes dt/d cos θL = 2ω′ 2. Thus,

dσ

dΩL
= dσ

dt

dt

dΩL
= dσ

dt

ω′ 2

π
.

Inserting the result (10.42) one obtains

dσ

dΩL
= 1

2

( α
m

)2
(
ω′

ω

)2 {
ω

ω′
+ ω

′

ω
− sin2 θL

}
. (10.44)

3. In calculating the cross sections (10.42) and (10.44) it was assumed
that the incoming particles are unpolarized, and that the polarization
of the outgoing ones is not measured. It is not difficult to general-
ize (10.44) to the case where the incoming photon is polarized and
where the polarization of the outgoing photon is determined. One
finds(

dσ

dΩL

)γ pol.

= 1

4

( α
m

)2
(
ω′

ω

)2 {
ω

ω′
+ ω

′

ω
+4

(
ε′ ·ε)2−2

}
.

(10.45)

This formula is due to O. Klein and Y. Nishina. In the limit of small
energies of the photon one has ω′ ≈ ω�m and the formula (10.45)
goes over into the cross section for Thomson scattering(

dσ

dΩL

)
Thomson

=
( α

m

)2 (
ε′ ·ε)2

that we obtained in the framework of the semi-classical theory of
Chapter 7.

4. Of course, one may as well take the initial electron to be polarized
and/or consider the possibility of discriminating the polarization of
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Fig. 10.6. Tree diagrams for Bhabha
scattering; (a) exchange of a virtual
photon between electron and positron;
(b) electron and positron annihilate
into a virtual photon which subse-
quently passes into a e+e− pair

3 Cf. L.A. Page, Phys. Rev. 106, 394,
1957; V.N. Baier, Enrico Fermi School
“Physics with intersecting storage rings”,
Academic Press, 1971.

the electron in the final state. The calculation of the traces which
makes use of the formulae (9.97) (and of (9.98) in the case of
positrons) is not much more involved than the unpolarized case, and,
hence, may be done by hand. Nevertheless, this might be a good
exercise for trying one of the algebraic program packages on a com-
puter.

5. The invariant notation of
∑ |T |2 in terms of the variables (s, t, u)

is particularly useful because one may obtain the processes of the
crossed channels by analytic continuation to the corresponding kine-
matic domains. For example, in the case of Compton scattering there
is not only the symmetry between the s- and the u-channels. Its
t-channel partner e+e− → γγ is of special interest, too. Pair anni-
hilation in fligth of electrons whose polarization is known, and of
polarized positrons is often used to measure the polarization of the
positron. The formulae for cross sections with polarized lepton part-
ners are found in the literature3.

Bhabha Scattering e+e− → e+e−: This example is the first which
contains the photon propagator. To lowest order, n = 2, the relevant
diagrams are those of Fig. 10.6. The virtual photon may be exchanged
between the electron and the positron but it may also be created by pair
annihilation and disappear by pair creation. Electrons and positrons oc-
cur only in external lines and, hence, are on their mass shell. The photon
appears in an internal line only and, hence, is not on its mass shell. As
before, one writes down the T -amplitude, avoiding the detour via the
R-matrix. Using the same notations as in Fig. 10.6 it is seen to be

T(e+e−→e+e−)=− e2

(2π)6

{
u(q−)γµu(p−)

−gµν
(p−−q−)2

v(p+)γ νv(q+)

+ v(p+)γµu(p−)
−gµν

(p−+ p+)2
u(q−)γ νv(q+)

}
.

(10.46)

The invariant scalar products contained in the denominators are

(p−−q−)2 = t , (p−+ p+)2 = s .

We skip the calculation of the invariant cross section because it is very
similar to the preceding example. One finds

dσ

dt
= 2πα2

s(s−4m2)

{
1

s2

(
(t−2m2)2+ (u−2m2)2+4m2s

)
+ 1

t2

(
(s−2m2)2+(u−2m2)2+4m2t

)
+ 2

st
(u−2m2)(u−6m2)

}
.

(10.47)

The s↔ t symmetry of this formula is obvious, thus confirming our ear-
lier and more general argument. As in the previous case, the evaluation
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of the cross section is easily done in either the center-of-mass, or the
laboratory sytems. One just needs to insert the representations of s, t,
and u in the respective frame of reference.

Pair Creation of Leptons and Quarks: There exist collider rings
which allow to focus a positron beam onto an electron beam, both of
well-defined energies. Besides elastic scattering, e+e−→ e+e−, one ob-
serves various production processes in which the e+e− pair disappears,
while states are produced which carry the (additive) quantum numbers
of the vacuum. Among these, the leptonic production reactions

e++ e− −→ µ++µ− and e++ e− −→ τ++ τ− , (10.48)

as well as the creation of quark-antiquark pairs

e++ e− −→ q+q , q = u, d, s, c, b, t , (10.49)

are of special importance. Here, the symbols in (10.49) stand for the up,
down, strange, charm, bottom, and top quarks (in the order of increas-
ing masses). Since the quarks never occur as free particles, the qq-states
“hadronize” into more complicated out-states of physical hadrons. Thus,
in the case of quarks, we calculate no more than the first step of what
really happens in experiment.

Suppose, as seen from the laboratory sytem, the positron and elec-
tron beams are focussed collinearly onto each other and have the same
energy. Then the experiment as recorded in the laboratory, takes place
in the kinematics of the center-of-mass sytem4.

Consider first pair creation e+e− → f + f − into a lepton-antilepton
pair in which f is not an electron. Then, to order n = 2 only
the diagram a) of Fig. 10.7 contributes (this is the same as dia-
gram b) of Fig. 10.6) with the electron of the final state replaced
by f−, the positron by f+). Using the same notation for the mo-
menta as in Fig. 10.6, writing me ≡ m and m f ≡ M, and inserting
s = (p−+ p+)2, the T -amplitude reads

T(e+e− → f+ f−)=
− e2

(2π)6

(
ve(p+)γµu(p−)

) gµν
s

(
u f (q−)γ νv f (q+)

)
. (10.50)

The flux factor (8.30) for this case is, using (10.30),

Ee+Ee− |v| = κ
√

s = 1

2

√
s(s−4m2) .

f

f

f

f +

f +

f+

e

e

e

e

e e+
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b)
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Fig. 10.7a – c. If e+e− → f + f − is the
s-channel, then the associated t- and
u-channel reactions are e− f+ → e− f+
and e− f− → e− f −, respectively. The
amplitude for process (c) differs from
the one for process (b) only in the sign
of the right vertex’ charge

4 There are also asymmetric colliders
in which the colliding beams do not
have the same energy. Furthermore, the
beams may cross at an angle that dif-
fers from 180o.
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After integration of the general expression of Sect. 8.2.3 over q+, and
using κ′ ≡ |q+|, there remains to calculate∫

dq3+ dσ = (2π)10

8
√

s(s−4m2)
dΩ

×
∞∫

0

κ′ 2 dκ′

κ′ 2+M2 δ(
√

s−2
√
κ′ 2+M2)

1

4

∑
Spins

|T | 2 .

The argument of the δ-distribution has its only, single zero at κ′ =√
s−4M2/2. Using the well-known rule for the evaluation of this dis-

tribution, one finds∫
d3q+ dσ =

√
s−4M2

s
√

s−4m2
dΩ

(2π)10

64

∑
Spins

|T | 2 .

The trace rules which should be familiar by now, yield the absolute
square of the amplitude, averaged and summed over the spin orienta-
tions in the initial and final states, respectively,

∑
Spins

∣∣∣∣ (2π)6e2 T(e+e− → f + f −)
∣∣∣∣2

= 1

s2 tr
{
(/p+−m 1l)γµ(/p−+m 1l)γ σ

}
tr
{
(/q−+M 1l)γµ(/q+−M 1l)γσ

}
= 16

s2

{
pµ+ pσ−−

(
p+ · p−+m2)gµσ + pσ+ pµ−

}
×
{

q−µq+ σ −
(
q− ·q++M2)gµσ +q− σq+µ

}
= 16

s2

{
2p− ·q− p+ ·q++2p− ·q+ p+ ·q−

+2M2 p− · p++2m2q− ·q++4m2 M2
}

= 16

s2

{
4m2 M2+M2(s−2m2)+m2(s−2M2)

+ 1

2
(m2+M2− t)2+ 1

2
(m2+M2−u)2

}
.

This expression is remarkable: Indeed, it is seen to be invariant under
the exchange m↔ M as well as under t↔ u. The former symme-
try becomes obvious if one recalls that the reaction may take place
in both directions and that there is invariance under time reversal.
The latter symmetry follows from Fig. 10.7 and from the remark made
above which said that the amplitudes for e− f− → e− f− and for
e− f + → e− f+ differ only by the sign of the charge at the f fγ -vertex.
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It is then not difficult to express the differential cross section in the
center-of-mass system in terms of s and of z := cos θ. One finds, with
e2 = 4πα,

dσ

dΩ
= α

2
√

s−4M2

4s
√

s

{
1+ z2+ 4(m2+M2)

s
(1− z2)+ 16m2 M2

s2 z2
}
.

(10.51)

In practice one will often have M2�m2 and s�m2 so that the terms
in the electron mass may be neglected. Furthermore, it is useful to in-
troduce the β-factor of the created particle f ,

β( f ) = |q−|
Eq−
= |q+|

Eq+
= κ′√

s/2
=
√

s−4M2
√

s
, (M ≡ m f ) ,

Then one has 4M2/s = 1−β( f ) 2 and obtains

dσ

dΩ
≈ α

2

4s
β( f )

{
(1+ cos2 θ)+ (1−β( f ) 2) sin2 θ

}
.

Let us calculate the cross section integrated over all angles, in this ap-
proximation, i. e.

σ(e+e− → f+ f−)=
∫

dΩ
dσ

dΩ
≈ 4πα2

3s

{
1+ 1

2

(
1−β( f ) 2)}β( f )

= 4πα2

3s

(s+2M2)
√

s−4M2

s3/2 . (10.52)

This integrated cross section is plotted in Fig. 10.8, as a function of the
square of the center-of-mass energy s.

0 1 2 3 4 5 6 x

0.2

0.3

0.4

0.5

σ

Fig. 10.8. The integrated cross section
(10.52) for the creation of a f + f− pair
out of e+e− annihilation in units of
πα2/3M2/3 as a function of the dimen-
sionless variable s/(4M2)
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An application for e+e−-colliders is provided by the search for
heavy quark-antiquark pairs at high energies in which the integrated
production cross section (10.52) is normalized to the cross section for
a µ+µ− pair. If s is large enough such that m2

µ can be neglected, too,
s� m2

µ, one has

σ(e+e− → µ+µ−)≈ 4πα2

3s
. (10.53)

Assume now that there exists a series of particles with masses Mi ,
and charges qi (in units of the elementary charge), with Mi � mµ,
then the total cross section normalized to the muon-antimuon cross sec-
tion (10.53), is equal to

σ
(
e+e− →∑

( f+ f−)
)

σ(e+e− → µ+µ−)
≈ 1+

N∑
i=1 (i �=µ)

q2
i

(s+2M2
i )

√
s−4M2

i

s3/2

= 1+
N∑

i=1 (i �=µ)
q2

i

√
1− 12M4

i

s2 − 16M6
i

s3 .

(10.54)

The sum over the new species of increasing mass terminates where
4M2

N+1 ≥ s, i. e. as soon as the center-of-mass energy no longer allows
to create the f + f −-pair. In fact, it is very easy, at least in principle, to
discover new fundamental particles: At every threshold for the produc-
tion of a new pair f +i f −i the ratio (10.54) increases by a step whose
hight is proportional to the squared charge of these particles.

10.2 Radiative Corrections, Regularization,
and Renormalization

As soon as one goes beyond the realm of tree diagrams and studies
Feynman diagrams containing closed fermion loops, one encounters se-
rious mathematical difficulties which are not so easy to repair. In fact,
a complete and satisfactory treatment would go beyond the scope of
this book and one should rather consult an advanced course on quan-
tum field theory or monographs on this field. On the other hand, the
analysis of higher orders of perturbation theory reveals new phenom-
ena which are physically interesting in their own right and which raise
rather basic issues. For anyone interested in fundamental physics, these
phenomena should be part of his or her general physical culture. This
section provides some insight into the difficulties to master, as well as
an impression of the predictions of quantum electrodynamics for radia-
tive corrections which can be tested in experiment.
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10.2.1 Self-Energy of Electrons to Order O(e2)
The diagram of Fig. 10.9 shows a virtual process whereby an electron
emits and reabsorbs a photon in such a way that both the electron and
the photon of the closed loop are not on their respective mass shells. (As
we know, this description is not quite correct. The fermionic intermedi-
ate state is represented by the electron-positron propagator and, hence,
the diagram stands for two virtual processes, one containing a virtual
electron, and one a virtual positron.) Independently of whether the lines
with momentum p and q are external or internal lines, the electron in
this diagram only “talks to itself”. Thus, this process describes a self-
energy of order e2 whose prime effect is to change the mass m of the
electron.

A short-hand notation for the fermionic propagator in momentum
space is

SF(p) := /p+m 1l

p2−m2+ iε
. (10.55)

Replacing the internal fermion line in the left part of Fig. 10.10 by the
sum shown in the right part of Fig. 10.10 this implies the substitution

SF(p) �−→ SF(p)+ SF(p)Σ
(0)(p)SF(p) ,

where Σ(0)(p) is given by the integral over the loop,

Σ(0)(p)=−i
e2

(2π)4

∫
d4k γµSF(p− k)γµ

1

k2+ iε
.

This expression must be handled with some care because the integral is
seen to have two distinct problems. On the one hand, it runs into dif-
ficulties for k2→ 0, i. e. for small values of the momentum k where
the virtual photon is “soft”. On the other hand, for large values of k
it behaves like

∫
d4k/k3. The first problem is called the infrared prob-

lem, in analogy to the spectrum of visible light, and is due to the fact
that the photon has no mass. One may temporarily repair it by assigning
a small but finite mass mγ to the photon, and by collecting all processes
of a given order, hoping that the result stays finite when mγ is sent to
zero in the final result. Thus, one substitutes

Σ(0) �→Σ(p)=−i
e2

(2π)4

∫
d4k γµSF(p− k)γµ

1

k2−m2
γ + iε

.

−

Fig. 10.10. An internal fermion line is
replaced as stated by the sum of two
diagrams. The vertices between which
the fermion line proceeds are denoted
by dots

f−

f−

p

p k−

k
p

Fig. 10.9. An external or internal fer-
mion line with momentum p is modi-
fied by a closed loop in which a vir-
tual photon and a virtual electron or
positron are circulating
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The divergence at large values of k which presumably is a logarith-
mic divergence, is more serious. As this problem occurs in the range
of “hard” photons, again by analogy to visible light, one talks about an
ultraviolet divergence.

The first topic of this section is a more detailed analysis of the quan-
tity Σ(p) which will serve to justify the conjecture that the integral
indeed diverges logarithmically, and, in spite of this, to find ways of
giving it a well-defined physical meaning. From here on the purely cal-
culational aspects may appear somewhat dry and technical. Therefore,
some simple but tedious intermediate calculations are relegated to ap-
pendices so that one can concentrate on the main ideas of the program.

We start with the example of Σ(p) which can be rewritten as fol-
lows, cf. Appendix A.3:

Σ(p)= α

2π

1∫
0

dz (2m 1l−/p(1− z)) I(p,m,mγ ) , (10.56)

where I(p,m,mγ ) is given by

I(p,m,mγ ) :=
∞∫

0

dλ

λ
exp

{
iλ
(

p2z(1− z)−m2z−m2
γ (1− z)+ iε

)}
.

(10.57)

Equation (10.57) shows very clearly where to identify the ultraviolet
problem: The integral over λ is logarithmically divergent.

Facing this difficulty one should not capitulate. Rather, one should
realize that with this isolated contribution of perturbation theory one
moves even further away from what is really measurable. If we correct
internal or external fermion lines by this term then there are a number
of other corrections which occur at the same order in α, and that we
must also take into account, for reasons of consistency. Furthermore,
there remains the question mentioned above: Which of the parameters
are physical (masses and charges) and how are they related to the pa-
rameters of the Lagrange density?

A mathematically rigorous treatment should consist in answering
these questions in a single step and to reformulate the theory in such
a way that there are no infinities anywhere, (assuming the theory to be
renormalizable). An approach of this kind is cumbersome, mathemati-
cally challenging, and not very practical. Therefore, in a more heuristic
treatment, one tries to assign a finite value to divergent expressions such
as (10.56) by applying to them a procedure called regularization. In
other terms, one designs a procedure which replaces Σ(p) as well as
other divergent results of perturbation theory by finite integrals. As we
shall see, this amounts to split Σ(p) into finite and infinite parts.

Obviously, such a procedure can only be meaningful if it meets the
following conditions:
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(a) The Lorentz covariance of the theory as well as the invariance of
its observables under gauge transformations are not destroyed;

(b) Physical, measurable predictions of the theory do not depend on the
specific choice of regularization of divergent quantities;

(c) The mathematically ill-defined terms in the perturbation series
which depend on the method of regularization, can be absorbed by
a redefinition of the parameters and, hence, remain unobservable.

There are various methods of regularization in quantum electro-
dynamics and other quantized gauge theories. Among them, a method
of great practical importance is dimensional regularization. It consists
in an analytic continuation of Lorentz scalar integrals in the spacetime
dimension n, considered as a complex variable, such that the integrals
become convergent and hence well-defined. A simple example may help
to illustrate this method. Suppose we wish to make sense of the integral

J =
∫

dν p g(p2) , ν ∈C ,
for complex values of the variable ν, knowing that it is well-defined for
some real integer dimension ν= n of a vector space Rn , with p a vector
on Rn and with p2 its squared norm. For integer dimension one can al-
ways introduce spherical polar coordinates and integrate over the entire
sphere Sn−1 such as to reduce the integral to a one-dimensional integral
over the modulus κ = |p|, viz.

dn p= κn−1 dκ dφ
n−2∏
k=1

sink θk dθk .

The integral over the surface of the unit sphere Sn−1 is
∫

dΩ =
2πn/2/Γ(n/2), and, therefore, one has

J = 2πn/2

Γ(n/2)

∞∫
0

κn−1 dκ g(κ2) .

Assume, furthermore, that there is a domain in the complex ν-plane
which contains the point ν = n and where the integral is convergent.
Then the above formula yields an analytic continuation in the complex
ν-plane, away from ν = n. This provides the possibility to continue J
to the physical dimension ν = 4 and, if it is divergent, to diagnose the
nature of its singularity as well as to separate the singular terms in the
sense of the splitting described above.

There is another regularization procedure due to Pauli and Villars5

which, though perhaps less practical for phenomenology, is useful for
investigations of principle because it respects Lorentz covariance as well
as gauge invariance at every step. It consists in introducing auxiliary
particles whith large masses Mi whose number and possibly unphysi-
cal couplings Ci are chosen such that the sum of all contributions, i. e.

5 W. Pauli and F. Villars, Rev. Mod.
Phys. 21, 434, 1949.
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of physical and unphysical particles, becomes convergent. At the end
of a calculation one takes the limit Mi →∞, thus obtaining an ad-
ditive splitting of the contribution one is studying into divergent parts
(in the limit Mi →∞), and finite terms which are independent of the
masses Mi and coupling constants Ci .

We illustrate the Pauli-Villars regularization by the example (10.56).
In this example it is sufficient to introduce one auxiliary particle with
mass M and an imaginary coupling ie. This construction amounts to
replace (10.57) as follows

I(p,m,mγ ) �−→ I(p,m,mγ )− I(p,m,M) .

The critical integral I is replaced by a covergent one because
∞∫

0

dx

x

(
eiax− eibx)= ln

(b

a

)
.

The expression (10.56) is replaced by a finite, regularized quantity that
we denote by Σreg(p),

Σreg(p)= α

2π

1∫
0

dz
(
2m 1l−/p(1− z)

)
× ln

(
M2(1− z)

m2z+m2
γ (1− z)− p2z(1− z)− iε

)
.

The terms p2z(1− z) and m2z of the numerator are neglected as com-
pared to M2(1− z) because M is assumed to be large anyway. Splitting
the logarithm according to ln(b/a) = ln(b/c)+ ln(c/a) the term Σreg

can be rewritten

Σreg(p)= α

2π

1∫
0

dz
(
2m 1l−/p(1− z)

)
ln

(
M2(1− z)

m2z2+m2
γ (1− z)

)

+ α

2π

1∫
0

dz
(
2m 1l−/p(1− z)

)
× ln

(
m2z2+m2

γ (1− z)

m2z+m2
γ (1− z)− p2z(1− z)− iε

)
.

In the first term the limit mγ → 0 is harmless so that the term m2
γ (1− z)

of the denominator can be dropped. Furthermore, the iε prescription in
the denominator of the second term is of no relevance. In the first term
one writes

ln

(
M2(1− z)

m2z2

)
= ln

(
M2

m2

)
+ ln

(
1− z

z2

)
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and notes that the second term of these yields a finite contribution which
can be neglected for large values of M2. Thus,

1∫
0

dz
(
2m 1l−/p(1− z)

)
ln

(
M2(1− z)

m2z2

)

≈ ln

(
M2

m2

)(3

2
m 1l−1

2
(/p−m 1l)

)
.

This yields

Σreg(p)≈ 3α

4π
m ln

(
M2

m2

)
1l− α

4π
ln

(
M2

m2

) (
/p−m 1l

)
+ α

2π

1∫
0

dz
(
2m 1l−/p(1− z)

)
× ln

(
m2z2+m2

γ (1− z)

m2z+m2
γ (1− z)− p2z(1− z)

)
.

The regularized expression then takes the form

Σreg(p)≡ A 1l+B
(
/p−m 1l

)+C(p) , (10.58)

A = 3α

2π
m ln

(
M

m

)
, B =− α

4π
m ln

(
M2

m2

)
. (10.59)

The constants A and B depend on the auxiliary mass M, and both tend
to infinity logarithmically when the limit M→∞ is taken. The func-
tion C(p) is finite but vanishes whenever the fermion is on its mass
shell p2 = m2. Thus, this part poses no problem. What is the role of
the unphysical divergent quantities A and B?

In what follows we show that the term A disappears from the the-
ory altogether provided one identifies properly the physical mass of the
fermion. This is equivalent to saying that the mass parameter in the
original Lagrange density is renormalized at the given order of perturba-
tion theory. Regarding the term B, matters are different. This term must
be discussed in connection with other radiative corrections of the same
order, hoping that it might cancel against other divergent contributions.

10.2.2 Renormalization of the Fermion Mass

A simple but somewhat lengthy calculation shows that the regularized
expression (10.58) can be written as follows (cf. Appendix A.4),

Σreg(p)= A 1l+(/p−m 1l
) [

B+Σfinite(p)
]
, (10.60)
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x
pp

Fig. 10.11. The perturbation term LM =∑
f δm f : ψ( f)(x)ψ( f)(x): does not con-

tain a propagator, it creates and anni-
hilates fermions at the same point of
space-time and is illustrated by X

where

Σfinite(p) 1l=Σa(p
2) 1l+

{ /p+m 1l

p2−m2 −2m 1l
∂

∂p2

∣∣∣∣
p2=m2

}
Σb(p

2) ,

Σa(p
2)≈ α

4π

(
1− m2

p2

){
1+

(
1+ m2

p2

)
Λ(p2)

}
,

Σb(p
2)≈ α

4π
m

(
1− m2

p2

){
1−

(
3− m2

p2

)
Λ(p2)

}
,

Λ(p2)=−p2

1∫
0

dz
1− z

m2(1− z)+m2
γ z− p2z(1− z)

.

The Lagrange density (10.11) from which the perturbative series was
obtained, contained the bare, uncorrected mass parameters m(0)f . These
would be identical with the measurable masses of the leptons if we
could neglect all corrections of higher order. However, if corrections
of the kind discussed above are included then the free Lagrange den-
sity should contain the physical masses m f . This amounts to add to L
a term of the kind

LM =
∑

f

δm f :ψ( f )(x)ψ( f )(x): , with δm f = m f −m(0)f (10.61)

which contains the differences of the physical and the bare masses,

L �−→L′ =L+LM .

Indeed, a free single-particle state will not be scattered only if the free
Lagrange density contains the physical mass, so that the S-matrix is

〈q|S |p〉 = 〈q|p〉 = 2E p δ(q− p) . (10.62)

As m f is corrected in every order of perturbation theory this means that
one modifies the interaction picture which is used for the Dyson series,
order by order.

The Feynman rules for the new term LM are easily formulated.
A diagram describing the action of this term onto a fermion line of the
kind f is drawn as shown in Fig. 10.11, by means of an X on the exter-
nal or internal fermion line. (As before, this holds for each of the three
charged leptons. We discuss the case of the electron and drop the in-
dex f on the mass and on the field.) The additional term LM contributes
already at first order. For the example of an electron line one has

〈q|R(1) |p〉 = iδm 〈q|
∫

d4x :ψ( f )(x)ψ( f )(x): |p〉

= i
δm

(2π)3
(2π)4δ(q− p)u(q)u(p) .



1010.2 Radiative Corrections, Regularization, and Renormalization 607

As we know, the diagram shown in Fig. 10.9 contributes in second
order,

〈q|R(2) |p〉 = − e2

(2π)3
δ(q− p)u(q)∫

d4k γµ
/p−/k+m 1l

(p− k)2−m2+ iε
γµ

1

k2+ iε
u(p)

= − i
1

(2π)3
(2π)4δ(q− p)u(q)Σ(p)u(p) .

The condition (10.62) implies that the sum of these two contributions
be equal to zero. Inserting the regularized expression (10.60) and noting
that

(
/p−m 1l

)
u(p)= 0, one concludes

δm = A ≈ 3αm

2π
ln

(
M

m

)
. (10.63)

This important result which is due to V. Weisskopf, in the light of the
remark made at the beginning, has the following interpretation: Pro-
vided one introduces the physical mass of the electron into the equations
of motion, right from the start, (and likewise for the other leptons), the
constant A does not appear explicitly. It is hidden by the renormaliza-
tion of the mass, m(0)f �→m f . Note, however, that in the limit M→∞
the mass is renormalized by an amount which is infinite.

In what follows we take the mass M of the auxiliary particle to be
finite. The limit M→∞ will be taken only at the end of a calculation,
and, of course, with due care.

The additional term LM contributes also to every internal line as
sketched in Fig. 10.12. When translated into formulae, and using the no-
tation (10.55) one has

SF(p) �−→SF(p)+ SF(p)Σ(p)SF(p)− SF(p)δmSF(p)

= SF(p)+ SF(p)
[
(/p−m 1l)

(
B+Σfinite(p)

)]
SF(p)

= SF(p)+
(
B+Σfinite(p)

)
SF(p) .

One should be aware that here one is working to order O(e2). In the
regularized version of the theory in which all contributions are finite,
the following are equivalent:

SF(p)+
(
B+Σfinite(p)

)
SF(p)

≈ (1+ B)
(
1+Σfinite(p)

)
SF(p)≈ (1+ B)

SF(p)

1−Σfinite(p)
.

X

Fig. 10.12. An internal fermion line is
changed not only by self-energy but
also by an additional term (10.61) in
the Lagrange density
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They differ by terms of higher order than O(e2) which are neglected, for
reasons of consistency. Note that the propagator (10.55) now contains
the physical mass.

There remains the constant B which is also divergent in the limit
M→∞. Keeping in mind that a propagator always links two vertices
each of which means multiplication by an electric charge, one might
wish to absorb the factor (1+ B) by a renormalization of the charge.
However, we will see that gauge invariance connects this term to some
other, divergent correction on the vertex in such a way that these con-
tributions cancel.

Traditionally in quantum electrodynamics the multiplicative quantity
(1+ B) as well as all contributions that higher than second orders add
to it, is denoted by a symbol of its own, viz.

Z2 := 1+ B+O(e4) . (10.64)

A factor of this kind which is divergent in perturbation theory and of
which there are three in quantum electrodynamics, is called renormal-
ization constant.

Knowing how an internal fermion line is modified by the self-energy
there remains the question whether and, if yes, how external fermion
lines are to be modified. There are two alternatives in answering this
question:

1) Either one does not apply any radiative correction to external lines
and uses consistently the physical masses. Then there are no further
corrections, or,

2) One corrects external lines in the way described above, and, for
every such line, obtains the factor(

Z2
)1/2 =

√
1+ B+O(e2)≈ 1+ 1

2
B .

This implies that if one takes account of all diagrams which correct
the external lines, one must divide the result by a factor Z1/2

2 for
every external line.

10.2.3 Scattering on an External Potential
The radiative corrections of order O(e2) to the scattering of a charged
lepton on external electromagnetic fields provide particularly instructive
examples for the physical effects of quantum electrodynamics. These
include scattering in an external static magnetic field, on a heavy point-
like charge Ze, or on an atomic nucleus whose charge density has
a finite spatial extension.

The g-Factors of Electron, Muon, and τ-Lepton
First, we show that the g-factor of the charged leptons has the natural
value gnat = 2 in Dirac theory without radiative corrections. Let q be the
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electric charge of the lepton, i. e. q =−|e| for (e−, µ−, τ−), q =+|e|
for (e+, µ+, τ+). The interaction with an external four-potential is given
by (10.12), but now with a static potential Aµ(x). As this four-potential
is classical it can be taken out of the normal ordering,

H1 =L1 = q
∑

f

:ψ( f )(x)γµψ( f )(x): Aclass
µ (x) .

In order to determine the magnetic moment that goes with the spin,
we study scattering on a stationary magnetic field B= ∇× A(x) in
a kinematics where the spatial momenta before and after the scattering
are equal and opposite,〈

p′
∣∣ j(x = 0) |p〉 · A(p− p′

)
, p′ = −p .

This kinematics presents the advantage that the limit |p| → 0 leads into
the rest system of the particle, thus allowing for a comparison with the
corresponding nonrelativistic expression. One uses the standard repre-
sentation (9.41) which is adapted to the nonrelativistic limit, as well as
the relation (9.140). One then has

〈−p| jk(0) |p〉 = 1

(2π)3
q u(−p)γ ku(p)

= q

(2π)3
u†(−p)

(
0 σ(k)

σ(k) 0

)
u(p)= 2q

(2π)3
iεklm pl(χ†σ(m)χ) .

Thus, the scattering amplitude for magnetic scattering in the backward
direction reads

T = i
2 q

(2π)3
εklm pl(χ†σ(m)χ)Ak(2p) . (10.65)

This should be compared to the corresponding scattering amplitude in
Schrödinger theory which is given by the matrix element

T nonrel. = 〈−p| Hnonrel.
1 |p〉

the interaction being given by

Hnonrel.
1 =−µ · B=−g

q

2m
s · B , Br = εrst∂s At(x) ,

(cf. (4.22) and (4.23)) while the wave functions are

|p〉 =
√

2m

(2π)3
eip·xχ .

The normalization of the wave function is chosen in accord with the co-
variant normalization of

〈
p′
∣∣p

〉
in the nonrelativistic limit. The partial

derivative acting on A(x) is shifted to the wave function and one obtains

T nonrel. = i
g q

(2π)3
εrst ps (χ†σ(t)χ)Ar(2p) . (10.66)
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Comparison of the amplitudes (10.65) and (10.66) yields the value of
the g-factor:

gnat = 2 . (10.67)

This value is called the natural value of the g-factor.

Remarks

1. One often reads, or hears someone say, that gnat = 2 is a conse-
quence of the principle of minimal substitution (9.59). Unfortunately
this is not quite correct, unless one postulates the Lagrange den-
sity (4.58) to be the true and only Lagrange density for fermions.
It is well-known that by adding a sufficiently smooth divergence to
the Lagrange density

LD �−→L′D =LD+∂µMµ(x) ,

the Euler-Lagrange equations, hence the Dirac equation and its ad-
joint, remain unchanged. For instance, one may choose

Mµ(x)=−i
∑

f

a( f )

8m
ψ( f )(x)σµν

↔
∂ ν ψ

( f )(x) , with (10.68)

σµν = i

2

(
γµγν−γνγµ) (10.69)

where a( f ) are real parameters. One applies minimal coupling to the
modified Lagrange density and adds Lγ to it. This yields the the-
ory (10.11), (10.12), to which a new interaction term is added,

LP = q
∑

f

a( f )

4m f
ψ( f )(x)σµνψ( f )(x) Fµν(x) . (10.70)

Working out this term shows that the g-factor is modified to

g′ = gnat
(
1+a( f )) . (10.71)

This term was introduced by Pauli. Of course, as long as there is no
deeper reason, it seems unnatural to introduce this term ad hoc but,
clearly, it cannot be excluded either.

2. Accepting gnat = 2 to be the natural value for a lepton it is suggestive
to call any deviation from it an anomaly of the g-factor.

a( f ) := 1

2

(
g( f )− g( f )

nat
)= 1

2

(
g( f )−2

)
. (10.72)

Thus, in the case of leptons, we have g(e)nat = g(µ)nat = g(τ)nat = 2. The
anomalies which are caused by radiative corrections will not be the
same for the three charged leptons, due to the differences in their
masses.

3. Charged and uncharged fermions which besides the electromagnetic
interaction are also subject to strong interactions, have g-factors
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which strongly deviate from their natural value 2. For example, in
the case of the proton and the neutron one finds

µp/n = g(p/n)
|e|

2m p
s , with (10.73)

g(p) = 5.585695 ,

g(n) =−3.826086 .

The origin of these numbers must be found in the properties of the
strong interaction. Even though we may not be able to calculate their
absolute values there are models built on what is called the additive
quark model which allow to derive relations between the magnetic
moments, or g-factors, of different strongly interacting fermions.6

4. When a negatively charged fermion is bound in a hydrogen-like state
the anomaly modifies the formula (4.25) for the spin-orbit coupling
so that it becomes

U	s(r)= 1

2m2
f

(
1+2a( f ))1

r

dU(r)

dr
� · s . (10.74)

This effect can serve to determine the anomaly from the atomic fine
structure. An example is provided by the Σ−-baryon whose mass is
m(Σ−)= 1197.45 MeV, its spin being 1/2, and which is sufficiently
long-lived such that it can be captured in hydrogen-like atomic or-
bits. From the measured fine structure in Σ−-atoms the magnetic
moment was found to be

µ(Σ−)=−1.160±0.025× |e|
2m p

. (10.75)

(Note that it is expressed in units of the Bohr magneton of the pro-
ton.)

Electric and Magnetic Form Factors of Spin-1/2 Particles
Point-like fermions which have no more than the natural g-factor (10.67),
and hence the natural magnetic moment q/(2m), are but idealizations
which do not occur in nature. This is evident for the strongly interacting
nucleons and other baryons, but even in the case of leptons which are much
closer to this idealization, one discovers deviations from the point-like
particle as soon as one’s measurements are accurate enough. An intuitive
understanding is as follows: A fermion subject to interactions with pho-
tons, or other particles, will always be surrounded by such particles, though
virtual, and, hence, will exhibit nontrivial form factors.

Through its interactions a fermion acquires an internal structure
which changes its electromagnetic properties. It is useful to decompose
the one-particle matrix elements of the electromagnetic current opera-
tor in terms of Lorentz covariants and of invariant form factors. One
takes out the elementary charge as an overall factor, as usual, and makes
use of the translation formula (7.30), to shift the current operator jµ(x)

6 For some early work in which
relations of this kind were derived,
see H. Rubinstein, R. Socolov, and
F. Scheck, Phys. Rev. 154 (1967) 1608.
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to the origin x = 0. The form factors of a given spin 1/2 fermion are
defined by the following decomposition in terms of covariants:

〈q| jµ(0) |p〉 = 1

(2π)3

×u(q)

{
γµF1(Q

2)− i

2m
σµνQνF2(Q

2)− 1

2m
QµF3(Q

2)

}
u(p) .

(10.76)

Here Q = p−q denotes the momentum transfer, the factors Fi(Q2) are
Lorentz scalar functions. The denominators 2m are introduced in order
to give the same physical dimension to all form factors, while the fac-
tor i in front of the second term renders all form factors real if jµ(x)
is hermitean, cf. Exercise 10.2. It is not difficult to show that the third
form factor vanishes identically if the current operator is conserved, i. e.
if ∂µ jµ(x) = 0. Therefore, in the case of the electromagnetic current
density one has to deal with two form factors only, F1 and F2. There
physical significance is uncovered as follows:

Using the Dirac equation once for u(p), and once for u(q), i. e.

/pu(p)= mu(p) , u(q)/q = mu(q) ,

one calculates the matrix element iσµν(pν−qν) between these spinors,

u(q)iσµν(pν−qν)u(p)

=−1

2
u(q)

[
γµ/p−/pγµ−γµ/q+/qγµ] u(p)

=−1

2
u(q)

[
2γµ/p−2pµ+2/qγµ−2qµ

]
u(p)

=−2mu(q)γµu(p)+ (
p+q

)µ
u(q)u(p) ,

This identity which holds for spinors in momentum space on the mass
shell, is called the Gordon identity. It reads(

p+q
)µ

u(q)u(p)= 2mu(q)γµu(p)+u(q)iσµν(pν−qν)u(p) .
(10.77)

Upon inserting this identity in (10.76) one obtains the equivalent form

〈q| jµ(0) |p〉 = 1

(2π)3
u(q)

{(
F1+ F2

)
γµ− 1

2m
(pµ+qµ)F2

}
u(p) .

(10.78)

Starting from the decomposition (10.78) one now considers specific
kinematic situations and individual components of the current operator,
in close analogy to the analysis of the preceding section.

1. In the case of the electric form factor consider the 0-component of
the current density, and its matrix element between states with equal
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and opposite spatial momenta

〈q =−p| j0(0) |p〉 = 1

(2π)3
u(−p)

{(
F1+ F2

)
γ 0− E p

m
F2

}
u(p) .

In the standard representation (9.41) of the γ -matrices we have

u(−p)γ 0u(p)= u†(−p)u(p)= 2m , u(−p)u(p)= 2E p .

The momentum transfer is Q = p−q = (0, 2p)T and, hence, the cor-
responding invariant is t = (q− p)2 =−4p2 =−4E2

p+4m2. Thus,
we have

〈−p| j0(0) |p〉 = 1

(2π)3

{
2m

(
F1+ F2

)− 2E2
p

m
F2

}

= 2m

(2π)3

{
F1+ t

4m2 F2

}
.

This specific linear combination of the two form factors is called
electric form factor. It is denoted by

GE(t) := F1(t)+ t

4m2 F2(t) . (10.79)

One verifies that the value of F1, and hence also of GE at t = 0
equals the charge of the fermion in units of the elementary charge,
i. e. for f− it equals −1. In order to show this calculate first the
matrix element of the charge operator,

〈q|
∫

d3x j0(x) |p〉 = (−1) 〈q|p〉 = (−1) 2E p δ(p−q) .

Alternatively, using the general decomposition (10.76) as well as the
translation formula, one has∫

d3x 〈q| j0(x) |p〉 = (2π)3δ(p−q) 〈q| j0(0) |p〉
= δ(p−q)F1(0)u

†(q)u(p)= F1(0) 2E p δ(p−q) .

The comparison of the two calculations does indeed yield F1(0)=−1.
2. The magnetic form factor is isolated by examining the spatial com-

ponents of the current density,

〈−p| jk(0) |p〉 = 1

(2π)3

(
F1+ F2

)
u(−p)γ ku(p) .

The product on the right-hand side is worked out using the standard
representation,

u(−p)γ ku(p)= 2εklm plχ†σ(m)χ ,
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(A)

q

p

X

Fig. 10.13. Scattering on an external po-
tential Ze/r

so that one concludes

〈−p| jk(0) |p〉 = 1

(2π)3

(
F1+ F2

)
εklm Qlχ†σ(m)χ .

This result suggests to define the sum of F1 and F2 to be the mag-
netic form factor,

GM(t) := F1(t)+ F2(t) . (10.80)

At the point t = 0 it yields the magnetic moment of the particle (in
units of the corresponding magneton e/(2m)), where F1(0) is the
natural magnetic moment while F2(0) is the anomalous magnetic
moment.

Corrections to Scattering on an External Potential
We study the scattering of a lepton f on an external point-like
charge Ze, and generalize then to the case where this charge is smeared
out over a local domain in space. This is a model for the electrostatic
potential created by an atomic nucleus of finite extension.

Translating the tree diagram (A) of Fig. 10.13 into an amplitude,
rule (R9) yields

M = 2πe0iu(q)γµu(p) Ãµ
(
(p−q)2

)
, with (10.81)

Ãµ
(
(p−q)2

)= Ze0

(2π)3
δµ0

1

(p−q)2
.

Fig. 10.14 shows the connected diagrams which correct this amplitude
to order O(e2). When translated into formulae by means of Feynman
rules, these yield the following terms:

Diagrams (B1) and (B2):

B12 = B1+ B2

=−2πie0u(q)

×
{
δm 1l+ ie2

0

(2π)4

∫
d4k

k2+iε
γλSF(q− k)γλ

}
SF(q)γ

µu(p) Ãµ ;

Diagram (C1) and (C2):

C12 =C1+C2

=−2πie0u(q)γµSF(p)

×
{
δm 1l+ ie2

0

(2π)4

∫
d4k

k2+ iε
γλSF(p− k)γλ

}
u(p) Ãµ ;
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X

Fig. 10.14. Radiative corrections for scat-
tering on an external potential to or-
der e2. Diagrams (B1), (C1), (B2),
and (C2) illustrate the self-energy, (D)
is the vertex correction, E the vacuum
polarization

Vertex correction (D):

D= −2πie0u(q)

×
{

ie2
0

(2π)4

∫
d4k

k2+ iε
γλSF(q− k)γµSF(p− k)γλ

}
u(p) Ãµ ;

Vacuum polarization (E):

E = 2πie0u(q)γ νu(p)
1

(q− p)2+ iε

× ie2
0

(2π)4
∑

f

∫
d4r tr

{
γνS( f )

F (r)γµS( f )
F (r+q− p)

}
Ãµ .

In the expression (E) the photon dissociates into a virtual f + f −
pair which subsequently annihilates again into a photon. Independently
of what the external lepton line is, the dominant contribution comes
from virtual e+e− pairs, due to the smallness of the electron mass. The
occurrence of the trace over the expression in curly brackets is easily
understood if one strips off the left and right photon lines and calculates
the relevant vacuum loop,

〈0| T
(
ψ( f )(x)γµψ( f )(x)

)(
ψ( f )(y)γ νψ( f )(y)

)
|0〉 .

As a special case of Wick’s theorem and using the abbreviation

−1

2
SF(z)= i

(2π)4

∫
d4r e−ir·z

(
/r+m f 1l

)
r2−m2

f + iε
.
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one obtains (summing, as before, over repeated indices)

〈0| T
(
ψ( f )(x)γµψ( f )(x)

)(
ψ( f )(y)γ νψ( f )(y)

)
|0〉

= −(γµ)
αβ

(
γν

)
στ
〈0| T ψ( f )

β (x)ψ( f )
σ (y) |0〉 〈0| T ψ( f )

τ (y)ψ( f )
α (x) |0〉

= −1

4

(
γµ

)
αβ

(
SF(x− y)

)
βσ

(
γν

)
στ

(
SF(y− x)

)
τα

≡−1

4
tr
{
γµSF(x− y)γ νSF(y− x)

}
.

All diagrams of Fig. 10.14 contain two external fermion lines. Since
we corrected these lines by self-energies and mass terms, all contribu-
tions must be multiplied by the factor Z−1

2 .
The sum of the uncorrected diagram (A) and of the terms B12

and C12 yields

(A)+ B12+C12

= 2πie0 Z−1
2 Ãµu(q)

{
γµ− [(δm− A) 1l−(/q−m 1l)B] SF(q)γ

µ

−γµSF(p) [(δm− A) 1l−B(/p−m 1l)]
}

u(p) .

The finite terms Σfinite do not contribute because they vanish
on the mass shell p2 = m2 = q2. Furthermore, one has A = δm and
(/q−m 1l)SF(q) = 1l, and, of course, also SF(p)(/p−m 1l)= 1l. Finally,
the emerging factor 1+2B, in the given order, is transformed as follows

1+2B ≈ (1+ B)2 ≈ Z2
2 .

Inserting these results one finds a very simple result for the sum

(A)+ B12+C12 = 2πie0 Z2u(q)γµu(p) Ãµ . (10.82)

The vertex correction of diagram (D) as well as the vacuum polar-
ization in diagram (E) yield results whose physics is so interesting that
we discuss them in two separate paragraphs.

10.2.4 Vertex Correction and Anomalous Magnetic Moment
The diagram (D) suffers from an infrared divergence and is ill-defined
as long as the photon is massless. However, as the addition of further
diagrams of the same order will be seen to cancel this divergence, one
can avoid the problem by assigning a small but finite mass mγ to the
photon. Using the variables defined in Fig. 10.14 one has

D= −2πie0 Z−1
2

ie2
0

(2π)4∫
d4k

k2−m2
γ + iε

u(q)γλSF(q− k)γµSF(p− k)γλu(p) Ãµ .

The expression between the two momentum space spinors in the
numerator can be transformed by commuting /q to the left, and /p to
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the right, until one can use the Dirac equations (/p−m 1l)u(p)= 0 and
u(q)(/q−m 1l)= 0, respectively. Furthermore, the sum over λ is done by
means of the formulae of Sect. 9.3.3, eqs. (9.121) – (9.123). In doing so
one finds

u(q)γλ(/q−/k+m 1l)γµ(/p−/k+m 1l)γλu(p)

= u(q)
{−2/kγµ/k−4mkµ+4(q+ p)µ/k

+4(q · p−q · k− p · k)γµ}u(p) .

As q2 = m2 = p2, the product of the denominators of the three propa-
gators, barring the iε’s, becomes

(k2−m2
γ )(k

2−2k · p)(k2−2k ·q) .
It is not difficult to prove the following integral representations for terms
of the type 1/(ab) and 1/(a2b),

1

ab
=

1∫
0

dx
1[

ax+b(1− x)
]2 , (10.83)

1

a2b
=

1∫
0

dx
2x[

ax+b(1− x)
]3 . (10.84)

The first of these is proved directly while the second follows from the
first by differentiation by the parameter a. Using (10.83) one has

1

k2−m2
γ

1

(k2−2k ·q)(k2−2k · p) =
1

k2−m2
γ

1∫
0

dx
1[

k2−2k ·r(x)]2 ,

where the abbreviation r(x)= px+q(1− x) was introduced. Applying
then (10.84) with b = k2−m2

γ and a = [. . . ], the same expression is
equal to

=
1∫

0

2y dy

1∫
0

dx
1[(

k2−2k ·r(x)) y+
(

k2−m2
γ

)
(1− y)

]3

=
1∫

0

2y dy

1∫
0

dx
1[

(k− yr(x))2−r2(x)y2−m2
γ (1− y)

]3 .
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One inserts the transformed numerator and uses the integral repre-
sentation for the product of the denominators, defines then the new
integration variable v := k− yr(x), and obtains eventually

D= −2πie0 Z−1
2

ie2
0

(2π)4

1∫
0

2y dy

1∫
0

dx
∫

d4v

× 1[
v2−y2r2(x)−m2

γ (1−y)
]3 u(q)

{−2/vγµ/v−2y/rγµ/v−2y/vγµ/r

−2y2/rγµ/r−4mvµ 1l−4myrµ 1l+4(p+q)µ(/v+ y/r)

+4γµ(p ·q−q ·v− yq ·r− p ·v− yp ·r)} u(p) Ãµ .

The denominator depends on the square v2 only. Therefore, all terms
of the numerator which are odd in v give no contribution. The terms
which are bilinear in v yield integrals of the form∫

d4v
vαvβ(
v2−Λ2

)3 =
1

4
gαβ

∫
d4v

v2(
v2−Λ2

)3 ,

Making use of these simplifications as well as of the summation for-
mula γαγµγα =−2γµ, the term D is seen to be proportional to∫

d4v
1(

v2−Λ2
)3

×u(q)
{
v2γµ−2y2/r(x)γµ/r(x)−4myrµ(x) 1l+4(p+q)µy/r(x)

+ 4γµ [p ·q− y(p+q) ·r(x)]} u(p) .

Inserting here r(x) and, after some reordering, one obtains

D= −2πie0 Z−1
2

ie2
0

(2π)4

1∫
0

2y dy

1∫
0

dx
∫

d4v(
v2−Λ2

)3

×u(q)
{
a(x, y)γµ+b(x, y)pµ+ c(x, y)qµ

}
u(p) Ãµ ,

where the four functions Λ2(x, y), a(x, y), b(x, y), and c(x, y) are given
by

Λ2(x, y)= y2
[
m2x2+m2(1− x)2+2p ·q x(1− x)

]
+m2

γ (1− y) ,

a(x, y)= v2+4p ·q
(

1− y+ y2x(1− x)
)

+2m2 y2(1−2x+2x2)−4m2 y ,

b(x, y)= 4my(1− x− xy) ,

c(x, y)= 4my(x− y+ xy) .
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The first of these, Λ2(x, y), is invariant under the exchange x↔ (1− x).
Thus, when integrating over x from 0 to 1 one can replace b(x, y) as
well as c(x, y) by their average,

1∫
0

dx · · · [b(x, y)pµ+ c(x, y)qµ
]

=
1∫

0

dx · · · 1
2

[b(x, y)+ c(x, y)]
[

pµ+qµ
]
.

This average depends on y only because [b(x, y)+ c(x, y)]/2 =
2my(1− y), so that

D= −2πie0 Z−1
2

ie2
0

(2π)4

1∫
0

2y dy

1∫
0

dx
∫

d4v(
v2−y2r2(x)−m2

γ (1−y)
)3

×u(q)
{
a(x, y)γµ+2my(1− y)

(
p+q

)µ}
u(p) Ãµ .

There is a last transformation of this result which allows to exhibit
more clearly its physical significance. Indeed, if one succeeded in re-
placing the Lorentz covariants u(q)

(
pµ+qµ

)
u(p) by u(q)γµu(p) and

u(q)σµν(p−q)νu(p), with σµν as defined in (10.69), then the effective
magnetic moment of the fermion could be identified by means of the
interaction term (10.70). For this purpose insert the Gordon decomposi-
tion (10.77) thus obtaining

D= −2πie0 Z−1
2

ie2
0

(2π)4

1∫
0

2y dy

1∫
0

dx

∫
d4v(

v2−m2 y2+ y2x(1− x)(p−q)2−m2
γ (1− y)

)3

×u(q)
{[

a(x, y)+4m2 y(1− y)
]
γµ

+ iσµν
(

p−q
)
ν
2my(1− y)

}
u(p) Ãµ .

In this way the term D takes a simple form which allows to calculate
the magnetic moment of the f−, including its radiative corrections,

D≡ 2πie0 Z−1
2 u(q){

F1
(
(p−q)2

)
γµ− i

2m
σµν(p−q)νF2

(
(p−q)2

)}
u(p) Ãµ .

The form factors F1 and F2 are defined by the above integral represen-
tation. Before working them out we note a physically important result:
the lepton f− of the defining theory (10.11) and (10.12) had the point
charge −1 and the natural g-factor (10.67), but had no inner structure in
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the sense that its form factors were constant, F(0)1 (t)= 1, F(0)2 (t)≡ 0, or
G(0)E (t)= G(0)M (t)= 1. The radiative corrections modify both form fac-
tors in a nontrivial way and the lepton obtains some inner structure.

Unfortunately, it needs some more work to reach the eventual goal of
this analysis. The form factor F1

(
(p−q)2

)
defined above is still given

by a divergent integral. The technical reason for this is that the function
a(x, y) contains a term v2 which ruins the integration

∫
d4v. Therefore,

here too, one should first regularize and test whether the observable
parts can separated from the divergent ones. Without making a specific
choice here, we assume the integral yielding the form factor F1 to be
regularized in some way or other, such that the following calculations
become well-defined, but we do not specify the regularized expressions.
Instead of F1(t) we write

F1(t)= F1(0)+ [F1(t)− F1(0)] , t = (p−q)2 ,

and note that the term in square brackets is convergent and is indepen-
dent of the regularization procedure. Therefore, at this point, we need
to examine only the potentially dangerous term F1(0). Collecting the
diagrams (A) to (D) one has

(A)+ B12+C12+D= 2πie0

[
Z2+ Z−1

2 F1(0)
]

u(q)γµu(p) Ãµ

+2πie0 Z−1
2 u(q)

{
[F1(t)−F1(0)] γ

µ− i

2m
σµν(p−q)νF2(t)

}
u(p) Ãµ.

(10.85)
It is striking that after summing all contributions of the same order, the
form factor F1(0) appears multiplied with the inverse of the renormal-
ization constant Z2. Indeed, this is the rescue! One proves the following
identity (see Appendix A.5)

Z2+ F1(0)= 1 . (10.86)

It says that the term B, (10.59) and (10.64), which is also divergent,
after summing up all contributions of the same order of perturbation
theory, cancels against the vertex correction F1(0). At the order we are
analyzing here one concludes from this identity

Z2+ Z−1
2 F1(0)≈ Z2+

(
1+ F1(0)

)
F1(0)≈ Z2+ F1(0)= 1 .

For consistency, all form factors in the second term of (10.85) must be
replaced as follows

Z−1
2 Fi ≈

(
1+ F1(0)

)
Fi ≈ Fi .

At the order to which we calculated the radiative corrections here, one
finds a convergent result,

(A)+ B12+C12+D= 2πie0

×u(q)
{
γµ

(
1+ F1(t)− F1(0)

)− i

2m
σµν(p−q)νF2(t)

}
u(p) Ãµ ,

(10.87)
that we now analyze with respect to its physical content.



1010.2 Radiative Corrections, Regularization, and Renormalization 621

Remarks

1. These calculations are well-defined as long as all potentially diver-
gent quantities are regularized and, hence, finite. Of course, omitting
in our examples all terms of order O(e4

0), for consistency, is only
meaningful in the framework of the regularized theory.

2. The result (10.87) which represents an observable scattering ampli-
tude (but for the factor e0 that must be discussed separately) contains
no divergence at all. Although we have not shown this, it is plau-
sible that the result is unique and does not depend on the chosen
regularization scheme. Divergent contributions either are absorbed
by renormalization, i. e. by transformation to the physical mass (and
physical charge), or cancel like in the example (10.86).

3. Up to this point, our analysis is incomplete because the ampli-
tude (10.87) still contains the bare charge e0. The next section will
show that e0, by itself, is divergent but, when vacuum polariza-
tion (E) is added, it is replaced by the physical charge e through
renormalization. With this argument in mind and subject to this pro-
viso we insert the physical, hence finite charge e in (10.87).

Obviously, we are eager to learn about the physics contained in the
perfectly finite physical result (10.87). As a first observation one sees
that the f − no longer is a point-like particle because the radiative cor-
rections endow it with an electric form factor (10.79),

G( f )
E (t)= 1+ (

F1(t)− F1(0)
)+ t

4m2 F2(t) . (10.88)

Likewise, the magnetic form factor G( f )
M (t), (10.80), no longer is iden-

tically equal to 1. Both G( f )
E (t), and G( f )

M (t) show that the interaction
with the radiation field provides the lepton f − with a nontrivial inter-
nal structure. In particular it receives an anomalous magnetic moment
that follows from (10.87). Replacing e0 by e, with the above proviso,
one has

F2(t = 0)= ie2

(2π)4
4m2

1∫
0

2y dy

1∫
0

dx
∫

d4v
y(1− y)(

v2−m2 y2+ iε
)3 .

The integral over v yields (cf. Exercise 10.3)∫
d4v

1(
v2−Λ2+ iε

)3 =−
iπ2

2Λ2 ,

so that

F2(0)= ie2

(2π)4
4m2−iπ2

2m2

1∫
0

2y dy

1∫
0

dx
1− y

y
= e2

8π2 .
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7 J. Schwinger, Phys. Rev, 73, 416
(1948).

8 References to the original theoreti-
cal and experimental work are found in
the latest edition of the Review of Par-
ticle Properties, J. of Physics G: Nucl.
Part. Phys. 33 (2006) 1–1231. See
also their internet site pdg.lbl.gov,
where pdg stands for particle data group.

9 These formulae can be found, e. g.,
in the handbook Muon Physics, Vols. I–
III, V.W. Hughes and C.S. Wu (eds.),
Academic Press 1977.

Finally, inserting e2 = 4πα one obtains

F2(0)≡ a( f ) = α

2π
. (10.89)

This is a classical result of quantum electrodynamics which was ob-
tained by J. Schwinger7 and which belongs to the great successes of
quantum electrodynamics.

Remarks

1. Schwinger’s result (10.89) is remarkable by the fact that the
anomaly, in this order of perturbation theory, is independent of the
nature of the lepton. The value α/(2π) is the same for the electron,
the muon and the τ-lepton. This no longer holds for higher orders,
even in pure quantum electrodynamics, as can see from the results
of Table 10.2. Furthermore, in higher orders there can also be vir-
tual hadrons in the diagrams of perturbation theory. For the electron,
hadronic corrections are still small and, in fact, below present ex-
perimental accuracies. However, for muons they are not so small and
contribute by amounts exceeding the present experimental error bars.
The experimental and theoretical uncertainties of Table 10.2 which
are given in parantheses, refer to the last two digits of an entry.
For example 1.2345(14) stands for the result 1.2345±0.0014. One
sees that the corrections predicted by pure quantum electrodynamics
alone are different for muons and for electrons from the fourth order
on up.8

2. The anomaly proper, i. e. the deviation of the magnetic moment from
the corresponding Bohr magneton,

a( f ) = µ( f )

e/(2m f )
−1= 1

2

(
g( f )−2

)
can be measured directly by means of a simple physical effect. The
principle that we describe here for the muon, is as follows: One
injects the µ− into the field of a magnetic bottle whose central mag-
netic field is homogeneous. The muon then follows a spiral orbit
whose cyclotron frequency is9

ωc = eB

mµγ
.

Here, B is the strength of the magnetic field, and γ the relativistic
factor γ = 1/

√
1−β2 of the particle. The magnetic moment per-

forms a precession about the B-field with angular velocity

ωs =
(
1+γa(µ)) eB

mµγ
.

As one sees the spin precession would be synchronous with the
orbital motion if the anomaly were exactly zero. In this case the
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a(e) a(µ)

experiment 1159,652186(4)×10−6 1165,9208(6)×10−6

2. order α
2π

α
2π

4. order −0.328478965
(
α
π

)2 ≈ a(e)4 +
(
α
π

)2

6. order 1.181
(
α
π

)3 ≈ a(e)6 +20
(
α
π

)3

hadronic correction ≈ 0 67(9)×10−9

theory (total) 1159.652359(282)×10−6 1165.91628(77)×10−6

Table 10.2. Anomaly of the magnetic
moment of leptons. In the last column,
a(e)n denotes the contribution of order n
to the anomaly of the electron

magnetic moment, and, hence, the spin, would always point in the
same direction after a large number of revolutions. If the anomaly
does not vanish then the spin precession is out of tune with the
orbital spiral. The difference of the two circular frequencies is pro-
portional to a(µ),

ωa = e

mµ
a(µ)B .

With a constant field and after the time interval T the spin has
moved by the angle

θ = e

mµ
a(µ)BT .

If one knows B and T and if one can measure θ, one obtains the
anomaly without having measured the full magnetic moment. The
spin orientation of the muon, in turn, is obtained from its decay dis-
tribution, µ− → e−+ νµ+ νe which is asymmetric with respect to
the spin direction (by parity violation of the weak interaction).

3. The theory of leptons and their interactions is invariant under the
combined discrete transformation

Θ=ΠCT

(from right to left: time reversal, charge conjugation, and space
reflection). A consequence of this invariance is that the magnetic
moments of f − and of f+ are equal and opposite. This was tested
experimentally, the result being

g(e
+)− g(e

−)

〈g(e)〉 = (−0.5±2.1
)×10−12 (10.90)

for the electron and the positron, and

g(µ
+)− g(µ

−)

〈g(µ)〉 = (−2.6±1.6
)×10−8 (10.91)

for the muon and its antiparticle. Here, 〈g( f )〉 denotes the average.
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10.2.5 Vacuum Polarization
When one takes account of the contribution (E), Fig. 10.14 the external
potential is modified, Ãµ �→ Ã′µ = Ãµ+∆ Ãµ. Defining Q := p−q one
has

∆ Ãµ = 1

Q2Πµν(Q) Ã
ν(Q) (10.92)

Πµν(Q)= ie2
0

(2π)4
∑

f

∫
d4r tr

{
γµS( f )

F (r)γ νS( f )
F (r−Q)

}
. (10.93)

As a first step, it is useful to investigate the tensor integral Πµν(Q) in
the light of gauge invariance thus checking whether there are restric-
tions that might help to simplify calculations. A gauge transformation
in x-space, Aµ(x) �→ A′µ(x)= Aµ(x)−∂µχ(x), is equivalent to the re-
placement in momentum space

Ãµ(Q) �−→ Ã′µ(Q)= Ãµ(Q)+ χ̃(Q)Qµ .
If the expression (10.92) must remain unchanged, one must have

QµΠ
µν(Q)= 0=Πµν(Q)Qν .

On the other hand, Πµν is a contravariant tensor field of rank two. As
it depends only on Q the only tensors in terms of which Πµν may be
decomposed, are QµQν and the (inverse) metric gµν, so that the decom-
position in terms of covariants must have the form

Πµν(Q)=Π(Q2)QµQν+Φ(Q2)gµν ,

with Π(Q2) and Φ(Q2) Lorentz-scalar functions. Gauge invarinace
yields the condition Q2Π(Q2)+Φ(Q2)= 0 so that

Πµν(Q2)= (
QµQν−Q2gµν

)
Π(Q2) . (10.94)

These considerations rest on a somewhat uncertain basis, so far, be-
cause Πµν(Q) is given by an integral of the type

∫
d4r (1/r2) which

diverges. Obviously, one must first regularize divergent integrals. As an
example, we apply the method of Pauli and Villars here, too. Denoting
the contribution of a given lepton by Πµν(Q,m2

f ), this means that we
substitute

Πµν(Q,m2
f ) �−→ (Πreg)

µν
f (Q)=Πµν(Q,m2

f )+ c fΠ
µν(Q,M2

f ) .

(10.95)

The new term depends on some large mass M f , and the factor c f is
chosen so that the modified expression is well-defined and finite. “Well-
defined” refers to two aspects: The regularization procedure should not
violate gauge invariance. Furthermore, the finite part of regularized vac-
uum polarization must be fixed in a physically consistent manner. The
first requirement is guaranteed by the Pauli-Villars procedure. The sec-
ond is related to the question of how and at which energy scale the
physical charge is defined.
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A more detailed analysis of the expression (10.95) is found in Ap-
pendix A.6. This analysis shows that it is sufficient to choose c f =−1.
After regularization and a few more transformations as explained in the
appendix the result becomes relatively simple. One finds

(Π
reg
f )

µν(Q)= α0

3π

(
QµQν−Q2gµν

)
⎧⎨⎩ln

(
M f

m f

)2

−6

1∫
0

dz z(1− z) ln
(

1− Q2

m2
f − iε

z(1− z)
)⎫⎬⎭ ,

(10.96)
where α0 still contains the bare charge. The result (10.96) fulfills the
condition (10.94) of gauge invariance. It contains two terms the first of
which diverges logarithmically as M f →∞ but, as we will show be-
low, is absorbed by charge renormalization. The second term is finite
and is fixed in such a way that it vanishes at the point Q2 = 0. This term
implies observable effects at Q2 �= 0 whose physics is remarkable.

Renormalization of the Electric Charge
Tosecondorder the treediagramforMøller scattering,e−+ e− → e−+ e−,
is modified as sketched in Fig. 10.15. When translated to formulae this
yields10

−gµν

Q2 �−→
−gµν

Q2 −
gµα

Q2

∑
f

(Π
reg
f )αβ(Q)

gβν

Q2 , (10.97)

where now Q = p1−q1 = q2− p2. The term proportional to QµQν

of (10.96) does not contribute because, when “sandwiched” between the
spinors of the external particles, it gives zero,

u(q1)/Qu(p1)= u(q)
(
/p1−/q1

)
u(p1)= 0= u(q2)/Qu(p2) .

Thus, the sum of the diagrams of Fig. 10.15 is proportional to gµν,

− gµν

Q2

⎧⎨⎩1− α0

3π

∑
f

ln

(
M f

m f

)2

+2α0

π

∑
f

1∫
0

dz z(1− z) ln
(

1− Q2

m2
f − iε

z(1− z)
)⎫⎬⎭ .

This means that in the limit Q2→ 0 the photon propagator is modified
multiplicatively by the factor

Z3 ≈ 1−
∑

f

α0

3π
ln

(
M f

m f

)2

. (10.98)

This will be similar also in higher orders. Therefore, the renormalization
factor is given a symbol and is generally denoted by Z3. Note, how-
ever, that the expression on the right-hand side holds only in the order
considered here, hence the ≈-sign.

10 The minus sign of the second term is
a consequence of rule (R6).
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+

Fig. 10.15. A loop integral with virtual
f− f+-pairs is added to Møller scatter-
ing

As one verifies easily, the same factor also appears in scattering
on an external potential, or in any other process with an internal pho-
ton line. This leads to the following conjecture: As the squared bare
charge e2

0 always appears multiplied by the renormalization constant Z3,
the product e0 Z1/2

3 =: e should be interpreted as the physical charge. In
our case where we calculate the corrections to second order, for reasons
of consistency, we replace α0 by α, thus obtaining the presription

e2
0 �−→ e2 := Z3e2

0 ≈ e2
0

{
1− α

3π

∑
f

ln

(
M f

m f

)2}
. (10.99)

The first step is the definition, the second yields the explicit expression
in second order of perturbation theory.

Remarks

1. The physical charge of an electron can be determined by Thomson
scattering, that is, at Q2 = 0, cf. Sect. 7.4.3. The charge that is mea-
sured is related to the bare charge by

e= e0

√√√√1− α

3π

∑
f

ln
(M f

m f

)2+O(α2) .

Thus, once one has applied renormalization, there remain only finite
radiative corrections which lead to well-defined, measurable effects.

2. The way we carried out renormalization of the charge singles out
the scale Q2 = 0. This is in agreement with the fact that the clas-
sical limit of Thomson scattering (by means of which the physical
charge is obtained) is reached at Q2 = 0. This specific point is called
the renormalization scale. In quantum electrodynamics this scale is
a physical one because in the limit of small energies one reaches the
classical theory. Nevertheless, this is not the only possible choice.
Below, we show that one may as well define α at some other scale
whenever this seems adequate for physical reasons. In any case and
with any choice of the scale, the perturbation series will tend to the
true answer order by order. However, individual contributions will
have different magnitudes depending on the choice of scale.
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Fig. 10.16. Correction of an external
photon line by vacuum polarization

3. Renormalization is a phenomenon which is not only mathematically
subtle but also largely counter-intuitive regarding its physics. Ac-
cording to the formula (10.99) the bare charge is larger than the
physical charge. In particular, if the masses of the auxiliary particles
are sent to infinity, the bare charge becomes infinite. In a regular-
ized version of the theory all quantities are finite. In fact, for values
of M f which are still finite, the effects are not dramatic: For in-
stance, choosing M f = 10 GeV, the fine structure constant α changes
by about 3%.

4. It remains an open question how to proceed when the photon
belongs to an external line. Formally, the modification drawn
in Fig. 10.16 yields

1

k2

(
Π

reg
f

)µν
(k)εν(k)

=−k2

k2

⎧⎨⎩(
− α

3π

)∑
f

ln
(M f

m f

)2+O(k2)

⎫⎬⎭ εµ(k) ,
where we used εµ(k)kµ = 0. As k2 = 0 this result seems to remain
undetermined because it yields 0/0. This problem can be avoided if
one thinks of the photon as being emitted by a source very far away
so that it slips off its mass shell but slightly. There must then be
a factor Z3, as before, which splits into a factor Z1/2

3 for the charge
at the vertex of Fig. 10.16, and the same factor for the far-away
source. This, in turn, means that one should insert the renormalized,
physical charges at the vertex as well as at the source.
Very much like in the case of the renormalization constant Z2,
(10.64), there are two alternatives:

(a) Either one does not correct external photon lines, and inserts the
physical (renormalized) charge at all vertices, or,

(b) One applies the appropriate radiative corrections also to exter-
nal photon lines, and divides the result by Z1/2

3 for every such
external line.

Observable Effects of Vacuum Polarization
In second order perturbation theory the regularized expression (10.96)
takes the form

(Πreg)µν(Q)= (
QµQν−Q2gµν

)(
C+Πfinite(Q2)

)
, (10.100)
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11 In fact, this expression may alterna-
tively be derived from what is called
a dispersion relation, that is, by means
of Cauchy’s integral theorem. In this
approach it is the real part of a com-
plex amplitude whose imaginary part
describes f + f − creation, see, e. g.,
G. Källén, Handbuch der Physik, Quan-
tenelektrodynamik, Vol. 1, Springer Berlin-
Göttingen-Heidelberg, 1958.

the first term of which, C = α/(3π)∑ f ln
(
M f /m f

)2, is absorbed by
renormalizing the charge, while the second, finite term

Πfinite(Q2)=−2α

π

∑
f

1∫
0

dz z(1− z) ln
(m2

f −Q2z(1− z)

m2
f − iε

)
is defined by the condition that it vanish at Q2 = 0. This term which is
uniquely defined by this condition, by its Lorentz invariance, and by its
gauge invariance, is discussed in this section.

By substitution of the variable z := (1− x)/2 and by means of a par-
tial integration which liberates the logarithm, it becomes

Πfinite(Q2)= α
π

Q2
∑

f

1∫
0

dx
x2(1− x2/3)

4m2
f −Q2(1− x2)− iε

.

One more substitution s := 4m2
f /(1− x2) for which

ds = s2

2m2
f

x dx , x2 = 1− 4m2
f

s
,

turns it into

Πfinite(Q2)= α

3π
Q2

∑
f

∞∫
4m2

f

ds

(
1+2m2

f /s
)√

1−4m2
f /s

s(s−Q2− iε)
. (10.101)

This formula is interesting also from a function theoretic point of view
because our finite term is represented by an integral over the cut from
(2m f )

2 to infinity. The virtual fermion pair f + f − contributes only if
the variable s is larger than this threshold value (2m f )

2.11 In order to
visualize better this finite part we use Fourier transformation to translate
it to x-space. Furthermore, we return to our example of scattering on
an external potential. Barring the radiative corrections F1(t)− F1(0) and
F2(t) of (10.87), and carrying out charge renormalization, one obtains

M(Q)≡ 2πieu(q)γµu(p)

×
{

gµν+ 1

Q2

(
QµQν−Q2gµν

)
Πfinite(Q2)

}
Ãν(Q2)

= 2πieu(q)γµu(p)
{

1−Πfinite(Q2)
}

Ãµ(Q
2) .

Here one again used u(q)γµu(p)Qµ = 0. After charge renormalization
the external potential becomes

Ãµ
(
(p−q)2

)= Ze

(2π)3
δµ0

1

(p−q)2
.
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Regarding the remaining formulae one notes that E p = Eq and, hence,
Q2 =−Q2, so that

Πfinite(Q2)=− α
3π

Q2
∑

f

∞∫
4m2

f

ds

(
1+2m2

f /s
)√

1−4m2
f /s

s(s+Q2− iε)
.

We assume the external fermion to be either an electron or a muon, and
the potential to be generated by an atomic nucleus with total charge Ze.
Let

Ũ(Q2) := −Ze2{1−Πfinite(Q2 =−Q2)
} 1

(2π)3
1

Q2 .

Upon transformation to position space one then has

U(x)= −Ze2

(2π)3

∫
d3 Q eiQ·x

×

⎧⎪⎪⎨⎪⎪⎩
1

Q2 +
α

3π

∑
f

∞∫
4m2

f

ds

(
1+2m2

f /s
)√

1−4m2
f /s

s(s+Q2− iε)

⎫⎪⎪⎬⎪⎪⎭ .
The two integrals on Q are calculated by means of the formula

1

(2π)3

∫
d3 Q

eiQ·x

Q2+ A2 =
e−A|x|

4π|x| , (10.102)

and are reduced to a one-dimensional integral over the variable s, repec-
tively. In particular, the second term in curly brackets yields

−Ze2

4π

α

3π

∑
f

∞∫
4m2

f

ds
1

s

(
1+ 2m2

f

s

)√
1−4m2

f /s
e−r
√

s

r
, (r = |x|) ,

or, upon substitution by y2 := s/(4m2
f ), with ds = 8m2

f y dy,

= −Ze2

4π

2α

3π

∑
f

∞∫
1

dy
1

y2

(
1+ 1

2y2

)√
y2−1

e−2m f ry

r
.

Thus, the total potential energy, corrected to order e2, is equal to

U(r)=− Ze2

4πr

⎧⎨⎩1+
∑

f

2α

3π

∞∫
1

dy e−2m f ry(1+ 1

2y2

)√y2−1

y2

⎫⎬⎭ .

(10.103)

The product m f r which appears in the argument of the exponential,
supplemented by the correct factors � and c, is nothing but the ratio of
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the radial variable to the reduced Compton wave length of the virtual
lepton f , λC = λC/(2π),

m f r =̂ r

�/(m f c)
.

This means that the contribution of a given lepton species f to the vac-
uum polarization potential has a spatial range which is of the order of
its Compton wave length λ( f )

C . In the case of virtual electrons the rele-
vant parameter is λ(e)C = 386 fm, for muons it is λ(µ)C = 1.87 fm, and for
τ-leptons it isλ(τ)C = 0.11 fm. These numbers show that the by far largest
contribution must be due to virtual e+e−-pairs. Furthermore, since λ(e)C
is still small as compared to typical dimensions of ordinary, electronic
atoms, one will not be surprised to learn that this contribution to the
Lamb shift is numerically small: Vacuum polarization contributes about
−17 MHz to the Lamb shift whose total magnitude is 1060 MHz.

Matters are different in muonic atoms which are smaller than elec-
tronic atoms by the ratio me/mµ ≈ 1/207 and whose spatial extension
is comparable to or smaller than λ(e)C . As a result, vacuum polarization
is the dominant contribution to the Lamb shift of muonic atoms.

The limiting cases m f r� 1 and m f r� 1 can be further estimated.
If m f r� 1, that is, if r�λ(e)C , the integrand in the vacuum polarization
potential is large only close to the lower boundary. Close to y = 1 one
approximates

(
1+ 1

2y2

)√y2−1

y2 ≈ 3

2

√
2(y−1)

and uses the substitution u := y−1 to obtain

∞∫
1

dy e−2mery
(

1+ 1

2y2

)√y2−1

y2

≈ e−2mer

∞∫
0

du e−2meru 3

2

√
2u = 3

√
π

8

e−2mer

(mer)3/2
.

The effective potential energy then is

U(r)≈− Ze2

4πr

{
1+ α

4
√
π

e−2mer

(mer)3/2

}
, r�λ(e)C . (10.104)

In this approximation the vacuum polarization which is induced by
virtual electron-positron pairs, decreases with r more strongly than
a Yukawa potential.
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The other limiting situation r�λ(e)C can also be worked out approx-
imately. I quote the result without proof. It reads

U(r)≈− Ze2

4πr

{
1− 2α

3
√
π

[
ln(mer)+CE+ 5

6

]}
, r�λ(e)C ,

(10.105)

where CE = 0.577216 is Euler’s constant.

The induced Charge Density of Vacuum Polarization
The result (10.103) has a striking physical property: The second term
in the curly brackets is positive for all values of r and, hence, am-
plifies the unperturbed Coulomb potential. Indeed, by the action of
vacuum polarization, the 1s-state in a muonic lead atom is bound more
strongly than in a pure Coulomb potential. This seems to contradict our
intuition: Imagine vacuum polarization to be generated by virtual e+e−-
pairs which move within the range of the Compton wave length λ(e)C of
the electron. The virtual electrons should be attracted by the positive
charge Ze while the virtual positrons should be repelled in such a way
that the integral over the induced polarization charge density is equal
to zero. But then the original charge +Ze should be distributed over
a larger domain in space, being smeared out over a range characterized
by the Compton wave length. Such an effect always causes a weakening
of binding. A smeared out charge distribution of total charge Ze binds
less strongly than the same charge concentrated in a point (or in some
smaller domain of space). This contradicts the observation made above!

In fact, the situation is even stranger. Given the potential, one can
make use of Poisson’s equation to derive the corresponding charge den-
sity. One finds that the latter has everywhere the same sign, for all r �= 0.
How can this be reconciled with the fact that the integral over the in-
duced polarization density must be zero?

In order to answer this question consider the potential

Φpol(r)= Ze

4πr

2α

3π

∞∫
1

dy e−2mry(1+ 1

2y2

)√y2−1

y2 .

(Note that this is the second term on the right-hand side of (10.103),
taken for one of the leptons f , after extraction of a factor (−e).) Defin-
ing ξ := 2mr we study the dimensionless function

ϕpol(ξ) := lim
M→∞

∞∫
1

dy e−(m/M)y e−ξy
(
1+ 1

2y2

)√y2−1

y2 . (10.106)

Here, the first exponential which enforces convergence, is introduced for
a technical reason which will become clear below, and does not alter our
argument. Use Poisson’s equation to calculate the density,

�pol(ξ)=−�ξϕ
pol(ξ) .
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By the well-known formula(
�−κ2) e−κr

r
=−4πδ(r)

and with κ = 2my one finds

�pol(ξ)= lim
M→∞

⎧⎨⎩4πδ(x)

∞∫
1

dy e−(m/M)y(1+ 1

2y2

)√y2−1

y2

−4m2

r

∞∫
1

dy e−(m/M)y e−ξy
(
1+ 1

2y2

)√
y2−1

⎫⎬⎭ . (10.107)

It is clear that the convergence factor is needed only in the first term
which otherwise is logarithmically divergent. It plays no role in the sec-
ond term.

The strange behaviour of the polarization density (10.107) is easily
understood. As long as r is not zero only the second term on the right-
hand side contributes. It has the same sign for all r �= 0. In the origin,
r = 0, the density has two singularities, the δ-distribution of the first
term multiplied by the logarithmically divergent factor,

4π δ(x) ln
( m

M

)
,

as well as a pole of third order, 1/r3, in the second term on the right-
hand side of (10.107). Indeed, calculating the charge density in the same
approximation as (10.105), one obtains its leading term proportional
to 1/r3. Nevertheless, the integral over the polarization density is equal
to zero, as it should. In order to see this, calculate its integral using the
formula

∞∫
0

r2 dr
e−κr

r
= 1

κ2

(with κ = 2my, as before) thus finding∫
d3x �pol = lim

M→∞

⎧⎨⎩
∞∫

1

dy e−(m/M)y(1+ 1

2y2

)√y2−1

y2

−
∞∫

1

dy e−(m/M)y(1+ 1

2y2

)√y2−1

y2

⎫⎬⎭= 0 .

In some sense this result is typical for quantum electrodynamics.
The potential, being an observable, is well-defined but the polarization
density which is not directly observable, is quite singular. Thus, in try-
ing to interpret the induced charge density (10.107) one may say this:
A test particle which passes very far from the given positive charge
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(that is, which scatters with small momentum transfers), sees essen-
tially only its physical charge. If it approaches the charge, i. e. if it
scatters with larger momentum transfers, then it sees more and more of
its bare charge which, as we know, is larger than the physical charge.
Note, however, that the bare charge, strictly speaking, is infinitely large.
This phenomenon limits our ability to visualize vacuum polarization in
a simple physical picture.

Remarks

1. The phenomenon of the running coupling constant:
As a consequence of vacuum polarization the photon propagator is
modified by the insertion of loops of virtual f f̄ -pairs according to

− gµν

q2+ iε
− gµα

q2+ iε
Π

reg
αβ (q)

gβν

q2+ iε
≡ D′µν(q) .

This repeats the replacement (10.97), provided with the correct iε-
rules in the denominators. Like in (10.94) we make use of gauge
invariance in decomposing Παβ in terms of covariants. Extracting
the factor e2

0, we have

Π
reg
αβ (q)= e2

0

[
qαqβ−q2gαβ

]
π(q2) .

(The Lorentz scalar π(q2) differs from Π(q2) of (10.94) by the fac-
tor e2

0. For simplicity we omit the notation “reg”.) Eq. (10.96) shows
that

π(q2)= 1

12π2

∑
f

ln
(M f

m f

)2+πfinite(q2) , with

πfinite(q2)=− 1

2π2

∑
f

1∫
0

dz z(z−1) ln
(

1− q2z(1− z)

m2
f − iε

)
.

Thus, except for gauge terms whose contribution to every physical
diagram vanishes, one has

D′µν(q)=−[gµν− 1

q2 qµqν
] d′(q2)

q2+ iε
(+ gauge terms ) ,

where d′(q2)= 1− e2
0π(q

2) .

Let µ2 be the square of some arbitrary but fixed momentum. Define
a new Lorentz scalar function πfinite(q2, µ2) by

πfinite(q2, µ2) := π(q2)−π(µ2)= πfinite(q2)−πfinite(µ2) .
(10.108)

The quantity µ2 is said to be the renormalization point. The func-
tion πfinite(q2, µ2) is free of any logarithmic divergence and, hence,
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is finite. Inserting this definition into d′(q2) and noting that we are
working in second order perturbation theory, one finds

d′(q2)= 1− e2
0π(µ

2)− e2
0π

finite(q2, µ2)

≈
(

1− e2
0π(µ

2)
)(

1− e2
0π

finite(q2, µ2)
)
.

The first factor is denoted by a new symbol, viz.

Z(µ2) := 1− e2
0π(µ

2) , (10.109)

Taking account of the order at which we are calculating, the function
d′(q2) can be written in the following way,

d′(q2)= Z(µ2)
[
1− e2

0 Z(µ2) πfinite(q2, µ2)
]
.

As we are using natural units, we have α0 = e2
0/(4π), and α2 =

e2/(4π) for the physical coupling constant. If we define the product

α0 Z(µ2)=: α(µ2) (10.110)

to be the physical coupling at the scale µ2, then the product

α0d′(q2)= α(µ2)
[
1−4πα(µ2)πfinite(q2, µ2)

]
(10.111)

is independent of µ2.
One evaluates the result (10.110) both at q2 = µ2, and at q2 = 0,
taking into account that πfinite(q2 =µ2, µ2) is equal to zero, and ob-
tains

α(µ2)=α(0)
[
1−4πα(0)πfinite(q2, 0)

]
≈ α(0)

1+4πα(0)πfinite(q2, 0)
,

or, upon inserting the integral representation of πfinite,

α(µ2)

α(0)
= 1+ 2α(0)

π

∑
f

1∫
0

dz z(z−1) ln
(

1− q2z(1− z)

m2
f − iε

)
.

(10.112)

This formula is particularly interesting because it can be interpreted
in two different ways:

(a) If one interprets α ≡ α(0)≈ 1/137 as being the coupling con-
stant of quantum electrodynamics (this is the customary in-
terpretation in quantum electrodynamics with light fermions),
then (10.112) represents the modification of the photon propa-
gator by the effect of vacuum polarization. The formula[

1−4παπfinite(q2, 0)
]= d ren

QED(q
2)
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is the radiatively corrected (to second order), renormalized ex-
pression for d′(q2).

(b) Alternatively, the formula (10.112) may be interpreted in the
sense that it yields the dependence of the physical coupling on
the scale µ2. The numerical value of Sommerfeld’s fine struc-
ture constant then depends on the scale µ2 at which the physical
elementary charge is determined. So, in fact, α is no longer con-
stant, and becomes what is called a running coupling constant
whose value depends on the renormalization scale µ2.

As we emphasized previously, the renormalization point µ2 = 0 in
quantum electrodynamics is not arbitrary. This choice is natural
because it is singled out by Thomson scattering which fixes the
physical charge of the electron by the limit q2→ 0 of photon-
electron scattering.12 Alternatively it is possible to define the electric
charge, or α, at some other point µ2 �= 0, that is, to apply the
renormalization procedure at this scale. For example, in electroweak
interactions a natural scale is defined by the squared masses of W±
or of Z0, in which case one obtains, e. g., α(m2

Z)≈ 1/128. An ob-
servable A which is calculated by perturbation theory, by choosing
two different renormalization points, is then obtained from two dif-
ferent series expansions,

A ≈ A0+ A2α(0)+ A4α
2(0) ,

A ≈ A′0+ A′2α(µ2)+ A′4α2(µ2) ,

with different expansion coefficients. Although either series should
approach the “true” answer, provided they are convergent or semi-
convergent, there may be better, or worse, choices of the renormal-
ization scale. Presumably, by choosing a scale which is defined by
the physical situation at stake, one may truncate this series at a lower
order than with some other choice far away from this natural scale.
While for quantum electrodynamics there is such a natural choice
which is µ2 = 0, this is not true in other, nonabelian gauge theories
such as the theory of electroweak interactions or the theory of strong
interactions.

2. Where has Z1 gone?
The reader will have noticed that there are renormalization constants
such as Z2, (10.64), correcting external fermion lines, as well as
Z3, (10.99), which multiplies the electric charge, but that there is
no Z1. Indeed, Z2 which is called fermionic wave function renor-
malization, relates the renormalized fermion propagator to the bare
propagator, Z3, the wave function renormalization for the photon,
relates the renormalized photon propagator to the bare one, while
Z1 contains the correction of the vertex part. One shows that the
renormalization constants Z1 and Z2 of quantum electrodynamics
are equal, Z1 = Z2. In second order perturbation theory, this result

12 This statement is but one of a se-
ries of low-energy theorems which say,
qualitatively, that photon scattering on
a fermion at small momentum transfers
is determined by static electromagnetic
properties of the fermion such as charge
and magnetic moment.
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p´

p

q q

p p

Fig. 10.17. Fermion propagator, photon
propagator and vertex part in quan-
tum electrodynamics to order n. The
hatched areas hide all diagrams of the
considered order that contribute to these
quantities

13 We write it for a given lepton species,
suppressing the index f .

is contained in the relation (10.86). This equality that holds to all
orders is the reason why we did not introduce Z1 explicitly.

3. Comments on the proof of renormalizability of quantum electro-
dynamics:
The preceding sections demonstrated methods of regularization and
the principle of renormalization on some examples in second order
of perturbation theory. In this framework it was shown that, after
having identified the physical masses and charges, all observables
are free of divergences and are predicted without ambiguity. This
intuitively appealing but mathematically incomplete procedure can
be extended to all orders of perturbation theory. This is the content
of the renormalization program which holds for quantum electro-
dynamics and for other, renormalizable gauge theories. In the case of
quantum electrodynamics there are three essential objects whose ul-
traviolet divergence must be analyzed. These are: The exact fermion
propagator13

iSF(p)=
∫

d4x eip·x 〈0| T ψ(x)ψ(0) |0〉 ; (10.113)

The photon propagator, treated to all orders,

iDµν(q)=
∫

d4x eiq·x 〈0| T Aµ(x)Aν(0) |0〉 ; (10.114)

And the complete vertex part

SF(p)Γµ(p, p′)SF(p
′) (10.115)

=−
∫

d4x
∫

d4y eip·x e−ip′·y 〈0| T ψ(x) jµ(0)ψ(y) |0〉 .
These three fundamental quantities are sketched in Fig. 10.17, the
shaded loops representing the sum of all Feynman diagrams of all
finite orders n. If we were dealing with free fields then we would
have

Sfree
f (p)= /p+m0 1l

p2−m2
0+ iε

,

Dµνfree(q)=−
gµν

q2+ iε
,

Γ free
µ = γµ .

In analogy to the second order of perturbation theory one proves the
following assertions for any arbitrary, finite order: Provided one ad-
justs the mass correction term δm = m−m0 in such a way that on
the mass-shell one has δm−Σ(p)= 0 for /p= m 1l, one obtains

SF(p)−→ Z2

/p−m
for /p→ m 1l .
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Likewise Dµν(q), for q2→ 0, has the limit

Dµν(q)−→−Z3
gµν

q2 ,

the vertex at p= p′ and for /p→m 1l goes over into

Γµ(p, p)−→ Z−1
1 γµ .

The renormalized propagators, the renormalized vertex function, and
the renormalized, physical charge are defined as follows:

SF(p)= Z2Sren
F (p) ,

Dµν(q)= Z3 Dµνren(q) ,

Γµ(p, p′)= Z−1
1 Γ

ren
µ (p, p′) ,

e0 = Z1

Z2
√

Z3
eren . (10.116)

One writes the renormalized functions defined in this way in terms
of the physical mass and the physical charge and finds that they are
finite for all p and p′. All terms which depend on the method of reg-
ularization (that is to say, all divergences of the theory) are contained
in the three renormalization constants Z1, Z2, and Z3. Furthermore,
a more detailed analysis of the diagrams of order n shows that all
factors Zi cancel multiplicatively, and the final result is well-defined
and finite. On says that self-energy and vertex parts are multiplica-
tively renormalizable.

4. Universality of electric charge:
As mentioned above one can prove that Z1 and Z2 are equal to ar-
bitrary finite order of perturbation theory,

Z1 = Z2 . (10.117)

This important relation follows from an identity that was proven by
Ward and Takahashi. We quote this relation here but refer to Ap-
pendix A.7 for a somewhat formal proof,(

p− p′
)µ
Γµ(p, p′)=

(
SF(p)

)−1−
(

SF(p
′)
)−1

. (10.118)

The relation (10.117) follows from this identity in the limit of /p′
tending to m 1l. Eq. (10.117) has two important consequences:
Renormalizability of the vertex function implies renormalizability of
the self-energy, and vice versa. Furthermore, with Z1 = Z2 the defi-
nition (10.116) simplifies and becomes

eren =
√

Z3e0 . (10.119)

The renormalization of the electric charge depends only on the pho-
ton propagator but not on the properties of the fermion that couples
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to the photon. In this sense renormalization of the charge is univer-
sal.

5. The S-matrix in presence of infraparticles:
Recall that the existence of isolated, free one-particle states was an
essential assumption in defining the S-matrix. In quantum electro-
dynamics there are no such states. As the photon is strictly massless,
an electron may be surrounded by a cloud of very soft photons,
i. e. of photons whose energy is arbitrarily small. In other terms,
the mass shell p2 = m2 of an electron never is isolated. Rather, it
is the boundary of a continuum of energy-momentum surfaces on
which it is accompanied by one, two, or more photons of very small
energy. A particle which moves embedded in a photon cloud, is
called an infraparticle, by allusion to the infrared divergences which
are related to the masslessness of photons, too. As a consequence,
strictly speaking, there is no S-matrix in quantum electrodynamics.
But then, why is it that this ill-defined concept allows to derive cor-
rect formulae for cross sections even when one goes beyond the
level of tree diagrams? The answer to this question which was dis-
cussed many times in the development of quantum electrodynamics,
must be sought in a more careful analysis of realistic experimen-
tal arrangements by asking how beams are preparated and how they
are detected. Arguing heuristically, a given process which is stud-
ied in an experiment, must be integrated over the resolution of the
detector(s). Furthermore, in its theoretical description all those pro-
cesses must be added, in which additional soft photons are emitted
within the experimental resolution. In a symbolic representation this
amounts to calculate the cross section

dσ(n)(A+ B→ C+D)
radiatively corrected up to order O(αn), and to add to it
+ ∫

∆
dσ(n−k)(A+ B→ C+D+γ +γ +· · ·+γ︸ ︷︷ ︸

k

),

radiatively corrected to order O(αn−k).

In practical calculations one often introduces a ficticious finite pho-
ton mass. One calculates the cross sections at order n as indicated
above, and studies the result in the limit of vanishing photon mass.
As an alternative, one analyzes the amplitudes with dimensional reg-
ularization, noting that observables, after integration and addition as
described above, come out perfectly finite. We note also that there
is a mathematically rigorous approach to quantum electrodynamics
which does not make use of the standard notion of S-matrix [Stein-
mann (2000)].
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10.3 Epilogue: Quantum Electrodynamics
in the Framework of Electroweak Interactions

The so-called minimal standard model of electroweak interactions
combines weak interactions and quantum electrodynamics in a gauge
theory which is constructed from the group SU(2)×U(1). The construc-
tion of this model requires some preparations and a sizeable technical
apparatus. For this reason I restrict this epilogue to a number of general
comments and some examples, and refer to more specialized mono-
graphs on this topic.

We begin with a list of particles which participate in the interactions
described by the minimal standard model:

– Four bosons carrying spin 1:

- the photon γ which is massless,
- the Z0 which is electrically neutral, and whose mass has the value

m Z = 91.187±0.002 GeV,
- the W-bosons, W+ and W−, which carry electric charges +1

and −1, respectively, and whose mass has the value mW =
80.40±0.03 GeV;

While γ and Z0 coincide with their own antiparticles, the W+
and W− are antiparticles of one another.

– A boson with spin 0, electrically neutral, whose mass is expected to
lie in the range 110–160 GeV but which was not detected as yet.

– Six leptons ordered in three pairs: (e−, νe), (µ−, νµ), (τ−, ντ )
as well as their antiparticles,

– Eighteen quarks which come in three pairs, too, as well as three
species (“colours”):
(u, d), (c, s), (t, b), and their antiparticles
whose characteristics are summarized in Table 10.3, below those of
the leptons.

The first five particles, i. e. the bosons with spin 1 and spin 0, re-
spectively, play a double role: They can be created and detected as
free, on-shell particles, but they also mediate interactions between the
fermions, the real building blocs of matter. Following the pattern of the
basic vertices of the standard model, the bosons can be exchanged be-
tween pairs of fermions.

Some, if not all of the neutrinos have nonvanishing masses which,
however, are much smaller than those of their charged partners. Every
lepton family comes with its own lepton family number, Le, Lµ,
and Lτ , each of which is additively conserved in electroweak inter-
actions. Their values (Le, Lµ, Lτ ) are shown in the fourth column
of Table 10.3.

Quarks can never occur in free asymptotic one-particle states and,
therefore, their masses cannot be determined like those of leptons. Yet,
there are mass parameters in the quark propagators which occur in
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particle charge mass lepton baryon
×|e| [MeV] numbers number

e− −1 0.511 (1,0,0) 0
νe 0 	 0 (1,0,0) 0

µ− −1 105.66 (0,1,0) 0
νµ 0 	 0 (0,1,0) 0

τ− −1 1777.03 (0,0,1) 0
ντ 0 	 0 (0,0,1) 0

u +2/3 1.5 – 3 (0,0,0) 1/3
d −1/3 3 – 7 (0,0,0) 1/3

c +2/3 1000 – 1600 (0,0,0) 1/3
s −1/3 100 – 300 (0,0,0) 1/3

t +2/3 174,200 (3300) (0,0,0) 1/3
b −1/3 4100 – 4500 (0,0,0) 1/3

Table 10.3. Characteristics of leptons
and quarks

a perturbative treatment of quantum chromodynamics. Although we do
not go into this topic the hint given here might explain why quark
masses are known only within error bars that are difficult to quantify.

The table shows only the flavour quantum numbers. These are the
quantum numbers which are relevant for the selection rules of electro-
magnetic and weak interactions. Of each quark there are three exact
copies which differ by one further quantum number, called colour.
Colour plays a role in quantum chromodynamics, the theory of strong
interactions while electroweak interactions do not see this degree of
freedom.

10.3.1 Weak Interactions with Charged Currents
The minimal standard model contains different, partially unified interac-
tions. Among these and as a matter of example, we consider the weak
interactions which are responsible for nuclear β-decay and analogous
processes in elementary particle physics.

Denote by Wµ(x) the quantum field which is constructed following
the rules of canonical quantization. This field is linear in annihilation
operators for positively charged W-bosons, and in creation operators for
negatively charged W-bosons. Denote further by

f(x)≡ ψ( f )(x)

the quantum Dirac field describing a charged lepton of the species f ,
and by

ν f (x)≡ ψ(ν f )(x)
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the quantum Dirac field of the corresponding neutrino. A typical inter-
action term of the electroweak model then reads

LCC = − e

2
√

2{∑
f

ν f (x)γ
µ
(
1l−γ5

)
f(x)Wµ(x)+ f(x)γµ

(
1l−γ5

)
ν f (x)W

†
µ(x)

}
.

(10.120)

This interaction has some remarkable properies:

(i) The factor in front of the curly brackets contains the electric elem-
entary charge and a numerical factor which follows from the group
structure of the model. The electromagnetic and the weak interac-
tions are characterized by the same coupling constant. This, at first,
seems surprising when one compares the phenomenology of elec-
tromagnetic physics of nuclei, atoms, and matter, with the rather
different phenomenology of nuclear β-decay.

(ii) Like the Maxwell field the quantum field Wµ(x) is a vector field,
though with a nonvanishing mass (in contrast to the photon). Its
coupling to the leptons of a given family relates the charged to the
neutral partner such that LCC, as a whole, is electrically neutral.
The leptonic factor of the interaction is a direct analogue of the
electromagnetic current. As it changes the charge, by converting,
e. g., a e− into a νe, it is called the charged current. This also ex-
plains the notation LCC where “CC” stands for charged current.

(iii) The leptonic part is a coherent mixture of a vector current

ψ(1)(x)γµψ(2)(x) ,

whose structure is the same as the one of the electromagnetic cur-
rent density, except for the fact that it relates two different fermion
fields, as well as an axial vector current,

ψ(1)(x)γµγ5ψ
(2)(x) ,

which is new. As we remarked earlier, cf. Sect. 9.3.1, the mix-
ture of vector and axial vector currents means that there may be
parity-odd observables. Indeed, if the vector current transforms
by a Lorentz transformation Λ, then ψ(1)(x)γµγ5ψ

(2)(x) trans-
forms by

(
det Λ

)
Λ. This is to say that they transform in the same

way with respect to Λ ∈ L↑+, but if one applies a space reflec-
tion in addition, there is a relative minus sign. The coefficients of
the two terms being equal in magnitude, parity violation is even
maximal! In other terms, using chiral fields (9.125), the W-boson
couples only to left-chiral fields. This observation implies the spe-
cific selection rules for the coupling (10.120) that we derived and
discussed in Sect. 9.3.4.
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On the basis of the experience gained in Chapter 7 it is not difficult
to see that the covariant propagator of W-bosons has the momentum
space representation

−gµν+qµqν/m2
W

q2−m2
W + iε

. (10.121)

Thus, it is obvious how the Feynman rules have to be generalized if
this new interaction is part of the model. However, there is a pecular-
ity: If we study processes such as muon decay, µ− → e−+νe+νµ or
nuclear β-decay, the momentum transfers are very small as compared to
the mass of the W-boson. Therefore, one may safely neglect the second
term of the numerator of (10.121) as well as the first term of its denom-
inator. As a consequence, the exchange of a virtual W between lepton
pairs (1, 2) and (3, 4), such as, e. g., the pairs (µ−, νµ) and (e−, νe),
may be approximately described by the effective interaction

Leff ≈ e2

8m2
W

(
ψ(1)(x)γµ

(
1l−γ5

)
ψ(2)(x)

)(
ψ(4)(x)γµ

(
1l−γ5

)
ψ(3)(x)

)
+ h. c., (10.122)

from which the W-propagator has disappeared. (The addition “h. c.” is
a hint at the second term which must be the hermitean conjugate of the
first.) This effective interaction relates four fermionic quantum fields at
the same spacetime point and is called a contact interaction. A simi-
lar form of weak interaction was introduced by E. Fermi in the 1930’s
for the description of the β-decay of nuclei. As he chose to denote the
common factor by G/

√
2, the quantity

G := √2
e2

8m2
W

=̂ πα√
2 m2

W

, (10.123)

still today, is called Fermi’s constant. This constant carries a dimension,
[G] = [E−2], because it contains the factor 1/m2

W , as a remnant of the
W-propagator. The large value of the mass of the W also explains the
very large difference in the coupling strengths of electromagnetic versus
weak interactions that is observed in atomic and nuclear physics, as well
as in particle physics at low energies.

Although I do not go into this, I add here that the basic vertex which
describes the coupling of fermions to the electrically neutral field Zµ(x)
of the Z0-boson, contains a specific linear combination of the electro-
magnetic current and of the neutral partner of the charged current, viz.

LNC =
{
α
[∑

f

ν f (x)γ
µ
(
1l−γ5

)
ν f (x)

+
∑

f

f(x)γµ
(
1l−γ5

)
f(x)

]
+β jµe.m.(x)

}
Zµ(x) . (10.124)
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These neutral current interactions (hence the index “NC” of the La-
grange density) again contain neutrinos only in their lefthanded realiza-
tion. However, in contrast to the previous case of CC-interactions, this
does not hold for their charged partners. The vector current jµe.m.(x),
for instance, has equal amounts of lefthanded and righthanded fermion
fields. Therefore, observables that are due to this interaction may con-
tain terms which are odd under space reflection, but parity violation will
no longer be maximal.

Remarks

1. Regarding quarks the standard model of electroweak interactions
fixes their vertices in a unique way, too. However, there are
two complications which must be discussed separately. Firstly, the
flavour eigenstates of Table 10.3 do not coincide exactly with the
states that couple to weak vertices. Rather, at weak vertices with
charged currents, unitary mixtures of these states are created or an-
nihilated. Secondly, the matrix elements of the weak currents are
modified by strong interactions in such a way that, though they are
simple to parametrize, they are difficult to actually compute.

2. To a large extent, the quantization of the minimal standard model
follows the model of quantum electrodynamics and leads to a gen-
eralized set of Feynman rules for computing amplitudes in the
framework of covariant perturbation theory. This enlarged theory
into which quantum electrodynamics is embedded, was proven to be
renormalizable so that radiative corrections are predicted and can be
tested in experiment.

10.3.2 Purely Leptonic Processes and Muon Decay
There are a few processes of weak interactions in which only leptons
participate and which can be measured within a reasonable experimental
effort. Among these there are:

– The decay of the negative or the positive muon

µ− → e−+νe+νµ ,
(
µ+ → e++νe+νµ

) ; (10.125)

– The analogous leptonic decays of τ±, viz.

τ− → e−+νe+ντ ,
(
τ+ → e++νe+ντ

)
, (10.126)

τ− → µ−+νµ+ντ ,
(
τ+ → µ++νµ+ντ

) ; (10.127)

– The so-called inverse muon decay

νµ+ e− −→ µ−+νe , (10.128)

where an incoming beam of muonic neutrinos hits electrons in a tar-
get and where the muon of the final state is detected;
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– Elastic scattering of electronic or muonic neutrinos on electrons

νe+ e− → νe+ e− , νe+ e− → νe+ e− , (10.129)

νµ+ e− → νµ+ e− , νµ+ e− → νµ+ e− . (10.130)

– The decays of the Z0 in lepton-antilepton pairs

Z0→ f + f , (10.131)

where f is a charged lepton or a neutrino.

These decays and reactions allow to study the weak interactions in
a neat setting, without having to correct for effects of interactions other
than electroweak. The purely electroweak radiative corrections generally
are small but, depending on the accuracy of measurements, often must
be taken into account.

Exercise 10.6 invites the reader to decide, on the basis of the ver-
tices defined by (10.120) and by (10.124), which of the processes listed
above are due to the charged current, or to the neutral current, or to
both. Besides these purely weak processes there are others to which
the electromagnetic and the weak interactions contribute simultaneously
and, hence, in which they can interfere. Examples are the pair creation
reactions (10.48),

e++ e− → µ++µ− , e++ e− → τ++ τ−
that we calculated in Sect. 10.1.3(c), in the framework of pure quantum
electrodynamics. As one easily realizes, the diagrams in which the pho-
ton is replaced by a Z0, also contribute. At energies which are small as
compared to the mass of the Z0, these contributions are suppressed by
the factor 1/m2

Z . However, as soon as one reaches the neighbourhood
of the Z0-pole the corrections become large and, in fact, comparable to
the electromagnetic amplitudes.

A classical example for a purely leptonic process is provided by the
decay of the muon into an electron and two neutrinos,

µ− (q)→ e− (p)+νe (k1)+νµ (k2) ,

the four-momenta being indicated in parentheses. Assume the muon, be-
fore its decay, to be at rest with respect to the frame of the observer, i. e.
take q = (mµ, 0)T . When one does not, or cannot, observe the two neu-
trinos, the electron has a continuous energy spectrum whose lower and
upper ends are easy to determine: In the kinematic situation where the
neutrinos move back-to-back with equal and opposite spatial momenta,
the electron has momentum p= 0 and its energy is E p =me. When the
neutrinos move in the same direction, the electron moves in the oppo-
site direction and has spatial momentum p= pmax, while the neutrinos
have momenta −x pmax and −(1− x)pmax, respectively, with x a num-
ber between 0 and 1. Neglecting the masses of the neutrinos the sum
of their energies is equal to the modulus of pmax (in natural units). The



1010.3 Epilogue: Quantum Electrodynamics in the Framework of Electroweak Interactions 645

principle of energy conservation then yields E p+|p| =mµ from which
one obtains (E p−mµ)2 = E2

p−m2
e . Thus, the entire kinematic range of

the electron is

me ≤ E p ≤W , with W = m2
µ+m2

e

2mµ
. (10.132)

Let the difference of the four-momenta q (of the muon) and p
(of the electron) be denoted by Σ := q− p. Energy and momentum
conservation tells us that Σ must also be Σ = k1+k2. The general for-
mula (8.34) yields the expression

d3Γ

dp3 =
(2π)7

4mµE p

∫
d3k1

2E1

∫
d3k2

2E2
δ(Σ− k1− k2)

∑
spin

∣∣T(µ− → e−νeνµ)
∣∣ 2 ,

where we allow for the muon to be polarized but where the polar-
ization of the electron is not measured. The effective contact interac-
tion (10.122) provides an excellent approximation for the calculation of
the amplitude and its absolute square. In order to see this, the reader
should compare the squared momentum transfer q2 =m2

µ to the square
of the W-mass: m2

µ/m
2
W 	 2×10−6. Thus, the diagram containing the

exchange of a W simplifies as shown schematically in Fig. 10.18.
The calculation of |T |2 is done by means of the trace rules

of Sect. 9.3.3. Integrating then over k1 and k2 one notices that the inte-
gration is symmetric in these momenta so that any antisymmetric terms
may be omitted. All symmetric parts can be reduced to the following
two integrals∫

d3k1

2E1

∫
d3k2

2E2

(
k1 · k2

)
δ(Σ− k1− k2)= π

4
Σ2 ≡ I0 , (10.133)∫

d3k1

2E1

∫
d3k2

2E2

(
kµ1 kν2− (k1 · k2)g

µν+ kµ2 kν1
)

× δ(Σ− k1− k2)= π6
(
ΣµΣν−Σ2gµν

)≡ Jµν . (10.134)

A way to calculate these integrals could be, for instance:

(a) As Σ = k1+k2 and k2
1 = 0= k2

2, one has
(
k1 ·k2

)=Σ2/2. The in-
tegral over the space components of k2 is done by means of the
spatial part of the δ-distribution. The remaining integral over k1 is
best done in a frame of reference in which the spatial part of Σ
vanishes, Σ = 0. Then, indeed, one has k2 =−k1 and E2 = E1.
Using spherical polar coordinates for k1, i. e. d3k1 = E2

1 dE1 dΩ1,
one finds

I0 = Σ
2

2
π

∞∫
0

dE1 δ(Σ
0−2E1)= π

4
Σ2 .

νe
⎯

µ−

νµ

e−

w

νe
⎯

e−νµ

µ−

a)

b)

Fig. 10.18. (a) Muon decay in tree ap-
proximation is generated by exchange
of a W-boson (b) Due to q2�m2

W the
diagram shrinks to a contact interac-
tion with four fermions interacting with
each other at the same point of space-
time
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14 After Louis Michel, French theoreti-
cian (1923–1999) who derived the most
general form of this spectrum at a time
where the interaction responsible for
the decay was not well known.

(b) It is useful to decompose the second integral in terms of Lorentz
covariants, that is,

Jµν = AΣµΣν+ BΣ2gµν

and to compute the coefficients A and B from the contractions

gµν Jµν = (A+4B)Σ2 , ΣµΣν Jµν = (A+ B)Σ4 .

The first contraction is proportional to I0, gµν Jµν =−2I0, and yields
the relation (A+4B)Σ2 =−πΣ2/2. In the second expression the inte-
grand is contracted with Σ = k1+k2 in both indices, giving a vanishing
result. Therefore, one has B =−A. Solving for A one obtains

A = π
6
=−B .

The spin expectation value of the muon at rest is s(µ) = (0, n̂) if we
assume that the muon is completely polarized in the indicated direction.
(If this is not so, replace the unit vector n̂ by a vector ζ whose modulus
equals the degree of polarization P(µ) of the muon.) Let the angle be-
tween the spatial momentum of the electron and the polarization of the
muon be denoted by θ, i. e.

p · n̂=
√

E2
p−m2

e cos θ .

The energy of the electron is expressed by the ratio to the maxi-
mum (10.132),

x := E p

W
. (10.135)

The range of this dimensionless variable is then

x0 ≤ x ≤ 1 , with x0 = me

W
.

Unless one looks very closely to the lower end of the energy spectrum
the mass of the electron quickly becomes negligible as the energy E p
grows. Choosing me ≈ 0, the kinematics simplifies to

W ≈ mµ
2
, 0≤ x ≤ 1 . (10.136)

A calculation whose method should be familiar by now, and using this
approximation, one finds the differential decay rate to be

d2Γ(x, θ)

dx dθ
≈ m5

µG2

192π3 x2{(3−2x)+ cos θ(1−2x)
}
. (10.137)

This formula contains an isotropic term which yields the characteris-
tic spectrum shown in Fig. 10.19, the so-called Michel spectrum14, and
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Fig. 10.19. (a) Energy spectrum of an
electron during muon decay as a func-
tion of the dimensionless variable x,
neither of the neutrinos being observed
(b) Spectrum of νe, electron and νµ are
integrated out

a term which describes the correlation between the spin expectation
value of the muon and the momentum of the electron. As there is no
such correlation in the initial state, its presence is an indication and
a quantitative measure for parity violation. In case the muon is only
partially polarized, this term is multiplied by P(µ). Integration over the
angle of emission θ as well as over the energy spectrum yields the decay
width

Γ (0)(µ− → e− νe νµ)≈
+1∫
−1

d cos θ

1∫
0

dx
d2Γ(x, θ)

dx dθ
= m5

µG2

192π3 .

(10.138)

If all terms proportional to the electron mass are taken into account,
and if one calculates the next-to-leading term in the expansion of the
W-propagator in terms of m2

µ/m
2
W , then (10.138) is replaced by

Γ(µ− → e− νe νµ)=
m5
µG2

192π3

{
1−8

m2
e

m2
µ

+O
( m3

e

m3
µ

)}{
1+ 3m2

µ

5m2
W

}
(10.139)

(cf. Exercise 10.7). This result is modified further by radiative correc-
tions among which those from pure quantum electrodynamics are the
most important. To lowest order in α these corrections amount to multi-
ply the rate (10.139) by the factor

CPhoton =
{

1+ α

8π
(25−4π2)

}
, (10.140)

(see, e. g., [Scheck (1996)]).
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Remarks

1. Inserting numbers one sees that the “photonic” radiative corrections
are of the order 0.44 % while the corrections due to the finite elec-
tron mass and to the W-propagator are practically negligible. Most
important for practical purposes and applications is the fact that the
muon lifetime is known to high accuracy, viz.

τ(µ) = (2.19703±0.00004)×10−6 s (10.141)

and, therefore, may serve as a reference information on the magni-
tude of Fermi’s constant. From the number (10.141) one obtains

G = (1.16637±0.00001)×10−5 GeV−2 , (10.142)

after having converted the result to the unit GeV, following common
practice in particle physics.

2. The form of the energy spectrum of Fig. 10.19a) is qualitatively well
understood on the basis of the selection rule (9.134) for chirality
that we derived in Sect. 9.3.4. It suffices to consider the two extreme
cases of maximal and minimal energy of the electron, respectively,
i. e. x = 1 und x = x0:

(a) At x=1 the two neutrinos move in the same direction, cf.
Fig. 10.20a), their spins are antiparallel because one of them
is a particle, the other is an antiparticle. The electron which
is created lefthanded by the interaction, moves in the oppo-
site direction. Taking this direction to be the 3-axis one sees
that J3, the projection of the total angular momentum, for the
configuration drawn in Fig. 10.20a), is conserved. (Recall that
the projection of the orbital angular momentum vanishes!) The
electron takes over the chirality of the decaying muon. This sim-
ple analysis not only explains why the electron is preferentially
emitted with large energy but also illustrates the angular dis-
tribution (10.137). Inserting there x = 1 the distribution has its
maximum at θ = π.

(b) At x = x0 the electron just stays where the muon was as rest be-
fore it decayed. In the neighbourhood of this point it is the phase
space that closes as x→ x0 and causes the differential decay
rate to tend to zero.

3. If, instead of the electron spectrum, one wishes to calculate the en-
ergy spectrum of the νµ, by integrating over all momenta of the e−
and the νe, then one concludes from Fig. 10.20a) that this spectrum
must be the same as the one of the electron in Fig. 10.19. In turn,
if one integrates over the momenta of e− and of νµ, and determines
the spectrum of νe, then the scheme in Fig. 10.20b) readily shows
that the antineutrino cannot be emitted with maximal energy. Close
to threshold, on the other hand, the rate tends to zero anyway be-
cause of the closing phase space. Indeed, if one does this calculation
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e

−

e

−

⇐ µ Fig. 10.20. (a) In the rest system of the
decaying muon, the electron runs into
the opposite direction to the direction
of flight of the two neutrinos at max-
imal energy; conservation of projection
of the total angular momentum is ful-
filled. (b) If, however, νe has maximum
energy, electron and νµ have to fly into
the opposite direction. Since both are
left-handed, whereas νe is right-handed,
there is no possibility of conserving J3

one finds the following distribution, up to small terms in the electron
mass,

m5
µG2

192π3 g(x) , with g(x)= 6x2(1− x) ,

which vanishes at x = 0 as well as at x = 1. This function is shown
in Fig. 10.19, in comparison to the function f(x)= x2(3−2x), the
isotropic part of (10.137).

4. When one integrates the doubly differential decay rate (10.137) over
the energy only and uses the integrals

1∫
0

dx x2(3−2x)= 1

2
,

1∫
0

dx x2(1−2x)=−1

6

one finds the asymmetry of the decay, averaged over energy,
1

Γ

dΓ(cos θ)

d cos θ
= 1

2

(
1− 1

3
cos θ

)
. (10.143)

This formula is important in practice. Indeed, recall that all terms in
cos θ, both here and in (10.137), must be multiplied by P(µ) when-
ever the muon is partially polarized only. The formula (10.143) then
serves as an analyzer for the polarization of the muon. Of course,
by lepton universality, all these results also apply to the leptonic de-
cays (10.126) and (10.127) of the τ-leptons.

10.3.3 Two Simple Semi-leptonic Processes
To conclude we study two simple processes which involve both leptons
and hadrons, and which belong to the class of what are called semi-
leptonic processes. The first example takes up the decay π−→µ−+νµ
whose charge-conjugate form was discussed in Sect. 9.3.4, Example 9.7,
in comparison with the analogous electronic decay mode π−→ e−+νe,

π−(q)−→ µ−(p)+νµ(k) . (10.144)
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15 This remark is relevant for situations
where the pion is not on its mass shell
and where q2 is a genuine variable.

In the quark model a π− is constructed from an antiquark u (electric
charge −2/3), and a d-Quark (electric charge −1/3),

π− ∼ (
ud

)
bound .

In pion decay, too, the liberated energy as well as all spatial momenta
of the particles in the final state are small (as compared to mW ) so that
we may appeal to the effective interaction (10.122) by inserting

ψ(1)(x)= ψ(µ)(x)≡ µ(x) , ψ(2)(x)= ψ(νµ)(x)≡ νµ(x) ,
ψ(3)(x)= ψ(d)(x)≡ d(x) , ψ(4)(x)= ψ(u)(x)≡ u(x) ,

(using a simplified notation like in (10.120)). However, the quark-
antiquark pair is in a bound state of strong interactions that can hardly
be computed so that we cannot do more than to parametrize the cor-
responding matrix element of the charged current. As one shows, the
pseudoscalar nature of the pion implies that in the transition from a π−
into the vacuum only the axial vector charged current can contribute.
With q denoting the momentum of the decaying pion, one has

〈0| u(x)γµ(1l−γ5
)
d(x)

∣∣π−(q)〉
=−〈0| u(x)γµγ5d(x)

∣∣π−(q)〉=− i

(2π)3/2
f̃πqµ . (10.145)

The form factor f̃π which is defined by this ansatz, in principle, could
also depend on q2. However, since q2 = m2

π has a fixed value in pion
decay, this is a constant.15 This parameter is called the pion decay con-
stant. Using this parametrization, denoting by p the momentum of the
muon, and by k the momentum of the antineutrino, the amplitude de-
scribing this decay reads

T(π− → µ− νµ)= −i√
2(2π)9/2

f̃πG u(µ)(p)/q
(
1l−γ5

)
v(νµ)(k)

= −i√
2(2π)9/2

f̃πG mµu(µ)(p)
(
1l−γ5

)
v(νµ)(k) .

In the second step /q = /p+/k was inserted and the Dirac equation was
used for the muon and the antineutrino. The mass of the neutrino was
neglected. Using the formula (8.37) and making use of the trace tech-
niques a short calculation yields the decay width

Γ(π− → µ−νµ)= G2 f̃ 2
πmπ

8π
m2
µ

(
1−m2

µ/m
2
π

)2
. (10.146)

Its similarity to the formula (9.135) is remarkable. Here as well there
the factor m2

µ is due to the conflict between conservation of angular mo-
mentum and the selection rule (9.134), while the factor in parantheses
reflects the available phase space.
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Remarks

1. The form factor f̃π which in this case is constant, parametrizes our
ignorance of what really happens inside a pion. We insert the mea-
sured lifetime of the pion,

τ(π) = 2.6033±0.0005×10−8 s . (10.147)

The formula (10.146) then yields approximately f̃π 	 135 MeV, i. e.
a value in the neighbourhood of the mass of the pion.

2. The same analysis and the analogous calculation also apply to the
decay channel π− → e−+νe, one only has to replace mµ by me.
This confirms the ratio of the decay widths of the electronic and the
muonic final state that we had given, without proof, in (9.135) of
Sect. 9.3.4.

3. The result of the first remark above may seem disappointing be-
cause, apparently, we have not done much more than replace one
experimental number (the lifetime) by another (the form factor). This
deceptive impression vanishes immediately when we show that an-
other decay such as the semi-leptonic τ-decay τ+ → π++ ντ can
now be predicted. Imagine the decay π− → τ−+ ντ (which, of
course, does not exist, for kinematic reasons) to be “crossed”, that
is to say, suppose the incoming π− is replaced by an outgoing π+,
while the outgoing τ− is replaced by an incoming τ+, thus yielding
the (kinematically allowed) process

τ+(p)−→ π+(q)+ντ (k) (10.148)

whose T -matrix amplitude is given as follows:

T(τ+ → π+ ντ)= −i√
2(2π)9/2

f̃πG v(ντ )(k) /q
(
1l−γ5

)
v(τ)(p)

= −i√
2(2π)9/2

f̃πG mτv(ντ )(k)
(
1l+γ5

)
v(τ)(p) .

One should note that in the second step the energy-momentum bal-
ance p= q+ k, i. e. /q = /p−/k was used and that /p was moved past
γ5 so that it acts on the spinor on the right-hand side (hence the mi-
nus sign). One then calculates the decay width for this channel, in
close analogy to what we did above, and one finds

Γ(τ+ → π+ντ)= G2 f̃ 2
πm3

τ

16π

(
1−m2

π/m
2
τ

)2
. (10.149)

In fact, one can do more than that: Assume that the decaying τ+ was
polarized. Due to parity violation in the weak interaction the angular
distribution of the emitted pion, relative to the expectation value of
the spin of τ+, is not isotropic. Denoting by θ the angle between s(τ)

and q, one finds

1

Γ

dΓ(τ+ → π+ ντ)
d(cos θ)

= 1

2

(
1− cos θ

)
. (10.150)
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This angular distribution may serve as an analyzer for the polar-
ization of the τ+. For example, in e+e−-storage rings τ+ and τ−
are produced in pairs by electromagnetic interaction. The selection
rule (9.134) says that the chiralities of the τ+ and of its partner τ−
are correlated. Thus, if one has determined the polarization of τ+, by
means of the asymmetry (10.150), then one knows the polarization
of the accompanying negatively charged τ-lepton.
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Appendix

A.1 Dirac’s δ(x) and Tempered Distributions
Dirac’s δ-distribution belongs to the class of generalized functions, more
precisely, to the class of tempered distributions. In a physics perspec-
tive, the essential ideas which are at the root of this mathematical
concept, can be understood by means of the following example.

Imagine a sequence of charge distributions �n all of which have total
charge 1 and which are such that with increasing n they approach the
point charge. For example, consider the functions

�n(r)=
( n

π

)3/2
e−nr2

(A.1)

whose normalization is equal to 1 for all n, as is easily verified,∫
d3x �n(r)= 4π

∞∫
0

r2 dr�n(r)= 1 .

Figure A.1 shows three examples of the charge distribution (A.1). In the
limit n→∞ this becomes a rather singular graph: �n(r) is essentially
zero for all r �= 0, and takes a value approaching infinity in the origin
r = 0. While the object which is obtained by this procedure,

lim
n→∞ �n(r)=: δ(r) ,

can no longer be a function in the usual sense, it remains true that the
integral of �n multiplied by an arbitray continuous and bounded func-
tion f(x) exists and, in the limit, takes the value

lim
n→∞

∫
d3x �n(r) f(x)= f(0) .

This suggests to replace the ill-defined objects limn→∞ �n(x) by the lin-
ear functionals

δn( f ) :=
∫

d3x �n(r) f(x)

which remain well-defined in this limit, and which yield the value

δ( f )= f(0) . (A.2)

One continues to use a symbolic integral of the kind∫
d3x δ(x) f(x)≡ δ( f ) := f(0)
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but should note that this is not an integral in the sense of Lebesgue
integrals. The expression (A.2) defines a linear and continuous func-
tional over a linear function space. In other terms, if f is an element
of the function space, then δ is an element of the dual space. Thus, the
δ-distribution, like all other distributions, is defined with reference to
a certain function space.

One proceeds as follows: One first defines the properties of the func-
tion space on the basis of what one needs, and then defines functionals
which act on elements of this space and provide mappings to the real
line R. The guiding principle, qualitatively speaking, is to choose prop-
erties and definitions in such a manner that the calculus of distributions
is formally the same as for ordinary functions.

We continue with the example: If the functions f(x) possess contin-
uous and bounded first derivatives then there exists the limit

lim
n→∞

∫
d3x

∂�n(x)
∂xi f(x)=− lim

n→∞

∫
d3x �n(x)

∂ f(x)
∂xi

=−δ
(
∂ f

∂xi

)
=− ∂ f

∂xi
(0) .

This allows to define another distribution which associates to every
function f its negative derivative at 0,

δ, i ≡ ∂δ

∂xi : f �−→− ∂ f

∂xi (0) . (A.3)

This definition can be extended to higher derivatives under the condition
that the corresponding higher derivatives of the functions f are contin-
uous and bounded.

A.1.1 Test Functions and Tempered Distributions

While in the definition of the distribution (A.2) it was sufficient to re-
quire the functions on which it acts to be continuous and bounded, the
distribution (A.3) is defined only on functions which, in addition, have
continuous and bounded first derivatives. In this sense (A.3) is more sin-
gular than (A.2). More generally, the more singular a distribution, the
more regular must the functions be onto which it acts.

The aim is to define distributions such that they are genuine general-
ized functions, that is to say, that they admit the same calculus as with
ordinary functions. Therefore, it is useful to define all distributions with
respect to one and the same function space and to choose this space
sufficiently regular such that for every distribution all its derivatives of
finite order are well defined, cf. the example (A.3). These requirements
motivate the
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Definition A.1 Space of Test Functions

The space of test functions S(R3) is the linear space of all C∞-
functions on R3 which, together with their finite derivatives, tend to
zero for |x| →∞ faster than any inverse power |x|−n .

A simple example is provided by the functions

f(x)= Pk(x)e−|x|
2
,

with Pk polynomials. They are infinitely differentiable, the functions as
well as their derivatives remain bounded, and, as the argument goes to
infinity, they decrease faster than any inverse power of |x|.

For the study of sequences of functions and the definition of con-
vergence criteria a norm on the space of test functions is needed. The
notation is simplified by using multi-indices and introducing some ab-
breviations,

k ≡ (k1, k2, k3) , ki ∈N0 ,
∑

k ≡ k1+ k2+ k3 ,

xk ≡ (x1)k1(x2)k2(x3)k3 , Dk ≡ ∂k1

∂(x1)k1

∂k2

∂(x2)k2

∂k3

∂(x3)k3
.

To every pair of naturals p, q ∈N one associates the norm on S

‖ f ‖ p,q := sup∑
k≤p,

∑
l≤q

sup
x∈� 3

∣∣(1+|x| 2)∑ k Dl f(x)
∣∣ . (A.4)

One then says that a sequence fn of elements of the space S converges
and approaches f ∈ S if

lim
n→∞‖ fn− f ‖ p,q = 0 for all p, q ∈N . (A.5)

Let T be a linear functional, T : S→R, on the function space S. The
functional T is said to be continuous if for every null sequence one has
T( fn)→ 0. By the linearity of the functional one then has

T( fn)−→ T( f ) for fn −→ f , fn, f ∈ S .

These concepts allow to define precisely what a distribution should
be:

Definition A.2 Tempered Distribution

A tempered distribution is a continuous linear functional on the
space S of rapidly decreasing functions.

As a necessary and sufficient condition for T to be continuous it
must be possible to find a pair of naturals such that

|T( f )| ≤ c ‖ f ‖ p,q for all f ∈ S , (A.6)

where c is a positive constant. Here are two examples:
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• Dirac’s δ-distribution δ( f ) := f(0) is continuous because it satisfies
the inequality

|δ( f )| ≤ ‖ f ‖ 0,0 .

• Its first derivative by xi which is defined by

δ, i( f ) := − ∂ f

∂xi
(0) ,

is continuous, too, because of∣∣δ, i( f )
∣∣≤ ‖ f ‖ 0,1 .

A.1.2 Functions as Distributions
One easily realizes that functions which do not increase faster than
polynomials at infinity, fit into the definition of tempered distributions.
Therefore and in this sense, the genuine distributions are indeed general-
ized functions. Let T(x) be a continuous function for which there exists
a suitable m ∈N such that

(1+|x| 2)−m |T(x)| ≤ C with C ∈R .
If this function is used to define

T( f ) :=
∫

d3x T(x) f(x) , f ∈ S ,

then T( f ) is a linear and continuous functional on S and one has

|T( f )| ≤ ‖ f ‖ p,0

∫
d3x (1+|x| 2)−p |T(x)| ,

provided one chooses p > m+2. Thus, the mapping f �−→ T( f ) is
a distribution and is uniquely defined by the integral given above. In-
deed, if T( f )= 0 for all f ∈ S, then T(x)≡ 0. In this sense tempered
distributions are generalized functions. This relationship also justifies
the symbolic notation

T( f )≡ ,,
∫

d3x T(x) f(x)“

even though, in the case of genuine distributions, the integral is not de-
fined.

The set of all tempered distributions spans a linear space which is
the dual of the function space S. For this reason it is denoted by S′. All
definitions of and operations with distributions are chosen such that, for
genuine functions, they take the familiar form. The following example
illustrates this statement. Let T(x) be a function on R3. Under a Galilei
transformation

x �−→ x′ = R x+a
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and for every element f ∈ S, we have the familiar transformation for-
mula∫

d3x T(R x+a) f(x)=
∫

d3x′ T(x′) f
(
R−1(x′ −a)

)
/ |det R| .

By analogy to this example one defines the transformed distribution
T(R,a) of a distribution T by

T(R,a)( f ):= T
(

f(R,a)(x)
)

with f(R,a)(x) := 1

| det R| f
(
R−1(x−a)

)
.

(A.7)

A.1.3 Support of a Distribution
The example of Dirac’s δ-distribution shows that it is more difficult to
characterize the support of a distribution than for ordinary functions.
The functional δ( f ) that we formally write as an integral∫

d3x δ(x) f(x)= f(0) ,

yields a contribution from f(x) at the point x= 0, while for any func-
tion whose support does not contain the point x= 0, it yields the value
zero. Therefore, one expects the support of δ in R3 to be the origin,
supp δ= {0}.

In the case of test functions the support is defined as usual, i.e.

supp f := {
x ∈R3

∣∣ f(x) �= 0
}
.

The complement of supp f is the largest open set in R3 on which the
function f vanishes. In the case of a distribution T one says that it van-
ishes on an open set O if for all f ∈ S whose support is contained in O,
T( f ) equals zero

T( f )= 0 for all f ∈ S with supp f ⊂O .

In the special case of T a continuous function this means that T(x) van-
ishes everywhere on O. With these considerations in mind one defines
the support of a distribution as follows:

Definition A.3 Support of a Distribution

The support of a distribution T is the complement of the largest open
set on which T is zero.

Thus, it is meaningful to state that two distributions coincide on an
open set, but it is not meaningful to claim that they are equal in indi-
vidual points.
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A.1.4 Derivatives of Tempered Distributions
Given a differentiable function T = T(x) which grows no faster than
a polynomial, one has, using partial integration,∫

d3x

(
∂T(x)
∂xk

)
f(x)=−

∫
d3x T(x)

(
∂ f(x)
∂xk

)
.

Given a tempered distribution T , one defines its partial derivative with
respect to xk by the rule

T, k ≡ ∂T
∂xk
( f ) := −T

(
∂ f(x)
∂xk

)
. (A.8)

This defines again a linear continuous functional because

f �−→− ∂ f

∂xk

is a continuous mapping S −→ S and because one has∥∥∥∥ ∂ f

∂xk

∥∥∥∥ p,q ≤ ‖ f ‖ p,q+1 .

From this one concludes that a tempered distribution is infinitely dif-
ferentiable, and that its derivatives are again tempered distributions.
Another conclusion one draws is this: If two distributions are equal on
an open set, then also their derivatives are equal on the same set.

A.1.5 Examples of Distributions
We consider three simple examples and applications:

Example A.1 Dirac’s δ-distribution in one dimension
According to the rules contained in (A.7) one has∫

dx δ(x−a) f(x)=
∫

dx′ δ(x′) f(x′ +a)= f(a) , (A.9)∫
dx δ(Λx) f(x)= 1

Λ
f(0) , (Λ > 0) . (A.10)

With g(x) a continuous, bounded function which has simple zeroes in
the points xi , there follows the rule

δ
(
g(x)

)=∑
i

1

|g′(xi)|δ(x− xi) . (A.11)

This formula, too, follows from the definition (A.7) and from (A.9) by
linearization of g(x) in the neighbourhood of every simple zero xi , viz.

g(x)≈ g′(xi)(x− xi)+O[(x− xi)
2] .

The rule (A.10) shows that, in general, δ(x) carries a physical dimen-
sion: This dimension is the inverse of the dimension of the argument.



AA.1 Dirac’s δ(x) and Tempered Distributions 659

Consider the product δ(x−a)δ(y− x). Evaluating the first factor on
the test functions f(x), the second factor on the test functions f(y),
yields the same result as if one had evaluated δ(y−a). Therefore, one
may write formally

δ(x−a)δ(y− x)= δ(y−a) .

In turn, the square of a δ-distribution, δ2(x), is not defined.

Example A.2 The step function
The Heaviside or step function

Θ(x)=
{

1 for x > 0 ,

0 for x ≤ 0 ,

when interpreted as a distribution, has the derivative Θ′ = δ. This fol-
lows from the rule (A.8). Indeed, one has

Θ′( f )=−Θ( f ′)=−
∞∫

0

dx f ′(x)= f(0) .

Example A.3 Point charge and Green function
The function

G(z)=− 1

4π

1

|z|
with z ∈R3, is interpreted as a distribution. If so, its second derivatives
fulfill the differential equation

∆ G(z)= δ(z) . (A.12)

This says, with this interpretation, that for all test functions f ∈ S one
finds

∆ G( f )= f(0) . (A.13)

This is proved by means of Green’s second theorem,∫
V

d3x (Φ∆Ψ −Ψ ∆Φ)=
∫
∂V

d2σ

(
Φ
∂Ψ

∂n
− ∂Φ
∂n
Ψ

)
,

where ∂V denotes the smooth surface enclosing the space volume V .
Choosing V to be the volume obtained by cutting out a sphere of ra-
dius ε around the origin in the space R3, one obtains for the choice
Φ = 1/|x| and Ψ = f ∈ S,∫
|x|≥ε

d3x
1

|x| ∆ f(x)=
∫
|x|≥ε

d3x f(x)∆

(
1

|x|
)

−
∫
|x|=ε

d2σ
∂ f

∂r

1

r
+

∫
|x|=ε

d2σ f
∂

∂r

(
1

r

)
.
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Fig. A.2. A volume which is encircled
by two concentrical spheres. The radius
of the outer sphere is taken to infinity,
the radius of the inner sphere tends to
zero

In these formulae d2σ = r2 dΩ = r2 sin θ dθ dφ. The volume which is
the domain of integration, is sketched in Fig. A.2: The outer sphere
(which, in fact, should be at infinity) has the normal n̂a pointing away
from the origin, the inner sphere has the normal n̂i pointing towards the
origin (hence the minus sign in the formula). The first term on the right-
hand side equals zero because ∆(1/|x|) vanishes everywhere outside the
origin. The second term tends to zero as ε→ 0 because d2σ/r is pro-
portional to r = ε and the derivative of f remains bounded. The third
term is different from zero. In the limit ε→ 0 it yields the contribution
−4π f(0). This proves the formula (A.13).

Remarks
1. Inserting in (A.12) the argument z = x− y yields a better known

form of the differential equation for the Green function G(x− y):

∆ G(x− y)= δ(x− y) . (A.14)

2. Similar considerations apply to the differential equation

(∆+k2)G(k, x− y)= δ(x− y) , (A.15)

the Green function now being the one obtained in constructing the
Born approximation in Chap. 2, Sect. 2.4,

G(k, x− y)=− 1

4π

1

|x− y|
(
aeik|x−y| + (1−a)e−ik|x−y|) . (A.16)

3. Reversing the sign of the term k2 in (A.15) and taking z = x− y, one
obtains the differential equation

(∆−µ2)G(µ)(z)= δ(z) . (A.17)

The Green function G(µ)(z) is relevant for the description of the
Yukawa potential, cf. Sect. 7.1. If no special boundary condition is
imposed it is given by

G(µ)(z)=− 1

4π

e−µ|z|

|z| . (A.18)

This formula is best proven by first converting (A.17) to an alge-
braic equation, by means of Fourier transformation. This algebraic
equation is easily solved. In a second step, its solution is transformed
back to coordinate space.

A.2 Gamma Function
and Hypergeometric Functions

The properties of some special functions which are collected here, are
relevant for the physical systems studied in Chap. 1. Also, they illustrate
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the richness of the theory of special functions and of the beautiful func-
tion theoretic methods that one uses in deriving the results quoted here.
A nearly complete survey is given in the handbook [Abramowitz and
Stegun (1965)] which also contains many hints to the literature on this
topic. The tables [Gradshteyn and Ryzhik (1965)] are particularly useful
for practical purposes. Among the many monographs on special func-
tions we quote the Bateman Manuscript Project [Erdélyi et al. (1953)],
as well as the classic [Whittaker, Watson (1958)].

A.2.1 The Gamma Function

The Gamma function Γ(z) is the analytic continuation of the facto-
rial n! which, as a function, is defined only in the points z = 0, 1, 2, . . . .
A good starting point is provided by Euler’s integral

Γ(z)=
∞∫

0

dt tz−1 e−t . (A.19)

One confirms that, indeed, for integer argument one has

Γ(n+1)=
∞∫

0

dt tn e−t = n! .

The integral (A.19) converges only for complex values of z whose real
part is greater than zero. Therefore, this cannot yet be the analytic con-
tinuation to the entire z-plane. However, by splitting the integral into
two integrals over the interval [0, 1] and over the interval [1,∞), re-
spectively, the first of these can be evaluated as follows

1∫
0

dt tz−1 e−t =
∞∑

k=0

(−)k
k!

1∫
0

dt tk+z−1 =
∞∑

k=0

(−)k
k!

1

z+ k
.

The integral over [1,∞), in turn, converges for all z, and no restriction
to the right half of the complex plane is needed. Thus, the full analytic
continuation reads

Γ(z)=
∞∑

k=0

(−)k
k!

1

z+ k
+
∞∫

1

dt tz−1 e−t . (A.20)

This shows the following:

The Gamma function is a meromorphic function which has poles of
first order in the points z =−k, k ∈N0. The residua in these points
are given by (−)k/k!.
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η

Fig. A.3. Path of integration in the com-
plex t-plane in Hankel’s contour inte-
gral of the Gamma function

There is an important functional equation which is obtained from the
integral (A.19) by partial integration. It reads

Γ(z+1)= zΓ(z) , (A.21)

and it holds for all z ∈C.
Another integral representation valid in the whole z-plane, is pro-

vided by Hankel’s contour integral in the complex t-plane,

1

Γ(z)
= i

2π

∫
C

dt (−t)−z e−t , (A.22)

the path of integration being as shown in Fig. A.3, with |z|<∞.
Consider the integral over the same contour C cut at some large,

positive value R of the real part of t,∫
C

dt (−t)z−1 e−t .

In the limit R→∞ the integral representation (A.22) yields

2π

i

1

Γ(1− z)
.

The same integral can be calculated directly and can be replaced by
a line integral along the positive real axis of the t-plane. Above the real
axis we have

arg(−t)=−π and therefore (−t)z−1 = e−iπ(z−1)tz−1 ,

while below the real axis we have

arg(−t)= π and therefore (−t)z−1 = e+iπ(z−1)tz−1 .

The integral over the contour C decomposes into a line integral∫ η
R =−

∫ R
η

parallel to the real axis, an integral over the half-circle with
radius η which encloses the origin in the left half-plane, and another line
integral extending from η to R in the lower half-plane. The integral over
the half-circle is given by

iηz

+π∫
−π

dφ eizφ+η(cosφ+i sinφ) .

It tends to zero as η→ 0. The two line integrals can be combined and
yield

−2i sin(πz)

R∫
0

dt tz−1 e−t .
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If R is sent to infinity, then, by (A.19), the right-hand side yields Γ(z),
up to a numerical factor. Comparison of the two results yields a relation
that is valid on the whole complex z-plane, viz.

Γ(z)Γ(1− z)= π

sin(πz)
. (A.23)

Some special values of the Gamma function with real argument are

Γ(n+1)= n! , Γ(2)= Γ(1)= 1 , Γ

(
1

2

)
=√π .

(The last of these follows from (A.19) by substituting t = u2 and using
the well-known Gauss integral.)

Of greatest practical importance are the asymptotic series for lnΓ(z)
and for Γ(z), the latter of which follows from the former. They are, in
the first case,

lnΓ(z)∼
(

z− 1

2

)
ln z− z+ 1

2
ln(2π)+

∞∑
m=1

B2m

2m(2m−1)z2m−1 .

(A.24)

This series holds for z→∞ and | arg z|< π, B2m being the Bernoulli
numbers. In the second case, the asymptotic series reads

Γ(z)∼ e−zzz−1/2
√

2π (A.25)

×
(

1+ 1

12z
+ 1

288z2 −
139

51840z3 −
571

2488320z4 + . . .
)
.

It holds for z→∞, and | arg z|< π. Both formulae are used in nu-
merical evaluations of Γ(z) or lnΓ(z). For example, in the case of the
Gamma function, one makes use of the functional equation (A.21) for
mapping a given positive argument onto a positive, asymptotically large
argument. A negative argument, in turn, is first mapped to a positive one
by the mirror formula (A.23).

A.2.2 Hypergeometric Functions

In what follows one uses Pochhammer’s symbol which is defined by

(x)n := x(x+1)(x+2) · · · (x+n−1)= Γ(x+n)

Γ(x)
. (A.26)

In particular, one has (x)0 = 1. The hypergeometric functions are de-
noted by the symbol m Fn(a1, a2, . . . am; c1, c2, . . . cn; z) where m is the
number of arguments which appear in the numerators, n is the number
of arguments appearing in the denominators of the terms in the series
representation of m Fn . The real or complex variable is denoted by z.
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The Hypergeometric Series. The hypergeometric series whose name
emphasizes its similarity to the well-known geometric series

∑
xn , is

defined as follows,

2 F1(a, b; c; z)= 1+ ab

c
z+ a(a+1)b(b+1)

c(c+1)

z2

2! + . . . (A.27)

≡
∞∑

n=0

(a)n(b)n
(c)n

zn

n! =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+n)Γ(b+n)

Γ(c+n)

zn

n! .

This series is absolutely and uniformly convergent in the interior of the
circle |z| = 1. It is a solution of Gauss’ differential equation

z(z−1)w′′(z)+[(a+b+1)z− c]w′(z)+abw(z)= 0 . (A.28)

The differential equation (A.28) is of Fuchsian type, its first-order poles
are situated in

z1 = 0 , z2 = 1 , z3 =∞ .
Some special cases of hypergeometric series are the following

2 F1(1, 1; 2; z)=−1

z
ln(1− z) ,

2 F1(a, b; b; z)= (1− z)−a ,

2 F1(−	, 	+1; 1; z)= P	(1−2z) (Legendre polynomials) .

The Confluent Hypergeometric Function. By the substitution v= z0z
the second singularity of the differential equation (A.28) is moved
from 1 to the point z0 on the positive real axis. This amounts to
replace z by v/z0 in the series (A.27). The series obtained in this
way converges absolutely and uniformly for all arguments v for wich
|v|< z0. As a special case, choose the parameter b= z0, thus obtaining
the series

2 F1(a, z0; c; v/z0)= Γ(c)
Γ(a)

∞∑
n=0

Γ(a+n)

Γ(c+n)

vn

n!
(
Γ(z0+n)

Γ(z0)zn
0

)
. (A.29)

It satisfies the differential equation (A.28) with b= z0, i.e. it is a solu-
tion of the equation

v

(
1− v

z0

)
w′′(v)+

[
c−v

(
1+ 1+a

z0

)]
w′(v)−aw(v)= 0 .

In this latter equation we let z0 go to infinity, z0→∞. By this
procedure one obtains a new differential equation, known as Kummer’s
differential equation,

vw′′(v)+ (c−v)w′(v)−aw(v)= 0 . (A.30)
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If it is possible to take the limit z0→∞ in every term of the se-
ries (A.29), one by one, then for all finite values of n, one has

lim
z0→∞

(
Γ(z0+n)

Γ(z0)zn
0

)
= 1

so that one obtains a series expansion for 1 F1(a; c; z):
lim

z0→∞ 2 F1(a, z0; c; z/z0)= 1 F1(a; c; z) ,
whereby

1 F1(a; c; z)= Γ(c)
Γ(a)

∞∑
n=0

Γ(a+n)

Γ(c+n)

zn

n! = 1+a

c
z+a(a+1)

c(c+1)

z2

2!+. . . (A.31)

This function is called the confluent hypergeometric function. It takes its
name from the fact that it is obtained by merging the poles at z2 = 1 and
at z3 =∞ of the hypergeometric function 2 F1 (confluent= “flowing to-
gether”). While the point z1 = 0 continues to be a pole of 1 F1, the other
two poles, by the merging process, turn into an essential singularity at
infinity (up to exceptions such as the one where 2 F1 is a polynomial).
The solution 1 F1 is regular at z = 0 but becomes singular at z =∞.
Standard criteria for convergence show that the series (A.31) converges
for every finite argument. Thus, in a function theoretic sense, the se-
ries defines an entire function. In fact, these properties are plausible if
one notes that the following well-known functions are contained in the
definition,

1 F1(a; a; z)= e−z , 1 F1(a =−n; c; z)= Pn(c, z)

where Pn is a polynomial of degree n.
We note without proof that Hermite polynomials, Laguerre poly-

nomials, as well as Bessel functions, are special cases of (A.31),
cf. [Abramowitz and Stegun (1965)], Chap. 13.

Some relations of special importance for practical purposes are

1 F1(a; c; z)= ez
1 F1(c−a; c; z) (Kummer’s relation) , (A.32)

dn

dzn 1 F1(a; c; z)= (a)n
(c)n

1 F1(a+n; c+n; z) . (A.33)

Integral Representations and Asymptotics. One proceeds in several
steps. In a first step one shows that the transformation w(z)= z1−cv(z)
transforms Kummer’s differential equation (A.30) into

z1−c[zv′′(z)+ (2− c− z)v′(z)− (1+a− c)v(z)] = 0 .

This equation is of the same type. This is seen by defining a′ = 1+a−c
and c′ = 2− c. This means that if 1 F1(a; c; z) is a solution of (A.30)
then so is

z1−c
1 F1(1+a− c; 2− c; z) , (A.34)
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unless c takes one of the values 0,−1,−2, . . . . Except for c= 1 the two
solutions are linearly independent. If c= 1 they coincide.

Let w(z) be a solution of (A.30). The problem is to find an analytic
function f(t) and a suitable contour C0 in the complex t-plane such that
one has

w(z)= 1

2πi

∫
C0

dt etz f(t) . (A.35)

The derivatives of w(z) being obtained by differentiation of the inte-
grand, the differential equation yields the condition

1

2πi

∫
C0

dt etz[zt2 f(t)+ (c− z)t f(t)−a f(t)] = 0 .

By the relation z etz = d/dt(etz) and using partial integration this con-
dition becomes∫

C0

dt
d

dt
[etzt(t−1) f(t)]

+
∫
C0

dt etz
[
− d

dt

[
t(t−1) f(t)

]+ (ct−a) f(t)

]
= 0 . (A.36)

Sufficient conditions for (A.36) to be true are seen to be∫
C0

dt
d

dt
[etzt(t−1) f(t)] = 0 , (A.37)

− d

dt
[t(t−1) f(t)]+ (ct−a) f(t)= 0 . (A.38)

The second of these is converted to a differential equation of first order

f ′

f
= a−1

t
+ c−a−1

t−1

for which a particular integral reads

f(t)= ta−1(t−1)c−a−1 . (A.39)

Thus, we obtain an integral representation (A.35) which reads

w(z)= 1

2πi

∫
C0

dt etzta−1(t−1)c−a−1 , (A.40)

with (A.37) as a subsidiary condition. That is, we must have∫
C0

dt
d

dt
[etzta(t−1)c−a] = 0; . (A.41)
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An integral representation for the second solution (A.34) is obtained
in much the same way, with a′ −1= a− c and c′ −a′ −1=−a, and
possibly a modified contour C1,

w(z)= 1

2πi
z1−c

∫
C1

dt etzta−c(t−1)−a , (A.42)

provided the corresponding condition (A.41) is fulfilled, i.e. that∫
C0

dt
d

dt
[etzta−c+1(t− z)−a+1] = 0 (A.43)

holds. The function (A.42) can be transformed further by taking the
factor z1−c = za−cz−az inside the integral and by substituting the inte-
gration variable by τ := tz:

w(z)= 1

2πi

∫
C1

dτ eττa−c(τ− z)−a .

The condition (A.43) then becomes∫
C1

dτ
d

dτ
[eττa−c+1(τ− z)−a+1] = 0 . (A.44)

We choose the contour C1 in such a way that it encloses the points z
and 0, and the left real half-axis, as sketched in Fig. A.4.

The next step consists in showing that

1 F1(a; c; z)= Γ(c)
2πi

∫
C

dτ eττa−c(τ− z)−a (A.45)

if the path of integration is chosen such that for all points z on the con-
tour C the inequality∣∣∣ z

τ

∣∣∣≤ c< 1

is fulfilled. In this case on expands (τ− z)−a in terms of powers of z/τ
so that in (A.45) one obtains

1 F1(a; c; z)= Γ(c)
∞∑

n=0

(−a

n

)
(−z)n

1

2πi

∫
C

dτ eττ−c−n .

The right-hand side of this equation contains an integral that we know
from the formula (A.22). Inserting this, one confirms the assertion as
follows

1 F1(a; c; z)= Γ(c)
∞∑

n=0

(−a

n

)
(−z)n

1

Γ(c+n)
=
∞∑

n=0

(a)n
(c)n

zn

n! .

.z

0

C1

τ

Fig. A.4. Path of integration in the com-
plex τ-plane, including points 0 and z,
in the integral representation of the con-
fluent hypergeometric function
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.z

0

τC1

C2

Fig. A.5. Split of the path of Fig. A.3
into two paths of integration which al-
lows a development in τ/z thereby pro-
viding an asymptotic representation of
the confluent hypergeometric function

In a further step one uses the integral representation (A.45) for de-
riving an asymptotic representation for 1 F1. For this purpose let

Φk(a, c, z)= Γ(c)
2πi

∫
Ck

dτ eττa−c(τ− z)−a , k = 1, 2 ,

where the paths of integration C1 and C2 are the ones shown in Fig. A.5.
Substituting τ ′ = τ− z one shows that

Φ2(a, c, z)= ezΦ1(c−a, c,−z)

and, therefore,

1 F1(a; c; z)=Φ1(a, c, z)+ ezΦ1(c−a, c,−z) .

One then expands Φ1 in terms of τ/z, and obtains an asymptotic expan-
sion for Φ1 and, thus, also for 1 F1. The latter reads

1 F1(a; c; z)∼ Γ(c)

Γ(c−a)
e±iπaz−a

N∑
n=0

(a)n(1+a− c)n
(−z)−n

n!

+ Γ(c)
Γ(a)

ezza−c
M∑

n=0

(c−a)n(1−a)n
z−n

n! . (A.46)

This is an asymptotic series which holds for |z|→∞, with fixed values
of a and c, and which is of the order O(|z|−N−1) and O(|z|−M−1), re-
spectively. The sign in the first term must be chosen in accord with the
following rule

e+iπa holds for − π
2
< arg z <

3π

2

e−iπa holds for − 3π

2
< arg z <−π

2
.

In the discussion of bound states, in the context of the Schrödinger
equation, we repeatedly made use of the fact that the second term
in (A.46) which grows exponentially, is equal to zero if and only if a
is a negative integer or zero. It was this condition that led to the quant-
ization of the eigenvalues.

A.3 Self-energy of the Electron
To second order O(e2) and introducing a small mass mγ for the pho-

ton, the Feynman rules yield the following modification of the electron
propagator

SF(p) �−→ SF(p)+ SF(p)Σ(p)SF(p) ,

Σ(p)=−i
e2

(2π)4

∫
d4k γµSF(p− k)γµ

1

k2−m2
γ + iε

.
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We give here some intermediate steps that lead to the expres-
sion (10.56). We use twice the formula

i(/q+m 1l)

q2−m2+ iε
= (/q+m 1l)

∞∫
0

dz eiz(q2−m2+iε)

with the choices q = p− k, and q = k, respectively. Dropping the com-
mon factor in front, we obtain

Σ(p)= i
e2

(2π)4

∞∫
0

dz1

∞∫
0

dz2

∫
d4k

γµ
(
/p−/k+m 1l

)
γµeiz1[(p−k)2−m2+iε]eiz2[k2−m2

γ+iε] .
By the formulae of Sect. 9.3.3, γµγµ = 4 and γµ/qγµ =−2/q. Replacing
the momentum k by the new variable

x := k− pz1

z1+ z2
= k− p+ pz2

z1+ z2

one has

γµ
(
/p−/k+m 1l

)
γµ = 4m 1l+2/x−2

z2

z1+ z2
/p ,

z1(p− k)2+ z2k2 = (z1+ z2)x
2+ z1z2

z1+ z2
p2 .

The x-integration needs three formulae which are not difficult to prove.
They read∫

d4x

(2π)4

⎧⎨⎩
1

xµ

xµxν

⎫⎬⎭ eix2(z1+z2) = −i

16π2(z1+z2)2

⎧⎨⎩
1
0

igµν/2(z1+z2)

⎫⎬⎭ .
(A.47)

The quantity Σ(p) then becomes

Σ(p)= α

2π

∞∫
0

dz1

∞∫
0

dz2

(
2m 1l− z2

z1+ z2
/p
) 1

(z1+ z2)2

×exp

[
i
(

p2 z1z2

z1+ z2
−m2z1−m2

γ z2+ iε

]
.

One inserts the identity

1=
∞∫

0

dλ

λ
δ
(

1− z1+ z2

λ

)
in the integrand and replaces the variables z1 and z2 by, respectively,

z = z1

λ
, ζ = z2

λ
.
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The δ-distribution enforces the condition z+ζ = 1. As the ranges of the
original variables are z1 ∈ [0,∞], and z2 ∈ [0,∞], the new variables
z and ζ vary between 0 and 1, z, ζ ∈ [0, 1]. Thus, after having done the
integral over ζ there remains

Σ(p)= α

2π

1∫
0

dz
(
2m 1l−(1− z)/p

)
∞∫

0

dλ

λ
exp

[
iλ
(

p2z(1− z)−m2z−m2
γ (1− z)+ iε

]
.

This is the expression (10.56) with (10.57), which is analyzed further
in Sect. 10.2.1.

A.4 Renormalization of the Fermion Mass
This is a summary of some intermediate steps that lead from the expres-
sion (10.58) for the regularized self-energy to the form (10.60). There
are two integrals to be calculated,

J1 :=
1∫

0

dz ln

(
m2z2+m2

γ (1− z)

m2z+m2
γ (1− z)− p2z(1− z)

)

=
1∫

0

dz ln

(
1+ (m2− p2)

z(z−1)

(m2− p2)z+ p2z2+m2
γ (1− z)

)
,

J2 :=
1∫

0

dz (z−1) ln

(
m2z2+m2

γ (1− z)

m2z+m2
γ (1− z)− p2z(1− z)

)
.

In the first of them one uses partial integration according to

1∫
0

dz ln u(z)= z ln u(z)|10−
1∫

0

dz z
u′(z)
u(z)

to obtain

J1 = (p2−m2)

1∫
0

dz
z
[
(m2−m2

γ )z
2+2m2

γ z−m2
γ

][
(m2−p2)z+p2z2+m2

γ (1−z)
][

m2z2+m2
γ (1−z)

]
≈ (p2−m2)

1∫
0

dz
z

(m2− p2)z+ p2z2+m2
γ (1− z)

.
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Here we used the fact that mγ is very small, by assumption. In this
case, the second factor in the numerator of the integrand cancels approx-
imately against the second factor in its denominator. Substitution of the
integration variable by y = 1− z then gives

J1 ≈ (p2−m2)

1∫
0

dy
1− y

N(y)
with

N(y)= m2(1− y)+m2
γ y− p2 y(1− y) .

The integral J2 is obtained by partial integration as well, by noting
that the factor (z−1)= u′(z) is the derivative of u(z)= z(z/2−1).

J2 = (p2−m2)

1∫
0

dz z
( z

2
−1

)
−m2

γ (1− z)2+m2z2[
m2z+m2

γ (1− z)− p2z(1− z)
][

m2z2+m2
γ (1− z)

]
≈ (p2−m2)

1∫
0

dz z
( z

2
−1

) 1

m2z+m2
γ (1− z)− p2z(1− z)

.

Here again, the smallness of mγ was used. Introducing the variable
y = 1− z one finds

J2 ≈−1

2
(p2−m2)

1∫
0

dy
1− y2

N(y)
.

The integrand is split into two terms,

1− y2

N(y)
= 1− y

N(y)
+ y(1− y)

N(y)

the second of which is written

y(1− y)

N(y)
= 1

p2

[
−1+ m2(1− y)+m2

γ y

N(y)

]

≈− 1

p2 +
m2

p2

1− y

N(y)
.

This shows that J2 is expressed by a constant and by the same integral
as J1,

J2 ≈−1

2
(p2−m2)

⎧⎨⎩(
1+ m2

p2

) 1∫
0

dy
1− y

N(y)
− 1

p2

⎫⎬⎭ .
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Up to a factor (−p2) the integral is identical with the function Λ(p2)
that was defined in Sect. 10.2.2,

Λ(p2)=−p2

1∫
0

dy
1− y

N(y)
.

Thus, the expression

C(p)= α

2π

1∫
0

dz
[
2m 1l−/p(1−z)

]
ln

(
m2z2+m2

γ (1−z)

m2z+m2
γ (1−z)−p2z(1−z)

)

can be expressed in terms of this integral, or, equivalently, the function
Λ(p2). There is no problem in showing that

C(p)≈ α

4π
(p2−m2)

{
m

p2 1l−
( 1

p2Λ(p
2)
)

m
(

3− m2

p2

)
1l

+ (/p−m 1l)
( 1

p2 +
(

1+ m2

p2

))( 1

p2Λ(p
2)
)}

Decomposing according to

C(p)≡Σb(p) 1l+(/p−m 1l)Σa(p) ,

the functions defined in this way, are given by

Σa(p
2)≈ α

4π

(
1− m2

p2

){
1+

(
1+ m2

p2

)
Λ(p2)

}
,

Σb(p
2)≈ α

4π
m

(
1− m2

p2

){
1−

(
3− m2

p2

)
Λ(p2)

}
,

Λ(p2)=−p2

1∫
0

dz
1− z

m2(1− z)+m2
γ z− p2z(1− z)

.

In the next step, the regularized quantity Σreg(p) should be written
in the form of (10.60)

Σreg(p)= A 1l+(/p−m 1l
) [

B+Σfinite(p2)
]
.

The term Σa has already the right factor /p−m 1l and need not be trans-
formed any further. The term Σb(p2) could formally be obtained as
follows. Making use of the identity (/p−m 1l)(/p+m 1l)= (p2−m2) 1l the
term C(p) is written

C(p)= (
/p−m 1l

)(
Σa(p

2) 1l+(/p+m 1l)
1

p2−m2Σb(p
2)
)
. (A.48)

However, this is not quite correct yet because the function Σfinite(p2)
must be constructed such that it vanishes on the mass shell p2 = m2.
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Although it is true that the two functions Σa(p2) and Σb(p2) are equal
to zero at p2 = m2, the ratio Σb(p2)/(p2−m2) yields 0/0 and, hence,
remains undetermined. This is repaired as follows. The function Σb is
expanded in the neighbourhood of the mass shell p2 = m2,

Σb(p
2) 1l≈ 1lΣb(p

2)

∣∣∣
p2=m2

+2m(/p−m 1l)
∂Σb(p2)

∂p2

∣∣∣∣
p2=m2

,

where use was made of the relation

(p2−m2) 1l= (/p+m 1l)(/p−m 1l)≈ 2m(/p−m 1l) .

This shows that one should subtract an additional term 2m∂Σb/∂p2 in
the big brackets of (A.48), taken at p2 = m2. If one does so the condi-
tion Σfinite(p2 = m2)= 0 is fulfilled and one obtains the result quoted
in Sect. 10.2.2,

Σfinite 1l=Σa(p
2) 1l+(/p+m 1l)

1

p2−m2Σb(p
2)−2m 1l

∂Σb

∂p2

∣∣∣∣
p2=m2

.

(A.49)

Note that here again a condition imposed by physics was used: The
propagator should contain the physical mass.

A.5 Proof of the Identity (10.86)
Let Σ(p) be the (regularized) self-energy (10.60) (suppressing the nota-
tion “reg”, for the sake of clarity). Consider

u(q)
∂Σ(p)

∂pµ
u(p)

at the argument q = p and note that only the term B of (10.60) con-
tributes, i.e. that

u(q)
∂Σ(p)

∂pµ
u(p)

∣∣∣∣
q=p
= Bu(p)γµu(p) .

On the other hand, if one writes down the original integral representa-
tion for Σ (without regard to regularization) one has

u(p)
∂Σ(p)

∂pµ
u(p)= − ie2

0

(2π)4∫
d4k u(p)γλ

(
∂

∂pµ
SF(p− k)

)
γλ

1

k2+ iε
u(p) .

Use now the identity which is easy to prove,
∂

∂pµ
SF(p)=−SF(p)γ

µSF(p)
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to obtain

u(p)
∂Σ(p)

∂pµ
u(p)= ie2

0

(2π)4

∫
d4k

k2+iε
u(p)γλSF(p−k)γµSF(p−k)γλu(p)

This expression is compared with the term D for q = p, that is, for mo-
mentum transfer equal to zero,

D(q = p)= −2πie0 Z−1
2

ie2
0

(2π)4∫
d4k

k2+ iε
u(p)γλSF(p− k)γµSF(p− k)γλu(p) Ãµ

= 2πie0 Z−1
2 u(p)γµu(p)F1(0) Ãµ .

Comparing the two formulae yields

Bu(p)γµu(p)=−F1(0)u(p)γ
µu(p) ,

and hence

F1(0)+ B+1= 1≡ F1(0)+ Z2 . (A.50)

The proof as given here is purely formal, for the sake of brevity. It is
fairly obvious that it works also for the regularized and infrared safe
modifications of the integrals. As a more important remark, this iden-
tity holds to all finite orders (see Appendix A.7). Its physics content is
that the internal structure of a particle is irrelevant when it interacts with
photons in the limit of very small momentum transfer.

A.6 Analysis of Vacuum Polarization
We use the integral representation of the propagator

i

p2−m2+ iε
=
∞∫

0

dz eiz(p2−m2+iε) .

Writing mi in lieu of mi ≡ m f and mi ≡ M f , respectively, in (10.95),
one has

Πµν(Q,m2
i )=−

ie2
0

(2π)4

∫
d4k

∞∫
0

dz1

∞∫
0

dz2

tr
{
γµ(/k−mi)γ

ν(/k−/Q−mi)
}

exp
[
iz1(k

2−m2
i + iε)+ iz2

(
(k−Q)2−m2

i + iε
)]
.
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The trace is evaluated by means of the rules derived and collected
in Sect. 9.3.3,

tr
{
γµ(/k−mi)γ

ν(/k−/Q−mi)
}

= 4
[
kµ(k−Q)ν+ kν(k−Q)µ− gµν(k2− k ·Q−m2

i )
]
.

The argument of the exponential function is transformed by substitution
of the variable k �→ x. With

x := k− z2

z1+ z2
Q = k−Q+ z1

z1+ z2
Q one obtains

k2z1+ (k−Q)2z2 = (z1+ z2)x
2+ z1z2

z1+ z2
Q2 .

One uses the integrals (A.47) of Appendix A.3 and obtains(
Πreg

)µν
(Q)= − α0

π

∑
i

ci

∞∫
0

dz1

∞∫
0

dz2

× 1

(z1+ z2)2
exp

{ z1z2

z1+ z2
Q2− (m2

i − iε)(z1+ z2)
}

×
{

2
(
gµνQ2−QµQν

) z1z2

(z1+ z2)2

+ gµν
(
− i

z1+ z2
− z1z2

(z1+ z2)2
Q2+m2

i

)}
. (A.51)

In deriving this formula α0 = e2
0/(4π) was inserted, and the expression

resulting from the trace was transformed as follows[
kµ(k−Q)ν+ kν(k−Q)µ− gµν(k2− k ·Q−m2

i )
]

=
(

xµ+ z2

z1+ z2
Qµ

)(
xν− z1

z1+ z2
Qν

)
+
(
(µ↔ ν)

)
− gµν

[
x2+ z2− z1

z1+ z2
(x ·Q)− z1z2

(z1+ z2)2
Q2−m2

i

]
.

The intermediate result (A.51) shows that the first term in the
curly brackets has the form imposed by gauge invariance but the term
proportional to gµν does not. However, one shows that this second
term vanishes (provided, of course, the masses and coupling constants
(mi , ci) are chosen such that the integrals are convergent). Let

I :=
∞∫

0

dz1

∞∫
0

dz2
1

(z1+ z2)2

×
∑

i

ci

[
m2

i −
i

z1+ z2
− z1z2

(z1+ z2)2
Q2

]
exp

{
i
[ z1z2

z1+ z2
Q2− (m2

i − iε)(z1+ z2)
]}
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A trick consists in rescaling the two integration variables by a real
factor λ and to consider the dependence of the integrals on λ. With
z1 = λx1 and z2 = λx2 one has

I =
∞∫

0

dx1

∞∫
0

dx2
1

(x1+ x2)2

×
∑

i

ci

[
m2

i −
i

λ(x1+ x2)
− x1x2

(x1+ x2)2
Q2

]
×exp

{
iλ
[ x1x2

x1+ x2
Q2− (m2

i − iε)(x1+ x2)
]}
≡ iλ

∂

∂λ
J(λ) ,

the integral expression on the right-hand side being given by

J(λ)=
∞∫

0

dx1

∞∫
0

dx2
1

λ(x1+ x2)3∑
ci exp

{
iλ
[ x1x2

x1+ x2
Q2− (m2

i − iε)(x1+ x2)
]}
.

This integral J(λ) is transformed to the original integration variable, by
means of x1 = z1/λ and x2 = z2/λ. One then sees that J(λ), in fact, is
independent of λ. Hence, one has indeed

I = iλ
∂J

∂λ
= 0 .

This shows that the term which does not respect gauge invariance, does
not contribute.

The first term which is gauge invariant, is transformed in a manner
very similar to the self-energy, by inserting the factor

1=
∞∫

0

dλ

λ
δ
(
1− z1+ z2

λ

)
and by substituting z := z1/λ and ζ := z2/λ. One then obtains

(
Πreg

)µν
(Q)= 2α0

π

(
QµQν−Q2gµν

) ∞∫
0

dz

∞∫
0

dζ

× zζ δ(1− z− ζ)
∞∫

0

dλ

λ
(A.52)

∑
i

ci exp
{

iλ
[ zζ

z+ ζ Q2− (m2
i − iε)(z+ ζ)

]}
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= 2α0

π

(
QµQν−Q2gµν

) 1∫
0

dz z(1− z)

×
∞∫

0

dλ

λ

∑
i

ci exp
{
iλ
[
z(1− z)Q2−m2

i + iε
]}

(A.53)

Obviously, it is sufficient to introduce one auxiliary mass only:
Choosing (c1= 1, m1=m f ) and (c2=−1,m2=M f ) (with M f �m f ),
one has(

Πreg
)µν
(Q)=Πµν(Q,m2

f )−Πµν(Q,M2
f )

≈ 2α0

π

(
QµQν−Q2gµν

)
1∫

0

dz(1− z)z ln
( M2

f

m2
f − iε−Q2z(1− z)

)
. (A.54)

Here we used the integral formula
∞∫

0

dλ

λ

(
eiaλ− eibλ)= ln

(b

a

)
.

With
∫ 1

0 dz z(1− z)= 1/6 and with

ln
( M2

f

m2
f − iε−Q2z(1− z)

)
= ln

(M2
f

m2
f

)
− ln

(
1− Q2z(1− z)

m2
f − iε

)
there follows the expression (10.96) given in the main text.

A.7 Ward-Takahashi Identity
The aim of this section is to show that the renormalization constants
Z1 and Z2 of quantum electrodynamics are equal. The calculation that
follows is purely formal because we do not ascertain that the integrals
that are involved really exist. However, at the price of more writing, it
applies as well to the regularized expressions.

We start from the expression (10.115), multiplied by the difference
of the fermion momenta,

V ≡ (q− p)µSF(q)Γµ(q, p)SF(p)

=−(q− p)µ
∫

d4x
∫

d4y eiq·xe−ip·y 〈0| T ψ(x) jµ(0)ψ(y) |0〉 .
(A.55)
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The vacuum state is invariant under translations. Therefore, the argu-
ments of the time-ordered product can be shifted by the vector −x,

〈0| T ψ(x) jµ(0)ψ(y) |0〉 = 〈0| T ψ(0) jµ(−x)ψ(y− x) |0〉
without changing its expectation value. Substitution by u := −x and
v := y− x, allows to transform the term V , (A.55), as follows

V =−
∫

d4u
∫

d4v (q− p)µei(p−q)·ue−ip·v 〈0| T ψ(0) jµ(u)ψ(v) |0〉

= −i
∫

d4u
∫

d4v
( ∂

∂uµ
ei(p−q)·u)e−ip·v 〈0| T ψ(0) jµ(u)ψ(v) |0〉

= i
∫

d4u
∫

d4v ei(p−q)·ue−ip·v ∂
∂uµ
〈0| T ψ(0) jµ(u)ψ(v) |0〉 .

In calculating the derivative of the vacuum expectation value by uµ the
product rule yields the term ∂µ jµ(u) which vanishes by current conser-
vation. The derivative by the time component u0 yields nonvanishing
contributions which stem from the step functions in the time-ordered
product,

T ψ(0) jµ(u)ψ(v)=ψ(0) jµ(u)ψ(v)Θ(−u0)Θ(u0−v0)

+ψ(0)ψ(v) jµ(u)Θ(−v0)Θ(v0−u0)

+ jµ(u)ψ(v)ψ(0)Θ(u0−v0)Θ(v0)+· · · ,
∂

∂u0
Θ(±u0− x)=± δ(u0∓ x) , with x = 0 , x = v0 or x =−v0 .

Working out these derivatives, V is found to be

V = i
∫

d4u
∫

d4v ei(p−q)·ue−ip·v

×
{
δ(u0) 〈0| T

[
j0(u), ψ(0)

]
ψ(v) |0〉

+ δ(u0−v0) 〈0| T ψ(0)
[

j0(u)ψ(v)
] |0〉} .

The commutators at equal times are calculated from the canonical com-
mutation relations (9.83),[

j0(u), ψ(0)
]
δ(u0)=−ψ(u) δ(u) , (A.56)[

j0(u), ψ(v)
]
δ(u0−v0)=−ψ(v) δ(u−v) . (A.57)

One inserts the commutators (A.56) and (A.57) and makes use of the
translation invariance of the vacuum expectation values, and obtains

V = SF(p) − SF(q) ,

that is, V is equal to the difference of the fermion propagator (10.113)
for the momenta p and q, respectively. Multiplication of (A.55) by the
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inverse
(
SF(q)

)−1 of the propagator from the left, and by the inverse(
SF(p)

)−1 from the right, yields

(q− p)µΓµ(q, p)= (
SF(q)

)−1−
(

SF(p)
)−1

. (A.58)

This is one of the Ward-Takahashi identities. It plays a decisive role in
the renormalization proof of quantum electrodynamics.

The identity (A.58) provides the key for proving the equality of Z1
and Z2. One takes the limit /p→ m 1l where one has

/p→ m 1l : lim
(
SF(p)

)−1 = Z−1
2

(
/p−m 1l

)
, i.e.

(
SF(p)

)−1 = 0

while (A.58) yields(
SF(q)

)−1 = (q− p)µΓµ(q, p)
∣∣ at /p→m 1l .

In the neighbourhood of the mass shell for q, that is close to /q = m 1l
one concludes

Z−1
2

(
/q−m 1l

)≈ (q− p)µΓµ(q, p)
∣∣≈ Z−1

1

(
/q−m 1l

)
, /p→ m 1l .

This, in turn, implies that the first two renormalization constants are
equal, Z1 = Z2.
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A.8 Some Physical Constants and Units

quantity symbol value dimension

energy unit 1 eV 1.60217733(49) ·10−19 J

unit of mass 1 eV/c2 1.78266270(54) ·10−36 kg

surface 1 barn 10−28 m2

speed of light c 299,792,458 m s−1

Planck’s constant h 6.6260755(40) ·10−34 J s

h/(2π) � 6.5821220(20) ·10−22 MeV s

conversion factor �c 197.327053(59) MeV fm

conversion factor (�c)2 0.38937966(23) GeV2 mbarn

elementary charge e 1.60217733(49) ·10−19 C

mass of electron me 0.51099907(15) MeV/c2

mass of muon mµ 105.658389(34) MeV/c2

mass of τ-lepton mτ 1777.05(30) MeV/c2

mass of proton mp 938.27231(28) MeV/c2

mass of neutron mn 939.56563(28) MeV/c2

n−p mass difference mn−mp 1.293318(9) MeV/c2

mass of pion π± mπ 139.56995(35) MeV/c2

fine structure constant α= e2/(�c) 1/137.0359895(61) (none)

Rydberg energy �cR∞ = mec2α2/2 13.6056981(40) eV

Bohr radius a∞ = �c/(αmec2) 0.529177249(24) ·10−10 m

Bohr magneton µ
(e)
B = e�/(2mec) 5.78838263(52) ·10−11 MeV T−1

nuclear magneton µ
(p)
B = e�/(2mpc) 3.15245166(28) ·10−14 MeV T−1

gravitation constant G 6.70711(86) ·10−39
�c (GeV/c2)−2

Avogadro number NA 6.0221367(36) ·1023 mol−1

Boltzmann constant k 8.617385(73) ·10−5 eV K−1

Fermi constant GF/(�c)3 1.16639(1) ·10−5 GeV−2
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Historical Notes

Without striving for completeness, I give here some biographical notes
on scientists who made important contributions to the development of
quantum mechanics and of quantum field theory. There is an extensive
literature on the history of quantum mechanics, but much less so for
quantum field theory. I recommend to turn primarily to original liter-
ature which often gives a more spontaneous and vivid impression of
the developments, even though it may be somewhat subjective. For ex-
ample, the letters of Max Born and Albert Einstein to which Max Born
(as the editor) joined some of Pauli’s letters concerning the debate on
the interpretation of quantum mechanics, are very useful if one wants
to understand better Einstein’s attitude towards that theory. Regarding
the early history of quantum field theory I strongly recommend the es-
sais and lectures by Res Jost [Jost (1995)] who himself was one of great
actors in quantum field theory. (Though, unfortunately most of his his-
torical contributions are in German.)

The participation of renowned physicists in the development of
nuclear weapons, and, in particular, in the “Manhattan project”, is de-
scribed and dicussed in a large number of publications. Somewhat less
well known is the early history of the application of nuclear fission
and, in particular, of its French component under the leadership of
Frédéric Joliot-Curie. For an excellent account I refer to [Weart (1979)].
One must know the scientific state of knowledge and the political cir-
cumstances of the time in some depth if one wants to understand the
involvement of so many leading people in this dramatic story.

Among the popular scientific writings I recommend mostly the
books written by leading scientists such as Freeman Dyson, Werner
Heisenberg, Abraham Pais, Sylvan Schweber and a few others.

Bohr, Niels Hendrik David: ∗ 7 October 1885 in Copenhagen,
† 18 November 1962 in Copenhagen. Nobel price 1922 for his work on
the structure of atoms and on the radiation they emit.

Bohr turned to theoretical physics very early. His doctoral thesis
dealt with a problem in the electron theory of metals. His stay, in 1912,
at Rutherford’s institute in Manchester gave the impetus and the basis
for his work on the structure of atoms and of atomic transitions, this be-
ing the time when fundamental discoveries on radioactivity and atomic
structure were made at this laboratory, while Planck’s and Einstein’s
quantum hypothesis slowly became accepted knowledge. One should
realize that the proof of the extreme smallness of atomic nuclei, by
means of scattering experiments with α-particles (1911, E. Rutherford,
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H. Geiger and E. Marsden), was a great and important step in the un-
derstanding of the structure of matter. This was the scenario in which
Bohr created what we now call “the Bohr model of the atom.” Bohr’s
central role in the interpretation of the true quantum mechanics that
was discovered in the early 1920’s, can hardly be overestimated. The
“Copenhagen interpretation” as we call it still today, is essentially his
work. Note, however, that the Copenhagen school of thought was often
criticized, perhaps one of the reasons being that it needs many words
and, yet, does not explain completely the strange properties of the quan-
tum world.

In the 1930’s N. Bohr developed an important aspect of nuclei as
systems showing collective excitations, and, in particular, the idea of the
compound nucleus both of which were essential for the understanding of
nuclear reactions. This model of a heavy nucleus as a quantum system
with collective excitations (quantized droplet, quantized rigid rotator)
which was further developed by Aage Bohr (son of Niels Bohr) and Ben
Mottelson, and others, is in contrast to the shell model of nuclei. Both,
in fact complementary, descriptions of nuclei were recognized by Nobel
prices (1975, Aage Bohr and Ben Mottelson, together with James Rain-
water), (1963, Maria Goeppert-Mayer and J. Hans D. Jensen, together
with E. Wigner), respectively.

The lively and instructive book on Niels Bohr by Abraham Pais is
highly recommended [Pais (1991)].

Born, Max: ∗ 11 December 1882 in Breslau, † 5 January 1970 in Bad
Pyrmont. Received the Nobel price in 1954 (!) for his fundamental con-
tributions to the development of quantum mechanics, and, in particular,
for the statistical interpretation of the wave function.

Max Born’s vita, his scientific career which embraces an unusu-
ally large spectrum of research topics, as well as his many interests
and activities beyond his science, are described in his autobiography
[Born (1975)] that I strongly recommend. Max Born was already a well
established theoretical physicist who had made his reputation by his
work and a book on the dynamics of crystal lattices when the fruit-
ful Göttingen years (1921–1926) brought to light quantum mechanics
in a breathtaking development. The list of students, assistants and
collaborators who studied and worked with him during those years,
comprises almost all the great names in quantum theory: Pauli, Heisen-
berg, Jordan, Dirac, Fermi, and many more. Born’s contributions to the
understanding of Heisenberg’s matrix mechanics, to the interpretation of
the Schrödinger wave function, and to many applications of quantum
mechanics, were of central and decisive importance, even though the
brilliance of the very young people around him seemed to outshine his
achievements. This may be the reason why the Nobel price was awarded
to him much later than to Heisenberg (1932), Pauli (1945), and Dirac
(1933).
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Max Born’s life, among many other interesting aspects, is an impres-
sive testimony of the irreparable destruction of cultural life in Germany,
during the years of the Nazi dictatorship from 1933 until 1945. He was
raised in a bourgeois German-Jewish family, imprinted by the conserva-
tive liberalism of the 1848 revolution, deeply rooted in German culture
and tradition. Max Born studied in Wroclaw (then Breslau) (1901–
1903), in Heidelberg (summer of 1902), Zurich (summer of 1903), and,
for most of the time, in Göttingen (1903–1906) where eminent math-
ematicians such as Felix Klein, David Hilbert (whose private assistant
he was), and Hermann Minkowski were his teachers. After a first mili-
tary service and some time on an assistantship in the physical laboratory
of Lummer in Breslau, he returned to Göttingen in 1908, following an
invitation by Minkowski who had taken interest in Born’s work on the
theory of relativity. The collaboration in this field that they had planned,
could not be realized because of Minkowski’s untimely death during the
winter of 1909. After having obtained habilitation in 1909 Born worked
mostly on lattice dynamics. On a recommendation by Planck, Born ob-
tained a professorship (Extraordinarius) at the university of Berlin. In
1919 he received a call to Frankfurt on the Main, changing positions
with Max von Laue who moved to Berlin, and in 1921 was appointed
full professor in Göttingen, succeeding Peter Debye. With the beginning
of the Nazi dictatorship in 1933 Max Born was forbidden to teach and
was put on unlimited leave, while continuing to receive his professor’s
salary. It was in 1938 only that he was deprived of his German citizen-
ship and his belongings were confiscated. While working as a lecturer
in Cambridge from 1933 until 1935, a planned call to the Indian In-
stitute of Science, Bangalore, that had been initiated by Chandrasekhar
Venkata Raman, did not realize because one of Raman’s colleagues
felt that “... a second-rate foreigner who was expelled from his coun-
try, is not good enough for us ...”. From 1936 until his retirement in
1953 Born was professor in Edinburgh. In 1953 Max Born and his wife
Hedwig returned to Germany. He was one of the signatories of the
Göttingen manifesto against nuclear armament (1957). Born relentlessly
spoke against participation of scientists in military projects such as the
development atomic bombs. In his autobiography Born remarks that his
opposition may have been the cause for a certain reserve in his later
relations with Robert Oppenheimer who never invited him to Princeton.

Max Born and Albert Einstein held a life-long close friendship
which lasted until Einstein’s death in 1955. The letters they exchanged
during the years from 1916 until 1955, [Born (1969)], not only give
an impression of the debates on quantum mechanics but also give in-
structive information on the disparate characters of the two friends, as
well as on their very different relations to Germany which had been the
prime cultural ground for both of them.
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De Broglie, Prince Louis-Victor Pierre Raymond: ∗ 15 August 1892
in Dieppe, † 19 March 1987 in Paris. Received the Nobel price 1929
for his discovery of the wave nature of the electron.

If one wishes to get an impression of Prince Louis-Victor de Broglie’s
world one should read Marcel Proust’s A la Recherche du Temps Perdu
(Bibliothèque de la Pléiade (1954)). One will then not be surprised to learn
that, originally, he wanted to become a diplomat and, for that purpose, stud-
ied history at the Sorbonne in Paris. Besides that, he also started studies of
physics at age 18 but hesitated to enter research in that field. His great shot,
the dual nature of the electron, was contained in his thesis (1924) and pro-
vided the basis for Schrödinger’s later developments of wave mechanics.
De Broglie became professor at the Institut Henri Poincaré, Paris, in 1928
and taught there until his retirement in 1962.

Dirac, Paul Adrien Maurice: ∗ 8 August 1902 in Bristol, † 20 Octo-
ber 1984 in Tallahassee, Florida. Was awarded the Nobel price in 1933,
together with Erwin Schrödinger, for the discovery of “new productive
forms of atomic theory”.

Dirac’s father who was Swiss, from Monthey (Valais), emigrated to
England in 1888 where he worked as a teacher for French. Dirac who
had intended to study mathematics, first became an electrical engineer
at the university of Bristol. He had the impression that as a mathemati-
cian he would have to become a school teacher, a profession he wanted
to avoid. He went on to study mathematics, first in Bristol (1921–1923),
and then at St. Johns College in Cambridge from 1923 to 1926, when he
was awarded a Ph.D. on the basis of his doctoral thesis whose title was
“Quantum Mechanics”. This work was the result of Dirac’s intense stud-
ies of matrix mechanics as developed by the Göttingen group shortly
before. There followed visits to Niels Bohr in Copenhagen, and to Max
Born in Göttingen (1927). His discovery of the relativistic equation for
particles with spin-1/2 was made in the year 1928. Aged 28 only, Dirac
became fellow of the Royal Society in 1930, as an early recognition of
his outstanding achievement. In 1932 Dirac was appointed to the Lu-
casian Chair of mathematics at the university of Cambridge, a chair he
held for 37 years, and that was previously held by Isaac Newton in
the 18th century. After retirement Dirac moved to United States, where
he did research at Florida State University until his death. Since 1995
a plaque in Westminster Abbey commemorates Paul Dirac, in the same
place where Isaac Newton was buried.

Besides relativistic quantum theory of fermions Dirac’s name is as-
sociated with a number of topics which have played an important role
in physics ever since, and which were taken up again in various con-
texts, among them the theory of magnetic monopoles, the description
of Lagrangian systems with boundary conditions, and his Lagrangian
quantum theory as the basis for the path integral method whose richness
and usefulness was worked out later by Feynman and others.



Historical Notes 685

Dyson, Freeman: ∗ 1923, British-American mathematician and the-
oretical physicist. Professor Emeritus of the School of Natural Sci-
ences, Institute for Advanced Studies in Princeton. Besides many other
achievements, Freeman Dyson made important contributions to the de-
velopment of quantum electrodynamics which are described in [Schwe-
ber (1994)].

By reconciling Feynman’s pragmatic approach to quantum electro-
dynamics with Schwinger’s mathematical techniques, he succeeded to
resolve and to render transparent the filigree of quantum field theory.
He surely would have deserved a Nobel price.

Ehrenfest, Paul: ∗ 18 January 1880 in Vienna, † 25 September 1933
in Leiden. Ehrenfest studied first in Vienna. He obtained his PhD in
1904, with L. Boltzmann as supervisor of his doctoral thesis. He con-
tinued his studies in Göttingen where Klein, Hilbert, Minkowski, and
Carathéodory were among his teachers. After a stay at St. Petersburg
(from 1907 on) he accepted a professorship at the university of Leiden,
Netherlands, in 1912. Einstein who was a close friend of his, said about
him that Ehrenfest had been the best teacher in our field he had ever
known. Paul Ehrenfest committed suicide in 1933.

Einstein, Albert: ∗ 14 March 1879 in Ulm (Germany), † 18 April 1955
in Princeton, N.J. (U.S.A.). German-Swiss physicist, naturalized in the
U.S.A. in 1940. Received the Nobel price 1921 for his achievements
in theoretical physics and, in particular, for the discovery of the pho-
toelectric effect in 1905. Einstein’s contributions to quantum theory are
numerous, though often underestimated because of his critical attitude
regarding its interpretation. For instance, the hypothesis of elementary
quanta which was the key to Planck’s explanation of the black body ra-
diation in 1900, became more generally accepted only after Einstein’s
1905 work. His work with Podolsky and Rosen [Einstein, Podolsky,
Rosen (1935)] on correlated, entangled states, is instrumental for mod-
ern work on quantum information. This work has been much discussed
until this day, it belongs to the publications with the largest number of
citations in physics. Last not least, in recent years Bose-Einstein con-
densation at macroscopic scales has become a standard experimental
technique with many applications in fundamental research.

Fermi, Enrico: ∗ 29 September 1901 in Rome, † 29 November 1954
in Chicago. Italo-American physicist. Received the Nobel price 1938,
not for his discovery of the statistics of spin-1/2 particles (which obey
the Pauli principle), nor for his early theory of nuclear β-decay, but for
his investigations of artificial radioactivity and of nuclear reactions in-
duced by slow neutrons. From 1927 until 1938 Fermi was professor of
theoretical physics at the university of Rome. In 1938 he emigrated to
United States, escaping the Mussolini dictatorship in Italy. From 1938
until 1942 Fermi was professor of physics at Columbia university, New
York. He conducted a number of nowadays classical experiments lead-
ing to the first operating nuclear reactor and the first controlled nuclear
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chain reaction. Fermi played a central role in the Manhattan Project.
From 1946 until his death, he was professor at the Institute for Nuclear
Studies of the university of Chicago.

Feynman, Richard Phillips: ∗ 11 May 1918 in New York, † 15 Febru-
ary 1988 in Pasadena. Together with Julian Schwinger and Sin-Itiro
Tomonaga he was awarded the Nobel price 1965, for his work on quan-
tum electrodynamics and on the deep consequences of this theory for
elementary particle physics. He obtained his PhD in 1942 with J.A.
Wheeler at Princeton University. From 1945 until 1950 he was professor
of theoretical physics at Cornell University, Ithaka N.Y., and from 1950
on at the California Institute of Technology, Pasadena, California. Feyn-
man made many contributions to particle physics, notably in the field
of weak interactions (hypothesis of the conservation of the weak vector
current), and to the parton hypothesis. The Feynman lectures on physics
belong to the best known and most popular textbooks in physics.

Fock, Vladimir Aleksandrovich: ∗ 22 December 1898 in St. Peters-
burg, † 27 December 1974 in St. Petersburg. Russian theoretician. Made
important contributions to quantum theory, among others the Hartree-
Fock method in many-body physics, and the concept of Fock space.
Fock also pointed out the close relationship between local gauge trans-
formations in electrodynamics and local phases of Schrödinger wave
functions (see Exercise 1.7 and its solution).

Heisenberg, Werner Karl: ∗ 5 December 1901 in Würzburg, † 1 Febru-
ary 1976 in Munich. Received the Nobel price 1932 for the development
of quantum mechanics and for important applications of it.

Heisenberg studied in Munich, where W. Wien, A. Sommerfeld,
A. Pringsheim and others were his academic teachers. During the winter
term of 1922/23 he studied with Max Born, David Hilbert and others in
Göttingen. After obtaining his PhD with Sommerfeld in 1923, again in
Munich, he became assistant with Born at the university of Göttingen
where he was granted the venia legendi in 1924. Max Born describes
the near-to-catastrophe during Heisenberg’s PhD exam where he had
almost failed in experimental physics with Willy Wien on a question
about the resolution of optical instruments. Heisenberg returned to Göt-
tingen somewhat anxious whether professor Born would still accept him
as assistant. He conscientiously worked on filling up the gaps in his
knowledge. As is well known, he later invoked the resolution of the
microscope as an illustration of the uncertainty relations.

There followed visits to Niels Bohr in Copenhagen, where he was
appointed lecturer at the university in 1926. That same year, at the early
age of 26 years, Heisenberg became full professor at the university of
Leipzig. From 1941 on he was professor at the university of Berlin
and director of the Kaiser-Wilhelm Institute (which became the Max-
Planck Institute after the war). At the end of the war he was detained
in England for a while, together with a group of other German sci-
entists, because of his participation in the “Uran-Verein”. He returned
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to Göttingen in 1946, as professor of theoretical physics and director
of the newly founded Max-Planck Institute. Starting in 1958, after the
Max-Planck Institute had moved from Göttingen to Munich, Heisenberg
eventually became professor at the university of Munich, and continued
acting as a director of the Max-Planck Institute for Physics and Astro-
physics until 1970.

To some extent like Max Born’s life, Heisenberg’s vita may teach us
a lot about the spirit and the atmosphere of a period of history which
is extremely difficult to understand from our present perspective, and
which was also the time of the dramatic transition of physics from its
peaceful academic realm, with only few actors, to the public arena of
nuclear energy and its dreadful applications. Heisenberg who was raised
in the idealistic atmosphere of Jugendbewegung, had many interests be-
yond physics. Like Born he was a well versed pianist. His somewhat
undecided, if not ambiguous, attitude towards the political authorities
during the Nazi period is described in a fair and well-balanced manner
by D. Cassidy [Cassidy (1992)].

Heisenberg’s contributions to quantum mechanics and to quantum
field theory are numerous and decisive. Besides matrix mechanics and
the uncertainty relation there are many more subjects related to his
name. Among them the theory of ferromagnetism, the concept of field
quantization, the nuclear isospin, and the concept of scattering matrix.
Regarding the latter his somewhat generous realization of the idea gave
rise to the later rigorous investigations by R. Jost and his school in
Zurich.

Hilbert, David: ∗ 23 January 1862 in Königsberg, † 14 February 1943
in Göttingen. One of the greatest mathematicians of the 20th century.
Mathematical physics in general, general relativity and quantum mech-
anics, in particular, owe many important stimuli to David Hilbert.

Jordan, Pascual Ernst: ∗ 18 October 1902 in Hannover, † 31 July
1980 in Hamburg. Studied and received his PhD (1924) in Göttingen
with Max Born. Habilitation in 1926 at the university of Göttingen,
and at the university of Hamburg. Starting 1928 he became professor
at the university in Rostock, and in 1944 at the university of Berlin.
From 1947 on Jordan was guest professor at the university in Ham-
burg. Pascual Jordan had an important share in the development of the
Göttingen version of quantum mechanics and in the idea of field quant-
ization, a share that is larger than is generally known. Max Born in his
autobiography gives him proper credit.

Jost, Res: ∗ 10 January 1918 in Berne, † 3 October 1990 in Zurich.
Studied in Berne and at the university of Zurich where he received his
PhD under the guidance of Gregor Wentzel in 1946, on a topic in me-
son theory. After a stay in Copenhagen, Jost became assistant of Pauli
at the ETH in Zurich (Swiss Federal Institute of Technology). He fol-
lowed Pauli on a sabbatical in Princeton in 1949 but stayed on until
1955, on a five-year membership at the Institute for Advanced Studies.
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In 1955 he was appointed Extraordinarius at the ETH, and in 1959 full
professor, succeeding Pauli who had died in 1958.

Jost made important contributions to scattering theory, to quantum
electrodynamics, to axiomatic quantum field theory, and other fields of
theoretical physics. He belongs to the founding fathers of axiomatic
field theory and was an eminent authority in this branch of theoretical
physics. In his later years he turned to the early history of quantum field
theory on which he left a number of essais and lectures [Jost (1995)].

Majorana, Ettore: ∗ 5 August 1906 in Catania (Sicily), † 26 March
1938, presumably in the Tyrrhenian Sea. Italian (or, more precisely,
Sicilian) theoretical physicist who was strongly influenced by Fermi,
Heisenberg, and others. From 1937 until his myterious vanishing from
the post ship on its way from Naples to Catania, he was professor at the
university of Naples. He was an ingenuous young man, barely younger
than Fermi, working on Dirac theory, on nuclear forces, and on nu-
clear physics more generally. Many of his contributions to theoretical
physics are contained in unpublished calculations and notes. It seems
that he was deeply scared by the consequences of nuclear conversion
which he had realized almost immediately. His all too short life is beau-
tifully described in the book by Leonardo Sciascia [Sciasca (1975)]. Did
he commit suicide, or did he withdraw behind the walls of a Carthu-
sian monastry because he did not want to be involved in the dreadful
consequences of the nuclear physics known to him?

Noether, Emmy Amalie: ∗ 23 March 1882 in Erlangen, † 14 April
1935 in the United States.

Undoubtedly one of the great scientists in the mathematics of the
20th century. Her seminal work Invariante Variationsprobleme of 1918
contains two theorems bearing her name, which until this day provide
keys to important parts of theoretical physics (mechanics, classical field
theory, local gauge invariance, etc.). Barely any other mathematical pub-
lication has had such a profound and lasting impact on the physics of
the 20th century.

Emmy Noether grew up during the narrow-minded, man-dominated
Second German Empire when, as a matter of principle, university ca-
reers were closed for women. During the Weimar republic when things
had changed, Emmy Noether was granted habilitation in 1919 and was
nominated “ausserplanmässige Professorin” (a purely honorary title) at
Göttingen university. However, she never obtained a professorship in
mathematics, in spite of the fact that her high qualification was never
doubted, that she had the strongest support of David Hilbert, and en-
joyed the highest esteem among her collaborators and students. Later,
at the beginning of the Nazi regime she was deprived of her venia leg-
endi. Even in the United States where she had emigrated in 1933, she
never had a better position than a guest professorship at Bryn Mawr
Women’s College in Pennsylvania.
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Pauli, Wolfgang Ernst: ∗ 25 April 1900 in Vienna, † 15 December
1958 in Zurich. Received the Nobel price 1945 for his discovery of the
exclusion principle.

Although unusual in physics the young Wolfgang Pauli may justly
be termed an infant prodigy. He obtained his doctoral degree in 1921,
with Arnold Sommerfeld in Munich. He was barely twenty years old
when he wrote a review article on General Relativity which still today
is a standard reference. He spent a year each, as an assistant of Born in
Göttingen, and with Bohr in Copenhagen. He was lecturer at the uni-
versity of Hamburg from 1923 until 1928 when he received a call from
the ETH Zurich. In 1940 he was appointed full professor of theoreti-
cal physics at Princeton University but returned to Zurich after World
War II where he taught and worked until his death.

Pauli made many pathbreaking discoveries in quantum mechanics,
quantum field theory, and particle physics. To quote just a few: Besides
the exclusion principle that bears his name, he postulated the existence
of a neutrino participating in nuclear β-decay, i. e., using modern termi-
nology, the νe, and he proved the theorem on the correlation of spin and
statistics, building on earlier work by M. Fierz.

Planck, Max Karl Ernst Ludwig: ∗ 23 April 1858 in Kiel, † 4 October
1947 in Göttingen. He received the Nobel price 1918 for his discovery
of the energy quanta.

Max Planck studied in Munich and in Berlin where G. Kirchhoff and
H. Helmholtz were among his teachers. He received his PhD in Mu-
nich in 1879, was then Privatdozent in Munich from 1880 until 1885,
and Extraordinarius in Kiel until 1889. He was appointed to the chair
formerly held by Gustav Kirchhoff, at the university of Berlin, teaching
and doing research there until his retirement in 1926. His scientific work
focussed on thermodynamics and, in particular, on the entropy in irre-
versible processes. His monumental work which after many attempts,
led him to the correct description of black-body radiation, belongs to
these extremely fruitful years in Berlin. It seems as though, for quite
a while, his colleagues did not take seriously Planck’s discovery, with
one notable exception: Albert Einstein whose publication Über einen
die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen
Gesichtspunkt of 1905 marked the beginning of quantum theory proper.

Max Planck’s life was marked by several personal tragedies: His first
wife, Marie Merck, died in 1909. Planck survived all four children of
his first marriage. His son Karl died in 1916 in the battle of Verdun, his
son Erwin was hung in January 1945 for having participated in the July
1944 upraisal against Hitler. Like many other families living in Berlin
he lost his house and belongings in a bombardment of the city.

Max Planck was a courageous man who openly opposed some of
the political decisions during the Nazi dictatorship. For instance he in-
tervened at the highest level in favour of Fritz Haber who had been
expelled from the country – unfortunately without success.
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Schrödinger, Erwin Rudolf Josef Alexander: ∗ 12 August 1887 in
Vienna, † 4 January 1961 in Vienna. Schrödinger received the Nobel
price 1933, together with P. Dirac, for his contributions to the quantum
theory of the atoms.

Schrödinger studied in Vienna from 1906 until 1910, among others
with F. Hasenöhrl. During World War I he was an artillery officer, from
1920 on assistant of Max Wien in Vienna. He held a first professor-
ship (Extraordinarius) in Stuttgart, a full professorship in Wroclaw (then
Breslau), and, at the university of Zurich, succeeding Max von Laue. In
1927 he was appointed to a chair at the university of Berlin, as succes-
sor of Max Planck. He left Germany in 1933, as a sign of protest against
the new regime. After a number of stays in Oxford, Graz (until the
annexation of Austria), and Princeton, he was appointed to the newly
founded Institute for Advanced Studies in Dublin, whose director he be-
came. He worked there until retirement in 1955. Besides de Broglie,
Schrödinger was one of the most prominent critics of the dual nature
of matter, i. e. of the particle-wave dualism, trying to interpret quantum
mechanics as a pure wave theory.

Schwinger, Julian Seymour: ∗ 12 February 1918 in New York,
† 16 August 1994 in Los Angeles. Received the Nobel price 1965, to-
gether with Tomonaga and Feynman, for his path-breaking contributions
to quantum electrodynamics. Schwinger studied at City College of New
York and at Columbia University, N.Y.. He was assistant of R. Oppen-
heimer at the University of California in Berkeley (1939–1941). After
research activities in relation with war efforts at the Radiation Labora-
tory of MIT in Cambridge, USA, he held a professorship at Harvard
University from 1945 until 1972. From 1972 until his death in 1994 he
was professor at the University of California in Los Angeles.

Sommerfeld, Arnold Johannes Wilhelm: ∗ 5 December 1868 in
Königsberg, † 26 April 1951 in München.

Sommerfeld studied mathematics at the university of Königsberg,
where, at that time, Hilbert, Hurwitz, and Lindemann belonged to his
academic teachers. In 1893 he became assistant of Felix Klein in Göt-
tingen. In 1897 he was appointed as professor for mathematics at
Bergbauakademie (mining academy) in Clausthal, in 1900 professor of
mechanics at the university of Aachen, and in 1906, finally, professor
for theoretical physics at the university of Munich. Sommerfeld wrote
important articles on partial differential equations and collaborated with
Felix Klein on Klein’s monumental work on the theory of spinning
tops. Sommerfeld’s work on atomic spectra and on quantum mechanics
are from his first years in Munich: The elliptic orbits in Bohr’s atomic
model, the magnetic quantum number, etc. His work on the electron
theory of metals was particularly important.

Sommerfeld founded a famous school of theoretical physics where
many important physicists were trained. This unique and well-known
school, too, was destroyed by the barbarism of the dictatorship after
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1933. Arnold Sommerfeld authored a number of textbooks some of
which are still being used today. His book on quantum theory, Atom-
bau und Spektrallinien has had a lasting influence on the generation of
his students, very much like Heitler’s later book on the quantum theory
of radiation. Sommerfeld, too, would have deserved the Nobel price for
some of his achievements.
Tomonaga, Sin-Itiro: ∗ 31 March 1906 in Tokyo, † 8 August 1979
in Tokyo. Honored by the Nobel price 1965, together with Feynman
and Schwinger, for his work on quantum electrodynamics. He studied
in Tokyo with H. Yukawa and Y. Nishina, as well as in Leipzig with
Heisenberg (1937–1939). A thesis on a subject from nuclear physics, on
which he worked while in Leipzig, was accepted for his PhD in Tokyo.
From 1941 on Tomonaga was professor of physics at Tokyo univer-
sity. He developed a covariant formulation of quantum electrodynamics
during the years 1941 to 1943 and, thus, was the first of the three.
Due to the political circumstances his publications came to be known
in the Western world only in 1947, at a time where both Feynman and
Schwinger had independently developed their own solutions of the same
subject.
Wigner, Eugene Paul: ∗ 17 November 1902 in Budapest, † 1 January
1995 in Princeton, New Jersey. Received the Nobel price 1963, together
with Maria Goeppert-Mayer and J. Hans D. Jensen, but not for the nu-
clear shell model (like the latter two), but for his contributions to the
theory of nuclei and of elementary particles, notably his discovery and
application of fundamental symmetry principles.

He studied chemistry at the Technical Highschool in Berlin where
he also obtained an engineer’s degree. Already during the Berlin years
1928 to 1930 Wigner worked on applications of group theory to quan-
tum mechanics, besides his teaching as a chemical engineer. During the
years 1930 to 1933 Wigner spent some time of each year at Prince-
ton. After Hitler came to power Wigner lost his position in Berlin and
emigrated to the United States. As of 1938 he was professor of math-
ematical physics at Princeton University. Wigner, too, belonged to the
group of highly talented physicists who collaborated on the Manhattan
Project.
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Exercises, Hints,
and Selected Solutions

Exercises: Chapter 1

1.1 Determine the wave lengths of photons which are emitted in
(n = 2→ n = 1), (n = 3→ n = 2), and (n = 4→ n = 3) transitions in
hydrogen. Situate them relative to the visible spectrum.
Hint: λ= 2π�c/∆E.

1.2 Consider the following hydrogenlike atoms: (e+e−) (positronium),
(µ+e−) (muonium), (4Heµ−) (muonic Helium), (pp) (antiprotonic hy-
drogen), (12Cπ−) (pionic carbon), and (p Ω−). Calculate the reduced
masses, the Bohr radii, and the transition energies 3→ 2 and 2→ 1
in eV as well as the corresponding wave lengths.
Hints: mHe = 2(mp+mn)c2−24 MeV, mΩ = 1672 MeV.

1.3 Determine the de Broglie wave length for

1. an electron with velocity v = αc, an electron with momentum
|p| = 200 MeV/c,

2. the earth on its orbit (mE = 5.98×1024 kg, v= 29.8 km/s).
3. How would you choose the energy, or the momentum, of a neutron

for its wave length to be 105 fm?

1.4 Let ψ1 and ψ2 be two different solutions of the time-dependent
Schrödinger equation for the same potential. Assume both of them to
decrease sufficiently fast at infinity. Show that the transition current den-
sity �21 := ψ∗1 (t, x)ψ2(t, x) fulfills a continuity equation.

1.5 By way of the correspondence

E←→ i�
∂

∂t
, p←→ �

i
∇

the relativistic energy-momentum relation

E2 = c2 p2+ (mc2)2

yields a wave equation. This differential equation is called Klein-
Gordon equation.

1. In which respect does this equation differ from the Schrödinger
equation? What is its difference to the wave equation(

1

c2

∂2

∂t2 −∆

)
Φ(t, x)= 0 ?
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2. A wave function Φ(t, x) which satisfies the Klein-Gordon equation,
is assumed to have the form

Φ(t, x)= exp
(
− i

�
mc2t

)
ψ(t, x) .

In which approximation does the Schrödinger equation follow from
the Klein-Gordon equation?

1.6 Show: The Hermite polynomials Hn(u), for which the coefficient
of the highest power of u is an = 2n (s. Sect. 1.6), fulfill the relations(

2u− d

du

)
Hn(u)= Hn+1(u) ,

d

du
Hn(u)= 2nHn−1(u) ,

Hn+1(u)= 2u Hn(u)−2nHn−1(u) .

1.7 A charged particle (mass m, electric charge e) and its interac-
tion with external electric and magnetic fields (E, B), respectively, is
described by the time-dependent Schrödinger equation (1.51) with the
Hamiltonian (1.50). A smooth gauge transformation

A(t, x) �→ A′(t, x)= A(t, x)+∇χ(t, x) ,

Φ(t, x) �→Φ′(t, x)=Φ(t, x)− 1

c

∂χ(t, x)
∂t

(1)

leaves the fields invariant but not the Schrödinger equation. As a trial,
let

ψ′(t, x)= exp[iη(t, x)]ψ(t, x) (2)

and show that one can find a real function η(t, x) such that the
Schrödinger equation remains form invariant, i.e. such that ψ′ is a solu-
tion of the differential equation (1.51) with the transformed potentials.
Solution: With H as given in (1.50) and with the potentials (1) the
transformed Hamiltonian is

H ′ = 1

2m

(
p− e

c
A′(t, x)

)2+ eΦ′(t, x) .

For the ansatz (2) we have

ψ̇′ = eiηψ̇+ i eiηψ
∂η

∂t
, ∇ψ′ = eiη∇ψ+ i eiηψ∇η ,

∆ψ
′ = eiη[∆ψ+2i(∇η) · (∇ψ)−ψ(∇η)2+ iψ∆ η] .

This is to be compared to the Hamiltonian H ′ with the potentials given
by (1),

H ′ = H− e

2mc

[(
p− e

c
A
)
· (∇χ)

+ (∇χ) ·
(

p− e

c
A
)
− e

c
(∇χ)2

]
− e

c

∂χ

∂t
.
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Note that p= �∇/i acts on all factors to the right of it, while the dif-
ferential operator in (∇χ) acts on χ only. Therefore, we obtain

H ′ = H− e

2mc

[
�

i
(∆χ)

+2
�

i
(∇χ) ·∇ −2

e

c
A · (∇χ)− e

c
(∇χ)2

]
− e

c

∂χ

∂t
.

The action of H ′ onto ψ′ can now be computed,

H ′ψ′ = eiη
[

Hψ− i
�2

m
(∇η) · (∇ψ)− i

�2

2m
ψ(∆ η)+ �

2

2m
ψ(∇η)2

− e�

mc
A · (∇η)ψ+ i

e�

2mc
ψ(∆χ)+ e2

mc2 A · (∇χ)ψ+ e2

2mc2 (∇χ)2ψ

+ i
e�

mc
(∇χ) · (∇ψ)− e�

mc
(∇χ) · (∇η)ψ− e

c

∂χ

∂t
ψ

]
.

Comparing this expression with i�ψ̇′, with ψ̇′ as calculated above, one
sees that the terms within the square brackets should cancel, except for
the first and the last ones. This happens if one chooses

η(t, x)= e

�c
χ(t, x) . (3)

The last term is proportional to the additional term in ψ̇′ so that, indeed,

i�ψ̇′ = H ′ψ′ .

The wave function is multiplied by a phase factor exp[iη(t, x)] which,
in general, is not constant, but depends on time and space. The function
η(t, x) is proportional to the gauge function χ(t, x).

1.8 Let A, B, C, . . . be operators all of which have the same domain
of definition.

1. Prove the formulae

[A, BC] = [A, B]C+ B [A,C] ,

[A, Bn] =
n−1∑
r=0

Br [A, B] Bn−r−1 , (4)

(use induction for the second one), as well as the Jacobi identity

[A, [B,C]]+ [B, [C, A]]+ [C, [A, B]] = 0 . (5)

2. Work out the following applications of these formulae: Let F(q, p)
be a dynamical quantity which depends polynomially on q =
(q1, q2, q3) and on p= (p1, p2, p3). Show

[pi , F(q, p)] = �
i

∂F(q, p)
∂qi

, [qi , F(q, p)] = i�
∂F(q, p)
∂pi

.
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3. Let 	i =∑
jk εijkx j pk, (i = 1, 2, 3), be the operator which describes

the i-th component of the orbital angular momentum of a particle.
Calculate
[	i, pk] , [	i, p2] , [	i , x2]

and from this [	i , H] for H = p2/(2m)+U(x2).

1.9 The Heisenberg uncertainty relations can be written in a rather
general form: Let A and B be two self-adjoint operators representing
observables. Their uncertainties (or standard deviations) in the state ψ
fulfill the inequality

(∆A)ψ (∆B)ψ ≥ 1

2

∣∣〈[A, B]〉 ψ
∣∣ . (6)

1. Prove this inequality by considering the operators ∆A := A−〈A〉ψ
and ∆B := B−〈B〉ψ , and calculating the norm of the state (∆A+
ix∆B)ψ with x ∈R.

2. Study the examples (A = pk, B = xl) and (A = 	2, B = 	3).

Solution: 1. The following calculation leads to the result (6).

‖(∆A+ ix∆B)ψ‖ 2 = ‖∆Aψ‖ 2+ x2 ‖∆Bψ‖ 2

+ ix
[ 〈∆Aψ,∆Bψ〉−〈∆Bψ,∆Aψ|

]
=

〈
∆2

A

〉
ψ+ x2

〈
∆2

B

〉
ψ+ ix 〈[∆A,∆B]〉 ψ

=
〈
∆2

A

〉
ψ+ x2

〈
∆2

B

〉
ψ+ ix 〈[A, B]〉 ψ ≥ 0 .

Here we used that with A and B self-adjoint, also ∆A and ∆B are
self-adjoint. Furthermore [∆A,∆B] = [A, B]. The expectation value
of the commutator of two self-adjoint operators is pure imaginary.
Therefore, the last equation is correct only if the determinant of the
quadratic equation x2〈∆2

B〉ψ + ix〈[A, B]〉ψ +〈∆2
A〉ψ = 0 is smaller

than or equal to zero,(
i 〈[A, B]〉 ψ

)2−4(∆A)2(∆B)2 ≤ 0 .

This is the asserted inequality (6).

2. In the first example one obtains (∆pk)(∆xl) ≥ �/2, in the second
example one obtains (∆	2)(∆	3)≥ |〈	1〉ψ |/2.

1.10 Show the following

1. A state for which all three components of orbital angular momentum
can be determined simultaneously, necessarily has 	= 0.

2. In every eigenstate of �2 and of 	3 the expectation values of x1, x2,
p1, p2, 	1, and 	2 vanish.
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Solution: 1. If all three components have sharp values simultan-
eously then the standard deviations are zero, (∆	i)= 0. This means that
〈	2

i 〉 = 〈	i〉2 for all i. Since

(∆	1)(∆	2)≥ 1

2
|〈[	1, 	2]〉| = 1

2
|〈	3〉|

with its cyclic permutations, one has 〈	2
i 〉 = 〈	i〉2 = 0 for all i, hence

〈�2〉 = 0, and 	= 0.

2. The expectation values of the first four operators in the state |	m〉
vanish because they have odd parity. The expectation values of 	1
and of 	2 are equal to zero because the operators 	± raise and lower
the m-quantum number, respectively, and because the states |	m±1〉
and |	m〉 are orthogonal.

1.11 Given the operator O := x · p where x and p are, respectively, the
position and the momentum operators of a particle with mass m which
is described by the Hamiltonian H .

1. Write down the Heisenberg equation of motion for O and show that
the expectation value of the time derivative dO/dt in every eigen-
state of H is equal to zero.

2. Calculate the commutator [H,O] for the case H = p2/(2m)+U(x).
3. From this follows the virial theorem

2 〈T 〉 ψ = 〈x ·∇U〉 ψ (7)

for the expectation values in stationary eigenstates of H . Apply this
theorem to the spherical oscillator and to the hydrogen atom.

Solution: Heisenberg’s equation of motion

d(x · p)/dt = i[H, (x · p)]/� ,
evaluated in the eigenstate ψ of H , Hψ = Eψ, yields

d

dt
〈(x · p)〉 ψ = i

�
〈[H, (x · p)]〉 ψ ≡ i

�
〈ψ| [H, (x · p)] |ψ〉 = 0 ,

because H acts to the left in the first term of the commutator, to the
right in the second, in both cases answering by the same eigenvalue.
The commutator is calculated by means of the formulae

[p2, (x · p)] = [p2, x] · p ,
[p2, xk] = �2[∆, xk] = −2�2∂k =−2i�pk ,

[U, (x · p)] = [U, p] · x=−�
i
(∇U) · x

Collecting all contributions, one obtains
i

�
[H, (x · p)] = 2T − x ·∇U .
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In every stationary eigenstate of H the expectation value of this equa-
tion vanishes.
With U a central potential of the form U(r)= arα, one has x ·∇U =
αU(r) and, therefore, 2〈T 〉ψ = α〈U〉ψ . In the case of the spherical os-
cillator (a > 0, α = 2) one obtains 〈T 〉ψ = 〈U〉ψ = En	/2; in the case
of bound states of the hydrogen atom (a < 0, α =−1) one concludes
〈T 〉ψ =−〈U〉ψ/2, 〈U〉ψ = 2En , 〈T 〉ψ =−En . These are the same re-
sults as in classical mechanics.

1.12 The nucleus of oxygen 16O contains 8 protons. Two of these are
assumed to be in the 0s-state, and 6 in the 0p-state of the spherical
oscillator – in accord with the Pauli principle, see also Sect. 4.3.4, Ex-
ample 4.3 und Fig. 4.6. The mean square charge radius of the nucleus is
defined by〈

r2
〉
:= 1

Z

Z∑
i=1

〈
r2
〉

i , (8)

where the index i characterizes the states (in our case, 0s and 0p, re-
spectively). From electron scattering on 16O and from the spectroscopy
of muonic oxygen one knows that

[
〈
r2
〉

16O]1/2 = 2.71±0.02 fm .

Calculate the oscillator parameter b, (1.143), and the energy �ω.
Solution: The potential reads U(r) = mω2r2/2. Using the result
of Exercise 1.11 one obtains 〈r2〉n	 = 2〈U〉n	/(mω2) = En	/mω2, and
from these〈

r2
〉

0s = 3

2

�ω

mω2 =
3

2
b2 ,

〈
r2
〉

0p = 5

2

�ω

mω2 =
5

2
b2 .

Thus, one finds〈
r2
〉

16O =
1

8

(
2× 3

2
b2+6× 5

2
b2
)
= 9

4
b2 .

Inserting the experimental value given above one obtains b = 1.81±
0.01 fm.

1.13 With pr as defined in (1.123), show that

�
2�2 = r2(p2− p2

r ) .

This provides an alternative derivation of (1.124).
Hints: Write �2�2 = (x× p) · (x× p) and use the identity

3∑
i=1

εijkεi pq = δ jpδkq− δ jqδk p . (9)

Solution: 1. Making use of the formula (9) one shows

�
2�2 =

∑
jk

(x j pkx j pk− x j pkxk p j) .
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In the first term on the right-hand side the second and third factors are
replaced by pkx j = x j pk− i�δ jk. Similarly, in the second term the third
and fourth factors are replaced by xk p j = p j xk+ i�δ jk. This yields

�
2�2 = x2 p2− i�(x · p)− (x · p)(p · x)− i�(x · p)
= r2 p2− (x · p)2+ i�(x · p) ,

where in the last step, one used (p · x)= (x · p)−3i�.

2. Calculate then

(x · p)= �
i

∑
xk ∂

∂xk
= �

i

x2

r

∂

∂r
= �

i
r
∂

∂r
= r pr + i� .

This is used to calculate

(x · p)2− i�(x · p)= [(x · p)− i�](x · p)= r pr(r pr + i�)

= r prr pr + i�r pr = r2 p2
r .

In the last step prr = r pr− i� was inserted. This proves the asserted
decomposition.

1.14 The classical Hamiltonian function which is the ananlogue of the
decomposition (1.125) is known to be

Hcl = p2
r

2m
+ 	2

2mr2 +U(r)

with pr = mṙ and 	= |�cl|. Choose �cl = 	ê3: The classical orbits then
lie in the (1, 2)-plane. The corresponding quantum mechanical motion
is no longer confined to this plane. Why is this so? For which quantum
numbers does the quantum solution approximate the classical motion in
the (1, 2)-plane?

1.15 To show: A quantum system all of whose excitations are degen-
erate in energy with the ground state ψ0, is frozen.
Hints: Use the Heisenberg equations of motion to show that the expec-
tation values 〈(ẋ j)2〉ψ0 are equal to zero.

1.16 Calculate the following expectation values in the hydrogen atom:
〈r〉n	, 〈r2〉n	, 〈1/r〉n	.
Solution:

〈r〉 n	 = 1

2
aB[3n2−	(	+1)] ,〈

r2
〉

n	 = 1

2
n2a2

B[5n2+1−3	(	+1)] ,〈
1

r

〉
n	
= 1

n2aB
.
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R

r

U(r)

−U0

Fig. 1.

1.17 Calculate the standard deviation (∆r) in the bound states of hy-
drogen which have maximal orbital angular momentum 	 (these are
called circular orbits).
Solution: Using the results of the preceding exercise one has〈

r2
〉

n,n−1 = 1

2
n2(n+1)(2n+1)a2

B ,

〈r〉 n,n−1 = 1

2
n(2n+1)aB .

These are used to calculate the square of the standard deviation as well
as the standard deviation proper,

(∆r)n,n−1 = 1

2
n
√

2n+1 aB .

Note that the terms proportional to n4 cancel in the result for (∆r)2. If
one had restricted 〈r2〉n,n−1 and 〈r〉2n,n−1 to this order one would have
found the standard deviation to be zero.

1.18 Multipole interactions in hydrogenlike atoms depend on mat-
rix elements of the operators 1/rλ+1Yλµ taken between bound states
Rn	(r)Y	m and Rn	′Y	′m . In some cases, besides the selection rules
which are due to the angular integrals, the radial matrix element van-
ishes, too. Show that for hydrogen wave functions one obtains

∞∫
0

r2 dr Rn	(r)
1

rλ+1 Rn	′(r)= 0 for λ= ∣∣	−	′∣∣ .
Hints: For a physically relevant example and the proof see T.O. Ericson,
F. Scheck, Nucl. Phys. B19 (1970) 450. You should be aware that there
are various conventions for Laguerre polynomials: In the convention of
Sect. 1.9.5 which is used in many textbooks on quantum mechanics, the
associated Laguerre polynomials are denoted by Lσµ. Denoting the con-
vention of, say, [Gradshteyn and Ryzhik (1965)] by L̃ z

k, the relationship
reads

Lσµ(x)= µ!L̃σµ−σ (x) .

Exercises: Chapter 2

2.1 Consider an attractive, spherically symmetric square well potential

U(r)=−U0Θ(R−r)

whose depth is U0 > 0 and whose range is R, s. Fig. 1.

1. Determine the solutions with 	= 0 (s-waves) for positive energy E
(scattering solutions).

2. In the case −U0 < E < 0 there can be bound states. Discuss quali-
tatively the position of the eigenvalues of s-states.



Exercises, Hints, and Selected Solutions 701

Hints: When E > 0 and for r > R use the ansatz sin(kr+ δ) and deter-
mine δ. For E < 0 one must have iδ→∞.
Solution: With 	= 0 and R(r)= u(r)/r the differential equation for
the function u(r) becomes

u′′(r)+ 2m(E−U(r))

�2 u(r)= 0 .

1. E > 0 (cf. Sect. 2.5.5, Example 2.4): Outside the well, r> R, choose
u(a)(r) = sin(kr+ δ) with k2 = 2mE/�2. Inside the well, r ≤ R,
choose u(i)(r)= sin(κr) where

κ2 = 2m(E+U0)

�2 ≡ k2+K2 , K2 = 2m

�2 U0 .

The boundary condition at the point r = R reads

u(i) ′(r)
u(i)(r)

∣∣∣∣∣
r=R

= u(a) ′(r)
u(a)(r)

∣∣∣∣∣
r=R

.

Working this out yields the scattering phase, the scattering length,
and the effective range as given in Sect. 2.5.5.

2. U0 < E < 0: Use E =−B with B> 0, γ 2 := 2m B/�2, from which
κ2 = K2−γ 2. An analogous ansatz for the radial function yields

u(a)(r)= sin(iγr+ δ)= 1

2i

(
eiδ e−γr − e−iδ e+γr

)
.

There is a bound state only if the exponentially increasing term
does not contribute, that is, if iδ→+∞, or, equivalently, if cot δ=
i coth(iδ)→ i. The continuity condition at r = R yields the implicit
equation

κ cot(κR)=−γ .
Let x := κR, x0 =√2mU0 R/�, and γ/κ =

√
x2

0− x2/x. The bound
states are determined from the points of intersection of the curves

y1(x)= cot x and y2(x)=−
√

x2
0− x2/x. The graphs of these func-

tions (Fig. 2) show that they intersect in n points (the moduli of
which decrease from left to right) when x0 lies in the interval

(2n−1)
π

2
≤ x0 < (2n+1)

π

2
.

2.2 For the example of the Yukawa potential UY (r)= ge−µr/r, with
µ= Mc/�, and M the mass of the exchanged particle, the scattering
amplitude in first Born approximation is given by (2.31). Calculate the
integrated cross section

σY =
∫

dΩ
dσ

dΩ
.

Discuss the limit M→ 0.

10

5

0

−5

−10

1 2 3 4 5 6

X

Fig. 2.
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2.3 Given the relation (2.33) between the potential U(x) and the den-
sity �(x), and making use of the limit µ→ 0, show that

f(θ)=− 2m

4π�2

∫
d3x eiq·xU(r)

=− 2mg

�2q2

∫
d3x eiq·x�(x)=− 2mg

�2q2 F(q) ,

where F(q) is the form factor. After performing this limit U(x) becomes
the Coulomb potential, �(x) becomes the charge density.
Calculate the form factor for the examples

a): �(x)= δ(x) ;
b): �(r)= 3

4πR3Θ(R−r) .

2.4 Let the model b) of Exercise 2.3 describe a nucleus with charge
number Z.

1. Calculate the form factor F(q2). Determine the mean-square radius,
first from the form factor, then directly from the density �(r).

2. If the electron has an energy E which is large as compared to its
rest mass (times c2) then one has, approximately, E ≈ �ck. Choose
R = 4.933 fm and E = 200 MeV. Sketch the form factor as a func-
tion of q.

Solution: The form factor reads

F(q2)= 3

(
sin(qR)

(qR)3
− cos(qR)

(qR)2

)
.

The mean square radius, calculated either from the Fourier transform
of �(r), or by differentiation from F(q2), is〈

r2
〉
=−6

dF(q2)

dq2 = 3

5
R2 .

2.5 As a somewhat more extensive exercise, to be done on a PC, in-
tegrate numerically the radial Schrödinger equation for the model b) of
Exercise 2.3 with Z = 8, following the method described in Sect. 2.3.1.
Determine the scattering phases δ	(E) for various energies of the elec-
tron.
2.6 Suppose that in a partial wave analysis of elastic scattering one
had

δ	(k)= arcsin

{(
k

b
√

2	+1

)2	+1

exp

[
−1

2

(
k2

b2 − (2	+1)

)]}
.

Discuss the behaviour of the amplitude a	(k) in the complex plane, as
well as the behaviour of σel(k) as a function of k.
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2.7 Assume the charge distribution of a deformed nucleus to be

�(x)= �0(r)+�2(r)Y20(x̂) .

1. Show: The calculation of the form factor can be reduced to integrals
over the radial variable r.

2. Calculate the form factor and the differential cross section (in first
Born approximation) for the example

�0(r)=
(

3

2πR2

)3/2

exp

(
−3

2

r2

R2

)
, �2(r)= N

R2 δ(r− R) .

Hints:

j2(x)= 3 sin x

x3 −
3 cos x

x2 −sin x

x
, Y20(θ)=

√
5

16π
(3 cos2 θ−1) .

Solution: 1. Insert the expansion (1.136) of the plane wave into the
formula (2.35) for the form factor and use the orthogonality of spherical
harmonics, to obtain

F(q)= 4π

⎡⎣ ∞∫
0

r2 dr j0(qr)�0(r)−
∞∫

0

r2 dr j2(qr)�2(r)Y20(q̂)

⎤⎦ .
2. The first integral is calculated by means of the formula

∞∫
0

x dx e−ax2
sin(bx)=− d

db

∞∫
0

dx e−ax2
cos(bx)= b

4a

√
π

a
e−b2/(4a)

and yields exp(−q2 R2/6). The second integral yields the integrand
at r = R. In total, the form factor is seen to be

F(q)= e−(1/6)q2 R2−4πN j2(qR)Y20(q̂) .

The differential cross section is computed by inserting the expres-
sions for j2(qR) and for Y20(q̂) given above.

Exercises: Chapter 3

3.1 The Pauli matrices read

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (10)

Verify or show, respectively:

1. The matrices σi are hermitean als well as unitary. Every hermitean
2×2-matrix M can be written as a linear combination of the Pauli
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matrices and the unit matrix 1l2×2 with real coefficients. If M has
trace zero then it is a linear combination of Pauli matrices only.

2. Using the short-hand notation σ ≡ (σ1, σ2, σ3) the Pauli matrices
obey the relations

σ jσk = δ jk+ i
3∑

l=1

ε jklσl ,

(σ ·a)(σ ·b)= (a ·b) 1l2×2+iσ · (a×b) .

3. With ω= |ω| and ω̂= ω/ω one has

exp(iω ·σ)= 1l cosω+ iω̂ ·σ sinω .

4. Evaluate (σ ·�)(σ ·�) keeping track of the fact that the components
of � do not commute.

3.2 Show: Every unitary 2×2-matrix U can be written as an exponen-
tial series in (iH), where H = H†, i.e. U = exp(iH ).

3.3 Let A and B be operators defined on the same domain.

1. If they commute with their commutator, i.e. [A, [A, B]] = 0 =
[B, [A, B]], then, formally,

eA+B = eA eB e−(1/2)[A,B] . (11)
2. Show that

eA B e−A = B+[A, B]+ 1

2! [A, [A, B] ]+ . . . . (12)

Hints:

1. Define F(x) := ex(A+B) e−xB e−x A with x real, and show that F(x)
obeys the differential equation F′(x)=−x [A, B] F(x).

2. Define

G(x) := ex A B e−x A =
∞∑

n=0

xn

n! G
(n)(0)

with x ∈R and calculate the first and second derivatives of G(x).

Solution: 1. With F(x) as given, one calculates the derivative by x
without shifting A or B past one another,

F′(x)= ex(A+B)
[

A e−xB e−x A− e−xB A e−x A
]

= ex(A+B)
[

A− e−xB A exB
]

e−xB e−x A

= ex(A+B)x [B, A]e−xB e−x A =−x [A, B]F(x) .
This differential equation is easily solved: F(x) = F(0) exp(−(x2/2)
×[A, B]) with the initial condition F(0)= 1l.

2. One has G(0)= B, G′(0)= [A,G], G′′(0)= [A,G′] = [A, [A,G] ].
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3.4 With q and p two canonically conjugate variables, Q and P the
associated self-adjoint operators on Hilbert space, define one-parameter
groups of unitary operators

U(q)r := e−(i/�)rQ , U(p)s := e−(i/�)sP ,

with real r and s.

1. Q is defined on all f ∈H for which the limit

lim
r→0

i�

r

[
U(q)r −1l

]
f = Q f

exists. (An analogous statement applies to P).
2. Postulate Weyl’s commutation relation

U(q)r U(p)s = e−(i/�)rs U(p)s U(q)r . (13)

Show that this is equivalent to [P, Q] = (�/i) 1l.

3.5 Let A and B be hermitean matrices. Under which assumption is
their product AB hermitean? Show that their commutator C := [A, B]
is antihermitean.

3.6 At t = 0 and using the creation and annihilation operators
(1.74)–(1.75), the coherent states of the example Sect. 1.8.2 can be writ-
ten in the form

|ψz〉 = e−|z|2/2 eza† |0〉
where z ≡ z(0)= r e−iφ(0).

1. Show that

e−za†aeza† = a+ z .

2. Show that ψz is an eigenstate of the annihilation operator a and cal-
culate the eigenvalue. If F(a),G(a†), :H(a†, a): are polynomials in
their arguments what are the expectation values of these operators
in the state ψ?

3. Any two states ψz and ψw with w �= z, are not orthogonal. Calculate
the transition matrix element.

Solution: 1. By the formula (12) and with [a, a†] = 1 one has

e−za†a eza† = a− z[a†, a] = a+ z .

2. This result is used to show that

a |ψz〉 = e−|z|2/2 eza†(e−za†aeza†) |0〉
= e−|z|2/2 eza†(a+ z) |0〉
= z |ψz〉 ,

where a|0〉 = 0 was inserted.
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3. Let F(a) be a polynomial in a. By the previous result, one obtains
the relation

〈ψz| F(a) |ψz〉 = F(z)

For a polynomial G(a†) one shifts a† as well as all powers of a† to
the “bra”-state, thus obtaining

〈ψz|G(a†) |ψz〉 = 〈[G∗(a)ψz] |ψz〉 = 〈ψz| [G∗(a)ψz]〉∗ = G(z∗) .

In a mixed polynomial all a† are positioned to the left of all a, be-
cause of the prescription of normal ordering. Therefore, the above
formulae imply

〈ψz| :H(a†, a): |ψz〉 = H(z∗, z) .
4. The above results can be extended to exponential series. Thus, the

overlap of two different states is calculated to be

〈ψz|ψw〉 = e−|w|2/2 〈ψz| ewa† |0〉
= e−|w|2/2+|z|2/2 〈ψz| e(w−z)a† |ψz〉
= e−|w|2/2+|z|2/2+(w−z)z∗ = e−(1/2)(|w|2+|z|2−2wz∗) .

The square of the modulus of this matrix element is | 〈ψz|ψw〉 |2 =
exp(−|z−w|2).

3.7 In a two-dimensional Hilbert space with basis (|1〉, |2〉)T the fol-
lowing matrices are given

A = 1

2

(
1 1
1 1

)
, B =

(
0 1
0 1

)
, C =

(
0 0
0 i

)
,

D= 1

4

(
1 1
1 3

)
, E =

(
0 0
0 1

)
, F = 1

3

(
1 0
0 2

)
.

Which among these can be density matrices, which cannot? Which of
them describe pure states, which describe mixed ensembles?

3.8 Solve the integral equation (3.30) by iteration for the given initial
condition and express U(t, t0) by integrals over time-ordered products
of the Hamiltonian.

3.9 The Hamiltonian of a physical system is assumed to have a purely
discrete spectrum, H|n〉 = En|n〉, n ∈N0.

1. Prove: For every self-adjoint operator O which is defined on the
states |n〉,

S :=
∞∑

n=0

(En− E0)
∣∣ 〈n|O |0〉 ∣∣2 = 1

2
〈0| [O, [H,O]] |0〉 .

2. Calculate the quantity S for the example O = x and the Hamiltonian
H = p2/(2m)+U(x) (in one dimension).



Exercises, Hints, and Selected Solutions 707

Exercises: Chapter 4

4.1 1. Construct the density matrix for the linear combination of
eigenstates of s and s3

|χ〉 = cosα

∣∣∣∣1

2
,

1

2

〉
+ sinαeiβ

∣∣∣∣1

2
,−1

2

〉
.

Calculate the expectation values of the observables

P(θ, φ)= sin θ cosφ s1+ sin θ sinφ s2+ cos θ s3 .

For which values of θ and φ is the polarization equal to 1?

2. Let the statistical operator

W = cos2 αP+1/2+ sin2 αP−1/2

be assigned to a mixed ensemble. What is the magnitude of the po-
larization in the direction n̂ which has polar angles (θ, φ)?

4.2 In the subspace spanned by the eigenfunctions |1 m〉 of �2 and
of 	3 the following matrix is given,

�=
⎛⎝ u v −u
−v 2u v

−u −v u

⎞⎠ with u = 1

4
, v= i

2
√

2
.

Verify that this may be a density matrix for a state with orbital angu-
lar momentum 1. Determine the nature of the state, pure or mixed, and
determine the eigenvalues of �.

4.3 Assume a beam of particles with spin 1/2 to be characterized by
its polarization P = 〈s〉 such that its first two cartesian components are
P1 = 0.5 and P2 = 0. What is the maximal or minimal absolute value
of the third component P3? Can this be a pure state? If yes, what is its
density matrix?

4.4 Show: Every linear combination of spin-1/2 states of the kind

a+
∣∣∣∣1

2
,

1

2

〉
+a−

∣∣∣∣1

2
,−1

2

〉
is fully polarized. Determine the direction of polarization.

4.5 Polarized beams

1. A beam of protons is assumed to have fixed momentum p and to
be 30% polarized in the positive 3-direction. Construct the statistical
operator which describes this beam.

2. Find out whether the density matrix

�=
(

cos2 θ/2 sin θ/2 cos θ/2
sin θ/2 cos θ/2 sin2 θ/2

)
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describes a pure state or a mixed ensemble. Calculate the expectation
value of the observable

O = cosα s3+ sinα s1

in this state. By an appropriate choice of the parameter α one can
identify this state.

4.6 The partial waves for a particle with spin 1/2 can be classified
by the total angular momentum j2 for whose eigenvalues j( j+1), with
fixed 	, j takes the values j1 = 	+1/2 and j2 = 	−1/2. Show that the
operators

Π j1 :=
1

2	+1
(	+1+σ ·�) , Π j2 :=

1

2	+1
(	−σ ·�) (14)

are projection operators and that they project onto states with sharp j.
Solution: One has to show:

Π j1+Π j2 = 1 , Π j1Π j2 = 0=Π j2Π j1 , Π2
jk =Π jk , k = 1, 2 .

The first property is obvious. In proving the second property one uses

(σ ·�)(σ ·�)= �2− (σ ·�) ,
(cf. Exercise 3.1), to calculate

Π j1Π j2 =
1

(2	+1)2
[	(	+1)− (σ ·�)−�2+ (σ ·�)] ,

which, indeed, gives zero when applied to a state with sharp 	. The
product of factors taken in the inverse order gives zero, too. It remains
to verify that Π j1 projects onto j1 = 	+1/2, while Π j2 projects onto
j2 = 	−1/2. In order to show this, replace the denominators in (14) as
follows

2	+1= j1( j1+1)− j2( j2+1)

and use the formula 2s · �= j2−�2− s2 with s = σ/2, in order to re-
place σ · � acting on eigenstates of j2, by its eigenvalues j( j+1)−
	(	+1)−3/4. One obtains

Π j1 =
j( j+1)− j2( j2+1)

j1( j1+1)− j2( j2+1)
, Π j2 =

j1( j1+1)− j( j+1)

j1( j1+1)− j2( j2+1)
,

which confirm the assertion.

4.7 In the space of spinors and using the operators (14) the par-
tial wave series of the elastic scattering amplitude of a particle with
spin 1/2 has the form

f̂ (k, θ)=
∞∑
	=0

(2	+1){ f j1Π j1+ f j2Π j2}P	(cos θ) . (15)
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The scattering amplitude proper which must be a scalar, is obtained by
evaluating f̂ between Pauli spinors χp and χq . Show that f̂ can be
transformed as follows

f̂ (k, θ)=
∞∑
	=0

{	 f j2(k)+ (	+1) f j1(k)}P	(cos θ) (16)

− iσ ·
(

k̂′ × k̂
) ∞∑
	=0

{ f j1(k)− f j2(k)}P′	(cos θ) .

In the case where the amplitudes do not depend on spin, this expansion
reduces to the one for spinless particles.
Solution: The amplitude must be evaluated in momentum space.
Thus, one has

(σ ·�)P	(k̂′ · k̂)= σ · (−ik̂′ ×∇k′)P	(k̂
′ · k̂)=−iσ ·

(
k̂′ × k̂

)
P′	(k̂′ · k̂) .

4.8 The optical theorem in the examples of Exercises 4.6 and 4.7 de-
rives from the unitarity relation

Im f(k′, k)= k

4π

∑
spins

∫
dΩk′′ f ∗(k′, k′′) f(k′′, k) . (17)

Show that every partial wave amplitude f ji , on its own, satisfies the
unitarity relation

Im f ji (k)= k
∣∣ f ji (k)

∣∣ 2 , i = 1, 2 . (18)

This implies that it can be expressed by means of scattering phases.
Solution: One evaluates f̂ between two Pauli spinors and uses
the addition theorem (1.121) of spherical harmonics. The integration
over dΩk′′ is simplified by the orthogonality of spherical harmonics.
One obtains

4π
〈
χp

∣∣Y∗	m(k̂′)
{
Im f j1Π j1 + Im f j2Π j2

}
Y	m(k̂)

∣∣χq
〉

= 4πk
〈
χp

∣∣Y∗	m(k̂′)[ f ∗j1Π j1+ f ∗j2Π j2][ f j1Π j1+ f j2Π j2]Y	m(k̂)
∣∣χq

〉
.

By the properties of the projection operators proven in Exercise 4.6, and
by comparing coefficients, one obtains the relations (18). These, in turn,
imply that one can write

f jk =
1

2ik
(e2iδ jk (k)−1)= 1

k
eiδ jk (k) sin δ jk(k) .

4.9 In the subspace pertaining to the eigenvalue 2 of the operator �2,
i.e. with 	= 1, construct the 3×3-matrix 〈1m′|	2|1m〉 and show that

exp(−iα	2)= 1l−i sinα 	2− (1− cosα) 	2
2 .
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4.10 Show: A beam of identical particles whose polarization P has
a given modulus P, can be represented in the form

�= 1− P

2
1l+PD(1/2)(R)

(
1 0
0 0

)
D(1/2) †(R) .

In which direction does the vector P point?

Exercises: Chapter 5

5.1 To the Hamiltonian of the hydrogen atom add the perturbation
H ′ = �2C/(2mr2) with positive constant C.

1. Determine the exact eigenvalues of H+H ′ by adding H ′ to the cen-
trifugal term. Is the degeneracy (2p−2s) lifted?

2. Calculate the displacement of the energy of the ground state in first
order perturbation theory. Compare with the exact result.

5.2 Let the charge density of the lead nucleus (Z = 82) be described
by a homogeneous distribution with radius R = 6.5 fm,

�(r)= 3Ze

4πR3Θ(R−r) .

Within first order of perturbation theory calculate the difference of the
binding energies of the states 1s, 2s, and 2p, as compared to the pure
Coulomb potential.

5.3 Compare the state 1s in a lead atom (Z = 82) with the correspond-
ing 1s-state of muonic lead. How, approximately, does the potential at
the position of the muon change when the electronic 1s-state of the host
atom is occupied by one electron? How does the potential at the posi-
tion of the electron change due to the presence of the muon?

5.4 Consider stationary perturbation theory for the case of a given
eigenstate |n〉 of H0. In first order one must have c(1)n = eiα−1 with
α ∈ R. Verify to second order included, that the results of the pertur-
bation series remain unaffected by the choice of the free parameter α.
Hints: Show: The energy shifts are independent of α; in second order
the resulting wave function

ψ ≈ (1+ c(1)n ) |n〉+
∑
k �=n

c(1)k |k〉 ,

as a whole, can be multiplied by e−iα.

5.5 Since the nucleus of the host atom has a finite extension, the low-
est bound states of the muonic atom are shifted as compared to the pure
Coulomb potential. Interpret the difference

∆ U(r)=−Ze2
(∫

d3x′ �(r
′)

|x− x|′ −
1

r

)
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as a perturbation added to the Hamiltonian H0 of the muonic atom in
the field of a pointlike nucleus with charge Z. Calculate the shift of the
muonic 1s-level to first order. In the case of light nuclei, show that it is
proportional to the mean-square radius of the nucleus.

5.6 In a muonic atom we wish to compare two potentials U1 and U2
which differ in the nuclear interior only. Show: Expanding the muonic
density according to |ψ|2 ≈ a+br+ cr2, the binding energies differ by

∆ E ≈ Ze2 2π

3
a

(
∆

〈
r2
〉
+ b

2a
∆

〈
r3
〉
+ 3c

10a
∆

〈
r4
〉)
.

In this expression ∆〈rα〉 denotes the change of the nuclear mo-
ment α. Derive an approximate expression for the energy difference
E(2p)− E(2s).
Solution: By applying partial integration twice the difference U1−U2
of the potentials is replaced by ∆(U1−U2), so that one has

I :=
∞∫

0

r2 dr (a+br+ cr2)(U1−U2)

=
∞∫

0

r2 dr

(
a

6
r2+ b

12
r3+ c

20
r4
)

∆(U1−U2) .

Inserting now the Poisson equation, ∆(U1−U2) = −4πZe(�1−�2),
one obtains

∆E = e
∫

d3x |ψ| 2(U1−U2)

≈−4πZe2
(

a

6
∆

〈
r2
〉
+ b

12
∆

〈
r3
〉
+ c

20
∆

〈
r4
〉)
.

The expansion coefficients are determined from the explicit form of the
wave functions of the 2s- and 2p-states, respectively,

a(2s) = 1

2a3
B

, b(2s) =− 1

a4
B

, c(2s) = 7

8a5
B

;

a(2p) = 0 , b(2p) = 0 , c(2p) = 1

12a5
B

.

5.7 The fine structure in an atom with electric potential U(r) is caused
by the operator

UFS = �2

2m2c2

1

r

dU(r)

dr
� · s . (19)

Calculate the fine structure splitting for circular orbits in hydrogenlike
atoms, in first order of perturbation theory.
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Fig. 3.

Solution: The identity 2� · s = j2− �2− s2 yields the expectation
value

〈� · s〉 n	 = 1

2

[
j( j+1)−	(	+1)− 3

4

]
.

For circular orbits insert here 	 = n−1. The radial matrix element
of 1/r3 is calculated to be〈

1

r3

〉
n,n−1

= 2

a3
B

[
n4(2n−1)(n−1)

]−1
.

Thus, to first order of perturbation theory one obtains

∆E = (Zα)4

2n4(n−1)
mc2 .

Exercises: Chapter 6

6.1 In which way are the wave functions of the electron normalized in
the first and the third example of Sect. 6.1.1?

6.2 Consider Klein’s group {1l,P,T,PT}, i.e. the group which con-
tains the identity of the Lorentz group, space reflection, time reversal,
and the product of space reflection and time reversal, in the light of Re-
mark 2 following Wigner’s theorem (Theorem 6.1). State in which way
the elements of this group are represented in Hilbert space.

6.3 Confirm the relation (6.14) by direct evaluation of the exponential
series.

6.4 Haar measure for SU(2): Show that the weight function �(φ, θ, ψ)
in the volume element dR= �(φ, θ, ψ) dφ dθ dψ of the space of Euler-
ian angles equals sin θ.
Solution: From Fig. 3 one reads off the relation (using notations as in
the figure)

ê3 dφ+ êη dθ+ ê3̄ dψ = ê1̄ dx′ 1+ ê2̄ dx′ 2+ ê3̄ dx′ 3 .
Multiply this equation from the left by ê1̄, then by ê2̄, and finally by ê3̄,
insert the scalar products of the unit vectors, as taken from the figure.
This yields(

ê1̄, ê3
)=− sin θ cosψ ,

(
ê1̄, êη

)= sinψ ,
(
ê1̄, ê3̄

)= 0 ,(
ê2̄, ê3

)= sin θ sinψ ,
(
ê2̄, êη

)= cosψ ,
(
ê2̄, ê3̄

)= 0 ,(
ê3̄, ê3

)= cos θ ,
(
ê3̄, êη

)= 0 ,
(
ê3̄, ê3̄

)= 1 .

From these one obtains the relations

dx′ 1 =− sin θ cosψ dφ+ sinψ dθ ,

dx′ 2 = sin θ sinψ dφ+ cosψ dθ , (20)

dx′ 3 = cos θ dφ+ dψ .
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Equation (20) yields the Jacobi determinant for
(
φ, θ,ψ

) �→(
x′1, x′2, x′3

)
:

∂
(
x′ 1, x′ 2, x′ 3

)
∂
(
φ, θ,ψ

) = det

⎛⎝− sin θ cosψ sinψ 0
sin θ sinψ cosψ 0

cos θ 0 1

⎞⎠=− sin θ .

Thus, the Jacobi determinant for the transformation relating R= (
φ, θ,ψ

)
to R′ = (

φ′, θ ′, ψ′
)

is given by

∂
(
φ, θ,ψ

)
∂
(
φ′, θ ′, ψ′

) = ∂
(
φ, θ,ψ

)
∂
(
x′ 1, x′ 2, x′ 3

) ∂(x′ 1, x′ 2, x′ 3
)

∂
(
φ′, θ ′, ψ′

) = sin θ ′

sin θ
. (21)

Conclusion: Up to a constant that may be chosen to be 1, one obtains
�(φ, θ, ψ)= sin θ.

6.5 Denote the 2×2 unit matrix and the three Pauli matrices as fol-
lows {σµ} =

(
1l, σ(i)

)
, respectively. Let

A :=
3∑
0

aµσµ , aµ ∈R .

By means of the known relations for Pauli matrices prove the relation:

3∑
i=1

σiAσi = 2
(
tr A

)
1l−A .

Show that the two SU(2)-partners of a given element R ∈ SO(3) are
given by

U=± 1

2
√

1+ tr R

(
1l+

∑
i,k

Rikσiσk

)
. (22)

Solution: By means of the known anticommutator

σiσ j +σ jσi = 2δij

and the relation
(
σi
)2 = 1l that follows from it, one calculates

3∑
i=1

σiAσi=3a0 1l+
3∑

j,i=1

a jσiσ jσi=3a0 1l−
3∑

j=1

a jσ j=4a0 1l−
3∑
µ=0

aµσµ .

From this relation and from tr A= 2a0 one has
3∑

i=1

σiAσi = 4a0 1l−A= 2
(
tr A

)
1l−A .

The transformation formula (6.16) reads more explicitly∑
i

x′ iσi = U
∑

j

x jσ jU† = Rikσi x
k .
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Comparing the coefficients of xk in the second and third expression one
concludes UσkU† =∑

i Rikσi . This is multiplied by σk from the right,
and the sum is taken over k from 1 to 3, to obtain∑

i,k

Rikσiσk = U
∑

k

σkU†σk = U
{

2
(
tr U

)
1l−U†

}
= 2

(
tr U

)
U−1l .

This proves the formula, upon using the relation tr U=√1+ tr R which
follows from the same equation and from tr

(
σiσk

)= 2δik.

6.6 The wave functions of the quantized, symmetric top are given
by (6.43). Making use of the symmetry properties of the D-functions,
show that the multiplicity in the choice of axes for the body-fixed sys-
tem leads indeed to these functions.

6.7 Write the formula (6.70) as the coupling of two equal angular mo-
menta to total angular momentum zero.

6.8 Prove the commutators of the generators J3 and J± with spherical
tensor operators of rank κ,[

J3, T
(κ)
µ

]
= µ T (κ)µ ,

[
J±, T (κ)µ

]
=√

κ(κ+1)−µ(µ±1) T (κ)µ±1 .

Hint: Notice the relation〈
φ′jm′

∣∣∣φ jm

〉
= D( j)

m′m =
〈
jm′

∣∣D( j) | jm〉 ,
which follows from the definition of the D-matrices and the transforma-
tion behaviour of base functions with respect to rotations. Consider then
the transformation

D(κ)T(κ)D(κ)−1 = eiεê·JT(κ)e−iεê·J

for small ε, where ê is an arbitrary unit vector.

6.9 Derive the orthogonality relations for the 6 j- as well as for
9 j-symbols.

6.10 Prove the formula (6.97) which relates matrix elements of vector
operators between states with equal values of J to matrix elements of
the angular momentum operators.

6.11 Derive the commutators of the generators of the Euclidian group
in two dimensions.
Hint: This group consists of rotations about the origin, and of trans-
lations along the 1- and the 2-axis. Therefore, it is useful to introduce
homogeneous coordinates. Compare to (6.138).

6.12 Show that the product of the time component p0 of the energy-
momentum vector of a particle and the distribution δ(p− p′) is invariant
under all Λ ∈ L↑+. Do you see a relation to the consequences of covari-
ant normalization?
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Hints: According to the decomposition theorem every Λ ∈ L↑+ can be
represented as the product of a rotation and a Special Lorentz transfor-
mation. Demonstrate the asserted invariance separately for rotations and
for “boosts” along the 3-axis. In the second case one has

p′ 0 = γp0+γβp3 , p′ 3 = γβp0+γp3 .

6.13 Calculate the commutators of the generators Mµν with the gener-
ators Pν, as well as among themselves, i.e. verify the formulae (6.121)
and (6.122).

6.14 Let U, V and T be elements of SU(2), and write the entries of V
and of T as follows

V11 = y1+ iy2 V12 = y3+ iy4 T11 = z1+ iz2 T12 = z3+ iz4 .

Show that the points y := (y1, y2, y3, y4)
T and z := (z1, z2, z3, z4)

T lie
on S3, the unit sphere in R4. Show: the action of U :V �→ T is equiva-
lent to a proper rotation z =Ay on the sphere S3, i.e. AT A= 1l4×4 and
det A= 1.
Hint: Notice that every U ∈ SU(2) can be represented by

U=
(

u v

−v∗ u∗

)
, with |u| 2+|v| 2 = 1 .

6.15 Let (x, y, z) be cartesian coordinates in R3. Write xy, xz,
and x2− y2 in terms of components of a spherical tensor operator. The
expectation value

e 〈α; j,m = j| 3z2−r2 |α; j,m = j〉 ≡ Q

is the quadrupole moment. Calculate the matrix elements

e
〈
α; jm′

∣∣ x2− y2 |α; j,m = j〉
for m′ = j, j− 1, j− 2, . . . . Express these in terms of Q and of
Clebsch-Gordan coefficients.
Hint: You need the explicit form of the spherical harmonics with
	= 2, viz.

Y20 =
√

5

16π

(
3 cos2 θ−1

)
Y21 =−

√
15

8π
sin θ cos θ eiφ

Y22 = 1

4

√
15

2π
sin2 θ e2iφ ,

and you should use the symmetry relation Y	,−m = (−)mY∗	m .
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6.16 Let |(	s) j,m j〉 be the state of an unpaired proton or neutron in
the shell model of nuclei. In a state of this kind the magnetic moment
is defined by

µ j := g j 〈 j,m = j| J3 | j,m = j〉µB , with µB = e�

2MN c
=̂ e

2MN
.

More generally, the corresponding operator is the sum of the magnetic
moments which are due to the orbital motion and to the spins,

µ= µB
{
g	�+ gss

}
,

with g(p)s = 5.58 and g(n)s =−3.82. The expectation value of this opera-
tor, by Exercise 6.10, is proportional to the expectation value of J, that
is to say,

g j 〈 jm| J | jm〉 = 〈 jm|
{
g	�+ gss

} | jm〉 .
Calculate g j as a function of g	 and of gs.
Comment and Hint: The shell model of nuclei assumes that the mag-
netic moment of the nucleus is given by the magnetic moment of the
last proton or neutron which finds no partner in the state | j,−m〉.
(Example: The nucleus 209Bi: A single proton sits in the state 1h9/2, i.e.
	= 5 and j = 9/2, above a closed shell of 82 protons and another closed
shell of 126 neutrons.)
Replace the scalar products J ·� and J · s by linear combinations of J2,
�2, and s2.

6.17 To show: every element of su(3), that is, every traceless her-
mitean 3×3-matrix, can be written as a linear combination of the
Gell-Mann matrices (6.99). The group SU(3) contains three subgroups
SU(2) that one can read off from the generators (6.99). Determine the
generators of the Lie algebras of these subgroups as linear combina-
tions of λk, k = 1, 2, . . . , 8. Mark representations of these subgroups in
Figures 6.6 to 6.9.

6.18 Determine the structure constants fijk of SU(3) by calculating the
commutators of the generators λk. Consider then the anticommutators of
the generators and show that{

λi, λ j
}= 4

3
δij 1l+2

8∑
k=1

dijkλk .

Calculate the coefficients dijk (which are symmetric in their indices).
Solution: One finds

d118 = d228 = d338 = 1√
3
=−d888 ,

d448 = d558 = d668 = d778 =− 1

2
√

3
,

d146 = d157 = d256 = d344 = d355 = 1

2
=−d247 =−d366 =−d377 .
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(If the reader is used to algebraic program packages such as MATHE-
MATICA or MAPLE this is a good exercise for matrix calculations.)

6.19 Denote the generators of SU(3) by Ti = λi/2, i = 1, . . . , 8. The
three subgroups SU(2) come out more clearly by the definitions

I3 = T3 , I± = T1± iT2 ,

U3 =−1

2
T3+

√
3

2
T8 , U± = T6± iT7 ,

V3 = 1

2
T3+

√
3

2
T8 , V± = T4± iT5 .

Work out the commutators of these generators among themselves and
with Y := 2T8/

√
3. Identify the action of the ladder operators in (T3,Y )-

diagrams of representations of the group.
Use these commutators to show: The boundary of an irreducible rep-
resentation can nowhere be concave. The corners of the boundary are
occupied each by one state only.

Exercises: Chapter 7

7.1 Show that∫
d3x f(x)

↔
∂0 g(x)

is Lorentz invariant, if f(x) and g(x) are Lorentz scalar functions.

7.2 Prove the translation formula (7.30) by making use of the commu-
tators (7.29).

7.3 Starting from the Hamiltonian density of the Klein-Gordon field
(7.25) derive the Hamiltonian (7.35) expressed in terms of creation and
annihilation operators. Carry out the analogous calculation which leads
to the expression (7.36) for the total momentum.

7.4 Consider the matrix element of a vector current vµ between the
state of a charged pion π+ with mass m and momentum q, and the state
of a neutral pion π0 with mass m0 and momentum q′,〈

π0(q′)
∣∣∣ vµ(0) ∣∣π+(q)〉 . (23)

This matrix element is responsible for β-decay of pions,

π+(q)−→ π0(q′)+ e+(p)+νe(k) . (24)

This decay is kinematically allowed because m−m0 = 4.6 MeV, the
charged pion being heavier than the neutral one. Work out a decom-
position of the matrix element (23) in terms of Lorentz covariants and
invariant form factors, and determine relations between the form factors
for the case where the current vµ(x) is conserved.



718 Exercises, Hints, and Selected Solutions

Solution: As in (23) the left and right single-particle states have the
same behaviour under parity, the matrix element, as a whole, must be
a Lorentz vector. Pions have no spin. Hence, the only covariants are
qµ and q′µ, or, alternatively, their sum and difference,

Pµ := qµ+q′µ , Qµ := qµ−q′µ ,

so that we may write〈
π0(q′)

∣∣∣ vµ(0) ∣∣π+(q)〉= 1

(2π)3
{

Pµ f+(Q2)+Qµ f−(Q2)
}
. (25)

The choice of the factor in front is a matter of convention. We choose
it in agreement with the rule that every external particle should con-
tribute a factor 1/(2π)3/2. The form factors depend on invariants only,
hence on q2, q′ 2, q ·q′, or the corresponding scalar products contain-
ing P and Q. As both the π+ and the π0 are on their mass shell, only
one of these scalar products is a genuine variable. Choose this variable
to be Q2. Furthermore, in pion-β-decay (24) the interval of variation of
this variable is small as compared to the pion mass,

m2
e ≤ Q2 ≤ (m−m0)

2

(it is often approximated by Q2 = 0). If the current is conserved, i.e. if
∂µvµ(x)= 0, then one obtains the condition(

m2−m2
0

)
f+(Q2)+Q2 f−(Q2)= 0 . (26)

The form factor f−(Q2) is very small as compared to f+(Q2); in the
limit m = m0 it vanishes identically.

7.5 By means of Cauchy’s theorem of residua prove the integral rep-
resentations (7.61) for Θ(±u).

7.6 An electrically neutral and a positively charged scalar fields are
assumed to span the doublet representation of some SU(2) (internal
symmetry),

Φ(x)=
(
φ(+)(x)
φ(0)(x)

)
,

(
t = 1

2

)
. (27)

Let the Lagrange density containing a self-interaction be:

L= 1

2

(
∂µΦ

†, ∂µΦ
)− 1

2
κ
(
Φ†(x),Φ(x)

)− λ
4

(
Φ†(x),Φ(x)

)2
. (28)

The coupling parameter λ is assumed to be real and positive, the param-
eter κ real, positive or negative. The brackets

(·, ·) symbolize coupling
to t = 0 so that this SU(2) leaves the Lagrange density (28) invariant.
Determine the position of the minimum of the energy for κ > 0, as well
as for κ < 0.
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What is the interpretation of κ in the first case? If in the process of
quantization one wishes to start from the state with lowest energy, how
should one proceed in the case of negative κ?
Does the ground state of the quantized theory with κ < 0 still possess
the full SU(2)-symmetry?
Solution: If κ > 0 define κ ≡ m2. Both fields are massive and have
the same mass m. If κ < 0 the energy has degenerate minima at(

Φ†,Φ
)= −κ

λ
≡ v2 .

Each one of these minima is a possible ground state. In everyone of
them Φ(x) develops a nonvanishing expectation value 〈Ω|Φ(x)|Ω〉. As
the vacuum is electrically neutral, this expectation value can only be due
to the neutral field, 〈Ω|φ(0)(x)|Ω〉. The dynamical field that describes
the neutral partner, must be of the form

θ(0)(x) := φ(0)(x)−〈Ω|φ(0)(x) |Ω〉 .
It can be quantized in a standard manner. The ground state no longer
has the full SU(2) symmetry.
Comment: More about this and on the relevance of this example for
particle physics, see, e. g., [Scheck (1996)].

7.7 Calculate the Hamiltonian (7.104) for the quantized radiation field
in terms of creation and annihilation operators for transverse photons,
i.e. prove the expansion (7.105).

7.8 Express the components of the operator ∇ in spherical coordi-
nates. Calculate the commutators of the nabla operator with the gener-
ators 	3 and 	±, i.e. prove[

	3,∇µ
]= µ∇3 ,

[
	±,∇µ

]=√
2−µ(µ±1) ∇µ±1 .

7.9 When an electron, or a muon, or a heavy meson (such as
π− or K−), bound in an atom, makes an E1-transition, both the lepton
(or meson) and the nucleus move while the center-of-mass remains ap-
proximately at rest. (The recoil of the emitted photon being neglected.)
Show that this effect implies the replacement (7.126) in the dipole op-
erator.
Solution: Denote by Z the center-of-mass of the isolated nucleus,
by S the center-of-mass of the total system, nucleus plus bound particle.
Denote by m and m A the masses of the particle and the nucleus, re-
spectively. As the nucleus carries the charge +Ze, the dipole operator
reads

D=−e s+ ZesZ ,

with s the coordinate of the particle, sZ the coordinate of the nucleus
with respect to the common center-of-mass sytem. Note that atomic
wave functions are always calculated in terms of r, i.e. in terms of the
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Ssz

→
s
→

r
→

Fig. 4.

coordinates of the particle with respect to the point Z. One has

ms+m AsZ = 0 ,

and, therefore, (s. Fig. 4)

r = s− sZ =−m+m A

m
sZ .

One writes s and sZ in terms of r,

s = m A

m+m A
r , sZ =− m

m+m A
r ,

and inserts them in D. One obtains

D=−e

(
1+ (Z−1)m

m+m A

)
r . (29)

This correction is negligible for electrons. In muonic atoms it is still
small but it can be important in π−- and K−-atoms.

7.10 Show that the definition of the distributions

δ±(p) :=Θ(±p0) δ(p2)

is Lorentz invariant. (They are used in identifying the support of the
field tensor Fµν(p) in Sect. 7.6.2).

Exercises: Chapter 8

8.1 In a two-body reaction A+ B→ C+ D+· · · let κ denote the
modulus of the spatial momentum in the center-of-mass system. Show
that κ can be expressed in terms of m2

A, m2
B, and the variable

s = (p+q)2 (cf. (8.26)).

8.2 For a nonrelativistic particle with spin 1/2 construct the most gen-
eral, rotationally invariant, but not necessarily parity invariant, potential
with vanishing range. Show that the amplitude for scattering on this po-
tential, in first Born approximation, only contains s- and p-waves.

8.3 The kinematics of the decay π+→µ+νµ allows to obtain a bound
on the mass of the muon neutrino. Suppose that in the reference frame
in which the pion was at rest before it decayed, you have measured
|p|(µ) = 29.788±0.001 MeV. Furthermore, one knows

m(π+)= 139.57018±0.00035 MeV ,
m(µ)= 105.6583568±0.0000052 MeV .

Use these data to draw a conclusion on m(νµ).

8.4 Using the kinematics of the three-body decay
3He −→ 3He+ e−+νe

at the upper end of the spectrum of the electron, one extracts informa-
tion on the mass of the νe. Discuss the shape of this spectrum based
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on the following assumptions: In the neighbourhood of the upper end
of the spectrum the squared decay amplitude

∑ |T |2 is constant. Both,
the mother and the daughter nuclei are very heavy, so that the daughter
nucleus takes over any momentum transfer but no energy.

Exercises: Chapter 9

9.1 Calculate the pseudoscalar products

u(r)i (p)γ5u(s)k (p) , v
(r)
i (p)γ5v

(s)
k (p)

using the solutions (9.46) and (9.47). Note that the spinors may pertain
to two different particles i and k.

9.2 Prove that ψ(x)γµψ(x) behaves like a Lorentz vector.

9.3 Using two-component spinors construct a Lagrange density for the
Dirac field in the high-energy representation.
Solution: In position space the four-component Dirac spinor is com-
posed of two two-component spinor fields φ(x) and χ(x),

ψ(x)=
(
φ(x)
χ(x)

)
.

The Lagrange density must be Lorentz scalar and hermitean, and it must
yield the equations of motion (9.74) and (9.75). One verifies that

LD = i

2

[
φ∗(x)σ̂µ

↔
∂µ φ(x)+χ∗(x)σµ

↔
∂µ χ(x)

]
−m

[
φ∗(x)χ(x)+χ∗(x)φ(x)] (30)

fulfills these conditions.

9.4 Prove the formulae (9.97) and (9.98).
Solution: In the rest system and using the standard representation one
has

u(0)u(0)= 2m

(
1/2

(
1l2+σ · n̂) 0

0 0

)
= 2m

1

2
(1l+γ 0)

1

2
(1l−γ5n̂ ·γ ) ,

v(0)v(0)= 2m

(
0 0
0 1/2

(
1l2−σ · n̂)

)
= 2m

1

2
(1l−γ 0)

1

2
(1l−γ5n̂ ·γ ) .

Calculate then the sum and the difference u(p)u(p)± v(p)v(p),
by inserting the “boosted” solutions u(p) = N

(
/p + m 1l

)
u(0) and
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v(p)=−N
(
/p−m 1l

)
v(0). For example, one has

u(p)u(p)+v(p)v(p)
= 1

4(E p+m)

{
(/p+m 1l)(1l+γ 0)(1l−γ5niγ i)(/p+m 1l)

− (/p−m 1l)(1l−γ 0)(1l−γ5niγ i)(/p−m 1l)
}

= 1

4(E p+m)

{[
4m/p+2/pγ 0/p+2m2γ 0

]
− γ5ni

[
2m(γ i/p−/pγ i)−2m2γ 0γ i +2/pγ 0γ i/p

]}
.

Then, in each term, shift /p to the left by making use of the commutation
rules of the γ -matrices and of the equation /p/p = m2. One obtains, in
detail,

u(p)u(p)+v(p)v(p)
=

{
/p−γ5ni

[
−/pγ i +/pγ 0 pi

E p+m
+ m

E p+m
pi
]}

= /p
{

1l+γ5

[
−niγ i +ni pi

( 1

E p+m
γ 0+ 1

m(E p+m)
/p
)]}

= /p
{

1l+γ5

[
n̂ · p
m
γ 0−

(
ni + n̂ · p

m(E p+m)
pi
)
γ i
]}

= /p(1l+γ5/n
)
,

where n is the four-vector (9.96). In much the same way one calculates

u(p)u(p)−v(p)v(p)= m
(
1l+γ5/n

)
.

Taking the sum and the difference of these results yields the asserted
equations.

9.5 To show: The density matrix �(+) † describes a state which is the
parity mirror of the state described by �(+).
9.6 Prove the formulae

uL/R(p)uR/L(p)= 1

2
P∓

(
m 1l−γ5/p/n

)
.

Calculate the sum

uL(p)uL(p)+uR(p)uR(p)+uL(p)uR(p)+uR(p)uL(p)

and compare to a result from Exercise 9.4.

9.7 Compute the Clebsch-Gordan coefficients
(
	,m	; 1/2,ms| jm

)
by constructing explicitly the states | j,m〉 from the highest state
| j = 	+1/2,m = 	+1/2〉 (see also Sect. 4.1.6).
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9.8 Let space reflection x = (t, x) �→ x′ = (t,−x) be applied to the
Dirac equation (9.56). Show that if ψ(x) is a solution of the Dirac equa-
tion, then also

ψΠ(x)= γ 0ψ(x′)
is a solution.

The following two exercises give a hint as to when the Dirac equation
is applicable and when it fails as a single-particle equation, the failures
being due to the admixture of states with “negative energy.”

9.9 A fermion in one dimension is scattered by a step potential U(x)=
U0Θ(x), see Fig. 5. Before the scattering it comes in from x < 0 with
momentum p and spin orientation ms =+1/2.

Write down, in the standard representation, the incoming wave, the
reflected wave, and the wave that goes through towards positive x.
Use continuity of the solution at x = 0 to fix the free parameters in
the three waves (up to a common normalization). Calculate the current
going through, and the reflected current, in relation to the incoming cur-
rent. Discuss the results for the case (E−U0)

2 < m2 and for the case
(E−U0)

2 > m2, U0 > E+m.
Comment: The paradoxical results that one obtains in the second case,
are called Klein’s paradox.

9.10 In close analogy to (9.55) one constructs a wave packet ψ(t, x)
from the complete system of free solutions with positive and negative
frequency. Calculate the spatial current Ji for this wave packet. Es-
timate the frequencies of the oscillations in the mixed, positive and
negative frequency terms.
Comment: These rapid oscillations are called Zitterbewegung.

9.11 We consider bound states of an electron in the Coulomb potential
for weakly relativistic motion. Show: For κ < 0, that is, for 	=−κ−1,
we have rgnκ(r)≈ yn	(r), where yn	(r) is the radial function of the non-
relativistic hydrogen atom, (cf. (1.155)).
Remark: The result shows that in the nonrelativistic limit(

n, κ, j =−κ− 1

2
= 	+ 1

2

)
and(

n, κ′ = −κ−1, j = κ′ − 1

2
= 	− 1

2

)
have the same radial function.

Exercises: Chapter 10

10.1 Work out the rule (R9) in detail.

10.2 Assume the current density jµ(x) to be self-adjoint and con-
served, ∂µ jµ(x)= 0. Then, in the decomposition in terms of covariants,
only the form factors F1(Q2) and F2(Q2) are different from zero. Show
that the form factors are real.

U0

U(x)

x

Fig. 5.
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−Λ+ιε
⎯

Λ−ιε
⎯

•
•

Fig. 6.

Solution: The current density being self-adjoint we have

〈p| j†µ(0) |q〉 = 〈q| jµ(0) |p〉 ∗ = 〈p| jµ(0) |q〉 . (31)

The first equal sign is nothing but the definition of the adjoint operator
while the second reflects the assumption. Inserting the decomposi-
tion (10.76) the middle term of (31) yields{

u†(q)γ0

[
γµF1(Q

2)− i

2m
σµν(p−q)νF2(Q

2)
]

u(p)
}∗

= u†(p)
[(
γ0γµ

)†
F∗1 (Q2)+ i

2m

(
γ0σµν

)†
(p−q)νF∗2 (Q2)

]
u(q)

= u(p)
{
γ0γ

†
µγ0 F∗1 (Q2)− i

2m
γ0σ

†
µνγ0(q− p)νF∗2 (Q2)

}
u(q) .

In the last step we inserted
(
γ0
)2 = 1l between u†(p) and the expression

to the right of it. From the properties of the γ -matries we have

γ0γ
†
µγ0 = γµ , γ0σ

†
µνγ0 = σµν .

Hence, the second equal sign in (31) yields

F∗1 (Q2)= F1(Q
2) , F∗2 (Q2)= F2(Q

2) . (32)

Both form factors are indeed real.

10.3 Prove the integral that we used in calculating the anomalous
magnetic moment,

I :=
∫

d4v
1(

v2−Λ2+ iε
)3 =−

iπ2

2Λ2 .

Solution: Splitting into integrals over v0 and over v, the latter is for-
mulated in terms of spherical polar coordinates of R3. With r ≡ |v| one
has

I =
+∞∫
−∞

dv0

∞∫
0

dr r2
∫

dΩ
1(

v2
0−Λ2+ iε

)3

= 4π

∞∫
0

dr r2

+∞∫
−∞

dv0 1(
v2

0−Λ2+ iε
)3
,

where Λ
2 := r2+Λ2. The denominator may equivalently be written as

v2
0− (Λ2− iε)	 (

v0− (Λ− iε)
)(
v0+ (Λ− iε)

)
.

The positions of the singularities of the integrand in the complex v0-
plane are as shown in Fig. 6. One closes the path of integration by
a semi-circle at infinity, as sketched in the figure, and uses Cauchy’s
integral theorem in the form∮

dζ
f(ζ)

(ζ − z)3
= πi f ′′(z) ,
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(It follows from the theorem of residua by twofold derivative in z). One
obtains

I =−4π2i

∞∫
0

dr r2 12(
2Λ)5

=−3

2
π2i

∞∫
0

dr
r2(

r2+Λ2
)5/2

.

The remaining integral is done in an elementary way, by partial in-
tegration with u′(r)= r/(r2+Λ2)5/2 and v(r)= r. The result is

∞∫
0

dr
r2(

r2+Λ2
)5/2
= 1

3Λ2 ,

from which the assertion follows directly.

10.4 At order O(α) the differential cross sections in the center-of-mass
system for the following processes are symmetric about 90◦:

e−+ e− −→ e−+ e− e++ e− −→ γ +γ
e++ e− −→ µ++µ− e++ e− −→ τ++ τ− .

Why is this so? Why does this not hold for e++ e− → e++ e−?

10.5 Prove the integral formulae (A.11) which are needed in the anal-
ysis of the self-energy.
Hint: Since x2 = (x0)2− x2, the nonvanishing integrals factorize in
integrals over each coordinate separately. In every one-dimensional inte-
gral the path of integration can be rotated by 45◦ in the complex plane.
The integral then becomes a Gauss integral.

10.6 Consider the processes (10.125) – (10.131), sketch tree diagrams
for these reactions, and decide to which of them the weak charged cur-
rent contributes, to which the weak neutral current contributes, and to
which both of them contribute.

10.7 Compute the decay rate of µ-decay taking into account the W±-
propagator. Show that the rate is modified as shown (10.139).
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