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PREFACE

This book is intended primarily for use in a one-quarter or one-semester introductory fluid mechanics course.
Our goal is to provide both a balanced introduction to all the tools used for solving fluid mechanics problems
today and a foundation for further study of this important and exciting field. By learning about analytical, em-
pirical (existing experimental data and accepted engineering practice), experimental (new experimental data,
which will need to be obtained), and computational tools, students learn that an engineering problem can be
approached in many different ways and on several different levels. This distinction of approach is especially
important in fluid mechanics, where all these tools are used extensively. Although the traditional methodology
of engineering fluid mechanics is thoroughly covered, this text also includes elements of differential analysis
presented at a level appropriate for the target student audience. We also make use of outputs from commer-
cially available computational fluid dynamics codes to help illustrate the phenomena of interest. It is not ex-
pected that students will perform any computational fluid mechanics simulations. However, with computa-
tional solutions becoming routine, economical, and accessible to engineers with bachelor’s degrees, it is
important that students be familiar with the use of this type of information. Therefore, computa-
tionally produced figures are used in the text for expository purposes. Throughout the text, CFD
icons indicate when the subject matter directly, or indirectly, relates to computational methods.

There are also a large number of figures, photographs, and solved problems to give students an understanding
of the many exciting problems in fluid mechanics and the tools used to solve them. The visual approach to
understanding fluid mechanics is
highlighted with the use of visual (§ CD/Kinematics/Compressibility/ Compressible and Incompressible Fluids
icons that point students to resources
@ such as websites, books, and especially, the excellent CD Multi-Media Fluid Mechanics* A

third icon, called FE, is used to note material that is covered in the Fundamentals of Engineering
exam.

We have organized the text in three parts to give to each instructor the flexibility needed to meet the needs
of his or her students and course(s).

Part 1, Fundamentals, contains the first nine chapters and covers the traditional body of introductory ma-
terial. Our emphasis here is on developing an understanding of fundamental ideas. The judicious use of soft-
ware packages to perform routine mathematical and graphical operations is intended to allow the student to
concentrate on ideas rather than mathematics. Here, and elsewhere in the text, we employ a visual presenta-
tion of results to enhance student learning and to encourage students to do the same in their own problem solv-
ing. An important feature of Part 1 is the introduction to empirical methods in Chapter 3, rather than covering
this much later, as is the case in other texts. Chapter 3 includes simple but effective case studies on pipe flow,

*© 2000, 2004 by Stanford University and its licensors, published by Cambridge University Press.

Xiii



xiv | PREFACE

drag on spheres and cylinders, lift and drag on airfoils, and other topics. The student is thus empowered to
solve important and interesting fluid mechanics problems in these areas without being forced to wait until the
end of the course for the “good stuff.” The early exposure to these topics in the lecture also serves to broach
these topics early in the traditional laboratory portion of an introductory course, which also helps to build stu-
dent interest. As Part 1 unfolds, the student learns more and more about the source of the empirical rules pre-
sented in the case studies. The text revisits the case studies not only in Part 1 but also in Parts 2 and 3 of the
text to show the student how advanced methods contribute to a deeper understanding of a flow than can be
gained from empirical methods alone.

Part 2, Differential Analysis of Flow, consists of three chapters and represents the core of our added
emphasis on differential analysis and a visual presentation of fluid dynamics. It is important to note that we
have written the chapters in Part 2 in a modular fashion. That is, instructors can select to cover as much or as
little of this material as they see fit without losing the ability to continue on into the third part of the text on
applications. This section begins with Chapter 10, Elements of Flow Visualization and Flow Structure, where
we introduce classic kinematic concepts from both the Lagrangian and Eulerian descriptions. This chapter
demonstrates the importance of flow visualization in the context of modern experimental approaches to flow
measurement, as well as in flow simulation. An additional feature of our coverage in this and subsequent chap-
ters is that the student begins to appreciate the wealth of information available from skillful postprocessing of
CFD simulations. This chapter discusses flow structure in preparation for a discussion of the governing equa-
tions of fluid dynamics. Chapter 12 allows instructors to expose their students to one or more of the classic
exact solutions to the Navier—Stokes equations.

The remaining chapters of the text constitute Part 3, Applications. It is here that students see how ana-
Iytical, empirical, experimental and computational methods come together to solve engineering problems.
Chapters on traditional topics such as Flow in Pipes and Ducts, External Flow and Open Channel Flow extend
students’ understanding of the breadth of fluid mechanics and its applications.

In writing the text, we are well aware of the needs of different instructors. Someone faced with selecting
material for a one-quarter course may elect to cover Part I, Fundamentals, and feel comfortable in going
straight to Part 3, Applications, to continue with one or more of these chapters. Those who have a semester
course may elect to cover Part I, Fundamentals, followed by some of Part 2, Differential Analysis of Flow,
and then finish the course by discussing one or more of the chapters in Part 3, Applications. There is enough
material in the text for a second, intermediate fluid mechanics course in either the quarter or semester system.
In this respect we have found that current introductory texts fail to provide sufficient material on differential
analysis, while advanced texts place a reliance on mathematics that is far too heavy for the intermediate stu-
dent. Ample problems at the end of each chapter are designed to meet the needs of instructors and students
alike. Today’s students are accustomed to, and thrive in, a visual learning environment. These students have
already integrated the use of computers into many daily tasks. We believe a fluid mechanics textbook that pro-
vides the same visual, computer-oriented environment will be an extremely effective aid in learning. Fluid
mechanics is a notoriously challenging subject, but one that lends itself to a visual learning process and the
use of computers to accomplish routine tasks and examine results.

The text is designed to accommodate different disciplines: mechanical, civil, aerospace, and chemical en-
gineering. It also permits instructors to select the level of treatment appropriate for the course and setting,
without relinquishing an opportunity to employ a visual text with early exposure to interesting fluid mechan-
ics problems and an effective use of today’s computational tools.

We wish to extend our thanks to our Editor at Oxford University Press, Danielle Christensen. We also
thank Barbara Brown, Editorial Assistant, for pulling together the photo program for the book, and thanks to
Karen Shapiro, Managing Editor, for guiding the production of our book.
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1.1 INTRODUCTION

Fluid mechanics is concerned with understanding, predicting, and controlling the
behavior of a fluid. Since we live in a dense gas atmosphere on a planet mostly cov-
ered by liquid, a rudimentary grasp of fluid mechanics is part of everyday life. For an
engineer, fluid mechanics is an important field of the applied sciences with many
practical and exciting applications. If you examine municipal water, sewage, and elec-
trical systems, you will notice a heavy dependence on fluid machinery. Pumps and
The fluid-covered Earth  Steam turbines are obvious components of these systems, as are the valves and piping
from space. found in your home, under your city streets, in the Alaska oil pipeline, and in the
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1 FUNDAMENTAL CONCEPTS

HISTORY BOX 1-1

The history of science and technology, in-
cluding that of engineering fields like fluid
mechanics, is often ignored in engineering
courses. Yet a sound historical perspective
can help engineers avoid the mistakes of
the past while creatively building on the
achievements of their predecessors. By
learning something about the insights of
the pioneers of fluid mechanics, you will
sharpen your own insight into the subject,
and perhaps develop new ideas in areas
such as turbulent flow, where progress is
very slow.

Fluid mechanics has been important
to virtually all societies because people
need water to drink, irrigation for agricul-
ture, and the economic advantages of
waterborne transportation. The earliest
known hydraulic engineering was accom-
plished in the river valleys of Mesopotamia
and Egypt. Mechanical devices and canals
were used for distributing water for agri-
culture. Perhaps the greatest engineering
feat of antiquity was the Roman water sys-
tem, with aqueducts that could supply
fresh water miles from the source.

Figure HB.1 The Roman aqueducts are one of
the great engineering achievements of the ancient
world.

natural gas pipelines that crisscross the country. More-
over, aircraft, automobiles, ships, spacecraft, and virtu-
ally all other vehicles involve interactions with fluid
of one type or another, both externally and inter-
nally, within an engine or as part of a hydraulic control
system.

¢ CD/Gallery of Flows

Learning more about fluid mechanics also allows
us to better understand our bodies and many interesting
features of our environment. The heart and lungs, for
example, are wonderfully designed pumps that operate
intermittently rather than steadily as most man-made
pumps do. Yet the heart moves blood efficiently through
the branching network of arteries, capillaries, and veins,
and the lungs cycle air quite effectively through the
branching pulmonary passages, thereby keeping the
cells of our bodies alive and functioning. Many other
sophisticated fluid handling devices are found through-
out the biological world in living creatures of all types,
sizes, and degree of complexity.

C CD/Video Library/Flow in the Lungs

The environment is another source of complex
and interesting fluid mechanics problems.These range
from the prediction of weather, hurricanes, and
tornadoes to the spread and control of air and water
pollution. Add to this list the flow of rivers and streams,
the movement of groundwater, the jet stream and great
ocean currents, and the tidal flows in estuaries. The lava
flows of volcanoes and the movements of molten rock
within the earth also lie within the domain of fluid
mechanics. Looking beyond Earth, stellar processes and
interstellar events are striking examples of fluids in
motion on a grand scale. Knowledge of fluid mechanics
is also the key to understanding and sometimes control-
ling other interesting, if not vital phenomena, such as the
curving flight of a tennis, golf, or soccer ball, and the
many different pitches in baseball.



1.1 INTRODUCTION

HISTORY BOX 1-2

The most illustrious name in ancient Greek engineering is Archimedes (287-212 B.c.). Among
this man’s accomplishments was the determination, by means of a clever application of the prin-
ciples of fluid statics, of the percentage of gold in the crown of the king of Syracuse. For thou-
sands of years fluid mechanics depended on principles deduced by trial and error. During the
ltalian Renaissance Leonardo da Vinci (1452-1519) used his acute powers of observation to
describe fluid flows and to imagine fluid machines.

ﬂ

CD/History/Leonardo Da Vinci

It was not until the seventeenth century, however, that the history of modern fluid mechanics began.
A disciple of Galileo (15664~1642), Evangeliston Torricelli (1608—1647) invented the barometer, a de-
vice for measuring atmospheric pressure variations caused by weather. The principles of the barometer
were clarified by the noted scientist and philosopher Blaise Pascal (1623—-1662). This work laid the
foundation for our understanding of fluid statics. For good reason, then, the units of pressure called the
torr and pascal, respectively, were named in their honor.

(A) (B)

Figure HB.2 (A) Leonardo da Vinci. (B) Sketch of falling water by Leonardo.

5
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FUNDAMENTAL CONCEPTS

(A)

(B)

Figure 1.1 (A) Hoover Dam. (B) The space shuttle at takeoff.

The field of fluid mechanics has historically been divided into two branches, fluid
statics and fluid dynamics. Fluid statics, or hydrostatics, is concerned with the behavior
of a fluid at rest or nearly so. Fluid dynamics involves the study of a fluid in motion. Con-
sider the engineering systems illustrated in Figure 1.1. Which branch of fluid mechanics
is applicable in each case? Do any of these applications involve both branches?

Modern engineering science is rooted in the ability to create and solve mathematical
models of physical systems. Students often view fluid mechanics as a challenging sub-
ject, primarily because the underlying mathematical model appears to be complex and
difficult to apply. We will show that the governing equation of fluid statics, called the hy-
drostatic equation, is actually relatively simple and may always be solved to find the
pressure distribution in the fluid. On the other hand, the governing equation of fluid dy-
namics, called the Navier—Stokes equation, would never be described as simple. The in-
herent difficulties of fluid mechanics have been recognized for centuries, yet engineers
have demonstrated great ingenuity in developing a number of different approaches to
solving specific fluid flow problems. The common theme is to simplify the mathematical
or experimental model used to describe the flow without sacrificing the relevant physical
phenomena. For example, a standard approximation in the prediction of low speed air-
flow is to neglect the compressibility of air. This assumption is accurate at vehicle speeds
as high as 250 mph. Thus in the flows over automobiles and light aircraft, the compress-
ibility of air can be ignored. By the way, do you consider 250 mph to be a low speed flow?
It definitely is in fluid dynamics applications!

It is often said that there is both an art and science to the practice of fluid mechan-
ics. One learns the science of fluid mechanics in a class or from self-study, with a text-
book like this one serving as a guide. The art of fluid mechanics, however, is developed
primarily through experience, both your own and that of others. This art consists in
knowing when it is safe to neglect the effects of physical phenomena that are judged to
have little impact on the flow. Once we decide to neglect certain physical phenomena,
we drop the corresponding terms in the governing equations, thereby decreasing the dif-
ficulty in obtaining a solution. Such fundamental topics as boundary layer theory, the
Bernoulli equation, potential flow, and even fluid statics can be considered to be part of
the art of fluid mechanics in this sense. Learning about these historical approximations



1.1 INTRODUCTION

HISTORY BOX 1-3

In 1687 Sir Isaac Newton's Mathematical Principles of Natural Philosophy was published. The
second book of this work was devoted to fluid mechanics. It was in the Principia that Newton
(1642-1727) established on a rational basis the relationship between the mass of a body, its ac-
celeration, and the forces acting upon it. Although he tried, Newton was unable to properly apply
these concepts to a moving fluid. Even though Newton’s second law (F = ma) applies to a fluid in
motion, the dynamics of fluid flow are inherently more difficult to understand than the dynamics
of solid bodies. For example, what mass of water should be included in the analysis of a ship sail-
ing on the ocean? How do forces such as friction behave between a fluid and a solid surface? The
answers to these and other fundamental questions eluded Newton.

¢ CD/History/Sir Isaac Newton

In the eighteenth century, mathematicians built on the foundations of mechanics and calcu-
lus Newton had laid. The leading lights of this era were Daniel Bernoulli (1700-1782), Jean le
Rond d’Alembert (1717-1783), and Leonhard Euler (1707-1783). The fundamental equations of
fluid mechanics relating the conservation of mass, momentum, and energy were being developed.
An equation for the conservation of mass was first appropriately applied by d’Alembert for plane
and axisymmetric flows in 1749. Euler first published the generalized form of the equation for

Figure HB.3 Daniel Bernoulli.

7



1 FUNDAMENTAL CONCEPTS

C History/Jean le Rond d'Alembert

mass conservation 8 years later. At this time he also published the proper form of fluid accelera-
tion in the momentum equation; however, the role of friction was not understood. The well-known
Bernoulli equation can be considered to be a form of the energy equation under special condi-
tions. The proper statement for the conservation of energy in a fluid could not be fully derived until
the nature of heat was understood in the nineteenth century.

C CD/History/Leonhard Euler

HISTORY BOX 1-4

The complete mathematical statement for the conservation of momentum, including the role of
friction, was derived independently by the Frenchman C. L. M. H. Navier (1785-1836) and the
Englishman Sir George Stokes (1819-1903). These equations, called the Navier—Stokes equa-
tions, are the fundamental mathematical model for fluid mechanics, and as such, are the basis for
all the analytical solutions presented in this text. Because the equations were intractable, mathe-
matical solutions could be obtained only for “ideal” fluids, meaning fluids of zero viscosity. An ideal
fluid does not exhibit friction as it passes along a surface because shear stress is completely ab-
sent. While the elegant methods developed for ideal fluid flow could produce the pressure distrib-
ution about bodies moving through a fluid, they could not provide answers for the important prac-
tical problem of the drag force that was exerted by the fluid. This difficulty was known as
d’Alembert’s paradox.

The Navier—Stokes equations are formidable nonlinear partial differential equations, and ex-
tremely difficult to solve. For this reason engineers have relied heavily on experiments to answer
their questions. Among the experimentalists active during this period were Henri Pitot

C CD/History/C. L. M. H. Navier

C CD/History/Sir George Stokes
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(1695-1771) and J. L. M. Poiseuille (1799-1869), who developed a simple device for measuring
fluid velocity and measured the relationship between pressure drop and flow in pipes, respectively.

L CD/History/J. L. M. Poiseuille

(A)

(B)

Figure HB.4 (A)J. L. M. Poiseuille. (B) The apparatus Poiseuille used to study pressure drop in

pipes.

and others like them is an essential goal of a first course in fluid mechanics, and engi-
neers working with fluids should continue to seek to attain it.

Once the analysis of a fluid mechanics problem has been cast in the form of an ap-
propriate mathematical model, a solution method must be chosen. For example, one
might employ an analytical solution method that results in a representation of the flow
variables as functions of space and time. Figure 1.2 compares an analytical solution and a
visual representation of the low speed flow of fluid between two flat plates. An analytical
solution is a highly compact and useful form of solution that should always be acquired if
possible. Be aware, however, that an analytical solution of the governing equations of
fluid dynamics is usually not possible. Complex engineering geometries and a natural ten-
dency for fluid flows to become unstable ensure that analytical solutions will remain elu-
sive. Nevertheless, it is wise to consult the engineering literature to determine what has
been accomplished in treating the same or related flow problems. If you find that an
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Figure 1.2 Comparison of the parabolic velocity profiles in low speed fluid flow between parallel flat
plates: (A) photograph from a flow visualization experiment and (B) plot of the analytical solution
given by the equation u(y) = Umax[1 — (y/h)?1.

approximate analytical solution to a problem of current interest is available, you may be
able to use it as the starting point for your analysis.

Today, an engineer will increasingly choose to employ computational methods to
solve the equations of fluid motion. These methods include finite difference, finite ele-
ment, finite volume, and other computational approaches in which digital computers are
used to supply numerical solutions of approximate versions of the governing equations.
These solutions are discrete, meaning that the flow variables are known only at specific
spatial locations in the flow field. Computational tools of all kinds, ranging from com-
mercially available computational fluid dynamic codes to visualization packages and
symbolic mathematics codes, are among the most important aids in the modern practice
of fluid mechanics. An image produced by a computational fluid dynamics (CFD) code
is shown in Figure 1.3.

One of our motivations in writing this book is to integrate these modern computa-
tional aids into a first course in fluid mechanics. The symbolic mathematics codes Math-
ematica, MATHCAD, and others like them are superb aids in learning fluid mechanics.
We recommend their use to simplify calculations and to visualize the mathematics.

Figure 1.3 The flow field
around an automobile as simu-
lated by CFD.
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Many of you are already skilled in the use of these mathematics packages and need only
learn how to employ them effectively in solving fluid mechanics problems. For those
who have yet to acquire this engineering skill, an introductory fluid mechanics course
offers an excellent vehicle in which to start learning to do high level mathematics and
visualization on a personal computer or workstation.

Regardless of the source of the information about a particular fluid flow (i.e., a com-
mercially available or proprietary CFD code, an exact or approximate analytic solution),
we believe that a picture is worth more than the proverbial thousand words when it
comes to understanding what is happening in a fluid flow. Consider the flow field shown
in Figure 1.3, and imagine trying to describe this flow with words alone.

Our emphasis on the use of numerical computation and visualization in fluid me-
chanics does not imply that these can replace experimental methods. In fact, it is foolish
to think that all,or perhaps even most flows can be completely simulated on a computer.
The simulation of even relatively simple flows can tax the capability of today’s most
powerful workstations. A numerical simulation of a complex flow like that shown in
Figure 1.3 generally requires a supercomputer, and even then, the resolution of the fine-
scale structure in the flow field may be lacking. For these reasons, and despite working
in this computer age, engineers must be knowledgeable about using experiments to
guide their design and problem-solving efforts in fluid mechanics.

CD/Special Features/Flow Visualizations

Experimental methods employ a wide range of sophisticated equipment to obtain
numerical data describing the velocity, pressure, and other properties of a fluid flow.
Flow visualization techniques provide a visual picture of the flow by making portions of
anormally transparent fluid visible. For example, Figure 1.2A was generated with a flow
visualization system.

Internal flows, meaning those that occur within confining walls, are often studied in
the laboratory by reduced scale models of the physical device. For external flows (typi-
cally a flow over a body immersed in fluid), a wind or water tunnel is often employed to
expose a scale model to the flowing fluid. These tunnels range in size from tabletop to
major installations. With speeds ranging from an imperceptible breeze to hypersonic
flow, wind tunnels like that in Figure 1.4 provide opportunities to explore flows by using
a variety of sophisticated sensors. Many external flows simply cannot be adequately

Figure 1.4 Model of F-18E in a 30 ft x
60 ft wind tunnel at the NASA Langley
Research Center.
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HISTORY BOX 1-5

Great strides in the development of fluid mechanics were stimulated by the dream of human flight.
The Wright brothers brought their mechanical ingenuity to bear on aerodynamic experiments at
the turn of the nineteenth century. Wilbur (1867-1912) wrote that “having set out with absolute
faith in the existing scientific data, we were driven to doubt one thing after another, until finally
after two years of experiment, we cast it all aside, and decided to rely entirely upon our own in-
vestigations.” They built a wind tunnel in which they tested small models.

The field of aerodynamics, and fluid mechanics in general, was dominated through the first
half of the twentieth century by Ludwig Prandtl (1875-1953) (Figure HB.6A). His work included
thin airfoil theory, finite wing theory, supersonic shock wave and expansion wave theory, com-
pressibility corrections, and his most important contribution to fluid mechanics, the boundary layer
concept. Beyond his own contribution, his students, such as H. Blasius (1883-1970) and T. von
Karman (1881-1963), have also had an enormous impact on the field.

Prandtl's boundary layer concept resulted from his willingness to combine theory and ex-
periment. Examples of his flow visualization experiments are shown in Figure HB.6B. Prandtl
compared his experimental data with the results of the inviscid, or frictionless, theoretical calcu-
lations. What he found was that theory and experiment were in good agreement except for the
velocity profile in a thin layer of fluid located near the solid—fluid boundary. Prandtl's experimen-
tal efforts revealed the problem—a breakdown in the inviscid assumption in the boundary layer.
His theoretical efforts solved the problem—he developed a novel solution to the Navier—Stokes
equations for the thin layer of fluid adjacent to the solid boundary. The result of linking Prandtl’s
solution within the boundary layer to the inviscid solution outside the boundary layer resolved
d’Alembert’s paradox.

L§ CD/History/Ludwig Prandt|

(A) (B)

Figure HB.5 (A) The Wright brothers’ flying at Kitty Hawk, North Carolina. (B) The Wright brothers’
wind tunnel, which they used to test airfoils.
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Figure HB.6 (A) Ludwig Prandtl. (B) Flow visualizations by Prandtl.

simulated in any other way. Water tunnels are also used to simulate external flows, par-
ticularly for marine applications. In the foreseeable future, experimentation will remain
an important means of solving flow problems.

Empirical results, in the form of experimental data correlations, are used
extensively in the design of piping systems, pumps, turbines, engines and many other
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HISTORY BOX 1-6

To put the history of fluid mechanics into
perspective, the early pioneers of mathe-
matical physics, from Newton to Navier
and Stokes, developed a mathematical
model for fluid mechanics. Prandtl, and re-
searchers since his day, have been apply-
ing this mathematical model. The develop-

well-understood classes of fluid machinery. A number
of important empirical results are introduced early in
this text in the form of case studies. These case studies,
which expose you to simple design formulas, allow you
to immediately begin to solve a number of practical en-
gineering problems involving fluid flow.

The use of empirical results in the analysis of a flow
problem requires engineering judgment and a level of
experience similar to that mentioned in connection with
mathematical approaches. Thus your application of the

case study results must initially be cautious and gener-
ally guided by your instructor. The case studies in Chap-
ter 3 are revisited in subsequent chapters as we develop
the theoretical tools of fluid mechanics, thus allowing
you to appreciate the underlying assumptions, method-
ologies, and flow characteristics that lie behind the oth-
erwise simple formulas. Just as engineers must under-
stand the assumptions made in constructing a mathematical model, they must also
understand the process required to design an experiment that allows data to be applied to
a particular flow problem. The ability to design a fluid flow experiment and interpret the
outcome requires an understanding of dimensional analysis and similitude. You will
learn about these powerful tools, which allow us to relate results achieved with a scale
model to those that occur with the full-scale prototype, and see how they underlie all the
case studies.

ment of digital computers has made a
tremendous impact in this respect. With
computational fluid dynamics (CFD), it is
becoming possible to obtain solutions for
an arbitrary flow geometry.

¢ CD/Special Features/Virtual Labs/Dynamic Similarity

1.2 GASES, LIQUIDS, AND SOLIDS

In everyday language we casually use the terms fluid, liquid, gas, and solid. Many peo-
ple mistakenly assume that “fluid” is a synonym for a liquid and that a solid is a rigid
material that is incapable of deformation. Neither of these popular conceptions is precise
enough for engineering work, so in this section we formally define each of these terms.

(§ CD/Kinematics/Compressibility/ Compressible and Incompressible Fluids

The fundamental difference between a fluid and a solid lies in the response to a
shear stress of the respective materials. Suppose you glue a brick to your desk with
epoxy, and also carefully pour a small quantity of water next to it, making a puddle.
Imagine placing the palm ofyour left hand on the brick and your right palm on the sur-
face of the water. Now apply a small but equal force on each material in a direction par-
allel to the surface of the desk. What happens? The response of a solid such as the brick
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to a small shear stress (defined as tangential force divided by area) is a static deforma-
tion. Although your eyes cannot always detect it, all solids change shape upon the
application of a shear stress. A solid quickly returns to rest, however, and retains the new
shape for as long as the (constant) shear stress is maintained.

Unlike the brick, the water in our experiment proves unable to withstand the shear
stress. Your hand continues to move because the water is set in motion by the applied
shear stress. Instead of coming to rest in a deformed state, the water continues to deform
as long as the shear force is applied. This continuing deformation in shear is characteris-
tic of all fluids. We therefore define a fluid as any material that is unable to prevent the de-
formation caused by a shear stress. A related conclusion is that in a fluid at rest all shear
stresses must be absent.

Let us formalize our examination of differences between solids and fluids by imag-
ining that we have placed solid and fluid samples into identical unidirectional shear test-
ing devices as shown in Figure 1.5A. Each material is placed in contact with a rigid
upper plate free to move and with a stationary rigid lower plate. A unidirectional shear
force is transmitted to the material by applying a tangential force to the upper plate. The
applied shear stress, 7, is defined as the ratio of the tangential force, F, to the area of the
upper plate, A, i.e., 7 = F/A.

As shown in Figure 1.5B, for a shear stress below the elastic limit, the relationship
between shear stress T, and shear strain y in a solid is:

TXY (lla)

The shear strain is defined as the displacement in the direction of the applied force, Ax,
normalized by the height of the solid (perpendicular to the applied force), Ay, i.e.,
y = Ax/Ay. The proportionality between t and y can be converted to an equality by

. 5 Tangential force, F, Figure 1.5 Tllustration of a parallel plate
ng.ld upper plate in contact results in shear testing device for determining the response of
with sample over area, A stress, 7, defined as materials to an applied shear stress. (A) The
T=F/A sample in its original form just prior to the ap-

Material
sample

plication of the tangential force, F. (B) The
response of a solid sample to the application
of the shear stress, t (= F/A). The solid de-
forms by an amount Ax almost immediately
upon the application of the shear stress and

then remains stationary in that position

(A)

Stationary rigid bottom plate

throughout the duration of the applied stress.

Ax

Shear strain, vy, is defined

Force, F, results

= Ax/A .
asy x/Ay in shear stress 7

Solid

7 sample

For a solid,
we find 7 = 1.

®) |
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EXAMPLE 1.1

SOLUTION

Consider 0.5 in. thick steel and aluminum plates. If each metal plate is subjected to a
shear stress of 2 x 10° psi, what is the magnitude of the displacement in the direction of
the applied force for the two materials?

This exercise can be solved by using Eq. 1.1b, and the definition of shear strain. From
the appropriate shear moduli for steel and aluminum given earlier, the result is that the
steel sheet experiences a displacement of 8.3 x 10~ in. while the aluminum sheet
experiences a displacement of 2.6 x 1072 in.

inserting a constant, G, known as the shear modulus of the solid. Thus we can write the
relationship as:

T =Gy (1.1b)

Since the shear modulus of steel is about three times that of aluminum (12 x 10° vs
3.8 x 10° psi), Eq. 1.1b tells us that if similar blocks of steel and aluminum were sub-
jected to the same shear stress, the displacement in the aluminum block would be more
than three times as large as that in the steel block. That is, steel is stiffer (experiences less
deflection per unit stress) than aluminum.

As shown in Figure 1.6A, if a fluid sample is placed in our imaginary shear testing
device, the fluid will continue to deform no matter how small the applied shear stress. The
upper plate will move faster if the tangential force is increased. A fluid resists being
sheared, but its underlying molecular structure does not allow it to prevent the resulting
deformation. Thus, the fluid will be set in motion, and it is found that there is a linear
velocity distribution in the gap between the plates as shown in Figure 1.6B. Instead of
having a proportionality between shear stress and shear strain, a fluid exhibits a relation-
ship between shear stress and the shear strain rate, dy /dt.

The relationship between the shear stress and the shear strain rate for a fluid is

dy
T X — 1.2a
7 (1.2a)
For many common liquids, and all gases, this relationship is linear and can be written as
dy
T=uU— 1.2b
A (1.2b)

where the proportionality constant, x, is a fluid property known as the absolute or dy-
namic viscosity. Equation 1.2b is known as Newton’s law of viscosity, and a fluid that
obeys this equation is termed a Newtonian fluid. If you subjected two Newtonian fluids
to the same shear stress, the one with the higher viscosity would exhibit a lower shear
strain rate. If two Newtonian fluids are subject to the same strain rate, the one with the
higher viscosity will have a higher shear stress.
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—>]

Ax Recall that shear strain

sample at 7

Figure 1.6 (A) When a fluid is tested in
Force, F, results the device described in Figure 1.5A the
in shear stress 7 displacement Ax and the corresponding
shear strain y increase linearly with time.
For a fluid, the relationship between shear
stress and shear strain is v o« dy/dt.
(B) In this situation, the fluid velocity in
the x direction, u, is a function of the
y coordinate. That is, u(y) varies linearly
from O at the bottom plate to Uy at the top
plate. Note that u(y) = d(Ax)/dt. This

is y = Ax/Ay

Ay Fluid sample

Ay

result is used in the text to show that
Same F and 7 dy/dt = du/dy; i.e., the shear rate and
velocity gradient are equal.

For a fluid, we
find 7 < dy/dt.

Top plate moves
with velocity Uy,

The fluid velocity profile, u(y),
varies linearly from zero at the
bottom plate to U, at the top plate.

Have you noticed that a playing card can An examination of Figure 1.6B should help con-
glide across a smooth surface for quite a vince you that the shear rate dy /dt, in a fluid sheared
distance, ‘riding on a cushion of air"? between parallel plates, is related to the transverse ve-
The air is sheared in the thin gap between locity gradient du/dy, where u is the velocity of the
the card and the surface, and although the fluid in the x direction and y is the spatial coordinate
frictional resistance to this shear is small, perpendicular to the parallel plates. This result is
it is definitely nonzero. obtained by noting that the shear strain y is defined as

@

y = Ax/Ay, so the strain rate dy/dt is given by
dy/dt =d/dt(Ax/Ay). Since Ay is constant, and the time rate of change of the dis-
placement Ax is u, the fluid velocity in the x direction, we obtaindy /dt = du/dy. Thus
the shear rate and velocity gradient are equal, and Newton’s law of viscosity (Eq. 1.2b)
is usually expressed in fluid mechanics as:

T=u— (1.2¢)

Because the velocity profile is linear across the gap in the shear flow between parallel
plates, the velocity gradient du/dy is constant, and Eq. 1.2c tells us that the shear
stress is uniform in the region between the plates.

We have seen that a solid differs from a fluid in its response to an applied shear
stress. Since a fluid may be a liquid or a gas, on what basis do we distinguish liquids and
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EXAMPLE 1.2

A sample of motor oil is tested in a parallel plate shearing device like the one shown in
Figure 1.6 with the following results:t = 1.54 1b/ft>, the plate separation distance is 0.5
in., and the top plate velocity is 10 ft/s. Determine the viscosity of the fluid and shear rate.

SOLUTION

This problem can be solved by manipulating Eq. 1.2c¢ to isolate the fluid viscosity. Since
T = u(du/dy), we have u = t/(du/dy). Since the velocity gradient is constant, we
can write du/dy = Au/Ay and substitute the values 7 = 1.541by/ft>, Ay =
0.5in. = (0.5/12) ft and Au = 10 ft/s into the expression for viscosity:

d A 0.5/12 1t
w=o 3 2B satgy X2 64« 1073 (bpesy
du Ay 10 ft/s
The shear rate is given by
d d 10 ft/
—y=—u=7s 2240571
dt  dy  (0.5/12)ft
Weight
N N N
— Molecular — — Molecular 8
spacing doesn’t spacing changes
Liquid change in Liquid Gas significantly E/
9 a liquid q in a gas
Gas

Figure 1.7 Differences in the compressibility of liquids and gases. (A) The molecular spacing between liquid
molecules is not changed appreciably when a weight is applied to the piston. (B) In contrast, the same weight
on the piston will cause a significant change (decrease) in the spacing between gas molecules.

gases from each other? It is tempting to use the widely different densities of liquids and
gases, or to determine how each fills a container; but the more important difference be-
tween these two fluids lies in their vastly different response to a compressive stress.
Consider an experiment in which we attempt to use two identical piston—cylinder de-
vices to compress a liquid and a gas, as shown in Figure 1.7. The intermolecular spacing
in liquids is essentially constant, so a fixed amount of liquid occupies nearly the same
volume under most conditions. A liquid is therefore difficult to compress, and even a
large weight on the piston will result in only a small volume change. In contrast, the dis-
tance between molecules in a gas is much greater and highly variable. It takes a rela-
tively small force on the piston to significantly decrease the intermolecular distance in a
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EXAMPLE 1.3

SOLUTION

Imagine applying a shear stress to a puddle of water with your hand. Suppose the water
puddle is initially 2 mm thick and that the viscosity of water is 0.001 kg/(m-s). If your
hand is applying a shear stress of magnitude 0.05 kg/(m-s2), calculate the shear strain
rate and velocity gradient in the fluid, and the speed u at which your hand is moving.

The exercise asks us to calculate dy /dt, du/dy, and u at the top surface of the water.
We are given T = 0.05 kg/(m-sz) (= 0.05N/m?) and = 0.001 kg/(m-s). A sketch of
the system would look like the fluid testing device in Figure 1.6. This problem can be
solved using Newton’s law of viscosity, which is given in Eq. 1.2b as t = u(dy/dt).
Assuming that water is a Newtonian fluid (a very safe assumption), the equation can be
solved for the desired quantity:

dy 1

dt w

Substituting the given values for T and p yields the constant shear strain rate in the
water:

dy 0.5 kg/(m—sz) . 1

dt ~ 0.001kg/(m-s)

Since the shear rate and velocity gradient are equal, we conclude that du/dy = 50s~".
This value is also uniform across the gap. To find the velocity of the top plate we write

du _ Au _ (u1p — UBotom)

— == =50s""
dy Ay 0.002m °

Since the bottom plate is not moving, Upetom = 0. Solving for the velocity of the top
plate p, which is the speed at which our hand is moving, we get
utop = (50 s71(0.002m) = 0.1 m/s = 10cm/s

Note that since the velocity gradient is uniform in the gap, the velocity profile in the di-
rection of the applied force is a linear function of the vertical distance above the table
given by
du
uy) = — )y =(50s7"!
) ( 7 )y ( )y

The velocity at the top plate could also be obtained by evaluating this function at
y = 0.002 m to obtain u = (50s7!)(0.002m) = 0.1 m/s = 10 cm/s.
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gas, so the same weight on the piston compresses the gas into a substantially smaller
volume than that occupied by the liquid under similar conditions. We conclude that all
gases are far easier to compress than any liquid.

What would happen if we attempted to use our piston—cylinder device to put a lig-
uid or gas into tension? Perhaps you intuitively feel that it is not possible to put a fluid
in tension. If so, you are correct. The molecular structure of a gas, with its distant mole-
cules, ensures that a gas cannot support a tensile stress. The gas molecules are too far
apart on average for intermolecular forces to maintain cohesion. The molecular structure
of a liquid is quite different, however. There are always nearby molecules exerting sig-
nificant intermolecular forces. A liquid should in principle be able to support a tensile
stress because of these strong intermolecular forces. However, under normal circum-
stances, a liquid boils as the pressure on the liquid decreases to a value known as the
vapor pressure. The presence of vapor pockets in the boiling liquid prevents the liquid
from being placed in tension. Thus under normal circumstances liquids and gases can-
not be put in tension.

We may also compare the behavior of a liquid and a gas in another way. Consider
what happens when a sample of each type of fluid is transferred from a small rectangu-
lar container to a larger cylindrical container. As shown in Figure 1.8, the liquid occu-
pies the same volume in each container but changes its shape to conform to that of the
container, forming an interface with liquid vapor above. The gas expands to completely
fill the larger container—its volume is not fixed, and no interface is present. You have
undoubtedly noticed that liquids are able to form a stable, lasting interface that is not as-
sociated with container boundaries, something gases cannot do. Such an interface may
also occur between two immiscible liquids, or between a liquid and a gas. The interface
between a liquid and a gas is referred to as a free surface. A summary of the important
differences between liquids, gases and solids is contained in Table 1.1.

We conclude our discussion of fluids and solids with a word of caution. While there
is little doubt about the classification of a particular substance as a gas, many common
materials exhibit characteristics of both liquids and solids. For example, what is tooth-
paste? Shearing a small amount of toothpaste between your fingers should convince you
that toothpaste is not a solid. Yet if you carefully squeeze toothpaste into a straw, and

Liquid Gas

— —

(A) (B)

Figure 1.8 Differences in characteristics of liquids and gases. (A) A liquid takes the shape of its container but re-
tains a constant volume. Note that a liquid is capable of forming an interface with its vapor that is not associated
with a container boundary. (B) In contrast, a gas not only takes the shape of its container but expands or contracts
to completely fill a container of any shape. Gases do not form interfaces other than those associated with the con-
tainer boundaries.
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TABLE 1.1 Comparison of Solids, Liquids, and Gases

Fluids
Characteristic Solids (crystalline) Liquids Gases
Response to a shear stress, © T = Gy (resists deformation) T =pu(dy/dt) = pu(du/dy)

(resists rate of deformation)

Distance between adjacent molecules Smallest Small Large

Molecular arrangement

Ordered Semiordered (short-range Random
order only)

Strength of molecular interaction Strong Intermediate Weak
Ability to conform to the shape of a container No Yes Yes
Capacity to expand without limit No No Yes
Able to exhibit a free surface Yes Yes No
Able to resist a small tensile stress Yes Theoretically yes, No

Compressibility

practically no
Essentially zero Virtually incompressible Highly compressible

hold the straw vertically with both ends open, the toothpaste will stay in the straw despite
the effects of gravity. Water, which obeys Eq. 1.2¢, would never behave this way.

Many other materials exhibit behavior that seems to fall somewhere between a fluid
and a solid. Paint behaves in much the same way as toothpaste. It does not flow off the
brush owing to the force of gravity alone, but it will flow onto the wall under the appli-
cation of larger shear stress when brushed or rolled. Toothpaste and paint are examples
of non-Newtonian fluids. A fluid of this type does not obey Eq. 1.2c; rather, it exhibits a
more complex relationship between the shear stress and velocity gradient. The behavior
of a non-Newtonian fluid varies greatly, but is often fluidlike, with some features of a
solid at low shear stress levels. Other examples of non-Newtonian fluids are polymer so-
lutions (i.e., macromolecules dissolved in a solvent), colloidal suspensions (e.g., milk or
mayonnaise), slurries (e.g., nuclear fuel particles or paper pulp in water), and clay sus-
pensions. Although the behavior of non-Newtonian fluids is important in polymer and
food processing, and in chemical and pharmaceutical manufacturing, this book deals
primarily with Newtonian fluids.

EXAMPLE 1.4

In which of the following situations would you feel comfortable using Newton’s law of
viscosity? Justify your decisions.

A. Modeling the flow of caulk out of a caulking gun.
B. Modeling the flow of water out of a squirt gun.

C. Modeling the flow of hot gases out of an aircraft turbojet engine.
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SOLUTION

We are asked to determine which of the situations listed can be adequately modeled by
Newton’s law of viscosity. We will assume that Newton’s law is appropriate if the fluid
is a gas, a liquid with a simple molecular structure and no additives, or a material that we
have observed behaving like a Newtonian fluid under the conditions of interest.

A. The vinyl-based caulk used in most home improvement projects is a high
molecular weight polymer and does not flow out unless substantial pressure is
applied with the plunger of the caulking gun. We conclude that caulk is not a
Newtonian fluid.

B. Water has a simple molecular structure, and Newton’s law of viscosity is ap-
plicable. Thus water is a Newtonian fluid.

C. A turbojet exhaust stream is a mixture of hot gases, primarily air. There is no
reason to think that the mixture will behave differently from any other gas. We
conclude that the exhaust mixture is a Newtonian fluid and that Newton’s law
of viscosity is applicable.

CD/Kinematics/Fields, Particles, and Reference Frames

1.3 METHODS OF DESCRIPTION

To construct a theory of fluid mechanics, it is necessary to represent basic laws describ-
ing conservation of mass, momentum, and energy in a form suitable for mathematical
analysis. This requires the selection of a description, or a conceptual framework in
which to work. The breadth of fluid dynamic problems extends from the description of
star formation within interstellar gas clouds to the water flow in the wake of a diving
pelican, from the exchange of gases with the blood flowing in the capillaries of our bod-
ies to the spreading of a drop of epoxy glue on a surface to the drag on a modern com-
munications satellite. Given this breadth of topics, is it reasonable to expect to find a
unique method of description that works well in all cases? Before we answer this ques-
tion, it is important to realize that even though a fluid has a molecular structure, it is not
always necessary to incorporate this molecular structure into a model. The deliberate
omission of the fluid’s molecular structure in a mathematical model of fluid flow is
known as the continuum hypothesis.

CD/Dynamics/Newton's Second Law of Motion/A Fluid as a Continuum
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1.3.1 Continuum Hypothesis

To place the need for the continuum hypothesis in context, suppose you are given the
assignment to predict the fluid velocity distribution created by stirring a glass of water
with a spoon. How would you propose to model the fluid in this situation? One approach
might be to attack the problem on a molecular level by using your understanding of dy-
namics and modern physics to model the water molecules as interacting hard spheres
with a known intermolecular force field. Good luck! A typical glass of water contains on
the order of 10%° water molecules. Even with the help of a powerful computer, tracking
such a large number of objects is impossible, at least in the foreseeable future. An alter-
nate approach to modeling the water in the glass, or any fluid in general, is to consider
all macroscopic properties at a point in a fluid as averages of molecular characteristics
in a small region about that point. In this approach we assume that a fluid may be treated
as a continuous substance or continuum, rather than as a group of discrete molecules.
Therefore, this concept is called the continuum hypothesis.

CD/Video Library/Stirring

In employing the continuum hypothesis, the underlying molecular structure of a
fluid is conveniently ignored and replaced by a limited set of fluid properties, defined at
each point in the fluid at every instant. Mathematically speaking, the continuum
hypothesis allows the use of differential calculus in the modeling and solution of fluid
mechanics problems. Each fluid property is considered to be a continuous function of
position and time. There may be discontinuous jumps in a property value such as density
at fluid—fluid or fluid—solid interfaces, but the continuum model generally assumes that
all properties are described by continuous functions.

How do we know if a continuum model is valid for a specific application? As with
most engineering theories that attempt to explain or model physical phenomenon, the
proof is in how well the theory describes reality. Continuum models of fluid mechanics
have been applied to an extraordinarily wide range of problems with excellent results, so
there is little doubt of the general validity of this approach. Does the molecular structure
of a fluid ever become important and perhaps cause a breakdown in the continuum
theory? The answer to this question is yes: the continuum theory is in jeopardy when the
length scale of a physical phenomenon or object exposed to a fluid is of the same order
as molecular dimensions. In a problem involving a gas, for example, the largest molecu-
lar dimension of practical importance is the mean free path of gas molecules,which is in-
versely proportional to the density of the gas. The mean free path in air is approximately
10~7 m (0.1 pm) at standard conditions. Is a continuum model appropriate to describe
the flow of gas in 0.5 wm pores of a filter media? Since the pore diameter is approxi-
mately five times the mean free path, we should be cautious in using results based on the
continuum hypothesis in this application.

There is another category of flow problems in which the physical scale is not small
but the mean free path is much larger than normal. NAS A engineers have to deal with the
fact that in the upper atmosphere, the mean free path approaches the length scale of a ve-
hicle or satellite. The drag on the vehicle in a high orbit will not be accurately predicted
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EXAMPLE 1.5

SOLUTION

The pressure in a vacuum system is 107% atm. Estimate the mean free path A of the air
inside the system. Assume that the air can be modeled using the perfect gas law, i.e., at
constant temperature the air density is proportional to its pressure.

This problem can be solved by remembering that the mean free path in a gas is inversely
proportional to its density. If we combine this fact with the information provided in
the problem statement (at constant temperature the air density p is proportional to its
pressure p), we can obtain the relationship: Ay /A; = p1/p2 = p1/p> for the ratio of the
mean free path at two different conditions. We know that at atmospheric pressure the
mean free path in air is 0.1 wm and that the air inside the vacuum system is at a pressure
of 107® atm. Thus, if we let p; = 1 atm, p» = 107® atm, and A; = 10~7 m, then A, is
calculated as

lat
A=MmP =107 m)— 2 _0.1m=10cm
D2 10-% atm

by formulas based on continuum theory. Industrial coating processes in which gases are
metered or flow through vacuum chambers are also examples of situations for which the
continuum hypothesis may break down. Note, however, that a large mean free path in
and of itself does not always mean that the continuum hypothesis is invalid. The mean
free path in the vicinity of a stellar nebula is enormous, but the scale of the astronomical
flow structure is larger still, so the continuum hypothesis is valid. Hydrodynamic mod-
els of nebulae based on continuum fluid mechanics appear to work quite well in de-
scribing the observed characteristics of these fascinating astronomical structures.

The continuum hypothesis is nearly always applicable in liquids because the dis-
tance between liquid molecules is small and relatively constant. Nevertheless the con-
tinuum hypothesis is known to fail for very thin lubricant films whose thickness ap-
proaches the molecular dimensions of the lubricant molecules. Under these conditions
the Iubricant may exhibit distinctly different behavior under shear than it will in a
thicker film. Fluid mechanics problems like these must be approached by using a model
that correctly accounts for the molecular structure of the fluid.

The continuum hypothesis is valid for the problems addressed in this book. It is
well to be alert, however, for situations in which the hypothesis is invalid. We recom-
mend the habit of checking all of your assumptions before proceeding with a formulaic
approach to problem solving.

1.3.2 Continuum and Noncontinuum Descriptions

We have seen that an engineer has the option of including the fluid’s molecular structure
in the description of a fluid or leaving it out. Once the choice of a continuum or
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EXAMPLE 1.6

SOLUTION

In each

of the following situations, would you feel comfortable using the continuum

hypothesis in your analysis of the fluid flow? For any doubtful cases, list the additional
information you would like to obtain before feeling confident of your decision.

A.

moaw

Flow of gas at very low pressure through an orifice.
Calculating the shear stress in a lubricant layer 1 nm thick.
Modeling the flow of blood in the smallest capillaries.
Airflow over a passenger plane at normal altitude.

Respiration of insects through tubes connected to pores on their bodies.

To determine which of the situations listed can be adequately modeled with a continuum
theory we will compare a length scale in the problem to an appropriate molecular
dimension such as the mean free path in a gas.

A.

Since the flow is occurring at very low pressures, the mean free path of the gas
molecules could be comparable to the dimensions of the orifice (see Exam-
ple 1.5). If so, the continuum hypothesis may be invalid. We would need to
know the gas pressure to estimate the mean free path and compare it to the di-
mensions of the orifice before being able to justify the use of the continuum
hypothesis for this flow.

Since atoms typically have radii on the order of 0.1 nm, the size of the lubricant
molecules is similar to the thickness of the lubricating film. Therefore, it is not
valid to use the continuum hypothesis to predict the shear stress in this problem.

We should determine the diameter of the smallest capillaries and compare it to the
characteristic molecular dimension for blood (on the order of nanometers) to see
if the continuum hypothesis is valid for this fluid system. In this case the contin-
uum hypothesis does apply. However, we should also be aware that blood is
a complex liquid made up of cells of several types immersed in plasma. The
diameter of the smallest capillaries is approximately the same size as red blood
cells. This creates an unusual flow as the red blood cells squeeze through them in
single file.

Since the mean free path of gas molecules at ordinary pressures is much less than
the characteristic length of an airplane, we should feel comfortable using the con-
tinuum hypothesis in this case. By obtaining a relationship between gas pressure
and mean free path, and a relationship between altitude and pressure, one could
determine the range of altitudes for which the continuum hypothesis is useful.

We must determine the characteristic dimension for insect respiration tubes and
pores as well as the mean free path of gas molecules at atmospheric pressure be-
fore being able to justify the use of the continuum hypothesis.
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noncontinuum approach has been made, the next task is to select an appropriate method
of describing the fluid and its behavior. Engineers have developed three principal meth-
ods, each of which has advantages and disadvantages. These are known as the molecu-
lar, Lagrangian, and Eulerian descriptions. The first, as the name implies, is a molecular
level treatment that provides the basis for a noncontinuum theory of fluid mechanics.
The Lagrangian and Eulerian approaches are both continuum treatments.

These three descriptions may be usefully distinguished from one another by the
way in which the fundamental entity, or basic structural unit characteristic of the fluid,
is defined. We think of a bulk fluid as being divisible into a large number of these enti-
ties, with the properties of the fluid ultimately residing in, and derived from, character-
istics of the fundamental entity. The fundamental entity is always assumed to be small
enough to preclude property variation within an individual entity. In the next three sec-
tions we discuss the three descriptions and their corresponding fundamental entities,
beginning with the molecular description.

1.3.3 Molecular Description

In the molecular description the smallest identifiable element or fundamental entity is a
single fluid molecule. Thus, as noted earlier, the molecular description of a fluid is inher-
ently a noncontinuum model. The advantage of this approach is that we have a very good
understanding of the molecular structure of common fluid molecules, so we can expect to
get excellent results for a broad range of problems without having to tune our model in
any significant way. The major disadvantage, however, is that we must track an enor-
mously large number of molecules in most circumstances. For example, in modeling the
flow of a breath of air traveling into our lungs through the trachea we must track on the
order of 10?! air molecules. The storage requirements for the spatial coordinates alone ex-
ceed one million billion megabytes! This problem of sheer size has always been recog-
nized and thought insurmountable. Recent computational efforts using molecular dynam-
ics are nevertheless proving to be both exciting and fruitful. Researchers are dealing with
the problem of tracking a large number of molecules by considering only a very small re-
gion of fluid for actual calculation. For example, in the spreading of a liquid the interest-
ing physical phenomena are controlled by what is happening in the vicinity of the moving
contact line where the liquid is advancing over the substrate. A molecular dynamics sim-
ulation of this problem may require tracking only on the order of 10* molecules. This is
possible on many of today’s fast workstations. So although molecular dynamics is un-
likely to become a more widely used method of describing large-scale fluid mechanics
problems, it has a promising future for small-scale problems. With its foundation in the
underlying molecular structure of a fluid, molecular dynamics is a powerful and exciting
tool for answering critical questions that cannot be approached at the continuum level.

CD/Special Features/Simulations/A Molecular Dynamics Simulation

CD/Special Features/Demonstrations/Euler vs. Lagrange: What is Steady
and Unsteady?
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1.3.4 Lagrangian Description

In the Lagrangian description the fundamental entity is a fluid particle. The conceptual
model here assumes that the fluid consists of a continuous distribution of small discrete
particles of fluid, each of which has a fixed mass but is otherwise shapeless. The particles
are tracked to arrive at the motion of the bulk fluid. The fluid consists of a large enough
number of fluid particles to permit it to be treated as if it were infinitely divisible. A fluid
particle is composed of an extremely large, but finite, number of molecules whose aver-
age behavior defines the properties of the fluid particle. Consequently there will be many
orders of magnitude fewer fluid particles in the Lagrangian description than molecules in
the molecular description. This reduction in the number of fundamental entities in the
Lagrangian description is a significant advantage over the molecular description. Since
the Lagrangian description is a continuum description, the continuum hypothesis must
be valid for the Lagrangian description to succeed in describing fluid behavior.

To illustrate the Lagrangian concept, imagine standing on a bridge and spraying a
shower of small droplets of a red dye into a river. As your eyes follow the droplets
downstream you are tracking a number of marked (dyed) fluid particles on the river sur-
face. The movement of the water at the surface is revealed by the movement of fluid par-
ticles made visible by the dye. If droplets of dye are also introduced below the river’s
surface, a Lagrangian description of the flow is made visible, at least for the small num-
ber of dyed fluid particles.

Engineering students are usually comfortable with the Lagrangian description
because it is the standard description of ordinary dynamics. Consider the problem of
describing the motion of a point mass. Tracking a point mass through time by means of
its position vector is a natural way to describe mathematically what we observe with our
senses. For example, if a ball is thrown through the air, our eyes naturally track the ball
(Lagrangian). Perhaps you have noticed the swiveling heads of spectators at a tennis
match as they follow the flight of the ball. Although describing the motion of a cloud of
fluid particles is more complex than describing the motion of a point mass, many of the
mathematical concepts are similar. Since the Lagrangian description is applied only for
relatively rare, specialized applications, we will not derive or solve the corresponding
governing equations in this introductory textbook. However, kinematic concepts from
the Lagrangian description are essential in analyzing and understan