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Preface

This book is divided into two parts: Part One deals with nonrelativistic
quantum mechanics, from bound states of a single particle (harmonic
oscillator, hydrogen atom) to fermionic many-body systems. Part Two
is devoted to the theory of quantized fields and ranges from canonical
quantization to quantum electrodynamics and some elements of elec-
troweak interactions.

Quantum mechanics provides both the conceptual and the practical
basis for almost all branches of modern physics, atomic and molecu-
lar physics, condensed matter physics, nuclear and elementary particle
physics. By itself it is a fascinating, though difficult, part of theoretical
physics whose physical interpretation gives rise, still today, to surprises
in novel applications, and to controversies regarding its foundations.
The mathematical framework, in principle, ranges from ordinary and
partial differential equations to the theory of Lie groups, of Hilbert
spaces and linear operators, to functional analysis, more generally. He
or she who wants to learn quantum mechanics and is not familiar
with these topics, may introduce much of the necessary mathematics in
a heuristic manner, by invoking analogies to linear algebra and to clas-
sical mechanics. (Although this is not a prerequisite it is certainly very
helpful to know a good deal of canonical mechanics!)

Quantum field theory deals with quantum systems whith an infinite
number of degrees of freedom and generalizes the principles of quan-
tum theory to fields, instead of finitely many point particles. As Sergio
Doplicher once remarked, quantum field theory is, after all, the real the-
ory of matter and radiation. So, in spite of its technical difficulties, every
physicist should learn, at least to some extent, concepts and methods of
quantum field theory.

Chapter 1 starts with examples for failures of classical mechan-
ics and classical electrodynamics in describing quantum systems and
develops what might be called elementary quantum mechanics. The
particle-wave dualism, together with certain analogies to Hamilton-
Jacobi mechanics are shown to lead to the Schrodinger equation in
a rather natural way, leaving open, however, the question of interpre-
tation of the wave function. This problem is solved in a convincing
way by Born’s statistical interpretation which, in turn, is corroborated
by the concept of expectation value and by Ehrenfest’s theorem. Hav-
ing learned how to describe observables of quantum systems one then
solves single-particle problems such as the harmonic oscillator in one
dimension, the spherical oscillator in three dimensions, and the hydro-
gen atom.

Vi
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Chapter 2 develops scattering theory for particles scattered on
a given potential. Partial wave analysis of the scattering amplitude as
an example for an exact solution, as well as Born approximation for
an approximate description are worked out and are illustrated by ex-
amples. The chapter also discusses briefly the analytical properties of
partial wave amplitudes and the extension of the formalism to inelastic
scattering.

Chapter 3 formalizes the general principles of quantum theory, on
the basis of the empirical approach adopted in the first chapter. It
starts with representation theory for quantum states, moves on to the
concept of Hilbert space, and describes classes of linear operators
acting on this space. With these tools at hand, it then develops the de-
scription and preparation of quantum states by means of the density
matrix.

Chapter 4 discusses space-time symmetries in quantum physics,
a first tour through the rotation group in nonrelativistic quantum mech-
anics and its representations, space reflection, and time reversal. It also
addresses symmetry and antisymmetry of systems of a finite number of
identical particles.

Chapter 5 which concludes Part One, is devoted to important practi-
cal applications of quantum mechanics, ranging from quantum informa-
tion to time independent as well as time dependent perturbation theory,
and to the description of many-body systems of identical fermions.

Chapter 6, the first of Part Two, begins with an extended analy-
sis of symmetries and symmetry groups in quantum physics. Wigner’s
theorem on the unitary or antiunitary realization of symmetry transfor-
mations is in the focus here. There follows more material on the rotation
group and its use in quantum mechanics, as well as a brief excursion to
internal symmetries. The analysis of the Lorentz and Poincaré groups is
taken up from the perspective of particle properties, and some of their
unitary representations are worked out.

Chapter 7 describes the principles of canonical quantization of
Lorentz covariant field theories and illustrates them by the examples of
the real and complex scalar field, and the Maxwell field. A section on
the interaction of quantum Maxwell fields with nonrelativistic matter
illustrates the use of second quantization by a number of physically in-
teresting examples. The specific problems related to quantized Maxwell
theory are analyzed and solved in its covariant quantization and in an
investigation of the state space of quantum electrodynamics.

Chapter 8 takes up scattering theory in a more general framework by
defining the S-matrix and by deriving its properties. The optical theorem
is proved for the general case of elastic and inelastic final states and for-
mulae for cross sections and decay widths are worked out in terms of
the scattering matrix.

Chapter 9 deals exclusively with the Dirac equation and with quan-
tized fields describing spin-1/2 particles. After the construction of the
quantized Dirac field and a first analysis of its interactions we also ex-



plore the question to which extent the Dirac equation may be useful as
an approximate single-particle theory.

Chapter 10 describes covariant perturbation theory and develops the
technique of Feynman diagrams and their translation to analytic am-
plitudes. A number of physically relevant tree processes of quantum
electrodynamics are worked out in detail. Higher order terms and the
specific problems they raise serve to introduce and to motivate the con-
cepts of regularization and of renormalization in a heuristic manner.
Some prominent examples of radiative corrections serve to illustrate
their relevance for atomic and particle physics as well as their physical
interpretation. The chapter concludes with a short excursion into weak
interactions, placing these in the framework of electroweak interactions.

The book covers material (more than) sufficient for two full courses
and, thus, may serve as accompanying textbook for courses on quan-
tum mechanics and introductory quantum field theory. However, as the
main text is largely self-contained and contains a considerable number
of worked-out examples, it may also be useful for independent individ-
ual study. The choice of topics and their presentation closely follows
a two-volume German text well established at German speaking uni-
versities. Much of the material was tested and fine-tuned in lectures
I gave at Johannes Gutenberg University in Mainz. The book contains
many exercises for some of which I included complete solutions or gave
some hints. In addition, there are a number of appendices collecting
or explaining more technical aspects. Finally, I included some histor-
ical remarks about the people who pioneered quantum mechanics and
quantum field theory, or helped to shape our present understanding of
quantum theory.!

I am grateful to the students who followed my courses and to my
collaborators in research for their questions and critical comments some
of which helped to clarify matters and to improve the presentation.
Among the many colleagues and friends from whom I learnt a lot about
the quantum world I owe special thanks to Martin Reuter who also read
large parts of the original German manuscript, to Wolfgang Bulla who
made constructive remarks on formal aspects of quantum mechanics,
and to Othmar Steinmann from whom I learnt a good deal of quantum
field theory during my years at ETH and PSI in Zurich.

The excellent cooperation with the people at Springer-Verlag, no-
tably Dr. Thorsten Schneider and his crew, is gratefully acknowledged.

Mainz, December 2006 Florian Scheck

Preface

U T will keep track of possible errata on
an internet page attached to my home
page. The latter can be accessed via
http://wwwthep.uni-mainz.de/staff.html
I will be grateful for hints to misprints
Or errors.
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Part One

Fromthe Uncertainty Relation
to Many-Body Systems



Quantum Mechanics
of Point Particles

Introduction

In developing quantum mechanics of pointlike particles one is faced
with a curious, almost paradoxical situation: One seeks a more gen-
eral theory which takes proper account of Planck’s quantum of action
h and which encompasses classical mechanics, in the limit 2z — 0,
but for which initially one has no more than the formal framework
of canonical mechanics. This is to say, slightly exaggerating, that one
tries to guess a theory for the hydrogen atom and for scattering of
electrons by extrapolation from the laws of celestial mechanics. That
this adventure eventually is successful rests on both phenomenologi-
cal and on theoretical grounds.

On the phenomenological side we know that there are many ex-
perimental findings which cannot be interpreted classically and which
in some cases strongly contradict the predictions of classical physics.
At the same time this phenomenology provides hints at fundamen-
tal properties of radiation and of matter which are mostly irrelevant
in macroscopic physics: Besides its classically well-known wave na-
ture light also possesses particle properties; in turn massive particles
such as the electron have both mechanical and optical properties.
This discovery leads to one of the basic postulates of quantum theory,
de Broglie’s relation between the wave length of a monochromatic
wave and the momentum of a massive or massless particle in uniform
rectilinear motion.

Another basic phenomenological element in the quest for
a “greater”’, more comprehensive theory is the recognition that meas-
urements of canonically conjugate variables are always correlated.
This is the content of Heisenberg’s uncertainty relation which, qual-
itatively speaking, says that such observables can never be fixed
simultaneously and with arbitrary accuracy. More quantitatively, it
states in which way the uncertainties as determined by very many
identical experiments are correlated by Planck’s quantum of action. It
also gives a first hint at the fact that observables of quantum mech-
anics must be described by noncommuting quantities.

A further, ingenious hypothesis starts from the wave properties
of matter and the statistical nature of quantum mechanical pro-
cesses: Max Born’s postulate of interpreting the wave function as
an amplitude (in general complex) whose absolute square represents
a probability in the sense of statistical mechanics.
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4

Quantum Mechanics of Point Particles

Regarding the theoretical aspects one may ask why classical
Hamiltonian mechanics is the right stepping-stone for the discovery
of the farther reaching, more comprehensive quantum mechanics. To
this question I wish to offer two answers:

(i) Our admittedly somewhat mysterious experience is that Hamil-
ton’s variational principle, if suitably generalized, suffices as a formal
framework for every theory of fundamental physical interactions.

(ii) Hamiltonian systems yield a correct description of basic,

elementary processes because they contain the principle of energy
conservation as well as other conservation laws which follow from
symmetries of the theory.
Macroscopic systems, in turn, which are not Hamiltonian, often pro-
vide no more than an effective description of a dynamics that one
wishes to understand in its essential features but not in every mi-
croscopic detail. In this sense the equations of motion of the Kepler
problem are elementary, the equation describing a body falling freely
in the atmosphere along the vertical z is not because a frictional term
of the form —«z describes dissipation of energy to the ambient air,
without making use of the dynamics of the air molecules. The first
of these examples is Hamiltonian, the second is not.

In the light of these remarks one should not be surprised in
developing quantum theory that not only the introduction of new,
unfamiliar notions will be required but also that new questions will
come up regarding the interpretation of measurements. The answers
to these questions may suspend the separation of the measuring
device from the object of investigation, and may lead to apparent
paradoxes whose solution sometimes will be subtle. We will turn
to these new aspects in many instances and we will clarify them
to a large extent. For the moment I ask the reader for his/her pa-
tience and advise him or her not to be discouraged. If one sets out
to develop or to discover a new, encompassing theory which goes
beyond the familiar framework of classical, nonrelativistic physics,
one should be prepared for some qualitatively new properties and in-
terpretations of this theory. These features add greatly to both the
fascination and the intellectual challenge of quantum theory.

1.1 Limitations of Classical Physics

There is a wealth of observable effects in the quantum world which
cannot be understood in the framework of classical mechanics or clas-
sical electrodynamics. Instead of listing them all one by one I choose
two characteristic examples that show very clearly that the description
within classical physics is incomplete and must be supplemented by
some new, fundamental principles. These are: the quantization of atomic



bound states which does not follow from the Kepler problem for an
electron in the field of a positive point charge, and the electromagnetic
radiation emitted by an electron bound in an atom which, in a purely
classical framework, would render atomic quantum states unstable.

When we talk about “classical” here and in the sequel, we mean every
domain of physics where Planck’s constant does not play a quantitative
role and, therefore, can be neglected to a very good approximation.

Example 1.1 Atomic Bound States have Quantized Energies

The physically admissible bound states of the hydrogen atom or, for
that matter, of a hydrogen-like atom, have discrete energies given by the
formula

1 Z2%*

2n? h?

Here n € N is called the principal quantum number, Z is the nuclear
charge number (this is the number of protons contained in the nucleus),
e is the elementary charge, h = h/(27) is Planck’s quantum /4 divided
by (2m), and p is the reduced mass of the system, here of the elec-

tron and the point-like nucleus. Upon introduction of Sommerfeld’s fine
structure constant,

E,= n with n=1,2,3,... (1.1)

where ¢ is the speed of light, formula (1.1) for the energy takes the
form:

1 2 2 /
E, =—ﬁ(2a) ue” . (1.1%)

Note that the velocity of light drops out of this formula, as it should!.

In the Kepler problem of classical mechanics for an electron of
charge e = —|e| which moves in the field of a positive point charge Z|e|,
the energy of a bound, hence finite orbit can take any negative value.
Thus, two properties of (1.1) are particularly remarkable: Firstly, there
exists a lowest value, realized for n = 1, all other energies are higher
than E,—,

Ei<Ey<Ez<---.

Another way of stating this is to say that the spectrum is bounded from
below. Secondly, the energy, as long as it is negative, can take only one
of the values of the discrete series

EnzizEnzl, n=1,2,....
n
For n — oo these values tend to the limit point O .
Note that these facts which reflect and describe experimental find-
ings (notably the Balmer series of hydrogen), cannot be understood in

the framework of classical mechanics. A new, additional principle is

1.1 Limitations of Classical Physics

I' The formula (1.1) holds in the frame-
work of nonrelativistic kinematics,
where there is no place for the veloc-
ity of light, or, alternatively, where this
velocity can be assumed to be infinitely
large. In the second expression (1.1")
for the energy the introduction of the
constant ¢ is arbitrary and of no conse-
quence.
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2 As of here we shorten the numeri-
cal values, for the sake of convenience,
to their leading digits. In general, these
values will be sufficient for our esti-
mates. Appendix A.8 gives the precise
experimental values, as they are known
to date.

missing that excludes all negative values of the energy except for those
of (1.1). Nevertheless they are not totally incompatible with the Kepler
problem because, for large values of the principal quantum number 7,
the difference of neighbouring energies tends to zero like n 3,
2n+1

C 2m2(n+1)2
In the limit of large quantum numbers the spectrum becomes nearly
continuous.

Before continuing on this example we quote a few numerical values
which are relevant for quantitative statements and for estimates, and to
which we will return repeatedly in what follows.

Planck’s constant has the physical dimension of an action, (energy
X time), and its numerical value is

h = (6.6260755+40) x 10734 Js. (1.2)

En—H —E,

2,2~ L
(Za)“ puc ~ 3 for n— 0.
n

The reduced constant, & divided by (27), which is mostly used in prac-
tical calculations® has the value

h
= =1.054x10"*7Js. (1.3)
2

As h carries a dimension, [k] = E-t, it is called Planck’s quantum of
action. This notion is taken from classical canonical mechanics. We re-
mind the reader that the product of a generalized coordinate g' und
its conjugate, generalized momentum p; = dL/d4G', where L is the La-
grangian, always carries the dimension of an action,

[¢' pil= energy x time,

independently of how one has chosen the variables ¢’ and of which di-
mension they have.

A more tractable number for the atomic world is obtained from the
product of A and the velocity of light

€=12.99792458 x 108 ms™!; (1.4)

the product has dimension (energy x length). Replacing the energy unit
Joule by the million electron volt

1 MeV = 10% eV = (1.60217733+49) x 10°13J

and the meter by the femtometer, or Fermi unit of length, 1fm =
10~'5 m, one obtains a number that may be easier to remember,

he =197.327 MeV fm, (1.5)

because it lies close to the rounded value 200 MeV fm.
Sommerfeld’s fine structure constant has no physical dimension. Its
value is

a = (137.036) ! = 0.00729735 . (1.6)



Finally, the mass of the electron, in these units, is approximately
me=0.511MeV/c? . (1.7)

As a matter of example let us calculate the energy of the ground
state and the transition energy from the next higher state to the ground
state for the case of the hydrogen atom (Z = 1). Since the mass of the
hydrogen nucleus is about 1836 times heavier than that of the electron
the reduced mass is nearly equal to the electron’s mass,

Mehp
=——— =me,
Me +myp

and therefore we obtain

Epc1 = —2.66 x 102 mec? = —13.6eV
and

AEm=2—>n=1)=Ey—E; =10.2¢V.

Note that E, is proportional to the square of the nuclear charge
number Z and linearly proportional to the reduced mass. In hydrogen-
like atoms the binding energies increase with Z2. If, on the other hand,
one replaces the electron in hydrogen by a muon which is about 207
times heavier than the electron, all binding and transition energies will
be larger by that factor than the corresponding quantities in hydrogen.
Spectral lines of ordinary, electronic atoms which lie in the range of vis-
ible light, are replaced by X-rays when the electron is replaced by its
heavier sister, the muon.

Imagine the lowest state of hydrogen to be described as a circular or-
bit of the classical Kepler problem and calculate its radius making use
of the (classical) virial theorem ([Scheck (2005)], Sect.1.31, (1.114)).
The time averages of the kinetic and potential energies, (T) = —E,
(U) = 2E, respectively, yield the radius R of the circular orbit as fol-
lows:

(Ze)e VAT h?
——R = % n, hence R= 7

This quantity, evaluated for Z =1 and u = me, is called the Bohr Ra-
dius of the electron’.

h? he
ap = 5 = 5. (18)
€ Nle aneC

(U)=

It has the value
ag =5.292 x 10* fm = 5.292 x 10" "' m.

Taken literally, this classical picture of an electron orbiting around
the proton, is not correct. Nevertheless, the number ap is a measure for
the spatial extension of the hydrogen atom. As we will see later, in try-
ing to determine the position of the electron (by means of a gedanken or

1.1 Limitations of Classical Physics

3 One often writes do, instead of ap,
in order to emphasize that in (1.8)
the mass of the nuclear partner is as-
sumed to be infinitely heavy as com-
pared to mie.
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Fig.1.1. Phase portrait of a periodic
motion in one dimension. At any time
the mass point has definite values of
the coordinate ¢ and of the momen-
tum p. It moves, in a clock-wise direc-
tion, along the curve which closes after
one revolution

thought experiment) one will find it with high probability at the distance
ap from the proton, i.e. from the nucleus in that atom. This distance
is also to be compared with the spatial extension of the proton itself
for which experiment gives about 0.86 x 10~ !5 m. This reflects the well-
known statement that the spatial extension of the atom is larger by many
orders of magnitude than the size of the nucleus and, hence, that the
electron essentially moves outside the nucleus. Again, it should be re-
marked that the extension of the atom decreases with Z and with the
reduced mass u:

Rox—.
Zp

To witness, if the electron is replaced by a muon, the hydrogen nucleus
by a lead nucleus (Z = 82), then ag(m,, Z =82) =3.12fm, a value
which is comparable to or even smaller than the radius of the lead nu-
cleus which is about 5.5 fm. Thus, the muon in the ground state of
muonic lead penetrates deeply into the nuclear interior. The nucleus can
no longer be described as a point-like charge and the dynamics of the
muonic atom will depend on the spatial distribution of charge in the
nucleus.

After these considerations and estimates we have become familiar
with typical orders of magnitude in the hydrogen atom and we may now
return to the discussion of the example: As the orbital angular momen-
tum £ is a conserved quantity every Keplerian orbit lies in a plane. This
is the plane perpendicular to £. Introducing polar coordinates (r, ¢) in
that plane a Lagrangian describing the Kepler problem reads

2

1 1 .
L= i —U) = Su(P +7¢) —U) with U = _—
r

On a circular orbit one has 7# =0, » = R = const, and there remains only
one time dependent variable, g = ¢. Its canonically conjugate momen-
tum is given by p = dL/dg = ur’¢. This is nothing but the modulus ¢
of the orbital angular momentum.

For a periodic motion in one variable the period and the surface en-
closed by the orbit in phase space are related as follows. Let

F(E) =3§pdq

be the surface which is enclosed by the phase portrait of the orbit with
energy E, (see Fig. 1.1), and let T(E) be the period. Then one finds (see
e. g. [Scheck (2005)], exercise and solution 2.2)

d
T(E) = - F(E).

The integral over the phase portrait of a circular orbit with radius R is
easy to calculate,

F(E) = 7{ pdg =2nuR*$ =27l .



In order to express the right-hand side in terms of the energy, one makes
use of the principle of energy conservation,
62

2uR?
which, upon solving for ¢, yields

F(E) =27l = 2m\/2uR?(E—U) .

The derivative with respect to E is given by

dF R? R 2
T(E) =~ —op—F i il

=2 = —.
dE V2uR2(E —U) ¢ ¢

This is correct, though not a surprise! However, making use of the virial
theorem 2E = (U) = —e?/R, one obtains a nontrivial result, viz.
R3 &2
2 Q)i
which is precisely Kepler’s third law ([Scheck (2005)], Sect. 1.7.2).

There is an argument of plausibility that yields the correct energy
formula (1.1): First, note that the transition energy, upon division by #,
(En+1— Ey)/h, has the dimension of a frequency, viz. 1/time. Further-
more, for large values of n one has

1 2o
SHR"¢"+UR) = +UR)=E,

T(E) =2nJuR*?Je, or

E,
dn
If one postulates that the frequency (E,+1 — E;)/h, in the limit n —
oo, goes over into the classical frequency v=1/T,
. 1dE, 1
lim — ==
n—oo h dn T
one has 7T(E)dE = hdn. Integrating both sides of this relation gives

F(E):%pdq:hn. (1.10)

Equation (1.9) is an expression of N. Bohr’s correspondence prin-
ciple. This principle aims at establishing relations between quantum
mechanical quantities and their classical counterparts. Equation (1.10),
promoted to the status of a rule, was called quantization rule of Bohr
and Sommerfeld and was formulated before quantum mechanics proper
was developed. For circular orbits this rule yields

anLRz(iS =hn.
By equating the attractive electrical force to the centrifugal force, i.e.
setting e2/R?> = uR¢?, the formula
h’n?
R=——7F—
(2m)? pe?
for the radius of the circular orbit with principal quantum number » fol-

lows. This result does indeed yield the correct expression (1.1) for the
energy*.

1 2 2
(Ent1— Ep) >~ ;(Zoz) et =

) (1.9)

1.1 Limitations of Classical Physics

4 This is also true for elliptic Kepler
orbits in the classical model of the hy-
drogen atom. It fails, however, already
for helium (Z = 2).
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> For example, an electron moving on
an elliptic orbit with large excentricity,
seen from far away, acts like a small
linear antenna in which charge moves
periodically up and down. Such a micro-
emitter radiates electromagnetic waves
and, hence, radiates energy.

Although the condition (1.10) is successful only in the case of hy-
drogen and is not useful to show us the way from classical to quantum
mechanics, it is interesting in its own right because it introduces a new
principle: It selects those orbits in phase space, among the infinite set of
all classical bound states, for which the closed contour integral 55 pdg
is an integer multiple of Planck’s quantum of action 4. Questions such
as why this is so, or, in describing a bound electron, whether or not one
may really talk about orbits, remain unanswered.

Example 1.2 A Bound Electron Radiates

The hydrogen atom is composed of a positively charged proton and
a negatively charged electron, with equal and opposite values of charge.
Even if we accept a description of this atom in analogy to the Ke-
pler problem of celestial mechanics there is a marked and important
difference. While two celestial bodies (e.g. the sun and a planet, or
a double star) interact only through their gravitational forces, their
electric charges (if they carry any net charge at all) playing no role
in practice, proton and electron are bound essentially only by their
Coulomb interaction. In the assumed Keplerian motion electron and pro-
ton move on two ellipses or two circles about their common center of
mass which are geometrically similar (s. [Scheck (2005)], Sect. 1.7.2).
On their respective orbits both particles are subject to (positive or neg-
ative) accelerations in radial and azimuthal directions. Due to the large
ratio of their masses, mp/me = 1836, the proton will move very little
so that its acceleration may be neglected as compared to the one of the
electron. It is intuitively plausible that the electron in its periodic, ac-
celerated motion will act as a source for electromagnetic radiation and
will loose energy by emitting this radiation.’ Of course, this contradicts
the quantization of the energies of bound states because these can only
assume the magic values (1.1). However, as we have assumed again
classical physics to be applicable, we may estimate the order of mag-
nitude of the energy loss by radiation. This effect will turn out to be
dramatic.

At this point, and this will be the only instance where I do so,
I quote some notions of electrodynamics, making them plausible but
without deriving them in any detail. The essential steps leading to
the required formulae for electromagnetic radiation should be under-
standable without a detailed knowledge of Maxwell’s equations. If the
arguments sketched here remain unaccessible the reader may turn di-
rectly to the results (1.21), (1.22), and (1.23), and may return to their
derivation later, after having studied electrodynamics.

Electrodynamics is invariant under Lorentz transformations, it is
not Galilei invariant (see for example [Scheck (2005)], Chap.4, and,
specifically, Sect.4.9.3). In this framework the current density j*(x) is
a four-component vector field whose time component (i« = 0) describes
the charge density o(x) as a function of time and space coordinates x,
and whose spatial components (i = 1,2, 3) form the electric current



density j(x). Let ¢ be the coordinate time, and x the point in space
where the densities are felt or measured, defined with respect to an in-
ertial system of reference K. We then have

x=(ct,x), jHx)=l[cot x),jt x)].

Let the electron move along the world line () where 7 is the Lorentz
invariant proper time and where r is the four-vector which describes the
particle’s orbit in space and time. In the reference system K one has

r(t) = [cty, r(t)] .

The four-velocity of the electron, u*(tr) = dr**(7r)/dr, is normalized
such that its square equals the square of the velocity of light, u” = ¢?.

In the given system of reference K one has

cdt =cdty/1—-p2 with B=li|/c,

whereas the four-velocity takes the form

1
u* = (cy, yv(®), where y=——

ViR
The motion of the electron generates an electric charge density and
a current density, seen in the system K. Making use of the §-distribution
these can be written as

o(t,x) =e sV x —r @],
j(t,x) =ev(®) 8V x —r ()]

where v =7. When expressed in covariant form the same densities read

j“(x):ec/ dr u" (1) 8P [x — r(v)]. (1.11)

In order to check this, evaluate the integral over proper time in
the reference system K and isolate the one-dimensional §-distribu-
tion which refers to the time components. With dt = d¢/y, with
SIxY =90 = 8[c(r —19)]= 8(t — tg)/c, and making use of the decom-
position of the four-velocity given above one obtains

dr 1
J=ec / ey = 8(t—10) 8D x —r(10)] = colt, x) ,
Y C

. dro 1 3) .
J =EC/ 7)”’00); 8(t —10) 8 [x —r(to)] = j(£,x) .

The calculation then proceeds as follows: Maxwell’s equations are
solved after inserting the current density (1.11) as the inhomogeneous,
or source, term, thus yielding a four-potential A* = (&, A). This, in
turn, is used to calculate the electric and magnetic fields by means of
the formulae

10A
E=-V®———| (1.12)
c ot

B=VxA (1.13)

1.1 Limitations of Classical Physics
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Fig. 1.2. Light cone of a world point in
a symbolic representation of space R
(plane perpendicular to the ordinate) and
of time (ordinate). Every causal action that
emanates from the point r(t) with the ve-
locity of light, lies on the upper part of the
cone (forward cone of P)

r(to))

Fig.1.3. The electron moves along
a timelike world line (full curve). The
tangent to the curve is timelike every-
where which means that the electron
moves at a speed whose modulus is
smaller than the speed of light. Its radi-
ation at r(tg) = (ctg, r(tg)) reaches the
observer at x after the time of flight
t—to=|x—r(to)l/c

® The distinction between forward and
backward light cone, i.e. between fu-
ture and past, is invariant under the
proper, orthochronous Lorentz group.
As proper time 7 is an invariant, the
four-potential A* inherits the vector na-
ture of the four-velocity u*.

I skip the method of solution for A* and go directly to the result which
is

AP (x) = 2e/ dr u* (@O =P @18V {[x — r(D1?} . (1.14)

Here ®(x) is the step, or Heaviside, function,

0 0

O’ -0 =1
@[xo —ro(r)] =0 for x°</9.

for x"=ct>r" =ct,

The §-distribution in (1.14) refers to a scalar quantity, its argument be-
ing the invariant scalar product

x — (@)1 =" =P (@O - [x —r(10)]*.

It guarantees that the action observed in the world point (x° = ¢z, x)
lies on the light cone of its cause, i.e. of the electron at the space
point r(fg), at time fy. This relationship is sketched in Fig.1.2. Ex-
pressed differently, the electron which at time 7y = r¥/c passes the space
point r, at time t causes a four-potential at the point x such that r(7)
und x are related by a signal which propagates with the speed of light.
The step function whose argument is the difference of the two time
components, guarantees that this relation is causal. The cause “electron
in r at time fo” comes first, the effect “potentials A" = (@, A) in x at
the later time 7 > #y” comes second. This shows that the formula (1.14)
is not only plausible but in fact simple and intuitive, even though we
have not derived it here.
The integration in (1.14) is done by inserting

x—r=0"—r? —x—r)? =2t —10)>— x—r)?

and by making use of the general formula for §-distributions

1
SLAMI =) ———08(y—y), {yi: single zeroes of f(y)} .

— /")l

(1.15)

In the case at hand f(7) =[x — r(1)]* and df(v)/dr=d[x— r(r)]z/dr =
—2[x —r(v)]qu® (7). As can be seen from Fig. 1.3 the point x of ob-
servation is lightlike relative to r(tp), the world point of the electron.
Therefore A*(x) of (1.14) can be written as

u' (x)

K(x) =
AT(x)=e @l

(1.16)

In order to understand better this expression we evaluate it in the frame
of reference K. The scalar product in the denominator reads

w-[x —r(0)] =yt —t9) —yv-(x —r).



Let i be the unit vector in the direction of the x —r(7), and let |x —
r(7p)| =: R be the the distance between source and point of observation.
As [x —r(7)]* must be zero, we conclude x° —r%(zp) = R, so that

u-[x—r(tg)] =cyR (1 —%v-ﬁ) ,

while A*(x) = [®(x), A(x)] of (1.16) becomes

e
PUX) = R v a/0 et o
__ evc
At x) = R(l_vﬁ/c) ret '

The notation “ret” emphasizes that the time ¢ and the time 7y, when the
electron had the distance R from the observer, are related by ¢t =19+
R/c. The action of the electron at the point where an observer is located
arrives with a delay that is equal to the time-of-flight (R/c)”.

The potentials (1.16) or (1.17) are called Liénard-Wiechert poten-
tials.

From here on there are two equivalent methods of calculating the
electric and magnetic fields proper. One is to make use of the expres-
sions (1.17) and to calculate E and B by means of (1.12) and (1.13),
keeping track of the retardation required by (1.17).8 As an alternative
one returns to the covariant expression (1.16) of the vector potential and
calculates the field strength tensor from it,

a
F*(x) =" AY — 9" AM, (8“ = —) )
0xy
Referring to a specific frame of reference the fields are obtained from
E'=F° B'=F? (and cyclic permutations) .

The result of this calculation is (see e.g. [Jackson (1999)])

n—v/c e nx[(n—v/c)xv]
E(t,x)=e - ) -
y2(l—v-a/c)3R?|,, ¢ (1—v-A/c)’R |
(1.18)
= Estat + Eacc , (1.19)
B(t,x) = (AxE)| , . (1.20)

As usual B and y are defined as B = |v|/c, y =1/4/1— B%. As above,
the notation “ret” stands for the prescription ¢t = 7o+ R/c. The first term
in (1.18) is a static field in the sense that it exists even when the elec-
tron moves with constant velocity. It is the second term E,..° which is
relevant for the question from which we started. Only when the electron
is accelerated will there be nonvanishing radiation.

1.1 Limitations of Classical Physics

7 retarded, retardation derive from the

French le retard =the delay.

8 This calculation can be found e.g.
in the textbook by Landau and Lif-
shitz, Vol. 2, Sect. 63, [Landau, Lifs-
chitz (1987)].

9 «“acc” is a short-hand for accelera-

tion, (or else the French accélération).
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The flux of energy that is related to that radiation is described by the

Poynting vector field

c
4
this being the second formula, besides (1.14), that I take from elec-
trodynamics and that I do not derive here. In order to understand this
formula, one may think of an electromagnetic, monochromatic wave in
vacuum whose electric and magnetic fields are perpendicular to each
other and to the direction of propagation k. It describes the amount of
energy which flows in the direction of k, per unit of time.

Imagine a sphere of radius R, at a given time f#g, with the electron
at its center. The Poynting vector S is used for the calculation of the
power radiated into the cone defined by the differential solid angle d$2
as follows

dP = |S| R*d%2.

S(t,x)=—E(t,x) x B(t,x),

The velocity of the electron in the circular orbit that we assumed for the
ground state of hydrogen, has the modulus

vl [2Ekin _
c Mmec?

(see (1.6)) and, hence, lies well below the velocity of light. In the ap-
proximation v? < ¢ the leading term in (1.18) is

ax (i xv)
R

and, making use of the identity a x (b xc¢) =b(a-c) —c(a-b), the
Poynting vector field simplifies to

’

E e
T2
ret

s~ S E%.
4
The power radiated into the solid angle df2 is approximately
dpP C 5 5 e 62.2~2
01 _m{nx(nxvﬂ =mv sin“ 6.

Here 0 is the angle between ¥ and 7. Integration over the complete solid
angle,

2 b4 2 +1
/d.Q...:/d¢/sin0d9...:/dd)/dz..., (z=rcos0),
0 0 0 —1

gives the result

P 2% ,
P=[deo~35i (1.21)
C



This formula is perfectly suited for our estimates. The exact, relativistic
formula deviates from it by terms of the order of v?/c>. When there is
no acceleration this latter formula gives P = 0, too.

On a circular orbit of radius ag we have

2
o] = — =apo’,
as

where w is the circular frequency. The period of the orbit is

_ 21 _ 2mag _ 1 2mag

= = =1.52x 10715 (1.22)
w |v| o
These data are used to calculate the fraction of the binding energy
which is radiated after one complete revolution,
PT 8
=23 =326%107°. (1.23)
|En=1] 3

Thus, after one period the (classical) electron has lost the energy

3.26x 1070 |E,—]|

to the radiation field. Referring to (1.22) this means that in a very
short time the electron lowers its binding energy, the radius of its or-
bit shrinks, and, eventually, the electron falls into the nucleus (i.e. the
proton, in the case of hydrogen).

Without performing any dedicated measurement, we realize that the
age of the terrestrial oceans provides evidence that the hydrogen atom
must be extraordinarily stable. Like in the first example classical physics
makes a unique and unavoidable prediction which is in marked contra-
diction to the observed stability of the hydrogen atom.

Quantum theory resolves the failures of classical physics that we il-
lustrated by the two examples described above, in two major steps both
of which introduce important new principles that we shall develop one
by one in subsequent chapters.

In the first step one learns the quantum mechanics of stationary
systems. Among these the energy spectrum of the hydrogen atom will
provide a key example. For a given, time independent, Hamiltonian sys-
tem one constructs a quantum analogue of the Hamiltonian function
which yields the admissible values of the energy. The energy spectrum
of hydrogen, as an example, will be found to be given by

1 4
{Enz—m%u, (n=1,23,...). andanEe[o,oo)}.
(1.24)

The first group (to the left) describes the bound states and corre-
sponds to the classical finite, circular and elliptic orbits of the Kepler
problem. In the limit n — oo these energies tend to £ = 0. Every state n
has a well-defined and sharp value of the energy.

1.1 Limitations of Classical Physics
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The second group (to the right) corresponds to the classical scatter-
ing orbits, i.e. the hyperbolic orbits which come in from spatial infinity
and return to infinity. In quantum mechanics, too, the states of this
group describe scattering states of the electron-proton system where
the electron comes in with initial momentum |p|o, = +/2E along the
direction p. However, no definite trajectory can be assigned to such
a state.

In the second step one learns how to couple a stationary system of
this kind to the radiation field and to understand its behaviour when
its energy is lowered, or increased, by emission or absorption of pho-
tons, respectively. All bound states in (1.24), except for the lowest state
with n = 1, become unstable. They are taken to lower states of the same
series, predominantly through emission of photons, and eventually land
in the stable ground state. In this way the characteristic spectral lines
of atoms were understood that had been measured and tabulated long
before quantum mechanics was developed.

The possibility for an initial state “i”, by emission of one or more
photons, to go over into a final state ““f”” not only renders that state un-
stable but gives it a broadening, i.e. an uncertainty in energy which is
the larger, the faster the decay will take place. If T denotes the average
lifetime of the state and if 7 is given in seconds, the line broadening is
given by the formula

AL (6.58 x1071°/7) eV, (1.25)

T TC
a formula to which we return later in more detail. The ground state,
being absolutely stable, is the only bound state which keeps the sharp
energy eigenvalue that one found in the first step, in solving the original
stationary problem without taking account of the radiation field.

1.2 Heisenberg’s Uncertainty Relation
for Position and Momentum

Consider a Hamiltonian system of classical mechanics, described by the
Hamiltonian H =T + U, with U an attractive potential. The fact that
after its translation to quantum mechanics this sytem exhibits an en-
ergy spectrum bounded from below, E > Ey where Ey is the energy
of the ground state, is a consequence of a fundamental principle of
quantum theory: Heisenberg’s uncertainty relations for canonically con-
Jjugate variables. We discuss this principle first on an example but return
to it in a more general framework and a more precise formulation in
later sections when adequate mathematical tools will be available.
Dynamical quantities of classical mechanics, i.e. physical observ-
ables in a given system, are described by real, in general smooth
functions F(q, p) on phase space. Examples are the coordinates ¢’, the
components p; of momentum of a particle, the components £; or the



1.2 Heisenberg’s Uncertainty Relation for Position and Momentum

square £ of its orbital angular momentum, the kinetic energy 7, the
potential energy U, etc. Expressed somewhat more formally any such
observable maps domains of phase space onto the reals,

F(ql,...,qf,pl,...,pf):IP’—>R. (1.26)

For instance, the function ¢’ maps the point (¢, ...,q”/, p1. ..., prelP
to its i-th coordinate ¢’ € R.

Real functions on a space can be added, they can be multiplied, and
they can be multiplied with real numbers. The result is again a function.
The product F -G of two functions F and G is the same as G - F, with
the order reversed. Thus, the set of all real function on phase space P
is an algebra. As the product obeys the rule

F-G—G-F=0 (1.27)

this algebra is said to be commutative. Indeed, the left-hand side con-
tains the commutator of F and G whose general definition reads

[A,B]:=A-B—B-A. (1.28)

Expressed in more physical terms, the relation (1.27) says that two
dynamical quantities F and G can have well-determined values sim-
ultaneously and, hence, can be measured simultaneously. To quote an
example in celestial mechanics, the three coordinates as well as the
three components of momentum of a body can be measured, or can
be predicted, from the knowledge of its orbit in space. This statement
which seems obvious in the realm of classical physics, no longer holds
in those parts of physics where Planck’s constant is relevant. This will
be the case if our experimental apparatus allows to resolve volumina in
phase space for which the products Ag' Ap; of side lengths in the di-
rection of ¢' and in the direction of the conjugate variable p; are no
longer large as compared to A. In general and depending on the state
of the system, observables will exhibit an uncertainty, a “diffuseness”.
Measurements of two different observables, and this is the essential and
new property of quantum theory, may exclude each other. In such cases
the uncertainty in one is correlated with the uncertainty in the other ob-
servable. In the limiting cases where one of them assumes a sharp, fixed
value, the other is completely undetermined.

1.2.1 Uncertainties of Observables

An observable may be known only within some uncertainty, which is
to say that in repeated measurements a certain weighted distribution of
values is found. This happens in classical physics whenever one deals
with a system of many particles about which one has only limited infor-
mation. An example is provided by Maxwell’s distribution of velocities
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in a swarm of particles described by the normalized probability distri-

bution
4 —Bp2/2m 2 .

dw(p) = We P7/ )4 dp with ﬂ = ﬁ .
In this expression k denotes Boltzmann’s constant and 7 is the tempera-
ture. This distribution gives the differential probability for measuring the
modulus p = |p| of the momentum in the interval (p, p+ dp). It is nor-
malized to 1, in accordance with the statement that whatever the value
of p is that is obtained in an individual measurement, it lies somewhere
in the interval [0, c0).

More generally, let F' be an observable whose measurement yields
a real number. The measured values f may lie in a continuum, say in
the interval [a, b] of the real axis. In the example above this is the in-
terval [0, o0). The system (we think here of a many-body system as
in the example) is in a given state that we describe by the normalized
distribution

1

b
o) with [ a(Haf=1 (1.29)
a
In cases where the measured values of F are discrete and belong to
the series of ordered real numbers f, f2, ..., the distribution (1.29) is
replaced by a series of probabilities wy, wa, ...,
w; = w(f;) with the condition Z w;=1, (1.30)

i=1
where w; = w(f;) is the probability to find the value f; in a measure-
ment of F. The state of the system is defined with reference to the
observable F and is described by the distribution o(f) or by the set of
probabilities {w( f;)}, respectively.

Before moving on we note that this picture, though strongly simpli-
fied, shows all features which are essential for our discussion. In general
one will need more than one observable, the distribution function will
thus depend on more than one variable. For instance, in a system of N
particles the coordinates and the momenta

(x(l), e ,x(N); p(l), . ,p(N))

= (qu q27 oo 9q3N; Pl D25 .- p3N)
are the relevant observables which replace the abstract F above, and
which are used to define the state. The distribution function
1 2 3N
olg.q% ...,q"; p1, P2, -, P3N)
is now a function of 6 N variables.
Now, let G be another observable, evaluated as a function of the

values of F. For the example of the N body system this could be the
Hamiltonian function

H@ . ¢ ... pi.pa .. paw)



1.2 Heisenberg’s Uncertainty Relation for Position and Momentum

which is evaluated on phase space and which yields the energy of the
system. In our simplified description we write G(f) for the value of the
observable G at f.

A quantitative measure for the uncertainty of the measured values
of G is obtained by calculating the mean square deviation, or standard
deviation, that is, the average of the square of the difference of G and
its mean value (G), viz.

(AG)? = <{G— (G)}2> - <G2>— (G)2. (1.31)

The second form on the right-hand side is obtained by expanding the
curly brackets

(6= 612)=(c*)-2(6) (G)+(6)*.

Depending on whether we deal with a continuous or a discrete distribu-
tion of values for F we have

(G)=/Q(f)G(f)df or (G)=Y wG(fi). (1.32)

Inserting into (1.31) one obtains the expressions

2
(AG) = f (G(f)— / G(f/)g(f/)df’) o(f)df

for the continuous distribution, and
2

(AG =Y wi | G(fi) =Y _w;iG(f})
i J

for the discrete case, respectively.
We summarize this important concept:

Definition 1.1

The uncertainty, or standard deviation, of an observable in a given
state is defined to be the square root of the mean square devia-
tion (1.31),

AG :=,/(G?)—(G)?]|. (1.33)

If the observable F takes only one single value fj, i.e when

o(f)=48(f—fo) or wi=w(fi)=2bio, (1.34)

then the uncertainty (1.33) is equal to zero. In all other cases AG has
a nonvanishing, positive value. As an example, we calculate the standard
deviation of the kinetic energy Tiin = p?/2m for Maxwell’s distribution

19



20

Quantum Mechanics of Point Particles

Fig.1.4. Classical Maxwell distribution
of velocities 4/./mx? exp(—x?)

of momenta given above. Substituting x = p+/B/(2m) the distribution
becomes

4 2
dw(x) = —x%e ¥ dx.
(x) NG
This function is shown in Fig. 1.4. The mean values of Tk2in and of Tiip
are calculated as follows
o

(r2 >——4 SePar=2 1 Dory
km_ﬂ2ﬁ —4132—4 s
0
- 303
Tin) = —— [ x*e ™ dx= — = 2kT.
(Txin) ,Bﬁ/x € X 28 2
0

From these expressions the standard deviation of the kinetic energy is
obtained

2
p 3
Alxin=A— | =,/ =kT.
kin <2m> \/gk

It becomes the larger the higher the temperature.

1.2.2 Quantum Mechanical Uncertainties
of Canonically Conjugate Variables

After this excursion to classical mechanics of N body systems we re-
turn to quantum mechanics of a single particle. In classical mechanics
the state of the particle can be characterized, at a given time, by sharp,
well-defined values for all its coordinates ¢' and all components py
of its momentum. In quantum mechanics these observables are subject
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to uncertainties Aqi and A py, respectively, which obey a fundamental
inequality. Let the uncertainty, or standard deviation, be defined as in
(1.33) of Definition 1.1 by the difference of the mean value of the square
and of the square of the mean value,

Aq'=\/(@?)={a')*,  Ap;=\{()?)={pj)*.

For the moment we put aside important questions such as: which kind
of average is meant here? how should we proceed in calculating the
uncertainties in a given state? The uncertainties are the results of meas-
urements on a given quantum mechanical state, and, as such, they are
perfectly classical quantities. Yet, the inner dynamics of the system is
such that the uncertainties fulfill certain correlated inequalities which
limit their measurement in a fundamental way. Indeed, they obey

Heisenberg’s uncertainty relation for position and momentum:
Let

¢, G=1,2,..., )

be a set of coordinates of a Lagrangian or Hamiltonian system with f
degrees of freedom. Let
oL
=—, k=1,2,...,
PE= 3an f

be their canonically conjugate momenta. In a given state of the sys-
tem the results of any measurement will allways be such that they are
compatible with the following inequalities for the standard deviations
of coordinates and momenta:

. 1 )
(App)(Aq') = Ehaz : (1.35)

This statement is both strange and remarkable and requires some
more comments and remarks.

1. For the time being we have in mind only the ordinary coordinates
x={q', 4>, ¢} and momenta p = {p1, p2, p3} of a particle. The un-
certainty relation (1.35) is formulated for the more general case of
generalized coordinates and their canonically conjugate momenta in
a mechanical system with f degrees of freedom. In doing so we as-
sume that the system is such that the Legendre transform is regular
(see [Scheck (2005)], Sect.5.6.1), which is to say that the system can
be described equivalently as a Lagrangian system {q, ¢, L(q, ¢, 1)},
or as a Hamiltonian system {q, p, H(gq, p,t)}. The relationship to
concepts of classical canonical mechanics is remarkable, but note
that the condition (1.35) goes far beyond it. We will return to this
in more detail later.
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2.

Coordinates or momenta in a physical quantum state of a single
particle exhibit a distribution, or variation, this being a concept
of (classical) statistical physics. This implies, in general, that it is
not sufficient to perform a single measurement in a given state of
the particle. Rather one will have to perform very many identical
measurements on that single, given state, in order to determine the
distribution of experimental values and to calculate the standard de-
viation from them.

To take an example for the uncertainty relation imagine an experi-
ment which allows to restrict the coordinate ¢g' to the interval A
by means of a slit in the i-direction. The corresponding uncertainty
in p; is then at least /2 A. The more one localizes the particle in the
i-direction the greater the distribution of values in the conjugate mo-
mentum. In the limit A — 0 the momentum cannot be determined at
all.

It is clear from the preceding remark that the state of the particle can
by no means be a curve in phase space P. Such a curve would imply
that at any given time both coordinates and momenta have definite,
sharp values, i.e. that we would have Ag' =0 and Ap; =0. Al-
though repeated measurements of these observables, e. g. in the time
interval (0, 7)), would yield the time averages

T T

i=7[ado. W=7 [a@ro. e
T ’ T ' '
0 0
the uncertainties would still be zero. This means that in accepting
Heisenberg’s uncertainty relations we leave the description of the
state in phase space. The (quantum) state of the particle which is
contained in the symbolic notation (---) must lie in a larger, and
more abstract space than PP.

. Consider the extreme case where the component ¢’ has the fixed

value (¢') = @' and, hence, where ((¢")?) = (a')?. Since its conjugate
momentum p;, by virtue of the inequality (1.35), is completely un-
determined we certainly cannot have (p;) = b; and (( pi)z) = (b)2. If
upon repeated measurements of the i-th coordinate the state answers
by “the observable ¢’ has the value a'”, that same state cannot return
one single value b; in a measurement of the conjugate momentum,
otherwise both standard deviations would vanish, in contradiction
to the uncertainty relation. This leads to the conjecture that the co-
ordinate ¢’ and the momentum p; are represented by quantities g’
and p, respectively, which act on the states in some abstract space
and which do not commute, in contrast to their classical counter-
parts. Indeed, we will soon learn that in quantum mechanics they
fulfill the relation

[p.,q"1=~68%. (1.36)
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Objects of this kind may be differential operators or matrices but
certainly not smooth functions. For example, one verifies that the
following pairs of operators obey the relations (1.36):

hod .
{gi=+f—i,gk=qk}, and 6)
1 0q
hod
{gi=pi,g"=—T—apk} . (ii)

In the first example the momentum is a differential operator, the co-
ordinate is a function, i.e. an operator which acts by “multiplication
with the function ¢'”. Indeed, one finds

hd i i k khof

h k i k
:T(Sif(“' g g, ).
In the second example the momentum is an ordinary function while
the coordinate is a differential operator. In this case one has

h 9 A
Di (———)f(... s Direvv s Dhyevv)

1 dpy
R\ d R
—(—7)—[p,-f(...,p,~,...,pk,...)]
1) dpx
Ao, oA
= F P Do)

i

These remarks to which one will return repeatedly in developing the
theory further, raise a number of questions: What is the nature of the
states of the system and, if this is known, how does one calculate mean
values such as (- --)? What is the nature of the abstract spaces which are
spanned by physically admissible states of a system? If coordinates and
momenta are to be represented by operators or some other set of non-
commuting objects, then also all other observables that are constructed
from them, will become operators. What are the rules that determine the
translation of the classical observables to their representation in quan-
tum mechanics?

The answers to these questions need more preparatory work and
a good deal of patience. Before we turn to them let us illustrate the
physical significance of (1.35) by means of three examples.
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1.2.3 Examples for Heisenberg’s Uncertainty Relation

Example 1.3 Harmonic Oscillator in one Dimension

The harmonic oscillator in one spatial dimension is described by the
Hamiltonian function

2
p 1 2o _1ra o
H=%+5qu :5[224‘21]

where z7 1= L, 71 = /moq .

NG

Suppose the oscillator is replaced by the corresponding quantum system
(by replacing ¢ and p by operators). The average of H in a state with
energy E is

E=(H)= %Jr;mwz((f)E %[<z§>+(z%>].

The obvious symmetry g <> —g and p <> —p suggests that the mean
values of these variables vanish, (¢g) =0, (p) = 0. If this is the case we
have

4?=(a?) . ap?=(p).
and (1.35) yields the inequality

() =) )= o

Even if the reader does not accept the conjecture (g) =0, (p) =0 at
this point the estimate just given remains true. Indeed, from (1.31) one
concludes that (G2) > (AG)? and, therefore, that

2

()(r?) = agram?=" .

This is sufficient for the following sequence of inequalities to hold true

o= (JEB- ) = F =2 .

They show that the energy is bounded from below, Eg < E with Eg =
hw/2. We will see below that this is precisely the energy of the lowest
state. Now, if indeed E = Ey = hw/2, then

(=)=

in agreement with the virial theorem which requires (7xin) = (U) = E/2
for the case of the oscillator potential.
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Thus the energy spectrum of the oscillator is bounded from below
because of Heisenberg’s uncertainty relation for position and momen-
tum. The lowest state with energy E = hw/2 and with the properties

)=t ()< 13

2 mw

is marginally compatible with that relation. Since in quantum mechan-
ics the oscillator can never come to a complete rest one says that its
motion in the ground state consists in zero point oscillations. The en-
ergy Eo of the ground state is called the zero point energy. Even in
its lowest state both potential and kinetic energies exhibit nonvanishing,
though minimal deviations. This is an intrinsic and invariant property of
the oscillator.

Example 1.4 Spherical Oscillator

In classical mechanics the spherical oscillator is described by the Hamil-
tonian function

2
p 1 22
H="—+4+-mwr-.
2m + 2
If converted to cartesian coordinates
p 3
H= i - 2 , i\2 ,
S 5mo _Z(q )

i=1 i=1
it is seen to be equivalent to the sum of three linear oscillators, all
three with the same mass and the same circular frequency w. Thus, the
analysis of the previous example can be applied directly. The standard
deviations of the coordinate ¢' and the conjugate momentum p; are cor-
related, the ones of pairs (¢*, p;) with different indices k # [ are not.
Therefore, repeating the estimate of Example 1.3 yields the inequality

how
O<E-3—.
- 2

The lowest state has the energy E = Eg = 3hw/2. This system has three
degrees of freedom each of which contributes the amount Aw/2 to the
zero point energy.

Example 1.5 Hydrogen Atom

An analogous, though rougher, estimate for the hydrogen atom shows
that, here too, the uncertainty relation is responsible for the fact that the
energy spectrum is bounded from below. Using polar coordinates in the
plane of the classical motion the Hamiltonian function reads

R e @
T 2u 2ur? o or

9’

(see [Scheck (2005)], Sect.2.16), where p, is the momentum canoni-
cally conjugate to r, £ is the modulus of the (conserved) orbital angular
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momentum. Although the mean value of p, does not vanish we can
make use of the property (p?) > (Ap,)? to estimate the mean value
of H, for nonvanishing ¢, as follows
2
1
E=(H) (620)2@—e2<—>
21 r
h? &2
> .
8u(Ar)2  (Ar)

In this estimate we have used the uncertainty relation (Ap,)(Ar) > h/2
and we have approximated the term portional to 1/r by 1/(Ar). The
right-hand side is a function of (Ar). Its minimum is attained at the
value
h2
(Ar) =

4pe?’

If this is inserted in the expression above we see that the energy must
be bounded from below by at least E > (—2ue*/h?). The right-hand
side is four times the value (1.1) of the true energy of the ground
state — presumably because our estimate is not optimal yet. The result
shows, however, that it is again the uncertainty relation between position
and momentum that prevents binding energies from becoming arbitrarily
large.

1.3 The Particle-Wave Dualism

Energy E and momentum p of classical physics are understood to be
properties of mechanical bodies, i.e., in the simplest case, of point-like
particles of mass m. For such a particle these two kinematic quantities
are related by an energy—momentum relation which reads

E=p?/2m or E=,/c2p?+ (mc?)? (1.37)

in the nonrelativistic and the relativistic case, respectively. In contrast to
this, a circular frequency w = 2w /T, with T the period, and a wave vec-
tor k, whose modulus is related to the wave length A by k =2/, are
attributes of a monochromatic wave which propagates in the direction k.
The frequency w and the wave number k are related by a dispersion
relation w = w(k).

The interpretation of the photoelectric effect and the derivation of
Planck’s formula for the spectral distribution of black body radiation
show that light appears in quanta of energy which are given by the
Einstein—Planck relation

[E=hv]. (1.38)

This relation is quite remarkable in that it relates a particle property,
“energy” E, with a wave property, “frequency” v, via Planck’s constant.



The energy of a monochromatic electromagnetic wave is proportional
to its frequency. Thus, light, or any other electromagnetic radiation for
that matter, besides its well-known wave character, also has particle
properties which will be particularly important when the number n of
photons of a given energy is small. In such cases the light quanta, or
photons, must be treated liked point particles of mass mphoon = 0. As
we will see later this is a direct consequence of the long-range na-
ture of the Coulomb potential Uc(r) = const/r. According to the second
equation of (1.37) the photon must be ascribed a momentum, its en-
ergy and its momentum being related by (1.37) with mass zero, viz.
E = c|p|. On the other hand, when light propagates in vacuum, its fre-
quency and wave length are related by vA = ¢, where c is the speed
of light. Therefore, the Einstein—Planck relation (1.38) is translated to
a formula relating the modulus of the momentum to the wave length,
Viz.

|P| Photon = x .
This dual nature of electromagnetic radiation on one side, and the
diffraction phenomena of free massive elementary particles, on the
other, lead Louis de Broglie!? to the following fundamental hypothesis:

In close analogy to light which also possesses particle properties, all
massive objects, and, in particular, all elementary particles exhibit
wave properties. To a material particle of definite momentum p one
must ascribe a monochromatic wave which propagates in the direc-
tion of p and whose wave length is

h
A=— where p=|p| (de Broglie, 1923) |. (1.39)
p

This wave length is called de Broglie wave length of the material
particle.

We comment on this hypothesis by the following

1. If Planck’s constant were equal to zero, & = 0, we would have A =0
for all values of p. The particle would then have no wave nature
and could be described exclusively by classical mechanics. There-
fore, one expects classical mechanics to correspond to the limit of
short wave lengths of quantum mechanics. We conjecture that this
limiting situation is reached somewhat like in optics: Geometric op-
tics corresponds to wave optics in the limit of short waves. If the
wave length of light is very small as compared to the linear dimen-
sion d of the object on which it is scattered, optical set-ups such
as slits, screens, or lenses, can be described by means of simple

1.3 The Particle-Wave Dualism

10The name is pronounced “Broj”, see
e.g. Petit Larousse, Librairie Larousse,
Paris.

27



28

Quantum Mechanics of Point Particles

ray optics. If, on the other hand, A ~d, i.e. if the wave length is
comparable to typical linear dimensions of the set-up, there will be
diffraction phenomena.

2. Quantum effects will be noticeable when the de Broglie wave
length X is of the same magnitude as the linear dimensions d which
are relevant in a given situation. As an example, consider the scat-
tering of a particle with momentum p on a target whose size is d.
Whenever A < d, i.e. if dp > h, classical mechanics will be applica-
ble — though here as a limiting form of quantum mechanics. In other
terms, one expects to find classical mechanics as the limit 4 — 0
of quantum mechanics. However, if A >~ d we expect to find new and
specific quantum effects.

3. Of course, the particle nature, in the strict sense of classical mech-
anics, and the postulated wave nature of matter are not readily
compatible. Rather, particle properties and wave properties must be
complementary aspects. Both aspects are essential in the description
of matter particles. This assertion, although still somewhat vague for
the time being, is described by Bohr’s principle of complementar-
ity.

4. By associating a wave to a particle the uncertainty relation receives
an interpretation in terms of wave optics: a monochromatic wave
corresponds to a fixed value of p. Such a wave is nowhere local-
ized in space. Conversely, if one wishes to construct an optical signal
which is localized in some finite domain of space, one will need an
appropriate superposition of partial waves taken from a certain spec-
trum of wave lengths. The smaller, i. e. the more localized this wave
packet is, the broader the spectrum of contributing wave lengths
must be, or, through de Broglie’s relation, the larger the range of
momenta must be chosen.

1.3.1 The Wave Function and its Interpretation

On the basis of de Broglie’s hypothesis we associate to a particle such
as the electron a wave function (¢, x). If this electron has a sharp value
of momentum p this wave function will be a plane wave of the form

clpx/hon) _ itkx—on

where k is the wave vector, k = |k| is the wave number, and w = w(k)
is a function still to be determined. In accordance with the uncertainty
relation such a plane wave is nowhere localized in space and, for this
reason, it is not obvious how to interpret it physically. It would be more
helpful if ¢ were a strongly localized wave phenomenon. Indeed, we
could compare such a wave packet at time ¢ to the position in space
that the particle would pass at this time if it were described by clas-
sical mechanics. With this idea in mind we write the wave function as



a superposition of plane waves

Ut x) = f Ek P k) el kx—on (1.40)

1
(27.[)3/2
by choosing the function {/;(k) such that it is concentrated around a cen-
tral value, say ko. The numerical factor in front of (1.40) is chosen in
order to render the Fourier transform between (¢, x) and W(k) symmet-
ric. Expanding around the wave vector kg, we have

k-x=((k—ky -x+ko-x
(k—ko) -ky dw

k) = (ko) +(k—ko) - V]x @(k)|j=, = wo+——"—"— — '
w(k) =~ w(ko)+(k—ko) - VIk (k) |r—r, = wo+ ko dk |y,

In this expansion we set k = |k| and ko = |ko|, the gradient with respect
to the three components of k is replaced by the derivative with respect
to its modulus k = |k|, Vi = (Vk|k|) d/dk, by means of the chain rule.
In this approximation (1.40) takes a form that is easily interpreted:

Y(t, x) o~ elkox=wot) A (x — fovot)
with

A(x —kovot) = / &k (k) ¢l kR0 —kovon

2m)3/2

and

dw
Vo= — .
dk |3,
The wave function just obtained may be understood as follows: The
amplitude A is determined by the distribution 1//(k) It moves with ve-
locity vg. If one dealt with a theory of (classical) waves one would call
this the group velocity while w/k would be said to be the phase velocity.
Relating vp to the momentum, by virtue of de Broglie’s relation (1.39),
one has
dw po  hko

:Uoz—:—'
dk | —x, m m

Upon integration, the functions w(kg) or, somewhat more generally,
w(k) are seen to be given by

2 2

o) =" o E=hot =2

2m 2m

Thus, we recover the well-known nonrelativistic relation between en-

ergy and momentum and, hence, fix the dispersion relation w = w(k).

Note that the connection between particle and wave properties was used

several times.
The superposition (1.40) that was chosen, mimicks the analogous
classical situation. It describes an object localized at time ¢ which moves

(1.41)

1.3 The Particle-Wave Dualism
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with the group velocity vg, equal to the velocity of the classical par-
ticle. However, as we shall discover soon, the localization cannot last for
long. The well-localized wave packet at time ¢ disperses in the course
of time. In constructing the packet we have tacitly assumed that differ-
ent wave functions can be superimposed linearly — a property which is
in agreement with the interference phenomena observed in experiment.
The question of interpretation of the wave function, for the time being,
remains unanswered. This is the question of how to derive measurable,
testable predictions from the knowledge of (¢, x).

In a next step we show that a wave function of the type (1.40) sat-
isfies the differential equation

2
i (1, x) = _Zh_m A V(L x)|. (1.42)

As the function &(k) in (1.40) is localized, the integral exists. Differen-
tiation with respect to time or space coordinates, and integration can be
interchanged. Making use of (1.41) for w, we have

J= i | / PIET () kx—on

2m Qn)2
Replacing two of the factors in the integrand as follows,

k2 ei(k-xfwt) =—A ei(k-xfwt)
= X >

and taking the Laplace operator out of the integral gives the differential
equation (1.42).

Having derived (1.42) we have found the Schrodinger equation for
the case of force-free motion. This is a homogeneous, linear differen-
tial equation: It is homogeneous because it does not contain a source
term independent of . Linearity means that if v1 (¢, x) and y» (¢, x) are
solutions then also any linear combination

Y(t, x) =1y (t, x) +covn(t, x) with ¢, € C

is a solution. The statement that two different solutions can interfere
is an expression of the superposition principle. This principle has far
reaching observable consequences.

Equation (1.42) is first order in the time variable. This means that
a given initial distribution ¥ (¢p, x) fixes the wave field for all times. Be-
ing of second order in derivatives with respect to space coordinates, this
equation cannot be Lorentz covariant (but it is Galilei invariant). This is
not really surprising because we obtained (1.41) by making use of the
nonrelativistic relation between velocity and momentum.



1.3.2 A First Link to Classical Mechanics

In the spirit of the eikonal approximation in optics we attempt to solve
(1.42) by means of the ansatz

W(t, X) = o exp [%S(t, x)] (1.43)

where /g is a complex constant. The time derivative and the Laplacian
applied to this give, respectively,
aS

. A i
i =~ yoexp | 550 | = -2

1 ) i i

Upon insertion in (1.42) one obtains a differential equation for S(¢, x),

8S+ 1 (VS)2 . h AS
—t — =i— .
o 2m 2m

If the function S is such that the term on the right-hand side may be

neglected, this is seen to be the Hamilton—Jacobi differential equation
for the case of the Hamiltonian function H = p?/2m,

~ as 0S5

H=H —Hq, )|+ —= O
aq" ot

with the well-known formulae
aS A

k
P = 5 S=S ,a, 1),
o 0 3P (q,a,1)

and with P, = a4 = const (see [Scheck (2005)], Sect.2.35 where this
particular canonical transformation is denoted by $*). In mechanics one
learns that the general solution is
o2
S(x, o, ) =0a-x — —1-+const
2m

pi=

and that it describes uniform, rectilinear motion, as expected,
o
x——t=4.
m

The particle trajectories are perpendicular to the surfaces S(x, a,t) =
const. This result is interesting in that it says that these surfaces are the
wave fronts of the wave function . In the approximation made above
the classical orbits are orthogonal trajectories of the wave fronts ¥(z, x).

The ansatz (1.43) is the starting point for a systematic expansion
in powers of &, i.e. a series of approximations around the classical
limit. This is called the WKBJ-method where the short-hand stands for
Wentzel, Kramers, Brillouin, and Jeffreys.

1.3 The Particle-Wave Dualism
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Fig. 1.5. A Gaussian wave packet (1.49)
(in one dimension) while moving to
the right in this picture, broadens in
the course of time. The three curves
show the shape of the wave packet as
a function of the space coordinate x,
at t =0, at t = t(b), and at t = 21(b),
where T =mb?/k

1.3.3 Gaussian Wave Packet

For the sake of simplicity we first consider wave functions in one spatial
dimension, denoted x. Plane waves are chosen as follows

1
Yr(t, x) =

1 ei(k)cfoot) — ei/h(prEt)
V2r V2r
with w = hik?/(2m), the normalization being chosen such that

/ dx ¥ (8, ) Y(t, x) = 8D (k- k') .

Appendix A.l gives a summary of the properties of §-distributions and
indicates how this improper integral is to be understood and how it is
evaluated. The wave packet is taken to be

U(t, x) = dk ¥ (k) el (1.44)

\/1 /
2
Taking the Fourier transform of this ansatz, assuming the integrals to
exist, yields

U(k) = \/% / dx Y(t, x) e ike—en (1.45)

At time r =0 the wave function is assumed to be a Gaussian wave
packet, of the form

Wt =0, x) = qe™" /@0 gikox
where « is a complex constant that we fix as follows:

1

— ipy
= 2174 ¢

o
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With this choice of the factor « the distribution *v = || is normal-
ized to 1, it has the shape sketched in Fig. 1.5. Its width is

F|(0’x) = 2b\/ In2 >~ 1665b,

the index (0, x) being added in order to point out that this is the width at
time =0 and in coordinate space. In order to check the normalization
and to calculate the Fourier transform we need the Gauss integral which
is calculated as follows

Gauss integral: In a first step calculate the integral

(0,0)
/ dx e
-0

by taking its square. This yields a double integral over two indepen-
dent cartesian variables which may be identified with two orthogonal
variables x and y. In turn, this double integral is converted to polar
coordinates in the (x, y)-plane and takes a form which is integrated
in an elementary way, viz.

o0 2 00 00
/ il e—x2 _ / / dxdy e—(x2+y2)
—00 —00 —00

2 00
:/d¢/drre_r2=n.
0 0

Let a be a positive real number, or else a complex number with posi-
tive real part, and let b and ¢ be two arbitrary complex numbers. Then
one obtains

(o)

/ die e— (@2 +2brte) _ \/fewzac)/a, (1.46)
a

—00

The latter formula follows from the one obtained in the first step by
completing the argument of the exponential to a complete square,

b* —ac

b
ax’+2bx+c=a(x+-)*—
a

and by substituting u = /a(x +b/a).
This result is used to verify that

/dx|w<o,x)|2=1

and, likewise, that ij\(k) is also normalized to 1.
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Making use of the formula (1.46) one calculates the Fourier trans-
form (1.45) for the distribution ¥(0, x) as given above,

U (k) = abexp [—%(k—ko)zbz] , (1.47)

« being the same parameter as before. Inserting this result in (1.44) one
calculates the wave function for arbitrary times, making use once more
of the Gauss integral. The result is

ab x?
Vit 2) = e [_M}

_kox — hk3t/(2m)
X exp [IW} . (148)

This somewhat cumbersome formula is understood better if one calcu-
lates its absolute square, viz.

jaf? [_ (x — Tikot/m)? ]
STy LRI R 2 |

ly(t, x)| > =
(1.49)

The expression (1.49) in coordinate space, and the corresponding ab-
solute square |y(k)|> in momentum space that follows from it, are
now easy to interpret: The tip of the wave packet moves with velocity
hko/m. Inserting |a|> = 1/(by/7) its width is seen to be proportional to

h2¢2

b 1+—m2b4

(in coordinate space),

while the distribution |$ (k)|? in momentum space has constant width,

5 (in momentum space) .

Two properties can be read off these formulae:

1. If one wishes to prepare a sharply localized packet in coordinate
space, at time ¢ = 0, then one must choose b as small as possible. In
this case the corresponding distribution in momentum space is nec-
essarily broad. In turn, the packet will have a large spatial extension
already at r = 0 if its momentum space representation is strongly lo-
calized around the central value ky. Both situations are in accord
with Heisenberg’s uncertainty relation (1.35).

2. In the course of time the wave packet in coordinate space broadens
(independently of whether one extrapolates to the future or to the
past of  =0). Writing the factor characterizing the width as follows

242 2

b1+ b 14— with (k)= "p?
m2b* 72(b) TR




one sees that the width will double after the time ¢ = +/37(b) as com-
pared to what it was at t = 0. In Fig. 1.5 I have plotted the quantity
(1.49) for 1ty =0, for t; = ©(b), and for t, = 2t(b), as a function of x,
with the choice of parameters kg = 1, b =1 (in arbitrary units).

It is instructive to estimate more quantitatively the dispersion of the
wave packet. For an electron the characteristic time during which the
width increases to the double of its initial value, is

t=~31(b) ~ 1.5 x 10720 fm—2s b2

Suppose that the wave packet assigned to an electron, at time ¢ = 0,
had the width » =1 fm . The width will be twice its initial value after
1.5x 10726 5, a very short time indeed.

Let us compare this to a tennis ball with mass m = 0.1 kg, taken to
be a wave packet of length b = 6cm = 6 x 10'3 fm, at time 7 = 0. The
time it will take to double its size is

V3t(b) = 1642 fm2s b*> = 5.91 x 10°° s ~ 1.9 x 107 years..

Thus, there is no reason to worry about the validity of macroscopic,
classical mechanics!

1.3.4 Electron in External Electromagnetic Fields

Classically, an electron subject to external electromagnetic fields is de-
scribed by the Hamiltonian function

2
H(p,x,1) = ﬁ (p— SA(t, x)) T ed(t, x) (1.50)

(see, e.g., [Scheck (2005)], Sect.2.16). Here e denotes its electric
charge, A and @ are the vector and scalar potentials, respectively, the
electric and the magnetic fields being derived from them by means of
the formulae (1.12) and (1.13), respectively. The corresponding differ-
ential equation of Hamilton and Jacobi reads

1 e \?2 as
—(VS=24) +ed+ = =0.
2m c ot
Furthermore, one has the equations

xiza_H:lﬁ_iAi.
opi mox; mc

It seems reasonable to require that this classical differential equation
follow from its quantum analogue, by means of the ansatz (1.43) and by
expanding in powers of A, very much as in the previous case of force-
frele motion. One then sees that a possible generalization of (1.42) could
be!!

. 1 /h e \?

ihy(t, x) = o “V—-A) ¥(t,x)+edY(t, x). (1.51)

m

1 c

1.3 The Particle-Wave Dualism

'I'The “dot” applied to the function v
is a short-hand for the partial derivative
with respect to time. This generally ac-
cepted convention should not give rise
to confusion because the coordinates x
on which ¢ depends too, as such, are
not functions of time.
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For vanishing external fields, A =0, @ =0, it is identical with (1.42).
Furthermore, one easily verifies, upon inserting the ansatz (1.43), that it
yields the correct Hamilton—Jacobi equation, at the order O(KY), when
the fields do not vanish.

The following discussion gives further support to the ansatz (1.51).
At the same time it takes us closer towards an interpretation of the wave
function (¢, x). We proceed in two steps.

1) Consider first the case A =0, with only the scalar potential different
from zero. The conjectured differential equation (1.51) simplifies to

2
ih (1, x) = (—f—m A +ed(t, x)) Y(t, x). (1.52)

As we know already that the absolute square |y (z, x)|? must be related
to localization of the electron in space, it seems plausible that the in-
tegral of this positive-semidefinite quantity, weighted with the external
potential @, is proportional to the potential energy of the electron in the
external field. Thus, we assume

e [ & e 01200,5) = En
(where, possibly, a constant of proportionality might have to be in-

serted). The average force acting on the electron is then obtained from
the integral over the gradient field of @,

(F) =—e/ Ex |y 2V, x) .
If for |x| — oo the wave function tends to zero sufficiently rapidly such

that all surface terms vanish at infinity, we shift the operator V over to
|| = ¥*, by partial integration, and obtain

(F) = +e/ Ex [(VYH Y+ (V)] o1, %) .

We show next that this expression is also equal to

d(/ S ) / S / 3 Wb
— xY*-Vy )= | IxyY -V 4+ | &xyYT-Vy
dr i i i

provided use is made of (1.52) for ¥, as well as its complex conjugate
for ¢*. The terms containing the Laplace operator cancel by virtue of

/ Ex (A YV — Y AY)
-3 / Ex (=Y ViViy + Vi "V, Vi) =0,
k
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using partial integration. The terms containing the scalar potential @
also cancel except for the one in which the operator V acts on the func-
tion @. This term reduces to

ih i
Putting these results together we obtain the equation
d h d
(P =4 [ @xvrive=1 o)

In the second part of this equation we have tentatively identified the in-
tegral with the average of the momentum. This interpretation receives
further support by calculating the time derivative of E}q, making use
of (1.52), viz.

h. R
Py ==+ AY
i 2m
as well as of its complex conjugate:
d

aEpot = e/ Ex (VY &+ Yy @)

2 N y
=%/d3x (" A v+ (A )"

h? . .
:%/d% (% Ay + 9" AY)

d (B [ 5

It is suggestive to interpret the right-hand side as the kinetic energy, but
for the sign

hZ
Ekin=—_/d3xw*Aw’
2m

such that the total energy is represented by

h2
E = Ep0t+Ekin :/ d3x1ﬂ* {—% A—I—ed)} w

and is constant in time. The operator in curly brackets would then be
the analogue of the classical Hamiltonian function. In particular, its first
term would take the role of the classical kinetic energy p?/(2m). This
is compatible with the identification of the momentum above because
the square of the operator in the integral for p gives

éV-ZV:—hZA.
1 1
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2) Next we consider a situation where both A and @ are different from
zero. In view of the relation of the wave function to the observables that
we wish to establish, we define the following densities:

o(t, %) 1=y (6, )Y (t, %) = Y1, 0)| %, (1.53)

. 1 “ h e
J@x%=§—{¢(hw<fv——A>w@x)
m 1 C

+[<?V—§A>w@xq wmxﬁ (1.54)
A

= 2mi
By construction both the scalar density (1.53) and the vectorial den-

sity (1.54) are real. If it is true that the operator (h/i)V represents the
(canonical) momentum, then

h
2v_fa
1 C

i2
[(w*w — (VYY) - %Aw*w} .

must be the kinematic momentum.
We start by calculating the divergence of the current density (1.54).
We find

1
vii= o {_m[«p*w—mw*)w]

2e X N 2e N
—?A[(VW Wy (VW)]—?(V‘A)W W}

. 2 2
:_L_Lm<§v_f4)¢;{(§v+fA>1w}w}.
2mh i c i c

(In the last step two terms proportional to A2 were added and subtracted
in order to obtain perfect squares.)

This becomes a remarkable result when we also calculate the time
derivative of the scalar density (1.53), by making use of the differential
equation (1.52) for v and for ¢*,

: 2 2
:_J_{W<§v—i0 w-“?v+f%)wﬂw}.
2mh i c i c

Indeed we obtain the continuity equation relating the densities (1.53)
and (1.54):

do
V.j+—=0|. 1.55
J+at (1.55)
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On the basis of this result one might be tempted to interpret the
density (1.53) as the electric charge density, and the vectorial density
(1.54) as the electric current density of the moving charged particle.
However, as one realizes after a moment of thought, this interpretation
is in conflict with observation: Upon integration over the whole three-
dimensional space one would obtain the total electric charge

Qem. = / & x [y, x)| 2.

We know that this must be a multiple of the elementary charge |e|.
Thus, we would have to require Qe m, = *nle|. For an electron, more
specifically, we would choose the negative sign and n = 1. As a conse-
quence, a localized fraction of the integral

fd3x lvl?,

14

obtained by integrating over a finite volume V, would represent a cer-
tain fraction of that integer charge. This contradicts experiment: A free
electron carrying a fraction of its charge has never been observed.

There is further, perhaps even more convincing evidence against this
interpretation. As this interpretation is purely classical, all diffraction
phenomena of matter waves would be of the same nature as those of
classical optics. In particular, interference patterns would always be per-
fect and complete, no matter how low the intensity of the incoming
wave. A single electron which is scattered on two or more slits in
a wall, would give rise to a complete interference pattern on a screen
behind the slits, though with strongly reduced intensity. This is in con-
tradiction with experiment. What one really observes is a statistical
phenomenon. Any single electron hits a well-defined point on the screen
(which cannot be predicted, though!). The interference pattern appears
only after some time, after having a large number of identically pre-
pared electrons scatter in the same experimental set-up.

1.4 Schrodinger Equation
and Born’s Interpretation of the Wave Function

Return for a while to the differential equation (1.42) which is used to
describe the motion of free particles. Setting

Y, x) = e VM Ey(x) (1.56)
it goes over into the differential equation

1 (A \?
—(—V) Y(x) = EY(x) .

2m \ 1
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Plane waves of the form
1 ex 1 .
— — (i/n)px
X)=——=s¢e" =——=-¢ 1.57
are seen to be solutions of this equation provided
p’ B B2K2
2m 2m
i.e. provided E and p obey the energy-momentum relation (1.37) valid
for nonrelativistic kinematics.These simple calculations and the consid-
erations of the previous section lead to the conjecture that quantum
mechanics assigns differential operators to energy and momentum, re-
spectively, such that

. 0 h
1

Indeed, by this formal replacement the nonrelativistic energy-momentum
relation goes over into the differential equation (1.42).

Consider next the differential equation (1.51) for a charged particle
in electromagnetic fields. For simplicity, we study the case A =0 and
assume the scalar potential @ to be independent of time. Inserting once
more the ansatz (1.56) gives

P’

E = m +U(x) with U(x) =ed(x).

Again, this is nothing else than the energy-momentum relation in the
presence of an external potential. In an autonomous system of classical
mechanics this equation describes the conserved total energy which is
the sum of the kinetic and of the potential energies. In mechanics it is
interpreted in the sense that in any point of the classical orbit x(7) the
momentum is adjusted such that |p| = /2m[E — U(x(¢))]. In quantum
mechanics there are no orbits because of the uncertainty relation be-
tween position and momentum so that this interpretation can no longer
hold. On the other hand, our experience with classical mechanics tells
us that the electric potential energy e®(x) can equally well be replaced
by a more general potential energy U(x) describing other forces than the
electric ones. In doing so the equation (1.52) is generalized to a funda-
mental differential equation of nonrelativistic quantum mechanics:

2
ih (1, x) = (—f—m A +U(, x)) ¥(t,x) (E. Schrodinger, 1926) |.

(1.59)

This equation is the time-dependent Schridinger equation. Its right-
hand side contains the analogue of the classical Hamiltonian function
H = p?/(2m) + U(t, x). Therefore, the Schrodinger equation can also be
written as follows

2
ihr(t, x) = Hy(t,x) with H = (—f—m AU, x)) .
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Note that H, which is no longer a function on phase space, becomes an
operator acting on wave functions y(z, x).

In those cases where the function U does not depend on time, one
inserts (1.56) into (1.59) and obtains the time-independent Schrodinger
equation

h2
Ey(x) = (—% A +U(x)> Y(x) |. (1.60)

These two equations, their generalization to more than one particle
and to other degrees of freedom than position and momentum, will be
the subject of a detailed analysis in what follows.

In the previous section we argued that the wave function cannot
and should not be understood to be a classical wave. Rather, we con-
cluded that, in a sense to be made more precise, it contains statistical
information about an individual particle, and, as a consequence, that it
cannot yield deterministic predictions for a single particle. Only a very
large number of events obtained under identical conditions, can be com-
pared to theoretical predictions. The statistical interpretation which is
suggested here, is made more precise by the following fundamental pos-
tulate:

Postulate

If ¥(z,x) is a solution of the Schrodinger equation (1.59), then
|Y(t, x)|> is the probability density for detecting the particle de-
scribed by this equation in the point x of space, at time .

This probabilistic interpretation of Schrodinger wave functions was
first proposed by Max Born. In view of a wider range of applications
to be dealt with below we formulate the postulate in a somewhat more
general form:

Born’s Interpretation for the Wave Function: V|2 () is the proba-
bility density to find the system at a given time ¢ in the configuration
described by .

Note the important step initiated by this postulate: The quantum dy-
namics of the particle, or, for that matter, of a more general system, is
contained in the wave function v which fulfills the Schrodinger equa-
tion (1.59) (in this form, or in a form adapted to more general systems).
This equation has many features familiar from classical dynamics but,
a priori, it tells us little on how to extract physics from its solutions and,
in particular, how to derive physical observables from it. The postulate
of Born says that |1/|? is a probability density. This means that

[y (t, x)| *dx

in the case of a single particle, is the probability to find the particle at
time ¢ in the volume element d3x around the point x in space.
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We encounter here a probability distribution similar to (1.29) of
Sect. 1.2.1, though in a radically different context: There, we dealt with
a ensemble of very many particles, described by classical mechanics.
Our knowledge of the ensemble is incomplete but can be improved at
any time, at least in principle. Here, a complex function (¢, x) is the
source of the observable density |y|? that, qualitatively speaking, we
cannot penetrate any further. As we remarked earlier, this function is
strictly deterministic in the sense that a given initial distribution (7o, x)
fixes the wave function for all times (as long as one does not run into
possible singularities of U(t, x)). Nevertheless, in general, it does not
allow for a definite prediction for the individual particle (or, more gen-
erally, for an individual event). Only after having performed very many
measurements on a set of identically prepared particles can one compare
to predictions that are obtained by a well-defined prescription from the
density [yr|2.

One discovers here a way of describing physical phenomena which
is fundamentally new as compared to classical, non-quantum physics:
a statistical description that does not allow, as a matter of principle, to
focus and improve indefinitely on the information about the system un-
der consideration up to the point where states are points in phase space.
In other terms, unlike in classical mechanics, a point of phase space has
no physical meaning in quantum mechanics.

This way of proceeding raises deep questions which go far beyond
the familiar framework of classical physics. Therefore, it will need great
care and solid preparation to answer them. I advise the reader, if he
or she is one of them, to first study in depth the postulates of quan-
tum mechanics, their consequences and their experimental tests, without
prejudice. In doing so one will not forget the fundamental questions
raised by quantum theory but will establish solid ground for pondering
them.

The statistical interpretation of the wave function, a quite bold step
indeed, clarifies the situation almost at once. In a natural way it leads to
a number of new concepts which are decisive for the predictive power
of the theory and the description of experiments. If |i/(¢, x)|* is the
probability density of Born’s interpretation, then the integral

f x|yt x)|?

Vv

over a closed domain V of R? is the probability to find the particle in
this volume at time ¢. As the particle, at any time, must be somewhere in
space, integrating over the whole space must yield the answer “with cer-
tainty”, i. e. the probability 1. Thus, it is natural to impose the condition
of integrability

/d3x v, x)>=1. (1.61)
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Wave functions which are interpreted in a statistical sense, must be
square integrable. Expressed in mathematical symbols,

¥(t,x) € L*(R%),

where L2(R3) is the space of complex, square integrable functions
over R3.

The current density defined in (1.54) describes then the flux of prob-
ability. That is to say, if one calculates the surface integral of the normal
component of j(z,x) over the surface X' enclosing the volume,

fdoj(z,x>-ﬁ,
)

one obtains the probability per unit of time for a particle to cross the
surface X. If the integral is positive the particle left the volume. If it is
negative the particle penetrated this closed domain.

The continuity equation (1.55) expresses in mathematical terms the
conservation of the probability to find the particle somewhere in space,
at any time. This is seen as follows. Consider the time derivative of the
probability density o(t, x) = ¥™* (¢, x) (¢, x), integrated over the entire
space. Making use of the continuity equation (1.55) one has

i/(pxg(t x)=/d3xﬁg(t x)=—/d3xV-j(t x)
dr ’ o T

If the wave function v vanishes sufficiently rapidly for |x| — oo then
the integral on the right-hand side can be converted to a surface integral
of the normal component of j. This surface being at infinity the surface
integral vanishes. Thus, one obtains the conservation law

i/d3 (t,x)=0 (1.62)
ar xo(t,x)=0]. .

The probability of finding the particle somewhere in space is indepen-
dent of time. This means that the particle can neither be created nor can
it disappear. If the wave function is normalized at some initial time fg
it remains normalized for all times. This remark shows why it is im-
portant that the Schrodinger equation (1.59) be of first order in the time
derivative. It is this fact which guarantees the important property (1.62).

Born’s interpretation of the wave function clarifies at once the statis-
tical nature of the interference of matter waves. Suppose, for simplicity,
that the initial state is prepared, at time ¢ =7y, as a linear combination
of two solutions ¥ and v of the Schrodinger equation,

Y(t, x) =1y (t, x) +coyn2(t,x) with ¢,c2€C.
The absolute square of this function is given by

[W(t, x)12 = le1] [y (8 x) | 2+ leal 2 [¥a(t, x)| 2
+2Re[cie2y] (8, x)Ya(t, x)]
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12 An arrangement of detectors which
covers the entire solid angle is also
called a “4z detector”.

and describes the probability density for detecting the particle. As
compared to an analogous classical situation the third term is new. It
indicates that the wave functions ¥; and vy, interfere, through coher-
ent superposition. The sum of the individual probabilities of the first
two terms can be enhanced or weakened by the interference term. In
an extreme situation the interference term cancels the first two terms
altogether.

Interference phenomena are familiar from the theory of classical
waves. The statistical interpretation of the quantum wave function is
new. It says that a single particle, at time ¢ > #p, can be recorded
by a given, space-fixed detector with probability between 0 and 1.
This probability may even be zero locally, whenever the interference
is perfect and destructive. Imagine a particle state prepared at r =0,
x = 0. Suppose that this point is surrounded by a sphere whose sur-
face is equipped homogeneously with devices that allow to detect the
particle.!” At some time 7> 0 an individual particle will be detected
somewhere on the surface of the sphere, in one of the detectors, but it is
impossible to predict which detector that will be. The predicted interfer-
ence pattern will only appear, through the rates at which the detectors
will fire, after very many identical measurements. A detector in a max-
imum of the interference pattern will give the highest rates, another
detector in a minimum will give the lowest rate. In the case of com-
plete and destructive interference, a detector in a minimum will never
fire because the probability density vanishes at its position.

In quantum mechanics a harmonic time dependence such as in (1.56)
means that the state described by the wave function  is a stationary
state. Indeed, all physically relevant densities do not depend on time.
In contrast to classical mechanics, wave functions of this type describe
time independent states and are not oscillatory solutions.

As we will see shortly the requirement that (f,x) be square
integrable is the decisive boundary condition for solutions of the
Schrodinger equation. For example, the discrete energy spectra which
are the analogues of the classical finite orbits, follow from it. We sum-
marize the boundary condition obtained from the physical arguments
discussed above, as follows:

Born boundary condition: Only square integrable, normalized solu-
tions are admissible and can be interpreted in terms of physics.

In actually solving the Schrodinger equation one often uses the fol-
lowing alternative condition:

Schrédinger boundary condition: In the whole domain of their def-
inition physically realizable solutions must be uniquely defined and
bounded.

This condition is not identical with Born’s condition. A wave func-
tion that satisfies the Born boundary condition is not always bounded.



These two types of boundary conditions are relevant for important
parts of quantum physics and will be illustrated by various applications.
Nevertheless, their significance must be put in perspective. The careful
reader will have noticed that the plane waves (1.57) are not square in-
tegrable. Wave functions of this type will be needed for the description
of scattering states and must be understood as limiting expressions of
normalized wave packets.

Furthermore, there are many quantum processes in which particles
are created or annihilated. Examples are provided by the emission of
a photon in the transition from an excited atomic state to the ground
state, €. g.

( H-atom,n =2) — ( H-atom,n =1)+vy.

Another example is pair annihilation of an electron and a positron into
two photons

e +et — y+vy.

In processes of this kind the “conservation of the probability” will still
be valid in a generalized form, though certainly not in the simple one
described in (1.62).

1.5 Expectation Values and Observables

The probability density (1.53) is a real, measurable, hence classical
quantity. Although of a very different origin than the densities (1.29)
which describe a many particle system in statistical mechanics, it will
enter, in much the same way, the calculation of averages of observables.
In the simplest case let F(x) be an observable which depends on the co-
ordinates only, i.e. which is a real function of x over phase space. The
average of this quantity in the state described by the wave function ¥
is calculated in the same way as in (1.32):

(F)y () = f dx Fx) |y(t, x)| ? = / dx Y (1, x) Fo) W (t, x) .

In the case of a function which depends on x only, the second integral
is trivially equal to the first because F(x) or F(f,x) commute with ¥
or ¥*. However, if the observable also depends on momenta, i.e. on
the remaining coordinates in phase space, F = F(t, x, p), then more care
is needed. Indeed, if the conjecture (1.58) holds true, i.e. if the classi-
cal momentum variable is replaced by the nabla operator, then also F
becomes an operator,

(x77)
F=F(x,-V].
1
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In this situation we must take care of the fact that F' no longer com-
mutes with ¢ and *, and must make sure that the average is a real,
not a complex number. As we will see in a moment, only the second
form of the average fulfills this condition.

Because of the basic conceptual differences, as compared to the
classical statistical mechanics, that we worked out in some detail, the
quantum mechanical average has a different formal and physical con-
tent. It is called expectation value and is defined as follows:

Definition 1.2 Expectation Value

Let F(x, p) be a classical physical observable, defined on the phase
space of a single particle system. From this function an operator is
constructed by replacing p by (h/i)V,

h
F(x, TV) 0

in such a way that the quantity

h
(F) y () := / Sx v, x)F (x, TV> vt x) =, FYy)  (1.63)

is real. This quantity is said to be the expectation value of the ob-
servable F in the state . It yields the experimental value of the
observable, 1. e. the value that one will find, in the sense of statistics,
after very many measurements under similar conditions.

1. It would be more consistent to mark the symbol that stands for an
operator constructed from the classical function F in a special way.
For instance, one could write F for the operator, and F for the
classical function. However, in most cases it will be clear from the
context whether we have in mind the function or the associated op-
erator. For this reason I make this typographical distinction only in
exceptional cases.

2. In the second form of (1.63) I have used a notation that reminds the
mathematically inclined reader of a scalar product. Although of no
relevance for the moment this will gain special significance later.

3. The condition of reality (F)y = (F )Tp means that one must have

/ Bx v, x)F (x, ?v) U(t, x)

= f dx |:F (x, ?v) w(t, x)] Wt x) .



Operators which have this property are called self-adjoint. As one
verifies by partial integration the simple examples

h
x (position), —V (momentum),
i
£ = —-xxV (orbital angular momentum)
i

fulfill this condition. Here is an example:
h h h *
/ EPxy VY =—— / Ex(Vy)y = +/ &x (Tw) V.
i i i

For other observables the “translation” of the classical function on
phase space to their associated, self-adjoint operators needs a careful
discussion. The following section begins this analysis.

1.5.1 Observables as Self-Adjoint Operators on L*(R?)

The notion of observable is a familiar one in classical mechanics. In
mechanics it is represented by a real function on phase space and de-
scribes a quantity that can be measured with some physical apparatus.
The dynamics of the system under consideration tells us which observ-
ables are relevant for its analysis. In particular, the dynamics tells us
how many observables are needed for a complete description of the sys-
tem. Hamiltonian systems whose dynamics is defined by the knowledge
of the Hamiltonian function, are used as landmarks for orientation in the
transition to quantum mechanics. As we noticed in the previous section
the observables of quantum mechanics which take over the role of their
classical analogues, must yield real expectation values. This is indeed
the case if these operators are self-adjoint. This property is made more
precise by the following definition:

Definition 1.3

An operator F, defined on the space L>(R?) of square integrable
functions, is said to be self-adjoint if its action on sufficiently many
elements ¢ of this space is well-defined and if

/ dx " Fp = / &x (Fp)*e (1.64)

holds for all such elements ¢ € L2(R?). (For further details see later.)

Using the notation of a scalar product, cf. right-hand side of (1.63),
this property takes the form

(p, Fp) = (Fo, @) (1.65)

1.5 Expectation Values and Observables
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whose general significance will be clarified by a later, more detailed
mathematical analysis. The property (1.64) entails that every expecta-
tion value of the observable F' is real,

(F)y =(F)7.
The following list gives a few examples for observables.
xK s Xk ,
h 9
P 5
2 77,2
ror,
2m 2m
h
XXp<— -xXV,
i
h

h

Ap > S{AV+Y 4],
i

The left column shows the classical function on phase space while the

right column gives the corresponding self-adjoint operator.

1. Of course, for a given operator one must investigate on which ele-
ments ¢ € L>(R3) it is well-defined. In this way one identifies the
domain of definition of the operator. We will come back to these
questions in more detail later. For the moment the heuristic approach
described above may be sufficient

2. Among the examples just given the last two are particularly note-
worthy. They show that the product of a vector field v(x) and the
momentum p must be replaced by /i/2i times the symmetric com-
bination of v-V and V- v. It is understood that the gradient acts on
all functions to the right in accordance with the product rule. In the
second term, for instance, this action is

Vo) y(x) = Y[V -v(x)]+v(x) - [Vi(x)].

If one retained only the first, or the second, term the operator con-
structed in this way would not be self-adjoint.

3. The examples given here raise the question of uniqueness in trans-
lating classical observables to self-adjoint operators. In essence, the
answer to this question is the following: In general, the transition
from a real function on phase space which might describe a clas-
sical observable, to a self-adjoint operator is not unique. That is to
say, it may happen that there is more than one such operator cor-
responding to the given classical function on phase space. In such
cases a further principle fixing the choice may be necessary. In itself,



this statement will not surprise the reader because quantum mechan-
ics is expected to be the embracing theory which contains classical
mechanics as a limiting case.

The dynamical variables relevant for point-like particles, as a rule,
are polynomials in x and p, whose degree is smaller than or equal
to 2. For functions of this type there is generally only one way of
choosing a self-adjoint operator. Thus, it seems that in cases relevant
in practice, the translation leads to a uniquely defined operator.

. The property of self-adjointness (1.64) or (1.65) implies that for two
different elements ¢,, ¢, of LZ(R>) one has

/ &Ex g, Fp, = f &Ex (Fom)*en
or, when written in terms of scalar products,

(©m» Fon) = (Fom, ©n) = (@, F@m)* .

The proof will be given below when further mathematical tools will
be available. Note that in general (¢, Fp,) are complex numbers,
in contrast to the expectation values (¢, Fg,,) which are real. We
know by now that in physics this second example describes the re-
sult of a large number of measurements of the observable F in the
state described by ¢,,. The possibly complex number (¢, F@,),
with m # n, will enter the calculation of the probability of the state
¢n to make a transition to the state ¢,, under the action of the ob-
servable F.

. A specific example that we study in the next section will illustrate
a general property of the space of functions L>(R3): this space can
be described by means of a basis of functions

{on@)n=1,2...}.

A basis of this type spans the space L?(IR?), in a sense known from
linear algebra. If this is so the numbers (¢,,, Fg,) are the entries of
an infinite-dimensional matrix

Fon = (@m, Fon) ,

which is hermitean'?, which is to say that its entries fulfill the rela-
tions F,, = F,,.

. All operators listed in the table are linear, i.e. with ¢, and ¢, ele-
ments of L>(R?) and with arbitrary complex constants cj, ¢y, they
fulfill

F(cip1 +ca92) = c1 For + 2 Foa c1,c2€C,
o1, 92 € LA(R?). (1.66)

The class of linear operators plays a central role in quantum mechan-
ics. Linear operators are used not only for describing observables (in
which case they must be self-adjoint) but also for the analogues of

1.5 Expectation Values and Observables

13 Called so after Charles Hermite (1822—
1901), the French mathematician.
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classical canonical transformations (in which case they are unitary).
In the context of time reversal, or reversal of motion, we will also
encounter antilinear operators. These are operators for which (1.66)
is replaced by

F(cig1+c292) = Fp1 + 3 Fp) . (1.67)

Note that the right-hand side contains the complex conjugate c-num-
bers.

Returning to the Schrodinger equation (1.59) one sees that, indeed,
it has the general form

ih(t, x) = Hy(t, x) |, (1.68)

where H is the self-adjoint Hamilton operator, or Hamiltonian for
short, which is obtained from the classical Hamiltonian function by the
procedure described above. As an example consider the Hamiltonian
function (1.50) which describes the electron in external fields. In accord
with the first remark above it is replaced by the self-adjoint Hamilton
operator

1 /(A e \?
H=—-V—-A4] +e® (1.69)
2m \ 1 c
1 I I 2
= (-RA—-5V.A-"°A4.V+E A ) +eo .
2m ic ic c?

Note, in particular, the replacement of p - A by half the sum of p- A and
A - p, needed to make H hermitean.

1.5.2 Ehrenfest’s Theorem

Let F be a hermitean operator, defined on the space L?(R?) of complex,
square integrable functions, and which corresponds to a classical, pos-
sibly time dependent, observable F(t,x, p). Let (F) be its expectation
value in some state v which is a solution of the Schrodinger equation
(1.68) with the Hamiltonian

hZ
H= (—— AU, x)) .
2m

By making use of the equations
i

H *
h w

. i e
1//=—ﬁH1/f and ¢" =
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the time derivative of the expectation value is expressed in terms of the
commutator of the Hamiltonian and the observable as follows

d 9 s
a<F>_T+/dx{wFwww}

_E) 1 B utiHE —
=— +h/dx1p{HF FHY

— () L m,
S\ae/ R
The second term of the integral initially contains the factor (Hy*) (F).
The operator H is moved to the right of ¥*, without further change,
because it is self-adjoint.
I insert here an important remark: The same equation applies also to
the time derivative of arbitrary matrix elements of F

(@m» Fon) 2/ &x gt Fon,

so that we may write it as an identity relating operators,
dF—8F+i[HF] (1.70)
d & h ’

(This conclusion may need a more careful mathematical analysis,

though.) This equation is said to be the Heisenberg equation of mo-

tion. It has a striking similarity to a well-known equation of classical
mechanics,

dF(t, x, p)

([Scheck (2005)], Sect. 2.32), in which {-,-} denotes the Poisson bracket

dF(f )
., » Xy
TR

df dg df dg
(fg)=oo -
dpi dq'  9q' Ip;
Apparently, in the process of quantization the Poisson bracket of the
Hamiltonian function H with the observable F is replaced by the com-

mutator of the Hamiltonian H with the operator F according to the rule
(H.F} < +[H. F]. (1.71)

The constant & which appears in the denominator is perhaps not too
surprising in the light of the following remark: Strictly speaking, the
analogy should be formulated the other way around, quantum mech-
anics being expected to be the more general framework that embraces
classical mechanics. Suppose we expand the commutator [H, F], as
well as the operators H und F themselves in powers of A. At order (7)°
we will obtain the commutator of two ordinary functions which, of
course, vanishes. The order (h)l, however, will contain first derivatives
which do not commute and which are likely to be the ones appearing in
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the Poisson bracket. The factor 1/A drops out and so does the factor i
because momenta are replaced by —i times first derivatives.
There is an application of the equation proven above, viz.

B =)+ (1 )
" \a|/ n"— =1
which is of special importance for physics:

Ehrenfest’s Theorem: The expectation values of position and mo-
mentum in a quantum mechanical system which corresponds to
a classical Hamiltonian system of mechanics, satisfy the classical
equations of motion. In the case of a single particle described by

H=p*/(2m)+U(t, x)

the equations of motion read

%(,_c): % (p). (1.72)
%(2) =—(vU). (1.73)

For the sake of clarity, and as an exception, we distinguished for a while
the functions H, F, on phase space, and the operators H, F, respect-
ively. From here on we return to the former, less pedantic notation.

Proof of the theorem

Neither the position operator nor the momentum operator depend on
time. In calculating the commutators of the Hamiltonian with these two
operators we make use, for the former, of the formula

[A2, B]= AAB— BAA = A[A, B]+[A, B]A

and obtain
(1= a1 = Lol
- 2m = 2m i
so that
i 1
ﬁ[ﬂ’ x| = p

Taking the expectation value of this result proves the first part (1.72) of
the theorem. For the proof of its second part one calculates the commu-
tator

(H. p] hoU i (H. p] VU

s P =T, or — s = — .

- El 1 ox? h — E

Inserting this result into the expectation value proves the second
half (1.73) of the theorem.
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1.6 A Discrete Spectrum:
Harmonic Oscillator in one Dimension

If a particle moves in an attractive potential U(x) there may exist bound
states. In classical physics this will happen whenever the particle is
“caught” in a potential well, i.e. if the function U is locally concave
and if the energy is chosen such that the particle cannot escape to spa-
tial infinity. Figure 1.6 shows an example for U(x) in one dimension,
though of no particular physical significance, which illustrates what we
mean by this.

For the examples of the one-dimensional harmonic oscillator and of
the spherical oscillator where

1
Ukx) = Ema)zx2 ,

1
U(r) = Emwzrz, (r=1x)),

respectively, the particle is caught for any value of the energy E, and all
states are bound states. In the case of the attractive Coulomb potential

Ur)=—-2 with r=lx|. a>0,
r

bound states, i.e. finite (classical) orbits occur only for negative en-
ergies, £ < 0. A particle on an orbit with positive energy possesses
enough kinetic energy for escaping to infinity and, hence, is not bound.

E
103 Eo
U(x)
E /
102 !
10,1
X
2 g, 4 6 8 10 12

Fig. 1.6. Example of a potential in one
space dimension which classically al-
+-0,2 lows both for finite, bound orbits, and
for unbound trajectories on which the
particle can escape to infinity. Classi-
+-0,3 cally, the particle is confined whenever
it moves within the potential well on
the left of the picture
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4 This was not possible in the case
of the classical oscillator which does
not contain the dimensionful constant h.
Only in the example of the plane math-
ematical pendulum was there a refer-
ence energy, mgt.

In intervals of the energy where there are classical finite orbits the
corresponding quantum system may (but need not have) bound states. If
such states exist they belong to discrete values of the energy. The rea-
son for this to happen is that bound states must have localized, square
integrable wave functions. In general, Born’s boundary condition will be
satisfied, in the most favourable cases, only for selected, discrete values
of the energy. In the cases of the one-dimensional oscillator and of the
spherical oscillator all states are bound states, the energy spectrum is
found to be a fully discrete spectrum.

In the case of the attractive Coulomb potential there are bound states
and discrete energies only if E < 0, while states with positive energy
are not bound and can take any value E > 0 of the energy. The cor-
responding quantum mechanical energy spectrum consists of a discrete
part (E < 0), and a continuous part (E > 0). One says that this system
has a mixed spectrum.

In examples such as the repulsive Coulomb potential, or the spe-
cial case U =0, there are no bound states, neither in classical nor in
quantum mechanics. The spectrum then is fully continuous.

This section deals with a simple but especially important example
for a fully discrete spectrum: the harmonic oscillator in one dimension.
The hydrogen atom as an important example of a mixed spectrum, will
be analyzed in Sect.1.9.5. The case of the fully continuous spectrum
will be illustrated by the study of plane waves in Sect. 1.8.4.

We return to the one-dimensional form of the Schrodinger equa-
tion (1.68), insert the Hamiltonian

[ L WP
= TIma T2
and choose the stationary form of solutions

Y(t, x) = e VMEp(x) .

Equation (1.60) then takes the form
2 /" 1 2.2 _
—>—¢ (%) + smax“p(x) = Ep(x) (%)
2m 2
The constants A, m, and w are combined to a reference energy and a ref-
erence length, respectively, as follows
h
hw and b:=, —.

mo
This suggests to replace both the energy and the variable x by dimen-
sionless variables
X
&:=— and =,

hw T
respectively.!* As one verifies immediately the stationary differential
equation (k) takes the simple form

— @ (u) +uPp(u) = 2e0(u) . (%)
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For simplicity we keep the same symbol for the unknown function but
we write explicitly its dependence on the dimensionless variable u. The
problem to be solved is well defined: find all solutions of this ordinary
differential equation of second order which are everywhere finite and
square integrable, and determine those values of ¢ for which such solu-
tions exist. Instead of attacking the problem directly we use a seemingly
innocent trick which will turn out to be instructive, from the perspective
of physics, and will allow for alternative physical interpretations. Define
two differential operators

1 d 1 d
T (e — V= — [ x—p2—
a —ﬁ(u du)_bﬁ <x b dx) , (1.74)

_ L d 1 ) d
a.—ﬁ<u+du) b\/_( +b > (1.75)

Neither of these operators is self-adjoint. Indeed, while id/du has this
property, d/du without the factor i does not. In turn, partial integration
shows that

i) ((2)er)

If two operators A and A* have the same domain of definition £ and
if
(¢, Ap) = (A*p,p) forall ¢eD,

the operator A* is said to be the adjoint operator of A. In this case
one also has (A*)* = A, i.e. A is the adjoint of A*. Thus, the opera-
tors A = d/ du and A* = —d/ du are adjomts of one another. The same
property is shared by the pair a and af. If these operators were matri-
ces the hermitean conjugate of M would be denoted by M  — hence the
notation in (1.74) and (1.75).1

The product ata is calculated as follows. Using the product rule for
differentials in the second term one finds

L1, d ut d d V(o d?
ada=-\v"——u+u———=|=-(u"—-1—-——5] .
2 du du  du? 2 du?

Thus, the differential equation (xx) takes the simple form

1
<aTa + 5) o(u) =ep(u) . (k%)
Note that the Hamiltonian now becomes remarkably simple, viz.
1
H= hw( a+ 2) (1.76)

In much the same way one calculates the product aa’ of the two oper-
ators in the alternative order. One finds

P I ¢
aa M — = .
2 du?

151n the mathematical literature adjoints
are usually denoted by a “star”, while
complex conjugates are marked with an
“over-bar”. In the literature on quantum
physics the star is traditionally used for
complex conjugates, the “dagger” for
adjoints, the over-bar being needed in
the theory of Dirac spinors.

55



56

Quantum Mechanics of Point Particles

This and the previous result combined give the important commutator

[a,a']=aa’ —ala=1]|, (1.77)
supplemented by the obvious relations
[a,a] =0, [aT,aT]zo.

As the next step one shows that if ¢(u) is a solution of (« ) pertain-
ing to the eigenvalue ¢ then the functions obtained from ¢ by the action
of a' or of a, are also solutions and pertain to the eigenvalues &+ 1 and
& — 1, respectively. To see this take

1 1 1 3
(aTa + 5) (aTq)) = (aT(aTa +1)+ EaT) Y= (8 5 + 5) (a'p)

=(+1)aly).

In the first step one replaces aa’ = afa+1 by means of (1.77), in the
second step we use the Schrodinger equation in the form of (%) and
insert afap = (¢ — 1/2)¢p. This shows that the wave function (a¢) is
a solution and pertains to the eigenvalue &+ 1.

In much the same way one verifies that

(a*a + %) (ag) = (e — 1)(ag)

This shows that (ag), if it does not vanish identically, is also a solution
and belongs to the eigenvalue ¢ — 1. In other terms, by applying repeat-
edly the raising operator al to a given solution ¢ with eigenvalue &
one generates an infinite series of new solutions which belong to the
eigenvalues

e+1,e+2,e+3,....

Alternatively, one may apply the lowering operator a to the same solu-
tion ¢ and generate a series of further solutions with eigenvalues

e—1,e—-2,...,

except for the case where (ag) vanishes identically. Indeed, one finds
that this series stops after finitely many steps downward. The small-
est value of ¢ is g9 = 1/2, all eigenvalues are contained in the formula
en=1/24+n withn e Ny,i.e.n=0,1,2,.... In order to show this, one
proves two properties:

1. All admissible values of ¢ must be positive: Making use of ()
one calculates the integral

+o00 1 +oo
/ du¢*<u>a*a¢(u>=(e—5) / du ¢* (u)g(u)

+00
_ 1 d 2
—<s—2)/ u lp)|?.
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By partial integration, the operator a! is moved in front of ¢*(u) so
that the integral becomes

+00 +00
/ du [ap(u)]*[agp(u)] = / du [[apu)]|* >0,

and is found to be positive semi-definite. This is compatible with
the previous expression only if the factor (¢ —1/2) in front of the
integral is greater than or equal to zero, i.e. if ¢ > 1/2.

2. The eigenfunction pertaining to the lowest eigenvalue gy must fulfill
the relation [ag(u)] = 0: If this were not so then also (agg) would
be a solution with eigenvalue ¢g — I — in contradiction to the assump-
tion which was that 9 should be the lowest eigenvalue.

As a result we obtain the spectrum

—+1 i E, = +lh
e,=1|n 5 ) 1.e. n=1n > W,

neNg (n=0,1,2,...). (1.78)

Indeed, the lowest state has exactly the minimal energy which was
found to be marginally compatible with Heisenberg’s uncertainty
relation, cf. Sect. 1.2.3, Example 1.3. The remaining part of the spec-
trum is remarkably simple. All eigenvalues are equidistant, their
difference is given by the quantum of energy hw.

What is the shape of the corresponding eigenfunctions and what are
their properties? In order to answer these questions consider first the
ground state (g9 = 1/2, ¢p) whose wave function follows from the con-
dition

d
[apo(u)] =0, i.e. <u—|— d_> @o(u)=0.
u

One sees that @9 must be proportional to e /2, Returning to the di-
mensionful variable x, normalizing |¢(x)|? to 1, and making use of the
Gaussian integral of Sect. 1.3.3, one obtains the result

1 2002

Note that, generally, wave functions whose arguments are points in
d spatial dimensions, i.e. x € R?, and which are to be interpreted in
the spirit of Born’s postulate, must carry the physical dimension 1/L4/?
where L stands for “Length”. Thus, on R3 the dimension must be
1/L3/?, while in our one-dimensional example it must be 1/L!/2.

The higher states are generated from ¢ by repeated action of af, i.e.

En =n—|—% : @, =const aTaTaT---aTgoo

n times
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Defining the following polynomials, called Hermite polynomials

n

H,(u) := e’/2 (u - d£> e /2 = /2 (ﬁaT)n e_”2/2,
u

(1.80)

the eigenfunctions are seen to be given by

@n(x) = Ny e_xz/(%z)]"]n (%) .
The factor N,, must be determined such that |, (x)|? is normalized to 1.
Before turning to the calculation of N, we collect a few properties of
the polynomials defined in (1.80).

Hermite Polynomials:

1. H,(u) is a real polynomial of degree n, the coefficient of u" is 2".
This is seen as follows
n

e142/2 (u _ di>n e—L12/2 — Z <n>(_)mun—m eL12/2 ddn:n e—u2/2
u m u

m=0
— Z <n)(_)munm euz/Z((_)mum + .. .)efuz/Z
m=0 m
- [Z (”)] WOy =2+ O .
m=0 n

2. There is an equivalent definition that one finds in some books on
special functions, viz.

d n
Hy(u) = eu2 <_d_> efuz .
u

The equivalence to the formula given above can be verified as fol-
lows

2 d\” 2 2 2 d 25" 2
el /2 (u_ d_) e ! /2 _ el |:eu /2 <M— d_) el /2:| e !
u u
2 d\" 2
= e” (—d—> e_” .
u

The first step becomes obvious when one writes the factors of the
square brackets [...]" side by side. In a second step one notes that

u — d/du when acting on e’/ 2, gives zero so that, by the product
rule, only the derivative —d/du survives, acting to the right.
3. The first six polynomials are

Ho(u) =1, H3(u) = 8u® — 12u,
Hi(u) =2u, Hi(u) = 16u* —48u% + 12,
Hy(u) =4u*>—2,  Hs(u)=32u’ —160u> 4+ 120u .



1.6 A Discrete Spectrum: Harmonic Oscillator in one Dimension 59

4. Replacing u by —u, one sees that
Hy(—u) = (=)"Hy(u) .

The polynomials of even order are even under space reflection (or
parity) IT : x — —x, polynomials of odd order are odd.
5. The Hermite polynomials are orthogonal to one another in the fol-
lowing, generalized sense:
oo

/ du Hm(u)Hn(u)e_“2 =0 forall m#n. (1.81)
—0o0
This new kind of orthogonality will be a separate subject in the next
section. Here a most direct way of proving orthogonality is to make
use of the Schrodinger equation in the form of () and to use the her-
miticity of H. If m # n then also E,, # E,. Multiplying the equation

Hg, = E, ¢, by ¢}, from the left and integrating over all space, one
obtains, in a short-hand notation,

(@m» Hpp) = En(@m, ©n) = (How, ¢n) -

In the second step the self-adjoint operator H is shifted to ¢, by
partial integration. As ¢, is a solution with energy E,,, too, and as
E,, is real, the right-hand side may be continued as follows:

(Hom, ) = En(@m, on) .

As the energies E, and E, are assumed to be different, these
equations are compatible only if (¢, ¢,) = 0. This is precisely the
claim (1.81).

In the next section we prove further properties of Hermite polynomi-
als which also apply to other, similarly defined sets of polynomials,
in a more general framework.

6. For many practical calculations and in various applications it is
useful to introduce a generating function for Hermite polynomials.
Generally speaking, one talks about a generating function of the set
of polynomials {P,(#),n =0, 1, ...} if there is a function g(u, ) of
two variables # and ¢ such that

o
g, )=y ay P (u)t" (1.82)
n=0
with given constant coefficients a,. In many cases the polynomials
of a given class are defined by giving the generating function and
the coefficients.
Here we do not proceed in this way. Instead, we start from the ex-
pression given in Remark 2 above which followed from a physical
argument, and derive a generating function for Hermite polynomials.
As one easily sees

d" d*
[F e_(’_“)z} = () e
u (=0 du
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so that the Hermite polynomials can be transformed to
Hy(u) = ¢ & :
du” (=0

Function theory teaches us that the n-th derivative of an analytic
function at the point zg can be expressed by the integral

(= M f2)
/ (ZO)_Zﬂiyg(z—zo)”“ o

taken over a closed contour which encloses the point zg once and
with counter-clockwise orientation. Taking zo =0 and using f(z) =
exp[—(z — u)?] yields
2 n! e=G-w? n! e’ =(-w?
O ——F—dz= - ———
2771 ZrH—l 2771 % Zn+1

Construct then the series

o0 o0 2 2
1 1 el mEmT L\ "
—H,(u)t" = — —1-) d
2 " =523 Z <z) ‘
n=0 n=0
2 2
1 el —(z—u)
= — —dZ:e
2mi z—t

dz.

2 (42 _42
u-—(t u):e2tut’

where in the last step Cauchy’s integral theorem was used. This
shows that, indeed,

2
eZzu t

g(u, 1) =

is a generating function for Hermite polynomials.

It remains to determine the normalization factor N, for arbi-
trary n. An elegant way of calculating this normalization consists in
first choosing the constant in

@n = const (a)" @

such that ¢, is normalized in the same way as ¢p. Instead of using
an explicit notation containing the integral over x, I use the same
short-hand notation as in (1.63). In one dimension it reads

o0

(p. Fp) = / dx @™ (x) Fo(x) .

—00

By n-fold partial integration one has
(@n ¢n) = const.((a)"go. (a")" @) = const.(¢o, (@)" (@) ).

The expectation value on the right-hand side,

(po,aa---adal---al @)

n n
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is calculated by inserting repeatedly the commutator (1.77), aa’ =
ala+1, such as to shift the right-most operator a past all opera-
tors af, until it hits ¢o. This last term vanishes because a annihi-
lates ¢p. The commutation of neighbours yields n times the 1 and
there remains

cvcada gl
n(go,aa---aa'a a' ¢o) .
(n—1) (n—1)
Let then the second operator a migrate, by commutation with its
neighbours, as far right as possible. This time one obtains a fac-
tor (n —1). This process is continued until all @ are taken to the right
of all af. At the end of this procedure there remains the factor
nn—1)n-2)---1=n!,
showing that
1
_ Lty
@n m(a )" ¢o

is normalized to 1. Inserting then the formula (1.79) for ¢o and the
definition (1.80) of Hermite polynomials shows that the wave func-
tions

W= L ey (f) (1.83)
on b1/ /7172y "\b .

are correctly normalized. From this result and from the result (1.81)
we conclude that the solutions ¢, are normalized and orthogonal (in
the generalized sense), or, for short, that they are orthonormal,

(©ms on) = / dx ¢y, (X)@n(x) = S -

—0o0

Note that in the case we discuss here the solutions ¢, can be chosen
real. Thus, there is no need for the complex conjugation mark on the
left function. As one sees immediately, if ¢,, is a solution then also
all functions

{“@mla e R}
are solutions with the same eigenvalue E,,. These alternative eigen-
functions are indistinguishable as far as physics is concerned. No
expectation value, i. e. no result of any real measurement, is modified
by the phase factor. The more general question as to when solutions
of the Schrodinger equation can be chosen real is related to the be-
haviour of the solutions with respect to time reversal.

The wave function of the lowest state is written down in (1.79).
The three solutions of (x) which follow this one and which are nor-
malized to 1 read explicitly:

V2 (x) e/ (1.84)

O = i
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Fig.1.7. Graphs of the wave func-
tions (1.79), (1.84)—(1.86) pertaining to
energy eigenvalues Eg = hw/2, E| =
3hw/2, Ey =5hw/2, and E3 = Thw/2
of the harmonic oscillator in one di-
mension, respectively, as a function
of u=x/b

_ ! )2 —x2/(20?)

O = T [4 (;) ‘2} ¢ ’ (1.85)
- 1 X 3 X 7X2/(2b2)

OO = A Al [8 ;) —12(2;'>] e - (1.8)

Figure 1.7 shows the graphs of ¢g up to ¢3. This picture shows
a striking pattern regarding the number and the position of the zeroes
on which we comment in the next section, in a more general con-
text. Figure 1.8 shows the graphs of the probability densities |¢, |,
n=0,1,2,3.

Remark A Representation of the Heisenberg Algebra

The action of the raising and lowering operators on a given wave func-
tion ¢, follows from the normalization (¢g, o) = 1 derived above
1
n=-—==al-alg.

\/;’l ! [S———
n

They are found to be as follows

aT(pn = \/;l+1-§0n+1 s apn = \/;{(Pn—l .

(©m» aTWn) = \/;1 + 1-8m,n+l s (Om, apn) = \/;i.(sm,nfl .
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Fig. 1.8. Squares of the wave functions
shown in Fig. 1.7. These are the proba-
bility densities in the four lowest oscil-
lator states

It is instructive to calculate the matrices of the position and the momen-
tum operators from these elements. By inverting (1.74) and (1.75) one

obtains
1
qsx:,/zmhw(aT—Fa):bﬁ(au—a),
p_idx_ 210t a_bﬁa a),

where b = \/h/(mw), as before.

Denoting the matrix representations of ¢ and p by {¢} and {p}, re-
spectively, and numbering rows and columns by n =0,1,2,..., one
finds
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V2 0 ﬁ:::
0 V3

0 0

0 —v2 0

0

We calculate the commutator of p and g by taking the commutator of
these matrices. The result has a very simple structure

o h
[{p},{q}]=§i 0 -2...=-1.
. .. 1

This result is nothing else than a matrix representation of the rela-
tion (1.36). Thus, it is equivalent to the commutator in coordinate space

[ha } h
Ta X =T
10x i

The set of operators {qi, prli,k=1,..., f}, endowed with the prod-
uct defined by the commutator, [-,-], and which fulfill the fundamental
commutators

. h
l¢'. ¢ 1=0,  [pi,pk1=0,  I[pi.d"1= ;85‘

is called the Heisenberg algebra. This algebra is the analogue of the
fundamental algebra of Poisson brackets

g d"V =0, (pip)=0, I(pi,d")=5F,

well-known from mechanics (s. [Scheck (2005)], Sect.2.31).

The matrices that were computed above belong to what is called
a representation. These matrices are infinite-dimensional and span a par-
ticular representation of the Heisenberg algebra in one space dimension.
They are interesting both for a historical and a mathematical reason.

Heisenberg developed his version of quantum mechanics in pre-
cisely this form. For this reason, in the early development of quan-
tum mechanics, Heisenberg’s approach was called matrix mechanics.
It was E. Schrodinger who subsequently proved the equivalence of
matrix mechanics to the wave mechanics developed by him and by
L. de Broglie.

From a mathematical point of view our example is interesting be-
cause it illustrates the fact that the Heisenberg algebra has no physically
relevant finite-dimensional matrix representations. It can neither be real-
ized by finite-dimensional matrices nor by bounded operators (see, e. g.,
[Thirring (1981)], [Blanchard and Briining (2003)]).
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1.7 Orthogonal Polynomials in One Real Variable

The properties of Hermite polynomials that we discovered in the con-
text of the harmonic oscillator, are so important and at the same time
so general that we wish to place them in a larger framework and de-
rive and discuss them in greater generality. In this context, the notion
of generalized orthogonality that appeared in the example (1.81) is of
paramount importance:

Definition 1.4 Generalized Orthogonality

Assume the following data to be given

1. an interval I = [a, b] C R on the real axis and

2. a positive-semidefinite function o : R — R which is strictly posi-
tive on I, and whose growth for large absolute values of x is
moderate, or, expressed in symbols,

ox)>0 VxeR, ox) >0 Vxela,b],

o) e < < o0 for appropriately chosen @, V x.

The function g is called the density, or weight function. An infinite

sequence of polynomials Py(x), k=0,1,2,..., constructed in such
a way that
b
/ dx 0(x) Py (x) Py (X) = S (1.87)
a

is said to be orthogonal and normalized with respect to the interval
[a, b] and the weight function o(x).

A special feature of this definition is that there exists an explicit pro-
cedure of constructing this sequence of polynomials, for given interval /
and weight function p. For any pair (/, o) (obeying certain conditions)
there is a set of orthogonal polynomials. Once these polynomials are
constructed one defines the functions

@k =+ 0(x) Pr(x) (1.88)

(which, in general, are no longer polynomials) and concludes that they
are orthogonal and normalized, in a generalized sense, viz.

b
(@m> o) = / dxw;(x)gﬂn(x) = Omn - (1.89)

(For the time being we only consider real polynomials and, therefore,
real functions. It then makes no difference whether we write ¢’ or ¢,
in the integral. We keep the complex conjugation of the left factor in
view of the more general case of complex valued functions.)

65



66

Quantum Mechanics of Point Particles

Construction of the Polynomials (Gram-Schmidt Method)
Let the symbol (f, g) denote the integral (1.89) over the interval [a, b].
Define

gk () := o(x) x, k=0,1,2,... and

fo =g, AKX =g - %ﬁm .
One verifies that (fi, fo) =0 and that
(i 0 = Ggro g — S8
R I

Furthermore, one defines

_ _ (fo.82) . (f1.82)
R0 =at) = o G

and verifies that ( f2, fo) =0 and (f2, f1) = 0. This construction is con-
tinued so that, for arbitrary k,

— (i g0
Jie(x) = gr(x) — ’
2 i
One confirms that all previously defined functions with /=0, 1, ...,
k —1, are orthogonal to fi, (fx, fi) =0.
By construction (f;, f,) > 0. It follows that the functions

Jn(X)
N (ns fn)

are orthogonal and normalized to 1. The weight function, by assump-
tion, is strictly positive on the interval /. Therefore, by dividing by the
square root of the weight function, one obtains the orthogonal polyno-
mials that were to be constructed,

@n(x)

Vo)

The construction just described implies

Lemma 1.1

Let O, (x) be a polynomial of degree m. This polynomial can be
expressed as a linear combination of the orthogonal polynomials con-
structed above,

Jilx).

on(x) ==

Py(x) =

(1.90)

OQn(¥) =) aPix).

=0
For all degrees n > m one has

b
/de(x)Qm(x)Pn(x)=0, (n>m).
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Examining once more Fig. 1.7 which shows the first four Hermite
polynomials, two properties are striking: the number and the position
of the zeroes. The function ¢y has no zero at all, ¢; has exactly one
zero, ¢, has two, and ¢3 has three zeroes. Furthermore, these zeroes
are entangled: the zero of ¢; lies between the two zeroes of ¢,, while
those of ¢, lie between the zeroes of ¢3. Even though Fig. 1.7 shows the
wave functions of the harmonic oscillator, not the Hermite polynomi-
als proper, this observation applies also to the latter. This remark hints
at a general property of all orthogonal polynomials as clarified by the
following two theorems. Recall that a real polynomial of degree n has
n zeroes. In case some of these are not real, the complex zeroes occur
in pairs of complex conjugate values (fundamental theorem of analysis).

Theorem 1.1

The polynomial P,(x) has exactly n real simple zeroes in the in-
terval I = [a, b].

Theorem 1.2

The zeroes of P,_1(x) separate the zeroes of P,(x). In other
terms, given two neighbouring zeroes of P,(x), there is exactly one
zero of P, _; which lies between the two.

The proof of Theorem 1.1 constructs a contradiction: Consider all
real zeroes of odd order of P,(x) (that is, the simple, triple, etc. zeroes)
situated at the points «;, with

o <ap <---<ay.

Assume that /4 is smaller than n. From these construct an auxiliary poly-
nomial

On(x) =(@x—a)x—az) - (x—an).

On the whole interval I the product of this auxiliary polynomial and
of P, has the property: either Q) (x)P,(x) = 0 or Qp(x)P,(x) < 0. Ob-
viously, it does not vanish identically. Therefore, the integral over I,

b
/ dx 0(x) On (x) Pp(x)

is either positive or negative but is not equal to zero. This contra-
dicts Lemma 1.1, except if 7 = n. This proves Theorem 1.1.
The proof of Theorem 1.2 rests on two lemmata:

The polynomial Qg (X, x) = Pr(x)+ A Pr—1(x) has exactly k real and
simple zeroes for all real A.
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The number of real zeroes of Qy(A, x) either is k, or is smaller than or
equal to (k—2). Assume Qy to have the following real zeroes of odd
order

A <oy <---<ap Wwith h<k-—-2.
Using these values construct another auxiliary polynomial,
Rp(x) = (x —a)(x —az) - - - (x —ap) -

Again, for the product one concludes that Rp(x)Qk(A,x) >0 or
Ry (x) Ok (A, x) <0, for all x. This contradicts Lemma 1.1 which implies
that

b
/ dx Ry (x) Qk(2, x) =0.

The contradiction is avoided only if & = k. This shows that Lemma 1.2
holds true.

There is no point x; € I, where both P(x;) =0 and Pr_1(x;) =0.

If there were such a point one would have Qi(A,x = x;) =0 for

all A. One could then choose
Pl(x;)

P 12_ 1(xi) ’
and would conclude that Q¢ (Ao, x = x;) =0 and Q}C(ko, x=x;)=0.In
other terms, this polynomial would have a double zero in x; — in con-
tradiction to Lemma 1.2.

One then proves Theorem 1.2 as follows: Suppose the theorem is not

true. Then there must be two zeroes o and B of P,(x), P,(a) =0=
P,(B) with o < B, such that

P,(x) #0 for all x € («,8) and
P,_1(x) #0 for all x € [a, B].

For all x € [«, B] the polynomial Q, (X, x) = P,(x) + A P,—1(x) then has
the zero

Ao = —

Py (x)

Py_1(x) .

Furthermore, one has Ag(x =) = 0= Ao(x = B), but Lo(x) # 0 for all
x € (o, B). Therefore, the function Ag(x) has the same sign everywhere
in the open interval (¢, B), and it reaches an extremum in some point
xo € (a, B). At this point one has

dio(x)
dx

r(x) = —

=0.

X=x0
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Consider then the polynomial, vanishing by construction,
Qn(ho(x), x) = Py (x) +20(x) Pr—1(x) =0.

Taking its derivative with respect to x and choosing x = xg, one con-
cludes

0,,(ho(x0), x0) = P, (x0) + Ao(x0) Py_; (x0) =0,

Thus, Q,(Ao(x0), x) has a zero of second order at x = x. As this con-
tradicts Lemma 1.2 Theorem 1.2 is true.

The set of functions {¢,} is not only orthogonal (in the sense of Def-
inition 1.4) and normalized but is also complete. This notion is a direct
generalization of the notion of completeness for systems of base vectors
in finite-dimensional vector spaces. The precise definition is the follow-
ing:

Definition 1.5

A set of orthonormal functions {¢,} is said to be complete, if every
square integrable function A(x) for which (¢,,h) =0 for all n,
vanishes identically. This is equivalent to the statement that square
integrable functions f(x) can be expanded in the basis of func-
tions {@;,}.

The statement made in this definition is proved by means of function
theory. If (¢,, h) =0 Vn then

b

/ dx /o(x)x"h(x) =0.

a

This is so because x" can be written as a linear combination of P
to P,. Consider then the complex function

b
F(p) = / dx /o(x)h(x)eP* .

As this function is analytic'® one calculates its derivatives by differen-
tiating the integrand with respect to p,

b
F™ (p):= / dx /o(x)h(x)x™ e'P*

Specializing to the point p = 0 one has

b
F™(0) := / dx /o(x)h(x)x™ =0 forall m.

1610 cases where the interval I = [a, b]
extends to infinity, F(p) is defined only
for | Im p| < o where « is the parameter
that controls the growth of the weight
function o(x), cf. Definition 1.4.
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Thus, F(p) vanishes identically and so does the integrand /o(x)h(x).
As g is strictly positive on the interval one concludes that /(x) vanishes
identically.

Example 1.6
The set of Hermite polynomials H,(u) is orthogonal on the inter-
val (—o00, +00) and with the weight function e™ . Dividing them by

A/ 71/22m5) renders them normalized to 1. The two theorems on the ze-
roes are illustrated by Fig. 1.7.

Example 1.7

Choose the interval (¢ = —1,b =1) and the weight function o(x) =
O(x —a) — O(x —Db), i.e. such that it equals 1 on the interval but van-
ishes outside. The Gram—Schmidt procedure then yields the Legendre
polynomials P;(x = cos#) with 0 <6 <. Traditionally the Legendre
polynomials are not normalized to 1. Rather, they are defined in such
a way that Pi(x=1)= P(@=0)=1 for all values of /. There are
general formulae for Legendre polynomials (such as the formula of Ro-
drigues). Nevertheless, it may be a good exercise to construct, say, the
first six of them explicitly, by means of the Gram—Schmidt procedure.
(The reader is encouraged to do so!) One finds

1 1
P =1, Pix)=x, P(0)=2(3x"=1), Ps(x) = (5x"=3),
1 4 2 1 5 3
Ps(x) = §(35x —30x“+3), Ps(x)= §(63x —70x” 4+15x) .
Some of their general properties are
P =1, P(—x) = (=)' P(x), Pr41(0) =0.

If we supplement them by the factor /(2] 4 1)/2, the Legendre polyno-
mials are normalized to 1,

+1
21+ 1 2 +1
f dx\/ Pl(x)\/ Pr(x) =04y .
2 2
21

Figure 1.9 illustrates the theorems on their zeroes and shows some
examples of normalized polynomials /(2[4 1)/2P;(x) in the interval
[—1,+1].

Every function f(0) which is regular in the interval 0 <6 < can
be expanded in terms of Legendre polynomials:

fO) =" c1Pi(cosb). (1.91)
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Fig.1.9. Graphs of the first six Leg-
! endre polynomials, normalized to 1,
as functions of x =cos@, this means
that Py(x) = /(£ +1/2) Pe(x) are plot-
ted here

With x =cos0, dx = —sinfdf, and with the normalization described
above, the expansion coefficients are given by

20+1 .
= > sinfdé Pj(cos6) f(0) . (1.92)
0
We will meet further examples of orthogonal polynomials in later
sections.

1. The results of this section lead to a better understanding of the
quantized harmonic oscillator that we studied in Sect. 1.6 in great
detail. Since the Hermite polynomials are not only orthogonal but
also complete, the wave functions (1.83) provide a complete and or-
thonormal system of functions. They span an infinite-dimensional
space of functions, the space of square integrable functions L?(R)
over R!. Every element of this space can be expanded in terms of
the ¢,.

2. It is the property of completeness, Definition 1.5, which justifies,
a posteriori, calling the integral

(@m> on) = / dx (0:1()6)(0”()6) = dmn

a scalar product. Indeed, an integral of this type fulfills all condi-
tions imposed on a scalar product: If the functions ¢, are real or
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7Both expressions are derived from
their German names, where “eigen”
stands for “proper”. In French eigenval-
ues are called valeurs propres, eigen-
functions, or eigenvectors are called
fonctions/vecteurs propres.

can be chosen real (this was the case for the harmonic oscillator) the
product is symmetric. If they are complex one has the relation

(@n, Om) = (@m, on)" .

The product (¢, ¢,) is nondegenerate because any f for which
(¢n, f) =0 for all n, vanishes identically.

3. Their is a great deal of analogy to linear algebra of finite-dimensional
vector spaces. If we compare the expansion of an element ve V in a
d-dimensional vector space in terms of a basis ¢;, with the expansion
of a function f € L%(R) in terms of the basis ¢, i.e

d 00
v= Z cie; with  f(x) = Z Ckpi(x)
i=1 k=0

then the roles of the expansion coefficients and of the bases are
seen to be the same. Also the rules by which the coefficients are
calculated from the scalar products of v and f with ¢; and ¢,, re-
spectively, are very similar.

Of course, there are significant differences to the case of finite-
dimensional vector spaces when going over to infinite-dimensional
function spaces. To quote just one important difference, in the lat-
ter case the notion of convergence must be studied carefully. For the
moment, however, we emphasize the similarities because they are
helpful in visualizing the wave functions of a self-adjoint quantum
system.

1.8 Observables and Expectation Values

1.8.1 Observables With Nondegenerate Spectrum

Consider an observable F(p,x) which possesses a complete system of
orthonormal wave functions obeying the following differential equation,

h
F (P =7V x) @n(X) = Angp () . (1.93)

The (real) numbers A, are called eigenvalues, the wave functions ¢, (x)
are called eigenfunctions of the observable F(p, x), with ¢, being the
eigenfunction that belongs to the eigenvalue A,.!” This nomenclature
stems from linear algebra. For instance, every real, symmetric m X m-
matrix {M;;} has m real eigenvalues and eigenvectors both of which are
obtained by solving the linear system of equations

m
ZMikc,({n)zuncgn) n=1,2,...,m.
k=1



To quote an example from physics recall the inertia tensor J = {Jjt} in
mechanics of rigid bodies which is a real, symmetric 3 x 3-matrix. The
system of linear equations

3
k=1

yields the moments of inertia I1, I, I3, the eigenvalues of J, while the
corresponding eigenvectors w define the orthogonal directions of the
principal axes of inertia, i.e. those axes for which the angular velocity
and the angular momentum have the same direction.

For the sake of clarity, the definitions introduced above are summar-
ized as follows:

e Orthonormal: means that the eigenfunctions are mutually orthogonal
and, in view of their probabilistic interpretation, are normalized to 1,

(Pms Pn) = / d3x 0% (X)@n (X) = Spun -

o Nondegenerate: one says that a spectrum is nondegenerate if all
eigenvalues are different, A,, # A, for m # n. In other terms, this
means that for each eigenvalue there is exactly one eigenfunction ¢,,.
In turn, one will say that eigenvalues are degenerate whenever for
fixed n there is a sequence of eigenfunctions

(pn,l7 ©On,2, " (pn,k,, )

all of which obey the differential equation (1.93) for the same eigen-
value A,. We exclude this case for the moment but return to it, as
well as to its physical interpretation in Sect. 1.8.3.

o Completeness: One says that a set of orthonormal functions is com-
plete if every square integrable function can be expanded in terms of
its elements ¢,,

Y(t.x) =Y cn(pa(x) with

n=0
Cn(t)=/d3xq0;§(x)1ﬁ(t, x) = (¢n, Y)(@) . (1.94)

This series converges in the mean, that is to say, it converges in the

following sense

N
li a3 £, x)— Doy
Jim [ @ e Dt to)

n=

N
= 1i &x yl 2 - ) =o0.
Ngn@(/ x |yl n;‘)|cn| )

2

1.8 Observables and Expectation Values
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Here is an example for an operator with the properties just summar-
ized: Suppose F is the Hamiltonian of a harmonic oscillator in three
spatial dimensions,

2
He=—1" At mlad (! + 0362 + 30,
2m 2
the circular frequencies w; being chosen so that they are pairwise
relative irrational. Clearly, H can be written as the sum of three one-
dimensional operators with different frequencies. For the latter we can
use the results of Sect. 1.6. The spectrum of the eigenvalues of H reads

3
1
Enl,nz,ng = E (n,' + 5) hw; .
i=1

By assumption it is nondegenerate.

The (differential) operator F(p,x) is supposed to represent an ob-
servable and, therefore, must be self-adjoint. Indeed, if it has this
property then the eigenvalues are real:

(@n, Fop) = Ay = (Fou, o) =)\: ,

where we use the same argument as the one following (1.81).
As an example for a further property of self-adjoint operators we
prove the relation announced in Remark 3 in Sect. 1.5.1 for n # m,

(wm,Fcpn)E/d3x 05 Fon =/d3x (Fom)*on

= (Fom, ¢n) - (1.95)
Take ¥ = u@,+ve,, with arbitrary complex constant coefficients u, v € C
and consider G, somewhat more generally than hitherto, a self-adjoint

operator defined on the system of functions {¢,}.This observable G is
also defined on i and one has the relation

/ Pxy Gy — / Bx (G W = (W, Gy) — (G, ) = 0.

Inserting here the decomposition ¥ = ug, + vg,, yields

u*v [/ &x ¢ Gon —/ & (GQOn)*fﬂm]
+ uv* [/ d3x<p§;G<pn—/ &x (chm)*cpn] =0.

As u and v are arbitrary the two expressions in square brackets must
vanish independently. This proves the claim.

The eigenfunctions ¢, of the observable F provide a basis of the
infinite-dimensional space of square integrable functions. Another ob-
servable G can equally well be replaced by its matrix representation in
this basis,

Gun = (0m, Goy)



which inherits the property
Gmn =G,,, or, in matrix notation, G = Gh.

The matrix G equals the complex conjugate of its transposed. It is said
to be hermitean. The representation by an infinite-dimensional matrix is
equivalent to the representation by a differential operator. The matrix is
said to be hermitean, the operator is called self-adjoint. Because of this
equivalence the properties “hermitean” and ‘“‘self-adjoint™ are often used
as synonyms.

Let us return to the observable F whose eigenvalues and eigen-
functions are assumed to be known from (1.93). Suppose an arbitrary
physical state v is expanded as in (1.94). The norm of ¢ is obtained
from

fd3x W 0>=1=lea(0]”.
n=0

The expectation value of the observable F' in the state i is then given
by

(F)I/,:fd3x¢(t,x)*F¢(t,x):Z)»n|Cn(f)|2-

n=0

These formulae, together with Born’s interpretation of the wave function
suggest the following interpretation:

The set of eigenvalues XA, of the self-adjoint operator F is the set
of possible values that one will find in any particular single meas-
urement of the observable F. If the measurement of F is done on
a quantum mechanical state described by the wave function v, the
probability to find a specific eigenvalue A, is given by |c, OIS

This means in practice that if one performs measurements of F on
very many, identically prepared systems characterized by the wave func-
tion v, then in each individual measurement one will find one of the
eigenvalues A,. The set of all measurements will follow a distribution
of eigenvalues weighted with the probabilities |c,|>. The mean-square
deviation (1.31) of the observable F' in the state v is calculated from

2

AR =((F=(F) )y =Y lal? [ 2= 4 [ej] 2 | >0.
i=0 Jj=0

As a result for expectation values, that is, for the outcome of very many
individual measurements, this is a classical result. It can be compared
directly with the general statistical information of Sect. 1.2.1. If we set
w; = |c;|* this corresponds to what was called the discrete distribution

1.8 Observables and Expectation Values
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in Sect. 1.2.1. In particular, we can sharpen the observation made in re-
lation to (1.34): The mean square deviation of the observable F in the
state ¥ vanishes if and only if v is an eigenstate of F. In this case only
one of the coefficients, cg, has the absolute value 1, all others are equal
to zero,

ekl =1, cp,=0 foral n#k.

It is instructive to prove this statement as follows: We assume that
belongs to the domain on which F is defined, and that the result of
the action of F, ¢ = Fyr also belongs to that domain. Assume ¢ to be
different from zero. We then have

(F)y = PPy = (Fu Foy = 6. 9) and ()}, = (0. 9)°.

Therefore, the mean square deviation is

<F2>w—<F>fz/=([¢—<w,¢>x/f],¢) >0.

In the left entry of the scalar product the projection of ¢ onto ¥ is sub-
tracted from ¢. The analogous expression in a vector space and with
a,b € V would read (using the abbreviation a = a/|a|)

(b—@-b)a)-b>0.

In both cases the expressions on the left-hand side of the inequalities
vanish precisely if b is parallel to a, and if ¢ is proportional to i,
¢ = Ly, respectively. In the latter case ¥ is an eigenfunction of F. Fi-
nally, if ¢ vanishes identically, the claim is trivially true.

This section concludes with the following remarks:

1. The quantum state is equivalently described by the wave function
¥ (1, x) over the coordinate space R3, or by the set of expansion co-
efficients {c,(f)}. The knowledge of all ¢, (f) completely determines
y(t, x).

2. Measured values are always of the form f Y* ...y, or, as one also
says, they are sesquilinear in the wave function. Therefore, two wave
functions (¢, x) and e'“y(z, x), where « is a real number, cannot be
distinguished by measurements. The set

Y= {e“Y|a e R}

is called a unit ray. Below, when we will explore the spaces on
which the wave functions i are defined, as well as the symmetries
that act on them in these spaces, unit rays will appear in the context
of projective representations.

3. A measurement of an observable can be used as a means to prepare
a quantum state. Like in a filter one selects a specific eigenvalue Ay



at time 7o, and rejects all others. At this time the state of the system
is

Y(to, X) = @i (x) .
Its time evolution is described by the time-dependent Schrodinger
equation (1.59). In particular, let F describe a time independent, con-
served quantity. Then F' commutes with the Hamiltonian H. If ¢, is
an eigenfunction of F then also (Hg,) is an eigenfunction of F,

F(Hy,) = HFp, = Ay (Hopy)

and pertains to the same eigenvalue A,. As the eigenvalues are non-
degenerate one concludes

Hypy, = Eqp

with real E,. As a consequence, the expansion coefficients in (1.94)
fulfill the differential equations

. . i i i

Cn = (pn, ¥) = _ﬁ((pn: HYr) = _ﬁ(H(Pny Y) = _7_:LEncn .
Thus, the time dependence of ¢, is harmonic, i.e.

cn(t) = ca(tg) e W/ME=I0)

the probabilities |c, (7)|?> are independent of time.

1.8.2 An Example: Coherent States

Unfortunately the cases that we discussed until now are still somewhat
academic because we studied exclusively stationary, stable states about
which not much can be measured. This situation will change only when
we know how to describe the scattering of two systems on one another,
or when we learn to quantize the radiation field and to couple it to
hitherto stationary systems such as oscillators, hydrogen atoms etc. It
is only by observation of scattering processes, in the first case, or of
emission and absorption of y-rays, in the second case, that characteristic
properties of quantum systems can be verified by experiment.

The following example is a little more realistic insofar as it describes
a state with a nontrivial evolution in time, i. €. a state that has more than
just harmonic dependence on time. Let ¢, be, once more, the basis of
eigenfunctions (1.83) of the harmonic oscillator in one dimension, and
let

o0
Yt x) = cn(t)pn(x)
n=0
be a time dependent state which is constructed following the model
of (1.94). The time dependence of the expansion coefficients is har-
monic, as shown in Sect. 1.8.1, Remark 3, which is to say

cn(t) = ¢, (0) e~ (/MEnt _ ¢ (0) e~ (i/Det g—inwt ’

1.8 Observables and Expectation Values
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and where we have inserted the formula (1.78) for the energy. Let
2(0) = re %O be an arbitrary complex number, written in terms of its
modulus and a phase. For the sake of convenience we have chosen a mi-
nus sign in front of the phase. Choosing the coefficients at time zero to
be

1 2
_ n —r=/2
cn(0) = <—m2(0) > e ;

the wave function ¥ is seen to be normalized to 1 at time r =0, and,
thus, also for all times,

e.¢] o0 1 )
> len (@)% = (Z —,(rz)") e =1,
n=0 o "
If we set

2(t) = re 0 = pe O HPOI and - () = wt +(0)

then i reads
Yt x) = e 2N Z fz " (1) gu () -

Whenever r # 0, obviously, 1 is not an eigenstate of the energy. How-
ever, in the limit »r — 0 it goes over into the ground state of the
harmonic oscillator. In order to explore its physics content we calculate
the expectation values of the coordinate x and of the momentum p, as
well as their standard deviations (Ax) and (A p), respectively. Introduc-
ing the raising and lowering operators of Sect. 1.6, x and p are given
by

1
x=b—(a'+a), =——(a
V2 "=
while the action of a' and of a on the eigenfunctions is
(©m» aTwn) = Vn+18m,n+1 , (Om, apn) = \/E(Sm,nfl .
The expectation value of x in the state i is calculated as follows:

() Z*H_HHW *nlnn
* JatDnl = Ja—D

a' —a),

b —r +r *
=—e e (F+2)= rb\/zcos[a)t +¢(0)].
V2
The expectation value of p follows from Ehrenfest’s theorem (1.72)
d

2r sin[wt 4+ ¢(0)] .

(p)y=m dt( Yy =



These intermediate results, in themselves, are quite interesting: the ex-
pectation values of w./m x and of p/./m move on a circle with radius
r+/2hw = «/2E, in phase space and with angular velocity w,

w\/m (x) y = r~/2ho cos[wt + ¢(0)],

ﬁ (p) y = —r~2hwsin[wt + ¢(0)].

The time dependent state ¥/(z, x) belongs to the class of coherent states.
It comes closest to a classical oscillator motion with energy E¢ = r2hiw.
As a quantum mechanical state it does not have a fixed, well-defined
energy. The probability to find the eigenvalue E, = (n+1/2)hw in
a measurement of the energy is

_ 2
r2ne r

w(Ey) = ol

It is independent of time and has its maximum at
1
n=r*, ie at E,_n= (r2+§) ho .

Except for the zero point energy the maximum has the value of the cor-
responding classical energy.

It is instructive to investigate this coherent state in more detail. We
calculate the operator

1 b?
x? = zbz(aTaJr +a'a+aa’ +aa) = ?(QTQT +2a%a+1+aa)

and, from this, the expectation value

<x2> v = %bz {1 +<aTaT +2aTa+aa> ¢}
— %bz {1 +r? [z*z(t) +22*(H)z(0) +z2(t)]}

1
= Ebz +2r2b% cos*[wt + ¢(0)] .

This calculation is not difficult. As a matter of example, I show a typical
intermediate step. The raising operator, when applied twice to ¥, yields

T Tl/f _ e—rz/ZZ \/mfpnﬂ(x)

One takes the scalar product of this with v, i.e. one multiplies with ¥*
from the left and integrates over x. Making use of the orthogonality of
the base functions §0n, the expectation value is found to be

*n+2 n
T W Jm+2)(n+1) 2 a2
aa = (& = £ (&
') ,,Z:o Ja+ 2

().
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With the results obtained so far the mean square deviation and the stan-
dard deviation are found to be

b
7

The expectation value of p? is calculated in much the same way,

(a2 =()y— w3 =30 sothar (an)=

<p2>1/, = ;—; {1 + 472 sinz[a)t—f—(ﬁ(O)]} ,

so that the standard deviation is

h
(Ap)=——.
W
This is an interesting result: the product of the standard deviations of x
and p has the value

(Ax)(Ap) = 2 .
This is the minimum allowed by Heisenberg’s uncertainty relation
(1.35). It equals the product of the uncertainties in the (stationary)
ground state of the harmonic oscillator. The coherent state is not station-
ary, it moves along the classical orbit in phase space and is marginally
compatible with the uncertainty relation.

Finally, we calculate the standard deviation (AE) of the energy. The
expectation values of H and of H? are

= ()= (4

1
<H2>w = (Z —|—2l"2+l"4) (ﬁa))z y
respectively, so that the standard deviation is found to be

(AE) = (AH) = r(ho) .

There is an interesting observation in connection with the uncertainty
of the energy. Classically, one would calculate the period of the motion
from the formula

X

m , 1
1(x) —1(x0) =/ 5 | &X' ————,
2 VE—ma?x'%/2
X0

(cf. [Scheck (2005)], Sect. 1.21), where the integral would have to be
taken over a complete revolution. In the quantum system the position
can be given only with the uncertainty (Ax). Therefore, the calculation
of the period must have an uncertainty, too, which follows from this
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formula when one integrates over the interval 2(Ax),
(Ax)

m , 1
AT = | — dx' ——
2 E—maw?x'2)2
—(4x)
2 A A
= — arcsin <( x)wﬂ) i~ 2( Dm .
Q) ~2E ~2E
The approximation in the last line is applicable when (Ax) is suffi-
ciently small. This quantity was calculated for the coherent state
above. Inserting these results and restricting to values of r large as com-
pared to 1/+/2, one finds AT ~ 1/(rw), so that the product of (AE) and
of (AT) becomes

1
(AE)(AT) ~ r(hw) P h.

The uncertainties of the energy and of the period are correlated by
Planck’s constant. The better the period is known the larger the un-
certainty in the energy. Note, however, that the correlation of the
uncertainties of energy and time is of a different nature than the one
between position and momentum, the reason being that time plays the
role of a parameter, and is not an operator.

1.8.3 Observables with Degenerate, Discrete Spectrum

For reasons that will become clear below an observable with a nonde-
generate spectrum, like the one developed in Sect.1.8.1, is rather the
exception in physical situations. Consider the example of the harmonic
oscillator in R? and assume the three circular frequences to be equal.
The Hamiltonian reads
& L 5 - i\2 & Lo 55
H=—5—A+5mo ;(x) =5 Atomer,

its eigenvalues are
3
Ey = <N+§> hw with N=ni+ny+ns3.

One easily verifies that although for N =0 there is only one eigenstate,
there are three for N =1, six for N =2, ten for N = 3, etc. The degree
of degeneracy grows rapidly with N.

In classical mechanics the following setting is known: Given a Hamil-
tonian function H = F which has no explicit time dependence, and
a set of time independent constants of the motion Fi, F>,..., all of
which are in involution. This is to say that the Poisson brackets of the F;
with H, and all brackets of every F; with every F; vanish. An example
is provided by the two-body system with central potential, viz.

2

H=2 tvuw, F =P, FB=0€ F=t

2m
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where p and P denote relative and center-of-mass momenta, respect-
ively. This set fulfills the assumption. If there are sufficiently many of
such constants of the motion, or, more precisely, if there are f of them,
f being the number of degrees of freedom, then the system is integrable
(this is one of Liouville’s theorems).

In quantum mechanics we expect an analogous situation to be one
where a time independent Hamiltonian is given, and where there exist

further (time independent) observables Fi, F>, ... whose commutators
vanish,
[H, Fi]=0, [Fi, F;]=0

The physical significance of the first of these relations is that each one
of these observables is a constant of the motion, cf. (1.70). Mathemat-
ically speaking it says that one can choose the eigenfunctions of the
self-adjoint operator H such that they are also eigenfunctions of the ob-
servables F; and vice versa. In other terms, one can find a basis ¥,
which has the property that the matrices (Y, Hy,) and (Y, Fivpy)
can be brought to diagonal form simultaneously. The second part of
the assumption guarantees that it is possible to construct simultaneous
eigenfunctions for H and all F;, or to find a basis in which H as well
as the observables F; are represented by diagonal matrices.

A typical case will be one where the observable F has a discrete,
but degenerate spectrum. The operator F then obeys the equation

I
F (p = ;V, x) Onk(X) = A @ni () , (1.96)

with eigenvalues which have the property
Am Ay for n#Em,

but where there is more than one eigenfunction belonging to the eigen-
value A,. If the degree of degeneracy is k, then there are k, linearly
independent functions

©n1(X), ©n2(X), - -+, Oni, (X)

which belong to the eigenvalue A,. Suppose the set of eigenfunc-
tions ¢,k to be orthonormal and complete. The orthogonality and nor-
malization condition reads

3
/ d xﬁ”Zk@n’k’ = 8nn’8kk’ .
A square integrable wave function defined on the same domain can be

expanded in this basis,

oo ky

Yt x) =Y Y car(par(x) .

n=0 k=1



The coefficients ¢, (f) are obtained by the formulae

%@=ffm%®WM)

The normalization of i follows from the equation

fd%wwmeZZE:w%onzzl,
n,k

the expectation value of F in the state i is given by

00 kn
(FYy=> 2u ) lea®)]?.
n=0 k=1

We now assume that F commutes with H, [H, F] =0, and that
the two operators have the same domain of definition. If ¢,; is an
eigenfunction of F belonging to the eigenvalue A, then (Hppg) is also
eigenfunction of F for the same eigenvalue,

F (H¢nk) =Xy (H(pnk) .

A way to visualize this situation is the following: The base func-
tions ¢yr with fixed n span a subspace which is characterized by the
eigenvalue A, of F and which has dimension k,. The state (Hgyk) is an
element of this subspace. Therefore, as the basis is complete, it must be
possible to decompose this state in terms of the ¢, with fixed n,

kn
(Houi) = Z Oni Hy'te
kK'=1

where H = {Hy} is the k, X k, hermitean matrix representation of H
in the subspace belonging to A,
Hyw = @uks Honr) = Hpj, -

This finite-dimensional, hermitean matrix is diagonalized by means of
a unitary matrix U,

0
U'HU=H with UlU=1,
or, when written in components,

k”
Z Ui HgU = Enidit -
k=1

A little calculation shows that in the new basis defined by

kn
Yt (6) =Y 0uj () Ujt

j=1

1.8 Observables and Expectation Values
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both F and H are diagonal, i.e.
Frn =AY and - Hi = Eppir -

Although somewhat schematic the example shows what is the reason
for the degeneracy and the multiple indices of the wave function: The
wave functions ,; are eigenfunctions of the two commuting opera-
tors F and H both of which have (in our example) discrete spectra. The
indices on 1 serve to count these spectra.

Here is another example which may serve as an exercise for the
reader and which may help in learning some calculational techniques.
(We come back to this example below, in the context of problems with
spherical symmetry.)

Example 1.8 Spherical Oscillator

At the beginning of this section we mentioned the example of the har-
monic oscillator with equal circular frequencies in three space dimen-
sions. In classical mechanics it is described by a spherically symmetric
Hamiltonian function, in quantum mechanics by a spherically symmet-
ric Hamiltonian operator. Therefore, one expects the orbital angular
momentum to play an important role in determining the states of the
system in classical and quantum mechanics, respectively. We treat this
important aspect in the framework of a general analysis of orbital angu-
lar momentum in Sect. 1.9. The section is meant to give a first example
for commuting observables which are at the root of the degeneracy of
the eigenvalues of the Hamiltonian.

We represent the spherical oscillator as the sum of three linear os-
cillators and make use of the raising and lowering operators (1.74)
and (1.75), for each of the spatial coordinates. With the expres-
sion (1.76) the Hamiltonian can be written in the form

3
3
H= (;ajai +§) ho .
=

The pairs of operators (a;r , a;) refer to the cartesian directions in space.
The obey the commutation rules (1.77) for every i =1, 2, or 3, but they
commute for different values of the indices, viz.

lai.afl=6y.  lai.a]=0.  [af.af1=0.
The eigenfunctions of the Hamiltonian are given by the products
1
Pninons (%) = ———— (a])" (@)™ (@} g0 (x )0 () o (x*)
ni'no!ns!
1.97)

with ¢ as given in (1.79). It is useful to define the following operators:

N1=aJlra1, N2=a£a2, N3 =a§a3, Nik:a:-rak for i#k.



All these operators do not change the total energy
3
En1n2113 =hw(|n;+n2+n3+ E
and, thus, commute with the Hamiltonian. As far as the operators N; are
concerned this is obvious. Regarding N;; one may wish to verify
[H, Ni] = ﬁw[ajai +a;£ak, alTak] = ha)(ajak — ajak) =0.

The first three operators N; are diagonal in the basis (1.97). Indeed, the
interpretation of N; is easy to find out by calculating its action on the
state (1.97),

a;‘rai Pninans (x) = Ni Ynnyn; (x) .

It reproduces the wave function with the eigenvalue 7;, and it measures
the number of quanta hw which are excited in the degree of freedom i.
For reasons to become clear later it is called number operator for quanta
or particles of the species i. The operators Nj;, in turn, change the
eigenfunctions because they lower n; by one, while increasing n; by
one. For example, in the basis used here N> has the matrix representa-
tion

((pnlln/zng’ N12(pn1n2n3) = n2(n1 + 1)8n/l,nl+13n/2,n2—1 .

This example becomes more conspicuous and better interpretable if one
calculates the components of the orbital angular momentum. By the for-
mulae (1.74) and (1.75) one finds

Y P Pt t
{3 =x1p2 X2P1—12{(al+al)(az az) — (a, +az)(a; —ay)}

=iR{N21 — N12}.

The two other components follow from this by cyclic permutation of the
indices 1, 2, 3, so that

¢y =ih{N3, — No3}, by =ih{N13 — N31}.
All three components commute with H, but they do not commute
among themselves. For instance, one has

[£1,£42] = —hz[agaz—a;ag, aJ{a3—a;a1] = —hz{—aiaz—l—a;al} =ihts3.

Clearly, the two remaining commutators follow from this one by cyclic
permutation, giving

[€2, €3] = iRty , [€3, £1] =ihty .

Dividing by 7 one obtains precisely the commutators for the generators
of the rotation group in three real dimensions:

1.8 Observables and Expectation Values
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The calculation of €2 is a little more involved, one finds
C=0+06+6G
= 1? {2(N1 + N2+ N3+ N{ N2+ No N3 + N3 Ny)
2 2 2 2 2 2
— N3 — N33 — Ni3 — N3; — N3 —N12} :

Inspection of this operator shows that it commutes with H, too, but that
the eigenfunctions of H found previously are not eigenfunctions of £2.
Finally, one shows that £2 commutes with every component. The fol-
lowing case is sufficient to show this:

[€%, 03] = [€3, €3]+ 43, €3]
=101, €3]+ [€1, £31€1 +£2[L2, €3]+ [£2, £3]€2 = 0.

The conclusion is that a set of commuting observables consists of H,
of €2, and one of the three components of the orbital angular momen-
tum, say £3. This explains, at least to some extent, the degeneracy of the
eigenvalues of H, noticed above. In Sect. 1.9 below we will learn how
to construct common eigenfunctions of these three operators, in a more
concrete setting. Finally, note that this result is completely analogous
to the corresponding classical situation: there the functions on phase
space H, €2, and 3, are in involution. We just have to replace the com-
mutators by Poisson brackets.

1.8.4 Observables with Purely Continuous Spectrum

Besides the observables with fully discrete spectrum there are also ob-
servables whose spectrum is purely continuous, as well as observables
which possess a mixed spectrum consisting of a discrete series and
a continuous interval. One says that the spectrum is fully continuous if
it is not countable, i.e. if the eigenvalue equation of the observable A
reads

A <p = ?V, x) ox, o) = ap(x, o) (1.98)

and if o can take any value in an interval / C R. The momentum oper-
ator provides an example, viz.

_hd

P=Tax

For simplicity it is written in one space dimension only and, as an ex-
ception, the operator is underlined in order to distinguish it from its
eigenvalues p. In this case the eigenvalue equation (1.98) reads

pox,p)=pex,p) with pe (—00,+00).

The eigenfunction which belongs to the eigenvalue p is proportional to
exp(ipx/h). Obviously, it is not square integrable. In order to find out



something about its normalization we first note that the naive expression

e¢]

L[y ei—pr — S(a—P) (1.99)
2
—0o0

is neither a Riemann nor a Lebesgues integral, and can only be under-
stood as a tempered distribution, that is to say, roughly speaking, as
a functional §[ f] which yields a finite, nonsingular, result only when
weighted with sufficiently “tamed” functions f.'® Some important prop-
erties of tempered distributions are summarized in Appendix A.1. In
particular, it is shown that definitions can be adjusted such that the for-
mal rules are the same as for genuine functions. In particular, Dirac’s
S-distribution has the property, for sufficiently smooth functions f,

(o.¢]
stf1= [ dasa—p fier = 16).
—0o0
In practical applications one must take care of two of its properties: (a)
the normalization factor 1/(2m) on the left-hand side of (1.99) is essen-

tial; (b) the distribution §(z) carries a physical dimension whenever its
argument z has a dimension. Indeed, one convinces oneself that

1
if dim[z]=D then dim[é(z)]= D

This is so because, formally,
o0
f dzé(z) =1,
—0oQ

must come out without dimension.

The formula (1.99) and the normalization can be obtained by a for-
mal limiting process from true Riemann integrals to distributions. As
this can be understood without further knowledge of distributions I in-
sert a digression on the following example:

Example 1.9 Plane Waves in a Limit

The set of functions
1 .
{(pm(x) = Te“m/““ a,xeR, m=0,£1,+£2, ... } (1.100)
a

form an orthonormal system in the intervall / = [—a/2, +a/2]. Indeed,
we have

+a/2 )
/ dx‘P;kn(X)fﬂn(X) = w = Onm -
(n—m)m
—a/2

1.8 Observables and Expectation Values

181n this book we only use tempered
distributions. For this reason we hence-
forth talk about distributions, for short,
and omit the adjective tempered.
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A periodic function f(x) with period a, f(x+a) = f(x), can be ex-
panded in this basis

1 X 1 X m
_ ei@am/ayx _ 2 (_) ei@mm/a)x
for == _Z o - _Z g (-
m=—00 m=—00
where the function g of y,, :=m/a is given by

+a/2 +a/2
gom = [ axeT@mo g = [ ave o f.

—a/2 —a/2

If one performs the formal transition a — 0o, one has
m m+1 1

Ym = —, Ym+l1 = —, and ym+1—ym=——)dy.
a a a

The sum over m goes over into an integral over Yy,

| +o00 +00
- E — / dy.
a
m=—00 %0

Thus, one obtains

400 oo
) = f dy ()™, g(y) = / dr e 2T f(x)

Finally, substituting u := «/2mx, and v := +/27y, one has

+00
fa) = dv g(v)e™, g(v)=%_f du e f(u) .

+00
7=
2
—o0
It is tacitly assumed that these integrals exist, i.e. that f(x) decreases
sufficiently rapidly at infinity. These formulae represent what is called
Fourier transformation in one dimension and its inverse. The base func-
tions (1.100) go over into the functions

ivu
(S

1
v,uelRy} .
{ V2 }
The orthogonality relation
+a/2
/ dx (/):1 (V)@ (x) = Snm
—a/2

is replaced by the normalization (1.99) which is to be understood in the
sense of a distribution.



The result of this example can be applied directly to the construction
of the eigenfunctions of the momentum operator. If the normalization of
the eigenfunctions of p is chosen to be

1 .
— (/h)px
@(x, p) = (2nh)1/2e , (1.101)
the generalized orthogonality relation reads
o
/ dx ¢*(x, pHe(x, p) =8(p' — p) “Orthogonality” . (1.102)
—00

The é-distribution replaces the Kronecker deltas in the scalar product
(¢m» ¢n) = 6mn and inherits the physical dimension 1/(dimension of
momentum). As the relation is to be interpreted as a functional over the
space of the p-variables which, qualitatively speaking, yields nonsingu-
lar expressions only upon integration over p or p’, on says that (1.101)
is normalized in momentum scale.

In practice it may happen that one has to deal with eigenfunctions of
energy, not of momentum, so that the plane waves must be normalized
in the energy scale, instead of the momentum scale. The substitution
required for this is illustrated by the following example. Formally, one
has

dp -1
sl > S(E—E).
dE E=E/

Thus, if one must normalize to §(E — E’) then the wave function which
was normalized according to §(p — p’) must be multiplied by the square
root of

dp

dE| "’

With nonrelativistic kinematics p = +/2mE, the wave function (1.101)
becomes

8(p—p")=38[p(E)— p(EN] = (

1 m1/4
Qrh) 2 QE)/A°
It is then normalized in the energy scale, viz.

¢, E) = Whes,

0.¢]
f dx ¢*(x, ENe(x, E)y=8(E'—E).
—oo
The wave function (1.101) is symmetric in the variables x and p.
Therefore, the analogue of the orthogonality relation (1.102) is

]

/ dp o™ (x, p)o(x, p) =8(x" —x) (completeness) . (1.103)

—00

1.8 Observables and Expectation Values
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Indeed, this relation is an expression for the completeness of plane
waves. This may be verified by means of the analogous relations in the
purely discrete case of Sect.1.8.1. Restricting them, for simplicity, to
one coordinate one finds

+00

/ dx @ (X)@n (X) = S (orthogonality) , (1.104)
—00

o0

Z @5 () (x) = 8(x" —x) (completeness) . (1.105)
n=0

The second relation can be derived in a formal manner as follows: Since
the basis ¢, is complete every ¥ can be expanded

Y = cnpn(®) =) / dx’ @5 (<) pu ()Y (x) .
n=0 n=0

Interchanging summation and integration, with the understanding that
this is a relation between distributions, the equation is consistent only
if (1.105) holds true. This justifies calling (1.105) a completeness rela-
tion.

It is not difficult to generalize the results of this section to three
space dimensions. Plane waves which are normalized in the momentum
scale, are given by
eli/Mpx

p(x, p) = W

If one prefers to work in the energy scale instead, it is convenient to
write the momentum in spherical polar coordinates, i.e. to express p
in terms of its modulus p = |p| and polar angles 6, and ¢,. In these
coordinates one has

d3p = p2 dpd(cosf,)d¢,, and
1
s(p'—p) = ES(I/ — p)8(cos 0,y —cosOp)8(dy —pp) .

As before, the §-distribution for the moduli of the momenta is con-
verted to a §-distribution for the energies by means of the relation
E = p*/(2m).

A third case which occurs frequently is the case of a mixed spec-
trum, i.e. of a spectrum which has both a discrete part and a con-
tinuous part. An example of special importance for physics is the
spectrum (1.24) of the hydrogen atom. The hydrogen atom belongs to
the class of problems with a central field in R>. This needs, as a prepa-
ration, the analysis of orbital angular momentum in quantum mechanics,
and the separation into radial and angular motion. These are subjects to
which we now turn.
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1.9 Central Forces and the Schrédinger Equation

Very much like in classical mechanics the problems with central forces
belong to a class of applications of quantum mechanics which is of
great theoretical and practical importance. If the forces are continuous
functions they can be expressed as (negative) gradient fields of spher-
ically symmetric potentials U(r). Like in the classical case the prime
example is a system of two bodies which interact via a central force
F = F(r)f with F(r) = —dU(r)/dr, where r =r| —r; is the relative co-
ordinate, and r = |r| is its modulus. The separation into center-of-mass
and relative motion is done in the same way as in classical mechanics
and will not be repeated here. Besides the force-free center-of-mass mo-
tion which is separated from the rest, one obtains an effective one-body
problem whose Hamiltonian depends on the relative coordinate only
and which contains the potential and the reduced mass. For simplicity
we denote the latter with the symbol m and investigate the stationary
Schrodinger equation (1.60) with

hZ
H=——A+U®).
2m

The general strategy in solving problems of this kind is much the same
as in mechanics. One separates the relative motion into purely radial
motion in the variable r, and angular motion in the variables 6 and ¢,
making use of the fact that the modulus of the angular momentum
as well as one of its projections are conserved. Clearly, because of
the Heisenberg uncertainty relations for the variables r, 0, ¢ and their
canonically conjugate momenta p,, pg, pp one can no longer talk about
“orbits”, and one cannot even claim that the motion takes place in
a plane. Nevertheless, there are similarities between the classical and the
quantum mechanical cases, even though the results will be technically
different and of a different physical significance. We start by studying
the orbital angular momentum and show how the Schrodinger equation
is reduced to a differential equation in the radial variable alone. The ra-
dial differential equation is then solved for three examples of particular
importance.

1.9.1 The Orbital Angular Momentum:
Eigenvalues and Eigenfunctions

The orbital angular momentum x x p is an observable with three com-
ponents whose operator representation in coordinate space is found by
means of the substitution rules

h 9

x— xt, P ——— .
1dx
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As the momentum is proportional to A, it is convenient to take out a fac-
tor A in the definition of the operator of orbital angular momentum, viz.

1
h:=xxp sothat £:=—-xxV. (1.106)
i

Its components and the square of its modulus which then have no phys-
ical dimension, are, respectively,

1 ) a
=12 39,
: i(x o 8x2>

1 ) a
A U U N
2 i(x o1 x8x3>

P 1/, 0 , 0
=—|x—=—x—],
T W T

2 2,2, 2

l =EI+E2+E3.

One verifies that these operators are all self-adjoint.
From the commutation rules for coordinates and derivatives

.9 5
|:Xl, W] = —0ix =178jk
one derives the commutator of £; with £,. One finds

[0y, 6] = <x — —x —) —ils. (1.107)
X

Clearly, this commutator is continued to two more commutators by
cyclic permutation of the indices. Therefore, the general result reads

[t ;] =1 eyt (1.108)
k

The symbol e denotes the antisymmetric tensor in dimension three
which has the value +1 (—1) if the set (i, j,k) is an even (odd)
permutation of (1, 2,3), and which vanishes whenever two or more
indices are equal. The commutator of the square £> with any of the
components was calculated in Sect. 1.8.3. It follows from the formula
[A2, Bl = A[A, B]+[A, B]A and is found to be zero,

[ez,g,-] —0|. (1.109)

The results (1.107)—(1.109) have the following physical interpre-
tation: Only the square of the modulus and one component can be
measured simultaneously, while the remaining two components cannot
have sharp values. The convention, up to exceptions, is to choose £°
and ¢3, or, expressed differently, to choose the 3-axis of the system of
reference in a direction singled out by the specific physical system one
is studying. This privileged axis is often called axis of quantization.
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Before turning to the calculation of the eigenvalues and to the con-
struction of the common eigenfunctions of £2 and ¢3 it is useful to work
out a few more commutators. Examples are

[ﬂi,xj]=i26ijkxk, [ﬁi,pj]=izsijkpk-
k k

It is important to note that every commponent of angular momentum
commutes with the modulus r of the position vector, as well as with
the modulus of the momentum. This is verified, in the first case, by

X
[€i, r] = thmnx |:8 e :| ;Zgimnme =0.

m,n m,n

In the last step the contraction of the totally antisymmetric e-tensor
with the symmetric form x™x" gives zero. Thus, all components and £>
commute with any differentiable function of r. Similarly, the three com-
ponents and £> commute with any smooth function of |p|. This shows
that

p2
[zi, = 4 U(r)] =0 and [ez Z 4 U(r)]
2m

The physical interpretation is that the modulus and the components
of orbital angular momentum are constants of the motion whenever
the potential is spherically symmetric. However, as the components do
not commute with one another there exist common eigenfunctions only
for H, £> and one of the three components such as, e. g., £3. Adding the
total momentum P of the two-body system to this list, the result is seen
to correspond precisely to the classical situation where
2
H=LLvep), P, 2. ad 0
2m
are in involution (cf. [Scheck (2005)], Sect.2.37.2, example (iii)).
Since every component ¢; commutes with the variable r, none of
them can contain derivatives with respect to r. This observation suggests
using spherical polar coordinates
x! =rsinf cos¢, x? =rsinfsing, x> =rcosf
and to write the operators ¢; and £ as differential operators in the angu-
lar variables 6 and ¢. We now show that they are given by the following
expressions

0 a
£y :i{sinqb% —|—cot0005¢%} ,

a 0
') :i{—cosd)% +cotesin¢%} ,

3
l3=—i—. (1.110)
¢
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1 @ 1 9 d

C=—1—— 4+ ——(sino—|}. (1.111)
sin2 0 92  sin@ 90 99

In fact, one could have guessed the third of (1.110) because one knows

from classical physics that hf3 is the variable canonically conjugated
to ¢. Therefore, their commutator (1.36) must be

[ht3, ¢] = —ih.
Indeed, this result is obtained if the derivatives with respect to ¢ are

written in terms of derivatives with respect to cartesian coordinates, by
means of the chain rule,

d 8x18+8x28 2a+ o _.,
— =t — 5 =X —+x — =U3.
3 ¢ oxl | ¢ ox? axl T ez
In much the same way one expresses the partial derivative with respect
to 6 in terms of cartesian partial derivatives thereby finding the relation

]
% =i(—£ysin¢p+£;ycos¢) .

A further trick is to note that the following operator is zero
x-{= Elxl +€2x2+€3x3 =0.
Dividing by x> and substituting polar coordinates gives the result
d
tan 8(cos L1 +sinply) = —43 = i% .
Thus, there are two linearly independent equations for £; and £2 whose
solution gives the first two formulae (1.110).

The proof of the formula (1.111) is made easier if instead of the
cartesian components ¢; and ¢ one introduces the linear combinations

Oy =0 +ily = e ii Jricotei
' 30 ¢

These operators are called ladder operators. Their product can be writ-
ten as follows

Cale =03+ 03+ (0l —€10) =03+ 65+ 45

The product £4.£_ is obtained by careful differentiation, using the chain
rule,

[ 9 0 ~ 0 i)
0 =e? {—+icot9—} e ¢ {———f—icotQ—}

90 o 90 o
92 . 1—cos?6 d 2

- _ S8 P9 —coth— —cot>h—
062 sin26  d¢ 00 a¢p?

The formula (1.111) follows from this result and from the relation

C=00 +05—10;.
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In a next step we derive the eigenvalues and the eigenfunctions
of the operators ¢3 and £2. The interpretation of the commuta-
tors (1.108), (1.109) and their relation with the rotation group SO(3) in
three real dimensions, as well as with its covering group SU(2), will be
dealt with later, cf. Sect.4.1 and Sect.6.2.1.

Eigenvalues and Eigenfunctions of £3: The eigenfunctions of ¢3 fulfill
the differential equation

.0
63 f(9) = —lﬁf(cb) =mf(¢).
Obviously, they are proportional to e”? where m is a real number. Such
a function must allow for a quantum mechanical interpretation which is
to say that it must be invariant under a complete rotation of the system
of reference about the 3-axis, i.e. under R3(27),

flp+2m) = ().

This requirement of uniqueness of the wave function implies that the
eigenvalue m of 3 must be a positive or negative integer, or zero,

m=0,%1,+£2,£3,....

Alternatively one may argue that f(¢) is defined on the unit cir-
cle S!, not on the real axis. Therefore, it must be well-defined on s!
which is to say that f(¢+2m) must equal f(¢). Whether one uses the
uniqueness condition for the wave function, or the requirement that it
be well defined on S I leads to the same conclusion: the solutions nor-
malized to 1 on the interval [0, 27r] are

1 .
(¢) = —=e"".
Jm o
The normalization follows from the analysis of the functions (1.100) in
Sect. 1.8.4. Indeed, for integer values of m and m’ one has

27 27
1 . '
/ 46 13 @) = 5 / dg Hn—m9
0 0
_ inm—nr) sin[r(m —m’)] —s

x(m—m')

Regarding the eigenvalue equation of the operator €2, (1.111), we try
an ansatz whereby the eigenfunction factorizes in a function of 6 and
another function f(¢) of ¢ alone,

CY0) f(§) =1 Y(O) f(9) .
Inserting (1.111) and dividing by the product Y(0) f(¢) gives

1 d2f(e) sin29|: 1 d( dy(6)

@ 4 Yo |miw sinf— = ) + A Y(@)] —0.
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The first term depends only on ¢, while the second term depends only
on 6. This observation explains why the formerly partial derivatives 9
are now replaced by ordinary derivatives d, and shows that the separa-
tion into a function of 6 and a function of ¢ is justified. The solutions
f(¢) were derived above, so that there remains a differential equation
for Y(0). It reads

LA (gY@ (o Y(6) =0
— | sin - =0.
sinf do de sin2 0

Substituting z := cos # and making use of dz = —sin6 d6, this equation
becomes

d ». dY(2) m? B
d—z<(1—z )d—z>+<x—1_zz> Y(z) =0. (1.112)

This is a differential equation which is known from the theory of spher-
ical harmonics and which belongs to the class of differential equations
of Fuchsian type. Their general form is

d?y(z) L P20 @) | Piz=20)
dz2 Z—20 dz (z—z20)?

y(z) =0/, (1.113)

where $y and #; are polynomials in (z —zg) (or Taylor series which
converge in the interval of definition). The singularities of its coefficient
functions are characteristic for this type of differential equation: The
function that multiplies the first derivative of y(z) has a pole of first or-
der in z = zg, the function multiplying the homogeneous term has a pole
of second order in the same point. This type of differential equation
occurs in many different eigenvalue problems of quantum mechanics.
Their solutions can be constructed explicitly in terms of series in the
variable (z — zp).
In the case at stake (1.112) the differential equation reads

dZY_ 27 dy AMl=2)(14z2)—m?
dz2  (1—-2)(1+2) dz (1—2)2(142)?

As is obvious from its explicit form it has Fuchsian singularities both
at z=1 and at z = —1. These are the boundaries of the interval of
definition of z =cos6. Thus, in view of their physical interpretation,
one must search for solutions which are regular at the two bound-
aries z = £1.

The theory of spherical harmonics shows that this condition can only
be met if the eigenvalue A is of the form

A=LL+1) with £=0,1,2,...

and if m and ¢ fulfill the inequality m? < ¢2. The solutions of (1.112)
which correspond to these eigenvalues are regular in the whole inter-
val [—1, +1]. In the case m =0 (1.112) coincides with the differential
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equation of Legendre polynomials (cf. Example 1.7). These polynomials
are obtained from the formula of Rodrigues

1 d o, ¢ :

P = om0 (z - 1) (formula of Rodrigues).  (1.114)

For m > 0 the solutions can be written in terms of derivatives of
Legendre polynomials as follows,
m

Pé"(z)=(—>’"(1—z2)m/2%&(z>, (1.115)
with Py(z) as defined in (1.114). These solutions are called associated
Legendre functions of the first kind. Obviously, they are no longer poly-
nomials in z.

Collecting the solutions in the two angular variables one obtains the
eigenfunctions Yy, (0, ¢) of 2,

204+1) (L —m)! .
Yem(9,¢)=\/( 4: )E£+Z;'Pé’l(0059)e'm¢. (1.116)

These are called spherical harmonics and they have the following prop-
erties:

1. The complex conjugate functions are obtained from the relation

Y50, 0) = (=) "Ye_m(0, d). (1.117)

The restriction to m > 0 of (1.115) is circumvented by this symme-
try. Equivalently, the index m of (1.115) can be replaced by |m|.

2. The spherical harmonics provide a complete system of orthogonal
and normalized functions on S°, the sphere with radius 1 in R3.
Writing d§2 = d¢ sin0d6 their orthogonality relation reads

[ 42 72,06.0)Yin 6.6) = Su801m (1.118)

while their completeness is expressed by
oo +L

DD Y6, )Y, (0, ¢) = 5(¢ —¢)5(cos 6 —cos 0.
=0 m=—¢
(1.119)

3. They are simultaneous eigenfunctions of £> and of ¢3, the eigenval-
ues being

Yo =L+ DY, £=0,1,2,...
3Yom =mYem m=—C,—C+1,....0—1,¢[. (1.120)

The square of the modulus takes the values £(£+ 1) with £ € Ny,
while the 3-component takes one of the (2¢ 4 1) integer values be-
tween m = —£ and m = £.
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0,
J/
X1 /

Fig.1.10. Two unit vectors in R? are
defined by their polar angles (6, ¢) and
(0, @), respectively. They span the rel-
ative angle «. The first two pairs appear
on the left-hand side of the addition
theorem (1.121) while the angle o is
the argument of the Legendre polyno-
mial on the right-hand side

4.

Given a direction # in space defined by the angles (6, ¢), and an-
other direction 2’ with angular coordinates (', ¢'), let & denote the
angle spanned by these unit vectors, i.e. i-ii/ = cos« as sketched in
Fig.1.10. Then

PR
_______ Z Y5, 0 &)Y (0, ¢) = Py(cosa) . (1.121)
m=—/{

This important relation is called the addition theorem for spherical
harmonics.

We conclude this section with a few remarks and an example.

1.

Every square integrable function F(6, ¢) on S? can be expanded in
terms of spherical harmonics,

oo +L

FO,9)=Y_ > Yin(® $)ctm

(=0 m=—¢

where the expansion coefficients are given by

Com = / A2 Y:, (6. 9)F6. §)
2 T

=/d¢/sin9d9 Yy, 0, 9)FO, ¢) .
0 0

The action of the operators £+ on Yy, is worked out by means of
the formulae (1.115) and (1.114). With

d
Z=COS@, an =_(1_Z2)1/2"', cotl) = --=zz-==

00 0z J1=22’

and taking account of the normalization in (1.116), straightforward
calculation yields the result

Yo = VEE+ 1) —m(mE£1) Y

1

|

1.
g J

(1.122)

The operator £ does not take out of the subspace with fixed ¢, but it
raises the eigenvalue of £3 by 1. Analogously, the operator £_ lowers
the eigenvalue of £3 by one unit. This is the reason why these opera-
tors are called ladder operators. Note, in particular, that the chain of
eigenstates of £2 and of ¢3 which are obtained from Yy, by repeated
action of £, does indeed stop at m = £. Similarly, the descending
chain (£_)"Yy,, stops at m = —£.
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3. Denoting temporarily the state Yy, by the short-hand v, one sees
that the expectation values of the components

1 1
bi== l_), bry=1—(L_—¢
1 2( ++Lo) 2 12( +)
vanish,

(1) y =) y =0, (U =Yom) .

The expectation values of their squares do not vanish, however. They
may be obtained as follows:

(G+6)y =(€-6)y =+ n—m®.

As no particular direction perpendicular to the 3-axis is singled out,
one concludes that the expectation values of E% and of Z% are equal.
This implies that

(8) 0 =(8)y = 5tes n-m.

Nevertheless, it is certainly instructive to do this calculation more
directly. One writes K% in terms of the ladder operators

1
=@+ +6L +e )

and calculates the expectation value of the right-hand side. The op-
erators Zi and ¢2 give no contribution because they raise/lower Yy,
to Yy m+2 and because the latter functions are orthogonal to Yy,.
The expectation values of the remaining, diagonal, operators ¢ f_
and ¢_¢, follow from (1.122) so that

1
(&)y =2 [VE@+D=tn=Dm Ve@+D=mm =1

+ VLU +1) — (m+Dym /el +1) —m(m+ 1)]

—1[M 1) —m?]
—5 (+ m-].

Thus, the standard deviation of £; and of ¢, is the same for both,

(Al) = (Aty) = %\/e(u D—m?.
Note that this deviation is different from zero even when |m| takes
its maximal value |m| = £, i.e. even in a situation when the classical
angular momentum is completely aligned along the 3-axis.!?
4. A description of quantum angular momentum by a vector that takes
discrete, quantized directions, should be considered with caution.
Indeed, the calculation of the previous remark shows that measure-
ments of a component of angular momentum perpendicular to the
3-axis will yield eigenvalues +¢ and —q with equal probabilities, ¢  191n the early days of atomic physics
being in the set g € {—¢, ..., +¢}. this was called the “stretched case”.
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Example 1.10

The result (1.122) shows that the ladder operators £4 have the following
matrix representation in the basis of spherical harmonics:

) em em = Yo, L Yom) = L+ 1) —m(m £ 1)8p ¢S s -

These infinite-dimensional matrices decompose into square blocks along
the main diagonal, one block of dimension (2¢+1) x (2¢£+ 1) for every
eigenvalue of €2. Rows and columns are numbered by ¢ and m, taking
£=0,1,2... in increasing order, and m = ¢, ¢ —1, ..., —¢, for fixed ¢,
in decreasing order. Thus, rows and columns are marked by

(€, m)=(0,0), (1, 1), (1,0), (1, =1),
(2,2),(2,1),(2,0),2,-1),(2,-2)--- .

For example, in the subspace characterized by £ =1 one obtains

200
O wam=[020],

002

02 0 0 00
(E-‘r)lm/,lm: 00 \/5 s (E—)lm/,lm= \/§ 00

00 0 0 V20

The matrix representations of £; and ¢, are obtained from these by the
formulae of the remarks above. Including the matrix representation of £3
they are

0 V2 0
(51)1m/,1m=§ V2 0 V2,
0 V2 0
wa V2 0
(£2)lm’,lm =i E \/i 0 —\/j y
0 V2 0
100
D) am=100 0
00 —1

Striking features of this result are that £ is represented by a real matrix,
all its entries being positive, while the matrix ¢ is purely imaginary.
(3 is chosen diagonal. As it is hermitean it is automatically real.) This
need not be so in general. These specific properties are a consequence
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of a choice of phases to which we come back later (so-called Condon-
Shortley phase convention).

Given this representation a few more exercises can be done. One
confirms that the commutator of the matrices of £; and £, does indeed
yield i£3. Calculation of the eigenvalues and eigenfunctions of £; in the
subspace requires the characteristic polynomial to vanish,

—n 1/4/2 0
det(@y —ply=det| 1/v2 —u 1/v2 | =—n@>—1)=0.
0 1/vV2 —nu

As expected the eigenvalues are ;= 1, 0, —1. The corresponding eigen-
functions are obtained by solving the homogeneous system of linear
equations

C oo e e
Nl R W l=nl . u=100r —1.

() ()

010 cly cy

Except for possible phase factors the eigenvectors are
1 1
FD) _ T 0) _ T
cFD = —(1,+v2, D7, cV=—q,0-DT.
2 NG

This means that the eigenfunctions of £; which pertain to the eigenval-
ues w=+1 and pu = —1, respectively, are

1
Vot pmtl = 5(n £V2Y10+ Y1 -1),

while the eigenfunction pertaining to p =0 is
1
Vit pymo = =11 =Y1-1).
{=1,u=0 ﬁ

All three of them are normalized to 1, any two of them are orthogonal.

1.9.2 Radial Momentum and Kinetic Energy

The result (1.111) represents the operator 2 as a differential operator
on the surface of S?. The expression in curly brackets of (1.111) also
appears as part of the Laplace operator if the latter is given in spherical
polar coordinates, viz.

RN ELAWE 182+18.98
=——|\r— S| +——=|smb— .
r2 or or r2 [ sin2 6 02  sinB 96 90

In turn, the Laplace operator is contained in the operator describing the
kinetic energy. Therefore, the kinetic energy can be written in the form

- Rl1a[/,d L,
n=——|—=—1(r—|-= .
kin 2m | r? or or r2
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The similarity to the decomposition of the classical kinetic energy into
a radial and an angular part

(Pr )el (£2)C1
2m 2mr?

is remarkable and raises the question whether there exists an opera-
tor associated to the radial variable p, which would yield the first,
r-dependent term of Tijp.
For the classical radial momentum we could write
x-p
(Pr)a=—.

(Txin)el = (classical)

Replacing naively p by AV/i produces an operator which is not self-
adjoint. A better try is to start from the classically equivalent, sym-
metrized expression

1<x n x)
2rppr

which, upon quantization, becomes

5 o) =g v (v )]

The two terms are evaluated as follows:

1 xtor 9 (xH?% 9 K
Zx-V= R
rx - r oxt or Z r2 8r

-2

Putting these formulae together the new operator is
hio 1 19
pr=—|—+—-)=-——r. (1123)
i r

This operator acts on the integrable functions over the interval r e
[0, o). Unfortunately it is not self-adjoint either, but it is symmetric.
The meaning of this term is the following: The original operator is
defined on the positive real half-axis R, \{0}. Its adjoint, however, is
defined on the whole real axis. The domain of definition of the adjoint
differs from the one of the original operator, so that here & C DT. In
Definition 3.6 of selfadjointness (Chap. 3) the requirement will be that
the domains of definition must be the same, D = DT. This is not the
case here. (A more detailed discussion may found, e. g., in [Galindo and
Pascual (1990)] vol I, Sect. 6.2.)

The commutator of p, with r is

[prar]:_
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Very much like in classical mechanics it stands for the momentum
canonically conjugate to r. Finally, one calculates its square and finds,
indeed,

9 1\? 2 29 10 0
2 2 2 2 2
pP=-W—+-) =-W|—=+"—|=-R=— i
r <8r r) (8r2 r8r> r2 or (r Br)

Thus, the decomposition of the kinetic energy into kinetic energy of ra-

dial motion and of angular motion that is well known from classical

physics, also applies to the corresponding operators of quantum mech-
anics,

2 292

Py ¢

Tian = 2m + 2mr?
(Note that the factor 4> shows up explicitly only because the operator
of angular momentum (1.106) was defined by extracting 5.)

Perhaps the most important consequence of this decomposition,
from a physical point of view, is the observation that the second term
in (1.124) can be interpreted as a potential of the centrifugal force. In
a problem with central field, described by the Hamiltonian

2 252
p; , It
= o + Py +U(r) (1.125)
the centrifugal potential will compete with the true, attractive or repul-
sive, potential U(r) — in close analogy to the classical situation. This is
seen very clearly if stationary eigenfunctions of H separate in radial and
angular variables,

Vatm(X) = R (1) Yo or - Yrem(a, ¥) = R(a, 1) Yo (1.126)

The quantum numbers ¢ and m play the same role as before while
o characterizes the radial motion and depends on the nature of the po-
tential U(r). In the first of (1.126) « is a denumerable, discrete quantum
number (examples are provided by the spherical oscillator and by the
bound part of the hydrogen spectrum). In the second of (1.126) « is
a continuous variable (examples are the force-free motion, and the un-
bound states in the hydrogen atom). The operator 2, acting on Yy,
answers by the eigenvalue £(£+ 1), the operator p> only acts on the
radial function R, (r), while the action of all other terms is just multipli-
cation by real numbers. Dividing the whole equation by Yy, one obtains
the differential equation

2 2
Km1d (rzdR(r)>+<h LL+1)

(quantum operators) . (1.124)

C2mr2dr dr 2mr? + U(r)> R)=ER@®.

(1.127)

This equation describes the radial dynamics which is governed by the
effective potential
R2eE+1)

Ueti(r) = W‘FU(F),
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Fig.1.11. A particle of classical mech-
anics moving with momentum p at the
distance b from the parallel through
the origin O, possesses a well-defined
orbital angular momentum. This angu-
lar momentum lies perpendicular to the
plane of the drawing (pointing away
from the observer) and has the modulus
[€ci| = blp!

in close analogy to the corresponding classical situation. For instance,
an attractive potential U(r) acts in competition with the repulsive cen-
trifugal potential so that the radial wave functions, for increasing ¢, are
pushed away from small values of r, and, thus, are screened more and
more from the influence of the true potential. The problems that will
be dealt with in the following sections provide good illustrations of this
interpretation.

1.9.3 Force Free Motion with Sharp Angular Momentum

In a situation where there is no (true) potential, U(r) = 0, three com-
muting observables may be chosen. For example, one chooses

1. either the set

{p1, P2, p3}

2. or the set
[H, €, 03).

In the first case H is not listed explicitly because its eigenvalues E =
p?/(2m) are fixed as soon as those of all three operators p; are given.

The two alternatives exclude each other because, even though ¢
and ¢3 commute with p?, they do not commute with the three compo-
nents p;. With the choice 1. the plane waves of Sect. 1.8.4 are seen to
be simultaneous eigenfunctions of the three observables. A particle of
mass m moves with given momentum p along the straight line defined
by the direction p. With the second alternative, choice 2., the particle
is in a state with fixed energy, i.e. with fixed modulus p := |p| of the
momentum, and with sharp values £(£ 4 1) and m for the square of the
orbital angular momentum and its component ¢3 along an arbitrarily
chosen 3-axis, respectively. At first sight this seems to be very different
from classical kinematics: There, a particle which comes in with mo-
mentum p and impact parameter b, has the orbital angular momentum

Lg=xxp with || =bp

relative to the origin . This is sketched in Fig. 1.11. One might argue
that the origin could be chosen differently and, as a consequence, that
the orbital angular momentum is not well-defined. This is true. How-
ever, if the plane waves are taken to be the (asymptotic) incoming states
in describing scattering on a central potential U(r) then the origin @
is the center of the force so that £ is a physically well defined observ-
able. Yet, the relationship between impact parameter and orbital angular
momentum is not completely lost in quantum mechanics. We will show
this by means of the stationary solutions of the radial differential equa-
tion (1.127) to whose construction we turn next.
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Defining
2mE
k2:=%, 0=k, (1.128)

the radial equation (1.127) with U(r) =0 turns into the following dif-
ferential equation in the dimensionless variable p:

1 d [ ,dR@)\ £+ _
?d—g< £ )— P R©+ K@) =0. (1.129)

Working out the first term one sees immediately that this equation is of
Fuchsian type (1.113) with pole position zop = 0. Solutions of this dif-
ferential equation which are to be interpreted as probability amplitudes,
must not be singular at o = 0 where the coefficient functions have poles
of first and second order, respectively. This condition can be tested by
trying the ansatz

R(0) =0%f(o) with f(0) #0 finite.
Substitution yields a differential equation for f(o), viz.
oS +2(a+ 1" f
+ [t — 10" 2+ 200" 2 — £+ 1" 2 +0%] £ =0.

Comparing the terms of this equation as ¢ — 0, yields the algebraic
condition

al@+1)=L(+1),

whose solutions are o = £ and o = —¢ — 1.2 Obviously, in describing
scattering states with sharp angular momentum we must choose the first
solution which is regular at o = 0.

Note that the differential equation (1.129) for R(p), or (1.130) for
Z(p) (see just below), are well known from the theory of Bessel func-
tions.

In the mathematical literature on Special Functions [Abramowitz
and Stegun (1965)] one finds either the differential equation (1.129) of
spherical Bessel functions, or a somewhat different form which is ob-
tained from it by the substitution

Z(0) = JeR(o) .
It reads
1 +1/2)?
Z//(Q)+gz/(Q)+|:l—%] Z(0)=0 (1.130)
and is called Bessel’s differential equation.

For lack of space we do not dwell upon the theory of Bessel func-
tions. Rather, we merely quote solutions of (1.129) and describe their
relevant properties.

201p the theory of differential equations
of Fuchsian type the coefficient o is
called characteristic exponent.
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The solutions which are regular at the origin ¢ = 0 are called spher-
ical Bessel functions, they are given by

. 1 d\* sin o
je@) = (—0)* (——) — (1.131)
cde/ o
The first three functions read explicitly
) sin o . sing cospo
jo@ =",  jil@="5—
o 0 0

. 3sing 3cosp sing
nO=—75—-—"7%—"- .
[ [ [

Their behaviour in the limit ¢ — O is the one expected on general
grounds, Viz.

0—>0: jz(g)~@%zl)”, (1.132)
the double factorial in the denominator being defined by
2e+DHil:=26+1)-(26—-1)---5-3-1.
The asymptotic behaviour for o — oo is
0— 00 jg(Q)’VéSin (Q—Z%) . (1.133)

The examples £ =0, 1 and 2 given above may be useful in testing the
two limits for small and large values of o, respectively.

Summarizing our formulae, the eigenfunctions which are common to
the operators {H, lz, £3}, and which are regular at r =0 are

Vem (k, x) = je(kr)Yem (0, ¢) . (1.134)
A complete stationary solution of the Schrodinger equation reads

Won (k. 1,2) = e~ VF o (k) Y (6, ).
where E = h%k?/(2m). Its asymptotic form follows from (1.133),

r— 00 (1.135)

Wy (1, k., x) ~ 1 [ei(krf(ﬁnﬂ)f(Et/h))_efi(krf(iﬂ/2)+(Et/h))] Yin
o 2ikr

As we will see in the analysis of scattering states in Chap. 2, the first
term describes outgoing spherical waves while the second describes in-
coming spherical waves.

The solutions (1.134) are said to be partial waves of fixed angular
momentum £. They are not eigenfunctions of the momentum operator p.

To the contrary, as we show below, eigenfunctions of momentum con-
tain all values of £. Nevertheless, the relation of the angular momentum
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to the impact parameter is not lost completely. Indeed, in studying the
graph of the spherical Bessel function jy(kr) one discovers that this
function, for £ > 1, has a pronounced maximum at

1
=kr>~(f4+=-),
o=t <+2>

i.e. practically at the point where the relation between ¢ and the
impact parameter holds true (cf. [Abramowitz and Stegun (1965)],
Sect. 10.1.59). Fig.1.12 shows the function jgzzm(g), while Fig.1.13

shows its square multiplied by o®. In this example jjq is obtained either

0,011
0,008 T
0,006 T
0,004 T
AAA
/\
5 10 15, 20 25 30

161

1,4 1

1,21

081
061
041

0,2}

Fig. 1.12. Square of the spherical Bessel
function with ¢ =10 as a function of
o=kr

Fig.1.13. Square of jjp(0) multiplied
with @2, as a function of o = kr
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from (1.131) or through repeated application of the formula

) d ¢—-1Y\ .

i@ =\ ——+—)Jje-100). e>1.
do o

Thus, it is correct to state that the centrifugal potential displaces the £-th

partial wave from the origin, the more the higher the value of ¢. In de-

scribing scattering from a (true) potential U(r) high partial waves feel its

influence less than low partial waves, even if the potential is attractive.

At this point, the reader might ask about the relationship between the
simultaneous eigenfunctions of the first set of operators, {p1, p2, p3},
and those of the second set, {H, 2, £3}. The answer to this question
is contained in an important formula which gives the expansion of the
plane wave in terms of partial waves. With p = hk, and k = |k|, as be-
fore, it reads

+¢

X =dm > i jukr) D V], O $) Yom O, 61) |- (1.136)
£=0 m=—A{

The arguments of the first spherical harmonic are the angular coor-
dinates of the vector k, the arguments of the second spherical harmonic
are those of the vector x. The physical interpretation of this formula is
that a plane wave contains all partial waves £ =0, 1,2, .... Likewise,
for every value of ¢, it contains all values of m unless the momentum
vector points in the 3-direction. In this is the case, we have 6 =0 and
¢r = 0. The formulae (1.115) and (1.116) show that

V204 18
0-
L4 "

In this case the plane wave and its expansion reduce to

o0

.3 . .

elkx :E i/4m (20 +1) jo(kr) Yo (B, bx)
=0

Yo (O =0, ¢ =0) =

=Y i‘@e+ 1) je(kr) Py(cos by) .
£=0

This is an important result:
Although a plane wave contains all partial waves ¢, the projection of

the orbital angular momentum onto the direction of the momentum
is equal to zero for all partial waves, m, = 0.
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Proof of the formula (1.136)

In a first step take k to point along the 3-direction. In this case axial
symmetry implies that the expansion of a plane wave in terms of spher-
ical harmonics only contains contributions with my =0,

o0
143
=" Go(r)Yim=0(6, 9) ,
£=0
whereby the functions G, (r) are to be calculated from

2 b4
Go(r) = / A2 Y5 e = / de / sin0.de Y, () ek <o .
0 0

Rather than working out this integral in all details one resorts to a trick:
One calculates the leading term for asymptotically large values of r and
compares to the asymptotics (1.133) of the spherical Bessel functions.
By partial integration in the variable z := cos 6 one obtains

+1
1 .
Gy (1’) =2 | — / dz Yg()(z) (ikr elkrz)
ikr

—1
+1

o / dz d¥e0 ikr:
1 dz

2 .
== [Yeo(z) ek
ikr

-1
Partial integration of the second term in square brackets generates fur-
ther inverse powers of r so that, to leading order, only the first term
contributes. This term becomes

r— o0

NZETeIES I e ~
Gﬁ(’)”%[ek (D e Py = 1)+ Ok 2]
VAROFD .y [ e
_ Z(ikr )1‘5<e<’< 0/) _ itk e(n/2>>) Puz=1)
+O[(kr)?].

Compare now to the asymptotics of (1.133). The expansion in terms
of spherical harmonics being unique, the formula for exp(ikx?) given
above holds true. One then substitutes

2041
Yo (0) = -

in this formula. Finally, if k does not point along the 3-axis the formula
holds with the replacement cos & —> cos o, where « denotes the angle
between k and x. At this point one uses the addition theorem (1.121)
thus obtaining the result (1.136). This concludes the proof.

The expansion (1.136) of the plane wave in terms of solutions with
sharp £ and which are regular at the origin is useful in determining the

Py(cos 6)
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normalization of the functions (1.134). One has, successively,

/ dPx e I K0x _ 27350 k)

3
= %S(k —k")8(cos8 —cos 8)8(¢p — @)
= (@m? Y i DY ¥ B Yo RS0t S / r2dr jo(kr) jo (K'r)
o mm’ 0

= (47)%8(cos 0 —cos 0)8(¢p — @) f r2dr jekr) je(K'r) .
0

(The short-hand notation IAc, & stands for the angular coordinates of k
and of k', respectively.) In the last two steps the sum over ¢’ and m’ was
carried out, and the completeness relation (1.119) of spherical harmon-
ics was used. By comparison of coefficients one obtains the important
formula

o0
/ P dr jolkn) jek'r) = 58— ) |. (1.137)
0

Spherical Bessel functions are orthogonal but they are not normalizable
in the usual sense. Like plane waves they are normalized, in a more
general manner, to §-distributions in the modulus of the momentum or,
equivalently, in the energy scale (cf.Sect. 1.8.4).

This section concludes with a few statements on further solutions
of the differential equation (1.129) that are relevant for the theory of
scattering.

Solutions of linear, homogeneous, ordinary differential equations of
second order such as (1.129) can be expressed as superpositions of two,
linearly independent, fundamental solutions. The spherical Bessel func-
tion (1.131) being one choice, the function

1 d\*
ne(0) = —(—0)" (Ed_g) COQSQ, (1.138)

being linearly independent of jy(0), is another one. The set of these
functions with £ =0, 1,... are called spherical Neumann functions.
They have the expected behaviour in the limit o — 0,

20— 1!
0—0: nz(a)~—w. (1.139)

At infinity their behaviour is similar to the one of spherical Bessel func-
tions but for a shift by m/2,

1
o—>0o0: ny(p)~——cos <Q—Zz). (1.140)
0 2
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Another choice of a fundamental system, instead of {j;(0), n¢(0)}, is
provided by the spherical Hankel functions. They are defined as follows

¢ _+i
hP(0) = (- Q)€<1 d) L (1.141)
o do 0

their relation to the former set being

1 _ 1 _
je(@) = Z[hgﬂ@ —h7 @1, nee) = —E[hf)(@ +h{7 ).

As both Hankel functions contain the spherical Neumann functions their
behaviour at the origin is singular. In turn, their asymptotic properties
are simple:

0—00: h(i)(Q) eTilo—t(m/2)]

As this is the behaviour of outgoing and incoming spherical waves,
respectively, it is plausible that this basis will play a special role in scat-
tering problems.

1.9.4 The Spherical Oscillator

The spherical oscillator is an example for a problem with central field
with a purely discrete spectrum. The spherically symmetric potential
reads

1
Ur) = —ma)zr2
the dlfferentlal equation (1.127) for the radial part of the motion is
R 1 d (ﬂ dRa(r))+|:h2£(Z +1)

C2mr2?dr dr

1
o +§mw2r2] Ry(r) = ERy(r) .
(1.142)

Like in Sect. 1.6 it is useful to introduce the reference length b and the
dimensionless energy variable ¢ which were defined by

e o _E
mo  mc2ho C he

The variable r is replaced by the dimensionless variable

(1.143)

QZE

The radial differential equation then goes over into
1 d dR(q) 0L+ 1)
—— (cf ) - ( ) R(g) = —2¢R(q) .
q° dq dg q*

Instead of trying to solve this equation in its full generality it is help-
ful to first collect the conditions to be imposed on its solutions from
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a physical perspective. Like in the force-free case, Sect.1.9.3, every
physically interpretable solution must remain finite at r — 0. Like in
that example, the substitution

R(g) =q"f(g) with f(0)#0,
yields the algebraic condition
a(a+1)=¢+1), ie. either a=¢ or a=—0—1.

For bound states only the first value o = £ of the characteristic exponent
is admissible. We note that this result holds for all other central fields
for which lim,_,¢ r2U(r) = 0. The physical reason for this is that the be-
haviour for » — 0 is dominated by the centrifugal potential as long as
the true potential U(r) is less singular than that at the origin.

Taking out the “centrifugal factor” ¢¢, the above differential equation
is modified to

¢+1
@ +2% F1(@+Qe—g?) fig) =0.

(The calculation is the same as in Sect.1.9.3.) As a striking property
of this second form of the radial equation one notices that it remains
unchanged by the replacement ¢ — —q. This means that the solutions
depend on g2, not on ¢. Of course, this property is a consequence of the
potential being quadratic in r. This observation suggests to substitute the
variable once more by taking

2 r\2
7i=q" = <Z> , f@) =v(2). (1.144)
Making use of the formulae
d d d? d d?
= , _ = 2 -, - — 2_ 4 —
=z dg ﬁdz dg? dz T dz2
the differential equation for v(z) is seen to be
£+4+3/2 e 1
v'(2) + / V(@ + | ——-= v =0. (%)
2z 4

At this point one may wish to pause and to ponder a further require-
ment imposed by physics: the wave function of bound states should be
square integrable. This is a strong condition on their asymptotic be-
haviour at r — oo, that will be of key importance in the analysis of
bound states in the hydrogen atom. For large values of z, the differential
equation reduces to the approximate form

v'(2) — iv(z) ~0,

which is independent of ¢ and of ¢. This equation would be easy to
solve if it described the whole problem. Indeed, solutions would be

w(z) ~ /2 = T/ 20%)
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The solution which grows exponentially is not compatible with (x) be-
cause the term in the first derivative of v(z) would be positive, requiring
the parameter ¢ to be negative. As the potential energy is everywhere
positive, the total energy, being the sum of the expectation values of
kinetic and potential energies, must be positive. This implies that all
solutions decrease like exp[—r2/(2b%)], independently of their angular
momentum ¢ and of their energy. This result should not be surprising
for two reasons: the potential increases quadratically for » — oo so that
the wave function must decrease in this limit. On the other hand, we
know that the spherical oscillator can be decomposed into three linear
oscillators with equal frequencies, cf. Sect. 1.8.3, whose wave functions
have precisely this property.

If the exponential behaviour at infinity is extracted as well, by sub-
stituting

—z/2

v(z)=e w(z),

the newly defined function w(z) should turn out to be something
very simple such as, presumably, polynomials in z. Although this is
somewhat tedious and, perhaps, tiring for the reader to follow, it is
worthwhile to make a last substitution aiming at converting the differen-
tial equation for v(z) to one for w(z). The method being rather general,
this step of the calculations is useful also for other problems. We note

1
V'(2) = [—Ew(z) + w’(z)] e /2,
1 1 / 1 —z/2
v'(z2) = Zw(z)—w(z)+w (z)|e”*

and insert these formulae, thereby obtaining a differential equation
for w(z):

Zw”(z)—l-((i—l-%—z) w’(z)+% (s—(i—%) w(z) =0.

This equation is well-known from the theory of Special Functions. Its
general form is

2w @)+ c—2)w' () —aw(@) =0]|, (1.145)

where ¢ and a are real or complex constants. It is called Kummer’s
equation. As it is of central importance for quantum mechanics we
devote a whole section of Appendix A.2 to a summary of its most im-
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2IThe notation “hypergeometric” is
meant to remind that it is built follow-
ing the model of the geometric series;
it is called “confluent” because it is the
result of the junction, or “confluence”,
of two first-order poles. This transition
from Gauss’ hypergeometric function to
the confluent hypergeometric function
is explained and is carried out in Ap-
pendix A.2.

portant properties. There one learns that the solution which is regular
at z =0 can be written as an infinite series which reads

a a@a+1) , @k
Fia,c)=1+—-z24+-———- cee
1Fi(a; ¢; 2) +Cz+2zc(c+1)z + +k!(c)kz +
(1.146)
and where the following abbreviation is used
Mo=1, Mk =rA+1DA+2)...(A+k—1), A=a,c.

The function defined by the series (1.146) is called the confluent hyper-
geometric function.”! Among its most remarkable properties we note the
following:

1. In the sense of function theory the series given above defines an en-
tire function which is to say that it converges for all finite values in
the complex plane of the variable z. At infinity, in general, it has an
essential singularity. This property is illustrated by the example a = ¢

for which
o0

1Fi(a; a; 2) =Z—zk= et.

2. If a equals a negative integer or zero,
—a e N() ,

the series terminates after a finite number of terms, and | F (a = —n;
¢; z) is a polynomial of degree n.

3. At infinity there exists an asymptotic expansion in 1/z for | F}(a; c; z)
which is important for many applications in quantum mechanics. It
is derived in Appendix A.2 where we show that it is

a fixed, ¢ fixed

1Fi(a;c;2) ~ &eii’mz—“ [1 +0 <%>:|
+ ezz“_C@ |:1+(9 <l):| )
a z

I(c—a)
The upper sign in the first term applies for —m/2 < argz < 37/2,
the lower sign applies for —37/2 < argz < —m/2. The symbol I(x)
denotes the Gamma function, i.e. the generalized factorial, whose
salient properties are also collected in Appendix A.2.

|z] — o0,

(1.147)

Applying this information to the third form of the differential equa-
tion of the spherical oscillator, one obtains
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Clearly, the second term of the asymptotic expansion (1.147) is po-
tentially dangerous because it grows exponentially and, therefore, may
destroy the good behaviour of the radial function noted above. One sees
that this catastrophy can only be avoided if the second term is absent
altogether, that is, if the factor multiplying it vanishes. The Gamma
function has no zeroes for real argument. However, it has first-order
poles at zero and at all negative integers. Therefore, if I'(a) which ap-
pears in the denominator, has a pole position at a then the exponentially
growing term is absent. The important conclusion is that the radial wave
function is square integrable and, thus, amenable to a statistical interpre-
tation, only if a = —n with n € Ny. This implies that the eigenvalues &
are quantized and must obey the formula ¢ =2n4-£43/2.

The result of this analysis is the following. The eigenvalues of the
Hamiltonian are

3
Eng=<2n+£+§> ho , n=0,1,2,.... (1.148)

The radial functions carry the quantum numbers o = (n, £) and are
given by

27 b2
where N, denotes the normalization. Without delving into its calcula-
tion %2 I merely quote the result:

1 2Tn+€+3/2)
b2 432 0

(The sign (—)" is physically irrelevant. I have chosen this sign for the
purpose of rendering the coefficinet of the highest power of r positive.)

1. As expected the energy formula contains the term 3hw/2, i.e. one
term hw/2 for each of the three degrees of freedom. This is the zero
point energy which is a direct consequence of the uncertainty rela-
tion. The oscillator can never have an energy lower than this value.

2. The allowed values of the energy are E,¢ = (A+3/2)hw with
A =2n+{ which shows that for A > 1 they are multiply degener-
ate. This degeneracy is due in part to the projection of the angular
momentum because for fixed ¢ the states with m = —¢,m = —£ +
1, ... ,m =4« all have the same energy. (The Hamiltonian does not
depend on £3.) Part of the degeneracy must have a dynamical origin
and must be a pecularity of the potential being proportional to r2.
For example, the state which has A =2 has a sixfold degeneracy
because this value is obtained from either (n =0, £ =2) or from
(n =1, £ =0). Counting the m-degeneracy there are 54 1 = 6 states
which have the same energy.

€ —r?/(2b%) 3.1
Rye(r) = Nyer-e 1Fil—nt+—-; =), (1.149)

Nag = (="

(1.150)

22 Integrals with confluent hypergeomet-
ric functions, powers and exponentials,
are known. They are found in good
tables of integrals in the context of La-
guerre polynomials.
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3. The derivative term in the radial equation (1.142) is written in

a manifestly self-adjoint form. Indeed, if R,¢(r) and R, (r) are two
different radial functions, one has (noting that these functions are
real!)

o.¢]
1 d dRye(r)
2 2 n
/r dl" Rn/@/(}’)r—za (r T)
0

o
1 d dR, ¢
—/Vzdare(r) (rz—”g (r)> =0.
0

72 dr dr

Now, write the radial equation (1.142) once fo R;¢, and once more
for R,¢, with possibly different values of n but with the same value
of €. Then multiply the first by R, from the left, the second by R,
from the left, integrate over the entire interval [0, c0), fooo r2dr...,
and subtract the results. What remains in the difference is the term

o0
(Ewe—Ene) / r?dr Ry o (r)Rue(r) =0.
0

If n’ # n, then (E, ¢ — Ey¢) # 0, and the integral must vanish. This
means that the radial functions with the same value of ¢ are orthog-
onal. For different values £ # ¢’ there remains the term

o0

hZ

/Vzdr Ruyg(r) 5—— [+ 1) =€/ (¢ + DRy (r)
2mr

0

the radial functions are no longer orthogonal. In this case the orthog-
onality is taken care of by other factors of the whole wave function

Vnem (X) = Npg Rpg (1) Yem (0, @)

so that one always has

00
/72 dr/ ds2 w:/g/m/(x)llfném (X) = 8 Sep Smm -
0

. In atomic and nuclear spectroscopy states with £ =0 are called

s-states, states which have £ =1 are called p-states, while states
which have € =2 are called d-states. Originally, these labels served
the purpose of characterizing atomic spectral lines, with “s” stand-
ing for “sharp”, “p” for “principal”, “d” for “diffuse”. From ¢ =3
on up atomic states are labelled following the alphabet, that is to
say, f-states have £ = 3, g-states have £ =4, h-states have £ =5, etc.

Using this notation the first four radial functions are, from (1.149)
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and (1.150),

3 2
E=Zho: Ro(r)=——e "/

2 J172p3

5 NG r 2/00b2
_ Oy _ 7Y o—r2/2p)
E= 2hw. Rop(r) CYee <b) e ,

7 4 r\2 2012
E=-hw: R r=—<—) e /)
2 0d(r) Ay

7 . _ \/g r 2 3 _r2/(2b2)
E=ghor ko= o[ () 3] e

Figure 1.14 shows the graphs of these functions. Among these, and
in accord with the discussion above, only Rgs and Rj are orthogo-
nal.

. On the basis of our knowledge of the one-dimensional linear oscil-
lator we conclude that the system of eigenfunctions of the spherical
oscillator

Ynem (X) = Npe Rpe (1) Yo (0, @)

provides a complete, orthonormal set of square integrable functions
over R3. This is important to know because this base system can be
used in expansions of other, square integrable wave functions. Nu-
clear theory frequently makes use of this fact.

-0,2 1. /

-041 i

Fig. 1.14. The radial wave functions of
the spherical oscillator (1.148), multi-
plied by r, for the states Os, Op, 0d, and
1s, as functions of r/b
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1.9.5 Mixed Spectrum: The Hydrogen Atom

We are now well prepared, through the experience of Sects.1.9.3 and
1.9.4, to derive in a few steps the energy spectrum and the corre-
sponding wave functions of the hydrogen atom. Let m denote the
reduced mass, as before, let r be the modulus of the relative coordi-
nate, 77 = (0, ¢) its angular coordinates, and let £ be the relative orbital
angular momentum. Like in classical mechanics the center-of-mass S
behaves like a pointlike particle of total mass M which moves freely.
Thus, the eigenvalues of the corresponding term in the Hamiltonian
P2

(H)s =707

are Eg = P%/(2M), the corresponding wave functions are plane waves.
The Hamiltonian of relative motion reads
(=P PE (1151)
T om T 2mrr T '

In order to determine simultaneous eigenfunctions of the set of ob-
servables

H, ¢, and {3

we start from the factorization form (1.126), by setting
Vatm(X) = Rae(r)Yem(£)  or  Yem(a, x) = Re(er, 1) Y (%)

for the discrete or the continuous part of the spectrum, respectively. The
radial equation (1.127) becomes

1 d [ ,dR(r) e+1) 2me*> 2mE

= 7)) — — R(r)=0.

r2 dr (r dr ) ( r2 h2r h? ")

Unlike in the previous examples we first substitute R(r) as follows
u(r) :=rR(r).

This substitution has no other purpose than to simplify the radial differ-
ential equation. Indeed, it contains no longer any first derivative because

1 d [ ,du) u” zu’ +2u +2 u  u u”
—_—l\r——-—-_=——2— — - — = | = —.
r2 dr dr r r r2 PBor\r 2 r

Furthermore, all radial integrals f r2dr are replaced by f dr. The radial

equation becomes

du(r) [L+1) 2me* 2mE
dr? _|: 2 R R

As the potential tends to zero as r — 00, states with positive energy can

escape to infinity and, therefore, will be similar to the force-free solu-
tions of Sect.1.9.3. However, the Coulomb potential being of infinite

:|u(r)=0.
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range, these states will be sensibly deformed even for large values of r.
States with negative energy, in turn, must be fully localized because, if
this were not so, the kinetic energy would have negative values at very
large radii. Therefore, like in classical mechanics, these states must be
bound states. For these reasons we analyze the cases £ >0 and E <0
separately. We begin by the latter case:

Bound States: Introducing B := —E, the binding energy, « := +/2mB/h
a wave number, and the dimensionless constant

_ me? _ & [mc?
V=W T e\ 2B

the variable r is replaced by the dimensionless variable
0 = 2kr. (1.152)
The radial equation then reads

dPule) [ew+1) v 1
do? _[ 0? _E+Z}u(g)zo' o)

Very much like in the previous examples, in a first step, one analyzes
the behaviour of u(p) at the origin, and at infinity. As we substituted
R(r) = u(r)/r the solutions regular at the origin must have the be-
haviour

f-i—lv(g) .

In turn, for asymptotically large values of o the differential equa-
tion (xx) simplifies so that its approximate solutions are

0—00: ule)~a(Be P4 h(Bet/2e.

0o—>0: u(~o

Note that both terms are admissible, a priori, in contrast to the spherical
oscillator. The first term which decays exponentially, is welcome, while
the second must certainly be absent in order to preserve square integra-
bility. This raises the question of whether there are special values of the
binding energy B (remember E = — B!) for which the coefficient b(B)
vanishes.

The example of the spherical oscillator taught us that it is advisable
to extract from the wave function its asymptotic forms both for small
and for large values of the radial variable. This is achieved by the ansatz

u() = oe7?2u(p).

Equipped with the experience of the previous examples, (xx) is easily
converted to a differential equation for the function w(g). Who is sur-
prised to find once more Kummer’s equation (1.145)? Its specific form
in the present application reads

ow"(0) + (2 +2—0w'(0) = (U +1-P)w(e) =0.
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Comparing to the general form (1.145) we see that a and c are
a=L+1-y, c=2{+2.

The solution regular at the origin is
w(e) =1F(+1-y;26+2;0).

The asymptotic representation (1.147) of the confluent hypergeometric
function shows that its second term which grows like e, would de-
stroy the exponential decay of u(p) at infinity unless the factor that
multiplies this term vanishes,

1 1
= = 0
Ia) TI'C+1-Y)
This happens precisely when —a € Ny or, in detail,

b4+1—y=—n', n=0,1,2,....
Unlike the case of the spherical oscillator one defines
n:=n"+¢+1, sothat n=1,2,3,.... (1.153)

The integer n is called principal quantum number. If n’ € Ny then
n € N, excluding the zero. It follows from the definition (1.153) that,
for given n, the orbital angular momentum £ can only take one of the
values

£=0,1,... ,n—1.

This tells us, in the interplay of the repulsive centrifugal potential and
the attractive Coulomb potential, that the orbital angular momentum
must not be too large if there are to be bound states.

The eigenvalues of the energy follow from the condition y = n. They
have the remarkable property that they only depend on n, but not on ¢,
viz.

me* 1 I 5 5

EnE—Bn:—?ﬁ:—ma mc- . (1154)
This is indeed the discrete part of the hydrogen spectrum quoted
in (1.24). As a new property one sees that the degree of degeneracy is

n—1 +£ n—1
Yo 1= e+ =n".
£=0 m=—¢ £=0

In addition to the directional degeneracy which yields a factor (2¢+ 1)
there is a further, dynamical, degeneracy which is specific to the 1/r po-
tential.

The eigenfunctions of the Hamiltonian, normalized to 1, are as fol-
lows

1
Vnem (X) = Rpe (r)Yem (X) = ~Yne(r)Yem (X)
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where

| ! 1 e+1 —0/2
— Fi(—=n+£+1; 20+42; 0) ,
Yne(r) aB(n—K—l)!n(2€+1)!Q e 1 F(—n+l+ +2; 0)

(1.155)

and where ap denotes the Bohr radius (1.8). Upon insertion of the val-
ues of the energy obtained above, the variable o is seen to be equal
to 2/n times the ratio of r and of the Bohr radius,

1 2amc* 2
Q:ZKr:ﬁ‘/—2mEnr= ame r——r

nhc nag

I skip the calculation of the normalization in (1.155). The integrals con-
taining powers, exponentials, and confluent hypergeometric functions
which are needed for this calculation, are found e. g. in [Gradshteyn and
Ryzhik (1965)].

While the energy only depends on the principal quantum number n
the radial wave functions depend on both n and the orbital angular mo-
mentum £. Like in the case of the spherical oscillator one notes that two
radial wave functions are orthogonal only for equal values of £ and dif-
ferent values of n, but not for different values of £. In the latter case,
orthogonality of the entire wave function is taken care of by the spher-
ical harmonics.

Here are the normalized radial functions for n =1, 2, 3, using the
spectroscopic notation for the orbital angular momentum:

2
Ris(r) = e /o),
ap
11 r\?
Ryp(r) = ——7—— (—) o (/2m),
P ral?a6 \as

1 1 r 1/r —(r
e ) 19
" ag /2 \as 2 \ap

11 2\ _
R3d(r) - - 1/2 <_> € (r/3aB) 3
" ag 34/5! 3ag

R ] V2 2 N[, 12 ¢ /3am)
sy =-—7—7=\z=) |1-5lx—])|¢ ,
r 61113/23«/§ 3ap 4 \ 3ap

11 2 2 1/ 2r\?
" ag V3 \3ap 3ag 6 \ 3ag

Figure 1.15 shows the first three s-functions {r-R,s(r),n =1, 2,3},
Fig. 1.16 shows their squares r>R2 (r), as functions of r expressed in
units of ag. In order to interpret these graphs we calculate the expecta-
tion values of r* for the three states and with « an integer, positive or
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Fig.1.15. Graphs of the functions
Vs (r) =7R, of the hydrogen atom n =
1,2,3 as functions of (r/ap). These
states are pairwise orthogonal

Fig.1.16. Radial probability densities
r2R2 (r) of the first three s-states of
Fig. 1.15, as functions of (r/ap). The
angular part is Yoo =1/ Jar and, hence,
is isotropic. Therefore, these densities,
completed by spherical symmetry and
multiplied by 1/(4n), yield the full
densities

............ rRag
15T 20 25 30
- X
-044 7Ry
-‘i\‘\rzRgs
15, 20 25 30

negative, power. One finds the following results

1
(ra> 1s =a§W(a+2)'

’

1 301
(ra)zs ZG%E((X+2)! <1 + Z(X+Zaz) >

o

3
(I"a):,'s :aﬁﬁ(a%—%!

(

7 23 1 1
14+ -—a+—d*+-a’+—a

6 36

6

36

4>'
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-031

For o = 0 the right-hand sides are equal to 1, in agreement with the nor-
malization of the wave functions. For « =1 and o =2 these formulae
give

27

(ry1s= S4B (r) 25 = 6ag , (r)3s = B

(VP =Viw,  (AP=vEa, (=3B,

respectively. As the abscissa of Fig. 1.16 shows the ratio r/ag one may
mark the numbers just obtained on this axis, and thereby interpret the
graphs of the (radial) probabilities rzRﬁS.

Evaluating the results for « = —1 one finds for all three examples

1
rl,s nlap’

This is a result one could have guessed in advance. Indeed, it follows
from the virial theorem which yields (U(r)),¢ = 2E, for the case of
a 1/r-potential. >3

Figures 1.17 and 1.18 show the graphs of the radial functions for the
same value n = 3 of the principal quantum number and for £ =2, 1, 0,
i.e. the functions rR34(r), rR3,(r), and rR3,(r), and of their squares,
respectively, as functions of r/ag. (Note that these functions are not or-
thogonal.)

In contrast to the case of the spherical oscillator this first set of wave
functions is not complete. What is missing to obtain completeness are
the eigenfunctions of the Hamiltonian which correspond to positive en-
ergies. To these we now turn.

Fig.1.17. Graphs of the radial eigen-
functions, multiplied by r, of the states
(n=3,¢), £=0,1,2, as functions of
the variable (r/ap)

23 Note that 1 have used the virial the-
orem of classical mechanics, and have
replaced the averages by expectation
values as suggested by Ehrenfest’s the-
orem, Sect. 1.5.2. In fact one proves the
virial theorem for expectation values di-
rectly (cf. Exercise 1.11).
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Fig.1.18. Radial probability densities
rzRge (r) in the states shown in Fig. 1.17.
The full spatial densities are obtained
by multiplying the wave function of the
s-state by 1/(4m), the one of the p-state
by Y1 (6, )2, and the one of the d-
state by Y2, (6, ¢)|?

0,1 1

0,08 -

0,06 1

0,04 1

0,02 1

Eigenstates in the Continuum: If the energy is positive then

V2mE
h

is the wave number that is to be associated to the electron whenever it
moves asymptotically far from the origin, the center of the force field.
The constant ¥ of bound states is replaced by the definition

e>m
Yy =— )

hv2E
or, somewhat more generally,
me? 77 e?
2k hv
where Z and Z’ are the charge numbers of the two particles that scatter
off one another, v = hk/m = /2 E/m being their relative velocity. In the
case of hydrogen we have Z =1, Z’ = —1, hence the choice of the sign
in the definition. Taking again g := 2kr, the radial equation reads

d2 e+1 1

In comparing to (x%) note the different sign of the last term in
square brackets. While the regular solution starts like o*!, as be-
fore, this sign change causes the oscillatory behaviour to become
exp (£io/2) = exp (£ikr) at infinity. This suggests the ansatz

i0/2 pt+1

k=

yi=— (1.156)

u(g)=e w(o),
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thus obtaining the differential equation
ow”’(0) +(2¢+2+io)w'(0) + ((¢ +1) = Y)w(o) = 0.

This is almost, but not quite, Kummer’s equation (1.145). Closer exam-
ination shows, however, that it is sufficient to substitute

7:=—lp

to obtain that differential equation with the constants
a={¢+1+1y and c=20+2.

The solution regular at the origin is
w(z = —ip) = w(—2ikr) = Ne 1 F1 (£ + 1+iy; 20+ 2; 2)

where Ny is a constant that remains to be determined. The asymptotics
for r — oo is of particular interest. It is read off the formula (1.147):
Writing

TC4+1+iy) = [T+ 1+ip)| e,
thereby defining what is called the Coulomb phase oy, one has

I2¢+42 - I2¢+42 . .
1 F1 ~ (——F_)(_;_zikr)—e—l—l)/_‘_ 2e+ .) e—21kr(_2ikr)—£—1+1y
I't+1-iy) I'(t+1+iy)
I'2¢+2) 1 ikr (ny/2)

T+ 1 —ip)| Qkr)tH
% [i—e—l ellkr=y In@kn+oe] 4 (_jy—t-1 e—i[kr—yln(2kr)+azj]

_ @D 2wl

= €
[+ 1—1iy)| (2kr)t+l 21
% [ eilkr—y In@kn)—L(/2)+o¢] _ e—i[kr—yln(2kr)—£(n/2)+ag]] '

If we choose the normalization N, as follows
Ny T L=ID]
2I(2¢+2) ’
the radial function obtains an asymptotic behaviour
ue(o =2kr) = Ny @20 Fi(6+ 141y 2042, —ip)  (1.157)

which is similar to the asymptotics of the free solutions
o0— 00: ug(p)~ sin (kr —Z% —y In(2kr) +ag) .

It differs from the asymptotics of the spherical Bessel functions by the
constant scattering phase

o0 =L+ 1+iy)

and by the phase —y In(2kr), with a logarithmic dependence on r which
is characteristic for the 1/r-dependence of the potential.
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Fig.1.19. Energy spectrum of the hy-
drogen atom. Besides the degeneracy

The complete wave function with positive energy and with definite
values of £ and m reads

a1 .
wém(E’ x) = R@(Ev r)YEm(x) = ;ME(E’ r)YIZm(x)
with, as noted above,

ue(E, r) =ue(0),

the normalization being chosen according to the needs of the specific
situation one is studying.

1. The energy spectrum of hydrogen is the classical example for
a mixed spectrum. It consists of a countably infinite, discrete, set of
values, with a limit point at zero, and of a continuum of positive val-
ues starting at £ = 0. Besides the degeneracy in the projection m of
orbital angular momentum the discrete spectrum exhibits a dynam-
ical degeneracy which grows strongly with n. This is sketched in
Fig. 1.19. This dynamical degeneracy is lifted as soon as the radial
dependence of the spherically symmetric potential deviates from 1/r.
This happens, for instance, if nuclei of hydrogen-like atoms are no
longer described by point charges Ze but by charge distributions of
finite spatial extension.

due to the magnetic quantum num-
ber m which is typical for all cen-
tral field problems, the discrete values
with negative E exhibit a dynamical
{-degeneracy: for given principal quan-
tum number n all levels with £ =0 up
to £ =n—1 have the same energy. The
discrete part of the spectrum has the
limiting value £ = 0. At this point the
continuum of positive energies starts

E/Bis4
0
-1/16 4s 4p 4d 4f
-1/9 3s 3p 3d
—1/4 2s 2p
—1 1s
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2. Only the combined set of wave functions (1.155) with negative

eigenvalues, and (1.157) with positive energies are complete. The
two parts taken separately, are not. Although rarely done, there may
be situations where to use the eigenfunctions of the hydrogen Hamil-
tonian as a basis for calculations in atomic physics. In such a case
one must first normalize the eigenfunctions (1.157) in the energy
scale and must use both groups of eigenfunctions. The completeness
relation then reads

oo n—1 +4

ZZ Z WHZm(x)w;:gm(x/)

n=1 (=0 m=—¢

o0 oo +L

n f AE S 3 Won(E )0l (E.x') = 8(x —x').

0 =0 m=—¢

. The confluent hypergeometric functions contained in the eigenfunc-

tions (1.155) of the bound states are polynomials which are identical

with the associated Laguerre polynomials, up to the normalization,
[(¢+m)!]?

2041y B
L, (0= (n_g_l)!(26+l)!1F1( n+e+1,2042,0).

These polynomials are defined as follows:
Laguerre polynomials:

¢ s w\ !
X —X N _\V LadW
Luto = 'S (e = Y () (v) =
v=0
Associated Laguerre polynomials:

o

d
LZ()C) = @LH(X) .

In practical calculations one often uses the associated Laguerre poly-
nomials, instead of the confluent hypergeometric, because there are
useful recurrence relations for them which are useful in simplifying
integrals.
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Scattering of Particles
by Potentials

Introduction

he three prototypes of spectra of self-adjoint operators, the dis-

crete spectrum, with or without degeneracy, the continuous spec-
trum, and the mixed spectrum, as well as the corresponding wave
functions, contain important information about the physical systems
that they describe. Yet, from a physicist’s point of view, the results
obtained until now remain somewhat academic as long as we do not
know how to render the information they contain visible by means of
concrete experiments. For example, the static spectrum of the Hamil-
tonian describing the hydrogen atom and the spatial shape of its
stationary wave functions, a priori, are not observable for us, the
macroscopic observers, as long as the atom is not forced to change
its state by interaction with external electromagnetic fields or by in-
teraction with scattering beams of electrons. In other terms, the pure
stationary systems that we studied so far, must be subject to nonsta-
tionary interactions in set-ups of realistic experiments which allow
for preparation and detection, before we can decide whether or not
these systems describe reality. As this question is of central impor-
tance I insert here a first chapter on the description of scattering
processes in what is called potential scattering, before turning to the
more formal framework of quantum theory.

2.1 Macroscopic and Microscopic Scales

In studying classical macroscopic systems our experience shows that
it is always possible to perform observations without disturbing the
system: In observing the swinging pendulum of an upright clock we
measure its maximal elongation, its period, perhaps even the velocity at
the moment of passage through the vertical, a stop-watch in our hand,
by just “looking” at it and without interfering, to any sizable degree,
with the motion of the pendulum. Even extremely precise measurements
on satellites or on planets by means of radar signals and interferometry
are done with practically no back-reaction on their state of motion. This
familiar, almost obvious fact is paraphrased by the statement that the
object, i.e. the isolated physical system that one wishes to study, is sep-

2.1 Macroscopic

and Microscopic Scales ....... 129
2.2 Scattering

on a Central Potential........ 131
2.3 Partial Wave Analysis......... 136
2.4 Born Series

and Born Approximation...... 147

2.5 Analytical Properties
of Partial Wave Amplitudes... 156

2.6 Inelastic Scattering
and Partial Wave Amplitudes. 167
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arated from the observer and his measuring apparatus in the sense that
back-reactions of the measuring procedure on the object are negligible.
The perturbation of the system by the measurement either is negligibly
small, or can be corrected for afterwards. In particular, the system is
obviously not influenced by the mere fact of being observed.

There is a further aspect that we should realize: The length scales
and the time scales of macroscopic processes are the typical scales of
our familiar environment, or do not differ from them much, that is, do
not go beyond the realm of what we can imagine based on our day-to-
day experience. Examples are the milliseconds that matter in sportive
competitions, or the very precise length measurements in micro mech-
anics.

Matters change when the object of investigation is a microcospic
system such as a molecule, an atom, an atomic nucleus, or a single
elementary particle:

1. Every measurement on a micro system is a more or less intrusive in-
tervention that can strongly modify the system or even destroy it. As
an example, think of an atom described by a wave function (¢, x).
If this atom is bombarded by a relatively “course” beam such as,
e.g., an unpolarized light beam, one intuitively expects the subtle
phase correlations that are responsible for the interference phenom-
ena of the wave function, to be partially or completely destroyed.
In fact, the impossibility of separating measuring device and object
belongs to the most difficult aspects of quantum theory.

2. Furthermore, the spatial and temporal scales of typical quantum pro-
cesses, in general, are small as compared to spatial distances or time
intervals of experiments set up to detect them. An example may il-
lustrate this: The size of a hydrogen atom is of the order of the
Bohr radius (1.8), that is about 10~ m. This is a very small quan-
tity as compared to the distance of the hydrogen target from the
source emitting the incoming beam that is used to investigate the
atom, as well as from the detector designed to detect the scattered
beam. A similar remark applies to the temporal conditions in atoms.
Characteristic times of an atom are defined by the transition ener-
gies,

27 hc
tm—>n)=———.

c E,—E,

For the example of the (2p — 1s)-transition in hydrogen this time

is 72— 1) ~4x 10715 — a time interval which is very short as

compared to the time scales in a typical experiment.

The general conclusion from these considerations is that in general
we can only observe asymptotic states, realized long before or long
after the process proper, and at large spatial distances from it. More
concretely this means the following: We wish to investigate a quan-
tum system which, when isolated, is a stationary one, by means of



a beam of particles. The system is the farget, the particles are the
projectiles which are directed onto the target, or which are seen in a de-
tector after the scattering has taken place. The interaction process of
the beam and the system happens within a time interval At around,
say, t =0. It is localized within a volume V of space around the ori-
gin x = 0 that is characterized by the radius Rg. At time t — —oo the
beam is constructed in a controlled way at an asymptotically large dis-
tance from the target. The beam and the target in this configuration
define what is called the in-state (abbreviation for “incoming state”). For
t — +oo the scattered particles, or more generally the reaction products
of the scattering process, are identified in the detector which also has an
asymptotically large distance from the target. The scattered particles, to-
gether with the target in its final state, are in what one calls the out-state
(abbreviation for “outgoing state”).

Other situations where we actually can perform measurements are
provided by systems which are stationary by themselves but which are
unstable because of interactions with other systems. For example, the
2p-state of hydrogen is unstable because it decays to the 1s-state by
emission of a photon, the typical time for the transition being on the
order of 107?s. In this example the in-state is the atom in its excited
2p-state, the out-state consists of the outgoing photon and the atom in
the stable ground state. In this example, too, our information on the
(unstable) quantum system stems from an asymptotic measurement, the
decay products being detected a long time after the decay process hap-
pened and very far in space.!

As a general conclusion we note that experimental information on
quantum mechanical systems is obtained from asymptotic, incoming or
outgoing states. We cannot penetrate the interaction region proper and
cannot interfere with the typical time scale of the interaction. In quan-
tum mechanics of molecules, atoms, and nuclei, the important methods
of investigation are: scattering of particles, i.e. electrons, protons, neu-
trons, or « particles, on these systems; excitation and decay of their
excited states by interaction with the electromagnetic radiation field.

Scattering processes which can be dealt with by means of the notions
and methods developed in Chap. 1, are the subject of this chapter. The
interaction with the radiation field requires further and more comprehen-
sive preparation and is postponed to later chapters. Likewise, scattering
theory in a physically more general, mathematically more formal frame-
work will be taken up again later.

2.2 Scattering on a Central Potential

We assume that a potential U(x) is given which describes the interaction
of two particles and which is spherically symmetric and has finite range.

2.2 Scattering on a Central Potential

1 Of course, the unstable state must
have been created beforehand and one
may ask why the preparation procedure
is not taken to be part of the in-state,
or under which condition this becomes
a necessity. The answer is a qualita-
tive one: The total decay probability
of the unstable state, when multiplied
by h, yields the energy uncertainty,
or width I" of the unstable state. If
I' K Eg, i.e if the width I is small as
compared to the energy E, of the state
then this state is quasi-stable. The pro-
cess used to prepare it can be separated
from the decay process.
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Somewhat more formally this means
Ux)=U@r) with r=lx|, lim [rU(r)] =0. 2.1)
r—00

Spherically symmetric potentials such as

e—r/ro

Ur)=UpB(ro—r) or Ulr)=g >

the first of which vanishes outside of the fixed radius rg, while the
second decreases exponentially, fulfill this condition. The Coulomb po-
tential

ere
Uc()=——

does not. The aim is to investigate the scattering of a particle of mass
m on the potential and to calculate the corresponding differential cross
section. (Note that in the case of the two-body system m is the reduced
mass.) The differential cross section is an observable, i.e. a classical
quantity. Its definition is the same as in classical mechanics (cf. [Scheck
(2005)], Sect. 1.27): It is the ratio of the number dn of particles which
are scattered, in the unit of time, into scattering angles between 6 and
6+ df, and of the number no of incoming particles per unit of area
and unit of time. In other terms, one determines the number of par-
ticles that were actually scattered, and normalizes to the incoming flux.
In contrast to the classical situation these numbers are obtained from
the current density (1.54) (with A = 0) describing the flow of probabil-
ity, via Born’s interpretation, not from classical trajectories (which no
longer exist).

The correct way of proceeding would be to construct a state com-
ing in along the 3-direction as a wave packet at t = —oo which clusters
around the average momentum p = pés, then to calculate the time evo-
lution of this wave packet by means of the Schrédinger equation, and
eventually analyze the outgoing flux at t — 4-00. As this is tedious and
cumbersome, one resorts to an intuitive method which is simpler and,
yet, leads to the correct results. One considers the scattering process
as a stationary situation. The incoming beam is taken to be a station-
ary plane wave, while the scattered state is represented by an outgoing
spherical wave. At asymptotic distances from the scattering center the

wave field then has the form
- eikr
r—>00:  Ysomm(®) ~ e + f(6)

1
—. k=51pl. 2.2)
whose first term is the incoming beam with momentum p = pés = hkeés
while the second is the outgoing spherical wave. This ansatz is called
Sommerfeld’s radiation condition.
The role of the (in general) complex amplitude f(0) is clarified by
calculating the current densities of the incoming and outgoing parts.



It is useful, here and below, to denote the skew-symmetric derivative
of (1.54) by a symbol of its own,

F@)V g00) = f* () Vg®) — [V f* (0)]g(x) (2.3)

where f and g are complex functions which are at least C' (once con-
tinuously differentiable). For the incoming wave one finds

3

—ikx3 v e1k)c — —é3 — Ué3 ,
m

with vés the velocity of the incoming particle.
Using spherical polar coordinates for which

(9 1d 1)
“\or’ro9 rsin@op )’

and the following expressions for the gradient of ¥ = £(0)e*" /r

0 1 ik :
Vi), = 8—'” = (——2 + 1—) @)
r T r

Loy 10f0) 4
Vi) = ==—=¢e" Vg =0
Vo= =g ="73"55 ¢ - (Vg
the outgoing current density is easily calculated,
L _Bklrer,
Jow === > Lr®v 1o

The first term, upon multiplication by the area element r?>ds2 of
a sphere with radius r and center at the origin, yields a probability cur-
rent in the radial direction proportional to | f()|?. The second term,
in contrast, yields a current decreasing like 1/r which must be ne-
glected asymptotically. The flux of particles across the cone with solid
angle d2 in an outgoing radial direction becomes (for large values of r)

2
hk|fO)P

m r2

Jout&,r?d2 = ds2 (r — 00).

Normalizing to the incoming flux, the differential cross section is found
to be

A
dog = =5——— = | f(0)| *dR2..

This result clarifies the physical interpretation of the amplitude f(0):
This amplitude determines the differential cross section

dUel

=107 (2.4)

2.2 Scattering on a Central Potential
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The function f(6) is called scattering amplitude. It is a probability am-
plitude, in the spirit of Born’s interpretation. The square of its modulus
is the differential cross section and, hence, is a classical observable. As
we will see soon it describes elastic scattering. The total elastic cross
section is given by the integral taken over the complete solid angle

g

ad:/d.Qlf(@)lzz2n/sin9d9 1 £0)]%]. (2.5)

0

Before continuing with a discussion of methods that allow to calculate
the scattering amplitude and the cross sections we add a few comple-
ments to and comments on these results.

1. The result obtained for the asymptotic form of j,y shows that it was
justified to call the two terms in (1.135), Sect. 1.9.3, ourgoing and
incoming spherical waves, respectively.

2. In the two-body problem with central force, the variable r is the
modulus of the relative coordinate, m is the reduced mass,

mi—s 2 , and O+ 0"
mi+my
is the scattering angle in the center-of-mass system. Thus, the ampli-
tude f(0) is the scattering amplitude in the center-of-mass system.

3. The potential U(r) must be real if the Hamiltonian is to be self-

adjoint. If this is so, then there is only elastic scattering. No matter
how it is scattered, the particle must be found somewhere in the final
state, or, in the spirit of quantum mechanics, the probability to find
the particle somewhere in space must be conserved. Therefore, the
expression (2.4) describes the differential cross section for elastic
scattering, the expression (2.5) gives the integrated elastic cross sec-
tion.
However, there are processes where the final state is not the same
as the initial state. An electron which is scattered on an atom, may
loose energy and may leave behind the atom in an excited state.
A photon used as a projectile may be scattered inelastically on
the atom, or may even be absorbed completely. In those cases one
says that the final state belongs to another channel than the initial
state. Besides the real potential responsible for elastic scattering, the
Hamiltonian must also contain interaction terms which allow to cross
from the initial channel to other, inelastic channels. Loosely speak-
ing, in such a situation the total probability is distributed, after the
scattering, over the various final state channels. In Sect.2.6 we will
develop a bulk method for describing such a situation without know-
ing the details of the reaction dynamics.
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4. Even though the ansatz (2.2) is intuitively compelling, in a strict
sense the ensuing calculation is not correct. The condition (2.2) as-
sumes a stationary wave function where both the incoming plane
wave and the outgoing spherical wave are present at all times. In par-
ticular, when one calculates the current density (1.54) there should
be terms arising from the interference between the incoming and
outgoing parts. Instead, in our calculation of the current densities
we proceeded as if at t = —oo there was only the plane wave, and
at t = 400 there will be only the scattered spherical wave. Although
this derivation rests on intuition and, strictly speaking, is not cor-
rect, it yields the right result. This is so because the plane wave is
but an idealization and should be replaced by a suitably composed
wave packet. We skip this painstaking calculation at this point and
just report the essential result: One follows the evolution of a wave
packet which at t — —oo described a localized particle with aver-
age momentum p = pés. For large positive times and at asymptotic
distances there appears an outgoing spherical wave with the shape
assumed above. There are indeed interference terms between the ini-
tial state and the final state, but, as these terms oscillate very rapidly,
integration over the spectrum of momenta renders them negligibly
small. Except for the forward direction, that is for scattering where
p’ = p, the ansatz (2.2), together with the interpretation given above,
is correct.

5. It is instructive to compare the quantum mechanical description with
the theory of elastic scattering in classical mechanics. The defini-
tion of the differential cross section, of course, is the same (number
of particles per unit of time scattered into the solid angle d$2, nor-
malized to the incoming flux). The physical processes behind it are
not the same. The classical particle that comes in with momentum
p = pes and impact parameter b, moves on a well-defined trajec-
tory. It suffices to follow this orbit from ¢t = —oo to t = +o00 to find
out, with certainty, where the particle has gone. In quantum mech-
anics we associate a wave packet to the particle which, for example,
contains only momenta in the 3-direction and which, at t = —oo,
is centered at a value p = pés3. Values for its 3-coordinate can be
limited within what the uncertainty relation allows for. As the par-
ticle has no momentum components in the 1- and the 2-directions,
or, in other terms, since p; and p> have the sharp values O, the
position of the particle in the plane perpendicular to the 3-axis is
completely undetermined. At ¢+ — +o00 quantum mechanics yields
a probability for detecting the particle in a detector which is posi-
tioned at a scattering angle 6 with respect to the incoming beam. It is
impossible to predict where any individual particle will be scattered.
The probability doe/ds§2 which is defined by the complex scatter-
ing amplitude f(6) will be confirmed only if one allows very many
particles to scatter under identical experimental conditions.
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2 Assuming the restriction (2.1) the
amplitude f is square integrable, in-
deed. In the case of the Coulomb po-
tential the amplitude is singular in the
forward direction 0 =0, its behaviour
being like 1/sinf, and, hence, is no
longer square integrable. Nevertheless,
the scattering amplitude can still be
expanded in terms of Legendre polyno-
mials. However, the series (2.6) is no
longer convergent in the forward direc-
tion, and the expression (2.7) for the
integrated cross section diverges.

2.3 Partial Wave Analysis

Clearly, the scattering amplitude must be a function of the energy
E = h2k? /(2m) of the incoming beam, or, what amounts to the same,
a function of the wave number k. Whenever this dependence matters
we should write, more precisely, f(k, 6) instead of f(6). The cross sec-
tion has the physical dimension [area]. Hence, the scattering amplitude
has dimension [length]. In the physically allowed region 6 € [0, 7] or
z=cosf € [—1,+1], and for fixed k, the amplitude f(k, ) is a non-
singular, in general square integrable function of 6. Therefore, it may
be expanded in terms of spherical harmonics Yy, (0, ). However, as
it depends on 6, by the spherical symmetry of the potential, and does
not depend on ¢, this expansion contains only spherical harmonics
with m =0, Y9, which are proportional to Legendre polynomials,

20+1

4

As a consequence one can always choose an expansion in terms of Leg-
endre polynomials,

Yoo = Py(z =cos0).

1 o
fll,0) =2 QL+ Dac P |. (2.6)

=0

The factor 1/k is introduced in order to keep track of the physical di-
mension of the scattering amplitude, the factor (2¢+4 1) is a matter of
convention and will prove to be useful. The complex quantities a (k)
which are defined by (2.6) are called partial wave amplitudes. They are
functions of the energy only (or, equivalently, of the wave number). The
spherical harmonics are orthogonal and are normalized to 1. Therefore,
the integrated cross section (2.5) is

47T k / k
cak)= Y V@E+ DU+ 1) ap(kyal (k) / A2 Y} Yeo

(N

which, by the orthogonality of spherical harmonics, simplifies to

Ay &
o) = 73 Y20+ lac)|? . 27

=0

Like the formulae (2.4) and (2.5) these expressions are completely
general, and make no use of the underlying dynamics, i.e. in the case
being studied here, of the Schrédinger equation with a central poten-
tial U(r).

We now show that the amplitudes ay(k) are obtained by solving the
radial equation (1.127) for all partial waves. The arguments presented in
Sect. 1.9.3 and the comparison to the analogous classical situation show
that this is not only an exact method for studying elastic scattering but



that it is also particularly useful from a physical point of view. By as-
sumption the potential has finite range, i. e. it fulfills the condition (2.1).
In the corresponding classical situation a particle with a large value of
angular momentum £ stays further away from the origin r =0 than
a particle with a smaller value of £], and the action of the potential on
it is correspondingly weaker. Very much like in classical mechanics the
quantum effective potential

e +1
Uefi (r) = #‘FU(@,

for large values of ¢, is dominated by the centrifugal term. Thus, one
expects the amplitudes a; to decrease rapidly with increasing £, so that
the series (2.6) and (2.7) converge rapidly.

If the £-th partial wave is taken to be

Re()Yem = 0y,

m

the radial function u,(r) obeys the differential equation
" 2m 2
up(r) — ﬁUeff(”) — k% Jue(r) =0, (2.8)

(see also Sect.1.9.5). At the origin, r = 0, the radial function must be
regular. This means that we must choose the solution which behaves
like Ry ~ r®, or ug ~ r**!, respectively, in the neighbourhood of the ori-
gin. For r — oo the effective potential becomes negligible as compared
to k% so that (2.8) simplifies to the approximate form

r—o00: u)(r)+kui(r)~0.

Therefore, the asymptotic behaviour of the partial wave must be given
by

r—>00: ug(r)~sin <kr—€g+8¢(k)> . (2.9)

The phase &,(k) which is defined by this equation is called the scatter-
ing phase in the partial wave with orbital angular momentum £.

The following argument shows that the asymptotic form (2.9) is very
natural: On the one hand, the function u,(r) is real (or can be chosen
so) if the potential U(r) is real. Under the same assumption the scat-
tering phase must be real. On the other hand, the asymptotics of the
force-free solution is known from the asymptotics (1.133) of spherical
Bessel functions (which are regular at r = 0),

u® (r) = (kr) jo (kr) ~ sin (kr _ e%) .

If the potential U(r) is identically zero all scattering phases are equal
to zero. Therefore, the scattering phases “measure” to which extent the
asymptotic, oscillatory behaviour of the radial function uy(r) is shifted

relative to the force-free solution ufzo) (r).

2.3 Partial Wave Analysis
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There remains the problem of expressing the scattering amplitude,
or, equivalently, the amplitudes ay(k) in terms of the scattering phases.
In solving this problem, the idea is to write the unknown scattering so-
lution ¥r(x) of the Schrodinger equation in terms of a series in partial
waves,

(o.¢] 1 o.¢]
Y =) ce Rem)Yo®) =~ ) coue(r)Yeo(®) (2.10)

=0 £=0

and to choose this expansion such that the incoming spherical wave
aip e kT /r which is contained in it for r — oo, coincides with the in-
coming spherical wave contained in the condition (2.2). We begin with
the latter: Expanding the plane wave in terms of spherical harmonics
(cf. (1.136)),

oo
eike® _ D iVATQE+ 1) je(kr) Yoo ,
=0

and making use of the asymptotics (1.133) of the spherical Bessel func-
tions,

1

= (il gitn/2 _ ik gitn/2)
2ikr

(k) ~ i (k z”)
r)~ —sin (kr — €=
Je kr 2

the piece proportional to e ¥ /r can be read off. The outgoing spherical
wave, on the other hand, in (2.2), in addition to the term proportional to
the scattering amplitude f(6), also contains a piece of the plane wave
that can be read off from the same expression. This is to say that the
Sommerfeld condition (2.2) is rewritten in terms of spherical waves as
follows:

e—ikr o0 ) )
Ysomm(X) ~ — (Z IZ\/ Ar(2€+1) elen/ngo)

2ikr =

ikr [ & )
4+ (Z i /a2 1) e 172y 0+ 2ik f(@)) .

2ikr =

This is to be compared to the representation (2.10) for the scattering
solution for » — oo which becomes, upon inserting (2.9) once more,

e ik (& o okr (0
Yx) ~ — 5 o e ide elfﬂ/ZYeo + 5 Zcﬁ elde e—lfn/ZYm .
=0 =0

The incoming spherical waves in {¥somm and in ¥ are equal provided
the coefficients ¢, are chosen to be
iE

co = —/Am(20+1) e .

k



For the rest of the calculation one just has to compare these formulae.
Inserting the result for ¢, into the outgoing part of (2.10), one finds

1 S 2165 _
1O =+ Z o @it e
£=0
o 218( -1
=_Z (2€+1)Py(cos ) ,

where use is made of the relation

20+1
Yeo(0) =/ o Py(cos0) .

Comparison with the general expansion (2.6) yields the following exact
expression for the amplitudes a,(k) as functions of the scattering
phases,

2ise _ 1 .
ap (k) = eT = ® gin 5, (k) |. @2.11)

Applications and Remarks

1. It was indeed useful to define the amplitudes a, by extracting an ex-
plicit factor (2£+1) in (2.6). The so-defined amplitudes then have
moduli which are smaller than or equal to 1. The second equation
in (2.11) is correct because the phase & is real.’?

2. The result (2.11) for the partial wave amplitudes which follows from
the Schrodinger equation, has a remarkable property: The imaginary
part of a, is positive-semidefinite

Imay (k) = sin®8; > 0.

Calculating the elastic scattering amplitude (2.6) in the forward di-
rection 6 = 0, where Py(z = 1) =1, its imaginary part is seen to be

Im £(0) = % > Qe+ 1) Imay (k) = % > @e+1ysin® 8 (k) .
=0 =0

In turn, the integrated elastic cross section (2.7) is found to be

4 & .
oak) =5 > @ +1)sin® 8¢ (k) .
£=0
In the case of a real potential there is elastic scattering only, the in-
tegrated cross section (2.7) is identical with the total cross section.
Comparison of the results just obtained yields an important relation

2.3 Partial Wave Analysis

3 This remark is important because the
same analysis can be applied to the
case of a complex, absorptive potential.
In this case the scattering phases are
complex functions. The first part of the
formula (2.11) still applies, the second
part does not.
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4 Indeed, this term was coined in clas-
sical optics. It was known, in a different
context, before quantum mechanics was
developed.

between the imaginary part of the elastic scattering amplitude in the
forward direction and the total cross section, viz.

omt::%§IHLKO). (2.12)

This relationship is called the optical theorem.* Loosely speaking it
is a consequence of the conservation of (Born) probability.

3. As we will see in Sect.2.6 and in Chap.8, the optical theo-
rem also holds in more general situations. When two particles,
A and B, are scattered on one another, besides elastic scattering
A+ B — A+ B, there will in general be inelastic processes as
well, in which one of them, or both, are left in excited states,
A4+B— A+ B*, A+ B —> A*+ B*, or where further particles
are created, A+ B— A+ B+ C+---. As a short-hand allowed
final states are denoted by “n”. The optical theorem then relates the
imaginary part of the elastic forward scattering amplitude at a given
value of the energy, to the fotal cross section at this energy,

mm:}:dA+B—+ny

n

The more general form of the optical theorem (2.12) is
4
oot (k) = 7 Im fei(k, 6 =0),

the quantity & being the modulus of the momentum k* in the center-
of-mass system.

2.3.1 How to Calculate Scattering Phases

The asymptotic condition (2.9) can be interpreted in still a different way
that, by the same token, gives a hint at possibilities of obtaining the
scattering phases. As the potential has finite range the interval of defi-
nition of the radial variable r splits in an inner domain where the (true)
potential U(r) is different from zero, and an outer domain where either
it vanishes or becomes negligibly small, and where only the centrifu-
gal potential is active. Thus, in the outer domain every solution ug(7)
is a linear combination of two fundamental solutions of the force-free
case. For instance, these may be a spherical Bessel function j,(kr) and
a spherical Neumann function ny(kr), so that

ug(k, r) = (kr)[ je(kr)og (k) +ng (kr) Be (k)] ,
(for r such that U(r) = 0).

One now takes this formula to large values of r, and compares the
asymptotic behaviour (2.9) with the asymptotics of the spherical Bessel
and Neumann functions (1.133) and (1.140), respectively. Using the ad-
dition formula for Sines



sin (kr—ﬁg +5((k))
— sin (kr —z%) cos 8¢ (k) + cos (kr - z%) sin 8¢ (k)

then yields an equation for the scattering phase which is

tan 8¢ (k) = 0'5% . (2.13)
¢

This shows that the differential equation for the radial function must be
solved only in the inner domain of the variable r: One determines the
solution regular at r =0, e.g. by numerical integration on a computer,
and follows this solution to the boundary of the outer domain. At this
point one writes it as a linear combination of j, and n,, and reads off
the coefficients oy and B¢ whose ratio (2.13) yields the scattering phase
in the interval [0, 7/2].

Here are some examples of potentials for which the reader may wish
to determine the scattering phases:

1. The spherically symmetric potential well
U@r)=UpBO(ro—r); (2.14)

2. The electrostatic potential
r o0
U(r) = —47Q ! / dr’ o) + / dr'o(yr' | | (2.15)
r 0 J
which is obtained from the charge distribution
1
e = M el — o] 216
with normalization factor

o] n -1
Ve ) e B

n=

The distribution (2.16) is often used in the description of nuclear
charge densities. The parameter ¢ characterizes the radial extension
while the parameter z characterizes the surface region. Its specific
functional form is also known from statistical mechanics which is
the reason why it is usually called Fermi distribution. Figure 2.1
shows an example applicable to realistic nuclei where z is very small
as compared to c.

3. The Yukawa potential, that we mentioned in the introduction to
Sect. 2.2,

e—r/ro

Uy(r)=¢ (2.17)

2.3 Partial Wave Analysis
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Fig. 2.1. Illustration of the model (2.16)
for a normalized charge distribution.
In the case shown here, ¢> z. The
example shows the distribution with
c¢=51fm, z=0.5fm. The parameter ¢
is the distance from the origin to the
radius where the function o(r) has
dropped to half its value at » =0. The
two points where it assumes 90% and
10% of its value in r = 0, respectively,
are situated at rgg =c—2zIn3 and at
rio = ¢+ 2zIn3, respectively. They are
separated by the approximate distance
t=4zIn3~4.3%z.

0,0016
0,0014
0,0012
0,001 T
0,0008
0,0006 +
0,0004 +

0,0002
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We will show later that this potential describes the interaction of two
particles which can exchange a scalar particle of mass M = h/(roc)
(c denotes the speed of light). The name is due to H. Yukawa who
had postulated that the strong interactions of nucleons were due to
the exchange of particles with spin 0, the m-mesons, long before
these particles were actually discovered. The length ro = hc/(Mc?)
is interpreted as the range of the potential. It is the Compton wave
length of particles of mass M. These remarks emphasize that the ex-
ample (2.17) may have a deeper significance for physics than the
pure model potentials (2.14), (2.15) and (2.16).

Consider now two potentials of finite range, U and U®, and
compare their scattering phases. For equal values of the energy the cor-
responding radial functions obey the radial differential equations

; 2m (i i .
ud () - [ﬁUéﬁf) ») —kz] Wi =0, j=12,
where the effective potentials differ only by the true, dynamical poten-
tials
2
U -l =20 -vV@).

Both radial functions are assumed to be regular at r =0. As we are
factoring 1/r, this means that uéj) (0)=0 (j =1, 2). Compute then the

following derivative, making use of the differential equations for ul(zl)



2)
and u,”’,
d
. @2y 2) (Hry _ (D) 2 2, (Lyr
5(”@ Uy  —Up Uy )—”z Uyp ™ —Uy Uy
. 2m

h2

Taking the integral over the interval [0, r], one has

2 Dy (D) ()
(U()—U( ))uZ uy, .

uy)(r)uﬁz)/(r) — MEZ) (r)uél)/(r)
2 r
== / & (V20 =vV 6 ) uPHu o).
0

In the limit of » going to infinity, and using the asymptotic form (2.9) as
well as its derivative on the left-hand side of this equation, one obtains
an integral representation for the difference of scattering phases:

o
. 2m
ksin) —8?) = s / dr (UP ) =P )P P o).

(2.18)

This formula is useful for testing the sensitivity of high, interme-
diate, and low partial waves to the potential, by letting U and U®
differ but little. Instead of the scattering phases themselves one calcu-
lates the change in any given partial wave as a function of the change
in the potential.

Alternatively one may consider a situation where U® vanishes iden-
tically, i.e. where the corresponding radial functions are proportional to
spherical Bessel functions,

u? (r) = (kr) jo(kr) .

With 8(51) = §¢ and 8((32) = 0 the integral representation reduces to

: om [ .
sin(dy) = —ﬁ/rdr Ur)ug(r)je(kr) . (2.19)
0

The Yukawa potential (2.17) may serve as an illustration of this formula.
For the sake of simplicity we assume this potential to be weak enough
so that the corresponding radial function can be approximated by the
force-free solution,’

uy” () ~ (k) je kr)

2.3 Partial Wave Analysis

5 This approximation is nothing but the
first Born approximation that is studied
in more detail in Sect.2.4.1 below.
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6 The function Q,(z) and the Legendre
polynomial Py(z) form a fundamental
system of solutions of the differential
equation (1.112) with A =¢(€+1) and
m =0. In contrast to Py(z) the func-
tion Q¢(z) is singular in z =1, the
singularity being a branch point. For all
values |z| > 1 of the argument Q,(z) is
a one-valued function.

With this assumption one has
k o
sin 8" A~ — / r2dr Uy (r) j2 (kr)

kag

rdre r/mj (kr)

S

0
mgm _
= T / o0/ (kr 0)]2 1/2(9)
0

1
et (” 2(kro)2) '

In this derivation the variable o = kr is introduced, and the spherical
Bessel function is written in the standard form of Bessel functions found
in monographs on special functions, viz.

o\ 12
je(Q)=<£> Jov12(0) .

The last step makes use of a known definite integral which is found, e. g.
in [Gradshteyn and Ryzhik (1965)], Eq.6.612.3. Here, Q¢ is a Legen-
dre function of second kind whose properties are well known.® These
functions are known to decrease rapidly both for increasing £ and for in-
creasing values of the argument > 1, cf., e. g., [Abramowitz and Stegun
(1965)], Fig.8.5.

2.3.2 Potentials with Infinite Range: Coulomb Potential

The Coulomb potential violates the condition (2.1). This means that its
influence is still felt when the particle moves at very large distances
from the scattering center. This is seen very clearly in the asymptotics
of the partial waves, derived in Sect. 1.9.5, which in addition to the con-
stant phase oy, contain an r-dependent, logarithmic phase —y In(2kr)
multiplied by the factor (1.156),

ZZ'e’m
Rk
The scattering solutions of the Coulomb potential certainly do not obey
the radiation condition (2.2). Both the outgoing spherical wave and the
plane wave are modified due to the long range of the potential, and the
formulae of partial wave analysis derived above, cannot be applied di-
rectly. A similar statement holds for any spherically symmetric potential

which, though different from the (1/r)-behaviour in the inner domain,
approaches the Coulomb potential for large values of r. An example is

y = (2.20)



provided by the electrostatic potential corresponding to the charge dis-
tribution (2.16) in example 2. of Sect.2.3.1. In order to solve this new
problem we proceed in two steps:
In the first step we show that the condition (2.2) is modified to
i[kr—y In(2k
r—>o00: ¥~ ei{kx3+y1n[2krsin2(6/2)J}+fc(9) ellhr=y InGAn)] ,
’

(2.21)

with r-dependent, logarithmic phases both in the incoming wave and
in the outgoing spherical wave, and calculate the scattering ampli-
tude fc(6) for the pure Coulomb potential.

In the second step we study spherically symmetric potentials which
deviate from the (1/r)-form in the inner region but decrease like 1/r in
the outer region, in other words, which approach the Coulomb potential
for r — oo. In this case it is sufficient to calculate the shift of the scat-
tering phases relative to their values in the pure Coulomb potential, and
not relative to the force-free case.

Step1: Although we already know the scattering phases for the
Coulomb potential from Sect.1.9.5 it is instructive to calculate the
scattering amplitude directly, using a somewhat different method. In-
deed, the (nonrelativistic) Schrodinger equation can be solved exactly
in a way adapted to the sgeciﬁc scattering situation at hand.” With
k*> =2mE/h?*, U(r) = ZZ'e*/r, and with the definition (2.20) for y, the
stationary Schrodinger equation (1.60) reads

(A +k* — @) Y(x)=0. (2.22)

This is solved using parabolic coordinates

E=+r—x3, n=vr+x3, ¢

and by means of the ansatz

Y@) = ey & fr—x%) = ¢ MR g2,

in which ¢y is a complex number still to be determined. As before,
the direction of the incoming, asymptotic momentum is taken to be the
3-direction. Since no other, perpendicular direction is singled out in the
in-state and since the potential is spherically symmetric, the scattering
amplitude does not depend on ¢. Surprisingly, the differential equa-
tion (2.22) separates in these coordinates, too. The variable 52 =r—x3
is denoted by u, first and second derivatives with respect to that variable
are written f’ and f”, respectively. Then, for i =1, 2:

W s O s, xRy
i ! (”)axi =e S ra(xi)?2

L iN2 in2
= elkx* [f// ('xz) +f/ (l _ (x3) )} ]
r r r

2.3 Partial Wave Analysis

7 This no longer holds true when the
relativistic form of the wave equation is
used.
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The derivatives with respect to x3 give

oy _ ik ] / x_3_ 82]//
ax3 ¢ |:1kf+f (u) ( , 1):| " 3(x3)2
2

3 3 352
= e’ |:—k2f+2ikf’ (x_—1)+f” ("__1> 4 (l_ (x 3) )} .
r r r r

Inserting these formulae in (2.22) one obtains

d
This differential equation is again of Fuchsian type and appears to be
very close to Kummer’s equation (1.145). The identification becomes
perfect if one replaces the variable u by the variable v := iku. Indeed,
the differential equation then becomes

d? d
IO a0 4w =0,

The solution which is regular at » =0 is
f) =cy 1 Fi(=iy; 150) = cy 1 Fil—iy; 15 ik(r—x7)].

The asymptotics of the confluent hypergeometric function is obtained
from the formula (1.147),

2
<ud—2+(1—iku) d —yk> fu)=0.
du u

v

e [ik(r—x3)]1y+—_ elk(r—x%)[ik(r_x:‘})]—ly—’-l .

1Fr~———
11 +1y) I(—iy)
Setting
iiy — efrry/Z

and choosing the coefficient cy, as follows
cy =1 +iy) e /2
the solution i takes the asymptotic form postulated above

Y ~ itk 4y Inlkr—)) Il+iy) vy eilkr—y Inlk(r—x)1)
A —iy) k(r —x3) '
Inserting r — x3 = r(l —cos ) = 2r sin® (6/2) shows that this is the
asymptotic decomposition, (2.21), into an incoming, but deformed

plane wave, and an outgoing, deformed spherical wave. The complex
I'-function is written in terms of modulus and phase,

[(1+iy) = |I(1 +iy)| eTioc

so that the scattering amplitude for the pure Coulomb potential is seen
to be

_ Y i{20c—y In[sin(6/2)1)
) — — c—y . 2.23
Je®) = s © 229



2.4 Born Series and Born Approximation

This amplitude contains a phase factor that depends on the scattering
angle, and which is characteristic for the long range of the Coulomb po-
tential. This phase factor drops out of the differential cross section (2.4)
for which one obtains

doo 2 1 (zZ&\ 1
d2  4k?sin*(9/2)  \ 4E sin*(6/2)

(2.24)

where the definition (2.20) and E = h%*k?/(2m) were used. The result
(2.24) is called the Rutherford cross section. Note that it agrees with the
corresponding expression of classical mechanics (cf. [Scheck (2005)],
Sect. 1.27). This important formula was essential in analyzing the scat-
tering experiments of o particles on nuclei, performed by Rutherford,
Geiger, and Marsden from 1906 on. These experiments proved that nu-
clei are practically point-like as compared to typical radii of atoms.

Step 2: Consider now a spherically symmetric charge distribution which
is no longer concentrated in a point but is localized in the sense that
it lies inside a sphere with a given, finite radius R. One calculates the
electrostatic potential by means of the formula (2.15) and notes that
for values r > R it coincides, either completely or to a very good ap-
proximation, with the pure Coulomb potential but deviates from it for
values r < R. It should be clear immediately, in the light of the gen-
eral discussion of Sect.2.3, that high partial waves are insensitive to
these deviations. The information on the precise shape of the charge dis-
tribution is contained in the low and intermediate partial waves. This
suggests to design the partial wave analysis for these cases such that it
is not the force-free case but the Coulomb potential which is taken as
the reference potential. This means that the phase shift analysis should
be designed such as to yield the difference

8¢ = du(y —éc

between the true phase and the Coulomb phase.

2.4 Born Series and Born Approximation

We emphasize again that the expansion in terms of partial waves is an
exact method to calculate the cross section for spherically symmetric
potentials which, in addition, has the advantage of making optimal use
of the information about the range of the potential. In the case of poten-
tials which are not spherically symmetric but may be expanded in terms
of spherical harmonics the cross section can also be computed by ex-
panding the scattering amplitude in partial waves. However, this method
becomes technically complex and cumbersome, and looses much of the
simplicity and transparency it has for spherically symmetric potentials.
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8 The latter case can also be viewed
as the limit of the former in which the
mass of the heavier partner is very large
as compared to the one of the lighter
partner.

The Born series that we describe in this section, does not have this
disadvantage. It yields an exact, though formal, solution of the scatter-
ing problem by means of the technique of Green functions, and can
equally well be applied to potentials with or without spherical symme-
try. Its most stringent disadvantage is the fact that beyond first order
it is not very practicable and becomes cumbersome. The first iteration,
or first Born approximation, in turn, is easy to calculate and allows for
simple and convincing physical interpretation, but it violates the optical
theorem.

The starting point is again the stationary Schrodinger equation (1.60)
in the form

2
(A +HA)W(x) = h—Z’U(xW(x) , (2.25)

where k? =2mE/h?. If one deals with a two-body problem the param-
eter m is the reduced mass; if one studies scattering of a single particle
on a fixed external potential then m is just the mass of that particle.’
The differential equation (2.25) is solved by means of Green functions,
i.e. of functions (more precisely: distributions) G (x, x"), which obey the
differential equation

(A+kHGx, xX)=8(x—x).
The well-known relation

A +k2) eiiklzl

= —478(z)
|z]

shows that the general solution can be given in the form

1 1 : / . ,
Gx,x)=————— ik|x—x'| 1— —iklx—x'|7
o, %) 47 |x—x’|[ae F-ae ]
Formally, the differential equation (2.25) then has the solution

U(x) = el x 1 é—’? / &X' G, XU ) Y . (2.26)

It is formal because the differential equation (2.25) is replaced by an
integral equation which contains the unknown wave functions both on
the left-hand side and in the integrand of the right-hand side. Never-
theless, it has two essential advantages: The constant @ in the Green
function can be chosen such that the scattering solution fulfills the right
boundary condition, which in our case is the Sommerfeld radiation con-
dition (2.2). Furthermore, if the strength of the potential is small in
some sense, this integral equation can be used as the starting basis for
an iterative solution, i.e. an expansion of the scattering function around
the force-free solution (the plane wave).

The correct asymptotics (2.2) is reached with the choice a = 1. This
is seen as follows: Define r := |x|, v’ := |x/|, and assume the poten-
tial U(x") to be localized. As r goes to infinity one has

1
r>r: |x—x’|:\/r2+r’2—2x~x/%r——x-x’.

r



2.4 Born Series and Born Approximation

The scattering function takes the asymptotic form

om eikr

Anh? r

r—>o00:  Yr(x) ~ e*r —

/ d3xle—ik’x’ U(x’)wk(x’) )

The reader will have noticed that we defined kx/r =: k' in this expres-
sion. Indeed, the momentum of the scattered particle is fik’. It moves
in the direction of x/r and, because the scattering is elastic, one has
k' = |K|.

By the same token, this result yields a general formula for the scat-
tering amplitude, viz.

2m

[0, ¢) = )

/ Ex e * XU Yr(x) |. (2.27)

(As this equation no longer contains the point of reference x, the inte-
gration variable x’ was renamed x.)

This equation is an interesting result. If the potential has a strictly
finite range we need to know the exact scattering function only in the
domain where U(x) is sizeably different from zero.”

If one knew the exact scattering solution this formula would yield
the exact scattering amplitude. Although this ambitious goal cannot
be reached, the formula serves as a basis for approximation methods
which are relevant for various kinematic conditions. One of these is the
Born series which is obtained from an iterating solution of the inte-
gral equation (2.26). The idea is simple: one imagines the potential as
a perturbation of the force-free solution

" ](¢O) — eik~x

such that in a decomposition of the full wave function

Y@ =Y v @)
n=0

the n-th term is obtained from the (n —1)-st by means of the integral
equation (2.26), i.e.

1 2m eiklx—x/|
(n) _ 3 (n—1)
wk x)= ——4]_[ _h2 / d x’_|x __x/| U(x/)wk (x/) , n>1
(2.28)

Even without touching the (difficult) question of its convergence, one
realizes at once that this provides a method of representing the scat-
tering amplitude as a series whose structure is very different from the
expansion in terms of partial waves. While in the latter one expands in
increasing values of ¢, the former is an expansion in the strength of the
potential.

 An approximation which makes use
of this fact and which is particularly
useful for scattering at high energies, is
provided by the eikonal expansion. The
reader will find an extended descrip-
tion of this method in, e.g., [Scheck
(1996)], Chap.5, and illustrated by ex-
plicit examples.
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2.4.1 First Born Approximation

It is primarily the first and simplest approximation which matters for
practical applications. It consists in truncating the series (2.28) at n = 1.
In this case the full scattering function in the integrand of the right-hand

side of (2.27) is replaced by w,go) = exp(ik-x) so that one obtains

Y0, ¢) =— 2m / $x e K ry(x)elkr

4 h?

Introducing the momentum transfer

q:=k—K with [kl=|K|=k, §=(0.9),

the first Born approximation for the scattering amplitude reads

2m

yps) . (2.29)

f(l)(q) - _ / By eiq-xU(x)

This formula tells us that in first Born approximation the scattering
amplitude is the Fourier transform of the potential with respect to the
variable q.

The formula (2.29) simplifies further if the potential has spherical
symmetry, U(x) = U(r). One inserts the expansion (1.136) of exp(iq - x)
in terms of spherical harmonics and notes that by integrating over d2,
only the term with £ =0 survives. This follows from the fact that
Yoo=1/ V47 is a constant and that

/ d$2; Yo (%) = V47800 Smo -

Thus, one obtains the expression

o0

Ve = —zh—'Z / r2dr U(r) jo(qr) (2.30)
0
where

. sinu
q =|q| =2ksin(0/2), and where jo(u)=——
u

is the spherical Bessel function with £ =0 (s. Sect. 1.9.3). The func-
tional dependence of the scattering amplitude could be written as f(g),
or, even more precisely, f(¢?) because the result (2.30) shows that it
depends only on the modulus of ¢ and is invariant under the exchange
g — —q. As an alternative, one may express g by the scattering angle 6
and write the scattering amplitude in the form

fY G =- rdr U(r) sin[2kr sin(6/2)] .

m o0
h2k sin(6/2) /
0
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We illustrate this result by the following example.

Let us return to the Yukawa potential (2.17),

e M 1
Uy(r)y=g , Where u=—.
r ro

The following integral is obtained in an elementary way

o0

/ dre " sin(ar) =

0

2ta?

With o = 2k sin(6/2) the formula (2.30) yields

2mg 1
h2 4k2sin%(6/2) +u? -’

6 = — (2.31)

Two properties of the result (2.31) should be noticed

1. In the limit s — O (though not allowed), and with g = ZZ'¢? and
h’k? = 2mE, the amplitude becomes

77 e* 1
4E sin%2(9)2)

&6 =~

This is the scattering amplitude for the pure Coulomb potential, ex-
cept for the phase factor in (2.23). Its absolute square gives the
correct expression (2.24) of the differential cross section.

2. There is a well-known expansion of 1/(z —¢) in terms of Legendre
polynomials and Legendre functions of the second kind, (see [Grad-
shteyn and Ryzhik (1965)], Eq.8.791.1)

1 o
—= > QU+ 1) Q) Pe(t) -

< =0

Write the amplitude (2.31) as

 R2k2 2sin2(0/2) + u2/(2k2)
mg 1

h2k2 1+ u?/(2k?) —cos 6’
set 14 u%/(2k*) =z and cos @ = . This yields

G h2k2 Z o ( ) Py(cos ).
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One now compares this with the general expansion in terms of par-
tial waves (2.6) and notices that the coefficients of this series are

242

and that they agree with the example (2.19) in Sect.2.3.1. Note that
here and in that example, the scattering phases §; are small.

The results (2.27) and (2.30) show that the scattering amplitude in first
Born approximation is real, i.e. Im f) = 0. This is in contradiction
with the optical theorem. The first Born approximation does not respect
the conservation of probability.

. 2
ap = €% sind; ~ sin 8y = —%Q@ (1—1— e )

2.4.2 Form Factors in Elastic Scattering

The first Born approximation leads in a natural way to a new notion,
called form factor, which is important for the analysis of scattering ex-
periments. This section gives its definition and illustrates it by a few
examples. The question and the idea are the following: Suppose a lo-
calized distribution o(x) of elementary scattering centers is given whose
interaction with the projectile is known. If we know the scattering
amplitude for the elementary process, i.e. for the scattering of the
projectile off a single, isolated elementary scattering center, can we cal-
culate the scattering amplitude off the distribution o(x)?

The answer to this question is simple if the Born approximation is
sufficiently accurate for the calculation of the scattering amplitudes. In
this case, the amplitude for the distribution is equal to the product of
the elementary scattering amplitude and a function which depends only
on the density o(x) and on the momentum transfer g. We show this by
means of an example:

Suppose the projectile is scattered by a number A of particles whose
distribution in space is described by the density g(x) = Ao(x). This is
to say that

/d3x5(x)=A and /d3xg(x)=1.

It is customary to normalize the density o(x) to 1, i.e. to take out an
explicit factor A. Let the elementary interaction be described by the
Yukawa potential (2.17). The potential created by all particles, with their
density o(x), then is, using u = 1/rg
e hix—
Ux) = gA / IR —y (2.32)
|x — x|
It obeys the differential equation

(Ar —p*)U(x) = —4mAo(x) . (2.33)



2.4 Born Series and Born Approximation

In first Born approximation the scattering amplitude F) describing
scattering on the distribution o(x) is given by the formula (2.29), upon
insertion of the potential (2.32). The exponential function is replaced by
the identity

. 1 .
e1q-x — _ A, — 2 e1q-x .
q2 + ,LLZ ( X ,lL )
The differential operator (A, —u?) is shifted to U(x), by partially inte-

grating twice, and the differential equation (2.33) replaces the potential
by the density. One obtains the expression

FO@) = A r6)- Fg) (2.34)

for the scattering amplitude. The first factor is the elementary ampli-
tude (2.31), the second factor is defined by

F(q) = / dxe*ox)|. (2.35)

This factor which depends on the density o(x) and on the momentum
transfer only, is called form factor. Its physical interpretation is clarified
by its properties the most important of which are summarized here:

Properties of the Form Factor:

1. If it were possible to measure the form factor for all values of the
momentum transfer then the density would be obtained by inverse
Fourier transform,

1 .
@2m)3 / Pge ™ Fg)

The density o(x) describes a composite target such as, e.g., an
atomic nucleus composed of A nucleons. If the interaction of the
projectile with the individual particle in the target is known (in our
example this is a nucleon), the form factor measures the spatial dis-
tribution of the target particles.

2. Scattering in the forward direction, g = 0, tests the normalization

Fg=0)=1.
If the target is point-like, i. e. has no spatial extension at all, the form
factor equals 1 for all momentum transfers,

o(x)=48(x) — Flg)=1 Vvq.

3. For a spherical density, o(x) = o(r) where r := |x|, the formulae for
the form factor simplify further. Like in the derivation of (2.30) one
shows that the form factor only depends on g% (¢ := |q|),

o0

F(q) = F(¢*) = 47” / rdro(r) sin(gr) , (2.36)
0

o(x) =
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the density being given by the inversion of this formula:

9]

47 .
o(r)= Gmir / qdqF(q) sin(gr) .
0
Expanding (2.36) for small values of ¢, one has

o o
4 1
F(g) ~4n / r? dro(r) — %[qz / r2dr r2Q(r) =1- ng <r2> .
0 0
The first term is independent of ¢ and is equal to 1 (using the nor-
malization as defined above). The second term contains the mean
square radius

o0

<r2> =4r f r2dr I’ZQ(}’) , 2.37)
0

which is characteristic for the given distribution o(x). If the density
is not known, but the scattering amplitude and, hence, the form fac-
tor, are measured for small values of ¢, the mean square radius is
obtained from the first derivative of the form factor by g2,

< 2> __dF(g?)

re)=-—6 .

dg?

That is to say, in order to obtain the root-mean-square radius one

plots the form factor as a function of ¢2, reads off the slope at the
origin, and multiplies by (—6).

(2.38)

The following density is normalized to 1,

o0

1
o(r) = 32,3 e_rz/rg, 47 / rdro(r)=1.
3/2ry

0
It is easy to verify that it leads to the form factor

Fg?) = e 40/,

The mean square radius is found to be

so that the form factor and the density can be written equivalently as

3Wo 1 e

F(a?) = —(1/6><r2>q2, d > -
(g7)=e and  o(r) = — PR

respectively.



2.4 Born Series and Born Approximation

This example is more than an academic one. Indeed, to a good
approximation, the function o(r) describes the distribution of electric
charge in the interior of a proton, with

<r2> proton = (0.86 x 10~15 m)?

as a typical value for the mean square radius as obtained from electron
scattering on protons.

1. Although the definition of the form factor is based on Born ap-
proximation it has a more general significance. When the potential
becomes too strong for Born approximation to be applicable, this
will be felt in a deformation of the partial waves (in comparison to
the force-free case) which is the stronger the smaller ¢ is. Neverthe-
less, the information on the distribution of the scattering centers that
is contained in the scattering amplitude, is not modified in any essen-
tial way. Thus, there are methods which allow to isolate this effect
and to define an effective Born approximation which enables one to
draw conclusions on the density o(x) from the form factor (2.35).

2. The case of the Coulomb potential which is of infinite range must
be treated with special care. Although this is mathematically not cor-
rect, we let the parameter p in the formulae for the Yukawa potential
tend to zero. This limit gives the correct scattering amplitude, ex-
cept for the characteristic logarithmic phases, and, hence, the correct
differential cross section. This cross section then takes the form

do ( do > )
(L) P, (2.39)
do do point

the first factor being the cross section for a point-like target, i.e.

do B 77'¢2\* 1
A0 ) ot \ 4E ) sin*(6/2)°

while F(q) is the electric form factor (2.35) of the target. The density
o(x) now is the charge density and is normalized to 1 provided the
total charge Q = Z’e is factored.

Assume the charge distribution of an atomic nucleus to be given by the
homogeneous density

3
0= 1=500 ).

rd
Equation (2.36), by elementary integration, yields the form factor

3
F¢*) = [sin(qro) — (gro) cos(gro)]l = — j1(gro) ,

3
(qro)? (gro)
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where ji(z) is the spherical Bessel function with £ =1, cf. Sect. 1.9.3.
This function has zeroes at the points

71 =4.493, 20 ="17.725, 723 =10.904, ... .

While the cross section for the point charge has no zeroes, the cross
section for scattering on a homogeneous charge density has zeroes at
the values of the product gro = 2krg sin(6/2) given above. These are ar-
tifacts of Born approximation. Yet, they are not unphysical: An exact
calculation of the cross section will differ from Born approximation
only by the varying deformation of individual partial waves. As a result,
the zeroes are “smeared out”, that is, they are replaced by minima of the
cross section which are less pronounced than the zeroes of Born approx-
imation and are shifted slightly as compared to those. These minima
are called diffraction minima, they contain essentially the same physical
information as the zeroes obtained in first Born approximation.

2.5 *Analytical Properties of Partial Wave Amplitudes

Up to this point all important concepts of scattering theory were intro-
duced. As far as observables are concerned these were carried over from
classical to quantum mechanics, all other concepts were new. In par-
ticular, we developed some practical methods for calculating scattering
amplitudes and cross sections.

Quantum theoretic scattering theory has a number of further aspects
which need more comprehensive analysis and which become important
in various applications. Among them we list the following

1. Generalization to the case where, besides elastic scattering, also scat-
tering into inelastic channels is possible.

2. The more general expression of the optical theorem announced
above, and its relation to the conservation of probability.

3. A formal, operator theoretic description of potential scattering which
makes extensive use of the theory of integral equations.

4. A more detailed description of scattering on composite targets, i.e.
the calculation of the scattering amplitude for a target composed of
elementary constituents, from the amplitude for the individual scat-
tering centers.

5. The analysis of scattering processes, by means of Heisenberg’s scat-
tering matrix, in which the projectiles may have relativistic velocities
and where the dynamics and the kinematics allow for creation or
annihilation of particles.

6. The analytical properties of scattering amplitudes and their conse-
quences for the physics of scattering.

Some of these subjects will be taken up later when the concepts and
methods will be ready that are needed to treat them. At this stage I



2.5 *Analytical Properties of Partial Wave Amplitudes

sketch one of these topics which gives a good impression for the rich-
ness of quantum scattering theory: the analytic properties of scattering
amplitudes for definite values of the angular momentum £ (i.e. item 6
on our list). This section which makes use of some function theory,
is slightly more difficult than the previous ones and this is why it is
marked by an asterisk. This also means that there is no harm if one
decides to skip it in a first reading.

The starting point is the differential equation (2.8) for the radial
function u,(r). We repeat it here, for the sake of convenience:

(e+1) 2 mE
u%ﬂ—(igl+7§wm—ﬁ)ww=o, kh:%;,
(2.40)

As this equation is homogeneous we can normalize the solution which
is regular at r = 0 such that

we(r) =r T f(r) with  frr=0)=1,

that is, we take out the centrifugal tail and put the remainder to 1 at the
origin.

2.5.1 Jost Functions

In this section we study the analytic properties of the wave function,
of the scattering phase ¢, and of the scattering amplitude, as functions
of k?, taken as a variable in the complex plane. What do we know about
the differential equation (2.40)? It is of Fuchsian type, (1.113). The reg-
ular solution is free of the singularities that the coefficients of (1.113)
have at r =0. As is obvious, the coefficients are analytic functions
of the complex variable k2. The boundary conditions imposed on u¢
(the condition at » = 0 and the asymptotics for r — c0) are analytic as
well. One can then show that the solutions are analytic functions of k.
Hence, we write u¢(r) = uy(r, kz), in order to emphasize this property,
and formulate their asymptotic behaviour as follows,

r—o00: ug(r, k)~ g7 (k) e + ol (e 2.41)

The functions (péi) (k*) are called Jost functions.'9 Comparison to the
asymptotic formula (2.9),

up ~ l.[ei(—fn/Z—i-Sg) eikr _ ei([rf/2—8@) e—ikr]
2i

yields the relation of the scattering phase to the Jost functions
(=) 12
e ¢y (k) '
o (k)

In a physical scattering process, i.e. for real k, the definition (2.41)
implies that the Jost functions are complex conjugates of each other.

Sp(k?) = e = ( (2.42)

10 After Res Jost (1918 —1990), who de-
veloped the mathematical foundations
of scattering theory in a series of im-
portant publications.
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Indeed, with a real potential the radial function u,(r, k%) is real and,
hence,

‘/’éJr) (k) = [¢1(3_)(k2)]* (k real) .

One of the reasons why these functions are important is the fact that
one can derive and understand the analytic properties of the function
Se(k?) (just defined) and of the partial wave amplitude a, (k%) from the
Jost functions. The following remarks and examples may serve to illus-
trate this statement.

When the energy is negative, E, then also k* <0 and k = ix, with
real «, is pure imaginary. The asymptotic form (2.41) then has a term
that decreases exponentially, and a term that grows exponentially. There
will be a bound state with energy E = E,, < 0 if the wave function is
square integrable, i.e. if the second term is absent. This means that

2m|E
<p(+) (k2 =— mi!ﬂ "|> =0 (k =ik pure imaginary) .

As a consequence the function S (k?) defined in (2.42) has a pole at this
point. A more detailed analysis of the singularities of the partial wave
amplitude a; will show where this pole is situated.

2.5.2 Dynamic and Kinematic Cuts

Here and below we analyze partial wave amplitudes which already con-
tain the factor 1/k of the expansion (2.6), i.e we write

f, 9):2(2“1) fo(k)Py(cos®)  with fy = %ae,

ae being defined by (2.11). The amplitude f; is studied both as a func-
tion of k% and of k. The convention is that k as a square root of k2 is
always chosen such that it has positive imaginary part. Furthermore, the
potential in (2.40) is assumed to be the bare Yukawa potential (2.17). As
ue(r, k%) is analytic, f; (k%) is analytic as long as one stays clear of the
negative real half-axis of k°.

Note that the asymptotic form (2.41) holds under the assumption that
the two first terms in the parentheses of (2.40) (centrifugal and true
potentials) are negligible against k%. If k> = —«?, i.e. is negative real,
the first term in (2.41) decreases like e . If it does so more rapidly
than this, one can no longer neglect the potential which decreases like
e~’/70_ Therefore, it seems plausible that the Jost function wﬁ_)(kz) is no
longer defined. Indeed, one can show that this function has a singular-
ity at k2 = —«2=—1/ (4r§) and is not defined below this point, k* < k2.
Qualitatively speaking, the value k. is the point where the exponen-
tally growing part, when multiplied by the term e~"/"0 of the potential,
equals the exponentially decreasing term,

e(Kc—l/ro)r — e_Kcr X
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The interval [—oo, —1/ (4r8)] of the negative real half-axis in the com-
plex k>-plane is called left cut, or dynamical cut.

Let us analyze the dynamical cut by means of first Born approxima-
tion. We showed in Sect.2.4.1 that the amplitude which belongs to the
angular momentum ¢, in first Born approximation, is given by

ag mg 1
)= —=——2 I+——.
Slk) = = " 2 ( * 2(kr0)2)
The Legendre function of the second kind Qy(z) is known to be an ana-
lytic function of z if the complex plane is cut from —1 to +1 along the
real axis. It is singular on the cut [—1, +1]. As a matter of illustration,
we quote the first three Legendre functions of the second kind,

1 z+1 Z z+1
QO(Z)=§IH (Z—_l) s QI(Z)ZEIH <Z—_1> -1,

372 -1 z+1 3z
= 1 - -,
02(2) n H(Z_1> >

whose singularity structure is evident.

The point —1 corresponds to k? = kg = —1/(2rg)?, while the point +1
corresponds to the infinity in the k>-plane that we choose to lie at —oc. This
shows that the amplitude f;(k?), in first Born approximation, already ex-
hibits the left cut. The position of this cut depends on ry and, hence, on the
range of the potential.

It is not difficult to compute the discontinuity of f; (k%) across the
cut [—1, +1]. In Sect.2.4.1, Example 2.1, we quoted the expansion

1 o oo
— =) QU+ DQr@Pr@) =) V42l +1)Qu ()Y (6, $)
=0 =0

-t

with ¢ = cos 6. This equation can be solved for Q, by multiplying with
Y, (0, ¢), and integrating over the entire solid angle. Making use of the
orthogonality of the spherical harmonics, we have

+1

1 P
Yoo (6, ¢)=§/dtng(tt).

00(z) =

1 1
ds
VAT (2€+1) / z—cosf

The discontinuity then follows from

Fe? +ie) = fok —ie) = = 1551Q0(z +ie) = Qe(z —ie)]
and the formula
1 1
— =P — Find(w) (2.43)
w*tie w

with w =z —1 and, as before, z=1—1/ (2(krg)?). The formula refers to
the evaluation of integrals along the real axis. The pole at w = 0 of the
left-hand side is shifted to the upper or to the lower half-plane, respect-
ively. The right-hand side contains the principal value!! and Dirac’s

T As a reminder: The principal value is
half the sum of the integrals for which
the integration path is deformed once
above, once below the point 0.
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Fig.2.2. Because of the kinematic cut
the origin of the complex k*-plane is
a branch point of order 1. The scatter-
ing amplitude with fixed ¢ is defined
on a two-sheet Riemann surface. The
physical and the unphysical sheets are
denoted by (I) and (II), respectively

S-distribution. Inserting this formula into the expression for the disconti-
nuity, the contribution of the principal value cancels out and one obtains

. . . mg 1
fok? +ie) — fok* —ie) =1NWPZ(1+W).

As a result we note that the position of the left cut is determined by the
range, its discontinuity by the strength g of the potential. This is the
reason why this cut is called dynamical cut.

The partial wave amplitude f; exhibits yet another cut whose nature
is purely kinematical. This is the reason it is called kinematic cut. In
order to show this we return to the Jost functions and study them both
in the complex k*-plane and in the complex k-plane.

The asymptotic expansion (2.41) is not defined in the point k> = 0.
Physically speaking, the reason is that at this point the centrifugal
term and the potential cannot be neglected as compared to k2. Let
z:=k*=rel with r very small, o positive and small, too. After a com-
plete rotation about the origin this becomes z — z’ = rel®*2™ while
its square root becomes k = \/z — k' = —k. At the same time the two
Jost functions, taken as functions of k, exchange their roles,

o k) = o7 (k).

It follows from this observation that the point k> =0 is a two-sheeted
branch point (one also says a branch point of order 1). Let us investigate
in somewhat more detail this singularity and the Riemann surface that
is related to it. To do so we define

de(k) =\ (k%)

This function is analytic in the upper half-plane Imk > 0, cut along the
interval [i/(2rp), +iocc] of the imaginary axis. If k is replaced by —k,
the solution u(r, k*) remains unchanged. However, the two exponential
functions in its asymptotic expansion (2.41) are interchanged. From this
follows an important relation for the Jost functions,

Ge(k) = dpe(—k)

which shows that the analytic continuation of ¢, (k) to the lower half-
plane Imk < O is precisely the function <pé+)(k2). This function has no
other singularities in that half-plane.

We conclude that the manifold of the k? is a two-sheeted Riemann
surface whose sheets, for fixed k2, are distinguished by the two values
of k. This surface is sketched in Fig.2.2. The two sheets are tangent to
each other along the positive real axis. In scattering theory the custom-
ary nomenclature is the following:

Sheet (I) with Imk > O is called the physical sheet, sheet (II) with
Imk < 0 is the unphysical sheet.
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2.5.3 Partial Wave Amplitudes as Analytic Functions

The formula (2.11) for the partial wave amplitude, upon insertion of the
definition (2.42), gives the scattering amplitude in terms of the S-matrix,

oy _ae _ 1 o a0
fe(k™) = X —Zik[se(k) 17.

Thus, fy(k?) is seen to be a function of the two Jost functions. There-
fore, the analytic properties of fy(k?) can be deduced from the analytic
properties of the Jost functions. By convention and for the sake of clar-
ity let us denote the function (2.42) by Sp(k%) on the first, physical
sheet, and by S;(k?) its continuation to the second, unphysical sheet.
Consider a point v on the physical sheet (i. e. the square root of k% +in),

=k +in=re, v=1/z=+/re%?,

and its neighbour T = /z* = \/re”'%/? (square root of k* —in) on the
unphysical sheet. The other square root of z, w = —v, lies on the un-
physical sheet, while the other root of z*, w = —wv, lies on the physical
sheet. The four points {v, v, w, w} are shown in Fig. 2.2 on the Riemann
surface of complex k2, and in Fig.2.3 in the complex k-plane.

The function (2.42), taken on the unphysical sheet, is given by

—k) o " (k) 1
S, (2) = e+1u_ +1% _ ‘
(&) =0) ey o) S

This relation provides the key for analytic continuation of the ampli-
tude f; from the physical to the unphysical sheet. Indeed, the amplitude
on the second sheet is

- 2 1 < e fe(k?)

Jo®) = S = =55 <Sg 1) T 2ikfe (K2
Thus, f, (k?) is expressed in terms of the same amplitude on the first
sheet. (Note that a first minus sign in the transformation is compen-
sated by another minus sign: in performing the analytic continuation the
factor 1/k goes over into k = —k.) This analysis shows, in particular,
that f; has the left cut [—oo, —1/ (2ro)2] both on the first and on the
second sheets.

(2.44)

2.5.4 Resonances

We know from Sect. 2.5.1 that poles on the negative real half-axis in the
complex k*-plane correspond to genuine bound states. We now want to
show that poles that appear on the second, unphysical sheet play a phys-
ical role, too.

In a first step we show that the function S, (k%) (studied both in the
first and the second sheets) takes complex conjugate values for complex
conjugate arguments k2, i.e. that

Sel(k*)*] = [Se(kH)]* . (2.45)
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Re k

=l
<i

Fig.2.3. The function ¢ (k) = ¢\ (k?)
is analytic in the cut k-plane. The
points marked here are the same as in
Fig.2.2

The differential equation (2.40) has real coefficients. Hence, its solu-
tions obey the relation

ue(r, k%) = {uelr, () 1}*.
The left-hand side has the asymptotic behaviour (2.41). If v = \/k? +in
is the root of k2 then the root of (k2)* (which also lies in the first sheet)
equals w = —v = —v*. Therefore, the asymptotics of the right-hand side
is

r—oo: uglr ()1~ ¢ 10 1e ™ + o 1aH) 1T

Comparing this to the complex conjugate of (2.41) yields
o 0D 1 =g (DT,

so that the assertion (2.45) holds true. For any pair of two points in the
first or the second sheet whose positions are symmetric with respect to
the real axis, the function Sy takes complex conjugate values.

Suppose the function S¢(k?) has a first-order pole in

v, positive square root of K= ké —ily/2,

where kg and I” are real. By the symmetry (2.45) it then has also a pole
in

W, negative square root of k%> = k(z) +il7/2;

both of which lie in the second sheet. The relation (2.44) implies that
S¢(k?) has zeroes in the points v and w of the first sheet, see Fig.2.3.
If one approaches the point kg of the real, positive axis from above, it
is clear that the variation of Sy, as a function of &2, is dominated by the
pole in v and by the zero in v. Thus, in the neigbourhood of kg one can
write

k* —k§—iIy2

Sk =——-9 %
= e i

Sén.r.) (kz)

where the “nonresonant” function Sén'r') is slowly varying. The factor
(k% — k(z) —iIy2)(k? —k% +177/2) is a pure phase factor. As the product
has the form indicated in (2.42), the second factor must also be a pure
phase. Thus, both factors can be written as follows

k2 - k% —_ 1F/2 Zi(gges)
- =¢€

R e g gt
k2 — kg +il)/2

El ’

where the “resonant” phase is given by

2
621‘65) = arctan (W) . (246)
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The other phase, (Sﬁn‘r‘), is a parametrization of the nonresonant ampli-
tude, and is a slowly varying function of k2. Inserting this in (2.11) the
partial wave amplitude is

1 . o(res) (n.r.)
Jelky = 2 &0 sings Y 45 (2.47)

It is not difficult to interpret these results. Suppose first that the nonres-
onant phase is negligibly small as compared to the resonant phase. If
we let k% run through an interval I on the real axis that includes the
point k2, the phase 6?65) runs from nearly zero to values close to w,
while at k> = k3 it takes the value /2. The amplitude

1 r/2

k k2 — kg +il7y/2

runs through the curve sketched in Fig. 2.4, in the complex plane for f;.
For k* = k(z) it is pure imaginary and has the value i/k. The special role

of this point becomes clear if we note that the cross section (2.7) for
a partial wave ¢,

1 :ces) i
fo(k?) ~ g(res) = %el‘s"» sin 8 — _

420 +1) /4

oo (K2) = 4720 + 1 ’ 12 ‘2=

0 (k%) ( ) [ fe(k) 2 @—iRr+ s
(reS)(kz

is proportional to |a, )|2, and if we plot this quantity over k> in the
interval /. Indeed, Fig.2.5 shows that this function has a sharp maxi-
mum at the point k* = k%. For k> = k% =+ I'/2 it takes half the value of
the maximum. A graph of this type is called Breit-Wigner curve, or
Lorentz curve.

The pole at (k2,iI7/2) leads to a resonance in the partial wave cross
section oy, the quantity I is the width of the resonance. It is not difficult

Im g (k2)

Re a; (k%)

Fig.2.4. With increasing k> the ampli-
tude ay =kfy, runs along a curve in
the complex plane that crosses the point
(0, 1) for k* = k%. In the example shown
here, we chose k(z) =10, I" =4 (in arbi-
trary units)
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Fig.2.5. Resonance curve of |a¢2 =
k2| f¢|* as a function of k%. The pa-
rameters are chosen as in Fig.2.4, i.e.
k=10, =4

—
+

0,8+

0,67

0,41

0,2+

to find out qualitatively how these results change when the nonreso-
nant phase is not small, or when the contributions of other partial waves
¢ # ¢ to the cross section (2.7) are not negligible. I just mention in
passing that there are methods which allow to reconstruct the individual
partial wave amplitudes from experimental data and thereby to check
whether one of these exhibits a resonance of this type at some value k%
in the physical range. Like bound states, resonances contain physical
information on the potential.

2.5.5 Scattering Length and Effective Range

This section is devoted to a discussion of two notions of special impor-
tance for scattering at very low energies: the scattering length and the
effective range.

With decreasing energy the modulus k of the momentum tends to
zero. With some more mathematics one can show rigorously that when
k — 0, the amplitude ag, (2.11), tends to zero like K**! . T skip
the proof of this result but give a plausibility argument based on the
formula (2.19) for sind,; and on simple dimensional analysis. The po-
tential U(r), as well as the kinetic energy h2k> /(2m) have dimension
[energy]. The left-hand side of (2.19) being dimensionless, this must
also be true for its right-hand side which can be written in terms of the
ratio of potential to kinetic energy, viz.

U()

/ (k) ) 1 o) s
0
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We already know that for
r—0: ug()~rt k) ~ (k)

and, of course, that the product (kr) carries no dimension. Thus, in or-
der to balance physical dimensions, u; must behave like (kr)¢t1. This
shows that the integral goes to zero for k — 0. More specifically, for
small k, it is proportional to k%¢*1. If this is so then, as k tends to zero,

1 . 1 1
k—0: fe=%618l Sin(Se%zSinag%z(Sg’\'k%.

This consideration shows that it is meaningful to define the limit

k Se(k
iy () = () = @

The quantities ' determine the cross section at the threshold, i.e.
at very small positive energy. They are called scattering lengths. This
nomenclature is somewhat inaccurate because only a‘=" really has the
dimension of a length L. For £ =1 the amplitude a! is a volume, the
more general a® has dimension L3¢+
The expansion in small values of k can be pushed one step further.
For this purpose define the function
1+ikfe(k)  1+ie® sins®
feky 7 €lesingy
The analytical properties of this function, when understood as a function
of the complex variable k, are derived from those of the amplitude f,.
For our discussion the most relevant feature is that the function Ry (k),
in contast to fy(k), does not have the right, or kinematic, cut. This is
shown as follows. Starting from the specific form (2.11) of the ampli-
tude one sees that
1 1 eiB _ efié
_ —k—
fik)  felk) sin é
Thus, if one calculates the discontinuity of R, one finds that it vanishes,
1—ikff(k 1+ik fo(k
R — Rell) = ( KL ik felh
S (k) Je(k)

Ry (k) := =kcotdy .

=2ik.

):k(2i—21)=0,

the discontinuity of 1/ f; (which is not zero) is cancelled.

With k — 0, R(k) behaves like k~2¢. From this fact and the fact
that R, has no cut on the real positive axis one concludes that the prod-
uct r2 Ry (k) can be expanded around the origin,

(N
K2Ry (k) = K cot8g(k) = — + ~rPI2 + 013 . (2.49)
a® 2

The first term contains the scattering length defined in (2.48). The sec-

ond term contains the new parameter r(()[), called effective range. (Note

that r(()e) has physical dimension [length] only for s-waves.)
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The formula (2.49) is a good approximation for sufficiently low val-
ues of k. The following example serves to illustrate these concepts and
their usefulness at low energies.

Example 2.4

We consider s-wave scattering in an attractive square-well potential,
U(r) = —Uyp®(R —r), in which case (2.40) reduces to

2m
n
The index ¢ =0 is dropped, for convenience. In the outside domain,
r > R, the relation between wave number and energy is, as before,
k*> =2mE/h?. Inside the radius R we define

2mUy

h2

The inner solution which is regular at r =0, is seen to be u® ) =
sin(xr). For the outer solution we write 1 © (r) = sin(kr +8), with § still

to be determined. The requirement that the wave function and its first
derivative be continuous at r = R,

u” (r) + (k2 + S UyO(R — r)) ur)=0.

K2 :=k*+K?* where K?:=

u

u®

u (o)’

- u(O)

(2.50)

r=R r=R

yields the condition
Kk 4+ ktan(kR) tan(x R)

tan(kR) —v/1+ K2 /K> tan(kR)

This result is expanded in k> and is compared to (2.49). The scattering
length and the effective range then are found to be

kcoté =

a® = “R+ L tan(kR) o _g 1 R L
N K ’ o= 3@®)2 " K20 "

The scattering amplitude fy—o proper is easily expressed in terms
of scattering length and effective range. Writing sind = 1/+/1+u?,
Ccosd = u/\/1+u2, and u = cot$ one has

a©

u=i 1 —iaOk+a©rPk2/2°

1.
fo= ;e“s sind =

This amplitude has poles on the negative real axis in the complex
k2-plane which correspond to the bound states in this potential. If one
wants to know the exact values of their energy one would have to solve
the condition (2.50), with k = iy/2m(—FE), either analytically or numer-
ically. However, if the term of the denominator containing the effective
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range is small, the pole, or bound state, is obtained from 1 —iaOk
=14a9/2m(=E) = 0. Thus,
h2
Erx———
2m(a®)2
gives an approximate value for the binding energy.

2.6 Inelastic Scattering and Partial Wave Analysis

Examination of the differential equation for the radial function ug(r)
in the form of (2.8) or of (2.40) shows that a real, attractive or re-
pulsive potential leads to real scattering phases. In these cases there is
only elastic scattering. If, on the other hand, the initial state can make
transitions to other states that differ from it, there will be both elastic
and inelastic scattering amplitudes whose absolute square yield the cross
sections for the various inelastic channels. Loosely speaking, the elastic
final state will be “depopulated” in favour of new, inelastic channels.
Whether such channels are “open”, and, if so, how many there are, de-
pends on the dynamics of the scattering process and of the energy of the
incoming state. For example, an electron which scatters on an atom, can
lift this atom to an excited discrete state,

e+(Z, A) — (Z, A" +¢',
if its energy is high enough as to furnish the finite, discrete difference
E(Z,A)*—E(Z, A).

An exact quantum theoretic description would have to be a multi-
channel calculation of the transition probabilities into all channels, the
elastic one as well as all open inelastic channels, by solving a finite
number of coupled wave equations. Depending on the kind and on the
complexity of the system on which the scattering takes place, this may
be an extensive, technically challenging calculation. If, on the other
hand, one is primarily interested in the back-reaction onto the elastic
channel, there is a simpler bulk procedure to parametrize the partial
wave contributions to (2.6). The key to this method is provided by the
optical theorem (2.12) which says that the total cross section

Otot = O¢l + Oabs

is proportional to the imaginary part of the elastic scattering amplitude
in the forward direction,

4
Otot = O¢l + Oabs = 7 Im fe1(k, 0 =0). (2.51)
The elastic cross section, integrated over the whole solid angle, is given

by

4 o0 o0
ael=/d9 | fal > = k—fZ(%H) lag (k)| > =4 " Q@e+1) | fe(k)| .
£=0

=0
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The remainder o,y is the sum of all cross sections into inelastic chan-
nels open at the given energy. It represents the absorption out of the
elastic channel.

So far, we did not prove the optical theorem in this general form
because we did not yet develop all tools needed for its proof. In the
theory of potential scattering the theorem follows essentially from the
conservation of probability: if the particle can be scattered away from
the elastic channel, the probability to find it somewhere in one of the
kinematically (and dynamically) allowed final states must be equal to 1.

The expansion in partial waves being so useful and well adapted to
the physics of scattering, it is suggestive to define total, elastic, and ab-
sorption cross sections for each partial wave ¢,

ol = 4n e+ 1)1 fotk)?,

47
¢
Ot = L+ 1) Im fi (k).
) . () ()

Ogbs = Otof —Og] " -
Note that we have made use of the optical theorem in the second defini-
tion. As a(f;)t) > oéf ) there follows an important condition on the partial
wave ampiitudes:

Im fi (k) > k| fo(k)] 2. (2.52)

The condition (2.52) is called positivity condition. This condition im-
plies that f;(k) must have the general form

_ b aisw
felk) = 2ik(e 1) (2.53)

where &, is a phase which may be complex, and whose imaginary part
must be positive or zero. This is shown as follows:

The polar decomposition of the complex function 1+ 2ik f; is writ-
ten as follows

142k fr = nee®®  with = e 2o ge=Red;.

(The factor 2 in the exponent is introduced for convenience in order to
facilitate comparison with the results of Sect.2.3.) One calculates

1 1
Im fe = - [1=necosen)l, 1 fel* = 511 +n; =2 cos2e0)].
The positivity condition (2.52) implies the inequalities
1472
1> o o<p?<l.

-2
This was precisely the assertion: If n, =1, then Im §, =0; if n, < 1,
then Im §; > 0. The quantity 5., which, by definition, is positive semi-
definite and which obeys the inequality

2
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is called inelasticity. Indeed, qualitatively speaking, the inelasticity is
a measure for the amount taken out of the £-th partial wave of elastic
scattering, due to absorption.

The result (2.53) with the property (2.54) is quite remarkable: The
same form (2.11) for the amplitude f;, = ay/k was obtained from the
Schrodinger equation, though with real potentials and, hence, real scat-
tering phases. In deriving the more general formulae of this section we
need no more than the optical theorem (2.51)!

The cross sections of fixed partial wave, defined above, when written
as functions of the inelasticity and the real scattering phase, are given
by

) 2
Otor = k—2(215+ D[1 —ngcos(2e¢)] , (2.55)
o0 = Z 20+ D)1+ n? — 20, cos(2e,)] (2.56)
el T2 My Ne )l .
T
O =0t — 04 = 5 QL+ DI =nf]. (2.57)

The interpretation of the results (2.55)—(2.57) is simple:

1. If n¢ =1 there is no absorption at all in this partial wave. The in-
elastic contribution vanishes, the elastic cross section (2.57) equals
the total cross section (2.55),

) () ()
Oabs = 0, Ol = Otot -
In this case the scattering phase §; is real, and (2.53) can be written
in the form known from (2.11),

1 .
fo(k) = . % sin 8y .

2. The other extreme case is n; = 0. The absorption is maximal in the
partial wave with angular momentum ¢. This does not mean that
there is no elastic scattering at all! Rather, the elastic and the inelas-
tic cross sections are equal. The results (2.55)—(2.57) which were
derived from the optical theorem, give the result

1
&) (&) (&)
Oabs = Ol = Eatot .
The scattering amplitude proper is pure imaginary and is equal to
i
fe=5-

3. A case of interest is one where there is a resonance in the ¢-th par-
tial wave, accompanied by absorption. The resonance curve Fig.2.4
remains qualitatively similar to the case without absorption. How-
ever, it no longer intersects the ordinate in the point i (or i/k), but at
a smaller value from which the inelasticity can be read off.
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The Principles
of Quantum Theory

Introduction

his chapter develops the formal framework of quantum mechan-

ics: the mathematical tools, generalization and abstraction of the
notion of state, representation theory, and a first version of the pos-
tulates on which quantum theory rests.

Regarding the mathematical framework quantum mechanics makes
extensive use of the concept of Hilbert space, of the theory of linear
operators which act on elements of this space, and of more general
functional analysis. In themselves these are important and compre-
hensive fields of mathematics whose even sketchy description would
go far beyond the scope of this book. For this reason I adopt a some-
what pragmatic approach introducing all definitions and methods of
relevance for quantum mechanics but skipping some of the detailed
justifications. Some of the general concepts are made plausible and,
to some extent, are visualized by means of matrix representations.
Even though these matrices will often be infinite dimensional, this
approach allows to adopt, by analogy, methods familiar from linear
algebra.

3.1 Representation Theory

Observables, by definition, are classical quantities. In quantum mech-
anics they are represented by self-adjoint oprators. In the physical
examples that we studied up to this point, the eigenfunctions of such
operators define systems of base functions which are orthogonal, and
either square integrable (and hence normalizable to 1) or normalizable
to §-distributions. Regarding the corresponding spectrum of eigenvalues
there are three possibilities:

1. The spectrum may be pure discrete. Examples are the square of the
orbital angular momentum £2, and one of its components, say £3.
Both operators are defined on S2, the sphere with unit radius in R>,
their eigenfunctions Yy, (6, ¢) are orthonormal and complete.

The Hamiltonian of the spherical oscillator is another example,
2 1 5,

H=——A+-mor-. 3.1
2m 2
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It is defined on R, its spectrum and its eigenfunctions were derived
in Sect. 1.9.4.

2. The spectrum may be pure continuous. Examples are provided by
the operator of momentum of a particle p, the position operator x,
and the operator of kinetic energy p2/(2m).

3. Finally, the spectrum may have both discrete as well as continuous
parts. An important example is the Hamiltonian describing the hy-
drogen atom,

2 2
H=—I" A (3.2)
2m r
that we studied in Sect. 1.9.5. More examples are provided by the
Hamiltonians for one-particle motion where the potential is U(r) =
—Up®(Ry—r), i.e. an attractive well of finite radius. Like in the hy-
drogen atom there are bound states with E < 0 and states with £ > 0
which belong to the continuum.

Let ¥ (x), or, more generally, ¥, (¢, x) be the quantum state of a physi-
cal system which is characterized by the quantum number(s) «. Indeed,
o may stand for more than just one quantum number as exemplified by
the discrete bound states of the hydrogen atom where « is a short-hand
notation for the triple (n, £, m). The Fourier transform of

- 1 \ i
wa(ta P) (2 )3/2 / d’x exXp <_ﬁpx> Wa(f, x)

is unique. It provides a means of expanding the physical wave function

1 X Py~
Yol(t,x) = W./ d’pexp <+ﬁp -x) Yal(t, p)

in terms of eigenfunctions of the momentum operator

1 i
o(p,x) = @l exp(hp x) . (3.3)

The fact that these are not square integrable and, hence, not normaliz-
able in the usual sense, plays no special role because completeness can
be formulated equally well by means of §-distributions. The function
Yy (t, p) is as suitable for describing the state with quantum num-
bers “a’ as was the function v, (z, x). Therefore, when considering the
wave function Yy (t, p) one says one is using the momentum space rep-
resentation, while when using (¢, x), one says that one is working in
the position or coordinate space representation.

Representing the state “«” in coordinate space, the original Born in-
terpretation of |y, (t, x)|2 applies i.e. |Yo(t, x)|>d3x is the probability
for finding the particle at time 7 in an infinitesimal neighbourhood of the
point x. By analogy [V (2, p)|2d3p is the probability to detect the par-
ticle at time ¢ with a momentum in a e-neighbourhood of the point p in
momentum space.



Let A be an observable whose spectrum of eigenvalues is assumed to
be fully discrete and, for simplicity, whose eigenvalues are not degener-
ate. The eigenvalues are denoted by a,, the eigenfunctions are denoted
by ¢, viz.

Ay (x) = app,(x) .

The system of functions {¢,} is complete and normalized to 1. If a given
state vector ¥, (t, x) is (absolutely) square integrable as well, it can be
expanded in the base {¢,},

Vot,X) =Y ()i () with () = / d*x @ () Y (1, ) .

At any time the set of all expansion coefficients {cﬁ,a) (1)} gives
a complete description of the state «. In a measurement of the ob-
servable A in the state described by v, the quantity |cf,°‘>(z‘)|2 is the
probability to find the eigenvalue a, of A.

If the spectrum of A is degenerate one must also sum over the base
states spanning the subspace of fixed eigenvalue a,,. The Hamiltonian of
the spherical oscillator (3.1) provides an example of a purely discrete,
degenerate spectrum in which case a, = E,; and

(pv(x)=RnZ(r)Y€m(9’ d))v VE(n’E’m)'

In case A has a spectrum that includes both a discrete and a continuous
part, the expansion of the wave function reads, in a somewhat symbolic
but suggestive notation,

Va6 = YA 00+ [ drd e gt ).

The classical example of this case is the Hamiltonian (3.2) which de-
scribes the hydrogen atom.

As a first result we note that the state “o” is represented alternatively
by the data

Va(t,X) or Yu(t,p) or
{cDwm) or {d9),dY, v)). (3.4)

This observation suggests to introduce a more abstract concept of
“quantum state”, by stripping it off any specific representation. In turn,
in concrete considerations or in practical calculations, this freedom may
be used to select the representation which is adapted best to the situ-
ation at stake. As a perhaps even more important bonus, this abstract
concept of quantum state allows to also treat systems for which there is
no classical analogue.

3.1 Representation Theory
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In a certain sense the transformations between different, but equiva-
lent representations are analogous to the canonical transformations in
mechanics of Hamiltonian systems. Similar to the situation in mechan-
ics the physical system (that is, its quantum wave function) is invariant.
Its representation in one of the concrete bases sketched above is a kind
of “choice of coordinates” which may be more or less fortunate but, in
any case, should be adapted to the specific problem. Of course, we will
have to work out more precisely the transformation of wave functions
and of operators from one representation to another. Before we do so,
however, we wish to introduce a notation which is particularly useful
for practical purposes and, at the same time, takes good account of the
abstract nature of a quantum state.

3.1.1 Dirac’s Bracket Notation

In many situations it is useful to write a quantum state characterized by
the quantum number(s) « in a symbolic notation as |«), independently
of its specific representations (3.4). This notation is due to Dirac who
called this symbol a “ket”, and its dual (@] a “bra” — thereby allud-
ing to the word bracket, broken up in two pieces, i.e. (---|---) into
(---] and |---). It is instructive to go a little deeper into this nota-
tion: As the Schrodinger equation is a homogeneous, linear differential
equation, linear combinations of its solutions are again solutions. Thus,
a physical state in one of the forms (3.4), is a (generalized) vector in
a linear vector space over the complex numbers C. The four represen-
tations (3.4) have in common the property of linearity, and the physical
content which is coded in the quantum numbers «. They differ only in-
sofar as the state is given either by a square integrable function over
coordinate space R?, or by such a function over momentum space Ri’,,
or as a column vector with an infinite number of components. Dirac’s
notation |---) summarizes the invariant information on the state, its
vector nature and its physical content, but stands, in fact, for all rep-
resentations. If |«) is a vector, and (B|«) is the complex number

/ & x Yh (6, x)Pa(t, x) o / & pyit, p)alt, p) o

0
Z Cr(zﬁ) *Cgla) ,
n=0

depending on the representation one has chosen, this implies that (S|
is a linear form which acts on vectors |«), thereby yielding a complex
number. This is to say that (8| is dual to |«). For example, in coordinate
space |«) is the wave function v, (¢, x) while (S| represents the inegral
operator

f Fxyhtx) o

which acts on the slot marked by a “bullet”.



Dirac’s notation is a somewhat pragmatic way of writing which is
useful for many practical calculations. This is the reason it is widely
used in everyday physics. The mathematical literature makes less use
of it, probably because it is not unique! and could possibly give rise
to misunderstanding in some situations. In what follows we shall often,
though not everywhere, make use of it. Here we illustrate the “bra” and
“ket” language by some simple examples:

Let |n) characterize the base system that belongs to the fully discrete,
initially non-degenerate, spectrum of eigenvalues of some observable A.
Then (m|n) = §,,,. The expansion of a physical state in terms of this
basis which in coordinate space has the form v, (¢, x) =Y ¢, (x) a,(,a) (0,
takes the abstract, representation-free form

) =" In) (nlar) .

In this series (n|a) is the expansion coefficient corresponding to the

9

state “n”. For instance, in coordinate representation one has

(nla) = (¢n, I/fa)Z/ &x @} ()Yt x) = (ln)* .
The expansion of a “bra” reads correspondingly

Bl=>_ (mlp)* (m] .

m

The scalar product of two states in this notation,

(Bl =D (mlB)* (nlet) Spn = Y _ (BIn) (nlar)

n,m n

is realized by the formula
[ @x vt =Y df a
n

where the left-hand side holds in coordinate space while the right-hand
side holds in the A-representation.

In those cases where the basis belongs to an observable with a dis-
crete, but degenerate spectrum, or to an observable with a mixed
spectrum, the sum over n must be replaced by a multiple sum, or by
a sum plus an integral, respectively. The common eigenfunctions of £°
and of ¢3 are an example for the first case and, in Dirac’s notation are
written as |¢m). The second case is illustrated by the eigenfunctions of
the hydrogen Hamiltonian.

3.1 Representation Theory

! For instance, |n) could stand for the
base system ¢, (x) of stationary eigen-
functions of the one-dimensional har-
monic oscillator but could also be any
other, fully discrete system with some
other Hamiltonian.
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In the bra and ket notation the completeness relation takes the symbolic,
yet immediately intelligible form

ZIn)(nl:]l and Zln)(n|+/dv v) (v =1 (3.5)
n=0 n

for the purely discrete and the mixed cases, respectively. If one decided
to write the second expression in coordiante space, it would read

Z(pn(x)/ 3y Pr(x") o+/ dv @, (v, x)f &3y or(v,x') e

:/ Sx's(x—x) e .

The “bullet” marks an empty slot, in other terms stands in lieu of the
wave function on which this expression acts. Obviously, this explicit
way of writing is less transparent than the more general, abstract no-
tation.

The completeness relation in a complex, infinite-dimensional vector
space is written in an analogous way: Let {e,} with ¢; = (0,---0, 1,
o,--- ,O)T be a system of base vectors (with a 1 as the i-th entry),
spanning this space. Then we have

e.¢] e.¢]
Yol =" el
n=1 i=1

0\ (0...010...)

100 ...
0 010 ...
=, =loo1..|=1

i

S =

in close analogy to finite dimensional vector spaces.

Expectation values or more general, nondiagonal matrix elements of op-
erators are written as (B|A|«). In coordinate space this expression is
the familiar integral over R of Chap. 1. If one considers such a matrix
element of the product of two operators A and B, the following, some-
what formal calculation uses the completeness relation for expressing
matrix elements of the product in terms of products of matrix elements
of individual operators,

(BIAB )= (Bl A 1 Bla)=_(BlAln) (n| Bla) .
n
One often makes use of this way of reducing a product to individual
operators.



Example 3.4
The generalization to improper states, i.e. to states which are not nor-
malizable to 1, poses no particular problem. We denote by |x) and
by |p) the eigenfunctions of the operator x and the operator p, respect-
ively, in Dirac’s notation. We then have

(¥[x)=8'—-x),  (p|p)=80'—p).

The expansion coefficients of a physical state “«” in terms of eigenfunc-
tions of x take the form (x|a) and are identical with v (z, x), i.e. the
coordinate representation of the wave function. In this light the formula

1 i .
———=exp(=p-x)=(plx
is immediately understandable: The left-hand side is the coordinate
space representation of the wave function |p), the right-hand side is the
complex conjugate of the momentum space representation of the eigen-
function |x) of the position operator.

{x[p) =

3.1.2 Transformations Relating Different Representations

In changing the representation of states the operators that act on these
states must be transformed as well. As a first orientation one should re-
call the description of finite dimensional vector spaces in linear algebra.
Let V be a real vector space of dimension n, é = {¢e;}, k=1,...n, an
orthonormal basis, ¢; - & = 8jx. Every orthogonal transformation R takes
it to a new orthonormal basis,

é—> f=Re, R'R=1.
Observables over a R-vector space are real, symmetric matrices whose

action on an arbitrary elementa =) ékc,(ca) is as follows

Aa = Z(Aék)cl((a) = Z Aikéicl(ca) with A =¢;-(Aey).
k ik

With R” = R™! the observable in the new basis is

A= fi-(Af) = Z RipRigApg = (RAR )y,
pq
that is to say that the operator transforms according to the rule

A—> A=RAR'.

This rule is easy to remember: Reading the product on the right-hand
side in the order in which the matrices act, i.e. from right to left, R!
“rotates back” to the old basis, where A acts as before. Finally the result
is taken back to the new basis by the “rotation” R.

Matters are similar in vector spaces over C, the difference be-
ing that the orthogonal transformation R is replaced by a unitary U,

3.1 Representation Theory
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i.e. UUT = 1=U'U, where U' denotes the transposed and complex
conjugate matrix. As we saw in Sect. 1.8.1 observables are no longer
real-symmetric but complex hermitean matrices.

Let us begin by an example: Let Qk, k=1,2,3, be the three op-
erators of position in a cartesian basis. As they commute among each
other their action on every solution {(x) of the Schrodinger equation
in coordinate space is

OFyr(x) = xFyr(x) .

One says that QX act multiplicatively. Expanding these functions in
terms of eigenfunctions (3.3) of the momentum operator one obtains

0* f & po(p. )T () = / & po(p. T (p)
=—— | dpelp,x)—v(p).
1 9pk
Here we inserted the relation

(3o = o0 (o)
expl—-p-x)x"=—-—exp(=p-x

P hP i apk p hl’

and performed partial integration with respect to the variable pi. This
equation holds for all x. By inverse Fourier transformation one con-
cludes that

~ h 0 ~
04 (p)=———(p). (3.6)
i dpy

Thus, in momentum space the operator QF is represented by the first
derivative with respect to pg, in analogy to the component P of
momentum in coordinate space which is realized as first derivative
by Xk, see (1.58) and Sect. 1.8.4. Note, however, the difference in signs
in (1.58) and in (3.6).

Let A be an observable with a purely discrete, non-degenerate spec-
trum whose eigenfunctions are ¢, (x). The state {y may be expanded in
the basis of these eigenfunctions, so that

Q') = 0" Y pu@)cn =) xrpu(x)en .

In turn, xf¢,(x) is again a square integrable function and, hence, can
also be expanded in the basis ¢,. Denoting the expansion coefficients
by X,(,]f,)l one has

o) = om0 X0, with X = f &x @3 (0)x @, (x) .
m

This result has the following interpretation: in the A-representation the
state Y(x) appears in the form of a (in general infinite dimensional)



vector ¢ = (c1, ¢z, ...)T, the position operator Q¥ is represented by the
matrix X® = {X,(,f,)l} and we have

T
Ofc=XPe or Q)T = <Z Xﬁ,f;cn) . (3.7)

n

As a result we note that the operator QX which describes the k-th
cartesian component of the position operator, may appear in quite dif-
ferent forms:

— In coordinate space as the function x*, acting multiplicatively.
— In momentum space as a differential operator,

h a

Ciope
— In the space spanned by the eigenfunctions of the observable A as
the infinite dimensional matrix

X5 = f d*x ¢F () x @, (x) .

It is instructive to continue on this example by considering another
cartesian component, say P;, of the momentum operator. In coordinate
space it is (h/i)(3/dx/), in momentum space it is the function p ;j (acting
multiplicatively), in the space spanned by the eigenfunctions of A it is
the matrix

() h 0
Pyin = f d*x O X) 5 0n ().

Obviously, the symbols Q* and P; denote these operators in all rep-
resentations, which is to say, they are an abstract notation for what is
essential about these operators. For instance, Heisenberg’s commutation
relations, in abstract notation, are

R ‘
[R,-,Qk]=T5jk11, [0/, 0"1=0, [P,,P]=0|, (3.8)

where 1 is either the number 1 or the infinite-dimensional unit matrix.
When spelled out, their concrete realization is

ho , ho R
9 kgl 9

— i dinat © [P, Q= = — == =8k
in coordinate space [Pj, O°] T e : Jjk
. s h o h 9
— in momentum space: [P;, Q"] = p; _Ta_pk - _T_Bpk pj
=3 Jjk »

3 3 2 j k k ] h
— in “A-space”: Z [P,El]l)Xl(n) —X,(nl) Pl;j)] = TBijmn .

l

3.1 Representation Theory
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It is not difficult to convert any one of these three representations into
one of the two others. For example, in transforming from coordinate
space to the A-representation one makes use of formulae of the type

h 0 h 0
3 w2 k Byt (k)
/d wm(x)i—axjx @n(x) /d xwm(x)i—axj El w1 (x) X,

— () y (k)
- Z Pml Xln .
/

In position space and in momentum space the relations (3.8) re-
fer to the commutator of a function and a differential operator. In the
space spanned by the eigenfunctions of A they mean the commutator of
two matrices. This statement which basically is simple, sheds light on
an important historical step in the development of quantum mechanics.
While Erwin Schrodinger treated quantum mechanics of nonrelativis-
tic atomic systems by means of the differential equation that bears his
name, Werner Heisenberg, together with Max Born and Pascual Jor-
dan, developed the same theory in the framework of what was called
matrix mechanics. The two approaches turned out to be just two differ-
ent representations of one and the same theory, on the one hand what
we now call the “coordinate space representation”, on the other hand
what is called the “A-representation”. It was Schrodinger who proved
the equivalence of his and Heisenberg’s approaches, shortly after the
birth of quantum mechanics.

3.2 The Concept of Hilbert Space

In Chap.1 we studied important examples of self-adjoint Hamiltoni-
ans, and introduced the notions of orthogonality in function spaces and
of completeness of base systems. In the previous section we studied
formally different but physically equivalent representations of opera-
tors which describe observables. Here we wish to learn more about the
spaces in which physical wave functions live. Central to this endeavour
is the concept of Hilbert space. In many respects it corresponds to our
conception of finite dimensional vector spaces, in others it is markedly
different, due to its dimension being infinite. Of course, a detailed and
mathematically rigorous treatment would go far beyond the scope of
this book and would lead us astray for a while from the physical aspects
of quantum theory that we wish to learn and to understand. Therefore,
I restrict this text to a somewhat cursory and, in some respects, qualita-
tive discussion. Those who wish to study these matters in greater depth
are referred to the literature in mathematics and mathematical physics.

We start with a few remarks which are meant to clarify what we
need for a formulation of the principles of quantum mechanics, and
which will help to motivate the subsequent definitions.
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1. A striking property of Schrédinger’s wave functions is, on one hand,

that they are defined over our physical time axis R, and over the
usual physical space R} where experiments are done, but, on the
other hand, that they live in function spaces Jf where they have
certain remarkable properties (such as, for instance, being square
integrable). In a more scholarly language, (¢, x) is defined over
R, x R3 but is an element of #. This raises the question of how the
wave function ¥, will react when we perform, e.g., Galilei trans-
formations in space such as translations, rotations, or special Galilei
transformations which leave the dynamics (formulated by means of
a Hamiltonian) invariant. This question which leads to interesting
statements both of principle and practical use, will be taken up ex-
tensively below.
Note, however, that there are systems without classical analogues
and to which wave functions are ascribed that have no, or only in-
direct, relation to the space-time of physics. This situation will be
encountered in the description of spin, i.e. of intrinsic angular mo-
mentum of particles.

2. A central principle of quantum mechanics is the superposition prin-
ciple, which says that with two different solutions ¥, and g of
the Schrédinger equation any linear combination A, + ug, with
A, i € C two complex numbers, is also a solution. Therefore, the
spaces in which wave functions are defined, must be /inear spaces
which is to say they must be vector spaces over C.

3. Recalling Born’s interpretation of the wave function, Sect. 1.4, or
generalizations thereof, it is clear that the spaces # must carry
a metric structure, it must be possible to define, or to measure, the
norm or the length of a state . For, if we ask for the probability
to measure the eigenvalue a, of the observable A in the normalized
state 1, this is equivalent to asking about the scalar product (¢, ¥)
of the eigenfunction of A corresponding to a, and of the state ¥. In
other words, one is asking for the projection of ¥ onto ¢,, i.e. for
the angle included between these two functions.

4. Both the metric and the geometric structure are obtained by the cor-
rect definition of the scalar product of wave functions (or, more
generally, of state vectors). By the same token, a general, formal
framework is provided where expectation values are well-defined
which, as we know, represent physical observables and which are
essential for the interpretation of the theory.
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3.2.1 Definition of Hilbert Spaces

The previous remarks, hopefully, were helpful in preparing and motivat-
ing the following definition:

Definition 3.1 Hilbert Space

(I) A Hilbert space # is a linear vector space over the complex
numbers C.
Addition of elements f € # and g € # exists, f+g € H, and
has the usual properties, i.e. it is associative, there is a null
element, for which f+0= f for all f € #, and for every f
there is an element (—f) such that f+ (—f) = 0. Multipli-
cation with complex numbers is well-defined, it is associative
and distributive.

(IT) On # a scalar product is defined

('a'): %XWHC: f’g'—>(fsg)s

which has the following properties:
The scalar product (f, g) of two elements f, g € # is C-linear
in its second argument,
(f.g1+82) =(f. g+ (/. 82), (3.92)
(f,r)=r(f,8), reC. (3.9b)

The scalar product of an element ( f, ) with itself is positive
definite. It is zero if and only if f is the null element,

(i H=0 Vf, (f, =0 f=0. (3.10)
When one interchanges its arguments the scalar product takes
its complex conjugate value,

(& /) =(f9". (3.11)

(IIT) The space # is complete, i.e. every Cauchy series f1, f2, ...
converges to a limit f which is an element of #,

fo—> fo i lm |lfa= fI=0. (3.12)

(IV) The space # has countably infinite dimension.

Comments on the axioms (I)-(IV). The properties (3.9a), (3.9b)
and (3.11) imply that the scalar product is antilinear in its first entry,
which is to say that

(w1 fi+uafo, @ =ui(fi. 8 +u5(f. 8, fi.gedH, nicC.

If the scalar product were real then, by (3.10) and (3.11), it would de-
fine a positive definite bilinear form. Being linear in the second entry,
but antilinear in the first, it is said to be a positive definite sesquilinear
Sform.



Definition 3.2

1. Two elements f and g in # are said to be orthogonal, if their
scalar product vanishes,

(f.e9=0  f and g orthogonal . (3.13)
2. The scalar product defines a norm

I £l := (f, HY? norm of feJ. (3.14)

Equation (3.13) takes up the concept of othogonality of functions
that we studied extensively in Chap. 1, in a more general framework. In
close analogy to finite dimensional vector spaces one proves

Schwarz’ inequality:  |(f, @) < [If]I-llgll (3.15)
and the

triangle inequality: || fll = llglll = I/ +gll = I/l +llgll . (3.16)
If f1, f2,..., fn is a set of orthogonal elements of # which are nor-
malized to 1, one has Bessel’s inequality

N

I @l* <liglh? forall ge . (3.17)

n=1

The norm || f|| is the (generalized) length of the vector f € #. By
Schwarz’ inequality (3.15) the ratio |(f, g)|/(|| fIl llgll) =: cos & defines
the angle comprised by the vectors f and g.

We note in passing that a space which has the properties (I) and (IT)
only, is called pre-Hilbert space.

Axiom (IIT) makes use of the notion of Cauchy series which may be
summarized as follows: A set of functions forms a Cauchy series if for
every ¢ > 0 there is a positive integer N such that

| fo— full<e forall n,m>N.

In fact, it is the requirement (III) which turns a pre-Hilbert space into
a full Hilbert space.

The axiom (IV) is not really necessary. In fact, in the mathematical
literature a space which fulfills (I) — (III) — irrespective of its dimension
— is called a Hilbert space. As a rule, the Hilbert space(s) of quantum
theory are infinite dimensional, so axiom (IV) is included to remind us
of this observation. In many applications we will deal with finite dimen-
sional Hilbert spaces but note that these are subspaces of a “physical”,
infinite dimensional Hilbert space. In what follows and in the examples
we will distinguish, if necessary, finite dimensional and infinite dimen-
sional situations.

In the context of axiom (III) a certain type of convergence was made
use of, called strong convergence. We note in passing that, unlike the

3.2 The Concept of Hilbert Space
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finite-dimensional case, there are further definitions of convergence in
infinite dimensional spaces which are distinct from strong convergence.

The following examples serve to illustrate the definition of Hilbert
spaces. In particular, they show to which extent these spaces resemble
the vector spaces familiar from linear algebra.

The set of all infinite dimensional, complex vectors for which the sum
of absolute squares of their components is convergent

o0
a=(a1,a, a3, ...)" with ZIan|2 <00,
n=1

is a linear vector space over C provided addition of elements and mul-
tiplication by complex numbers A € C are defined as usual, i.e.

at+b=cc,=a,+b,, Aa:(Aan)T.

It is obvious that the condition of convergence is met for Aa if it is
fulfilled for a. It is less obvious for the sum of two elements: One has

lan +bul 2 <1 lan|+1bnl | 241 lan] — byl |2 =2(lan| >+ |ba] ?) < 00,

and, therefore, 3 |c,|? < oco.
The scalar product

o.¢]
(@.b):=)_dab,
n=1

has the properties (3.9a-3.11), and the result fulfills the condition of
convergence. Indeed,

1
(@, b)| < ;w by < Ean(|an|2+|bn|2).

One shows, furthermore, that this vector space is complete. If its di-
mension were finite, say equal to N, one would refer to the fact that
the field of real numbers R and, hence, also the direct product RN of
N copies of it, are complete. In infinite dimension things are not so sim-
ple. One must consider genuine Cauchy series and show that the limit of
any such series is an element of the same vector space. Finally, one de-
fines a countably-infinite base system ¢ = (..., 8,;,...)" by choosing
the i-th entry equal to 1, all others equal to 0. This vector space fulfills
all axioms of Definition 3.1 and, therefore, is a Hilbert space.

If one chooses the dimension of this space to be finite,n=1,2, ... , N,
the condition of convergence is unnecessary. The so-defined N-dimensional
vector space is a Hilbert space (fulfilling axioms (I)—(III)). Quantum
mechanics often makes use of such spaces, for instance, in describing
eigenstates of orbital angular momentum or of spin, though they appear
as subspaces of a big Hilbert space with infinite dimension.



Example 3.6

The second example, in a first step, is chosen finite dimensional. Let
My (C) be the set of all N x N-matrices with complex entries, N € N.
Addition of elements and multiplication by complex numbers,

A BeMyC): C=A+B< Cjp=Aj+Bji

makes it a C-vector space. An obvious candidate for the scalar product
of A and B is the trace of the product of the hermitean conjugate matrix
AT =(A"T with B,
N
(A,B):=tr(ATB)= > A%Bj.
k=1

(Note the unusual position of indices of the first factor A which is due
to its being transposed.) Indeed, it fulfills the properties (3.9a-3.11). As
the set of complex N x N matrices My(C) is isomorphic to CV * and
as this multiple direct product of C with itself has this property, the so-
defined vector space is complete. Thus this provides another example of
Hilbert space.

In a second step, one may let the dimension N go to infinity. Ob-
viously, one must then restrict the set to those matrices whose trace is
finite, and one must examine Cauchy series of matrices more carefully.

Example 3.7
Consider the set of all complex-valued functions (x) over three-
dimensional space R?® whose absolute square admits a Lebesgue mea-
sure,

/d3x lW(x)| % < 00.

Take the scalar product of two such functions ¢ and x to be

W, x) = f Exy* () x(x) .

The following estimate

fd3x v () x(®)| 5%[/ B |w(x)|2+fd3x |x<x)|2]

shows that this scalar product is well-defined. Addition ¥ + x and mul-
tiplication Ay by complex numbers make this set a linear vector space
over C. Indeed, the absolute square of the sum of two elements is finite
because [Y(x) + x(0)|* < 2(1¥(x)[* + | x(x)|?) is finite.

It is more difficult to prove directly the completeness of this space.
For our purposes it may be sufficient to hint at the examples of complete
systems {@;,(x)} of orthonormal functions developed in Chap.1 which
were used as bases for an expansion of elements i, x of this space.
Hence, it is plausible that all axioms (I)—(IV) are fulfilled. Obviously,
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Fig.3.1. A rotation R? in three-dimen-
sional, physical space induces a unitary
transformation in Hilbert space. The
figure shows the example of a rotation
about the 3-axis by the angle «. The
state with definite values of ¢ and m re-
acts to this rotation by the phase factor
exp(—ima)

2 In the example this unitary transfor-
mation is diagonal. This will not be so
in the general case.

this Hilbert space of square integrable functions over R3 is of special
importance for wave mechanics. It is denoted by L2(IR3).

Example 3.8 (Interplay of Position Space and Hilbert Space)

Here is a simple example which shows the reaction, alluded to above,
of elements of Hilbert space L2(R3) to transformations in R3, i.e.
which illustrates the interplay between the space of physics, where
we perform measurements, and the space of quantum wave functions.
Consider the eigenfunctions of the Hamiltonian for the spherical oscilla-
tor of Sect. 1.9.4. The functions ¥4, (X) = Rpe(r)Yen, (0, ¢) are defined
over R? or, more precisely, over R x S?: The variable r takes its val-
ues on the positive real half-axis, the variables 6 and ¢ refer to the
unit sphere $% in R3. The knowledge of these coordinates and of the
quantum number m implies that a particular frame of reference K was
chosen. Of course, we can change this reference system. As the Hamil-
tonian refers to a given center of force it would not be reasonable to
perform space translations of K. However, a different orientation in
space of the frame of reference is a meaningful alternative, thus re-
placing K by a new system K’ which is obtained from the original
by a rotation R, x — x’ = Rx. How does the base function v, react
to this rotation? The answer in the most general case is derived be-
low, in Sect. 4.1 where we study angular momentum in quantum theory.
For the purpose of this example we consider the simple case illustrated
by Fig.3.1: Let K’ be obtained from K by a rotation about the 3-axis,
by the angle «. Comparing polar coordinates of the new system of ref-
erence and those in the old system one has

rer =r, 060 =0, o> =¢p—«a

so that the wave function in K’ and K, respectively, are related as fol-
lows

it = Ve &) = €Y (x) .
Writing the basis as one symbol ¥ = {,,¢,}, one has
¥ (x) — ¥'(x) =U(@)¥(x)
where the unitary matrix is
U(a) = diag(1, el 1, e7lo gl glo q i o2a 1y
Ul(@U@ =1.

This simple result is interesting: An orthogonal transformation R € SO(3)
of the system of reference in R induces a unitary transformation of the
basis in Hilbert space.? The result suggested by this elementary example
is not surprising if one keeps in mind the following fact: Both systems
¥ and ¥’ are orthonormal and complete; they refer to two systems of
reference which are connected by a rotation R, described, say, by Euler



angles (¢, 0, V). Therefore, the transformation between the two systems
must be unitary,

l
Vi = Y U (@, 0.9 Vnem

m=—{

only then are the functions v/, , orthogonal and normalized to 1. The
unitary matrix of transformation is a function of the Euler angles that
will be calculated and analyzed in Chap. 4.

3.2.2 Subspaces of Hilbert Spaces

As an example we consider the Hilbert space L*(S?) spanned by the
eigenfunctions Yy, (0, ¢) of €2 and ¢3. Its dimension is infinite since
the quantum number ¢ runs through zero and all naturals. This Hilbert
space decomposes into an infinite series of finite dimensional subspaces
whose dimension is (2¢+ 1), which are characterized by fixed eigenval-
ues £(£+ 1) of €%, and which are spanned by the base functions Yy,
with m = —€, —€+1, ..., +£. Situations like this occur frequently in
quantum theory. As they are important for the understanding of physical
quantum systems let us consider the concept of subspace more closely.

A subset F; C # of a Hilbert space is said to be a subspace of F#
if

1. #; a sub-vector space of J¢, and if

2. H; is closed in Ff.

If the subspace is equipped with the restriction of the metric of #
to #;, then #; is itself a Hilbert space.

Another way of phrasing these criteria is this: Every finite linear
combination Y_ A,v, of elements ¥, € H; is again an element of #;,
and J¢; is closed.

As the “big” Hilbert space has a metric, the orthogonal complement
of any subspace (or some other subset W of #, for that matter) is well-
defined. It is the set of all those elements of # which are orthogonal to
every element of the subspace (or the more general subset, respectively),

Wt ={fe|(g f)=0foral ge W}.

The set W+ is said to be the orthogonal complement of W in J¢.
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Hy
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Fig. 3.2. Symbolic representation of the
decomposition of an element fe# into
two orthogonal components () e ¢,
and f@ in the orthogonal comple-
ment J(‘f‘ Note the analogy to the
decomposition of a vector over R? into
two orthogonal components

If W is a subspace #; of Hilbert space the important decomposition
theorem applies:

Theorem 3.1 Decomposition Theorem

Every element f € # can be written in a unique way as the sum

of an element f) € #; and an element ff) € J(’iL of the orthogonal
complement,

F=rO+s.
The norm of the component which lies in the orthogonal comple-
ment, is given by

(@) :
= inf — .
(Wi A If—gll

It is instructive to highlight the close analogy to the decomposition of
an element of Euclidean space R? into two orthogonal components: Fig-
ure 3.2 shows this decomposition f = f + £ of an element f € R”.
If we identify the abscissa with the subspace #; =R, the orthogonal
complement Jt’f corresponds to the ordinate. We have fil) = @, the
length of this element is the usual geometric distance to the 1-axis.

3.2.3 Dual Space of a Hilbert Space and Dirac’s Notation

Returning to Dirac’s bra and ket notation I begin with an example
that is known from linear algebra and from mechanics: Let M be a fi-
nite dimensional, real, differentiable manifold equipped with a metric
g ={gik}. Let T,,M be the tangent space, 7,M the cotangent space
at the point m e M, v= {v} and w = {w'} two elements of the tan-
gent space. The metric evaluated with v and w, g(w, v), gives a real
number Zi’ W gixv. This means that > ; w'gik, or, written differently,
g(w, o) is a linear form which acts on elements of 7,,M, that is to
say, is an element of the cotangent space. It is easy to show that the
mapping w ——> g(w, e) is bijective. When expressed in the language of
coordinates this means that to a given tangent vector v = (v, v2,...)
there corresponds the unique element v* = (3, v'gi1, ) ; v'gi2,...) of
the cotangent space, and, vice versa, that to each u* € T," M there cor-
responds the tangent vector u = (3 g™*uy). The vector spaces M
and T, M are isomorphic. The isomorphism being established by the
metric, one also says that they are metrically equivalent. These well-
known facts can be translated to Hilbert spaces.

Let #¢ be a Hilbert space, #* the dual space. By definition the dual
space contains all linear and continuous functionals T : # — C which
when applied to elements of #, yield complex numbers. The property
of linearity is immediately clear. Continuity means that the function-
als T are bounded, i.e. for all g € ¢ there is a finite real number ¢ such



that |7(g)| < c||gl|l. Such functionals can be assigned a norm by taking
IT| =sup {IT(®)| | g€, lgll <1}

for all g € # whose norm is equal to or less than 1. By analogy to the
case discussed above one is led to try the functionals Ty := (f, e) with
f € # whose action on an arbitrary element g € # produces the com-
plex number Tr(g) = (f, g). Obviously, these functionals are linear. By
the inequality (3.15) and for all g one has

T @ =1L < IfI llgl -

Thus, continuity is guaranteed. It is not difficult to show that the norm
of Ty equals the norm of f,

|7 = s

In order to see this consider the action of 7y onto the vector f/|| f]|
which is normalized to 1:

Tf< f) L h=1f1 <swp {77 gl < 1)

[FIVARTI]
=7/ <isi

Hence, as ||T¢|| is both less than or equal to and greater than or equal
to || f1l, it is equal to || f]l.
Matters are clarified by the following theorem by Riesz and Fréchet:

Theorem 3.2 (Riesz and Fréchet)

For every functional T € J#*, acting on the elements of the Hilbert
space J¢, there is one and only one element f € # such that
T=Tr=(f o)and [T =]fIl

(For a proof of this theorem see, e. g. [Blanchard and Briining (2003)].)
The theorem establishes that the dual of a Hilbert space is isomor-
phic to it. Indeed, the mapping

i H— H: fr—T; with Tr(g)=(f, ¢

is an isometry, because |[I(f)|l = T¢|l = Il fIl and, hence, is injective.
The Theorem 3.2 shows that it is also surjective.

Notice the close analogy to the example studied above: In the ex-
ample it is the metric g which maps the isomorphic vector spaces T, M
and 7,» M onto one another. Here, the isomorphism between # and #*
is effected by the mapping I, that is to say, again by means of the scalar
product. There is a difference, however: Because of the property

Ny fr+upafo) = pi TCA) +u3I(f),

the mapping I” is an anti-isomorphim. The isomorphism #* ~ J pro-
vides the justification, a posteriori, of Dirac’s bracket notation which
was introduced heuristically in Sect.3.1.1. To every ket |a) = [ @),
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element of the Hilbert space #, the mapping I" associates the func-
tional T, = (Y @] = («|. The action of T, on a state |B) is Ty (|B8)) =
(x| B), and is given by the scalar product.

3.3 Linear Operators on Hilbert Spaces

A linear operator @ maps the Hilbert space #, or parts thereof, onto
itself, this mapping being C-linear. The action of @ on two vectors
J1, f2 € # being defined, we have

O(u1 fi+wu22) =mO0(1)+u20(f2), wi €C (linearity).

The definition of an operator must contain, on the one hand, a rule
which says how it acts on a given f, and, on the other hand, a do-
main D of elements in F on which it acts. This domain is a subset
of #, i.e. a subset {f, € #} which is such that every linear combina-
tion Y ¢ fi of its elements belongs to it. Therefore, when talking about
a linear operator what is really meant is the pair (@, D) consisting of
the operator and its domain of definition D,

O: D—H: [feDr—geH.

If the domain of definition of @ is dense in #, i.e. if the closure
of D equals FH, D = H, the operator is said to be densely defined. The
set of all nonvanishing elements f of # which are images of elements
g € D, is called the range of the operator. The set of all g € D which
are mapped to the null element is called the kernel of the operator.

The domain of definition of those operators which are relevant for
physics, is always related to the concrete physical situation and its de-
scription, and we need not go into more academic examples which may
be important for the theory of linear operators on Hilbert spaces. Fur-
thermore, we are usually on the safe side if we assume the operators
appearing in quantum mechanics to be densely defined.

Definition 3.4 Bounded Operator

An operator @ which is defined everywhere on # is said to be
bounded if for all f € # the inequality

1O fIl<cllfll (3.18)

holds where c is a positive constant.

If the operator @ is bounded one defines a norm for it by taking
the supremum of (Og, Og) = ||(9g||2 in the set of all states normal-
ized to 1:

101l := {sup 0gll |g €D with ligll=1} . (3.19)

Operators for which (3.18) does not hold and, hence, which can-
not be ascribed a norm, are said to be unbounded. Quantum mechanics



makes use of both bounded and unbounded operators. For instance,
one shows that the position operator x’ is unbounded on # = L*(R?),
the Hilbert space of square integrable functions over three-dimensional
space.

Important examples are provided by operators which bear the names
of Hilbert and Schmidt. Given a function of two arguments x, y € R3
which is square integrable in both arguments, [ d3x i Py K(x,y) < oo.
Then, if g(x) is square integrable, then also

) = f &x K(y. )g(x)

is a square integrable function. The mapping from g to f, written as
f =Kg, is an integral operator and is called a Hilbert-Schmidt operator.

3.3.1 Self-Adjoint Operators

To operators of quantum mechanics one associates adjoints. For in-
stance, the creation operator a' in the theory of the quantum oscillator
is the adjoint of the annihilation operator a. Whenever an operator de-
scribes an observable the adjoint and the original must have the same
domain of definition and, hence, are identical. For example, the number
operator N = ata of the oscillator is an observable and is equal to its
adjoint. Matters are made more precise by the following definitions and
comments.

Definition 3.5 Adjoint Operator

Given an operator (@, D) whose domain of definition is dense in #.
Consider the scalar products (f, Og) with g € D. The set of all f,
for which there is an element f” € #¢ such that (f, Og) = (f’, g), for
all g € O, defines the domain DT of the adjoint operator OF. Let
Ot f = f'. Scalar products then follow the rule

(f,0g) =(Of,9)=(g,0"f)*. (3.20)

1. In the mathematical literature the adjoint operator is marked by an
asterisk, i.e. O, while complex conjugate numbers are marked by
an “over-bar”, i.e. A. I use consistently the standard notation of
the physical literature where adjoint operators, as well as hermitean
conjugate matrices, are written with the “dagger” symbol t, while
complex conjugate numbers are written A*. It seems reasonable to
adhere to this tradition because the “over-bar” will be needed in
relativistic quantum field theory of spin-1/2 particles where it has
a different meaning.

3.3 Linear Operators on Hilbert Spaces
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2. It is important that O be dense in #. The adjoint operator is
uniquely defined and different from zero only if this condition is
fulfilled.

3. If the operator @ has an inverse operator @~! and if the domains
D(O) and D(O~ 1) both are dense in H then one has

©H =@ H,

as expected intuitively.

4. Let ¢; € L>(R%) be square integrable wave functions which are
defined on all of # = L*R?), and let © =pu-V where p =
(i1, n2, n3) is a triple of complex numbers. The definition (3.20)

(@m> Opn) = (O g, g1)

and a partial integration in each of the three variables x' shows that
the adjoint is @7 = —p*- V. In particular, if the coefficients ux are
pure imaginary the adjoint operator and the original are identical.

Definition 3.6 Self-Adjoint Operator

An operator which coincides with his adjoint, Ot =0, is called self-
adjoint. In this case one has D =D and Of= (9Tf for all f e D.
In particular, for all f and g in the domain of definition & one has

(8. 0/)=(0g, f)=(f09". (3.21)
All expectation values (f, O f) are real.

These definitions become particularly transparent if a given opera-
tor O admits an “A-representation”, i.e. if it is represented by a matrix
O ={Oj} (usually infinite dimensional). Its adjoint is obtained by re-
flection on the main diagonal and by complex conjugation, viz.

o' =", (Ohu=0;.

A self-adjoint operator is represented by a hermitean matrix, of=0.
Its entries in the diagonal are real, the entries outside the main diagonal
are pairwise complex conjugates, i.e. O}; = Ojy.

Example 3.9

The self-adjoint operators £, £, and ¢3 describe the cartesian com-
ponents of orbital angular momentum. In the basis of the states
|[€m) = Yy, they are given by the matrices:

1

Yo 61 Yom) = §3wx/ﬁ(£+ D) —mm’ {8 m—1 + 8’ mt1}
i

Yoy, €2 Yem) = 535%\/ A1) —mm' {8 m—1 =S/ mt1}

Yem €3 Yem) =mSp eS8y -



Exchanging the quantum numbers £'m’ <> {m exchanges the two terms
in the curly brackets of £1 and ¢,. The former matrix is real and, hence,
symmetric, the latter is pure imaginary. With this change of sign its ad-
joint is seen to be equal to the original matrix. The matrix describing ¢3
is diagonal and real. (Note that these formulae are taken from Sect. 1.9.1
and, specifically, from (1.122).)

Example 3.10

The three Pauli matrices

01 0 —i 1 0
= 5 = 5 p—l ) 3.22
7! <10) 72 (i0> 73 (0—1> 622

provide examples of operators acting on elements of a Hilbert (sub-)
space with dimension 2. They are used in the description of the rota-
tion group in quantum mechanics and, in particular, of particles with
spin 1/2. All three matrices (3.22) are hermitean, cr;r = 0;. Their eigen-
values are 1 and —1. The corresponding eigenfunctions are easily
determined. Choose the eigenvectors (1,0)7 and (0, 1)7 of o3 as the
basis, so that an arbitrary, normalized element of F# reads

a(é>+ﬂ<?> with |2 +|8]2=1.

The states with « =+ and |o| = 1/4/2 are eigenstates of o1 and be-
long to the eigenvalues 1 and —1, respectively. Likewise, the states
with o = i are the analogous eigenstates of o,.

As was shown in Sect. 1.8 the operators which describe observables
belong to the class of self-adjoint operators. The following statements
apply to them:

Theorem 3.3 Eigenvalues and Eigenvectors of Observables

1. The eigenvalues of a self-adjoint operator are real.
2. Two eigenvectors which belong to different eigenvalues A # Ao
are orthogonal.

1. Let Of =X f, where f is different from the null element. As the
squared norm (f, f) is different from zero the relations (3.21) allow to
conclude

L_LON _©F) _ (LN,
. ) f, ) . ) '
2. Let O f1 = A1 f1 and O f = Ay f>. Then the chain of equations
M(f2, f1) = (2,0 f1) = (O f2, f1) =22(f2, f1)

holds true. If A; # Ay, the scalar product of f; and f> must vanish,

(f2, f1)=0.

3.3 Linear Operators on Hilbert Spaces
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The case where there is more than one eigenvector with a given
eigenvalue is dealt with in the following definition.

Definition 3.7 Eigenspace

The eigenvectors of a self-adjoint operator @ which belong to the
same eigenvalue A, are elements of a subspace #, of J, called
eigenspace for the eigenvalue A. The dimension of this subspace is
equal to the degree of degeneracy of the eigenvalue A.

We remind the reader of two examples that were studied in Chap. 1:

1. The spectrum of the operator £2 is £(£+ 1) where £ runs through
the naturals and zero, {¢} = (0, 1,2,...). Every fixed value £ has
(2¢+ 1)-fold degeneracy. The subspace #, is spanned by the spher-
ical harmonics Yy, with the given ¢ and with m in the set —¢, —¢ +
1,...,+¢L.

Except for the ground state, the eigenvalues of the energy of the
spherical oscillator are degenerate. The subspace with fixed en-
ergy (1.148) is spanned by the eigenfunctions for all triples of
eigenvalues (n, £, m) which give this energy, i.e. for which 2n + ¢
has a fixed value and m has one of the values —¢, —€+1, ..., +¢.

N

3.3.2 Projection Operators

Operators which project onto subspaces # of the kind considered
above, belong to a particularly important class of self-adjoint opera-
tors. As we shall see soon their physical interpretation is in terms of
“Yes—No” experiments, and they are essential in the general definition
of quantum states. Their importance for mathematics lies in the fact that
they allow for a rigorous description of the spectra of physically relevant
operators, even when these operators are not bounded.

For simplicity, we begin with the example of a Hilbert space spanned
by the eigenfunctions of an observable whose spectrum is purely dis-
crete. The notation is chosen such as to remind us of the examples of
the previous section, and with the aim of illustrating the new concepts
and definitions.

Definition 3.8 Projection Operator

If #, C # is a subspace of Hilbert space of dimension K and if {¢x},
k=1,2,...,K is an orthonormal system spanning #¢;, the projec-
tion of an arbitrary vector f € #€ into the subspace #, is defined by

K
Pif:=) olon f). (3.23)

k=1



The relation to observables of importance for physics should be ob-
vious: The real number A may be viewed as the degenerate eigenvalue
of an observable @ whose degree of degeneracy is K. For example, the
operator Py describes the projection onto the subspace #; of fixed ¢,
spanned by the eigenfunctions ¢ = Yy, of €3 with m =—¢, ..., +¢.
Note, however, that nothing prevents us from choosing other eigenfunc-
tions such as, for instance,

{¥n} = {eigenfunctions of €2, ¢ fixed, and of £, =0, cos a0 sin al,

the definition (3.23) being independent of the specific choice of the
basis. Indeed and more generally, with ¢ = >, ¥ (¥, k) one finds

Pif =" VW 00 @ Y)W, £) =Y Y (Yrm, f) -

m,m’ k m

Both sets of eigenfunctions are orthonormal and both span the same
space Jf)..
Using Dirac’s notation, the definition (3.23) takes the form

K K
Po=Y"lor) {orl =Y 1¥) (Yl
k=1 k=1

which shows again that P, does not depend on the basis one has chosen.

Projection operators are self-adjoint. The square of a projection
operator equals the operator. One says that projection operators are
idempotent,

Pl=pP  (a), Pl="p, (b)‘. (3.24)

These assertions are easily proven: (a): With two arbitrary vectors f
and g, and by definition (3.23) one calculates

(Prg, /)= (01 8 (or, )= (& o)k, f) = (g Ppf).
k k

(b): As the base functions ¢ are orthonormal, applying the projection
operator twice gives

Pu(Pof) = ou(pe. o) [) =Y owdii(gr, f)=Pof .

k' k k' k

The second equation (3.24) tells us that P, has the only eigenvalues 0
and 1. Its physical interpretation is this: If one asks whether a state
f € # has components with eigenvalue A of the observable (this is the
question whether there is a finite probability to find the eigenvalue A in
a measurement) the answer is “Yes” if the eigenvalue is 1, and “No” if
the eigenvalue is O.

3.3 Linear Operators on Hilbert Spaces
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Matters become particularly simple in the case of finite dimensional
Hilbert spaces. Let us return to the Example 3.10 of Sect.3.3.1. As one
easily convinces oneself, the operators

1 1
P+=§<11+03>=((1) 8) L P=S(-oy = (8 ?)

are projection operators. They fulfill P2 = P,, P2 = P_, and project
onto mutually orthogonal subspaces, i.e. PLP_ =0= P_Py, and
Py + P_ = 1. These operators project onto the two eigenvectors, re-
spectively, of the hermitean operator o3.

3.3.3 Spectral Theory of Observables

A theorem of central importance in the theory of linear operators on
Hilbert space says that every self-adjoint operator can be represented
by means of its eigenvalues and of the projection operators which
project onto the corresponding subspaces. This representation is called
the spectral representation. It is uniquely defined and allows for a uni-
fied description of bounded and unbounded operators, of operators with
purely discrete spectra, with mixed spectra, and with purely continuous
spectra alike. As a detailed discussion of the theorems relevant for this
topic would go beyond the scope of this chapter, we restrict the discus-
sion to qualitative arguments and a few instructive examples.

The following example shows what the main questions are. Let A
be an operator with purely discrete spectrum {A;}. Every eigenvalue X;
defines a subspace #; of # whose dimension equals the degree of de-
generacy of the eigenvalue one considers. Denoting the eigenfunctions
which belong to a given A; by ¢; x, k=1, ..., K;, the projection oper-
ator to J¢; is given by

K; K
Pi=>"girlpix o) =D li.k) (i kl,
k=1 k=1

(the second form using the bracket notation). The subspaces #; are
pairwise orthogonal. Hence, the sum of two projection operators P; + P;
with i # j is again a projection operator (reader please verify!). As the
eigenfunctions of A are complete, the sum of all subspaces equals the
identity on #,

(0,0]
E:H:J.
i=1

Thus, one has found a sort of partition of unity in #.
For a given state f € J one has

f=Y_Pf. Af=Y AmPf.
i=1

i=1



This implies, in particular, that the expectation value of the operator A
in the state f can be expressed in terms of the spectrum of eigenvalues
of A and of the corresponding projection operators

3.3 Linear Operators on Hilbert Spaces

(A) = (LAN =Y Ml P =Y Ml PP =Y MlPifI*.

In particular, calculating the expectation value of the unity in the state f
one has

LAH=1=1F17=) (L PH=)_IPfI*.

This formula is easy to interpret if one recalls its analogue in a finite
dimensional vector space: The square of the length of a vector equals
the sum of the squares of its orthogonal components.

The eigenvalues of operators A whose spectrum is pure discrete, can
be ordered, A1 <Az <.... In all cases of relevance for physics this
spectrum is bounded from below, i.e. there is a smallest, finite eigen-
value. All Hamiltonians that we studied in Chap. 1 have this property.
This leads one to define a spectral family of projection operators by
also ordering the corresponding projection operators P;,, and by taking
the sum of all projectors for which the corresponding eigenvalue A; is
smaller than or equal to a given real number,

E(p) = Z P, with peR]| (3.25)
i,(Ai<p)

As the P; project onto mutually orthogonal subspaces, the opera-
tor E(n) is again a projection operator. Its expectation value in
a state f €

(LEWS)= > (P

i, (Ai=p)

is a real, monotonous, non decreasing function of the real variable . In
our example it is a step function because every time p passes an eigen-
value A; it increases by a finite amount (unless, by coincidence f has
no component in #;).

There is a natural ordering relation for projection operators

Pj>Pi, if J{jDJ{i.

It states that P; is “bigger” than P; if the subspace #¢; onto which P;
projects, is contained in #; as a genuine subspace. Indeed, for all
fedH onehas (f, Pjf)>(f, Pif). The family defined in (3.25) for the
observable A has this property: E(u’) > E(u) holds whenever u' > .
Furthermore, one has always lim,—.o E(n+¢) = E(u), or, expressed
in words, in approaching the real number n from above, E(u+¢)
goes over into the projection operator E(u). For @ = —oo one has
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E(—00) =0 because at this point the spectrum has not yet begun. On
the other hand, at u = 400 the full spectrum is exhausted and, there-
fore, E(+o00) = 1.

Though we still work here in the framework of the simple example
of an observable with discrete spectrum, it is plausible that these con-
cepts can be applied to more general cases of observables with mixed
or continuous spectra. Indeed, the properties introduced above are part
of the definition of a general spectral family:

Definition 3.9 Spectral Family

A spectral family is a set of projection operators E(u) which depend
on a real variable ;v and have the properties

E(u)> E(u) for u'>p
lim E(u+e)=E@), E(-00)=0, E(+oo)=1.

The benefit of this concept for quantum theory is twofold: On the
one hand, it allows to define the spectrum of eigenvalues of an observ-
able in a way which is applicable equally well to the discrete case, to
the mixed case, and to the continuous case. This definition is:

Definition 3.10 Spectrum of Eigenvalues

The spectrum of eigenvalues is the set of all values for which the
spectral family is not constant.

Indeed, discrete eigenvalues are the points on the real axis where
the spectral family is discontinuous. A — possibly piecewise — continu-
ous spectrum occurs where E(u) is a continuous function which is not
constant and does not decrease.

On the other hand, Definition 3.9 allows to write integrals over the
spectra of observables such that the three categories need no longer be
distinguished. The expectation value (f, E(n)f) of E(u) in the state
f € # is a function which is bounded but not necessarily continuous.
As p increases, this function is either piecewise constant (this hap-
pens for u between two successive discrete eigenvalues), or increases
monotonously (in the continuum). As it is confined to the interval be-
tween 0 and 1, it is bounded and, therefore, has the properties which are
needed in defining Stieltjes integrals such as, e. g.,

+o00

/d@EWﬁﬁwﬂH=L
o

/MﬁﬂMﬁuz@AﬁEMH.

—00



I do not define this integral in any detail. Rather, I give two examples
which are directly related to the physical context and which illustrate
the calculus involving Stieltjes integrals.

1. Suppose the real function g(x) (which is meant to be the ana-
logue of (f, E(t)f)) is piecewise constant on the interval [a, b] of
the real axis. Suppose further that it is discontinuous in the points
co=a,cy,...,cp=>b as sketched in Fig.3.3, and that its value in
the interval (cg—1, cx) is g(x) = gk. Define the differences §g = g1 —
gla), 51=g—¢g1,...,8, =g(b)— gp. Finally, let f(x) be a func-
tion which is continuous in the interval [a, b]. The Stieltjes integral
receives contributions only at the points where g(x) is discontinuous.
In our example it is given by

b

p
[ asso =3 s
i=0

a

2. Let f(x) and g(x) be continuous functions in [a, b], with g(x) also
differentiable. In principle the definition of the Stieltjes integral re-
quires a series of refinements of the partition of [a, b], and a proof
of the convergence of the result. In the first example a further refine-
ment of the interval’s partition would not be meaningful because it
is defined by the discontinuities of g(x), so that the result would not
change. However, if g(x) is continuous the partition can be refined
indefinitely. Then, by the mean-value theorem applied to the differ-
ences of the values of g, g(xr11) — g(xx) = &' (&x) (k1 — xx), with &
an intermediate value between x; and x4, one arrives at the usual
Riemann integral,

b b
/ dg(x) f(x) = / g'(x)dx f(x).
a a
9() —9(b)
gp—1 g—p
o4 X
Cp=4a 61 éz és ¢4 65 Cp_2 Cp_1 b= Cp

3.3 Linear Operators on Hilbert Spaces

Fig.3.3. A non-decreasing, piecewise
constant function g(x) in the interval
[a, b], (arbitrary example) whose Stielt-
jes integral is taken
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The results obtained above in terms of expectation values and
of integrals over expectation values, can be written symbolically
fj;o dE(n) f = f and _+oo wdE(w) f = Af or, even more abstractly,

o0

in the form of equations for operators,
+0o0 “+00
1= / dE(n), A= / wdE(w) . (3.26)
—00 —00

This abstract formulation receives deeper significance in the light of an
important theorem in the theory of linear operators on Hilbert space:

Theorem 3.4 Spectral Theorem

Every self-adjoint operator (A, &) with O C F# admits a uniquely
defined spectral family (Definition 3.9), with

+o00

D=1lrexn fu2d<f,E<u)f><oo ,

its action on vectors in the domain of definition being

+00
Af=/,u,dE(,u,)f with feD.

Conversely, any operator which is defined by the integral over a spec-
tral family is self-adjoint.

3.3.4 Unitary Operators

A bounded linear operator A : #) — #® which maps a given Hilbert
space HV to itself or to another Hilbert space #® and which con-
serves the norm,

IAFN o0 = 1Nl ooy forall  feH#D,

is called an isometry.

As one realizes easily, ATA is the identity 141 on the initial
space HD, while AAT is a projection operator on #®: It projects
onto the range of A. If the range of A coincides with the entire image
space #@ one calls the operator a unitary operator. As unitary opera-
tors are of great importance in quantum theory they are given a symbol
of their own, U. They are defined as follows:

Definition 3.11 Unitary Operator

A linear and bounded operator U : # — #® which is isometric
and surjective, i.e. which conserves the norm and whose range is the
whole of #?, is called unitary.



Unitary operators have a number of properties that we summarize as
follows:

1. For any unitary operator U there is an inverse U~ and an adjoint
operator UT, both of which are unitary and which fulfill U~! = UT,
i.e. the adjoint is the inverse of U.

2. The products of U and its adjoint are the identities on the original
space and on the target space, respectively,

UlU =140, UUT =l .

3. U : HP - #D and V: HD — #P are unitary, their product
UV): HD — #3 is unitary and one has

o)t =viut.

4. If the target space can be identified with the original space — this,
in fact, is the rule in quantum mechanics — and if ¢, is a countably
infinite basis of ¢, then every unitary operator U has a matrix repre-
sentation Uy, = (¢n, Upy,). These matrices are unitary in the sense
known from linear algebra, i.e.

vUt=utu=1 or Y U Uin=6m.
i

For the sake of illustration let us consider these properties in the
case where the two spaces in the Definition 3.11 can be identified. With
this definition and for any pair of elements f, g € # the scalar prod-
uct (f, g) as well as the norms || f|| and || f — g|| are invariant under the
mapping U,

UrUg) =, WUAI=I1I, U= =1 =l -

As the scalar product, by definition, is nondegenerate, this means that
different originals f # g have different images ' = Uf # g’ = Ug. The
mapping U is surjective. Therefore, it has an inverse U~! and one con-
cludes

Uf,9)=UfUU'g=(f,U g forall f geit.

This shows, indeed, that U~ = UT. One also sees that U Hf = U, and,
hence, that U is linear. Furthermore, the norm of a unitary operator
exists and has the value ||U] =1, cf. (3.19). Finally, one has

(f, UV)g) = (f, U(Vg) = (UTf, Vg) = (VI(UT£), 9)
=((UW)'f g,

which proves the property 3.

In a sense unitary operators are generalized rotations. Rotations in
the customary physical space are intimately interwoven with a group
of unitary transformations in Hilbert space. This will be clarified when
studying the rotation group in Chap. 4. Note that we came across a first

3.3 Linear Operators on Hilbert Spaces
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example in Sect.3.2.1: Rotations R3(c«) about the 3-axis in R3 in-
duce unitary transformations U(w) which belong to a one-parameter
group. Indeed, we have U(ae =0) =1, U(xz)U(t1) = U(a1 +02) and
U~ Y(«) = U(—a) = Ut (). With due mathematical scrutiny one shows
that for any such unitary operator which can be deformed continuously
into the identity 1 there is a traceless, self-adjoint operator J such
that U can be written as the exponential series

U(e) = exp(—iaJ) with JT=J, wJ=0.

In analogy to the rotations in R3 the hermitean operator J is called gen-
erator of infinitesimal unitary transformations.

The Pauli matrices (3.22) are distinguished by the fact that they are both
hermitean and unitary. Their trace is zero. Exponential series in (icoy)
are also unitary matrices. Examples are

. i

e‘¢"3:]lcos¢+ia3sin¢:(eo 9i¢>,
e

cosf sin9)

%2 — T cos@ +ioy sinf = )
—sinf cosf

Note that we have used the fact that all even powers of oy are equal to
the unit matrix, (ox)?* = 1, while for all odd powers (o) = oy

3.3.5 Time Evolution of Quantum Systems

A first important example of a unitary operator follows directly from
the time dependent Schrodinger equation (1.59). Assume, for simplicity,
that the Hamiltonian in

iy (1, x) = HY (1, x)
is independent of time. Construct from it the operator
U, 1) := exp (—%H(z - zo)) . (3.27)

This is a unitary operator which describes the time evolution of a quan-
tum state by a unitary mapping of the initial configuration (¢y, x) to
the field distribution (¢, x) at a time earlier or later than g,

Yt x) =U(t, 10)¥ (10, x) . (3.28)
The operator (3.27) itself obeys the Schrodinger equation,

o . d
AU (t, t9) = 1715 U(t, ty) = HU(t, 1) , (3.29)



with initial condition U(ty, t9) = 1. For an infinitesimal time difference
we have

v~y + L) -0 = (1= HO 1)) wito. )
' ’ dr h T

fo

If the time difference (¢ —t#g) is finite the evolution may be thought of as
very many successive infinitesimal steps, making use of Gauss’ formula
for the exponential function, viz.

im (1-ip =) — o (—iH(z—r))
n— 00 h n = exp h 0 ’

1. The restriction to time independent Hamiltonians is not really es-
sential. When the Hamiltonian H depends on time the Schrodinger
equation ihU = HU applies as before, and the evolution is still
described by (3.28). However, the evolution operator no longer is

a simple exponential series. It satisfies the integral equation
t

Ut 1) = 11—% / A HOUW  10).  with Ultg.10) =1,
i (3.30)

which is equivalent to (3.29) and which may be solved by an itera-
tive procedure.

2. It is well-known from mechanics that the Hamiltonian function can
be interpreted as the generator for infinitesimal canonical transfor-
mations which “boosts” the system along its physical orbit. The
construction (3.27) and the formula (3.28) show that the Hamiltonian
operator of quantum mechanics has a similar interpretation: It boosts
the wave function locally.

3.4 Quantum States

Having prepared the ground by assembling the necessary mathemati-
cal tools we can now tackle some questions of central importance for
physics: the preparation and detection of quantum states in experiment.
We have learnt that states of quantum mechanical systems bear wave
properties and, hence, that they can exhibit interference phenomena.
Let us first recall what we know about wave phenomena in classical
physics. In describing classical waves one distinguishes coherent and
incoherent situations. Electromagnetic radiation, i.e. visible light, laser
beams, radio waves or the like, is realized in rather different forms. For
instance, light may be fully polarized, or partially polarized, or not po-
larized at all, depending on how it was prepared. There is polarization if

3.4 Quantum States
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the wave contains only one polarization component, or if there are fixed
phase relations between different components. In turn, if there is no po-
larization, this means that the components are incoherent, i.e. have no
phase correlation at all.

3.4.1 Preparation of States

Quantum mechanics has many similarities to classical wave theory.
There are states which are capable of interference without restriction,
and, hence, which exhibit the constructive and destructive interference
phenomena which are typical for quantum theory. Every state of this
kind spans a one-dimensional subspace of Hilbert space. A state of this
kind is fixed up to a constant phase and is described by the equivalence
class of wave functions

{ei"l/f} , oeR

which form a unit ray. This phase degree of freedom is taken care
of automatically if one uses the projector onto the corresponding one-
dimensional subspace,

Py =y, o) =y) (Y] .

The expectation value of an observable @ in a fully interfering state is
calculated as described in Chap.1. Assume @ to be bounded and as-
sume ¢, to be an orthonormal base system that spans #. Then

W, Oy) = (w, O onlgn, w) = (@, VW, Ogy)

n=1 n=1

=Y (@n. PyOp,) =tr(Py0). (3.31)
n=1

The sum over n converges absolutely for bounded operators (. In the
case of unbounded operators one recurs to the spectral family (3.25) of
the operator O, see also (3.26), and defines the Stieltjes Integral

tr(PyO) = / d tr(Py E(1)) . (3.32)

Now, let A be another observable which describes a simple, idealized
“source” and let « be one of its eigenvalues. The state Y is created
through a measurement of A by fixing the eigenvalue «. As before,
Sect.3.3.2, the projection operator to the subspace with fixed eigen-
value o of A is denoted by P,. Then the following alternatives must
be considered:



1. The eigenvalue « is not degenerate. In this case Py = Py, the state
is equal to the eigenstate ¢, of A, modulo constant phases, which
belongs to «.

2. The eigenvalue « is degenerate, its degree of degeneracy is K. The
corresponding subspace #, has dimension K, it is spanned by the
eigenfunctions{gy;, i =1, ..., Ky} (or any other unitarily equivalent
base system). The state v, or, for that matter, Py is prepared by
a measurement of A and by sorting out the eigenvalue «. But how
is it to be described?

One might be tempted to try the ansatz
KD(
Py=P, with x=¢, or x= Zf/’aici,
i=1
where ¢; are complex numbers fulfilling the normalization condition
> lci|> = 1. Yet, as one verifies immediately, this approach cannot
be correct: The state described by P, contains components with well-
defined phase relations and, hence, is apt to interferences without
restriction. Apparently it contains more information than what was pre-
pared by the measurement.

An example may be helpful in illustrating this point. Suppose that
we had developed an apparatus which allows to measure the eigenvalue
£(£+1) of the squared orbital angular momentum and that we had ap-
plied a filter which is transparent only for the eigenvalue ¢ = 1. Thus,
this source prepares a state which is known to lie in the subspace #y—1
but about which nothing else is known. Every coherent superposition
of the base states Y1y, x =Y Yim¢m, would contain information about
the spatial orientation of angular momentum. For example, a state x
with ¢y = 1/«/5, co=0,and c_| = —1/«/5 would also be eigenstate
of £1 with eigenvalue p = 0, (Cf. the Example 1.10 in Sect. 1.9.1), even
though we did not impose this additional information. Similarly, a state

1
2 2 2
X=7s > Yimem.  N=leoal?+lcol* +leql?,
N m:—1,0,+1
where we choose |c_i| =|co| = |c41], would contain the following
phase-dependent information about the expectation values of the com-
ponents £1, £>, and €3

1
(€3) 4 = N('C+"2"C—"2) =0,

V2
(€172) x = WRC/Im(Cilco—i—céc,l) :

This contradicts our intuition. If we set out to prepare a state which
carries the quantum number ¢ =1 but for which all directions are
equivalent, then the expectation values of all three components must be
equal and, in fact, equal to zero!>

3.4 Quantum States

3 The formulae of this example are
written in such a way that one can
easily specialize to the eigenfunctions
of ¢ or ¢», and check that they yield
the correct eigenvalues.
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This example suggests the solution of our problem: If, indeed, no
more than the information “«” is available about the prepared state, it
must be described by an incoherent statistical mixture of components,
in much the same way as in classical, unquantized physics. This means,
that to every substate ¢,; we must associate a real, positive-semidefinite

weight w; such that
O<w; <1, Zw,-:l. (3.33)

The real number w; is the probability that a given particle is found in
the state ¢q;, or, more precisely, in the unit ray P,; = |¢ui){@qil- These
classical probabilities do not interfere. The expectation value of an ob-
servable @ in a state described in this fashion, is given by

Ky
(O)y =D wipai> Opai) - (3.34)
i=1
The actual values of the weights w; depends on the history of the quan-
tum state that was sent through the filter “A” — an important aspect that
will be taken up further below.

Let us return once more to the example studied above in which
the filter generated the value ¢ = 1. If there are reasons to assume that
in the so-prepared state all directions are equivalent then the weight
factors w41, wp, and w_; must be equal for all three substates and,
by the normalization (3.33), must have the value 1/3. The expecta-
tion value (3.34) then is (Q)y =) _,,(Yim, OY1,,)/3. Indeed, with this
choice the expectation values of all components £; are equal to zero

(1) y = (€2) y = (€3) y =0.

In the case of £; and ¢, this follows from the formulae Sect.1.9.1, in
the case ¢3 the contributions of m = 41 and of m = —1 cancel.

We summarize once more the previous, still preliminary results.
A quantum state is sent through the “A”-filter which identifies the
eigenvalue o of A and which is transparent only for components which
have this property. We define the operator

W::Zw,-Pa,- with 0<w; <1, Zw,-:l. (3.35)
[ i

1

The weight w; which is real and positive-semidefinite, represents
a classical probability (not dependent on any interferences) to find the
substate with quantum numbers (¢, i) in a subsequent measurement. Its
value depends on the nature of the state before the preparing measure-
ment «. The operator W is called statistical operator. It provides the
most general description of a quantum state. In case only one single
weight is different from zero and, by the normalization (3.35), is equal



to 1, say wg = 1, w; =0 for all i # k, the state is fully susceptible to in-
terference. For that reason, it is called a pure state. Examples for pure
states are provided by the wave functions derived in Chap. 1 which were
normalizable solutions of the Schrodinger equation. In turn, if at least
two weights, say wi and wj, are different from zero then the state can
exhibit interferences only within the components («, k) and («, j), re-
spectively, but not between these two. A state of this kind is called
mixed state, or mixed ensemble. In either case the expectation value of
an observable (O, in the state described by the statistical operator W, is
given by the trace of the product of @ and W,

(9) =t (OW), () =tr(W)=trW=1.

The second formula expresses the normalization of the state.

3.4.2 Statistical Operator and Density Matrix

The concept of state elaborated by the arguments and the examples of
the previous section is made more precise by the following postulate:

Postulate 3.1 Description of Quantum States

A quantum state is described by a statistical operator W. This op-
erator is a convex linear combination of projection operators with
real, nonnegative coefficients. It is self-adjoint and is normalized to 1,
i.e. fulfills the condition tr W = 1. The outcome of measurements of
physical observables @ are described by the expectation value

(0) =tr(W0O). (3.36)

The trace of its square W? contains the information whether the
state is a pure state or a mixed ensemble. If tr W> =tr W =1 the
state is a pure state; if tr W? < tr W and, hence, tr W2 < 1 the state
is a mixed state.

1. Recall that the trace of an operator is calculated as exemplified
by (3.31), (3.32), and (3.34).
2. The convex sum of N objects (9; is defined by

N N
Zwi(%, with Zwi=l.
i=1 i=1

It is a weighted sum with positive-semidefinite factors 0 < w; < 1.

It would be worth a more precise mathematical analysis how to
calculate such traces, if they exist, and to justify that if tr W? <1
there is no pure state. Both questions will become intuitively clear

3.4 Quantum States
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when we study a matrix representation of W, instead of the opera-
tor itself. Let B be a self-adjoint operator which is defined on the
given Hilbert space and whose spectrum is fully discrete. Its eigenfunc-
tions V¥, provide a basis of #, which means that we can go over to
the “B”-representation of the statistical operator W, in the spirit of rep-
resentation theory (Sect.3.1),

Omn = (mea an) . (3.37)

The matrix g obtained in this way is called density matrix. Its properties
are summarized in the following definition.

Definition 3.12 Density matrix

The density matrix is a matrix representation of the statistical opera-
tor in an arbitrary basis of Hilbert space. Its properties are:

1. It is hermitean QT = o, its eigencalues are real, positive-semidefinite
numbers between 0 and 1, 0 <w; <1, i.e. @ is a positive matrix.
2. It obeys the invariant inequality

O<tro’<trog=1. (3.38)

3. It serves to characterize the quantum state by the following crite-
ria:

1. If tro®> =tro =1 the state is a pure state,
2. if trg®> <tro =1 the state is a mixed state.

4. Expectation values of an observable ©, in the B-representation,
are given by the trace of the product of ¢ and the matrix repre-
sentation @, of the observable,

(0) =tr(@0) =) Omnum - (3.39)

m,n

Let us return to the preparing measurement via the eigenvalue o of A
and let us expand the states ¢; in terms of the eigenstates of B,

Pai = Z Kﬁmc,(ffi)
m

where cﬁ,?i) = (Y, @qi)- We then find
Qnn =) Wi (Y, Poithn) = D i (Y, Gei) (Pai ¥n)
i i

l
=y oo
i
Taking the trace gives

tro= Zwi Z ‘C,(q(:i)
i m

2o w=1,
i



while the trace of the square gives

tr Q2 = Z w; Wk Z c,gf”)cflm) *cfl“k)c,(;fk) *
ik mn

2
=Y wingSaiar =y wi <> wi=1.
i,k i i

If the basis v, is chosen to coincide with that of the eigenfunctions ¢g;
of the “filter” A, then g, though an infinite dimensional matrix, has
nonvanishing entries only in the subspace #® which pertains to the
eigenvalue «. In this subspace it is diagonal and has the explicit form
o = diag (wl, wy, ..., wKa).

In the two-dimensional Hilbert space spanned by the eigenvectors of o3,
(3.22), define

w4 0 1
= :—]l P P
e <O w_> 2( +Po3)

with wy +w_ =1 and P := w4 —w_ so that the number P lies be-
tween —1 and 1. The trace of o equals 1 while the trace of @ equals
(1+ P?%)/2. Indeed,

21 /1 2
e" =3 (2(1+P )]1+PO‘3) ,
whose trace receives a factor 2 from the unit matrix, while tro3 = 0. If
P = +£1 the density matrix describes pure states, if |P| < 1 it describes
mixed ensembles. In particular, if P =0 the weights of the two base
states are equal.

Consider now the observable @ :=03/2 (in Chap.4 we will learn
that it represents the 3-component of spin of a spin-1/2 particle). Its ex-
pectation value in the state defined by g follows from tr(@o3) = wy—w_
= P. The states with (wy =1, w_ =0) and (w4 =0, w_ = 1) are pure
states. The first of these describes particles which are fully polarized
in the positive 3-direction, the second describes particles polarized in
the negative 3-direction. A state for which both weights are different
from zero describes a particle beam with partial polarization. In the
special case w4 = w_ and, hence, P =0, this beam is unpolarized. In
a measurement of the observable (@ the probabilities to find the eigen-
values +1/2 or —1/2 are the same.

At this point it may be useful to return for a while to the dis-
cussion of classical probabilities with positive semi-definite weights in
Sect. 1.2.1, and to note the differences to the quantum case. As we have
learnt how to calculate the expectation values in the components of
a statistical ensemble the questions posed towards the end of Sect. 1.2.2
now are answered.

3.4 Quantum States
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3.4.3 Dependence of a State on Its History

In Sect.3.4.1 we left the question unanswered of how to obtain the
weights w; which determine the incoherent mixture of eigenstates with
quantum numbers « of the “filter” A. The answer to this question which
is worked out in this section, leads to new aspects which may be sur-
prising but are typical for quantum theory.

Of course, before its preparation by means of the observable A, the
system is in a quantum state that may be a pure or a mixed state. In
order to cover the most general case we assign a statistical operator W)
to the inital state (“i” for initial) which satisfies the Postulate 3.1. We
send this state through the filter «, as described in the two preceding
sections, i. e. by shielding all eigenvalues different from «, and construct
the statistical operator W) (“ £ for final) which describes the prepared
state. Let

Kq
P, = Z P,
i=1

be the projection operator to the subspace #, which corresponds to the
possibly degenerate eigenvalue o of A. With these definitions and nota-
tions the relation between the statistical operators before and after the
preparing measurement is given by

W = PWO P/ e (Pa W Py) |. (3.40)

The numerator of this formula contains the projection P, to the sub-
space FH,, to the right and to the left of W The denominator is a real
number which is chosen such that W) is normalized. The following
arguments show that (3.40) does indeed describe the desired prepara-
tion:

1. The product P,W®P, is a self-adjoint operator on J, its trace
is real and positive. Therefore, the operator W) is self-adjoint.
As for all eigenvalues B of A which are different from «, one
has W/ )P,g =0, its action is different from zero only in the sub-
space #,. For states in #,, on the other hand, we have

Ky
Wy = NZ(pak((ﬂak, W%
k=1
where the normalization factor
1 1

o tI'(PaW(i) Py) B Zlfil ((/)aka W(i)(pak)

is real and positive.

2. Let x,, = Zle"l (paiclgm) be an arbitrary element of #,, P,, the cor-
responding projection operator. The probability to find the system in
this state, is given by tr(W® P,,) before, by tr(W(f)PXm) after the
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preparation. Since the preparation fixes only the eigenvalue « but no
further property, these two probabilities must be proportional, with
a constant of proportionality which is independent of the element y,,
that was chosen. In other terms, for all x,,, x, € #, the condition

a(WDP, ) a(WIIP, )
w(WOP,) — a(WP, )
must be fulfilled.

3. The eigenvalues and eigenvectors of W) are obtained by diag-
onalizing the matrix (pur, W ¢, j), and by multiplying the result
by the normalization factor N. For every element x € J, one has
(x, W %) = N(x, WD %) > 0. Thus, the requirement 2 is fulfilled.
This last equation says also that W) is positive, i.e. that its
eigenvalues, the weights wE.f ), are positive semi-definite. Finally, as

tr W) = 1, the sum of the weights is one, Z;;“l wEf) =1.

The formula (3.40) ist best illustrated by some examples. It allows
for various possibilities of preparing quantum states:

1. A state that was pure before the preparation may remain to be a pure
state. This happens, for example if the initial state is an eigenstate
of A, i.e. if W9 = Pg. The filter “a” either confirms this state, or
gives zero,

W = 5w

2. Filtering an initially mixed state may produce a pure state. For in-
stance, the filter could choose from W =" w, P, the specific
state with quantum numbers (k) in F,.

3. Conversely, a pure state can be turned into a mixed ensemble. Qual-

itatively speaking, this will happen if one does measure the filter
observable A, that is to say, if one records the measured eigenvalue
for each individual event, but allows part or all of the spectrum to
go through the filter.
For this purpose consider two observables £ and F which, for
simplicity, are assumed to have discrete spectra, but which do not
commute. The eigenfunctions of E are denoted by ¢, = |u), those
of F by ¥, =la). Let the observable F be the filter, and let this
filter be exposed to the pure state W = Py, eigenstate of E. As
[E, F] # 0, the operators E and F have no common eigenfunctions.
Decomposing the given eigenstate of E in terms of eigenfunctions
of F, one has

Pu=1p) ul =) el lay(d] .

ad

m

The preparation filter F is designed such that it selects a subset A of
eigenvalues of F without actually measuring the eigenvalue for each
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individual event. This means that on the right-hand side of the for-
mula (3.40) we must insert the projection operator Po =), Pa.
One then calculates

PAWD Py
tr(PAW(i)PA)

tl'(PAW(’)PA) Z Z |a) ZC(M)CZ(#)* (alb) (b'|d’ >< ’

acAdeA bt

=5 S bye? eyt (v (3.41)
ZaeA ca "1 plyen

The state prepared in this manner still has fixed phase relations.
Hence, like the initial state, it is a pure state. This is confirmed by
verifying that the trace of W(/)2 is equal to I,

(e}

wWD2=3" (@ w?a)
d=1

:—22) (u)) Z| o

(ZaeA B ) beA vea

In turn, if the preparation is designed such that the eigenvalues of
the filter F are measured, one by one, and all those which do not
fall in the interval A are rejected, then (3.41) must be replaced by

) _ |2
% s n Z Ib) ‘ ‘ (3.42)
a

This is a statistical mixture because ) ,_ |c(“)| < (X uen |c(“) 2)2
and, therefore, the trace tr W/)2 < 1 is smaller than one. By the
measurement of F all phase relations are destroyed, the states b € A
are contained in the final state with the real weights

w) —

wy = —|C(M)|2 be A
((OIV ’
ZaeA |C |

We meet here a characteristic property of quantum mechanics which
seems very peculiar from a classical viewpoint: If in the preparation
process the actual values of the filter observable F are recorded, then
all phase correlations are lost, and the new, final state is a mixed
ensemble. In either case, (3.41) and (3.42), at least some informa-
tion on the state before the preparation is conserved. In the first case,
through the expansion coefficients cé“ ) with b e A, in the second
case through the relative weights wj,. The case where only one single
eigenstate of F goes through, all others being rejected, is an ex-
ception. In this case W) = Py, all information on the state of the
system before the preparation measurement is lost. That nature does
indeed work in this way is confirmed by experiment.



3.4.4 Examples for Preparation of States

Assuming the observables E and F to have discrete spectra is no serious
restriction and we drop this assumption in what follows. We study two
examples in which the initial state is an eigenstate of p, the momentum
operator,

1

_ ip-x/h
= ipx/h

lw) = p)

The “filter”, i.e. the observable serving the purpose of preparation is
taken to be F = £2. These observables do not commute. However, we
know from Sect. 1.9.3 how to relate the eigenfunctions of p with those
of £, cf. (1.136).

Let the filter F be set up such that only one single eigenvalue £(£+ 1) is
accepted but the corresponding m-values are not discriminated. Before
preparation we have

w® — P, =|p) (pl= Z Z dz’m’d*//m// \E’m’) <Z”m”| 7

[/m/ [Nm//

where the coefficients are obtained from (1.136)

.. o 1
dim ijo(kr) Y}, (P)  with k=<1pl .

_ 4

T (2mh)3/?
We must insert P, = Py = an:% [€m){€m| in the formula (3.40) for
the operator W), Then, calculating W) as in (3.41) one finds

1

w) — _
Zm |d13m|2 m

14
D dimd;,, lem) (tm'] .
m'=—1{

Of course, we already know that this still is a pure state. However, it
is instructive to confirm this in the present example in another, more di-
rect way. If the 3-direction is taken along p, p = pés, only partial waves
with m = 0 contribute,

~ 20+1
Yom(p) =Yim (0 =0,¢) = ?&no .

In this case we find W) = |£0)(¢ 0| which obviously describes a pure
state.

Choose the 3-direction to be along the direction of the momentum,
p = peés. Assume that the filter records the values of ¢ but does not

3.4 Quantum States
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shield any of them. When all values of £ are collected in this way we
have, like in (3.42),

1
w = T 0|2§:|d40|2|150) (€0 with
=0

47
d 20+1)j;(k
ool = 5 s QLD k).
It is illuminating to analyze these formulae more closely, by mak-
ing use of known properties of Bessel functions. First one notes that
280(26+ 1)j£2(kr) =1, cf. [Abramowitz and Stegun (1965)] (10.1.50),
and, hence, that

W ="+ 1)j7(kr) [€0) (£0] = " wy [£0) (€0] .
=0 =0

Let us fix the product (kr) and ask where w, assumes a maximum,
as a function of ¢. For values of ¢ which are not too small, the for-
mula (10.1.59) of [Abramowitz and Stegun (1965)] yields the answer:
The first maximum of j(z2 (z), and, hence, of wg, occurs at z ~ (£+1/2).
Thus, we recover in an approximate way the classical relation between
the modulus of the orbital angular momentum and the impact parameter

1
pr="hkr(=4£q) ~h (ﬂ + E) .

This is the relation that we found in Sect. 1.9.3 in the analysis of free
solutions of the radial Schrodinger equation.

3.5 A First Summary

At this point of the development we established a good deal of the
foundations on which quantum theory rests. Before turning to further
important applications it seems appropriate to halt for a while, and to
summarize some of the essential features which are typical for quan-
tum theory. I do this by means of a list of key concepts, each of which
is accompanied by a short abstract.

Observables: By definition, observables describe measurable, hence
classical variables. To every observable there corresponds a uniquely
defined, self-adjoint operator. These operators are defined on Hilbert
space, or parts thereof, whose elements are used to describe states of
physical systems. Their eigenvalues which are real, correspond to the
set of values that one will find in individual measurements.



Quantization: In most cases, canonical mechanics serves as a model
for the quantization of classical observables. One postulates Heisen-
berg commutators for pairs of canonically conjugate variables. The
prime example are the commutators (3.8) for coordinates and mo-
menta.

An alternative is provided by path integral quantization to which we
turn in Sect. 3.7.

States: In the most general case a quantum state is described by
a statistical operator (3.35), expectation values of observables in this
state being given by (3.36). An equivalent description is provided by
the density matrix, Definition 3.12, which is a matrix representation
of the statistical operator. The criterion (3.38) serves the purpose of
distinguishing between pure and mixed states. Quantum mechanics
makes quantitative predictions only for ensembles, 1. e. either for very
many, identically prepared, systems, or for a very large number of
measurements on a single system which is always prepared in exactly
the same way.

Preparation measurements: The statistical operator is fixed by a
“filter”, i. e. by way of measuring an observable and by a choice of its
eigenvalues. The relation between the initial state, described by W,
and the final state prepared by the filter and described by the statis-
tical operator W/, is given by the formula (3.40). If the projection
operator P, in (3.40) projects onto a one-dimensional subspace, the
prepared state is a pure state. However, while information on this
state is optimal, any knowledge on the state before preparation gets
lost. Only if the prepared state is a mixed ensemble does it still con-
tain (though only partial) information on its past.

Time Evolution: The evolution of a quantum system is deter-
mined by its Hamiltonian H. In classical mechanics the Hamiltonian
function is the generating function for those infinitesimal canoni-
cal transformations which boost the system along its physical orbits.
The quantum Hamiltonian, in turn, determines the evolution map-
ping U(¢, tp) which transports the initial distribution of a Schrédinger
field at time 7 to its present form at time ¢. The operator U(t, tp)
is a solution of the Schrodinger equation in the form of (3.29), or,
equivalently, of the integral equation (3.30). The time dependence of
the expectation values of an observable @ is given by the follow-
ing prescription. If W denotes the statistical operator which describes
a state prepared at time 7y then, as time goes by, this state evolves
under the influence of the Hamiltonian H in such a way that meas-
urements of the observable O, at times ¢ # t, are given by

(0),; = t[U(t, to)) WU(t, 1) T O] |. (3.43)

3.5 A First Summary
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The experience gained in Chap. 1 and Chap. 2 shows that this set of pos-
tulates is sufficient for treating a number of important applications of
quantum mechanics. Yet, two important questions remain unanswered:

The first of these is about the completeness of the description. What
we have in mind here is that we do not know yet how many, mutually
commuting observables are needed to describe a given physical system.
In other words, this is the question how many commuting observables
must be known to define a pure state such as a beam of identically pre-
pared electrons. The answer is given by still another postulate that we
will be able to state only after having developed the description of the
spin of particles.

The second question concerns states of many identical, hence in-
distinguishable, particles. The answer to this question is contained in
a fundamental relation between the nature of the spin, integer or half-
integer, of a particle, and the symmetry of many particle wave functions
under permutations of identical particles. It will be seen later that in
our four-dimensional world there is only the alternative of Bose-Einstein
statistics for particles with integer spin, or Fermi-Dirac statistics for par-
ticles with half-integer spin. This is the content of the spin-statistics
theorem, first derived by Fierz and by Pauli, to which we return later
in this book (cf. Sect.4.3.4 and Part Two).

3.6 Schrodinger and Heisenberg Pictures

From all examples studied up to this point we are used to see the time
evolution of a quantum system in its wave function that obeys the time
dependent Schrodinger equation. Observables @, in contrast, seem to
be fixed by the quantization procedure once and forever and, therefore,
seem to be independent of time. This is in accord with classical physics:
the system moves, as time goes on, but observables are defined by appa-
ratus which is static. If we analyze the quantum mechanical description
more closely we discover that this view of matters is only one of several
possibilities.

Measurable, hence, testable information is contained solely in expec-
tation values. These, however, are calculated by means of the general
formula (3.43). Now, if the trace in (3.43) exists, it is cyclic in the fac-
tors of its arguments. For example, we could write

r { [U(t, 1) WUz, tO)T] (9} —tr {W [U(t, wioua, zo)]} .

Here, I inserted square brackets in view of the following considerations.
The description of the state discussed above is equivalent to defining
the product

W, := [U(t, 10) WU(1, 1) '] (Schrodinger picture) (3.44)



3.6 Schrédinger and Heisenberg Pictures

to be the statistical operator which represents the system at time f.
Whenever one decides to shift the entire time dependence into the wave
function, or, more generally, the statistical operator, one says one is
using the Schrodinger picture.

It is equally well possible to “distribute” the evolution operator and
its hermitean conjugate in such a way that we define

[U(, to)T(DU(t, t0)] =: O; (Heisenberg picture) . (3.45)

While the statistical operator (or the wave function) now is independent
of time, the time evolution is contained in the operator ;. The mea-
surable quantities proper remain unchanged by this new definition. If
one shifts the entire time dependence to the operators which represent
physical observables, one says one is working in the Heisenberg picture.

The Schrodinger equation which describes the time evolution, takes
a somewhat different form in the two pictures. As one easily verifies,
using the Schrodinger picture it reads

. i
W= _7_i[H’ Wil (3.46)

while, when using the Heisenberg picture it becomes

O, = ih[H, o1 (3.47)

Note the characteristic change of sign in these equations. The differen-
tial equation (3.47) holds for operators in the Heisenberg picture and is
called Heisenberg equation of motion. Note its analogy to the equation

d
Ef(q, p)=1{H, f(q.p)},

in classical, canonical mechanics which expresses the change in time of
a dynamical quantity defined on phase space, by the Poisson bracket
of the Hamiltonian function and the observable, cf. [Scheck (2005)]
(2.128). For example, using an “energy representation”, i.e. the A-
representation in the sense of Sect.3.1, with A a Hamiltonian with
a fully discrete spectrum, one has

(@n Orpm) = & /M E=EDl (@, 99gpy,) .
This yields a matrix representation with typical harmonic time depen-
dence in the transition frequencies
Em - En
wmn = T .

It was this description that Heisenberg made use of in developing his
matrix mechanics.

Further Comments: Only expectation values are observable and,
hence, physically relevant. Therefore, we have the freedom to read the
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formula (3.43) in still another way. Suppose the Hamiltonian that de-
scribes a given system is the sum of a time-independent part Hy and
an additional term H’ which explicitly depends on time, H = Hy+ H'.
Both operators, Hy and H’, are self-adjoint. Inserting the identity

1 = o—iHot/h iHot/h

in two positions, and making use of the cyclic property of the trace, one
has

(O) ¢ =tr (MU, 1) WU, 1) e /N i/ e=itill)
Define then the modified evolution operator

U (1, 10) 1= exp (%Hgt) U, 1o) ,
and the modified observable

(int) i i
o . (—H z)@ (——H z) .
; exp (5 Hot ) © exp (3 Ho

These operators are seen to obey the differential equations
v i -
(9,(““) = ﬁ[HO’ (9,(”“)] , and

ihU(int) — eiHot/ﬁ(H_ HO) e—iHol/hU(int) — H/U(int) , (348)

respectively. The purely harmonic time dependence which is due to the
time independent operator Hy, is shifted to the operators. The true time
dependence which is due to the operator H’, is contained in the modi-
fied evolution operator. The formula (3.43) takes the form

In many applications one takes Hp to describe an unperturbed, in some
cases solvable, system, while H’ describes interactions and is often
interpreted as a perturbation. With this idea in mind one calls this rep-
resentation the interaction picture.

3.7 Path Integrals

There is an alternative to the canonical quantization described in Chap. 1
which is due to Dirac and to Feynman: quantization by path integrals.
Although this is not of central importance for nonrelativistic quantum
theory of point particles, it has become an important technique, over
the last decades, in covariant quantum field theory as well as in other
fields of physics. As its application to quantum field theory is subtle and
mathematically difficult to grasp, it is worthwhile to study the basic idea
and work out simple examples, in a first step, in the by now well-known
context of quantum mechanics.
We start with a few preliminaries.



3.7.1 The Action in Classical Mechanics

Among the canonical transformations of classical mechanics the ones
generated by functions of the old coordinates and the new momenta,
Viz.

{q, p. H(q, p, z)} s S(q, P 1) — {Q, P, H(O, P, t)} (3.50)

are the primary tool in deriving the Hamilton-Jacobi differential equa-
tion as well as in describing infinitesimal canonical transformations.
The relation between the old and new phase space description is given
by (with the notation ¢ = (q1,42,...,q5), P=(P1.P5, ..., Py) etc,
f being the number of degrees of freedom),

0; = 95 _ 98 H(Q Pt)—H—I—aS (3.51)
l_BPia pk_aqka ’ ’ - 81‘ .
Suppose the Hamilton-Jacobi differential equation
~ 0S S
H(Q,P,)=H(g,p=—,0+—=0 (3.52)
aq ot
is solved so that S becomes a function of the f coordinates ¢ and f
integration constants o = (cp, ... , oy). Then the new momenta and co-
ordinates are given by
aS(q, o, t
P = oy, Qi=(q—a)=const. =: B,
oo

respectively, the latter of which is then solved for ¢ = g(«, B, 1).

Let us assume that the Legendre transformation exists which links
the Hamiltonian function to the Lagrangian, and let us calculate the total
time derivative of the generating function,

f S/
ds aS aS
. T A, —qgi=|—H , Dy 1 i .'i|
= +; 70, [ 4.p )+;pzqz
Eliminating the variables p on the right-hand side, by expressing them
in terms of g and ¢, transforms the expression in square brackets into
the Lagrangian, evaluated along solutions of the equations of motion.
Taking the integral with respect to time ¢ then yields
1

S(g, o, 1) = / dt' L(q,q.t). (3.53)
fo
Note that the integrand is a function of solutions g = g(¢) of the equa-
tions of motion and of their velocities ¢(¢), so that the integral (3.53) is
what is called Hamilton’s principal function in mechanics. We shall call
it the action for short, in what follows. It should not be confused with
the action functional
I

Ilq] =/ dr L(q,q, 1)

1

pi=—0H/dq;

3.7 Path Integrals
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which is at the heart of Hamilton’s variational principle. There ¢ and ¢
are independent variables and /[q] is a functional, not a function of ¢(¢)
and its derivative.

As an example consider the generating function

1
S(q, 1) =oc-q—%oc2t+c

which applies to the case of free motion of a particle with mass m in
three-dimensional space. The solutions to be inserted in S are

o
q(=p+—t,
m
so that the function S and its time derivative are
a2
Sq,o,t) = —t+a-B+c,
2m
dS(q, a, 1) .1, a?
—_— = —a = —.
dr 1= 5m% = 2m

The Lagrangian being equal to L = (1/2)m¢*> = a*/2m, the action
(3.53) is found to be

a2

m

The interpretation of the integration constants is obvious: « is the mo-
mentum of the particle, B8 its initial position in space.

3.7.2 The Action in Quantum Mechanics

In what follows the distinction between operators and their eigenvalues
is important. Therefore, for a while operators such as p = —ihd/dq are
underlined, while their eigenvalues in p|p) = p|p) are denoted by ordi-
nary Latin letters. (As no confusion will arise for the Hamiltonian, we
continue to write H for this operator, in order not to burden the no-
tation too much.) As an example consider the position operator in the
Heisenberg picture (3.47),

g = e(i/h)thoe—(i/h)Ht

=t

and, for the sake of clarity, denote its eigenvalue at time #; by g¢;, i.e.
q, lgi) = qilqi). Perform then the following calculation

9291 {q21q1) = (Q2|1,T21,l lg1)

= (¢ e(i/h)thgo eW/MH(—1) , o(=i/R)Hn lq1)

(/) H(1—12)

q,¢
=(q2(2)| g, 4, lq1(11))
= q2q1 (qa(t2)| e VWHO=R) 101 (7))



Note that the first two lines deal with eigenstates in the Heisenberg pic-
ture while the last two contain Schrodinger states |g(¢)). The conclusion
from this calculation is the relation

(@2lq1) = (qa(t2)| e~ WH©RZID 14 (1)) (3.54)

which shows that the Hamiltonian boosts from the position gj(#1) at
time 71 to the position ga(#;) assumed at time f;.

In fact, and more generally, this observation is not restricted to the
position operator and its eigenfunctions. For instance, let

P>
H==—+U(g) (3.55)
2m =

be a one-particle Hamiltonian, |a(1)) and [b(72)) two solutions of the
time dependent Schrodinger equation HY = (i/h)Y¥ (not necessarily
stationary eigenstates of H). Then the transition amplitude of |a(#;))
into |b(#p)), under the influence of the Hamiltonian, is given by the gen-
eralization of (3.54),

(b(t)la(r)) = (b| e” WWH©R=) gy (3.56)

The idea of the method of path integrals is to divide the unitary “boost-
ing” of |a(t1)) from time #; to time t, into very many, but small steps
in time and to make use of the superposition principle of quantum
mechanics. In this way the system is allowed to evolve from an initial
configuration to a final configuration by means of a weighted sum over
all possible intermediate configurations. An example in one spatial di-
mension suffices to demonstrate the principle of the method. Thus, we
study the Hamiltonian (3.55) restricted to one variable g,

2

H=2 Luq. (3.57)
2m =

Let |g) and |p) be eigenstates of ¢ and of p, respectively, both of which
are normalized in a distributional sense, viz.

(q/|q)=8(q/—q) , <p/|p)=8(p/—p), with (3.58a)
(qlp) = eW/Mpa 10y = e~ W/Mra, (3.58b)
ar N 2mh ha N 2mh

For an arbitrary (Heisenberg) state |a), and generalizing (3.58b) one
would define the amplitudes

a(q) := (qla) , a(p) == (plaj , (3.58¢)

and likewise for |b).
For a very small time lapse #, —#; = At the evolution operator
in (3.56) can be approximated as follows

e—(i/h)HAt ~ e—(i/h)(ﬁz/Zm)At e—(i/h)U(g)At ) (3.59)

3.7 Path Integrals
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Although eA*8 £ edef, the correction terms to the approximation

(3.59), by the Campbell-Hausdorff formula
edef = eCUP  yith

1
C(A,B)=A+B+§[A,B]

1 1
+E[[A,B],B]—FE[[B,A],AH—---, (3.60)

are of the order (A7)? and must be omitted if one works consistently at
first order. Indeed, in (3.59) the next-to-leading term is proportional to

7. v@] an?

and, hence, is negligible.
As an example we calculate the transition amplitude

—G 2 —d
(@2(t + ADg1 (1) = (qo| e~ WP 2mAl—U/MU@AL 4

by formally inserting the completeness relation | d3 p|p)(p| twice, once
to the left of the exponentials, once to their right. The potential en-
ergy U(g) acts multiplicatively so that the operator g can be replaced
by g1 when acting to the right. As to the first exponential one has

o.¢] o.¢]

—( 2
/ a» / dp’ {qa| ') {p/| =LA ) (plgn)
—00 —o00
17
= 27T_h /dp dp/ e_(i/h)(pz/zm)Ata(pl _ p) e(i/h)p/qz e—(i/h)pql
—00  —00
o

_ 1 /dpe_(i/h)(pZ/zm)Aze—(i/h)p(ql—qz>
2mh
—00

—im/2
_ | meIR tomigi—a? @0
2mwhAt

In this calculation the relations (3.58b) are inserted and the integral for-
mula (1.46) is used. Thus, the transition amplitude in our example is
found to be

me~17/2 i (m(g2—q1)?

A ~ - —A
(200 + A0lg1 () = \| T exp £ { =T — A |
~ 1t {m(qz—611)2_ RCREL:ICEY
=\ 2ehar PRI 24 2 '

The expression in the curly brackets of the exponential is seen to be
the product of the Lagrangian, evaluated along a solution, and of At.




But this is nothing but the action. Indeed, along the classical orbit
q(t") = q1+ (' =1/ A1) (g2 — q1), so that

q2=q(1+A1) 5 U U
S— f A L(g. §) ~ m@2—q)” Ulg)+ (qz)’
2At 2
Q1=q()

and the transition amplitude is

me="2 Gy S(grqn)
(q2(t + AD)q1 (D) =~ SohAr © 2:41) (3.61a)

At this point the superposition principle of quantum mechanics comes
into play. The transition amplitude is calculated for a finite time inter-
val by letting the system evolve from the initial configuration g;(;) to
the final configuration g () by a succession of very many steps of the
kind of (3.61a). Let

J
GQ=qi W=t,qu=qy, tnEtf,tJ':ti—i—;(tf—ti).

Then the transition amplitude is given by

n—1 n—1
(Qf(tf)|qz'(ti))=nli>ngo_/l_[kol_[<61j+1(tj+1)!q;(tj)>
k=1 j=0
n—1 —iJT/2 n/2 . !
) nme 1 .
:nlin;O/H dgi <—2nhA(tf—ti)> exp{i—i fdtL(q, q)}.
= p

1

(3.61b)

It is customary to write this formula in a somewhat symbolic way as
follows

ly

faraplao)= [ Dlates|; farLa. ), (3.610)

ti

the integration “measure” D[qg] being defined by the limit which is
written more explicitly in (3.61b).

1. Clearly, only the initial and the final configurations (in our example
these are the positions g; and g ) are given. We have no informa-
tion along which paths the system evolves between them, unless one
takes the limit 7 — 0.

2. In the limit 4 — O the exponential in the integrand oscillates rapidly
and, thus, gives a sizeable contribution only if the action S stays ap-
proximately constant. This happens if S is stationary and, hence, if

3.7 Path Integrals
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q(1) follows the classical orbit that links g; to g ¢. Thus, in this limit
one recovers Hamilton’s principle.

3. By the superposition principle the path integral from to “f” can
be split into two or more steps. For instance, with #; < # <7, one
has

“ ”

/ Dlq]eWM3n = / dg (1) / D[q1e/MSn / DlqleVMSu .

(3.62)
For an infinitesimal change of the action one finds
8{ar(tp)lait) / Dlg1e/M55S;.
For example, for ¢ +— t+6t, §S = —Hét from (3.51), and
5m0+6Mﬂ0%=—%w0+&HHMU»&- (3.63)

Clearly, this is the Schrodinger equation.

4. The generalization of our one-dimensional example to three spatial
dimensions is obvious and is not worked out here.

5. Path integrals for quantum theory are treated in a number of mono-
graphs such as, e.g., [Feynman, Hibbs (1965)], [Dittrich, Reuter
(2001)]. Tables of worked integrals were given by [Kleinert (1990)],
[Grosche, Steiner (1998)].

3.7.3 Classical and Quantum Paths

Let ¢ be some intermediate time between the initial time #; and the final
time 7y,
i <t<ty.

As we saw above the superposition principle imposes the composition
law (3.62) for the path integral. This may be applied to matrix elements
of operators: With A(f) an operator in the Heisenberg representation one
obtains

(qrap] AW 1git)) = (g 7| e” VMHUD g e~ (/MHC) 4.

/dq /dq///ﬂ)[q] el/mS@r.7:q"0)
x(q"| Aolq) /50[61] e@/MS(g tigi0). (3.64)

This formula and the composition law (3.62) may be applied to the po-
sition operator taken at the ordered times 71, t2, ... , t, all of which are
inside in the interval (#;,tr),

L<h<h<:- <l <Iyf.



One finds
(ar@p|qtng@) - q@) 1gi (1))
oty
- / Dlg) (q()q(e2) ... q(t) exp| /dr L. 9} (3.65)

li

This result illustrates quite well the nature of the path integral in quan-
tum physics. Indeed, if & were very small, or was sent to zero, then only
the stationary action would contribute which is realized for the classical
solution of the Euler-Lagrange equation that joins g; to gy. The same
particle in the quantum world where # is a nonzero finite quantum of
action, is allowed to travel along all kinds of paths that join g; to gy.
These paths which the particle may choose, are weighted by the expo-
nential of the action exp{(i/h)Ss}. The concept of a particle orbit is no
longer applicable. Yet, the quantum states still carry some features of
the classical dynamics.

These few examples indicate that the method of path integrals
emphasizes another aspect of quantum mechanics but is not of cen-
tral importance for its formulation. Things change when one turns to
quantum field theory: Although formally and mathematically less well
founded, path integrals belong to the important tools in that domain and,
as a consequence, are used in many theoretical analyses.

3.7 Path Integrals
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Space-Time Symmetries
in Quantum Physics

Introduction

he transformations in space and in time which belong to the

Galilei group play an important role in quantum theory. In some
respect and for some aspects, their role is new as compared to clas-
sical mechanics. Rotations, translations, and space reflection induce
unitary transformations of those elements of Hilbert space which are
defined with respect to the physical space R? and to the time axis R,.
Reversal of the arrow of time induces an antiunitary transformation
in J. Invariance of the Hamiltonian H of a quantum system under
Galilei transformations implies certain properties of its eigenvalues
and eigenfunctions which can be tested in experiment. This chapter
deals, in this order, with rotations in R3, space reflection, and time
reversal. A further and more detailed analysis of the rotation group
is the subject of Chap. 6 in Part Two.

4.1 The Rotation Group (Part 1)

Consider a Hilbert space and a countably infinite basis {¢,(x)} thereof.
The functions {¢,(x)} are defined over the physical space R3. Being el-
ements of ¢ they are orthogonal and normalized to 1. Given a physical
wave function ¥ =) ¢,a,, the vector (ar, a2, .. Jisa specific rep-
resentation of this state. Every transformation R € SO(3), or R € O(3),
interpreted as a passive transformation in R? (i. e. a rotation of the frame
of reference) induces a unitary transformation in #€ such that

{av} — {a; =Y Duy(®)a,: DD =D'D=1¢ . (4.1)

As the physical state  does not depend on the base used for its ex-
pansion, this implies that the base functions are contragredient to the
expansion coefficients, that is to say, transform according to (D_I)T.

4.1.1 Generators of the Rotation Group

The infinite dimensional matrices D depend on the Euler angles {®;} =
(¢, 6, ¥), or any other parametrization of the rotation in space. They are
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elements of the unitary, in general reducible, representations of the ro-
tation group in Hilbert space. The eigenfunctions RE"ZO' (r)Yem (%) of the
spherical oscillator, Sect.1.9.4, provide an example of an orthonormal
system which is defined with reference to a coordinate system in R>. An
example for the unitary transformation which is induced by a rotation
about the 3-axis was discussed in Sect.3.2.1.

The elements of SO(3) are continuous functions of the angles and
can be continuously deformed into the identical mapping 1. Therefore,
they can be written as exponential series in three angles and three gen-
erators for infinitesimal rotations, see [Scheck (2005)]. If, for example,
we choose a Cartesian basis in the physical space, denote the angles
by ¢ = (¢1, ¢2, ¢3), and the generators by J = (J1, J2, J3), where the
matrices Ji are given by

00 O 0 01 0-10
Ji={0o0-1}|, Jo={ 000]), Js=|1 0 0],
01 0 -100 00O

then a passive rotation in R? reads
x' =exp(—¢-Dx.

Thus, the aim is to find an analogous decomposition of the correspond-
ing, induced, transformation D in the form of an exponential series in
the rotation angles and the generators.

The matrices J; are antisymmetric, or, if interpreted as matrices
over the complex numbers C, are antihermitean, which is to say that
they fulfill the relations J,t = —Ji. As we know from mechanics their
commutators are [J, Jo] = J3, with cyclic permutation of their indices.
These antihermitean matrices can easily be replaced by hermitean ones
by using, instead of the Ji, the matrices iJy, viz.

~

Ji i =1Jk .

Their commutators are now [31 , 32] = 133 with the characteristic factor i
on the right-hand side. The commutator of two hermitean matrices is
antihermitean, the factor i turns the result into a hermitean matrix.

For reasons that will become clear below, we replace the Cartesian
frame of reference in R? and its unit vectors (&1, €2, €3) by what are
called spherical coordinates and spherical base vectors. These are de-
fined as follows

clzz—%(éméz), L= &3, §—1:=+%(@1—i€’2)-(4-2)

One verifies that they fulfill the symmetry and orthogonality relations
;:, = (_)m§—m s C::l : ;m’ = Smm’ . (43)

This definition is motivated by the following argument: If in the ex-
pression for a position vector one transforms the base to the linear



combinations (4.2), and makes use of spherical polar coordinates, one
sees that

X = xlél +xzéz+x3é3

1 1 1 1
=——(x'4ix?) (—-) (61—i82)+—— (x'—ix?) — (&) +ié2)+x &3
V2 ) /2 /2
1 . 1 .
=r(———=sinfe?c* + —sinfeP¢*, +cosb *) )
( 7 st NG 7y %

Making use of the formulae (1.116) for the spherical harmonics with
£ =1, this becomes

4
x:r‘/?(Y11CT+Y1—1CL+Y10C§)’

the linear combinations x! &ix? being proportional to Y41, x> propor-
tional to Yjp. By the symmetry relations of (4.3) and of (1.117) one
has

Y Vi =Y Yiln.
m m

The decomposition of an arbitrary vector a over R? in terms of a spher-
ical basis has always this same form, viz.

Zamé':z = Zazlgm .

The relation between the basis ¢* = (¢}, &5, Z;fl)T and the Cartesian
basis & = (e1, &>, &3)”, from which we started, is given by a matrix A,
£* = Aé, which is easily determined. This matrix A and its inverse A~!
are given by

L (-1io L (-1 01
A=—1|o00v2]. A'=— | 5 0 —i
V2 1 i o0 V2 0 V2 0

Transforming the generators jk to this basis by working out AjkA_l,
one finds

~ L0 V20 _ (0 V2 0
ATIAT' =2 V2 0 V2 ,AJzA_1=§ V2 0 —v2 ],
0 V2 0 0 V2 0
100
AJzA'=]00 0 |. (4.4)
00 —1

These matrices are seen to be identical with the ones we found in
Example 1.10, Sect. 1.9.1, for angular momentum ¢ = 1. A characteristic

4.1 The Rotation Group (Part 1)
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property of this representation is that the 3-component is diagonal (and,
hence real), the 1-component is real and positive, the 2-component is
pure imaginary. It is this coincidence which motivates the choice of the
spherical basis. N

Of course, the commutators of the matrices J; are unaffected by
this change of basis. What we have achieved, however, is to render the
3-component diagonal. This is different from the Cartesian basis from
which we started and where none of the three generators had this prop-
erty.

From here on we adopt the convention to choose the generators of
the rotation group to be hermitean. For simplicity we choose the same
symbol for them, i.e. Ji instead of J. Passive and active rotations then
read

exp(—ip-J), exp(+i@-J),

respectively, with ¢- J = ¢1J1 + ¢2J2 4+ ¢3J3 in the Cartesian basis. The
generators fulfill the commutation relations

Ji, J2l =1iJ3 (and cyclic permutations) |, 4.5)
or, alternatively,
3
[Ji, Ji] =i28ilil . (4.6)
=1

when using the totally antisymmetric e-symbol in three dimensions,
with g;i; = 1 for all even permutations of (1, 2, 3), &y = —1 for all odd
permutations, and zero otherwise.

4.1.2 Representations of the Rotation Group

The action (4.1) in Hilbert space which is induced by a rotation in R,
also applies to the generators: If D(R) denotes the unitary transforma-
tion induced by R, then D(J;) is the hermitean matrix which represents
the generator J; in Hilbert space. It has the same dimension as D(R),
n = dimD. Written differently we have

. . i k
DR(9) =explig- D] = Jim (L +70-DD) . @47
k— 00 k
where we inserted Gauss’ formula
X\ k
Y = i 14—
= m (14

k— 00
for the exponential series, with a matrix valued argument here.
Obviously, the generators fulfill the commutation relations (4.5),
or (4.6), in any representation. As a matter of example, consider the
first commutator (4.5): It is obtained by performing successively two
rotations, the first about the 1-axis, the second about the 2-axis, i.e.



R(ne2)R(eey), and by inverting these transformations in the other,
“wrong”, order, that is R(—neé;)R(—¢céy), as sketched in Fig.4.1. The
result of these four infinitesimal transformations is found to be a rota-
tion about the 3-axis by the angle (e7), hence of second order,

R(—né)R(—ee)R(néy)R(ee;) =R(—¢ene3).

This is verified by calculating the product of the four exponential series
to second order in ¢ and 5. All linear and pure quadratic terms cancel,
while the mixed term yields en(J1J> —J2J1). In turn, by drawing care-
fully the figure shown in Fig.4.1 one sees that there results a rotation
about the 3-axis by the angle (en) so that one concludes

I +en(J1d2 — J2J1) = T +ien J3 ~ exp(ien J3) .

Thus, one could have derived the commutator (4.5) from this figure
without even calculating the matrices Ji explicitly. Obviously, the same
relation must hold also for the representation of the generators in Hilbert
space, Viz.

[DJ1), D) =1DJ3) (and cyclic permutations of 1, 2, 3).
As this is so one can simplify the explicit notation D(Jx) by replacing
it by the symbol J; of the generator itself, with the understanding that
it stands for all representations. This is what we do in the sequel.

The representation (4.4) which was obtained from the analysis of the
rotation group in three-dimensional space R3, and, hence, follows from
the very definition of this group, is called the defining representation.
The one-dimensional representation in which J; = J, = J3 =0, is called
the trivial representation.

Further representations are obtained by the analogy to the orbital an-
gular momentum that we studied in Sect. 1.9.1: The components of or-
bital angular momentum obey the commutation rules (1.107) which are
the same as those for the generators Ji. In Sect. 1.9.1 we showed that
one can always choose £2 and one component, say ¢3, simultaneously
diagonal, and that the eigenvalues of £ and of 3 are given by £(£+ 1)
and by m, respectively, with £ € Ng and m = —¢, —¢+1, ..., £. This
allows for two conclusions: One the one hand we found a countably
infinite tower of representations in subspaces of Hilbert space whose
dimension is (2¢+ 1) (with integer £), and in which the rotation matri-
ces (4.7) and the generators are represented by unitary and hermitean
(2€+1) x (2€ 4 1)-matrices, respectively. On the other hand we showed
that angular momentum is intimately related to the rotation group. The
components of angular momentum generate infinitesimal rotations, their
commutators are those of the Lie algebra of the rotation group.

The problem to be solved is now clearly defined. Firstly, one must
construct all representations which are compatible with (4.5), and, sec-
ondly, all unitary matrices D(R(¢)) which span these representations.
The first part of this program can be carried out completely on the basis
of the commutators (4.5) only. The second part needs further tools that
are developed in Part Two of this book.

4.1 The Rotation Group (Part 1)

Fig. 4.1. A rotation by the angle ¢ about
the 1-axis, followed by a rotation by
the angle n about the new 2-axis, but
then inverted in the other, “wrong” or-
der, takes the 3-axis back to its initial
position. However, the 1-axis and the
2-axis are taken to 1’ and to 2/, respect-
ively. Thus, the result is a rotation by
the angle (en) about the 3-axis
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—

Fig.4.2. If it is irreducible, the rotation
matrix D has the structure of a se-
quence of square blocs along the main
diagonal. Only entries within these blocs
can be different from zero, all entries
outside the blocs vanish, for every rota-
tion in R3. The blocs themselves cannot
be decomposed any further

! Note that this definition is not com-
pletely congruent with the definition of
the spherical basis: the “+” component
does not have the characteristic minus
sign, and the normalization factor 1/+/2
is absent here.

With the example of orbital angular momentum in mind, cf. Sect. 1.9.1,
one defines the square J* and the ladder operators' J.,

P =3+B+), Je=Jiid. (4.8)

While J? commutes with all components and, hence, also with J4, the
remaining commutators are (reader please verify!)

4.9)

The operators J? and J3 are hermitean, the ladder operators are not.
Instead, they are adjoints of each other, Ji = J_. The following two
formulae are quite useful for subsequent calculations,

=11 +B-J, =)0 +15+])s,

they are easily verified by means of (4.5).
We will use the following, equivalent notations for the rotation R(¢)
in Hilbert space

D(R) =D(R(¢)) =D(¢) .
As J? commutes with all components it commutes also with D(¢),

[J2. D(@)] =0.

This commutator is important because of the following implication:
If J? is chosen to be diagonal the infinite dimensional matrix D(R) must
have a form where only entries contained in square blocs along the main
diagonal are different from zero, as sketched in Fig.4.2. Each of these
blocs pertains to one of the eigenvalues of J2, their dimension is equal
to the degree of degeneracy of the eigenvalues of J?. If, in turn, D(R)
has this bloc-diagonal form for all rotations R, this matrix is said to be
irreducible. The matrices D span a unitary, irreducible representation of
the rotation group. This is a consequence of the following lemma:

(4.10)

Schur’s lemma. Let D(R) and D'(R) be two matrices of dimension
n and n', respectively, which are unitary and irreducible, and which
depend on the rotations R € SO(3). Furthermore, let M be a matrix
with n columns and n’ rows, which fulfills the relation

MDR) =D'(R)M for all Re SO(3). ()

Then one of the following two alternatives holds true: Either M van-
ishes, M =0, or n =n’ and det M # 0. In the second case D(R) and
D’(R) are equivalent.

Multiply the hermitean conjugate of (x), DM =MD/ by D from the
left, and by D’ from the right, thus obtaining M'D’ = DM'. Multiplying
this equation from the left by M and making use, in a second step, of
the original equation (), one obtains

MM'D'(R) = MD(R)M' = D'(R)MM . (%)



As D/(R) is irreducible by assumption, the product MM’ must be
a multiple of the n’ x n’ unit matrix, MM = ¢ 1. The constant ¢ is real
because the product MM is hermitean. There are then three possibili-
ties:

(a) n =n', ¢ #0: In this case det M # 0 and, thus,

D'(R) =MDRM!,

which says that D and D’ are equivalent.

(b) n=n" and ¢ =0: One now has ), M,-kM;?k =0, and specifically
for i = j one finds ), |Mix|?> = 0. This means that M as a whole van-
ishes.

(¢) n <n' (or n > n’): In this case one enlarges the n’ x n-matrix M
to a square n’ x n’ matrix N by inserting n’ —n columns all of whose
entries are 0. Then one has NNT = MM and detN = 0. This implies
c=0, so that M =0 as before. (The same conclusion is reached if
n>n'. In this case just interchange D and D’.) This proves Schur’s
lemma.

Our aim is to derive the algebraic properties of all representations
of the rotation group, starting from the commutators (4.6) or from the
equivalent commutators (4.9), .

Let |Bm) be a common eigenstate of the operators J> and J3, with
B the eigenvalue of the first, and m the eigenvalue of the second op-
erator. As [J?,J+]1=0, one generates further eigenstates of J> by the
action of J1 or of J_ on |fm) which belong to the same eigenvalue S,
unless the action of J1 on |Bm) gives the null vector. The nonvanish-
ing states obtained in this way are again eigenstates of J3. Indeed, by
the first commutator (4.9), one finds

B3z pm)) =J:[3 £ D) [fm)] = (m £ 1)+ |pm)) .

The state J|Bm) = const |8, m + 1) is an eigenstate of J3 and pertains
to the eigenvalue (m+1). It is not normalized to 1, though. Like-
wise J_|Bm) = const |8, m — 1) is an eigenstate of J3 for the eigenvalue
(m —1). The squared norm of these new eigenstates are easily calcu-
lated by means of the formulae

Jol: =1 -5+ );
which follow from (4.10). With J]L,_ = J_ one obtains
134 1Bm) || 2 = (Bm| J_J+ |Bm) = (B—m* —m) ||| Bm)]| * .
13- 18m) | * = (Bm| I J— |pm) = (B—m* +m) ||| fm) || %,
from which one deduces the inequalities
B—m@m+1) >0, B—m@m—1)=>0. (+)

The series of eigenvalues ... , m—2,m—1,m,m+1,m+2,... of J3
must be bounded from above and from below because otherwise the in-
equalities (+) would be violated. With increasing m the series terminates

4.1 The Rotation Group (Part 1)
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if and only if there is a largest value mpy,x =: j for which g — j(j+1)
= 0. Similarly, for decreasing m the series terminates if and only if
there is a lowest value mpy, such that f — mpin(Mmmin — 1) equals zero.
Thus, if we set 8 = j(j+ 1) we obtain the condition

Mumin(Mmin — 1) = j(j+1).
This condition is met for mpj, = —j provided j is positive. The sec-
ond root of this equation, m;, = j+ 1, must be rejected because 7 min
cannot exceed the value mpax = j which is the largest, by assumption.

Finally, one realizes that the series of m values which proceeds in
steps of 1, contains both the smallest value mpyi, = —j and the largest
value mpyax = +j if and only if j is either an integer, or a half-integer.
In all other cases the increasing series generated by J; would miss the
decreasing series generated by J_, and neither of them would ever ter-
minate.

As a result, the eigenvalues of J? and of J3 are

J2jm) = jG+ D 1j,m),  J3ljm) =m|jm) (4.11a)
1 3
j=0,5,1,§,2,..., m=—j,—j+1,...,j. (4.11b)

As expected the values of j include the series of integers 0, 1,2, ...,
by now well known from the analysis of orbital angular momentum.
In addition, one has a complete set of orthonormal eigenfunctions
spanning these representations. What is new and surprising are the
half-integer values of j among which the so-called spinor represen-
tation, j = 1/2, is particularly important and will be studied further
below.

By construction, these representations are unitary and irreducible.
They are realized in finite dimensional subspaces of Hilbert space
whose dimensions are d = (2j + 1). Notations and dimensions for the
first three values of j are as follows:

1. We return for a moment to the Cartesian components of angular mo-
mentum, J; = J++J-)/2, Jo = —i(J+ —J-)/2, and make use of
a phase convention in which the matrix elements of J; are real and
positive, while the elements of J, are pure imaginary. We then have

1
<m/‘ Ji|m) = EM(am/,m+l +5m/,m71) s
(| 3o lm) = —iGon’ —m) (| 31 Im) “.12)
<m/| J3lm) =mé,y p, .

Note that the second of these equations is obtained from the com-
mutator Jp = —i[J3, J1].
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2. How do we proceed in case the eigenstates of J3 contain a further

degeneracy, that is to say, in case the common eigenfunctions of J>
and of J3 have the form |ajm), where « =1,2, ..., k;,?
In this case one shows, in a first step, that the degrees of degener-
acy k,, are all equal, i.e. k,, =k for all m € [—j, +j]. In a second
step one notices that the representation can be reduced further into
k representations each of which has (2j+ 1) elements. First step: We
have

Z(aj,m—l—llLr o jm) (e jm|J— loj,m+1)

Ol/

=jJ+D—m@m+1),

and summing over «,

Z(Otj,m+1|J+ o jm) (e jm|J— loj,m+1)

o

=kn1[jG+1) —m@m+1D].

The same reasoning applied to the product with the two factors in-
terchanged, yields

Z(ajm”_ |o/j,m+1)(o/j,m+1|.]+ |oe jm)

o,

= kil j(j +1) —m(m +1)].

As the left-hand sides are equal one concludes k1 = k;,,. Thus, one
obtains the same degree of degeneracy k =k, for all m.
Second step: Define

(jom+11Js o jm) = /jG+D=mm+ D UL,
(a/jm|J_ laj,m+1)=/jG+1)—m(@m+1) Ugj;)T

where U™ is a unitary k x k matrix. Choose then a new basis,

Bjm) =D Vi lajm)  with VO =10Y-Dgu=2 g,

o

The matrix representation of J in the new basis is obtained from
the former one by the unitary transformation V*+Dymym1i By
the choice of V™ this product is seen to be the k x k unit mat-
rix so that (Bj, m+1|J4|B jm) =/ j(G+1) —m(m+1)8pp, with
B=1,2,...,k Analogous formulae are obtained for the remaining
operators.
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Fig.4.3. Definition of Eulerian angles
which is customarily used in quan-
tum mechanics (a definition that differs
from the preferential choice in classical
mechanics). The intermediate position
of the 2-axis is the axis for the second
rotation

2 In [Scheck (2003)] these angles are
denoted by «, B, and y, respectively,
while the ones of the traditional con-
vention of mechanics are denoted by @,
®, and ¥. The relation between the
two choices is given in [Scheck (2005)],
Eq. (3.39).

4.1.3 The Rotation Matrices D 0

The algebraic construction of the preceding section which was based on
the Lie algebra (4.6) or (4.9) of the rotation group (not on the group
proper), yields the eigenvalue spectra (4.11a) of the square of the an-
gular momentum and of one component. There remains the problem to
construct the infinite dimensional matrices D(R), i.e. the unitary trans-
formations in Hilbert space which are induced by the rotations R. The
complete solution of this problem is postponed to Part Two. Here, I re-
strict the analysis and discussion to some general properties as well as
to the case of j = 1/2 which can be dealt with in an elementary way.

Conventions

1. Nomenclature: The matrices D(R) are called representation coeffi-
cients of the rotation group. As this name is cumbersome one often
calls them simply “rotation matrices” or, more simply, “D-matrices”.

2. Condon-Shortley phase convention: The representation (4.12) is
based on a specific choice of phases which goes back to the con-
struction of the matrices for the ladder operators. This is seen
by returning to the construction of representations of the Lie al-
gebra (see preceding section): Indeed, in determining the states
Ji|jm) =c+|j,m£1) only the square of the norm |J|jm)|? is
fixed, the phases of the coefficients ¢+ remain undetermined. The
phases that were chosen in (4.12) followed from the decision to
choose the matrix elements of the raising and lowering operators
real,

(j'm'| 3 |jm) = G+ D —mn £ D128 i et - (413)

This phase convention which is due to Condon and Shortley, is the
generally accepted convention in the theory of the rotation group.
3. D-Matrices as Functions of Euler angles: 1t is useful to parametrize
the rotation in R? by Euler angles. One should note, however, that in
quantum theory one uses a definition which is not identical with the
traditional choice made in classical mechanics. The two definitions
differ in the choice of the axis for the second rotation. For details
see [Scheck (2005)], Sect. 3.10. Figure 4.3 shows the choice made
in this book: First a rotation about the (original) 3-axis by the an-
gle ¢, then a rotation about the intermediate 2-axis by the angle 6,
and finally a rotation about the (new) 3-axis by the angle .2
It follows from Schur’s lemma that by diagonalizing J? the D-matrix
decomposes into square blocs along the main diagonal. Each of these
blocs belongs to one of the values of j, its dimension is d = (2j + 1).
By counting the values of j in increasing order and by ordering the
values of m in decreasing order, from m = 4j to m = —j, in every
subspace #(), the qualitative scheme of Fig.4.2 is replaced by the



more precise decoding

Dy 0 0 0 0 0
0 Dihip Dl O 00
0 DY, 003, 0 0 o
00 0 DIy Dy Dy
o0 oo o ol
0 0 o o, b, b ..

For every finite value of j, and parametrizing the rotation by means
of Euler angles, the rotation reads

DY) = exp(iyJ3) exp(i60J2) exp(ipJ3) . (4.14)

As J3 is chosen diagonal this implies for the matrix elements

) _imy ) o
D)) (. 0,¢)=¢e"Vd] ©)e"?, (4.15)
where d') (6) = (jm’| exp(i6J)| jm) is a function of the second Eu-

ler angle only. In choosing to parametrize the rotation by means of
Euler angles, instead of Cartesian angles, the benefit is obvious: The
construction of the D-matrices is reduced to the calculation of the
matrices d(6).

. Phase convention for D-Matrices: While the choice of phases in the
representation (4.12) of the generators is generally accepted, this is
unfortunately not so for D-matrices. In consulting one or the other of
the many monographs on the rotation group in quantum mechanics,
the reader, if she or he is one of them, is advised to check carefully
the conventions adopted in the monograph and to work out carefully
the relation to his or her own conventions.

In this book I adopt conventions which are in agreement with what
is generally accepted in linear algebra, so that one can easily recon-
struct them at any moment. Suppose we expand a physical state ¥
in terms of a base system ¢, of eigenfunctions of J? and Js,

W:ZZ@l'ma,(q{).
j m

The functions ¢, are the basis, the coefficients a,, are the expan-
sion coefficients. A rotation in R?, R € SO(3), induces the unitary
transformation

d? =YD Ray (4.16)
m
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3 There are authors who choose to
transform the basis by D. The expan-
sion coefficients then transform by D*.
Some authors modify the standard rule
for matrix multiplication. A good rea-
son to compare matters very carefully!

of the vectors a = (a(J) “ TEEE ,a(f).)T, that is, of the expansion
coefficients. This 1mphes that the basis transforms by the mapping
(D~HT(R) which is contragredlent to D(R). The physical state stays

/
invariant 3, ¢ im' m(/ 2 jm Pjm al). As D is unitary, its inverse

equals its adjoint. The subsequent transposition takes it to Dfr{),:,
that for every j, one obtains

(p]m/ = Z D(j)*//(w 0, ¢) Pjm” -

By (4.16) and by adopting the Condon-Shortley convention (4.12)
the phases of the D-matrices are fixed uniquely. Many books,
though unfortunately not all, treating this topic make use of these
conventions.’

4.1.4 Examples and Some Formulae for D-Matrices

In the subspace with j =0 we have D© = 1. A state vector or an oper-
ator with j =0 is a scalar under rotations. Thus, it remains unmodified
by a rotation R € SO(3).

In the fundamental representation, j = 1/2, the formulae (4.12) yield
the matrix representations

1/01 1 /0 —i 1/1 0
= — = — == — 4'1
Ji 2<10), J2 2<i O>’ J3 2<0_1> 4.17)

for the components of the angular momentum operator. Except for the
factor 1/2 these are precisely the Pauli matrices (3.22). We calculate
the matrix d!/? () of (4.15) by writing the exponential series and by
making use of the fact that all even powers of oy are equal to the unit
matrix, all odd powers are equal to o7, see Sect.3.3.4, Example 3.12,

6 0 0
a1/2 (6) =exp (izaz) = 1l cos E ~+ 107 sin E

_( cos(0/2) sin(9/2)>
~ \ —sin(8/2) cos(8/2) )

With this result the complete D-matrix for j = 1/2 is given by

0/2)elV /2 gin(@/2)elV—9)/2
D1/2 g) = cos( _ . 118
O =\ _sin@/2) 610072 cos(one-itv+or2 (4.18)

The result (4.18) has a truly remarkable property: Performing
a rotation in R? by the angle 360° =27, by choosing for instance
(¥ =0,0 =0, ¢ =2m), changes nothing in that space. However, the in-
duced transformation D(!/2) (0,0, 2m) is not the identity! Instead, it is
DU/2(0, 0, 27r) = — 1. Thus, only after having performed successively
two such complete rotations does one return to the identity, for example



DU/2(0,0,47) =+ 1. This peculiar property is characteristic for all
half-integer values of j, it will be understood better when developing
the second part of the theory of the rotation group. We just remark that
it has an important implication for the description of indistinguishable
partices with half-integer spin but postpone this topic for the moment.
I quote here the general formula for d), without derivation. Details
will be worked out in Part Two. One finds the following expression

NG+ G=m)! (G +m)! (j—m)!
—n—p(G+m—p)!p(p+n—m)!

0 2j—n+m—2p 0 2p+n—m
X (cos 5) <sin E) . (4.19)

The sum over p has a finite number of terms, the smallest and the
largest value being determined by the factorials in the denominator. As
is well-known, ¢! = I'(g+1). The Gamma function /(z) has first or-
der poles at z =0, —1, —2, .... Thus, its inverse 1/1(z) has zeroes in
these points on the negative real axis. This means that whenever p is ei-
ther so large, or so small that one of the terms in round brackets in the
denominator of (4.19) becomes negative, the sum terminates.

From the general formula (4.19) one deduces the following symme-
try properties of the d-functions

A ©) = (=) d\D ©6)
d) . 0) = (—)""" dih(6)

d,,6) = (=) ™" dy (= 6) (4.20)

If j is an integer, j = £, there is a close relationship between the D-
functions and the spherical harmonics. One finds

din () =Y (—)"—
B (J

20+1
Yon 0. 8) =\| = — Dy,,(0.6.9). 4.21)

4.1.5 Spin and Magnetic Moment of Particles with j = 1/2

It is an empirical fact that the elementary particles observed in nature
are characterized not only by their mass m and by a well defined charge
but also by an intrinsic angular momentum s, called spin, which, in con-
trast to orbital angular momentum, is independent of the state of motion
of the particle. This intrinsic angular momentum is an inner, invariant
property of the particle. For example, the electron, the muon, the pro-
ton, and the neutron all carry spin 1/2. This means that they are to be
classified in the fundamental representation of the rotation group and, if
all other features in the state of motion are kept fixed, that they can have
two states, |1/2, +1/2) and |1/2, —1/2), the first of which describes the
spin oriented along the positive 3-direction, while the second describes
the orientation along the negative 3-direction.

4.1 The Rotation Group (Part 1)
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The physical manisfestation of the spin 1/2 of these particles is
through the correspondlng magnetic moment which is proportional to

the Bohr magneton p,B of the particle,

@) . eh

)1
n= g(’),uB 5 with g (4.22)

2m,~c ’
Here g is the gyromagnetic ratio whose value, for charged particles,
should have the approximate value 2, e is its charge, i.e. e = —|e| for
the electron e~ and the muon =, e = |e| for the positron e™, for the
positive myon ', and for the proton. The factor 1/2 is nothing but
mmax: Indeed, the self-adjoint operator to be associated to the magnetic
moment, is given by

L= g(’),ug) (4.23)

and one defines the observable p as being the largest eigenvalue of the
operator (4.23).

The following argument shows that the Bohr magneton is the natural
unit for magnetic moments to be associated to elementary particles. We
calculate the magnetic moment which is related to the orbital motion of
an electron bound in its atomic state. The magnetic moment M is given
by the space integral of the magnetization density m(x) which, in turn,
is determined by the electric current density j(x), viz.

M=/d3xm(x) with m(x) = 2lxxj(x).
c

Inserting the expression

. h e * *
Jx) = —[¥" Vi — (Vi) ¢l
12m

for the electric current density, one sees that the magnetization density
contains the operator £,

h
m(x) = :%[w*ew(ew*w].

Thus, the magnetic moment caused by the orbital motion is proportional
to the expectation value of £,
h

M= (4.24)
2mce

an expression which contains the Bohr magneton, indeed.

For the rest, classical electrodynamics tells us that this magnetic mo-
ment interacts with external magnetic fields B via the term —M - B.
Therefore, if Hy denotes the Hamiltonian that describes the atom, the
presence of an external magnetic field will modify it to

eh
H=Hy——{-B
2mc



Of course, the intrinsic magnetic moment (related to the spin) interacts
with the external field, too. Also, the two moments, the orbital and the
spin magnetic moments, interact with each other. The interaction of the
spin magnetic moment with the external field is proportional to s - B,
its interaction with the magnetic moment generated by the orbital mo-
tion is proportional to £-s. Inserting the correct factors the interaction
Hamiltonian reads

Hen eh B eh B R* 14U
— ——{.B— s - —
0~ Sme Some 2m2c2 r  dr

{:s. (4.25)

The second and third terms on the right-hand side reflect the interaction
of the orbital and the spin magnetic moments with the field, respect-
ively, the fourth term describes the spin-orbit coupling which manifests
itself in what is called the fine structure of spectral lines. The factor in
front of it contains the derivative of the spherically symmetric potential.
It follows from the relativistic dynamics of the hydrogen atom.

1. The spin of the electron was discovered through the magnetic mo-
ment attached to it and the interaction of this moment with in-
homogeneous magnetic fields (experiment by Stern and Gerlach).
Furthermore, the two values of s3 play an important role in explain-
ing the structure of the electronic shells of atoms, as well as, more
generally, in the relation between the spin of the electron and the
statistics that many electron systems obey (Pauli principle). This led
to one of the basic postulates of relativistic quantum theory to which
we will return in Part Two. It says that elementary particles are to be
classified by irreducible representations of the Poincaré group which
correspond to fixed mass and definite spin. The spin is always de-
fined in the rest system of the particle where its linear momentum
and, hence, also its orbital angular momentum vanish. Qualitatively
speaking, one investigates the reaction of the particle at rest to rota-
tions of the frame of reference.

2. The operator p which represents the intrinsic magnetic moment
of the electron, with respect to rotations in R3, must be a vec-
tor operator, that is to say, it must transform like x or like
{Yim|m =—1,0, +1}. In the rest system the only nonvanishing vec-
tor operator is the operator of spin s. Therefore, the magnetic
moment must be proportional to the spin operator, g o<s.

3. The g-factor, or gyromagnetic ratio, hints at a deeper physical struc-
ture of particles. A relativistic version of quantum mechanics yields,
at first, the value g = 2. However, one finds that this value can (and
will) be modified by the interactions that the particle is subject to. In
the case of the electron, or, by analogy, of the muon, this is the in-
teraction with the Maxwell radiation field. In lowest approximation

4.1 The Rotation Group (Part 1)
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4 The series (4.27) is named after the
mathematicians A. Clebsch (1833 —-1872)
and P. Gordan (1837 -1912).

one finds
2@~ g & 2+% _ (4.26)
4. The nucleus of the hydrogen atom itself is an elementary particle

with spin 1/2. Thus, it too, carries a magnetic moment related to its
spin,

u = g 1A ) = 5586
2mpc
whose absolute value is smaller by a factor g(l’)me/(g(e)mp) ~
1.5 x 1073 than the absolute value of the electron’s magnetic mo-
ment. Its interaction with the moment of the electron causes the
hyperfine structure observed in the spectra of the hydrogen atom.

4.1.6 Clebsch-Gordan Series and Coupling of Angular Momenta

Vectorial addition of two angular momenta j; and j, to a resulting, total
angular momentum J = j; + j» is well known from classical physics.
The analogous operation in quantum mechanics, for irreducible repre-
sentations of the rotation group, is of great theoretical and practical
interest. The problem is the following: Given two unitary, irreducible
representations spanned by the states | ji, m1) and | j», m2), respectively,
the corresponding D-matrices being DU, j = 1, 2. The states formed by
the products |ji,m1)|j2, my) provide a unitary representation, too, but
this representation is reducible. This can be seen, for instance, by real-
izing that these states transform with the product DU x D2) which, in
the general case, does not have the structure of square blocs along the
main diagonal which cannot be reduced further. On the other hand, the
union of all representations is complete, and it must be possible to ex-
pand the product states in terms of irreducible representations, i.e., in
a somewhat symbolic notation,

DU x DU — Z DV . (4.27)
J

This series is called Clebsch-Gordan series.*

If |JM) denote the eigenstates of the commuting operators J> =
(j1 +Jj2)% and J3 = (j1)3 + (jo)3, this series is written in the form

[IM) =" (jimi, jamal IM) |jimy) |jama) . (4.28)

miy,m2

The expansion coefficients (jimi, jomo|JM) are called Clebsch-Gordan
coefficients. Alternative notations for Clebsch-Gordan coefficients are
C(jimy, jama|JM), or C(j1j2J|mimyM), or, even shorter, (mma|JM).
They are the entries of the unitary matrix which maps the orthonormal
product basis | j, m1)|j2, m) to the new, orthonormal base states |JM).
In Part Two we will show that, as a consequence of the Condon-



Shortley phase convention (4.12), the Clebsch-Gordan coefficients be-
come real, which is to say that the transformation matrix is even
orthogonal. This implies that the inverse of (4.28) is effected by the
transposed matrix, so that the product states can be written as follows

ljim1) [ jam2) ZZ(jlml,jzmzlfM) |JM) . (4.29)
M
By comparing the series (4.28) and its inverse (4.29) one sees that the
notation (mymy|JM) is the most concise in expressing the change of
basis. The values of j; and of j, are fixed anyway, and their repetition
in the coefficients is redundant. Explicit methods that allow to calculate
these coefficients are explained in Chap. 6, Part Two.

Already at this stage, before even calculating the Clebsch-Gordan
coefficients explicitly, one can determine the values of the total angu-
lar momentum J and of its 3-component M that are possible for given
values of j; and j,. This is achieved by the following arguments:

1. The operator J3 is the sum of the 3-components of j; and of j,. Ap-
plying this operator to the two sides of (4.28) shows that one must
have M =m| +my.

2. It is obvious that the largest value of M is obtained if one chooses
m1 = j1 and my = jp, so that M = j; + j». The corresponding value
of J must be J = j; + jo: A smaller value contradicts the proper-
ties (4.11a), (4.11b) of the representations, a larger value is excluded
because then there would be states with M > m +m>, in contradic-
tion with the assumption.

3. Considering the next lower value M = j; + j, — 1, there are two
possibilities to choose the quantum numbers m;, either (m; = ji,
my = jo—1) or (im; = j1 —1,my = j2). One linear combination of
the corresponding product states belongs to total angular momentum
J = j1+ o, the corresponding eigenstate |J = ji+ jo, M= j1+j» — 1)
is obtained from the state |J = j; 4 jo, M = ji + j2) by applying the
lowering operator J_ = (j1)— 4 (j2)—. The other linear combination
which is orthogonal to the first, must belong to a multiplet which has
J=ji+j—1

4. The example (j; =3/2, j» = 1) sketched in Fig. 4.4, shows that this
process continues: For M = j; + j, — 2 there are three possibilities to
choose the pair (m1, m>). Two orthogonal combinations of product
states with |jim) and |jom;) belong to the two values of J, deter-
mined previously. The third linear combination which is orthogonal
to the first two, opens a new multiplet which carries J = j| + j, — 2.
This contruction terminates when the value j = |j; — j»| is reached.
For example, assume like in Fig. 4.4 that j; > j,. Then, for M = j; —
j2— 1 one possible choice is missing (the one with m; = j; and
my = —jp — 1), so that no new multiplet opens up. (Of course, the
other case, j» > ji, is reduced to the first by interchanging the two
angular momenta.)

4.1 The Rotation Group (Part 1)
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Fig.4.4. Construction of the coupled
states |JM) for the example j; =3/2,
j» = 1. Starting from the state |J, J)
one constructs first the multiplet which
has J = j; + j». With every step in M
(to the left in the figure) there emerges
a new multiplet until one has reached

J=1j1—Jjal
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As a result we note the rules:
mi+my=M, h+p—J=n, n e N
Ji+jp=>Jd>j1—jl. (4.30)

The first of these repeats the statement that the 3-components must
be added; the second and third, taken together, are said to form the
triangle rule for angular momenta. By writing J = j3 they can be
written in an equivalent, symmetric form:

lhtiti=n,  jg+p=i=lhi—jpl  (cyclo)].
(4.31)

(Note that we used the fact that 2J is always a nonnegative integer.)

1. The rules (4.30), (4.31) show a certain analogy to the restrictions
that one has to observe in adding ordinary vectors. At the same time,
they also take account of the pecularities of “quantum angular mo-
mentum”.

2. Every Clebsch-Gordan coefficient which violates these selection
rules, vanishes.

3. It is easy to verify that the product basis comprises the same num-
ber of independent orthonormal elements as the coupled basis |JM).
Assuming j; > jp, without restricting the generality of the argument,
we find

1tz

> @I+ =01+ )+ T+ 201+ - D+1+...
J=1j1=jal
+201 =)+ 1=C2p+D2ji+D.
This is precisely the number of product states.

4. The Clebsch-Gordan coefficients, being real, are the entries of or-
thogonal matrices. More precisely, they obey the orthogonality rela-

tions
> Gimy, joma| IMY Gy, jama| M) = 81y 8uur |. (4.32)
mimy
> Grm, jamal IM)(jim'y, jamy| IM) = 8t Sy, |- (4.33)
JM




5. I quote here two symmetry relations which apply when two of
the angular momenta are interchanged. The proof is deferred to
Part Two. Taking J = j3 they read

(jama, jimy| jam3) = (=)' T27B(jimy, jama| jsm3) |, (4.34)
. . . fm 273+ 1 . .
(jim1, joma|jzm3) = (=)' 7" [ = (jimi, 3 —m3|jp—m2) |.
2jp+1
(4.35)

6. There are simple cases in which the construction by means of raising
and lowering operators sketched above, can be done “by hand”. Ex-
amples are the coupling of two spin-1/2 states, and the coupling of
angular momentum and spin of an electron, (j; = ¢, jo =1/2). (The
reader is encouraged to try these cases.)

4.1.7 Spin and Orbital Wave Functions

The eigenfunctions of spin, J = 1/2, span a two-dimensional subspace
of Hilbert space. The D-matrices are given in (4.18), the matrix repre-
sentation of the spin operators is given in (4.17). Adopting the conven-
tional notation, s instead of J, we have s = ¢ /2 where o = (01, 02, 03)
stands for the three Pauli matrices. For the sake of completeness and as
a starting point for calculations with spinors I repeat here these matrices
and their properties

01 0 —i 10
= N = s = ) 4.36
7! <10> 72 <i0> 7 (0—1) (30

G;r =0, 0i0j = 6;j +1i Z &ijkOk “4.37)
k
The second equation in (4.37) summarizes the information that the

square of any Pauli matrix is the unit matrix, 01‘2 = 1, and that the com-
mutator of two different matrices is given by

[oi,0;]=2i Z &ijkOF »
k

in agreement with the more general form (4.6), (note the factor 1/2 in
the definition s = o /2!).

There are three alternative notations for the normed eigenstates of s3
which belong to the eigenvalues 1/2 and —1/2, respectively. They are

oo o (152 = ()]
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Eigenstates of sj, or of sy, or of the projection of the spin onto an
arbitrary direction 72 all have the form

S o1 11T
" VPt L \o) ) ] '

Combining the orbital wave functions ¥, (¢, x) of an electron with its
spin functions y+ yields a total wave function ¥ = (Y4, ¥_)T which
has two components. In general, it no longer factorizes in an orbital
and a spin part. Rather, it is a linear combination of product states
vas Cum, W Xm,- For example, this will happen when the orbital wave
functions are eigenfunctions of orbital angular momentum while ¥ is
meant to describe eigenstates of total angular momentum j = £ +s.

Given two such composite wave functions, say ¥ = (wi), 1//8))T
with i = 1, 2, their scalar product is

W W)= / (A R e / &x [y P +y ]

The probability density to find the electron at time ¢ at the position x,
and in the eigenstate |1/2,mg) of s3 is given by |1ﬁms|2. In turn, the
function |4 |*> + | _|* describes the probability density to find the elec-
tron in the world point (¢, x), irrespective of the orientation of its spin
in space.

An example for a factorizing state is provided by the plane wave
which describes a polarized electron with (linear) momentum p,

1
———5¢
(2mhy)3/2

This example is a special case of the following more general situation.

ip»x/hX )

4.1.8 Pure and Mixed States for Spin 1/2

In the two-dimensional subspace of #, and using the basis of eigen-
states of s3 = 03/2, define the density matrix

1
0@ = ( "+ 0 =—(1+4+¢03) with ¢=w;—w_.
0 w-— 2

By definition w4 +w_ =1 (this relation was used above), both num-
bers being real. The expectation values of the components of the spin
operator are found to be

1
(s)=0=(s). (s =t () =3¢

In calculating these traces use was made of the formulae
tro; =0, tr(ojor) = 28k

which follow from (4.37). If w4 =1 and, hence, w_ =0 (or if wy =0
and w_ = 1), then 0@ describes a pure state of complete polarization



along the positive (or negative) 3-direction. Any other choice of the real
weights corresponds to a mixed state in which the particle is only par-
tially polarized, or not polarized at all. In these cases the two spin states
do not interfere. Specifically, the choice w = w_ = 1/2 describes an
unpolarized state, the probabilities to find the spin in positive or nega-
tive 3-direction are equal.

Consider a physical state which is a statistical mixture of eigenstates
of the operator £ -7, where i1 = (sin 6 cos ¢, sin 6 sin ¢, cos 6) is a unit
vector in 3-space, and with given weigths w4 and w_. In a frame of
reference whose 3-direction is directed along 7 the density matrix is
the same as above, go|g = diag(wy, w—). The same density matrix ex-
pressed with respect to the original frame Ky is obtained by the rotation
relating K to Ko, i.e. by

Q|K0 =D(1/2)T(1/,’ 0, ) Q|KD(1/2)(‘/f, 0,),
where the D-matrix is given by (4.18). When calculating the product
D(/2153D(1/2) the Euler angle v is seen to drop out. One obtains the
result

| _ /1o (e —w) cosf sinfe ¢
¢l =5 101 T 77 sin0e®  —cos

_ %[11 (s —w )i -o]. (4.39)

Note that the half angles which are the arguments of DU/2 | by the
well-known addition theorems for trigonometric functions, are replaced
by the full angles 6 and ¢.

The result (4.39) is interpreted easily and gives rise to a few in-
teresting comments. First of all, one verifies the general properties of
a density matrix (we omit the reference to Ko),

1
ol=0, tro=1, tr(92)=5[1+(w+—w_)2]=wi+w2_51.

In doing this calculation one makes use of the second formula in (4.37)

to show that (7i-0)(i-0) = iZ = 1. Of course, use is made of the nor-

malization condition w4 4+ w_ = 1. If one of the weights equals 1 while

the other vanishes, then tr o = tro = 1. Thus, the density matrix de-

scribes a pure state. In all other cases o describes a statistical mixture.
In some considerations it is useful to define the vector

= (wy —wo)it (4.40)
and to write the density matrix as follows,
1
=-(1+4+¢-0).
o=50+L-0)

For example, calculating the expectation value of the spin operator in
the state described by the density matrix o, yields, as expected,

IR 1
(s) =3 (o) =5 tr(eo) = - &.
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The polarization points in the direction of ¢. With |(s)|max = 1/2, the
degree of polarization is equal to

|(s)] BN ek

P:= .
[{$) | max Wy +w-—

(4.41)

The square of the norm of ¢ is equal to (w4 — w_)2=(1—2w_)? and
is equal to or smaller than 1. By the same token, the formula (4.41)
yields the relevant observable that is determined by experiment: One
measures the number N, of particles which are polarized along the di-
rection of ¢ as well as the number N_ of particles polarized in the
opposite direction. One then takes the difference Ny — N_ of these
numbers and normalizes to their sum, viz.

_ Ni—N_

NN
A numerical example may serve to illustrate these results. Suppose one
measures the polarization (4.41) to be 40%. In order to take account of

this experimental result one must choose w4 = 0.7, and w_ = 0.3. The
trace of Q2 equals 0.58 and, hence, is smaller than 1.

(4.42)

4.2 Space Reflection and Time Reversal
in Quantum Mechanics

The example of the rotation group showed that symmetries under trans-
formations in space and time play an important role in quantum mech-
anics and, as compared to classical physics, present some novel aspects.
In nonrelativistic quantum mechanics the relevant symmetry group is
the Galilei group, in relativistic quantum (field) theory, to be treated in
Part Two, it is the Poincaré group, in both cases including reflection in
space and reversal of the direction of time. The consequences of the
invariance of a given theory under space-time symmetries that follow
from the theorem of E. Noether, are best worked out in the frame-
work of second quantization. Although this topic is dealt with later in
Part Two, I discuss space reflection and time reversal already at this
point of the development.

4.2.1 Space Reflection and Parity
One can show that reflection of the axes in the physical space R
x+—x'=—x, t—1 =t

induces a unitary transformation IT in Hilbert space. An important the-
orem of E. Wigner says that every symmetry S of a quantum system
induces in a unique way a tranformation of unit rays in Hilbert space

W} — Sty)
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which is either unitary or antiunitary. This theorem is spelled out in
Part Two. If wg) = Uy is a unitary transformation induced by a sym-
metry of the physical system, then all transition matrix elements fulfill
the relation

WPy = Oy 0y (4.43)

In the case of antiunitary realization of the symmetry the mapping
‘/fg) = Sy implies the relations

W 1w = WOy = P (444)

for all i and k.
If the states transform under space reflection according to

Y(x) — ' (x)) = My (—x)

then the observables will have the transformation behaviour
O—O0=non"'.

It is obvious that expectation values are invariant (v, Ov) = (¢, o ¥).
The properties of the operator II are

n2=ti, n=n=n"'. (4.45)

This operator is called parity operator. It is unitary and self-adjoint. Its
eigenvalues are +1 and —1. An eigenstate with eigenvalue +1 is called
a state with even parity, an eigenstate with eigenvalue —1 is said to be
a state with odd parity.

The actions of the parity operator on the operators of position, of
momentum, of orbital angular momentum, and of spin are, respectively,

nomn'=-o0, npea'=-p, (4.46)
men—'=+¢, OsI ! = +s. (4.47)

The two formulae (4.46) are a direct consequence of the definition of
space reflection. The first of the formulae (4.47) follows from the clas-
sical expression £ = Q x P for the orbital angular momentum: Indeed,
as both Q and P are odd, their vector product £ must be even. Both
of (4.47) leave the commutation rules (4.5) invariant. This is remark-
able in view of the fact that these rules are nonlinear. Their left-hand
side contains two operators, while their right side contains only one! Of
course, the result is in agreement with the well-known relationship be-
tween O(3) and SO(3) which says that every element of O(3) whose
determinant is —1 can be written as the product of an element of SO(3)
and of space reflection.

The action of Il on a wave function with spin projection m; is seen
to be

me;(lz x) = 1/fm5 (t’ _x) .
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> The precise statement is: If an initial
state which is even under II, by the ac-
tion of some interaction, goes over into
a final state which exhibits a correlation
of this kind, the parity-odd observable
is a measure for the amount of par-
ity violation. In contrast, if the electron
in the initial state had already a lon-
gitudinal polarization, then there is not
necessarily parity violation. What mat-
ters is the change of state.

The action on an eigenfunction of orbital angular momentum is
IR, (1) Yom (0. §) = Re (1) Yo (7 — 6, 7T + ) = (=)' Ra(r) Yo (6. ¢) -

The sign (—)* arises from the following observations: The mapping
0+ (r —6) means that z = cos# is replaced by —cosf = —z. Inspec-
tion of the formulae (1.114) and (1.115) shows that the factors (z2 — 1)¢
and (1 —z%)"/? remain unchanged, while the derivative d/dz is multi-
plied by (—1), d/dz+> —d/dz. Therefore, the associated Legendre
function P;"* (1.115) obtains the factor (=)™ On the other hand, the
factor ¢”? gets multiplied by (—)™. The product of these sign factors
gives indeed (—)¢ and we obtain the important relation

Y0 (6, $) = (=) Yem (6, ) . (4.48)

What is the role of the parity operation IT in the dynamics of a sys-
tem described by the Hamiltonian H? The operator of kinetic energy
is proportional to the Laplace operator A which is invariant under
space reflection. Asking whether or not IT is a symmetry of the theory
is equivalent to asking whether the interaction has a well-defined be-
haviour under parity. For example, any spherically symmetric potential
as well as the spin-orbit interaction

U(r) and f(r)L-s,

respectively, are even with respect to II. A velocity dependent term of
the kind

gnl-q,

with ¢ a momentum or momentum transfer, would be odd.

Whenever there is an interaction which is neither even nor odd,
e.g. being the sum of an even and an odd part, there will be observ-
ables which are odd, and, hence, which signal violation of invariance
under parity. Examples for observables of this kind are the spin-
momentum correlations. These are observables which are proportional
to the (scalar) product of an even and an odd observable such as

1
2— (s)-p=:P.

Pl
This observable describes the longitudinal polarization of an electron.’
Nature makes use of such interactions: The weak interaction with
charged currents which is responsible, e. g., for f-decay of nuclei, vio-
lates parity. Here, parity violation is even maximal, the observable
effects are as large as they can possibly be.

If the Hamiltonian which appears in the Schrodinger equation is
such that it commutes with the parity operator, [H, II] = 0, the eigen-
functions of H (i.e. the solutions with fixed energy) can be chosen
such that they are also eigenfunctions of the parity operator, with eigen-
value 41 or —1. For instance, the eigenfunctions of the spherical oscil-
lator, Sect. 1.9.4, and, likewise, the eigenfunctions of the bound states of
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the hydrogen atom, Sect. 1.9.5, are eigenfunctions also of II. The eigen-
value of IT is fixed by the value of ¢. All states with £ =0,2,4,... are
even, all states with £ =1, 3,5, ... are odd.

This observation is of paramount importance for the discussion of
selection rules. In a transition from the initial state y; to the final
state v ¢, by the action of an operator ¢, we have

(W, OY) = (Y, T 'MON'Ty;) = (M y, OMys) .

If ¥y and ; are eigenfunctions of Il and pertain to the eigenvalues
()7 and (—)™, respectively, and if @ = (—)o @, the transition mat-
rix elements can be different from zero only if

()0 = (17

The parity of the initial state multiplied by the parity of the operator
must equal the parity of the final state.

Electric multipole transitions in atoms provide important examples.
The transition amplitude is proportional to matrix elements of the form

(n'ﬁ’m’| Jakr)Yy, |ntm)

where j, with X € N is a spherical Bessel function, and & is the wave
number of the emitted light quanta. A matrix element of this kind must
vanish if the parities do not match, that is to say, if the selection rule

(=) =)

is not fulfilled. Electric dipole transitions have A = 1, and the selection
rule requires the initial and the final states to have different parities.
A 2p-state of hydrogen which by (4.48) is parity-odd, can make an elec-
tric dipole transition to the 1s-state which has even parity. This is not
possible for a 2s-state because it has even parity.

Of course, there are further selection rules, beyond parity. For ex-
ample, the orbital angular momenta £, A, and £’ must fulfill the triangle
rule (4.30) and one must have m + = m’. These remarks and examples
illustrate why space reflection takes a fundamentally different and more
important role in quantum mechanics of particles than in classical mech-
anics of point particles.

4.2.2 Reversal of Motion and of Time

Time reversal 1 —> —t in the physical spacetime is the prime example
for a symmetry transformation which in Hilbert space is represented by
an antiunitary operator T. The reason for this will become clear soon.
However, we first give the precise definition of antiunitary operators and
collect a few of their properties.
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Definition 4.1 Antiunitary Operator

An operator K which maps the Hilbert space bijectively onto itself,
is said to be antiunitary if it has the following properties

L Klei fP+of@P)=ci[KfV]+ K@), c.e€C,
AP =IKfI> forall [P, f@ fe .

One easily proves the following properties:

Theorem 4.1 Antiunitary Operators

1. With f, g € # any two elements one has

(Kf. Kg)=(g. /) =(f.9". (4.49)

2. The product of two antiunitary operators K" and K® is unitary.
3. The product of an antiunitary operator and a unitary operator is

again antiunitary.

1.

N

W

&

The relation (4.49) is identical with (4.44), quoted in Sect. 4.2, which
relates different transition amplitudes. One proves the relation (4.49)
by evaluating (K(csf +cgg), K(csf +cgg)) for arbitrary complex
numbers ¢y and c¢g, making use of property 2 in the definition, and
by comparing coefficients. Indeed, by property 1

(K(crf+ce8). Klcrf+cgg))
= Jer[ 2K LK) +[eg| *(Kg. Kg)
+crc(Kf, Kg) + g (Kg, Kf).
By property 2 this is equal to

= ((crf+ce®), (crf+ce®)) = ler|2(f, £)+]ce] (g 9
+C>}Cg(f’ g) +Cfcz(g9 f) .
As cy and ¢, can be chosen at will one concludes (Kf,Kg) =

(8. )

As a corollary of the assertion 3 in Theorem 4.1 one notes that every
antiunitary operator can be written as the product of a unitary oper-
ator and a fixed antiunitary operator K@, K = UK.

. The operator K©© may be chosen to be “complex conjugation”, that

is to say, the operator which does no more than to replace every
complex number (also called a c-number) by its complex conjugate.
In classical physics time reversal is equivalent to reversal of the
sense of motion. Indeed, the relation (4.44) or (4.49) means that ini-
tial and final states are interchanged. Thus, it seems plausible that
time reversal is effected by an antiunitary operator.
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5. In turn, if we already know that time reversal is represented by an
antiunitary symmetry transformation in Hilbert space, then (4.44)
implies a simple rule: Time reversal, applied to a transition matrix
element, either means that initial and final states must be inter-
changed, or that all c-numbers must be replaced by their complex
conjugates.

We work out the action of the transformation
t>t=—t, x—>x=x
on the Schrodinger equation. Let

Y(t, x) — ', x) =Ty, x), ' =-1).

If H has no explicit time dependence, the operator T must be deter-
mined such that the Schrodinger equation remains form invariant, that
is,

ih%lﬁ/(t/,x)zHT///(l/,x) or —ih%TWa x) = HTy(t, x).

As long as ¥ is a scalar, hence a one-component wave function, this
requirement is met if the operator T acts by complex conjugation K@,

Ty, x) = KOvu(, x) = (1, x) . (4.50)
Thus the time reversed wave function satisfies the complex conjugate
Schrodinger equation.

If the wave function contains also a spin-1/2, that is to say, if it is
a two-component vector ¥ = ({4, 1/f_)T (cf. Sect.4.1.7), then T can be
taken to be of the form

T = UK©® 4.51)

where U is a unitary transformation still to be determined. Thus, its
action will be

f(2)(3)

The unitary transformation U is obtained by the following argument:
With & = (Y, v_)T also ¥* = (W, ¥*)T is a spinor representation
of the rotation group. While the former transforms under rotations
with DU/2)_ ¢f. Sect. 4.1.3, the latter, ¥*, transforms with D4/2* How-
ever, this is consistent only if the relation

upW/2dyut = p/2)* . ie UO’;FUT =—0;

is satisfied. The matrix o is pure imaginary. It obviously commutes
with itself, but anticommutes with o1 and with o3. Therefore U must
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be proportional to o3. The conventional choice is the following

T=UK? with U:i02:< 01 (1)) . (4.52)

A look at the formula (4.18) tells us that U, in reality, is a rotation about
the 2-axis, by an angle 7,

U =i, = DW/2(0, 7, 0) = ™2/2

This result calls for two comments.

1.

The same reasoning may be applied to any representation of the
rotation group in which the generators are (2j+1) x (2j 4+ 1) matri-
ces J;, i = 1,2, 3. The rotation D) (0, , 0) takes J; and J3 to their
negatives, but leaves invariant J,, viz.

UJi30 " =—Jy3, ULU ! =+),.

With the phase convention (4.12) the 1- and 3-components are real,
while the 2-component is pure imaginary. Therefore, for all three of
them we have

urul=-J3,, =123, (4.53)

which hold in all representations. Thus, time reversal is realized by
the antiunitary transformation T = UK©,

The matrix U is real (hence, in fact, orthogonal) and commutes with
the operation of complex conjugation. Therefore, applying time re-
versal twice, one obtains

T? = UKOUK©® = UK ? = exp(i27)2) = (—)% 1 .
Thus, for integer angular momentum one has T? = + 1, while for
half-integer angular momentum one finds T? = — 1. In particular, in
a system containing N particles with spin 1/2 (fermions) one finds

T?=-)N1.
If the Hamiltonian of this system commutes with time reversal,
this factor has an important consequence: From Hyr = Eyr fol-
lows H(Tv) = E(Ty) which means that if i is a solution of the
Schrodinger equation then also Ty is a solution and has the same
energy E as the original. If the number of particles N is even one
can always manage to have (Tvy) = . However, if N is odd the two
states ¢ and T are different. This means that the eigenvalues of the
Hamiltonian H for a system with an odd number of fermions are al-
ways degenerate. The degree of degeneracy is even, hence, at least
equal to 2. This statement is called Kramer’s theorem.

Under the action of time reversal one obtains relations which are

analogous to (4.46) and to (4.47), and which read

TOT ' =+0, TPT '=—-P, (4.54)
LT ' = —¢, TsT ! = —s. (4.55)
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An external electric field is invariant under time reversal, while
a magnetic field B goes over into —B. The relative sign between
E and B is immediately clear if one recalls the Lorentz force F =
e(E+v x B/c) and notes that the velocity v is odd. If Hy commutes
with T, then the Hamiltonian (4.25), as a whole, is invariant under time
reversal. Note that we apply time reversal both to the observables of
the electron and to the external fields. If instead we had kep the exter-
nal fields unchanged then the terms Hp and £-s would be even, but the
terms £- B and s - B would be odd. An electron which crosses a fixed ex-
ternal magnetic field does not follow the same trajectory when ¢ > —t.

Suppose T commutes with H. The action of time reversal on the
evolution operator (3.27) then is

TU(, 1) T =Texp (—ihH(t —zo)) T=exp (+%H(t —to)) —Ut(t, 1)

This is the quantum theoretic analogue of the classical equivalence be-
tween time reversal and reversal of the motion.

4.2.3 Concluding Remarks on T and II

The rotation group being a subgroup of the Galilei and of the Poincaré
groups, plays an important role in both nonrelativistic quantum mechan-
ics and quantum field theory. As this is a continuous group, invariance
of the dynamics of a given system under rotations about an (arbitrary)
axis 72 implies conservation of the projection of the angular momentum
onto that axis — in close analogy to the analogous situation in classical
physics (theorem of E. Noether). Indeed, if ¢(x) is an eigenfunction of
a given Hamiltonian H, than the transformed, “rotated” wave function

¢'(x") = Dj(@)p(x) = explia(J - ) lp(x)

is an eigenfunction of H, for all values of the angle of rotation «, if and
only if

[H, (J-a)] =0,

i.e. if the projection of J onto the given direction commutes with the
Hamiltonian. If this holds true for all directions the angular momentum
as a whole is conserved.

In contrast to rotations and translations, time reversal and space
reflection are discrete transformations. Invariance of the dynamics of
a physical system with respect to IT or to T does not lead to new con-
served quantities, but implies certain selection rules. These selection
rules are a characteristic feature in the quantum world, and are new as
compared to classical physics. Parity selection rules in the case of I,
and Kramer’s theorem in the case of T provide good examples.

There is another, far reaching aspect which comes in addition to
the two discrete transformations studied above: Relativistic quantum
physics predicts, somewhat loosely speaking, that for every elementary
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® In nonrelativistic quantum mechanics
there exists an analogue for the particle-
antiparticle relation. For example, in
a many body system consisting of N
fermions in an external, attractive po-
tential the ground state (i.e. the state
of lowest energy) is a state where the
particles are distributed over the lowest
bound states, in accord with the Pauli
principle. Excited states of the sys-
tem contain configurations where one
or several particles are taken out of
a bound state, creating a “hole”, and are
lifted to a formerly unoccupied state.
The relation of hole states to occupied
particle states is somewhat like the re-
lation of antiparticles to particles.

particle there exists an antiparticle. Particles and antiparticles have the
same mass and the same spin but they differ in the sign of all additively
conserved quantum numbers.® An example for an additive quantum
number is the electric charge g/|e|, expressed in units of the elementary
charge: An electron has charge —1, the positron being its antiparticle,
has charge +1. Electric charge is universally conserved. Therefore, in
any reaction process the sum of all charges in the initial state equals
the sum of all charges in the final state.

Conversely, a particle which is identical with its own antiparticle,
can have no additively conserved quantum numbers. This is the case for
the photon which carries no electric charge and which, indeed, coincides
with its antiparticle. Furthermore, one learns that quantum field theory
can be formulated in a way which is completely symmetric in particles
and antiparticles, and that it is a matter of pure convention whether one
calls the electron “particle”, the positron “antiparticle”, or vice versa. In
order to take proper and formal account of the particle-antiparticle rela-
tionship one defines one further discrete transformation C, called charge
conjugation, which replaces every particle (antiparticle) by its antipar-
ticle (particle), without changing any of its other dynamical attributes
such as linear momentum, spin, or the like. For example, its action on
the state of an electron is

C: e, p,mg)—> e let, p,my) , (4.56)

Note that there can be a phase factor ¢’¢ in this mapping.

It turns out that charge conjugation is intimately related to space re-
flection and to time reversal. A fundamental theorem in quantum field
theory, discovered by G. Liiders and W. Pauli, and proven in its most
general form by R. Jost, says that a theory which is Lorentz covariant
and fulfills certain conditions of locality and causality, is invariant under
the product

NCr=:0 (4.57)

of space reflection, charge conjugation, and time reversal [Streater and
Wightman (1964)]. Thus, if the theory fulfills these conditions but is not
invariant under one of the three discrete transformations, it must vio-
late one of the remaining two. Here is an example which illustrates this
important relation.

Example 4.1 Decay of Charged Pions

A positively charged pion w*, after a mean life of about 2.6 x 1078 s,
decays predominantly into a positive muon and a muonic neutrino,

1t — 4,

The pion has no spin. Seen from the pion’s rest system the muon and
the neutrino have opposite and equal (spatial) momenta, as sketched
in Fig. 4.5. The plane wave decribing the relative motion of the particles
in the final state contains all values of the orbital angular momentum 2,
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cf. (1.136), but all partial waves have vanishing projection onto the line
along which the particles escape, m, = 0. (Recall that we showed this in
Sect. 1.9.3!) Take this direction to be the 3-axis (axis of quantization).
As the projection J3 of the total angular momentum (which is the sum

of orbital and spin angular momenta) is conserved, and as all m, vanish,

the projections of the spins mfv“ ) and mgv) must be equal and opposite.

Neutrinos having their spin oriented opposite to their momentum, the
m quantum numbers must be the ones shown in Fig.4.5a.

Applying charge conjugation C to this process yields the new pro-
cess shown in Fig. 4.5b: A negatively charged pion goes over into a p~
with its spin antiparallel to its momentum, and a muonic antineutrino
whose spin is antiparallel to its momentum, too. This process was never
observed. Experiment tells us that neutrinos occur always with their spin
antiparallel to the momentum, while antineutrinos come always with
their spin parallel to the momentum. Another way of expressing the
same observation is this: Define helicity, or “handedness” to be the pro-
jection

h = P .

Pl
The empirical observation is that neutrinos always come with negative
helicity, antineutrinos with positive helicity. Now, while it seems pro-
hibitively difficult to measure this observable directly with neutrinos,
this measurement is possible for their charged partners. One deduces
the helicity of the neutrino or the antineutrino, respectively, from the
conservation of J3, as described above.

If, in addition, one applies space reflection to the (unobserved) pro-
cess of Fig.4.5b, or, equivalently, if one acts with the product CII on
the initial process of Fig. 4.5a, then one obtains the decay process shown
in Fig.4.5c. Indeed, this is a process which is seen in experiment and,
hence, which is physically allowed!

The mere fact that one observes a nonvanishing spin-momentum cor-
relation of the kind of (4.58), or s - p/E, which is odd under IT but even

(4.58)

Fig.4.5a—c. The figure shows the de-
cay nt —> pt+v,, in part (a), as
well as the processes which are ob-
tained from it by the action of charge
conjugation C, and of the product of C
and of space reflection II. The pro-
cess (c¢) is observed in nature, the pro-
cess (b) is not
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7 The precise statement is the follow-
ing: A particle with nonvanishing mass
which is created in p-decay, or in some
other related process, has longitudinal
polarization (i.e. along the positive or
negative direction of its momentum).
The degree of polarization assumes the
maximal value P; = +v/c. If the par-
ticle has no mass, then this goes over
into P, = %1, the helicity is h = £1/2.

under T, is an indication that the weak interactions which cause the de-
cay do not conserve parity. The experimental finding is that for leptons
(electrons, neutrinos, muons, etc.) this correlation even takes the largest
possible value. This means that violation of parity invariance must be
maximal.” The example shows, furthermore, that the weak interaction
also violates invariance under charge conjugation C in a maximal way.
Only the combined transformation CII is a symmetry of the interac-
tion.

4.3 Symmetry and Antisymmetry
of Identical Particles

The quantum mechanics of a single particle that was the subject of
Chap. 1 can be generalized to systems of many particles in a simple
manner and in close analogy to classical mechanics. I show this in
quite some detail on the example of two-body systems, and then, in
a second step, extend the results to systems with a finite number N of
particles. As compared to classical mechanics, a fundamentally new as-
pect will come into play when these particles are identical particles. In
micro-physics, as a matter of principle, identical particles are indistin-
guishable. The analysis of this fact, together with Born’s interpretation
of the wave function, implies that the total wave function of the N-
particle system carries a specific symmetry character with respect to
interchange of particles. Furthermore, the type of exchange symmetry it
has is related to the spin class of the particles. Particles with half-integer
spin have another exchange symmetry than particles with integer spin.

4.3.1 Two Distinct Particles in Interaction

Take the hydrogen atom as an example: it is composed of an electron
which has electric charge —|e|, and mass mec? = 0.511keV, and a pro-
ton which has charge +|e|, and mass mpc2 = 938.3 MeV. Hence, we
deal with two distinct particles whose properties differ. We consider two
particles with masses m and m>, respectively, which interact via a cen-
tral force. The central force is conservative, and, hence, may be derived
from a potential U(r) with r := |x® — x| the modulus of the relative
coordinate. A Hamiltonian describing this system then has the form
n? R?
H=——AY—— AP+ U@). (4.59)
2m 2my
The particle index (i) attached to the Laplace operators indicates that
derivatives are to be taken with respect to the coordinates x.
The kinematics of the problem is the same as in classical mechanics:
Center-of-mass and relative coordinates are, respectively,8

1
X:=——(mx"V 4 myx?), ro=x% —xO
mi+my
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The corresponding canonically conjugate momenta are, respectively,

1
P=pVip®  p=

_ My
mi+my

(m1p? —map
If w =mymy/(m1+my) denotes the reduced mass, then we also have
P = .

The dynamics is different. The transformation

@D, x@ pV p@y— (X,r, P, p)

implies that the two physical particles are replaced by two fictitious but
equally independent particles, one of which has the mass M :=m| +m,
and the phase space variables (X, P), while the other has mass u
and the phase space variables (r, p). Following the rules developed
in Chap. 1 the momenta must be replaced by self-adjoint differential op-
erators as follows

P—>§V(X), p—>§v<’>.
i i

These operators and the position operators fulfill the commutation rela-
tions

h
[P, X = ;af»‘ =[pi.*1, [P, =0=[pi, X"],
(P, Pl=0=[pi, p]l, [X, X"1=0=["r".

This prescription is verified by the following calculation. Making use of
the chain rule for differentials one shows that

v = Mg _ gy v = M2y Ly
M ’ M

Squaring these operators, multiplying the result for the first operator
by 1/(2my), for the second by 1/(2m5), and adding, one finds

1

Loy 1 (L + L) (VO = LAy Lo
M

2\m; mp 2M 21
Thereby, the Hamiltonian (4.59) takes the expected form

__" G A N=HX Q) 4
2M 21 ) ( )

It separates into the (force-free) motion of the center-of-mass and an ef-
fective one-body problem in the relative motion. Stationary solutions of
the Schrodinger equation may be assumed to factor as follows,

(X, r, spins) = V(X)) x(sV, 52, (4.61)

8 In view of Jacobi coordinates for
N particles I choose here r to point
from particle 1 to particle 2. Note, how-
ever, that in [Scheck (2005)], Sects.
1.7.1 and 1.7.3, T used r =x —x@
instead.
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9 K.G.J. Jacobi, Crelles Journal fiir

reine und angewandte
XXVI, 115-131 (1843).

Mathematik

where x is a wave function which describes the spin(s) of the two
particles. For example, if the total state is an eigenstate of the center-
of-mass momentum P, then

W(X, r, spins) = exp (%P - X) o) x (s, s?) .

At the same time the stationary Schrodinger equation is decomposed
into two additive parts, and the eigenvalue of energy is the sum of the
kinetic energy of the center-of-mass and the energy of the relative mo-
tion, E = P? /(2M)+ Er. The full dynamics is contained, apart from
free motion of the center-of-mass, in the Schrédinger equation for rela-
tive motion,

H(’)rz—h—2 "+ Ur r) = Ew0(r) .
@) ZMA +U®@) ) o) rel(r)

Thus, we are taken back to the central field problems for one single
particle that we discussed extensively in Chap. 1.

The spin function y, in turn, for given spins s and s is to be
constructed as described previously.

As long as all particles are different from each other, the generaliza-
tion to N > 2 is obvious and follows the corresponding rules of classical
mechanics. Suppose the external forces are potential forces, and, thus,
are described by potentials U, (x"). Suppose further that the inter-
nal forces are central forces described by potentials U, (Jx"™ —x(]).
Then a typical Hamiltonian reads

_ . r? (n) (n) I 5 (m) (n)
n n m n
H= nz_l (_Zmn AV +U,(x )) +§ E Unn (’x —Xx
(4.62)

m#n=1
Its stationary eigenstates depend on all coordinates {x} and, if occa-
sion arises, on the spins of the participating particles,
/- lI/(x(l), s(l); x(2)’ 3(2); o ;x("), s(")).
The interpretation of this wave function follows from Born’s interpreta-
tion.
If all external forces are zero it is appropriate to separate the

center-of-mass motion and to introduce Jacobi coordinates’ {r(i), Jl'(i)},
cf. [Scheck (2005)], Exercise 2.24. In the notation used here, these are

. . 1 < . 1 Y .
() — G+D _ (D) (N) _ (D
rv =x E mix", rvV = E m;x"’ , (4.63)
Mj = My =

N
i . .
Mjp(1+ )_mj—i-l E p(l) , a®™ — E p(l) )
] i=1

(4.64)
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In these formulae M| is the sum of the first j masses, M; = Z{:l mj,
the index j running from 1 to N —1. It is also of interest to determine
the inverse formulae of (4.64). They are

N—-1
mip o mi
O Z V”(]) + M_”(N)
j=2 " N
N—1
@ _ (D m2 M2
= w0 T
j=2 " N
N—1
G _ © m3 M3
= w0 T
=3 N
N—-1
@ _ 03 m4 . M4
= m =) T
j=3 " N
m
pM = g =D + Mg

The variables (), #())) are canonically conjugate variables, and so are
the original variables (x®, p®).

4.3.2 Identical Particles with the Example N = 2

When the particles are identical and hence indistinguishable, the de-
scription of the N-particle system receives a fundamentally new feature.
While in the classical, macroscopic realm it is perfectly conceivable to
“mark” and to identify individual particles, as a matter of principle, this
is not possible for micro-particles such as electrons, protons, 7 mesons,
or photons. This strict indistinguishability is emphasized by the Born in-
terpretation of quantum wave functions from which one concludes that,
in general, it is impossible to predict the outcome of a measurement for
one single particle. The predictions of quantum mechanics are probabili-
ties. They apply only to a large number of identically prepared particles.
Wave functions or self-adjoint operators which single out, in some way
or other, one particular particle in an ensemble of N identical ones,
cannot be physically meaningful. We discuss these matters first for the
example of two particles, N = 2.

Let w(x(D, mgl); x@, m§2)) be an arbitrary two-particle wave func-
tion. Any single-particle observable, constructed according to the rules
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of Sect. 1.5, must be of the form

0—0 (EVm, x(l)) Lo (ZV@, x<2>>
1 1

where the second term differs from the first solely by the replace-
ment (x( «— x@ pM) «— p@)y and, if it contains spin degrees of
freedom, by simultaneous exchange of the spin operators. In case of
a two-body observable, for which the interaction term (4.62) provides
an example, this operator must be invariant when the two particles are
interchanged with all their attributes.

The construction just sketched is an acceptable rule for obtaining
one-body observables which are symmetric in the two identical par-
ticles. Alternatively, one may introduce the permutation operator I7j;
which acts as follows:

1 D. .2 2)y _ 2 2). . 1
H]le/(x( )’mg )’x( )’mg )) — lI/(x( ), mg )’x( )’mg ))
and whose properties are
my=1, MH,=m;.

Its eigenvalues are 41 and —1. In the first case its eigenstates are
symmetric under exchange, in the second case they are antisymmetric.
A one-particle observable is obtained by the rule

h h
9=0 <Tv<”,x<”) +111, 0 (W“%x“)) ;.
i i
Suppose a pure state ¥ is being prepared by measuring an observ-
able of this kind. The state is described by the projection operator Py
such that this operator commutes with 15, [I112, Py] = 0. This means,
in turn, that if ¥ is an eigenstate of Py, then so is [1jo¥. Thus,

I =z¥ with z=4=I1.

The state prepared in this way must be either symmetric or antisym-
metric under exchange of the two particles. As the Hamiltonian of
the two-body system itself is symmetric when the particles are inter-
changed, it commutes with 11>, [H, I[112] =0. The same conclusion
applies to the operator (3.27) of temporal evolution of the system,

[[T12, U1, 10)] = [nlz, exp (—%H(t - zo))] —0.

The symmetry character with respect to interchange of particles is not
changed by the evolution in time. An initially symmetric state will
remain to be symmetric for all times, an antisymmetric state stays
antisymmetric forever. States which are neither symmetric nor antisym-
metric, cannot be physical states. Also, from a physical point of view,
it is not meaningful to superpose symmetric and antisymmetric states.
We illustrate these conclusions by a few examples.
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Example 4.2

The Hamiltonian (4.59) of a sytem with two identical particles with
spin s may contain an internal central force, described by a potential
U(r) with r := |x® — x|, but is assumed to contain no external forces.
If one separates the kinematics into center-of-mass and relative motion,
in agreement with (4.60), the wave function that describes the center-
of-mass, by definition, is symmetric when the particles are interchanged.
The wave function for relative motion is written in a factorized form in
spherical polar coordinates,

Yatm(T) = Ra () Yem (6, @) , r=x(2)—x(1).

Finally, the spin wave functions are coupled to total spin § =s) 45,
viz.

ISM) =" (smy, sma|SM) [smy) |sm3) .

my,my
In R? the exchange of the two particles implies the replacements
I: r——r, O— 7 —6, ¢+— ¢+m mod 2.

Obviously, the action of this mapping is the same as the action of space
reflection, Sect.4.2.1. While the radial function remains unchanged, the
spherical harmonic receives the sign (—)¢. Thus, one has

M2 Yatm @) > Yatm (—1) = () Vaem ). (4.65)
The spin function, in turn, receives its sign from the relation (4.34), viz.

Mya:  |SM)— (> 5|sM) . (4.66)
Consider then the two characteristic cases:

1. Two particles with spin s =1/2: According to the selection rules
(4.30) the total spin S can have only the values 1 and 0. The eigen-
states |SM) are constructed by means of the ladder operators (4.8)
and the relations (4.13), whose action in the spinor representation is

given by
11 11
J+ 57_5>_‘5,+§>7
LR P LR
1272 T2 T2 SIP Y A

For the case of the triplet representation their action is
JolLF) =v2]1,00,  Jel1,0)=~2][1,£1) .

Proceeding like in Sect.4.1.6 and as sketched in Fig. 4.4, one starts
from the two-body state with S=M=1, |1,1)=|1/2,4+1/2)|1/2,+1/2),
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and applies the lowering operator J_ =] M +J @ 1o it, thus obtain-

ing
o= L) sd),
2 2f22 "2
=g (bgi At
L\2 22 2/ 2 22 2
I, —1) = 1,_1>’1,_1>. (4.67)
2’ 2/27 2

The state which has § =0 is given by a linear combination which is

orthogonal to the state |1, 0) in (4.67),
0,0 = 1 1 +1 1 1 1 1\]|1 +1 4.68)
22t 2f 2 2 2 2f)2 2f) 0
The three states (4.67) are symmetric, the state (4.68) is antisymmet-
ric under exchange of the two particles. This agrees with the more
general rule (4.66) which yields the sign (—)'=5.

The action of exchange on the orbital wave function and the spin
function taken together, is seen to be
L] SM
2°2 )

(4.69)

Iy Yoem )

1 1
(5, 5)5M> — ()5 Y ()

2. Two particles with spin s = 1: According to the rules (4.30) the
total spin can take the values S =2, 1,0. One starts from the state
|2, 4+2) =1, +1)|1, +1) and constructs from it the entire multiplet
with § =2, by means of the ladder operator J_. The state |1, +1) is
determined using its orthogonality to the state |2, +1)). The remain-
ing triplet states follow from this state, as before. Finally, the state
|0, 0) is obtained by using its orthogonality to |2, 0) and to |1, 0). In
summary, one obtains for total spin S = 2:

12, 4£2) = [1, £1) |1, £1)

1
2,41 = — (|1, £1) |1, 0)+ 1, 0) |1, £1 4.70
| ) ﬁ(l ) 11,0) +11,0) | ) (4.70)

1
2, 0)=—(1L, 1)1, =1)+2[1,0)[1,0)+[1,—=1) |1, 1)) ,
| ) \/g(l ) )+2[1,0)[1,0) +] )11, 1))

for total spin S = 1:

1
1,+1) = — (£|1,£1)]1,0 1,0) |1, £1
| ) ﬁ( | )11,0)F[1,0) | )
1

/2
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and for total spin § =0:
1
0,0) =— (1, 1)1, =1)—|1,0) |1, 0)+|1, —1) |1, 1)) . (4.72
I>ﬁ(| ) )—I1,0) |1, 0)+| YL 1) . (472)

The states (4.70) and (4.72) are seen to be symmetric while
the state (4.71) is antisymmetric, in agreement with the general
rule (4.66). Regarding the symmetry of the total, orbital and spin,
wave function one has

Mo Yam@) (1, DSM) —> (=) Yo () (1, 1)SM) .
4.73)

Before turning to a discussion of the relation between the spin of
identical particles and their statistics which fixes the allowed signs
in (4.69) and in (4.73), we generalize the results of this section to
more than two particles.

4.3.3 Extension to N Identical Particles

Given a system of N identical particles with spin s, the general analysis
of the preceding section applies to any pair (i, j) of them. As a con-
sequence, it seems obvious that every observable is symmetric in all
particles, i. e. that it commutes with the interchanging operation [1;; for
all i and j. Only those states of the N-particle system can be physically
meaningful which are either completely symmetric, or completely anti-
symmetric under all permutations. Let us explain these matters in more
detail: Let [T be a permutation of the N particles,

m: (1,2,3,...,Nr— (I, 1(2), [13), ... ,(N)),

and let (—)7 be its sign. Permutations are generated by interchanging
immediate neighbours. They are called even, and their sign is positive,
if the number of neighbour exchanges is even. They are odd, and have
a minus sign if the number of neighbour exchanges is odd. For example,
the permutation (1, 2, 3,4) — (4, 1, 2, 3) is odd because it needs three
exchanges of neighbours to reach the second ordering from the first.

Let ¥(1;2;3;...; N) be a solution of the Schrodinger equation for
N identical particles, the particle number “i” being a short-hand nota-
tion for the coordinates and the spin quantum numbers of a particle.
A completely symmetric wave function is generated by the rule

Ws=Ns Y M¥(1;2:3:...:N), (4.74)
a
while a completely antisymmetric wave function is obtained by the pre-
scription

Wa = Na Z(—)”Hl[/(l;2;3;... . N). (4.75)
I7
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Table 4.1. Properties of a few elemen-
tary or composite particles. Charges are

in units of the elementary charge

Fermions
particle symbol  charge
electron @& —1
positron et +1
proton p 1
neutron n 0
Bismuth 209Bj 83
muon wo —1
antimuon Tha +1
electron- Ve 0
neutrino Ve 0
up-quark u +2/3
down-quark d —1/3
strange-quark s —1/3
Bosons

particle symbol charge
photon Y 0

W=*-bosons W+ +1

7%-boson 70 0
Higgs boson H 0
Helium nucleus o 2
pions ni, 0 + 1, 0

spin

1/2
1/2
1/2
1/2
9/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2

spin

O OO = =

10The names go back to two physi-
cists of the 20th century: Enrico Fermi

(1901 -1954), Italo-American,

and

Satyendra Nath Bose (1894-1974),

from India.

In these formulae Ng and Na are normalization factors which in both
cases must be determined such that ¥g and Wp, respectively, are nor-
malized to 1.

4.3.4 Connection between Spin and Statistics

Particles whose spin is half-integer, i.e. who carry spin s = 1/2,
3/2, 5/2,..., are called fermions; Particles whose spin is integer, i.e.
s=0,1,2,..., are called bosons.'0 Note that it makes no difference
whether the particles are elementary building blocs of nature such as
an electron or a quark, or composite particles such as a proton p, the
charged and neutral pions 7w+ and ¥, respectively, atoms or atomic
nuclei, whose spin, in reality, is the resulting sum of the spins and or-
bital angular momenta of their constituents. We show some examples
for fermions and bosons in Table 4.1.

There is a deep relation, for every quantum system of N identical
particles, between their spin class, bosonic or fermionic, and the sym-
metry of its physical states under permutations of the particles:

Exchange Symmetry of N-Fermion-/N-Boson-States:

For any permutation [71 of the particles, the physical states of
N fermions are multiplied by (—)!. Such states are of the type
of (4.75). Indeed, with ITo 1’ =: I1”, one has

MW =Ny Y (=) Hom'w(l;...: N)
H/
= ()N T I N)
H//

=(—)1Ty. (4.76)

The physical states of N bosons are totally symmetric under any per-
mutation of the particles. They are of the type of (4.74) so that one
has

nv=v. 4.77)

Before turning to the foundations on which this fundamental rule rests,
let us explain it in some more detail, and illustrate it by some simple
examples. The first part of the rule which concerns fermions, for the
case N =2, implies that every state must be antisymmetric when the
two particles are exchanged with all their attributes. For the example
Example 4.2 of Sect.4.3.2 this means that in (4.69) only those values
of S and ¢ are admissible whose sum is even. The spin singlet can only
occur when £ =0, 2, ..., while the spin triplet requires £ =1, 3, ....

The second part which concerns bosons, for N =2, says that
in (4.73), too, only S+ £ = even is admissible. With § =0 or S =2 the
orbital angular momentum ¢ must have even-integer values, for S =1 it
must have odd-integer values.
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Of course, the fermionic case is of special interest because of the
alternating signs. Suppose, for instance, the Hamiltonian to be the sum
of N copies of a one-body Hamiltonian H(n), H = Z;’zvzl H(n), whose
stationary solutions ¢, (n) and eigenvalues E,, are known,

H(”)?ak (l’l) = EOlk Doy, (l’l) .

The N-particle wave function

V(525 3 N) = Qo (D9e; () - - @ay (N)

although it is an eigenfunction of H pertaining to the eigenvalue E =
Z//(V:1 E,,, does not obey the symmetry rule (4.76). It will do so only if
we distribute the N fermions onto the normed states ¢q,, Puys - - » Pay
in all possible ways and provide every permutation with the sign that
pertains to it. Thus, the correct antisymmetrized product wave function,
normalized to 1 must be constructed as follows:

Pay (1) @y (1) .. @ay (1)

1 Va1 Q) 0ar(2) ... Py (2)

YUp = ——det (4.78)

(Pal(]v) §0a2(N) ce. (PaN(N)

This product state is especially remarkable by the fact that it vanishes
whenever «; = ay, for i,k e (1,2,..., N), that is, whenever two of the
one-particle states are the same. This is a manifestation of

Pauli’s Exclusion Principle: In a system of identical fermions two
(or more) particles can never be in the same one-particle state.
Expressed differently: One-particle states in a product state have oc-
cupation number 0 or 1. A given such state ¢, may be unoccupied,
or may contain at most one fermion of a given species.

It is precisely this restriction which is the defining property of
Fermi-Dirac statistics. There is an intrinsic connection between the half-
integral spin class of identical particles, i.e. their property of having
half-integral spin, and the Fermi-Dirac statistics they obey.

If one wishes to determine the ground state of H for our example,
there is no other possibility than to take the determinant (4.78) of the
first N (energetically) lowest states. More qualitatively speaking: one
fills the first N states with identical fermions by putting exactly one par-
ticle into each of these one-particle states. This model is the basis for
building the electronic shells of atoms, as well as for the shell model
of nuclei with protons and neutrons. The next example illustrates this
construction:
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A nj N
0dgpp -----------
TPy mmmmmmmeee 9
1Pgp ---o--o---- >
0f5/2
Of7/2 -----------
1S4 712 |2
32 }E g
5/2
0p4 }g 2
P4 2| 4
0Syp ———— 32

Fig.4.6. The first eleven lowest one-
particle levels in a simple shell model
for nuclei. The number A is a short-
hand notation for A =2n+{€+3/2,
n; is is the number of particles in the
state |nfj), N is the total number of
particles of the example. The horizon-
tal full lines are the occupied levels, the
dashed levels are empty

Example 4.3
In a system of N identical fermions with spin 1/2 consider the one-
particle potential given by

1
U(r) = Emwzrz —Cte-s— D>,

This was the first ansatz for the shell model of nuclei which was able
to explain the shell closures in especially stable nuclei, the so-called
magic numbers. Note that the potential is assumed to be the same for
all particles. The parameters C and D are positive constants. Choosing
a basis | jm), the orbital angular momentum and the spin being coupled
to j =4£+s, and writing the spin-orbit coupling in the form

1
0s=—(>—0>—5%),
2
one realizes that this operator is already diagonal. With the re-
sult (1.148) for the energies of the spherical oscillator, the eigenvalues
of the one-particle Hamiltonian are given by the following expression,

Eng:hw<2n+£+§>—§ [j(j+1)-£(z+1)—§]—m(z+1).

This spectrum of one-particle energies is drawn in Fig. 4.6. For every
value of j there are (2j 4 1) substates |jm). If one sets out to fill this
potential with N identical fermions such as to construct a product state
with the lowest energy, one must start at the bottom of the spectrum
and fill each state |n€j) with 2j+ 1 particles. Figure 4.6 shows the ex-
ample N = 20, where the states Osy/, to 1sy,, are filled while all states
higher than these remain unoccupied. The corresponding, properly an-
tisymmetrized wave function is given by the determinant (4.78) which
contains the first, lowest, one-particle states.

For bosons matters are completely different: If for a system of
N bosons we assume a Hamiltonian, like above, which is the sum
of N copies of some one-particle operator, H =), H(n), then the
rule (4.77) allows to place arbitrarily many particles into a given
one-particle state (Ey,, ¢y, ). This condition is in accord with Bose-
Einstein statistics. The energetically lowest state is the one in which
all N particles are put into the lowest one-particle state (Ep, ¢p).
This phenomenon is called Bose-Einstein condensation, its existence at
macroscopic scales was confirmed in recent years, in a series of beau-
tiful experiments. Note, however, that the theoretical description cannot
be as simple as it may seem here, because, for large numbers of par-
ticles, the mutual interaction of the particles cannot be neglected.

The connection between spin and statistics, developed here in an em-
pirical and heuristic way, is the content of a theorem which goes back
to M. Fierz and W. Pauli,
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Spin-Statistics Theorem: All particles with half-integer spin obey
Fermi-Dirac statistics, all particles with infeger spin obey Bose-
Einstein statistics.

Some Comments on the Spin-Statistics Theorem:

1. The two types of statistics are known from the quantum mechanical
description of gases which consist of independently moving, identi-
cal bosons or fermions, respectively, and which are in an equilibrium
state under specific macroscopic conditions such as temperature,
chemical potential, and total volume. The particles are distributed
among the given one-particle states with energies ¢; and with occu-
pation numbers 7n;, so that for the total number N of particles and
total energy E one has

Zn,':N, Znié‘,’:E.
i i

In the case of bosons the occupation number, for every level i, can
take any value between O and N. If n; > 2 the n;! permutations of
the bosons are indistinguishable. In the case of fermions, in turn, the
occupation numbers n; can take only the values O or 1.

2. For simplicity, let us consider the case of two bosons, or of two
fermions. The symmetry relations (4.76) and (4.77), respectively, or,
equivalently, the spin statistics theorem state that under exchange
a two-body state fulfills the relation

w2, 1) = (—)>¥(,2), (4.79)

with s the spin of the particles. Note that in this operation the two
particles are exchanged with all their attributes, position and spin. If
the spin is integer the wave function is symmetric, if it is half-integer
the wave function is antisymmetric.

It is a striking feature of the rotation group that a rotation of the
frame of reference by the angle 27, when applied to the spin function
of a single particle, produces exactly this sign: For integer spin there
is no sign change, while for half-integer spin there is a minus sign,
cf. Sect.4.1.4. Thus, rotating the spin of one of the particles by 2w,
or, as an equivalent operation, rotating the spins of both particles about
the same axis by the angle 7, one obtains the same sign as in (4.79).
Indeed, it turns out that in the proof of the spin-statistics theorem the
symmetry character of a two-body function of identical particles eventu-
ally goes back to this sign. The proofs by Fierz and by Pauli hold in the
framework of Lorentz covariant field theory and of what is called sec-
ond quantization. The essential argument is as follows: One shows that
it is only possible to construct a local, Lorentz covariant quantum field
theory which respects all conditions imposed by causality (i.e. which
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guarantees propagation of physical actions with velocities smaller than
or equal to the speed of light), if bosons obey FEinstein-Bose statis-
tics, fermions obey fermi-Dirac statistics. We return to these matters in
Part Two.
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Introduction

Quantum mechanics provides the basis for most fields of modern
c

physics and there are many well advanced methods of practi-
al solution of specific and topical problems. These methods which
may be perturbative or nonperturbative, often are specific to the var-
ious disciplines, and it would go far beyond the scope of a textbook
to discuss them extensively and in due detail. For instance, atomic
and molecular physics make extensive use of variational calculus and
of many-body techniques the latter of which are of great importance
also for the physics of condensed matter and for nuclear physics.
Elementary particle physics, in turn, makes use of covariant pertur-
bation theory as well of various kinds of nonperturbative approaches.
There are numerous methods to treat scattering off composite targets
at low, intermediate, and high energies (optical potential, Green func-
tion techniques, eikonal approximation).

Exact solutions are often approximated by numerical procedures
such as integration of differential equations, diagonalization of large
matrices in truncated Hilbert spaces, discretization and simulation by
means of Monte Carlo methods, etc., which are adapted for the prob-
lem one wishes to study. In this chapter we first sketch the possible
application of quantum mechanics to information theory. We then
discuss nonrelativistic perturbation theory in its time independent and
its time dependent versions. Finally, we give an introduction to se-
lected techniques for treating systems of many interacting fermions.
Relativistic, Lorentz covariant perturbation theory will be dealt with
in Part Two.

5.1 Correlated States and Quantum Information

The principles of quantum mechanics were formulated and laid down in
Chap. 3. In particular, the description of quantum states by means of sta-
tistical operators or, equivalently, by density matrices was discussed in
detail and illustrated by a number of instructive examples. So one might
be tempted to say that there is little to be added to what we worked
out in Chap. 3, from the point of view of basic principles, and all there
is left to do is to develop practical methods for solving concrete prob-

5.1 Correlated States
and Quantum Information.... 271

5.2 Stationary
Perturbation Theory........... 285

5.3 Time Dependent
Perturbation Theory
and Transition Probabilities ... 300

5.4 Stationary States
of N ldentical Fermions....... 306



272

Applications of Quantum Mechanics

lems of quantum mechanics which go beyond the few exactly solvable
ones. Although the practical methods often are by no means simple and
open up a wide field reaching far into modern research, the basic prin-
ciples and the interpretation of quantum mechanics, after some further
reflection, have perplexing consequences which often are different from
expectations based on classical physics and which are testable in ex-
periment. This is why we insert, as a first application, a discussion of
nonlocalities in quantum mechanics, correlations, entangled states, as
well as a short excursion to quantum information. All of these are topics
of modern research and one should expect to see rapid progress forth-
coming in the years to come.

5.1.1 Nonlocalities, Entanglement, and Correlations

The simplest quantum states of a system of N particles are the ones
which are direct products of one-particle states such as

wO 1,2, N = [Y1(D) [¥2(2)) - [¥n(N)) . (5.1)

For simplicity we number the states from 1 to N, irrespective, for the
moment, of what they are dynamically and whether some of them are
the same or not. The arguments (x;, s;) comprising the coordinates and
spins, plus further attributes if the need arises, are also summarized by

just writing “i” instead. The product state (5.1) is an element of the
Hilbert space

N
H=HV@HP@ .. M =) H"D.
i=1
A product state of the kind of (5.1) is said to be separable with respect
to the factors in #. To illustrate the special nature of the state ¥© let
us define the one-body density in a more general N-body state ¥ by the
expectation value

1 N
() == (W1} 5(xi—x) |¥) . (5.2)
i=1

Specializing to ¥ =¥ the density is just the sum of the one-body
densities for everyone of the states in the product,

1 N
g<°><x)=N§|w,-<x>|2.

Its integral over the whole three-dimensional space gives 1,

/d3xg(x):1,

if all single-particle wave functions are normalized to unity.
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In most realistic situations where quantum mechanics is at work,
the wave function of a many-body sytem is not of the simple product
type (5.1). Any state which is not separable, is called entangled state.'
Here are some arguments and examples that illustrate why this is so. As
we will learn in Sect. 5.4 a product state such as ¥(? may be a useful
starting approximation in analyzing a many-body system but as soon as
there are interactions between the particles of the system, the eigenstates
of their total Hamiltonian will be a coherent superposition of product
states,

W)= > Cumeny [V, (D) [Yny D)+ Yy (M), (5.3)

n1ND,. TN

with complex coefficients ¢, n,..ny. States of this kind are entangled.
Even though this is a pure state, in the terminology of quantum mech-
anics, Chap. 3, it correlates any chosen individual “i” with the quantum
states of all others j #i. In fact, if one considers the particle i in iso-
lation, by integrating out all other particles, one will find a density
matrix whose square has a trace less than 1 and, hence, which describes
a mixed state.

Even if there is no interaction between them, but if the particles are
identical, there will be correlations due to the spin-statistics theorem.
The determinant state (4.78) provides a good example for an entan-
gled state whose entanglement is due to the Pauli principle. In order to
work this out more explicitly we consider the example of two identical
fermions:

Example 5.1 Two Identical Fermions

Consider two identical fermions with spin 1/2 to be placed into two or-
thogonal and normalized single-particle wave functions i1 and ;. If
their spins are coupled to the triplet state S =1 the total spin function
(4.67) is symmetric. Hence their orbital wave function must be antisym-
metric. Denoting the spatial coordinates of the particles by x and y, and
dropping the spin degrees of freedom, their orbital wave function must
be

1
V2

This is an entangled state which is correlated due to the Pauli principle.
This correlation is made more explicit by calculating beyond the one-
body density (5.2) the two-body density defined as follows

Y(x,y) = —= {V1()¥2(y) =1 (Y20} (5.4)

1 N
0. y) i= oy (¥ n;j:15<xn —X)8(x —x) |¥) . (5.5)

The normalization factor is introduced for convenience: The number
of ordered pairs 12, 13, ... ,IN, 23, ... 2N, etc. is N(N —1)/2; if
the pairs in inverse order, 21, 31, ... ,N1, ..., are added, this number

I The name was coined by E. Schri-
dinger who called them (in German)
“verschrinkt”, i.e. entangled.
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becomes N(N —1). Calculating the one- and two-body densities (5.2)
and (5.5), for the example (5.4) one finds

1
0w = / 'y / @y [0 e W (2) — W e W )]
[8(x1 —x) +6(x2 — )] [Yr1 (xp) V2 (x2) — Y1 (x2) Y2 (x7)]
1
=@+ a7 (5.6)

i.e. the expected result. For the two-body density one finds

1
o, y) =17 / d3x; / & [Y e W3 (2) — ¥ (e2) Y3 (1) |

[6(x1 —x)8(x2 —y) +8(x2 —x)8(x1 —y)]
(Y1 ()2 (x2) — 1 (xe2) Y (xp)]

1
= E{le @12 [P W *=¥F OV V12 () +Hx < p))
(5.7)

where the last term is obtained from the first two by exchanging the
arguments x and y.

In order to work out the correlations contained in (5.5) more clearly,
it is useful to define the two-body correlation function C(x,y) by the
equation

NN = Do, y) ={1+C@. 0 | No@ow) (5:8)
In the example of N =2 one finds from the results (5.6) and (5.7)

[ Y1 () + ¥ ()Y ()
(1@ 2+ [¥20)12) (1112 + Y2 (0)12)

As the following discussion shows this result is quite instructive. For co-
inciding arguments the correlation function is seen to be equal to —1,
C(x,x) = —1, which says that o(x, x) vanishes and the probability to
find the two identical fermions in the same position is equal to zero.
In the other extreme, suppose the two wave functions y; and v to be
localized in different regions of space. Then as x # y, the correlation
function C(x,y) tends to zero, and the two-body density is approxi-
mately proportional to the product of the one-body densities.

Before concluding this example three further comments seem in or-
der. First, one should note that we assumed | and ¥, to be orthogonal.
This need not necessarily be so. If these states are not orthogonal the
one-body density is modified to

Cx,y)=— 5.9)

1
000 = 5 {1 ()17 +1v2(0)1 2 = 2Re(y} (4)y2x) (alyn) |
(5.10a)
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while the two-body density is as before

1
o(x,y) = E{hm @12 [ W= )Y Y1 )Y )+ <p) )
(5.10b)

In either case, with orthogonal or nonorthogonal | and v, one verifies
that [ d*y o(x, y) = o(x). Second, if the orbital wave functions are not
confined each to a finite domain, the presence of a second particle is
felt under all circumstances. For example, assuming them to be plane
waves,

(elyrn) = ceWMPE - (yly) = ceMY with ¢ = 2xh) 2,
the two-body correlation function (5.8) is found to be

1

Cx,y)=—{l+cos((g—p)-(x—y)}.
2

It equals —1 both for y =x and for ¢ = p but does not go to zero
for large separations of the particles. Third, one should note that in the
example (5.9) the particles are free, and the correlations are due exclu-
sively to the Pauli exclusion principle. In a realistic picture, there will
be interactions between the particles which will also cause two-body
correlations. These might be called dynamical correlations.

In the further discussion, and for reasons to become clear below, let
us stay with systems of only two particles. Assume the two particles
a and b to be in a correlated, entangled state such as

1
V2
where (4+) and (—) denote two eigenstates of a given observable. Ex-
amples for such states are the spin-singlet and the spin-triplet states,
(4.68) and (4.67), of two fermions where the symbolic notation “(4)”
is replaced by spin up and spin down, respectively along a given direc-
tion 7 in space,

W) = —{la: (+);b: () tla: (=) b: ()}, G.11)

1 1
H=(=3), O=li=-3)

For instance, the decay m’ — e*e™, in the pion’s rest system, would
produce the electron and the positron with equal and opposite spatial
momenta and in the spin-singlet state. Indeed, a by now well-known
argument tells us that all partial waves of the plane wave describing
the relative momentum have vanishing projection quantum number onto
the direction of that momentum, m, = 0. Therefore, the spin compo-
nents of e and e~ must sum to zero.” Another example is provided
by the decay of the neutral pion into two photons, 1° — yy, which is
its predominant decay mode. Here again the two photons move apart
back to back, with equal and opposite momenta, but their spins are cor-
related due to the principle of conservation of total angular momentum.

2 The decay m° — ete™, for dynami-
cal reasons, is a rather rare bird and
hence difficult to measure. It is very
small as compared to the dominant de-
cay into two photons, ©° — yy. The
neutral pion has a heavier sister, called
1, that has a better chance to decay into
an ete” or a Wt~ pair.
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Applications of Quantum Mechanics

Situations of the kind just described exhibit a typical property of
quantum mechanics which escapes explanation in terms of classical
statistical considerations. The individual states of the two particles are
correlated due to conservation of momentum and of angular momen-
tum, even though, in the course of time, they separate spatially. In the
framework defined by Born’s interpretation of the wave function there
is no way to tell which of the particles in the final state will be in the
(+) state or in the (—) state, respectively. On the other hand, as soon as
the state of one of them is determined by a measurement, the state of the
other is known instantaneously. In discussions of correlated, spatially
separated states and in quantum information it is customary to install
two imagined observers, Lady A, called Alice, and Sir B, called Bob,
far away from each other, who set out each to measure her or his share
of the correlated state. For example, Alice finds an electron with spin
along a given direction 7i. The result of her measurement tells her that
Bob who sits at the other end of an arrangement where the decaying
pion was in the middle between them, must find a positron whose spin
is antiparallel to 72 — independently of whether or not he actually makes
a measurement.

One might argue that Lady A and Sir B should rather do what the
rules of quantum mechanics require them to do, that is, to repeat the
same measurement very many times under identical conditions. Indeed,
in doing so, they will both find the answers (+) and (—) with equal
probabilities. However, nothing prevents them to do their measurements
event by event, to record the answers in a long list, and eventually come
together and compare their results, event by event. Note that there is no
reason to worry about possible violations of causality in this compari-
son. If Alice wishes to communicate her result to Bob right after she has
completed her measurement, she can do so only by sending him signals
which travel (at most) at the speed of light.

These simple conclusions become even stranger if we ask Alice to
measure the spin of the electron along any other direction @. She must
find, and we know that for sure, spin up and spin down with equal prob-
abilities. As soon as she finds e.g. spin up along & she knows (and
may tell us and Bob) that his particle is a positron which is spin down
along &. If Bob does his measurement still with 72 as his quantization
axis, the spin down state along # is a coherent linear superposition of
spin up and spin down along 7,

V) B =t [+5)ata|[-5)a,  with -12)
(O“F) =D (¢, 0, ) (?) , and hence

ap =sin(0/2) e VD2 o =cos(6/2)e 1 VHI/2

where (¢, 0, ¥) are the Euler angles relating Bob’s frame of reference
to Alice’s. This is strange because it is known that the spin operators
o -ii and o -@ do not commute unless &t = f.
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Considerations of this type gave rise to a famous work by Einstein,
Podolsky, and Rosen (EPR)® who introduced the notion of element of
physical reality and who suggested that quantum mechanics was incom-
plete. The theory would be incomplete if there were one or more hidden
variables such that what we actually observe would correspond to an
average over some (unknown) distribution. An excellent description of
the arguments of EPR, in an extended version developed by D. Bohm,
as well as the theoretical and experimental resolution of the apparent
paradox can be found, e.g. in [Basdevant and Dalibard (2002)] and in
[Aharonov and Rohrlich (2005)].

In essence, one can derive inequalities for correlation functions
which are different in quantum mechanics as such, as opposed to quan-
tum mechanics supplemented by hidden variables. This is the content
of inequalities discovered by J. Bell. Recent experiments which decided
the issue in favour of plain quantum mechanics are also described in the
literature quoted above.

The following example, although formally similar to Example 5.1,
emphasizes the peculiar nature of correlated two- or more particle states.

Example 5.2 Nuclear isospin

Proton and neutron are baryons and, by convention, are assigned baryon
number B = 1. Starting from the observation that they have almost the
same mass, Viz.

mp =938.27MeV, mp=939.56 MeV ,

Heisenberg postulated that proton and neutron were in fact the same
particle, appearing as two substates of a doublet. The simplest group
providing this possibility being SU(2), it was postulated that nuclear in-
teractions were approximately invariant under this group called nuclear
isospin or strong interaction isospin. More precisely, the assumption is
that proton and neutron are members of a doublet with isospin I =1/2
such that
pE|I=%;13=+%), n= I=%;I3=—%).

The electric charges (in units of the elementary charge) are obtained
from the formula

Q@) =4B@)+ NG, i=p or n.

In this picture of nuclear forces it was thought that the deviations from
exact isospin invariance were due to electromagnetic interactions. It is
then natural to classify nuclear ground and excited states by means of
multiplets of SU(2). For example, a deuteron in the ground state must
have its proton and neutron