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PREFACE

xiii

This book is intended primarily for use in a one-quarter or one-semester introductory fluid mechanics course.
Our goal is to provide both a balanced introduction to all the tools used for solving fluid mechanics problems
today and a foundation for further study of this important and exciting field. By learning about analytical, em-
pirical (existing experimental data and accepted engineering practice), experimental (new experimental data,
which will need to be obtained), and computational tools, students learn that an engineering problem can be
approached in many different ways and on several different levels. This distinction of approach is especially
important in fluid mechanics, where all these tools are used extensively. Although the traditional methodology
of engineering fluid mechanics is thoroughly covered, this text also includes elements of differential analysis
presented at a level appropriate for the target student audience. We also make use of outputs from commer-
cially available computational fluid dynamics codes to help illustrate the phenomena of interest. It is not ex-
pected that students will perform any computational fluid mechanics simulations. However, with computa-
tional solutions becoming routine, economical, and accessible to engineers with bachelor’s degrees, it is
important that students be familiar with the use of this type of information. Therefore, computa-
tionally produced figures are used in the text for expository purposes. Throughout the text, CFD
icons indicate when the subject matter directly, or indirectly, relates to computational methods.
There are also a large number of figures, photographs, and solved problems to give students an understanding
of the many exciting problems in fluid mechanics and the tools used to solve them. The visual approach to
understanding fluid mechanics is
highlighted with the use of visual
icons that point students to resources

such as websites, books, and especially, the excellent CD Multi-Media Fluid Mechanics.* A
third icon, called FE, is used to note material that is covered in the Fundamentals of Engineering
exam.

We have organized the text in three parts to give to each instructor the flexibility needed to meet the needs
of his or her students and course(s).

Part 1, Fundamentals, contains the first nine chapters and covers the traditional body of introductory ma-
terial. Our emphasis here is on developing an understanding of fundamental ideas. The judicious use of soft-
ware packages to perform routine mathematical and graphical operations is intended to allow the student to
concentrate on ideas rather than mathematics. Here, and elsewhere in the text, we employ a visual presenta-
tion of results to enhance student learning and to encourage students to do the same in their own problem solv-
ing. An important feature of Part 1 is the introduction to empirical methods in Chapter 3, rather than covering
this much later, as is the case in other texts. Chapter 3 includes simple but effective case studies on pipe flow,

CD/Kinematics/Compressibility/Compressible and Incompressible Fluids

*© 2000, 2004 by Stanford University and its licensors, published by Cambridge University Press.
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drag on spheres and cylinders, lift and drag on airfoils, and other topics. The student is thus empowered to
solve important and interesting fluid mechanics problems in these areas without being forced to wait until the
end of the course for the “good stuff .” The early exposure to these topics in the lecture also serves to broach
these topics early in the traditional laboratory portion of an introductory course, which also helps to build stu-
dent interest. As Part 1 unfolds, the student learns more and more about the source of the empirical rules pre-
sented in the case studies. The text revisits the case studies not only in Part 1 but also in Parts 2 and 3 of the
text to show the student how advanced methods contribute to a deeper understanding of a flow than can be
gained from empirical methods alone.

Part 2, Differential Analysis of Flow, consists of three chapters and represents the core of our added
emphasis on differential analysis and a visual presentation of fluid dynamics. It is important to note that we
have written the chapters in Part 2 in a modular fashion. That is, instructors can select to cover as much or as
little of this material as they see fit without losing the ability to continue on into the third part of the text on
applications. This section begins with Chapter 10, Elements of Flow Visualization and Flow Structure, where
we introduce classic kinematic concepts from both the Lagrangian and Eulerian descriptions. This chapter
demonstrates the importance of flow visualization in the context of modern experimental approaches to flow
measurement, as well as in flow simulation. An additional feature of our coverage in this and subsequent chap-
ters is that the student begins to appreciate the wealth of information available from skillful postprocessing of
CFD simulations. This chapter discusses flow structure in preparation for a discussion of the governing equa-
tions of fluid dynamics. Chapter 12 allows instructors to expose their students to one or more of the classic
exact solutions to the Navier–Stokes equations.

The remaining chapters of the text constitute Part 3, Applications. It is here that students see how ana-
lytical, empirical, experimental and computational methods come together to solve engineering problems.
Chapters on traditional topics such as Flow in Pipes and Ducts, External Flow and Open Channel Flow extend
students’ understanding of the breadth of fluid mechanics and its applications.

In writing the text, we are well aware of the needs of different instructors. Someone faced with selecting
material for a one-quarter course may elect to cover Part 1, Fundamentals, and feel comfortable in going
straight to Part 3, Applications, to continue with one or more of these chapters. Those who have a semester
course may elect to cover Part 1, Fundamentals, followed by some of Part 2, Differential Analysis of Flow,
and then finish the course by discussing one or more of the chapters in Part 3, Applications. There is enough
material in the text for a second, intermediate fluid mechanics course in either the quarter or semester system.
In this respect we have found that current introductory texts fail to provide sufficient material on differential
analysis, while advanced texts place a reliance on mathematics that is far too heavy for the intermediate stu-
dent. Ample problems at the end of each chapter are designed to meet the needs of instructors and students
alike. Today’s students are accustomed to, and thrive in, a visual learning environment. These students have
already integrated the use of computers into many daily tasks. We believe a fluid mechanics textbook that pro-
vides the same visual, computer-oriented environment will be an extremely effective aid in learning. Fluid
mechanics is a notoriously challenging subject, but one that lends itself to a visual learning process and the
use of computers to accomplish routine tasks and examine results.

The text is designed to accommodate different disciplines: mechanical, civil, aerospace, and chemical en-
gineering. It also permits instructors to select the level of treatment appropriate for the course and setting,
without relinquishing an opportunity to employ a visual text with early exposure to interesting fluid mechan-
ics problems and an effective use of today’s computational tools.

We wish to extend our thanks to our Editor at Oxford University Press, Danielle Christensen. We also
thank Barbara Brown, Editorial Assistant, for pulling together the photo program for the book, and thanks to
Karen Shapiro, Managing Editor, for guiding the production of our book.



P A R T  1

FUNDAMENTALS



This page intentionally left blank 



1.1 Introduction
1.2 Gases, Liquids, and Solids
1.3 Methods of Description

1.3.1 Continuum Hypothesis
1.3.2 Continuum and Noncontinuum Descriptions
1.3.3 Molecular Description
1.3.4 Lagrangian Description
1.3.5 Eulerian Description
1.3.6 Choice of Description

1.4 Dimensions and Unit Systems
1.4.1 {M LtT } Systems
1.4.2 {F LtT } Systems
1.4.3 {F M LtT } Systems
1.4.4 Preferred Unit Systems
1.4.5 Unit Conversions

1.5 Problem Solving
1.6 Summary
Problems

1.1 INTRODUCTION

Fluid mechanics is concerned with understanding, predicting, and controlling the
behavior of a fluid. Since we live in a dense gas atmosphere on a planet mostly cov-
ered by liquid, a rudimentary grasp of fluid mechanics is part of everyday life. For an
engineer, fluid mechanics is an important field of the applied sciences with many
practical and exciting applications. If you examine municipal water, sewage, and elec-
trical systems, you will notice a heavy dependence on fluid machinery. Pumps and
steam turbines are obvious components of these systems, as are the valves and piping
found in your home, under your city streets, in the Alaska oil pipeline, and in the
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The fluid-covered Earth
from space.



natural gas pipelines that crisscross the country. More-
over, aircraft, automobiles, ships, spacecraft, and virtu-
ally all other vehicles involve interactions with fluid
of one type or another, both externally and inter-
nally, within an engine or as part of a hydraulic control
system.

Learning more about fluid mechanics also allows
us to better understand our bodies and many interesting
features of our environment. The heart and lungs, for
example, are wonderfully designed pumps that operate
intermittently rather than steadily as most man-made
pumps do. Yet the heart moves blood efficiently through
the branching network of arteries, capillaries, and veins,
and the lungs cycle air quite effectively through the
branching pulmonary passages, thereby keeping the
cells of our bodies alive and functioning. Many other
sophisticated fluid handling devices are found through-
out the biological world in living creatures of all types,
sizes, and degree of complexity.

4 1 FUNDAMENTAL CONCEPTS
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The environment is another source of complex
and interesting fluid mechanics problems.These range
from the prediction of weather, hurricanes, and
tornadoes to the spread and control of air and water
pollution. Add to this list the flow of rivers and streams,
the movement of groundwater, the jet stream and great
ocean currents, and the tidal flows in estuaries. The lava
flows of volcanoes and the movements of molten rock
within the earth also lie within the domain of fluid
mechanics. Looking beyond Earth, stellar processes and
interstellar events are striking examples of fluids in
motion on a grand scale. Knowledge of fluid mechanics
is also the key to understanding and sometimes control-
ling other interesting, if not vital phenomena, such as the
curving flight of a tennis, golf, or soccer ball, and the
many different pitches in baseball.

HISTORY BOX 1-1

The history of science and technology, in-
cluding that of engineering fields like fluid
mechanics, is often ignored in engineering
courses. Yet a sound historical perspective
can help engineers avoid the mistakes of
the past while creatively building on the
achievements of their predecessors. By
learning something about the insights of
the pioneers of fluid mechanics, you will
sharpen your own insight into the subject,
and perhaps develop new ideas in areas
such as turbulent flow, where progress is
very slow.

Fluid mechanics has been important
to virtually all societies because people
need water to drink, irrigation for agricul-
ture, and the economic advantages of
waterborne transportation. The earliest
known hydraulic engineering was accom-
plished in the river valleys of Mesopotamia
and Egypt. Mechanical devices and canals
were used for distributing water for agri-
culture. Perhaps the greatest engineering
feat of antiquity was the Roman water sys-
tem, with aqueducts that could supply
fresh water miles from the source.

Figure HB.1 The Roman aqueducts are one of
the great engineering achievements of the ancient
world.

CD/Gallery of Flows



1.1 INTRODUCTION 5

HISTORY BOX 1-2

The most illustrious name in ancient Greek engineering is Archimedes (287–212 B.C.). Among
this man’s accomplishments was the determination, by means of a clever application of the prin-
ciples of fluid statics, of the percentage of gold in the crown of the king of Syracuse. For thou-
sands of years fluid mechanics depended on principles deduced by trial and error. During the
Italian Renaissance Leonardo da Vinci (1452–1519) used his acute powers of observation to
describe fluid flows and to imagine fluid machines. 

It was not until the seventeenth century, however, that the history of modern fluid mechanics began.
A disciple of Galileo (1564–1642), Evangeliston Torricelli (1608–1647) invented the barometer, a de-
vice for measuring atmospheric pressure variations caused by weather. The principles of the barometer
were clarified by the noted scientist and philosopher Blaise Pascal (1623–1662). This work laid the
foundation for our understanding of fluid statics. For good reason, then, the units of pressure called the
torr and pascal, respectively, were named in their honor.

(A) (B)

Figure HB.2 (A) Leonardo da Vinci. (B) Sketch of falling water by Leonardo.

CD/History/Leonardo Da Vinci

CD/Special Features/Demonstrations/Sports Balls



The field of fluid mechanics has historically been divided into two branches, fluid
statics and fluid dynamics. Fluid statics, or hydrostatics, is concerned with the behavior
of a fluid at rest or nearly so. Fluid dynamics involves the study of a fluid in motion. Con-
sider the engineering systems illustrated in Figure 1.1. Which branch of fluid mechanics
is applicable in each case? Do any of these applications involve both branches?

Modern engineering science is rooted in the ability to create and solve mathematical
models of physical systems. Students often view fluid mechanics as a challenging sub-
ject, primarily because the underlying mathematical model appears to be complex and
difficult to apply. We will show that the governing equation of fluid statics, called the hy-
drostatic equation, is actually relatively simple and may always be solved to find the
pressure distribution in the fluid. On the other hand, the governing equation of fluid dy-
namics, called the Navier–Stokes equation, would never be described as simple. The in-
herent difficulties of fluid mechanics have been recognized for centuries, yet engineers
have demonstrated great ingenuity in developing a number of different approaches to
solving specific fluid flow problems. The common theme is to simplify the mathematical
or experimental model used to describe the flow without sacrificing the relevant physical
phenomena. For example, a standard approximation in the prediction of low speed air-
flow is to neglect the compressibility of air. This assumption is accurate at vehicle speeds
as high as 250 mph. Thus in the flows over automobiles and light aircraft, the compress-
ibility of air can be ignored. By the way, do you consider 250 mph to be a low speed flow?
It definitely is in fluid dynamics applications!

It is often said that there is both an art and science to the practice of fluid mechan-
ics. One learns the science of fluid mechanics in a class or from self-study, with a text-
book like this one serving as a guide. The art of fluid mechanics, however, is developed
primarily through experience, both your own and that of others. This art consists in
knowing when it is safe to neglect the effects of physical phenomena that are judged to
have little impact on the flow. Once we decide to neglect certain physical phenomena,
we drop the corresponding terms in the governing equations, thereby decreasing the dif-
ficulty in obtaining a solution. Such fundamental topics as boundary layer theory, the
Bernoulli equation, potential flow, and even fluid statics can be considered to be part of
the art of fluid mechanics in this sense. Learning about these historical approximations

6 1 FUNDAMENTAL CONCEPTS

Figure 1.1 (A) Hoover Dam. (B) The space shuttle at takeoff.

(A) (B)



1.1 INTRODUCTION 7

HISTORY BOX 1-3

In 1687 Sir Isaac Newton’s Mathematical Principles of Natural Philosophy was published. The
second book of this work was devoted to fluid mechanics. It was in the Principia that Newton
(1642–1727) established on a rational basis the relationship between the mass of a body, its ac-
celeration, and the forces acting upon it. Although he tried, Newton was unable to properly apply
these concepts to a moving fluid. Even though Newton’s second law (F = ma) applies to a fluid in
motion, the dynamics of fluid flow are inherently more difficult to understand than the dynamics
of solid bodies. For example, what mass of water should be included in the analysis of a ship sail-
ing on the ocean? How do forces such as friction behave between a fluid and a solid surface? The
answers to these and other fundamental questions eluded Newton.

In the eighteenth century, mathematicians built on the foundations of mechanics and calcu-
lus Newton had laid. The leading lights of this era were Daniel Bernoulli (1700–1782), Jean le
Rond d’Alembert (1717–1783), and Leonhard Euler (1707–1783). The fundamental equations of
fluid mechanics relating the conservation of mass, momentum, and energy were being developed.
An equation for the conservation of mass was first appropriately applied by d’Alembert for plane
and axisymmetric flows in 1749. Euler first published the generalized form of the equation for

CD/History/Sir Isaac Newton

Figure HB.3 Daniel Bernoulli.
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mass conservation 8 years later. At this time he also published the proper form of fluid accelera-
tion in the momentum equation; however, the role of friction was not understood. The well-known
Bernoulli equation can be considered to be a form of the energy equation under special condi-
tions. The proper statement for the conservation of energy in a fluid could not be fully derived until
the nature of heat was understood in the nineteenth century.

History/Jean le Rond d’Alembert

CD/History/Leonhard Euler

HISTORY BOX 1-4

The complete mathematical statement for the conservation of momentum, including the role of
friction, was derived independently by the Frenchman C. L. M. H. Navier (1785–1836) and the
Englishman Sir George Stokes (1819–1903). These equations, called the Navier–Stokes equa-
tions, are the fundamental mathematical model for fluid mechanics, and as such, are the basis for
all the analytical solutions presented in this text. Because the equations were intractable, mathe-
matical solutions could be obtained only for “ideal” fluids, meaning fluids of zero viscosity. An ideal
fluid does not exhibit friction as it passes along a surface because shear stress is completely ab-
sent. While the elegant methods developed for ideal fluid flow could produce the pressure distrib-
ution about bodies moving through a fluid, they could not provide answers for the important prac-
tical problem of the drag force that was exerted by the fluid. This difficulty was known as
d’Alembert’s paradox.

The Navier–Stokes equations are formidable nonlinear partial differential equations, and ex-
tremely difficult to solve. For this reason engineers have relied heavily on experiments to answer
their questions. Among the experimentalists active during this period were Henri Pitot

CD/History/C. L. M. H. Navier

CD/History/Sir George Stokes
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(1695–1771) and J. L. M. Poiseuille (1799–1869), who developed a simple device for measuring
fluid velocity and measured the relationship between pressure drop and flow in pipes, respectively.

Figure HB.4 (A) J. L. M. Poiseuille. (B) The apparatus Poiseuille used to study pressure drop in
pipes.

CD/History/J. L. M. Poiseuille

(A) (B)

and others like them is an essential goal of a first course in fluid mechanics, and engi-
neers working with fluids should continue to seek to attain it.

Once the analysis of a fluid mechanics problem has been cast in the form of an ap-
propriate mathematical model, a solution method must be chosen. For example, one
might employ an analytical solution method that results in a representation of the flow
variables as functions of space and time. Figure 1.2 compares an analytical solution and a
visual representation of the low speed flow of fluid between two flat plates. An analytical
solution is a highly compact and useful form of solution that should always be acquired if
possible. Be aware, however, that an analytical solution of the governing equations of
fluid dynamics is usually not possible. Complex engineering geometries and a natural ten-
dency for fluid flows to become unstable ensure that analytical solutions will remain elu-
sive. Nevertheless, it is wise to consult the engineering literature to determine what has
been accomplished in treating the same or related flow problems. If you find that an



approximate analytical solution to a problem of current interest is available, you may be
able to use it as the starting point for your analysis.

Today, an engineer will increasingly choose to employ computational methods to
solve the equations of fluid motion. These methods include finite difference, finite ele-
ment, finite volume, and other computational approaches in which digital computers are
used to supply numerical solutions of approximate versions of the governing equations.
These solutions are discrete, meaning that the flow variables are known only at specific
spatial locations in the flow field. Computational tools of all kinds, ranging from com-
mercially available computational fluid dynamic codes to visualization packages and
symbolic mathematics codes, are among the most important aids in the modern practice
of fluid mechanics. An image produced by a computational fluid dynamics (CFD) code
is shown in Figure 1.3.

One of our motivations in writing this book is to integrate these modern computa-
tional aids into a first course in fluid mechanics. The symbolic mathematics codes Math-
ematica, MATHCAD, and others like them are superb aids in learning fluid mechanics.
We recommend their use to simplify calculations and to visualize the mathematics.

10 1 FUNDAMENTAL CONCEPTS

h
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u(y) � umax 1 �
2y

h(B)

Figure 1.2 Comparison of the parabolic velocity profiles in low speed fluid flow between parallel flat
plates: (A) photograph from a flow visualization experiment and (B) plot of the analytical solution
given by the equation u(y) = umax[1 − (y/h)2].

(A)

Figure 1.3 The flow field
around an automobile as simu-
lated by CFD.



Many of you are already skilled in the use of these mathematics packages and need only
learn how to employ them effectively in solving fluid mechanics problems. For those
who have yet to acquire this engineering skill, an introductory fluid mechanics course
offers an excellent vehicle in which to start learning to do high level mathematics and
visualization on a personal computer or workstation.

Regardless of the source of the information about a particular fluid flow (i.e., a com-
mercially available or proprietary CFD code, an exact or approximate analytic solution),
we believe that a picture is worth more than the proverbial thousand words when it
comes to understanding what is happening in a fluid flow. Consider the flow field shown
in Figure 1.3, and imagine trying to describe this flow with words alone.

Our emphasis on the use of numerical computation and visualization in fluid me-
chanics does not imply that these can replace experimental methods. In fact, it is foolish
to think that all,or perhaps even most flows can be completely simulated on a computer.
The simulation of even relatively simple flows can tax the capability of today’s most
powerful workstations. A numerical simulation of a complex flow like that shown in
Figure 1.3 generally requires a supercomputer, and even then, the resolution of the fine-
scale structure in the flow field may be lacking. For these reasons, and despite working
in this computer age, engineers must be knowledgeable about using experiments to
guide their design and problem-solving efforts in fluid mechanics.

1.1 INTRODUCTION 11

CD/Special Features/Flow Visualizations

Experimental methods employ a wide range of sophisticated equipment to obtain
numerical data describing the velocity, pressure, and other properties of a fluid flow.
Flow visualization techniques provide a visual picture of the flow by making portions of
a normally transparent fluid visible. For example, Figure 1.2A was generated with a flow
visualization system.

Internal flows, meaning those that occur within confining walls, are often studied in
the laboratory by reduced scale models of the physical device. For external flows (typi-
cally a flow over a body immersed in fluid), a wind or water tunnel is often employed to
expose a scale model to the flowing fluid. These tunnels range in size from tabletop to
major installations. With speeds ranging from an imperceptible breeze to hypersonic
flow, wind tunnels like that in Figure 1.4 provide opportunities to explore flows by using
a variety of sophisticated sensors. Many external flows simply cannot be adequately

Figure 1.4 Model of F-18E in a 30 ft ×
60 ft wind tunnel at the NASA Langley
Research Center.
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HISTORY BOX 1-5

Great strides in the development of fluid mechanics were stimulated by the dream of human flight.
The Wright brothers brought their mechanical ingenuity to bear on aerodynamic experiments at
the turn of the nineteenth century. Wilbur (1867–1912) wrote that “having set out with absolute
faith in the existing scientific data, we were driven to doubt one thing after another, until finally
after two years of experiment, we cast it all aside, and decided to rely entirely upon our own in-
vestigations.” They built a wind tunnel in which they tested small models.

The field of aerodynamics, and fluid mechanics in general, was dominated through the first
half of the twentieth century by Ludwig Prandtl (1875–1953) (Figure HB.6A). His work included
thin airfoil theory, finite wing theory, supersonic shock wave and expansion wave theory, com-
pressibility corrections, and his most important contribution to fluid mechanics, the boundary layer
concept. Beyond his own contribution, his students, such as H. Blasius (1883–1970) and T. von
Karman (1881–1963), have also had an enormous impact on the field.

Prandtl’s boundary layer concept resulted from his willingness to combine theory and ex-
periment. Examples of his flow visualization experiments are shown in Figure HB.6B. Prandtl
compared his experimental data with the results of the inviscid, or frictionless, theoretical calcu-
lations. What he found was that theory and experiment were in good agreement except for the
velocity profile in a thin layer of fluid located near the solid–fluid boundary. Prandtl’s experimen-
tal efforts revealed the problem—a breakdown in the inviscid assumption in the boundary layer.
His theoretical efforts solved the problem—he developed a novel solution to the Navier–Stokes
equations for the thin layer of fluid adjacent to the solid boundary. The result of linking Prandtl’s
solution within the boundary layer to the inviscid solution outside the boundary layer resolved
d’Alembert’s paradox.

Figure HB.5 (A) The Wright brothers’ flying at Kitty Hawk, North Carolina. (B) The Wright brothers’
wind tunnel, which they used to test airfoils.

(A) (B)

CD/History/Ludwig Prandtl
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Figure HB.6 (A) Ludwig Prandtl. (B) Flow visualizations by Prandtl.

(A)

(B)

simulated in any other way. Water tunnels are also used to simulate external flows, par-
ticularly for marine applications. In the foreseeable future, experimentation will remain
an important means of solving flow problems.

Empirical results, in the form of experimental data correlations, are used
extensively in the design of piping systems, pumps, turbines, engines and many other



well-understood classes of fluid machinery. A number
of important empirical results are introduced early in
this text in the form of case studies. These case studies,
which expose you to simple design formulas, allow you
to immediately begin to solve a number of practical en-
gineering problems involving fluid flow.

The use of empirical results in the analysis of a flow
problem requires engineering judgment and a level of
experience similar to that mentioned in connection with
mathematical approaches. Thus your application of the
case study results must initially be cautious and gener-
ally guided by your instructor. The case studies in Chap-
ter 3 are revisited in subsequent chapters as we develop
the theoretical tools of fluid mechanics, thus allowing
you to appreciate the underlying assumptions, method-
ologies, and flow characteristics that lie behind the oth-
erwise simple formulas. Just as engineers must under-

stand the assumptions made in constructing a mathematical model, they must also
understand the process required to design an experiment that allows data to be applied to
a particular flow problem. The ability to design a fluid flow experiment and interpret the
outcome requires an understanding of dimensional analysis and similitude. You will
learn about these powerful tools, which allow us to relate results achieved with a scale
model to those that occur with the full-scale prototype, and see how they underlie all the
case studies.
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1.2 GASES, LIQUIDS, AND SOLIDS

In everyday language we casually use the terms fluid, liquid, gas, and solid. Many peo-
ple mistakenly assume that “fluid” is a synonym for a liquid and that a solid is a rigid
material that is incapable of deformation. Neither of these popular conceptions is precise
enough for engineering work, so in this section we formally define each of these terms.

CD/Special Features/Virtual Labs/Dynamic Similarity

CD/Kinematics/Compressibility/Compressible and Incompressible Fluids

The fundamental difference between a fluid and a solid lies in the response to a
shear stress of the respective materials. Suppose you glue a brick to your desk with
epoxy, and also carefully pour a small quantity of water next to it, making a puddle.
Imagine placing the palm ofyour left hand on the brick and your right palm on the sur-
face of the water. Now apply a small but equal force on each material in a direction par-
allel to the surface of the desk. What happens? The response of a solid such as the brick

HISTORY BOX 1-6

To put the history of fluid mechanics into
perspective, the early pioneers of mathe-
matical physics, from Newton to Navier
and Stokes, developed a mathematical
model for fluid mechanics. Prandtl, and re-
searchers since his day, have been apply-
ing this mathematical model. The develop-
ment of digital computers has made a
tremendous impact in this respect. With
computational fluid dynamics (CFD), it is
becoming possible to obtain solutions for
an arbitrary flow geometry.
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to a small shear stress (defined as tangential force divided by area) is a static deforma-
tion. Although your eyes cannot always detect it, all solids change shape upon the
application of a shear stress. A solid quickly returns to rest, however, and retains the new
shape for as long as the (constant) shear stress is maintained.

Unlike the brick, the water in our experiment proves unable to withstand the shear
stress. Your hand continues to move because the water is set in motion by the applied
shear stress. Instead of coming to rest in a deformed state, the water continues to deform
as long as the shear force is applied. This continuing deformation in shear is characteris-
tic of all fluids. We therefore define a fluid as any material that is unable to prevent the de-
formation caused by a shear stress. A related conclusion is that in a fluid at rest all shear
stresses must be absent.

Let us formalize our examination of differences between solids and fluids by imag-
ining that we have placed solid and fluid samples into identical unidirectional shear test-
ing devices as shown in Figure 1.5A. Each material is placed in contact with a rigid
upper plate free to move and with a stationary rigid lower plate. A unidirectional shear
force is transmitted to the material by applying a tangential force to the upper plate. The
applied shear stress, τ , is defined as the ratio of the tangential force, F , to the area of the
upper plate, A, i.e., τ = F/A.

As shown in Figure 1.5B, for a shear stress below the elastic limit, the relationship
between shear stress τ , and shear strain γ in a solid is:

τ ∝ γ (1.1a)

The shear strain is defined as the displacement in the direction of the applied force, �x ,
normalized by the height of the solid (perpendicular to the applied force), �y, i.e.,
γ = �x/�y . The proportionality between τ and γ can be converted to an equality by

Rigid upper plate in contact
with sample over area, A

Tangential force, F,
results in shear
stress, �, defined as
� � F�A

Material
sample

Stationary rigid bottom plate(A)

Solid
sample

(B)

Force, F, results
in shear stress �

For a solid,
we find � � �.

Shear strain, �, is defined
as � � �x��y

�y

�x

Figure 1.5 Illustration of a parallel plate
testing device for determining the response of
materials to an applied shear stress. (A) The
sample in its original form just prior to the ap-
plication of the tangential force, F. (B) The
response of a solid sample to the application
of the shear stress, τ (= F/A). The solid de-
forms by an amount �x almost immediately
upon the application of the shear stress and
then remains stationary in that position
throughout the duration of the applied stress.
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inserting a constant, G, known as the shear modulus of the solid. Thus we can write the
relationship as:

τ = Gγ (1.1b)

Since the shear modulus of steel is about three times that of aluminum (12 × 106 vs
3.8 × 106 psi), Eq. 1.1b tells us that if similar blocks of steel and aluminum were sub-
jected to the same shear stress, the displacement in the aluminum block would be more
than three times as large as that in the steel block. That is, steel is stiffer (experiences less
deflection per unit stress) than aluminum.

As shown in Figure 1.6A, if a fluid sample is placed in our imaginary shear testing
device, the fluid will continue to deform no matter how small the applied shear stress. The
upper plate will move faster if the tangential force is increased. A fluid resists being
sheared, but its underlying molecular structure does not allow it to prevent the resulting
deformation. Thus, the fluid will be set in motion, and it is found that there is a linear
velocity distribution in the gap between the plates as shown in Figure 1.6B. Instead of
having a proportionality between shear stress and shear strain, a fluid exhibits a relation-
ship between shear stress and the shear strain rate, dγ/dt.

The relationship between the shear stress and the shear strain rate for a fluid is

τ ∝ dγ

dt
(1.2a)

For many common liquids, and all gases, this relationship is linear and can be written as

τ = µ
dγ

dt
(1.2b)

where the proportionality constant, µ, is a fluid property known as the absolute or dy-
namic viscosity. Equation 1.2b is known as Newton’s law of viscosity, and a fluid that
obeys this equation is termed a Newtonian fluid. If you subjected two Newtonian fluids
to the same shear stress, the one with the higher viscosity would exhibit a lower shear
strain rate. If two Newtonian fluids are subject to the same strain rate, the one with the
higher viscosity will have a higher shear stress.

EXAMPLE 1 .1

Consider 0.5 in. thick steel and aluminum plates. If each metal plate is subjected to a
shear stress of 2 × 105 psi, what is the magnitude of the displacement in the direction of
the applied force for the two materials?

SOLUTION

This exercise can be solved by using Eq. 1.1b, and the definition of shear strain. From
the appropriate shear moduli for steel and aluminum given earlier, the result is that the
steel sheet experiences a displacement of 8.3 × 10−3 in. while the aluminum sheet
experiences a displacement of 2.6 × 10−2 in.
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x

�y

(B)

(A)

Same F and �

�y

Force, F, results
in shear stress �

�y

y

The fluid velocity profile, u(y),
varies linearly from zero at the
bottom plate to U0 at the top plate.

Top plate moves
with velocity U0

�x2 � �x1

Fluid sample
at t2 � t1

For a fluid, we
find � � d��dt.

Fluid
sample at t1

Recall that shear strain
is � � �x��y

�x1

Figure 1.6 (A) When a fluid is tested in
the device described in Figure 1.5A the
displacement �x and the corresponding
shear strain γ increase linearly with time.
For a fluid, the relationship between shear
stress and shear strain is τ ∝ dγ/dt .
(B) In this situation, the fluid velocity in
the x direction, u, is a function of the
y coordinate. That is, u(y) varies linearly
from 0 at the bottom plate to U0 at the top
plate. Note that u(y) = d(�x)/dt . This
result is used in the text to show that
dγ/dt = du/dy ; i.e., the shear rate and
velocity gradient are equal.

An examination of Figure 1.6B should help con-
vince you that the shear rate dγ/dt , in a fluid sheared
between parallel plates, is related to the transverse ve-
locity gradient du/dy, where u is the velocity of the
fluid in the x direction and y is the spatial coordinate
perpendicular to the parallel plates. This result is
obtained by noting that the shear strain γ is defined as
γ = �x/�y, so the strain rate dγ/dt is given by

dγ /dt = d/dt(�x/�y). Since �y is constant, and the time rate of change of the dis-
placement �x is u, the fluid velocity in the x direction, we obtain dγ /dt = du/dy. Thus
the shear rate and velocity gradient are equal, and Newton’s law of viscosity (Eq. 1.2b)
is usually expressed in fluid mechanics as:

τ = µ
du

dy
(1.2c)

Because the velocity profile is linear across the gap in the shear flow between parallel
plates, the velocity gradient du/dy is constant, and Eq. 1.2c tells us that the shear
stress is uniform in the region between the plates.

We have seen that a solid differs from a fluid in its response to an applied shear
stress. Since a fluid may be a liquid or a gas, on what basis do we distinguish liquids and

Have you noticed that a playing card can
glide across a smooth surface for quite a
distance, “riding on a cushion of air”?
The air is sheared in the thin gap between
the card and the surface, and although the
frictional resistance to this shear is small,
it is definitely nonzero.
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Liquid

(A)

Molecular
spacing doesn’t

change in
a liquid

Liquid

Weight

Weight

Gas

Molecular
spacing changes

significantly
in a gas

Gas

(B)

Figure 1.7 Differences in the compressibility of liquids and gases. (A) The molecular spacing between liquid
molecules is not changed appreciably when a weight is applied to the piston. (B) In contrast, the same weight
on the piston will cause a significant change (decrease) in the spacing between gas molecules.

EXAMPLE 1 .2

A sample of motor oil is tested in a parallel plate shearing device like the one shown in
Figure 1.6 with the following results:τ = 1.54 lbf/ft2, the plate separation distance is 0.5
in., and the top plate velocity is 10 ft /s. Determine the viscosity of the fluid and shear rate.

SOLUTION

This problem can be solved by manipulating Eq. 1.2c to isolate the fluid viscosity. Since
τ = µ(du/dy), we have µ = τ/(du/dy). Since the velocity gradient is constant, we
can write du/dy = �u/�y and substitute the values τ = 1.54 lbf/ft2, �y =
0.5 in. = (0.5/12) ft and �u = 10 ft/s into the expression for viscosity:

µ = τ
dy

du
= τ

�u

�y
= (1.54 lbf/ft

2)
0.5/12 ft

10 ft/s
= 6.4 × 10−3(lbf-s)/ft

2

The shear rate is given by
dγ

dt
= du

dy
= 10 ft/s

(0.5/12) ft
= 240 s−1

gases from each other? It is tempting to use the widely different densities of liquids and
gases, or to determine how each fills a container; but the more important difference be-
tween these two fluids lies in their vastly different response to a compressive stress.
Consider an experiment in which we attempt to use two identical piston–cylinder de-
vices to compress a liquid and a gas, as shown in Figure 1.7. The intermolecular spacing
in liquids is essentially constant, so a fixed amount of liquid occupies nearly the same
volume under most conditions. A liquid is therefore difficult to compress, and even a
large weight on the piston will result in only a small volume change. In contrast, the dis-
tance between molecules in a gas is much greater and highly variable. It takes a rela-
tively small force on the piston to significantly decrease the intermolecular distance in a
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EXAMPLE 1 .3

Imagine applying a shear stress to a puddle of water with your hand. Suppose the water
puddle is initially 2 mm thick and that the viscosity of water is 0.001 kg/(m-s). If your
hand is applying a shear stress of magnitude 0.05 kg/(m-s2), calculate the shear strain
rate and velocity gradient in the fluid, and the speed u at which your hand is moving.

SOLUTION

The exercise asks us to calculate dγ/dt, du/dy , and u at the top surface of the water.
We are given τ = 0.05 kg/(m-s2) (= 0.05 N/m2) and µ = 0.001 kg/(m-s). A sketch of
the system would look like the fluid testing device in Figure 1.6. This problem can be
solved using Newton’s law of viscosity, which is given in Eq. 1.2b as τ = µ(dγ/dt).
Assuming that water is a Newtonian fluid (a very safe assumption), the equation can be
solved for the desired quantity:

dγ

dt
= τ

µ

Substituting the given values for τ and µ yields the constant shear strain rate in the
water:

dγ

dt
= 0.05 kg/(m-s2)

0.001 kg/(m-s)
= 50 s−1

Since the shear rate and velocity gradient are equal, we conclude that du/dy = 50 s−1.
This value is also uniform across the gap. To find the velocity of the top plate we write

du

dy
= �u

�y
= (uTop − uBottom)

0.002 m
= 50 s−1

Since the bottom plate is not moving, uBottom = 0. Solving for the velocity of the top
plate p, which is the speed at which our hand is moving, we get

uTop = (50 s−1)(0.002 m) = 0.1 m/s = 10 cm/s

Note that since the velocity gradient is uniform in the gap, the velocity profile in the di-
rection of the applied force is a linear function of the vertical distance above the table
given by

u(y) =
(

du

dt

)
y = (50 s−1)y

The velocity at the top plate could also be obtained by evaluating this function at
y = 0.002 m to obtain u = (50 s−1)(0.002 m) = 0.1 m/s = 10 cm/s.
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Liquid

(A)

Gas

(B)

Figure 1.8 Differences in characteristics of liquids and gases. (A) A liquid takes the shape of its container but re-
tains a constant volume. Note that a liquid is capable of forming an interface with its vapor that is not associated
with a container boundary. (B) In contrast, a gas not only takes the shape of its container but expands or contracts
to completely fill a container of any shape. Gases do not form interfaces other than those associated with the con-
tainer boundaries.

gas, so the same weight on the piston compresses the gas into a substantially smaller
volume than that occupied by the liquid under similar conditions. We conclude that all
gases are far easier to compress than any liquid.

What would happen if we attempted to use our piston–cylinder device to put a liq-
uid or gas into tension? Perhaps you intuitively feel that it is not possible to put a fluid
in tension. If so, you are correct. The molecular structure of a gas, with its distant mole-
cules, ensures that a gas cannot support a tensile stress. The gas molecules are too far
apart on average for intermolecular forces to maintain cohesion. The molecular structure
of a liquid is quite different, however. There are always nearby molecules exerting sig-
nificant intermolecular forces. A liquid should in principle be able to support a tensile
stress because of these strong intermolecular forces. However, under normal circum-
stances, a liquid boils as the pressure on the liquid decreases to a value known as the
vapor pressure. The presence of vapor pockets in the boiling liquid prevents the liquid
from being placed in tension. Thus under normal circumstances liquids and gases can-
not be put in tension.

We may also compare the behavior of a liquid and a gas in another way. Consider
what happens when a sample of each type of fluid is transferred from a small rectangu-
lar container to a larger cylindrical container. As shown in Figure 1.8, the liquid occu-
pies the same volume in each container but changes its shape to conform to that of the
container, forming an interface with liquid vapor above. The gas expands to completely
fill the larger container—its volume is not fixed, and no interface is present. You have
undoubtedly noticed that liquids are able to form a stable, lasting interface that is not as-
sociated with container boundaries, something gases cannot do. Such an interface may
also occur between two immiscible liquids, or between a liquid and a gas. The interface
between a liquid and a gas is referred to as a free surface. A summary of the important
differences between liquids, gases and solids is contained in Table 1.1.

We conclude our discussion of fluids and solids with a word of caution. While there
is little doubt about the classification of a particular substance as a gas, many common
materials exhibit characteristics of both liquids and solids. For example, what is tooth-
paste? Shearing a small amount of toothpaste between your fingers should convince you
that toothpaste is not a solid. Yet if you carefully squeeze toothpaste into a straw, and



hold the straw vertically with both ends open, the toothpaste will stay in the straw despite
the effects of gravity. Water, which obeys Eq. 1.2c, would never behave this way.

Many other materials exhibit behavior that seems to fall somewhere between a fluid
and a solid. Paint behaves in much the same way as toothpaste. It does not flow off the
brush owing to the force of gravity alone, but it will flow onto the wall under the appli-
cation of larger shear stress when brushed or rolled. Toothpaste and paint are examples
of non-Newtonian fluids. A fluid of this type does not obey Eq. 1.2c; rather, it exhibits a
more complex relationship between the shear stress and velocity gradient. The behavior
of a non-Newtonian fluid varies greatly, but is often fluidlike, with some features of a
solid at low shear stress levels. Other examples of non-Newtonian fluids are polymer so-
lutions (i.e., macromolecules dissolved in a solvent), colloidal suspensions (e.g., milk or
mayonnaise), slurries (e.g., nuclear fuel particles or paper pulp in water), and clay sus-
pensions. Although the behavior of non-Newtonian fluids is important in polymer and
food processing, and in chemical and pharmaceutical manufacturing, this book deals
primarily with Newtonian fluids.
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EXAMPLE 1 .4

In which of the following situations would you feel comfortable using Newton’s law of
viscosity? Justify your decisions.

A. Modeling the flow of caulk out of a caulking gun.

B. Modeling the flow of water out of a squirt gun.

C. Modeling the flow of hot gases out of an aircraft turbojet engine.

TABLE 1.1 Comparison of Solids, Liquids, and Gases

Fluids

Characteristic Solids (crystalline) Liquids Gases
Response to a shear stress, τ τ = Gγ (resists deformation) τ = µ(dγ/dt) = µ(du/dy)

(resists rate of deformation)

Distance between adjacent molecules Smallest Small Large

Molecular arrangement Ordered Semiordered (short-range Random
order only)

Strength of molecular interaction Strong Intermediate Weak

Ability to conform to the shape of a container No Yes Yes

Capacity to expand without limit No No Yes

Able to exhibit a free surface Yes Yes No

Able to resist a small tensile stress Yes Theoretically yes, No
practically no

Compressibility Essentially zero Virtually incompressible Highly compressible
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CD/Dynamics/Newton’s Second Law of Motion/A Fluid as a Continuum

SOLUTION

We are asked to determine which of the situations listed can be adequately modeled by
Newton’s law of viscosity. We will assume that Newton’s law is appropriate if the fluid
is a gas, a liquid with a simple molecular structure and no additives, or a material that we
have observed behaving like a Newtonian fluid under the conditions of interest.

A. The vinyl-based caulk used in most home improvement projects is a high
molecular weight polymer and does not flow out unless substantial pressure is
applied with the plunger of the caulking gun. We conclude that caulk is not a
Newtonian fluid.

B. Water has a simple molecular structure, and Newton’s law of viscosity is ap-
plicable. Thus water is a Newtonian fluid.

C. A turbojet exhaust stream is a mixture of hot gases, primarily air. There is no
reason to think that the mixture will behave differently from any other gas. We
conclude that the exhaust mixture is a Newtonian fluid and that Newton’s law
of viscosity is applicable.

CD/Kinematics/Fields, Particles, and Reference Frames

1.3 METHODS OF DESCRIPTION

To construct a theory of fluid mechanics, it is necessary to represent basic laws describ-
ing conservation of mass, momentum, and energy in a form suitable for mathematical
analysis. This requires the selection of a description, or a conceptual framework in
which to work. The breadth of fluid dynamic problems extends from the description of
star formation within interstellar gas clouds to the water flow in the wake of a diving
pelican, from the exchange of gases with the blood flowing in the capillaries of our bod-
ies to the spreading of a drop of epoxy glue on a surface to the drag on a modern com-
munications satellite. Given this breadth of topics, is it reasonable to expect to find a
unique method of description that works well in all cases? Before we answer this ques-
tion, it is important to realize that even though a fluid has a molecular structure, it is not
always necessary to incorporate this molecular structure into a model. The deliberate
omission of the fluid’s molecular structure in a mathematical model of fluid flow is
known as the continuum hypothesis.
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1.3.1 Continuum Hypothesis

To place the need for the continuum hypothesis in context, suppose you are given the
assignment to predict the fluid velocity distribution created by stirring a glass of water
with a spoon. How would you propose to model the fluid in this situation? One approach
might be to attack the problem on a molecular level by using your understanding of dy-
namics and modern physics to model the water molecules as interacting hard spheres
with a known intermolecular force field. Good luck! A typical glass of water contains on
the order of 1026 water molecules. Even with the help of a powerful computer, tracking
such a large number of objects is impossible, at least in the foreseeable future. An alter-
nate approach to modeling the water in the glass, or any fluid in general, is to consider
all macroscopic properties at a point in a fluid as averages of molecular characteristics
in a small region about that point. In this approach we assume that a fluid may be treated
as a continuous substance or continuum, rather than as a group of discrete molecules.
Therefore, this concept is called the continuum hypothesis.

CD/Video Library/Stirring

In employing the continuum hypothesis, the underlying molecular structure of a
fluid is conveniently ignored and replaced by a limited set of fluid properties, defined at
each point in the fluid at every instant. Mathematically speaking, the continuum
hypothesis allows the use of differential calculus in the modeling and solution of fluid
mechanics problems. Each fluid property is considered to be a continuous function of
position and time. There may be discontinuous jumps in a property value such as density
at fluid–fluid or fluid–solid interfaces, but the continuum model generally assumes that
all properties are described by continuous functions.

How do we know if a continuum model is valid for a specific application? As with
most engineering theories that attempt to explain or model physical phenomenon, the
proof is in how well the theory describes reality. Continuum models of fluid mechanics
have been applied to an extraordinarily wide range of problems with excellent results, so
there is little doubt of the general validity of this approach. Does the molecular structure
of a fluid ever become important and perhaps cause a breakdown in the continuum
theory? The answer to this question is yes: the continuum theory is in jeopardy when the
length scale of a physical phenomenon or object exposed to a fluid is of the same order
as molecular dimensions. In a problem involving a gas, for example, the largest molecu-
lar dimension of practical importance is the mean free path of gas molecules,which is in-
versely proportional to the density of the gas. The mean free path in air is approximately
10−7 m (0.1 �m) at standard conditions. Is a continuum model appropriate to describe
the flow of gas in 0.5 �m pores of a filter media? Since the pore diameter is approxi-
mately five times the mean free path, we should be cautious in using results based on the
continuum hypothesis in this application.

There is another category of flow problems in which the physical scale is not small
but the mean free path is much larger than normal. NASA engineers have to deal with the
fact that in the upper atmosphere, the mean free path approaches the length scale of a ve-
hicle or satellite. The drag on the vehicle in a high orbit will not be accurately predicted
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by formulas based on continuum theory. Industrial coating processes in which gases are
metered or flow through vacuum chambers are also examples of situations for which the
continuum hypothesis may break down. Note, however, that a large mean free path in
and of itself does not always mean that the continuum hypothesis is invalid. The mean
free path in the vicinity of a stellar nebula is enormous, but the scale of the astronomical
flow structure is larger still, so the continuum hypothesis is valid. Hydrodynamic mod-
els of nebulae based on continuum fluid mechanics appear to work quite well in de-
scribing the observed characteristics of these fascinating astronomical structures.

The continuum hypothesis is nearly always applicable in liquids because the dis-
tance between liquid molecules is small and relatively constant. Nevertheless the con-
tinuum hypothesis is known to fail for very thin lubricant films whose thickness ap-
proaches the molecular dimensions of the lubricant molecules. Under these conditions
the lubricant may exhibit distinctly different behavior under shear than it will in a
thicker film. Fluid mechanics problems like these must be approached by using a model
that correctly accounts for the molecular structure of the fluid.

The continuum hypothesis is valid for the problems addressed in this book. It is
well to be alert, however, for situations in which the hypothesis is invalid. We recom-
mend the habit of checking all of your assumptions before proceeding with a formulaic
approach to problem solving.

1.3.2 Continuum and Noncontinuum Descriptions

We have seen that an engineer has the option of including the fluid’s molecular structure
in the description of a fluid or leaving it out. Once the choice of a continuum or

EXAMPLE 1 .5

The pressure in a vacuum system is 10−6 atm. Estimate the mean free path λ of the air
inside the system. Assume that the air can be modeled using the perfect gas law, i.e., at
constant temperature the air density is proportional to its pressure.

SOLUTION

This problem can be solved by remembering that the mean free path in a gas is inversely
proportional to its density. If we combine this fact with the information provided in
the problem statement (at constant temperature the air density ρ is proportional to its
pressure p), we can obtain the relationship: λ2/λ1 = ρ1/ρ2 = p1/p2 for the ratio of the
mean free path at two different conditions. We know that at atmospheric pressure the
mean free path in air is 0.1 �m and that the air inside the vacuum system is at a pressure
of 10−6 atm. Thus, if we let p1 = 1 atm, p2 = 10−6 atm, and λ1 = 10−7 m, then λ2 is
calculated as

λ2 = λ1
p1

p2
= (10−7 m)

1 atm

10−6 atm
= 0.1 m = 10 cm
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EXAMPLE 1 .6

In each of the following situations, would you feel comfortable using the continuum
hypothesis in your analysis of the fluid flow? For any doubtful cases, list the additional
information you would like to obtain before feeling confident of your decision.

A. Flow of gas at very low pressure through an orifice.

B. Calculating the shear stress in a lubricant layer 1 nm thick.

C. Modeling the flow of blood in the smallest capillaries.

D. Airflow over a passenger plane at normal altitude.

E. Respiration of insects through tubes connected to pores on their bodies.

SOLUTION

To determine which of the situations listed can be adequately modeled with a continuum
theory we will compare a length scale in the problem to an appropriate molecular
dimension such as the mean free path in a gas.

A. Since the flow is occurring at very low pressures, the mean free path of the gas
molecules could be comparable to the dimensions of the orifice (see Exam-
ple 1.5). If so, the continuum hypothesis may be invalid. We would need to
know the gas pressure to estimate the mean free path and compare it to the di-
mensions of the orifice before being able to justify the use of the continuum
hypothesis for this flow.

B. Since atoms typically have radii on the order of 0.1 nm, the size of the lubricant
molecules is similar to the thickness of the lubricating film. Therefore, it is not
valid to use the continuum hypothesis to predict the shear stress in this problem.

C. We should determine the diameter of the smallest capillaries and compare it to the
characteristic molecular dimension for blood (on the order of nanometers) to see
if the continuum hypothesis is valid for this fluid system. In this case the contin-
uum hypothesis does apply. However, we should also be aware that blood is
a complex liquid made up of cells of several types immersed in plasma. The
diameter of the smallest capillaries is approximately the same size as red blood
cells. This creates an unusual flow as the red blood cells squeeze through them in
single file.

D. Since the mean free path of gas molecules at ordinary pressures is much less than
the characteristic length of an airplane, we should feel comfortable using the con-
tinuum hypothesis in this case. By obtaining a relationship between gas pressure
and mean free path, and a relationship between altitude and pressure, one could
determine the range of altitudes for which the continuum hypothesis is useful.

E. We must determine the characteristic dimension for insect respiration tubes and
pores as well as the mean free path of gas molecules at atmospheric pressure be-
fore being able to justify the use of the continuum hypothesis.



noncontinuum approach has been made, the next task is to select an appropriate method
of describing the fluid and its behavior. Engineers have developed three principal meth-
ods, each of which has advantages and disadvantages. These are known as the molecu-
lar, Lagrangian, and Eulerian descriptions. The first, as the name implies, is a molecular
level treatment that provides the basis for a noncontinuum theory of fluid mechanics.
The Lagrangian and Eulerian approaches are both continuum treatments.

These three descriptions may be usefully distinguished from one another by the
way in which the fundamental entity, or basic structural unit characteristic of the fluid,
is defined. We think of a bulk fluid as being divisible into a large number of these enti-
ties, with the properties of the fluid ultimately residing in, and derived from, character-
istics of the fundamental entity. The fundamental entity is always assumed to be small
enough to preclude property variation within an individual entity. In the next three sec-
tions we discuss the three descriptions and their corresponding fundamental entities,
beginning with the molecular description.

1.3.3 Molecular Description

In the molecular description the smallest identifiable element or fundamental entity is a
single fluid molecule. Thus, as noted earlier, the molecular description of a fluid is inher-
ently a noncontinuum model. The advantage of this approach is that we have a very good
understanding of the molecular structure of common fluid molecules, so we can expect to
get excellent results for a broad range of problems without having to tune our model in
any significant way. The major disadvantage, however, is that we must track an enor-
mously large number of molecules in most circumstances. For example, in modeling the
flow of a breath of air traveling into our lungs through the trachea we must track on the
order of 1021 air molecules. The storage requirements for the spatial coordinates alone ex-
ceed one million billion megabytes! This problem of sheer size has always been recog-
nized and thought insurmountable. Recent computational efforts using molecular dynam-
ics are nevertheless proving to be both exciting and fruitful. Researchers are dealing with
the problem of tracking a large number of molecules by considering only a very small re-
gion of fluid for actual calculation. For example, in the spreading of a liquid the interest-
ing physical phenomena are controlled by what is happening in the vicinity of the moving
contact line where the liquid is advancing over the substrate. A molecular dynamics sim-
ulation of this problem may require tracking only on the order of 104 molecules. This is
possible on many of today’s fast workstations. So although molecular dynamics is un-
likely to become a more widely used method of describing large-scale fluid mechanics
problems, it has a promising future for small-scale problems. With its foundation in the
underlying molecular structure of a fluid, molecular dynamics is a powerful and exciting
tool for answering critical questions that cannot be approached at the continuum level.
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1.3.4 Lagrangian Description

In the Lagrangian description the fundamental entity is a fluid particle. The conceptual
model here assumes that the fluid consists of a continuous distribution of small discrete
particles of fluid, each of which has a fixed mass but is otherwise shapeless. The particles
are tracked to arrive at the motion of the bulk fluid. The fluid consists of a large enough
number of fluid particles to permit it to be treated as if it were infinitely divisible. A fluid
particle is composed of an extremely large, but finite, number of molecules whose aver-
age behavior defines the properties of the fluid particle. Consequently there will be many
orders of magnitude fewer fluid particles in the Lagrangian description than molecules in
the molecular description. This reduction in the number of fundamental entities in the
Lagrangian description is a significant advantage over the molecular description. Since
the Lagrangian description is a continuum description, the continuum hypothesis must
be valid for the Lagrangian description to succeed in describing fluid behavior.

To illustrate the Lagrangian concept, imagine standing on a bridge and spraying a
shower of small droplets of a red dye into a river. As your eyes follow the droplets
downstream you are tracking a number of marked (dyed) fluid particles on the river sur-
face. The movement of the water at the surface is revealed by the movement of fluid par-
ticles made visible by the dye. If droplets of dye are also introduced below the river’s
surface, a Lagrangian description of the flow is made visible, at least for the small num-
ber of dyed fluid particles.

Engineering students are usually comfortable with the Lagrangian description
because it is the standard description of ordinary dynamics. Consider the problem of
describing the motion of a point mass. Tracking a point mass through time by means of
its position vector is a natural way to describe mathematically what we observe with our
senses. For example, if a ball is thrown through the air, our eyes naturally track the ball
(Lagrangian). Perhaps you have noticed the swiveling heads of spectators at a tennis
match as they follow the flight of the ball. Although describing the motion of a cloud of
fluid particles is more complex than describing the motion of a point mass, many of the
mathematical concepts are similar. Since the Lagrangian description is applied only for
relatively rare, specialized applications, we will not derive or solve the corresponding
governing equations in this introductory textbook. However, kinematic concepts from
the Lagrangian description are essential in analyzing and understanding fluid flow and
form the basis for flow visualization. Several useful Lagrangian kinematic concepts are
discussed later in the text.

1.3.5 Eulerian Description

In the Eulerian description of continuum fluid mechanics, we describe physical space by
means of a coordinate system that serves as a backdrop for fluid motion. This is the prin-
cipal method of description in fluid mechanics today, and the one used in this textbook.
To gain an immediate sense of what the Eulerian description is like, imagine returning
to our hypothetical bridge over a river. Instead of using dye to mark the movement of
fluid particles, suppose we use a fixed array of flow meters to measure a simultaneous
set of fluid velocity vectors at different points in the river. In this experiment we are
not focusing on fluid particles and watching them move down stream. Instead, we are
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focusing on a set of specific locations in the flow field, and observing the velocity vec-
tors at those points.

In describing fluid motion via the Eulerian description, we associate a complete set
of fluid property values with every point in the spatial grid defined by a selected coordi-
nate system. When we say that the fluid velocity vector has a value at a certain point in
space, that value is the velocity vector of the fluid particle that happens to be at that spa-
tial point at that instant. Similarly, if we refer to the fluid pressure at a certain point at a
certain instant, we are speaking of the pressure associated with the fluid particle that co-
incides with that spatial point at that time.

The Eulerian approach constitutes a field description of a fluid in contrast to the par-
ticle description of the molecular and Lagrangian approaches. The idea of a field de-
scription should be familiar from calculus. In fact the field description of calculus and
the Eulerian description of a fluid property are identical. Every property of a fluid has a
corresponding functional dependence on position and time when represented in the
Eulerian description. There is a velocity field, acceleration field, density field, pressure
field, temperature field, and so on. Some properties, like the fluid temperature, require a
scalar field description; others, like the fluid velocity, require a vector field description.
You will find that many of the concepts of fluid mechanics in this description are simply
applications of vector calculus to describe physical phenomena in fluids.

1.3.6 Choice of Description

In the last three sections we have introduced the molecular, Lagrangian, and Eulerian
descriptions of a fluid. Although the concepts behind the three descriptions are very dif-
ferent, we expect all the approaches to yield identical answers to a given question. This
assumes, of course, that the underlying assumptions of the chosen description are valid.
For example, in the case of air flowing over the wing of an aircraft, we may want to
know the lift and drag acting on that wing. As engineers, we expect to get the same val-
ues for the lift and drag regardless of the description in which we choose to work. For an
aircraft at normal altitudes, all three descriptions should work in principle. Our selection
of one description over the other two is therefore likely to be based on practical consid-
erations. Since the incalculable number of molecules involved in describing the flow
over a wing rules out a molecular description, we are limited to the other two descrip-
tions. In this case, we would undoubtedly chose the Eulerian description because it is
the standard description of fluid mechanics. On the other hand, for an aircraft at a very
high altitude, the continuum hypothesis is violated and the Eulerian and Lagrangian
descriptions are invalid. The high altitude case must therefore be tackled in the molecu-
lar description.

In problems for which the continuum hypothesis holds, some questions that are nat-
urally asked and answered in one description are totally foreign to another. For example,
asking where a certain volume of fluid (perhaps a volume of polluted air or water) will
go in a flow is appropriately answered in the Lagrangian description, since this descrip-
tion tracks specific fluid particles. Likewise, asking about what is happening in a certain
region of space (maybe a wind shear zone over an airport) is naturally answered in the
Eulerian description because this description describes a flow in terms of spatial
location.
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1.4 DIMENSIONS AND UNIT SYSTEMS

Thus far we have used familiar fluid properties such as pressure and density without
definition. Before defining these and other fluid properties more precisely in the next
chapter, it is worthwhile to review their dimensions and unit systems. Fluid mechanics
embodies a wealth of fluid properties, many with distinctive units, and in a global econ-
omy it is important for an engineer to be able to work confidently in any customer’s pre-
ferred unit system.

A dimension is a physical variable used to specify some characteristic of a system.
Examples include mass, length, time, and temperature. In contrast, a unit is a particular
amount of a physical quantity or dimension. For example, a length can be measured in
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EXAMPLE 1 .7

Which method of description, molecular, Lagrangian or Eulerian, would you recom-
mend for use in each of the following flow situations?

A. It is possible to use semiconductor fabrication techniques to create gas flow
valves that can be embedded directly into a silicon wafer. Consider a device
with a characteristic dimension in the micrometer range and a gas pressures of
about 10−4 atm. You are asked to predict the flow through these microvalves.

B. You are asked to conduct an analysis of the wind patterns at Wrigley Field to de-
termine why so many home runs are hit on certain days.

C. As the engineer on an emergency rescue team, you are responsible for predict-
ing the spread of toxic gas released into the subway system during a terrorist at-
tack on a major city.

SOLUTION

We are asked to determine whether the molecular, Lagrangian, or Eulerian description
should be used to analyze the flow situations listed. The molecular approach is appro-
priate when the validity of the continuum hypothesis is in question. If the continuum hy-
pothesis is valid, the Lagrangian approach focuses attention on individual fluid particles,
while the Eulerian approach concentrates on flow through a region of space.

A. The combination of small dimensions and low gas pressures suggests that the
continuum hypothesis is not valid. The molecular description is necessary.

B. To study the wind characteristics at Wrigley Field we need to know the velocity
field in the stadium as a function of time and position. The continuum hypothe-
sis is satisfied, so the Eulerian description is appropriate.

C. The continuum hypothesis is satisfied, so either the Lagrangian or Eulerian de-
scription is applicable. To predict the path of a specific volume of contaminated
fluid we would use the Lagrangian description.
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units of inches, centimeters, feet, meters, miles, furlongs, and so on. Consistent units for
a variety of physical quantities can be grouped together to form a unit system.

The dimensions length {L}, time {t}, and temperature {T } are considered to be base
dimensions from which other dimensions are derived. Examples of supplementary
dimensions are velocity, {Lt−1}, and acceleration, {Lt−2}. The set of base dimensions
{LtT } is not complete, for how would you define density (mass per unit volume ) using
only {LtT }? If we add mass, M , we get a base dimension set {M LtT } that can describe
most problems in fluid mechanics. Exceptions include the description of the effects of
electric fields on fluid flow, which requires the additional base dimensions of charge or
current. The {M LtT } set is not, however, the only set of valid base dimensions. Force
can be substituted for mass to yield an {F LtT } system, or both force and mass can be
included to form an {F M LtT } system.

Although a specific base dimension set may be freely chosen, other aspects of a
valid dimensional system are restricted by the laws of physics. Every valid physical law
can be cast in the form of a dimensionally homogeneous equation; i.e., the dimensions
of the left side of the equation must be identical to those of the right side. Consider
Newton’s second law in the form

F ∝ Ma (1.3a)

The proportionality symbol is required here because there is no a priori reason to assume
that the units in which force is measured in a given experiment will automatically be
consistent with those of the mass–acceleration product. More generally, Newton’s
second law is written as

F = Ma
gc

(1.3b)

where 1/gc is a proportionality constant inserted to account for units. The units for gc

depend on the unit system under consideration. The key observation is that the units for
only three of the four terms in Eq. (1.3b) can be arbitrarily defined. In the discussion that
follows we examine three common engineering unit systems.

1.4.1 {MLtT} Systems

Since acceleration has dimensions {Lt−2}, Eq. (1.3b) describes a restriction on the rela-
tionship between the constant gc and the dimensions {F}, {M} and {Lt−2}. Since only
{M} and {Lt−2} have been defined, one can arbitrarily define the dimensions for either
gc or {F}. If {F} is defined, an {F M LtT } system results. The other option, which is
adopted by all {M LtT } systems, is to define gc as a dimensionless constant of unit mag-
nitude. The advantage to this approach is that gc no longer needs to appear in Newton’s
second law. Let us now examine the most common {M LtT } system in use today.

Système International d’Unités (SI): In this system the base units for mass, length,
time, and temperature are respectively the kilogram (kg), meter (m), second (s), and
Kelvin (K). The magnitude of each unit is specifically defined (e.g., a meter is defined as
1,650,763.73 wavelengths of the radiation corresponding to the transition between the
electronic energy levels 2p10 and 5d5 of the krypton-86 atom in a vacuum). Since force
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EXAMPLE 1 .8

What are the units of viscosity and pressure in SI?

SOLUTION

From Eq. 1.2c, the dimensions of viscosity are {Ft/L2}. Thus in SI, viscosity has units
of newton-seconds per square meter, (N-s)/m2, or in terms of the base units {µ} = kilo-
grams per meter-second, kg/(m-s). Pressure is a force per unit area, so the units of pres-
sure in SI are newtons per square meter (N/m2), or in terms of the base units
{p} = kg/(m-s2).

is a supplemental dimension, its unit, called the newton (N), is defined by Eq. (1.3b) as:

1 N = 1 (kg-m)/s2 (1.4)

The SI system has been structured so that gc and all other proportionality constants,
including those in Fourier’s law (a basic heat transfer equation) and Gauss’s law (a basic
electromagnetic equation) are dimensionless constants of unit magnitude. This is one of
the major advantages of SI.

1.4.2 {FLtT} Systems

We have shown that Newton’s second law describes a restriction on the relationship
among gc and the dimensions {F}, {M}, and {Lt−2}. In an {F LtT } system, gc is made
dimensionless with unit magnitude and M is a supplemental dimension. A commonly
employed unit system of this type is the British gravitational unit system.

British Gravitational Unit System (BG): In this system the base units are the pound
force (lbf), foot (ft), second (s), and degree Rankine (◦R). If gc is to vanish, a mass unit
known as a slug must be defined:

1 slug = 1 (lbf-s
2)/ft (1.5)

The weight of one slug is then 32.2 lbf. Newton’s second law applies in the usual form
F = Ma. The British gravitational system of units is used in the United States in
aerospace engineering, mechanical engineering, and several other engineering fields.
See if you can convince yourself that the units for viscosity and pressure in BG are
(lbf-s)/ft2 and lbf /ft2, respectively.

1.4.3 {FMLtT} Systems

In an {F M LtT } system, base units are defined for force, mass, length, time, and tem-
perature. The units and magnitude of the constant gc are completely defined by



Newton’s second law. A common {F M LtT } system in
use today is the English engineering unit system.

English Engineering Unit System (EE): The base
units for mass, length, time and temperature are the
pound mass (lbm), foot (ft), second (s), and degree
Rankine (◦R). The force unit, pound force (lbf), is arbi-
trarily defined so that 1 lbm “weighs” 1 lbf when acted
on by gravity at sea level. Solving F = Ma/gc for gc ,

and substituting the appropriate values including the local gravitational acceleration of
32.2 ft/s2 yields:

gc = Ma
F

= (1lbm)(32.2 ft/s2)

1lbf
= 32.2 (lbm-ft)/(lbf-s

2) (1.6)

This is the customary unit system in the United States. It suffers from the fact that gc

does not vanish, a result that has caused significant confusion among generations of stu-
dents and even some practicing engineers. See if you can convince yourself that the
units for viscosity and pressure in EE are (lbf-s)/ft2 and lbf/ft2, respectively.

1.4.4 Preferred Unit Systems

There are three major reasons for the continued use by engineers of several unit systems.
The first is psychological: old habits and customs are hard to change. The second is
based on economics. Tooling, standards, educational systems, instructional materials,
and research in the existing unit systems entail massive capital investments. The third is
more subtle and perhaps even sensible: certain classes of problems are easier to solve in
specific unit systems. With respect to the last point, all {M LtT } and {F LtT } systems
are defined such that gc is dimensionless and of unit magnitude, including SI and BG.
This is frequently an advantage because it often simplifies calculations. In a few
situations, however, an {F M LtT } system, such as the EE system, offers significant
advantages.

One could argue that our decision to expose you to three unit systems in this text,
(SI, BG, and EE) is confusing. We recognize this argument, but students must realize
that in the real world there are industries that commonly use these different systems.
Many industries have customary units that are unique and not part of any standard sys-
tem. For example, most pumps in the United States are sized in gallons per minute. The
bottom line is that anyone who works in fluid mechanics must be able to perform unit
conversion, a skill that will be explained in the following section. What we recommend
is that you solve problems symbolically, i.e., work a problem all the way to the final re-
sult using only symbols and no data. Your result is a relationship among symbols that
can then be checked for dimensional consistency. Then insert the data into this relation-
ship to arrive at a numerical value that includes the appropriate units. This method
reduces significantly the number of errors associated with incorrect units and will give
you an understanding of the influence of different fluid variables on the result that does
not occur when numbers alone are manipulated.
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On September 23, 1999, NASA’s Mars
Climate Orbiter was lost as it attempted
to enter orbit around the red planet. One of
the major factors contributing to the failed
mission was confusion over metric and
English units. This technical disaster
serves to remind us of the importance of
checking units for internal consistency in
every calculation we perform.



1.4.5 Unit Conversions

One method for converting a value from one unit system to another is to use the concept
of multiplication by unity. Suppose we must convert the base unit of length in SI to the
corresponding unit in the BG system. Appendix C gives the relationship 1 ft =
0.3048 m, and simple algebra yields: 1 ft /0.3048 m = 1 = 0.3048 m/1 ft. Clearly we
can multiply any quantity by a fraction equal to one without changing the value of the
quantity. Thus,we convert a meter into an equivalent number of feet as follows:

1 m × (1) = 1 m × 1 ft

0.3048 m
= 3.281 ft

Note that identical units are canceled algebraically. Thus the process treats a unit alge-
braically like any other mathematical symbol.

Suppose the only SI/English length conversion you remember is 1 in. = 2.54 cm.
The preceding conversion can still be accomplished by multiplying by a string of 1s as
follows:

1 m × 100 cm

1 m
× 1 in.

2.54 cm
× 1 ft

12 in.
= 3.281 ft
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EXAMPLE 1 .9

As a sales representative for a U.S. pump manufacturer, you have a request from a
European customer for the price of a pump with a capacity of at least 1.5 liters per sec-
ond (L/s). Your company makes pumps with capacities ranging from 5 to 100 gallons
per minute in 5 gal/min increments. Your client also wants your opinion on how a 1.5 L/s
pump compares in capacity to those typically used by gas stations to dispense fuel. One
of your office mates remembers that there are 28.316 liters in a cubic foot and another
knows there are 231 cubic inches in a gallon. How are you going to answer your
customer’s questions?

SOLUTION

We are to convert a pump capacity of 1.5 L/s into an equivalent capacity in gallons per
minute and then compare the size of such a pump to the ones typically used in service
stations. The information obtained, which we should not assume to be correct without
checking, is that (1 ft3 = 28.316 L) and (1 gal = 231 in.3). Using the procedure de-
scribed in Section 1.4.4, we write these conversion factors in the form of 1s as

1 ft3

28.316 L
= 1 = 28.316 L

1 ft3
and

1 gal

231 in.3
= 1 = 231 in.3

1 gal
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1.5 PROBLEM SOLVING

As we explore different approaches to solving fluid mechanics problems in the rest of
this book, you will be exposed to a variety of problem types and solution techniques.
You will gradually fill your “tool bag” with a powerful array of analytical, empirical,
and computational tools. No one tool is inherently superior to another, only more ap-
propriate. Each is ideally suited for certain jobs. One of the most important skills for you
to develop is the ability to recognize the critical aspects of a problem so that you can
choose the optimal tool(s) for its solution. For example, you will learn to recognize the
similarities and differences among fluid mechanics problems. Recognizing similarities
will save you time by allowing you to reuse parts of solutions you have obtained previ-
ously. Recognizing differences will save you time, embarrassment, or worse, since a
failure to adjust the problem-solving approach can result in errors.

In previous courses you have probably developed certain problem-solving habits. A
good problem-solving procedure is helpful in avoiding mistakes. You will also find that
when you have no idea how to proceed, a standard procedure allows your mind to work
subconsciously as you carry out the routine initial phases of the process. The approach
outlined in Table 1.2 is offered as a suggestion for solving a fluid mechanics problem.
Faithfully carrying out the different steps has proven helpful to many engineering stu-
dents. As your skills develope, you will become adept at classifying problems.

Many of the example problems in this book will be solved by using the procedure
outlined in Table 1.2. The major exception is that solving the dimensional analysis prob-
lems of Chapter 9 calls for a special procedure explained in that chapter. Although we
recognize that the recommended procedure is not always necessary for routine calcula-
tions, it can be helpful in solving unfamiliar and more complex problems.

One of our goals in this textbook is to give you an early start on learning fluid me-
chanics in an engineering context. Thus, in the next chapter you will find familiar fluid

We will also need to use the facts that 12 in. = 1 ft and 1 min = 60 s in the forms:

1 ft

12 in.
= 1 = 12 in.

1 ft
and

1 min

60 s
= 1 = 60 s

1 min

We can now convert 1.5 L/s to an equivalent number of gallons per minute by multipli-
cation by a string of 1s:

1.5

(
L

s

)
×
(

1 ft3

28.316 L

)
×
(

12 in.

1 ft

)3

×
(

1 gal

231 in.3

)
×
(

60 s

1 min

)
= 23.8

(
gal

min

)

Since our customer requires a pump that can handle at least 23.8 gal/min, the smallest
pump we can offer is our 25 gal/min model. How does this pump compare in capacity to
those typically encountered at a gas station? An experiment found that it took just over
two minutes to put 10 gallons of gas in a car. This corresponds to a pump capacity of
roughly 5 gal/min, which is about 20% of the capacity of the pump we will recommend
to our customer. (Many symbolic manipulator software packages such as Mathematica
and MATHCAD contain unit conversion subroutines that you may find helpful.)
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properties such as density and pressure discussed in the context of well-known formulas
derived from an application of the principles of fluid mechanics to a practical problem.
We continue this approach in Chapter 3, where you will be introduced to a variety of
interesting case studies drawn from engineering practice. These include flow in pipes
and ducts, flows with area changes (e.g., in a nozzle or venturi), pump and fan laws, drag
on cylinders and spheres, and lift and drag on airfoils. The important problem charac-
teristics, i.e., fluid properties, service conditions, and flow geometry, are summarized,
and the problem is solved by using well-accepted design equations. In subsequent chap-
ters we will show you the source of these equations. Some are derived from first princi-
ples, while others are the result of fitting a curve through experimental data. By using
different tools to revisit case studies in subsequent chapters, you will see that the accu-
racy and complexity of a solution changes depending on the approach taken. In some
cases the more sophisticated tools yield superior results. In other cases, the use of a high-
powered computational solution of a complex theoretical model offers only marginal
improvement, at a significant increment in cost, time, and difficulty over a perfectly sat-
isfactory back-of-the-envelope calculation.

Examples and case studies are the glue that holds this book together. They are in-
tended to show you that the material in each chapter is related to that in all the other
chapters. They also demonstrate that engineering fluid mechanics problems are gener-
ally open ended—they can be solved on several different levels using a variety of tools.
Remember that you will be practicing two related skills: the ability to select the right
tool and the ability to use each tool correctly.

1.6 SUMMARY

This chapter serves as an introduction to the field of fluid mechanics. We study fluid me-
chanics because we want to understand the world around us: biological flow (air and
blood), environmental flows (air and water pollution), and design mechanical devices
(pumps and turbines), transportation systems (planes and boats), athletic equipment
(golf balls and parachutes), and many other important devices and systems that improve
lives.

TABLE 1.2 Problem-Solving Procedure

Step 1 State the problem and draw a schematic diagram of the physical system 
(properly labeled and dimensioned).

Step 2 List the information provided in the problem statement and the basic laws
you think you need to solve the problem.

Step 3 List any simplifying assumptions and limits of the analysis.

Step 4 Solve the problem. The following ideas may be helpful:

Complete the analysis algebraically before substituting numerical values.

Check the answer for dimensional consistency, then substitute numerical values 
(using a consistent set of units) to obtain a numerical answer.

Check the numerical answer for physical reasonableness. Review the assumptions
made in the solution to make sure they are still reasonable in light of the answer.

Step 5 Comment on, or suggest, alternative solutions or techniques that might be
appropriate.



Fluids are unable to resist a shear stress and will continue to deform no matter how
small the applied stress happens to be. Thus there is no shear stress in a fluid at rest.
Liquids are nearly incompressible, while gases are highly compressible. 

The continuum hypothesis states that under certain conditions a fluid may be treated
as a continuous substance or continuum rather than as a group of discrete molecules.
This concept is valid as long as the dimensions of the physical system are large in com-
parison to the mean free path (in gases) or molecular dimensions (in liquids).

The three main approaches for describing a fluid are the molecular, Lagrangian, and
Eulerian descriptions. The methods differ from one another in the choice of the funda-
mental fluid entity in each. In the molecular description the fundamental entity is a sin-
gle fluid molecule, in the Lagrangian description the fundamental entity is a fluid parti-
cle, and in the Eulerian description the fundamental entity is a point in space. The
Eulerian description is the customary description of engineering fluid mechanics.

A dimension is a physical variable used to specify some characteristic of a system
while a unit is a particular amount of a physical quantity or dimension. The engineering
systems commonly designated as SI, British gravitational, and English engineering are
all used to some extent in engineering practice. Thus, anyone who works in fluid me-
chanics must be able to perform unit conversion that can be accomplished using the con-
cept of multiplication by 1 in the form of a ratio of equivalent units.

In Table 1.2 we have provided a recommended procedure for use in solving fluid
mechanics problems. We also suggest that before selecting your tools and begining to
work, you think about the type of solution required and the resources required to achieve
that solution.
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PROBLEMS

Section 1.1

1.1 List five fluid systems you encounter
every day. Include at least one biological sys-
tem, one transportation system, and one
natural (non-man-made) system. Describe the
fluid involved and function of the system.

1.2 What is the difference between an ana-
lytical and a computational solution in fluid
dynamics?

1.3 Look through a magazine and find a
picture of a moving fluid. Write a paragraph
that could be used to replace the picture in the
magazine. Which representation of the flow
do you prefer, the visual or the verbal?
Why?

1.4 Describe the difference between inter-
nal and external flows, and give examples of
each.

1.5 Describe the difference between fluid
statics and fluid dynamics, and give three ex-
amples of typical problems from each subfield.

1.6 Describe the contributions of each of
the following people to the field of fluid
mechanics.
(a) Archimedes
(b) d’Alembert
(c) Wright brothers

1.7 Describe the contributions of each of
the following people to the field of fluid
mechanics.
(a) Bernoulli
(b) Poiseuille
(c) Prandtl

Section 1.2

1.8 Determine whether each of the sub-
stances listed is a gas, liquid, or solid under
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ambient conditions. Be sure to state any as-
sumptions and justify your decisions.
(a) Aluminum
(b) Water
(c) Nitrogen
(d) Blood
(e) Jello

1.9 Each of the substances listed can be
modeled as either a fluid or a solid under cer-
tain circumstances. Explain this observation
and provide examples.
(a) Sand at room temperature
(b) Nitrogen
(c) Paint at room temperature
(d) Eggs

1.10 Each of the substances listed can be
modeled as either a fluid or a solid under cer-
tain circumstances. Explain this observation
and provide examples.
(a) Toothpaste at room temperature
(b) Window glass
(c) Wax
(d) Marbles at room temperature

1.11 What is the difference between a
Newtonian and a non-Newtonian fluid? Give
three examples of each.

1.12 In which of the following situations
would you be comfortable using Newton’s
law of viscosity? Justify your decisions.
(a) The flow of water through a straw
(b) The flow of a milkshake through a straw
(c) The flow of air through a straw

1.13 In which of the following situations
would you be comfortable using Newton’s
law of viscosity? Justify your decisions.
(a) The flow of air through a runner’s hair
(b) The flow of water through a swimmer’s

hair
(c) The flow of styling gel through a model’s

hair

1.14 Use the information in Table 1.1 to
determine whether each of the substances
listed is a liquid, solid, or gas.

(a) This material has the ability to conform to
the shape of its container and can exhibit
a free surface.

(b) This material has strong intermolecular
bonds and experiences limited deforma-
tion under the application of a shear stress.

(c) This material is highly compressible.
(d) This material continues to deform under

the application of a shear stress but is un-
able to take the form of its container.

1.15 Use the information in Table 1.1 to
determine whether each of the substances
listed is a liquid, solid, or gas.
(a) This material has the ability to conform to

the shape of its container and is virtually
incompressible.

(b) This material does not exhibit a free
surface.

(c) This materials is able to resist a tensile
stress.

(d) This material has the ability to expand
without limit and resist the application of
a tensile stress.

1.16 Consider steel and aluminum sheets
of 6 mm thickness; each metal sheet is sub-
jected to a shear stress of 2 × 105 psi. Com-
pare the magnitudes of the displacements in
the direction of the applied force for the two
materials.

1.17 Consider steel and aluminum sheets
of 5 mm thickness. If the steel sheet is sub-
jected to a shear stress of 8 × 105 psi, calcu-
late the magnitude of the shear stress that
must be applied to the aluminum sheet so that
both materials experience the same displace-
ment in the direction of the applied force.

1.18 A sample of motor oil has been tested
in a flat plate shearing device like the one
shown in Figure 1.5 with the following re-
sults: τ = 7.7 lbf /ft2 for a plate separation
distance of 0.25 in. and a top plate velocity of
25 ft/s. Determine the viscosity of the fluid.

1.19 A sample of motor oil has been tested
in a flat plate shearing device like the one
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shown in Figure 1.5A with the following
results: τ = 4.0 lbf /ft

2, for a plate separation
distance of 0.05 in. and a fluid viscosity of
µ = 6.5 × 10−3 (lbf-s)/ft2.Determine the top
plate velocity.

1.20 Revisit the thought experiment in
which we applied a shear stress to a puddle of
water with our hand. Suppose the water pud-
dle is initially 1.5 mm thick and that the vis-
cosity of water is 0.001 kg/(m-s). If your hand
is applying a shear stress of magnitude
0.10 kg/(m-s2), calculate the shear strain rate,
dγ/dt , in the fluid, the velocity gradient,
du/dy, in the fluid, and the speed u at which
your hand is moving.

1.21 The laminar flow of fluid between
parallel flat plates is illustrated in Figure 1.2b.
The velocity distribution for this flow is
u/umax = 1 − (y/h)2 . The fluid is water with
a viscosity of 0.001 kg/(m-s), umax = 0.4 m/s,
and h = 3.75 mm.
(a) Calculate the shear stress on the top plate.
(b) Calculate the shear stress on the bottom

plate.
(c) What is the magnitude of the total force

experienced by a 5 m2 section of either
plate?

1.22 The laminar flow of fluid between
parallel flat plates is illustrated in Figure 1.2b.
The velocity distribution for this flow is
u/umax = 1 − (y/h)2 . The fluid is water with
a viscosity of 0.001 kg/(m-s), umax = 0.4 m/s,
and h = 2.5 mm.
(a) Calculate the shear stress on the top plate

and give its direction.
(b) Determine the shear strain rate, dγ/dt , as

a function of position for this flow.

1.23 A child is sledding down an ice-
covered hill. Each of the two runners on the
sled has dimensions of 1.1 m by 1.3 cm. The
sled is supported on a thin film of water
[h = 0.15 mm, µ = 0.001 kg/(m-s)] created
by a local melting of the ice due to the pres-
sure exerted by the sled. If the child is cruising
at a velocity of 8 m/s, calculate:
(a) The shear strain rate, dγ/dt , as a function

of position for this flow

(b) The total shear stress on the runners of the
sled

(c) The magnitude of the force on one of the
runners of the sled

1.24 A child is sledding down an ice-
covered hill. Each of the two runners on the
sled has dimensions of 1.1 m by 1.3 cm. The
sled is supported on a thin film of water
[�y = 0.15 mm, µ = 0.001 kg/(m-s)] crea-
ted by a local melting of the ice due to the
pressure exerted by the sled. If the shear stress
on the runners is 70 Pa, calculate:
(a) The velocity of the sled
(b) The shear strain rate, dγ/dt , for this flow
(c) The magnitude of the force on one of the

runners of the sled

1.25 The laminar flow of fluid over a sta-
tionary fixed plate is illustrated in Figure P1.1.
The velocity distribution, defined for y ≤ h,
for this flow is u/umax =
3
2 (y/h) − 1

2 (y/h)3 . The fluid is glycerin
with µ = 1.5 kg/(m-s), umax = 2 cm/s, and
h = 6 mm. Calculate the shear stress on the
stationary plate and give its direction.

h

y

Fixed plate

Fluid with
viscosity �

umax

Figure P1.1

1.26 The laminar flow of fluid over a
stationary fixed plate is illustrated in
Figure P1.1. The velocity distribution, defined
for y ≤ h, for this flow is
u/umax = 3

2 (y/h) − 1
2 (y/h)3. The fluid is

glycerin with µ = 1.5 kg/(m-s) and
umax = 4cm/s. If the shear stress on the plate is
20 N/m2, calculate the value of h for this flow.

1.27 The apparatus shown in Figure P1.2 is
used to coat a thin sheet of steel with oil. The
fluid is SAE 10W-30 oil, which has a viscosity
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of 0.02 kg/(m-s) at the temperature of interest.
If h = 4 mm, and the total oil–steel contact
area is 20 m2, calculate the force necessary to
move the steel at a velocity of 5 m/s. Assume
that the velocity profile in the fluid is linear.

continuum hypothesis in your analysis of the
fluid flow? For any doubtful cases, list the ad-
ditional information you would like to obtain
before feeling confident of your decision.
(a) The flow of interstellar gas at very low

pressures
(b) The movement of an aircraft carrier

through the ocean
(c) The flow of blood through an elephant
(d) The flow of blood through a mosquito

1.33 In each of the following situations,
would you feel comfortable using the contin-
uum hypothesis in your analysis of the fluid
flow? For any doubtful cases, list the addi-
tional information you would like to obtain
before feeling confident of your decision.
(a) The flow of gaseous nitrogen through a

valve
(b) The flight of a space shuttle through

Earth’s atmosphere
(c) The flight of a vehicle halfway through its

journey to Mars
(d) The flow of liquid nitrogen through a valve

1.34 Describe the fundamental fluid entity
for the molecular, Eulerian, and Lagrangian
descriptions.

1.35 Which, if any, of the three common
descriptions (molecular, Eulerian, La-
grangian) are continuum descriptions? Justify
your answer.

1.36 Explain why engineers frequently use
the density of a fluid rather than its mass when
solving fluid mechanics problems.

1.37 Which, if any, of the three common de-
scriptions (molecular, Eulerian, Lagrangian)
are field descriptions?

1.38 Which method of description, molec-
ular, Lagrangian or Eulerian, would you
recommend for use in each of the following
flow situations?
(a) An analysis of wind patterns at an airport
(b) The motion of a manned balloon in a trip

around the globe
(c) Rarefied gas flow

1.28 The apparatus shown in Figure P1.2
is used to coat a thin sheet of steel with oil.
The fluid is SAE 10W-30 oil, which has a vis-
cosity of 0.01 kg/(m-s) at the temperature of
interest. If h = 3 mm, the total oil–steel con-
tact area is 50 m2, and the applied force is
1600 N, calculate the velocity at which the
steel is moving through the system. Assume
that the velocity profile in the fluid is linear.

Section 1.3

1.29 Explain how an engineer can decide
whether the continuum hypothesis is valid for
a particular engineering application.

1.30 The pressure in a vacuum system is
10−7 atm. Estimate the mean free path in
the gas inside the system. Assume the gas can
be modeled by using the perfect gas law so that
the gas density is proportional to its pressure.

1.31 The pressure in a vacuum system is
0.1 Pa. Estimate the mean free path in the gas
inside the system. Assume the gas can be
modeled by using the perfect gas law so that
the gas density is proportional to its pressure.

1.32 In each of the following situations,
would you feel comfortable using the

V

h

h

Moving sheet

Fixed wall

Fluid

Fluid

Fixed wall

Figure P1.2
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important fluid or flow properties. Fill in the
remaining blocks in the table by providing the
base dimensions for each of the various
fluid/flow properties. Note that your solutions
should only contain a combination of base di-
mensions contained in the column heading.
That is, don’t include M as a dimension in an
entry in the {F LtT } column.

Property {F LtT } {M LtT } {F M LtT }
Acceleration
Density
Pressure
Viscosity

1.45 The column headings in the following
table name three important unit systems. The
row headings are a series of important fluid or
flow properties. Fill in the remaining blocks in
the table by providing the appropriate units
for each of the various fluid/flow properties
for each of the unit systems.

Property SI BG EE
Velocity
Mass
Stress
Kinematic viscosity

1.46 The column headings in the following
table name three important unit systems. The
row headings are a series of important fluid or
flow properties. Fill in the remaining blocks in
the table by providing the appropriate units
for each of the various fluid/flow properties.

Property SI BG EE
Acceleration
Density
Pressure
Viscosity

1.47 Let P represent a force and x, y,
and z represent distances. Determine the
dimensions for each of the quantities listed in
each of the indicated dimensional systems. 

Quantity {F LtT } {M LtT }
d P

dx∫
P dx

d2 P

dx dy∫
P dx dy

1.39 Which method of description, molec-
ular, Lagrangian or Eulerian, would you rec-
ommend for use in each of the following flow
situations?
(a) A study of monolayers of fluids acting as

lubricants
(b) An investigations of tomorrow’s weather

patterns around the globe
(c) A study of the movement of mold spores

through an air-conditioning system

Section 1.4

1.40 What is the difference between a
dimension and a unit?

1.41 List the base dimensions for each of
the following unit systems:
(a) SI
(b) English absolute
(c) British gravitational

1.42 Newton’s second law can be written
in the form F = Ma/gc .
(a) In which unit systems is gc a dimension-

less constant of magnitude 1?
(b) Give the magnitude and units for gc in

each of the units systems not included in
your answer to part a.

1.43 The column headings in the following
table name the three basic types of unit
system. The row headings are a series of
important fluid or flow properties. Fill in the
remaining blocks in the table by providing the
base dimensions for each of the various
fluid/flow properties. Note that your solutions
should contain only a combination of base
dimensions contained in the column heading.
That is, don’t include M as a dimension in an
entry in the {F LtT } column.

Property {F LtT } {M LtT } {F M LtT }
Velocity
Mass
Stress
Kinematic

viscosity

1.44 The column headings in the following
table names the three basic types of unit
system. The row headings are a series of
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1.48 Let V represent a velocity and let
x, y, and z represent distances. Determine
the dimensions for each of the quantities
listed in each of the indicated dimensional
systems.

Quantity {F LtT } {M LtT }
dV

dx∫
V dx dy

1.49 Determine the SI units for each of the
groups of dimensions shown. Also give the
common name for this group of units. For ex-
ample, the dimensional group {Lt−1} has SI
units of meters per second and is commonly
known as velocity.
(a) {M L−3}
(b) {M Lt−2}
(c) {M L−1t−2}
(d) {M L2t−2}

1.50 Determine the BG units for each of
the groups of dimensions shown. Also give
the common name for this group of units. For
example, the dimensional group {Lt−1} has
BG units of feet per second and is commonly
known as velocity.
(a) {F L−2}
(b) {F L−1t2}
(c) {F L}
(d) {F Lt−1}

1.51 Determine the English engineering
units for each of the groups of dimensions
shown. Also give the common name for this
group of units. For example, the dimensional
group {Lt−1} has EE units of feet per second
and is commonly known as velocity.
(a) {M L−3}
(b) {F L−2}
(c) {M L2t−2}
(d) {Ft L−2}

1.52 If M is a mass, determine the dimen-
sions of A, B , and C in the dimensionally ho-
mogeneous equation M = A(B − 1) + B/C.

1.53 If V is a velocity and x is a distance,
determine the dimensions of A, B , and C in

the dimensionally homogeneous equations
A = V + ∫ B dx + dC/dx .

1.54 If x is a distance and t is time, deter-
mine the dimensions of A, B , and C in the
dimensionally homogeneous equation Ax +
B(dx/dt) + C(d2x/dt2) = 0.

1.55 Use the data in Appendix C to express
each of the following quantities in SI units:
(a) 60 mph
(b) 10 slugs
(c) 7.8 g/cm3

(d) 75◦F
(e) 14.7 lbf/in.2

1.56 Use the data in Appendix C to express
each of the following quantities in BG units:
(a) 60 m/s
(b) 10 kg
(c) 7.8 g/cm3

(d) 75◦C
(e) 101,000 N/m2

1.57 Use the data in Appendix C to express
each of the following quantities in EE units:
(a) 25 m/s
(b) 20 slugs
(c) 2.7 g/cm3

(d) 196 K
(e) 101,000 N/m2

1.58 As a sales representative for a Euro-
pean pump manufacturer, you have a request
from an American customer for the price of a
pump with a capacity of at least 12 gal/min.
Your company makes pumps with capacities
ranging from 0.25 to 6.0 L/s in increments of
0.25 L/s. Which of your company’s pumps
will you recommend? Why?

1.59 A certain garden slug has a mass of
125 g. What is the mass of this garden slug in
the BG unit system?

1.60 A rectangular swimming pool has a
surface area of 15 ft × 30 ft and a uniform
depth of 4 ft. If the density of the water in the
pool is 1.0 g/cm3, determine the mass and the
weight of the water in the pool. Report your
answer in SI, BG, and EE units.
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2.1 INTRODUCTION

To address the interesting flow problems in biology, the environment, mechanical de-
vices, transportation systems, athletic equipment, and the many other important devices
and systems, our first step must be to agree on a common language and set of symbols
to use in defining fundamental fluid properties and the role of these properties in fluid
mechanics. In this chapter we will distinguish a fluid property, defined to be a charac-
teristic of the material structure of the fluid, from a flow property, whose value is deter-
mined in part by how the fluid is moving. The color of a fluid is purely a fluid property,
while the velocity of a fluid is purely a flow property. The density, pressure, temperature,
and viscosity of a fluid, which you may have thought of as fluid properties, are actually
flow properties whose precise values depend on the nature of the fluid and type of flow.
In reading this chapter, keep in mind then that all fluid properties are variables rather
than constants, and assumed to be functions of position and time.

The discussion of fluid and flow properties in this chapter will enable you to begin
to solve some simple but interesting fluid mechanics problems. It will also prepare you
to read the interesting set of case studies drawn from engineering practice contained in
the next chapter. These case studies include flow in pipes and ducts, flow in a nozzle,
pump and fan laws, drag on cylinders and spheres, and lift and drag on airfoils. These
case studies are revisited throughout the remainder of the text as we develop additional
tools to help you solve more complicated fluid mechanics problems.

As you read through this chapter and the rest of the textbook, you’ll see many stan-
dard fluid and flow properties along with their corresponding symbols, dimensions and
units in the major unit systems. Note carefully that in fluid mechanics a few symbols are
used to represent more than one property. This is unavoidable but usually creates no
confusion because the context of a problem makes it clear to which property the symbol
refers. Fluid property data for various fluids are contained in Appendix A and in tables
throughout this chapter.

2.2 MASS, WEIGHT, AND DENSITY

The mass of an object is defined as a measure of its resistance to acceleration, i.e., resis-
tance to a change in velocity. For an object of fixed mass, the relationship between ac-
celeration, a, force, F, and mass, M, is given by Newton’s second law:

F = Ma (2.1)

Mass is most often measured in units of kilograms (kg) or pounds mass (lbm), but engi-
neers working in the aerospace and related fields also use the slug.

The weight of an object, W , is the magnitude of the force acting on the object due
to Earth’s gravity field. Thus, weight is defined by the previous equation. If the acceler-
ation produced by gravity is g, the weight of a mass M is:

W = Mg (2.2)

Weight has the same dimensions as force so is expressed in units of newtons (N) or
pounds force (lbf).

2.2 MASS, WEIGHT, AND DENSITY 43
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Mass and weight depend on the amount of material in an object or system. In the
case of a fluid, the weight obviously depends on whether you are describing the amount
of water in a swimming pool or a teacup, or the air in an automobile tire or a hot air
balloon. Properties of a fluid that depend on the amount of fluid in a system are termed
extensive properties. The weight of a volume of fluid is an extensive property. If an
extensive property is divided by the total mass in a system, the result is an intensive
property, i.e., a property per unit mass. Extensive and intensive properties are both
common in thermodynamics. In fluid mechanics, where the total mass of fluid is usually
not relevant, we normally use intensive properties defined per unit volume.

In this text we generally use capital letters (both Roman and Greek) to represent
extensive properties and lowercase letters to represent intensive properties. Thus, capital
letters represent properties that depend on the extent of a fluid system, and lowercase let-
ters represent properties that do not depend on the extent of a fluid system.

Fluids differ in their resistance to acceleration in proportion to their density. The
density of a fluid, ρ, may be determined by dividing the mass of a sample of that fluid
by its volume –V :

ρ = M
–V

(2.3)

Density has dimensions of {M L−3} and units abbreviated as kg/m3, lbm/ft3, or slugs/ft3.
The reciprocal of density is called specific volume, υ:

υ = 1

ρ
(2.4)

As a thermodynamic property of a fluid, density has a certain numerical value de-
fined by the pressure and temperature of the fluid. This relationship is expressed by an
equation of state. Since pressure and temperature are generally functions of position and
time in a flow, density must also be a function of position and time. Thus density, pres-
sure, and temperature are flow properties. In liquids, density normally remains nearly

EXAMPLE 2 .1

A 40-gallon barrel of transformer oil is found to have a mass of 303 lbm. What is the den-
sity of the oil?

SOLUTION

This exercise can be solved by using the definition of density given in Eq. 2.3. We will
also require the unit conversion factor for gallons to cubic feet, which can be found in
Appendix C to be 7.48 gal � 1 ft3. The oil density is then found to be

ρ = M
–V

= 303 lbm

(40 gal)(1 ft3/7.48 gal)
= 56.7 lbm/ft3



constant throughout a region of flow. In gases, however, density often varies signifi-
cantly (see Figure 2.1).

The accepted values of density and other properties of air at sea level are listed in
Table 2.1. The variation of temperature with elevation for the U.S. standard atmosphere
is shown in Figure 2.2 and similar data for pressure and density profiles in the atmo-
sphere are given in Appendix B. These are, of course, average values. The atmosphere
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Figure 2.1 (A) Transonic flow past a thin wedged plate visualized with the Schlieren method. The
lines preceding and trailing the flow are shock waves, which are a discontinuity in flow variables
such as pressure, density, and pressure. (B) The heated glass creates a plume of low density fluid
that rises through the relatively colder surrounding air.

(A)

(B)
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changes daily and seasonally. You can use Appendix B to verify that the pressure in the
atmosphere at 30,000 ft is 4.373 psia.

Before concluding this discussion, it is important to clear up a potential point of
confusion. On many occasions we will use the term “standard temperature and pres-
sure.” Although this phrase sounds similar to “standard atmosphere” the two terms are
not synonymous. Standard temperature and pressure, referred to as STP, are defined to
be (20◦C = 68◦F) and (1 atm = 101,300 N/m2 = 2116 lbf/ft2 = 14.7 lbf/in.2) .

The difference between mass and density is something most students understand.
You will find, however, that imprecise language can occasionally cause confusion.
Suppose you ask your neighbor, Which is heavier, gasoline or water? The answer may
depend on what he is doing at the time. If he is walking toward his lawn mower with a
cold glass of water in one hand and a 2.5-gallon container of gasoline in the other, he is
likely to tell you that the gasoline is heavier (the extensive answer). If you ask the

TABLE 2.1 Properties of U.S. Standard Atmosphere at Sea Level

Property Symbol SI Units BG Units EE Units
Temperature T 288.15 K (15�C) 518.67�R (59�F) 518.67�R (59�F)

Pressure p 101.33 kPa (abs) 2116.2 lbf /ft
2 2116.2 lbf /ft

2

(14.696 psia) (14.696 psia)

Density ρ 1.225 kg/m3 0.002377 slug/ft3 0.076539 lbm/ft3

Specific weight γ 12.014 N/m3 0.07647 lbf /ft
3 0.07647 lbf /ft

3

Absolute viscosity µ 1.781 � 10�5 kg/(m-s) 3.737 � 10�7 (lbf -s)/ft2 3.737 � 10�7 (lbf -s)/ft2

or Pa-s or (N-s)/m2
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Figure 2.2 Temperature
as a function of elevation
for the U.S. Standard
Atmosphere.



question when he is hosing out his garage to clean up a gasoline spill, he may tell you
that since the gasoline is floating on the water, the water must be heavier (the intensive
answer). The confusion arises because the word “heavier” is open to interpretation—it
could mean “has a greater weight” or “has a greater density.”

In fluid mechanics, “heavy” or “light” serves to compare the density of one fluid
with respect to another. Mercury is heavier than water, water is heavier than oil, seawa-
ter is heavier than fresh water, cold air is heavier than hot air. When two immiscible liq-
uids, such as oil and vinegar, are poured simultaneously into the same container, the
lighter liquid will eventually settle on top of the heavier liquid. A practical application
of this concept is a solar pond. As shown in Figure 2.3, a solar pond consists of a layer
of fresh water on top of a layer of salt water. Since the water layers are thin, most of the
thermal energy from the sun passes through the water and is absorbed by the solid ma-
terial below. This raises the temperature of the solid, which in turn heats the salt water
layer adjacent to it. The presence of the fresh water surface layer insulates the heated salt
water from the atmosphere. The energy in the warm salt water is extracted for space
heating.

The tendency of heavy flammable gases such as propane to settle in low places cre-
ates an explosion hazard. Hydrogen and methane, being light, tend to rise and mix with
the surrounding heavier air, eventually decreasing in concentration below the limits of
flammability. In the early moments after an accidental release of these two light gases,
both will burn catastrophically if ignited (see Figure 2.4).

Is there a characteristic of a gas that determines its density? If you thought to an-
swer “the molecular weight,” you are correct. As shown in Table 2.2, the density of a gas
at a given pressure and temperature is proportional to its molecular weight. Examination
of Table 2.2 shows, however, that the molecular weight of liquids is not a reliable indi-
cator of density. Other factors such as molecular polarity and shape, which are not im-
portant at the large intermolecular separation distance characteristic of gases, become
important in the more closely packed structure of liquids.

The density of fluids at STP varies from 9 × 10−5 g/cm3 for hydrogen gas to
13.6 g/cm3 for liquid mercury. This is a difference of more than five orders of magni-
tude! Earlier we stated that the fluid density is related to pressure and temperature
through a state equation. Since flow conditions influence the pressure and temperature
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Fresh water

Salt water

Solid layer

Cold
water in

Warm
water out

Figure 2.3 In a solar pond, most of
the thermal energy from the sun passes
through the water and is absorbed by
the solid layer below.  The warm solid
raises the temperature of the adjacent
salt water, and the fresh water insulates
the heated salt water from the atmo-
sphere.  The thermal energy trapped
in the salt water can be extracted via
a piping system and used for space
heating.
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Figure 2.4 The Texas City
explosion of April 1947 is
an example of the potential
destructive power of explo-
sions.

TABLE 2.2 Influence of Molecular Weight on Fluid Density at STP

Molecular Density Density
Fluid Weight (amu) (kg/m3) (slug/ft3)

Gases
Hydrogen (H2) 2 0.09 1.63 � 10�4

Helium (He) 4 0.18 3.23 � 10�4

Methane (CH4) 16 0.72 1.29 � 10�3

Air 29 1.23 2.38 � 10�3

Propane (C3H8) 44 2.01

Liquids
Water 18 1.00 � 103 (� 1.00 g/cm3)
Acetone 58 7.9 � 102 (� 0.79 g/cm3)
Glycerin 92 (92.11) 1.26 � 103 (� 1.26 g/cm3)
Toluene 92 (92.15) 8.7 � 102 (� 0.87 g/cm3)
Carbon tetrachloride 154 1.59 � 103 (� 1.59 g/cm3)
Mercury 201 1.359 � 104 (� 13.59 g/cm3)

in a fluid, they must also influence the fluid density through the state equation. This is
often not important for liquids, so the state equation for a liquid reduces to the statement
that density is constant. For gases, changes in density induced by temperature and pres-
sure can be significant and must be accounted for to correctly predict the behavior of a
gas. We investigate the most common state equation for gases, the ideal gas law, in
Section 2.5.

2.2.1 Specific Weight

The specific weight γ of a fluid is defined as the weight of a fluid per unit volume in
Earth’s gravity field. For a volume of fluid –V of mass M, the weight of the fluid is
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W = Mg, which we can also write as W = ρ –V g. Thus the specific weight of a fluid is
given by any of the following formulas

γ = W
–V

, γ = Mg
–V

, or γ = ρg (2.5a–c)

Specific weight has dimensions of {F/L3} and typical units abbreviated as N/m3 or
lbf/ft3. The value of a fluid’s specific weight depends on the specific physical conditions
to which the fluid is exposed.

2.2.2 Specific Gravity

If you work for an international corporation and your product list contains dozens of
different fluids, you will have a significant number of density values at STP to deal
with, and these may be given in a number of different units. Placed in this situation, you

EXAMPLE 2 .2

Estimate the density of krypton gas at STP given that its molecular weight is 83.8 amu.

SOLUTION

Examination of Table 2.2 shows that for gases, density is roughly proportional to mole-
cular weight (MW). Thus, since krypton has an MW of 83.8 amu and helium has an MW
of 4 amu we can estimate the density of krypton as

ρ(Kr) = MW(Kr)

MW(He)
ρ(He) = 83.8 amu

4 amu
(0.18 kg/m3) = 3.77 kg/m3

This estimate compares favorably with the literature value for krypton’s density of
3.74 kg/m3.

EXAMPLE 2 .3

What is the specific weight of hydrogen at STP?

SOLUTION

Using Eq. 2.5c with the data in Table 2.2 and the gravitational constant g = 9.81m/s2,
we find:

γ = ρg = (0.09 kg/m3)(9.81 m/s2) = 0.883 N/m3
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might want to use a dimensionless, and therefore unit-
less, measure of density. This fluid property, known as
specific gravity, sg, is defined as the ratio of a fluid’s
density to that of a standard reference fluid (water for
liquids, air for gases) at STP. Thus, for gases, we define
the specific gravity as

sg(gas) = ρgas

ρair
(2.6a)

while for liquids, we write

sg(liquid) = ρliquid

ρwater
(2.6b)

By using specific gravity, petroleum engi-
neers in Kuwait, the North Sea, Alaska,
and Venezuela can easily compare the
density of their respective crude oils re-
gardless of a counterpart’s preferred unit
system. Density variations of crude oil
occur because crude is a complex mixture
of hydrocarbons, but the practical impor-
tance of knowing the precise density of a
crude lies in its sale on a volumetric basis
(barrels). The oil industry has developed a
density scale that takes temperature ef-
fects into consideration.

EXAMPLE 2 .5

What is the specific gravity of methane at STP?

SOLUTION

Using Eq. 2.6a with data from Table 2.2, we find:

sg(methane) = ρmethane

ρair
= 0.72 kg/m3

1.23 kg/m3 = 0.59

EXAMPLE 2 .4

Use the information provided for the specific weight of air under standard atmosphere
conditions in Table 2.1 to determine the implied value of the gravitational constant at sea
level.

SOLUTION

Solving Eq. 2.5c for the gravitational constant and substituting data from Table 2.1 in SI
units yields:

g = γ

ρ
= 12.014 (N/m3)

1.225 (kg/m3)
= 9.807 N/kg × 1 (kg-m)/s2

1 N
= 9.807 m/s2

If we repeat the process for BG units, we find

g = γ

ρ
= 0.07647 (lbf/ft3)

0.002377 (slug/ft3)
= 32.17 lbf/slug × 1 slug

1 (lbf-s2)/ft
= 32.17 ft/s2
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EXAMPLE 2 .6

Although most modern thermometers contain alcohol, older ones often contained
mercury (Hg). During fabrication of a certain thermometer, the Hg was inserted under
standard conditions so that it filled a reservoir of volume 50 mm3. Given that Hg has
a specific gravity of 13.6 and the density of water is 1 g/cm3, calculate the weight and
mass of the Hg in the thermometer.

SOLUTION

We are asked to calculate the weight and mass of mercury in a thermometer. This can be
done without the aid of a sketch. We are given sg(Hg) = 13.6, ρ(H2O) = 1 g/cm3, and
–V (Hg) = 50 mm3. This problem can be solved by noting that the weight of a volume of
fluid is W = ρg –V , while the mass of the same volume is M = ρ –V . We are given the spe-
cific gravity of the mercury so we can calculate the density of the mercury using Eq. 2.6b:
sg(liquid) = ρliquid/ρwater , to write ρHg = SG(Hg) × ρwater = (13.6)(1 g/cm3)=
13.6 g/cm3. Thus the weight of the mercury in the thermometer is 

W = [(13.6 g/cm3)(1 kg/103 g)](9.81 m/s2)[(50 mm3)(1 cm/10 mm)3]

= 6.67 × 10−3 (kg-m)/s2 = 6.67 × 10−3 N

The mass of the mercury in the thermometer is

M = ρ –V = (13.6 g/cm3)[(50 mm3)(1 cm/10 mm)3] = 0.680 g

Notice the use of the unit conversion factors. Since most of us do not have an intuitive
feeling for the magnitude of a Newton (0.2248 lbf), it may be more useful to examine
the calculated value of mass to decide if our answer is reasonable. Recalling that a gram
of water occupies 1000 mm3, we see that the mass of 50 mm3 of water is 0.05 g. The
same volume of mercury must therefore have a mass 13.6 times larger, which agrees
with what we found. 

2.3 PRESSURE

All fluids are composed of energetic molecules in motion. When these molecules collide
with a surface, they exert a normal and tangential force on the surface due to the change
in momentum of colliding molecules. Since the resulting surface forces are of critical
importance in all fluid mechanics problems, it is important for engineers to be able to
quantify them. In this section we focus on the normal force exerted by a fluid on a sur-
face. This normal force exists in fluids at rest and in motion, whereas tangential (shear-
ing) forces exist only for fluids in motion.

As noted in Section 1.2, liquids and gases are unable to exert tensile stresses. Thus
the normal force exerted by a fluid on a surface is always compressive; i.e., it is directed
into the surface. It is easiest to envision this force as being applied by a fluid to a real
physical surface, but it is also important to realize that a normal force is applied by a
fluid on every surface it contacts, as illustrated in Figure 2.5. Note that on the imaginary
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interior surface shown, the fluid on one side of the surface exerts a normal force on the
fluid on the other side and vice versa.

The pressure p on a planar surface is defined as the compressive normal force ap-
plied by the fluid to the surface, FN , divided by the area of that surface, A. Thus we write

p = FN

A
(2.7)

and apply the convention that pressure is a positive quantity. Note that Eq. 2.7 defines an
average pressure acting on the surface. The dimensions for pressure are {F L−2} and the
corresponding common units are newtons per square meter [N/m2 also known as a
pascal (Pa), lbf/ft2, or lbf/in.2 (abbreviated psi)].

F
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F

Fluid

(A) (B)

Fluid

Imaginary
surface in fluid

Solid
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Figure 2.5 Fluids exert a compressive force on any surface they contact. (A) A fluid exerting a force nor-
mal to a solid surface. (B) A fluid exerting a compressive force on an imaginary interior surface. Note that
the force exerted on the fluid above and to the right of the imaginary surface is equal and opposite to the
force exerted by the fluid below and to the left of that same surface.

EXAMPLE 2 .7

Robert Fulton’s steamboat the Clermont was powered by a steam-driven piston engine.
The net steam pressure acting on the piston was about 10 psi and the piston surface was
circular, with a diameter of 27 in. What was the magnitude of the force applied by the
steam to the piston in this historically important engineering system?

SOLUTION

According to Eq. 2.7 the normal force is the product of the pressure in the fluid and the
area of contact, thus we calculate the force in this case as

FN = p A = p

(
π D2

4

)
= 10

lbf

in.2

(
π(27 in.)2

4

)
≈ 5730 lbf
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The pressure defined in Eq. 2.7 is an absolute pressure, which may take any posi-
tive value. The use of the label “psia” signifies that the numerical value for the pressure
is an absolute pressure, measured in the units abbreviated lbf/in.2. In a vacuum, there are
no fluid molecules to exert a force on a surface. Thus the absolute pressure in a perfect
vacuum is zero. As mentioned previously, standard atmospheric pressure at sea level is
1 atm = 101,300 Pa = 2116 lbf/ft2 = 14.7 psia. Other common units used for pressure
in discussing the atmosphere are the torr (760 torr = 1 atm) and the bar (1 bar =
100,000 Pa). High pressures are not uncommon. A water jet cutter, like the one shown in
Figure 2.6, operates at pressures of ∼50,000 psia, an order of magnitude higher than
pressures seen in hydraulic power and control systems.

Absolute pressure is defined and measured in reference to a perfect vacuum. The
pressure employed in an equation of state is always an absolute pressure. Most pressure
measurements, however, are made by comparing the unknown pressure to an ambient
pressure. This results in a reading of what is referred to as the gage pressure. The gage
then responds to the difference in the two pressures. A pressure reading made this way
gives zero when the unknown pressure is equal to atmospheric pressure, and −14.7 psi
when the unknown pressure is a perfect vacuum. A gage pressure is therefore specified
with reference to atmospheric or ambient pressure and can range from minus atmos-
pheric pressure to large positive values. Figure 2.7 shows a common pressure gage. Note
that the pressure indicated by the device represents the difference between the unknown
pressure source and the ambient pressure.

Figure 2.6 A water jet cutter can
cut a variety of metallic or nonmetal-
lic materials such as stainless steel,
felt, rubber, graphite, fiberglass, and
titanium.
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The relationship between gage and absolute pres-
sure is given by

p(gage) = p(absolute) − p(ambient) (2.8)

Thus, the pressure in a tire might be measured to be either 32 psig (gage) or 46.7 psia
(absolute), and the pressure in a vacuum pump may be −10 psig or 4.7 psia. Note that
a pressure reported in units of psi is likely to be a gage pressure (as was the case in
Example 2.7), but the circumstances should always be examined carefully before a
definitive conclusion is determined.

2.3.1 Pressure Variation in a Stationary Fluid

Anyone who has flown in an airplane, climbed a mountain, or been underwater knows
that the pressure in a stationary fluid in Earth’s gravity field is a function of height. The
deeper you swim or dive, the greater the water pressure, and attendant ear pain. The
pressurized cabin of an aircraft maintains only a certain minimum pressure at altitude.
Since this pressure is much less than the sea level value, your ears may “pop” during the
pressure changes characteristic of takeoff and landing. The pressure in a stationary fluid,
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Sector and pinion
are modifying stage

Increased pressure
causes movement of
tube in this direction

Bourdon tube (oval cross section)
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Hairspring

Pressure
source

Sector

Figure 2.7 Schematic of Bourdon tube pressure gage.

Would you agree that the only kind of pres-
sure gage that gives a reading of �20 psi is
a broken one? 
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referred to as the hydrostatic pressure, varies with height. Hydro is an outdated reference
to water, and static means at rest.

Using Figure 2.8 and a simple force balance, we can demonstrate that the pressure
at a point within a stationary fluid is directly related to the weight of the column of fluid
above that point. Note that this means that a sea level atmospheric pressure of 14.7 psia
(= 2115 lbf/ft2 = 101,300 Pa) is equal to the weight of the entire column of air in the
atmosphere above a square inch of surface. Using a similar force balance on a column
of liquid or other constant density fluid at rest or nearly so, we may calculate the change
in pressure with depth using the formula

�p = ρgd (2.9)

where �p is the pressure increase at the bottom of a fluid column of depth d .

EXAMPLE 2 .8

You have been asked to recommend an appropriate compressor for inflating automobile
tires to a Swiss customer who imports American automobiles. If the tires are to be in-
flated to 32 psi, what is the corresponding pressure in SI units? Suppose the customer
inflates the tires in a car to the “correct” SI pressure and finds that the tires look under-
inflated. What could be wrong?

SOLUTION

We are asked to calculate the pressure in SI units that corresponds to 32 psi and then to
comment on the observation that tires inflated to this pressure appear to be underinflated.
No illustration is required to solve this problem. Since the recommended tire pressure is
32 psi, we will require the unit conversion factor from BG/U.S. pressure units of psi to
SI pressure units of pascals. This unit conversion factor can be found in Appendix C or
in the text, where standard pressure is defined to be 101,300 Pa = 14.7 psi. Thus, the unit
conversion factor is:

14.7 psi

101,300 Pa
= 1 = 101,300 Pa

14.7 psi

No symbolic manipulation is required, and the unit conversion is simply executed as

32 psi × 101,300 Pa

14.7 psi
= 2.21 × 105 Pa = 221 kPa

What about the underinflated appearance of the tire? The problem is that we do not
know whether the recommended 32 psi value is a gage pressure or an absolute pressure.
If we filled the Swiss tire to 221 kPa(absolute), the equivalent of 32 psia, while the tire
in the United States was filled to 32 psig (= 46.7 psia), then clearly the Swiss tire will
appear underinflated. If, however, we fill the Swiss tire to 221 kPa(gage) it should ap-
pear identical to its properly inflated sister tire. As you probably know, tire pressures are
always given as gage pressures, so this problem should not arise.
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Figure 2.8 Force balance in the vertical
direction for a cylindrical column of con-
stant density fluid. The key result is that
�p = ρgd .

EXAMPLE 2 .9

Estimate in meters the depth below the surface of a lake at which the pressure is equal
to twice atmospheric pressure.

SOLUTION

The pressure at the top of the lake is atmospheric and twice this value at the
bottom. Thus the pressure change is one atmosphere. We solve Eq. 2.9 for the height
of the water column d and then substitute the known values �p = 101,300 Pa
[= 101,300 kg/(m-s2)], ρ = 1000 kg/m3, and g = 9.81 m/s2 to find:

d = �p

ρg
= 101,300 [ kg/(m-s2)]

1000 (kg/m3)9.81 (m/s2)
= 10.3 m

EXAMPLE 2 .10

What is the change in air pressure experienced in riding an elevator to the top of a
10-story building? Assume the air density remains constant over this change in height.

SOLUTION

This exercise can be solved by using Eq. 2.9 and Table 2.1. The density and pressure of
air at standard atmosphere conditions are given as 0.076539 lbm/ft3 and 2116.2 lbf/ft2,
respectively. Recognizing that the gravitational constant is 32.2 ft/s2, estimating the dis-
tance between successive floors in the building as 10 ft, and substituting the appropriate
values into Eq. 2.9 gives

�p = ρgd = (0.076539 lbm/ft3)(32.2 ft/s2)(100 ft) = 246.5 lbm/(ft-s2)

The units for �p are not the expected lbf/ft2. Why? Since we are using the English en-
gineering unit system, we have to deal with the pesky gc factor. Equation 1.7 can be
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The pressure–depth relationship in a fluid of variable density, such as the air in
Earth’s atmosphere, is more complex than the linear relation in Eq. 2.9. For example,
look at the Standard Atmosphere data for pressure in Appendix B. We will show how to
calculate the pressure distribution in a variable density fluid in Chapter 5, but note that
Eq. 2.9 may be used if the density is interpreted as an average value over the whole col-
umn of variable density fluid.

2.3.2 Manometer Readings

A manometer is a liquid-filled device used to measure pressure. As shown in Figure 2.9,
in a simple water filled U-tube manometer, an unknown pressure can be compared to
atmospheric pressure by using Eq. 2.9 to estimate the pressure difference. By changing
the liquid from water to mercury, a manometer of reasonable size may be used to read
higher pressures. To illustrate the importance of replacing water with a denser fluid such
as mercury, recall that a pressure difference of 1 atm requires a water column 10.3 m
high. How high would the corresponding column of mercury have to be? Examination

p2 
 p1

p1

�h � 10 in.

High pressure
gas reservoir

Water

Figure 2.9 A U-tube manometer can be used
to measure pressure differences by recording
the difference in the height of the fluid levels
in the two legs of the device. In this example
�h = 10 in.

treated as a unit conversion factor of the form 32.2 (lbm-ft) = 1 (s2-lbf). We can then
use this “unit conversion” to find that

�p = p2 − p1 = (246.5 lbm/(ft-s2))

(
1 s2-lbf

32.2 lbm-ft

)
= 7.65 lbf/ft

2

Recognizing that the air pressure at the top of the building is less than that at the bottom
and using p2 = 2116.2 lbf/ft2 , we solve for p1 to find:

p1 = (2116.2 − 7.65)(lbf/ft
2) = 2108.6(lbf/ft

2)

This represents a less than 0.4% reduction in pressure.



of Eq. 2.9 shows that the height of the fluid column
scales linearly with density. Since the density of mer-
cury is roughly 13.6 times that of water (see Table 2.2)
the column of mercury in the manometer would be only
0.76 m high.

2.3.3 Buoyancy and Archimedes’
Principle

The increase in hydrostatic pressure with depth in a
fluid creates a net force on an immersed object. The
net vertical force acting on an object due to hydrosta-
tic pressure is called the buoyancy force. Consider a
force balance on an object as shown in Figure 2.10.
Archimedes’ principle states that a buoyancy force,
Fbuoyancy , acts in the direction opposite to that of the
gravitational force, Fgravity , and has a magnitude equal
to the weight of the displaced fluid. Figure 2.10 indi-
cates that the buoyancy force arises because the in-

crease in hydrostatic pressure with depth creates a net upward hydrostatic force on the
surface of the object. Since the gravitational force on the object is equal to its weight,
the net force Fnet on a submerged object is the difference between its weight Wobj and
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EXAMPLE 2 .11

A blower operates with a pressure difference of 10 in. of water as measured by a
manometer. What is the pressure difference in psia and Pa? Use ρ = 0.0361 lbm/in3.

SOLUTION

Equation 2.9 tells us that �p = ρgd . In this example the height d = �h is 10 in. and the
manometer fluid is water. From the problem statement we know that the fluid density is
ρ = 0.0361 lbm/in3. Thus, using g = 32.2 ft/s2 = 386.4 in./s2,�p is calculated as

�p = ρgd = ρg�h = (0.0361 lbm/in.3)(386.4 in./s2)(10 in.) = 139.5 lbm/(in.-s2)

As was the case in Example 2.9, we must make use of Eq. 1.7 as a unit conversion fac-
tor of the form 32.2 lbm-ft = 1 s2-lbf. In this case we find:

�p = 139.5 lbm/(in.-s2)

(
1 s2-lbf

32.2 lbm-ft

)(
1 ft

12 in.

)
= 0.36 lbf/in.2 = 0.36 psia

The equivalent pressure difference in SI units can be found directly by using the unit
conversion factor (1 psia = 6.8947 × 103 Pa) found in Appendix C. The result is
�p = 2489 Pa.

How would you estimate the total weight
of air in Earth’s atmosphere given that the
diameter of the earth is ∼12,750 km?
Since the surface area of a sphere is
4π r 2, Earth’s surface area is about
A = 4π r 2 = 4π (6375 m)2 = 5.1× 108 m2.
The sea level atmospheric pressure of
101,300 Pa represents the weight of the
column of air above a square meter of
Earth’s surface. Thus the total weight of air
in the atmosphere may be estimated by
multiplying sea level pressure by Earth’s
surface area. The result is a weight of
5.17 × 1013 N or equivalently 1.16 × 1013 lbf.
The mass of the atmosphere may be cal-
culated as 5.27 × 1012 kg. Note that this
calculation is based on the fact that the at-
mosphere is very thin in comparison to the
radius of Earth. 
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Hydrostatic pressure (increases with depth)
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Figure 2.10 Hot air balloon: (A) photograph and (B) schematic, indicating that the net force on the balloon
is calculated as the difference between the gravitational force and the buoyancy force, i.e., FN = FG − FB .

EXAMPLE 2 .12

Suppose a thin plastic bag containing 200 cm3 of hot water at 90◦C is held submerged
in a tank of cold water at 20◦C. Calculate the net force acting on the bag of fluid. Is the
force pushing the bag up or down? What is the buoyancy force acting on the bag?

SOLUTION

We are asked to determine the magnitude and direction of the net force acting on a bag
of warm water immersed in a bucket of cold water, and the buoyancy force. Figure 2.10
is a reasonable representation of the physical situation. The bag contains 200 cm3

(= 2 × 10−4 m3) of water at 90◦C and the temperature of the cold water is 20◦C. The
relevant equation is 2.10:

Fnet = Fgravity − Fbuoyancy = Wobj − Wfluid

the weight of the displaced fluid Wfluid . That is, we can write the net force as

Fnet = Fgravity − Fbuoyancy = Wobj − Wfluid (2.10)

Note that a positive value of Fnet represents a net force in the direction of the gravita-
tional field. A negative value implies that the object is being pushed upward in the op-
posite direction. This principle may be used to estimate the buoyancy force acting on a
heated volume of fluid immersed in similar fluid. In this case, the buoyancy force is the
difference in the weight of the volume of hot fluid and the weight of an equal volume of
the surrounding colder fluid.
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2.3.4 Pressure Variation in a Moving Fluid

In the preceding section we learned about the pressure–depth relationship in a stationary
fluid. In this section we investigate the pressure–velocity relationship in a steadily mov-
ing fluid in the absence of any frictional effects. For a constant density fluid in motion at
the same elevation, there is an inverse relationship between the square of the fluid speed
and the pressure. Including the effect of elevation, the relationship between pressure,
speed, and elevation at two points along the path of a fluid particle is given by[

p + 1
2ρV 2 + ρgh

]
1 = [p + 1

2ρV 2 + ρgh
]

2 (2.11)

where h is the height of the point above a datum level. Equation 2.11 is a version of the
famous Bernoulli equation. The derivation of this equation and the limits of its applica-
bility are discussed further in Chapter 8, but it is sufficient here to recall from elementary
physics that the equation may be thought of as a statement of energy conservation for a
particle of fluid moving in the absence of any losses due to frictional effects.

Equation 2.11 can be used to understand the operation of a venturi, a smoothly shaped
constriction through which fluid flows. At the position of minimum area in a venturi,
called the throat, the fluid experiences a higher speed and lower pressure. Therefore, a ven-
turi may be used to provide suction, as in the carburetor of a gasoline engine (Figure 2.11).
The flow of air into the engine pulls fuel into the airstream due to the venturi effect.

We also require the definitions of weight and density from Eq. 2.2 (W = Mg), and
Eq. 2.3 (ρ = M/–V ). We will assume that the weight and volume of the plastic bag may
be neglected. Since we have one fluid immersed in another, Wobj here represents the
weight of the hot fluid, and Wfluid represents the weight of an equal volume of displaced
cold fluid. The weight of a volume of fluid is given by W = Mg = ρ –Vg. Since the vol-
umes of cold and hot water are identical, Eq. 2.10 can be written

Fnet = Fgravity − Fbuoyancy = Wobj − Wfluid = ρH –Vg − ρC –Vg = (ρH − ρC)–Vg

where the subscripts H and C stand for hot and cold, respectively. The volume is known,
and the densities of water at 90 and 20◦C are found in Appendix A to be
ρH = 965.3 kg/m3, and ρC = 998.2 kg/m3. Substituting these values into the preceding
equation yields

Fnet = (ρH − ρC)–Vg

= (965.3 − 998.2) (kg/m3)(2 × 10−4 m3)(9.81 m/s2) = −0.0645 N

The negative sign indicates that the net force is up. Therefore, if the bag is released it will
tend to rise through the cooler surrounding fluid. The buoyancy force is easily calculated as

Fbuoyancy = ρC –Vg = (998.2) (kg/m3)(2 × 10−4 m3)(9.81 m/s2) = 1.958 N

The buoyancy force points up (opposite the gravitational force), since the pressure in the
surrounding water increases with depth.
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Direction of
primary airflow

Direction of
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Figure 2.11 The flow through a venturi tube can be
used to induce the flow of a second fluid. A common
example is a carburetor, in which the primary airflow
draws gasoline into the engine. As the air moves through
the throat (the region of reduced cross-sectional area), its
velocity increases and its pressure decreases. The drop in
pressure provides suction, which draws the gasoline into
the throat and out through the exit of the venturi.

EXAMPLE 2 .13

Consider a venturi tube of the type illustrated in Figure 2.11 with water flowing through
it at 20◦C. If the pressure at the throat is 2 atm below that at the inlet and the inlet ve-
locity is 0.6 m/s, estimate the velocity of the water at the throat of the venturi tube.

SOLUTION

We are asked to calculate the velocity of water at the throat of a venturi tube as illus-
trated in Figure 2.11. The pressure drop is 2 atm (= 202,600 Pa), and the upstream ve-
locity is 0.6 m/s. To solve this problem we will apply Eq. 2.11 between the inlet and the
throat along the path shown. Since the elevation is the same for these points, we have[

p + 1
2ρV 2

]
1

= [p + 1
2ρV 2

]
2

We have assumed that the flow is horizontal, incompressible, and frictionless, so that
this form of the Bernoulli equation is valid. If we let point 1 correspond to the inlet of
the venturi tube and point 2 correspond to the throat, then the variable to be isolated is
V2. Manipulation of the equation yields:

V2 =
√

2

ρ
(p1 − p2) + V 2

1

From Appendix A, the density of water at 20◦C is 998.2 kg/m3. Substituting this value
and the other values given in the problem statement [(p1 − p2) = 202,600 Pa and
V1 = 0.6 m/s] into the preceding equation gives

V2 =
√

2

ρ
(p1 − p2) + V 2

1 =
√

2

998.2 kg/m3 (202,600 Pa) + (0.6 m/s)2 = 20.2 m/s

Note that the pressure at the inlet must be greater than 2 atm. We will revisit this prob-
lem in a future chapter as we develop additional methods of analyzing a flow.
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Consider what happens when high velocity fluid at
speed V impacts a solid surface as shown in Fig-
ure 2.12. The fluid cannot penetrate the surface and
must therefore come to rest on the surface. In this situa-
tion, Eq. 2.11 predicts that the local pressure on the sur-
face will be increased 1

2ρV 2 above the ambient pressure
upstream in the moving fluid.

There are many other fluid flow situations for
which changes in pressure and velocity are important.
As shown in Figure 2.13A, a parachute takes advantage
of a higher pressure under the canopy than the ambient
value above to develop a net vertical force to slow the

Try putting your hand out an automobile
window at different speeds, holding your
palm perpendicular to the flow. The pres-
sure on the front of your hand can be
roughly estimated as 1

2ρV 2 higher than
ambient, and somewhat lower than ambi-
ent on the back. Now suppose you dipped
your hand into the water while traveling at
a similar speed. Why would the force on
your hand be nearly three orders of magni-
tude greater in water than in air at the
same velocity?

High velocity fluid jet

Region of
high pressure

Stationary
solid surface

Figure 2.12 When a high speed fluid stream
with initial velocity V impacts a solid surface, its
velocity is reduced to zero. As a result, its pres-
sure must increase to a value of magnitude 1

2 ρV 2

above the ambient pressure.
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Figure 2.13 (A) A parachute slows the fall of a jumper because the higher pressure below the canopy pro-
duces a force in the vertical direction that opposes the force of gravity. The magnitude of the net vertical
force on the canopy is F = 1

2 ρairV 2
s AC , where Vs is the sinking speed of the jumper and AC is the area of the

open end of the canopy. (B) Pressure distribution along the centerline of an automobile.
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EXAMPLE 2 .14

A jet of water with a cross-sectional area of 2 cm2 strikes a surface at a speed of 50 m/s
as shown in Figure 2.12. Estimate the force applied to the surface by the jet. What force
is applied by a jet of air at this speed?

SOLUTION

Based on Eq. 2.11, the pressure will increase above the ambient on the surface where the
jet comes to rest. Since the force on the surface is given by the pressure times the area,
the force generated is given by F = (�p)A = 1

2ρ AV 2 . Knowing that the density of
water is ∼1000 kg/m3 and that the water velocity is 50 m/s, we write

FH2O = 1

2
ρAV 2 = 1

2
(1000 kg/m3)

[
(2 cm2)

(
1 m

100 cm

)2]
(50 m/s)2

= 250 (kg-m)/s2 = 250 N

The force applied by air is found by using the density of air (1.225 kg/m3) to obtain

Fair = 1

2
ρAV 2 = 1

2
(1.225 kg/m3)(2 cm2)

(
1 m

100 cm

)2

(50 m/s)2

= 0.306 (kg-m)/s2 = 0.306 N

EXAMPLE 2 .15

Estimate the increase in the aerodynamic drag due to pressure forces if the speed of an
automobile increases from 55 mph to 70 mph.

SOLUTION

Assuming that the pressure distribution over the vehicle behaves according to our simpli-
fied form of Bernoulli’s equation, the increase in pressure will be proportional to velocity
squared, which turns out to be a factor of (70/55)2 = 1.62. Thus we can calculate an in-
crease of 62% in the aerodynamic drag. This must cause a decrease in the fuel economy
of the automobile. However, the decrease in fuel economy is less than 62% because aero-
dynamic drag is only a fraction of the total drag on an automobile at these speeds.

fall of the jumper. The force developed may be estimated as 1
2ρairV 2

S AC , where AC is the
area of the open end of the canopy, and VS is the sinking speed. Similarly, at higher
speeds a significant fraction of the drag of an automobile is due to pressure differences
over the front and rear of the vehicle (see Figure 2.13B). The drag force can be shown
to be proportional to the product of the vehicle’s frontal area and 1

2ρV 2.



Thus far our discussion of the pressure variation in
a moving fluid has focused on pressure differences re-
sulting from fluid flow. One must also recognize that
pressure differences can drive fluid flow. For example,
wind is created by relatively small pressure differences
acting over large distances. Water squirts out of a hose
because the pressure at the faucet is greater than the
(atmospheric) pressure at the open end of the hose.
Pumps are designed to increase the pressure of a fluid,
enabling it to move through a piping system to a loca-
tion at lower pressure. In most flow situations the mag-
nitude of a pressure difference is more important than
the actual value of the pressure itself. The flow charac-
teristics of water moving from a supply at 50 psig to a

region at 0 psig will be identical to those of water moving from a supply at 150 psig to
a region at 100 psig.

2.4 TEMPERATURE AND OTHER THERMAL PROPERTIES

The temperature T of a fluid is a thermodynamic state variable that provides a measure
of the internal energy of the fluid. For a fluid in equilibrium, the temperature is propor-
tional to the mean kinetic energy of the random motion of the molecules. Temperature is
a base dimension in all unit systems and is often expressed in units of ◦C or ◦F. The re-
lationships between the Celsius and Fahrenheit temperature scales and their corre-
sponding absolute temperature scales are:

K = ◦C + 273.16 and ◦R = ◦F + 459.69 (2.12a,b)

where K (no degree symbol) is the temperature unit in the Kelvin scale, and ◦R is
the temperature unit in the Rankine scale. Remember that the temperature used in
an equation of state and all other thermodynamic relationships is always an absolute
temperature.

As mentioned earlier, the density, pressure, and temperature of a fluid are related to
one another by an equation of state. For many gases, the state equation is well approxi-
mated by the perfect gas law to be described in Section 2.5. Although all liquids also ex-
hibit some dependence of density on pressure and temperature, the state equation of a
liquid is usually replaced by the assumption that the liquid density is constant. This ap-
proximation should be examined before being applied to a specific flow problem. For
example, if a constant density approximation is applied to a problem involving a liquid
with an imposed temperature variation, the analysis cannot predict the tendency of
warm, less dense liquid to rise in response to buoyancy forces. Sound waves are also ab-
sent in a constant density model, since these waves inherently involve fluid density
changes. Despite these failings, we will see that the constant density assumption is ap-
propriate for many of the liquid flows encountered in fluid mechanics, and also for gas
flows at low speeds.
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Just as a pressure variation may cause a
fluid to flow or be caused by a fluid flow,
temperature variations in a fluid may cre-
ate a fluid flow or be a consequence of a
fluid flow. Perhaps you have experienced
the low temperature resulting from venting
a pressurized gas, or have felt a tempera-
ture change with depth while swimming in
a lake. Soaring birds and sailplanes take
advantage of rising air masses called ther-
mals, which are warm parcels of air pushed
up by buoyancy forces through the sur-
rounding cooler fluid.



Temperature differences in a fluid are always accompanied by the flow of heat by
molecular conduction. Consider a one-dimensional flow of heat in a fluid as shown in
Figure 2.14. Let q represent the heat flux, or rate at which heat is crossing a surface
parallel to the walls per unit area per unit time. It is found empirically that the heat flux
is proportional to the temperature gradient existing in the fluid at the location of the sur-
face, i.e., qc ∝ −dT /dx . A minus sign is necessary because heat flows from hot to cold
regions. The missing constant of proportionality in this expression is called the thermal
conductivity of the fluid, k . Thus we model the relationship between the heat flux and
temperature gradient as

qc = −k
dT

dx
(2.13)

where k has dimensions of {Ft−1T −1} with corresponding SI units of newtons per
second-kelvin [N/(s-K)]. However, it is customary to use the definition of a joule
[1 J = 1 N-m] to express k in units of J/(m-s-K). Equation 2.13 is known as Fourier’s law
of heat conduction. Values for thermal conductivity for several fluids and solids are con-
tained in Table 2.3. The thermal conductivity of a fluid is a function of temperature and
pressure.

2.4.1 Specific Heat

The specific heat capacity of a fluid c is defined to be the amount of heat energy required
to raise the temperature of a unit mass of fluid by one degree. This is expressed by writing

c = dq

dT
(2.14)

where dq is the amount of heat required to produce a temperature change dT per unit
mass of material. The dimensions for heat capacity are {F L M−1T −1} and the common
units are J/(kg-K) or (ft-lbf)/(lbm-◦F). Note carefully that the q in this equation is not the
same as the qc in Fourier’s law. In this case q has dimensions of {F L M−1} and common
units of J/kg or (ft-lbf)/lbm.

The value of c depends both on temperature and the process by which heat is added.
In a thermodynamic sense there are many possible processes, but in fluid mechanics
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Heat flux, qc
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Temperature
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Figure 2.14 When a fluid is located between
closely spaced parallel walls held at different
temperatures, a linear temperature profile devel-
ops. For the specified coordinate system, T in-
creases with increasing x so that the temperature
gradient is positive.  Thus, since the thermal con-
ductivity of the fluid is defined to be positive, the
heat flux qc, defined as qc = −k(dT /dx), is in
the negative x direction for this situation (this is
the expected result, since we know that heat
flows from the hot wall to the cold wall).
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TABLE 2.3 Thermal Conductivity and Specific Heat Values for Various Substances
at 1 atm and 25◦C

Thermal Conductivity, Specific Heat, 
Substance k [J/(m-s-K)] cp [kJ/(kg-K)]

Gases
Hydrogen 0.183 14.6
Helium 0.151 5.23
Nitrogen 0.0259 1.09
Oxygen 0.0266 0.921
Air 0.0262 1.05

Liquids
Gasoline 0.135 2.22
Acetone 0.176 2.15
Glycerin 0.284 2.41
Water 0.616 4.816
Mercury 8.36 0.139

Solids
Copper 398 0.386
Aluminum 273 0.900
Steel (1020) 52 0.486
Pyrex 1.1 0.75
Window glass 0.80 0.840
Brick 0.72 0.835
Nylon 0.30 1.67

EXAMPLE 2 .16

What is the conductive heat flux through a 1 cm wide water gap if the temperature dif-
ference is 50◦C? Repeat for the same gap filled with air.

SOLUTION

This exercise is solved by using Eq. 2.13: qc = −k(dT /dx). From the given informa-
tion we can determine that the temperature gradient is:

dT

dx
≈ T2 − T1

x2 − x1
= 50◦C

0.01 m
= 5000◦C/m = 5000 K/m

Note that we have assumed that the temperature is increasing in the direction of increas-
ing x as shown in Figure 2.14. That is, we have assumed a positive temperature gradi-
ent. From Table 2.3 we find: kH2O = 0.616 J/(m-s-K) and kair = 0.0262 J/(m-s-K).
Substituting these values in the expression for the heat flux gives:

qH2O
c = −k

dT

dx
= −[0.616 J/(m-s-K)](5000 K/m) = −3080 J/(m2-s)

qair
c = −k

dT

dx
= −[0.0262 J/(m-s-K)](5000 K/m) = −131 J/(m2-s)



only two processes need to be considered: heat added at
constant pressure and heat added at constant volume.
For liquids these two specific heats are virtually identi-
cal, and a liquid is said to have a specific heat c with no
further consideration of the process. For gases the spe-
cific heat capacity at constant pressure cp is greater than
the specific heat capacity at constant volume cv because
extra energy is required for the expansion of a gas at
constant pressure.

For incompressible liquids the change in internal
energy of the fluid is directly related to the specific heat
of the liquid through the relationship �u = cp�T . The
corresponding relationship for gases is more complex
and is discussed in Section 2.5.1.

Specific heat values for some common liquids and
gases are shown in Table 2.3 in SI units, along with val-
ues for several solids for comparison (corresponding
values in BG units are given in Appendix A). Specific
heat values at constant pressure range from 14.6
kJ/(kg-K) for hydrogen gas to 0.139 kJ/(kg-K) for liq-
uid mercury. Air and water have intermediate values of
1.05 and 4.816 kJ/(kg-K), respectively. It may seem
counterintuitive for air and water to have specific heat
values that differ by less than a factor of 5, but remem-
ber that these values are based on a unit mass rather
than a unit volume. On a per-unit-volume basis, it takes
much less energy to heat air than to heat water because
the density of air is nearly a thousand times smaller.

2.4.2 Coefficient of Thermal Expansion

Gases and liquids expand when heated, and density
decreases, as a result of the enhanced kinetic energy of
the individual molecules that make up the fluid. The
relationship between temperature and density change at
constant pressure is described by β , the coefficient of
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The fact that the heat flux is negative indicates that heat is being transported in the
negative x direction which is what we would expect for the case of T increasing as x
increases. If we had assumed that T decreased as x increased, then we would have
obtained a negative thermal gradient and a positive heat flux. In either case, the magni-
tude of the heat flux is the same.

It is useful to note the similarities between
Newton’s law of viscosity and Fourier’s law
of heat conduction. The two equations
are τ = µ(du/dy) and qc =−k (dT/dx).
Fourier’s law relates the heat flux to the
temperature gradient through the thermal
conductivity k . This equation is a model of
thermal transport. In direct analogy,
Newton’s law of viscosity can be consid-
ered to be a model for momentum trans-
port. Since momentum is the product of
mass and velocity, it has the dimension
{MLt –1} or equivalently {Ft }. The rate of
tangential momentum transfer per unit
area, or momentum flux, is the counterpart
of the heat flux. Momentum flux has dimen-
sions of {Ft / (tL2)} or simply {FL–2}, which
of course are also the dimensions of shear
stress. This analysis justifies an inter-
pretation of shear stress as a momentum
transfer rate. To complete the analogy, the
roles of the temperature gradient and ther-
mal conductivity in Fourier’s law are played,
respectively, by the velocity gradient and
the shear viscosity in Newton’s law. Thus,
we can interpret shear viscosity as the
proportionality constant that relates the
velocity gradient to the momentum transfer
rate. Note that in both heat and momen-
tum transfer, something flows downhill—
heat flows from regions of high tempera-
ture to regions of low temperature and
momentum flows from regions of high tan-
gential velocity to regions of low tangential
velocity.



thermal expansion of the fluid. This coefficient is defined in terms of specific volume
and density as

β = 1

υ

(
∂υ

∂T

)
p

(2.15a)

β = − 1

ρ

(
∂ρ

∂T

)
p

(2.15b)
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EXAMPLE 2 .17

Calculate the amount of thermal energy required to heat each of the following quantities
of fluid from 20◦C to 30◦C at standard pressure: 1 g of air, 1 g of water, 1 cm3 of air, and
1 cm3 of water. Assume that the density of air and water remain constant over this tem-
perature range at values of 1.225 and 997 kg/m3, respectively.

SOLUTION

We are to determine the amount of thermal energy required to raise the temperatures of
various quantities of matter from 20◦C to 30◦C. No sketch is required. The densities for
air and water are given as 1.225 and 997 kg/m3, and specific heat values are available in
Table 2.3. Since pressure is constant, we use the specific heat at constant pressure cp .
Rearranging Eq. 2.14 we have dq = cp dT . We will assume that the specific heats of air
and water do not change appreciably over the temperature range 20–30◦C so that
q = cp�T . The total thermal energy Q required to raise the temperature of a fixed mass
of fluid M by an amount �T when the specific heat is constant is Q = Mq = Mcp�T .
When the fluid mass is known we can use this relationship directly. If, however, we are
given the volume, –V , of fluid, then we must use the definition of density to obtain
Q = ρ –V cp�T . The thermal energy required to raise the temperature of the various
quantities of matter from 20◦C to 30◦C is calculated as follows.

For 1 g (= 0.001 kg) of air [cp = 1050 J/(kg-K)]:

Q = Mcp�T = 1050 J/(kg-K) × 0.001 kg × 10 K = 10.5 J

For 1 g (= 0.001 kg) of water [cp = c = 4816 J/(kg-K)]:

Q = Mc�T = 4816 J/(kg-K) × 0.001 kg × 10 K = 48.16 J

For 1 cm3 (= 10−6 m3) of air [cp = 1050 J/(kg-K) and ρ = 1.225 kg/m3]:

Q = ρ –V cp�T = 1050 J/(kg-K) × 10−6 m3 × 1.225 kg/m3 × 10 K = 0.0129 J

For 1 cm3 (= 10−6 m3) of water [cp = c = 4816 J/(kg-K) and ρ = 997 kg/m3]:

Q = ρ –V c�T = 4816 J/(kg-K) × 10−6 m3 × 997 kg/m3 × 10 K = 48.02 J

These answers seem reasonable. Since the density of water is approximately 1 g/cm3,
the similarity of the two values for water is not surprising.
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EXAMPLE 2 .18

Calculate the volume change if 1 ft3 of air is heated from 80◦F to 100◦F at constant pres-
sure. Repeat the calculation for 1 ft3 of water. The coefficient of thermal expansion for
water at 90◦F is approximately 1.67 × 10−4 ◦R−1.

SOLUTION

We are asked to determine the change in volume of 1 ft3 of air and water as a result of a
temperature increase from 80◦F to 100◦F at constant pressure. No sketch is required to
solve this problem. We are told that β for water at 90◦F is 1.67 × 10−4 ◦R−1. The rele-
vant Eq. is 2.15a. Since we are considering a fixed fluid mass, we can write
1/υ(∂υ/∂T )p = 1/–V (d –V /dT ) and use this equation to write

1
–V

d –V

dT
= β (A)

We assume that air can be treated as an ideal gas in this situation, using Eq. 2.16 to write
β = 1/T . We will also assume that the value of β for water does not change appreciably
over the temperature range 80–100◦F and use the value of β at 90◦F. Separating the
variables in (A), we obtain 

∫
(d –V /–V ) = ∫ β dT . For air, we use β = 1/T . After inte-

gration we have:

–V 2/–V 1 = T2/T1 (B)

For water, β is assumed to be constant and we get

–V 2/–V 1 = eβ(T2−T1) (C)

Thus when 1 ft3 of air is heated from 80◦F to 100◦F (539◦R to 559◦R) (B) predicts the
following volume at 100◦F:

–V 2 = –V 1

(
T2

T1

)
= (1 ft3)

(
559◦R

539◦R

)
= 1.037 ft3

The corresponding result for water is found using (C) to be

–V 2 = –V 1 eβ(T2−T1) = (1 ft3) exp [(1.67 × 10−4 ◦R−1)(20◦R)] = 1.0034 ft3

The volume increase is 0.037 ft3 (3.7%) for air and 0.0033 ft3 (0.33%) for water. The ob-
servation that the volume increase for air is much greater than that for water is consis-
tent with experience.

Values of the coefficient of thermal expansion for several common liquids can be found
in Appendix A. Note that water at 4◦C is an exception to the general rule of expansion
upon heating. Under ordinary conditions, the coefficient of thermal expansion for gases
is given by

β = − 1

ρ

(
∂ρ

∂T

)
p

= 1

T
(2.16)

where T is an absolute temperature. This relationship may be derived from the perfect
gas law.



2.5 THE PERFECT GAS LAW

Under a broad range of conditions, the equation of state for a gas is well modeled by the
perfect (or ideal) gas law. In extensive form this law is 

p –V = nRu T (2.17)

where Ru is the universal gas constant, –V is the volume of the system, and n is the num-
ber of moles of gas in the system. The value of the universal gas constant is 

Ru = 8314 (N-m)/(kgmol-K) = 1545 (ft-lbf)/(lbmol-◦R) (2.18)

The specific gas constant R is found by dividing the universal gas constant by the mol-
ecular weight Mw of the gas:

R = Ru

Mw

(2.19)

The dimensions of the specific gas constant are {F L M−1T −1} and the units are
(N-m)/(kg-K) or (ft-lbf)/(lbm-◦R). For example, the value of R for air is 287 (N-m)/(kg-K)
or 53.3 (ft-lbf)/(lbm-◦R).

By using Eq. 2.19, and noting that nMw equals the total mass M of the gas, the per-
fect gas law can also be written as

p –V = M RT (2.20a)

In fluid mechanics, we employ the intensive (per-unit-volume) form of the perfect gas
law, namely

p = ρRT (2.20b)

2.5.1 Internal Energy, Enthalpy, and Specific Heats
of a Perfect Gas

In the model known as a calorically perfect gas, which we use throughout this text, the
specific heats are assumed to be constants. In this model the internal energy change,
u2 − u1, and the enthalpy change, h2 − h1, are related to temperature change (T2 − T1)

by the equations

u2 − u1 = cV (T2 − T1) (2.21a)

h2 − h1 = cP(T2 − T1) (2.21b)

The ratio of specific heats occurs so often in gas flow problems that it is given a special
symbol:

cP

cV
= γ (2.22)

Since the specific heats are constants for a calorically perfect gas, the ratio of specific
heats is also a constant. From thermodynamics, the following relationships can be
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shown to hold for a calorically perfect gas:

cp − cV = R, cp = γ R

γ − 1
, and cV = R

γ − 1

(2.23a–c)

The classical kinetic theory of gases suggests that
for monatomic and diatomic gases the following rela-
tionships are excellent approximations:

cp = n + 2

2
R, cv = n

2
R, and γ = n + 2

n

(2.24a–c)

where n = 3 for monatomic gases and n = 5 for sev-
eral diatomic gases including oxygen and nitrogen (at
normal temperatures and pressures). These results can
be seen to be consistent with the perfect gas relation-
ships given in Eqs. 2.22 and 2.23, and provide a means

of estimating the specific heats and specific heat ratio of a gas from its molecular struc-
ture. Values of the specific heats and other perfect gas parameters for a number of com-
mon gases are listed in Table 2.4. The reported cp and cv values were calculated from the
given values of R and γ using Eqs. 2.23b and 2.23c.

2.5.2 Limits of Applicability

The perfect gas law is applicable for a wide range of engineering problems involving
air and other gases. It should be used with caution, however, if the gas pressure or
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EXAMPLE 2 .19  

A volume of air originally at STP is heated 10◦C at constant pressure. What is the new
density?

SOLUTION

This exercise is solved by using Eq. 2.20b. We have p0 = ρ0 RT0 at STP and
pf = ρ f RTf in the final state. Dividing the second equation by the first and noting that
R is constant gives pf /p0 = ρ f Tf /ρ0T0 . Rearranging we have ρ f /ρ0 = pf T0/p0Tf .
Since p0 = pf in this case, we have ρ f = ρ0(T0/Tf ). Substituting the values for air at
STP, T0 = 20◦C = 293 K and ρ0 = 1.20 kg/m3 (Appendix A), gives the new density as: 

ρ f = ρ0

(
T0

Tf

)
= 1.20 kg/m3 ×

(
293 K

303 K

)
= 1.16 kg/m3

As an example of the utility of the perfect
gas law, consider the problem of estimat-
ing the density of air at standard condi-
tions. In SI units, standard pressure and
temperature are 101,300 Pa and 20◦C,
respectively. Rearranging Eq. 2.20b to
solve for density gives ρ = p/RT. Recog-
nizing that R for air was given in the text
as 287 (N-m)/(kg-K), and substituting the
appropriate values into the perfect gas law
with the unit conversion factor (1 Pa �
1 N/m2) gives

ρ = 101, 300 Pa
287 [(N-m)/(kg-K)](293 K)

× 1 N/m2

1 Pa
= 1.205 kg/m3



temperature is extremely high. The perfect gas law breaks down at high pressure be-
cause as gas molecules are forced closer together, molecular interactions occur that are
not accounted for in the perfect gas model. At high temperatures, some of the intermol-
ecular collisions are so violent that polyatomic gas molecules are ionized, another
process not accounted for in the perfect gas law.
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TABLE 2.4 Perfect Gas Parameters for Several Common Gases 

In SI Units: In BG Units:
J/(kg-K) (ft-lbf)/(slug-◦R)

Gas MW γ R cp cv R cp cv

Air 29 1.40 287 1,004 717 1,716 6,006 4,290
CO2 44 1.30 189 819 630 1,130 4,897 3,767
He 4 1.66 2077 5,224 3,147 12,420 31,238 18,818
H2 2 1.41 4124 14,180 10,060 24,660 84,806 60,146
Methane 16 1.31 518 2,190 1,672 3,099 13,096 9,997
N2 28 1.40 297 1,039 742 1,775 6,213 4,438
O2 32 1.40 260 909 650 1,130 5,439 3,885

EXAMPLE 2 .20

What are the internal energy and enthalpy changes for nitrogen in a temperature change
of 100◦C? Assume that nitrogen is a perfect gas.

SOLUTION

Since we are assuming that nitrogen can be modeled as a calorically perfect gas, this ex-
ercise can be solved by using Eqs. 2.21 and 2.23. We have:

u2 − u1 = cV (T2 − T1) and h2 − h1 = cP(T2 − T1)

From Table 2.4, the specific gas constant for nitrogen is 297 (N-m)/(kg-K) and the spe-
cific heat ratio is 1.4. Thus we calculate

u2 − u1 = cV �T = R

γ − 1
(T2 − T1) =

(
297 (N-m)/(kg-K)

1.4 − 1

)
(100 K)

= 74,250 (N-m)/kg = 74,250 J/kg

h2 − h1 = cP�T = 1.4R

1.4 − 1
(T2 − T1) =

(
1.4

0.4

)
297 (N-m)/(kg-K)(100 K)

= 103,950 (N-m)/kg = 103,950 J/kg

Note that nitrogen is a diatomic gas. Thus, even if we did not have Table 2.4 available we
could use Eq. 2.19 to calculate that the gas constant is 297 (N-m)/(kg-K). We would then
insert n = 5 into Eqs. 2.24a and 2.24b to obtain estimates for the two specific heat values.
You may wish to demonstrate to yourself that this procedure results in the same values for
the change in internal energy and enthalpy for the conditions specified in this example.



What is the range of temperatures and pressures over which it is “safe” to use the
perfect gas law? For the pressures encountered in engineering, the perfect gas law can
be used as long as the temperature is below the dissociation temperature of the poly-
atomic molecules in the gas (e.g., 3000 K for O2 and 6000 K for N2). At the low end of
the temperature spectrum, perfect gas behavior can be assumed if temperatures are
above the critical temperature (TC = 155 K for O2 and 126 K for N2) up to pressures of
at least 70 atm. For values outside the range specified, one can use advanced state equa-
tions, such as the van der Waals, Beattie–Bridgeman, or Sutherland equations, or use a
table of thermodynamic properties or charts for the specific fluid of interest.

2.6 BULK COMPRESSIBILITY MODULUS

When a fluid is subjected to a pressure increase, the volume decreases, and the density
increases. For many fluids the pressure–volume relationship is linear and may be char-
acterized by a proportionality constant called the bulk compressibility modulus, EV .
The relationship between a change in pressure, dp, and the corresponding fractional
change in specific volume, dυ/υ , is written in terms of EV as:

dp = −EV
dυ

υ
(2.25)

The minus sign is necessary because a positive change in pressure (a pressure increase)
results in a negative change in volume (a volume decrease). Since −dυ/υ = dρ/ρ ,
Eq. 2.25 may be written as 

dp = EV
dρ

ρ
(2.26)

This equation can be rearranged to define the bulk modulus as

EV = dp

dρ/ρ
(2.27)

Since dρ/ρ is a dimensionless ratio, the dimensions and common units for EV are the
same as those for pressure, {F L−2}, and thus pascals or psi. Values of the bulk modulus
for several liquids may be found in Table 2.5 (see also Appendix A).
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TABLE 2.5 Bulk Modulus Values EV, for Several Common Liquids at 20◦C

Bulk Modulus, EV

Liquid SI (GPa) BG (lbf /ft
2)

Gasoline 0.958 2.00 � 107

Mercury 25.5 5.32 � 108

Methanol 0.83 1.73 � 107

SAE 30W oil 1.38 2.88 � 107

Water 2.19 4.57 � 107

Seawater (30% salinity) 2.33 4.86 � 107



For gases, the precise value of the bulk modulus depends on the type of compres-
sion process which occurs. For a perfect gas undergoing an isothermal process
dp = RT0dρ . Thus the isothermal bulk modulus of a perfect gas can be written as

EV = dp

dρ/ρ
= RT0dρ

dρ/ρ
= ρRT0 = p

and we can write the isothermal bulk modulus of a perfect gas in two ways:

EV = ρRT0 (2.28a)

EV = p (2.28b)

If a perfect gas undergoes an isentropic (frictionless and without heat transfer to the sur-
roundings) process, then it can be shown that the isentropic bulk modulus is given by

EV = γ p (2.29)
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EXAMPLE 2 .21

The pressure in the deepest part of the ocean is ∼110 MPa. For seawater at this depth,
use a constant bulk modulus to estimate the density increase over the sea level value.

SOLUTION

This exercise is solved by using Eq. 2.26, dp = EV (dρ/ρ). Solving for the normalized
density change dρ/ρ and integrating yields:

∫
dρ

ρ
=
∫

dp

EV

ln

(
ρ2

ρ1

)
= p2 − p1

EV

ρ2

ρ1
= exp

(
p2 − p1

EV

)

For seawater EV = 2.33 GPa (Table 2.5), and since atmospheric pressure is about
0.1 MPa, we find:

�p = 110 MPa − 0.1 MPa = 109.9 MPa = 0.1099 GPa

Substituting the appropriate values into the expression for the density change gives:

ρ2

ρ1
= exp

(
�p

EV

)
= exp

(
0.1099 GPa

2.33 GPa

)
= 1.048

Thus, the density increases about 4.8% at this depth over its sea level value. Note that if
we anticipated that the density change here is small, then we could do an approximate
calculation by writing dp = EV (dρ/ρ) in the form p2 − p1 = EV (ρ2 − ρ1)/ρ1 =
EV [(ρ2/ρ1) − 1]. Solving for the density ratio and inserting the data gives ρ2/ρ1 =
1 + (p2 − p1)/EV = 1 + (0.1099 GPa)/2.33 GPa = 1.047, which is essentially the
same as the preceding answer.



A material with a large value of the bulk modulus, i.e., a liquid or solid, undergoes
a negligible change in density when exposed to the highest pressures normally encoun-
tered in engineering. Such materials are incompressible. For example, a pressure in-
crease of over 3100 psi is required to increase the density of water by 1%. Since liquids
are virtually impossible to compress by using reasonable pressures, we will assume that
a liquid has a constant density unless otherwise noted.
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EXAMPLE 2 .22

Suppose you have a compressed-air shock absorber on your car with dimensions shown
in Figure 2.15. After filling your shocks to the recommended pressure of 80 psig, you
load the car for a trip and observe that the shock absorber is compressed an additional
3 in. What force must be applied to the shock absorber to compress it this amount?
Assume that the original temperature of the air in the shock absorber is 30◦C.

Air

F � ?

D � 3 in.

Air at
80 psig

and
30�C

10 in.

3 in.

Figure 2.15 Cylindrical compressed-air shock absorber
with a diameter of 3 in. In its unloaded state the air column is
10 in. long and the air is at a pressure of 80 psig and a tem-
perature of 30�C. When the unknown load is applied, the
length of the air column decreases by 3 in.

SOLUTION

We are to calculate the force applied to a shock absorber when a car is loaded. Fig-
ure 2.15 is a sketch of the situation. The air column in the shock absorber has a diame-
ter of 3 in. and length of 10 in. at a pressure of 80 psig. After the load is applied, the
length of the column of air is reduced by 3 in. This problem is solved using Eq. 2.26:
dp = EV (dρ/ρ). We will assume that the air in the shock may be approximated as a
perfect gas undergoing an isothermal process (the compression occurs rather slowly as
the car is loaded) and use Eq. 2.28b to define the isothermal bulk modulus as EV = p.
Combining the equations just listed, we get: dp/p = dρ/ρ . Separating variables and in-
tegrating gives p2/p1 = ρ2/ρ1. Since the mass of gas in the shock absorber is fixed, for
an air column of constant cross section, we have ρ2L2 = ρ1L1, and ρ2/ρ1 = L1/L2.
Since p2/p1 = ρ2/ρ1, we get p2/p1 = L1/L2. Since the initial length is 10 in., and a
reduction in length of 3 in. corresponds to a final length of 7 in., we know
p2/p1 = 10/7. Since we are using the ideal gas law, we must use absolute pressure.



2.6.1 Speed of Sound

Consider the stereo speaker shown in Figure 2.16. The speaker cone moves in response
to the output signal from the amplifier, acting on the adjacent air like a moving piston
without an enclosing cylinder. When the cone moves toward the air, the air is slightly
compressed and is forced to move in the direction of travel of the cone. When the cone
retreats from the air, the air is slightly expanded and follows the retreating cone. At the
molecular level, air molecules colliding with the moving speaker surface experience an
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Region in which air is slightly expanded,
created when the speaker cone moves

from position 2 to position 1

Regions in which air is slightly compressed,
created when the speaker cone moves from

position 1 to position 2

Vibrating
speaker cone

Position 1

Position 2

Figure 2.16 Vibrating stereo speaker
cone. When the cone moves from
position 1 to position 2, the air in front
of the moving cone is slightly com-
pressed as it is forced to move in the
direction of travel of the cone. When
the cone moves in the opposite direc-
tion, the air molecules adjacent to the
cone follow its retreat and create a
region of slightly expanded air to the
right of the moving cone.

Substituting p1 = 80 psig + 14.7 psi = 94.7 psia gives

p2 = p1

(
L1

L2

)
= (94.7 psia)

(
10 in.

7 in.

)
= 135 psia = 120 psig

To calculate the increase in the corresponding force applied to the shock absorber,
we recognize that �F = �p A. Since the pressure increased from 80 psig to 120 psig,
we use �p = 40 psi. The cross-sectional area of the air column is A = πd2/4 =
π(3 in.)2/4 = 7.07 in.2 . Thus, the additional force is found to be �F = �p(A) =
40 psi (7.07 in.2) = 280 lbf .

Assuming four identical shocks on this car, the total load is 1120 lbf, which is likely
to be well above the manufacturer’s recommendation for maximum load. Note that in
this case of a slow loading, the isothermal model is appropriate. As the vehicle goes over
a bump, the compression process is more likely to be isentropic.



increase in their normal component of momentum. At the macroscopic level this is seen
as a pressure increase at the speaker surface. Through molecular collisions, the increase
in normal momentum propagates away from the speaker surface into the undisturbed air
at a rate proportional to the mean speed of the random motion of the air molecules. This
speed depends on the air temperature, since the average random kinetic energy of the
molecules is proportional to the temperature. The overall effect is to cause a pressure
wave, i.e., a sound wave to propagate away from the speaker at a fixed speed, expand-
ing and compressing the air in its passage.
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Kinematics/Compressibility/Sound Waves

It takes time for a sound wave to propagate, or equivalently, for information to be
transferred over a distance through a fluid. We see lightning before we hear thunder, and
music sounds “unbalanced” if one sits much closer to one of the stereo speakers. In each
case, pressure waves are traveling with a specific speed relative to the fluid itself, called
the speed of sound, c. The speed of sound in a fluid is found to be proportional to the
compressibility of the fluid as measured by the isentropic bulk modulus. The exact rela-
tionship can be shown to be

c =
(

dp

dρ

)1/2

=
(

EV

ρ

)1/2

(2.30)

The sound speed has dimensions of {Lt−1} and units of meters or feet per second.
Values for the speed of sound in several common fluids can be found in Appendix A.

EXAMPLE 2 .23

Estimate the speed of sound in water and in mercury.

SOLUTION

This exercise is solved by using Eq. 2.30. We require bulk modulus values from
Table 2.5 (for water EV = 2.19 GPa and for mercury EV = 25.5 GPa) and density val-
ues from Table 2.2 (for water ρ = 1000 kg/m3 and for mercury ρ = 13,590 kg/m3).
Thus, the speed of sound in water is estimated as

c =
√

EV

ρ
=
√

2.19 GPa

1000 kg/m3 =
√

2.19 × 109 (N/m2)

1000 (kg/m3)
= 1480 m/s

Similarly, the speed of sound in mercury is estimated as:

c =
√

EV

ρ
=
√

25.5 GPa

13,590 kg/m3 =
√

25.5 × 109 (N/m2)

13,590 (kg/m3)
= 1370 m/s



In gases, experiments show that the sound propagation
process is isentropic, so it is appropriate to use the isen-
tropic bulk modulus to compute the sound speed for a
perfect gas. Using EV = γ p in Eq. 2.30, we have

c =
(

γ p

ρ

)1/2

=
√

γ RT (2.31)

Remember the connection between temperature and
the average speed of the random motion of gas mole-
cules? According to Eq. 2.31, a disturbance in a gas
propagates a bit more slowly than the average speed
of the molecules. The speed of sound in air at room
temperature is 343 m/s. Notice that this is slow com-
pared with liquids, in which the sound speed is roughly
1500 m/s.
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What is the speed of sound in a perfectly
incompressible material? Since an incom-
pressible material has a bulk modulus ap-
proaching infinity, Eq. 2.30 shows that the
sound speed is infinite. Are there actually
any perfectly incompressible materials?
Sound wave propagation in a liquid is clear
evidence that all liquids are actually com-
pressible fluids. Nevertheless, in many en-
gineering applications we model the liquid
as an incompressible fluid. Sound waves
travel so rapidly in liquids (at about
1500 m/s) that the sound speed is effec-
tively infinite. This means that all parts of a
liquid begin to move almost immediately if
a boundary is moved. 

EXAMPLE 2 .24

Estimate the distance to a thunderstorm if you see the lightning 8 s before you hear the
thunder on a summer evening when the temperature is 20◦C. How far would sound
travel through water in the same time at the same temperature?

SOLUTION

We are asked to estimate the distance to a thunderstorm given the time lag between the
sight of lightning and the sound of thunder. In addition, we are to calculate the distance
sound would travel through water in the same time at the same temperature. No sketch
is required to solve this problem. The temperature is given as 20◦C and the time lag is
8 s. This problem is solved using Eqs. 2.30 for water and 2.31 for air. These equations
are:

c =
√

EV

ρ
and c =

√
γ RT

Since velocity is defined as distance divided by time, the distance, L , traveled in air and
water can be calculated as

Lair = ct = t
√

γ RT and Lwater = ct = t

√
EV

ρ

For air at 20◦C (= 293 K), with t = 8 s, γ = 1.4, and R = 287 (N-m)/(kg-K), we find

Lair = t
√

γ RT = (8 s)
√

1.4[(287 (N-m)/kg-K)] × (293 K)

= (8 s)(343.1 m/s) = 2745 m



The ratio of the speed of a moving fluid to the speed of sound in that fluid is known
as the Mach number, M :

M = V

c
(2.32)

A vehicle is also said to move at a certain Mach number, M . In that case the Mach num-
ber is calculated as the ratio of the vehicle speed to the speed of sound in the surround-
ing fluid.
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Similarly, for water with EV = 2.19GPa (Table 2.5) and ρ = 998.2 kg/m3 (Appendix A),
we find

Lwater = ct = t

√
EV

ρ
= 8 s

√
2.19 × 109 N/m2

998.2 kg/m3

= (8 s)(1481 m/s) = 11,850 m

The answers seem reasonable. Note that the speed of sound in water is 4.3 times that of
the speed of sound in air under the conditions specified in the problem. You may be
familiar with the rule of thumb that the distance to a thunderstorm can be crudely
estimated in miles by dividing the time lag (in seconds) by 5 or in kilometers by divid-
ing the time lag by 3.

EXAMPLE 2 .25

What is the Mach number of an airplane flying at 500 mph at an altitude of 30,000 ft?

SOLUTION

First use Eq. 2.31, c =
√

γ RT , to find the speed of sound under these conditions, then
use Eq. 2.32, M = V/c, to find the Mach number. The specific gas constant for air is
given in the text (or Appendix A) as 287 (N-m)/(kg-K) and γ = 1.4 for air. The air
temperature at 30,000 ft is found from Appendix B to be −47.83◦F (= 228.8 K). Sub-
stituting these values into the equation for the speed of sound gives:

c =
√

γ RT =
√

1.4[287 (N-m)/(kg-K)](228.8 K) = 303 m/s

The unit conversion factor for m/s to mph is found in Appendix C to be 1 mph =
0.44704 m/s. Therefore, the speed of sound under these conditions is c = (303 m/s)
(1 mph/0.44704 m/s) = 678 mph. Thus, the Mach number of this airplane is: M =
V/c = 500 mph/678 mph = 0.74.



2.7 VISCOSITY

In our discussion in Chapter 1 of the basic
characteristics of fluids and solids, the
viscosity of a fluid, µ, was defined as the
constant of proportionality between shear

stress and the transverse velocity gradient. In fluid me-
chanics the viscosity µ is referred to as the absolute or
dynamic viscosity, but a more descriptive name is shear
viscosity.

Figure 2.17 shows a thin layer of fluid being
sheared between two closely spaced parallel flat plates.
This geometry models the lubricant-filled space be-
tween a piston and cylinder wall in an engine, in a jour-
nal bearing, or between your foot and the wet floor in
your bathroom. Note the linear velocity profile within
the fluid layer, and note also that at both fluid–solid in-
terfaces the fluid velocity matches the velocity of the
solid surface. The latter condition, which is virtually al-
ways satisfied, is known as the no-slip condition. The
no-slip condition reflects the fact that there is a thin
layer of fluid adsorbed (held by molecular forces) to a
solid surface.

The first consequence of fluid viscosity is a resis-
tance to shear in accordance with Newton’s law of vis-

cosity (Eq. 1.2c): τ = µ(du/dy). The shear viscosity of a fluid is a strong function of
temperature but only a weak function of pressure. The temperature dependence of vis-
cosity differs for liquids and gases. Shear viscosity increases with temperature for gases
but decreases with temperature for liquids.

To understand the temperature dependence of viscosity, we must consider the
mechanisms by which momentum is transferred in fluids. In liquids the viscosity, or
ability to transfer momentum, is a result of the intermolecular attractive forces between
adjacent molecules. As the temperature increases, the strength of this cohesive force
decreases, and the average separation distance between liquid molecules increases. The
liquid transfers momentum less effectively, so viscosity decreases. The temperature
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Density changes are very small in flows at
low Mach numbers, defined as those for
which Mach number is less than ∼0.3. In
flows of liquids, speeds are typically very low
in comparison to the sound speed, so virtually
all liquid flows are at a Mach number near
zero. Thus density changes in a liquid flow are
truly negligible, and a constant density model
for a liquid is appropriate. A gas flow at low
Mach number may also sometimes be mod-
eled by constant density. For air at standard
conditions, a Mach number of 0.3 corre-
sponds to a velocity of about 100 m/s
(∼225 mph). Below this speed, pressure
changes induced by the motion are very
small and temperature changes are negligi-
ble. The resulting density change is also small
enough to ignore, even though air is highly
compressible. Thus in many flows, including
those associated with surface vehicles, light
aircraft, fans and blowers, and hurricanes, air
behaves like an incompressible fluid. A low
Mach number flow of gas is therefore
referred to as an incompressible flow.

Velocity
gradient:

du
dy

Newton’s law
of viscosity:

� � �
du
dy

x

U

y

Moving top plate

Fixed bottom plate

Figure 2.17 A fluid in
shear between two parallel
flat plates. The bottom plate
is stationary and the top
plate is moving to the right
(	x direction) with a veloc-
ity U. The velocity gradient,
du/dy, results in a shear
stress τ , as given by
Newton’s law of viscosity: 

τ = µ(du/dy).



dependence of shear viscosity for a liquid is modeled by the exponential relation 

µ = AeB/T (2.33a)

where A and B are constants for a given liquid.
In gases, molecules are not close enough together for intermolecular forces to be

important. The mechanism responsible for momentum transfer is fundamentally differ-
ent. Gas molecules are far more mobile than those in a liquid. Some of these energetic
gas molecules move in a direction with a component perpendicular to the motion of the
top plate. The molecules moving from the “fast” fluid layer to the “slower” moving layer
below act to pull the “slower” layer forward. In contrast, the molecules moving from the
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EXAMPLE 2 .26

Calculate the temperature at which the shear viscosity of water is equal to 40% of its
value at 20◦C, given µ(20◦C) = 0.001 (N-s)/m2 and µ(0◦C) = 0.0018 (N-s)/m2.

SOLUTION

This exercise is solved by using Eq. 2.33a: µ = AeB/T . We will use the information
given to obtain a value for the constant B and then use that value to determine the tem-
perature at which the viscosity of water is 40% of its room temperature value. The ratio
of the viscosity of water at any two temperatures is given by:

µ1

µ2
= A exp(B/T1)

A exp(B/T2)
= exp

[
B

(
1

T1
− 1

T2

)]

Solving this expression for B and substituting the values given in the problem statement
(with the subscript 1 referring to 20◦C and the subscript 2 referring to 0◦C) yields:

B = ln(µ1/µ2)

(1/T1 − 1/T2)

= ln(0.001[N-s/m]/0.0018 [N-s/m])

[(1/293.16 K) − (1/273.16 K)]
= 2353 K

Now we solve the viscosity ratio equation for the temperature T2:

T2 =
[

1

T1
− ln(µ1/µ2)

B

]−1

If subscript 1 continues to refer to 20◦C and subscript 2 now refers to the unknown tem-
perature at which the viscosity 40% of its room temperature value (i.e., µ2/µ1 = 0.4),
we find:

T2 =
[

1

293.16 K
− ln(1/0.4)

2353 K

]−1

= 330.94 K = 57.78◦C



“slower” layer to the “faster” layer exert a drag on the “faster” layer. Since a rise in
temperature increases the random molecular motion in all directions (including the
perpendicular direction), the shear viscosity of a gas increases with rising temperature.
The appropriate form of the viscosity–temperature relationship is

µ

µ0
=
(

T

T0

)n

(2.33b)

where µ0 is the known viscosity at the reference temperature T0 (often 273 K) and n is
a constant for a specific gas (0.7 for air).

Suppose you are asked to predict the temperature of minimum shear viscosity for
water in the temperature range 50–150◦C. To do so, you must recognize that water
undergoes a liquid–gas phase change in this temperature range. First consider the tem-
perature dependence of viscosity for the liquid phase. As shown in Eq. 2.33a, viscosity
decreases with increasing temperature in a liquid, so the minimum viscosity for the liq-
uid phase occurs at a temperature just below the boiling point. In contrast, by Eq. 2.33b,
the viscosity of a gas increases with increasing temperature, so the minimum viscosity
for the gas phase occurs just above the boiling temperature. The viscosity of steam is al-
ways less than that of water, so the minimum viscosity for H2O over the range 50–150◦C
must occur in the vapor phase just above the boiling temperature.

A different way to express the shear viscosity is to divide it by the density. This
normalized form, called the kinematic viscosity, ν, is defined as: 

ν = µ/ρ (2.34)

The dimensions of kinematic viscosity are {L2t−1} and it is expressed in units of m2/s,
or ft2/s.
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EXAMPLE 2 .27

Calculate the temperature at which the shear viscosity of air is equal to twice its value at
20◦C, given that µ(20◦C) = 0.0001813 (N-s)/m2 and n = 0.7.

SOLUTION

Solving Eq. 2.33b for temperature we get

T = T0

(
µ

µ0

)1/n

Substituting the data provided in the problem statement gives us

T = T0

(
µ

µ0

)1/n

= (293 K)(2)1/0.7 = 789 K = 516◦C



In keeping with our belief in exposure to different
unit systems, it is necessary to pause here and note that
engineers frequently encounter viscosity values in
handbooks with cgs units. In this system the shear vis-
cosity µ has a unit called poise P , defined as 

1 P = 1 dyn-s/cm2 (2.35a)

The corresponding unit of kinematic viscosity ν is the
Stoke (St) defined as

1 St = 1 cm2/s (2.35b)

Kinematic viscosity data for various fluid can be found
in Appendix A.

2.7.1 Viscous Dissipation

An important consequence of the existence of shear vis-
cosity is a loss of energy when fluid is sheared. This
frictional energy loss is referred to as viscous dissipa-
tion. The general action of viscosity in a fluid flow is a
tendency to convert the useful energy content of the

fluid into heat. The useful energy lost appears as an increase in the internal energy of the
fluid, corresponding to a rise in temperature.

The rate of dissipation of energy per unit mass of fluid by the shear viscosity is
given by the viscous dissipation, Φ. Although the general formula for the viscous
dissipation will be given later, it is instructive to note that for the specific situation
depicted in Figure 2.17, the viscous dissipation rate at any point in the flow is given by:

Φ = 2
µ

ρ

(
du

dy

)2

(2.36)

Viscous dissipation has the dimension {L2t−3} and is usually expressed in units of power
per unit mass, i.e., J/(s-kg) or W/kg in SI, or Btu/(lbm-s) or hp/lbm in EE. Equation 2.36
can be used to estimate the work required to shear a fluid in this physical arrangement,
since all the work done on the fluid by the moving plate is dissipated by viscosity.

2.7.2 Bulk Viscosity

Thus far our discussion has been about shear viscosity. When fluids with a complex
molecular structure undergo compression or expansion, they may exhibit a second, quite
different type of viscosity. This second viscous property of a fluid, called the bulk or
expansion viscosity, is represented by κ . Like shear viscosity, expansion viscosity has
dimensions of {Ft L−2} and units of (N-s)/m2 [= kg/(m-s)] or (lbf-s)/ft2.

Just as the shear viscosity of a fluid causes an irreversible conversion of mechanical
energy into heat when a fluid is sheared, the bulk viscosity of a fluid is responsible for a
viscous loss of energy when certain fluids are compressed or expanded very rapidly. The
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All fluids, with the curious exception of
liquid helium in the temperature range at
which it exhibits superfluidity, exhibit shear
viscosity. An important historic approxima-
tion in fluid mechanics treats a fluid as if it
were inviscid, meaning that its shear
viscosity is zero. An inviscid, constant den-
sity fluid is also referred to as an ideal fluid.
A closely related approximation, called
inviscid flow, treats a fluid in motion as if it
were free of all shear stress. We mention
these approximations here because there
are many exact solutions known for invis-
cid flow, and we will be examining a num-
ber of these in later chapters.

The kinematic viscosity often occurs in
modeling the dynamics of fluid flow.
Notice that this is true in Eq. 2.36, which
defines the rate of viscous dissipation of
energy in flow between parallel plates. 
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EXAMPLE 2 .28

The planar configuration in Figure 2.17 has been used to model the flow of liquid
lubricants in cylindrical journal bearings (see Figure 2.18). Osborne Reynolds first made
the simplifying assumption that the fluid film was so thin in comparison to the bearing
radius that the curvature could be neglected. What is the viscous dissipation in the lu-
bricant oil SAE 30W between the journal bearing and the rotating shaft shown in Fig-
ure 2.18? The operating temperature is 40◦C, at which µ = 0.075 (N-s)/m2.

L � 4.0 cm

c � 0.04 mm

U

c � 0.04 mm

N � 1800 rpm

r � 2 cm x

y

Figure 2.18 Schematic illustration of a journal bearing. Notice the enlarged drawing of the re-
gion between the inner rotating shaft and the stationary outer surface. Since the thickness of the
fluid layer is small compared with the shaft radius, the curvature can be neglected and we make
use of the parallel plate model developed earlier.

SOLUTION

We are asked to find the viscous dissipation of the lubricant SAE 30W oil in the journal
bearing. The enlarged sketch of critical region in Figure 2.18 shows the x-y coordinate
system of the planar model. The bottom plane represents the journal bearing and has
zero velocity. The shaft surface is the upper plane moving at velocity u = 2πr N . We
are given that the shaft is rotating at N = 1800 rpm, the radius and length of the bear-
ing are r = 2.0 cm, and L = 4.0 cm, respectively, and the gap between the bearing and
the shaft is c = 0.04 mm.

To solve this problem, use Eq. 2.36, Φ = 2(µ/ρ)(du/dy)2 . The key assumption is
that curvature can be neglected (see inset, Figure 2.18). The velocity distribution of the
oil in the gap is u = (2πr N/c)y , so the velocity gradient is constant and equal to
du/dy = 2πr N/c everywhere in the space. In this problem we will determine the
viscous dissipation per unit volume, which is simply the viscous dissipation per unit



rate of dissipation of energy per unit mass due to the bulk viscosity is given by Φκ :

Φκ = κ

ρ3

(
dρ

dt

)2

(2.37)

where dρ/dt is the time rate of change of density occurring in the fluid. Large values of
dρ/dt are necessary for dissipation by the bulk viscosity to be significant. For example,
in gases this occurs in the interior of a shock wave. Since large density changes are
difficult to create in a liquid, the only easy way to achieve a large value of dρ/dt in a
liquid is with ultrasound, an acoustic process at frequencies in the megahertz range (i.e.,
by making dt small). Practical devices in which a large value of dρ/dt may occur in-
clude ultrasonic cleaners for jewelry, sonic disrupters used in molecular biology to rup-
ture cell walls, and ultrasound imaging devices in medicine.

2.8 SURFACE TENSION

Perhaps you have wondered why a sponge soaks up water so readily, whereas the treated
fabric of a raincoat is impervious to water. Water forms a thin film on a clean windshield,
but it beads on the same surface after the use of a windshield treatment. Water also beads
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mass given in Eq. 2.36 multiplied by ρ:

ρΦ = 2µ

(
du

dy

)2

= 2µ

(
2πr N

c

)2

Because the dissipation rate is uniform, the total dissipation is the product of the dissi-
pation rate per unit volume and the volume –V ,

ρΦ–V = 2µ

(
2πr N

c

)2

–V = 2µ

(
2πr N

c

)2

L[π(r + c)2 − πr2]

Substituting numerical values into the foregoing result and noting that the viscosity of
SAE 30W oil is µ(40◦C) = 0.075 (N-s)/m2 gives:

ρΦ–V = 2[0.075 kg/(m-s)]

[
2π(2.0 cm)(1800 rpm)(min/60 s)

(0.04 mm)(cm/10 mm)

]2

× (4.0 cm)[π(2.0 + 0.004)2 − π(2.0 cm)2](10−6 m3/cm3)

ρΦV = 268 (kg-m2)/s3 = 268 (N-m)/s = 268 W

(
1 hp

745.7 W

)
= 0.36 hp

Note that we have used the unit conversion factor 1 hp = 745.7 W and recognize that the
result is in units of power, as expected. A shaft of this size is typical for a 60 hp electric
motor, which has losses of about 3 hp. Bearing losses of 10% of this total are reasonable.
While this estimate of the dissipation in the bearing is reasonable, an engineer would
normally apply lubrication theory, a branch of fluid dynamics concerned with this type
of problem to calculate the flow in the bearing.



on a waxed or oily automobile surface, but when a little detergent is added, it will spread
into a thin film. A jet of water tends to break up into a spray of small spherical droplets.
Shake a bottle of Italian dressing, and the oil is dispersed into fine drops suspended in
the water and vinegar. Liquids may either advance up a small tube against the force of
gravity or stubbornly refuse to enter the tube at all. These are all examples of surface
tension phenomena. What is responsible at the molecular level for the variety of behav-
iors associated with the presence of an interface between two fluids?

As shown in Figure 2.19, molecules below the surface of a liquid have a character-
istic number of nearest neighbors. The total energy of the fluid system is minimized
when each molecule has the “correct” number of neighbors (determined by the bonding
characteristics of the atoms in the fluid). Molecules at the liquid surface, however, have
a different number of nearest neighbors. There are two ways to interpret this observa-
tion. First, since the surface molecules have the “wrong” number of neighbors, they will
be at a higher energy state. The excess energy associated with the molecules at the
surface is known as surface energy. Surface energy, which is represented by the sym-
bol σ , has dimensions of energy per unit area, {F L/L2}, or equivalently, {F/L}, and is
expressed in units of ergs/cm2, J/m2, or (ft-lbf)/ft2.

A different but equivalent model for a liquid–vapor interface recognizes that since
the surface molecules of liquid do not have identical molecules above them, they will
be more strongly attracted to their neighbors below and in the plane of the interface.
The result is a layer of surface molecules that at the macroscopic level behaves as an
elastic membrane. The corresponding net force on a molecule in the interface acts in
the plane of the surface in all directions and is referred to as the surface tension (see
Figure 2.20). Surface tension has dimensions of force/length, which is dimensionally
equivalent to surface energy. The units for surface tension are N/m, dyn/cm, or lbf /ft.
We will use the concept of surface tension in the remainder of this section, but note that
both approaches (surface tension and energy) are valid ways to investigate interfacial
phenomena.
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Liquid–gas interface

4 S 1
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Figure 2.19 A liquid–gas interface. The liquid
molecules (represented by solid colored spheres)
are packed in a semiorderly fashion (atoms in a
crystalline solid are packed in a highly ordered
fashion). The molecules in the interior of the liquid,
including molecule I, generally have six nearest
molecular neighbors in the plane of the paper. In
contrast, liquid molecules at the liquid surface, such
as molecule S have only four nearest molecular
neighbors in the plane of the paper.  As discussed in
the text, this difference in number of nearest neigh-
bors result in a surface tension or equivalently a
surface energy at any fluid interface.



The magnitude of the surface tension is a function of the fluids on both sides of the
interface. Thus, the surface tension at an air–water interface is different from that at an
oil–water interface. The influence of both fluids on the surface tension is a reflection of
the fact that atoms in the second fluid are serving as substitute nearest neighbors for the
surface atoms in the first fluid and vice versa. Surface tension values for several fluid
systems are given in Table 2.6.

Since it is the near neighbors of a molecule at an interface that affect the resulting
surface tension, foreign molecules adsorbed onto the interface will change the surface
tension. For example, soaps and detergents reduce the surface tension of an air–water
interface and thus allow the water to spread out on a surface.

2.8.1 Pressure Jump Across a Curved Interface

To see how the concept of surface tension is used to analyze a practical problem, con-
sider a small spherical drop of one fluid at rest in another, such as a tiny fuel droplet in
the vicinity of a fuel injection nozzle. Since the drop is small, we can neglect the slight
hydrostatic pressure variation with height and assume a uniform but different pressure
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Surface
tension (F�L)

Liquid

Gas

Figure 2.20 Schematic illustration of a spherical
liquid bubble surrounded by a gas. The surface ten-
sion acts on a liquid molecule located at the inter-
face in the plane of the liquid–gas interface in all
directions. In this two-dimensional view, the sur-
face tension acts on the colored “molecule” in the
direction of the indicated arrows.

TABLE 2.6 Surface Tension Values for Various Fluid Systems at Room Temperature

Surface Tension, σ (N/m)

When in Contact When in Contact
Liquid with Air with Water
Benzene 0.029 0.035
Carbon tetrachloride 0.027 0.045
Glycerin 0.063 —
Hexane 0.018 0.051
Mercury 0.484 0.375
Methanol 0.023 0.023
Octane 0.022 0.051
Water 0.073 —



inside and outside the drop. Imagine cutting the drop in half as shown in Figure 2.21 and
performing a force balance in the vertical direction on the hemispherical interface. If the
drop is at rest, then Newton’s second law tells us that the sum of the forces acting on
the interface in any direction must be zero. The only forces acting on the interface are
those due to pressure and surface tension. The interface itself is infinitely thin and mass-
less. Equilibrium requires that the net force up due to pressure inside, plus the net force
down due to pressure outside, plus the surface tension force pulling down on the edge of
the hemispherical interface, add to zero.

The net action of a uniform pressure inside a hemisphere is as if the same pressure
acted on the equatorial plane of area πr2. Surface tension acts on the circumference of
the hemisphere, 2πr . If we let �p be the pressure difference, inside minus outside, then
the force equilibrium condition just stated becomes

�p(πr2) = σ(2πr)

Solving for the pressure difference (jump) across the
interface yields

�p = 2σ

r
(2.38a)

This result shows that surface tension causes the pres-
sure inside a drop or bubble to be greater than the pres-
sure outside. Smaller drops and bubbles experience
larger pressure differences, and for a given drop or bub-
ble size, a higher surface tension value produces a
larger pressure difference.

Perhaps you have enjoyed using a wand and a bub-
ble solution to create soap bubbles. A soap bubble has
air inside and out, separated by a very thin film of soap
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Figure 2.21 Schematic illustration of the vertical force balance on a hemispherical portion of
a liquid bubble suspended in gas.  The sum of the surface tension, σ , and the uniform pressure,
p, acting on the outside of the bubble must be balanced by the higher pressure, p + �p, acting
on the inside of the bubble.

Equation 2.38a is a special case of a more
general result for the difference in pres-
sure inside and outside a point on a curved
interface:

Pin − Pout = σ

(
1
R1

+ 1
R2

)
(2.38b)

where R1 and R2 are the two orthogonal
radii of curvature at the point on the inter-
face, and a radius of curvature is given a
positive sign if the center of curvature lies
on the inside and a negative sign if the
center of curvature is outside. Do you see
that when applied to spherical interface,
the general result Eq. 2.38b simplifies to
2.38a?



EXAMPLE 2 .30

Estimate the pressure difference in a 1 m diameter soap bubble in air. Use a surface ten-
sion value of half that of an air–water interface in your calculation.

SOLUTION

We use Eq. 2.39, and the value of 0.073 N/m for the air–water surface tension found in
Table 2.6 to find

�p = 4σ

r
= 4(0.5)(0.073 N/m)

0.5 m
= 0.292 Pa
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EXAMPLE 2 .29

Suppose the small air bubbles in a glass of tap water may be on the order of 50 �m in
diameter. What is the pressure inside these bubbles?

SOLUTION

Surface tension causes the pressure inside a bubble to be higher than that outside. Using
Eq. 2.38a and the data in Table 2.6, we can calculate a pressure difference of about:

�p = 2σ

r
= 2(0.073 N/m)

25 × 10−6 m
= 5840 Pa

Thus, the pressure inside the bubble is about 6% higher than the atmospheric pressure
outside.

solution having a surface tension σ. Can you explain why the pressure difference across
a spherical soap bubble is 

�p = 4σ

r
(2.39)

that is, twice the value calculated for a fluid drop under the same conditions? [Hint: How
many liquid–gas interfaces are present in this case?] The formula suggests that the pres-
sure inside large soap bubbles must not be very different from that outside. The tension
in the skin of large soap bubbles is so small that they are easily deformed by the slight-
est breeze.



2.8.2 Contact Angle and Wetting

When a liquid contacts a solid surface, the line at which
liquid, gas, and solid meet is called the contact line (see
Figure 2.22A). The effect of surface tension is evident
in the contact angle θc , defined to be the angle in the liq-
uid between the solid surface and the interface at the
contact line. The net surface tension acting on a contact
line depends on all three materials—liquid, gas, and
solid. A force balance on the contact line shows that

σSG − σSL = σ cos (θc) (2.40)

where σSG is the surface tension of the gas–solid interface, σSL is the surface tension of
the solid–liquid interface, and σ is the surface tension of the gas–liquid interface.
Experimental observations show that the contact angle for an air–water–glass interface
is ∼0◦, while the contact angle for a air–mercury–glass interface is ∼140◦. If the con-
tact angle is less than 90◦ (Figure 2.22B), the surface is said to be wetted by the liquid.
Perfect wetting occurs if the contact angle is ∼0◦. If the contact angle is greater than 90◦
(Figure 2.22C), the surface is not wetted by the liquid. 

2.8.3 Capillary Action

Now consider what happens if a thin glass tube is inserted into a liquid. If the liquid wets
the glass, it will enter the tube by capillary action. If the liquid does not wet the glass, it
will be prevented from entering the tube. Both effects are due to surface tension. Let us
analyze the case in which a liquid wets a round tube with a contact angle θc as shown in
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Gasoline cannot form a drop on water in
the presence of air. If a drop of gasoline
falls on water, surface tension acts to pull
the contact line away from the initial body
of gasoline until the gasoline forms a thin
film. This also occurs with oils, although
the process is much slower. An extraordi-
narily thin gasoline or oil film on water is
responsible for the refraction of light into a
rainbow of colors. It can be shown that the
film is only a few molecules thick. 

Liquid

Gas

�C � 90�
�SG

Solid

Liquid

Gas �C 
 90�

Solid

�SGLiquid

Gas

(A) (B)

(C)

�C
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�
�

�

�SL �SL

�SL

Figure 2.22 Schematic diagrams of a liquid in contact with a solid and a gas. (A) The relevant force bal-
ance at the contact line. (B) Example of a liquid wetting a solid as defined by a contact angle θc < 90◦ .
(C) In contrast, the liquid does not wet the solid, since θc > 90◦ . The air–water–glass system forms a con-
tact angle of ∼0◦ so that water wets glass.  In contrast, the air–mercury–glass system forms a contact angle
of ∼140◦ so that Hg does not wet the glass.



Figure 2.23C. The liquid will be drawn up a tube of diameter d to a height h. We will
perform a force balance in the z direction on the column of liquid shown in Fig-
ure 2.23C, taking into account surface tension, gravity, and pressure. The column is at
rest, so the sum of all forces acting on the fluid column is zero. The pressure acting on
the top of the meniscus formed in the tube is atmospheric. The pressure acting at the bot-
tom of the liquid column inside the tube is also atmospheric, because lines of constant
pressure in a stationary fluid in a gravity field are horizontal, and the tube is open. We are
neglecting the tiny change in atmospheric pressure over the height of the liquid column.

Since atmospheric pressure acts over an area equal to the cross section of the tube
at each end, the net effect of pressure on the liquid column is zero. The surface tension
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Figure 2.23 The capillary action in a solid tube depends on the contact angle associated with the corre-
sponding gas–liquid–solid system. (A) When the liquid wets the solid (θc < 90◦), the liquid level within the
tube will be above the liquid–gas interface outside the tube. (B) When the liquid does not wet the solid
(θc > 90◦), the liquid level within the tube will be below the general liquid–gas interface. (C) Enlarged view
of the case in (A) including the terms associated with the force balance on the liquid within the capillary tube.
See text for discussion of this force balance.

EXAMPLE 2 .31

Calculate the height of capillary rise for water in a glass tube of diameter 1 mm.

SOLUTION

This exercise can be solved using Eq. 2.41. The air–water surface tension is found from
Table 2.6 to be 0.073 N/m. Earlier we noted that the contact angle for the
air–water–glass system is ∼0◦. The glass tube has d = 0.001 m and the density of water
is ∼1000 kg/m3. Using the known value of 9.81 m/s2 for the gravitational constant
gives

h = 4σ cos θc

dρg
= 4(0.073 N/m)(cos(0◦))

(0.001 m)(1000 kg/m3)(9.81m/s2)
= 0.0298 m = 2.98 cm



force acting up on the contact line, plus the force of gravity on the liquid column acting
down must therefore add to zero. From the geometry at the contact line we find

σπd cos θc − π
d2

4
ρgh = 0

Solving for the height of capillary rise, we have

h = 4σ cos θc

dρg
(2.41)

Suppose we attempt to perform the calculation in Example 2.31 for the case of a
glass tube (d = 1 mm) in liquid mercury. What happens? The contact angle for air–
mercury–glass is given in the text as ∼140◦, the value of σ is 0.484 N/m (Table 2.6), and
the density of Hg is 13,550 kg/m3 (Appendix A). Substituting these values into Eq. 2.41
yields h = −1.12 cm. The physical interpretation of this result is shown in Fig-
ure 2.23B. You may be wondering if Eq. 2.41 is in fact valid for θc > 90◦. The short
answer is yes, although the details of the force balance leading to the result are slightly
different from those employed for the θc < 90◦ case.

Capillary action is often cited as causing the movement of fluid from the roots of a
plant to its crown where the leaves are present. In Sequoia redwood trees, the capillary
rise would have to exceed 200 ft. This seems unlikely. Alternate theories argue that the
minute water columns in the trees’ tissues are in a state of tension (otherwise normally
prohibited) caused by evaporation at the leaf surface.

Capillary action also explains the tendency of liquids to penetrate cracks even
when there is no differential pressure acting to drive the liquid into the cracks. A two-
dimensional model for the rise of a liquid in a crack of width w is shown in Figure 2.24.
A force balance indicates that the height of the rise of a liquid in a crack which it wets is
given by

h = 2σ cos θc

wρg
(2.42)

Notice that the height to which a liquid rises in a round tube of diameter d is twice the
height to which the same liquid rises in a crack of width w = d .
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Liquid

h

wFigure 2.24 Schematic diagram of the rise of
a liquid into a crack due to capillary action.
The height of the rise is given by h.



For a crack or tube inclined at an angle φ from ver-
tical, we replace g by g cos φ in the appropriate for-
mula. Thus, as φ approaches π/2, meaning the crack or
tube is horizontal, capillary action causes a liquid to
penetrate deeply. If we wish to prevent a liquid from en-
tering a crack, and there is minimal differential pressure

acting to drive the liquid through the crack, we can employ surface tension forces to ex-
clude the liquid. This is accomplished by applying a surface treatment to ensure that the
liquid does not wet the solid. Fabric waterproofing treatments coat the fabric surface
with a thin layer of material that water does not wet. Unfortunately this approach will
not ensure a dry basement, because water in saturated soil is under several feet of hy-
drostatic pressure in comparison to the air on the other side of the (cracked) wall. This
pressure differential overcomes the surface tension force which might resist the advance
of water in larger cracks.

2.9 FLUID ENERGY

A fluid possesses energy in various forms. When applied to a fluid, the first law of ther-
modynamics relates the change in the internal, kinetic, and potential energies of a mass
of fluid to the work done on that fluid plus the heat added to the fluid. Changes in the en-
ergy content of a fluid are important in many applications. In some applications a fluid
does work (e.g., turbines, windmills, waterwheels), in other applications work is done
on the fluid (e.g., pumps, fans, compressors). In either case it is important to remember
that viscous effects result in an irreversible increase in the internal energy of a fluid at
the expense of a decrease in the kinetic and potential energy. While a complete discus-
sion of fluid energy must await the development of the energy balance in Chapter 7, we
think it is helpful for you to begin to learn about the types of fluid energy here.

2.9.1 Internal Energy

The internal energy U of a mass M of fluid is a macroscopic measure of microscopic
(molecular, atomic, and subatomic) energy content. The internal energy of a fluid is
primarily a function of its temperature. In fluid mechanics we are interested in the
change in internal energy rather than its absolute value. For applications involving
liquids with no external heat transfer, the internal energy change is negligible and nor-
mally neglected. For a gas it is appropriate to employ the perfect gas law. We can use
Eq. 2.21a to relate the change in internal energy in a mass M of gas to the change in
temperature by

U2 − U1 = McV (T2 − T1) (2.43a)

The change in internal energy per unit mass is

u2 − u1 = cV (T2 − T1) (2.43b)

which may also be written on a per-unit-volume basis as

ρ(u2 − u1) = ρcV (T2 − T1) (2.43c)
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Try using a garden hose to force water
through the fabric of your raincoat, or a
piece of treated tent material. It does not
take much pressure differential to defeat
the effects of a surface tension treatment. 



Internal energy has dimensions of {M L2t−2} or equivalently {F L}. The dimensions of
internal energy are the same as those for any other energy quantity, but each type of
energy tends to be expressed in a traditionally preferred unit. The preferred units for
internal energy are Btu or joule, while u is most often expressed in Btu/lbm or J/kg.

2.9.2 Kinetic Energy

The energy associated with fluid in motion is called kinetic energy, EK . This energy is
proportional to the mass of fluid in the system, and to the square of the fluid speed, V .
For a mass of fluid M , the total kinetic energy is given by

EK = 1
2 MV 2 (2.44a)

The corresponding kinetic energy per unit mass is 

eK = 1
2 V 2 (2.44b)

while kinetic energy per unit volume is given by:

ρeK = 1
2ρV 2 (2.44c)
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EXAMPLE 2 .32

Water flows from a garden hose at 10 ft/s. What is the kinetic energy content of the water
per unit mass? What is the kinetic energy content per unit volume?

SOLUTION

This exercise can be solved by using Eqs. 2.44b and 2.44c. Water has a density of
∼62.4 lbm/ft3, and the speed of the water is 10 ft/s. On a per-unit-mass basis,

eK = 1
2 V 2 = 1

2 (10 ft/s)2 = 50 ft2/s2

Using gc in the form of a unit conversion factor gives

eK = 1
2 V 2 = 50 ft2/s2

(
1 lbf-s2

32.2 lbm-ft

)
= 1.55 (ft-lbf)/lbm

On a per-unit-volume basis,

ρeK = 1
2ρV 2 = 1

2 (62.4 lbm/ft3)(10 ft/s)2

= (3120 lbm/(ft-s2))

(
1 lbf-s2

32.2 lbm-ft

)
= 96.9 (ft-lbf)/ft

3



Kinetic energy has the usual energy dimensions of {M L2t−2} or equivalently {F L}. The
preferred units of extensive kinetic energy are mechanical: (kg-m2)/s2 = N-m or
(lbm-ft2)/s2 = lbf-ft, with appropriately normalized values for the two intensive forms.

2.9.3 Potential Energy

A change in the gravitational potential energy of a fluid occurs whenever the fluid moves
with, or against, the force of gravity. Suppose we chose a coordinate system with the
z axis vertical. Then the gravitational potential energy, EG , of a small volume of fluid at
height z, relative to the potential energy the volume of fluid has at the origin, is given by

EG = Mgz (2.45a)

The potential energy per unit mass is given by

eG = gz (2.45b)

and the potential energy per unit volume is

ρeG = ρgz (2.45c)

The dimensions and preferred units for gravitational potential energy are identical to
those for kinetic energy.

A second form of potential energy is related to the ability of fluid at high pressure
to perform mechanical work. The pressure potential energy EP of a mass M of fluid is
given by

EP = M
p

ρ
= p –V (2.46a)

where –V is the volume of the fluid, and pressure is measured with respect to the ambi-
ent pressure at which spent fluid is exhausted. The per-unit-mass form of this potential
energy is

eP = p

ρ
(2.46b)

with the per-unit-volume counterpart being

ρeP = p (2.46c)

The dimensions and units for pressure potential energy are the same as those for gravi-
tational potential energy.

2.9.4 Total Energy

The total energy E of a mass of fluid M can be represented as the sum of its internal,
kinetic, and two types of potential energy as

E = U + 1
2 MV 2 + Mgz + M

p

ρ
(2.47a)
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In engineering applications it is the change in total en-
ergy that is important rather than an absolute value. On
a per-unit-mass basis, total energy is given by

e = u + 1

2
V 2 + gz + p

ρ
(2.47b)

and on a per-unit-volume basis we have

ρe = ρ

(
u + 1

2
V 2 + gz + p

ρ

)
(2.47c)

The sum 1
2 V 2 + gz + p/ρ is usually referred to as the

mechanical energy per unit mass, and it is this energy
that is turned into internal energy by the action of
viscosity and lost.
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EXAMPLE 2 .33

An airplane is flying at an altitude of 10,000 ft at a speed of 620 mph (909 ft/s). The
ambient conditions are T = 430◦R and p = 11.8 psi. Air exits the engine at 2070 mph
(3040 ft/s) relative to the plane with T = 1025◦R. Calculate the total energy change per
unit mass for the air moving through this jet engine.

SOLUTION

We will use Eq. 2.47b to determine the total energy change, calculating the energy con-
tent of the air relative to the engine. As shown in Figure 2.25, air approaches the engine
at 909 ft/s, and leaves the engine at 3040 ft/s. The energy change is calculated from
Eq. 2.47b as

e2 − e1 = (u2 − u1) + ( 1
2 V 2

2 − 1
2 V 2

1

)+ g(z2 − z1) +
(

p2

ρ2
− p1

ρ1

)

Next we assume the inlet and exit of the engine are at the same elevation (i.e., �z = 0)
and introduce enthalpy by using Eq. 2.48 to obtain

e2 − e1 = (h2 − h1) + ( 1
2 V 2

2 − 1
2 V 2

1

)

Air exits engine at
V2 � 3040 ft/s
T2 � 1025�R

Oncoming air stream at
V1 � 909 ft/s
T1 � 430�R
p1 � 11.8 psi

Figure 2.25 Schematic illustration of an airplane flying at a constant velocity of 909 ft/s
(620 mph) at an altitude of 10,000 ft (T = 430◦R, p = 1.8 psi). The air leaves the jet engine
with V = 3040 ft/s (2070 mph) and T = 1025◦R. Notice that we have selected a reference
frame attached to the moving plane.

In thermodynamics, the enthalpy h, is de-
fined as the sum h = u + pυ . In fluid
mechanics this is expressed in terms of
density as:

h = u + p
ρ

(2.48)

Strictly speaking, enthalpy is not a form of
fluid energy in the sense we have been
using. It does, however, have the dimen-
sions and units of energy, i.e., Btu or
joules. For a perfect gas, we can use
Eq. 2.21b to write the change enthalpy in
terms of the change in temperature, as
(h2 − h1) = cP (T2 − T1).



2.10 SUMMARY

This chapter serves as an introduction to the fluid and flow properties needed to specify
the dynamic and thermodynamic state of a fluid.

The mass of an object is defined as a measure of its resistance to acceleration, and
its weight is the magnitude of the force acting on the object due to gravity. Properties
that depend on the amount of fluid in a system are termed extensive properties. If an
extensive property is divided by the total mass or the total volume of the fluid, the result
is an intensive property. For example, we will make frequent use of the fluid density
defined as the mass of a fluid divided by its volume. The local density is defined by the
conditions of pressure and temperature existing in the fluid at that point. Specific gravity
is defined as the ratio of a fluid’s density to that of a standard reference fluid (usually
water or air) at STP.

Pressure is the compressive normal component of the force applied by a fluid to a sur-
face, divided by the area of that surface.Absolute pressure is defined in reference to a per-
fect vacuum, while gage pressure is specified with reference to atmospheric or ambient
pressure. Pressure differences can cause a fluid to flow or be caused by a fluid flow.

Archimedes’ principle defines the magnitude and direction of the buoyancy force
acting on an object immersed in a stationary fluid. The buoyancy force acts in the
direction opposite to that of the gravitational force and has a magnitude equal to the
weight of the displaced fluid.

The temperature of a fluid is a thermodynamic state variable that provides a measure
of the internal energy stored in the fluid. In a fluid in equilibrium, the temperature is
proportional to the mean kinetic energy of the random motion of the molecules.
Temperature differences may create a fluid flow, or they may be a consequence of a fluid
flow. Temperature differences in a fluid are always accompanied by the flow of heat by
molecular conduction. The relationship between heat flux, temperature gradient, and
thermal conductivity is given by Fourier’s law of heat conduction.
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Finally we assume air behaves as a perfect gas and use Eq. 2.21b (h2 − h1) =
cP(T2 − T1) to relate enthalpy to temperature:

e2 − e1 = cP(T2 − T1) + 1
2

(
V 2

2 − V 2
1

)
Using values from Table 2.4 for air, we find that the change in total energy of the air
passing through the engine is

e2 − e1 = [6,006 (ft-lbf)/(slug-◦R)](1025◦R − 430◦R)

+ 1

2
[(30402 − 9092) ft2/s2]

[
1 lbf

1 (slug-ft)/s2

]

= (3.57 × 106 + 4.21 × 106) (ft-lbf)/slug

The necessary energy is supplied by burning jet fuel.



The specific heat capacity of a fluid represents the amount of heat energy required
to raise the temperature of a unit mass of fluid by one degree. The value of the specific
heat depends on whether the heat is added at constant pressure or at constant volume.
For liquids these two specific heats are virtually identical, but for gases the specific heat
capacity at constant pressure is greater than the specific heat capacity at constant
volume. Most fluids expand when heated. The effects of temperature on density are
described by the coefficient of thermal expansion of the fluid.

Under a broad range of conditions, the equation of state for a gas is well modeled
by the perfect gas law. In fluid mechanics we normally employ the per-unit-volume
form of the perfect gas law, p = ρRT . As an engineering rule of thumb, the perfect gas
law can be used as long as the temperature is below the dissociation temperature of the
polyatomic molecules in the gas (3000 K for O2 or 6000 K for N2). In addition, perfect
gas behavior can be assumed at temperatures that are above twice the critical tempera-
ture (TC = 155 K for O2 and 126 K for N2) up to pressures of at least 70 atm. If the ser-
vice conditions fall outside the range just specified, one can either use advanced state
equations or a table of thermodynamic properties for the fluid of interest.

When a volume of any material is subjected to a pressure rise, the volume de-
creases, and the density increases. For many fluids the pressure–volume relationship is
linear and characterized by a constant of proportionality called the bulk compressibility
modulus. Fluids of large compressibility modulus (liquids) undergo negligible changes
in density when subjected to even the largest pressures encountered in engineering,
making them effectively incompressible. The speed of sound in a fluid, c, is found to be
proportional to the compressibility of the fluid as measured by the isentropic bulk mod-
ulus. For an ideal gas, c ∝ √

T . The ratio of the speed of a moving fluid to the speed of
sound in that fluid is known as the Mach number.

The absolute or shear viscosity of a fluid is defined as the constant of proportional-
ity between an applied shear stress and the resulting transverse velocity gradient. The
shear viscosity can also be interpreted as the constant of proportionality between the
velocity gradient and the momentum transfer rate. The shear viscosity of a fluid is a
strong function of temperature but a weak function of pressure. It increases with tem-
perature for gases but decreases with temperature for liquids. An important consequence
of the existence of a shear viscosity in a fluid is that of viscous dissipation or loss of
energy when a fluid is sheared.

The extra energy associated with the molecules at the surface of a fluid is known as
the surface energy. The corresponding net force on a molecule in the surface layer acts
in the plane of the surface in all directions and is referred to as the surface tension.
Surface tension causes the pressure inside a fluid drop to be greater than the pressure
outside, and since the �p is inversely related to the size of the bubble, smaller bubbles
experience larger pressure differences. Surface tension is an important factor in a vari-
ety of fluid phenomena including capillary action, the waterproofing of fabric, and the
cleaning action of soaps and detergents.

A fluid contains internal, kinetic, and potential energy. Significant changes in the
energy content of a fluid are important in many applications including those in which the
fluid performs work and those in which work is done on the fluid. The various forms of
energy in a fluid can be considered to be extensive quantities or on a per-unit-mass or
per-unit-volume basis.
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PROBLEMS

Section 2.1

2.1 What is the difference between a fluid
property and a flow property? Give an exam-
ple of each kind of property.

2.2 Browse through the text and appen-
dices to find three different symbols that are
used to represent more than one fluid or flow
property in this text and list the multiple prop-
erties that correspond to each symbol. Select
one of these symbols and describe how you
will “know” which property the symbol is
meant to represent in a given application. Use
examples to illustrate your answer.

Section 2.2 

2.3 Are mass, weight, and density intrinsic
or extrinsic properties? Justify your answer.

2.4 A certain type of jet fuel has a specific
gravity of 0.85.
(a) What is the density of this fuel (in cgs

units)?

(b) What is the specific weight of this fuel (in
SI units)?

(c) What is the mass of a 55-gallon drum of
this fuel (in lbm)?

(d) What is the weight of a 55-gallon drum of
this fuel (in lbf)?

2.5 Estimate the mass of the air in your
bedroom? State any assumptions.

2.6 What volume of air has the same mass
as 12 cm3 of toluene?

2.7 Are the terms “standard temperature
and pressure” and “standard atmosphere”
equivalent? Why or why not?

2.8 How is the molecular weight of a gas
related to its density? Does the same relation-
ship hold for liquids? Why or why not?
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2.9 Estimate the density at STP of argon
gas, having an atomic weight of 39.95 amu.

2.10 Determine the specific weight of each
of the following fluids at STP. Report your
answers in SI units.
(a) Helium
(b) Propane
(c) Mercury
(d) Acetone

2.11 Determine the specific gravity of
each of the following fluids at STP.
(a) Helium
(b) Propane
(c) Mercury
(d) Acetone

Section 2.3

2.12 The text suggested that “the only kind
of pressure gage that gives a reading of
−20 psig (or psia) is a broken one.” Explain
this statement.

2.13 A Newcomen steam engine, like
those used to drain water from coal mines in
England in the 1770s, operated with a pres-
sure of about 7.5 psi acting on a circular pis-
ton head with a diameter of about 50 in. What
was the magnitude of the force applied by the
fluid to the piston? 

2.14 In Example 2.7 we calculated the
force developed by the steam on the piston in
Robert Fulton’s Clermont. Oliver Evans built
a steamboat called the Aetna for use between
Philadelphia and Wilmington, Delaware. He
used a higher steam pressure so that he could
make his engine smaller and lighter. If the
Aetna’s engine used steam at ∼150 psi, what
size piston would have been required to pro-
duce the same force as that obtained in the low
pressure steam engine of the Clermont?
[Note: One of the boilers in the Aetna burst in
1824, killing several passengers.]



2.15 Estimate the depth below the surface
of a column of acetone at which the pressure is
equal to 1.5 times atmospheric pressure.

2.16 A 10 cm diameter piston experiences
a force of 5000 N. What is the corresponding
fluid pressure responsible for generating this
force? Give your answer in both SI and EE
units.

2.17 Suppose a thin plastic bag containing
150 cm3 of cold water at 20◦C is submerged in
a tank of hot water at 80◦C. Calculate the
buoyancy and net forces acting on the bag of
fluid. Is the force pushing the bag up or down?

2.18 The density of gold is 19.28 g/cm3.
What is the volume of a gold crown that
weighs 10,000 N when the crown is fully sub-
mersed in water at STP.

2.19 The pressure difference between two
points at the same elevation in an airflow is
100 Pa. What is the difference in velocity? As-
sume that the assumptions of Eq. 2.11 are
valid for this flow.

2.20 Estimate the pressure increase gener-
ated at the moment of impact during a belly
flop from a 5 m high dive.

2.21 An air blower is capable of producing
a pressure change of 15 in. of water. Estimate
the maximum air velocity this blower might
produce.

2.22 How does the aerodynamic drag and
fuel economy of an automobile change if the
speed increases from 55 mph to 65 mph?

2.23 A strong gust of wind will create a
large, sudden increase in pressure on fixed
structures, and the pressure increase may
cause damage. Estimate the pressure force on
a 30 m2 traffic sign exposed to a 100 km/h
wind gust.

2.24 Recall our discussion of the force
your hand encounters when you hold it per-
pendicular to the airflow outside a moving car
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or perpendicular to the water flow outside a jet
ski. Calculate the wind speed necessary to
provide the same pressure force on your hand
as it experiences in the water on a jet ski trav-
eling at 10 mph.

2.25 Find the ratio of the speed of descent
in water and air for a parachute suspending a
known mass.

2.26 Provide a physical interpretation of
Eq. 2.11 and list the assumptions that must be
satisfied for this form of Bernoulli’s equation
to be valid. 

Section 2.4 

2.27 The four common temperature scales
are Celsius, Fahrenheit, Kelvin, and Rankine.
Convert each of the temperature listed to the
other three temperature scales.
(a) 10◦C
(b) 10◦F
(c) 600 K
(d) 600◦R

2.28 Explain why there is a minus sign on
the right-hand side of Fourier’s law of heat
conduction, Eq. 2.13.

2.29 What is the heat flux through a 1 in.
wide air gap if the temperature difference is
70◦F? Repeat for the same gap filled with
water.

2.30 The heat flux through a 5 mm wide
air gap is measured to be 500 J/(m2-s). What
is the temperature change across this air gap?

2.31 Which is generally larger, the specific
heat capacity at constant pressure cp or the
specific heat capacity at constant volume cv?
Why?

2.32 Calculate the amount of thermal en-
ergy required to heat each of the following
quantities of fluid from 50◦F to 80◦F at stan-
dard pressure: 1 lbm of hydrogen and 1 in.3 of
acetone. State any assumptions.



2.33 Calculate the volume change if 1 m3

of hydrogen is heated from 10 to 30◦C at stan-
dard pressure. Repeat the calculation for 1 m3

of glycerin.

2.34 What temperature change is neces-
sary to cause a 5% increase in the volume of a
fixed mass of air if the reference temperature
is 50◦C. Does your answer change if the
reference temperature is 100◦C? Why or why
not?

Section 2.5

2.35 What is the difference between the
universal gas constant and a specific gas con-
stant? Determine the specific gas constant for
hydrogen.

2.36 Air at STP is heated 20◦F at constant
pressure. What is the new density?

2.37 Describe the conditions under which
it is “safe” to use the perfect gas law.

2.38 What is the internal energy and en-
thalpy change for oxygen if the temperature
change is 50◦C?

2.39 An oxygen tank for medical use
(modeled as a cylinder of radius r and height
h) contains 12 kg of pure oxygen at a pressure
of 15 MPa at a temperature of 30◦C. If the ra-
dius of the tank is 10 cm, what is its height?

2.40 A tire having a volume of 0.85 m3

contains air at a gage pressure of 180 kPa at
21◦C. Determine the density and weight of the
air in the tire. 

2.41 Nitrogen is compressed to a density
of 4 kg/m3 at a temperature of 70◦C. What is
the pressure of the gas? 

Section 2.6

2.42 Use the definition of EV and perfect
gas law to show that at constant temperature
EV = p.
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2.43 A cubic meter of oxygen at an
absolute pressure of 100 kPa is compressed
isentropically to two-thirds of its original
volume. What is the final pressure?

2.44 Use the bulk modulus to estimate the
speed of sound in gasoline and seawater.

2.45 Estimate the speed of sound in hydro-
gen and helium.

2.46 Estimate the distance between you
and a thunderstorm if you see the lightning
5 seconds before you hear the thunder on a
summer evening when the temperature is 80◦F.
How far would sound travel through water in
the same time at the same temperature?

2.47 What is the Mach number of an air-
plane flying at 800 km/h at an altitude of
10,000 m?

Section 2.7

2.48 How does the shear viscosity of a gas
change with temperature? How does the shear
viscosity of a liquid change with temperature?

2.49 Calculate the temperature at which
the shear viscosity of water is equal to half
its value at 20◦C given that µ(20◦C) =
0.010019 (N-s)/m2 and µ(0◦C) =
0.01787 (N-s)/m2. Repeat the calculation
for air given that µ(20◦C) =
0.0001813 (N-s)/m2 and n = 0.7.

2.50 A certain fluid is known to have a vis-
cosity of 1.240 cP at 100◦C and a viscosity of
0.950 cP at 300◦C. Is this fluid likely to be a
liquid or a gas? Why? Estimate the viscosity
of this fluid at 200◦C.

2.51 Olive oil has a viscosity of 138 cP at
10◦C and a viscosity of 12.4 cP at 70◦C. Esti-
mate its viscosity at 40◦C.

2.52 Determine the kinematic viscosity of
mercury at STP.



Section 2.8 

2.53 Cleaning processes involve the use of
soaps and detergents to alter surface tension
so that dirty surfaces are brought into contact
with water, the universal solvent. Do you
think soaps increase or decrease the surface
tension? Why? 

2.54 An air bubble in glycerin has a diam-
eter of 2000 �m. What is the pressure differ-
ence across the surface of this bubble due to
surface tension?

2.55 Calculate the height of capillary rise
for water in a glass tube with D = 0.5 mm.

2.56. When a glass tube is inserted into
liquid mercury, the depression is found to be
4 cm. Estimate the diameter of the tube.

2.57 What is the rise of water in a vertical
crack formed by two glass plates 20 �m
apart?
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2.58 Calculate the capillary rise of water
in a pair of the glass plates separated by 2 mm
if the plates are inclined at 75◦ from the
vertical.

Section 2.9

2.59 Water flows from a pipe at 6 m/s.
What is the kinetic energy per unit mass of
the water? What is the kinetic energy per unit
volume of water?

2.60 A windmill extracts energy from air
moving at 40 km/h. What is the total kinetic
energy per unit volume of moving air?

2.61 A hydroelectric plant will employ a
total elevation change of 350 ft. What is the
gravitational potential energy change per unit
volume of water?

2.62 What is the pressure potential energy
stored in 75 L of water at 20 MPa?
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3.1 Introduction
3.2 Common Dimensionless Groups in Fluid Mechanics
3.3 Case Studies

3.3.1 Flow in a Round Pipe
3.3.2 Flow Through Area Change
3.3.3 Pump and Fan Laws
3.3.4 Flat Plate Boundary Layer
3.3.5 Drag on Cylinders and Spheres
3.3.6 Lift and Drag on Airfoils

3.4 Summary
Problems

3.1 INTRODUCTION

In Chapter 2 you learned how to combine your understanding of fluid and flow proper-
ties and a force balance based on Newton’s second law to solve simple fluid mechanics
problems. Here we focus our attention on some of the results that have been obtained by
engineers for more complex fluid mechanics problems. We have selected some of these
results to form the basis of a number of interesting case studies. In each case study, you
will find a brief description of the flow field of interest, and one or more design formu-
las that can be used to calculate important quantities of engineering and design interest.
These formulas rely primarily on results obtained by using experimental methods, and
in particular on the dimensional analysis and modeling tools to be presented in Chap-
ter 9. In some cases, the formulas can be developed or otherwise explained by means of
the more sophisticated analysis tools you will also learn about in later chapters. In any
case, the amount of information given in a case study is not unlike what you might find
in an engineering handbook, and applying the material should not be difficult.
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A twofold goal of this chapter is to expose you to interesting flow fields early in the
text and to allow you to calculate some engineering characteristics of these flows at an
early stage in the learning process. As we revisit these case studies in later chapters, our
hope is that you will progress from a cautious first application of the case study results
to a fuller understanding of the underlying flow fields. Furthermore, these results may
help you better comprehend your laboratory course work.
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At this point you might be wondering: Why do we need to rely on experimental
results in fluid mechanics? Why not just use a better analytical model or a bigger com-
puter to solve a flow problem? An answer to these questions lies in recognizing the dif-
ference between laminar and turbulent fluid flow. As the name implies, laminar flow
involves the movement of fluid in “layers.” As shown by the dye in the top of Figure 3.1,
the motion of a fluid in laminar flow is orderly, often slow and steady, and generally
amenable to observation, measurement, and prediction. Analytical and computational
solutions to laminar flow problems are both feasible and common, and the need for ex-
periments is often minimal. However, laminar flows are relatively rare both in nature
and in engineering practice. This is because a laminar flow undergoes a transition (mid-
dle of Figure 3.1) and eventually becomes turbulent as flow speeds increase. Turbulent
flow, as illustrated at the bottom of Figure 3.1, is encountered in almost all flows in na-
ture and engineering practice. This type of flow consists of a chaotic, disordered, and un-
steady motion of fluid that is generally difficult to visualize, measure, and predict. There
are no analytical solutions for turbulent flow, and computational models of turbulence
are limited in their applicability. Thus experimental results are necessary for engineer-
ing designs involving turbulent flows.

Although the future of fluid mechanics will undoubtedly be marked by an increas-
ing dependence on computational solutions for both laminar and turbulent flows, mod-
els of turbulence and other physical processes of interest in fluid mechanics will
continue to require calibration and verification by well chosen experiments.

In the case studies that follow, you will find frequent references to dimensionless
groups. Examples of these groups include the Reynolds and Mach numbers. Simply put,
a dimensionless group is an algebraic combination of the parameters describing a partic-
ular flow that proves to be both dimensionless as a whole and significant in terms of un-
derstanding the flow field. In fluid mechanics, the most important dimensionless group is
called the Reynolds number. The Reynolds number of a flow, written as Re = ρV L/µ,
is the product of density ρ, a fluid velocity scale V, and a length scale L, all divided by

Figure 3.1 Dye injected into a pipe flow
indicates laminar flow (top), transitional
flow (middle), and turbulent flow (bot-
tom).

CD/Video Library/Laminar and Turbulent Flow on a Flat Plate



viscosity, µ. In a given unit system Re is dimensionless, which we can demonstrate by
writing the dimensions of each quantity in the Reynolds number to obtain

{Re} = {ρ}{V }{L}
{µ} = [(M/L3)(L/t)(L)]

M/Lt
= M L−1t−1

M L−1t−1
= 1

Flows with large Reynolds numbers are usually turbulent, an important consideration in
understanding how a flow will behave.

3.2 COMMON DIMENSIONLESS GROUPS IN FLUID MECHANICS

As you learn more about fluid mechanics you will discover that some dimensionless
groups occur repeatedly in analyses of fluid mechanics problems. Most dimensionless
groups have been given names in honor of their discovers or other prominent individuals
in the study of fluid mechanics. It is important to become familiar with the common di-
mensionless groups to ensure that you present the results of your analysis in the form other
engineers expect.Also, the numerical values of these traditional dimensionless groups are
used in the classification of a particular fluid mechanics problem, in the selection of effi-
cient solution techniques, and to compare results with those obtained by investigations of
similar flows. Let us take a look at some of the more important dimensionless groups in
fluid mechanics and learn about their relationship to various physical phenomena.

Reynolds Number: As discussed earlier, the Reynolds number, the most important
dimensionless group in fluid mechanics, is defined to be 

Re = ρV L

µ
(3.1)

where ρ is the fluid density, V is a fluid velocity scale, L is a length scale, and µ is the
fluid viscosity. This dimensionless group is named in honor of Osborne Reynolds
(1842–1912), a noted pioneer in the study of pipe flow and turbulence. The velocity and
length scales involved in its definition are illustrated for internal and external flows in
Figure 3.2.

3.2 COMMON DIMENSIONLESS GROUPS IN FLUID MECHANICS 105

L
Average fluid velocity V

in a fluid of density �
and viscosity �

L

Free stream velocity V
in a fluid of density �

and viscosity �

(A) (B)

Figure 3.2 Velocity and length scales used in defining Re for examples of (A) internal flow
and (B) external flow.



It is important for you to have an understanding of the physical significance of the
Reynolds number. One way to interpret Re is to think of it as a ratio of inertial to viscous
forces in a fluid flow. An inertial force can be written using Newton’s second law as
F = Ma. If we recognize that mass is equal to the product of density and volume and
write the equation in terms of dimensions we find:

{FI } = {M}{a} = {ρL3}{V t−1} = {ρL3V t−1} = {ρV 2L2} (3.2)

where we have made use of the fact that the dimensions for velocity are {Lt−1}. To gen-
erate a similar expression for the viscous force, we begin with Newton’s law of viscos-
ity, τ = µ(du/dy), in dimensional form:

{τ } = {µ}{V L−1} (3.3)

But we require an expression for the viscous force, which is equal to the shear stress
multiplied by the area over which that stress acts. Thus, 

{FV } = {τ A} = {µ}{V L−1}{L2} = {µV L} (3.4)

If we divide Eq. 3.2 by Eq. 3.4 we obtain:

{FI }
{FV } =

{
ρV 2L2

}
{µV L} =

{
ρV L

µ

}
(3.5)

Since the right-hand side of this equation is equivalent to the Reynolds number, we are
justified in interpreting Re as a ratio of inertial to viscous forces.

Except within a thin boundary layer near solid surfaces, high Re flows are domi-
nated by inertial forces and are usually turbulent. Low Re flows, or creeping flows, are
highly viscous in character and laminar. Flows at intermediate Re are often laminar, with
inertial and viscous forces both playing significant roles in determining flow structure
throughout the flow field.
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CD/History/Osborne Reynolds

The effect of Re on flow structure for flow over a cylinder is illustrated in Figure 3.3.
At very low values, Re = 0.038 (Figure 3.3A), the inertia is so small that fluid particles
easily flow around the cylinder while remaining in their laminar layers. At Re = 19
(Figure 3.3B) the inertia has increased to the point that some fluid particles cannot “make
the turn,” like Formula 1 racecar drivers who spin out going too fast through a curve.
This phenomenon is called flow separation. As Re increases to 55 (Figure 3.3C), the sep-
aration bubble is pushed downstream. Thus Re indicates the presence of structural
changes in the flow field. In Chapters 12 and 14 we will discuss in greater detail the flow
over a cylinder and the interesting results that occur at higher Reynolds numbers.

Before we continue with an example, let us sound a note of caution concerning the
interpretation of Re. It would be a gross simplification to consider Re to be only the ratio

CD/Video Library/Flow Past a Cylinder



of inertial to viscous forces. For example, Re = 1 should not be interpreted as inertial
and viscous forces being equal. The choice of length and velocity scales used in Re have
most often been chosen for convenience, not physical significance. Thus Re should be
compared and interpreted for a single flow field only, not between flow fields. Consider
the critical Recr, where the transition of a laminar flow to turbulent flow is an important
application of the Reynolds number: Recr can differ by several orders of magnitude be-
tween an internal flow and an external flow. Thus the physical meaning cannot be
precisely the same.

Mach Number: The Mach number, named in honor of Ernst Mach (1838–1916), a
pioneer in the study of high speed flow, was introduced in Section 2.6.1 and is defined
to be the ratio of fluid velocity V to c, the speed of sound in the fluid. Thus the Mach
number is given by

M = V

c
(3.6)
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Figure 3.3 Flow field over a cylinder at (A) Re = 0.038, (B) Re = 19, and (C) Re = 55.

CD/Dynamics/Reynolds Number: Inertia and Viscosity
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(B) (C)



The Mach number provides a measure of the effects of compressibility on a flow. An in-
compressible fluid, i.e., a liquid, has M ≈ 0 because the sound speed is very large in
comparison to a typical liquid flow speed. Gases tend to flow much faster than liquids rel-
ative to their sound speeds, hence Mach number is of great interest in classifying the flow
of a gas such as air. When air flows with a small Mach number, nominally M < 0.3, the
air behaves like an incompressible fluid. Thus a flow with M < 0.3 is called an incom-
pressible flow. A flow with a Mach number greater than this is termed a compressible
flow, since variations in the density of the air must be accounted for. We further classify
compressible flows according to Mach number as subsonic if M < 1 and supersonic
if M > 1. Flows near the sonic velocity have unique characteristics such that
0.9 < M < 1.2 flows are classified as transonic. Flows at very high velocity, M > 5, are
termed hypersonic.
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EXAMPLE 3 .1

A good serve from a professional tennis player may reach 190 km/h. If the diameter of
a tennis ball is approximately 6.5 cm, what is the Reynolds number for the flow over the
ball?

SOLUTION

The Reynolds number for a tennis ball is found using Eq. 3.1: Re = ρV L/µ. The char-
acteristic velocity is V = 190 km/h, and we will use the diameter of the tennis ball as
the characteristic length scale so that L = 6.5 cm. The density and viscosity of air at
STP are found in Appendix A to be ρ = 1.204 kg/m3 and µ = 1.82 × 10−5 (N-s)/m2.
Substituting these values into the expression for Re and using the appropriate unit con-
version factors found in Appendix C yields:

Re = ρV L

µ

=
1.204 kg/m3

[
(190 km/h)

(
1 h

3600 s

)(
1000 m

1 km

)][
(6.5 cm)

(
1 m

100 cm

)]

1.82 × 10−5[(N-s)/m2]

[
1 (kg-m)/s2

1 N

]
Re = 2.27 × 105

This is a high value of Re (we will define “high value” later in the context of specific
types of flows); thus for the movement of the tennis ball through the air, inertial forces
are significant and viscous forces will be important only in the boundary layer.

CD/Video Library/Shock Waves



Froude Number: The Froude number is defined to be the ratio

Fr = V√
gL

(3.7)

where V is a fluid velocity scale, L is a length scale, and g is the acceleration of gravity.
This dimensionless group is named in honor of William Froude (1810–1879), who used
models to perform pioneering studies of the drag on ships due to wave making (Figure 3.4).

The Froude number can be interpreted as the ratio of inertial forces to gravitational
forces. From Eq. 3.2 we know that the dimensions for the inertial force can be written as
{FI } = {M}{a} = {ρL3}{V t−1} = {ρL3V t−1} = {ρV 2L2} . Similarly, the dimensions
for the gravitational force are:

{FG} = {M}{g} = {ρL3}{g} (3.8)

Taking the ratio of the inertial force to the gravitational force yields:

{FI }
{FG} =

{
ρV 2L2

}
{
ρL3g

} =
{

V 2

gL

}
(3.9)

Since this ratio is clearly dimensionless (units of force in the numerator and denomina-
tor), the square root of the ratio is also dimensionless, and we see that the Froude num-
ber can in fact be interpreted as a ratio of inertial to gravitational forces.

The Froude number is important in ship hydrodynamics, in the study of water
waves, and in the classification of free surface flows, which do not involve a moving
body. In such cases the length scale is often taken to be the liquid depth. Free surface
flows are of interest to civil engineers involved in large-scale projects such as canals,
weirs, spillways, and waterways of all kinds.
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Figure 3.4 A ship’s wake, photograph
from the space shuttle. The wake trails
several miles behind the ship.

CD/Video Library/River Flow



Free surface flows with Fr < 1 are said to be subcritical; those with Fr > 1 are su-
percritical, and a flow at Fr = 1 is said to be critical. An understanding of the physical
phenomenon behind the use of the adjective critical in free surface flows can be gained
by noting that the wave propagation speed of an infinitesimal wave in stationary water
of depth d is

σS =
√

gd (3.10a)

Here σS is the speed at which the wave moves relative to the water (see Figure 3.5A).
The Froude number in a problem involving wave propagation in water moving at speed
V is

Fr = V√
gd

= V

σS
(3.10b)

If the water is moving at a velocity V to the right, then, as shown in Figure 3.5B, a wave
moving to the right (in the flow direction) travels at a velocity σS + V , and to the left at
a velocity σS − V (Figure 3.5C). If the water is moving at a velocity V = σS , then a
wave cannot propagate upstream. This is the critical water speed for a free surface flow
of depth d , and Eq. 3.10b shows that this speed corresponds to Fr = 1. In a subcritical
flow, Fr < 1 and V < σS , so waves may travel in both directions. In a supercritical flow,
Fr > 1 and V > σS , so waves can travel downstream only.

Weber Number: The Weber number is an important dimensionless group in flow prob-
lems involving surface tension. It is named after Moritz Weber (1871–1951), who
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dV

�S � V

V � 0

�S

dd V

�S 	 V

(A) (B)

(C)

Figure 3.5 Infinitesimal wave moves (A) to the right on stationary fluid (B) to the right on fluid moving to the right
and (C) to the left on fluid moving to the right. To an observer moving with the fluid, the wave speed is σS in both cases.
For an observer on the shore, the wave speed is σS for (A), σS + V for (B), and σS − V for (C).



worked on problems involving capillary effects. In a problem involving a moving liquid,
the Weber number is defined by 

We = ρV 2L

σ
(3.11a)

where σ is the surface tension, and V and L are velocity and length scales, respectively.
The Weber number in a moving liquid can be thought of as the ratio of inertial force to
surface tension (or equivalently a ratio of kinetic energy to surface energy). In a problem
involving liquid at rest in a gravitation field g, the importance of surface tension can be
characterized by defining the Weber number as

We = ρgL2

σ
(3.11b)

In this case We may be viewed as the ratio of gravitational forces to surface tension (or
equivalently, gravitational potential energy to surface energy). Surface tension effects
are only important when We � 1. Otherwise the effects of surface tension can be safely
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EXAMPLE 3 .2

The flow in a wide tidal channel separating a back bay from the ocean may approach
0.75 m/s. If the tidal channel is 6 m deep, what are the Reynolds and Froude numbers
for the flow?

SOLUTION

The Reynolds and Froude numbers for this flow are found using Eqs. 3.1 and 3.10b:
Re = ρV L/µ and Fr = V/

√
gd = V/σS . The characteristic velocity is V = 0.75 m/s

and the depth of the tidal channel serves as the characteristic length scale such that
L = d = 6 m. We assume conditions at 20◦C for water and use Appendix A to find:
ρ = 998 kg/m3 and µ = 1 × 10−3 (N-s)/m2. Also note that g = 9.81 m/s2. Substituting
these values into the expressions for Re and Fr and using the definition of a newton as a
unit conversion factor, we have:

Re = ρV L

µ
= (998 kg/m3)(0.75 m/s)(6 m)

1 × 10−3[(N-s)/m2]

[
1 (kg-m)/s2

1 N

]
= 4.49 × 106

Fr = V√
gd

= 0.75 m/s√
(9.81 m/s2)(6 m)

= 0.098

A Reynolds number of this magnitude would result in turbulent flow in the channel, and
since the Froude number is less than one, we can conclude that the flow is subcritical.



ignored. Can you confirm that the Weber number for
the capillary rise of water (σ = 0.073 N/m) in a round
glass tube 1 mm in diameter is We = 0.134? How large
would the diameter of the tube need to be for you to
predict that capillary rise would be negligible?

Euler Number: The Euler number is defined to be

Eu = p − p0
1
2ρV 2

(3.12a)

where p − p0 is the difference between a local value of pressure and that at some refer-
ence location. Leonhard Euler (1707–1783) was a great mathematician who first derived
many fundamentals of fluid mechanics. The Euler number can be interpreted as a mea-
sure of the ratio of pressure force to inertial force. A number of variations on the Euler
number appear in fluid mechanics. In aerodynamics, the pressure difference in the Euler
number refers to the upstream static pressure p∞ , and the Euler number then becomes
the pressure coefficient

Cp = p − p∞
1
2ρV 2

(3.12b)

The Euler number does not have the great physical significance of the Mach or Froude
numbers; however, as with all dimensionless groups, it allows for the compact commu-
nication of data.
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The Bond number B = [g(ρ1 − ρ2)D2]/σ is
used to characterize problems involving
fluid droplets or bubbles of density ρ1 im-
mersed in another fluid of density ρ2. It can
be thought of as a measure of the ratio of
buoyancy force to surface tension force.

EXAMPLE 3 .3

Water flows from a 1 mm diameter orifice at 4 m/s. Is it likely that surface tension effects
will be important in this application?

SOLUTION

The Weber number for this flow is found by using Eq. 3.11a: We = ρV 2L/σ. The char-
acteristic velocity is V = 4 m/s, and the diameter of the orifice serves as the character-
istic length scale so that L = 1 mm = 0.001 m. Assuming conditions at 20◦C for water,
we use Appendix A to find ρ = 998 kg/m3 and σ = 0.073 N/m. Note that we have used
the surface tension for a water–air interface because we are assuming that water exits the
orifice into air. Substituting the appropriate values into the expressions for We and using
the definition of a Newton as a unit conversion factor yields:

We = ρV 2L

σ
= (998 kg/m3)(4 m/s)2(0.001 m)

(0.073 N/m)

[
1 (kg-m)/s2

1 N

] = 219

Since We 	 1, we can safely neglect surface tension effects in this application.
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Strouhal Number: The Strouhal number, which is
defined as 

St = ωL

V
(3.13)

is important in problems involving flow oscillations in
which the frequency of the oscillations is ω. The
Strouhal number can be interpreted as the ratio of vibra-
tional velocity to translational velocity. Many flows
over bluff bodies develop oscillations. The most well
known is the generation of Karman vortices that are
shed periodically from the wake of a cylinder (see Fig-
ure 3.6). In this case it is known that over a range of
Reynolds numbers 102 ≤ Re ≤ 107 , the Strouhal num-
ber is approximately 0.21 if the frequency of vortex
shedding is measured in radians per second. Thus St
can be used to predict the expected frequency of vortex
shedding. Vincenz Strouhal (1850–1922) did pioneering
work on the vibration or “singing” of wires due to this
effect.

Figure 3.6 The Karman vortex street in
the wake of a cylinder.

CD/Video Library/Tacoma Narrows Bridge
Disaster

Prandtl Number: Fluid mechanics is integrally related
to the field of convective heat transfer, which is the
study of heat transport processes in fluid flows. In fact,
an important dimensionless number used in convective
heat transfer is the Prandtl number, named after Ludwig

Prandtl (1875–1953), one of the giants of twentieth-century fluid mechanics. The
Prandtl number

Pr = ν

α
(3.14)

Slender structures such as suspended
power transmissions lines, struts on small
airplanes, and smokestacks are known to
have natural vibration frequencies that can
be calculated by using techniques from
structural mechanics. When the natural vi-
brational frequency of a structure coincides
with the frequency of the flow-induced
Karman vortices, a condition known as res-
onance develops. During resonance, the
amplitude of the structural vibrations can
increase significantly. The Karman vortices
are implicated in the wind-induced failure
of the Tacoma Narrows suspension bridge
in 1940 (Figure 3.7); however, there is still
disagreement about the precise cause of
the disaster.

Figure 3.7 The Tacoma Narrows
Bridge shortly before its collapse in
1940. The sidewalk to the right is over
28 ft above the one to the left.



is the ratio of kinematic viscosity ν to thermal diffusivity α. Heat transfer between a
solid surface and a fluid that is in motion due to external means (e.g., a fan or pump) is
called forced convection. In cases of forced convection the heat transfer rate depends on
the Prandtl and Reynolds numbers.

Other Dimensionless Groups: There are many more named dimensionless groups in
fluid mechanics as well as some that are simply physically descriptive and not named
after a particular historical figure. For example, the dimensionless group known as the
relative roughness e/D occurs in pipe flow. This group is defined as the ratio of the
average height of the pipe wall roughness e to inside diameter of the pipe D.

3.3 CASE STUDIES

The following case studies represent a varied selection of the type of information avail-
able to engineers. Our emphasis in selecting these particular studies is their broad
applicability in engineering design. Engineers use results like these to successfully
practice design after a single course in fluid mechanics. Each of these flow problems has
been investigated theoretically, but the majority of useful results have been obtained
empirically. If you are careful to apply the formulas developed in a case study in the
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EXAMPLE 3 .4

A smokestack at a power plant is 9 ft in diameter. The natural vibrational frequency for
this structure is known to be 7 rad/s. Calculate the wind velocity that would induce
Karman vortex shedding at a frequency of 7 rad/s and comment on the likelihood of
wind-induced resonance leading to structural failure.

SOLUTION

The Strouhal number for this flow is found by using Eq. 3.13: St = ωL/V . Resonance
occurs when the wind-induced vortex shedding frequency calculated in this way corre-
sponds to the natural frequency of the structure. Thus, we must determine the wind ve-
locity at which the vortex shedding frequency is ω = 7 rad/s. The diameter of the
smokestack serves as the characteristic length scale, so that is L = 9 ft. Assuming that
the critical Strouhal number is 0.21 and substituting the appropriate values into Eq. 3.7
after solving for V yields:

V = ωL

St
= (7 rad/s)(9 ft)

0.21
= 300 ft/s

V = (300 ft/s)

(
1 mph

1.467 ft/s

)
= 204 mph

Since it is unlikely that the smokestack will experience wind speeds in excess of
200 mph, one need not be concerned about vortex shedding leading to structural failure.



original context, your analysis will provide answers to design questions within the range
of normal engineering accuracy.

The empirical results presented here give the impression of simplicity because they
involve only global characteristics of the flow field. Notice that nothing is said in any of
the case studies about local details of the flow field. Actually, all these flow fields are
quite complex. Our purpose in designating these problems as case studies is to give you
an early introduction to the design aspects of engineering fluid mechanics and to em-
phasize the relevance of the subsequent theoretical chapters to developing a better un-
derstanding of the fluid mechanics of engineering problems. We do this by revisiting
these same flow problems in later chapters and using the new tools we have developed
to better understand the sources of the case study formulas.

3.3.1 Flow in a Round Pipe

Pumping a fluid through a pipe or duct is a common, and arguably the most important,
application of fluid mechanics. Society could not function without the water, steam, air,
natural gas, oil, and other hydrocarbons transported via piping systems. Our homes and
workplaces depend on central heating, ventilation, and air conditioning. Indeed, social
historians in the United States have commented that the migration of people to the
southern states after World War II would not have occurred without the universal avail-
ability of air conditioning. Virtually all engines require delivery of fuel, lubricant, and
coolant through a pipe or hose. Can you think of other important technical applications
of these systems? Does pipe flow also occur in biological systems?

In this first case study we consider steady, fully developed incompressible flow in a
straight, horizontal, round pipe as shown in Figure 3.8. The adjective “steady” implies
that the flow is unchanging in time, and “fully developed’’ implies that the flow is the
same at every location along the pipe. “Incompressible’’ here implies that the fluid den-
sity is constant. This type of flow commonly occurs in the movement of liquid through
relatively long pipes subjected to a continuous pumping action. In later chapters we
show how to handle a rectangular, square, or other shape for the pipe or duct, as well as
flows that are not steady or fully developed. Low speed gas flow occurs at constant
density, so the techniques developed in this case study may also be used to analyze flow
of air in heating, ventilating, and air-conditioning systems.
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Diameter, D

Roughness, e

Fluid with
viscosity �

and density �

Length, L

Pressure drop, �p � p2 � p1

Average flow
velocity, V

p1 p2

Figure 3.8 Variables for fully developed flow in a horizontal pipe.
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As shown in Figure 3.9, a liquid can be caused to flow through a pipe by placing a
reservoir at a higher elevation (see the head tank of Figure 3.9A). A liquid or gas can also
be caused to flow by simply using a pump, fan, or blower (Figure 3.9B). A significant
portion of the total energy delivered to a fluid by a head tank, pump, fan or blower is
needed to overcome the frictional pressure drop in straight sections of a pipe or duct sys-
tem. In the case of the pump, fan, or blower, hereafter simply referred to as a pump, we
are interested in predicting the pressure increase and power a pump must provide to
overcome this pressure drop.

We begin our analysis with the experimental observation suggesting that the pres-
sure drop �p may depend upon the pipe length L , diameter D, wall roughness e, aver-
age velocity V̄ , fluid density ρ, and fluid viscosity µ. The wall roughness, defined as the
average height of random protuberances, depends on the type of pipe and how long it
has been in service. How did we decide on this list of parameters? We know that �p is
related to frictional losses (viscous dissipation). Since we expect frictional losses to in-
crease with an increase in average velocity, viscosity, pipe length, and/or pipe wall
roughness, it makes sense to include V̄ , µ, L , and e in our model. The inclusion of fluid
density and pipe diameter should also seem reasonable to you as parameters that might
affect the frictional pressure drop.

After writing the proposed functional relationship mathematically as �p =
f (L , D, e, V̄ , ρ, µ), it is possible to use dimensional analysis (explained further in
Chapter 9) to express the dependence of the pressure drop on the problem parameters as

�p = ρ f
L

D

V̄ 2

2
(3.15)

where the quantity f , known as the friction factor is an (unknown) function of the rela-
tive roughness e/D and Reynolds number ρV̄ D/µ . That is, we can write 

f = f

(
e

D
,
ρV̄ D

µ

)

It should now be evident that a major factor in analyzing pipe flow and specifying a pump
is determining the dependence of friction factor on relative roughness and Reynolds
number. If we know this functional relationship, we can calculate a value for the friction
factor and analyze or otherwise design a straight segment in a pipe or duct system.

In a later chapter we will show that for a flow of liquid or constant density gas, the
relationship between volume flowrate Q (defined as volume of fluid per unit time
flowing through a cross section of the pipe), average velocity, and the cross-sectional
area of a pipe A is

Q = V̄ A (3.16)

(A) (B)

Figure 3.9 Flows can be driven by elevation changes such as a head tank (A) or mechani-
cally driven such as by a pump (B).



and the power P required to pump the fluid through a
pipe whose pressure drop is �p is

P = Q�p (3.17)

Note that this expression for the power does not include
an allowance for the pump efficiency. Thus Eq. 3.17
provides a value that is somewhat less than the actual
pump power needed.
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Although we are not deriving any of the
earlier formulas here, note that they are di-
mensionally consistent and intuitively rea-
sonable. For example, the formula for vol-
ume flowrate follows from thinking about
the volume of fluid that moves through a
pipe in one second if all the fluid moves
with the average velocity.

CD/Video Library/The Reynolds Transition Experiment

It is known that steady flow in a pipe may be laminar or turbulent depending on the
value of the Reynolds number. From observation it has been found that a smoothly flow-
ing laminar flow of fluid occurs at low Re (when viscous forces dominate). This flow
becomes unstable as the Reynolds number is increased to approximately 2300. This
value marks a transition from laminar to turbulent flow. Pipe flows at Re < 2300 are
almost always laminar. At higher Reynolds numbers (when inertial forces dominate)
the flow is likely to be turbulent. Since, however, under carefully controlled conditions
laminar flows in a pipe can persist at a Reynolds number greater than 2300, it may be
necessary to verify the presence of turbulent flow before selecting one of the two meth-
ods outlined shortly for determining the friction factor. As mentioned earlier, laminar
flow is characterized by highly ordered smooth layers, or laminae, of fluid. Turbulent
flow is an unsteady, disordered flow. Observation shows that in pipe flow the friction
factor f is strongly dependent on whether the flow is laminar or turbulent. 

Laminar Flow
The governing equations for steady, fully developed laminar flow in a round pipe may
be solved analytically. The solution, which is discussed in detail in Chapter 13, reveals
that the friction factor in laminar flow is given by

f = 64

Re
(3.18)

One of the interesting characteristics of laminar flow is that for the normal range of
roughness encountered in pipes, neither the friction factor nor the pressure drop depends
on the relative roughness.

Turbulent Flow
In turbulent flow the friction factor and pressure drop are functions of the relative rough-
ness and the Reynolds number. There are no analytical solutions to turbulent flow, so in
this case we must rely on the large body of empirical observations. The data were
correlated by Colebrook, resulting in the following expression for the friction factor:

1√
f

= −2.0 log

(
e/D

3.7
+ 2.51√

f Re

)
(3.19a)



Note that this is a transcendental equation and will require iteration to determine the fric-
tion factor for known values of relative roughness and Reynolds number. We may also
determine the friction factor by means of the Chen equation, another empirically based
relationship:

f =
{
−2.0 log

[
e/D

3.7065
− 5.0452

Re
log

(
(e/D)1.1098

2.8257
+ 5.8506

Re0.8981

)]}−2

(3.19b)
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EXAMPLE 3 .5

Normal saline solution flows with an average velocity of V̄ = 0.5 mm/s in a 2 m length
of polymer tubing before entering a patient’s arm intravenously. If the inside diameter of
tubing is D = 2 mm, determine the friction factor, volume flowrate, and pressure drop
in the tubing. Assume that the saline solution has the same properties as water, and that
the IV line is horizontal.

SOLUTION

We are asked to determine f, Q, and �p for a flow of saline through a horizontal tube with
L = 2 m and D = 2 mm. This problem can be solved without the aid of a sketch. We are
given V̄ = 0.5 mm/s and assume conditions at 20◦C for water. From Appendix A we find
ρ = 998 kg/m3 and µ = 1 × 10−3 (N-s)/m2. The problem is solved by using Eq. 3.15
[�p = ρ f (L/D)(V̄ 2/2)] to find �p and Eq. 3.16 to find Q. We begin, however, by
returning to Eq. 3.1 (Re = ρV̄ L/µ) to determine Re and then using either Eq. 3.18 or
3.19 to determine the appropriate friction factor for the calculated value of Re.

Substituting the foregoing values into the expression for Re yields:

Re = ρV̄ D

µ
= (998 kg/m3)(0.5 × 10−3 m/s)(2 × 10−3 m)

[1 × 10−3 (N-s)/m2]

[
1 (kg-m)/s2

1 N

] = 1

Since Re < 2300, the flow is laminar, and we can use Eq. 3.18 to find the friction fac-
tor: f = 64/Re = 64

1 = 64. Next, use Eq. 3.15 to solve for the pressure drop:

�p = ρ f
L

D

V̄ 2

2
= (998 kg/m3)(64)

(
2 m

0.002 m

)[
(0.5 × 10−3 m/s)2

2

]
= 7.98 N/m2 = 7.98 Pa

Finally we use Eq. 3.16 to find the volume flowrate:

Q = V̄A = V̄
π D2

4
= (0.5 × 10−3 m/s)

[
π(2 × 10−3 m)2

4

]
= 1.57 × 10−9 m3/s

A very small volume flowrate like this can also be expressed in milliliters per minute:

Q = (1.57 × 10−9 m3/s)

(
102 cm

m

)3 (
1 mL

1 cm3

)(
60 s

1 min

)
= 0.09 mL/min
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EXAMPLE 3 .6

Gasoline flows with an average velocity of V̄ = 4 ft/s in a horizontal steel pipe of length
L = 100 ft with an inside diameter D = 1 in. The pipe connects the bulk storage tank
to the pump at a gas station as shown in Figure 3.10. Determine the friction factor, vol-
ume flowrate, pressure drop, and pump horsepower required for this flow if the relative
roughness of the pipe is e/D = 0.001. The fluid properties are ρ = 42.45 lbm/ft3 and
µ = 1.96 × 10−4 lbm/(ft-s).

Tank

D � 1 in.

L � 100 ft

Gas pump

Figure 3.10 Schematic of gas station for Example 3.6.

SOLUTION

We are asked to determine f, Q,�p, and P required for a flow of gasoline through a hor-
izontal pipe with L = 100 ft and D = 1 in. Figure 3.10 is an adequate sketch of the flow
situation. We are given V̄ = 4 ft/s, ρ = 42.45 lbm/ft3, and µ = 1.96 × 10−4 lbm/(ft-s).
The problem is solved by using Eq. 3.15 [�p = ρ f (L/D)(V̄ 2/2)] to find �p, Eq. 3.16
(Q = V̄A) to find Q, and Eq. 3.17 (P = Q�p) to find P. We begin of course by using
Eq. 3.1 (Re = ρV̄ L/µ) to determine Re and then use either Eq. 3.18 or 3.19 to deter-
mine the friction factor. 

Substituting appropriate values into the expression for Re yields:

Re = ρV̄D

µ
= (42.45 lbm/ft3)(4 ft/s)(1 in.)(1 ft/12 in.)

1.96 × 10−4 lbm/(ft-s)
= 7.22 × 104

Since Re > 2300, the flow is turbulent and we must use Eq. 3.19a or 3.19b to find the
friction factor. Choosing Eq. 3.19a and substituting e/D = 0.001 and Re = 72,200
gives:

1√
f

= −2.0 log

(
2.7 × 10−4 + 3.48 × 10−5

√
f

)

Using repeated hand calculations (painful), a spreadsheet (still time-consuming), or a
symbolic manipulator program (good idea) we find f = 0.023.
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Next, use Eq. 3.15 to solve for the pressure drop.

�p = ρ f
L

D

V̄ 2

2
= (42.45 lbm/ft3)(0.023)

[
100 ft

(1 in.)(1 ft/12 in.)

] [
(4 ft/s)2

2

]
= 9373 lbm/(ft-s2)

To obtain �p in common units, we use the definition of gc as a unit conversion factor:

�p = 9373 lbm/(ft-s2)

(
1 lbf-s2

32.2 lbm-ft

)
= 291 lbf/ft

2

�p = 291 lbf/ft
2

(
1 ft

12 in.

)2

= 2.0 psi

Next we use Eq. 3.16 to find the volume flowrate:

Q = V̄A = V̄
π D2

4
= (4 ft/s)

[
π(1 in.)2(1 ft/12 in.)2

4

]
= 2.18 × 10−2 ft3/s

Q = (2.18 × 10−2 ft3/s)

(
1 gal

0.13368 ft3

)(
60 s

1 min

)
= 9.8 gal/min

Finally, use Eq. 3.17 to find the pump horsepower:

P = Q�p = (2.18 × 10−2 ft3/s)(291 lbf/ft
2)

[
1 hp

550 (ft-lbf)/s

]
= 0.01 hp

The volume flowrate of ∼10 gal/min seems reasonable for a gasoline pump at a service
station. The power required to operate the pump is small because we are considering
only the pressure drop needed to overcome friction. In most cases the pump must also
produce enough pressure to overcome the hydrostatic pressure variation due to eleva-
tion change as well as losses due to valves and other fittings in the pipe network.
We will discuss these additional aspects of piping system design in Chapter 13. This
problem can also be solved by using the Chen equation, Eq. 3.19b, to estimate the
friction factor.

3.3.2 Flow Through Area Change

If you examine a pipe or duct system in a building, it is evident that changes in the cross-
sectional area of a flow passage are quite common (Figure 3.11). The area change is
often abrupt owing to space limitations, and turbulent flow is the norm in these systems.
In this section we provide a method for using a loss coefficient to estimate the frictional
pressure drop in steady incompressible turbulent flow through a sudden area change.
Frictional pressure drops also occur when flow passes through nozzles, diffusers, bends,
valves, entrances, exits, and other features of a pipe or duct system. Methods to compute
the pressure drop through these elements will also be described later (see Chapter 13).
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In examining the flow through an area change it is critical to realize that even in
the absence of frictional effects, there is always a pressure change due to the change in the
speed of the flow as it passes through the area change. (This is the change in pressure pre-
dicted by the Bernoulli equation as discussed in Chapter 2.) The total change in pressure
as a flow passes through an area change may therefore be thought of as the sum of a pres-
sure change associated with the change in average flow velocity (which may be either pos-
itive or negative depending on whether the flow slows down or speeds up) and a frictional
pressure drop (a negative pressure change). We model this effect in turbulent flow as

p2 − p1 = [ 1
2ρ
(
V̄ 2

1 − V̄ 2
2

)]−�pF (3.20)

where p2 is the downstream pressure, p1 is the up-
stream pressure, and �pF is the frictional pressure loss.
The velocities V̄1 and V̄2 in this formula are the average
velocities in the upstream and downstream sections.
We can calculate �pF by using empirical results. Note
from Eq. 3.16 that since the same volume flowrate
passes through each section the average velocities
are related by

V̄1 A1 = V̄2 A2 (3.21)

Now consider what happens in the idealized case of a frictionless flow through an
area decrease. Since the frictional pressure loss �pF is assumed to be zero, Eqs. 3.20 and
3.21 show that the value of the pressure downstream is less than that upstream because
the area decrease causes the flow to speed up. Conversely, for an increase in area the
value of the pressure downstream is greater than that upstream because the flow slows
down in the larger area downstream. Equation 3.20 shows that the effect of friction is to
cause a lower pressure downstream than the ideal result irrespective of the area change.

The four basic types of cross-sectional area change are shown in Figure 3.12. As
noted earlier, flows in systems of engineering interest usually have high Reynolds num-
bers and are turbulent. Because the section of a pipe or duct in which area change occurs
is often relatively short, the portion of the frictional pressure loss due to viscous effects
at the walls is negligible in comparison to the loss caused by turbulence. Thus, fluid
viscosity is not an important parameter in these flows. Observation suggests that for

Figure 3.11 Ductwork system with
several area changes.

Did you recognize that if the frictional
pressure drop is set to zero in Eq. 3.20,
this equation becomes identical to
Bernoulli’s equation (Eq. 2.11) for a flow
along a horizontal path? Notice also how
the empirical model here (Eq. 3.20) builds
on an earlier ideal result by adding a term
to account for friction.
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gradual enlargements or contractions, the pressure loss in turbulent flow is a function of
the inlet and outlet areas, fluid density, average velocity through the section, and an angle
defining the geometry of the area change. For a sudden area change, however, there is no
angle to consider, hence the pressure change depends only upon the remaining variables.

Fluid flow direction

(A)

Fluid flow direction

Fluid flow direction Fluid flow direction

(C) (D)

(B)

Figure 3.12 Schematics of area changes: (A) enlargement, (B) gradual contraction, (C) sudden
expansion, and (D) sudden contraction.

Sudden Expansion
Suppose we analyze the case of an abrupt enlargement of a round pipe as shown in
Figure 3.12C. We assume that in a turbulent flow through a sudden area change the
frictional pressure loss �pF is described by a functional relationship of the form
�pF = f (A1, A2, ρ, V̄1), where A1 is the inlet area, A2 is the outlet area, ρ is the fluid
density, and V̄1 is the average inlet velocity. Note that we do not have to include V̄2 in
our analysis since Eq. 3.16 makes its inclusion redundant. By using dimensional analy-
sis, we can write the frictional pressure drop as

�pF = KE
1
2ρV̄ 2

1 (3.22)

where conventional engineering practice introduces a dimensionless loss coefficient KE

for the enlargement. Note that we can think of 1
2ρV̄ 2

1 as representing the kinetic energy per
unit volume in the upstream flow. Thus, the result suggests that the frictional pressure drop
may be represented as some fraction of the upstream kinetic energy content of the fluid.
From the available experimental data we can also deduce that KE is a function of the area
ratio of the enlargement. The problem reduces to finding the enlargement loss coefficient,
since when KE is known, the frictional pressure drop can be calculated from Eq. 3.22.

The enlargement loss coefficient for high Reynolds number turbulent flow is shown
in Figure 3.13. Note that the enlargement loss coefficient is always positive. If the inlet

CD/Video Library/Flow Past a Back Step
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Figure 3.13 Loss coefficients for flow through a sudden
expansion.

and outlet areas are equal, there is no frictional pressure loss, and the loss coefficient
must be zero. If the ratio of the outlet area to inlet area is very large, the loss coefficient
should approach unity because all the kinetic energy in the incoming flow is dissipated.

EXAMPLE 3 .7

What is the frictional pressure drop in air flowing in a round duct due to a sudden change
in diameter from 0.4 m to 0.6 m? The flowrate in the duct is 0.5 m3/s. What is the total
pressure change across this enlargement?

SOLUTION

We are asked to find the frictional pressure drop and total pressure change across a sud-
den enlargement in a pipe. Figure 3.13 will serve as a sketch of the geometry of the en-
largement. The first part of this problem is solved by using Eq. 3.22 (�pF = KE

1
2ρV̄ 2

1 ).
The area ratio is found to be 

A1

A2
= π D2

1/4

π D2
2/4

=
(

D1

D2

)2

=
(

0.4 m

0.6 m

)2

= 0.444

By using Figure 3.13, we find a loss coefficient of KE ≈ 0.3. Next we determine the up-
stream average velocity, V̄1, using the definition of volume flowrate given in Eq. 3.16
(Q = V̄A). Solving this expression for V̄1 and substituting known values gives 

V̄1 = Q

A1
= Q

π D2
1/4

= 0.5 m3/s

π(0.4 m)2/4
= 3.98 m/s

Next use Eq. 3.22, along with the density of air at 20◦C (Appendix A) ρ = 1.204 kg/m3,
to find the frictional pressure loss:

�pF = KE
1
2ρV̄ 2

1 = 0.3
(

1
2

)
(1.204 kg/m3)(3.98 m/s)2 = 2.86 Pa
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Next find V̄2 using the volume flowrate:

V̄2 = Q

A2
= Q

π D2
2/4

= 0.5 m3/s

π(0.6 m)2/4
= 1.77 m/s

Finally, use Eq. 3.20 to find the total pressure change across the enlargement.

p2 − p1 = [ 1
2ρ
(
V̄ 2

1 − V̄ 2
2

)]− �pF

= { 1
2 (1.204 kg/m3)[(3.98 m/s)2 − (1.77 m/s)2]

}− 2.86 Pa

p2 − p1 = 7.65 Pa − 2.86 Pa = 4.79 Pa.
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Figure 3.14 Loss coefficients for flow through a
sudden contraction.

CD/Video Library/Forward Facing Step

Sudden Contraction
A similar analysis of the turbulent flow in a sudden contraction as shown in Figure 3.14
leads to the introduction of the contraction loss coefficient KC and the following for-
mula for calculating the pressure drop

�pF = KC
1
2ρV̄ 2

2 (3.23)

Note carefully that the contraction loss coefficient is defined in terms of the kinetic en-
ergy in the higher speed outlet flow. The value of the contraction loss coefficient can be
found in Figure 3.14. If the inlet and outlet areas are equal, there is no pressure loss, and
the contraction loss coefficient must be zero. For very small ratios of outlet area to inlet
area, the loss coefficient has been found to approach 0.5.

3.3.3 Pump and Fan Laws

The preceding case studies have dealt with calculating the frictional pressure drop in a
section of a pipe or in a sudden area change. We now consider the problem of choosing
a pump or fan with the performance needed to move fluid through a system once the
total pressure drop at the desired flowrate has been determined. It is beyond the scope of
this section to address the question of what type of pump or fan should be selected. For
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Centrifugal Fan Axial Fan(A)

Airflow

Impeller

Volute

Rotor blade
Airflow

Stationary guide vane

Figure 3.15 Schematics of common designs of (A) fans and (B) pumps. The three-lobe, gear,
and sliding-vane devices are all rotary pumps.

example, in air-handling applications one can choose a centrifugal or vane–axial fan
(Figure 3.15A). Similar choices exist for pumps (Figure 3.15B). When a certain type of
device has been chosen, and the manufacturer selected, it is necessary to pick the
appropriate size machine from the manufacturer’s family of geometrically similar
equipment. In fact, the overall process of choosing a pump or fan is called sizing. The
pump and fan laws developed next will allow you to use information provided by the
manufacturer to predict the characteristics of geometrically similar, differently sized
devices. They will also give you the ability to predict the performance of a specific
device under different operating conditions.

In our earlier analysis of flow in a pipe or duct system the focus was on the frictional
pressure drop. There are other contributions to the total pressure drop in a system, for ex-
ample, a change in elevation. It is customary to use a parameter called total head, H , in
the design of pipe and duct systems. This total head, with dimensions of energy per unit
mass (or equivalently {L2t−2}), is a measure of the total load seen by a pump or fan mov-
ing fluid through the system. The power, P, required by the pump or fan is also an impor-
tant parameter in the design of these systems. Thus, in analyzing the performance of a
pump or fan, both the head and power are considered to be important dependent variables.

We begin our analysis with the observation that for geometrically similar machines
of a given type, only one length scale is required to specify the machine geometry. This
length scale is conveniently taken to be the diameter D of the impeller or other rotat-
ing element. We assume that the head and power of a fan or pump depends on ω, the
angular speed of the impeller, the volume flowrate, and the density and viscosity of the
fluid. Thus, we postulate that the head and power are functions of these variables:

H = f1 (D, Q, ω, ρ, µ) and P = f2 (D, Q, ω, ρ, µ)

A dimensional analysis (to be performed in Chapter 9) would show that the dimension-
less head can be expressed as follows

H

ω2 D2
= g1

(
Q

ωD3
,
ρD2ω

µ

)
(3.24a)
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Figure 3.15 Continued.
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while the dimensionless power may be written as

P

ρω3 D5
= g2

(
Q

ωD3
,
ρD2ω

µ

)
(3.24b)

In pump and fan engineering, the dependent dimensionless groups H/ω2 D2 and
P/ρω3 D5 are known as the head and power coefficients, respectively. The independent
dimensionless group Q/ωD3 is known as the flow coefficient, while the group
ρD2ω/µ can be considered to be a form of the Reynolds number because the product
Dω has the dimensions of velocity.

In considering the scaling of two geometrically similar systems, the principle of
similitude, (also discussed in Chapter 9) tells us that all independent dimensionless
groups must be the same for each system. However, in dealing with pumps and fans of
reasonable size, it is found that the performance is independent of Re as defined earlier.
Thus the appropriate scaling law for comparing two pumps or fans in the same family is

Q1

ω1 D3
1

= Q2

ω2 D3
2

(3.25a)

If the flow coefficient of two machines are equal, then the head and power coefficients
are also equal:

H1

ω2
1 D2

1

= H2

ω2
2 D2

2

and
P1

ρω3
1 D5

1

= P2

ρω3
2 D5

2

(3.25b)

These equations are known as the pump laws or fan laws. Not only do they relate the
performance of two differently sized machines in the same family, but they also allow us
to determine how a given machine will operate under a new set of operating conditions.

EXAMPLE 3 .8

To upgrade a ventilation system it is required that the flowrate be increased from
5000 ft3/min to 8000 ft3/min. This is to be accomplished by increasing the angular ve-
locity of the ventilation fan. If the current system operates at a fan rpm of 1000, what fan
rpm is required for the upgrade? What will be the power increase for the upgrade?

SOLUTION

Use the fan law, Eq. 3.25a, to determine the new angular velocity (noting that the fan is
the same so the characteristic dimension D is constant).(

Q

D3ω

)
upgrade

=
(

Q

D3ω

)
existing

ωupgrade = Qupgrade

(
ω

Q

)
existing

= (8000 ft3/min)

(
1000 rpm

5000 ft3/min

)
= 1600 rpm
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1Given that the fluid velocity and viscous effects are likely to be important, which dimension-
less group do you expect to see play a major role in the model for the flat plate boundary layer?

CD/History/Ludwig Prandtl

Now use Eq. 3.25b to find the increase in power (with fluid density constant).(
P

ω3 D5ρ

)
upgrade

=
(

P

ω3 D5ρ

)
existing

Pupgrade

Pexisting
= ω3

upgrade

ω3
existing

= (1600 rpm)3

(1000 rpm)3
= 4.096

Thus, the increase in rpm of 60% results in a power increase of over 300%.

3.3.4 Flat Plate Boundary Layer

The case studies thus far have involved internal flow. A flow is classified as internal if
the fluid moves within an interior space defined by a number of bounding walls. Pipe
flow is obviously of this type, as is the flow in a pump. Engineers also deal with many
important external flows, i.e., flows in which a fluid moves around an object. An exter-
nal flow also occurs whenever a body such as a vehicle moves through a fluid. The next
three case studies deal with external flows.

Consider what happens when flow occurs over a flat plate. As shown in Figure
3.16, the fluid at the plate surface does not move relative to the plate. A short distance
away from the plate, however, the fluid is moving at the free stream velocity. The
effect of viscosity is to create a boundary layer near the plate in which the velocity
changes smoothly and continuously from zero on the plate to the free stream value.1

The boundary layer thickness increases downstream of the leading edge, and the flow
in the boundary layer eventually changes from laminar to turbulent (see Figure 3.17).
Because there is a transverse velocity gradient at the plate surface, the fluid exerts a
shear stress on the plate that results in a drag force (recall that Newton’s law of vis-
cosity relates the shear stress to the velocity gradient via the fluid viscosity).

CD/Boundary Layers

A quantity of great interest in the flat plate boundary layer is the wall shear stress.
If we know how the wall shear stress varies along the plate, we can calculate the



frictional force applied by the fluid to the plate. The flat
plate boundary layer may be used to model flow over
relatively flat surfaces such as ship hulls and the walls
of various structures, and as a crude approximation to
the more complex boundary layers on airplane wings,
fuselages, and similar surfaces.

Observations suggest that in an incompressible
flow at high Re the shear stress τW on the wall in a flat
plate boundary layer (Figure 3.18) depends on the dis-

tance from the leading edge x , the freestream velocity V, and the fluid density and vis-
cosity. Thus we propose a relationship between these variables of the form:

τW = f (x, V, ρ, µ)

Dimensional analysis reveals that this relationship can be expressed as

τW
1
2ρV 2

= g

(
ρV x

µ

)
(3.26)
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Figure 3.16 Development of the boundary layer on a flat plate.
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Figure 3.17 Laminar-to-turbulent transition of the boundary layer on a flat plate.

The concept of a boundary layer was con-
ceived by Ludwig Prandtl, who reasoned
that in a high Reynolds number flow over a
body, viscous effects would be significant
only within the boundary layer. His bound-
ary layer theory was one of the most im-
portant contributions to fluid mechanics in
the twentieth century.



It is customary in boundary layer analysis to define the skin friction coefficient Cf as

Cf = τW
1
2ρV 2

(3.27)

and to define a Reynolds number based on the distance x from the leading edge as

Rex = ρV x

µ
(3.28)

From the dimensional analysis we can also conclude that there is a relationship between
the skin friction coefficient and the Reynolds number of the form

Cf = Cf (Rex) (3.29)

The force exerted by the shear stress on one side of a plate of width w and length L
shown in Figure 3.18 is found by integrating the (variable) shear stress along the length
of the plate. This frictional force, or drag (since it acts in the flow direction), is given by

FD = w

∫ L

0
τW (x) dx

and can also be written in terms of the skin friction coefficient as 

FD = w

∫ L

0

1

2
ρV 2Cf (x) dx (3.30)

We can calculate the drag on a flat plate due to a laminar or turbulent boundary layer
by using Eq. 3.30, provided we have an expression for the appropriate skin friction
coefficient.
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Figure 3.18 Shear stress due
to flow over a flat plate.

CD/Special Features/Blasius Boundary Layer Growth

Laminar Boundary Layer: H. Blasius, a student of Prandtl’s, developed an approxi-
mate solution for the laminar flat plate boundary layer that gave the following



expression for the skin friction coefficient:

Cf = 0.664√
Rex

(3.31)

From empirical observation we know that the transition
to turbulence occurs at about Rex = 5 × 105, so
Eq. 3.31 is limited to Rex < 5 × 105.

Turbulent Boundary Layer: An approximate model of the velocity distribution in tur-
bulent flow (see Figure 3.17) yields an expression for the skin friction coefficient of the
form:

Cf = 0.0594

(Rex)1/5
(3.32)
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A laminar boundary layer usually transi-
tions to turbulence very close to the lead-
ing edge of a plate, so close that in calcu-
lating the drag, the laminar portion of the
boundary layer can often be ignored and
the whole boundary layer treated as if it
were turbulent from the leading edge. 

EXAMPLE 3 .9

A cruise missile 5 m long and 1 m in diameter is cruising at 200 m/s at an altitude of
500 m. If the boundary layer on the missile skin is modeled as that over a flat plate, what
is the drag force on the missile due to skin friction?

SOLUTION

From Appendix A we find for air at 500 m, ρ = 1.17 kg/m3 and µ = 1.77 ×
10−5 (N-s)/m2. First we use the critical Reynolds number of 5 × 105 to locate the tran-
sition to turbulence:

xcr = Recr
µ

ρV
= 5 × 105 [1.77 × 10−5 (N-s)/m2]

(1.17 kg/m3)(200 m/s)
= 0.04 m

The laminar region is small enough to be neglected. We will use Eq. 3.32 for the skin
friction coefficient and calculate the drag force on the wetted surface by using Eq. 3.30.

FD = w
1

2
ρV 2

∫ L

0
Cf dx = w

1

2
ρV 2

∫ L

0

0.0594

(Rex)1/5
dx = w

1

2
ρV 2

∫ L

0

0.0594

(ρV x/µ)1/5
dx

FD = w
1

2
ρV 2

(
0.0595

(ρV/µ)1/5

)∫ L

0
x−1/5 dx = w

1

2
ρV 2

[
0.0595

(ρV/µ)1/5

](
x4/5

4/5

∣∣∣∣
L

0

)

In this case the “width” is the circumference of the missile, πD. Substituting appropri-
ate numerical values yields:

FD = π(1 m)
1

2
(1.17 kg/m3)(200 m/s)2 0.0594{[

(1.17 kg/m3)(200 m/s)

1.77 × 10−5 (N-s)/m2

] [
1 N

1 (kg-m)/s2

]}1/5

(5 m)4/5

4/5

= 744 N



3.3.5 Drag on Cylinders and Spheres

One of the most important problems in fluid mechanics is to determine the drag on a
body immersed in a moving fluid. Drag is the component of the total retarding force act-
ing on the body in the direction of the oncoming stream. A bit of thought shows that drag
can be due to unbalanced pressures on the fore and aft surfaces of a body as well as to
skin friction in the form of shear stress on the wetted surface. Applying Newton’s sec-
ond law to the body shown in Figure 3.19 shows that the thrust and drag forces acting
on a nonaccelerating body are equal and opposite. Thus, estimating the force (thrust)
needed to move a body through a stationary fluid at constant velocity requires estimat-
ing the drag. The power required to move the body through the fluid is the product of the
magnitude of the thrust (or drag) and the speed of the body.

The ability to calculate drag is a critical element in the design of virtually all mod-
ern modes of transportation. Historically, problems of this type have been investigated
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Figure 3.19 Free body diagram
of a nonaccelerating body show-
ing that the drag and thrust are
equal.

EXAMPLE 3 .10

What is the power required to fly the cruise missile in Example 3.9? Assume that the
drag is primarily due to skin friction.

SOLUTION

The power required is the product of the thrust and the flight speed. Since the missile is
at constant velocity the thrust is equal to the drag 720 N and the flight speed is 200 m/s,
the power required is

P = (720 N)(200 m/s)

(
1 J

1 N-m

)(
1 W

1 J/s

)
= 144,000 W = 144 kW

Another approach to this problem would be to find a drag coefficient that includes both
the effects of skin friction and the pressure distribution as discussed shortly.



experimentally by using a wind tunnel to provide a flow over a scale model, with the
results presented in terms of the drag coefficients. Analytical results are available to
estimate the drag force in a very few cases, but generally engineers rely on a large body
of empirical results. In this section we discuss the drag in steady, incompressible flow
for two very simple geometries: an infinitely long circular cylinder and a sphere. For
simplicity, the flow approaching the cylinder is required to be perpendicular to the axis
of the cylinder, and neither the cylinder nor the sphere is rotating.
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CD/Video Library/Flow Past a Cylinder

Cylinder
The circular cylinder is a common structural shape. Examples include bridge cables,
chimney pipes, wing struts, and flagpoles. Although the geometry of a circular cylinder
is simple, the wake of a cylinder can be quite complex (see Figure 3.3).

Now consider the steady flow over a cylinder. We are interested in the drag force
FD on a cylinder of diameter D and length L . The drag will depend on these two geo-
metric parameters as well as on the velocity, density and viscosity of the fluid. We sum-
marize the proposed relationship mathematically as FD = f (D, L , V, ρ, µ). Dimen-
sional analysis (details to be provided in Chapter 9) then shows that the relationship
between these groups is

FD
1
2ρV 2 DL

= g

(
Re,

L

D

)
(3.33)

where the Re is based on the cylinder diameter. The standard way to present this result
is to write:

FD = CD
1
2ρV 2 DL (3.34)

where the drag coefficient for a cylinder is defined as

CD = FD
1
2ρV 2 DL

(3.35)

Note that from Eq. 3.33 the drag coefficient is CD = g(Re, L/D), or simply

CD = CD

(
Re,

L

D

)
(3.36)

From Eq. 3.36 we conclude that the drag on a cylindrical body depends on the Reynolds
number and on the aspect ratio of the cylinder. As the length of the cylindrical body ap-
proaches infinity, the flow over the cylinder anywhere along its length must become in-
dependent of position. In this limiting case of long cylinders, the drag coefficient for a
cylinder is only a function of Re:

CD = CD(Re) (3.37)



Sphere
The drag on a sphere is needed to predict the behavior of spherical objects of all sizes
including pollen and the particles in mists and smoke, as well as the balls used in golf,
soccer, and baseball. The drag force FD on a smooth sphere of diameter D will de-
pend on this single geometric parameter as well as on the fluid velocity, density, and
viscosity.

In this case we postulate the relationship as

FD = f (D, V, ρ, µ)

and find that the drag is given by

FD = CD
1

2
ρV 2 π D2

4
(3.38)

The drag coefficient is defined for a sphere by

CD = FD
1
2ρV 2(π D2/4)

(3.39)

Since there is only one length scale in the flow, namely the sphere diameter, the drag co-
efficient for a sphere depends only on the Reynolds number:

CD = CD(Re) (3.40)

where Re is based on the sphere diameter.

Drag Coefficient
At this point the problem of calculating the drag on a cylinder or sphere is reduced to
finding information on the variation of the drag coefficient with Re. Reynolds numbers
of interest may range from near zero to 108 or even larger, depending on the application:
contrast the Re for wind flow over a strand of a spiderweb with that for a guide wire on
an early biplane in flight at 90 mph.

Flows for which Re � 1 are called creeping flows. A creeping flow is dominated by
viscous forces. There are analytical results for creeping flows over cylinders and
spheres, and we can take advantage of these to deduce the drag coefficients for Re � 1.
An approximate solution due to Oseen for creeping flow over a very long cylinder gives
the following formula for the drag coefficient:

CD = 4π

Re

[
ln

(
2

L

D

)
− 0.72

] or CD = 8π

Re

[
log10

(
7.4

Re

)] (3.41)
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Figure 3.20 Drag coefficient for (A) a smooth sphere and (B) an infinite cylinder as a func-
tion of Reynolds number.
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The exact solution for creeping flow over a sphere was derived by Stokes. This solution
gives the drag coefficient for a sphere in the creeping flow regime as

CD = 24

Re
(3.42)

For higher Reynolds numbers we can take advantage of empirical data and read the
drag coefficients for flow over a sphere or cylinder from Figure 3.20. The interesting vari-
ations in drag coefficient with increasing Reynolds number reflect changes in the flow
structure. These changes will be discussed in more detail in Chapter 14 on external flow.
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EXAMPLE 3 .12

A radio transmission tower is 1000 ft tall and employs 0.5 in. diameter wire cables to
stabilize and strengthen the structure as shown in Figure 3.21. What is the normal force
on a cable in the highest expected wind of 100 mph (146.7 ft/s)?

EXAMPLE 3 .11

What is the drag force on a spherical particle 1 �m in diameter settling in air at V =
0.1 m/s?

SOLUTION

From Appendix A we find for air at 20◦C: ρ = 1.204 kg/m3 and µ = 1.82 ×
10−5 (N-s)/m2. The first step is to calculate the Reynolds number:

Re = ρV D

µ
= (1.204 kg/m3)(0.1 m/s)(1 × 10−6 m)

1.82 × 10−5 (N-s)/m2
= 6.6 × 10−3

Since Re � 1, we can use Eq. 3.42, CD = 24/Re, for the drag coefficient. Finally, we
use Eq. 3.38 to calculate the drag force:

FD = CD
1

2
ρV 2 π D2

4
=
(

24

Re

)
1

2
ρV 2 π D2

4

FD =
(

24

6.6 × 10−3

)
1

2
(1.204 kg/m3)(0.1 m/s)2 π(1 × 10−6 m)2

4
= 1.7 × 10−11 N

45�

Cable
1000 ft

Tower

Wind velocity � 100 mph

Wind component
normal to cable

Figure 3.21 Schematic of radio transmission tower for Ex-
ample 3.12.

SOLUTION

From the geometry, the length of the longest cable is 1414 ft, and the wind ve-
locity is 146.7 ft/s. The component of wind velocity normal to the cable is
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3.3.6 Lift and Drag on Airfoils

A wing is a specially shaped body designed to produce lift when exposed to a stream of
fluid. Lift is defined to be the component of fluid force acting on a body at a right angle
to the oncoming stream. Thus, lift is a vertical force for a vehicle or object in level flight
and may be thought of as being created by unbalanced pressures acting on the top and
bottom of the object. The pressure on a wing, for example, is much higher on the bottom
surface than on the top surface. The total lift developed by a wing supports the weight of
an aircraft.

Many factors influence the design of a wing. The cross section at any given point
along a wing has the form known as an airfoil. This airfoil shape is carefully designed to
maximize lift and minimize drag. There are many different airfoil shapes for different
applications such as airplane wings, propellers, and impeller blades in turbomachines.
Example airfoil shapes are shown in Figure 3.22. In this section we discuss the problem
of calculating the total lift and drag produced by a wing with a constant airfoil shape all
along its length under the assumption that the wing is effectively infinitely long. Real
wings of finite length are subject to end effects, which lower their performance. Airfoils
are discussed in more detail in Chapter 14 on external flow.

The standard nomenclature for airfoil geometry is illustrated in Figure 3.23. In
steady subsonic flow the lift and drag forces, FL and FD , respectively, are each found to
depend on the thickness t , span b, chord length c, and angle of attack α. They also de-
pend on the freestream velocity V , and on the fluid density and viscosity. If we postulate
the dependence of lift and drag on the physical parameters as

FL = f (t, b, c, V, ρ, µ) and FD = f (t, b, c, V, ρ, µ)

(146.7 ft/s cos 45◦) = 103.7 ft/s. From Appendix A we find for air at 70◦F:
ρ = 0.002329 slug/ft3 and µ = 3.82 × 10−7 (lbf-s)/ft2. Next calculate Reynolds num-
ber as

Re = ρV D

µ
= (0.002329 slug/ft3)(103.7 ft/s)(0.5/12 ft)

3.82 × 10−7 (lbf-s)/ft2
= 2.63 × 104

From Figure 3.20b we read a drag coefficient for a cylinder of ∼1.2. Next we compute
the force acting normal to the cable with Eq. 3.34:

FD = CD
1
2ρV 2 DL = (1.2)(0.5)(0.002329 slug/ft3)(103.7 ft/s)2(0.5/12 ft)(1000 ft) = 626 lbf

The aspect ratio of the cable is over 3 × 104, so the assumption, implicit in using Fig-
ure 3.20b, that it is an infinite cylinder is appropriate.

CD/Video Library/Flow Past an Airfoil
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Göttingen 387 1919

Clark Y 1922

M-6 1926

R.A.F. 34 1926
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R.A.F. 15 1915

U.S.A. 27 1919

Joukowsky 1912

Göttingen 398 1919

Figure 3.22 Important airfoil shapes in the history of aerodynamics.
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Figure 3.23 Airfoil nomenclature.

dimensional analysis leads to the following standard relationships among dimensionless
groups:

FL
1
2ρV 2bc

= g1

(
Rec,

t

c
,

b

c
, α

)
and

FD
1
2ρV 2bc

= g2

(
Rec,

t

c
,

b

c
, α

)

where Rec is the Reynolds number based on chord length, i.e., Rec = ρV c/µ. The lift
and drag coefficients for an airfoil section are defined as

CL = CL

[
Rec,

t

c
,

b

c
, α

]
and CD = CD

[
Rec,

t

c
,

b

c
, α

]

thus the lift and drag are given by 

FL = CL
1
2ρV 2bc and FD = CD

1
2ρV 2bc (3.43a, b)

where the product bc is called the planform area. For an infinitely long wing, the ratio of
span to chord, b/c, disappears from the expressions for CL and CD , and we conclude
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that the lift and drag coefficients of a long wing are a function only of Reynolds number,
the geometry of the airfoil as expressed by the ratio of thickness to chord, and the angle
of attack.

Lift and drag data were made available for a large number of airfoils by the prede-
cessor to NASA, the National Advisory Committee for Aeronautics (NACA). Fig-
ure 3.24 shows lift and drag coefficients for a typical airfoil shape, NACA 2412.

EXAMPLE 3 .13

Calculate the lift force on a Cessna 150 wing cruising at an airspeed of 120 mph at an al-
titude of 5000 ft. The wing is constructed of a NACA 2412 airfoil at an angle of attack
of 2◦. Its span is 32 ft., 8 in., and the wing planform area is 157 ft2.

SOLUTION

From Appendix B we find for air at 5000 ft (T = 41◦F): ρ = 2.048 × 10−3 slug/ft3 and
µ = 3.637 × 10−7 (lbf-s)/ft2. The lift coefficient for the NACA 2412 at 2◦ angle of at-
tack is ∼0.3 from Figure 3.24. Next, use Eq. 3.43a to calculate the lift as

FL = CL
1
2ρV 2bc

= (0.3)
1

2
(2.048 × 10−3 slug/ft3)

[
120 mph

(
1.4667

ft/s

mph

)]2

157 ft2 = 1.5 × 103 lbf

NACA 2412 airfoil

Lift coefficient

Moment coefficient

0

�0.1

�0.2

�0.3

�0.4

�0.4

�1.2

�0.8

�8 0

0

0.4

0.8

1.2

1.6

2.0

8 16 24

Re � 3.1 � 106

Rc � 8.9 � 106

Angle of attack, � (degrees)(A)

�0.05

�0.1

�0.15

�4 0
Angle of attack, � (degrees)(B)

4 8 12 16�8�12

0

0.004

0.008

0.012

0.016

0.020

0.024

0

Moment coefficient

Drag
coefficient

Re � 3.1 � 106

Rc � 8.9 � 106

Figure 3.24 Experimental (A) lift and (B) drag coefficients as a function of angle of attack for a NACA 2412
airfoil.



3.4 SUMMARY

In this chapter several case studies were introduced. Each case study had two parts, a
brief description of the flow field of interest and the introduction of design formulas
used to calculate important quantities of engineering interest. These formulas rely pri-
marily on results obtained using experimental methods, and in particular on the dimen-
sional analysis and modeling tools, which you will learn about eventually, in Chapter 9.
The amount of information given in a case study is not unlike what you might find in an
engineering handbook.

The case studies included frequent references to dimensionless groups. A dimen-
sionless group is an algebraic combination of the parameters describing a particular flow
problem that proves to be both dimensionless as a whole and significant in terms of
understanding the flow field. The use of dimensionless groups allows an engineer to
classify a fluid mechanics problem, relate it to work by others, and select an effective
solution method. Although a large number of dimensionless groups occur in fluid me-
chanics, only a limited number of them are used on a regular basis. We list five examples.

1. Reynolds number, Re = ρV L/µ, is the most common dimensionless group in
fluid mechanics. It can be interpreted as the ratio of inertial forces to viscous
forces. If the Re is small, viscous forces dominate the flow and inertial forces
can be neglected. Conversely, if Re is large, inertial forces dominate outside of
boundary layers.

2. Euler number, Eu = �p/ρV 2, is the ratio of pressure forces to inertial forces.

3. Froude number, Fr = V 2/gL , is the ratio of inertial forces to gravity forces. It
is important in the classification of free surface flows.

4. Mach number, M = V/c, is the ratio of the velocity scale to the speed of sound
in the fluid. The Mach number is important in compressible fluid mechanics and
is used to determine when compressible effects must be considered.

5. Weber number, We = ρV 2L/σ , is the ratio of inertial forces to surface tension
forces. The Weber number is important in a limited number of instances such as
capillary flows.
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Note that the Reynolds number based on the chord length (calculated as area divided by
length) is

Rec = ρV c

µ

=
(2.048 × 10−3 slug/ft3)(120 mph)

(
1.4667

ft/s

mph

)
(157 ft2/32.667 ft)

3.637 × 10−7(lbf-s)/ft2

= 4.8 × 106

which is within the range of the experimental data given in Figure 3.24.



This chapter concludes with six important case studies: fully developed flow in
pipes and ducts, flow through sudden area change, pump and fan laws, flat plate bound-
ary layer, drag on cylinders and spheres, and lift and drag on airfoils. These case studies
represent a substantial amount of the material with which an engineer could practice
design after a single course in fluid mechanics. Each of these problems may be studied
theoretically, but the majority of useful results have been obtained empirically. In this
chapter we have introduced each flow, indicated the important dimensionless groups
that can be used to understand the flow, and provided formulaic solutions to each flow.
These problems were designated as case studies to emphasize the relevance of the sub-
sequent theoretical chapters to everyday engineering problems. We do this by revisiting
these problems throughout the book.
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PROBLEMS

Section 3.2

3.1 For each of the common dimensionless
groups listed, demonstrate that the group is, in
fact, dimensionless. In addition, offer a physi-
cal interpretation of each dimensionless
group.
(a) Reynolds number, Re
(b) Froude number, Fr
(c) Euler number, Eu
(d) Prandtl number, Pr

3.2 For each of the common dimensionless
groups listed, demonstrate that the group is,
in fact, dimensionless. In addition, offer a
physical interpretation of each dimensionless
group.
(a) Reynolds number, Re
(b) Mach number, M
(c) Weber number, We
(d) Strouhal number, St

3.3 Air initially at STP is flowing over an
airplane wing with a chord of 2 m. If the air ve-
locity is 300 km/h, determine the Reynolds
number and Mach number for this flow. At
what speed must the plane fly in a standard
atmosphere at an altitude of 3000 m for the flow
over the wing to have the same value of Re?

3.4 A sphere of diameter 2 mm is moving
through glycerin at a velocity of 5 mm/s. 
(a) Calculate the Reynolds number for this

flow.

(b) Would you characterize this flow as tur-
bulent, laminar, or creeping flow?

(c) Do you think viscous effects are impor-
tant in this flow?

(d ) Do you think inertial effects are impor-
tant in the previous flow?

3.5 As mentioned in Chapter 2, an engineer
must consider compressibility effects when
the Mach number exceeds 0.3. What is the
flight speed for an aircraft flying in a standard
atmosphere at 10,000 ft necessary to achieve
this Mach number?

3.6 As mentioned in Chapter 2, an engi-
neer must consider compressibility effects
when the Mach number exceeds 0.3. For water
at STP, what velocity must the fluid reach
to achieve this Mach number? If the water
is moving through a 1 in. diameter pipe at
M = 0.3, what is the corresponding Re
number?

3.7 A thin film of SAE 30W oil is expe-
riencing a velocity of 0.75 m/s at a depth of
1.5 mm below its free surface. Calculate the
Froude number and the Weber number for this
flow. What is the significance of the relative
values of Fr and We in this flow?

3.8 In open channel flows the characteristic
dimension in the Froude number is the depth
of the fluid. What is the minimum fluid veloc-
ity necessary to achieve supercritical flow in a
channel that is 100 ft deep? What does it mean
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for a flow of this type to be termed supercriti-
cal?

3.9 A thin film (d = 0.1 in.) of glycerin is
at rest at room temperature. Calculate the
Weber number for this situation. Are surface
tension effects important in this situation?

3.10 Water is flowing through a piping sys-
tem at 40◦F at atmospheric pressure. The
vapor pressure of water at 40◦F is 0.122 psia.
Use the concept of the Euler number to calcu-
late the minimum velocity for which cavita-
tion damage might become important.

3.11 The pressure coefficient for flow over
a cylinder as predicted by inviscid flow theory
is Cp = 1 − (4 sin2 θ). If the cylinder is mov-
ing through air at 100 mph at sea level, what is
the lowest pressure predicted by the theory?
Does it seem reasonable?

3.12 A fluid is flowing through a cylindri-
cal pipe of diameter 0.5 m with an oscillating
inlet velocity given by u = Umax cos ωt . If
Umax = 5 m/s, and ω = 0.2 s−1, calculate the
Strouhal number for this flow.

3.13 A fluid is flowing over a sphere of di-
ameter 1.5 in. at a velocity of 96 mph. If the
Strouhal number for this flow is 0.2, estimate
the frequency of oscillations in the flow.

3.14 For wind tunnel testing of prototype
golf ball dimple patterns, it is known that Re
and St must be the same for both the model
and actual prototype balls. Experiments with a
representative sampling of members of the
PGA tour indicate prototype parameters of
V = 250 ft/s and ω = 900 s−1. The diameter
of a golf ball is 1.68 in. The company presi-
dent wants to use a video clip from your tests
in a commercial and has told you to use a geo-
metric factor of 4 : 1 (the model “ball” will be
larger than the prototype). Determine the re-
quired model fluid velocity and model angular
velocity.

3.15 The pressure drop through an oil
(SAE 30W at 15◦C) supply line at a service

station is to be modeled by using the flow of
water at 15◦C through an identical length of
tubing. The required oil velocity in the proto-
type is known to be 35 cm/s. The Re and Eu of
the model and the actual flow must be the
same.
(a) Use Reynolds number to find the velocity

of the model fluid.
(b) Use Euler number to predict the pressure

drop given that the pressure drop in the
prototype was 0.05 psi.

3.16 An airplane wing with a 2 m chord is
designed to fly through standard atmosphere
at an elevation of 8 km and a velocity of
850 km/h. The wing is to be tested in a water
tank at STP. What fluid velocity is necessary
in the model to ensure that the Reynolds num-
bers are the same? What other dimensionless
groups might be important in this flow?

3.17 You are in charge of testing a 1 : 50
scale model of a flat bottom barge. The proto-
type fluid is seawater at 15◦C, and from your
analysis you know that you must obtain equal
Reynolds and Froude numbers. What charac-
teristics must your model fluid possess? What
fluid would you recommend using for your
model?

3.18 At 20°C the thermal diffusivity of
water and air are 0.00142 and 0.208 cm2/s,
respectively. What are the Prandtl numbers
for each case?

Section 3.3

Section 3.3.1

3.19 Gasoline flows with an average veloc-
ity of U = 1 ft/s in a D = 2 in horizontal pipe.
The e/D ratio for this pipe is 0.001. What is
the pressure drop in a 50 ft length of pipe?

3.20 Air at STP flows with an average ve-
locity of U = 1 cm/s in a D = 1 cm horizontal
pipe. The e/D ratio for this pipe is 0.001. What
is the pressure drop in a 20 m length of pipe?
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3.21 Air at STP flows with an average ve-
locity of U = 100 cm/s in a D = 1 m hori-
zontal duct. The e/D ratio for this pipe is
0.001. What is the pressure drop in a 10 m
length of pipe?

3.22 Glycerin flows with an average ve-
locity of U = 0.5 in./s in a D = 0.25 in. hor-
izontal tube. The e/D ratio for this pipe is
0.0001. What is the pressure drop in a 5 ft
length of tube?

3.23 Glycerin flows with an average veloc-
ity of U = 3 cm/s in a D = 1 cm horizontal
tube. The e/D ratio for this pipe is 0.0001, the
viscosity of glycerin in the flow is 2.0 (N-s)/m2,
and the density is 1260 kg/m3. The pressure
drop in a 1 m length of pipe is 12.8 kPa. Esti-
mate the fluid velocity through the tube.

3.24 Oil flows through a horizontal section
of the Alaska Pipeline at the rate of 1.5 million
barrels (42 gallons per barrel) per day. At
the pumping conditions of 140◦F SG = 0.93
and µ = 3.5 × 10−4 (lbf-s)/ft2, the pipe has
e/D = 0.00012 and D = 48 in. What is the
pressure drop per mile of pipeline?

3.25 For the design in problem 3.19 it is sug-
gested that smoother pipe (e/D = 0.00001)
be used to reduce the operating cost. What
would now be the pressure drop in the pipe?

Section 3.3.2

3.26 What is the pressure change for air in
a round duct due to a sudden change in diam-
eter from 0.6 to 0.4 m? The flowrate in the
duct is 0.5 m3/s.

3.27 What is the pressure change for air in
a round duct due to a sudden change in diam-
eter from 1.0 ft to 2.0 ft? The flowrate in the
duct is 15 ft3/s.

3.28 What is the pressure change for water
in a round duct due to a sudden change in di-
ameter from 1.0 ft to 2.0 ft? The flowrate in
the duct is 1.5 ft3/s.

3.29 What is the pressure change for water
in a round duct due to a sudden change in di-
ameter from 0.4 m to 0.6 m? The flowrate in
the duct is 0.05 m3/s.

3.30 What is the pressure change for water
in a round duct due to a sudden change in di-
ameter from 0.6 m to 0.4 m? The flowrate in
the duct is 0.05 m3/s.

3.31 Two installations for a 4 ft heat ex-
changer are being considered for a 2 ft diame-
ter wind tunnel. Air flows at 5000 ft3/min. The
first design, a sudden expansion and contrac-
tion, costs $1000. The second design is a
gradual expansion and contraction that has
95% less frictional pressure loss than the first
design but costs $5000. The electric power re-
quired is estimated as 1.25Q�pF and costs
$0.07/kW-h. Based on the costs described,
which design would you choose? Use proper-
ties of air at standard conditions for your
analysis. What factors besides cost might be
important?

3.32 The manufacturer of a room air condi-
tioner for motel rooms has added a sudden
contraction in the round internal duct of 8 in.
to 6 in. Each unit provides 200 ft3/min of sup-
ply air. The electric operating power this mod-
ification requires is estimated as 1.25Q�pF

and costs $0.07/kW-h. How much will this de-
sign modification cost a 100-room motel each
year? Assume air at standard conditions and
that each unit operates 8 h/day.

Section 3.3.3

3.33 To upgrade a ventilation system it is
required that the air flowrate be increased from
200 m3/min to 300 m3/min. This is to be ac-
complished by increasing the angular velocity
of the ventilation fan. If the current rpm = 800,
what rpm is required for the upgrade? What
will be the power increase for the upgrade?

3.34 To upgrade a pumping system, it is re-
quired that the water flowrate be increased
from 50 ft3/min to 80 ft3/min. This is to be
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accomplished by increasing the angular ve-
locity of the pump impeller. If the current
rpm = 100, what rpm is required for the up-
grade? What will be the power increase for the
upgrade?

3.35 A chemical purifier must be added to
the wastewater discharge at a manufacturing
plant. It is determined that the purifier will
increase the head the pump must overcome
by 50%; thus the angular speed must be in-
creased. By what percentage will the power
required increase?

3.36 In the situation described in Problem
3.35 the existing pump has a 20 hp motor.
What size motor will be required for the new
conditions? If the pump operates 5000 h/yr
and energy costs $0.07/kW-h, how much
more will it cost to operate the pump each
year?

3.37 In the installation of duct work for
heating and air-conditioning systems, inter-
ferences occur that require changes in the de-
signed duct layout. For each 1% increase in
head required by the fan, how much more an-
gular speed is required? How much more
power is required?

3.38 An exhaust fan for a mine shaft needs
to be specified. The choice has been narrowed
down to a 48 in. or a 60 in. impeller. Compare
the power required to run each impeller.

Section 3.3.4 

3.39 A missile 12 ft long and 3 ft in diame-
ter is cruising at 400 mph at an altitude of
1500 ft. If the flow is modeled as that over a
flat plate, what is the drag force on the
missile?

3.40 A torpedo 2 m long and 0.5 m in di-
ameter is moving through water at STP at
20 m/s. If the flow is modeled as that over a flat
plate, what is the drag force on the torpedo?

3.41 A probe 10 cm long and 1 cm in di-
ameter is moving through glycerin at STP at a
velocity of 0.3 cm/s. If the flow is modeled as
that over a flat plate, what is the drag force on
the probe?

3.42 Find the drag force on a flat plate,
1.0 × 1.0 m, towed at 1.0 m/s through (a) air,
and (b) water.

3.43 An 8.5 in. × 11 in. piece of paper with
mass of 1 × 10−4 slugs has a coefficient of
static friction with the ground of 0.2. What ve-
locity of air over the paper will cause it to start
to move? Assume the boundary layer starts to
format at the leading edge of the paper.

3.44 A V-shaped ship’s hull 50 m long is
submerged to a depth such that the total wet-
ted hull area is 1000 m2. If the ship is moving
at 20 knots and each half of the hull is mod-
eled as a flat plate, what is the drag force on
the hull?

Section 3.3.5

3.45 What is the drag force on a cylinder
of dimensions D = 0.04 in. and L = 1 in.
falling in air at V = 3 in./s? Assume the rela-
tive airflow is perpendicular to the cylinder
axis.

3.46 What is the drag force on a D =
2 mm particle settling in glycerin at STP at
V = 0.03 m/s?

3.47 What is the drag force on a cylinder of
dimensions D = 1 mm and L = 5 mm falling
in glycerin at STP at V = 2 cm/s?

3.48 A fiber is settling in air at the termi-
nal velocity where W = FD . How fast is the
fiber moving if D = 0.5 mm, L = 15 mm,
and ρfiber = 10 kg/m3? Assume creeping flow.

3.49 Hotwire anemometers have been used
extensively for fluid velocity measurements
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by taking advantage of the “wind chill effect.”
The probe shown in Figure P3.1 is heated by
electrical current. The device is calibrated by
recording the amount of current required to
achieve a known temperature for a fluid at a
known velocity. If the wire has D = 1 mm and
L = 10 mm , what is the drag force when used
in (a) water and (b) air when V = 10 m/s?

Section 3.3.6

3.50 Calculate the lift force on the wing
of an airplane cruising at an airspeed of
190 km/h at 1500 m altitude. The wing is
constructed of a NACA 2412 airfoil at an
angle of attack of 3◦. Its span is 10 m and the
wing planform area is 17.5 m2.

3.51 A streamlined support strut has thick-
ness t = 1 in. and has CD = 0.02 where the
drag force is given by FD = CD

ρV 2

2 t L . L is
the length of the strut. Calculate the force per
unit length of strut if it is moving at V =
10 mph in water. Compare this result to the
force per unit length of a 1 in. diameter circu-
lar strut.

3.52 What is the downward force and drag
created by the spoiler on a race car traveling at
150 mph? The spoiler consists of a 3 ft � 1 ft
NACA 2412 airfoil at −3◦ angle of attack. 

V
Direction of fluid
flow (perpendicular
to wire axis)

Wire with
diameter, D,

and length, L

Figure P3.1



4 FLUID FORCES

146

4.1 Introduction
4.2 Classification of Fluid Forces 
4.3 The Origins of Body and Surface Forces
4.4 Body Forces
4.5 Surface Forces

4.5.1 Flow Over a Flat Plate
4.5.2 Flow Through a Round Pipe
4.5.3 Lift and Drag

4.6 Stress in a Fluid
4.7 Force Balance in a Fluid
4.8 Summary
Problems

4.1 INTRODUCTION

This chapter establishes a basis for understanding the fluid forces encountered in nature
and technology. You will learn about the fluid forces of different types and about their
origins. We will show that we must consider both the forces fluids exert on objects they
contact and the forces exerted on fluids by their surroundings. An understanding of
forces exerted by and on fluids is the key to harnessing fluid forces in the design of ve-
hicles, devices, and structures.

Have you ever seen trees downed by a hurricane or volcanic blast, buildings blown
apart by a tornado, or beach cottages destroyed by a storm surge (Figure 4.1)? How are
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the enormous forces necessary to cause such damage generated by air and water in mo-
tion? If you have access to a fan you can conduct a simple experiment to illustrate the
basic characteristics of the force exerted on a surface by a moving fluid. Take a piece of
cardboard and hold it at different angles in the airstream to gain a sense of the depen-
dence on orientation of the force applied to the cardboard by the air. Notice that with the
cardboard held normal to the airstream the drag is much greater than if you hold the
cardboard parallel to the flow, and at intermediate angles you will detect both a lift and
a drag force. Now change the fan speed, and notice that for a given orientation the lift
and drag forces increase dramatically with an increase in air speed. You can also readily
observe that these forces are proportional to the surface area of the cardboard. This ex-
periment demonstrates that the force applied by a moving fluid to a surface depends on
orientation, speed, and surface area.

A fluid at rest is also capable of applying a substantial force on a surface. It does so
through its hydrostatic pressure field, the nature of which was introduced in Section 2.3
and will be discussed in more detail in Chapter 5. You may have experienced the effect
of hydrostatic pressure after diving into a swimming pool. The sense of discomfort in
your ears at a depth of a meter or more is the direct result of the hydrostatic pressure
force on the outside of the eardrum being temporarily larger than that on the inside. This
hydrostatic force depends on the area of surface involved; in contrast to a moving fluid,
however, it does not depend on the orientation of the surface. Can you reduce the pres-
sure in your ears by reorienting your head underwater? The fact that you cannot do so
indicates that the hydrostatic force exerted on a surface is independent of the orientation
of that surface. This is quite different from the force exerted by a fluid in motion, for
which orientation effects are pronounced.

The preceding examples have focused on forces exerted by fluids on their sur-
roundings. It is equally important to consider forces applied to fluids. If you have
enjoyed running river rapids in a canoe or raft, or spent a pleasant afternoon sailing or
surfing, you might have wondered about the specific forces that causes a river to flow,
the wind to blow, and waves to form and break. Understanding the origins and nature of
these forces is also of interest to us in predicting and describing the fluid behavior.
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Figure 4.1 The blast wave from a volcano can
also be enormous. These trees were blown down in
the aftermath of the eruption of Mount St. Helens
in 1980.



As you read this chapter it will be helpful if you keep in mind the case studies in-
troduced in Chapter 3. It should be clear that the values of lift and drag coefficients as-
sociated with flow over flat plates, spheres, cylinders, and airfoils are determined by the
fluid forces acting on these immersed objects. The pressure drop in flow in a pipe is also
determined by the frictional force of the fluid on the wall, as is the drag of the flat plate
boundary layer. As we revisit these case studies in this chapter, you should begin to ap-
preciate the important role of fluid forces in practical applications of fluid mechanics.

In the remainder of this chapter we will describe (1) the two basic types of force in
fluid mechanics and their origins, (2) the mathematical representation or model used
to describe and calculate each type of fluid force, (3) the state of stress in a fluid, and
(4) the balance of forces in a fluid. We begin our discussion by placing fluid forces in the
broader context of other forces you have encountered in physics and dynamics.
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1Recall that both pressure (which is a form of a normal stress) and shear stress have units of
force per unit area, so that p or τ must be multiplied by the applied area to obtain the force.

CD/Dynamics/Newton’s 2nd Law of Motion

4.2 CLASSIFICATION OF FLUID FORCES

Inertial force, gravitational force, pressure force, electromagnetic force, and centrifugal
force are some of the many different forces in nature that are encountered in engineer-
ing and physics. Forces that are evident to an observer in an inertial (nonaccelerating)
reference frame are usually termed real forces. Examples include gravitational and elec-
tromagnetic forces as well as forces associated with pressure and shear stress.1 When
Newton’s second law is written in its inertial form as �F − ma = 0, the product −ma
is called the inertial force because it has the dimensions of force, {M Lt−2}. Since this
inertial force is evident to an observer in an inertial reference frame, it too should be
classified as a real force.

A second category, called apparent forces, are forces that appear to be present to an
observer for a noninertial (accelerating) reference frame. They appear in Newton’s sec-
ond law when written in a noninertial reference frame as additional acceleration terms.
In a noninertial reference frame the fluid behaves as if forces are acting due to the ac-
celeration. Centrifugal and Coriolis forces are familiar examples of apparent forces.

All forces in fluid mechanics, real or apparent, are divided into two distinctive
types: body and surface forces. Body forces, of which gravity and electromagnetic
forces are the familiar examples, are long-range forces that act on a small fluid element
in such a way that the magnitude of the body force is proportional to the element’s mass.
Since the element’s mass is defined to be density times volume, the magnitude of a body
force is also proportional to the volume of a fluid element. Thus, body forces are ex-
pressed on a per-unit-volume basis in units such as newtons per cubic meter (N/m3) or
pound-force per cubic foot (lbf/ft3), and on a per-unit-mass basis with units of accel-
eration. In fluid mechanics, body forces are considered to be external forces; i.e., they
are thought of as acting on a fluid, but not as forces applied by a fluid. Body forces exert



their influence on a fluid at rest or in motion without the need for physical contact be-
tween the external source of the body force and the fluid. The apparent forces described
above also act in this way. Thus, centrifugal and Coriolis forces are categorized as body
forces.

Surface forces, such as those exerted by pressure or shear stress, are short-range
forces that act on a fluid element through physical contact between the element and its
surroundings. As shown in Figure 4.2, a surface force is exerted across every boundary
or interface between a fluid and another material. The second material may be a solid,
another portion of the same fluid, or a different fluid. Surface forces are also frequently
referred to as contact forces. In fluid mechanics, surface forces are thought of as acting
on a fluid, and also as applied by a fluid to its surroundings. These forces exist at every
interface wetted by a fluid and are present irrespective of whether the fluid is at rest
(pressure only) or in motion (pressure and shear stress). Since the magnitude of a sur-
face force is proportional to the contact area between the fluid and its surroundings,
surface forces are expressed in units of force per unit area (e.g., N/m2 or lbf/ft

2).

4.3 THE ORIGINS OF BODY AND SURFACE FORCES

Body and surface forces arise from the underlying structure of matter and the four fun-
damental forces in the universe: gravitational, electromagnetic, and strong and weak
intermolecular. The cause of a body force such as gravity is the presence of matter itself.
In physics you learned that the gravitational force FG exerted by a particle of mass M1

on a second particle of mass M2 is given by 

FG =
(

G M1 M2

r2

)
r

where G is the universal gravitational constant, r is the distance between the particles,
and r is a unit vector pointing from the second particle toward the first. Although it is
true that one portion of a fluid exerts a gravitational attraction for other portions of the

4.3 THE ORIGINS OF BODY AND SURFACE FORCES 149

Fluid A

Fluid B

Force exerted by fluid A on fluid B
across a fluid–(different) fluid boundary

Force exerted by one
portion of fluid B on
a different portion of

fluid B across a
fluid–(same) fluid

boundary

Force exerted by
fluid B on the solid

wall across the
fluid–solid boundary

Figure 4.2 Examples of surfaces forces acting on
fluid boundaries.



same fluid, this effect is negligible unless the problem involves a mass of fluid the size
of a planet or star. In that case the fluid is referred to as self-gravitating. In normal engi-
neering practice, Earth’s gravity field is assumed to be due to the mass of the planet and
unaffected by the presence of fluid. The variation in Earth’s gravitational force with dis-
tance is so small that all portions of a fluid volume of normal dimensions experience a
gravitational force of equal magnitude. Thus, the gravitational force clearly has the char-
acteristic of a body force: it is an external force that acts on the mass or volume of fluid.

Electromagnetic forces are also body forces and have the same long-range char-
acter. You are unlikely to encounter electromagnetic forces in fluid mechanics unless
you work on specialized applications involving intense electric and magnetic fields.
Examples include electrostatic precipitation (see Figure 4.3) and magnetohydrodynam-
ics. In any case it should be evident that body forces arise from the fundamental gravi-
tational and electromagnetic forces in nature.

Now let us look at the origins and characteristics of surface forces in more detail.
Consider the surface force acting on the interface between a fluid and a solid piston in the
system shown in Figure 4.4A. When an external force is applied to the piston, the piston
moves and fluid in the cylinder is compressed. What is actually happening at the
fluid–piston interface? We will consider this question from the macroscopic perspective
first, then from the molecular perspective. Figure 4.4B shows a macroscopic force bal-
ance on this infinitely thin, and therefore massless interface. Surface forces are applied to
this interface by the piston and by the fluid. Since the interface is massless, it can have no
momentum; Newton’s second law shows that the two forces are equal in magnitude and
opposite in direction. This equality holds regardless of whether the interface, piston, and
fluid are moving. Thus our first conclusion about surface forces is that the force exerted
by a fluid on a solid is always equal and opposite to the force exerted by a solid on a fluid.
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Dirty
 gas

Ground

Collected
dust on plates

Dust collection plates

High voltage wires
for corona discharge

Dust removed from
plates to hoppers

Clean gas

Figure 4.3 Schematic of an electrostatic precip-
itator, which is used to clean particulate matter
from gas flows such as the exhaust from a coal-
fired boiler.



Now consider the fluid–piston interface from a molecular perspective. The surface
forces applied to this interface by the fluid are generated through molecular momentum
transfer. For simplicity, we will assume that the fluid in our cylinder is a gas. Gas mole-
cules have a mean and random thermal component to their motion. The mean motion de-
fines the macroscopic gas motion, and the random component causes the molecules to
continuously collide with one another. As gas molecules collide, there is on average a
net momentum transfer from higher momentum regions to lower momentum regions.
This momentum transfer process is the mechanism by which surface forces are trans-
mitted to the interior of a gas. Molecular momentum transfer also occurs in liquids but
differs in the details of the interaction process.

How does the gas exert a surface force on the stationary piston in our example? We
may think of the force as being transmitted at the molecular level through collisions of
moving gas molecules with the molecules of the solid piston. A moving fluid molecule
possesses translational momentum. In its encounter with a solid molecule, momentum
transfer takes place and is felt as a force on the solid molecule and an equal and oppo-
site force on the gas molecule. After the collision with the solid molecule, the gas mol-
ecule rebounds away and continues moving until it undergoes its next collision. This
collision is likely to be with a neighboring gas molecule approaching the piston, at
which time another momentum transfer occurs but this time within the gas. This latter
process is responsible for the existence of stress in the gas or fluid and will be discussed
further in a moment.

We have shown that surface forces are the macroscopic consequence of molecular
momentum transfer. The transfer process is through collisions, and this idea of a colli-
sion is simply another way of talking about the action of short range intermolecular
forces. Thus we can think of surface forces as arising from fundamental intermolecu-
lar forces. By recognizing the underlying mechanism of surface forces, we see that this
force occurs regardless of the volume of fluid or solid involved provided only that the
thickness of either material is more than a few molecular diameters in a direction nor-
mal to the interface. A surface force therefore depends on the contact area between a
fluid and a second material but not upon the volume of either material.

Now that you know about the two types of fluid force and their origins, it is time to
introduce the mathematical models that describe body and surface forces.

4.3 THE ORIGINS OF BODY AND SURFACE FORCES 151

FfluidFpiston

Enlarged view of the
solid–fluid interface
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Figure 4.4 (A) Interface between a fluid and solid. (B) Enlargement of the mass-
less interface.



4.4 BODY FORCES

The body forces encountered in fluid mechanics are vector functions of position and
time. We therefore write the body force per unit mass f in general as 

f = f(x, t) (4.1)

where f(x, t) represents the net long-range force acting on a fluid particle or infinitesi-
mal volume of fluid located at position x at time t . In this text we do not discuss body
forces that depend on time, so we will write Eq. 4.1 in a Cartesian coordinate system in
the form

f = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k (4.2)

where ( fx , fy, fz) are the three components of the body force, each of which may de-
pend on position.

It is often possible and convenient to select the coordinate system so that the body
force vector is aligned with one of the coordinate axes. For example, if we are modeling
Earth’s gravitational body force in Cartesian coordinates, we can elect to align the z axis
vertically upward, parallel to the direction of gravity. The force of gravity, therefore, acts
downward in this coordinate system. The resulting expression for the gravitational body
force per unit mass is

f = −gk (4.3)

where gravity, g, has dimensions of force per unit mass (or acceleration). We shall al-
ways treat gravity as a constant, but you should be alert to situations in which the body
force acting on a fluid is not spatially constant. Comparing Eq. 4.3 with the general form
of Eq. 4.2, we see that it makes sense to align the coordinate system with the body force
if possible.
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EXAMPLE 4 .1

Consider the case of a liquid film flowing down a tilted flat plate under the action of
gravity as shown in Figure 4.5. Write the body force in the coordinate system illustrated
in the figure.

x y

z

g

Liquid flow

	

Figure 4.5 Schematic of liquid flowing
down an incline.
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SOLUTION

The coordinate system shown does not have an axis aligned with the gravitational body
force. Thus we must use Eq. 4.2 and the geometry to determine the appropriate expres-
sions for the components of the body force. By inspection of Figure 4.5 and the use of
Eq. 4.2 we see that the body force is given by

f = 0 i + g sin βj − g cos βk

In a problem like this we are free to align the coordinates any way we like, but it is usu-
ally better to align one of the coordinates in the flow direction. In this case, one coordi-
nate is aligned parallel to the plate and causes the body force to have two components in
these coordinates. 

Body forces act on individual fluid particles and on entire volumes of fluid. Con-
sider a fluid particle of volume δV in a body force field per unit mass given by f. The
long-range nature of a body force ensures that over the scale of a fluid particle, any vari-
ation in the body force is negligible. By definition the density ρ does not vary over the
scale of a fluid particle, so the mass of the particle is ρδV , and the body force δFB act-
ing on the fluid particle is simply given by the product of the body force per unit mass
and the particle mass:

δFB = ρfδV (4.4)

Since the density and body force per unit mass may vary with the position of the fluid
particle in the fluid, they must generally be evaluated at the location of the fluid particle.

For a fluid particle in Earth’s gravity field with no other body forces acting, we can
use Eq. 4.3, f = −gk, to write Eq. 4.4 in Cartesian coordinates with z upward as

δFB = −ρgδV k (4.5)

The mass of this particle is M = ρδV , and the product ρgδV is simply the weight of the
fluid particle δW . Thus the body force acting on a fluid particle in this case can also be
written as

δFB = −δWk (4.6)

EXAMPLE 4 .2

The density of the liquid in the rotating cylinder shown in Figure 4.6 is ρ = 865 kg/m3.
Because of gravity and rotation this liquid is subjected to a spatially varying body force
field of the form f = rΩ2er − gk. The angular velocity is Ω = 60 rpm. Compare the
body force acting on 1 cm3 of fluid located at positions A and B in Figure 4.6.
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R � 1 m

B (0,0,0)

z

�

h � 5 m

r


 � 60 rpm

A (1,0,5)

Figure 4.6 Schematic for Example 4.2.

SOLUTION

Applying Eq. 4.4 with f = rΩ2er − gk we have

δFB = ρ f δV = ρ(rΩ2er − gk)δV

The density of a liquid is constant, so for point A, which is located at (1, 0, 5), and with
δV = 1 cm3 = 10−6 m3, we find:

δFB = 865 kg/m3

[
(1 m)

[
(60 rpm)

(
2π rad

rev

)(
1 min

60 s

)]2

er − 9.81 m/s2 k
]
(10−6 m3)

δFB = (0.034 er − 0.0085k) N

For point B, which is located at (0, 0, 0) we find:

δFB = 865 kg/m3(0er − 9.81 m/s2 k)(10−6 m3) = (−0.0085k) N

In both locations the body force vector has a vertical component due to gravity. In addi-
tion, a fluid particle located off the rotation axis also experiences a centrifugal force in
the radial direction because of the rotation. Note that we have assumed that 1 cm3 of
fluid can be considered to be a fluid particle.

The preceding discussion enables us to represent the body force acting on a single
fluid particle. Suppose we have an arbitrary volume of fluid of variable density ρ(x, t),
as shown in Figure 4.7. If the net body force per unit mass from all sources is given by
f(x), how do we calculate the total body force FB acting on this finite volume of fluid?
The answer is found by realizing that a finite volume of fluid contains a large number of
fluid particles. To find the total body force acting on the entire volume, we must add up
the body force contributions on each fluid particle using a volume integral.

To derive this volume integral, we first subdivide the total volume of interest into
infinitesimal volume elements of size dV as shown in Figure 4.7. The density and body



force will then be spatially constant within each of these infinitesimal volume elements,
although they may still vary with the position of the element. Since each of the infini-
tesimal volume elements may be thought of as a fluid particle, we can apply the results
of the last section to calculate the body force on each individual element. Noting that the
mass of each volume element is ρ dV , and the body force per unit mass is f, the body
force acting on an individual volume element is

dFB = ρf dV

Finally, to find the total body force FB acting on the entire volume of fluid, we use a vol-
ume integral to sum the contributions from every infinitesimal volume element:

FB =
∫

ρf dV (4.7)

In most problems of interest, setting up and evaluating the volume integral in
Eq. 4.7 is straightforward. For example, for a constant density fluid in Earth’s gravity
field, we can take both the density and body force outside the integral in Eq. 4.7 and
obtain

FB =
∫

ρf dV = −ρgk
∫

dV

The remaining integral is now equal to the volume of fluid –V so we have

FB = −ρg –V k (4.8a)

Since the density is constant, the mass of this volume of fluid is M = ∫ ρ dV = ρ –V .
The product ρg –V is simply the weight of the fluid in the volume W. Thus we can also
write this result as

FB = −Wk (4.8b)

As you would expect, the gravitational body force acting on a volume of constant den-
sity fluid is equal to the weight of the fluid.

If we encounter a variable density fluid in earth’s gravity field, we can evaluate the
general expression Eq. 4.7 by taking the constant body force f = −gk outside the inte-
gral while leaving the variable density inside and writing FB = ∫ ρf dV = −gk

∫
ρ dV .

Defining an average density as ρ̄ = (1/–V )
∫

ρ dV , we can write the gravitational body
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Variable density
fluid with �(x, t)

Volume element
of size dV

Figure 4.7 A finite volume of fluid with a variable
density field.



force as

FB = −ρ̄g –V k (4.9a)

In this case M = ∫ ρ dV = ρ̄ –V is the mass of the volume of fluid of interest, so the
weight of this fluid is W = Mg = ρ̄g –V . Thus, as was the case for a constant density fluid,

FB = −Wk (4.9b)

That is, the gravitational body force acting on a volume of variable density fluid is also
equal to the weight of the fluid. In using any of the preceding equations, it is important to
recognize that the total body force FB is a vector. Thus we have been careful to include
the appropriate unit vector in our expressions. It is always possible to write FB in terms of
its three components by equating components on each side of the corresponding equation.

In calculating the total body force on a volume of fluid, it is important to recognize
that if either the density or the body force per unit mass is spatially variable, we may need
to evaluate the volume integral in Eq. 4.7. The following example illustrates this process.
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EXAMPLE 4 .3

Calculate the total body force acting on the water in a cylindrical tank with a height
34 in. and a radius of 11 in. Express your answer in newtons and pounds-force.

SOLUTION

The geometry for this problem is similar to that shown in Figure 4.6 and we will make
use of the same coordinate system illustrated there. Gravity is the only body force act-
ing in this case, thus from Eq. 4.8a, we have FB = −ρg –V k, where the volume of the
tank is easily seen to be –V = π R2 H . The gravitational body force on the volume of
water is thus FB = −ρgπ R2 Hk. Inserting the given data we find:

FB = −(998 kg/m3)(9.81 m/s2)(π)(11 in.)2(34 in.)

(
2.54 × 10−2 m

1 in.

)3

k

= −2074 N k

Converting this to pounds-force, we find: FB = −2074 N k = −466 lbfk. You
might have noticed that this tank is approximately the size of a 55-gallon drum. In fact
the volume is

–V = π R2h = π(11 in.)2(34 in.)

(
1 gallon

231 in.3

)
= 55.95 gallons

If you have ever tried to move a 55-gallon drum filled with liquid, you know it is heavy.
Note that to solve this problem by using the volume integral in Eq. 4.7, we would write

FB =
∫

ρf dV =
∫ H

0

∫ 2π

0

∫ R

0
ρ(−gk)r dr dθ dz

and obtain the same result.
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EXAMPLE 4 .4

The liquid in the cylinder illustrated in Figure 4.8 is subjected to a temperature variation
along its axis. This results in a linear density profile in the fluid given by ρ(z) = ρ0 − αz ,
where ρ0 = 1020 kg/m3. It is known that the density at the top of the tank is 40 kg/m3

less than that at the bottom of the tank. The cylinder dimensions are R = 1 m and
H = 10 m. What is the total body force acting on the liquid?

R � 1 m

H � 10 m
Variable density

fluid with
�(z) � �0 � �z

z

�
r

Figure 4.8 Schematic of a cylinder filled with a variable
density fluid.

SOLUTION

We are asked to determine the total body force acting on a volume of liquid. The geom-
etry is illustrated in Figure 4.8. The liquid density is variable, its volume is defined in the
figure, and the only body force acting is gravity. The constant α can be deduced from
the problem statement to be α = −dρ/dz = 40 kg/m3/10 m = 4 kg/m4 . This problem
can be solved by using Eq. 4.7: FB = ∫ ρf dV . Although the body force is constant, we
must account for the fact that ρ varies significantly over the volume of fluid under in-
vestigation. This fluid volume is conveniently described by using cylindrical coordi-
nates. In this case, Eq. 4.7 is

FB =
∫∫∫

ρf r dr dθ dz =
∫∫∫

(ρ0 − αz)(−gk)r dr dθ dz

The limits of integration are 0 to R for r and �H to 0 for z. The theta integration can be
performed by inspection, yielding 2π . Thus we have

FB = 2π(−gk)

∫ 0

−H

∫ R

0
(ρ0 − αz)r dr dz = π R2(−gk)

∫ 0

−H
(ρ0 − αz) dz

Completing the integration we have:

FB = π R2(−gk)

(
ρ0 H + α

H 2

2

)



In Example 4.4 the fluid was at rest. Body forces also act on a volume of fluid in
motion. How do we calculate the total body force on a volume filled with moving fluid?
To accomplish this task, we must calculate the total body force on a given volume of
fluid at a specified instant of time, for in the next instant of time the value may change,
perhaps owing to a change in density. Once a specific instant of time has been chosen,
we consider the volume to be fixed for the calculation and ignore the motion of the fluid.
Mathematically speaking, the limits of integration are fixed, so the volume integral
defining the total body force is carried out as usual.

In some applications, the effect of apparent forces must be included in the calcu-
lation of the total body force. If this is the case, the total body force is calculated as usual
by using Eq. 4.7, but it is necessary to include the applicable apparent body force
(i.e., Coriolis, centrifugal, or inertial) in addition to any real body forces present. For
example, in Example 4.2, which involved gravity and rotation, this led to writing the
body force per unit mass acting on the liquid in a rotating cylinder as f = rΩ2er − gk.
The total body force acting on the liquid in the cylinder in that example may be calcu-
lated by using Eq. 4.7 to write

FB =
∫

ρf dV =
∫ H

0

∫ 2π

0

∫ R

0
ρ(rΩ2er − gk)r dr dθ dz

You probably realize that the effect of gravity here is a contribution −ρgπ R2 Hk, i.e.,
the usual weight of the liquid term. The effect of the centrifugal force is zero. This may
not be intuitively clear unless you realize that the symmetry prevents a net body force in
the radial direction.2 In certain cases an apparent body force may result in a net body
force on a volume of fluid. This situation is illustrated next.
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2To evaluate the integral correctly and confirm this statement, you must recognize that the unit
vector in the radial direction is actually a function of θ given by er = cos θ i + sin θj. Substitute
this expression into the body force integral above and see if you can confirm that the centrifugal
body force gives a zero contribution to the total body force.

We can rearrange this result slightly to yield:

FB =
(

ρ0 + α
H

2

)
(−gk)π R2 H

Inserting the data, the total body force is found to be:

FB = [1020 kg/m3 + 4 kg/m4 (10 m/2)](−9.81 m/s2 k)π(1 m)2(10 m)

= −320,191 N k

Since the only body force is gravity, we could have used Eq. 4.8a (FB = −ρ̄g –V k),
observing that the average density of the liquid in this case is the value
ρ̄ = ρ0 − α(−H/2) at the midheight of the tank, since the density profile is linear. This
gives the same result and would have saved a lot of effort.
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EXAMPLE 4 .5

A tanker truck is accelerating at 1 mph/s as shown in Figure 4.9. The cylindrical tank
is filled with gasoline. What is the body force per unit mass acting on the gasoline due
to the truck’s acceleration and gravity? What is the total body force acting on the
gasoline?

L � 8 m

	x

D � 1.5 m a � 1 mph/s

Figure 4.9 Schematic of an accelerating truck.

SOLUTION

We can write the absolute acceleration of any moving body as a = ax i + ayj + azk. The
inertial force per unit mass corresponding to this acceleration is then −a. The sum of the
real body force per unit mass and this (apparent) inertial force is therefore f − a. We can
check this conclusion by asking what the body force per unit mass acting on a volume
of fluid in free fall in Earth’s gravity field would be? In that case, we have a = −gk,
since a volume in free fall will accelerate downward with the acceleration of gravity.
The net body force is f − a = [(−gk) − (−gk)] = 0, which is correct because free fall
simulates zero gravity. For the tanker truck in this example, we find 

a = ax i + ayj + azk = 1 mph/s i = 1.47 ft/s2 i

The total body force per unit mass acting on the gasoline is f − a = −32 ft/s2 k −
1.47 ft/s2 i. Thus, the acceleration of the truck in the +x direction creates an apparent
body force in the −x direction. Since the density and body force per unit mass are con-
stant, the total body force acting on the gasoline can be calculated by using Eq. 4.7:
FB = ∫ ρf dV = ρf

∫
dV = ρf–V. We can interpret this as showing that the truck’s ac-

celeration modifies the apparent “gravity” insofar as the fluid is concerned. In this case
we know f − a = −32 ft/s2 k − 1.47 ft/s2 i, which shows that the acceleration acts like
a sideways inertial force. If the acceleration happened to occur in the vertical direction,
the inertial force would modify the felt “gravity.” To complete the calculation we would
use the known capacity of the tanker truck and obtain the density of gasoline from
Appendix A.
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From our earlier discussion of surfaces forces, we know that in general the force exerted
by a fluid on a solid surface depends on the area and orientation of the surface and
whether the fluid is or is not moving. This is also true of the surface force exerted by a
fluid on an interior surface (see Figure 4.2). In the case of a solid surface, the surface
force is thought of as being exerted by the fluid on the solid. In the case of an interior
surface, the surface force can be thought of as being exerted by one part of a fluid on
another. In either case, the magnitude and direction of the surface force may vary on dif-
ferent parts of the selected surface. To account for these observed features we will em-
ploy the concept of a stress vector �, and explain the features of the stress vector by
using an interior surface lying in the fluid.

Consider an infinitesimal planar element of surface of area dS and outward unit
normal n as shown in Figure 4.10. The infinitesimal element is so small that there is no
spatial variation in the surface force acting on the element. We can now define the stress
vector � as the surface force per unit area acting on this infinitesimal surface element of
area dS. Since the stress vector is uniform, the surface force, dFS acting on this element
is given by the product of the stress vector and the area of the element, or

dFS = �dS (4.10)

Alternately, we may write that the stress vector is given by

� = dFS

dS
(4.11)

The convention regarding the stress vector is that � represents the surface force per unit
area applied to a surface by the fluid on the side of the surface toward which the unit
normal points.

Note that the dimensions of the stress vector are {F L−2}. Any quantity with these
dimensions may be termed a stress. For example, pressure is a normal force per unit area
or normal stress, and you are also familiar with the concept of a shear stress. In moving
fluids, the surface force per unit area has both normal and tangential components. Thus,
it is necessary to represent the surface force per unit area as a vector, which is why we
employ the stress vector.

Observation suggests that the stress vector acting on an infinitesimal planar surface
element in contact with fluid may be dependent on the position of the element x, on the
time t , and on the orientation of the surface element as given by n. To account for these
observed features, the stress vector � is represented mathematically as

� = �(x, t, n) (4.12)
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�

Figure 4.10 Surface element dS with out-
ward unit normal n and stress vector �.



From the force balance argument for a massless interface given earlier, the stress vector
acting on the back side of this same element must be equal and opposite to the stress vec-
tor acting on the front side. This is expressed by writing

�(x, t,−n) = −�(x, t, n) (4.13)

The dependence of the stress vector on the orientation of the surface on which it acts is
a highly significant feature, which you should keep in mind as we proceed. In Cartesian
coordinates the stress vector may be written as 

� = �x i + �yj + �zk (4.14)

where the three components of the stress vector are given in the usual way by

�x = � • i, �y = � • j, and �z = � • k (4.15)

In fluid mechanics, the orientation of any surface is specified by the outward unit
normal n of the surface. Since a surface may have an arbitrary shape and orientation, the
outward unit normal vector may vary at different positions on the surface. Compare
the unit normal on the flat surface in Figure 4.11A to that on the curved surfaces in Fig-
ure 4.11C. If the shape and orientation of a surface are specified, the outward unit nor-
mal is known, and vice versa. Thus, the outward unit normal to a surface plays a key role
in the description of surface forces.

Notice that the outward unit normal on the surface in Figure 4.11A is pointing from
the solid toward the fluid. Why is n drawn in this direction rather than in the opposite di-
rection? The answer is that the direction of n is set by a convention. For closed surfaces,
like those shown in Figure 4.11C and 4.11D, n always points away from the interior of
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EXAMPLE 4 .6

Find the surface force acting on a square element of surface 1 mm on a side located on
a surface in the interior of a fluid. The stress vector acting on the front side of this ele-
ment is given by � = −105 N/m2 i + 2.5 × 10−3 N/m2 j + 0k . What is the stress vec-
tor and surface force acting on the back side of this element?

SOLUTION

Assuming that an element of this size may be considered to be infinitesimal, and using
Eq. 4.10, dFS = �dS, the surface force on the element’s front side is the product
of the corresponding stress and the element area, dS = 10−6 m2. Thus we find
dFS = −0.1 Ni + 2.5 × 10−9 N/m2 j + 0k . On the opposite side of the element the
normal is in the opposite direction; thus by Eq. 4.13, the stress vector on the back side
has the opposite sign. The stress vector and surface force on the back side of the element
are found to be � = 105 N/m2 i − 2.5 × 10−3 N/m2 j + 0k and dFS = 0.1 N i − 2.5 ×
10−9 N/m2 j + 0k. As expected, the surface force on the back side is equal and opposite
to that acting on the front side.



the region bounded by the closed surface. For an open surface, like those shown in Fig-
ure 4.11A, 4.11B, and 4.11E, the convention is that n points from the surface toward the
agent responsible for the surface force. If we are considering the force applied to a solid
by a fluid, then n points at the fluid (Figure 4.11A). If we are interested in the force ap-
plied to the fluid by the solid wall, n points at the solid (Figure 4.11B). In what direction
does n point for the force on an interface within a fluid (Figure 4.11E)? The direction of
n on this open surface obeys the standard rule: it points toward the fluid on the side of the
interface from which the surface force of interest originates. Thus, n can point in either
direction, and our analysis must identify the agent responsible for the surface force.

To continue our discussion of the stress vector, recall that a fluid in motion exerts
normal and tangential stresses on a surface. Thus, as shown in Figure 4.12, we can
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Figure 4.11 Outward unit normal for fluid mechanics problems of five types.
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always write the stress vector at any point on the surface as the following sum

� = σN n + � (4.16)

where σN n is a vector pointing in the normal direction and � is a vector tangent to the
surface. From this equation it is evident that σN is defined by the dot product

σN = � • n (4.17)

thus it is appropriate to refer to σN as the normal stress. The normal stress σN also has
dimensions {F L−2} and thus has typical units of N/m2 (Pa), lbf/ft

2, or psi. From Eq. 4.17
and our convention for n, we conclude that a positive value for σN represents a tensile
surface force applied by the fluid to the surface at this point. Since we know that a fluid
cannot exert a tensile force under ordinary circumstances, the normal stress σN is always
negative, and the vector σN n must always point into the surface.

Examination of Figure 4.12 and Eq. 4.16 shows that the vector � defines the surface
force acting in the tangential direction at this point on the surface. If we represent the
tangential or shear stress as τ , assumed positive as a convention, then it is clear that τ is
the magnitude of the vector � in Eq. 4.16, and also has dimensions {F L−2} and typical
units of N/m2 (Pa), lbf/ft

2, or psi. Keep in mind that in most flows, the normal stress is
actually very large compared with the shear stress, often thousands of times larger. This
means that in Figure 4.12 we have had to exaggerate the scale of the vector �; otherwise
it would not be visible on the same plot as the vector σN n. To give you a rough idea of
some numbers, a flow may have a shear stress of 100 Pa, and a normal stress of roughly
atmospheric pressure or 101 kPa.

Unlike the normal stress, the direction of the shear stress, i.e., the direction of the
vector �, is not known a priori from the surface geometry. Although the line of action
of the normal stress is uniquely determined solely by the outward unit normal, the line
of action of the tangential stress is known only to lie in the plane tangent to the sur-
face. The direction of the tangential stress within the tangent plane is determined by
the flow itself. As you gain experience with fluid mechanics, you will learn to recog-
nize the likely direction of the shear stress on a surface from the direction of the nearby
flow. Recall, for example, the case study on the flat plate boundary layer and the
alignment of the shear stress on the plate with the freestream flow direction (Figure
3.18). In most cases the shear stress points downstream. However, in the event of flow
reversal, which is illustrated for the flow over a cylinder in Figure 3.3, there is also a
reversal of the direction of the shear stress. As a matter of guidance, we can say that
we expect the shear stress on a surface to generally act in the same direction as the
nearby flow.

In most cases, we have a good idea of the direction of the shear stress. If the stress
vector and unit normal are given or known, we don’t need to worry about the direction
of the tangential stress at all, because we can rearrange Eq. 4.16 to get

� = � − σN n (4.18)

and use this equation to determine the vector �. We do this by first using the known
stress vector and unit normal to evaluate Eq. 4.17, σN = � • n, thereby obtaining the
normal stress, then use the normal stress and unit normal to evaluate Eq. 4.18 and find
the vector �. Once we have this vector, we can determine both the shear stress τ (the
magnitude of �), and its direction. 
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EXAMPLE 4 .7

Find the normal and tangential stresses at the point (1, 2, 1) on the plane defined by
x − y + 1 = 0, if the stress vector at this point is � = 4i − 10j + 2k, where the units
for stress are psia. Choose the side of the plane by selecting the unit normal so that it
points away from the xz plane. The relevant geometry is shown in Figure 4.13.

Plane: x � y 	 1 � 0

�

Point: (1,2,1)

n

� � 4i � 10j 	 2k

z

x

y

i � j
2�

Figure 4.13 Schematic for Example 4.7.

SOLUTION

The normal stress is found first by using Eq. 4.17, σN = � • n. For a surface defined by
an equation of the form f (x, y, z) = 0, we can use the gradient to construct the normal:
n = � f /|� f |. Note that there are two possible normals to the surface, one for each
side. In this case, we have f (x, y, z) = x − y + 1 so with � f = i − j and |� f | = √

2,
we find n = (i − j)/

√
2. The opposite normal is n = (−i + j)/

√
2, which is the normal

we want. To find the normal stress, we now use Eq. 4.17:

σN = � • n = (4i − 10j + 2k) •
−i + j√

2
=
(−4√

2
− 10√

2
+ 0

)

= −14√
2

= −7
√

2 psia

To find the tangential stress, we use Eq. 4.18 to write

� = � − σN n = (4i − 10j + 2k) − (−7
√

2)
−i + j√

2
= −3i − 3j + 2k
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The tangential stress is the magnitude of this vector or

τ = |�| =
√

(−3)2 + (−3)2 + (−2)2 =
√

22 psia

Note that the unit normal vector may also be found by inspection or by using the direc-
tion numbers to the plane. In this example the normal and shear stress are of the same
order of magnitude.

EXAMPLE 4 .8

Consider pressure-driven viscous flow through the parallel plate channel shown in Fig-
ure 4.14A. It is known that the shear stress distribution on the top and bottom wall is
given by τ = (h/2)(p1 − p2)/L , and the pressure distribution on each wall is
p(x) = p1 − [(p1 − p2)/L]x . Find the stress vector acting on each wall.

In a moving fluid the normal stress acting at a point on a surface and the pressure in
the fluid at that point are not necessarily identical. There can be a viscous contribution
to the normal stress that is not accounted for by the pressure. Nevertheless, in fluid
mechanics, the terms “normal stress” and “pressure” are often regarded as synonymous
because the difference between these two quantities (the viscous contribution) is almost
always negligible in flows of engineering interest. Thus, we can usually assume
σN = −p and write the stress vector for a fluid in motion as

� = −pn + � (4.19)

Equation 4.19 suggests that in thinking about the force exerted by a moving fluid on a
surface, we consider the action of pressure and shear stress.

In the next chapter, on fluid statics, we show that the normal stress and pressure are
exactly the same in a fluid at rest; i.e., writing σN = −p is not an approximation of any
kind. We also know that in a fluid at rest the tangential stress is identically zero. Thus we
can write the stress vector in a fluid at rest as

� = −pn (4.20)

We conclude that the stress vector in a fluid at rest acts normal to a surface at every
point. This type of stress field, in which tangential components are absent, is called a hy-
drostatic state of stress. If we have information about the pressure and shear stress act-
ing on a surface, we can use the preceding results to calculate the stress vector acting on
the surface.
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SOLUTION

We can use Eq. 4.19, � = −pn + �, to determine the stress vector. For flow from left to
right as shown in Figure 4.14A, the shear stress vector � on each wall must point down-
stream and must be aligned with the flow direction, i.e., � = τ i. The unit normal on each
wall points into the fluid. Thus the stress vector on the bottom plate, for which
n = j is given by � = −pn + � = −p(x)j + τ i. There is no stress acting in the
z direction, so � = τ i − p(x)j + 0k. The constant wall shear stress is τ = (h/2)

(p1 − p2)/L , and the pressure distribution on the wall is p(x) = p1 − [(p1 − p2)/L]x .
On the top plate with n = −j we find � = −pn + � = −p(x)(−j) + τ i = p(x)j + τ i ,
or � = τ i + p(x)j + 0k, with τ and p(x) given by the same functions. The stress
vectors (which are the vector sums of the normal and tangential stress vectors) vary with
position along each wall as shown in Figure 4.14B.

EXAMPLE 4 .9

For the liquid at rest shown in Figure 4.15A the hydrostatic pressure distribution is
p(z) = pA − ρg(z − h), where pA is the ambient pressure at the liquid surface. What is
the stress vector on the bottom surface A and the side surface B?

y

x

n � �j

n � j

Fluid

Pressure

�

(A)

(B)

Figure 4.14 Schematic for Example 4.8. (A) Velocity distrib-
ution for pressure-driven flow through parallel plates. (B) Stress
distribution.
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SOLUTION

Since the fluid is at rest, the stress vector can be found by using Eq. 4.20: � = −pn.
On surface A, located at z = 0, the unit normal vector is n = k, so on this surface
the stress vector is given by � = −pn = −pk. To find the pressure on this surface,
we evaluate the pressure distribution at z = 0 (which defines the surface) and obtain
pz=0 = (pA − ρg(0 − h)) = (pA + ρgh). Thus the stress vector on surface A is
� = −(pA + ρgh)k. The stress vector is a constant on surface A and points into the
surface (compression).

On surface B, n = −j, and the pressure at a height z on this surface is
p(z) = pA − ρg(z − h). Thus the stress vector varies on this surface and is a function
of z given by

� = −pn = −[pA − ρg(z − h)](−j) = [pA − ρg(z − h)] j

This vector also points into the surface. These stress vectors are shown in Figure 4.15B.

n � k

Surface A
(bottom of cube)

Surface B
(right side
of cube)h

x

z

y

h

y

z

� � �(pA 	 �gh)k

� � (pA � �g(z � h))j

(B)(A)

n � � j

x

Figure 4.15 Schematic for Example 4.9. (A) surface definition. (B) Stress vectors.

To calculate the total surface force FS acting on an entire surface in contact with
fluid, we must account for the fact that the magnitude and direction of the stress vector
may vary on the surface. To do this we divide the surface into infinitesimal oriented
surface elements, each of area dS, with an outward unit normal n as shown in Fig-
ure 4.16. The differential surface force dFS acting on any one of these elements is given
by Eq. 4.10 as dFS = �dS, and the total force on the entire surface may be found by
using a surface integral to sum the individual contributions from each surface element.



Thus the total surface force acting on any surface is given by

FS =
∫

S
� dS (4.21)

The total surface force FS is a vector quantity whose components may be re-
solved in any desired direction. We often wish to write the total force in Cartesian co-
ordinates. Recalling that Eq. 4.14 gives the stress vector in these coordinates as
� = �x i + �yj + �zk, we can substitute this definition into Eq. 4.21 to obtain

FS =
∫

S
� dS =

∫
S
(�x i + �yj + �zk) dS

The Cartesian components of the total force (FSx , FSy , FSz ) are related to the three
Cartesian components of the stress vector by the integrals:

FSx =
∫

S
�x dS, FSy =

∫
S
�y dS, and FSz =

∫
S
�z dS (4.22a–c)

We have shown that the total surface force FS acting on any surface in contact with
fluid is found by integrating the stress vector over the surface. In a fluid in motion, we
can use Eq. 4.19 to write the stress vector as � = −pn + �, and substitute this into
Eq. 4.21: FS = ∫S � dS. The result is 

FS =
∫

S
−pn dS +

∫
S

� dS (4.23)

We see that in a fluid in motion the total surface force may be found by integrating the
pressure and shear stress over the surface and that it is the net action of pressure and
shear stress acting on each element of a surface that produces the resulting surface force.
To evaluate the integrals, we must know the pressure and shear stress at each point on
the surface. This is often accomplished by using a CFD code to solve the governing
equations of fluid mechanics.
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dS
 dFS � �dS

Figure 4.16 An infinitesimal surface element.



In the special case of a fluid at rest, the shear stress is zero, and we can use Eq. 4.20,
� = −pn, in Eq. 4.21. Thus in a fluid at rest the total surface force is given by

FS =
∫

S
−pn dS (4.24)

Of course this result can also be obtained by simply putting � = 0 in Eq. 4.23. In either
case, Eq. 4.24 shows that the total surface force in a fluid at rest is found by integrating
the (hydrostatic) pressure over the surface. Methods for determining the pressure distri-
bution in a fluid at rest are described in the next chapter on fluid statics.

The next two exercises demonstrate how the integrals defining the total surface
force are evaluated in a simple case. These integrals can be tedious for a curved surface,
and although modern CFD programs evaluate these integrals at the click of the mouse,
it is important to know where they come from and what they represent.
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EXAMPLE 4 .10

Consider the liquid at rest in the tank as described in Example 4.9 and shown here in
Figure 4.17. The hydrostatic pressure distribution is p(z) = pA − ρg(z − h), where pA

is the ambient pressure at the liquid surface. What is the force applied by the liquid to
the side of the tank marked B in the figure?

w

Surface B
(right side
of cube)

h

x

z

y

dS

dx

dzn � � j

Figure 4.17 Schematic for Example 4.10.

SOLUTION

Since the fluid is at rest, we can use Eq. 4.24, FS = ∫S −pn dS . The pressure distribu-
tion in the tank is given by p(z) = pA − ρg(z − h), and the unit normal to the wall is
n = −j (see Figure 4.17). An infinitesimal element of area on this side of the tank may
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be written as dS = dx dz . Thus, the integral defining the total surface force becomes

FS =
∫

S
−pn dS =

∫ h

0

∫ w/2

−w/2
[−(pA − ρg(z − h)][−j] dx dz

where the limits have been chosen for a rectangular side of height h and width w. Com-
pleting the integration yields the answer: FS = wh(pA + ρgh/2)j. Alternately, the
stress vector on the side of the tank was found to be given by � = (pA − ρg(z − h))j
in Example 4.9. Since we have the stress vector, we can calculate the total surface
force using Eq. 4.21, FS = ∫S � dS, employing the same area element and limits as
previously. Thus, the integral defining the total surface force becomes 

FS =
∫

S
� dS =

∫ h

0

∫ w/2

−w/2
(pA − ρg(z − h))j dx dz

and we obtain the same result. We could also obtain the answer by starting with
Eq. 4.22a–c or Eq. 4.23. Since the stress vector has only a j component in this case,
we would write Eq. 4.22b as FSy = ∫S �y dS = ∫S [pA − ρg(z − h)] dS and proceed
to evaluate the integral as shown earlier. If we decided to use Eq. 4.23, FS =∫

S −pn dS + ∫S � dS, as a starting point, we would set the shear stress to zero and ob-
tain the same answer. It is always a good idea to check a result by using your intuition
and experience. The pressure distribution on the side of the tank is shown in Figure
4.15B. Can you confirm by inspection that the calculated force is consistent with the ac-
tion of this pressure distribution in both magnitude and direction?

EXAMPLE 4 .11

Reconsider the pressure-driven flow through the parallel plate channel introduced in
Example 4.8 and illustrated in Figure 4.14. What is the total surface force on the bottom
plate?

SOLUTION

The viscous flow creates a pressure and shear stress on the channel walls. The fluid is in
motion, so we will use Eq. 4.23, FS = ∫S −pn dS + ∫S � dS , to calculate the total
surface force. We know n = j and that the direction of the shear stress is in the flow
direction. The total surface force on the bottom plate can thus be written as
FS = ∫S −p(x) j dS + ∫S τ i dS . Inserting the known functions for the pressure and
shear stress, and writing the integrals for a unit width w of the channel into the plane of



4.5.1 Flow Over a Flat Plate

Let us apply what we have just learned about surface forces to the case study of Section
3.3.4, the boundary layer on a flat plate. Our goal is to find an expression for the total
surface force on the plate (see Figure 4.18A). Since the shear stress clearly must point
in the x (flow) direction on both sides of the plate, we can apply Eq. 4.23,
FS = ∫S −pn dS + ∫S � dS , to the upper and lower plate surfaces. Noting the direction
of n on each surface, and that the shear stress points in the x direction on both surfaces,
we can write � = τ i, and the total surface force is given by

FS =
∫

upper
−pU (j) dS +

∫
upper

τU (i ) dS +
∫

lower
−pL(−j) dS +

∫
lower

τL(i) dS

where we have labeled the pressures and shear stresses on the upper and lower surfaces.
If the plate is at zero angle of attack, the pressure distribution on the top of the plate

will be the same as that on the bottom. Therefore, the two pressure integrals cancel.
Symmetry also suggests that the shear stress distributions on the top and bottom of the
plate are identical as shown in Figure 4.18B. Thus we can write the total force as
FS = 2

∫
upper τ(x) i dS and anticipate that the development of the boundary layer will

cause variation in the shear stress along the plate. For a plate of width w (into the paper)
we can write FSx = 2w

∫ L
0 τ(x) dx . By using the friction coefficient, Eq. 3.27, and

identifying FSx as the drag, we can calculate FD = FSx = 2w
∫ L

0
1
2ρU 2Cf (x) dx ,

which is the same as Eq. 3.30 (where U = V ) in the case study (with the factor of 2 ac-
counting for the two sides of the plate).
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the paper, we can write the three components of the total surface force as

FSx = w

∫ L

0
τ dx = wLτ = wh

2
(p1 − p2)

FSy =
∫

S
−p(x) dS = −w

∫ L

0

(
p1 − p1 − p2

L
x

)
dx = − wL

2
(p1 − p2)

FSz =
∫

S
0 dS = 0

The force on the bottom plate acts down and to the right as expected, with the force in
the flow direction being FSx = (wh/2)(p1 − p2). This exercise can also be solved by
using the stress vector found in Example 4.8 and evaluating the total surface force either
with Eq. 4.21, FS = ∫S � dS, or with Eq. 4.22a–4.22c.



If the plate is at a small angle of attack, it seems reasonable to suppose that the pres-
sure and shear stress distributions on the top and bottom of the plate are different, but
that the shear stress will still be directed along the plate in the flow direction. This is
illustrated in Figure 4.18C. In this case we again apply Eq. 4.23 to each side of the plate
and write the shear stress as � = τ s, where s is a unit vector tangent to the plate and
pointing downstream. This gives

FS =
∫

upper
−pU (nU ) dS +

∫
upper

�U (sU ) dS +
∫

lower
−pL(nL) dS +

∫
lower

�L(sL) dS

where the unit normals nU and nL and unit tangents sU and sL (which point downstream
along the plate) depend on the angle of attack. Although we are not given enough infor-
mation about the pressure and stress distributions to complete the integrations, it seems
likely that the pressure difference on the two surfaces will produce lift on the plate and
as well as a contribution to the drag. The shear stress can be seen to produce drag and
negative lift.
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4.5.2 Flow Through a Round Pipe

Next consider the steady, fully developed flow of a liquid in a round pipe as introduced
in the case study of Section 3.3.1 and shown in Figure 4.19A. If the effects of gravity are
neglected (i.e., ignoring the weight of the liquid), what is the force applied by the liquid
to the wall of the pipe? Computing the total surface force requires that we set up and
evaluate a surface integral on a curved surface. We will begin our analysis by using a
force balance on the volume of fluid shown in Figure 4.19B to find a relationship be-
tween the wall shear stress and the pressure drop. In steady, fully developed flow this
volume is not accelerating, so the sum of the body and surface forces on this volume
must be zero. Since gravity is neglected, the body force is zero and, therefore, the total
surface force on this volume is also zero. The total surface force on this cylindrical vol-
ume of liquid may be found using Eq. 4.23, FS = ∫S −pn dS + ∫S � dS . Dividing the
surface into parts we can write

FS =
∫

left
−pn dS +

∫
right

−pn dS +
∫

outer
−pn dS +

∫
left

� dS

+
∫

right
� dS +

∫
outer

� dS = 0

Consider each of the six integrals in order from left to right. We must retain the first
two integrals because there is a uniform but different pressure acting on these two end
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surfaces of area A = π D2/4. With respect to the third integral, the pressure on the outer
surface results in a zero net force due to the symmetry about the axis. Since there is
no reason to expect a shear stress to act on the left or right surfaces because there is
no tangential flow there, the fourth and fifth integrals are zero. To evaluate the last inte-
gral, note that the shear stress exerted by the liquid on the pipe wall clearly points in
the flow direction. This means that the shear stress applied by the wall to the fluid in our
volume must point opposite to the flow direction, so we write � = τ(−k) at all points
on the outer curved surface. Thus, the total surface force on the entire volume of liquid
is given by

FS =
∫

left
−p1n1 dS +

∫
right

−p2n2 dS +
∫

outer
τ(−k) dS = 0

Since the pressure is uniform (but different) on the end surfaces, the integrals reduce to
the product of the integrand and the area of each surface. Using the known unit normals,
we have: ∫

left
−p1n1 dS = −p1n1 A = −p1(−k)A = p1 Ak

∫
right

−p2n2 dS = −p2n2 A = −p2(k)A = −p2 Ak

The shear stress on the surface of the volume must be uniform in fully developed flow,
so the remaining integral gives∫

outer
τ(−k) dS = τ AW (−k) = −τ AW k

The total surface force on this volume of fluid is therefore given by

FS = [(p1 − p2)A − τ AW ]k = 0

Solving for the shear stress applied by the wall on the curved surface of the fluid volume
we obtain

τ = (p1 − p2)
A

AW
= D(p1 − p2)

4L

We see that the frictional drop in pressure in fully developed pipe flow is caused by the
viscous shear stress applied to the liquid by the wall of the pipe.

To determine the total force exerted by the moving fluid on the pipe wall, note that
the shear stress just calculated is that applied by the pipe wall to the liquid and points
to the left. The wall shear stress, τW , which is applied by the moving liquid to the wall, has
the same magnitude but points in the flow direction. Thus the wall shear stress is given by
τW = D(p1 − p2)/4L . The total surface force applied by the fluid on the wall in the flow
direction is the product of the uniform wall shear stress and the contact area, i.e.,

F = τW AW = D

4

(p1 − p2)

L
(π DL) = (p1 − p2)

π D2

4
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4.5.3 Lift and Drag

As discussed in the case studies of Sections 3.3.5 and 3.3.6, it is possible to compute the
lift and drag on an object from the lift and drag coefficients. Empirical results for CL and
CD for a typical airfoil shape, as well as for cylinders and spheres, were given in Sec-
tion 3.3.6. Our goal here is to discuss the relationship between the stress vector, total
surface force, and lift and drag forces applied to a body by a moving fluid.

For an aircraft in level flight, positive lift is the component of total surface force act-
ing upward. Lift is necessary to support the weight of an aircraft in flight and to provide
the force needed for vertical acceleration. Since lift is a component of the total surface
force FS , in a specific direction, the lift FL is given by the dot product

FL = FS • nL (4.25a)

where nL is a unit vector pointing in the lift direction. Combining Eq. 4.23, which de-
fines the total surface force as FS = ∫S −pn dS + ∫S � dS , and Eq. 4.25a yields
FL = [

∫
S −pn dS + ∫S � dS] • nL . Since nL is a constant vector that does not depend

on the orientation of any surface element, we can move the dot product inside each sur-
face integral and combine the integrals to obtain

FL =
∫

S
(−pn + �) • nL dS (4.25b)

The integrand here is simply the component of the stress vector in the lift direction,
i.e., � • nL . Equation 4.25b shows that to produce lift, the stress vector on a surface
must have a component in the lift direction. Notice the stresses acting on the two sides
of the flat plate at a small angle of attack as shown in Figure 4.20A. There is a net lift
on this plate from the asymmetric normal stress (pressure) distribution. At zero angle
of attack, Figure 4.20B, there is no lift because the ambient pressure distribution is
symmetric.
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Equation 4.25b shows that in principle, pressure and shear stresses may each con-
tribute to lift. For example, in Figure 4.20A, the tangential stress must clearly reduce
the lift on a flat plate at an angle of attack. Nevertheless, since the normal stress (pres-
sure) is usually much larger than the shear stress, lift tends to be correctly thought of
as produced almost entirely by the pressure distribution on a body. An airfoil shape is
carefully optimized to develop a large lift as a result of a higher pressure on the bottom
of the wing than on the top. An example of the departure of the pressure distribution
from the ambient value on an airfoil is shown in Figure 4.21. Note that the pressure
is not uniform, but varies continuously along the wing on both the upper and lower
surfaces. On an airfoil, the contribution from the tangential stress to lift may be safely
neglected.
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The drag FD is the component of total surface force acting in the direction of the
oncoming fluid stream. For an aircraft in level flight, thrust is needed to counteract
the effect of drag and keep the speed of the aircraft constant. Reducing the drag of an
aircraft is an important element in achieving good performance. The drag is defined by
the dot product of the total surface force with a unit vector pointing in the drag direction.
Let n∞ be a unit vector in the direction of the upstream fluid flow. Then the drag FD is
given by

FD = FS • n∞ (4.26a)

Recalling again that Eq. 4.23 defines the total surface force as FS = ∫S −pn dS + ∫S � dS ,
we can rewrite Eq. 4.26a as FD = [

∫
S −pn dS + ∫S � dS] • n∞ . Since n∞ is also a

constant vector that does not depend on the orientation of any surface element, we
can move the dot product inside each surface integral and combine the integrals,
obtaining

FD =
∫

S
(−pn + �) • n∞ dS (4.26b)

The integrand here is the component of the stress vector in the drag direction, � • n∞. We
see that to produce drag, the stress vector on a surface must have a component in the drag
direction. Notice the stresses acting on the two sides of the flat plate at different angles



of attack as shown in Figure 4.20A and 4.20B. There is a net drag on this plate in both
cases.

Equation 4.26b shows that both normal and tangential stresses may contribute
to drag. To drive this point home, reconsider the flat plate at zero angle of attack in Fig-
ure 4.20B, for which the drag is due exclusively to the shear stress. However, if the
flat plate is turned normal to the oncoming stream (Figure 4.20C), the drag is due
exclusively to the effects of normal stress, i.e., pressure.

Pressure differences over the front and rear of an object are important contributors
to drag, particularly if the object is a bluff body (see Figure 4.22A). The drag on a bluff
body is primarily due to this effect and is called pressure or form drag. The drag on a
streamlined body (Figure 4.22B) is due to both form drag and skin friction drag. The rel-
ative sizes of the two contributions depend on the shape of the streamlined body. The
drag on a long, thin body is primarily skin friction drag. The infinitely thin aligned plate
in Figure 4.20C illustrates this idea in the extreme. Drag on an airfoil arises from both
pressure and shear stress, i.e., both form and skin friction drag.

Now that you understand the concept of total surface force and how to calculate it,
you can perhaps begin to appreciate the complexity of the mathematics of fluid me-
chanics and why the empirically based approaches illustrated in the case studies are so
valuable. Which method do you prefer: calculating lift and drag using surface integrals,
or using lift and drag coefficients?
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4.6 STRESS IN A FLUID

When body and surface forces act on a fluid, the fluid is said to be under stress. That is,
there is a state of stress in the fluid caused by these forces, and the fluid transmits force
from one point in its interior to another. We can demonstrate this transmission of forces
through a fluid using the example of a column of fluid loaded by a piston as shown in
Figure 4.23. The fluid is at rest, so there are no shear stresses acting on it. The load ap-
plied by the piston to the fluid (a surface force) plus the force of gravity acting on the
fluid (a body force) are transmitted to the bottom of the fluid column and must be bal-
anced there by a force applied to the fluid by the bottom of the container (a surface
force). The transmission of forces through the interior of the fluid is indicated by saying
that the fluid is in a state of stress.

In general, the state of stress in a fluid is influenced by body forces, by surface
forces acting at the interface between the fluid and its surroundings, by fluid motion, and
by the fluid’s physical and thermodynamic properties. The state of stress in a fluid is re-
sponsible for the surface force exerted by the fluid on the materials it contacts. For a
fluid at rest, as in the case of a fluid column loaded by a piston, the state of stress is
purely compressive and is characterized by a hydrostatic pressure distribution. For a
fluid in motion, the state of stress is more complex, as we shall describe more fully in
this section. An understanding of the concept of fluid forces must include an awareness
of body and surface forces, and of the presence of a state of stress in the fluid.

Although the stress vector may be used to calculate the surface force, it is not used
to describe the state of stress in the interior of a fluid, and it does not appear in the gov-
erning equations of fluid dynamics. Why is this the case? Recall that the stress vector,
� = �(x, t, n), is a function of the location of the point of interest within the fluid, x,
the time, t , and the normal to the corresponding surface, n. For an interior point, there
are an infinite number of possible surface orientations that contain that point. Thus, there
are potentially an infinite number of valid stress vectors. Since the stress vector is not a
unique entity at a point within a fluid, it cannot be used to describe the state of stress at
a point. Instead, we use an orientation-free representation of stress called the stress ten-
sor, �(x, t), which represents the state of stress in the fluid at point x at time t .
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To place the concept of a stress tensor in a physical
context, consider the hierarchy of mathematical func-
tions in fluid mechanics. Some properties, such as den-
sity, pressure, and temperature, are described by scalar
(magnitude-only) functions. Other quantities, including
velocity, force and, of course, �, are described by vec-
tors, which convey information about both magnitude
and direction. Now consider the concept of stress,
which is defined to be a force divided by the area over
which that force acts. To adequately describe the stress
tensor, we must specify not only the magnitude and di-
rection of the relevant force, but also the orientation of
the corresponding surface. The surface orientation is a
second directional quantity typically described by the

normal to that surface. Thus, the description of stress at a point within a fluid requires
that the stress tensor have a doubly directional character. In fact, we can write the stress
tensor in vector notation using the usual unit vectors as

� = σxx ii + σxy ij + σxzik + σyx ji + σyyjj + σyzjk + σzx ki + σzykj + σzzkk (4.27)

There are nine terms in this equation, each of which is the product of a scalar stress com-
ponent and two unit vectors. The nine scalar stress components are simply referred to as
stresses. These nine stresses are functions of position and time, and the pairs of unit vec-
tors give the tensor its doubly directional characteristic.

To investigate the relationship between the stress vector and this new concept of a
stress tensor, consider the forces acting on an element of fluid in the shape of a small
tetrahedron located at a point in a fluid as shown in Figure 4.24A. Body forces act on the
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Figure 4.24 Tetrahedron of fluid. (A) Stress vectors acting on each face. (B) Cartesian coordinate system aligned with
orthogonal planes.
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volume of fluid inside the tetrahedron, and surface forces act on this fluid across the
four facets of the tetrahedron through the action of the stress vector on each facet. By
Newton’s second law we can equate the sum of the body and surfaces forces acting on
the fluid in this tetrahedron to the product of the mass of the fluid and its instantaneous
acceleration to obtain:

ρf δV + �δA + �1δA1 + �2δA2 + �3δA3 = ρa δV

This result should hold for any size tetrahedron. Taking the limit as the size of the tetra-
hedron approaches zero causes the body and inertial forces to vanish, leaving only a bal-
ance of surface forces:

�δA + �1δA1 + �2δA2 + �3δA3 = 0

To understand this conclusion, note that the body and inertial forces are proportional to
the linear dimension of the tetrahedron cubed, while the surface forces are proportional
to the dimension squared. As the linear dimension approaches zero, cubic terms vanish
first.

Using a dot product to relate each of the smaller areas to δA, i.e., δA1 = (n • n1)δA,
δA2 = (n • n2)δA, and δA3 = (n • n3)δA, we find

�δA + �1(n • n1)δA + �2(n • n2)δA + �3(n • n3)δA = 0

Solving this expression for the stress vector yields:

� = −n • (n1�1 + n2�2 + n3�3)

This very important result, which follows directly from Newton’s law, shows that the
stress vector on a surface of arbitrary orientation n is related by a dot product to the three
stress vectors acting on any three orthogonal planes passing through the same point.

Since we are free to choose the orientation of three orthogonal planes, it is conve-
nient to align them with the relevant Cartesian coordinate system as shown in Fig-
ure 4.24B. In this case, the outward unit normals on the three orthogonal faces become
n1 = i, n2 = j, and n3 = k. Similarly, the three stress vectors acting on the orthogonal
faces become �1 = −�i , �2 = −�j , and �3 = −�k . Thus, the preceding analysis
shows that we can write

� = n • (i�i + j�j + k�k) (4.28)

As shown in Figure 4.25A, the stress vector acting on each of the three orthogonal
planes can be resolved as usual into a normal and tangential stress. We can then take any
tangential stress and further resolve it into components along the coordinate axes. No-
tice for example, that Figure 4.25B, showing the stress vector acting on the yz plane,
shows that the tangential stress has been further resolved into a pair of components
aligned with the y and z directions. Considering each plane in turn, and resolving the
stress vector into a normal and two tangential components, we can write each of the
stress vectors, �i , �j , and �k in terms of their three Cartesian components. For conve-
nience, as shown in Figure 4.25C, we can label the three components of �i as
(σxx , σxy, σxz). Similarly, we can label the three components of �j as (σyx , σyy, σyz),
and those of �k as (σzx , σzy, σzz). Then the three stress vectors are

�i = σxx i + σxyj + σxzk, �j = σyx i + σyyj + σyzk, and �k = σzx i + σzyj + σzzk
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Figure 4.25 (A) Stress vectors resolved into normal and tangential components.
(B) Tangential stress components in the yz plane. (C) Notation for stress components
in the yz plane.

If we now substitute these definitions of �i , �j , and �k into Eq. 4.28 and rearrange, we
find

� = n • [σxx ii + σxy ij + σxzik + σyx ji + σyyjj + σyzjk + σzx ki + σzykj + σzzkk]

The quantity inside the square brackets is the stress tensor

� = σxx ii + σxy ij + σxzik + σyx ji + σyyjj + σyzjk + σzx ki + σzykj + σzzkk

as given earlier by Eq. 4.27. Thus in vector notation our analysis shows that

� = n • � (4.29)

We see that by applying Newton’s law to a small tetrahedron of fluid, we have shown
that the stress vector acting on a surface of arbitrary orientation n located at a point in a



fluid is related by a dot product to the stress tensor at this point. This key result allows
us to employ the orientation-free stress tensor in our analysis and then recover the ori-
ented stress vector in a specific calculation involving a surface.

The preceding analysis also provides the basis for the subscript system used to label
individual stresses. To understand this system, note that while we can write the stress
tensor in vector notation as

� = σxx ii + σxy ij + σxzik + σyx ji + σyyjj + σyzjk + σzx ki + σzykj + σzzkk

it is customary in fluid mechanics to represent the stress tensor in a matrix form as

� =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 (4.30)

Regardless of which notation we use, the subscripts on each stress component serve to
identify both the plane on which the stress acts, and the direction of the stress. The first
subscript on a stress identifies the plane on which it acts. The subscript x in σxz , for ex-
ample, indicates a plane normal to the x axis, meaning a plane parallel to the zy coordi-
nate plane. The second subscript on a stress indicates the direction of the force on this
plane. Thus σxz is a force per unit area acting in the z direction on a plane normal to the
x direction.

Figure 4.26 labels the stresses on the visible sides of an infinitesimal cube of fluid
according to this system. A stress component with the two identical subscripts represents
a normal stress. Notice that in Figure 4.26 the three normal stresses are σxx , σyy , and σzz .
The remaining six stress components with different subscripts are shear stresses, since
they act in the plane of the surface on which they occur.
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By considering a moment balance on the cube of fluid shown in Figure 4.26, and
again considering the limit as the size of this cube approaches zero, it can be shown that
if there are no externally imposed body moments acting on a fluid, the stress tensor
�(x, t) is symmetric. Since very few engineering applications involve external body
moments, we will assume throughout the remainder of this text that the shear stresses
are related to each other by

σxy = σyx , σxz = σzx and σyz = σzy

Thus there are only six independent stress components in the stress tensor: the three
normal stresses and three shear stresses.

Since a stress component may be positive or negative, it is necessary to employ a
sign convention. The convention used in this text is based on the directions of the corre-
sponding force and unit normal. If a force points in the positive x , y, or z direction, then
the force is considered to be “positive.” Similarly, if the unit normal to the plane on
which the force acts points in the positive x , y, or z direction then the unit normal is
“positive.” The sign of a stress component is defined by “multiplying” the sign of the
force and the sign of the normal. Thus, a positive stress component either has a positive
force and a positive unit normal or a negative force and a negative unit normal. A nega-
tive stress component involves a force and unit normal with opposite signs.

For example, consider Figure 4.27A. Suppose a stress component σyy = −10 psia
acts on a plane of area 1 in.2 with a unit normal in the +y direction. This is a normal
stress on this plane, a compressive force that pushes the plane in the direction opposite
the unit normal. The corresponding force on the plane of 10 lbf acts in the −y direction.
Similarly, if there is a stress σyz = 5 psia at the same point in the fluid, we conclude that
the direction of the applied force on the indicated plane must be in the +z direction,
since the normal to the plane is in the +y direction. This positive shear stress is shown
in Figure 4.27B.

Now that you understand the concepts of the stress vector � acting on a surface, and
the stress tensor � acting at a point in a fluid, we can give you a better sense of how a
problem in fluid mechanics is solved. Suppose we are asked to solve a flow problem and
then calculate the stress vector and force applied by the fluid to a surface. The general
approach would be to solve the appropriate governing equations of fluid mechanics.
This will provide the stress tensor. Next, we use the relationship between the stress

z
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x

�yy � �10 psia
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y

x(A) (B)

�yz � 5 psia

Figure 4.27 Relationship of (A) normal and (B) tangential stress to
force on a surface.
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EXAMPLE 4 .12

Sketch the two possible orientations of a negative normal stress on a plane parallel to the
xy plane. Also show the two possible orientations for a positive σxz .

SOLUTION

A plane parallel to the xy plane will have a unit normal of either +k or −k. A negative
normal stress, σzz < 0, on the +k plane acts in the −k direction. On the −k plane the
normal stress acts in the +k direction. These two cases are shown in Figure 4.28A.
Since the first subscript indicates the plane, the shear stress σxz acts on a plane whose
unit normal is either +i or −i. This is a plane parallel to the yz plane. By convention, a
positive shear stress σxz points in the +k direction on the +i plane, and in the −k di-
rection on the +i plane. These two cases are shown in Figure 4.28B. Since the stress ten-
sor is symmetric we have σxz = σzx . Therefore, we can identify the directions of the
shear stresses on a plane parallel to the xy plane as shown in Figure 4.28C.
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Figure 4.28 Schematic for Example 4.12. (A) Normal stresses on the xy plane, (B) shear
stresses on the yz plane, (C) shear stresses on the xy plane.



vector and stress tensor as given by Eq. 4.29, � = n • �, to find the stress vector. We can
evaluate the dot product in two ways. In vector notation, with the stress tensor given by
Eq. 4.27, the dot product � = n • � is

� = (nx i + nyj + nzk) • (σxx ii + σxy ij + σxzik + σyx ji + σyyjj

+ σyzjk + σzx ki + σzykj + σzzkk)
(4.31a)

If the stress tensor is represented in matrix form, Eq. 4.30, then we can evaluate the dot
product defining the stress vector by using the matrix product of a row vector n with the
matrix �. The dot product is then found by evaluating

� = n • � = (nx , ny, nz)


 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 (4.31b)

You should be able to see by inspection that this produces the same result as using
Eq. 4.31a. The final step in the analysis is to calculate the total surface force. We can also

4.6 STRESS IN A FLUID 185

EXAMPLE 4 .13

If the stress tensor (in units of psia) in a flow is given by � = −5ii + 3ij − 1ik + 3ji −
4jj + 4jk − 1ki + 4kj − 2kk, find the stress vector acting on the surface characterized
by the unit normal n = (1/2)i + (1/

√
2)j − (1/2)k. Next write this stress tensor in

matrix form and calculate the stress vector on the same surface.

SOLUTION

We can use Eq. 4.31a to solve the first part of this problem. We have

� =
(

1

2
i + 1√

2
j − 1

2
k
)

• (−5ii + 3ij − 1ik + 3ji − 4jj + 4jk − 1ki + 4kj − 2kk)

=
(−5

2
+ 3√

2
+ 1

2

)
i +
(

3

2
− 4√

2
− 4

2

)
j +
(−1

2
+ 4√

2
+ 2

2

)
k

Thus the stress vector on this surface is 

� =
(

3
√

2 − 4

2

)
i −
(

4
√

2 + 1

2

)
j +
(

4
√

2 + 1

2

)
k

Expressing the stress tensor in matrix notation we have: 

� =

−5 3 −1

3 −4 4
−1 4 −2



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EXAMPLE 4 .14

Write an expression for the total surface force on a plane with normal n = (0, 1, 0), i.e.,
a plane parallel to the xz plane.

SOLUTION

We can use either Eq. 4.21, FS = ∫S � dS, or Eq. 4.32, FS = ∫S (n • �) dS,, to write the
desired expression. Using Eq. 4.31b with the given unit normal yields:

� = n • � = (nx , ny, nz)


 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 = (0, 1, 0)


 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz




= (σyx , σyy, σyz)

The total surface force on this plate is given by either Eq. 4.21 or Eq. 4.32 as

FS =
∫

S
(σyx i + σyyj + σyzk) dS

Evaluating the stress vector using the matrix product, Eq. 4.31b, gives

� =
(

1

2
,

1√
2
,−1

2

)(−5 3 −1
3 −4 4

−1 4 −2

)

=
[(−5

2
+ 3√

2
+ 1

2

)
,

(
3

2
− 4√

2
− 4

2

)
,

(−1

2
+ 4√

2
+ 2

2

)]

=
(

3
√

2 − 4

2

)
i −
(

4
√

2 + 1

2

)
j +
(

4
√

2 + 1

2

)
k

which can be seen to be identical to the foregoing result. Which approach do you prefer?

do this in two different ways. We can use the stress vector to calculate the total surface
force from Eq. 4.21:

FS =
∫

S
� dS

or we can substitute for the stress vector, using Eq. 4.29, � = n • �, and write the total
surface force in terms of the stress tensor as 

FS =
∫

S
(n • �) dS (4.32)



4.7 FORCE BALANCE IN A FLUID

We may draw important conclusions about the state of stress in a fluid and the role of body
and surface forces in creating fluid motion if we consider a force balance on an
infinitesimal cube of fluid of sides dx, dy, dz centered at (x0, y0, z0) as shown in Fig-
ure 4.29A. The volume of this cube is δ–V = dx dy dz. Applying Newton’s second law to
the cube, we see that the sum of the body and surface forces acting on the cube must equal
the time rate of change of linear momentum, i.e., the inertial force. If the density of the
fluid at the center of the cube is ρ, and the acceleration of the fluid is a = (ax , ay, az),
then Newton’s law can be written as ρa δ–V = FB + FS . Since the cube is infinitesimal,
we can write the total body force acting on the cube as FB = ρf δ–V , where
f = ( fx , fy, fz) is the body force per unit mass. Thus the force balance on the cube is
ρa δ–V = ρf δ–V + FS , and the three components of this vector equation are

ρax δ–V = ρ fxδ–V + FSx (4.33a)

ρay δ–V = ρ fyδ–V + FSy (4.33b)

ρaz δ–V = ρ fzδ–V + FSz (4.33c)
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Figure 4.29 Infinitesimal cube of fluid: (A) nomenclature and (B) stresses.

If we write this in terms of the components of the total surface force, we have

FSx =
∫

S
σyx dS, FSy =

∫
S
σyy dS, and FSz =

∫
S
σyz dS

Are you able to convince yourself that these surface integrals account for the force applied
by the fluid to this plane? Notice that the component of force parallel to the plane normal
(n = j) is related to a normal stress, while the components of force perpendicular to the
plane normal are related to shear stresses, as expected. It may also be helpful to recall that
we can use Eq. 4.23 to write the total surface force as FS = ∫S −pn dS + ∫S � dS.



To complete the force balance, we must write expressions for the surface forces
acting on the six cube faces. Consider the x component of the force balance, Eq. 4.33a.
We can calculate the component of the surface force acting in the x direction by using
the information in Figure 4.29B. First note that from the subscript convention for the
stresses, or by direct observation, the only stresses acting on any cube face in the x di-
rection are σxx , σyx , and σzx . Since the dimensions of this cube are small, the surface
force produced by a stress on a face is equal to the product of that stress at the center
of the face and the area of the face. If we label the cube faces in Figure 4.29 as North,
South, East, West, Near, and Far, then we can immediately write the x component
of the total surface force on each face as the product of the individual stresses and
the area of each face. For example, on the Far face, the surface force acting in the x
direction is

FSx = (−σxxFar) dy dz

Adding the contributions from all six faces of the cube, we obtain the x component of
the total surface force on the cube as

FSx = (σxxNear − σxxFar) dy dz + (σyxEast − σyxWest) dx dz

+ (σzxNorth − σzxSouth) dx dy
(4.34)

We can use a two-term Taylor series to relate the stress on any of the cube faces to the
value of the same stress at the center of the cube. A two-term approximation is sufficient
because the cube is small, and higher order terms in the Taylor series are negligible. For
example, on the Near and Far faces we can write 

σxxNear = σxxCenter + ∂σxx

∂x

dx

2
and σxxFar = σxxCenter − ∂σxx

∂x

dx

2

The difference in these two terms is 

σxxNear − σxxFar = ∂σxx

∂x
dx

Similarly, we can write Taylor series for the other two terms and show that the x com-
ponent of the total surface force on the cube is

FSx =
(

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

)
dx dy dz

Since δV = dx dy dz , we can write this as 

FSx =
(

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

)
δV

Considering the y and z components of the surface force in the same way, we find

FSy =
(

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z

)
δV and FSz =

(
∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z

)
δV
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Upon substituting into Eq. 4.33, and dividing by δ–V , the three components of the force
balance on the cube are

ρax = ρ fx +
(

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

)
(4.35a)

ρay = ρ fy +
(

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z

)
(4.35b)

ρaz = ρ fz +
(

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z

)
(4.35c)

Although we have referred to these three equations as the force balance in a fluid, they
are also the equations of motion, since they relate the acceleration of the fluid to the
body and surface forces.

Notice that each of the terms in these equations has the dimensions of a force per
unit volume. For example, the three components of the inertial force per unit volume ρa
are (ρax , ρay, ρaz), and the three components of the body force per unit volume ρf are
given by (ρ fx , ρ fy, ρ fz). The three components of the surface force per unit volume
acting at a point in a fluid are seen to be

FSx

δ–V
= ∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
(4.36a)

FSy

δ–V
= ∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
(4.36b)

FSz

δ–V
= ∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
(4.36c)

If all the stresses are spatially uniform, the net surface force acting on an infinitesimal
volume of fluid is zero, and the stresses do not contribute to an acceleration. Thus to
have a net surface force on an infinitesimal volume of fluid, there must be a spatial vari-
ation in one or more components of the stress tensor describing the state of stress in the
fluid.

In vector notation the right-hand side of Eq. 4.36a–c can be expressed as

� • � (4.37)

This dot product, known as the stress divergence, involves the del operator

� =
(

∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)

and can be evaluated in vector or matrix notation. For example, if we use the matrix
product of the del operator with the stress tensor we get

� • � =
(

∂

∂x
i + ∂

∂y
j + ∂

∂z
k
) σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 (4.38)
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Accordingly, the three Cartesian components of the stress divergence, are

(� • �)x = ∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
(4.39a)

(� • �)y = ∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
(4.39b)

(� • �)z = ∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
(4.39c)

Writing the force balance Eq. 4.35a–4.35c in vector notation, we have

ρa = ρf + � • � (4.40)

This deceptively simple equation governs all aspects of the behavior of a fluid. From it
we can conclude that if the body and surface forces are not in balance, a fluid must ac-
celerate. It follows then that in the absence of acceleration, the body and surface forces
are in an exact balance at every point in the fluid.

4.8 SUMMARY

In this chapter we have discussed body and surface forces in fluid mechanics, the origins
of these forces, and the mathematical representation or model used to describe and cal-
culate fluid forces.

Forces in fluid mechanics that have their origins in the structure and behavior of
matter are termed real forces. Examples include gravity and pressure forces. Apparent
forces appear to be present because a fluid is observed in a noninertial reference frame.
Examples include centrifugal and Coriolis forces and the force created when a volume
of fluid is given a uniform rectilinear acceleration. All the forces in fluid mechanics, real
and apparent, are divided into two types: body forces and surface forces. Body forces, of
which gravity and electromagnetic forces are examples, are long-range forces that act on
a volume of fluid in such a way that the magnitude of the body force is proportional to
the mass or volume of the fluid element. Body forces act on a fluid but are not applied
by a fluid. They exert their influence on fluids at rest and in motion without the need for
physical contact between the fluid and the external source of the body force. In general,
a body force must be represented as a function of both position and time. The gravita-
tional body force is most conveniently represented on a per-unit-mass basis.

Surface forces, such as those exerted by pressure or shear stress, are short-range
forces that act on an element of fluid through physical contact. A surface force is created
as a result of physical contact between the molecules of a fluid and the molecules of a
bounding material. Surface forces not only act on a fluid but are applied by a fluid to its
surroundings. These forces exist at every interface involving a fluid, both in a fluid at
rest and in a fluid in motion.

The total surface force depends on the size, shape, and orientation of the surface on
which the force acts, as well as on characteristics of the fluid and its motion. In devel-
oping a model for the surface force, we may distinguish three different situations: the
surface force exerted by a fluid on a structure, the surface force applied to a fluid by a
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structure, and the state of stress in a fluid. The orientation of any surface is specified by
the outward unit normal of the surface.

In a fluid in motion, the surface force per unit area acting on an infinitesimal surface
generally has both normal and tangential components. Thus, stress in fluid dynamics is
a vector quantity because it has a magnitude expressed in dimensions of {FL−2} and a
direction. The surface force acting on a plane surface element depends on position, and
on the size and orientation of the element. The total surface force acting on any surface
in contact with fluid is found by using a surface integral to sum the individual contribu-
tions from each infinitesimal surface element. The total surface force is a vector quan-
tity whose components may be resolved in any desired direction.

The components of total surface force on an aircraft, vehicle, or other object are
given distinctive names. The component of total surface force in the direction of the on-
coming fluid stream is called the drag. The component of total surface force that acts or-
thogonally to the oncoming fluid stream is called the lift. 

The state of stress in a fluid is represented by a stress tensor. The stress tensor is
conveniently represented in matrix form as 

� =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz




with a pair of unit vectors associated with each component of the stress tensor by the po-
sition of the component in the matrix representation. If there are no externally imposed
body moments acting on a fluid, as is normally the case, the stress tensor is symmetric.
For a symmetric stress tensor there are six independent stress components. These are the
three normal stresses and three shear stresses. We shall see later that the governing equa-
tions of fluid mechanics are written in terms of spatial derivatives of the nine compo-
nents of the stress tensor, each of which is a function of position and time.

The total surface force acting on an arbitrary volume of fluid may be expressed as
a volume integral of the dot product of the del operator and the stress tensor. The dot
product, � • �, is the stress divergence. The stress divergence may be interpreted as
the surface force per unit volume. To have a net surface force on a volume of fluid,
there must be a spatial variation in one or more components of the stress tensor de-
scribing the state of stress in the fluid. If the stresses are uniform, the stress divergence
is zero at every point in a fluid, and the net surface force acting on a volume of fluid is
also zero.
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PROBLEMS

Section 4.1

4.1 Hold out your hand with your palm
facing down. Estimate the net force on your
palm as a result of atmospheric pressure (use
units of Pa). Now change the orientation of
your hand so that your palm is facing away
from you, i.e., 90◦ away from the original

orientation. Does the magnitude of the force
applied to your palm by the atmosphere
change?

4.2 Suppose you are supporting a sheet of
8.5 in. × 11 in. paper by placing your open
palm underneath the paper so that the paper
is parallel to the ground. Estimate the force
applied to the top side of the paper by the
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atmosphere (use units of lbf). Why doesn’t the
paper “feel” heavy?

Section 4.2

4.3 Describe the similarities and differ-
ences between “real” and “apparent” forces.
Give an example of each kind of force. Is
an inertial force a real force or a fictitious
force?

4.4 Describe the similarities and differ-
ences between body and surface forces. Give
an example of each kind of force. Which of
these two types of force can act on a fluid?
Which of these types can be applied by a fluid?

4.5 Determine whether each of the forces
listed is a real or a fictitious force. Also decide
whether it is a body or a surface force.
(a) Gravity force
(b) Pressure force
(c) Coriolis force
(d) Inertial force
(e) Electromagnetic force
(f ) Centrifugal force

4.6 List and describe each of the various
kinds of force that contribute to the motion of
air (wind) in the atmosphere.

4.7 Provide an example of a fluid flow that
is driven exclusively by body forces. Also
give an example of a fluid flow that is domi-
nated by surface forces.

Section 4.3

4.8 The gravitational body force is a direct
result of the presence of matter. Therefore,
one portion of a fluid exerts a gravitational at-
traction for other portions of the same fluid.
Under most engineering circumstances, how-
ever, this effect is negligible. Provide an ex-
ample of an exception to this rule.

4.9 From physics we know that the magni-
tude of the gravitational force is a function of
position. In fact, gravity obeys an inverse

square law. Why is it that we can model the
gravitational force on a fluid as constant?

4.10 Which type of force, body or surface,
is able to act over large distances? Why is the
other kind of force restricted to action over
small distances?

4.11 Provide at least two engineering ap-
plications in which body forces other than
gravity are important.

4.12 Explain the mechanism by which a
gas can transmit force through its interior. Is
the mechanism by which a gas transmits a sur-
face force to a solid object it contacts the same
or different?

4.13 Could you reduce friction in a pipe
flow by coating the pipe wall with Teflon?
Why or why not?

4.14 How does the concept of surface ten-
sion fit into a discussion of fluid forces?

Section 4.4

4.15 Consider the fluid flow shown in Fig-
ure 4.5. At what angle β are the magnitudes of
the components of the gravitational body
force acting in the flow direction and normal
to the flow direction equal? At what angle β
is the magnitude of the component of the
gravitational body force acting in the flow
direction three times as great as that of the
component of the body force acting normal to
the flow direction?

4.16 What volume of air at STP experi-
ences the same gravitational body force per
unit volume as does a 1 in.3 volume of water at
STP?

4.17 What volume of mercury at STP expe-
riences the same gravitational body force per
unit volume as does a slug of oxygen at STP?

4.18 Air at STP has a uniform free space
electrical charge per unit volume of
6 × 109 C/m3. The air is subjected to a
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gravitational body force in the −z direction
and a constant electric field of unknown
strength in the +z direction. Given that the
body force exerted on a fluid by an electric
field is described by the equation.

FB =
∫

EqdV

where E is the electric field strength (in units of
V/m or equivalently N/C) and q is the elec-
tric charge per unit volume (in units of C/m3).

If the total body force acting on a fluid particle
is zero, estimate the magnitude of the electric
field.

4.19 Express the centrifugal body force on
a per-unit-volume basis and plot its value as
a function of distance from the rotation axis
for a water particle in a horizontal centrifuge.
Assume a rotation rate of 10,000 rpm and
that the outside radius of the centrifuge is
100 mm.

4.20 The liquid in the cylinder illustrated
in Figure 4.8 is subjected to a temperature
variation along its axis. This results in a lin-
ear density profile in the fluid given by
ρ(z) = ρ0 − αz, where ρ0 = 1020 kg/m3.

The cylinder dimensions are R = 1 m and
H = 10 m. It is known that the total body
force acting on the tank is −302 kN k. Deter-
mine the density at the top of the tank.

4.21 Calculate the total body force acting
on a cup of coffee. State your assumptions.

4.22 Calculate the total body force on a
room full of air. The room 12 ft × 16 ft and it
has an 8 ft ceiling. Assume that 10% of the
room volume is occupied by furniture. State
any additional assumptions. 

4.23 The tank from Example 4.3 is filled
with a mixture of liquids. After settling, it is
found that the mixture is affected by tem-
perature and gravity such that the density dis-
tribution is ρ = A + Br + Cz, where A =
500 kg/m3, B = 5 kg/m2, and C =−10 kg/m2.
What is the total body force on the fluid in
the tank?

4.24 Is the total body force acting on a
volume of fluid an intrinsic or an extrinsic
quantity? Why?

4.25 Afish tank has dimensions L = 75cm,
W = 36 cm, and H = 30 cm. Calculate the
total gravitational body force on the contents of
the tank under each of the following conditions:
(a) The tank is filled with water at STP. (Use

a volume integral.)
(b) The tank is filled with water at STP.

(Don’t use any integrals.)
(c) The lower 90% of the tank is filled with

water and the top 10% is filled with air at
STP. (Use a volume integral.)

(d) The lower 90% of the tank is filled with
water and the top 10% is filled with air at
STP. (Don’t use any integrals.)

4.26 The fish tank described in Prob-
lem 4.25 is being transported in the back of
your friend’s pickup truck. The tank is half
full of water, and the truck is accelerating at a
rate of 1.2 km/h/s. Calculate the total apparent
body force acting on the water in the tank due
to the truck’s acceleration. 

4.27 A55-gallon drum (see Example 4.3 for
dimensions) is two-thirds full of oil. Calculate
the total gravitational body force on the fluid in
the drum under the following conditions:
(a) The remaining third of the drum is filled

with air at STP.
(b) The remaining third of the drum is filled

with water at STP. Assume that the fluid is
stratified; i.e., one horizontal layer of fluid
is sitting directly on top of the other layer
(which layer is on top?).

(c) The remaining third of the drum is filled
with water at STP. Assume that the two
fluids are completely mixed (how this is
done is not obvious).

4.28 The 55-gallon drum described in part
a of Problem 4.27 is being transported in an
airplane that is undergoing a horizontal accel-
eration of 25 mph/s. What is the total apparent
body force acting on the fluid in the drum?
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4.29 A rectangular swimming pool has a
surface area 15 m × 8 m. Two-thirds of the
pool has a uniform depth of 1.2 m, and the
diving well has a uniform depth of 3 m. Cal-
culate the total gravitational body force acting
on the water in the pool under the following
conditions:
(a) It is assumed that the water has a constant

density of 1000 kg/m3.
(b) It is assumed that temperature variations

cause the density of the water in the pool
to obey the functional form: ρ(z) =
(998.9 kg/m3) − [(1.0 kg/m2)z], where
gravity acts in the −z direction, z = 0
corresponds to the water surface, and z is
measured in meters.

Section 4.5

4.30 Describe in your own words the con-
vention used to identify outward unit normal
vectors on surfaces in fluid mechanics.

4.31 Sketch a fluid system with which
you are familiar. Identify and correctly label
at least four outward unit normal vectors
associated with surface forces in this fluid
system.

4.32 In a certain fluid flow situation the
stress vector on a surface is known to have the
form

� = αi + βxj + γ y2k

where α = 30 kPa, β = 20 kN/m3, and γ =
10 kN/m4.
(a) Determine the stress vector acting on

a flat surface area of magnitude 1 mm2

centered at the position (5 m, 0, 3 m) with
an outward unit normal n = i.

(b) Determine the force acting on the surface
described in part a.

(c) Repeat the calculation in part a but do it
for the back side of the same surface; i.e.,
this time the outward unit normal is
n = −i.

4.33 For the surface f (x, y, z) = x +
2y − 3z, find the normal and tangential

stresses at the point (1, 0, 1) if the stress vec-
tor at that point is � = i + 2j − 3k.

4.34 For the surface f (x, y, z) = x3 +
2/y + 8z2, find the normal and tangential
stresses at each of the indicated points assum-
ing the stress vector is � = 8i − 5j + 10k.
(a) (0, 1, 0)
(b) (1, 1, 2)

4.35 For the surface f (x, y, z) = x +
2y2 + 1/z − 5, find the normal and tangential
stresses at each of the indicated points assum-
ing the stress vector is � = x i − yj + k.
(a) (0, 0, 0)
(b) (0, 3, −3)

4.36 A stress vector is given by
� = 2i + zj + k. Calculate the total surface
force acting on the portion of a vertical sur-
face parallel to the xz plane and intercepting
the y axis at y = 2, defined by 1 < x < 3 and
0 < z < 5.

4.37 Calculate the surface force on a flat
plate (1 × 1 m2) due to air flowing at U =
5 m/s, at 20◦C. The plate is horizontal to the
airstream, so the shear stress is the same on
the upper and lower surfaces and is equal to

τ = 0.0332
(ρµ

x

)1/2
U 3/2

where x is along the plate in the direction of
the flow. The pressure is atmospheric every-
where along the plate.

4.38 If the flow over the plate in Problem
4.37 is water, what will be the surface force?

4.39 If the pressure drop in a pipe having
an inner diameter of 1 in. is 1.0 psig over 10 ft
of length, what is the wall shear stress?

4.40 If the wall shear stress in a 50 mm
diameter tube is 50 N/m2, what is the pressure
drop per meter of length?

4.41 The maximum specified weight for a
Boeing 747SP (Special Performance) aircraft
is W = 3115 kN. While cruising, it requires a
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thrust T = 600 kN. What is the lift FL devel-
oped by the wing? What is the drag FD of the
aircraft?

4.42 Define, using both words and equa-
tions, each of the following terms:
(a) Lift
(b) Drag

Section 4.6

4.43 Sketch the two possible orientations
of a negative normal (compressive) stress on a
plane parallel to the yz plane. Also show the
two possible orientations for the (positive)
shear stress, σyz .

4.44 Sketch the two possible orientations
of a positive normal (tensile) stress on a plane
parallel to the xy plane. Also show the two
possible orientations for the (negative) shear
stress, σxy .

4.45 Sketch the two possible orientations
of a negative normal (compressive) stress on a
plane parallel to the zx plane. Also show the
two possible orientations for the (negative)
shear stress, σzx .

4.46 Find the stress vector acting on the
surface characterized by the normal

n = (1/
√

3)i + (1/
√

3)j − (1/
√

3)k

arising from the stress tensor

� = −5ii + 3ij − 1ik + 3ji − 4jj
+ 4jk − 1ki + 4kj − 2kk

4.47 Find the stress vector acting on the
surface characterized by the normal

n = (1/3)i − (2/3)j + (2/3)k

arising from the stress tensor

� = − 25ii + 18ij + 7ik + 30ji + 16jj
− 4jk − 10ki − 45kj + 10kk

4.48 Find the stress vector acting on the
surface characterized by the normal

n = (1/
√

3)[−i − j + k]

arising from the stress tensor

� =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz




=

 10 −20 30

−20 0 5
30 5 −10




4.49 Assuming that there are no externally
imposed body moments acting on a fluid, find
the stress vector acting on the surface charac-
terized by the normal

n = (1/3)[−2i + j + 2k]

arising from the stress tensor

� =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz




=

−10 −50 ?

? −10 ?
25 −5 −10




4.50 After reviewing Example 4.14, write
the expression for the total surface force on a
plate with normal n = (0, 0, 1).

4.51 After reviewing Example 4.14, write
the expression for the total surface force on a
plate with normal n = (1/

√
3)[−i − j + k].

Section 4.7

4.52 For the stress tensor given, calculate
the following quantities:

� =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz




=

 −Az 0 Bx2 − Cy3

0 −Az 0
Bx2 − Cy3 0 −Az




(a) The stress divergence
(b) The component of the surface force

acting on a cube of edge length α in the
x direction

(c) The total surface force acting on a cube of
edge length α



4.53 For the stress tensor given, calculate
the following quantities:

� =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz




=

−2Az 0 Ax

0 −2Az Ay
Ax Ay −2Az



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(a) The stress divergence
(b) The component of the surface force act-

ing on a cube of edge length α in the
y direction

(c) The total surface force acting on a cube of
edge length α

(d) The appropriate dimensions for the con-
stant A
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5.1 INTRODUCTION

In this chapter we discuss fluid statics, the branch of fluid mechanics associated with the
behavior of fluid at rest. Fluids at rest exert significant surface forces. Since shear
stresses are completely absent in a fluid at rest, these surface forces arise solely from the
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action of normal stress, i.e., hydrostatic pressure. Thus, the total surface force applied by
a fluid at rest is due to the pressure distribution on the surface. The key problem in fluid
statics is to determine the pressure distribution in the fluid. In this chapter we will use a
force balance to derive the governing equation of fluid statics from Newton’s second
law. We then show how to solve this equation to determine the hydrostatic pressure dis-
tribution for situations of engineering interest. The concepts of fluid forces and stresses
developed in Chapter 4 provide the foundation on which your understanding of hydro-
statics will be constructed.

As you will discover, all problems in fluid statics can be solved exactly, meaning in
analytical form, with no approximations needed to simplify the mathematics. The abil-
ity to solve a problem analytically is rare in fluid mechanics, and while this fact alone
might be sufficient motivation for studying hydrostatics, our interest in the subject is far
more practical. There are many engineering applications involving a fluid at rest or
nearly so. For example, fluid statics is used to analyze problems involving Earth’s at-
mosphere, oceans, lakes, and rivers. Since the fluid in liquid and gas storage vessels is
often at rest, the safe design of such vessels relies on information gained from hydrosta-
tics. The fluid in hydraulic systems in industrial equipment and automobile braking sys-
tems is at rest or moving slowly, so analysis of pressures and forces in these devices also
falls within the realm of hydrostatics.

The references to “a fluid at rest or nearly so” and to “at rest or moving slowly” in
the preceding paragraph are quite deliberate. Earth’s atmosphere is never completely at
rest, so how is it possible to analyze this and similar situations with fluid statics? Con-
sider our discussion in Chapter 2 of the relationship between pressure and velocity in a
moving fluid. At modest velocities, Bernoulli’s equation (Eq. 2.11) shows that the
change in pressure due to the fluid motion is small and may be neglected. As our first ex-
ample illustrates, it is not necessary for a fluid to be absolutely at rest to conclude that a
fluid statics analysis will accurately provide the pressure distribution.
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EXAMPLE 5 .1

The water near the intake pipe of a dam is moving at 1 m/s as shown in Figure 5.1. If the
intake pipe is located 10 m below the surface, is the pressure distribution in the vicinity
of the intake significantly changed by the flow? 

10 m

pA

pA1 m/s

Figure 5.1 Schematic for Example 5.1.
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SOLUTION

If the water density is approximated as 1000 kg/m3, then the pressure at this depth for
still water may be calculated by using Eq. 2.9 as �p = ρH2Ogd = 98.1 kPa above
atmospheric pressure. Thus the absolute pressure 10 m below the surface is about
199 kPa or 2 atm. From Bernoulli’s equation we know that the pressure will be lower
than this for water that is moving. The decrease in pressure due to the flow may be
estimated by using Eq. 2.11, applied between a point near the intake pipe (where
the speed is 1 m/s) and a second located at the same depth but well away from the in-
take pipe (where the speed is 0 m/s). The pressure difference between these points is
�p = 1

2ρH2OV 2 = 500 Pa. This represents a pressure decrease of ∼0.25% below the
background hydrostatic pressure of 199 kPa. Clearly the pressure distribution near the
intake pipe is very close to that predicted by fluid statics.

In Section 5.2 we explore the state of stress in a fluid at rest, develop the governing
equation of fluid statics, and demonstrate how to solve this equation to determine the
hydrostatic pressure distribution. Finally, we show how to calculate the forces and
moments exerted by a fluid at rest on a surface.

5.2 HYDROSTATIC STRESS

Since shear stresses must be completely absent in a fluid at rest, the stress vector given
by Eq. 4.16 as � = σN n + �, reduces to � = σN n, where the normal stress σN is the
magnitude of the stress vector. Since we know from Chapter 1 that fluids are unable to
exert a tensile stress, the hydrostatic stress vector must be compressive in its action, i.e.,
σN < 0.

Now consider the forces acting on a small tetrahedron of fluid located at some point
x within the fluid, as shown in Figure 5.2. We have selected a set of Cartesian coordi-
nates (X, Y, Z) with its origin located at the vertex of the tetrahedron and unit vectors
(I, J, K) aligned with the edges of the tetrahedron. The tetrahedron is of height h, has
volume –V = h3/6, and has three faces labeled A1, A2, and A3, each of area h2/2. The
outward unit normals n1, n2, and n3 to these three faces are easily found by inspection.
The larger face labeled A has area (

√
3/2)h2 and an outward unit normal n =

(1/
√

3)I + (1/
√

3)J + (1/
√

3)K.
The fluid outside the tetrahedron applies a normal stress on each face. Let the nor-

mal stresses on each orthogonal face be given by σN1, σN2, and σN3, respectively,
with σN as the normal stress on the largest face. The surface force acting on a face of
the tetrahedron is found by combining Eqs. 4.21 and � = σN n to obtain,
FS = ∫S � dS = ∫S σN n dS. Since the faces are planar, the unit normal on each face is
a constant vector. The normal stress on each face is also constant, since the tetrahedron
is small. Thus, the surface force on a face is simply given by FS = σN An. The sur-
face forces acting on the three orthogonal faces are σN1 A1(−I), σN2 A2(−J), and
σN3 A3(−K). The surface force on the larger slanted face is σN A[(I/

√
3) +

(J/
√

3) + (K/
√

3)].



Next consider the body force f = f(x, t) acting on the fluid inside the tetrahedron.
For a sufficiently small tetrahedron, both the fluid density and the body force per unit
mass are constant and equal to their value at location x . The total body force acting on
the small tetrahedron filled with fluid is then given by Eq. 4.7 as FB = ∫ ρf dV = ρf –V ,
and the components of the body force can be written as FB = (ρ fX –V )I + (ρ fY –V )J +
(ρ fZ –V )K.

We now apply Newton’s second law to the tetrahedron by equating the sum of the
body and surface forces to zero. Consider first the forces acting in the X direction. There
are surface force contributions from face 1 and the slanted face, plus the X component
of the total body force acting on the fluid inside the tetrahedron. Equating the sum of
these forces to zero gives

−σN1 A1 + σN A√
3

+ ρ fX –V = 0

Inserting the known areas and volume into this expression yields

−σN1

(
h2

2

)
+ σN

1√
3

(√
3

2
h2

)
+ ρ fX

(
h3

6

)
= 0
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n2 � �J

n3 � �K

�N2

�N1

�N

n1 � �I

�N3

n � 	I1
3�

X

Z

Y

h

A1

A2 A3

A (Area of
larger front face)

x

	J1
3�

K1
3�

z

y

x

Figure 5.2 Tetrahedron of fluid with its associated stresses and unit
normals.



To be consistent, this equation must hold as the tetrahedron shrinks, a process
equivalent to taking the limit of this expression as h → 0. After we first divide by h2, we
discover that the X component of the total body force goes to zero faster in the limit than
the X component of the total surface force. Thus we obtain, σN1 = σN . Writing similar
force balances in the Y and Z directions leads to the additional relationships
σN2 = σN , and σN3 = σN . These results show that the normal stress acting on the
slanted face of the tetrahedron is identical to that acting on each of the three orthogonal
faces of the same tetrahedron. We have proven an important characteristic of the normal
stress in a fluid at rest: it acts equally in all directions. This explains why tilting your
head underwater does not change the sense of pressure on your eardrums.

It is relatively easy to show that a state of hydrostatic stress also occurs if a fluid is
in motion at constant velocity as a whole, in linear acceleration as a whole, or in a solid
body rotation as a whole. In these cases, the tetrahedron analysis may be repeated in a
reference frame fixed to the moving volume of fluid. In this moving frame the fluid is at
rest, but acted upon by the appropriate noninertial body force needed to account for the
acceleration of the noninertial reference frame. Since this noninertial body force may be
absorbed into the actual body force, it has no effect on the outcome of the tetrahedron
analysis, and we conclude that the fluid in these situations is also in a state of hydrosta-
tic stress.

How is the normal stress σN in a fluid at rest related to the pressure? The answer is
that the pressure p, called the static pressure, is defined to be the negative of the normal
stress acting on any surface in a fluid at rest. Thus, for a fluid at rest we have

p = −σN (5.1a)

and the stress vector in a fluid at rest, or hydrostatic stress, is given by

� = −pn (5.1b)

Note that this result is identical to Eq. 4.20, given previously without proof. The
foregoing definition of the static pressure is consistent with our earlier description of
pressure in Section 2.3 in terms of a compressive surface force. Since the normal stress
acting on any surface is σN = −p and all shear stresses are zero, the stress tensor in a
fluid at rest has the form

� =
(

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

)
=
(−p 0 0

0 −p 0
0 0 −p

)
(5.1c)

To complete the discussion of the hydrostatic stress distribution, we need only deter-
mine the pressure distribution in the fluid.

5.3 HYDROSTATIC EQUATION

In fluid mechanics pressure is represented by a scalar field, p = p(x, t). For a fluid at
rest, both the pressure distribution and the body forces that create it are normally time
independent, so in this chapter we consider the pressure and body force to be functions
of position alone. To learn more about the pressure field in a fluid at rest, we must
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develop a governing equation for fluid statics. This governing equation, called the
hydrostatic equation, is an expression of Newton’s second law for a fluid at rest. The hy-
drostatic equation, in integral and differential form, applies to every problem in fluid
statics. However, we do not necessarily need to solve this equation repeatedly, since the
general characteristics of the hydrostatic pressure distribution are known for every com-
mon engineering situation.

5.3.1 Integral Hydrostatic Equation

Consider an arbitrary volume of fluid at rest. The total body force acting on this fluid
volume is given by Eq. 4.7 as FB = ∫ ρf dV , and the surface force applied by the fluid
outside the volume on the fluid inside the volume is given in general by Eq. 4.21 as
FS = ∫S � dS. Substituting for the stress vector in this equation by using Eq. 5.1b, we
obtain FS = ∫∫S −pn dS . Newton’s second law states that the sum of the body and sur-
face forces acting on this arbitrary volume of fluid at rest is zero, thus we can write∫

S
−pn dS +

∫
ρf dV = 0 (5.2)

Equation 5.2 is the integral hydrostatic equation. It tells us that the total force exerted by
the pressure on the surface of a volume of fluid at rest is exactly balanced by the total
body force exerted on the fluid within the volume. In applying this equation it is impor-
tant to realize that the density and body force may be functions of position.

To see how this equation might be employed to analyze a problem in fluid statics,
consider the free body diagram for a stationary cylindrical column of water of diameter D
and height H shown in Figure 5.3. Gravity is the only body force acting, and the top of
the container is open to the atmosphere. What can the integral hydrostatic equation tell us

D

pB

pA

pside

z

f

r

H

Figure 5.3 Free body diagram of a cylindri-
cal column of water.



about this situation? The first step is the judicious selection of a volume of fluid for
analysis. In this case, we choose a fluid volume consisting of the entire water column,
for reasons that should become clear as we proceed. To evaluate the volume integral in
Eq. 5.2, we note that gravity is the only body force acting, and the water density is
constant. Thus the integral gives 

∫
ρf dV = −ρH2Ogπ(D2/4)Hk. The magnitude of

the total body force is equal to the weight of water in the volume, and the force acts
downward.

To evaluate the pressure integral in Eq. 5.2, note that the surface of interest has three
parts, a top, a bottom, and a cylindrical wall. Consider the top and bottom integrals first.
In Chapter 2 we stated that the hydrostatic pressure in a fluid at rest in a gravity field is
uniform on horizontal planes. Thus, the pressure on the top and bottom surface is uni-
form. On the top surface the pressure is the ambient atmospheric pressure pA , the out-
ward unit normal is n = k, and the area is (π D2/4). Thus the pressure integral on the
top surface is 

∫
S −pn dS = −pAk(π D2/4). On the bottom surface the outward unit

normal is n = −k, and if we let pB represent the unknown pressure at the bottom of the
column, then the pressure integral yields: 

∫
S −pn dS = −pB(−k)(π D2/4). These two

integrals contribute a net force of (pB − pA)(π D2/4)k. On the cylindrical wall, the
pressure varies in the z direction, but because of symmetry, the total force applied to the
wall by the fluid is zero.

Substituting the expressions for the body and surface forces into the integral
hydrostatic equation yields (pB − pA)(π D2/4)k − ρH2Og(π D2/4)Hk = 0, which is
simply a force balance on the chosen volume of fluid. The only unknown is the pressure
at the bottom of the fluid column, pB . Solving for this pressure we have pB =
pA + ρH2OgH . By applying the integral hydrostatic equation, we have learned that the
pressure at the bottom of a stationary column of water is greater than that at the top, by
the amount ρH2OgH .

A general statement of this result is that the pressure at the bottom of a layer of con-
stant density fluid of thickness H in Earth’s gravity field exposed to atmospheric pres-
sure at the top is given by

pB = pA + ρgH (5.3)

Thus, the surface force per unit area at the bottom of a fluid column, pB , is equal to the
surface force per unit area at the top of the column, pA , plus the weight per unit area of
the fluid in between, ρgH . Note that this equation is equivalent to Eq. 2.9, which was
stated without proof in our discussion of pressure in Chapter 2.

Equation 5.3 applies only to a constant density fluid. What can the integral hydro-
static equation tells us about a layer of variable density fluid? Suppose a fluid has an ar-
bitrary but known density distribution given by ρ(z). Applying Eq. 5.2 to a cylindrical
column of this fluid, of height H , the body force integral gives∫

ρf dV = −(π D2/4)gk
∫ H

0
ρ(z) dz = −(π D2/4)ρ̄gHk

where the average density ρ̄ of the fluid in the column is defined by

ρ̄ = 1

H

∫ H

0
ρ(z) dz (5.4)
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EXAMPLE 5 .2

What is the pressure increase per foot of water depth in a lake? What is the pressure de-
crease per foot of height in the atmosphere at sea level.

SOLUTION

Examination of Eq. 5.3 shows that the pressure increase in a constant density fluid over
H feet of depth is ρgH . Therefore, the pressure increase per foot of water depth is sim-
ply ρg. Using a nominal density of water of 62.4 lbm/ft3, we find:

ρg = (62.4 lbm/ft3)(32.2 ft/s2) = 2.01 × 103 lbm/(ft2-s2)

As is frequently the case when one is working with EE units, we need the gc constant
to make sense of our solution. Recall that the unit conversion form of gc is
32.2 ft-lbm = 1 lbf-s2 . Therefore the preceding result becomes:

ρg = [2.01 × 103 lbm/(ft2-s2)]

(
1 s2-lbf

32.2 lbm-ft

)
= 62.4 lbf/ft3

Thus, the pressure change per foot of water depth is 62.4 (lbf/ft2)/ft or 0.433 psia/ft.
Assuming that the density of the air in the atmosphere is constant and equal to the

sea level value, the pressure decrease in air at sea level is also ρg. Using the Standard
Atmosphere data of Appendix B, the pressure decrease per foot of elevation in Earth’s
atmosphere is

ρg = (0.002377 slug/ft3)(32.2 ft/s2)

(
32.2 lbm

1 slug

)(
1 lbf-s2

32.2 lbm-ft

)

= 0.0765 lbf/ft3
(

1 ft

12 in.

)2

= 5.3 × 10−4 psia/ft

This change in pressure with height in the atmosphere is often small enough to be
ignored.

Notice that the total body force is equal in magnitude to the weight of the variable
density fluid, given by the product of the weight per unit area of the fluid ρ̄gH and the
column area (π D2/4). The pressure integrals on the top, bottom, and cylindrical walls
are exactly the same as those calculated earlier for the column of water, so the integral
hydrostatic equation in this case gives:

(pB − pA)

(
π D2

4

)
k − ρ̄g

(
π D2

4

)
Hk = 0

Solving for the pressure at the bottom of the column of variable density fluid we find 

pB = pA + ρ̄gH (5.5)



Equation 5.5 tells us that the surface force per unit area at the bottom of a column of
variable density fluid, pB , is equal to the surface force per unit area at the top of the
column, pA , plus the weight per unit area of the fluid in between. The latter can be
expressed using the average density as ρ̄gH .

Equation 5.5 applies to any fluid, including a constant density fluid for which
ρ̄ = ρ; thus it is useful in many engineering applications. For example, suppose a col-
umn of water has a temperature gradient so that the water density is slightly higher at the
bottom than at the top, and the resulting linear density distribution is given by

ρ(z) = ρH − (ρB − ρH )
(z − H)

H
(5.6)

where ρH and ρB are the densities at the top (i.e., at height H) and bottom, respectively.
What is the pressure at the bottom of the column? By inspection, the average density is
ρ̄ = (ρH + ρB)/2, a result you can confirm by using Eq. 5.4. By Eq. 5.5, the pressure at
the bottom of the column is

pB = pA +
(

ρB + ρH

2

)
gH (5.7)

which, as expected, is the pressure at the top plus the weight per unit area of the variable
density fluid.

5.3.2 Differential Hydrostatic Equation

A differential form of the hydrostatic equation can be derived directly from the integral
hydrostatic equation with the help of Gauss’s theorem. The advantage of a differential
governing equation is that it allows us to find the pressure distribution at any point in the
fluid. To derive the differential equation, we start by using the scalar form of Gauss’s
theorem to convert the (surface) pressure integral in Eq. 5.2 to a volume integral. The
result is ∫

S
−pn dS =

∫
−∇p dV (5.8)

where ∇p is the gradient of the pressure field. Using concepts from vector calculus it
can be shown that the negative of the pressure gradient may be interpreted as the pres-
sure force per unit volume.
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EXAMPLE 5 .3

A mixture of crude oil (SG = 0.87) and water is pumped into a settling tank that is 10 m
high and vented at the top (see Figure 5.4). After a period of time, it is found that a layer
of crude oil 2 m deep has accumulated on top of 7.5 m of water. What is the average
density of the liquid column? What is the pressure at the bottom of the tank?
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SOLUTION

To determine the average density, we use Eq. 5.4:

ρ̄ = 1

H

∫ H

0
ρ(z) dz = 1

H

[(∫ hwater

0
ρwater dz

)
+
(∫ hwater + hoil

hwater

ρoil dz

)]

where the integration has been separated into water and oil parts. Completing the inte-
gral, we have

ρ̄ = 1

H
[ρwaterhwater + ρoilhoil] = ρwater

H

[
hwater +

(
ρoil

ρwater

)
hoil

]
(A)

where hwater is the height of the water column, and hoil is the height of the oil column.
Evaluating this expression yields:

ρ̄ = 998 kg/m3

9.5 m
[7.5 m + (0.87)(2 m)] = 971 kg/m3

The pressure at the bottom of the tank is calculated by using Eq. 5.5, pB = pA + ρ̄gH ,
i.e., the pressure is ρ̄gH above that at the free surface. Therefore,

pB = 1.013 × 105 N/m2 + (971 kg/m3)(9.81 m/s2)(9.5 m)
1 (N-s2)

1 (kg-m)

= 1.92 × 105 N/m2

The pressure at the bottom of the tank is almost 2 atm. An alternate way to think about
this problem is to realize that the pressure on the bottom is higher than at the free sur-
face owing to the weight per unit area of the two fluids: oil and water. These weights per
unit area are ρoilghoil and ρwaterghwater, respectively. Notice that (A) can be written as
ρ̄gH = ρwaterghwater + ρoilghoil , which confirms the validity of this approach.

pA

Oil

Water

hwater � 7.5 m
z

hoil � 2 m

H

p

z

Figure 5.4 Schematic for Example 5.3.
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EXAMPLE 5 .4

Figure 5.5A shows a hemispherical (R = 5 m) undersea habitat located at a depth of
H = 20 m in the ocean. What is the total force applied by the seawater on the structure?
Assume that the specific gravity for seawater is 1.025.

pA

(B)(A)

20 m 20 m

pA

5 m

Figure 5.5 Schematic for Example 5.4. (A) force on hemispherical structure. (B) forces on
corresponding fluid control volume.

SOLUTION

We are to find the force applied by the seawater on the undersea habitat. The hemi-
spherical (R = 5 m) structure is located 20 m below the surface. We will assume con-
stant density and negligible motion of the seawater. The key to this problem is to realize
that the force Fdome applied by the seawater to the dome is equal and opposite to the
force F of the dome on the bottom of the selected fluid volume shown in Figure 5.5B,
which extends to the surface. Having selected this volume, we can apply the integral
hydrostatic equation (Eq. 5.2), writing it as

∫
top

−pn dS +
∫

bottom
−pn dS +

∫
cylinder

−pn dS +
∫

ρf dV = 0

Since the force Fdome applied by the seawater to the dome is equal and opposite to
the force F of the dome on the bottom of the selected fluid volume, we have
F = −Fdome = ∫bottom −pn dS . The surface integral on the cylindrical surface is zero
owing to symmetry, so the equation becomes 

∫
top −pn dS − Fdome + ∫ ρf dV = 0.

Solving for Fdome, we find Fdome = ∫top −pn dS + ∫ ρf dV . The pressure at the ocean
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surface is atmospheric, the outward normal points up, and the area is known. Thus
we find

Fdome =
∫

top
−pn dS +

∫
ρf dV = −pAπ R2k +

∫
ρsw(−g)k dV

= −pAπ R2k − ρswgkπ
(
R2 H − 2

3 R3)
Note that the volume is that of the cylinder from the surface to the ocean bottom less the
volume of the hemisphere. A dimension check of the two terms yields force, as ex-
pected. With an ambient pressure of pA = 101,300 N/m2, the pressure term contributes
a force of −7.96 × 106 N k. Since ρsw = 1.025ρH20 = 1023 kg/m3 , the body force term
contributes a force of 

−ρswgkπ
(
R2 H − 2

3 R3) = −(1023 kg/m3)(9.81 m/s2)k(π)
[
(5 m)2(20 m) − 2

3 (5 m)3]
= −1.31 × 107 N k.

The force applied by the seawater to the dome is −2.11 × 107 N k, which is the sum of
a force of −7.96 × 106 N k due to atmospheric pressure, representing the weight of air
above the dome, and a force of −1.31 × 107 N k, due to the weight of water above the
dome.

A force balance on the dome would include the force applied by the seawater plus
the structural weight of the dome and the force applied by the air pressure inside the
dome. The net force applied by the two fluids involved, air and seawater, depends on the
air pressure on the inside of the dome. If the habitat air supply is maintained at atmo-
spheric pressure, the result would be an upward force on the dome that would exactly
balance the force of −7.96 × 106 N k due to the atmospheric pressure at the top of the
water column above the dome, leaving the net force on the structure due to the two fluids
equal to the weight of the water column above the habitat.

Substituting Eq. 5.8 into the integral hydrostatic equation gives ∫
−∇p dV +

∫
ρf dV = 0

Since these two integrals refer to the same volume of fluid, we may combine them to
obtain ∫

(−∇p + ρf) dV = 0

This equation applies to an arbitrary volume of fluid; thus the integrand must be zero, al-
lowing us to conclude that the pressure and body forces are related by

∇p = ρf (5.9)



Equation 5.9 is the differential form of the hydrostatic
equation. This equation is customarily referred to as the
hydrostatic equation. It tells us that the pressure gradi-
ent at a point in a fluid at rest points in the direction of
the body force and has a magnitude equal to the product
of density and body force. Note that ∇p is the surface
force per unit volume acting on the fluid and ρf is the
body force per unit volume. Thus at each point in a fluid
at rest the pressure and body forces per unit volume are
in balance. As was the case with the integral hydrostatic
equation, the density and body force in Eq. 5.9 may be
functions of position.

In Cartesian coordinates, the three components of the hydrostatic equation are

∂p

∂x
= ρ fx ,

∂p

∂y
= ρ fy, and

∂p

∂z
= ρ fz (5.10a–c)

These three partial differential equations describe the variation in pressure in each coor-
dinate direction at any point in the fluid. In cylindrical coordinates, the three compo-
nents of the hydrostatic equation are 

∂p

∂r
= ρ fr ,

1

r

∂p

∂θ
= ρ fθ , and

∂p

∂z
= ρ fz (5.11a–c)
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The hydrostatic equation can also be ob-
tained from the force balance in a fluid as
discussed in Chapter 4. Recall that the
balance is given by Eq. 4.40 as ρa = ρf +
∇ • σ. Since the fluid is at rest, the acceler-
ation is zero and the force balance can
be written as −∇ • σ = ρf. Evaluating the
stress divergence using the form of the
stress tensor in a fluid at rest, Eq. 5.1c,
gives the hydrostatic equation.

EXAMPLE 5 .5

Figure 5.6 shows a constant density fluid in a cylindrical container rotating at angular
velocity Ω. The fluid is at rest (relative to the container) in the rotating container. Find
the body force acting on the fluid, and determine the pressure gradient.

pA

ez er
r

z

fz � �g

fr � r
2

f � r
2er � gez

�




Figure 5.6 Schematic for Example 5.5.



5.4 HYDROSTATIC PRESSURE DISTRIBUTION

The solution of the hydrostatic equation provides the pressure distribution in a fluid at
rest. To solve this partial differential equation, the density and body force must be
known. There can be a number of different body forces acting in a hydrostatics problem,
either alone or in combination. In addition, the fluid may be a liquid or gas, and the den-
sity may be constant or variable. Although an engineer must be prepared to analyze any
problem involving a fluid at rest, gravity is the most common body force. Thus, in the
remainder of this chapter we devote most of the discussion to problems in which a fluid
is at rest in a uniform gravity field.

The governing equation for the pressure distribution, applicable to a constant or
variable density fluid at rest in Earth’s gravity field, is developed from the hydrostatic
equation. In Cartesian coordinates with the z axis upward, the gravitational body force
per unit mass is f = −gk. Substituting fx = 0, fy = 0, and fz = −g into Eqs. 5.10, we
obtain:

∂p

∂x
= 0,

∂p

∂y
= 0, and

∂p

∂z
= −ρg

These three equations reveal two interesting features of the pressure and density
variations in a fluid at rest. First, we conclude that the pressure is only a function of
height z. This is the basis for the statement in Chapter 2 that in Earth’s gravity field the
hydrostatic pressure is uniform on horizontal planes. By separately differentiating the
last equation with respect to x and y, interchanging the resulting derivatives of the pres-
sure, and using the fact that (∂/∂z)(∂p/∂x) = (∂/∂x)(∂p/∂z), we discover that
∂ρ/∂x = ∂ρ/∂y = 0. This shows that the density of a fluid at rest in Earth’s gravity
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SOLUTION

We must determine the three components of the body force acting on the fluid. Cylin-
drical coordinates fixed to the rotating container appear to be appropriate given the
geometry. Since this a rotating reference frame, we must be careful to account for
noninertial body forces. In the r direction there is a noninertial body force due to the
centrifugal acceleration, given by fr = rΩ2. There is no body force acting in the θ
direction so, fθ = 0, but gravity acts in the vertical direction as usual, so fz = −g. Thus
the body force is given by f = rΩ2er − gez . The hydrostatic equation relates the
pressure gradient in a fluid at rest to the body force. Thus from Eqs. 5.11, the pressure
gradient is given by

∂p

∂r
= ρ fr = ρrΩ2,

1

r

∂p

∂θ
= ρ fθ = 0, and

∂p

∂z
= ρ fz = −ρg

which in vector notation is ∇p = ρrΩ2er − ρgez . We see that, as expected, the pres-
sure increases in the r direction owing to the centrifugal body force and increases in the
negative z direction owing to the gravitational body force.



field is either a constant, or a function of height z. The density cannot vary on a hori-
zontal plane.

The pressure distribution in any fluid at rest in Earth’s gravity field therefore satisfies

dp

dz
= −ρ(z)g (5.12)

where ρ(z) is the density distribution. This is a first-order ordinary differential equation,
so we must specify one boundary condition, normally a known value, p0, for the pres-
sure at a certain elevation z0. The solution to this equation is obtained by separating
variables and integrating from z0 to z,

∫ p
p0

dp = ∫ z
z0

−ρ(z)g dz , where p is the pressure
at elevation z. Completing the integration of the left-hand side yields:

p(z) − p0 =
∫ z

z0

−ρ(z)g dz (5.13)

Since the density occurs inside the integral in Eq. 5.13, the nature of the fluid in-
volved in a hydrostatics problem is important. It is not simply a question of whether the
fluid is a liquid or a gas. Rather, it is whether the density of the liquid or gas is constant,
or varies with height z.

5.4.1 Constant Density Fluid in a Gravity Field

Engineers are often called upon to examine structural issues related to the pressure dis-
tribution in liquids in storage or confinement. Similar issues arise in applications in-
volving oceans, lakes, and rivers. The motion of the liquid involved is often negligible.
Thus the pressure distribution in the liquid is the hydrostatic pressure distribution for a
constant density fluid at rest in Earth’s gravity field. In this case, the integral in Eq. 5.13
reduces to p(z) = p0 − ρg

∫ z
z0

dz , which upon integration yields

p(z) = p0 − ρg(z − z0) (5.14)

Equation 5.14 is the hydrostatic pressure distribution in a constant density fluid.
The shape of this pressure distribution is shown in Figure 5.7, along with the locations
of the datum pressure p0, and datum elevation z0. Notice that the pressure begins at the
specified value p0 at a specified elevation z0 and increases linearly with depth at a rate
given by ρg.
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Figure 5.7 Linear pressure distribution in a constant density
fluid.



An interesting feature of the hydrostatic pressure distribution given by Eq. 5.14 is
that the distribution does not depend on the shape of the container. This feature is illus-
trated in Figure 5.8A, showing the pressure contours in several different containers, all
of which are open at the top and exposed to the ambient pressure. The hydrostatic pres-
sure distribution in a large body of constant density fluid is usually not changed by the
presence of an object either partially or fully immersed in the fluid (Figure 5.8B). Note
however, that as shown in Figure 5.8C, if the volume of an immersed object is large rel-
ative to the total volume of a container, there will be an overall increase in fluid depth
and the pressure distribution must change to reflect this increase.

In cases involving a more general form of the body force, a hydrostatic pressure dis-
tribution may be represented in Cartesian coordinates by p = p(x, y, z). In many ap-
plications it is of interest to know exactly what a surface of constant hydrostatic pressure
looks like, and to be able to predict at what locations a certain pressure value occurs.
Surfaces of constant hydrostatic pressure are found by setting the pressure distribution
p(x, y, z) equal to a constant:

p(x, y, z) = C (5.15)

For example, in problems in which gravity is the only body force, the pressure distribu-
tion is given by Eq. 5.14. We can reference the actual pressure to the datum pressure in
this case and write

p(z) − p0 = C = −ρg(z − z0)
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Pressure contours

(A)
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pB
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pD
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(C) Before immersion After immersion

Figure 5.8 (A) Pressure contours in several containers filled with fluid and open to the environment. The
shape of a container does not affect the pressure distribution. (B) A large body of contstant density fluid,
in which the presence of an object either partially or fully immersed in the fluid does not affect the pres-
sure distribution. (C) Object immersed in a container that does affect the pressure distribution.



The surfaces of constant pressure, as measured relative to the datum pressure, are then
given by

z = z0 − C

ρg
(5.16)

which are a family of horizontal planes, in agreement with earlier statements that the hy-
drostatic pressure in a constant density fluid is uniform on horizontal planes.

Suppose we wish to use the parameters shown in Figure 5.9 to write an analytical
expression for the pressure distribution in a lake. At a point near the middle of the lake,
the water depth is h. Note that we have elected to place the origin of our coordinate sys-
tem at the lake bottom and that the pressure at the lake surface is known to be atmos-
pheric. A point on the lake surface is therefore an excellent location to define the datum
pressure and elevation as p0 = pA and z0 = h. From Eq. 5.14, and referring to the co-
ordinates shown in Figure 5.9, the pressure distribution in the lake is

p(z) = pA − ρH2Og(z − h) (5.17)
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g z

h

p0 � pA

Figure 5.9 Parameters neces-
sary to describe the pressure
distribution in a lake.

EXAMPLE 5 .6

An evacuated tube is immersed in a liquid as shown in Figure 5.10A. How high will the
liquid rise into the tube? Calculate this height for water and mercury. You can neglect
surface tension in the solution of this problem.

z

H
pA

(A)

pV

pV � 0

pA

Hg

(B)

pA
�gH �

Water

Pump

pA

(C)

H

Figure 5.10 (A) Schematic for Example 5.6. (B) Schematic of barometer. (C) Schematic of pump intake with pres-
sure less than atmospheric.



The formula obtained in the preceding example, namely

H = pA − pv

ρg
(5.18a)

is applicable to several engineering situations. For example, it is the basis for the mer-
cury filled device shown in Figure 5.10B, long used to report the barometric pressure
in Earth’s atmosphere. Mercury’s vapor pressure is so low that Eq. 5.18a becomes
H = (pA − pv)/ρg ≈ pA/ρg , which means that by measuring the height of the mer-
cury column, we effectively measure the absolute pressure in the atmosphere, rather
than the difference between the absolute pressure and the vapor pressure of mercury.
Equation 5.18a also explains why a pump cannot function if the liquid level is too far
below the pump intake. Consider the arrangement of Figure 5.10C. If the water level
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SOLUTION

We begin by recognizing that the pressure at the liquid surface just outside the tube
at height z = 0 must be atmospheric pressure. That is, p(0) = pA . Since the tube is
open to the liquid, we can conclude that the pressure inside the tube at z = 0 is the same
as that outside the tube at the same elevation (horizontal surfaces in open fluids
have equal pressures). Since this is a constant density fluid, we know that the pressure
decreases linearly with height and we can conclude that at the fluid interface inside the
tube (z = H), we have p(H) = p(0) − ρgH = pA − ρgH . To finish the problem,
we must know the pressure within the evacuated space at the top of the tube. If a per-
fect vacuum existed above the liquid, we would have p(H) = 0. However liquid
molecules leave and rejoin the surface through evaporation and condensation, and at
equilibrium a vapor pressure pV will exist above a particular liquid at a particular tem-
perature. Thus p(H) = pV , and we can write pV = pA − ρgH and solve for H to
obtain H = (pA − pV )/ρg .

From Appendix A, we find that the vapor pressures for water and mercury (at 20◦C)
are 2.34 × 103 and 1.1 × 10−3 N/m2, respectively, and the corresponding densities are
998 and 13,550 kg/m3. Substituting appropriate values into our equation for H yields:

For water:

H = pA − pv

ρg
= 1.01 × 105 N/m2 − 2.34 × 103 N/m2

(998 kg/m3)(9.81 m/s2)
= 10.1 m

For mercury (Hg):

H = pA − pv

ρg
= 1.01 × 105 N/m2 − 1.1 × 10−3 N/m2

(13,550 kg/m3)(9.81 m/s2)
= 0.76 m

Since these heights are very large in comparison to a capillary rise in a reasonably sized
tube, we are justified in ignoring the effects of surface tension. The rise in mercury of
760 mm is the basis for the unit called the torr: 1 atm = 760 torr = 760 mm Hg. 



drops and approaches a value equal to H, the water boils near the pump inlet and the
flow through the pump ceases.

The pressure-measuring device shown in Figure 5.11 is called a U-tube manometer.
This device is of historical and practical importance in fluid mechanics. Let us use our
knowledge of fluid statics to interpret the reading of a U-tube manometer. Consider a
procedure similar to the one we used to solve Example 5.6 (and, later, Example 5.7).
Starting at point 1, the pressure is p1. If we move down the tube to the U and back up
to point 1�, the pressure must be p1 no matter how far we have traveled. Continuing
to ascend to height H up the right side of the tube to the surface, the pressure de-
creases by the amount ρgH and equals p2, which completes the analysis. Thus, we find
p1 − ρgH = p2. Rearranging this expression to isolate the pressure difference yields
the manometer formula

p1 − p2 = ρgH (5.18b)

A manometer pressure reading is usually reported as the value of H along with the
manometer liquid. For example, a reading may be given in inches of water or millime-
ters of mercury. The range of pressures that can be measured depends on the density of
the liquid in the manometer. A dense liquid such as mercury greatly extends the range of
readable pressures. On the other hand, sensitivity, the change in height per unit change
in pressure, increases as fluid density decreases.

The precision of a pressure measurement with a U-tube manometer depends to
some extent on the type of liquid used and the effects of surface tension in causing a
meniscus to form in the tube at the free surface. We can improve the precision greatly by
using the inclined manometer shown in Figure 5.12. Repeating the analysis for the in-
clined manometer shows that the pressure difference is still given by Eq. 5.18b. How-
ever, the measuring distance L is related to H by H = L sin θ , so we can rewrite the
formula as

p1 − p2 = ρgH = ρgL sin θ (5.18c)

Equation 5.18c demonstrates that for an inclined manometer, a pressure difference
will give a larger value of L and corresponding improvement in sensitivity as the angle θ

decreases.
Manometers are used less frequently today owing to the development of low cost

and accurate electronic transducers, but they remain important experimental tools. It is
still common for mechanical and electronic pressure gages to report measured pressures
in terms of inches of water or millimeters of mercury above or below some ambient or
reference value. To find the corresponding value for the pressure difference in a unit of
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Figure 5.11 U-tube
manometer. The
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force per unit area, the height value is multiplied by the specific weight of the fluid. Can
you show that a reading of 1 inch of water corresponds to a pressure of 0.036 psia, and
a reading of 1 mm of mercury corresponds to 132.9 Pa?

A pressure difference of �p results in a reading of H = �p/ρg on a U-tube
manometer. If we select �p = 1 atm, we can calculate the corresponding height in
water at room temperature to be

H = �p

ρH2Og
= (14.696 lbf/in.2)(144 in.2/ft2)

(1.936 slugs/ft3)(32.2 ft/s2)

= 33.95 ft = 407.4 in.

and in mercury we find:

H = �p

ρHgg
= 101,300 N/m2

(13,550 kg/m3)(9.81 m/s2)

= 0.762 m = 762 mm

These values give some indication of the maximum pressures that can be read by a
U-tube manometer of reasonable size: a fraction of an atmosphere with water, and up to
2 atm with mercury.

In Example 5.2 we showed that for modest elevation changes in air, the change in
hydrostatic pressure with height is negligible. This is the basis for the simplest approxi-
mation or model for the atmosphere, namely that the pressure in the atmosphere is
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EXAMPLE 5 .7

A water-filled manometer like the one shown in Figure 5.11 is connected on one side
to a duct through which pressurized air is flowing and is open to the atmosphere
on the other side. If the height H is found to be 18 cm, determine the air pressure in
the duct.

SOLUTION

This exercise is solved by using Eq. 5.18b, p1 − p2 = ρgH . In this case
H = 18 cm = 0.18 m, p2 = pA = 101,300 N/m2, ρ = 998 kg/m3 (at 20◦C), and we
are interested in finding the pressure at the duct wall. A simple substitution of the rele-
vant values into the equation yields:

p1 − pA = ρH2O gH = (998 kg/m3)(9.81 m/s2)(0.18 m)
1 (N-s2)

1 (kg-m)
= 1762 N/m2

This is a gage pressure. The corresponding absolute pressure is 

p1 = 1762 N/m2 + 101,300 N/m2 = 103,062 N/m2



constant and equal to the appropriate ambient pressure for the given elevation. It is cus-
tomary in engineering to use this constant pressure model in most problems. Note that
the air density is effectively assumed to be zero in this model.

An improved model of Earth’s atmosphere results if we assume that the air density
is constant and equal to its ambient value. From Eq. 5.14, the pressure distribution in
Earth’s atmosphere in this constant density model is given by the linear distribution

p(z) = p0 − ρairg(z − z0)

Since the pressure at Earth’s surface is known to be atmospheric or ambient, we may
choose a point on the surface to define the datum pressure and elevation as p0 = pA and
z0 = 0. The absolute pressure distribution in the atmosphere is then given by

p(z) = pA − ρairgz (5.19a)

and the gage pressure distribution is given by

pgage(z) = ρairgz (5.19b)

Equation 5.19b can be used to show that the air pressure at the level of the Skydeck
of the Sears Tower in Chicago, which is 1353 ft above the ground, is approximately
0.7 psia less than at the ground.
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EXAMPLE 5 .8

Find the pressure distribution in the tank containing crude oil and water discussed in
Example 5.3 and illustrated in Figure 5.4.

SOLUTION

The density is constant in each layer of fluid; therefore, Eq. 5.14 can be applied in a piece-
wise fashion to obtain the pressure distribution. Starting with the oil layer, we know at the
surface the pressure is atmospheric because the tank is vented; p(z0 = 9.5 m) = pA.
Thus, in the oil layer, the pressure distribution is given by

p(z) = p0 − ρg(z − z0) = pA − ρoilg(z − 9.5 m) {7.5 m ≤ z ≤ 9.5 m}
From this we conclude that the pressure at the oil–water interface is

p(7.5 m) = pA − ρoilg(7.5 m − 9.5 m) = pA + ρoilg(2 m)

This pressure is used as the datum value p0 in the pressure distribution in the water
layer:

p(z) = p0 − ρg(z − z0) = p(7.5 m) − ρwaterg(z − 7.5 m)

= pA + ρoilg(2 m) − ρwaterg(z − 7.5 m)



5.4.2 Variable Density Fluid in a Gravity Field

In Section 5.4 we showed that the pressure distribution in any fluid at rest in Earth’s
gravity field is given by Eq. 5.12, which states that dp/dz = −ρ(z)g. For a constant
density fluid, the solution to this equation is a linear pressure distribution, in which pres-
sure increases with depth at a rate defined by the specific weight of the fluid, ρg. In a
variable density fluid, usually referred to in fluid mechanics as a stratified fluid, the pres-
sure distribution is nonlinear.

In theory, any vertical density variation is consistent with the foregoing equation,
and the corresponding pressure distribution may be found by integrating this equation
after inserting the known density distribution. As a practical matter, however, certain
density distributions are unstable. The most common unstable stratified fluid situation is
a layer of heavy fluid on top of a layer of light fluid. Given a sufficient disturbance, un-
stable stratified fluid will overturn. In liquids and gases, colder fluid is normally heavier,
so a temperature decrease with increasing height is unstable. The creation of an unstable
density profile in a fluid is a challenging task, but one which nature has mastered. For
example, consider the type of atmospheric inversion that often occurs in the Los Angeles
Basin when a layer of smog is trapped below a layer of colder, denser air.

The overturning of an unstable stratified fluid is a complex process, and the onset of
motion is not easily predicted. This phenomenon has been observed in nature, both in
the atmosphere and in lakes. Overturning in a water reservoir due to temperature strati-
fication in the fall sometimes results in a brief period of bad-tasting, discolored drinking
water. On rare occasions, overturning in nature results in tragedy. A massive release
of CO2 in 1986 from the gas-saturated waters of Lake Nyos, a caldera lake in Cameroon,
killed numerous people. The release was attributed to an unstable density profile in the
deepest water. As the lake waters overturned, massive amounts of CO2 that had been
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Thus in the water layer we have

p(z) = pA + ρoilg(2 m) − ρwaterg(z − 7.5 m) {0 ≤ z ≤ 7.5 m}
From Example 5.3 the densities of the water and oil are 998 kg/m3 and 868 kg/m3, re-
spectively, and atmospheric pressure may be taken as 1.013 × 105 N/m2. Thus, the pres-
sure in the oil layer is

p(z) = 1.823 × 105 N/m2 − (8.52 × 103 N/m3)z {7.5 m ≤ z ≤ 9.5 m}
and in the water layer it is

p(z) = 1.918 × 105 N/m2 − (9.79 × 103 N/m3)z {0 ≤ z ≤ 7.5 m}
This exercise illustrates the procedure for matching the pressure at the interface between
two immiscible fluids. Note that the pressure at the bottom of the water layer is 

p(0) = 1.918 × 105 N/m2 − (9.79 × 103 N/m3)(0) = 1.918 × 105 N/m2

which agrees with the value found via a different method in Example 5.3.



dissolved in the deep waters were released, and the water behaved like a shaken car-
bonated drink.

To find the hydrostatic pressure distribution in a variable density fluid, we
must solve Eq. 5.12, dp/dz = −ρ(z)g, with the known density distribution. We do this
by integrating Eq. 5.13 [p(z) − p0 = ∫ z

z0
−ρ(z)g dz], after inserting the known den-

sity distribution. For example, consider a variable density water column exposed
to the atmosphere with a linear density distribution as given by Eq. 5.6, ρ(z) =
ρH − (ρB − ρH )(z − H)/H . To find the corresponding pressure distribution, we insert
this density distribution into the integral in Eq. 5.13 and integrate from the top of the
water column where the pressure is atmospheric down to some elevation z. Thus, we
have p0 = pA , and z0 = H and Eq. 5.13 becomes 

p(z) − pA =
∫ z

H
−
[
ρH − (ρB − ρH )

z − H

H

]
g dz

Completing the integration gives

p(z) = pA − ρH g(z − H) + g(ρB − ρH )
(z − H)2

2H
(5.20)

This linear density distribution and the corresponding nonlinear pressure distribu-
tion are shown in Figure 5.13. Convince yourself that p(H) = pA, pB = p(0) = pA +
[(ρB + ρH )/2]gH , and note that this result for p(0) is consistent with that obtained ear-
lier as Eq. 5.7. Can you confirm by inspection of Eq. 5.20 that the surfaces of constant
pressure in this stratified water column are horizontal planes? 

The hydrostatic pressure variation in a variable density gas may be found by solv-
ing Eq. 5.12, dp/dz = −ρ(z)g, with the known density distribution, or by completing
the integration of Eq. 5.13: p(z) − p0 = ∫ z

z0
−ρ(z)g dz . It is important to recognize that

although the density of a liquid is only a function of temperature, the density of a gas is
a function of both pressure and temperature. This function must be known to proceed.
For example, we can use the perfect gas law to write a relationship between pressure and
density for a gas at a constant temperature T0 as p = ρRT0, and solve for the density
yielding

ρ = p

RT0
(5.21)
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Figure 5.13 (A) Linear density distribution and (B) the resulting nonlinear pressure
distribution.



220 5 FLUID STATICS

EXAMPLE 5 .9

The hot water tank in Figure 5.14 is 50◦F hotter at the top than at the bottom. If the ther-
mostat maintains the water at the bottom of the tank at 140◦F, and the tank is 5 ft tall and
vented at the top, find the pressure distribution in the tank as a function of height. How
does the pressure at the bottom of the tank compare with that which would occur in the
same tank with all of the water at 140◦F? Assume β = 2.3 × 10−4◦F−1 .

Tank

T � 190�F

T � 140�F

5 ft

Vent

z

Figure 5.14 Schematic for Example 5.9.

SOLUTION

We are to find the pressure distribution in a hot water tank. Figure 5.14 serves as a
sketch of the system. We know that H = 5 ft and the temperatures at the top and bot-
tom of the water column are TT = 190◦F and TB = 140◦F. The key equation is 5.13,
p(z) − p0 = ∫ z

z0
−ρ(z)g dz . We will assume that the water is at rest with a linear

temperature distribution, T (z) = TB + (TT − TB)(z/H). Next we must determine
the density distribution in the tank. A first-order approximation for the density as a
function of temperature uses the coefficient of thermal expansion β to write ρ(T ) =
ρB[1 − β(T − TB)], where ρB is the density at temperature TB . Substituting the lin-
ear temperature distribution for T (z) into this expression gives us ρ(z) =
ρB[1 − β(TT − TB)(z/H)]. Now substitute this result into Eq. 5.13 and integrate to
find the pressure distribution:

p(z) − pA =
∫ z

H
−ρB

[
1 − β(TT − TB)

z

H

]
g dz = ρB g

[
−z + z2

2H
β(TT − TB)

]∣∣∣∣
z

H

which gives the pressure distribution as

p(z) = pA + ρB g(H − z)

[
1 − H + z

2H
β(TT − TB)

]
(A)

The pressure at the bottom of the tank is

p(0) = pA + ρB gH

[
1 − β(TT − TB)

2

]
(B)



To find the pressure distribution in an isothermal perfect gas, we rearrange Eq. 5.12 to
obtain dp/dz = −ρ(z)g, and substitute for the density to find dp = −ρ(z)g dz =
−(p/RT0)g dz . Separating variables, and integrating from elevation z0 where the pres-
sure is p0 to elevation z where the pressure is p, we have

∫ p
p0

dp/p = − ∫ z
z0

(1/RT0)g dz .
After this integration has been performed, the pressure distribution in an isothermal gas
at temperature T0 is found to be

p(z) = p0 exp

[
−g(z − z0)

RT0

]
(5.22)

This exponential pressure–height relationship is illustrated in Figure 5.15A.
A more general model of the pressure–density relationship in a perfect gas is pro-

vided by the polytropic law:

p

p0
=
(

ρ

ρ0

)n

(5.23)
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If the water had been at a uniform temperature of 140◦F the pressure distribution would
be

p(z) = pA + ρB g(H − z) (C)

and the pressure at the bottom of the tank would be

p(0) = pA + ρB gH (D)

Comparing the pressures at the bottom for each density distribution as given by (B) and
(D), we see that in the water column that is hotter at the top, the pressure on the bottom
is less by an amount ρB gH [β(TT − TB)]/2. This makes sense, since the hotter water is
less dense, and the weight of the fluid column is therefore less.

To calculate this pressure difference, we use Table A.3 to find that for water at
140°F ρB = 1.908 slugs/ft3 . Finally, we substitute appropriate values into the p(z) ex-
pression to obtain the pressure difference as

�p = −ρB gH
β(TT − TB)

2

= (1.908 slugs/ft3)(32.2 ft/s2)(5 ft)
(2.3 × 10−4◦F−1)(190◦F − 140◦F)

2

�p = 1.77 lbf/ft
2

(
1 ft

12 in.

)2

= 0.012 psi

The answers seem reasonable, but note that the linear temperature and density distribu-
tion assumed here represent approximations. When the heating element is turned on, it
will create convection currents in the water, which change the temperature and density
distribution.



where n is the polytropic exponent, and p0 and ρ0 are
the pressure and density of the gas at some reference
condition. If n is set equal to unity, the gas is isother-
mal. If n is set equal to γ , the specific heat ratio, the
pressure–density relationship is isentropic, meaning
that the process involved is reversible and adiabatic.
Intermediate values of n may be used to model a variety
of practical situations. The pressure–density relation-
ships for isothermal, polytropic, and isentropic gases
are shown in Figure 5.15B.

5.4.3 Constant Density Fluid 
in Rigid Rotation

An important class of fluid statics problems occurs
when a container filled with fluid is placed in steady ro-
tation. When a container first begins to rotate, the fluid
tends to remain at rest, but a thin layer of fluid near the
wall is dragged around with the wall as a result of the

effects of viscosity and the no-slip condition. You can see this for yourself if you hold a
cup of opaque liquid in your hand while turning in a circle. Notice that the liquid does
not turn with you. As the container continues to rotate, however, more and more fluid
gradually begins to rotate. After a sufficient time, viscous effects cause the entire vol-
ume of fluid inside the container to rotate along with it as a rigid body. When a rigid
body rotation is achieved in a fluid, all shear stresses vanish, and there is no deformation
of fluid elements. The fluid is at rest relative to the rotating container with a hydrostatic
pressure distribution.

An understanding of this class of problems may be gained by writing the hydrosta-
tic equation for a fluid in solid body rotation in a closed cylindrical container as shown
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z

z0

(A) p0

p(z) � p0 exp[�g(z � z0)�RT0]

p

p

p0

(B) �0 �

n � 1.4 n � 1.25

n � 1

Figure 5.15 (A) Pressure distribution for an isothermal gas and (B) pressure–density
relationships for a perfect gas with the polytropic exponents n = 1 (isothermal), 1.25,
and 1.4 (isentropic).

Earlier we discussed two models for
Earth’s atmosphere, both of which apply to
any gas at rest in Earth’s gravity field. The
first simply assumed the pressure in the
atmosphere to be constant, which is equiv-
alent to assuming that the air density is
zero. The second assumed constant air
density and resulted in a linear pressure
distribution. We can construct an addi-
tional model for the atmosphere by treat-
ing it as a perfect gas at rest with a
uniform temperature T0. This model is dis-
cussed in Example 5.10 and compared
with the U.S. Standard Atmosphere, an
empirical model adopted by a committee
convened by the federal government (see
Figure 2.2). It is the job of the engineer to
decide which, if any, of these models is ap-
propriate for the problem at hand. 
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EXAMPLE 5 .10

If Earth’s atmosphere is modeled as an isothermal perfect gas at 20◦C, find the pressure
predicted by this model at an altitude of 3 km and compare it with both the pressure
predicted by a constant density model and that given by the U.S. Standard Atmosphere.

SOLUTION

To apply the isothermal perfect gas model for the atmosphere, we use Eq. 5.22,
p(z) = p0 exp(−gz/RT0), with z0 = 0, p0 = 101,300 N/m2, T0 = 20 + 273 = 293 K,
and R = 287 (N-m)/(kg-K) for air. The pressure at z = 3 km = 3000 m is then

p(3000) = (101,300 N/m2) exp

{
− (9.81 m/s2)(3000 m)

[287 (N-m)/(kg-K)](293 K)

}
= 71.4 kPa

The isothermal pressure distribution in general is

p(z) = (101,300 N/m2) exp

{
− (9.81 m/s2)(z)

[287 (N-m)/(kg-K)](293 K)

}
which simplifies to

p(z) = (101.3 kN/m2) exp[−(1.17 × 10−4 m−1)(z)]

The pressure distribution for the constant density model is p(z) = p0 − ρ0gz , thus the
pressure at 3000 m with this model is

p(3000) = 101,300 N/m2 − (1.204 kg/m3)(9.81 m/s2)(3000 m) = 65.9 kPa

From Appendix B, the U.S. Standard Atmosphere has p(3000 m) = 70.1 kPa. The
isothermal and constant density pressure distributions just derived are compared with
the U.S. Standard Atmosphere in Figure 5.16.
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Figure 5.16 From Example 5.10,
the atmospheric pressure distribution
based on the constant density model
(dashes), the isothermal perfect gas
model (solid), and the U.S. Standard
Atmosphere (circles).



in Figure 5.17. Choose cylindrical coordinates (r, θ, z) fixed to the rotating container as
shown, with (er , eθ , ez) the corresponding unit vectors. The fluid is at rest in this nonin-
ertial reference frame. There is a centrifugal body force in the radial direction and the
force of gravity in the z direction. In Example 5.5, we showed that the total body force
is given by f = rΩ2er − gez , and that the three components of the differential hydro-
static equation are given by 

∂p

∂r
= +ρrΩ2,

1

r

∂p

∂θ
= 0, and

∂p

∂z
= −ρg (5.24a–c)

Equation 5.24a shows that the pressure gradient in the r direction balances the cen-
trifugal force due to the rotation of the fluid. The positive sign in this equation indicates
that the pressure increases monotonically in the radial direction, reaching a maximum at
the container wall. Since there is no θ component of the body force, the pressure gradi-
ent in the θ direction is zero. From the remaining equation, we conclude that the pres-
sure gradient in the z direction balances the gravitational body force as usual.

Since the pressure gradient in the θ direction is zero, taking a derivative of
Eq. 5.24a or 5.24c with respect to θ , interchanging derivatives, and noting that
∂p/∂θ = 0 shows that ∂ρ/∂θ = 0. This means that a density variation in the θ direction
is not allowed in a fluid in rigid rotation. A density variation in the r and z directions is
permitted. Thus the density of a fluid in a rotating container does not need to be constant
for the fluid to be at rest relative to the container. There are stability issues for a strati-
fied fluid in rigid body rotation just as there are for a stratified fluid in a gravity field. A
stable density profile in a rotating fluid must have heavier fluid “beneath” lighter fluid,
but this statement must now be interpreted in terms of the direction of the total body
force vector, which is the sum of the gravitational and centrifugal body force. 

For a constant density fluid in rigid body rotation, a general solution of Eqs. 5.24a
and 5.24c, is given by

p(r, z) = p0 − ρg(z − z0) + 1
2ρΩ2

(
r2 − r2

0

)
(5.25)
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Figure 5.17 Schematic of solid body rotation
in a closed cylindrical container.



where p0 is the pressure at location (r0, z0). The pressure in a rotating fluid depends on
both z and r, increasing linearly with depth as usual, but quadratically with radius. The
equation describing surfaces of constant pressure can be found by dividing Eq. 5.25 by
ρg, and gathering constant terms to obtain

p − p0

ρg
− z0 + 1

2

Ω2r2
0

g
= C = −z + 1

2

Ω2r 2

g

Solving for z gives:

z(r) = 1

2

Ω2r2

g
− C (5.26)

These constant pressure surfaces are parabolic as shown in Figure 5.18A.
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EXAMPLE 5 .11

A water-filled cylindrical container, 20 cm in diameter and 50 cm tall, rotates about its
axis at 1000 rpm. If the cylinder axis is vertical, as shown in Figure 5.17, what are the
maximum and minimum radial and vertical pressure gradients, and where do they
occur?

SOLUTION

Equations 5.24 describe the three components of the pressure gradient in this case.
The radial pressure gradient ∂p/∂r = +ρrΩ2 is linear with a minimum of zero on
the axis of rotation. The maximum is at the wall, where r = 10 cm. Inserting the data,
we have

∂p

∂r
= ρrΩ2 = (998 kg/m3)(0.1 m)

[
(1000 rpm)

(
2πrad

1 rev

)(
1 min

60 s

)]2

= 1.09 × 106 N/m3

Note that the radial pressure gradient can also be expressed as 1.09 × 106 Pa/m.
The vertical pressure gradient given by Eq. 5.24c is found to be

∂p

∂z
= −ρg = −(998 kg/m3)(9.81 m/s2) = −9.79 × 103 N/m3

= −9.79 × 103 Pa/m,

which is spatially constant and about 100 times smaller than the radial pressure gradi-
ent. This result illustrates the strong pressure gradient that can be generated by cen-
trifugal acceleration. In this problem the maximum centrifugal acceleration is greater
than 100g.
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Figure 5.18 Pressure distribution in a
rotating container filled with water. (A) In
Earth’s gravitational field, and (B) in a
zero gravity environment.

EXAMPLE 5 .12

Find the pressure distribution in the rotating water-filled container described in Exam-
ple 5.11. Plot surfaces of constant pressure. If this container were rotating inside a
spacecraft in Earth orbit, what would the pressure distribution be? What would the sur-
faces of constant pressure look like? 

SOLUTION

This exercise is solved by using Eq. 5.25 with the origin of the coordinate system on
the cylinder axis at the bottom of the container. The pressure there is p(r0, z0), and
substituting this value along with r0 = 0 and z0 = 0 into Eq. 5.25, we find p(r, z) =
p(r0, z0) − ρgz + 1

2ρΩ2r2 . Surfaces of constant pressure are parabolas (see Fig-
ure 5.18A). In orbit, the gravitational body force is zero. Using the pressure distribution
just given and substituting g = 0, we get p(r, z) = p(r0, z0) + 1

2ρΩ2r2 . The surfaces
of constant pressure are concentric cylinders (see Figure 5.18B). Note that in both cases
further information is needed to establish the datum value of pressure, i.e., p(r0, z0).

In our discussion of a fluid in rigid body rotation, we assumed that the fluid com-
pletely fills the container. This is always true for gases, but a rotating container may be
only partially filled with a liquid. As shown in Figure 5.19, the equilibrium configuration
of a rotating liquid depends on the volume of liquid in the container and the rotation rate.
In a partially filled rotating container there is a free surface between the liquid and the
gas or vapor above it. In the absence of surface tension effects, the pressure on this free
surface is atmospheric or ambient. We can use the results of the foregoing analysis to
predict the shape of this free surface. For example, consider a partially filled cylindrical
container of water rotating about its axis with a free surface as shown in Figure 5.19A.
The container is open, and the pressure above the free surface is ambient. To find the



pressure distribution in the water, choose a datum loca-
tion on the free surface at its intersection with the cylin-
der axis. Then the parameters appearing in Eq. 5.25 are
r0 = 0, z0 = h and p0 = pA . Inserting these values
into Eq. 5.25, we can determine the pressure distribu-
tion in the water to be:

p(r, z) = pA − ρH2Og(z − h) + 1
2ρH2OΩ2r2

(5.27a)

The constant pressure contours corresponding to this
solution are plotted in Figure 5.19A. Note that these
surfaces are parabolic, as expected.

How do we find the shape of the free surface? The
answer lies in our knowledge that the entire free surface
is at atmospheric or ambient pressure. In the absence of
surface tension, the water just inside the free surface is
also at atmospheric pressure; thus the constant pressure
contour for a value of the pressure equal to atmospheric
pressure must coincide with the free surface. By setting
p(r, z) = pA in Eq. 5.27a, we can express the shape of
the free surface as 

z(r) = h + 1

2

Ω2r2

g
(5.27b)
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Figure 5.19 (A) Pressure distribution in a container partially filled with water and rotating at speed ΩA . (B) As speed
is increased to ΩB , the depression deepens. (C) Eventually the container rotates fast enough at ΩC that a dry spot can
develop on the bottom of the container.

The parabolic shape of the free surface in
a liquid rotating about a vertical axis has
been cleverly exploited in a telescope de-
sign in which a rotating mercury surface
forms the reflector of the telescope. A
photograph of such a telescope is shown
in Figure 5.20.

Figure 5.20 Parabolic liquid mercury mirror
formed of the surface of the rotating vessel.



Since a free surface is a surface of constant pressure, Eq. 5.27b could have also been
obtained by evaluating the constant in Eq. 5.26. From the geometry and datum values
already chosen, you should be able to show that C = −h.

Now suppose you have been given values for the dimensions of the rotating water-
filled cylinder, as well as its rotation rate. Curiously, you will find that you cannot plot
the shape of the free surface by using Eq. 5.27b, or calculate the rise of the free surface
at the wall. The parameter h, which is the free surface elevation at the axis, is unknown!
What is missing in our analysis? The answer is that the volume of liquid in a rotating
container is a critical part of the specification of this type of problem. Once a volume of
liquid has been specified, h is known, since the volume is given by the integral
–V = 2π

∫ R
0 r z(r) dr, which in this case gives

–V = π R2h + π
Ω2 R4

4g
(5.27c)
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EXAMPLE 5 .13

A 15 in. diameter cylinder, 30 in. tall, rotates about its axis at 60 rpm. If the cylinder con-
tains 1 ft3 of water and its axis is vertical, find the pressure distribution in the water and
the shape of the free surface. What is the pressure at the bottom of the cylinder at the axis
and at the wall? What is the free surface elevation at the axis and the wall? 

SOLUTION

We are to determine the pressure distribution, shape of the free surface, pressure at the
points (0, 0) and (R, 0), and the elevation at the axis and wall in a rotating cylinder par-
tially filled with water. Figure 5.19 is an appropriate sketch for this problem. The cylin-
der has D = 15 in. = 1.25 ft and rotates with Ω = 60 rpm = 2π rad/s. The water volume
is –V = 1 ft3, and we will assume a water density of ρ = 62.4 lbm/ft3. This problem is
solved using Eqs. 5.27a–5.27c. We begin by solving Eq. 5.27c for h and then substituting
the appropriate values to obtain the elevation of the free surface at the axis as

h = –V

π R2
− Ω2 R2

4g
=
[

1 ft3

π(0.625 ft)2

]
−
[
(2π s−1)2 (0.625 ft)2

4(32.2 ft/s2)

]
= 0.695 ft

Equation 5.27a gives the pressure distribution within the rotating cylinder as

p(r, z) = pA − ρH2Og(z − h) + 1
2ρH2OΩ2r2

The pressure at the bottom of the cylinder at the axis is found to be

p(0, 0) = pA − ρH2Og(0 − h) + 1
2ρH2OΩ2(0)2 = pA + ρH2Ogh

and the pressure at the bottom of the cylinder at the wall is

p(R, 0) = pA − ρH2Og(0 − h) + 1
2ρH2OΩ2 R2 = pA + ρH2Ogh + 1

2ρH2OΩ2 R2



5.4.4 Constant Density Fluid in
Rectilinear Acceleration

The structural design of the fuel tanks of a liquid-fueled
rocket must take into account the pressure forces devel-
oped during acceleration. Similar considerations apply
to storage tanks for fuel and lubricants in automobiles
and aircraft, where acceleration may cause the free sur-
face of a liquid to tilt, with the inlet of a pump then mo-
mentarily running dry. Although it is unusual to main-
tain a constant rectilinear acceleration for any length of
time, the hydrostatic pressure distribution caused by ac-
celeration is established almost instantly and adjusts it-
self rapidly to a changing acceleration. Thus, in this sec-
tion we will assume that the liquid is at rest with respect

to its container under the imposed acceleration, and focus on calculating the shape of the
free surface.

Consider a container completely filled with a fluid that undergoes a constant linear
acceleration a = (ax , ay, az) as shown in Figure 5.21. Choosing a noninertial reference
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Inserting the data, recognizing that pA = 2116 lbf/ft2, and using gc as a unit conversion
factor, we can calculate the pressure at (0, 0) as

p(0, 0) = 2116 lbf/ft
2 + (62.4 lbm/ft3)(32.2 ft/s2)

(
1 lbf-s2

32.2 ft-lbm

)
(0.695 ft) = 2159.4 lbf/ft

2

while that at (R, 0) the pressure is 

p(R, 0) = 2116 lbf/ft
2 + (62.4 lbm/ft3)(32.2 ft/s2)

(
1 lbf-s2

32.2 ft-lbm

)
(0.695 ft)

+ 1

2
(62.4 lbm/ft3)(2πs−1)2(0.625 ft)2

(
1 lbf-s2

32.2 ft-lbm

)
p(R, 0) = 2174.3 lbf/ft

2

The increment in pressure at the wall due to the rotation is small at this low rpm.
Next we use Eq. 5.27b with our known values of h and Ω to obtain the expression

for the free surface of the liquid in the rotating cylinder:

z(r) = h + 1

2

Ω2r2

g
= (0.695 ft) + 1

2

(2π s−1)2r2

(32.2 ft/s2)
= 0.695 ft + (0.613 ft−1) r2

The elevation at the axis is found by substituting r = 0 into this expression or more sim-
ply by noting that this is the definition of h. In either case we find z(0) = 0.695 ft. The
elevation at the wall is found to be z(0.625 ft) = 0.695 ft + (0.613 ft−1)(0.625 ft)2 =
0.934 ft.

Sloshing of fuel in a vehicle fuel tank is
also an important problem in structural de-
sign and vibration analysis, particularly in
aerospace vehicles. Despite its impor-
tance, the dynamics of sloshing is beyond
the scope of this text. You actually have
considerable practical experience with the
problem caused by a tilted free surface if
you have ever had a drink spill in your car
during hard acceleration or braking. Was it
due to a tilted free surface or did the drink
spill because of sloshing? A question like
this reminds us that real-world problems
can be difficult to categorize. 



frame attached to the container, we conclude that for a fluid at rest relative to the con-
tainer, the total body force per unit mass acting on the fluid is the sum of an noninertial
body force per unit mass in the amount f = −a, and the gravitational body force
f = − gk. The total body force is therefore

f = (−gk) − a (5.28)

To find the pressure distribution in a constant density fluid undergoing a
constant translational acceleration, we must insert the appropriate expression for the
total body force into the hydrostatic equation and solve the resulting system of equa-
tions. Reconsider a container completely filled with constant density fluid as shown in
Figure 5.21. In Cartesian coordinates fixed to the container, the three components of
Eqs. 5.10a–5.10c acting on fluid at rest under a constant acceleration a = (ax , ay, az)

are

∂p

∂x
= ρ( fx − ax),

∂p

∂y
= ρ( fy − ay), and

∂p

∂z
= ρ( fz − az)

If gravity is the only body force, and with z upward as usual, these equations become

∂p

∂x
= −ρax ,

∂p

∂y
= −ρay, and

∂p

∂z
= −ρ(g + az) (5.29a–c)
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Figure 5.21 A completely filled container of
fluid that undergoes constant linear acceleration,
a = (ax , ay, az).

EXAMPLE 5 .14  

A container of liquid has been dropped and is in free fall. What is the total body force
per unit mass acting on the liquid in the moment after its release? 

SOLUTION

Since the container falls with the acceleration of gravity, a = (0, 0,−g). The total body
force per unit mass can be found by using Eq. 5.28: f = (−gk) − a = (−gk)−
(−gk) = 0. The total body force is zero. This zero-g effect is utilized in the production
of round lead shot, zero-gravity research, and many amusement park rides.



The general solution of these equations can be written immediately as

p(x, y, z) = p0 − ρax(x − x0) − ρay(y − y0) − ρ(g + az)(z − z0) (5.30)

where p0 is the datum pressure at location (x0, y0, z0). As shown in Figure 5.22, sur-
faces of constant pressure are planes whose precise orientation in space; i.e., tilt, de-
pends on the values of the three acceleration components. If a free surface is present in
a problem involving rectilinear acceleration, the free surface will coincide with the cor-
responding pressure contour at the atmospheric or ambient pressure.

An interesting effect of acceleration on a fluid at rest is illustrated in the following
example. Suppose a liquid-fueled rocket accelerates upward at a = a0k. What is the
pressure distribution in the fuel tank if it is completely filled with fuel? What is the pres-
sure at the bottom of the fuel tank? We can answer these questions by recognizing that
the only component of the hydrostatic equation in this case is given by Eq. 5.29c:

dp

dz
= −ρfuel(g + az)

The pressure distribution may be found by inserting the known constant acceleration of
az = a0, and integrating this equation from an arbitrary elevation z to the top of the tank
at z = H, where the pressure is assumed to be known. The result after rearrangement is

p(z) = ptop − ρfuel(g + a0)(z − H)

This is a linear pressure distribution in which the pressure increases with depth at a rate
of ρfuel(g + a0). This pressure distribution may also be obtained from the general solu-
tion, Eq. 5.30, by substituting the same datum values for pressure and location, and
appropriate values for each component of acceleration. Because there is acceleration in
the z direction only, the free surface remains horizontal. The pressure at the bottom of
the tank is found to be

pbottom = ptop + ρfuel(g + a0)H

and if the tank is tall and the acceleration is several times the force of gravity, the pres-
sure on the bottom may be very large.

When more than one component of acceleration is present, the free surface will tilt
and take up a position so that the free surface lies with its normal parallel to the total
body force. The calculation of the equilibrium position of a free surface under accelera-
tion, and the pressure distribution in the liquid, is illustrated by the following example.
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Figure 5.22 Constant pressure planes that result from
linear acceleration.
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EXAMPLE 5 .15

A truck engine with a sump reservoir (L = 2 ft, W = 0.5 ft, H = 1 ft) is half-filled with
SAE 30W oil as shown in Figure 5.23A; the sump has an emissions control breather pipe
located as shown. Find the slope of the free surface if the vehicle undergoes a lateral
acceleration of ay = 0.25 g. At what acceleration will the oil reach the breather inlet?

ay � 0.25g

Vent

L � 2 ft

2 ft

N � ayj 	 gk

ay

g

H � 1 ft

1 ft

ay � 0

(A)

z

y

(B)

z

y

f � �ayj � gk

(C)

1
0.25�h

(D)

Figure 5.23 (A) Schematic for Example 5.15. (B) surface normal and body force vectors. (C) surface displacement.
(D) surface displacement into the breather.

SOLUTION

We are asked to determine the slope of the free surface for a lateral acceleration of
ay = 0.25g. We must also calculate the acceleration for which oil reaches the breather
pipe. Figure 5.23A will serve as the schematic and we will assume that the oil is at
rest under constant acceleration. The sump dimensions are L = 2 ft, W = 0.5 ft, and
H = 1 ft. The sump is half-filled with SAE 30W oil and is accelerating at ay = 0.25g.
The volume of oil is easily calculated to be –V = 1

2 LW H = 1
2 (2 ft)(0.5 ft)(1 ft) =

0.5 ft3. Equation 5.30 defines the relevant pressure distribution as p(x, y, z) = p0 −
ρax(x − x0) − ρay(y − y0) − ρ(g + az)(z − z0) . In this problem ax = az = 0, so the
pressure distribution in the oil is

p(y, z) = p0 − ρay(y − y0) − ρg(z − z0) (A)



5.5 HYDROSTATIC FORCE

In the majority of applications of fluid statics, an engi-
neer is concerned with the forces and moments applied
by a fluid to a structure. These surface forces and mo-
ments were discussed in a general way in Chapter 4. In
the next two sections we discuss them in greater detail
for the specific case of a fluid at rest.

Since a solution to a fluid statics problem results in
an analytical expression for the hydrostatic pressure
distribution, the hydrostatic stress vector is immedi-
ately known from Eq. 5.1b to be � = −pn. Substitut-
ing this into Eq. 4.21, which defines the total surface
force as FS = ∫S � dS, we see that the total hydrostatic
force exerted by the pressure is given by the integral

FS =
∫

S
−pn dS (5.31)

The difficulty, if any, in calculating the total surface force
in a fluid statics problem arises from the requirement to
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where the datum pressure p0 and location y0, z0 are as yet unspecified. Setting p(y, z) =
pA, the equation for the free surface is

z(y) = −ay

g
y +

(
z0 + p0 − pA

ρg
+ ay

g
y0

)
(B)

This is a linear distribution, indicating that the free surface is a plane. We see that the
slope of the free surface is dz/dy = −ay/g, which for ay = 0.25g is dz/dy =
−ay/g = −0.25g/g = −0.25. Note that the normal to this surface lies along the line
whose slope is the negative reciprocal, i.e., dz/dy = g/ay . Thus by inspection of
Figure 5.23B, we can write the (nonunit) normal to the free surface in general as
N = ayj + gk. According to Eq. 5.28, the total body force is f = (−gk) − a =
−ayj − gk. We see that these vectors are antiparallel, which confirms our earlier state-
ment that the free surface arranges itself perpendicular to the total body force.

Since the volume of oil, –V = 1
2 LW H , is fixed, the free surface must arrange itself

so the area under the free surface shown in Figure 5.23A is always A = 1
2 L H . Together

with the slope, this is sufficient to allow us to graph the free surface for ay = 0.25g as
shown in Figure 5.23C. From Figure 5.23D, it can be seen that the slope of a free sur-
face that just reaches the breather is �0.5. Setting dz/dy = −ay/g = −0.5 shows that
this slope occurs for an acceleration ay = 0.5g. This horizontal acceleration corre-
sponds to going from 0 to 60 mph in 5.5 s, which is far beyond the capability of a heavy
vehicle, but within reach of high performance automobiles and motorcycles.

The selection of a datum location at which
the pressure is known in a free surface
problem can be tricky because the location
of the free surface is unknown until the
problem has been solved. In the preceding
example it was helpful to establish the
slope of the free surface first, then rec-
ognize the constraint of a fixed fluid
volume. Note that for accelerations in the
range 0 ≤ ay ≤ 0.5g, the geometry shown
in Figure 5.23C indicates that g/ay =
(L/2)/�h, so the oil height at the left wall is
�h + H/2 = Lay/2g +H/2. We can then
pick the datum location as y 0 = 0, z 0 =
Lay/2g+ H/2, where we know the pres-
sure is p0 = pA , and write (B) for the
free surface as z (y) = (H/2) − (ay/g )×
(y − L/2) . The pressure distribution in the
oil given by Eq. (A) is p (y, z) = pA −
ρayy − ρg (z − H/2 − Lay/2g) . Another



calculate this integral on surfaces of various degrees of
complexity.

The three common types of surface encountered in
fluid statics are illustrated in Figure 5.24. The first, a
planar aligned surface, is one that is flat and aligned

with one of the Cartesian coordinate planes (see Figure 5.24A). The second, a planar
nonaligned surface, is not aligned with one of the coordinate planes but may be aligned
by using a new set of X, Y, Z coordinates as shown in Figure 5.24B and 5.24C. As shown
in Figure 5.24D, the third type of surface is curved.

Now consider the general problem of evaluating the integral in Eq. 5.31 for each
surface type. Each term in the integrand must be given the appropriate value on the sur-
face. The pressure p is the value of the pressure on the surface as determined from the
hydrostatic pressure distribution. The outward unit normal vector n is usually obtained
from the mathematical description of the surface. It is a constant on a planar surface
but varies with the position of each infinitesimal element on a curved surface. Finally,
the description of the scalar area element dS depends on the surface involved, and on
the coordinates in which the calculation is carried out. It is usually straightforward to
write down the description of dS in Cartesian coordinates for a planar surface, and in
cylindrical or spherical coordinates for a cylindrical or spherical surface, respectively.
On a curved surface the description of dS is a more challenging task.

5.5.1 Planar Aligned Surface

Let us now focus on the simplest type of surface, namely the planar aligned surface.
Consider the three planar surfaces shown in Figure 5.25. Each surface is parallel to one
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Figure 5.24 Surface types encountered in fluid statics: (A) planar aligned, (B) planar
nonaligned, (C) planar nonaligned with aligned coordinates, and (D) curved.

good datum location for this case is
y0 = L/2, z0 = H/2, since the pressure
is also atmospheric at this location for this
range of accelerations. 



of the coordinate planes (aligned), but not necessarily coincident. We assume that these
surfaces are immersed in a fluid at rest and that we are to use Eq. 5.31 to calculate
the total surface force on the near face of each surface. To allow for any type of body
force, we assume that the hydrostatic pressure distribution in the fluid is given by
p = p(x, y, z).

Consider surface I, parallel to the (y, z) coordinate plane. Although the pressure
distribution in the fluid may vary in all three directions, the pressure distribution on sur-
face I does not. The pressure on this surface can be a function of the y and z coordinates
only. It cannot depend on x, since all points on the surface have exactly the same value
for the x coordinate, say x = xS . Thus the pressure on this surface may be written as
p = p(xS, y, z). An infinitesimal element of area dS on surface I may be represented in
Cartesian coordinates by a rectangle with sides of length dy and dz, thus the area of the
element is dS = dy dz . By inspection, the outward unit normal for an infinitesimal
element on this surface is constant and given by n = i (the normal points at the fluid).

Using these results to construct the integrand of Eq. 5.31, we obtain

−pn dS = −p(xS, y, z)(i) dy dz

valid for any planar surface aligned with the (y, z) coordinate plane with the fluid on the
positive x side as shown. The hydrostatic force is therefore given by the double integral 

FS =
∫ ∫

−p(xS, y, z)(i) dy dz (5.32a)

where the limits of integration are chosen to describe the surface of interest. For a fluid
on the other side of this surface, the sign of the unit normal is negative in order to point
at the fluid, and we use 

FS =
∫ ∫

−p(xS, y, z)(−i) dy dz (5.32b)

A similar analysis for surface II shows that the pressure is given by p =
p(x, yS, z), where yS is the location of this surface along the y axis. The outward unit
normal and area element are given by n = j and dS = dx dz . The integrand on this
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p � p(x, y, zS)n � k

Figure 5.25 Planar surfaces aligned with each coordinate plane (see text).



surface is −pn dS = −p(x, yS, z)(j) dx dz , valid for any planar surface aligned with
the (x, z) plane with the fluid on the positive y side. The hydrostatic force is now given by

FS =
∫ ∫

−p(x, yS, z)(j) dx dz (5.33a)

with appropriate limits. For a fluid on the negative y side of this surface, we use

FS =
∫ ∫

−p(x, yS, z)(−j) dx dz (5.33b)

For surface III we find −pn dS = −p(x, y, zS)(k) dx dy , and the hydrostatic
force for a fluid on the positive z side of the surface is given by

FS =
∫ ∫

−p(x, y, zS)(k) dx dy (5.34a)

with appropriate limits. For a fluid on the negative z side of this surface, we use

FS =
∫ ∫

−p(x, y, zS)(−k) dx dy (5.34b)

In Example 5.17, we show that the resultant force on the hatch differs from the hy-
drostatic force applied by the water because of the presence of air on the opposite side
of the hatch. In engineering applications, the net hydrostatic force is also of interest. As-
suming that air at atmospheric pressure is in contact with the opposite side of a surface,
the net hydrostatic force can be obtained by using gage pressure rather than absolute
pressure in calculating the hydrostatic force with Eq. 5.31. Alternately, we can subtract
the atmospheric pressure term from the answer obtained by using the absolute pressure.
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EXAMPLE 5 .16  

Consider a rectangular tank of water open at the top, as shown in Figure 5.26. What is
the force applied by the water to the hatch shown in the bottom of the tank? What is the
net or resultant force on the hatch from all fluids? 

SOLUTION

The hatch is a planar aligned surface lying parallel to the (x, y) plane with the fluid
on the positive z side. To use Eq. 5.34a, we need to find the pressure p(x, y, zS) acting
on this surface. From Eq. 5.14 the pressure distribution in the water is p(z) =
pA − ρH2Og(z − h). On the hatch zS = 0, so the pressure on this surface is
p(x, y, zS) = p(x, y, 0) = pA + ρH2Ogh , a constant. Since the integrand of Eq. 5.34a
is a constant on this surface, the integration is easy, and the force of the water is found
to be given by FS = −(pA + ρH2Ogh)Ak, where A = LW is the area of the hatch.
We see that the hydrostatic force acts downward and is equal in magnitude to the area of
the hatch multiplied by the sum of the air pressure and weight of water per unit area
above the hatch. The same result may be obtained by selecting the volume of fluid
shown in Figure 5.26B and employing the integral hydrostatic equation.
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To find the net or resultant force of all fluids on the hatch, we must also consider the
force applied on the hatch by the air below. The outward unit normal on this surface is
n = −k, and the pressure is constant and equal to pA (see Figure 5.26C). Thus the force
of the air on the hatch is found to be FS = pA Ak. The net force is, therefore, FS =
−ρH2Ogh A k.

pA

W

L

h

p(h) � pA

p(x, y, 0) � pA 	 �gd

Hatch(A)

W

L

h

z

yx

z

yx

(B)

dV

p(h) � pA

Hatch

(C)

h

p(h) � pA

Hatch

z

yx

Figure 5.26 (A) schematic, (B) fluid volume, and (C) force acting
on hatch due to air below.



5.5.2 Planar Nonaligned Surface

Now consider the problem of calculating the hydrostatic force on a planar nonaligned
surface. We will investigate two approaches to solving this problem. The first, a direct
approach, involves setting up and evaluating the surface integral in Eq. 5.31. Since the
majority of engineering applications involve a constant density fluid in Earth’s gravity
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EXAMPLE 5 .17  

A vertical gate of width W controls the water level in the intake reservoir of a power
plant as shown in Figure 5.27. What is the force of the water on the gate? What is the net
hydrostatic force on the gate? 

Air

Air

Water Width W
H

z

y

x

pA

Figure 5.27 Schematic for Example 5.17.

SOLUTION

The gate is aligned parallel to the (x, z) plane with the water on the left side, so
we will use Eq. 5.33b. Thus the force of the water on the gate is given by FS =∫∫ −p(x, yS, z)(−j) dx dz . The pressure distribution along the gate is p(z) = pA −
ρg(z − H). Substituting, and evaluating the integral with appropriate limits, gives

Fwater =
∫ H

0

∫ W/2

−W/2
−[pA − ρg(z − H)] (−j) dx dz = W H

(
pA + ρgH

2

)
j

This is the force of the water on the gate. Note that it can be thought of as an average
pressure pA + ρgH/2 times an area W H pushing the gate to the right. The net force on
the gate is found by using gage pressure, pgage(z) = −ρg(z − H), in Eq. 5.33b to find: 

Fnet =
∫ H

0

∫ W/2

−W/2
−[−ρg(z − H)](−j) dx dz = W H

(
ρgH

2

)
j

This net force is, of course, the sum of the force of the water W H [pA + ρgH/2]j, and
the force of the air on the opposite side of the gate, (−pA)W H j, and could also have
been obtained by simply subtracting the atmospheric pressure term from the force of the
water calculated earlier.



field, we will limit our discussion of the direct approach to this class of problems. A sec-
ond, indirect approach, employs the integral hydrostatic equation to replace the surface
integral on the inclined surface with integrals on the horizontal and vertical projections
of the inclined surface plus a volume integral.

To illustrate the direct approach, we will find the hydrostatic force due to the fluid
on the right-hand side of the inclined surface shown in Figure 5.28A. We do this by eval-
uating Eq. 5.31 in a new set of coordinates X, Y, Z , which are aligned with the surface,
then expressing the result in the usual x, y, z Cartesian coordinates. The Z axis is per-
pendicular to the surface of interest and pointing at the fluid, with Y along the surface as
shown. The origin has been placed at the uppermost point of the surface for conve-
nience. A new variable h measures the distance below the origin. Consider the hydrosta-
tic force on the inclined surface in Figure 5.28A due to the fluid on the right side of this
surface. This force is given by Eq. 5.31 as FS = ∫S −pn dS. We will follow the proce-
dure of Section 5.5.1 to evaluate this integral, but use the X, Y, Z coordinate system.

From the geometry of Figure 5.28A, the outward unit normal to the inclined
surface is

n = +K (5.35a)

and an infinitesimal surface element on the inclined surface is given by 

dS = d X dY (5.35b)

By inspection, the pressure distribution on the inclined surface can be seen to be a func-
tion only of the Y coordinate of a point on the surface. (Since there is no component of
gravity in the X direction, the pressure cannot depend on X; and since Z is a constant on
the surface, the pressure cannot depend on Z.) We need to find the pressure distribution
p(Y ) to proceed. From earlier discussions, we know that the pressure at any depth h is
equal to (p0 + ρgh) where p0 is the pressure at the h = 0. From the geometry in
Figure 5.28A we find h = Y sin θ ; thus we can write the pressure distribution on this
surface as p(Y ) = p0 + ρg(Y sin θ), or

p(Y ) = p0 + ρ(g sin θ)Y (5.36)

We see that the pressure increases along the surface due to the component of gravity,
g sin θ , in this direction. This pressure distribution is shown in Figure 5.28B. The hy-
drostatic force on the inclined surface may now be found by combining Eqs. 5.35a,
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Figure 5.28 Planar inclined surface: (A) geometry, (B) hydrostatic pressure distribution, and (C) force components.



5.35b, and 5.36 to express Eq. 5.31 as

FS =
∫

S
−pn dS =

∫ ∫
−(p0 + ρ(g sin θ)Y )(+K) d X dY (5.37)

with the limits of integration chosen to describe the surface. Notice that the force acts in
the −K direction, which is normal to the surface as expected.

In most engineering applications we will want to express the hydrostatic force on a
surface in terms of its components in the usual lower case Cartesian coordinate system
shown in Figure 5.28C. We may obtain the horizontal and vertical components, FSy and
FSz , of this force by simple geometry. The results are:

FSy = −|FS| sin θ and FSz = |FS| cos θ (5.38a,b)

Note that the preceding results apply for a fluid on the right-hand side of the inclined
surface shown, for any angle θ between 0 and π . The use of these formulas is illustrated
in Example 5.18.
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EXAMPLE 5 .18

An inclined gate of length L = 3 m and width W = 1.5 m holds back water in an irri-
gation channel as shown in Figure 5.29. What is the force of the water on the gate when
the channel is filled to height of H = 1 m? What is the net force on the gate? Express
the forces in the x, y, z coordinate system.

YS

L

30�

Air

H � 1 m

W � 1.5 m

WaterZ

(A) (B)

z

y

Figure 5.29 (A) Schematic and (B) pressure distribution for Example 5.18.

SOLUTION

The hydrostatic force on this inclined gate may be calculated by using Eq. 5.37, since
the water is on the right side, and the geometry is otherwise the same. The coordinate
origin is conveniently placed at the free surface where p0 = pA . From the geometry, the
length of gate wetted by the water is S = H/ sin θ , and the pressure distribution is
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p(Y ) = pA + ρ(g sin θ)Y as shown in Figure 5.29B. The force of the water on the gate
is therefore given by

FS =
∫ S

0

∫ W/2

−W/2
−(pA + ρ(g sin θ)Y )(+K) d X dY

= W
∫ S

0
−(pA + ρ(g sin θ)Y )(+K) dY

Completing the integration gives the force of the water on the gate as

FS = −W S

[
pA + (ρg sin θ)S

2

]
K

The horizontal and vertical components of this force are found by using Eqs. 5.38a and
5.38b (or by inspection) as

FSy = − |FS| sin θ = −W S

[
pA + (ρg sin θ)S

2

]
sin θ

FSz = |FS| cos θ = W S

[
pA + (ρg sin θ)S

2

]
cos θ

The corresponding results for the net hydrostatic force, which includes the effect of the
air behind the gate, are obtained easily by subtracting the atmospheric pressure contri-
bution to obtain

Fnet = −W S

[
(ρg sin θ)S

2

]
K

Fnet y = −|Fnet| sin θ = −W S

[
(ρg sin θ)S

2

]
sin θ and Fnet z = |Fnet| cos θ = W S

[
(ρg sin θ)S

2

]
cos θ

For θ = 30◦, S = H/ sin θ = 2 m. Also W = 1.5 m, and we have pA = 101,300 N/m2,
and ρ = 998 kg/m3. Substituting these data gives the magnitude of the force of the
water as

|FS| = (1.5 m) (2 m)

[
101,300 N/m2 + 998 kg/m3 (9.81 m/s2)(sin 30◦)

(
2 m

2

)(
1 N

1 (kg-m)/s2

)]
= 318,586 N

The two components of this force are

FSy = −|FS| sin θ = −(318,586 N) sin 30◦ = −159,293 N

FSz = |FS| cos θ = (318,586 N) cos 30◦ = 275,904 N

The magnitude of the net force is easily found to be |Fnet| = 14,686 N, and the compo-
nents of this force are Fnet y = −7343 N and Fnet z = 12,718 N.



There is a powerful indirect approach to finding
the hydrostatic force on a planar nonaligned surface
that uses the integral hydrostatic equation. The value
of this approach is that it is applicable in every type of
fluid statics problem, including variable density and
nongravitational body forces, and is much easier than
the direct method in many cases. To learn how to apply
this method, consider the inclined planar surface S in
contact with fluid at rest as shown in Figure 5.30A.
Suppose we are asked to calculate the hydrostatic force
on this surface due to the fluid on the right. We can find
this force by applying the integral hydrostatic equation,
choosing the volume of fluid –V shown in Figure 5.30B.
This volume is defined in part by a decal surface, SD ,
just inside the fluid but otherwise identical to surface S
as shown in Figure 5.30B. The volume is further de-
fined by SH , the horizontal projection of surface S, and
SV , the vertical projection of surface S. Two additional
near and far vertical surfaces, SN and SF as shown,
complete the boundary of this closed volume. Take note
of the direction of the unit normals in Figure 5.30B.

The chosen volume of fluid is at rest, so the inte-
gral hydrostatic equation, Eq. 5.2, applies, giving∫

S −pn dS + ∫ ρf dV = 0. This equation tells us that
the hydrostatic force applied by the pressure field to the various surfaces of this volume
is balanced by the total body force acting on the fluid in the volume. Writing the surface
integral as the sum of the integrals on each piece of the surface, we obtain∫

SD

−pn dS +
∫

SH

−pn dS +
∫

SV

−pn dS +
∫

SN

−pn dS +
∫

SF

−pn dS +
∫

V
ρf dV = 0

(5.39)
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Figure 5.30 (A) Inclined planar surface. (B) Fluid volume for indirect approach to find-
ing the hydrostatic force on a planar nonaligned surface.

A word of caution here. Equations 5.35
through 5.38 are valid only for the specific
geometry shown in Figure 5.29 with the
fluid on the right. If the fluid is on the left
of the surface, or with an inclined surface
whose geometry is different from that just
discussed, you must develop new formulas
by defining the X, Y, Z coordinates so that
the surface is aligned, then applying
Eq. 5.31, FS = ∫S −pn dS, by assigning
the unit normal and surface element dS.
Next find the pressure distribution on the
surface in the X, Y, Z coordinates, and eval-
uate the resulting surface integral. Don’t
forget to use the geometry to find new ex-
pressions for the components of the hy-
drostatic force in the usual lowercase
Cartesian coordinate system. The general
complexity of using this approach to
evaluate the hydrostatic force on an
inclined surface is further reason to
consider the use of the indirect method
discussed next.



Each of these surface integrals represents a surface force.
Now consider the first integral over the decal surface in Eq. 5.39. The pressure act-

ing on the decal surface SD is the same as that acting on the original surface of interest
S. The surface element dS on the decal surface is the same as that for the original sur-
face, but the outward unit normal on the two surfaces are opposite (see Figure 5.30B).
Thus we may write the first integral in Eq. 5.39 as∫

SD

−pn dS =
∫

S
+pn dS = −FS (5.40)

where FS is the desired force on the original surface. Using this to replace the first inte-
gral in Eq. 5.39 and rearranging, we obtain

FS =
∫

SH

−pn dS +
∫

SV

−pn dS +
∫

SN

−pn dS +
∫

SF

−pn dS +
∫

V
ρf dV (5.41a)

This useful and completely general result shows that the hydrostatic force on a pla-
nar nonaligned surface may be found indirectly as the sum of surface integrals on the
horizontal and three vertical projections of the surface, plus a volume integral. Each of
the surface integrals refers to a planar aligned surface and represents the hydrostatic
force of the fluid on that surface. The volume integral represents the vector weight W of
the fluid in the volume. This “weight” is due to the action of all body forces, rather than
just gravity. Thus we can write Eq. 5.41a in symbolic form as

FS = FH + FV + FN + FF + W (5.41b)

where each of the forces is defined by the corresponding integral in Eq. 5.41a.
The indirect method of calculating the surface force on an inclined surface consists

of choosing an appropriate volume and applying Eq. 5.41a in the normal Cartesian co-
ordinate system. The key steps in the method are as follows: (1) identify the decal sur-
face, (2) define a volume within the fluid adjacent to the decal surface by selecting the
horizontal and vertical projections of this surface, and (3) close out the volume with ad-
ditional horizontal or vertical surfaces as needed.

In most engineering applications of fluid statics, namely, in problems involving
constant density fluid in Earth’s gravity field, the pressure varies only in the vertical di-
rection. Thus, with reference to Figure 5.30B, the forces applied by the fluid on the near
and far vertical surfaces cancel in this case because they are equal and opposite. The
equation to be employed in applying the indirect method in problems of a constant den-
sity fluid in Earth’s gravity field is

FS =
∫

SH

−pn dS +
∫

SV

−pn dS − ρg –V k (5.42a)

where the z axis is up as usual. This may also be written symbolically as 

FS = FH + FV − Wk (5.42b)

where the weight of the fluid in the volume is W = ρg –V .
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EXAMPLE 5 .19

Apply the indirect method based on the integral hydrostatic equation to calculate the
force of the water on the inclined gate in Example 5.18.

SOLUTION

We are to determine the force of the water on the inclined gate in Example 5.18. Fig-
ure 5.31A is the appropriate sketch. The pressure in the water can be written as
p(z) = pA − ρg(z − H). This problem is solved by using Eq. 5.42a and selecting a
volume adjacent to the surface as shown in Figure 5.31B. The force on the horizontal
surface can be found by using Eq. 5.34b: FS = ∫∫ −p(x, y, zS)(−k) dx dy . This sur-
face is exposed to a constant pressure of magnitude pA + ρgH , so we find
FH = (pA + ρgH)Ak. From the geometry, the area of this surface is A = W S cos θ ,
thus FH = W S cos θ(pA + ρgH)k. The force on the vertical surface is found using
Eq. 5.33a, FS = ∫∫ −p(x, yS, z)(j) dx dz . The pressure on this surface is p(z) =
pA − ρg(z − H), and we find 

FV =
∫ H

0

∫ W/2

−W/2
−[pA − ρg(z − H)](j) dx dz = −W H

(
pA + ρgH

2

)
j

The remaining term in Eq. 5.42a is the vector weight of the fluid in the volume, −ρg –V k.
In this case, from the geometry we find −ρg –V k = −Wk = −ρg( 1

2 H W S cos θ)k.
Adding these three terms together we have

FS = FH + FV − Wk = W S cos θ(pA + ρgH)k − W H

[
pA + ρgH

2

]
j − ρg

(
1

2
H W S cos θ

)
k

S
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H � 1 m

W � 1.5 m
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Figure 5.31 (A) Schematic and (B) fluid volume for indirect approach to finding the hydrostatic force on the gate for
Example 5.19.



Many engineering applications in hydrostatics involve determining the forces act-
ing on an object at rest in contact with one or more stationary fluids, usually air and
water. The normal procedure in analyzing this type of problem is to write a force balance
on the object, which includes body and surface forces plus any external or structural
force that might be present. Example 5.20 illustrates how a calculation of the hydrosta-
tic force enters this type of problem.
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Simplifying this, we find

FS = −W H

[
pA + ρgH

2

]
j + W S

[
pA + ρgH

2

]
cos θ k

Since H = S sin θ , we can also write this as

FS = −W S

[
pA + (ρg sin θ)S

2

]
sin θ j + W S

[
pA + (ρg sin θ)S

2

]
cos θ k

The two components of this force are

FSy = −W S

[
pA + (ρg sin θ)S

2

]
sin θ and FSz = W S

[
pA + (ρg sin θ)S

2

]
cos θ

Comparing these results with those obtained in Example 5.18, we see that they are
identical.

EXAMPLE 5 .20

Consider the stationary barge shown in Figure 5.32. Write a force balance on the barge.
What is the force applied by the water on the barge? What is the net force on the barge
due to all fluids? What is the weight of the barge and its contents?

SOLUTION

We define the barge and its contents as the object of our force balance. Since barge, air,
and water are at rest, the sum of the forces on the barge is zero:

Fbody + Fair + Fwater + Fext = 0

Here Fbody is the force due to all body forces acting on the barge and its contents, Fair is
the hydrostatic force of the air, Fwater is the hydrostatic force of the water, and Fext is any
external force on the object. In this case there is no external force so the force balance is

Fbody + Fair + Fwater = 0 (A)
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The forces of the air and water are applied to the external surface of the barge
through the pressure on these surfaces, as shown in Figure 5.32B. The only body force
acting here is gravity, so we can write Fbody = −Wbargek, where Wbarge is the weight of
the barge and its contents. The force of the air and water on the barge may be calculated
by applying Eq. 5.31, considering each fluid and the surfaces it contacts separately. To
find the force of the water on the barge, we first note that this force is exerted on the bot-
tom of the barge and on the wetted parts of the two sides. By inspection, the force of the
water on the bottom of the barge of length L into the paper, is

Fwater/bottom = W L(pA + ρgD)k (B)

We will use the indirect method on the sides of the barge because these are planar, non-
aligned surfaces, choosing the two volumes shown in Figure 5.32C. We will apply

Cross section of barge
(barge length is L)

Water

(A)

(B)

(C)

Water

Water
p � pA 	 �gD

�gV

S cos �

pwater

pA

FB

Air

D

D

S

�

W

S

�

� z

Figure 5.32 (A) Schematic, (B)
pressure distribution, and (C) fluid
volumes used for indirect approach
for Example 5.20.
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Eq. 5.42a to each volume: FS = ∫SH
−pn dS + ∫SV

−pn dS − ρg –V k . Thus the force
of the water on the two sides is

Fwater/sides =
(∫

SH

−pn dS +
∫

SV

−pn dS − ρg –V k
)

left

+
(∫

SH

−pn dS +
∫

SV

−pn dS − ρg –V k
)

right

From the symmetry (see Figure 5.32C), we see that the two integrals over the vertical
surfaces cancel, the two integrals over the horizontal surfaces are the same, and the
weight terms are the same. Thus we have Fwater/sides = 2[(

∫
SH

−pn dS) − ρg –V k], and
we can use either volume to evaluate these terms. By inspection, the force of
the water on the horizontal surface of one the selected volumes is 

∫
SH

−pn dS =
SL cos θ[pA + ρgD]k, where we have made use of the fact that the width of the hori-
zontal side is S cos θ and its length is L . The vector weight of the fluid in either volume
is −ρg –V k = −ρg( 1

2 SD cos θ)L k = − 1
2ρgSDL cos θ k . Thus we have

Fwater/sides = 2

(∫
SH

−pn dS − ρg –V k
)

= 2SL cos θ[pA + ρgD]k − ρgSDL cos θ k

Fwater/sides = 2SL cos θ

[
pA + ρgD

2

]
k (C)

The force of the water on the barge is therefore the sum of (B) and (C), or

Fwater = W L[pA + ρgD]k + 2SL cos θ

(
pA + ρgD

2

)
k (D)

The net force of all fluids on the barge is the sum of the force applied by the water
and the force applied by the air. The force applied by the air is given by
Fair = ∫Sair

−pAn dS , where the integral is taken over the external barge surface above
the waterline. Rather than go through another long process to calculate the force of the
air on the barge, we can employ a trick. Note that if atmospheric pressure acted on all
sides of the barge, the net force applied by the air would be zero. We can write this as∫

Sair
−pAn dS + ∫Swater

−pAn dS = 0, where the first integral refers to surfaces wetted
by air and the second to surfaces actually wetted by water. Rearranging, we have∫

Sair
−pAn dS = − ∫Swater

−pAn dS . Thus we have proven that the force of the air is
equal and opposite to the effect of atmospheric pressure on the surfaces wetted by water.
When we calculated the force due to water earlier, we found the necessary contributions
of atmospheric pressure on the surfaces wetted by water. From (D) we have∫

Swater

−pAn dS = W LpAk + 2SL cos θ pAk

Thus the force of the air is∫
Sair

−pAn dS = −
∫

Swater

−pAn dS = − W L pAk − 2SL cos θ pAk (E)



5.5.3 Curved Surface

The hydrostatic force on a curved surface in contact with fluid at rest is also given by
Eq. 5.31, FS = ∫S −pn dS . Calculating this integral for a curved surface can be chal-
lenging, however, because it is necessary to represent the surface element and unit
normal on the curved surface. It is usually easier to apply the indirect approach based on
the integral hydrostatic equation. In the preceding section we showed how to apply the
indirect method to a planar nonaligned surface. In this section we demonstrate how one
can apply the indirect method to a curved surface.

Suppose you are asked to calculate the hydrostatic force on the curved surface
S shown in Figure 5.33. The idea of the indirect approach is to replace the difficult
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The net fluid force is then the sum of the force of the water, (D), and the force of the air,
(E), or

Fnet = W LρgDk + 2SL cos θ

(
ρgD

2

)
k = ρg[W L D + (S cos θ)L D] k (F)

Note that the net force acts upward as expected and can also be obtained by using gage
pressure to calculate the force of the water. If you examine (F), which defines the net
force, you will notice that the magnitude of this force is equal to the weight of the water
displaced by the barge. We will discuss this result in more detail later in this chapter (see
Section 5.8, Buoyancy and Archimedes’ Principle).

Using the force balance (A), Fbody + Fair + Fwater = 0, we can find the weight of
the barge and its contents from Fbody = −Wbargek = −Fair − Fwater = −Fnet . By using
(F) we find

−Wbargek = −Fnet = −ρg[W L D + (S cos θ)L D] k (G)

Volume for use in the
indirect approach

Curved surface, S

Decal surface, SD

Figure 5.33 Fluid volume used for indirect
calculation of the hydrostatic force on a curved
surface.
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EXAMPLE 5 .21

The gate illustrated in Figure 5.34 is in the shape of a quarter-cylinder with a radius of
3 ft and a width of 10 ft. Develop a formula for the force exerted by the water on the gate
and the net force applied by all fluids on the gate. Find the net force.

integral over the curved surface with an integral over a decal surface SD just inside the
fluid. We then judiciously choose a fluid volume bounded by the decal surface and as
many other planar and aligned surfaces as needed to define a closed volume, and apply
Eq. 5.41a. If the problem involves constant density fluid in Earth’s gravity field, we use
Eq. 5.42a. This process is illustrated in Example 5.21.

(A)

Air Water

Gate, of width W
into the paper

Hinge pA

R

z

y

x

(C)

Volume used
to find force

of air on gate

(B)

Volume used
to find force
of water on gate

H � R

Figure 5.34 (A) Schematic, (B) fluid volume used for indirect calculation of the hydrostatic force due to the water
on the gate, and (C) volume used for indirect calculation of the force due to the air on the gate for Example 5.21.

SOLUTION

We are to determine the force exerted by the water and the net force applied by all fluids
on a cylindrical gate with W = 10 ft and R = 3 ft. Figure 5.34 is the appropriate sketch.
We will apply Eq. 5.42a, FS = ∫SH

−pn dS + ∫SV
−pn dS − ρg –V k, to solve this

problem, and analyze the volume of water shown in Figure 5.34B. The horizontal sur-
face is exposed to atmospheric pressure, and the area of this surface is RW , thus by
inspection FH = −pA RWk. The vertical surface is aligned with the (x, z) plane, so we
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use the method leading up to Eq. 5.33a to evaluate the surface integral with
p(z) = pA − ρg(z − R), yielding

FV =
∫

SV

−pn dS =
∫ R

0

∫ W/2

−W/2
−[pA − ρg(z − R)](j)dx dz = −W R

[
pA + ρgR

2

]
j

The vector weight of the fluid in the volume is found by inspection as
−ρg –V k = −ρg( 1

4π R2W )k. Thus the force of the water on the curved surface is

Fwater = −pA RWk − W R

(
pA + ρgR

2

)
j − ρg

(
π R2W

4

)
k (A)

The net force on this surface includes the effect of the air on the back of the gate. We can
get the net force by removing the atmospheric pressure terms from the force of the water
to obtain

Fnet = −W R

(
ρgR

2

)
j − ρg

(
π R2W

4

)
k (B)

We can check this result by computing the force of the air on the gate by using the indi-
rect method and applying Eq. 5.42a to the volume of air shown in Figure 5.34C. By in-
spection, the force on the horizontal surface is FH = −pA RW (−k) = pA RWk, while
on the vertical surface we get FV = −pA RW (−j) = pA RW j. The weight of air in this
volume is easily calculated, but to be consistent with the constant atmospheric pressure
model (which assumes air to have zero density), this tiny contribution must be ne-
glected. The force of the air on the gate is therefore calculated as

Fair = pA RWk + pAW Rj (C)

It can be seen that adding (C) to (A) does produce the net force (B).
The net force on this gate can be calculated from (B) by using ρ = 62.4 lbm/ft3,

pA = 2116 lbf/ft2 , W = 10 ft, and R = 3 ft. Applying (B), we have

Fnet = −W R

(
ρgR

2

)
j − ρg

(
π R2W

4

)
k

= −(10 ft)(3 ft)

[
1

2
(62.4 lbm/ft3)(32.2 ft/s2)(3 ft)

](
1 lbf-s2

32.2 ft-lbm

)
j

− (62.4 lbm/ft3)(32.2 ft/s2)
[π

4
(3 ft)2(10 ft)

]( 1 lbf-s2

32.2 ft-lbm

)
k

Fnet = −2808 lbf j − 4410 lbf k

We see that the net force acts down and to the left, as expected.
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EXAMPLE 5 .22

A thin-walled pipe is tested hydrostatically by pressurizing it with water as shown in
Figure 5.35. Water is used in this application because a failure of the pipe wall results in
a leak rather than the explosion that occurs with a pressurized gas. Calculate the tensile
stress in the pipe wall in the axial and circumferential direction. Assume the pressure in
the water is uniform.

Section of pipe(A)

C

C

L
z

x
y

High p
water in

B

B

(B)

Section B�B

z

x

A � �(RO
2 � RI

2)

Water
Volume

Pressure vectors
typical over surface

pwater

pA

�axial

�axial

y

z A � �RO
2

A � �RI
2

Air
Volume

(C)

Volume

Volume

Pressure vectors
typical over surface

Section C–C

pwater

pA �hoop

�hoop

x

z

A � 2RIL

2RIL

Lt

Lt

L

A � 2ROL

Figure 5.35 (A) Schematic, (B) section B–B of end cap, and (C) section C–C showing length of pipe L for
Example 5.22.

SOLUTION

Consider a force balance in the horizontal y direction on the section of pipe with hemi-
spherical cap shown in Figure 5.35B. We will neglect the effect of the weight of the pipe
on the axial stress in the pipe wall. The force of the pressurized water acting on the in-
side of the cap, plus the force of the air on the outside, must be balanced by the tensile
force developed in the pipe wall. By using the indirect volumes shown, and neglecting
the weight of the water and air in the volumes, we find that the net force of the two fluids
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is Fnet = [pW (π R2
I ) − pA(π R2

O)]j, where pW is the water pressure inside the pipe and
RI and RO are the inner and outer radii of the pipe. The tensile force in the pipe wall is
Ftensile = −σaxial[π(R2

O − R2
I )]j, where σaxial is the average axial stress in the wall.

Thus we have [
pW
(
π R2

I

)− pA
(
π R2

O

)]
j − σaxial

[
π
(
R2

O − R2
I

)]
j = 0

Solving for the axial stress we find

σaxial = pW

(
R2

I

R2
O − R2

I

)
− pA

(
R2

O

R2
O − R2

I

)
(A)

A similar force balance in the x direction, found by means of the indirect method and the
volumes shown in Figure 5.35C for the section of pipe of length L, gives

[pW (2RI L) − pA(2RO L)](−i) + σhoop[2Lt]i = 0

where we have again neglected the weight of the water and air in the volumes, and σhoop

is the average circumferential or hoop stress in the wall. Since t = RO − RI , we have
RO = RI + t . Solving for the hoop stress in this case gives

σhoop = pW RI

t
− pA RO

t
(B)

These results are valid for any pipe wall thickness. We can simplify the results further
by noting that R2

O = R2
I + 2RI t + t2 , and R2

O − R2
I = 2RI t + t2 . For a thin-walled

pipe with t/RI � 1, we get the following approximations: RO ≈ RI , R2
O =

R2
I (1 + 2t/RI + t2/R2

I ) ≈ R2
I and R2

O − R2
I = 2RI t (1 + t/2RI ) ≈ 2RI t . Thus we

can write R2
I /(R2

O − R2
I ) ≈ R2

I /2RI t = RI /2t and R2
O/(R2

O − R2
I ) ≈ R2

I /2RI t =
RI /2t . The preceding expressions for the stress then become

σaxial = pW

(
R2

I

R2
O − R2

I

)
− pA

(
R2

O

R2
O − R2

I

)
≈ (pW − pA)

RI

2t
(C)

σhoop = pW RI

t
− pA RO

t
≈ (pW − pA)

RI

t
(D)

We see that the average hoop stress is twice the average axial stress.

5.6 HYDROSTATIC MOMENT

As you have seen in the preceding examples, the hydrostatic pressure acting on a surface
creates a significant surface force. This hydrostatic force must be considered in the de-
sign of a structure exposed to fluid at rest. The hydrostatic moment created by the hy-
drostatic pressure is also important in practical applications. For example, consider the
problem of tethering a storage tank to the floor of the ocean as shown in Figure 5.36.
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Suppose the cylindrical tank is full of oil but light enough to float to the surface if not
tethered. Which of the two proposed points of attachment would you recommend to
keep the tank horizontal? Will an attempt to tether the tank at the end result in the tank
orienting itself vertically rather than in the desired horizontal position? How do we de-
termine the proper way to restrain a structure immersed in a stationary fluid in a more
complicated situation where our intuition fails?

Body and surface forces, as well as an external force like that produced by the tether
on the tank in Figure 5.36, produce moments that must be considered in analyzing the
behavior of a stationary object immersed in fluid at rest. To calculate the moment due to
a body force, consider the arbitrary volume of fluid (or other material) shown in Fig-
ure 5.37A. To compute the total body moment MB acting on this volume, we must sum
the contributions from each infinitesimal volume element dV . The body moment on any

Tank

Tank

Water

Water

Figure 5.36 Two possible attachment points for a cylindrical tank of oil submerged in water,
tethered.

Arbitrary
volume
of fluid

Point about which
moment is calculated

Body moment,
dMB � rx(�f dV)

Body force � �f dV

Infinitesimal
volume
element, dV

r
x

x0

z

x

y

z

x

y

	

	
	

(A) (B)

Figure 5.37 (A) Fluid volume experiencing a body moment. (B) The sign convention for
moments.
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EXAMPLE 5 .23

The rectangular tank shown in Figure 5.38 is full of wet concrete with a density of
1900 kg/m3. The tank dimensions are w = 1.5 m, d = 1 m, and L = 2 m. Find the total
body moment due to gravity acting on the concrete about the indicated moment origin
location.

SOLUTION

We will apply Eqs. 5.44a–5.44c, noting that the body force due to gravity is
f = (0, 0,−g). Thus, the only terms remaining in these equations are those containing

volume element is given by the cross product of the moment arm r and the body force
(ρf dV ):

dMB = r × (ρf dV )

where ρ is the density of the material. To calculate the total body moment, we use a vol-
ume integral to sum all the contributions from throughout the volume:

MB =
∫

r × (ρf dV )

Since r = x − x0, we can write this integral for a moment about the point x0 as

MB =
∫

(x − x0) × (ρf dV )

We normally calculate the moment in Cartesian coordinates. The components of the
moment arm are given by

rx = x − x0, ry = y − y0, and rz = z − z0 (5.43)

where the point about which the moment is to be taken is x0 = (x0, y0, z0). Evaluating the
cross product and writing the integral in terms of the three Cartesian components, we have

MBx =
∫

[(y − y0)ρ fz − (z − z0)ρ fy] dV (5.44a)

MBy =
∫

[(z − z0)ρ fx − (x − x0)ρ fz] dV (5.44b)

MBz =
∫

[(x − x0)ρ fy − (y − y0)ρ fx ] dV (5.44c)

The convention regarding the components of a moment vector is shown in Figure 5.37B.
For example, a positive value for the i component of a moment tends to cause a counter-
clockwise rotation about the i axis when seen from the end of the axis looking in toward
the origin. This convention applies to all moments in this book.

Several of the terms in Eqs. 5.44a–5.44c disappear for the important case of grav-
ity, and often the moments can be determined by inspection. This is illustrated in
Example 5.23.
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Hinge

Point about
which moment
is calculated

d
w

L

Concrete

z

y
x

Figure 5.38 Schematic for Example 5.23.

the z component of the body force. The only component of interest of the moment in
Figure 5.38 is the i component, since the symmetry ensures that the other two compo-
nents are zero. The i component represents the tendency for tipping about the indicated
moment origin located at xo = 0, yo = L , zo = 0. Thus, we use Eq. 5.44a to write

MBx =
∫

[(y − y0)ρ fz − (z − z0)ρ fy] dV =
∫

[−ρg(y − y0)] dV =
∫ w/2

−w/2

∫ L

0

∫ d

0
[−ρg(y − L)] dx dy dz

The integration yields MBx = −ρgw d L(L/2 − L) = ρg(wd L)(L/2) , and inserting
the data gives

MBx = 1900 kg/m3(9.81 m/s2)(1.5 m)(1 m)(2 m)(1 m) = 5.59 × 104 N-m

We see that the moment is positive and equal to the product of the weight of the wet con-
crete times an effective moment arm of half the length of the tank. This is correct, since
the weight of the concrete can be thought of as concentrated at the center of gravity. 

As shown in Figure 5.39, the moment due to hydrostatic pressure, or hydrostatic
moment, may be calculated by recognizing that the moment created about a point x0 by
the surface force acting on an infinitesimal surface element is the cross product of the
moment arm, r = x − x0, and the force � dS acting on this surface element. Thus the
surface moment on this element is given by

dMS = r × � dS

The moment applied by the fluid to the entire surface is found by summing the individual
contributions by means of a surface integral. Thus the total surface moment MS is given by

MS =
∫

S
[(x − x0) × �] dS

We can write this for a fluid at rest as

MS =
∫

S
[r × (−pn)] dS

In Cartesian coordinates, the three components of the hydrostatic moment are given by

MSx =
∫

S
[ry(−pnz) − rz(−pny)] dS (5.45a)



MSy =
∫

S
[rz(−pnx) − rx(−pnz)] dS (5.45b)

MSz =
∫

S
[rx(−pny) − ry(−pnx)] dS (5.45c)

with rx = x − x0, ry = y − y0, rz = z − z0, and the usual sign convention.
The calculation of the hydrostatic moment by means of a surface integral involves

the same mathematical procedures discussed earlier for the hydrostatic force. Setting up
the integrals and calculating the hydrostatic moment on the two types of planar surface
(aligned and nonaligned) will be discussed in the next two sections. We do not discuss
the calculation of these integrals on curved surfaces in this textbook.

5.6.1 Planar Aligned Surface

We can compute the hydrostatic moment about a point x0 for the planar aligned surface
shown in Figure 5.40A by using Eqs. 5.45a–5.45c, since these equations are valid for
any surface. The surface shown is parallel to the yz plane, normal to the x axis, and it has
fluid on the positive x side. We can express the unit normal, pressure, and surface
element for the surface as n = i = (1, 0, 0), p = p(xS, y, z), and dS = dy dz , where
xS is the location of the surface along the x axis. Note that as usual, the normal points at
the fluid. Since ny = nz = 0, many of the terms in the integrands of Eqs. 5.45a–5.45c
are identically zero. Upon substituting the unit normal, pressure, and surface element
into Eqs. 5.45a–5.45c, we see that the three components of the hydrostatic moment on
any planar surface parallel to the yz plane are given by

MSx = 0 (5.46a)
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Figure 5.39 Hydrostatic moment
about a point due to the surface force.



MSy =
∫

S
−(z − z0)p(xS, y, z) dy dz (5.46b)

MSz =
∫

S
(y − y0)p(xS, y, z) dy dz (5.46c)

where the limits are selected to cover the entire surface.
The first equation confirms our intuition that pressure acting normal to the surface

shown cannot create a moment tending to twist the surface about the x axis. The re-
maining two equations give the values of the y and z components of the moment created
by the hydrostatic pressure. Note that these equations apply only to the +x side of the
surface shown in Figure 5.40A.

To calculate the moment on the −x side of this surface, we must account for the fact
that the unit normal on the back side is pointing in the opposite direction. The resulting
equations are

MSx = 0 (5.46e)

MSy =
∫

S
(z − z0)(p(xS, y, z)) dy dz (5.46f)

MSz =
∫

S
−(y − y0)(p(xS, y, z)) dy dz (5.46g)

In a typical engineering application involving constant density fluid in Earth’s grav-
ity field, with air at atmospheric pressure on the far side of the surface, the net hydrosta-
tic force and net hydrostatic moment are of interest. These are calculated by using gage
pressure in the preceding equations or by subtracting the atmospheric pressure contri-
bution obtained in considering the effect of the liquid alone. (See example 5.24).

To continue our discussion of how to calculate the hydrostatic moment on a pla-
nar aligned surface, consider next a surface parallel to the xz plane, normal to the y axis,
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Figure 5.40 Hydrostatic moment on an aligned planar surface in (A) the yz plane, (B) the xz plane, and (C) the xy plane.
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EXAMPLE 5 .24

A proposed design for a container for transporting wet concrete is shown in Fig-
ure 5.41A. Find the net hydrostatic force acting on the gate and the net hydrostatic
moment on the gate about the hinge pin. The density of wet concrete is 2400 kg/m3.

(C)

z

x

z

x

pconcrete � pA � �gz
p(z) � ��gzpA

W

H
Gate

Hinge

Hinge

(A) (B)

Gate

y

H

L
W

z

yx

z

x

Figure 5.41 Schematics for Example 5.24: (A) geometry, (B) detail of gate and (C) pres-
sure distribution on two sides of gate, gage pressure distribution on side.

SOLUTION

We are to determine the net hydrostatic force and moment acting on the gate of a con-
crete container. Before proceeding, note that it simplifies the calculation to place the
coordinate origin at x0 whenever possible. Figures 5.41B and 5.41C will serve as the
schematics. The container has dimensions H = 1 m, W = 2 m, and L = 2 m and is
open at the top. The gate is aligned with the yz plane, with the fluid (wet concrete) on the
+x side. We will use Eqs. 5.32a and 5-46a–c for the force and moment and choose the
coordinate origin as shown in the figure. With gage pressure to account for the air behind
the gate, the pressure distribution in the concrete and on this surface can be written as
p(z) = −ρgz . The normal is n = i. From Eq. 5.32a, the net hydrostatic force on the
gate is

FS =
∫ 0

−H

∫ W/2

−W/2
(ρgz)(i) dy dz = −W H

ρgH

2
i (A)
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The force acts in the −x direction as expected and has the form of an average gage pres-
sure times the area of the gate. Note the limit on the z integration in this case. As con-
vention demands, the limit is from the most negative value of z on the surface to most
positive value.

To compute the moment on the gate we apply Eqs. 5.46a–5.46c, noting that
MSx = 0. In selecting the origin of the coordinates, we recognized that the component
MSy of the moment is responsible for rotation about the axis of the hinge pin. By select-
ing the coordinate origin and point about which the moment is to be computed on the
hinge pin and at its center, we ensure that the symmetry works to our advantage and
causes the z component of the moment to be zero. Thus we have x0 = (0, 0, 0), and the
only component we need to evaluate here is given by Eq. 5.46b:

MSy =
∫

S
−(z − z0)p(xS, y, z)dy dz

Setting up the integral we have

MSy =
∫ 0

−H

∫ W/2

−W/2
(−z)(−ρgz)dy dz = ρgW

H 3

3

Thus the net hydrostatic moment is 

MS = MSy j = ρgW
H 3

3
j (B)

These answers seem reasonable. As you will recall from our discussion of the sign con-
vention for a moment, a positive value for the j component of a moment tends to cause
a counterclockwise rotation about the j axis when seen from the end of the axis looking
in toward the origin. When looking from the right toward the origin along the y axis as
shown in Figure 5.41B, the hydrostatic pressure tends to rotate the gate in a counter-
clockwise direction around the hinge pin. Also note that the magnitude of the moment
can be written as MSy = ρgW (H 3/3) = ρgW (H 2/2)(2H/3) , which is in the form of
the product of the magnitude of the force due to the linear gage pressure distribution
shown in Figure 5.41C times a moment arm from a point of application of this force,
which is two-thirds of the way down the gate.

To complete the problem we insert the data [ρ = 2400 kg/m3 for concrete,
H = 1 m, W = 2 m] into (A) and (B) to yield

FS = −ρgW
H 2

2
i = −(2400 kg/m3)(9.81 m/s2)(2 m)

(1 m)2

2
i = −23.5 kN i

MS = MSy j = ρgW
H 3

3
j = (2400 kg/m3)(9.81 m/s2)(2 m)

(1 m)3

3
j = (15.7 kN-m)j



with fluid on the +y side, as shown in Figure 5.40B. For this surface we have
n = j = (0, 1, 0), p = p(x, yS, z), and dS = dx dz . Since the only component of the
unit normal is ny = 1, the components of the hydrostatic moment on any planar surface
parallel to the xz plane with fluid on the +y side are

MSx =
∫

S
(z − z0)p(x, yS, z) dx dz (5.47a)

MSy = 0 (5.47b)

MSz =
∫

S
−(x − x0)p(x, yS, z) dx dz (5.47c)

For fluid on the −y side of this plane, the normal points in the opposite direction, so the
relevant equations for this case can be obtained by placing a negative sign in front of the
right-hand sides of Eqs. 5.47a and 5.47c.

Finally, consider the surface in Figure 5.40C parallel to the xy plane, normal to the
z axis, with fluid on the +z side of the surface. By inspection, we find n = k = (0, 0, 1),
p = p(x, y, zS), and dS = dx dy . For any planar surface parallel to the xy plane with
fluid on the +z side the components of the hydrostatic moment are

MSx =
∫

S
−(y − y0)p(x, y, zS)dx dy (5.48a)

MSy =
∫

S
(x − x0)p(x, y, zS)dx dy (5.48b)

MSz = 0 (5.48c)

For fluid on the −z side of this plane, the normal points in the opposite direction so
the appropriate equations will have a negative sign in front of the right-hand side in
Eqs. 5.48a and 5.48b.

In our discussion of the hydrostatic force, we mentioned that engineering applica-
tions in hydrostatics often involve determining the forces acting on an object at rest in
contact with one or more stationary fluids, usually air and water. A force balance on the
object includes the effects of body, surface, and external or structural forces. Each of
these forces exerts a moment on the object. Thus the normal procedure in analyzing this
type of problem is to write both a force and a moment balance on the object. A calcula-
tion of the hydrostatic moment therefore usually occurs in the context of a broader
analysis that includes the effects of body, surface, and structural forces and moments. A
comprehensive analysis of this type is illustrated in Example 5.25.

5.6.2 Planar Nonaligned Surface

The calculation of the hydrostatic moment on a planar nonaligned surface follows the
same procedure used to calculate the hydrostatic force on a planar nonaligned surface.
That is, we employ a new uppercase set of Cartesian coordinates in which the surface is
aligned, carry out the required integration of the appropriate equations to determine the
moment, then find the components of the moment in the normal lowercase Cartesian
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EXAMPLE 5 .25

A rectangular hatch (L = 0.5 m and W = 0.5 m) in the bottom of the large cylindrical
kerosene storage tank shown in Figure 5.42a and 5.42b is hinged on one edge and held
closed by a latch. Find the force on each of the two hinges and on the latch when the
hatch is closed and the tank is full of kerosene to a depth of H = 5 m. The mass of the
hatch is 50 kg.

H

Hinges

Latch

pA

Kerosene

Hatch(A)

Hinges

Latch
W � 0.5 m

L � 0.5 m

x

y

z

Hatch

(B)

FK

FA

FL

z

x
y

FH1

FH2

WH

(C)

Figure 5.42 Schematics for Example 5.25: (A) geometry, (B) dimensions of hatch, and (C) free body diagram of
hatch showing the pressure force and reaction forces.

SOLUTION

To find the forces on each hinge and the latch, we will make use of the fact that the force
applied to each of these objects by the hatch is equal and opposite to the force applied
by each object to the hatch. Thus we will analyze the forces on the hatch. The hatch is a
stationary object exposed to two fluids at rest, with external forces applied to it by the
hinges and the latch. A gravitational body force also acts on the hatch in the amount
−Mgk, where M is the mass of the hatch. The point of application of this force is the
center of gravity of the hatch, which by symmetry is located at the center of the hatch.

We will construct a free body diagram on the hatch to isolate the various forces on
it as shown in Figure 5.42c. Writing a force balance on the hatch we have

FH1 + FH2 + FL − WH k + FA + FK = 0

where FH1 and FH2 are the forces applied by each hinge to the hatch, FL is the force
applied by the latch to the hatch, −WH k is the body force acting on the hatch due to
gravity, FA is the force of the air on the hatch, and FK is the force of the kerosene on the
hatch. By inspection, the force of the air on the hatch is seen to be FA = pA LWk, while
the force of the kerosene is FK = −(pA + ρK gH)LWk. From the symmetry, the force
of each hinge on the hatch is the same, and we can combine the force of the air and
kerosene as a net hydrostatic force acting at the center of the hatch. The force balance
now becomes

2FH + FL − WH k + Fnet = 0 (A)
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where Fnet = −(ρK gH)LWk. Although we are given the weight of the hatch and have
calculated the net hydrostatic force, we see that a force balance can only give us the sum
of the forces on the hatch due to the hinges and latch, not each force separately. How-
ever, from the physical arrangement we anticipate that the forces applied to the hatch by
the each hinge and the latch will have only a z component. [Force balances in x and y di-
rections by inspection give this result.]

Now consider a moment balance on the hatch, taking moments about the (judi-
ciously chosen) coordinate origin shown in Figure 5.42B. The moment of a force is of
the form R × F, where R is the moment arm, in this case a vector drawn from the origin
to the location at which the force acts. The moment balance in this case is

(RH1 × FH1) + (RH2 × FH2) + (RL × FL) + (RW × (−WH k)) + Mnet = 0

where, Mnet is the net hydrostatic moment. By inspection RH1 = (W/2)i,
RH2 = −(W/2)i, RL = L j, and RW = (L/2)j. To find the net hydrostatic moment, we
can use Eqs. 5.48a–5.48c, with the constant gage pressure on the hatch given by ρK gH .
The result is

MSx =
∫ L

0

∫ (W/2)

(−W/2)

−y(ρK gH) dx dy = −W (ρK gH)
L2

2

MSy =
∫ L

0

∫ (W/2)

(−W/2)

x(ρK gH) dx dy = 0

MSz = 0

Thus we have Mnet = −W (ρK gH)(L2/2)i. Note that the same result is obtained by
taking the moment of the net hydrostatic force Rnet × Fnet, where by inspection
Rnet = (L/2) j because the pressure is constant on the hatch. Then Rnet × Fnet =
(L/2) j × [−(ρK gH)LWk] = −W (ρK gH)(L2/2)i , which agrees with the result
obtained by calculating the moment with the surface integrals. Completing the moment
balance, we have

(
−W

2
i × FH

)
+
(

W

2
i × FH

)
+ (L j × FL) +

[
L

2
j × (−WH k)

]
+
[
−W (ρK gH)

L2

2
i
]

= 0

where we have used the fact that the forces applied by each hinge to the hatch are the
same. The first two terms in this moment balance can be seen to cancel. This is due to
the symmetry and our selection of the coordinate origin and coincident point about
which the moment is taken. When we evaluate the cross product involving the weight of
the hatch, the moment balance becomes

(L j × FL) − L

2
WH i − W (ρK gH)

L2

2
i = 0 (B)

This is a vector equation that can be solved by writing FL = Fx i + Fy j + Fz k in gen-
eral, then using our understanding of the physical arrangement to conclude, as noted
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earlier, that the force of the latch on the hatch must only have a z component. Thus we
get FL = Fz k. The moment of this force is L j × (FL) = L j × Fz k = L Fz i. Substi-
tuting this into (B) and solving, we find

L Fz i = L

2
WH i + W (ρK gH)

L2

2
i and Fz = WH

2
+ W L(ρK gH)

2

Thus we find

FL = 1
2 [WH + (ρK gH)W L] k (C)

which tells us that the latch bears half the weight of the hatch and half the net force of
the kerosene and air on the hatch. We can now complete the analysis by using (A) to
write

2FH = −FL + WH k − Fnet = − 1
2 [WH + W L(ρK gH)] k + [WH + (ρK gH)LW ] k

2FH = 1
2 [WH + W L(ρK gH)] k

We now see that the two hinges together support the other half of the load on the hatch.
The force on the hatch from each hinge is

FH = FH1 = FH2 = 1
4 [WH + W L(ρK gH)] k (D)

The problem statement asked us to find the forces on each hinge and the latch. These
forces are equal and opposite to (D) and (C), respectively. Substituting the given dimen-
sions and using ρ = 804 kg/m3 for kerosene (from Appendix A), we find:

−FL = − 1
2 [WH + (ρK gH)W L] k

= − 1
2 [(50 kg)(9.81 m/s2) + (804 kg/m3)(9.81 m/s2)(5 m)(0.5 m)(0.5 m)] k

−FL = − 5175 N k

The force on each hinge is half this value, so − FH1 = − FH2 = − 2587.5 Nk. We can
check this result by noting that the weight of the hatch is 490.5 N and the weight of the
column of kerosene above the hatch is 9859 N. The air pressure below the hatch cancels
the air pressure above the kerosene, so the net load on the hatch is 10,350 N. It is rea-
sonable, given the symmetric arrangement of the hinges and latch, to find half the load
borne by the hinges and half by the latch. The direction of the force on each of these
objects also appears to be correct.

coordinates. To illustrate this procedure, consider the inclined surface shown in 
Figure 5.43A, which we used in Section 5.5.2 to discuss the calculation of the hydrosta-
tic force on a planar nonaligned surface.

Using the uppercase Cartesian coordinate system introduced in Section 5.5.2, we
see that the surface is parallel to the XY plane with fluid on the positive Z side. For a



moment about a point X0 = (X0, Y0, Z0), the moment arm R to any surface element is
given by

Rx = X − X0, Ry = Y − Y0, and Rz = Z − Z0 (5.49a–c)

Thus we will apply Eqs. 5.48a–5.48c, writing these equations in the uppercase coordi-
nates as

MSX =
∫

S
−(Y − Y0)p(X, Y, ZS) d X dY (5.50a)

MSY =
∫

S
(X − X0)p(X, Y, ZS) d X dY (5.50b)

MSZ = 0 (5.50c)

We will again limit our discussion to a constant density fluid in Earth’s gravity field.
From the geometry of Figure 5.43A, the outward unit normal to the inclined surface is
n = +K, and an infinitesimal surface element on the inclined surface is given by
dS = d X dY. As discussed in Section 5.5.2, the pressure distribution on the inclined sur-
face is a function only of the Y coordinate of a point on the surface, and can be written as
p(Y ) = po + ρ(g sin θ)Y . Inserting these values into Eqs. 5.50a–5.50c, we obtain

MSX =
∫

S
− (Y − Y0) p(Y ) d X dY ,

MSY =
∫

S
(X − X0) p(Y ) d X dY

MSZ = 0

(5.51a–c)

Note that any problem is simplified by placing the coordinate origin at the point about
which moments are taken. This is a good practice to follow in all problems involving
moments. In this case, for a surface of unit width into the paper, there is no Y component
of the moment if we select an origin and coincident moment center at the midwidth of
the surface. This choice causes the Y component of the moment of the pressure on each
half of the surface to cancel.
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Figure 5.43 Planar nonaligned surface: (A) geometry, (B) pressure distribution, and (C) coordinate system.



The remaining step in any moment analysis on a planar nonaligned surface is to
transform the hydrostatic moment calculated in the uppercase coordinates

MS = MSX I + MSY J + MSZ K (5.52)

into the lowercase coordinates, so that we have the desired components of the hydrosta-
tic moment about the original axes:

MS = MSx i + MSy j + MSz k (5.53)

This is accomplished by using the known geometric relationships between the unit vec-
tors of the uppercase and lowercase coordinate systems.

From Figure 5.43C, we can illustrate this process in the present case by writing the
following three relationships between the unit vectors of the two-coordinate systems:

I = i, J = − cos θ j − sin θ k, and K = sin θ j − cos θ k (5.54a–c)

We now substitute these relations into Eq. 5.52 to get

MS = MSX I + MSY J + MSZ K = MSX (i) + MSY (− cos θ j − sin θ k)

+ MSZ (sin θ j − cos θ k)

= MSX i + (−MSY cos θ + MSZ sin θ)j + (−MSY sin θ − MSZ cos θ)k

Thus the components of the moment in the lowercase coordinates are

MSx = MSX (5.55a)

MSy = −MSY cos θ + MSZ sin θ (5.55b)

MSz = −MSY sin θ − MSZ cos θ (5.55c)

Since MSZ = 0 in the present case, and we can make MSY = 0 by proper choice of the
coordinate origin and moment center as explained earlier, these relationships can be fur-
ther simplified.

The preceding formulas apply to the calculation of the hydrostatic moment on a pla-
nar surface parallel to the XY plane with fluid on the positive Z side. If the fluid is on the
negative Z side, the normal changes sign, which leads to a corresponding sign change in
Eqs. 5.55a–5.55c. For a surface parallel to one of the other uppercase coordinate planes,
you must develop an appropriate set of formulas, paying attention to the alignment of
the plane in the uppercase coordinates and to the side of the plane in contact with the
fluid. Example 5.26 illustrates the calculation of the hydrostatic moment on a planar
nonaligned surface.
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EXAMPLE 5 .26

Consider the inclined gate of length L = 3 m and width W = 1.5 m, which holds
back water in an irrigation channel as shown earlier (Figure 5.29) and investigated in
Example 5.18. Calculate the net hydrostatic moment exerted by all fluids on the gate
with respect to the hinge line at the end of the gate when the channel is filled to height
of H = 1 m. Express the results in the x, y, z coordinate system.
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SOLUTION

Figure 5.44A serves as a sketch for this problem. In Example 5.18, we calculated the net
hydrostatic force on the gate to be Fnet = −W S [(ρg sin θ)S/2] K. The net force acts
normal to the surface, and we can see from Figure 5.44B that there will be only an I
component of the net hydrostatic moment. We will use the same uppercase coordinate
system to find the moment in the I direction about the hinge with Eq. 5.51a, but select
the moment center on the hinge line so that X0 = (X0, Y0, Z0) = (0, Y0, 0), where
Y0 = −(L − S) = −1 m as shown in Figure 5.44A. Recall that the wetted length of
gate is S = H/ sin θ . The coordinate origin remains at the free surface where p0 = pA ,
thus the pressure distribution on the surface is p(Y ) = pA + ρ(g sin θ)Y, and the gage
pressure distribution on the surface is p(Y )gage = ρ(g sin θ)Y . Using Eq. 5.51a, we find

MSX =
∫ S

0

∫ (W/2)

(−W/2)

−(Y − Y0)ρ(g sin θ) Y d X dY = −Wρg sin θ

[
S3

3
− Y0S2

2

]
(A)

The negative sign indicates a tendency to rotate the gate clockwise about the hinge, as
expected. Recognizing that this moment is due to the net hydrostatic force, we can
rewrite this result as

MSX = −Wρg sin θ

(
S3

3
− Y0S2

2

)
= −W S

(
ρg sin θ S

2

)(
2

3
S − Y0

)
(B)

The net hydrostatic moment can also be thought of as the cross product R × F,
where the moment arm, as shown in Figure 5.44B, is seen to be R =
2
3 S J + (−Y0J) = ( 2

3 S − Y0)J, and F is the net hydrostatic force, Fnet =
−W S [(ρg sin θ)S/2] K. Thus the net hydrostatic moment in the uppercase coordinates
is MS = −W S [ρg sin θ S/2] ( 2

3 S − Y0)I, which agrees with (A) and (B). Since I = i in
this problem, the moment in the normal lowercase coordinates is 

MS = −W S

(
ρg sin θ S

2

)(
2

3
S − Y0

)
i (C)
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Figure 5.44 Schematics for Example 5.26: (A) geometry and (B) pressure distribution.



5.7 RESULTANT FORCE AND POINT OF APPLICATION

We have seen that the effect of hydrostatic pressure on a surface is to exert a force and
moment on the surface. In engineering applications, particularly those that involve
fluid–structure interactions, it is traditional to think of the net effect of surface forces as
a resultant force FR and a point of application (POA) for this force, which lies on the
surface. The resultant force is defined to be the net hydrostatic force on the surface from
all fluids. Hence from Eq. 5.31, the resultant force is given by the surface integral

FR = FS =
∫

S
−pn dS (5.56)

where we must consider all the fluids and surfaces involved. The POA of the resultant
force is defined by requiring that the moment of the resultant force when this force is
acting at the POA equals the net hydrostatic moment on the surface from all fluids. If the
POA is located relative to the moment origin by its moment arm �, then by definition
we have

� × FS = MS (5.57a)

and using Eq. 5.45a–5.45c in vector notation, we obtain

� × FS =
∫

S
[r × (−pn)] dS (5.57b)

That is, the moment of the resultant force is equal to the moment due to the surface
force.

The vector Eq. 5.57b can be expressed in the lowercase Cartesian x, y, z coordi-
nates as the following three algebraic equations from which the three unknown compo-
nents of � = (�x ,�y,�z) can be found:

�y FSz − �z FSy = MSx , �z FSx − �x FSz = MSy , �x FSy − �y FSx = MSz

(5.58a–c)

or in the uppercase Cartesian coordinates X, Y, Z , with � = (�X ,�Y ,�Z ), from

�Y FSZ − �Z FSY = MSX , �Z FSX − �X FSZ = MSY , �X FSY − �Y FSX = MSZ

(5.59a–c)
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In Example 5.18 we found |Fnet| = W S [ρg sin θ S/2] = 14,686 N, and from the data
we find ( 2

3 S − Y0) = 2
3 (2 m) − (−1 m) = 7

3 m, thus the moment is 

MS = −W S

(
ρg sin θ S

2

)(
2

3
S − Y0

)
i = −(14,686 N)

(
7

3
m

)
i = −34,267 (N-m)i

Also note that the moment arm 2
3 S − Y0 = 2

3 S − (−(L − S)) = L − 1
3 S as expected.



In most problems, the fact that the POA must lie on the surface, and that symmetry
considerations cause one or more components of the net moment to be zero, allow us to
determine some of the components of the moment arm, � = (�x ,�y,�z), defining the
POA by inspection.

We can illustrate the process of determining the resultant force and POA by
revisiting Example 5.24. In that example we calculated the net hydrostatic force and
moment about the hinge pin on the gate of a container of wet concrete (see Figure 5.45).
The net hydrostatic force was given by (A) as FS = ∫ 0

−H

∫ (W/2)

(−W/2)
(ρgz)(i)dy dz =

−WH(ρgH/2)i, and the moment was given by (B) as MS = MSyj = ρgW (H 3/3)j.
The resultant force is therefore FR = FS = −W H(ρgH/2)i. To find � =
(�x ,�y,�z), we note that since the POA must be on the surface, �x = 0. Since the
force acts solely along the x axis, and there is no moment about the z axis, we conclude
that �y = 0. We can determine the remaining component of � = (�x ,�y,�z) from
Eq. 5.58b in the form �z FSx − �x FSz = MSy = ρgW (H 3/3). Inserting the known
components of FS and using the fact that �x = 0, we find �z[−W H(ρgH/2)] =
ρgW (H 3/3), which we solve to find �z = − 2

3 H . Thus the location of the POA is
defined by the moment arm � = (0, 0,− 2

3 H), which is shown in Figure 5.45B. The
POA is on the centerline of the gate two-thirds of the way down the gate. This seems
reasonable for the linear gage pressure distribution on the surface.

The procedure for finding the resultant force and POA for a planar nonaligned sur-
face is the same as that just described, but the process is carried out in the uppercase
X, Y, Z coordinate system. Once the resultant force and POA are determined in the up-
percase coordinates, it is straightforward to write them in the usual lowercase Cartesian
coordinates. Consider the inclined gate used in Examples 5.18 and 5.26, and illustrated
in Figure 5.44. Note carefully that in this problem the coordinate origin and point about
which moments are calculated do not coincide. The moment arm of the POA by inspec-
tion must be of the form � = (0,�Y , 0). The resultant force was calculated in Exam-
ple 5.18 as Fnet = −W S[(ρg sin θ)S/2] K, and the moment was found in Example 5.26
to be MS = −W S[ρg sin θ S/2]( 2

3 S − Y0)I.Applying Eq. 5.59a, we find �Y FSZ = MSX,

which gives �Y = MSX /FSZ = 2
3 S − Y0 . Thus the POA has a moment arm =

(0, 2
3 S − Y0, 0). To verify this result we note that when the origin and center of moment

do not coincide, we have � = XPOA − X0, where XPOA is the position of the POA, and
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Figure 5.45 Schematics of concrete container and gate: (A) geometry and (B) resultant
force and point of application.



X0 is position of the center about which moments are taken. Thus in this case we write
�Y = YPOA − Y0 = 2

3 S − Y0 and solve to obtain YPOA = 2
3 S. We see that the POA is lo-

cated two-thirds of the way down the inclined gate as expected, and at a distance
2
3 S − Y0 = L − 1

3 S from the moment origin.

5.8 BUOYANCY AND ARCHIMEDES’ PRINCIPLE

The concepts of a buoyancy force and Archimedes’ principle were introduced in Sec-
tion 2.3.3 in the context of our discussion of fluid pressure. Recall that the buoyancy
force is defined as the net vertical force acting on an immersed object due to the varia-
tion in hydrostatic pressure with height (see Figure 2.10). From this definition we con-
clude that the buoyancy force is given by the surface force acting on the object. Thus
using Eq. 5.31 we can write

Fbuoyancy =
∫

S
−pn dS (5.60)

where the integration is taken over the entire surface of the object. Archimedes’ princi-
ple defines the magnitude and direction of this force by stating that a buoyancy force
acts in the direction opposite to that of gravity and has a magnitude equal to the weight
of the displaced fluid. We will now use our newfound understanding of fluid statics to
prove this statement.

An immersed object may be either free to move or restrained by a structural ele-
ment. If an object is free to move, it is acted on by gravity and buoyancy forces only, as
shown in Figure 5.46A and 5.46B. If an object is restrained, the structural connections
transmit an external force to the object that must be accounted for in an analysis. Thus,
a restrained object is acted upon by gravity, buoyancy, and external forces, as shown in
Figures 5.46C. In both cases, an application of Newton’s second law to the stationary
object requires that the sum of the forces be zero.

An immersed object free to move will remain in place if the buoyancy force is ex-
actly equal to its weight. If the buoyancy force is greater than its weight, the object will
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Figure 5.46 Force balance on (A) a fully immersed object, (B) a ship, and (C) a tethered object.



rise. If the buoyancy force is less than its weight, the object sinks, stopping in its down-
ward trajectory only if some additional force, such as that created by contact with the
bottom, occurs. If an object is tethered or otherwise held in place by an external force
created by a structural element of some type, as in Figure 5.46C, then the difference be-
tween the buoyancy force and the weight of the object must be balanced by the external
restraining force.

Consider an object wholly immersed in a fluid at rest and subject to gravity, buoy-
ancy, and external forces as shown in Figure 5.47. To account for the nonuniform phys-
ical structure of real materials, we suppose the object has a density distribution ρobj(x).
For further generality, let the fluid have a variable density ρ(x). If the object is at rest,
then by Newton’s second law, the sum of the forces acting on the object is zero. As
shown in Figure 5.47, these forces include an external force Fext, a gravitational body
force given by the integral Fgravity = ∫V ρobj(x)(−gk) dV , and a surface (buoyancy)
force given by Eq. 5.60, Fbuoyancy = ∫S −pn dS .

For an object at rest, applying Newton’s second law gives

Fext +
∫

V
ρobj(x)(−gk) dV +

∫
S
−pn dS = 0 (5.61a)

where the volume and surface integrals refer to the volume and surface of the object. We
can also write this balance of forces symbolically as

Fext + Fgravity + Fbuoyancy = 0 (5.61b)

If the sum of the gravity and buoyancy force is zero, the object is said to be neutrally
buoyant, since it will remain in place indefinitely with no external force applied to it.

Since the volume integral in Eq. 5.61a defines the weight of the object, we can also
write this integral as 

∫
VB

ρobj(x)(−gk) dV = −Wobjk, where Wobj is the weight of the
object, and express the balance of forces as

Fext + (−Wobjk) +
∫

S
−pn dS = 0 (5.62)
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Figure 5.47 Forces on an arbitrary, tethered, fully
immersed object.
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EXAMPLE 5 .27

A cylindrical instrument container of height H = 1 m and radius R = 0.25 m has been
designed so that it is neutrally buoyant when partially immersed to a depth H/2 in
water, as shown in Figure 5.48. Find the weight of the cylinder and its contents.

SOLUTION

There is no external force present, and the only body force is gravity. According to
Eq. 5.62, which is now a force balance on this instrument, the condition for neutral
buoyancy (zero external restraining force) is 

−Wobjk +
∫

S
−pn dS = 0

The first term contains the unknown weight of the object. The pressure integral is equal
to the buoyancy force acting on the container. The integral over the entire surface of the
object can be separated into integrals over the top, bottom, and the side (immersed and
dry). On the top the pressure is uniform and equal to p = pA so the surface force is

FS = −p Ak = −pAπ R2k

On the bottom the pressure is also uniform and equal to p = pA + ρgH/2, so the sur-
face force there is

FS = −p A(−k) =
(

pA + ρgH

2

)
π R2k

The resultant surface force on the side of the cylinder is zero because of the symmetry
of the object and pressure distribution. The sum of forces in the z direction is

−Wobj − pAπ R2 +
(

pA + ρgH

2

)
π R2 = 0

H
2

R

Figure 5.48 Schematic for Example 5.27.



Equations 5.61a, 5.61b, and 5.62 also apply to a partially immersed object. For such
an object, the surface integral defining the buoyancy force has several parts, one for each
fluid in contact with the object. However, the weight refers to the entire object.

Equations 5.61a, 5.61b, and 5.62 are general expressions of Newton’s second law
for any stationary object in a fluid at rest in Earth’s gravity; they apply to every situation
an engineer might encounter. However, it is possible to replace the surface integral in
Eq. 5.62 by a certain volume integral by taking advantage of the fact that the pressure
distribution in a fluid at rest is generally unaffected by the presence of an object. Con-
sider the immersed object shown in Figure 5.49A. Suppose the object is no longer pre-
sent so that the volume in space formerly occupied by the object is now filled with fluid,
as shown in Figure 5.49B. This volume is referred to as the volume of displaced fluid,
and we suppose that the fluid filling the displaced volume has the density distribution of
the surrounding undisturbed fluid. If this is the case, the pressure distribution on the sur-
face of the displaced volume is identical to that on the object, and we conclude that the
hydrostatic force on the displaced volume is identical to that on the object.

Suppose we now apply Eq. 5.62 to the displaced volume of fluid, noting that there
is no external force on the displaced volume and that the density in the volume integral
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and it can be seen that the net surface force, i.e., buoyancy force, is ρgπ R2(H/2)k.
Solving for the weight of the cylinder and its contents we find

Wobj =
(

ρgH

2

)
π R2 = (998 kg/m3)(9.81 m/s2)(1.0 m/2)(π)(0.25 m)2 = 961 N

where the density of water is taken from Appendix A. The mass of the cylinder and its
contents is therefore 98 kg, which seems reasonable. It can be very challenging to adjust
the weight of a container so that it is exactly neutrally buoyant. Try to do it with a soda
bottle, using sand or gravel to adjust the weight of the bottle so that it floats fully im-
mersed but stationary.

Fluid

Object

pA

Fluid

Fluid

pA

(A) (B)

Figure 5.49 (A) An immersed object and (B) the equivalent volume of fluid.



defining the body force is now that of the fluid. Rear-
ranging the resulting equation gives∫

S
−pn dS = −

∫
V

ρ(x)(−gk) dV

where the integrals refer to the displaced volume. Since
the surface integral here also represents the hydrostatic
force on the object, i.e., buoyancy force on the object,
we conclude that

Fbuoyancy =
∫

S
−pn dS

= −
∫

V
ρ(x)(−gk) dV

(5.63a)

a result that can also be written as

Fbuoyancy = Wfluidk (5.63b)

where Wfluid is the weight of the displaced fluid. Note
that this result applies to any density distribution in the
fluid, and it tells us that the buoyancy force is equal in
magnitude to the weight of the displaced fluid and acts
vertically upward, a result said to have been known to
Archimedes. Thus, Eq. 5.63b is called Archimedes’prin-

ciple. Equation 5.63a is simply a generalization of this principle to allow the calculation
of the weight of a displaced volume of fluid of variable density. For a constant density
fluid, we can write Archimedes’ principle as

Fbuoyancy = ρfluidg –V k (5.64)

Now consider the balance of forces on an immersed object as given by Eq. 5.61a:

Fext +
∫

V
ρobj(x)(−gk) dV +

∫
S
−pn dS = 0

where the pressure integral is the buoyancy force. If we use Eq. 5.63a to replace the
integral pressure and rearrange terms, the force balance on a stationary immersed object
becomes

Fext =
∫

V
ρfluid (x)(−gk) dV −

∫
V

ρobject(x)(−gk) dV (5.65a)

Finally we can evaluate the volume integrals and write

Fext = (Wobject − Wfluid)k (5.65b)

which states that the external restraining force required to keep an immersed object sta-
tionary is equal to the difference between the weight of the object and the weight of the
displaced fluid. Notice that this result is in perfect agreement with our earlier discussion
of the behavior of partially and fully immersed objects.
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HISTORY BOX 5-1

“Eureka, Eureka!” meaning “I found it, I
found it!”, was reportedly Archimedes’ cry
one day when he overflowed his bath.
What he had found was a method of deter-
mining whether the golden crown of the
king of Syracuse, Hero II, was made of
pure gold or an alloy of gold and silver.
Archimedes placed in a bowl a block of
pure gold of the same weight as the crown
and carefully filled the bowl to the brim
with water. After removing the block of
pure gold, he placed the crown in the bowl.
Because silver is less dense than gold, a
crown containing silver would cause the
bowl to overflow. Does this method seem
practical? Does it use the principle named
after Archimedes? Can you think of any
way to solve the problem stated in Exam-
ple 5.27 by using Archimedes’ principle?
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EXAMPLE 5 .28

What is the buoyancy force acting on the cylindrical instrument container shown in 
Figure 5.48?

SOLUTION

According to Eq. 5.64, the buoyancy force contributed by the water is

ρg –V k = ρH2Ogπ R2 H

2
k = 961 N k

The air also contributes a buoyancy force of

ρg –V k = ρairgπ R2 H

2
k = 1.18 N k

The buoyancy force due to the air is only about 0.1% the force due to the water. How-
ever, in the constant pressure model of the atmosphere, the air density is zero. To be con-
sistent, we must neglect the buoyancy force due to air, and thus the result here is the
same as found earlier in Example 5.27.

EXAMPLE 5 .29

A spherical (D = 3 ft) sea mine weighing 500 lbf is chained to the bottom of a harbor as
shown in Figure 5.50. What external force must the chain provide to keep the mine from
floating to the surface?

Water

Mine with weight
W � 500 lbf

pA

Chain

D � 3 ft

Figure 5.50 Schematic for Example 5.29.



5.9 EQUILIBRIUM AND STABILITY
OF IMMERSED BODIES

The occasional report of the capsizing of an overloaded
passenger ferry or other vessel (Figure 5.51A) suggests
that it is not sufficient to consider only the balance of
forces acting on a partially submerged or even fully
submerged object. In fact it is also necessary to con-
sider the moments acting on the object, since an unbal-
anced moment will result in a rolling motion that is not
easily resisted. Although a complete treatment of this
subject is beyond the scope of this text, we can observe
that a necessary condition for an object immersed in
fluid to be stationary is that the sum of the forces and
the sum of the moments be zero. When the sum of the
forces and moments is zero, the object is in a state of
equilibrium, but it is also necessary to consider the sta-
bility of this state.

For the object shown in Figure 5.51B, the sum of
the forces is given by Eq. 5.61a and 5.61b or its equiv-
alent, Eqs. 5.65a and 5.65b. Setting the sum of the mo-

ments acting on this object about a moment origin at x0 to zero gives 

Rext × Fext +
∫

V
[(x − x0) × (ρobject(x)(−gk))] dV +

∫
S

[(x − x0) × (−pn)] dS = 0
(5.67a)

where Rext defines the moment arm of the external force. The remaining two integrals in
this equation represent the moment due to body forces acting on the object and the
moment due to the buoyancy force. The calculation of the moments acting on a three-
dimensional object is very tedious. However, some insight can be gained if we introduce
the concept of a resultant gravitational body force Fgravity and its POA, and a resultant
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SOLUTION

A force balance on the sea mine shows that Eq. 5.65b, Fext = (Wobject − Wfluid)k, is
applicable. Using the density of seawater (Appendix A) ρsw = 1025 kg/m3 =
1.989 slugs/ft3, we have

Fext =
[

500 lbf − (1.989 slugs/ft3)(32.2 ft/s2)

(
4

3
π

)(
3

2
ft

)3( 1 lbf-s2

1 slug-ft

)]
k = −405 lbf k

The mine will float to the surface unless restrained. 

Our analysis of the forces on an immersed
object was limited to a gravitational body
force; however, the general conclusion
equating the buoyancy force to the body
force acting on the displaced fluid is true
for any body force. The force balance on
an immersed object is given in general by

Fext =
∫

V
ρfluid (x)f dV −

∫
V

ρobject(x)f dV

(5.66)

where f is the body force per unit mass.
For example, in a fluid in rigid body rota-
tion, the solution of Example 5.5 showed
that the body force in cylindrical coordi-
nates is given by f = r Ω2er − gez . The
external force needed to hold an object
immersed at some location in this case
must balance the effects of gravity and the
centrifugal force simultaneously. 



buoyancy force Fbuoyancy and its POA. This allows us to write the condition for moment
equilibrium as

Rext × Fext + Rgravity × Fgravity + R buoyancy × Fbuoyancy = 0 (5.67b)

Using the fact that Fgravity = −Wobjk, Fbuoyancy = Wfluidk, we can also write this condi-
tion for moment equilibrium, symbolically, as

Rext × Fext + Rgravity × (−Wobjectk) + R buoyancy × (Wfluidk) = 0 (5.67c)

We can now analyze a problem by considering the locations of the center of gravity
and center of buoyancy. Using the familiar idea of the displaced fluid, it is possible to
show that the moment due to the buoyancy force is equal and opposite to the moment
due to the gravitational body force acting on the displaced fluid. Thus the center of
buoyancy is the same as the center of gravity for the displaced fluid and, of course, the
same as the center of pressure.

We can illustrate this approach to analyzing the requirement for equilibrium by ex-
amining the horizontal capsule shown in Figure 5.52. The extra weight on one end of the
object causes its center of gravity to be to the right of the midpoint, and the gravitational
body force acting on the object (its weight) acts down at this location. The symmetry of
the body causes the center of gravity of the displaced fluid to be at the midpoint, and the
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Figure 5.51 (A) Capsized vessel. (B) Free body diagram of fully immersed body with restraining force.
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Figure 5.52 Relative locations of center of
buoyancy and gravity.



buoyancy force acts upward at this point. Notice that these two forces contribute a
clockwise moment on the capsule. For equilibrium, external force must act down at the
attachment point, and it must have a magnitude that exactly balances both the net force
and net moment contributed by the body and buoyancy forces.

In the absence of a restraining force, equilibrium for a neutrally buoyant body is an-
alyzed by examining the locations of the center of gravity and center of buoyancy. Con-
sider the two situations shown in Figures 5.53A and 5.53B. Equilibrium exists in both
cases, but if it occurred to you that the arrangement in Figure 5.53B is unstable, you are
correct. The general rule for a fully immersed object is that a position of equilibrium
with the center of gravity above the center of buoyancy is unstable. This rule can be
established rigorously by examining the balance of forces and moments when an
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Figure 5.53 Neutrally buoyant capsule in (A) stable equilibrium with restoring couple, and
(B) unstable equilibrium with overturning couple.
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Figure 5.54 Partially submerged object in (A) stable and (B) unstable conditions:
c, centroid of original displaced volume; c', centroid of new displaced volume.



immersed body is perturbed from its proposed equilibrium position. If the resulting mo-
ment is nonzero and tends to return the body to its former orientation, the equilibrium
position is stable. If the resulting moment tends to cause the body to move away from its
former position of equilibrium, the equilibrium position is unstable.

Equilibrium and stability for a partially immersed (floating) object is analyzed in
the same manner. A floating body, however, may be in a position of stable equilibrium
with its center of gravity slightly above its center of buoyancy, as shown in Figure 5.54.
A key feature of the stability analysis for a floating body is that when its orientation is
changed, the center of gravity of a floating body remains fixed, but the center of buoy-
ancy may shift significantly. Stability depends on the magnitude and direction of the
change in the center of buoyancy, and whether a righting or overturning moment is cre-
ated. Thus one can encounter a configuration that is stable to any perturbation as illus-
trated in Figure 5.54A or a configuration that is stable for small roll angles but unstable
if the roll is large enough (Figure 5.54B).

5.10 SUMMARY

Fluid statics, or hydrostatics, is the branch of fluid mechanics concerned with the be-
havior of fluid at rest. In a fluid at rest, all shear stresses are completely absent. The
stress vector acting on any surface in a fluid under these conditions is given by � = σn,
where σ is the magnitude of the stress vector. Since fluids are unable to exert a tensile
stress, the hydrostatic stress is compressive, and the normal stress σ in a fluid at rest is a
negative quantity. The pressure p, called the static pressure, is defined to be the negative
of the normal stress acting on any surface in a fluid at rest: p = −σN . The correspond-
ing hydrostatic stress is � = −pn, and this stress acts equally in all directions at a point
in the fluid. In the Eulerian description, pressure is represented by a scalar field
p = p(x, t). Under normal circumstances, both the pressure distribution and the body
forces that create the pressure field are time independent.

A state of hydrostatic stress also occurs if a fluid is in motion at constant velocity as
a whole, in linear acceleration as a whole, or in a solid body rotation as a whole. In a ref-
erence frame fixed to an accelerating volume of fluid, the fluid is at rest but acted on by
the appropriate noninertial body force needed to account for the noninertial reference
frame. This apparent body force may be treated as if it were an additional body force.

The governing equation for fluid statics is the hydrostatic equation, which in inte-
gral and differential form, applies to every problem in fluid statics. The integral form of
the hydrostatic equation is 

∫
S −pn dS + ∫ ρf dV = 0. This equation tells us that for

any volume of fluid at rest, the total force exerted on the surface of that volume by the
pressure is exactly balanced by the total body force exerted on the fluid within that vol-
ume. We can use this equation to show that the pressure at the bottom of a column of
constant density fluid is greater than the pressure at the top by the amount ρgH . The
product ρgH has dimensions of force per unit area, and we can interpret this product as
the weight of the fluid column divided by the area of its footprint.

The differential form of the hydrostatic equation states that ∇p = ρf at every point
in the fluid. That is, the pressure force per unit volume is balanced by the body force per
unit volume. To solve this partial differential equation for the pressure, we must know
the density and body force. The solution to this equation, for a known distribution of
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body forces, completely describes the state of stress (pressure) at every point in the fluid,
as well as the stress vector on every surface the fluid contacts. Armed with this knowl-
edge, an engineer can calculate the total surface force and moment on any surface of
interest.

Many important problems in fluid statics involve a constant density fluid at rest in
Earth’s gravity field. The pressure distribution in this case, p(z) = p0 − ρg(z − z0),
describes a linear increase in pressure with depth. Surfaces of constant pressure are
found by setting the pressure distribution equal to a constant. For this pressure distribu-
tion, these surfaces are a family of horizontal planes. In a variable density fluid, usually
referred to as a stratified fluid, the pressure distribution is nonlinear and may be quite
complex.

In a second class of problems in fluid statics, a container completely filled with fluid
is placed in steady rotation. Once this rigid body rotation has been achieved in a fluid,
the fluid is at rest relative to the rotating container with a hydrostatic pressure distribu-
tion. This distribution can be described by the hydrostatic equation with respect to coor-
dinates fixed to the moving container, with the centrifugal body force included in the
total body force. The resulting pressure gradient in the r direction balances the centrifu-
gal force caused by the rotation of the fluid. The pressure increases monotonically in the
radial direction, reaching a maximum at the container wall. The pressure gradient in the
θ direction is zero and the pressure gradient in the z direction balances the gravitational
body force as usual.

To find the pressure distribution in a constant density fluid undergoing a constant
rectilinear acceleration, we must insert the appropriate expression for the total body
force into the hydrostatic equation and solve the resulting system of equations. For a
container filled with fluid in constant linear acceleration a = (ax , ay, az), and assuming
the only body force is gravity, the pressure distribution is given by p(x, y, z) =
p0 − ρax(x − x0) − ρay(y − y0) − ρ(g + az)(z − z0) , where p0 is the datum pres-
sure at location (x0, y0, z0). Surfaces of constant pressure are planes whose orientation
in space depends on the values of the various acceleration components.

The hydrostatic force exerted by a fluid on a structure is given by the surface inte-
gral FS = ∫S −pn dS . The difficulty in calculating the surface force in fluid statics
arises from calculating this integral on various surfaces. We showed how to evaluate this
integral for surfaces of three types: planar aligned (a flat surface aligned with a Cartesian
coordinate plane); planar nonaligned (a flat surface not aligned with a coordinate plane);
and curved. An indirect method of calculating the surface force, which is recommended
for planar nonaligned and curved surfaces, uses the force on the horizontal and vertical
projections of the surface plus the weight of the fluid in a selected volume to replace the
direct calculation of the hydrostatic force by means of a surface integral on the original
surface.

The hydrostatic moment created by the pressure on a surface is also important in
practical applications. For a fluid at rest the hydrostatic moment may be calculated as
MS = ∫S [r × (−pn)] dS . The moment arm is r = x − x0, where the moment is defined
with respect to position x0. The use of this surface integral to calculate the hydrostatic
moment involves the same mathematical procedures used for the hydrostatic force.

In some cases of interest, particularly those that involve rigid structures, it is tradi-
tional to think of the net effect of surface forces as a resultant force FR , and a point of
application for this force defined by the moment arm �. This resultant force is the net
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pressure force on the surface from all fluids. The point of application of the resultant
force is defined by requiring that the net hydrostatic moment on the surface from all flu-
ids is equal to the moment of the resultant force when this force is acting at the point of
application. That is, � × FS = ∫S [r × (−pn)] dS.

There are many situations in which an object is at rest but partially or fully im-
mersed in fluid. If the fluid is at rest or moving slowly, the pressure field is hydrostatic,
and the hydrostatic force on the object is identical to the total surface force applied by
the fluid to the immersed body. The force resulting from hydrostatic pressure on a sta-
tionary object under these conditions is called a buoyancy force. An object free to move
will float if the buoyancy force is equal to its weight. If the buoyancy force is greater
than its weight, the object will rise unless restrained. If the buoyancy force is less than
an object’s weight, the object sinks. If an object is held in place by a restraining force
created by a structural element of some type, then the difference between the buoyancy
force and the weight of the object must be balanced by a restraining force.

The buoyancy force on a submerged object is equal to the body force acting on the
displaced volume of fluid. For the case of constant density fluid in Earth’s gravity field,
the buoyancy force is equal in magnitude to the weight of the displaced fluid and acts
vertically. This result is called Archimedes’ principle.

In the absence of a restraining force, equilibrium for a neutrally buoyant body is an-
alyzed by examining the locations of the center of gravity and center of buoyancy. The
general rule for a fully immersed object is that a position of equilibrium with the center
of gravity above the center of buoyancy is unstable. A floating body, however, may be in
a position of stable equilibrium, with its center of gravity slightly above its center of
buoyancy. Thus one can encounter a configuration that is stable for small roll angles, but
unstable if the roll is large enough.
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PROBLEMS

Section 5.1

5.1 Describe the similarities and differ-
ences between fluid statics and fluid dynam-
ics. Give an example of an engineering prob-
lem that falls into each category.

5.2 Is it ever possible for the equations
of fluid statics to apply to a moving fluid?
If so, give an example. If not, explain why
not.

5.3 In the text it was stated that the air in a
hurricane or tornado may move at speeds of
150 mph or more. If the ambient hydrostatic
pressure in the atmosphere is approximately
14.7 psia, verify that the change in pressure
from this value due to a flow at 150 mph may
be estimated using ideas from Section 2.3 as
�p = 0.398 psia.

5.4 In Example 5.1 we showed that if the
water near the intake pipe of a dam is moving
at 1 m/s and the intake pipe is located 10 m
below the surface, the corresponding decrease
in pressure is ∼0.5%. How fast would the
water have to be moving for the correspond-
ing pressure decrease to be ∼10%?

Section 5.2

5.5 Explain why the stress vector acting on
a surface in contact with a stationary fluid
must be purely compressive in its action.

5.6 Use a procedure similar to that demon-
strated in the text to show that σN3 = σN .

5.7 For a fluid at rest, describe the relation-
ship between the normal stress in the fluid, the
stress vector, and the static pressure.
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5.15 Figure P5.1 shows an undersea struc-
ture with a shape that can be approximated
as one half of a cylinder. If the ocean floor is
40 m below the surface, estimate the total sur-
face force acting on this structure.

Section 5.3

5.8 Provide a physical interpretation of
Eq. 5.2. Which terms in this equation, if any,
may be functions of time? Which terms in this
equation, if any, may be functions of position?

5.9 What is the pressure increase per meter
of depth in a gasoline storage tank?

5.10 Compare the heights of columns of
water, carbon dioxide, and mercury required
to generate a pressure of 1.1 atm at the base of
the column. Assume the top of the column is
exposed to air at a pressure of 1 atm.

5.11 A bottle of a certain type of salad dress-
ing can be considered to be a mixture of olive
oil and vinegar. The oil has a density of
0.92 g/cm3 and the vinegar has a density of
1.01 g/cm3. If an unopened and unshaken bottle
of dressing contains 3 in. of oil on top of 5 in. of
vinegar, estimate the pressure acting on the bot-
tom surface of the bottle. What is the pressure
acting on the side of the bottle at the line be-
tween the oil and the vinegar? What is the pres-
sure acting on the bottom surface of the bottle
after the bottle is shaken so that the oil and vine-
gar are (temporarily) thoroughly mixed?

5.12 Consider the linear density distribu-
tion given in Eq. 5.6. Use Eq. 5.5 to verify that
ρ̄ = (ρH + ρB)/2. Is the pressure at a depth
of H/2 greater than or less than (pB − pA)/2?

5.13 What is the average density of a
layer of fluid of thickness H, characterized
by a density distribution of the form ρ(z) =
ρH − (ρB − ρH )[(z/H)2 − 1]? What is the
corresponding pressure at the bottom of this
layer of fluid?

5.14 Consider two columns of fluid of
equal dimensions. Both fluid columns contain
the same fluid and experience a linear temper-
ature profile with the same high and low
boundary temperatures. The only difference
is that the first column has the hot fluid on
top (a stable situation) and the second column
has the cold fluid on top (at best a metastable
situation). Which column has a higher pres-
sure at its base? Why?

Seawater

40 m

L

D

Figure P5.1

5.16 Provide a physical interpretation of
Eq. 5.9.

5.17 A variable density fluid whose linear
density distribution is given by Eq. 5.6 is at
rest in Earth’s gravity field. Find the pressure
gradient acting in the fluid at a depth of H/3.

5.18 A fluid whose density distribution is
given by ρ(z) = ρH − (ρB − ρH )[(z/H)2

−1] is at rest in Earth’s gravity field. Find the
pressure gradient acting in the fluid at a depth
of 2H/3.

5.19 The cylinder described in Exam-
ple 5.5 is filled with water and has a radius of
6 ft and a length of 10 ft. If the angular veloc-
ity is 0.5 rad/s, determine the pressure gradi-
ent at the following points:
(a) r = 0, z = 0
(b) r = 0, z = 5 ft
(c) r = 3 ft, z = 5 ft

Section 5.4

5.20 Use the procedure outlined in the text
to verify that ∂ρ/∂x = ∂ρ/∂y = 0 for a fluid
at rest in Earth’s gravity field (with z upward).
State any assumptions.

5.21 Consider a Cartesian coordinate sys-
tem defined so that the z points up (opposite to
the direction of the gravitational body force).
Is it possible for the hydrostatic pressure to be
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5.25 A closed tank is partially filled with
glycerin. If the air pressure above the glycerin
is 300 kPa, what is the pressure in the glycerin
at a depth of 0.75 m below the glycerin–air
surface?

5.26 The underground gasoline storage tank
illustrated in Figure P5.3 has developed a leak
such that water has entered the tank as shown.
For the dimensions given, determine the hy-
drostatic pressure at the following points:
(a) The water–gasoline interface
(b) The base of the tank
(c) The free surface of the gasoline

H

pA

Fluid

Pipe

Piezometer

p

Figure P5.2

2.0 m

0.5 m

pA

Air

Gasoline

Water

Figure P5.3

Diameter,
D � 8 cm

Hydraulic
fluid

h � ?

Hydraulic
fluid

H � ?

M � 10 kg
W

Figure P5.4

a function of the x coordinate? If so, how? If
not, why not?

Section 5.4.1

5.22 Find the pressure distribution in the
salad dressing bottle described in Prob-
lem 5.11 before it is shaken. What is the pres-
sure distribution after the bottle is shaken?

5.23 Use Eq. 5.14 to determine the pres-
sure distribution in Earth’s atmosphere. Let
the reference pressure be atmospheric pres-
sure at zero elevation. What is the rate of
decrease in pressure with elevation in air?

5.24 Find an expression relating the height
of the liquid level of the piezometer shown in
Figure P5.2 to the pressure at the connection
to the pipe.

5.27 The device shown in Figure P5.4 is
filled with hydraulic fluid (ρ = 0.88 g/cm3).

If the diameter of the larger cylinder is 8 cm,
determine the weight of the unloaded plate if
the corresponding height h is 3 cm. If a 10 kg
mass is placed on the plate, calculate the cor-
responding fluid height H.
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5.28 The hydraulic jack shown in Fig-
ure P5.5 is filled with fluid of density
0.88 g/cm3. What magnitude force, F, is re-
quired to lift a car that weighs 2200 lbf? State
any assumptions.

36 cm F2 cm

1 cm diameter

3 cm diameter

Car, W � 2200 lbf

Figure P5.5

Mercury

h1 � 0.45 m h2 � 0.38 m

Water main

Figure P5.6

5.29 As shown in Figure P5.6, a U-tube
manometer filled with mercury is connected
to a water supply line. Use the information
given in the figure to determine the water
pressure at the manometer location. State any
assumptions.

5.30 Consider the geometry shown in Fig-
ure P5.7. Assuming the water has a density of
1.0 g/cm3, estimate the density of the unknown
fluid.

5.31 Determine the unknown height H in
Figure P5.8.

5.32 Determine the pressure difference be-
tween points A and B in Figure P5.9. What
might cause such a pressure difference in a
horizontal tube?

Water

Unknown
fluid

Open

3.5 in.

6 in. 5.7 in.

1 in.

Figure P5.7

Water

Glycerin

SAE 30W oil

Mercury

2 cm

H
7 cm

6 cm

5 cm

Figure P5.8

Water
B A

Carbon tetrachloride

b � 1.0 m

a � 1.5 m

c � 0.6 m

Figure P5.9
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5.33 Consider the inclined manometer
shown in Figure 5.12. If the working fluid is
mercury and the inclination angle is 20°, cal-
culate the pressure resolution of the instru-
ment (i.e., the smallest change in pressure that
can be measured accurately) if the scale L is
marked in 1

8 in. intervals. How does the reso-
lution change if the inclination angle is in-
creased to 45°?

5.34 In Figure P5.10 all the fluids are at
room temperature and the pressure in reser-
voir A is 120 kPa. The specific gravity of
Meriam Red manometer oil is 0.827, and the
density of the brine is 1.18 g/cm3. Calculate
the pressure in reservoir B.

for the relationship between h and �p =
pA − pB . Assume that the reservoirs are large
enough that H remains constant. What two
working fluids would you recommend for this
application? Why?

Section 5.4.2

5.36 Find the pressure distribution for the
fluid layer described in Problem 5.13. What
do the surfaces of constant pressure look like
in this situation?

5.37 Find the pressure distributions for the
two columns of fluid described in Prob-
lem 5.14. What do the surfaces of constant
pressure look like in this situation?

5.38 The variation of density with pres-
sure in water can be approximated by
(p + B)/(pAtm + B) = (ρ/ρ0)

N , where the
constant N = 7, B = 3000 atmospheres, the
pressure p is in atmospheres, and ρ0 is the den-
sity of water at 1 atmosphere. Find the pres-
sure distribution in water using this rela-
tionship and compare it to the constant and
linear density profiles. Calculate the pressure
10,000 m beneath the surface and compare
the result with that obtained from the constant
density model.

5.39 In the text we discussed the isother-
mal model for the pressure distribution of
a stationary gas under the action of gravity.
A more complicated model of the pressure–
density relationship in a gas is provided by
the polytropic law, p/p0 = (ρ/ρ0)

n , where n
is the polytropic exponent. If n is set equal 
to γ , the specific heat ratio (1.4 for air), the
pressure–density relationship is isentropic.
Find the pressure–height relationship in a
polytropic gas, and plot the pressure distribu-
tion as a function of height with n = 1.25.
Use the polytropic model with n = 1.25 to
determine the pressure in the Earth’s atmo-
sphere at an altitude of 2 km and compare this
result with the corresponding predictions
from the isentropic model, the isothermal
model, and the standard atmosphere.

pA

�1

h

H H

pB

�1

�2

Figure P5.11

Meriam Red

5 cm

8 cm

2 cm

15 cm

15 cm

Air

B

Brine

A

Mercury

Water

Figure P5.10

5.35 Figure P5.11 shows a micromanome-
ter that can be used to measure small pressure
differences in gases. Notice that the device
has two working fluids, which are selected so
that the density of fluid two is slightly greater
than that for fluid one. Derive an expression
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Choose a datum location on the free surface at
its intersection with the cylinder axis and note
that the pressure on the surface of interest is
atmospheric pressure.]

5.45 At a garage sale you purchase an an-
cient piece of stereo equipment known as a
turntable. When the turntable is installed in
your living room, you decide to place a par-
tially filled glass of water (h = 8 in., d = 3 in.)
on the center of the rotating surface.
(a) If an angular velocity of 33 1

3 rpm raises
the level of the water to the rim of the cup
as shown in Figure P5.13, what was the
height of the water in the cup when the
fluid was at rest?

(b) Determine the location and magnitude of
the maximum pressure in this rotating
fluid.

3 ft

1 ft

D � 2 ft

Air

Water
Pump

Figure P5.12

5.40 The cylindrical tank shown in Fig-
ure P5.12 is being filled with water by means
of a pump that can generate a maximum exit
pressure of 36 psig. Just before the pump is
turned on, the air above the water is at STP and
the height of the water is 1 ft. Assuming the air
undergoes isothermal compression, estimate
the height of the water in the tank when the
pump stops, i.e., when the pump can no longer
raise the water pressure.

5.41 Airplane passengers experience ear
“popping” as a result of cabin pressure
changes. The same phenomenon can occur as
you drive through a mountain range. Suppose
that you have begin at a sea level and drive up
the side of a mountain until your ears “pop.”
You note that the first “pop” occurs at 250 ft and
have been told that sequential “pops” will occur
for constant pressure changes. Estimate the ele-
vation at which the second “pop” occurs if:
(a) The atmosphere has a constant density.
(b) The atmosphere is adiabatic.

5.42 Assume that the atmosphere on Mars
is composed of CO2 and that the surface tem-
perature averages 200 K. If the density of the
atmosphere at zero elevation is 0.015 kg/m3

and the gravitational constant on Mars is
about 40% of that on Earth, estimate:
(a) The value of atmospheric pressure on the

surface of Mars.
(b) The atmospheric pressure at an elevation

of 10 km above the surface of Mars. State
any assumptions.

Section 5.4.3

5.43 Show that the pressure distribution
given by Eq. 5.25 satisfies the hydrostatic
equation.

5.44 Consider a partially filled cylindrical
container of water rotating about its axis with
a free surface as shown in Figure 5.19. The
container is open and the pressure above the
free surface is ambient. Use Eqs. 5.25 and
5.26 to find an equation for the free surface.
Compare your result with Eq. 5.27. [Hint:

Turntable


 � 33 1
3 rpm

d � 3 in.

r

z

�

Fluid
h � 8 in.

Figure P5.13

5.46 A U-shaped glass tube filled with
mercury at STP is rotated around a vertical
axis as shown in Figure P5.14. If the angular
velocity is 3.5 rev/s, calculate
(a) The angle of the mercury–air interface
(b) The location and magnitude of the maxi-

mum pressure in this rotating fluid
(c) The location and magnitude of the mini-

mum pressure in this rotating fluid
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5.47 A 55-gallon drum initially full of
SAE 30W oil is rotated around its vertical
axis at an angular velocity Ω given in units
of rpm. What value of Ω is required such
that enough oil spills out of the drum so
that the center of the bottom is just barely
exposed?

5.48 A cylindrical bucket of height 30 cm
and diameter 15 cm is half-filled with water.
A string is tied to the handle of the bucket so
that the distance from the end of the string
to the free surface of the water is 0.8 m. You
hold the end of the string and swing the
bucket in a circular path in a horizontal plane;
determine the pressure at the bottom of the
bucket.

5.49 The bucket described in Problem 5.48
is now swung in a circular path in a vertical
plane. Calculate the pressure at the bottom of
the bucket when:
(a) The bucket is at its highest point
(b) The bucket is at its lowest point
(c) The string is horizontal

5.50 Reconsider the U-shaped tube illus-
trated in Figure P5.14. Suppose that this tube
is rotated around one of its vertical legs. At
what rotational velocity will the difference in

height between the mercury in the two legs be
20 cm?

5.51 A long transparent cylindrical tube of
diameter of 25 cm contains 10 cm of water
resting on top of 15 cm of mercury. If the
cylinder is rotating at 20 rad/s, calculate:
(a) The shape of the water–mercury interface.
(b) The shape of the water–air interface.
(c) The location and magnitude of the maxi-

mum pressure in the rotating fluid.

5.52 A plane in level flight at a speed of
700 km/h begins a turn to the left along a cir-
cular path of radius 35 km. A young passenger
is holding a balloon filled with helium. Will
the balloon string remain vertical, tilt to the
left (toward the center of the turn), or tilt to
the right (away from the center of the turn)?
Why?

Section 5.4.4

5.53 A container of fluid is placed in an
elevator and accelerated upward at 1 g. What
is the total body force per unit mass acting on
the fluid? 

5.54 It is proposed to use a U-shaped
glass tube filled with mercury as a simple ac-
celerometer as shown in Figure P5.15. What
range of acceleration can be measured?

5.55 A 55-gallon drum of SAE 30W oil
(diameter = 22.5 in.) rests on the floor of an
elevator. If the elevator is has an upward ac-
celeration of 5 ft/s2, calculate:
(a) The total body force per unit mass acting

on the fluid
(b) The fluid pressure at the bottom of the

drum

5.56 A cubical container of water with an
edge dimension of 2 m rests on the floor of an
elevator.
(a) If the upward acceleration is 4 m/s2, cal-

culate the absolute and gauge pressure at
the bottom of the tank.

0.75 m

0.2 m 0.2 m

Mercury

Air

�

3.5 rev/s

Figure P5.14



PROBLEMS 287

a

L � 10 cm

Fluid

At rest

Air5 cm

Figure P5.15

5.57 A gasoline reservoir towed by a cer-
tain brand of tanker truck can be modeled
as a horizontal cylinder of length 7.5 m and
diameter 2.5 m, which is completely filled
with gasoline.
(a) Determine the pressure difference be-

tween the front surface of the tank and the
back surface of the tank (along the center-
line) when the truck is undergoing a hori-
zontal acceleration of 1.5 m/s2.

(b) Determine the pressure difference be-
tween the front surface of the tank and the
back surface of the tank (along the center-
line) when the truck is undergoing a hori-
zontal deceleration of 2.5 m/s2.

5.58 The tank of fluid shown in Fig-
ure P5.16 is experiencing a constant accelera-
tion to the right.

(a) Calculate the magnitude of ax if the fluid
in the tank is glycerin.

(b) For the acceleration found in part a, deter-
mine the location and magnitude of the
maximum pressure in the tank.

(c) Calculate the magnitude of ax if the fluid
in the tank is water.

1 ft

6 in.

ax

2 ft

Fluid

Figure P5.16

5.59 The test driver for the Tar Foot drag
racing team rests his coffee cup on the dash-
board of his dragster during time trials. The
cup is 4 in. tall and has a diameter of 3 in.
When the dragster reaches its maximum
(constant) acceleration of 3 ft/s2 , determine
the angle θ associated with the free surface
and the height h (see Figure P5.17). Assume
that the density of coffee is 63.1 lbm/ft3 and
that the cup is 3

4 full at the start of the
race.

�

4 in.

h

3 in.

Coffee

ax � 3 ft/s2

Figure P5.17

5.60 The test driver for the Blue Devil
racing team has a coffee cup in her dragster

(b) What acceleration is required to give a
gage pressure at the bottom of the tank of
0 kPa?
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that is identical to the one described in Prob-
lem 5.59 (except it is restrained in an appro-
priate cup holder so it doesn’t slide off the
dash and land on the driver’s lap). During the
period of constant acceleration, the coffee
in the cup just reaches the top of the mug
(i.e., h = 1 in.). Determine the acceleration of
the car.

5.61 The gas tank for a light truck is illus-
trated schematically in Figure P5.18. The
pressure transducer serves as the active com-
ponent for the fuel gage.
(a) When the tank is half-full, determine the

equation that relates the pressure at the
gage to the constant horizontal accelera-
tion of the truck.

(b) How does the relationship change if the
tank is three-quarters full?

(c) If the tank is half-full, at what accelera-
tion will the gasoline level drop below the
gage port?

(d) Can you suggest a better location for the
location of the pressure gage? Justify your
selection.

5.62 Your mom has talked you into moving
her friend’s prize-winning goldfish for her. The
fishtank is 30 cm high and has a rectangular
base 25 cm × 65 cm. You are going to trans-
port the tank in the trunk of your car, and you
know that during acceleration the water sur-
face will tilt in a manner similar to that
illustrated for the gas tank in Problem 5.61.
Because you don’t want water all over your

0.9 m

1.5 m

0.2 m

Air

Fuel

Vent

Pressure
transducer

x

z

Figure P5.18

20�

�

a

Figure P5.19

trunk, you have removed enough water to
bring the level at rest to 3 cm below the top of
the tank.
(a) Is it better to orient the tank so that the

long dimension is parallel or perpendicu-
lar to the direction of motion? Why?

(b) For the orientation you recommend in
part a, calculate the maximum accelera-
tion for safe (dry) transport.

5.63 A half-filled tank of water is moving
up an incline as shown in Figure P5.19.
(a) Find the magnitude and direction of the

total body force acting on this fluid.
(b) Find the maximum acceleration in the di-

rection of motion such that no fluid spills
over the back wall.

(c) Find the location and magnitude of the
maximum pressure in the fluid for the
maximum acceleration calculated in
part b.
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5.64 A half-filled tank of glycerin is mov-
ing down an incline under the action of grav-
ity as shown in Figure P5.20. Find the angle θ
associated with the free surface of the fluid.
Explain your result.

drain hole in your bathtub. If the water depth
is 10 cm and the water temperature is 40°C,
estimate the total hydrostatic force on the
stopper.

5.69 Concrete walls are often formed by
pouring the concrete between temporary
forms. One specific wall is to be 8 ft high, 1 ft
thick, and 20 feet long. Thus, two forms, each
8 ft × 20 ft, will be used. If the wet concrete
has a density of 150 lbm/ft3, calculate the total
hydrostatic force on each vertical form.

5.70 The concrete forms described in
Problem 5.69 must contain access ports.
(a) In one form the access port is a square

with an edge length of 15 in. The top edge
of the port is located 2 ft below the free
surface of the concrete. What is the total
hydrostatic force acting on this port?

(b) The other form contains a circular access
port of diameter 15 in. The top of this port
is also located 2 ft below the free surface
of the concrete. What is the total hydro-
static force acting on this port?

5.71 Concrete is poured into the forms
shown in Figure P5.21 to create a stand for the
winners of swimming ribbons at the local
community pool. After the concrete has been
poured, two sandbags are placed as shown
to stop the form from lifting off the ground. The
concrete has a density of 2400 kg/m3; estimate
the minimum total weight of the two sandbags.

1 ft

a

2 ft

�

Figure P5.20

5.65 A child sitting in an airplane is hold-
ing a helium-filled balloon by a string. During
takeoff (acceleration in the +x direction), will
the balloon string remain vertical, tilt forward,
or tilt backward? Why?

5.66 A luggage strap is hanging out of an
overhead compartment on an airplane. During
the deceleration associated with landing, will
the luggage strap hang straight down, tilt
toward the front of the plane, or tilt toward the
back of the plane? Why?

Section 5.5

Section 5.5.1

5.67 Suppose you are asked to use Eq. 5.31
to find the hydrostatic force on the bottom of
the engine sump in Example 5.15.
(a) What type of surface is this, and what is

the value of the pressure in the integrand
of the surface integral?

(b) Find the outward unit normal on the bot-
tom of the engine sump.

5.68 Suppose a flattened cylindrical rub-
ber stopper of diameter 3 cm covers the

0.75 m
0.5 m

0.65 m 0.65 m 0.65 m

0.25 m

Sand
Sand

Concrete

Figure P5.21

5.72 The hot water heater shown in Fig-
ure P5.22 is fitted with a drain tube as shown.
A circular plug is used to seal the drain.
Calculate the total hydrostatic force on the
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Water

Air

3 ft

1.5 ft

1 ft

3 in.

0.5 in. diameter
drain tube

Circular
plug

Figure P5.22

Bolts (6)

D � 18 in.

Air

H � ?Concrete

Flange

Plate

Figure P5.23

D � 2 ft

h
W � 180 lbf

Air

Water

(A)

Water

(B)

40 cm

40 cm

30 cm

20 cm

Unknown
liquid

Gate

Figure P5.24

covers a circular pipe of diameter 2 ft. What is
the maximum height, h, of water above the
level of his feet necessary to cause water to
leak out of the pipe?

5.76 Determine the density of the fluid on
the right in Figure P5.24B such that the net
hydrostatic force on the rectangular gate is
zero.

5.77 Repeat Problem P5.76, but this time
let the gate have a circular shape.

5.78 If the “unknown fluid” in Prob-
lem P5.76 is SAE 30W oil, determine the
magnitude and direction of the net hydrostatic
force acting on the circular gate.

plug, assuming that the water is at room tem-
perature. Will the force on the plug be greater
or less than this value when the water is
heated?

5.73 An open rectangular tank 2 m in
width and 4 m in length contains 16 m3 of
gasoline and 28 m3 of water at 20°C. The fluid
is arranged in two stable layers. Determine the
total hydrostatic stress on:
(a) The bottom of the tank
(b) One of the two smaller vertical sides

of the tank
(c) One of the two larger vertical sides

of the tank

5.74 Concrete columns are being formed
by using the arrangement shown in Fig-
ure P5.23. The base plate is attached to the
vertical structure with 6 bolts, each of which
is 3

8 in. in diameter with a failure strength of
40,000 lbf/in.2. If the density of the concrete
is 150 lbm/ft3, what is the tallest column that
can be constructed using this method?

5.75 Your friend (weight = 180 lbf) is
standing on the device shown in Fig-
ure P5.24A. The gate on which he is standing
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5.79 Consider the pressurized tank shown
in Figure P5.25. The manometer is filled with
Meriam Red manometer oil with a specific
gravity of 0.827. Calculate the total hydrosta-
tic force on the rectangular gate shown if its
width is 4 ft.

Section 5.5.2

5.80 Consider the fluid container shown in
Figure P5.26. Determine the total hydrostatic
force on gate A. What is the total hydrostatic
force on gate B? Assume the structure has a
width of 2 m.

Air

Water

8 in.

1 ft

Meriam
Red

3 ft
2 ft, 10 in.

3 ft, 8 in.

Figure P5.25

5 m
Water

2 m

1 m 60�

H

DCB

45�

A

Figure P5.26

5.81 For the tank shown in Figure P5.26,
if the right side is filled with gasoline and
H = 4 m, calculate the total hydrostatic force
on gates C and D. Assume the structure has a
width of 4 m.

5.82 For the tank shown in Figure P5.26,
for what height of water H will the magnitude
of the total hydrostatic force on all four gates
A–D be equal? Assume the structure has a
width of 4 m.

5.83 For the tank shown in Figure P5.26, if
it is known that the magnitude of the total hy-
drostatic force on all four gates A–D is the
same and the height of the fluid in the right
side of the tank is H = 6 m, determine the
density of the fluid in the right side of the tank.

5.84 Consider the tank shown in Fig-
ure P5.27. Calculate the total hydrostatic
force on the gate for each of the following
gate shapes:
(a) A rectangular gate with width into the

paper of 2 ft
(b) A circular gate

4 ft
Gasoline

5 ft
35�

Figure P5.27

5.85 A pressurized tank is shown in Fig-
ure P5.28. The gas pressure is 30 psig and the
liquid is nitric acid with a specific gravity of
1.5. Determine the total hydrostatic force on
the plug (which is in the shape of a truncated
cone) shown in the figure.

5.86 A concrete dam with a triangular
cross section is shown in Figure P5.29. Calcu-
late the total hydrostatic force on the dam due
to the water if it is 800 ft wide.
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5.87 Consider the gate shown in Fig-
ure P5.30. For what water height H is the gate

150 ft

200 ft Water
Concrete

dam

Figure P5.29

H

�

200
slugs

20 ft

Figure P5.30

H

�

4 m

Water

Steel gate

Figure P5.31

Air

Water
Hinge 40 m

D = 2 m

Circular
hatch

30�

Figure P5.32

Nitric acid

Air

48 in.

12 in.

60� 60�

20 in.

Plug

30 psig

Figure P5.28

in equilibrium? Assume the gate has negligi-
ble mass, a width of 1 ft, and that θ = 45°.

5.88 Consider the gate shown in Fig-
ure P5.30. The gate is 5 ft wide normal to the
plane of the paper, the mass of the gate is
50 slugs, and θ = 30°. For what water height
is the gate in equilibrium?

5.89 A steel gate of density 7.8 g/cm3 and
thickness 1 cm is shown in Figure P5.31.
What is the maximum water depth, H, that can
be held back by the gate if θ = 45°?

5.90 For the steel gate of density 7.8 g/cm3

and thickness 1 cm shown in Figure P5.31,
calculate the angle θ if the gate is in equilib-
rium when the water depth is 2.5 m.

5.91 Consider the submarine shown in Fig-
ure P5.32.
(a) Calculate the total hydrostatic force on

the hatch for the geometry shown.
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(b) What depth would the submarine have to
attain in a perfectly horizontal orientation
for the total hydrostatic force on the hatch
to be the same as that calculated in part a?

Section 5.5.3

5.92 Consider the fluid tank shown in Fig-
ure P5.33. Calculate the total hydrostatic
force per unit width on gate A. Do you think
the corresponding total force on gate B will be
higher or lower than that on gate A? Why?

5.95 Consider the fluid tank shown in Fig-
ure P5.34. Calculate the total hydrostatic force
per unit width on gate B if b = 0.03 ft−2. Do
you think the corresponding total force on
gate A will be higher or lower than that on gate
B? Why?

5.96 A water heater company produces
tanks with the designs shown in Figure P5.35.
Calculate the total hydrostatic force on the
base of tank A given that the water temperature
is 40°C and the radius of the hemispherical
base is 25 cm. Will the total hydrostatic force
on the base of tank B be higher or lower than
that for tank A? Why?

H � 7 m

r � 3 m r � 3 m

Gate A

Gate B

Water

Figure P5.33

H � 50 ft

20 ft 10 ft10 ft

Gate A Gate B

Gasoline

y � bx3y � ax2

Figure P5.34

5.93 Consider the fluid tank shown in Fig-
ure P5.33. Calculate the total hydrostatic
force per unit width on gate B. Do you think
the corresponding total force on gate A will be
higher or lower than that on gate B? Why?

5.94 Consider the fluid tank shown in Fig-
ure P5.34. Calculate the total hydrostatic
force per unit width on gate A if a = 0.3 ft−1.
Do you think the corresponding total force on
gate B will be higher or lower than that on
gate A? Why?

5.97 For hot water tanks with the designs
shown in Figure P5.35, calculate the total hy-
drostatic force on the base of tank B given that
the water temperature is 50°C and the radius of
the hemispherical base is 25 cm. Will the total
hydrostatic force on the base of tank A be
higher or lower than that for tank B? Why?

5.98 Suppose the gasoline tanker truck de-
scribed in Problem 5.57 has hemispherical
end caps. Calculate the total hydrostatic force
on one of the end caps when the truck is at rest.

5.99 As shown in Figure P5.36, a Tainter
gate has the shape of a partial cylinder. Calcu-
late the total hydrostatic force per unit width
on the gate for this geometry. Note that the
water height corresponds to the height of the
gate pivot point.

5.100 Calculate the total hydrostatic force
per unit width on the gate shown in Figure
P5.37. The gate is composed of a lower

Water

Tank A Tank B

1.2 m

Water

Figure P5.35
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10 m

SAE 30W

Air at p � 30 psig

15 m

5 m

20 m

Figure P5.38

Water
8 m

Figure P5.36

10 m

15 m

5 m

20 m

Glycerin

Figure P5.37

5 ft

Water

10 ft D � 10 ft

Figure P5.39

L � 10 ft

D � 5 ft

Bolt location
(12 total, 6 each side)

Figure P5.40

curved section and an upper vertical section.
The curved section is parabolic and is de-
scribed by the equation y = cx2, where
c = 0.2 m−1.

5.101 Calculate the total hydrostatic force
per unit width on the gate shown in Figure
P5.38. The gate is composed of a lower
curved section and an upper vertical section.
The curved section is cubic in shape and de-
scribed by the equation y = dx2, where
d = 0.2 m−1.

5.102 Consider the geometry shown in
Figure P5.39. If the fluid on the left is water,
what density must the fluid on the right have if
the total hydrostatic force on the cylinder
(length = 50 ft) is zero?

5.103 A 5 ft diameter tank of length 10 ft
is fabricated from two half-cylinders fastened
together by 12 bolts as shown in Figure P5.40.
Neglecting the weight of the container itself,
calculate the force supported by each bolt
when the tank is full of gasoline.
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Section 5.6

Section 5.6.1

5.104 The forms described in Problem
5.69 were built to construct a concrete wall
8 ft high × 20 ft long × 1 ft thick. The wet
concrete has a density of 150 lbm/ft3. Calcu-
late the hydrostatic moment on one of the
form walls about the top edge of the wall. Will
the magnitude of the moment about the bot-
tom edge of the same wall be greater or less
than that about the top edge? Why?

5.105 The concrete forms described in
Problem 5.104 must contain access ports. In
one form the access port is a square with an
edge length of 15 in. The top edge of the port is
located 2 ft below the free surface of the con-
crete. If the port is hinged along its top edge,
calculate the total hydrostatic moment acting
on this port?

5.106 In Problem 5.73 we investigated an
open rectangular tank of dimensions 2 m in
width and 4 m in length contains 16 m3 of
gasoline and 28 m3 of water at 20°C. The fluid
is arranged in two stable layers. Determine the
total hydrostatic moment on:
(a) The bottom of the tank if the bottom is

hinged along one of its shorter ends
(b) One of the two smaller vertical sides of

the tank if it is hinged along its lower edge
(c) One of the two larger vertical sides of the

tank if it is hinged along its upper edge

5.107 Reconsider the tank shown in Figure
P5.24b. If the “unknown fluid” is gasoline,
determine the total hydrostatic moment on the
rectangular gate assuming that it is hinged
along its top edge and that it has a width of
50 cm.

5.108 Reconsider the tank shown in Fig-
ure P5.24B. If the “unknown fluid is SAE
30W oil, determine the total hydrostatic mo-
ment on the rectangular gate assuming that it

is hinged along its bottom edge and that has a
width of 50 cm.

5.109 Reconsider the pressurized tank
illustrated in Figure P5.25. Calculate the total
hydrostatic moment on the gate assuming that
it is hinged along its bottom edge and that it
has a width of 4 ft.

Section 5.6.2

5.110 Reconsider the fluid container illus-
trated in Figure P5.26. Recall that the struc-
ture has a width of 2 m.
(a) Calculate the total hydrostatic moment on

gate A if it is hinged along its upper edge.
(b) Calculate the total hydrostatic moment

on gate B if it is hinged along its lower
edge.

5.111 Reconsider the fluid tank shown in
Figure P5.26. Let the fluid on the right side be
gasoline with height 4 m.
(a) Calculate the total hydrostatic moment on

gate C if it is hinged along its lower edge.
(b) Calculate the total hydrostatic moment on

gate D if it is hinged along its upper edge.

5.112 Reconsider the tank shown in Fig-
ure P5.27. Calculate the total hydrostatic mo-
ment on the gate for each of the conditions
described.
(a) A rectangular gate hinged along its top

edge with width into the paper of 2 ft
(b) A square gate hinged along its bottom

edge

5.113 Reconsider the concrete dam shown
in Figure P5.29. Calculate the total hydrosta-
tic moment about the lower edge of the dam
that is in contact with the water. Assume that
the only surface of the dam in contact with
fluid is the one touching the water.

5.114 Repeat Problem 5.113 but this time
calculate the total hydrostatic moment about
the lower edge of the dam that is not in contact
with the water.
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Section 5.7

5.115 Determine the resultant force and
point of application for the concrete form
(hinged at the top) described in Problem
5.104.

5.116 Determine the resultant force and
point of application for the access port de-
scribed in Problem 5.105.

5.117 Determine the resultant force and
point of application for the tank sides de-
scribed in Problem 5.106.

5.118 Determine the resultant force and
point of application for the gate described in
Problem 5.107.

5.119 Determine the resultant force and
point of application for the gate described in
Problem 5.108.

5.120 Determine the resultant force and
point of application for the gate described in
Problem 5.109.

5.121 Determine the resultant force and
point of application for gate A described in
Problem 5.110.

5.122 Determine the resultant force and
point of application for gate D described in
Problem 5.111.

5.123 Determine the resultant force and
point of application for the rectangular gate
described in Problem 5.112.

5.124 Determine the resultant force and
point of application for the dam described in
Problem 5.113.

5.125 Determine the resultant force and
point of application for the dam described in
Problem 5.114.

Section 5.8

5.126 Consider the geometry shown in
Figure P5.41. The cube center is level with the
surface of the liquid.
(a) If the mass M is 300 kg, calculate the den-

sity of the cube.
(b) For the density calculated in part a, will the

cube float or sink if the mass is removed? If
it floats, is it stable? Why or why not?

(c) Repeat part a, but this time let the partially
submerged object be spherical, with its
center level with the surface of the liquid.

(d) Repeat part b for the spherical object in-
vestigated in part c.

(e) Repeat part a, but this time let the center-
line of the cube be located 3 m below the
surface of the liquid.

Volume
� 1 m3

M

Water

Figure P5.41

5.127 A hydrometer is a simple device for
measuring the specific gravity, SG, of a fluid.
As shown in Figure P5.42, SG is indicated by
the level at which the free surface of the fluid
intersects the floating hydrometer. For exam-
ple, when the device is floating in pure water,
the line marked 1.0 is even with the fluid sur-
face. The diameter of this hydrometer is 3

8 in.
and its mass 1 × 10−6 slugs. Calculate the
following.
(a) The relative position of the line marked

1.0 (i.e., distance above or below the fluid
surface) when the hydrometer is immersed
in ethylene glycol at room temperature.
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Fluid, SG � 1

SG � 1.0

in.

h

M

3
8

Figure P5.42

Water
Oak

h

L

Steel

Figure P5.43

(b) The density of the fluid in which the
hydrometer floats with the 1.0 line 1 in.,
above the fluid level.

5.128 As shown in Figure P5.43, a simple
spar buoy can be fabricated from a weighted
piece of wood. A particular oak (SG = 0.71)
spar buoy of dimensions 10 cm × 10 cm ×
4 m is floating in seawater (SG = 1.02) such
that h = 60 cm.
(a) Calculate the weight of steel (SG = 7.87)

attached to the bottom of the buoy.
(b) Determine the value of h if an identical

spar buoy is used in a pristine inland lake
with SG = 1.00.

5.129 What fraction of the fatal iceberg
would a passenger on the Titanic have seen
above the waterline? Assume sg(ice) = 0.89
and sg(seawater) = 1.025.

5.130 Balloonists must decide whether to
use hot air, hydrogen, or helium to provide
lifting power. Calculate the lifting power
(in lbf/ft3) for each of the options listed. In ad-
dition, determine the balloon volume required
to lift a payload of 750 lbf. Assume that the
ambient air temperature is 70°F. State any
additional assumptions.
(a) Hot air at 225°F
(b) Hot air at 325°F
(c) Helium (unheated)
(d) Hydrogen (unheated)

5.131 A spherical weather balloon of
weight 16 N and radius 0.9 m is filled at room
temperature with He at a pressure of 120 kPa.
Determine the altitude in a standard atmos-
phere for which this balloon will be neutrally
buoyant? How does the answer change if the
balloon must carry a payload of 150 kg? State
any assumptions.

5.132 A toy submarine is fabricated out of
a sheet of aluminum of thickness 1 mm and
density 2.71 g/cm3. Assume that the shape
of the sub can be adequately modeled as a
cylinder of diameter 8 cm. Determine the ap-
propriate length so that the toy is neutrally
buoyant when submersed in the bathtub. State
any assumptions.

5.133 A toy soldier is cast form zinc
(ρsol = 7.13 g/cm3) and has a volume of
7 cm3. The soldier is equipped with a foamed
plastic life vest (ρvest = 0.40 g/cm3). Calcu-
late the volume of the life vest if the toy is
to be neutrally buoyant in water. State any
assumptions.

5.134 A solid cube of material with a den-
sity of 1.04 g/cm3 and a volume of 1 cm3 is
stable at the water–glycerin interface shown
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in Figure P5.44. Determine the distance be-
tween the top of the block and the water–
glycerin interface.

Water

Glycerin

h
1 cm

        Solid
 � � 1.04 g/cm3

–V � 1 cm3

Figure P5.44

Water
1 ft

Solid
with

� � 0.9 g/cm3

1 ft

Solid with
� � 0.9 g/cm3

Figure P5.45

Section 5.9

5.135 A long cylindrical rod is a compos-
ite of two meterials. Half (0.5 m) of the rod
is made of material A (ρA = 500 kg/m3) and

the other half is made of material B
(ρB = 1,500 kg/m3). Will the rod be neu-
trally buoyant in water? In what submerged
orientation will the rod be stable?

5.136 Determine the locations of the cen-
ter of gravity and center of buoyancy for the
“point up” and “point down” orientations
shown in Figure P5.45. Comment on the sta-
bility of each orientation.
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6.1 INTRODUCTION

In this chapter we begin the study of a fluid in motion, focusing primarily on the velocity
field in the standard Eulerian description. After introducing the language and mathemat-
ics used to describe the velocity field, we show that acceleration is defined by a special
derivative, called the substantial derivative. Next we show how engineers classify flow
problems based on their geometric and temporal characteristics, and introduce the con-
cept of the no-slip, no-penetration boundary condition. We conclude this chapter with a
discussion of fluid transport. The transport of mass, momentum, energy, heat, and other
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substances by a moving fluid is of great interest to engineers. Thus we develop a general
method for calculating the rate of transport of any property or substance across a surface
by a moving fluid. We use this fluid transport model to define the concept of an average
velocity, and to provide a foundation for control volume analysis, a powerful tool for an-
alyzing flow problems without solving the governing differential equations.

6.2 THE FLUID VELOCITY FIELD

In the Eulerian description, a fluid is not thought of as consisting of molecules or fluid
particles, but rather as an indivisible, continuous material that moves through space
under the action of external and internal forces. The visual perspective of this descrip-
tion is that of watching a flow of material past a background coordinate grid as shown in
Figure 6.1. Strictly speaking, there are no fluid particles in the Eulerian description be-
cause the fluid is indivisible. Nevertheless, the concept of a fluid particle remains useful,
and it is customary to speak of a point in the fluid and a fluid particle interchangeably.
That is, at every point in a fluid-filled space there is a fluid particle. We therefore define
the value of velocity or any other fluid property at a point in the fluid as that of the fluid
particle that happens to be at that point.

FLOW THRU A PLANAR AREA CHANGE

FIDAP 8.6.2
26 Mar 04
 18:00:28

SCREEN LIMITS
XMIN -.305E+00
XMAX 0.430E+01
YMIN -.204E+01
YMAX 0.204E+01

VELOCITY
VECTOR PLOT
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0.2700E+02

REFER. VECTOR
0.2150E+01

MAX.VEC.PLOT'D
0.1161E+01

AT NODE    134

X

Y

Figure 6.1 Eulerian grid superimposed on a flow field.

CD/Kinematics/Field, Particles, and Reference Frames.
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Since the Eulerian description is a continuum model, both a Eulerian spatial point
and the fluid particle that resides there are orders of magnitude larger than a molecule,
but so small that there is no variation in any fluid or flow property on this scale. Thus,
the mathematical representation of fluid and flow properties in this description is identi-
cal to the field description of vector calculus. A solution to a flow problem consists of
knowing the appropriate scalar and vector functions describing various fluid and flow
properties as a function of space and time.

The fundamental variable in fluid dynamics is the velocity field. This field is repre-
sented by a vector function

u = u(x, t) (6.1)

We say that u is the velocity at position x at time t. The presence of the independent
variables x and t indicates that the velocity may vary throughout space at a given time,
and over time at a given point. Therefore, in general, the velocity field is a three-
dimensional, time-dependent vector field.

It is customary in  Cartesian coordinates to use (u, v,w) for the three components
of the velocity vector, with position represented by (x, y, z). Thus, as illustrated in Fig-
ure 6.2A, the velocity field u = u(x, t) is represented in Cartesian coordinates as

u = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k (6.2)

Cylindrical and polar coordinates are also frequently used in fluid mechanics. The ve-
locity field is represented in cylindrical coordinates (r, θ, z) as

u = vr (r, θ, z, t)er + vθ (r, θ, z, t)eθ + vz(r, θ, z, t)ez (6.3)

where (vr , vθ , vz) are the three cylindrical velocity components as shown in Fig-
ure 6.2B. In polar coordinates we simply drop the third component from Eq. 6.3 and rep-
resent the velocity field by

u = vr (r, θ, z, t)er + vθ (r, θ, z, t)eθ (6.4)

where the two velocity components are shown in Figure 6.2C.
There are a number of software packages that provide a graphical representation of

a Cartesian vector field. These packages draw an arrow originating at each point in a
certain region for which the corresponding vector is known. The length and direction of

vz
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z

x

y

y

x

x

y

u

u

v

w

(B)

r

vr

v�

�

z

�

u

r

vrv�

(C)

u

Figure 6.2 Velocity vectors in (A) Cartesian, (B) cylindrical, and (C) spherical coordinate systems.



the arrow represent the magnitude and direction of the vector, respectively. An arrow
color is often available along with the arrow length to indicate the vector magnitude.
This representation, called a vector plot, is a standard tool in fluid mechanics. A vector
velocity plot provides an easily grasped visual representation of a flow field as can be
seen in Figure 6.3.
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STEADY LAMINAR FLOW IN A PLANAR CONSTRICTION
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Figure 6.3 CFD solution of velocity vector field for flow through a constriction.

EXAMPLE 6 .1

The velocity field for the pressure driven flow in the gap between the large parallel
plates shown in Figure 6.4A is described in Cartesian coordinates by

u(y) =
(

h2(p1 − p2)

2µL

)[
1 −

(
y

h

)2
]

, v = 0, and w = 0

where µ is the viscosity, 2h is the channel height, and the pressures are measured a dis-
tance L apart as shown. Determine the velocity of the fluid at the midpoint of the gap
and on the plates. Plot the velocity vectors, and velocity profile in the gap.

SOLUTION

This exercise is solved by substituting the y coordinates for the points of interest into the
velocity components.
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At the top plate, y = +h, so that

u(h) =
[

h2(p1 − p2)

2µL

][
1 −

(
h

h

)2
]

= 0, v = 0, and w = 0

At the midpoint, y = 0, so that 

u(0) =
[

h2(p1 − p2)

2µL

][
1 −

(
0

h

)2
]

=
[

h2(p1 − p2)

2µL

]
, v = 0, and w = 0

At the bottom plate, y = −h, so that

u(h) =
[

h2(p1 − p2)

2µL

][
1 −

(−h

h

)2
]

= 0, v = 0, and w = 0

Notice that the velocity at both stationary solid boundaries is zero, and that the
maximum speed Umax = [h2(p1 − p2)]/2µL occurs at the centerline. Figure 6.4A
shows a plot of the velocity profile u(y) = Umax[1 − (y/h)2].

Length, L

Length, L

Velocity
profile

Fluid with viscosity �
and density �

Pressure drop, �p � p1 � p2

Channel
height, 2h

y

x

(A)

Velocity
profile

Fluid with viscosity �
and density �

Radius, R

(B)

p1 p2

Pressure drop, �p � p1 � p2p1 p2

r

z

Figure 6.4 Coordinate systems and velocity distributions for fully developed flow (A) between
parallel plates and (B) in a round pipe.



It is often important to know the flow speed, i.e., the magnitude of the velocity, in a
specific region. Contour plots of the speed are helpful in locating high and low velocity
regions and in optimizing the design of a flow passage. It is also possible to plot contours
of speed of individual velocity components. The contour plotting capabilities of modern
software packages are illustrated by the speed and individual velocity component con-
tours for flow through a constriction in Figure 6.5A–6.5C.
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EXAMPLE 6 .2

The pressure-driven flow in the round pipe shown in Figure 6.4B is described in cylin-
drical coordinates by u = 0er + 0eθ + vz(r)ez, with

vz(r) = (p1 − p2)R2

4µL

[
1 −

(
r

R

)2
]

where µ is the viscosity, R is the pipe radius, and the pressures are measured a distance
L apart as shown. Find the velocity of the fluid at the axis of the pipe and on the wall,
and plot the velocity profile.

SOLUTION

This exercise is solved by substituting the r coordinates for the points of interest into the
velocity components. At the wall, r = +R so that,

vz(R) = (p1 − p2)R2

4µL

[
1 −

(
R

R

)2
]

= 0

On the axis, r = 0, so that 

vz(0) = (p1 − p2)R2

4µL

[
1 −

(
0

R

)2
]

= (p1 − p2)R2

4µL

Note that the fluid velocity at the stationary pipe wall is zero, and that the maximum
speed is Umax = [(p1 − p2)R2]/4µL at the centerline. Figure 6.4B shows a plot of the
velocity profile vz(r) = Umax[1 − (r/R)2] for this flow. This pressure-driven flow
through a round pipe is known as Poiseuille flow (see History Box 1.4).

An important tool for visualizing a flow is the concept of a streamline. As shown in
Figure 6.6A, a streamline is defined to be a line in space that is everywhere tangent to
the local instantaneous velocity vector. As a result the arrows of a vector velocity plot

CD/Kinematics/Streamlines and Streamfunctions.
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are tangent to the streamlines at different locations.
Plotting an entire family of streamlines is another effec-
tive way to visualize a fluid velocity field. Looking at
Figures 6.6B and 6.6C, do you find the streamline plot
helpful in understanding the flow over a cylinder?

Before concluding this section we note that a full
description of a fluid in motion requires that we be able
to specify such other fluid and flow properties as density,
pressure, and temperature. These properties have mag-
nitude only, hence are modeled by scalar functions of x
and t. This representation is called a scalar field. For
example, fluid density is represented in Cartesian coor-
dinates by the scalar field ρ = ρ(x, y, z, t). If we know
the density field as an analytical function, then inserting
the values of x, y, z, t into the function gives us the
value of the fluid density at that location at that instant of

time. Similarly, the pressure field and temperature field in a fluid are represented by scalar
fields of the form p = p(x, y, z, t), and T = T (x, y, z, t). In the Eulerian description,
every fluid and flow property is defined at each point in space occupied by the fluid.

Consider the flow field over a cylinder at
two Reynolds numbers in Figure 6.6B and
6.6C. Recall the case study on the drag of
cylinders and spheres in Section 3.3.5. The
creeping flow solution for Re = 0.1 in
Figure 6.6B does not include the regions
of flow reversal shown in Figure 6.6C for
the flow at Re = 50. Visualization of flow
over a cylinder highlights the complexity of
this common flow and its dependence on
Reynolds number.

CASE STUDY

(C)

CD/Kinematics/Fields, Particles, and Reference Frames/Eulerian Represention/
Scalar Fields
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Figure 6.7 CFD contour plots of (A) density, (B) pressure, and (C) temperature, for turbulent
compressible flow over a sphere.
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Figure 6.7 (Continued)

General-purpose graphics packages and computational fluid dynamics codes
provide contour plotting capabilities for visualizing the distribution of any Cartesian
scalar field. The graphical output takes the form of contour lines and surfaces of constant
property value. For example, contour plots of density, pressure, and temperature for a
high speed gas flow over a sphere are shown in Figure 6.7.

EXAMPLE 6 .3

Figure 6.8A shows the velocity field and streamlines for inviscid (frictionless) two-
dimensional flow over a cylinder. The pressure distribution in this flow is given by

p(x, y) = p∞ + 1

2
ρU 2

∞

[(
2R2

r4

)
(x2 − y2) −

(
R4

r4

)]

where p∞ and U∞ are the pressure and speed in the freestream far upstream, x and y are
the usual Cartesian coordinates, R is the radius of the cylinder, and r2 = x2 + y2. Plot

(C)
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pressure contours, and find the pressure distribution on the surface of the cylinder. Plot
this pressure distribution, and find the locations and values of the maximum and mini-
mum pressure on the surface. What is the force on a length L of the cylinder due to this
pressure distribution?

U

(A)

(C)

2U

R

r

�

(B)

(D)
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x

Figure 6.8 For flow over a cylinder the (A) streamlines and velocity profile, (B) pressure contours, (C) pressure
distribution along the surface, and (D) surface normal vector.
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SOLUTION

We are asked to determine the pressure distribution on the surface of a cylinder and to
plot pressure contours for this flow. In addition, we must determine the locations of the
pressure extremes on the surface and calculate the force acting on a cylinder of length L
due to this pressure distribution. This flow is illustrated in Figure 6.8A, and we are told
to assume that the flow is inviscid. Since r2 = x2 + y2, we can substitute this into the
pressure distribution to obtain the pressure contours in Cartesian coordinates as shown
in Figure 6.8B.

The pressure distribution at a point (xS, yS) on the surface of the cylinder is
obtained by noting that on the surface x = xS, y = yS, r = R, and R2 = x2

S + y2
S .

Substituting this into the pressure distribution yields

p(xS, yS) = p∞ + 1

2
ρU 2

∞

[(
2R2

R4

) (
x2

S − y2
S

)− ( R4

R4

)]

Thus the pressure on the surface is given in Cartesian coordinates by

p(xS, yS) = p∞ + 1

2
ρU 2

∞

[
2

R2

(
x2

S − y2
S

)− 1

]
(A)

Alternately, we might have recognized that the geometry suggests the use of cylindrical
coordinates. The original pressure distribution may be written in cylindrical coordinates
by making the substitution x = r cos θ, y = r sin θ, to obtain

p(r, θ) = p∞ + 1

2
ρU 2

∞

[
2R2

r4
(r2 cos2 θ − r2 sin2 θ) − R4

r4

]

= p∞ + 1

2
ρU 2

∞

[
2R2

r2
(cos2 θ − sin2 θ) − R4

r4

]

which simplifies to

p(r, θ) = p∞ + 1

2
ρU 2

∞

[
2R2

r2
(1 − 2 sin2 θ) − R4

r4

]
(B)

On the surface of the cylinder r = R, and the surface pressure distribution is

p(R, θ) = p(θ) = p∞ + 1

2
ρU 2

∞

[
2R2

R2
(1 − 2 sin2 θ) − R4

R4

]

= p∞ + 1

2
ρU 2

∞(1 − 4 sin2 θ) (C)

To plot this distribution, it is helpful to rearrange and normalize (C) as follows

p(θ) − p∞
1
2

(
ρU 2∞

) = (1 − 4 sin2θ) (D)
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The left-hand side of (D) is in the form of the Euler number, given in general by
Eq. 3.12a as Eu = (p − p0)/

1
2 (ρV 2). Thus we could also write the pressure distribu-

tion as Eu = (1 − 4 sin2 θ).
It is evident from a plot of the pressure on the surface (Figure 6.8C) or from (D) that

the maximum pressure occurs at θ = 0, π , and the minimum pressure at θ = ± π/2.
Checking the value of the maximum pressure, we find

p(π) = p∞ + 1
2ρU 2

∞(1 − 4 sin2 0) = p∞ + 1
2ρU 2

∞

which is the same as that predicted by Eq. 2.11, Bernoulli’s equation, applied along the
horizontal streamline from the far left and ending on the surface of the cylinder where
the speed is zero. The minimum pressure is

p

(
±π

2

)
= p∞ + 1

2
ρU 2

∞

[
1 − 4 sin2

(
±π

2

)]
= p∞ − 3

2
ρU 2

∞

The force on a cylinder of length L due to this pressure distribution is found
by using Eq. 4.23, FS = ∫S −pn dS + ∫S � dS and recognizing that in this inviscid
(frictionless) flow the tangential stress is zero. Thus we will calculate the force with
FS = ∫S −pn dS . From the symmetry in the pressure distribution, it is clear that there
can be no net force on the cylinder in any direction. Is this confirmed by direct calcula-
tion? To set up the integral, we note that from Figure 6.8D the surface geometry is
described by n = er = cos θ i + sin θj, and dS = R dθ dz . Thus we find

FS =
∫

S
−pn dS

=
∫ L/2

−L/2

∫ 2π

0
−
(

p∞ + 1

2
ρU 2

∞(1 − 4 sin2 θ)

)
(cos θ i + sin θj) R dθ dz

(E)

Integrating this result gives zero, as expected.

6.3 FLUID ACCELERATION

Acceleration in a flow has a profound influence on the pressure distribution and other
flow characteristics. Recall the case studies on flows in Chapter 3: flow through area
change, the performance of pumps and fans, the flat plate boundary layer, and the forces
on cylinders, spheres, and airfoils. Acceleration is part of the underlying nature of all
these flows. This is evident in the flow over a cylinder in Figure 6.6. Notice the change
in the direction and magnitude of the velocity vectors in this figure as the fluid passes
around the cylinder. In this section we continue our analysis of the velocity field by
discussing fluid acceleration. Consider the following questions: What is the relationship
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y

z g

x

y

z g

x

(A) (B)

Figure 6.9 Vertical tube with (A) stationary fluid
and (B) slug flow, which occurs immediately after
the bottom end of the tube is opened.

between the acceleration a(x, t) and the velocity field u(x, t)? How is this relationship
expressed mathematically?

It is tempting to hypothesize that the mathematical connection between velocity
and acceleration is given by the partial time derivative of velocity, as is true in dynam-
ics. To test this theory, consider the experiment shown in Figure 6.9A in which a flow is
created by opening the bottom end of a long vertical tube full of liquid. Gravity causes
the liquid in the tube to accelerate downward; hence the velocity field is time dependent.
In the first few moments after the flow starts, the liquid may be assumed to have a nearly
spatially uniform velocity u = −U(t)k, as shown in Figure 6.9B. Since it appears as
if the entire volume of fluid is moving together as a solid slug of material, a flow of
this type is referred to as slug flow. In a slug flow, every fluid particle has the same
velocity. Thus, the acceleration at each location and of each fluid particle must be
the same. We can calculate the acceleration from the velocity field by using
a = ∂u/∂t = −(dU/dt)k, which suggests that in this case the fluid acceleration is
given by the partial time derivative of velocity as we hypothesized.

However, suppose we now consider the steady, turbulent flow of liquid through a
short contraction as shown in Figure 6.10. Upstream of the contraction, turbulent mix-
ing causes the liquid to have a nearly uniform velocity u = U1i. The same is true down-
stream, where there is a uniform velocity u = U2i. Suppose the areas at the upstream
and downstream cross sections are A1 and A2, respectively. For mass to be conserved,
the volume flowrate at the upstream section U1 A1 must equal the volume flowrate U2 A2

at the downstream section, i.e., U1 A1 = U2 A2. Since A2 is less than A1, U2 must be
greater than U1. The liquid is moving faster downstream; thus the fluid must be acceler-
ating through the contraction in response to the area change. Is the acceleration in this

A1 A2U1 U2

Figure 6.10 Velocity profiles for flow through
a contraction.
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uold � u(x, y, z, t)

unew � u(x 	 �x, y 	 �y, z 	 �z, t 	 �t)

x 	 �x, y 	 �y, z 	 �z

Particle path

y

z

x

x, y, z

Figure 6.11 Velocity change for a fluid particle and its pathline.

flow given by the time derivative of velocity? A bit of thought should convince you that
the velocity at any particular point in this flow does not change with time. If we use
the time derivative of the velocity field to calculate the acceleration, we obtain
a = ∂u/∂t = 0. How can this be?

CD/Kinematics/Fields, Particles and Reference Frames/Euler vs. Lagrange; What’s
Steady and Unsteady

We can resolve this difficulty by recognizing that the Eulerian acceleration a(x, t)
at point x at time t must be identical to the acceleration of the fluid particle located at this
point. Thus the acceleration should be calculated by following the motion of this
fluid particle, as shown in Figure 6.11. To do this we use the definition of a derivative
in calculus to compute the acceleration by taking the limit as �t approaches zero of
the difference in the new and old velocities of the fluid particle of interest, i.e.,
a = lim�t→0(unew − uold)/�t . During the interval �t , the fluid particle moves from 
position (x, y, z), where its velocity is u(x, y, z, t), to a new location
(x + �x, y + �y, z + �z), where its velocity is u(x + �x, y + �y, z + �z, t).
Thus, the expression for the acceleration vector becomes

a = lim
�t→0

u(x + �x, y + �y, z + �z, t + �t) − u(x, y, z, t)

�t
(6.5)

Equation 6.5 provides a means for calculating the three components of accelera-
tion (ax , ay, az) from the three components of velocity (u, v,w). For example, the
x component of acceleration ax , which involves only the x component of velocity u, is
given by

ax = lim
�t→0

u(x + �x, y + �y, z + �z, t + �t) − u(x, y, z, t)

�t
(6.6)
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To evaluate the limit, we use a Taylor series expansion to write u(x + �x, y + �y,

z + �z, t + �t) in terms of the nearby value u(x, y, z, t). For a continuous function
u(x, y, z, t) of several variables, the Taylor series expansion is

u(x + �x, y + �y, z + �z, t + �t)

= u(x, y, z, t) +
(

∂u

∂x
�x + ∂u

∂y
�y + ∂u

∂z
�z + ∂u

∂t
�t

)

plus higher order terms. The distance �x is the x component of the displacement vector
defining the change in position of the fluid particle in time �t . This distance is approx-
imately u�t, with the estimate becoming exact in the limit as �t approaches zero.
Similarly, we find �y = v�t, and �z = w�t, so the Taylor series can be written as

u(x + �x, y + �y, z + �z, t + �t)

= u(x, y, z, t) +
(

∂u

∂x
u�t + ∂u

∂y
v�t + ∂u

∂z
w�t + ∂u

∂t
�t

)
(6.7)

plus higher order terms. Substituting Eq. 6.7 into Eq. 6.6, subtracting u(x, y, z, t),
dividing by �t, and taking the limit provides the x component of acceleration. Using
this approach, we discover that the three components of the acceleration in Cartesian
coordinates are 

ax = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
(6.8a)

ay = ∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
(6.8b)

az = ∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
(6.8c)

We have shown that a component of acceleration is given by the sum of one tem-
poral and three spatial derivative terms involving the corresponding velocity compo-
nent. This suggests that fluid acceleration is present in virtually all flows of engineering
interest.

It is customary in fluid mechanics to use the symbol D( )/Dt to represent the
following combination of derivatives:

D( )

Dt
= ∂( )

∂t
+ (u • ∇)( ) (6.9)

This combination of a time derivative and three spatial derivatives involving the veloc-
ity components is referred to by a special name: the substantial, material, or co-moving
derivative. The substantial derivative can be expressed in Cartesian coordinates as

D( )

Dt
= ∂( )

∂t
+ u

∂( )

∂x
+ v

∂( )

∂y
+ w

∂( )

∂z
(6.10)



and used to write the three Cartesian components of acceleration as:

ax = Du

Dt
, ay = Dv

Dt
, and az = Dw

Dt
(6.11a–c)

or in a compact form as a vector equation:

a = Du
Dt

(6.12)

By using the definition of the substantial derivative in Eq. 6.9, we can expand Eq. 6.12
to find

a = ∂u
∂t

+ (u • ∇)u (6.13)

Note that the leading term ∂u/∂t is a partial time derivative of velocity, and the remain-
ing term (u • ∇)u, called the convective derivative of velocity, involves partial space
derivatives.
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CD/Kinematic/The Material Derivative

From Eq. 6.13 we see that the total acceleration at a point in a fluid can be inter-
preted as the sum of two distinct types of acceleration called the local and convective
accelerations. The local acceleration aL is defined by the partial time derivative of
velocity, or

aL = ∂u
∂t

(6.14a)

The convective acceleration aC is defined by the convective derivative of velocity, or

aC = (u • ∇)u (6.14b)

The local acceleration is a contribution to the total acceleration at a particular point
in a flow due to a temporal change in the velocity. Clearly the velocity field must be a
function of time for this contribution to exist. In the slug flow of a liquid falling under
gravity in a long vertical tube (Figure 6.9), the only type of acceleration that is present
is local acceleration. In the steady flow through a contraction (Figure 6.10), the local
acceleration is zero.

The convective acceleration is a contribution to the total acceleration at a point in a
flow from the convection (movement) of fluid along the instantaneous streamline
through the point. A flow must be spatially nonuniform for this contribution to exist. For
the flow in a contraction (Figure 6.10), the convective derivative of velocity is nonzero
everywhere in the flow, since an observer moving along any streamline from point 1 to
point 2 experiences a continuous change in velocity. Thus in this flow acceleration is
given by the convective derivative. In the gravity-driven slug flow in a vertical tube
(Figure 6.9), the velocity field is given by u(x, t) = (0, 0,−U(t)). This flow is acceler-
ating, but the acceleration calculated by using the convective derivative is zero because
all the spatial derivatives in the convective derivative are zero.
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In cylindrical coordinates, the three components of acceleration (ar , aθ , az) are
given in terms of the three components of velocity (vr , vθ , vz) as

ar = ∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
− v2

θ

r
(6.15a)

aθ = ∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z
+ vrvθ

r
(6.15b)

az = ∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z
(6.15c)

EXAMPLE 6 .4

A velocity field is given by u = αx i + βyj − (α + β)zk, where α and β are constants
with dimension {t−1}. What is the acceleration in this flow?

SOLUTION

Substituting the velocity field in Cartesian coordinates into Eqs. 6.8a–c to determine the
acceleration of the flow yields

ax = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

= ∂(αx)

∂t
+ αx

∂(αx)

∂x
+ βy

∂(αx)

∂y
− (α + β)z

∂(αx)

∂z

= α2x

ay = ∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

= ∂(βy)

∂t
+ αx

∂(βy)

∂x
+ βy

∂(βy)

∂y
− (α + β)z

∂(βy)

∂z

= β2 y

az = ∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

= ∂(−(α + β)z)

∂t
+ αx

∂(−(α + β)z)

∂x
+ βy

∂(−(α + β)z)

∂y
− (α + β)z

∂(−(α + β)z)

∂z

= (α + β)2z

In this case the local acceleration is zero, so the total acceleration is made up of the con-
vective contributions only. The final result is a = α2x i + β2 y j + (α + β)2z k.
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EXAMPLE 6 .5

The velocity distribution for a certain type of wave motion in a rotating fluid is given by
u = A cos(αx − 2Ω t)j − A sin(αx − 2Ω t)k, where A, α, and Ω are constants with di-
mension of {Lt−1}, {L−1}, and {t−1}, respectively. What is the acceleration in this flow?

SOLUTION

Substituting the velocity field in Cartesian coordinates into Eqs. 6.8a–6.8c to determine
the acceleration of the flow we find:

ax = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ∂(0)

∂t
+ (0)

∂(0)

∂x
+ v

∂(0)

∂y
+ w

∂(0)

∂z
= 0

ay = ∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

= ∂

∂t
[A cos(αx − 2Ω t)] + (0)

∂[A cos(αx − 2Ω t)]

∂x

+ [A cos(αx − 2Ω t)]
∂[A cos(αx − 2Ω t)]

∂y

+ [−A sin(αx − 2Ω t)]
∂[A cos(αx − 2Ω t)]

∂z
ay = A2Ω sin(αx − 2Ω t) + 0 + [A cos(αx − 2Ω t)](0)

+ [−A sin(αx − 2Ω t)](0)

ay = A2Ω sin(αx − 2Ω t)

az = ∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

= ∂

∂t
[−A sin(αx − 2Ω t)] + (0)

∂[−A sin(αx − 2Ω t)]

∂x

+ [A cos(αx − 2Ω t)]
∂[−A sin(αx − 2Ω t)]

∂y

+ [−A sin(αx − 2Ω t)]
∂[−A sin(αx − 2Ω t)]

∂z
az = −A2Ω cos(αx − 2Ω t) + 0

+ [A cos(αx − 2Ω t)](0) + [−A sin(αx − 2Ω t)](0)

az = −A2Ω cos(αx − 2Ω t)

The convective acceleration is zero, so the total acceleration is made up of the local
acceleration components in the j and k directions. The result is

a = 0 i + 2ΩA sin(αx − 2Ω t)j − 2ΩA cos(αx − 2Ω t)k
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Note the last term in equations 6.15a and 6.15b. These
extra terms arise from the curvilinear nature of cylin-
drical coordinates. In cylindrical coordinates the sub-
stantial derivative is written as

D( )

Dt
= ∂( )

∂t
+ vr

∂( )

∂r
+ vθ

r

∂( )

∂θ
+ vz

∂( )

∂z
(6.16)

By using the substantial derivative, we may write the
acceleration in cylindrical coordinates as

ar = Dvr

Dt
− v2

θ

r
, aθ = Dvθ

Dt
+ vrvθ

r
, and az = Dvz

Dt

(6.17)

Expressions for acceleration in spherical and other
coordinate systems may be found in many advanced
textbooks.

6.4 THE SUBSTANTIAL DERIVATIVE

In the last section we showed that fluid acceleration is defined by the substantial deriva-
tive of velocity. If the Taylor series approach used to calculate acceleration is applied to
calculate the rate of change of an arbitrary fluid or flow property ε following the motion
of a fluid particle, it is straightforward to show that the rate of change is given by
Dε/Dt, i.e., by the substantial derivative of the property. According to Eq. 6.9, the sub-
stantial derivative is given by, D( )/Dt = ∂( )/∂t + (u • ∇)( ), thus the rate of change
of a fluid property ε following the motion of a fluid particle is given by

Dε

Dt
= ∂ε

∂t
+ (u • ∇)ε (6.18)

We see that the rate of change consists of a local rate of change given by the time deriv-
ative and a convective rate of change given by the convective derivative.

The substantial derivative of a fluid property appears in each of the governing
equations of fluid dynamics to be derived in Chapter 11. There are also a number of
other important uses of the substantial derivative in fluid mechanics. For example, the
substantial derivative is used in problems involving wave motion to derive the boundary
condition known as the kinematic condition, and also to interpret measurements made
with moving sensors in applications such as environmental sampling in the oceans and
atmosphere.

As an example of somewhat unusual but illuminating use of Eq. 6.18, recall that the
velocity at a point in a fluid is defined to be that of the fluid particle which happens to
be located there. The Eulerian velocity u is therefore equal to the rate of change in par-
ticle position following the motion of the particle. Consider a fluid particle located at

If you apply Eqs. 6.15a–6.15c to the
Poiseuille flow described in Example 6.2,
you will find that the acceleration is zero.
Another simple flow called solid body
rotation is described in cylindrical co-
ordinates by u = 0er + vθ (r )e θ + 0ez, with
vr = 0, vθ = r Ω, and vz = 0. This is the
velocity field that occurs in a container full
of fluid rotating about an axis at a constant
angular velocity with the fluid at rest rela-
tive to the rotating container. See if you
can confirm that the acceleration in this
flow is a = (−r Ω2)er + 0eθ + 0ez. Does
the radial acceleration here look familiar?
It should, since it is the centrifugal acceler-
ation acting on a particle of fluid located at
radius r.



position x = x i + yj + zk. We should be able to apply Eq. 6.18 with ε = x to calculate
the velocity of this particle from

u = Dx
Dt

(6.19)

Let us see what this operation produces. Inserting x = x i + yj + zk, using the product
rule, and noting that the unit vectors are constant, we get

u = Dx
Dt

= Dx

Dt
i + Dy

Dt
j + Dz

Dt
k (6.20)

Upon using Eq. 6.10 to evaluate the substantial derivative in Cartesian coordinates, and
realizing that a given spatial coordinate is not a function of time or the remaining two
coordinates, we find

Dx

Dt
= ∂x

∂t
+ u

∂x

∂x
+ v

∂x

∂y
+ w

∂x

∂z
= u

Dy

Dt
= ∂y

∂t
+ u

∂y

∂x
+ v

∂y

∂y
+ w

∂y

∂z
= v

Dx

Dt
= ∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
+ w

∂z

∂z
= w

Substituting these results into Eq. 6.20 gives the expected result:

u = Dx

Dt
i + Dy

Dt
j + Dz

Dt
k = ui + vj + wk

We see that in the Eulerian description, position, velocity, and acceleration are related by
the substantial derivative, i.e., by

u = Dx
Dt

and a = Du
Dt

(6.21)

6.5 CLASSIFICATION OF FLOWS

An engineer may encounter a wide variety of fluid flows. In most cases it will be neces-
sary to consult databases, journals, textbooks, and monographs, and to conduct online
searches of reference materials to find out what is known about a particular flow of
interest. To do this effectively, it is necessary to know how flows are classified and to
learn the key technical terms used to describe broad classes of flows. In this section we
introduce some of the vocabulary used to describe and classify fluid flows.
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6.5.1 One-, Two-, and Three-
Dimensional Flow

Earlier we described the Eulerian velocity field in gen-
eral as three dimensional. A flow is characterized as
having one, two, or three dimensions depending on
the corresponding number of components needed to
describe its Eulerian velocity field. A 1D flow is also
referred to as a unidirectional flow. Note that we are
defining a characteristic of a flow here by reference to
its velocity field alone. We have chosen to define flow
dimensionality in terms of the number of vector com-
ponents needed to describe the velocity field. Thus, in
Cartesian coordinates, if u, v,w are each nonzero, then
the flow is 3D. If u, v are nonzero but w = 0 at all

points in the velocity field, then the flow is 2D. Similarly, in a cylindrical coordinate sys-
tem, if vz is nonzero but vr , vθ are zero, the flow field is 1D.

The same dimensionality terminology is also used to describe scalar property fields.
In this usage, however, 3D refers to the dependence of the scalar field on three spatial
coordinates. It obviously cannot refer to three vector components, since these do not
exist for scalar properties like density, pressure, and temperature. Thus, if a temperature
field in a flow problem is said to be 3D, the temperature function must depend on
(x, y, z) in Cartesian coordinates, or (r, θ, z) in cylindrical coordinates. Figure 6.12
shows the temperature contours and velocity vectors calculated in a computational sim-
ulation of one chip in an array on an air-cooled electronic circuit board. It can be seen
that both the velocity and temperature fields are in fact 3D in this case.

An engineer often encounters a fluid flow that is constrained in some way by the
physical geometry. For example, constraints can be imposed in an internal flow by the
wall configuration, or in external flow by the shape of the object over which the fluid
flows. The velocity field in constrained flows may not need to be represented by all three
vector components, or by all three spatial variables. One can often determine how many
velocity components are likely to occur in a flow by inspection of the geometry and
boundary conditions, as illustrated in Examples 6.6, 6.7, and 6.8.

Part of the art of solving a fluid dynamics problem is choosing a coordinate system
in which the velocity field is described by the minimum number of components. To ac-
complish this goal, it may be necessary to rotate the original Cartesian coordinates or
change to cylindrical or spherical coordinates to take advantage of spatial symmetry. For
example, the 2D flow in Figure 6.14A becomes a 1D flow in the coordinates shown in
Figure 6.14B. Describing the flow in the long rotating pipe in Cartesian coordinates
requires all three velocity components since the flow about the axis occurs in the
xy plane (see Figure 6.15A). Thus this problem is clearly simplified by using cylindri-
cal coordinates since there is no radial component of velocity. Similarly, the analysis of
flow over a stationary sphere shown in Figure 6.15B benefits from the selection of a
spherical coordinate system, since this will reduce the number of required velocity com-
ponents from three in Cartesian coordinates to two in spherical coordinates.

A 1D or 2D flow requires fewer governing equations than are needed for a 3D flow.
Thus 1D and 2D flows are much easier to model, solve, measure, and interpret. This is

A coordinate system for a flow problem is
usually chosen to fit the geometry of the
problem. For example, it seems sensible to
describe channel flow between parallel
plates in Cartesian coordinates aligned
with the plates, and flow in a round pipe in
cylindrical coordinates with the z axis
along the pipe centerline. This leads to the
simplest mathematical description of the
boundaries and often reduces the number
of velocity components as well. Thus pick-
ing a set of coordinates on the basis of
geometry is a good initial step in trying to
reduce the number of velocity components
in problem.
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Figure 6.12 Temperature contours ((A) and (C)) and velocity vectors ((B) and (D)) for flow
past a heated obstacle. Generated by CFD.
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EXAMPLE 6 .6

Consider the three flows illustrated in Figure 6.13. Determine the number of velocity
components and spatial coordinates necessary to describe each velocity field.

SOLUTION

Flow A. Shear flow between large parallel plates: The motion of the upper plate and
the fact that we are in the middle of very large plates suggest that the only nonzero ve-
locity component is in the x direction. That is, v = w = 0, and only one velocity com-
ponent is necessary to describe the velocity field: u = u(x, y, z)i. To determine the
number of spatial coordinates necessary to describe the velocity field, we examine the
functional dependence of the nonzero velocity component on the spatial coordinates
x, y, and z.  Since the plates are large, there is no reason to think that the velocity in the
x direction would depend on x or z. Since, however, the velocity must vary in the y di-
rection to match the motion of the plates, we conclude that u = u(y)i.

Flow B. Flow through a long rotating pipe: This flow is conveniently described by
means of cylindrical coordinates. Examination of the flow shows that there must be a
velocity component along the pipe axis and also in the θ direction, since the pipe wall is
rotating. There does not appear to be anything that would cause a flow in the radial
direction. We conclude that two components are required to describe the velocity field:
u = vθ (r, θ, z)eθ + vz(r, θ, z)ez. Since the pipe is long and axisymmetric, we further
assume that the two velocity components are functions of only the radial coordinate.

z

r

vz(r)

v�(r)




(B) u � v�(r)e� 	 vz(r)ez

�y

(A)

Top plate
moves with
velocity U0

u � u(y)i

y

x

Figure 6.13 (A) 1D flow between parallel
plates. (B) 2D flow in a rotating cylinder.
(C) 3D flow due to wing-tip vortices. (C)
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Thus we feel safe in assuming that the velocity field in the absence of time dependence
takes the form u = vθ (r)eθ + vz(r)ez.

Flow C. Flow over a tapered wing: The finite length and taper of the wing suggest that
all three velocity components will be needed to describe the flow. The taper and curva-
ture of the wing surface suggest that the velocity components may depend on all three
spatial coordinates. Thus, we conclude that u = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k.

[Note: For a long straight wing, the flow over the midpoint of the wing is described by
u = u(x, y)i + v(x, y)j, since there is no reason for flow along the wing or dependence
on position along the wing.]

y
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X

u

u

u v

(A) (B)

Figure 6.14 (A) Uniform flow at
an angle to the coordinate system
requires two velocity components.
(B) The same flow aligned with the
coordinate system requires only
one velocity component.
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Figure 6.15 (A) The velocity for the flow through a rotating pipe requires three components in Cartesian coordi-
nates but only two in cylindrical coordinates. (B) Similarly, flow over a sphere is described by three velocity com-
ponents in Cartesian coordinates but only two in spherical coordinates.

true regardless of how the problem is approached: analytically, experimentally, or nu-
merically. Until recently, few engineers had access to computers powerful enough to
model 3D flow. Even today, a numerical solution for 3D flow is often crudely resolved
because of the memory and CPU times such flow problems demand. On the other hand,
engineers now have access to desktop computers that can readily solve virtually all 1D
and 2D flow problems. Known analytical solutions tend to be limited to 1D flow and 2D
flow rather than to 3D flow. Thus it is important for an engineer to be able to select and
utilize a coordinate system that minimizes the dimensionality of a velocity field.
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EXAMPLE 6 .8

What is the dimensionality of each of the following velocity fields? (Each field is inves-
tigated in one of the problems at the end of this chapter.)

Flow A:

u =
(

ρgR2
P

4µ

)[
1 −

(
r

RP

)2

+ 2α2 ln

(
r

RP

)]
k

Flow B:

u = C1txi + 2C2x yj − C3t2zk

Flow C:

u =
{
Ω0 R

[
(κ R/r − r/κ R)

(κ − 1/κ)

]}
eθ

Flow D:

u = W0

[(
h − x

h

)1/n
]

k

Flow E:

u = C[x i − yj]

Flow F:

u = V∞ cos θ

[
1 − 3

2

(
R

r

)
+ 1

2

(
R

r

)3
]

er − V∞ sin θ

[
1 − 3

4

(
R

r

)
+ 1

4

(
R

r

)3
]

eθ

EXAMPLE 6 .7

What is the dimensionality of the three flows in Example 6.6?

SOLUTION

The shear flow has only one velocity component; thus this flow is 1D. The flow in the
rotating pipe has two velocity components, so this flow is 2D. The flow over the tapered
wing is a 3D flow since all three velocity components are nonzero.
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6.5.2 Uniform, Axisymmetric, and Spatially Periodic Flow

A uniform flow in a region has velocity vectors that are constant in magnitude and di-
rection throughout that region. For the pilot of a vehicle flying through a still atmosphere
at a constant speed, all the air appears to be approaching the vehicle with a constant ve-
locity (Figure 6.16A). The upstream flow field is therefore an example of a uniform flow
from the pilot’s perspective. In a well-designed wind tunnel (Figure 6.16B), the sharp
contraction upstream of the test section and a slight divergence in the test section walls
create a highly uniform flow over the entire test section with u = Ui to simulate flight
conditions. Of course no real flow is ever perfectly uniform: all flow fields exhibit at
least some minor spatial variation. The occasional bumpy aircraft flight demonstrates
that the upstream flow field is not always spatially uniform.

Many flows cannot be considered uniform throughout a region. For example, con-
sider the planar nozzle shown in Figure 6.17a. In this figure we see that the flow at the inlet
plane is nearly uniform. As the fluid moves through the nozzle it accelerates, moving

Uniform velocity
profile of

approaching air

Uniform flow
in test section

Nonuniform velocity
profile in entrance area(A) (B)

Figure 6.16 Uniform flows: (A) aircraft flying in still air and (B) wind tunnel test section.

SOLUTION

Flow A has only one velocity vector component (in the z direction) so it is a 1D, or uni-
directional, flow. Flow B is a 3D flow because it has velocity vector components in the
x, y, and z directions. Flow C is a 1D, or unidirectional, flow because its only velocity
vector component is in the θ direction. Flow D is also a 1D flow; its only velocity vec-
tor component is in the z direction. Flow E is an example of a 2D flow, since it has ve-
locity vector components in the x and y directions. Finally, flow F is an example of a 2D
flow because it has nonzero velocity vector components in the r and θ directions.
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Figure 6.17 CFD plots of (A) geometry of a planar nozzle and inlet velocity profile, (B) center line
velocity as a function of axial coordinate, (C) velocity vectors for this flow, and (D) x component of
velocity across the exit plane. Notice that the velocity at the exit plane is, in fact, nearly uniform.
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(A) (B) (C)

Figure 6.18 Schematic illustration of fluid flow through (A) a branch, (B) a contraction, and (C) a vertical exit.
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Figure 6.19 Pipe flow (A) with swirl due to the rotation and (B) without swirl.

faster where the area is smaller as shown by the centerline x-component velocity plot in
Figure 6.17b. An examination of Figure 6.17c, the velocity vector plot for this flow,
shows that the velocity is non-uniform inside the nozzle. However, for a nozzle like this
one with a short, sharp contraction, it can be seen from both Figure 6.17c and 6.17d that
the velocity vector is approximately the same everywhere on the nozzle exit plane. The
flow at the nozzle exit may be modeled as a uniform flow at a cross section, meaning that
on the nozzle exit plane the velocity vector may be approximated as a spatially constant
vector. We will often be able to assume a uniform flow at a cross section as an engineer-
ing approximation. Later in this chapter we will show that the assumption of uniform flow
at a cross section greatly simplifies a calculation of the mass or volume flowrate through
the cross section. Figure 6.18 illustrates several geometries through which fluid flows.
Can you identify the uniform flow cross section in each example?

As mentioned earlier, when fluid is flowing between rigid boundaries or in a region
with some type of symmetry, the velocity field may not depend on all three spatial vari-
ables. An axisymmetric flow is described in cylindrical coordinates by a velocity field
that does not depend on the angular coordinate. If a swirl component of velocity vθ is
present in an axisymmetric pipe flow, as shown in Figure 6.19A, the velocity field in
cylindrical coordinates, (0, vθ , vz), is 2D. If swirl is absent, the velocity field is 1D, as
shown in Figure 6.19B. If there is a bend in a pipe, the flow upstream may be axisym-
metric and without swirl, but the flow downstream will be nonaxisymmetric and
swirling due to the turn. Is the flow in a long rotating pipe axisymmetric?

It is typical for flows to exhibit a complex dependence on one or more spatial coor-
dinates. In some cases, however, a flow may exhibit a spatial periodicity along a certain
direction. For a spatially periodic flow, the velocity field may be represented by

u(x + x0, t) = u(x, t) (6.22)
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Figure 6.20 Spatially periodic flows: (A) Mach–Zehnder interferometry image of flow through a turbine blade cascade
and (B) flow through a bank of circular cylinders.

(A) (B)

CD/Video Library/Fully Developed Flow

6.5.3 Fully Developed Flow

The term “fully developed flow” is used to describe a velocity field that does not change
in the flow direction. The velocity vector is therefore independent of the coordinate
along that direction. In the axisymmetric flow in a long constant area pipe, there is
always a region near the entrance to the pipe (Figure 6.21A) where the velocity field in
polar coordinates is 2D because of the developing boundary layer. The velocity depends
on both r and z near the entrance. Further into the pipe, however, the velocity field be-
comes 1D and independent of the z coordinate, and it may be represented by a velocity
vector of the form (0, 0, vz(r)). The flow well inside the pipe is thus fully developed
because the velocity field is not changing in the axial direction.

The term “fully developed” should never be assumed to apply to other fluid or flow
properties in a fully developed flow in the absence of evidence to support this conclu-
sion. In the fully developed flow far from the entrance of the long pipe in Figure 6.21,

Equation 6.22 shows that at two points in a spatially periodic flow a certain distance apart
the velocity is the same. Examples of spatially periodic flow are shown in Figure 6.20.



the velocity field does not depend on the z coordinate,
but viscous friction is causing the pressure in the fluid
to fall continuously through the pipe. Thus, the pres-
sure field is not fully developed, as can be seen in Fig-
ure 6.21B.

6.5.4 Steady Flow, Steady Process, and
Temporally Periodic Flow

A flow is said to be steady if the Eulerian velocity
field is independent of time. Thus, a steady flow is
described by

u = u(x) (6.23)

If a velocity field is known in functional form, the absence of time in the function rep-
resenting the velocity field confirms that the flow is steady.

Since many engineering devices and systems are designed to operate in a steady
state mode, steady flows are common. For example, after several minutes of operation,
a wind tunnel reaches a stable operating condition and the speed control will maintain a
constant air speed in the test section unless the controls are deliberately changed. The
output of a velocity sensor positioned to record airspeed in the test section of a wind tun-
nel will typically exhibit little if any variation over time. The flow in the test section may
therefore be modeled as a steady flow.

Figure 6.22 shows typical velocity signals recorded by a velocity sensor in a steady
laminar flow (Figure 6.22A), an unsteady laminar flow (Figure 6.22B), and a turbulent
flow (Figure 6.22C). Notice that there is a small amount of fluctuation in the steady
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Entrance length Fully developed flow

Linear pressure drop in
fully developed flow region

Entrance length Fully developed flow

p

z
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Figure 6.21 Flow in a round pipe: (A) velocity
profiles through entrance length to fully devel-
oped region and (B) pressure change in the pipe.

You should be familiar with the concept of
fully developed flow in a pipe because it
was presented in Chapter 3, Section 3.3.1,
in the first case study on flow in a round
pipe. The determination of the pressure
drop in fully developed pipe flow is the
most frequently computed quantity in en-
gineering fluid mechanics.

CASE STUDY
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laminar flow. This is unavoidable. For an experimentally measured velocity field, a de-
termination that the flow is steady is always a matter of engineering judgment. A flow
may exhibit temporal fluctuations, but if these are small in comparison to the time-aver-
aged value of velocity, the flow may be considered to be steady. Otherwise the flow is
unsteady (Figure 6.22B). The velocity signal from a turbulent flow is always unsteady,
as shown in Figure 6.22C. If this signal is averaged over a short time interval, and the
average velocity is time invariant, the turbulent flow is described as steady. Thus in a
turbulent flow, “steady” is defined in terms of the time-averaged velocity and not the
instantaneous velocity, as is the case in laminar flow.

The definition of steady flow in terms of the time dependence of the velocity field
is a traditional one. Some fluid dynamists prefer to define steady flow on the basis of the
time independence of all fluid and flow properties rather than just the velocity field.
Since these two definitions are not the same, we shall refer to a flow in which all
fluid and flow properties are independent of time as a steady process. A steady flow is
therefore described by a time-independent velocity field, and a steady process by time-
independent velocity and property fields.

It is important to realize that identifying a flow as steady does not imply the absence
of acceleration. In a steady flow the local acceleration, ∂u/∂t, is zero but the convective
acceleration, (u • ∇)u, need not be zero. To illustrate this point, recall our discussion of
flow through a contraction (see Figure 6.10). This flow is steady, yet the liquid accelerates
as it moves through the area change. If measured, the value of fluid velocity at every point
in the venturi will show no significant temporal variation, yet the fluid is accelerating.

u
u�

u(t)

t

T

t0 t0 	 T

u � time average
(or mean) value

(C)

u

t

u

t (B)(A)

Figure 6.22 Time history of (A) steady laminar flow, (B) unsteady laminar flow, and (C) steady
turbulent flow.



The classification of a flow as steady results in a significant simplification in the
governing equations of fluid motion. For this reason you should be alert to the possibil-
ity of transforming an unsteady flow into a steady flow by a change to a different refer-
ence frame in which the velocity field is time independent. The new frame is typically
either translating at constant velocity or rotating at constant angular velocity. For exam-
ple, the flow about an aircraft moving at a constant velocity through a still atmosphere
shown in Figure 6.23A is an unsteady flow when described in a reference frame fixed to
Earth. To see this, pick a point upstream of the aircraft and in its path and ask yourself
whether the velocity at this fixed point will change as the aircraft comes closer. Suppose,
however, that we choose to describe the flow in a frame of reference moving with the
aircraft, as shown in Figure 6.23B. In this frame the flow is steady. The pilot in the air-
craft frame of reference sees a spatially uniform flow of air approaching at constant
velocity and observes a velocity field about the aircraft that is not time dependent.

As mentioned earlier, all flows exhibit slight temporal variations in velocity even
when the driving forces themselves are steady. These slight variations do not affect a
decision to model the flow as steady. On the other hand, because of natural flow insta-
bilities, many flows are unsteady even when the driving forces are steady. The Karman
vortex sheet behind a cylinder (Figure 6.24) is a good example of an unsteady flow of
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Figure 6.23 (A) Aircraft with an inertial coordinate system results in unsteady velocity field. (B) With coordinate
system moving with the aircraft, the velocity field is steady.

Figure 6.24 Karman vortex sheet
behind a cylinder.
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this type; recall our discussion of vortex shedding in the context of the Strouhal number
in Section 3.2. Temporally periodic driving forces will also create a temporally periodic
(pulsatile) flow that exhibits a repetitive behavior over time with a period τ . This is
evident in the velocity record shown in Figure 6.25. The velocity vector for a temporally
periodic flow behaves according to

u(x, t + τ) = u(x, t) (6.24)

indicating that the same velocity vector occurs at a given spatial point every τ seconds.
Fluid machinery that operates cyclically must create a temporally periodic velocity field,
and many biological flows are of this type. Given the many possible types of flow
behavior, an engineer must judge whether a flow is accurately modeled as a steady flow,
a steady process, or a temporally periodic flow.

100

50

0

u

t

Figure 6.25 Velocity waveform in the descending thoracic aorta of a dog obtained
with a hot-film anemometer.

CD/Dynamics/Boundary Conditions

EXAMPLE 6 .9

Water flows through a flume (a liquid version of a wind tunnel) with a velocity field far
from the walls given by u(x, t) = [5 m/s + (0.005 m/s)(sin t /τ)] i. Characterize the
time dependence of this flow. Could this flow be modeled as a steady flow?

SOLUTION

This single component velocity field is a function of time, so this is a 1D unsteady flow.
Further inspection reveals that the flow is temporally periodic. However, the deviation
from a constant velocity of 5 m/s is minimal, about 0.1%. Engineering judgment sug-
gests that it is valid to ignore the unsteady term and approximate the velocity field as
u(x, t) = [5 m/s] i.



6.6 NO-SLIP, NO-PENETRATION
BOUNDARY CONDITIONS

In using the governing equations to solve a flow prob-
lem, it is necessary to specify conditions that model the
behavior of the fluid and flow properties at boundaries
of various types. The boundary conditions that apply
specifically to the velocity field are referred to as the
no-slip and no-penetration conditions. In nearly all
flows encountered in engineering, observation shows
that a fluid does not move relative to a solid surface in

the tangential direction. Rather, the fluid sticks to the surface, a phenomenon referred to
as no-slip. From this we conclude that the tangential component of velocity uT is equal
to the tangential component of boundary velocity UT . This boundary condition

uT = UT (6.25)

is called the no-slip condition in fluid dynamics. If a solid surface is not moving,
UT = 0, and the no-slip condition becomes uT = 0. The no-slip condition is normally
invoked for every solid–fluid interface.

The no-penetration condition arises because bulk fluid cannot penetrate an imper-
meable boundary. Thus, the normal component of fluid velocity uN must match the
normal boundary velocity UN . This boundary condition

uN = UN (6.26)

is called the no-penetration condition and applies to any solid or otherwise impermeable
surface in contact with a fluid. If a solid or impermeable surface is not moving in a
direction normal to its own surface, UN = 0, and the fluid in contact is also not moving
in the normal direction, so uN = 0.
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CD/History/D’Alembert

For a viscous fluid in contact with a solid boundary, the complete no-slip, no-
penetration boundary condition may be summarized by saying that the velocity vector
of the fluid on the boundary is always equal to the velocity of the boundary at the same
point. Thus, a convenient way of representing the complete no-slip, no-penetration
boundary condition is to write 

u = UB (6.27)

where UB is the boundary velocity vector. It is interesting to consider the implications
of this statement. Equation 6.27 indicates that the surface of a ship that has sailed from
New York to South Hampton, England, is still coated with water from New York Har-
bor. This improbable result is true insofar as the continuum hypothesis is concerned, but
as you probably suspect, water molecules originally on the surface will have long since
been replaced by others owing to molecular diffusion. This thought experiment reminds

One important exception to the no-slip
condition occurs if the fluid is modeled as
inviscid, meaning that it has zero viscosity,
or if the flow is modeled as an inviscid
flow, meaning that the effects of viscosity
are neglected. In either case the flow is
frictionless, there are no shear forces act-
ing in the fluid, and the fluid is assumed to
have the ability to freely slip in any tangen-
tial direction along the solid surface.



6.7 FLUID TRANSPORT 337

EXAMPLE 6 .10

The piston in the tube shown in Figure 6.26 is advancing at speed U. What is the no-
penetration condition on the piston face and tube wall?

us that in employing the continuum hypothesis, some
questions involving molecular level events and phe-
nomena cannot be answered.

In general, applying the no-slip, no-penetration
boundary condition involves specifying conditions for
each component of velocity. This process is illustrated in
Examples 6.10 and 6.11.

6.7 FLUID TRANSPORT

An understanding of fluid transport is fundamental to
many engineering fields, including the performance of
mechanical devices such as engines, pumps, and trans-
portation systems; the operation of chemical engineer-
ing processes ranging from the refining of oil to the
production of the basic chemicals of a modern econ-
omy; the biological systems studied by biomedical en-
gineers; and the movement of substances within local
and global ecosystems studied by civil and environ-
mental engineers. From oil refining and bioreactors to

HISTORY BOX 6.1

The historical arguments related to the
fluid–solid boundary interaction are valu-
able in that they highlight the dangers of
not having a complete model of fluid flow.
In 1744 d’Alembert formulated his para-
dox, noting that while the inviscid pressure
distribution about a cylinder could be cal-
culated accurately (see Example 6.3), the
inviscid flow theory predicted zero drag, in
contradiction to empirical observations.
This theory did not include the effects of
viscosity, hence imposed a boundary con-
dition that allowed fluid to slip along the
surface of the cylinder. It was not until
Prandtl’s contribution of boundary layer
theory 150 years later that d’Alembert’s
paradox was fully understood.

R
r

z
U

Figure 6.26 Schematic for Example 6.10.

SOLUTION

The no-penetration condition on the piston face is expressed in cylindrical coordinates
as vz = U, since the piston is moving at speed U in the z direction and the normal com-
ponent of fluid velocity, vz, must match the normal component of boundary velocity,
U. The tube wall is stationary; thus the no-penetration condition on the wall is vr = 0
(at r = R). That is, the normal component of fluid velocity, vr , matches the normal
component of boundary velocity, 0.
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EXAMPLE 6 .11

Write the no-slip, no-penetration boundary conditions for the two flow situations
illustrated in Figure 6.27.

SOLUTION

A. This flow is traditionally described in Cartesian coordinates with x along
the plates and y up. Since the bottom plate is stationary, the no-slip, 
no-penetration boundary condition at this location is u(x, 0, z, t) = 0. The top
plate is moving in the +x direction with constant velocity U0 so the no-slip, no-
penetration boundary condition is u(x, 2h, z, t) = U0i. On a component basis,
we have u = v = w = 0 on the bottom plate, and u = U0, v = 0, w = 0 on
the top plate.

B. Cylindrical coordinates are appropriate here. The inside cylinder is rotating
with an angular velocity ΩI so the no-slip, no-penetration boundary condition
is u(RI , θ, z, t) = RI ΩI eθ . Similarly, since the outer cylinder is rotating
with an angular velocity ΩO , the boundary condition is u(RO , θ, z, t) =
ROΩOeθ . On a component basis we have vr = vz = 0, vθ = RI ΩI on the
inner cylinder and vr = vz = 0, vθ = ROΩO on the outer cylinder.

2h

(B)

r

�

RO
RI


I

O

(A)

Top plate
moves with
velocity U0

u(y)i

y

x

Figure 6.27 Schematic for Example 6.11.

artificial hearts and drug delivery, from tracking pollutants to predicting the growth of
the ozone hole in the atmosphere, fluid transport plays a fundamental role.

To calculate the transport of mass, momentum, energy, and other properties and
substances across a surface, it is helpful to recognize that fluid motion occurs on two
different length scales—the macroscopic and microscopic. In the continuum Eulerian
description, the macroscopic, or bulk, motion of fluid molecules is modeled by the fluid
velocity field. The transport resulting from this visible movement (i.e., convection) of
fluid particles across a surface is called convective transport. The transport resulting
from the microscopic, or molecular-scale, motion of fluid molecules, is called diffusive
transport. Convective transport can occur only in a moving fluid. Diffusive transport
may occur in fluids at rest or in motion but is nonzero only in the presence of a spatial



variation in a fluid property. For example, a spatial vari-
ation in temperature, i.e. a nonzero thermal gradient,
results in diffusive transport of heat (also known as
thermal conduction). Similarly, a concentration gradi-
ent of a certain chemical species within a fluid (e.g.,
dissolved oxygen in blood) will result in diffusive
transport of that chemical species. If a spatial variation
in temperature or concentration is absent, diffusive
transport does not occur.

Convective and diffusive transport are equally im-
portant topics in the study of fluid mechanics, but not
equally important modes of transport in every problem
you encounter. In a fluid at rest, diffusive transport may
be present, but convective transport is impossible. In a
moving fluid, both modes of transport are possible, but it
is common for the convective transport to far exceed the
diffusive transport. In a turbulent flow the convective
transport of mass, momentum, and energy can be sur-

prisingly large, causing, for example, rapid evaporation of water by the wind and danger-
ous hypothermia due to wind chill.

Before discussing how to model convective and diffusive transport across a surface,
it is helpful to describe the characteristics of different surfaces encountered in fluid
mechanics. We may usefully distinguish between internal and bounding surfaces, and be-
tween permeable and impermeable surfaces. An internal surface is an imaginary surface
wholly contained within a fluid. A bounding surface is located at the interface between
the fluid and a solid, or between two fluids. A surface is permeable if bulk motion of fluid
through the surface is possible. All internal surfaces are permeable. Bounding surfaces
may be permeable or impermeable depending on whether they allow macroscopic
quantities of the fluid to pass through them. An engineer must select and classify the sur-
faces in a problem as permeable or impermeable and apply the appropriate methods
described in this section to compute the convective and diffusive transport.

Next consider the relationship between the surface type (permeable or imperme-
able) and the convective and diffusive transport across that surface. Since convective
transport involves the bulk movement of fluid across a surface, it is possible only if
the surface is permeable. The distinction between a permeable and an impermeable sur-
face is not relevant to diffusive transport. For example, hydrogen can diffuse into steel,
yet steel is impermeable to the bulk motion of gases and liquids. Thus diffusive trans-
port is possible across surfaces of both types if an appropriate spatial gradient of a
species or property is present. Table 6.1 summarizes these important results.
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To appreciate the importance of fluid
transport in your life, consider the circula-
tory system in your body. You may think of
this system in mechanical terms, with your
heart functioning as a pump that develops
a (blood) pressure driving the flow of fluid
through a system of pipes in the form of
arteries and veins. While this mechanical
view is certainly valid, we should also con-
sider the fluid transport characteristics of
this system. Your blood transports dis-
solved oxygen to all your organs and then
carries away the waste carbon dioxide.
In addition, a host of other compounds,
including sodium bicarbonate, which con-
trols the blood pH, must be transported in
carefully controlled amounts.

TABLE 6.1 Relationship Between Surface Type and Permissible Transport Mechanisms

Type of Surface

Transport Mechanism Permeable Impermeable
Convection Possible Impossible

Diffusion Possible Possible



6.7.1 Convective Transport

To describe convective transport, consider a permeable
surface exposed to a fluid in motion as shown in Fig-
ure 6.28. The convective transport of any substance
across this surface can be explained as follows. The ve-
locity at a point on the surface describes the motion of
the fluid particle located at that point at a given instant
of time. The fluid particle possesses a certain amount of

the transportable substance, and if this particle crosses the surface, the substance is
transported across the surface along with it. Only the normal component of velocity is
involved in the transport, since the component of velocity tangential to the surface does
not cause the particle to cross the surface. Thus, the transport is due to the normal com-
ponent of velocity and the amount of the substance carried by the fluid particle. Since
different points on the surface may have different velocity and property values, a math-
ematical representation of convective transport must account for the potential variation
of velocity and property fields on a surface.

The convective transport, represented by the symbol �C , is defined to be the net rate
at which a property is crossing a given surface at an instant of time due to the movement
of fluid. If we let ε represent a transportable fluid property of interest per unit mass of
fluid, then ρε is the amount of this fluid property on a unit volume basis. At any point in
a flow, the instantaneous rate at which this property is being transported by the velocity
field in the direction of the local velocity vector is given by the convective flux vector
ρεu. Thus at a certain point on a permeable surface, the rate at which a property is trans-
ported across a surface element of area dS with unit normal n is

δ �C = ρε(u • n) dS

where (u • n) produces the required normal component of velocity. In general there may
be a different convective transport rate at each point of a surface due to local variations
in the values of the convective flux vector. The convective transport for an entire
surface, �C , is found by summing the contributions from each surface element with a
surface integral. That is,

�C =
∫

S
ρε(u • n) dS (6.28)
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Figure 6.28 Velocity along a perme-
able surface can have convective trans-
port only if there is a normal velocity
component.

Notice that in our discussion of convective
transport no restriction was placed on the
velocity or property fields. Thus the results
apply to both steady and unsteady velocity
and property fields. If a flow is unsteady,
the convective transport defined by Eq. 6.28
provides the corresponding value at a certain
instant of time.



A surface integral of this type is often referred to as a convective flux integral, or simply
a flux integral. Note carefully however, that the result of the integration, the convective
transport �C , is a rate (property per unit time) rather than a flux (property per unit area
per unit time).

Because of the presence of the outward unit normal in the integrand of Eq. 6.28,
when a flux integral is evaluated for a closed surface, as shown in Figure 6.29A, it gives
the net rate of transport of the property or substance out of the closed volume bounded
by the surface. A positive value for �C is therefore an outflow. For the open surface
shown in Figure 6.29B, a positive value of �C represents the rate of transport across
the surface in the direction of the unit normal. Table 6.2 gives the appropriate form of
the integral for various types of convective transport.

To illustrate these ideas, it is instructive to work through an example in which we
calculate the convective transport of mass and volume, i.e., the mass and volume
flowrates. Consider the steady, 1D channel flow of a constant density fluid between
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Figure 6.29 (A) Closed surface with positive n pointing
outward and positive flux outward. (B) Open surface with
positive flux in the direction of n.

TABLE 6.2 Selected Properties and Their Corresponding Convective Flux Integrals

Property per unit Property per unit Convective flux integral,
Property mass, � volume, � � �� �C = ∫S �� (u • n) dS

Mass 1 ρ
∫

S ρ( u • n) dS

Volume ρ−1 1
∫

S ( u • n) dS

Momentum u �u
∫

S ρ u( u • n) dS

Angular momentum r × u r × �u
∫

S (r × ρu )( u • n) dS

Heat cPT �cPT
∫

S ρcpT ( u • n) dS

Concentration* c �c
∫

S ρc (u • n) dS

Internal energy* u �u
∫

S ρu(u • n) dS

Kinetic energy 1
2 (u • u) � 1

2 (u • u)
∫

S ρ 1
2 (u • u) (u • n) dS

*Lowercase u and c represent internal energy and concentration per unit mass, respectively.



parallel plates as shown in Figure 6.30A. This flow has a parabolic velocity distribution,
with an x component of velocity given by

u(y) = Umax

[
1 −

(
y

h

)2
]

(6.29)

The maximum velocity, Umax, occurs at the center of the gap between the plates. If
we choose a surface of width w at a right angle to the plates and spanning the entire gap
between them, it is evident that fluid particles at a height y cross this surface at a right
angle at a speed u(y) as given by Eq. 6.29. Since each fluid particle has mass, and fluid
particles at every height move from left to right across this surface, there must be a net
convective transport of mass across this surface.

It is evident that the convective mass transport through the channel also passes
through the selected surface. To calculate this transport, note that the gap between the
plates may be divided into a large number of elemental flow channels each of height dy
and width dz as shown in Figure 6.30A. The cross-sectional area of each of these ele-
mental flow channels is dz dy. In a time interval �t , all the fluid shown to the right of
the parabolic lines shown in Figure 6.30B and to the left of the surface passes
through the surface. The equation describing one of these parabolic lines is given by
x(y) = u(y)�t , where x(y) represents the position of a fluid particle in the elemental
flow channel at elevation y at a time �t prior to the present instant. As you can see, dur-
ing the selected time interval, a greater volume of fluid passes through the surface by
way of the channel in the center of the gap than in any other channel because the fluid
speed is a maximum there.

Consider the highlighted channel at elevation y. The length of the fluid column in
this channel is l(y) = u(y)�t . All the fluid in this column is destined to cross the
surface during the time interval �t , contributing to the convective transport of various
fluid properties. The incremental fluid volume � –V (y) in the highlighted channel of
length l(y) and area dz dy is given by � –V (y) = l(y) dz dy = u(y)�t dz dy .

The fluid mass in the selected channel is found by multiplying the incremental
volume, � –V (y), by the fluid density ρ. Thus, the total mass of fluid in the selected
channel is

ρ� –V (y) = ρu(y) dz dy �t

342 6 THE VELOCITY FIELD AND FLUID TRANSPORT

y

x
z

2h

Parabolic velocity profile(A)

dy

dz

l(y) � u(y) �t(B)

A � dy dzu(y)

y

Figure 6.30 (A) Schematic of flow between parallel plates and surface for flux calculation. (B) Elemental flow channel
for the flux calculation.



The quantity ρu(y) dz dy �t also represents the mass transported through the area ele-
ment dz dy during the time interval �t . The corresponding mass flowrate is found by
dividing the preceding result by the time interval to obtain ρu(y) dz dy . The total mass
flowrate across the entire surface, Ṁ , is the sum of the contributions occurring in each
elemental flow channel. For this 1D flow, this sum may be calculated by the surface
integral

Ṁ =
∫ ∫

ρu(y)dz dy (6.30)

with the limits of integration chosen to describe the entire surface. Note that the inte-
grand, which is the convective mass transport per unit area per unit time for a surface
element of area dz dy, is proportional to the product of the density and the normal ve-
locity of the fluid approaching the surface. This integrand, which has dimensions of
mass per unit area per unit time, is referred to as the convective mass flux.

We can also use the same approach to calculate the volume flowrate (i.e., volume
of fluid per unit time crossing the surface). Since the volume of fluid in the selected
channel is

� –V (y) = u(y)dz dy �t

the total volume flowrate Q is given by

Q =
∫ ∫

u(y) dz dy (6.31)

The integrand u(y), which has dimensions of volume per unit area per unit time, is the
volume flux.

We can easily confirm these results by using Eq. 6.28 or the appropriate entries in
Table 6.2. Taking Eq. 6.28, �C = ∫S ρε( u • n)dS , and noting that x component of ve-
locity is given by Eq. 6.29 as u(y) = Umax[1 − (y/h)2] (with the other two velocity
components being zero), we have u = u(y)i + 0j + 0k. Taking n = i to find the trans-
port downstream, we find: u • n = u(y). Thus the convective transport is given in gen-
eral by Eq. 6.28 as

�C =
∫

S
ρε(u • n) dS =

∫ ∫
ρεu(y) dz dy

The integrand is the product of density, property per unit mass, and normal velocity on
the surface as expected.

To obtain the mass flowrate, we use ε = 1 in this integral, or use Table 6.2, to write
�C = ∫S ρ(u • n) dS = ∫ ∫ ρu(y) dz dy . Note that this is identical to Eq. 6.30,
obtained by using elemental flow channels. Similarly, by taking ε = ρ−1 in this integral,
or using Table 6.2, we find the following volume flowrate or volume transport 

�C =
∫

S
ρ(ρ)−1(u • n)dS =

∫
S

(u • n) dS =
∫ ∫

u(y) dz dy

which is identical to Eq. 6.31. The use of these formulas to calculate the mass and vol-
ume flowrate in channel flow is demonstrated in Example 6.12.
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EXAMPLE 6 .12

Derive expressions for the mass and volume flowrates across the surface shown in
Figure 6.30 for the channel flow of a liquid.

SOLUTION

The velocity profile for this flow is given by Eq. 6.29, u(y) = Umax[1 − (y/h)2]. Sub-
stituting this expression into the mass flowrate formula, Eq. 6.30, we find:

Ṁ =
∫ ∫

ρu(y) dz dy =
∫ ∫

ρUmax

[
1 −

(
y

h

)2
]

dz dy

To evaluate this integral, the limits must be determined. The limits for y are from −h to
h, and we can consider the surface to have width w. Density is constant, and we know
that u = u(y) only. Therefore the z integration will yield the width, w, leaving us with
Ṁ = ρUmaxw

∫ h
−h [1 − (y/h)2] dy . Completing the integration, we have

Ṁ = ρUmaxw

[
y −

(
y3

3h2

)]h

−h

= 4ρUmaxwh

3

The dimensions of this result are {Mt−1}, as expected. To find the volume flowrate, we can
use Eq. 6.31, or simply observe that for constant density, Q = ∫∫ u(y) dz dy = Ṁ/ρ .
Thus, we have

Q = 4 Umaxwh

3
,

which has dimensions of {L3t−1}, as expected.

We can also use Eq. 6.28 or the appropriate entries in Table 6.2 to develop expres-
sions for the mass and volume flowrates across the surface in the pipe flow illustrated in
Figure 6.31. The integrals giving the mass and volume flowrates in this case are written
in cylindrical coordinates as

Ṁ =
∫ ∫

ρvz(r)r dr dθ (6.32)

Q =
∫ ∫

vz(r)r dr dθ (6.33)

Note the integrands in these expressions. Once again we see that the product of density
and normal velocity defines the mass flux, and the normal velocity alone defines the
volume flux.

The preceding exercises illustrate how to calculate the convective transport of mass
and volume in a simple flow. In more complicated situations, students often find it



helpful to use a step-by-step method to calculate one or more of the flux integrals con-
tained in Table 6.2. We recommend the method outlined.

General Method to Evaluate a Flux Integral
1. Select a coordinate system that provides the simplest possible representation of

the unit normal and surface element (e.g., align one axis with the unit normal).

2. Use the selected coordinates to write the unit normal n and scalar area element dS.

3. Write the velocity vector and evaluate the dot product u • n.

4. Write the integrand ρε(u • n) dS.

5. Assign appropriate limits to the convective flux integral �C = ∫S ρε(u • n) dS
and complete the integration.
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Figure 6.31 Schematic of pipe flow to determine flux
across the surface.

EXAMPLE 6 .13

Derive expressions for the mass and volume flowrates across the surface shown in
Figure 6.31 for Poiseuille flow in a round pipe. The velocity profile is

vz(r) = Umax

[
1 −

(
r

R

)2]

SOLUTION

The mass flowrate is given by Eq. 6.32, Ṁ = ∫∫ ρUmax[1 − (r/R)2]r dr dθ . The lim-
its on θ are from 0 to 2π , while r goes from 0 to R. Since density is constant, we have

Ṁ = 2πρUmax

∫ R

0

[
1 −

(
r

R

)2]
r dr

Evaluating this integral gives 

Ṁ = 2πρ Umax

[(
r2

2

)
−
(

r4

4R2

)]R

0

= 1

2
ρ Umaxπ R2

The volume flowrate can be found by using Eq. 6.33, or more simply for this 
constant density fluid, by dividing the mass flowrate by the density to obtain
Q = 1

2 Umaxπ R2.



One of the most important tasks in fluid transport analysis is to calculate momen-
tum transport. This calculation is required to determine the force exerted by a fluid on
a moving object or vehicle, and in the calculation of the thrust produced by a rocket or
air-breathing engine. From Table 6.2, the momentum transport across a surface is
given by:

�C =
∫

(ρu) (u • n) dS

This integral can be particularly challenging to evaluate correctly. To illustrate the use of
the method just outlined, consider the calculation of the momentum flux at the inlet and
exit of the round nozzle shown in Figure 6.32.

We begin by noting that the momentum flux integral 
∫

S ρu(u • n) dS is to be eval-
uated on the surfaces shown at the inlet and exit of the nozzle. For simplicity we assume
steady flow of a constant density fluid. The geometry suggests the use of cylindrical co-
ordinates, with the z axis normal to both surfaces. Consider first the nozzle exit, where
fluid is leaving with a uniform velocity. To complete the second step in the method we
must write the unit normal to the desired surface. In this case n is aligned with the z axis,
so we have n = k. The exit surface lies in the (r, θ) plane so the surface element is given
in cylindrical coordinates by dS = r dr dθ . The velocity vector at the exit is normal to
the surface; consequently the vr and vθ components of velocity are both zero, and the vz

component is uniform at the exit. We can therefore write the uniform fluid velocity
vector on the surface of the exit as u = (0, 0, VE k), where VE is a positive constant.
Having established the outward unit normal and velocity vector at the exit, we can
complete the third step by writing the dot product as (u • n) = (VE k) • (k) = VE . The
magnitude and sign of the normal velocity (u • n) can be determined automatically by
using the correct expressions for the velocity vector and outward unit normal. The
positive normal velocity at the exit indicates that the transport of momentum is out of
the nozzle in the direction of the outward unit normal. The integrand for a momentum
flux is ρε = ρu = ρ(VE k); thus the integrand is written in the fourth step as
(ρu)(u • n)dS = ρ(VE k)VEr dr dθ . The final step in evaluating the momentum flux
integral is to insert the integrand and write the appropriate limits,∫

exit
(ρu)(u • n) dS =

∫ 2π

0

∫ RE

0
ρ(VE k)(VE)r dr dθ
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r

z

n � �k

Parabolic velocity
profile with maximum
velocity Vmax

Uniform
velocity VE

Nozzle inlet plane

n � k

Nozzle exit plane

Figure 6.32 Schematic of flow through a
constriction.



The integrand ρ(V 2
E k) is constant, so it may come out of the integral. What is left is an

integral defining the area of the exit, so the momentum transport at the nozzle exit is∫ 2π

0

∫ R

0
ρ(VE k)(VE)r dr dθ = ρ

(
V 2

E k
) ∫ 2π

0

∫ RE

0
r dr dθ = ρ AE

(
V 2

E k
)

where AE = π R2
E is the area of the nozzle exit. The momentum transport at the exit has

only a k component because the velocity vector at the exit port has only a k component.
The transport is positive because a positive k component of momentum is leaving the
nozzle. Note that the overall sign of a momentum transport depends on whether (ρu) is
positive or negative, and on whether the normal velocity (u • n) is positive or negative.
The integrand contains the product of two signs, one from (ρu) and the other from
(u • n).

Now let us consider the momentum transport at the nozzle inlet where the flow is
nonuniform. The general procedure is the same. For the momentum flux integral here,
we write the outward unit normal to the surface as n = −k and again write the surface
element in cylindrical coordinates as dS = r dr dθ . The velocity profile at the inlet port
is axisymmetric and parabolic, with a maximum velocity Vmax on the axis of the nozzle.
Thus the nonuniform fluid velocity vector entering the nozzle is given by
u = (vr , vθ , vz) = vz(r)k, where vz(r) is the axial velocity component at the inlet sur-
face, and the other two velocity components are zero by inspection of Figure 6.32. Since
the velocity varies in the radial direction, it is represented by a function vz(r), which
specifies the value of vz at each spatial location on the inlet port surface. The sign of vz

is part of its specification, and there is no z dependence because the integrand is being
written on a surface where z is constant.

Proceeding step by step to formulate the momentum flux integral, we write

(u • n) = (vz(r)k) • (−k) = −vz(r)

ρε = ρu = ρ vz(r)k

(ρu)(u • n) dS = ρ vz(r)(−vz(r)k)r dr dθ = −ρ [vz(r)]2k r dr dθ

The magnitude and sign of the normal velocity are determined by the directions of the
velocity vector and outward unit normal. The negative sign shows that the normal com-
ponent of the velocity vector is pointing opposite to the outward unit normal, indicating
momentum transport into the nozzle.

To complete the final step, we note that vz(r) = Vmax[1 − (r2/R2
I )]. Thus the

integrand is

(ρu)(u • n) dS = −ρ [vz(r)]2k r dr dθ = −ρ V 2
max

[
1 −

(
r2

R2
I

)]2

k

After the appropriate limits of integration have been applied, the momentum transport is
given by∫

inlet
(ρu)(u • n) dS =

∫ 2π

0

∫ RI

0

(
−ρ V 2

max

(
1 − r2

R2
I

)2

k

)
r dr dθ = −1

6
ρ V 2

max AI k

where AI = π R2
I is the area of the nozzle inlet. The momentum transport at the nozzle

inlet has only a k component because the velocity vector at the inlet has only a k
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component. The momentum transport is negative at this
surface because a positive k component of momentum
is crossing the surface in the direction opposite to the
selected unit normal.

Our discussion of convective transport has been
based on the use of ε, a property per unit mass. Al-
though every fluid property may be defined on a unit
mass basis, some properties, such as the density, are
more naturally defined on a per-unit-volume basis, i.e.,

as the mass per unit volume. Engineers may encounter situations in which a convective
transport calculation is required for a property defined on a unit volume basis. The nec-
essary change in the preceding formulas becomes evident if we note that if we let the
property per unit volume be represented by λ, then λ and ε are related by

λ = ρε (6.34)

Substituting this relation into Eq. 6.28, which defines convective transport for a property
per unit mass, allows us to write the integral defining the convective transport of any
property per unit volume λ as

�C =
∫

S
λ (u • n) dS (6.35)

The calculation of convective transport for a property defined on a unit volume basis
may be done by means of the same five-step method discussed earlier for a property de-
fined on a unit mass basis. The next example illustrates this procedure when the property
involved is the concentration of a substance mixed in air.
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As you gain experience in calculating con-
vective transport, you may find that it is not
necessary to carry out every step in the
recommended procedure for calculating a
flux integral. Many additional examples of
the use of this method to calculate con-
vective transport can be found in the next
chapter on control volume analysis.

CD/Boundary Layer Instability, Transition, and Turbulence/Turbulent Mixing and Diffusion

6.7.2 Diffusive Transport

Diffusive transport arises from the microscopic motion of fluid molecules. If there is a
larger value of a property on one side of a surface than on the other, a net transport of
this property will occur as fluid molecules diffuse back and forth across the surface. You
might be wondering whether mass, momentum, and energy are diffused in a fluid. The
answer to this question comes in three parts. First, in the continuum model of a fluid
such as air and water, diffusive transport of mass occurs only for a chemical species
mixed in the fluid. There is no diffusive transport of density, which describes the mass
per unit volume of the carrier fluid. Second, momentum transport arises both from the
macroscopic, or bulk, motion of fluid as represented by the velocity field and from the
microscopic, or molecular-scale, motion of fluid molecules. The transport of momentum
by the bulk motion is modeled as a convective transport. However, the molecular scale
transport of momentum is not modeled as a diffusive transport. Instead the continuum
model postulates the existence of a state of stress in the fluid characterized by the
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EXAMPLE 6 .14

Air containing 0.5% ammonia (NH3) by volume flows from an absorber column
through a round exit pipe with D = 10 cm. Suppose the velocity field in the pipe is given
in cylindrical coordinates by u = Umax[1 − (r/R)2] k, where Umax = 0.5 m/s. If the
density of ammonia at the pressure and temperature of the air leaving the column is
ρNH3 = 0.649 kg/m3, what is the rate at which ammonia leaves the absorber column
because of convective transport? Use the concept of a property per unit volume in your
calculation, and assume the ammonia is well mixed.

SOLUTION

We are asked to calculate the rate at which ammonia leaves the absorber column due to
convective transport. Figure 6.33 serves as a sketch for this problem. Since the ammo-
nia that leaves the absorber column passes through the exit pipe, the convective trans-
port can be calculated over the surface of the exit pipe. First we note that to obtain the
mass flowrate of ammonia, we would use, ε = cNH3, where cNH3 is the concentration of
ammonia in dimensions of mass of ammonia per mass of air. The ammonia is well
mixed, so this concentration is spatially uniform. The mass of ammonia per unit volume
of air is λNH3 = ρair cNH3, which we can write as

λNH3 = ρaircNH3 ≡ mass of air

volume of air
× mass of NH3

mass of air
≡ mass of NH3

volume of air

If we knew the mass concentration cNH3 and the density of the air ρair leaving the
column, we could easily calculate λNH3 and proceed with the five-step method to

D

u � Umax kr
R� 	 
� 2

1 �

z

r

Figure 6.33 Schematic for Example 6.14.
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calculate the convective transport. We are given that the concentration of ammonia in
the air is 0.5% ammonia by volume. If we write this information as

0.5% volume of NH3

100% volume of air
= 0.005 m3NH3/m3air

the units suggest that we multiply this value by the density of ammonia at the flow con-
dition to find

(0.005 m3NH3/m3air) (0.649 kg NH3/m3 NH3) = 3.25 × 10−3 kg NH3/m3 air

which is the mass of ammonia per unit volume of air. This is the desired value of λNH3 .

The convective transport is now found using Eq. 6.35, �C = ∫S λ (u • n) dS , and
following the five-step method. In cylindrical coordinates, aligned as shown in Fig-
ure 6.33, the unit normal is n = k, and the dot product is

u • n = Umax

[
1 −

(
r

R

)2]
k • k = Umax

[
1 −

(
r

R

)2]

The surface element for the pipe exit is dS = r dr dθ . Applying the limits of integration
from 0 to R and 0 to 2π , and noting that λNH3 is spatially uniform because the ammonia
is well mixed, we can evaluate the integral as follows

�C =
∫

S
λ (u • n) dS = λNH3

∫ 2π

0

∫ R

0
Umax

[
1 −

(
r

R

)2]
r dr dθ

�C = 2πλNH3Umax

[(
r2

2

)
−
(

r4

4R2

)]R

0

= λNH3

Umax

2
π R2

which we recognize as the product of the concentration of ammonia per unit volume of
air times the volume flowrate of air in the pipe. Inserting the data, we have 

�C = λNH3

Umax

2
π R2 = (3.25 × 10−3 kg NH3/m3 air)

(
0.5 m/s

2

)
(π)(0.05 m)2

The rate at which ammonia is leaving the absorber is therefore �C = 6.38 ×
10−6 kg NH3/s. The dimensions for the solution are {Mt−1}, as expected.

presence of short-range forces or stresses acting on surfaces within the fluid and on
boundary surfaces the fluid contacts. The presence of these internal stresses in the fluid,
as represented by the stress tensor, fully accounts for the molecular-scale momentum
transport in the model of the fluid. Thus, there is no diffusive momentum transport in the
continuum model. You may wish to review the discussion of the state of stress and stress
tensor in Section 4.6 to add to your understanding of this point. The third and final



answer to our original question about diffusive transport is that diffusion of energy (in
the form know as heat) does occur and is modeled by the concept of heat conduction.
Thus, to summarize, in a continuum model we need consider only the diffusive transport
of chemical species, often simply referred to as diffusion, and the diffusive transport of
heat, normally referred to as heat conduction.

The diffusive transport across a surface at a specific point in a fluid depends on the
orientation and shape of the surface as well as on the spatial distribution of the property
at this point. It proves useful to define the diffusive transport rate at a given point on a
surface in terms of a diffusive flux vector qD , which has dimensions of the transportable
property per unit area per unit time. For fluids such as air and water, the relationship
between qD and the gradient of a transportable scalar property is modeled with a linear
relationship, which proves to be sufficiently accurate for engineering applications. Con-
sider first the transport of heat across a surface, i.e., heat conduction. According to
Fourier’s law, the diffusive flux vector for heat conduction is

qD = −k∇T (6.36)

where k is the thermal conductivity of the fluid and T is the temperature. Similarly,
according to Fick’s law, the diffusive flux vector for the mass transfer of a chemical
species or substance is

qD = −kC∇C (6.37)

where C is the concentration of a substance dissolved in a fluid and kC is the diffusion
coefficient. Values for the thermal conductivity of various fluids and diffusivities of sev-
eral substances are contained in many engineering handbooks.

Equations 6.36 and 6.37 show that the diffusive flux vector always points in the
direction opposite the property gradient, since property flows down the gradient from
the higher value of the property to the lower value. However the flux vector is not nec-
essarily aligned with the normal to a given surface element. This is illustrated in Fig-
ure 6.34. It can be seen that the component of the flux vector normal to the surface, i.e.,
qD • n, is the only component that contributes to the net rate at which heat or mass
crosses the surface. The tangential component of the flux vector represents diffusion
along the surface in a tangential direction; hence it makes no contribution to the diffu-
sive transport across the surface.
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qD � nqD

n

Surface

Figure 6.34 The flux vector and the surface
normal are not necessarily aligned.



The diffusive transport, represented by the symbol �D , is defined to be the net rate
at which a property is crossing a given surface at an instant of time as a result of diffu-
sion. If the surface is divided into infinitesimal surface elements as usual, the rate at
which heat or mass is transported across a surface element of area dS and unit normal n
by molecular diffusion is given by

δ �D = qD • n dS

The diffusive transport �D for the entire surface is then given by the surface integral

�D =
∫

S
(qD • n) dS

From Eqs. 6.36 and 6.37, we see that the heat conduction across this surface is given by

�D =
∫

S
−k(∇T • n) dS (6.38)

and the diffusion (of a chemical species) is given by

�D =
∫

S
−kC(∇C • n) dS (6.39)

These integrals define the net rate of transport of heat or mass of a chemical species
across a surface in the direction of n due to diffusion (the molecular-scale motion of
fluid molecules). The interpretation of the sign of �D follows the same rule given earlier
for convective transport: for a closed surface, a positive value for �D is an outflow; on
an open surface, a positive value represents the diffusive transport across the surface in
the direction of the outward unit normal. Examples 6.15 and 6.16 illustrate the use of
Eqs. 6.38 and 6.39 to calculate diffusive transport.

6.7.3 Total Transport

In most fluid flows convective and diffusive transport occur simultaneously. The total
transport rate of a property across a surface, �, is the sum of the convective transport
rate �C and the diffusive transport rate �D :

� = �C + �D (6.40)

We can use the models for convective and diffusive transport developed in the preced-
ing two sections to calculate the total transport rate � of any quantity across a surface
within a fluid or across a surface defining the boundary between a fluid and another ma-
terial. In a given situation, an engineer should first consider the nature of the surface in-
volved to see if the convective flux is nonzero (Table 6.1). At an impermeable boundary
between a fluid and a solid at rest, the no-penetration condition, u • n, ensures that the
convective transport is zero. The convective transport is also zero for an impermeable
surface in motion, since in that case the no-slip, no-penetration condition is u = uS ,
the relative velocity is then uR = u − uS = 0, and therefore uR • n = 0 on the surface.
The type of substance transported should be considered next to decide whether both
convective and diffusive fluxes are present. Finally, using the appropriate integrals to
calculate the convective and diffusive fluxes (if present) on the specified surface will
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EXAMPLE 6 .15

The steady heat flow between vertical parallel plates a distance 2h apart arising from the
unequal plate temperatures is shown in Figure 6.35. A linear temperature profile develops
in the fluid as given by T (y) = 1

2 (Thot + Tcold) − 1
2 (Thot − Tcold) (y/h). The fluid has

a thermal conductivity of k = 0.65W/(m-K), and (Thot − Tcold)/2h = 100 °C/m. Find
the heat flux vector in the fluid and the diffusive heat transport rate to a square meter of
each plate.

Thot

Tcold

Heated
plate of
area A

Cooled
plate of
area A

Temperature
distribution, T(y)

qD � 0

n � j n �� j

hh

z

y

x

Figure 6.35 Schematic for Example 6.15.

SOLUTION

We are asked to determine the diffusive heat flux vector and the diffusive heat transport
to a square meter of each plate in the parallel plate geometry shown in Figure 6.35
(which serves as the sketch for this problem). The diffusive heat flux vector is given by
Eq. 6.36 as qD = −k∇T . Since ∇T = (∂T /∂x) i + (∂T /∂y) j + (∂T /∂z) k , and only
∂T /∂y is nonzero, the heat flux vector in this problem is

qD = −k∇T = −k
∂T

∂y
j = −k

(
−Thot − Tcold

2h

)
j = k

(
Thot − Tcold

2h

)
j
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The heat flux vector is a constant and points to the right.
The diffusive heat transport �D to either of the plates is given by Eq. 6.38 as

�D = ∫S − k(∇T • n) dS . The outward unit normal to each plate is needed to evaluate
this integral. This normal points at the fluid. Thus for the left plate we have n = j, while
for the right plate n = −j. For the left plate the diffusive heat transport is

�D =
∫

S
− k(∇T • n) dS =

∫
S

(
k

Thot − Tcold

2h

)
j • j dS = k

(
Thot − Tcold

2h

)
A

where A is the plate area. The positive sign indicates heat is flowing from the hot plate
to the fluid. On the right plate the diffusive transport is 

�D =
∫

S
− k(∇T • n) dS =

∫
S

(
k

Thot − Tcold

2h

)
j • (−j) dS = −

(
k

Thot − Tcold

2h

)
A

The negative sign indicates heat is flowing to the cold plate from the fluid.
Since we know that (Thot − Tcold)/2h = 100°C /m, and k = 0.65 W/(m-K), the

heat flux vector is

qD = k

(
Thot − Tcold

2h

)
j = [0.65 W/(m-K)](100 °C/m)

(
1K

1°C

)
j = 65 W/m2j

and the heat transfer to a square meter of each plate is k[(Thot − Tcold)/2h]A =
(65 W/m2)(1 m2) = 65 W. The conduction of heat is from the hot plate into the fluid
and to the cold plate.

EXAMPLE 6 .16

A laboratory experiment involves the flow of aerated water on both sides of a polymer
sheet as illustrated in Figure 6.36. The process involves the diffusion of O2 through a
polyethylene terephthalate membrane of thickness h = 100 µm. The diffusion coeffi-
cient for oxygen through this membrane is kC = 3.6 × 10−9cm2/s. You may assume
that water molecules have a negligible rate of diffusion through this polymer. The oxy-
gen concentrations on the two sides of the membrane at steady state are 8.9 × 10−8 and
21.2 × 10−8 mol/cm3, and it is known that there is a linear concentration gradient
through the membrane. If the device produces an hourly flow of 1.9 × 10−5 moles of O2

through the membrane, estimate the total membrane surface area.

SOLUTION

We are asked to determine the surface area of a membrane through which oxygen is dif-
fusing. We will accomplish this task by determining the diffusive mass transport through
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the membrane. Figure 6.36 serves as the sketch for this problem. The mass flux vector is
given by Eq. 6.37 as qD = −kC∇C . The concentration gradient is found by inspection
to be

∇C =
(

Clow − Chigh

h

)
j

The diffusive mass transport �D through the membrane is given by Eq. 6.39, the
surface integral �D = ∫S − kC(∇C • n) dS . The outward unit normal to the membrane
is needed to evaluate this integral. This normal points at the fluid. Thus on the top side of
the membrane (the side with the lower O2 concentration), we have n = j. Thus the
diffusive mass transport is

�D =
∫

S
− kC(∇C • n) dS

=
∫

S
−
(

kC
Clow − Chigh

h
j
)

• j dS = −kC

(
Clow − Chigh

h

)
A

h

Direction of water flow

Direction of diffusive
transport of oxygen

Chigh

Clow

Direction of water flow

n �� k

n � k

Membrane

y

x

Figure 6.36 Schematic for Example 6.16 showing the surface for
oxygen diffusion through a membrane.
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where A is the area of the membrane, and we have made use of the fact that none of the
terms in the integrand are functions of position on the membrane surface. Substituting
the known values for the two concentrations and kC into the preceding expression
yields:

�D = −(3.6 × 10−9cm2/s)

[
(8.9 × 10−8 − 21.2 × 10−8)mol/cm3

0.01 cm

]

= [4.43 × 10−14 mol/(cm2-s)]A

Finally, to solve for the membrane area, we must recognize that the value of the dif-
fusive mass transport through the membrane was specified in the problem statement to
be 1.9 × 10−5 mol O2 per hour. Solving the preceding expression for the membrane area
and inserting the known value for �D yields:

A =
[

1.9 × 10−5 mol/h

4.43 × 10−14 mol/(cm2-s)

](
1 h

3600 s

)
= 1.2 × 105 cm2

(
1 m

100 cm

)2

= 1.2 m2

EXAMPLE 6 .17

Consider the convective flow between vertical parallel plates shown in Figure 6.37. The
velocity field used to model this flow is given by u = 0i + 0j + w(y)k with

w(y) = ρβgh2(Thot − Tcold)

12µ

[(
y

h

)3

− y

h

]

where ρ and β are the density and coefficient of thermal expansion of the fluid evalu-
ated at the mean temperature 1

2 (Thot + Tcold), g is the acceleration of gravity, and 2h
is the spacing between the plates. Recall that the temperature profile in the fluid is
T (y) = 1

2 (Thot + Tcold) − 1
2 (Thot − Tcold)(y/h). Find the total heat transport across the

surface shown of width b into the paper.

SOLUTION

We are asked to determine the total heat transport across the surface indicated in Fig-
ure 6.37, given the corresponding velocity and temperature profiles for this flow.
This problem can be solved by using Eq. 6.40, which gives the total transport as
� = �C + �D. The selected surface is permeable; thus in general we must consider
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the possibility of both convective and diffusive transport of heat across this surface.
The transport integrals are determined by consulting Table 6.2 and Eq. 6.38. The
result is

� = �C + �D =
∫

S
ρcpT ( u • n) dS +

∫
S

− k(∇T • n) dS

which can also be represented as a single integral

� =
∫

S
[ρcpT ( u • n) − k(∇T • n)] dS

In Example 6.15 we found that the heat flux vector is qD = −k∇T =
k[(Thot − Tcold)/2h] j, and we know the temperature and velocity fields. By inspection
the unit normal to this surface is n = k, so

u • n = w(y)(k • k) = w(y), ρcpT ( u • n) = ρcpT (y)w(y)

− k(∇T • n) = k

(
Thot − Tcold

2h

)
( j • k) = 0 and � =

∫
S

ρcpT (y)w(y) dS

Thot

Tcold

Heated
plate

Velocity
profile, w(y)

Cooled
plate

n � k

hh
z

y

Surface
of interest

Temperature
profile, T(y)

Figure 6.37 Schematic for
Example 6.17.



give the total transport across the surface. The Example 6.17 illustrates the process of
calculating the total heat transfer across a surface in a flow.

We can summarize all this in two general rules: (1) one should consider convective
transport of the relevant property if the fluid is moving and the surface of interest is per-
meable, and (2) one should consider the possibility of diffusive transport of heat or con-
centration across every surface regardless of whether the fluid is moving or at rest.

6.8 AVERAGE VELOCITY AND FLOWRATE

The concept of an average velocity V̄ and its relationship to mass and volume flowrate
are fundamental to any discussion of fluid transport. In our case study on flow in a round
pipe, Section 3.3.1, we stated that in a steady flow of constant density fluid, the rela-
tionship between the volume flowrate Q, average velocity V̄ , and the cross-sectional
area of a pipe A is given by Eq. 3.16, as

Q = V̄ A (6.41a)

Since we will now show that this relationship holds for any permeable surface, we relist
it here as Eq. 6.41a. The corresponding mass flowrate Ṁ crossing the surface is defined
by

Ṁ = ρ AV̄ (6.41b)

Combining these two equations, we see that for a flow of constant density fluid, the mass
flowrate and volume flowrate across a surface are related by

Ṁ = ρQ (6.41c)

The dimensions of Q are volume per unit time, {L3t−1}. Volume flowrate is specified
for liquids in units of gallons per minute (gal/min) or cubic feet or cubic meters per
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The diffusive transport of heat across this surface is zero because the heat flux vector is
parallel to the surface. The total transport is therefore due to convection alone and can
be found by evaluating the following double integral:

� =
∫ h

−h

∫ b/2

−b/2
ρcpT (y)w(y) dx dy

Substituting for the temperature and velocity profiles and evaluating the resulting inte-
gral with a symbolic mathematics code, we find:

� = ρcPbh

(
2

15

)(
−Thot − Tcold

2

)(
ρβgh2(Thot − Tcold)

12µ

)



second (ft3/s, m3/s). Units of cubic feet per minute are often used in gas flows. The di-
mensions of Ṁ are mass per unit time, {Mt−1}. Typical units are kg/s or lbm/s.

Now imagine that we are measuring a steady flow of liquid through a pipe by catch-
ing the discharge in a container and measuring the volume of liquid that accumulates
over an interval of time, as shown in Figure 6.38A. In a given time interval, we calcu-
late the volume flowrate Q from the measured discharge volume divided by the time
interval. All the volume flow passes across the exit plane normal to the pipe axis of
area A. Thus by Eq. 6.41a, the average velocity V̄ on the exit plane may be calculated
as the ratio of the measured volume flowrate to the area or

V̄ = Q

A
(6.41d)

Another common flow measurement technique is to measure the mass of liquid
discharged in a time interval by placing the discharge container on a scale as shown in
Figure 6.38B. We can use Eq. 6.41b to solve for the average velocity, obtaining

V̄ = Ṁ

ρ A
(6.42a)

Since, we actually measure the weight of liquid W discharged in a measured interval of
time, we must still calculate the mass flowrate. The mass flowrate is given in this case
by dividing the measured weight by the product of the time interval and acceleration of
gravity:

Ṁ = W

g�t
(6.42b)

Combining this result with Eq. 6.42a gives the following formula for average velocity:

V̄ = Ṁ

ρ A
= W

ρ Ag�t
(6.42c)
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(A)

A

Q

W

(B)

Ṁ

Figure 6.38 Schematics of (A) volume flowrate measurement and (B) mass flowrate
measurement.



Equation 6.42c can be used, for example, to calculate how long it would take to load
30,000 pounds of jet fuel into a commercial aircraft if the density of the fuel is known,
along with the fuel hose diameter and the average velocity through the hose.

For a liquid, density is constant, so there is no variation in density on a surface on
which a mass flowrate or average velocity is to be calculated. Significant density varia-
tions may occur in gas flows, particularly at high speed. Often, however, the gas density
on a surface of interest may be considered to be uniform, with a value that depends on
the pressure and temperature on the surface. In a gas flow under these circumstances, the
foregoing relationships apply to define mass and volume flowrate and average velocity,
provided we use a value of gas density corresponding to the pressure and temperature on
the surface. Of course, at other locations in the flow field there may be different values
of density, pressure, and temperature.

The preceding formulas involving the average velocity were essentially stated with-
out proof. We can use our understanding of convective transport to give a more precise
definition of the concept of average velocity in fluid dynamics and show where these
formulas come from.

Consider the problem of defining an average velocity for a surface through which
a constant density fluid is flowing. Since there is usually a fluid velocity distribution on
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EXAMPLE 6 .18

Suppose a pipe of 5 cm inside diameter is used to fill a 55-gallon drum with water in
3 minutes. Calculate the volume flowrate and average velocity across the exit plane of
the pipe. What is the mass flowrate?

SOLUTION

This exercise can be solved by means of Eq. 6.41d. The volume flowrate is just the
volume of the drum divided by the time required to fill it. Making use of the unit
conversion factor found in Appendix C, the volume flowrate Q can be found to be

Q =
(

55 gal

180 s

)(
3.786 × 10−3m3

1 gal

)
= 1.157 × 10−3 m3

s

The pipe cross section has area A = π D2/4 = π(0.05 m)2/4 = 1.96 × 10−3 m2. If we
divide the flowrate by the cross-sectional area of the pipe, we find the average velocity
is:

V̄ = Q

A
= 1.157 × 10−3m3/s

1.96 × 10−3m2
= 0.59 m/s

The mass flowrate is Ṁ = ρQ. Thus for a nominal density of water, we have 

Ṁ = ρQ = 998 kg/m3(1.157 × 10−3m3/s) = 1.15 kg/s



the surface, a definition of an average velocity on this surface should reflect this fact
by including contributions from the velocity values on different parts of the surface.
This requirement is met if the average velocity V̄ is defined by the value of the normal
velocity component that reproduces the mass flowrate through the surface when mul-
tiplied by the product of density and surface area. Given the appropriate convective
flux integral (see Table 6.2) to define the mass flowrate, the foregoing definition
implies

Ṁ = ρ AV̄ =
∫

S
ρ(u • n) dS (6.43a)

6.8 AVERAGE VELOCITY AND FLOWRATE 361

EXAMPLE 6 .19

An empty (nonelastic) helium balloon is filled through a 1/4 in. diameter tube. Helium
exits the tube at T = 50°F and p = 1 atm. If the average gas velocity across the exit
plane of the tube is 500 ft/s, calculate the time required to fill a balloon with a volume of
1.5 ft3. At the same gas velocity, how long would it take to fill a similar balloon with
3 × 10−3 lbm of He? The density of He at 50°F is 1.10 × 10−2 lbm/ft3 .

SOLUTION

This exercise can be solved by using the equations and concepts discussed in Section
6.7. The tube cross-sectional area is:

A = πd2

4
= π(0.25 in.)2

4

(
1 ft

12 in.

)2

= 3.41 × 10−4 ft2

Multiplying the area by the velocity gives the volume flowrate

Q = V̄ A = (500 ft/s)(3.41 × 10−4 ft2) = 1.70 × 10−1 ft3/s

The time required to fill the balloon is simply the balloon volume divided by the volume
flowrate:

t = 1.5 ft3/0.170 ft3/s = 8.8 s

The second part of the exercise requires the use of the density of He at 50◦F and
p = 1 atm which is given in the problem statement as 1.10 × 10−2 lbm/ft3 . The mass
flowrate can then be calculated using Eq. 6.44a as

Ṁ = ρ̄ AV̄ = (1.10 × 10−2 lbm/ft3)(3.41 × 10−4 ft2)(500 ft/s) = 1.88 × 10−3 lbm/s

The time required to fill the second balloon is found by dividing the mass of He required
to fill the balloon by the mass flowrate:

t = 3 × 10−3 lbm

1.88 × 10−3 lbm/s
= 1.6 s



362 6 THE VELOCITY FIELD AND FLUID TRANSPORT

EXAMPLE 6 .20

Calculate the average velocity for channel flow of a liquid between parallel plates and
Poiseuille flow through a round pipe. The velocity fields of these flows are given in
Examples 6.1 and 6.2, and illustrated in Figure 6.4.

SOLUTION

Since density is constant, we can use Eq. 6.43b, V̄ = (1/A)
∫

S (u • n) dS in both cases.
In Example 6.1, the velocity field for channel flow in the gap between the large parallel
plates shown in Figure 6.4A is described in Cartesian coordinates by 

u =
[

h2(p1 − p2)

2µL

] [
1 −

(
y

h

)2 ]
, v = 0, and w = 0

We choose a surface spanning the channel of width b with a unit normal in the flow
direction. Then 

u • n = u(y) =
[

h2(p1 − p2)

2µL

] [
1 −

(
y

h

)2 ]

the surface area is 2bh, and the average velocity is

V̄ = 1

A

∫
S

(u • n) dS = 1

2bh

∫ h

−h

∫ b/2

−b/2

[
h2(p1 − p2)

2µL

] [
1 −

(
y

h

)2 ]
dz dy

Using a symbolic mathematics package to evaluate the integral, we find V̄ =
2
3 [h2(p1 − p2)/2µL]. Since Umax = h2(p1 − p2)/2µL, this result is normally written
as V̄ = 2

3Umax. In channel flow, the maximum velocity is 1.5 times the average velocity.
In Example 6.2, the velocity field for Poiseuille flow is given in cylindrical coordi-

nates by vr = vθ = 0, and vz(r) = [(p1 − p2)R2/4µL][1 − (r/R)2]. Choosing a
surface spanning the interior of the pipe and perpendicular to the flow direction, the
area is π R2, and we can write the dot product as u • n = vz(r)ez • ez =
[(p1 − p2)R2/4µL][1 − (r/R)2]. The integral defining the average velocity is

V̄ = 1

π R2

∫ 2π

0

∫ R

0

(p1 − p2)R2

4µL

[
1 −

( r

R

)2
]

r dr dθ

and evaluating this integral with a symbolic mathematics code gives V̄ =
1
2 [(p1 − p2)R2/4µL]. In Example 6.2, we showed that Umax = (p1 − p2)R2/4µL, so
that this result is normally written as V̄ = Umax/2. Thus, in Poiseuille flow the maxi-
mum velocity is twice the average velocity.



Thus the average velocity on a surface may be calculated from the integral

V̄ = 1

ρ A

∫
S

ρ(u • n) dS

Since density is constant, we can also write the preceding equation as

V̄ = 1

A

∫
S

(u • n) dS (6.43b)

The integral here can be recognized as the volume flowrate. Thus, our formal definition
of average velocity and its relationship to mass and volume flowrate is consistent with
Eqs. 6.41 and 6.42.

For a fluid whose density is not constant, an average velocity may be defined as the
value of velocity that reproduces the mass flowrate through the surface when multiplied
by ρ̄, the average fluid density on the surface, and surface area. Using the appropriate
convective flux integral for mass flowrate (see Table 6.2) we now have

Ṁ = ρ̄ AV̄ =
∫

S
ρ(u • n) dS (6.44a)

The average velocity is therefore defined by the integral

V̄ = 1

ρ̄ A

∫
S
ρ (u • n) dS (6.44b)

where the average density ρ̄ is defined by

ρ̄ = 1

A

∫
S

ρ dS (6.44c)

In engineering problems involving the use of average velocity in compressible flow, the
density on the surface of interest is often uniform. In that case Eq. 6.44b reduces to equa-
tion 6.43b because the density inside the integral is constant and equal to the average
density ρ̄.

6.9 SUMMARY

In the standard Eulerian description of fluid mechanics, a fluid is thought of as an indi-
visible, continuous material that occupies and moves through space under the action of
external and internal forces. The mathematical representation of fluid and flow proper-
ties in this description is identical to the field description of vector calculus. A solution
to a flow problem in the Eulerian description consists of knowing the scalar and vector
functions describing all the various fluid and flow properties as a function of space and
time. The primary variable in a discussion of fluid motion in the Eulerian description is
the fluid velocity u = u(x, t). In general, the Eulerian velocity field is a 3D, unsteady
vector field.
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In the Eulerian model, fluid acceleration is given by the equation a =
∂u/∂t + (u • ∇)u. The leading term is a partial time derivative of velocity, known as the
local acceleration, and the remaining term is the convective derivative of velocity,
known as the convective acceleration. The local acceleration is a contribution to the total
acceleration at a particular point in a flow resulting from a temporal change in the ve-
locity. For this contribution to exist, the velocity field must be a function of time. The
convective acceleration is a contribution to the total acceleration at a point in a flow
from the convection (movement) of fluid along the instantaneous streamline through the
point. A flow must be spatially nonuniform for this contribution to exist. The substantial
derivative, D( )/Dt, is defined as D( )/Dt = ∂( )/∂t + (u • ∇)( ). Thus, acceleration
is conveniently represented as the substantial derivative of velocity, a = Du/Dt.

A flow is characterized as 1D, 2D, or 3D according to the number of components
needed to describe its velocity field. To determine the minimum number of components
needed to describe a velocity field, it may be necessary to rotate the original Cartesian
coordinates or change to cylindrical coordinates to take advantage of spatial symmetry.
A uniform flow in a region has a velocity vector that is constant in magnitude and di-
rection throughout that region. An axisymmetric flow is described in cylindrical coordi-
nates by a velocity field that does not depend on the angular coordinate. A spatially pe-
riodic flow exhibits repetitive behavior over a space and is characterized by a velocity
field of the form u(x + x0, t) = u(x, t).

The term “fully developed flow” implies that the velocity field is not changing in
the flow direction; that is, the velocity vector is independent of the coordinate along the
flow direction. A fluid flow is said to be steady if the velocity field is independent of
time. A flow in which the velocity and fluid and flow properties are independent of time
is defined as a steady process. Temporally, periodic or pulsatile flow exhibits repetitive
behavior over time with a period τ such that u(x, t + τ) = u(x, t).

The boundary conditions that apply to the velocity field are referred to as the no-slip
and no-penetration conditions. In nearly all flows encountered in engineering, fluid does
not move relative to a solid surface in the tangential direction. Rather, the fluid sticks
to the surface, a phenomenon referred to as no-slip. From this we conclude that the
tangential component of velocity uT is equal to the tangential component of boundary
velocity UT . Since bulk fluid cannot penetrate an impermeable boundary, the normal
component of fluid velocity uN must match the normal boundary velocity UN . For a
viscous fluid in contact with a solid boundary, the complete no-slip, no-penetration
boundary condition may be summarized by saying that the velocity vector of the fluid on
the boundary is always equal to the velocity of the boundary at the same point.

The total rate at which a property crosses a surface in a flow is the sum of the
convective and diffusive transport. The convective transport is defined with the aid of
a convective flux vector qC . If ε represents the fluid property of interest per unit mass,
ρ is the fluid density, and u is the fluid velocity vector, then the convective flux vector
is qC = ρεu. The convective transport �C is given by the surface integral �C =∫

S ρε (u • n) dS. A surface integral of this type is referred to as a flux integral. Because
of the presence of the outward unit normal in the integrand, when a flux integral is eval-
uated for a closed surface it gives the net rate of transport of the property or substance
out of the closed volume bounded by the surface. A positive value for �C is therefore an
outflow. For the open surface, a positive value of �C represents the rate of transport
across the surface in the direction of the outward unit normal.
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Diffusive transport arises from the molecular-scale motion of fluid molecules.
The diffusive rate of transport at a point in a fluid is represented by a diffusive flux
vector qD. If D represents a scalar property field, the diffusive flux vector is written as
qD = kD∇ D, where kD is the coefficient of diffusion for the specific property. In a
continuum model, the two quantities transported by diffusion are heat and mass (of a
chemical species other than the host fluid, or other substance mixed in the fluid).
The diffusive transport �D for a surface is given by the surface integral �D =∫

S kD(∇D • n) dS. This integral defines the net rate of transport of a property across the
surface in the direction of n due to the random motion of fluid molecules.

Although there may be significant variations in fluid and flow properties on a sur-
face, it is often useful (and always possible) to define an average value of the normal
component of velocity on any surface. The average value is often used to describe the
convective transport of mass, momentum, and energy across the surface. For a surface
of area A, the mass flowrate created by fluid of constant density ρ moving across the sur-
face at average velocity V̄ is defined to be Ṁ = ρ AV̄ . The volume flowrate Q across
this same surface is defined by Q = AV̄ . If the velocity field is known, the average
velocity can be computed from a surface integral. For example, in a constant density
flow the average velocity is defined by V̄ = (1/A)

∫
S (u • n) dS.
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PROBLEMS

Section 6.2

6.1 The Eulerian velocity field can be visu-
alized using velocity vector plots, velocity
contour plots, or streamline plots. Define each
type of plot. Which type do you prefer? Why?

6.2 A certain Eulerian velocity field is
found to be three dimensional and time de-
pendent. Offer an interpretation of this obser-
vation. Can you think of an example of a ve-
locity field that may not be three dimensional?
How about an example of a velocity field that
may not be time dependent?

6.3 Consider the flow of fluid through the
cylindrical annulus as shown in Figure P6.1.
In cylindrical coordinates the velocity field
for this flow is

u = W0

[
1 −

(
r

RP

)2

+ 1 − κ2

ln(1/κ)
ln

(
r

RP

)]
ez

RP �RP

r

z

Figure P6.1



(a) Determine the location at which the max-
imum velocity occurs.

(b) Determine the magnitude of the maxi-
mum fluid velocity in this field.

(c) Sketch the velocity profile as a function of
the radial coordinate.

6.4 The Eulerian velocity field for upward
flow through a simple cylindrical pipe of
radius RP is given by

u = W0

[
1 −

(
r

RP

)2
]

ez

where W0 is a constant.
(a) Determine the location of the maximum

fluid velocity in this flow field.
(b) Determine the position of the minimum

fluid velocity in this flow field.
(c) Sketch (by hand or with a computer) the

velocity profile as a function of the radial
coordinate r (at constant z) for this flow
field.

6.5 Fully developed turbulent flow in a pipe
can be approximated by

u = W0

(
1 − r

R

)1/n

ez

where n is a function of Re and W0 is a
constant. Given that at Re ∼ 1 × 105, n = 7:
(a) Determine the location of the maximum

fluid velocity in this flow field.
(b) Determine the position of the minimum

fluid velocity in this flow field.
(c) Sketch (by hand or with a computer) the

velocity profile as a function of the radial
coordinate r (at constant z) for this flow
field.

6.6 The laminar flow of a falling film on a
flat surface is illustrated in Figure P6.2. The
Eulerian velocity field for this flow is given in
Cartesian coordinates as

u =
(

ρδ2g cos β

2µ

)[
1 −

(
x

δ

)2
]

k

(a) Determine the location of the maximum
fluid velocity in this flow field.

(b) Determine the position of the minimum
fluid velocity in this flow field.
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Figure P6.3

(c) Sketch (by hand or with a computer) the
velocity profile as a function of the coor-
dinate x (at constant z) for this flow field.

6.7 The adjacent flow of two immiscible
liquids between parallel horizontal flat plates
at low Reynolds numbers is illustrated in
Figure P6.3. The Eulerian velocity field for
this flow is given in Cartesian coordinates as

u1 =
(

C

µ1

)[(
2µ1

µ1 + µ2

)
.

+
(

µ1 − µ2

µ1 + µ2

)(
x

h

)
−
(

x

h

)2
]

k

u2 =
(

C

µ2

)[(
2µ2

µ1 + µ2

)

+
(

µ1 − µ2

µ1 + µ2

)(
x

h

)
−
(

x

h

)2
]

k

where u1 represents the velocity in fluid 1 u2

represents the velocity in fluid 2, and C is a
constant.
(a) Determine the location of the maximum

fluid velocity in this flow field. Assume
that the less dense fluid is also less
viscous.



(b) Determine the position of the minimum
fluid velocity in this flow field.

(c) Sketch (by hand or with a computer) the
velocity profile as a function of the coor-
dinate x (at constant z) for this flow field.

6.8 The flow of a falling film on the outside
of a vertical cylindrical tube at low Reynolds
numbers is illustrated in Figure P6.4. The
Eulerian velocity field for this flow is given in
Cartesian coordinates as

u =
(

ρgR2
P

4µ

)[
1 −

(
r

RP

)2

+ 2α2 ln

(
r

RP

)]
k

(a) Determine the location of the maximum
fluid velocity in this flow field.

(b) Determine the position of the minimum
fluid velocity in this flow field.

(c) Sketch (by hand or with a computer) the
velocity profile as a function of the coor-
dinate x (at constant z) for this flow field.

6.9 Figure P6.5 illustrates horizontal annu-
lar flow with the inner cylinder moving
axially with velocity V. The Eulerian velocity
field for this flow at low Reynolds numbers is
given in cylindrical coordinates as

u = V

[
ln(r/R)

ln κ

]
ez

(a) Determine the location of the maximum
fluid velocity in this flow field.

(b) Determine the position of the minimum
fluid velocity in this flow field.

(c) Sketch (by hand or with a computer) the
velocity profile as a function of the
coordinate x (at constant z) for this flow
field.
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6.10 Figure P6.6 illustrates pressure-driven
flow between horizontal parallel plates when
the top plate is moving parallel to the bottom
plate with velocity V. The Eulerian velocity
field for this flow at low Reynolds numbers is
given in Cartesian coordinates as:

u =
[

C(x2 − hx) + V

(
x

h
− 1

)]
k

where C is a constant.
(a) Determine the location of the maximum

fluid velocity in this flow field.
(b) Determine the position of the minimum

fluid velocity in this flow field.
(c) Sketch (by hand or with a computer) the

velocity profile as a function of the coor-
dinate x (at constant z) for this flow field.

6.11 Flow between two vertical concentric
cylinders, with the outer cylinder rotating, is
illustrated in Figure P6.7. At low Reynolds
numbers the Eulerian velocity field is given
by

u =
{
ΩO R

[
(κ R/r − r/κ R)

(κ − 1/κ)

]}
eθ

r

z

RP

�RP

Figure P6.4

V

p0p1 (� p0) hFluid

Moving to plate

Stationary bottom platez

x

Figure P6.6

V

Fluid at
p0

Fluid at
p0

Rod of radius �R

Cylinder of
inside radius R

Figure P6.5

(a) Determine the location of the maximum
fluid velocity in this flow field.

(b) Determine the position of the minimum
fluid velocity in this flow field.



(c) Sketch (by hand or with a computer) the
velocity profile as a function of the coor-
dinate r (at constant θ ) for this flow field.

6.12 Flow around a horizontal cylinder
is illustrated in Figure P6.8. In cylindrical
coordinates the Eulerian velocity field is
given by

u = V∞ cos θ

[
1 −

(
R

r

)2
]

er

− V∞ sin θ

[
1 +

(
R

r

)2
]

eθ

(a) Determine the location of the maximum
fluid velocity in this flow field.

(b) Determine the position of the minimum
fluid velocity in this flow field.
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(c) Sketch (by hand or with a computer) the
velocity profile as a function of the coor-
dinate r at θ = 90° for this flow field.

6.13 Creeping (very low Re) flow around a
sphere is illustrated in Figure P6.9. In spheri-
cal coordinates the Eulerian velocity field is
given by

R
�R

�

r

Rotating outer
cylinder

Stationary
inner cylinder


0

Figure P6.7

V�

r

�

R

Figure P6.8

(x, y, z) or
(r, �, 
)

x

r

z

y

Projection
of point on
xy plane

Fluid approaches
from below with
velocity V� V�

Sphere of
radius R




�

Figure P6.9

6.14 The Eulerian velocity field u =
C[x i − yj] is characteristic of what is known
as “flow in a corner.” Generate a visual
representation of this velocity field (in the
first quadrant) that can be used to justify this
name.

u = V∞ cos θ

[
1 − 3

2

(
R

r

)
+ 1

2

(
R

r

)3
]

er

− V∞ sin θ

[
1 − 3

4

(
R

r

)
+ 1

4

(
R

r

)3
]

eθ

(a) Determine the location of the maximum
fluid velocity in this flow field.

(b) Determine the position of the minimum
fluid velocity in this flow field.

(c) Sketch (by hand or with a computer)
the velocity profile as a function of the
coordinate r (at θ = φ = 0) for this flow
field.



6.15 The flow between parallel disks, one of
which is rotating, is illustrated in Figure P6.10.
The Eulerian velocity field for this flow is
given by:

u =
(

r zΩ

h

)
eθ

(a) Determine the location(s) of the maxi-
mum fluid velocity in this flow field.

(b) Determine the position(s) of the mini-
mum fluid velocity in this flow field.

(c) Sketch (by hand or with a computer) the
velocity profile as a function of the coor-
dinate r (constant z) for this flow field.

(d) Sketch (by hand or with a computer) the
velocity profile as a function of the coor-
dinate z (constant r) for this flow field.

6.18 For the following velocity field:
(a) Determine the acceleration. Note the local

and convective components.

u = W0

[(
h − x

h

)1/n
]

k

(b) Determine the location of the maximum
acceleration.

6.19 For the following velocity field:
(a) Determine the acceleration. Note the local

and convective components.

u = (C sin ωt) [x i − yj]

(b) Determine the location of the maximum
acceleration.

6.20 For the following velocity field:
(a) Determine the acceleration. Note the local

and convective components.

u =
[
ΩO R

(
κ R/r − r/κ R

κ − 1/κ

)]
eθ

(b) Determine the location of the maximum
acceleration.

Section 6.5

6.21 Reconsider the velocity field given in
Problems 6.13. For this velocity field deter-
mine all the following.
(a) 1D, 2D, or 3D flow? (Justify your response.)
(b) Steady or unsteady flow?
(c) Fully developed flow?
(d) Uniform flow?
(e) Axisymmetric flow?

6.22 Reconsider the velocity field given in
Problem 6.6. For this velocity field determine
all the following.
(a) 1D, 2D, or 3D flow? (Justify your response.)
(b) Steady or unsteady flow?
(c) Fully developed flow?
(d) Uniform flow?
(e) Axisymmetric flow?
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Top disk
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Figure P6.10

6.16 The Eulerian velocity field for a
tornado can be approximated as

u =
(−C1

r

)
er +

(−C2

r

)
eθ

where C1 and C2 are constant.
(a) Determine the units for the two constants.
(b) Generate a plot that you feel adequately

represents this velocity field.

Section 6.3

6.17 For the following velocity field:
(a) Determine the acceleration. Note the local

and convective components.

u = W0

[
1 −

(
r

RP

)2
]

ez

(b) Determine the location of the maximum
acceleration.



6.23 Reconsider the velocity field given in
Problem 6.15. For this velocity field deter-
mine all the following.
(a) 1D, 2D, or 3D flow? (Justify your response.)
(b) Steady or unsteady flow?
(c) Fully developed flow?
(d) Uniform flow?
(e) Axisymmetric flow?

6.24 Reconsider the velocity field given in
Problem 6.18. For this velocity field deter-
mine all the following.
(a) 1D, 2D, or 3D flow? (Justify your response.)
(b) Steady or unsteady flow?
(c) Fully developed flow?
(d) Uniform flow?
(e) Axisymmetric flow?

6.25 Reconsider the velocity fields given
in Problems 6.4 and 6.5. In which case is
the assumption of uniform flow more reason-
able?

6.26 Consider the Eulerian velocity field
given by

u = C1reθ + C2

[
1 −

(
r

R

)2]
ez

Use the concepts discussed in Section 6.5 of
the text to fully classify this flow. That is, is it
1D, 2D, or 3D? Steady or unsteady? Periodic?
Axisymmetric? . . . In addition, offer a physi-
cal interpretation of this velocity field. What
sort of flow does it represent?

6.27 Consider the Eulerian velocity field
given by

u = Ctxi + 0j + Cztk

Use the concepts discussed in Section 6.5 of
the text to fully classify this flow. That is, is it
1D, 2D, or 3D? Steady or unsteady? Periodic?
Axisymmetric?

6.28 Consider the Eulerian velocity field
given by

u = C1 sin

[
ω

(
t − y

C2

)]
i + C2j

(a) Use the concepts discussed in Section 6.5
of the text to fully classify this flow. That

is, is it 1D, 2D, or 3D? Steady or un-
steady? Periodic? Axisymmetric?

(b) What are the dimensions for the constants
C1 and C2?

6.29 Consider the Eulerian velocity field
given by

u = C1txi + 2C2x yj − C3t2zk

Use the concepts discussed in Section 6.5 of
the text to fully classify this flow. That is, is it
1D, 2D, or 3D? Steady or unsteady? Periodic?
Axisymmetric?

6.30 The flow of water through a cylindri-
cal pipe is controlled by a valve. When the
valve is open, the Eulerian velocity field in the
pipe can be approximated by

u = C1(1 − e−t/C2) k

Use the concepts discussed in Section 6.5 of
the text to fully classify this flow. That is, is it
1D, 2D, or 3D? Steady or unsteady? Periodic?
Axisymmetric?

6.31 An analysis of the flow of gases
through the exhaust pipe of a car shows that
the corresponding Eulerian velocity field is
approximately described by the equation

u = C1[1 + C2e−C3t sin(C4t)] k

(a) Use the concepts discussed in Section 6.5
of the text to fully classify this flow. That
is, is it 1D, 2D, or 3D? Steady or un-
steady? Periodic? Axisymmetric?

(b) What are the dimensions for the constants
C1, C2, C3, and C4?

Section 6.6

6.32 Explain the physical basis for the no-
slip and no-penetration boundary conditions.

6.33 Given the validity of the no-slip and
no-penetration boundary conditions, what can
you say about the relationship between the
fluid velocity vector on a solid surface and
the velocity vector of that solid surface at the
same point?
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6.34 List several flow situations, either real
or simplified models, for which the no-slip or
no-penetration boundary conditions would
not be satisfied.

6.35 Verify that the no-slip and no-pene-
tration boundary conditions are satisfied for
the velocity fields in both
(a) Poblem 6.5
(b) Problem 6.14

6.36 Verify that the no-slip and no-
penetration boundary conditions are satisfied
for the velocity fields in both
(a) Problem 6.6
(b) Problem 6.15

6.37 Verify that the no-slip and no-pene-
tration boundary conditions are satisfied for
the velocity fields in both
(a) Problem 6.10
(b) Problem 6.16

6.38 Verify that the no-slip and no-pene-
tration boundary conditions are satisfied for
the velocity fields in both
(a) Problem 6.13
(b) Problem 6.18

6.39 Comment on the likely locations of
the physical boundaries associated with the
velocity field 

u = C1reθ + C2

[
1 −

(
r

R

)2
]

ez

6.40 Comment on the likely locations of
the physical boundaries associated with the
velocity field u = Ctxi + 0j + Cztk.

6.41 Comment on the likely locations of
the physical boundaries associated with the
velocity field 

u = C1 sin

[
ω

(
t − y

C2

)]
i + C2j

6.42 Is it possible for the Eulerian velocity
field u = C1[1 + C2e−C3t sin(C4t)]k to be a

complete representation of the flow field in an
actual exhaust pipe? Why or why not?

Section 6.7

6.43 Calculate the mass flux through a
cylindrical annulus using the velocity profile
given in Problem 6.3.

6.44 Calculate the mass flux for the lami-
nar flow of a falling film using the velocity
profile given in Problem 6.6.

6.45 Calculate the mass flux for the lami-
nar flow of a falling film on the outside of a
vertical cylindrical tube using the velocity
profile given in Problem 6.8.

6.46 Calculate the mass flux for laminar
flow between parallel flat plates with the top
plate moving using the velocity profile given
in Problem 6.10.

6.47 Determine expressions for the mass,
volume, and momentum convective flux vec-
tors for the flow described in Problem 6.4.
Also calculate the total volume flux through a
cross section of the pipe.

6.48 Determine expressions for the mass,
volume, and momentum convective flux vec-
tors for the flow described in Problem 6.6.
Also calculate the total momentum flux
through a cross section of the film.

6.49 Determine expressions for the mass,
volume, and momentum convective flux vec-
tors for the flow described in Problem 6.8.
Also calculate the total volume flux through a
cross section of the film.

6.50 Determine expressions for the mass,
volume, and momentum convective flux vec-
tors for the flow described in Problem 6.10.
Also calculate the total momentum flux
through a cross section of the channel.

6.51 What is the relationship between ε
and λ? Give examples of problems for which
you would prefer the use of each property
type.
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6.52 Describe the procedure you would
use to calculate the total mass flux through a
moving surface. What changes will be neces-
sary if you are calculating a total momentum
flux through a moving surface?

6.53 Describe the mechanisms associated
with convective and diffusive transport in
fluids.

6.54 The Tar Foot Consulting Company
has applied for a patent for a device that mea-
sures the magnitude and direction of convec-
tive transport of any fluid property through an
impermeable boundary. Would you like to
purchase the rights for this device? Why or
why not?

6.55 In an attempt to recoup loses from an
unsuccessful venture, the Tar Foot Consulting
Company has applied for a patent for a device
that measures the magnitude and direction of
diffusive mass and momentum transport
through either a permeable or impermeable
boundary. Would you like to purchase the
rights for this device? Why or why not?

6.56 The Blue Devil Consulting Company
has applied for a patent for a microscopic de-
vice that measures the magnitude and direc-
tion of the diffusive transport of oxygen
through a permeable membrane. Would you
like to purchase the rights for this device?
Why or why not?

6.57 The laminar free convection flow be-
tween hot and cold vertical plates is illustrated
in Figure P6.11. The temperature field is given
by the equation:

T = 0.5(TH + TC ) −
[

0.5(TH − TC )
x

W

]
(a) Sketch the temperature profile as a func-

tion of x.
(b) Do the fluid temperature values at

x = +W and x = −W agree with your
intuition? Why or why not?

(c) Calculate the diffusive heat flux per unit
area to the hot plate.

6.58 In the text we investigated the para-
bolic velocity profile associated with the lam-
inar flow of fluid through a circular pipe. If the
pipe wall is heated in such a way the wall heat
flux is independent of the axial position (e.g.,
via a resistance heating element wrapped
around the pipe at constant pitch), the temper-
ature profile within the fluid is given by

T = Ts − C0

(
3R2

p

16
− r2

4
+ r4

16R2
p

)

where Ts is the temperature of the pipe sur-
face and C0 is a constant.
(a) What are the dimensions for C0?
(b) Sketch the temperature profile as a func-

tion of r for constant axial position.
(c) Compare and discuss the shapes of the

temperature and velocity profiles.
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(d) Calculate the diffusive heat flux per unit
area to the pipe wall.

6.59 Reconsider the flow field illustrated in
Figure P6.2. Suppose that the free surface of
the fluid is maintained at constant temperature
T0 and the surface at x = δ is maintained at a
higher constant temperature Tδ . (The velocity
profile will be different from that previously
described for a constant temperature film but
that change is not relevant for this problem.)
In this case the Eulerian temperature field is
given by:

T = T0 + (TL − T0)

(
x

δ

)
The corresponding viscosity field is given by

µ = µ0

(
µL

µ0

)x/δ

where µ0 is the fluid viscosity at x = 0 and
µL is the fluid viscosity at x = δ.
(a) Determine the locations of the minimum

and maximum temperature in this flow.
(b) Determine the locations of the minimum

and maximum viscosity in this flow.
(c) Compare and discuss the shapes of the

temperature and viscosity profiles.
(d) Calculate the diffusive heat flux per unit

area of the solid surface.

6.60 The flow of chilled air between two
concentric porous spherical shells is illus-
trated in Figure P6.12. The outer surface of
the inner shell is maintained at a constant low
temperature TL , while the inner surface of the
outer shell has a constant temperature of TH .
The radii of the inner and outer shells are re-
ceptively κ R and R. Air is supplied to the in-
terior of the inner shell and flows radially out-
ward through the porous inner shell toward
the outer shell and then out of the system
through the outer shell. The Eulerian tempera-
ture profile for this flow is given by

T − TH

TL − TH
= e−C/r − e−C/R

e−C/κ R − eC/R

where C is a constant that reflects the thermal
properties of the gas and the mass flowrate. If

C is small, the temperature field can be ap-
proximated by the expression:

T − TH

TL − TH
= 1/r − 1/R

1/κ R − 1/R

Calculate the diffusive heat flux per unit area
at the outer shell walls.

Section 6.8

6.61 Determine the mass flowrate, volume
flowrate, and average velocity for the laminar
flow of a falling film on a flat surface in
Problem 6.6.

6.62 Determine the mass flowrate, volume
flowrate, and average velocity for the adjacent
flow of two immiscible liquids between paral-
lel horizontal flat plates at low Reynolds num-
ber in Problem 6.7.

6.63 Determine the mass flowrate, volume
flowrate, and average velocity for the laminar
flow of a falling film on the outside of a verti-
cal cylindrical tube described in Problem 6.8.

6.64 Determine the mass flowrate, volume
flowrate, and average velocity for the horizon-
tal annular flow with the inner cylinder mov-
ing described in Problem 6.9.
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6.65 Determine the mass flowrate, volume
flowrate, and average velocity for flow be-
tween parallel flat plates with the top plate
moving described in Problem 6.10.

6.66 Water is flowing through a cylindrical
pipe of diameter 10 in. at the rate of
4.5 slugs/s. Determine the average fluid
velocity. How long would it take to fill a
55-gallon drum with water from this pipe?

6.67 Water is flowing through a rectangu-
lar open channel at a velocity of 0.5 m/s. If the
depth of the channel is 0.4 m, calculate the
mass flowrate per unit width of channel.

6.68 Estimate the mass and volume
flowrates and the average fluid velocity for
gasoline moving through a typical gas pump
hose. State all your assumptions.

6.69 Estimate the mass and volume
flowrates and the average fluid velocity for
water moving through a typical garden hose.
Now estimate the time required to fill a rec-
tangular swimming pool of dimensions 5 m

by 15 m to a depth of 1.5 m using this hose.
State all your assumptions.

6.70 Estimate the average velocity through
the opening of a typical plastic gallon milk jug
if the jugs are filled in 7.5 s at the dairy. Would
it take more or less than half this time to fill a
half-gallon cardboard container? Why?

6.71 What is the relationship between the
average fluid velocity and the maximum fluid
velocity in the flow described in Problem 6.3?

6.72 What is the relationship between the
average fluid velocity and the maximum fluid
velocity in the flow described in Problem 6.5?

6.73 What is the relationship between the
average fluid velocity and the maximum fluid
velocity in the flow described in Problem 6.7?

6.74 What is the relationship between the
average fluid velocity and the maximum fluid
velocity in the flow described in Prob-
lem 6.10?
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7 CONTROL VOLUME ANALYSIS

7.1 Introduction
7.2 Basic Concepts: System and Control Volume
7.3 System and Control Volume Analysis
7.4 Reynolds Transport Theorem for a System
7.5 Reynolds Transport Theorem for a Control Volume
7.6 Control Volume Analysis

7.6.1 Mass Balance
7.6.2 Momentum Balance
7.6.3 Energy Balance
7.6.4 Angular Momentum Balance

7.7 Summary
Problems

7.1 INTRODUCTION

Control volume analysis is a tool for analyzing flow problems that applies the funda-
mental laws governing the behavior of a fluid to a region of space. The first of these
laws, conservation of mass, states that in a moving fluid, mass is neither created nor de-
stroyed. The second, conservation of momentum, is established by applying Newton’s
second law to a volume of fluid. The result is that the time rate of change of linear mo-
mentum of a volume of fluid is equal to the sum of the body and surface forces acting on
the fluid. Conservation of energy, which is the result of applying the laws of thermody-
namics to a fluid, states that the time rate of change in the internal plus kinetic energy of
a volume of fluid is equal to the rate at which heat is added plus the rate at which work
is done on the fluid by body and surface forces. The fourth law, conservation of angular
momentum, equates the time rate of change of the angular momentum of a volume of
fluid to the sum of the torques acting on the fluid.
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A region of space through which fluid flows is
known as a control volume. Applying the four conser-
vation laws to a control volume results in integral equa-
tions known as the mass, momentum, energy, and an-
gular momentum balances. These equations are derived
by using the Reynolds transport theorem to relate the
time rate of change of the total amount of some prop-
erty in a fluid system to a coincident control volume.
We begin our discussion of control volume analysis in
Section 7.2 by describing the differences between a
fluid system and a control volume; then we derive the
mass, momentum, energy, and angular momentum bal-
ances and illustrate their application to problems of en-
gineering interest.

7.2 BASIC CONCEPTS: SYSTEM AND CONTROL VOLUME

Most engineers encounter the concepts of system and control volume in a thermody-
namics course, where a system is defined to be a fixed identifiable quantity of matter.
This body of matter has a boundary surface that separates its constituent particles from
everything external. Mass may not cross this boundary, but other interactions of the sys-
tem and its surroundings are permitted. A fluid system is a fixed identifiable volume of
fluid; thus a fluid system always contains the same fluid particles. This volume is able to
move and deform as illustrated in Figure 7.1, but in doing so, the original fluid particles
must remain within the volume. It is important to realize that a fluid system is assumed
to contain spatially and temporally variable velocity and property fields. Thus, the mo-
mentum and kinetic energy of different fluid particles in a fluid system will vary, as will
all other properties such as density, pressure, and temperature.

When we use the term “system” in this book, we are referring to a fluid system: a
fixed identifiable volume of fluid with spatially and temporally varying properties, one
that may move and deform. Since by definition fluid particles do not leave a system,
there can be no convective transport across the system boundary. However, other types
of transport and interaction across the system boundary are allowed. For example, there
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Control volume analysis has a long history
of effective use as one of the most
powerful and frequently used tools in the
preliminary engineering analysis of flow
problems. It provides insight into the global
characteristics of a flow and is one of the
most important analytical methods in fluid
mechanics. Since control volume analysis
is accomplished with pencil and paper, it is
economical and fast. Most engineers
would agree that mastery of control vol-
ume analysis is a basic skill every engineer
working in fluid mechanics should posses.
As you will discover, control volume analy-
sis is often the source of empirical results
of the type discussed in the case studies
of Chapter 3.
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Figure 7.1 A system deforming as it passes through a sudden expansion.



may be a transport of energy across a system boundary by heat conduction, and work
may be done on the fluid within a system by body and surface forces.

A control volume (abbreviated CV throughout this chapter) is a region in space of
any size or shape through which fluid flows. As shown in Figure 7.2, the extent of the
CV is defined by its boundary, the control surface. A section of the control surface at
which fluid enters or leaves a CV is called a port. By definition then, convective trans-
port of a fluid property can occur only at a port. However, diffusive transport may occur
at a port or elsewhere on a control surface. Knowledge of the velocity profile at a port is
an important part of CV analysis. It is standard practice to select the port of a CV at a
right angle to the flow direction to simplify the calculation of convective transport there
(see Figure 7.2). An engineer must make use of information gathered from experiment,
numerical simulation, or experience to model the velocity distribution at a port. In a tur-
bulent flow, it is usually appropriate to model the velocity profile at a port as a uniform
flow at a cross section. In laminar flow, a uniform flow may be unsatisfactory, and an ap-
proximate or exact velocity profile should be specified. Knowledge of the profiles of
pressure, stress, density, temperature, and other fluid properties at ports also play a role
in CV analysis. In the absence of detailed information, uniform profiles of velocity and
other flow properties at ports are often assumed for both laminar and turbulent flows.

In some cases an engineer will select a CV completely filled with fluid. It is also pos-
sible, however, to define a mixed CV containing fluid as well as all or part of a physical
device that is in contact with the fluid. These two CV types are illustrated in Figure 7.3A
and 7.3B. If a CV is fixed in space, meaning that it is stationary, it is called a fixed CV. By
definition, neither the volume nor shape of a fixed CV can change. In contrast, a moving
CV is one that is moving through space as a whole relative to the reference frame of
the observer (Figure 7.3C). The size and shape of a moving CV do not change; thus the
velocity of each point on a moving control surface is the same and generally known from
the problem statement. A moving CV is useful, for example, when one is analyzing the
flow associated with an aircraft flying at constant velocity through stationary air. In that
case it is customary to surround the aircraft with a CV that moves along with it.

7.3 SYSTEM AND CONTROL VOLUME ANALYSIS

Although the system and control volume approaches are equally valid choices for ana-
lyzing the behavior of a fluid, they are based on different conceptual models. This dif-
ference is evident if you remember that fluid is allowed to flow across the boundary of a
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CV but not across the boundary of a system. How do we choose between system and
control volume analysis in a given problem? Before we answer this question, keep in
mind that the outcome of a fluid dynamic analysis must logically be independent of the
choice of a system or CV approach. Thus, we expect the two approaches to yield identi-
cal results. The choice between system and CV approaches is therefore made for reasons
of convenience and economy of effort. Making this choice for a specific problem is
guided by an understanding of the basic characteristics of system and CV analysis, and
experience.

To illustrate the issues involved in choosing a type of analysis, consider the process
of compressing a gas by means of a single stage piston compressor like those sold in
most hardware and auto-parts stores (see Figure 7.4A). A piston compressor operates as
follows. As the piston is retracted, air is drawn into the cylinder through a valve, caus-
ing the cylinder to fill with air at ambient pressure. As the piston reverses its motion, the
inlet valve closes. The piston then moves forward, and the air in the cylinder is com-
pressed to a higher pressure and passes through a check valve into a storage tank. Sup-
pose we are interested in the compression process from the moment the inlet valve
closes until the check valve opens. How might we select an appropriate system or CV in
an engineering problem like this and perform the two types of analysis?

Let us consider the problem of choosing an appropriate system and CV first, then il-
lustrate the analysis using each. Suppose we select a system consisting of all the air in
the cylinder, as shown in Figure 7.4B. During the compression, the system deforms (i.e.,
changes shape and volume), but the deformation is limited by the solid boundaries
formed by the piston surface, the walls of the cylinder, and the cylinder head. This de-
formation is not difficult to specify, for if we know the speed of the piston we know the
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shape and volume of the system at all times in this interval. Therefore, the use of a sys-
tem analysis to describe the fluid dynamics and thermodynamics of this part of the com-
pression process appears to be a viable option. However, notice that a system analysis of
the single stage piston compressor through an entire cycle must include more than just
what happens to the air during the isolated compression process. Certainly frictional
losses will be incurred as the air travels through the inlet manifold, inlet valve, and
check valve. If we define a set of air particles (a system filled with air) just before it en-
ters the inlet manifold as shown in Figure 7.4C, it is evident that the deformation of this
system is so severe that we are unable to specify it. That is, we do not know the shape or
size of the system for all times in the interval of interest. If we cannot specify the defor-
mation of a system as a function of time, we cannot use the system approach. Thus,
while the system approach appears to be viable for analyzing the isolated compression
process, it is unsuited to a broader analysis of the flow of air through the compressor.

Can we select a fixed CV to analyze the overall compression process? One CV
choice is shown in Figure 7.5. The fixed CV includes the entire machine and cuts across
the intake port as well as across the check valve port. Since this CV encloses more than
just fluid, it is an example of a mixed CV. Air crosses the two ports, but these are the only
sections of the control surface at which a convective mass transport of air occurs. It also
appears that an analysis of the isolated compression process using a mixed CV is feasible.
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In this application, both the system and CV approaches appear to be feasible for
analyzing the isolated compression; but because of the severe deformation experienced
by a system, the mixed CV looks like a better choice for the full cycle analysis.

Let us now analyze mass conservation in the isolated compression process, using
the system and a fixed CV containing fluid only. Consider first the system shown in
Figure 7.6A. The mass M of a system is constant; thus the law of mass conservation for
any system is M = constant, which can also be expressed in differential form as
d M/dt = 0. Assuming that the gas density at any moment in time is spatially uniform
in the cylinder, the total mass of gas in the cylinder is 

M(t) = ρ(t)l(t)A (7.1)

where ρ(t) is the gas density in the cylinder, l(t) is the distance between the piston and
the cylinder head, and A is the cylinder cross-sectional area. Since M = constant for a
system, the productρ(t)l(t)A is a constant, so the law of mass conservation in this case
can be written as ρ(t)l(t)A = constant. Alternately, since d M/dt = 0, applying the
time derivative directly to Eq. 7.1 gives l(t)(dρ/dt) + ρ(t)(dl/dt) = 0, and after rear-
ranging, we obtain

1

ρ(t)

dρ

dt
= − 1

l(t)

dl

dt
(7.2)

This form of the mass conservation equation relates the fractional time rate of change in
density to the fractional time rate of change of the distance l(t) . The word “fractional”
here indicates that on each side of this equation, the time rate of change of the variable is
divided by the value of the variable, giving a result with the dimension of inverse time.

Additional insight into the compression process can be gained from further manip-
ulation of Eq. 7.2. Since l(t) defines the position of the piston, the time derivative of
l(t) is dl/dt = −U(t) , where U(t) is the speed of the piston. Noting that the volume
of the system is given by –V (t) = l(t)A , we can now write Eq. 7.2 in terms of the piston
speed and volume as

–V (t)
dρ

dt
= ρ(t)AU(t) (7.3)

This version of the mass conservation equation is equivalent to Eq. 7.2, but it provides
a relationship between the time rate of change of gas density in the cylinder and the
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physical parameters defining the cylinder geometry, piston motion, and air density. This
completes our system approach to mass conservation analysis. Notice that the system
geometry, movement, and deformation in this example is simple enough to allow us to
execute a system analysis easily.

Let us now use a CV to perform a mass conservation analysis of the same problem.
At a given time, we chose a CV as shown by the dashed line in Figure 7.6B. The control
surface encloses all the gas in the cylinder and passes just in front of the moving piston
and just inside the cylinder walls. It can be seen that this is a fixed CV containing fluid
only, which coincides with the system defined earlier. Since the piston is displacing fluid
across an adjacent section of the stationary control surface, there is a convective mass
transport occurring on the port just in front of the advancing piston, (see Figure 7.6C).
The fact that the piston will eventually cross the control surface does not concern us be-
cause the CV analysis is performed at a single instant of time. Assuming a uniform flow
across this port, and a spatially uniform gas density in the cylinder, we can use the ap-
propriate integral in Table 6.2 to determine that the convective mass transport rate across
the port is �C = −ρ(t)AU(t) . There is no mass transport on the remaining control
surfaces because they are located at stationary solid boundaries, and the normal compo-
nent of fluid velocity is zero on these surfaces by the no-penetration condition. We see
that the piston motion enters the CV analysis by creating a flow of air across the section
of the control surface adjacent to it.

At this point we must temporarily suspend our CV analysis because we have yet to
formulate a statement of mass conservation for a fixed CV. Although the magnitude of
the convective mass transport across the entire control surface, ρ(t)AU(t) , appears in
the mass conservation equation for a system, Eq. 7.3, how does the other term in this
equation, i.e., –V (t)(dρ/dt) , enter a CV analysis? At this point we do not know because
all four conservation laws are stated only for a system. What form will the laws take for
a CV? To answer this question, you must understand the Reynolds transport theorem.
There are two forms of this theorem, one for a system and one for a CV. Together they
allow us to write the conservation laws for a control volume that coincides with a sys-
tem, thus providing a link between system and CV analysis. In the next section we dis-
cuss the theorem in system form.

7.4 REYNOLDS TRANSPORT THEOREM FOR A SYSTEM

Consider a system to be analyzed by an observer at rest in the reference frame of the co-
ordinates. For this observer, the fluid velocity field u(x, t) describes the velocity of the
fluid inside and on the boundary of the system. The system moves and deforms because
of this velocity field, but it always contains the same fluid particles. Let Esys represent
any extensive fluid property, defined to be the total amount of the property in the system
at a certain instant of time. We can calculate Esys by dividing the system into an infinite
number of volume elements of size dV . Then the amount of property in a volume ele-
ment located at position x is given by ρ(x, t)ε(x, t) dV, where ε is the appropriate
intensive (per unit mass) variable representing the property. The total amount of the
property in the system is then given by Esys = ∫R(t) ρε dV , where R(t) is the region
occupied by the system.
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Now suppose we want to write the time rate of change of the total amount of some
property in a system at a certain instant of time. This time rate of change is given by

d Esys

dt
= d

dt

∫
R(t)

ρε dV

The direct evaluation of the time derivative of this integral over a system is often diffi-
cult because the system is moving, its boundary is changing shape, and the integrand is
also changing in time.

The Reynolds transport theorem allows us to evaluate this time rate of change in a
way that avoids the difficulties just mentioned. The theorem states that the time rate of
change in the total amount of a property in a system is given by

d Esys

dt
=
∫

R(t)

∂

∂t
(ρε) dV +

∫
S(t)

(ρε)(u • n) dS (7.4)

where the labels R(t) and S(t) on the integral signs indicate that the integrations are to be
performed over the volume of the system and over its surface. The theorem shows that
the time rate of change in the total amount of a property in a system may be calculated
as the sum of two integrals, each of which is evaluated with the system frozen in the vol-
ume and shape it has at the instant of time in question. The fluid velocity and property
fields refer to the values seen by an observer at rest with respect to the system. The vol-
ume integral in Eq. 7.4 accounts for the instantaneous change in the total amount of
property within the system due to temporal variations in fluid properties. The surface in-
tegral accounts for the contribution from the deformation of the system due to the in-
stantaneous motion of its boundaries. Equation 7.4 the Reynolds transport theorem for a
system, allows us to calculate the time rate of change in the total amount of a property
in a system even when the system deformation is complex. However, the more impor-
tant version of the theorem is the control volume form, discussed next.

7.5 REYNOLDS TRANSPORT THEOREM FOR A CONTROL VOLUME

Consider an arbitrary system indicated by the solid line in Figure 7.7, and suppose there
is a fixed CV that instantaneously coincides with this system as indicated by the dashed
line. The CV and the observer are at rest with respect to the coordinates. If we calculate
the time derivative of some total property in this system by using the Reynolds transport
theorem for a system, then according to Eq. 7.4 we obtain

d Esys

dt
=
∫

R(t)

∂

∂t
(ρε) dV +

∫
S(t)

(ρε)(u • n) dS

Since the system and the fixed CV coincide at this specific instant in time, the value of a
fluid property at any point in the system is the same as the value of that property at the
same point within the CV. Thus, the two integrals over the system may be interpreted as
applying to the coincident CV. We conclude that the Reynolds transport theorem for a
system also provides the following relationship between a time rate of change for a
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system and two integrals over a fixed coincident CV:

d Esys

dt
=
∫

CV

∂

∂t
(ρε) dV +

∫
CS

(ρε)(u • n) dS

(7.5)

This result is the Reynolds transport theorem for a CV, one of the most important equa-
tions in fluid mechanics. The labels CV and CS on the integral signs indicate that the in-
tegrations are to be performed over the control volume and control surface, with the
fluid velocity and property fields referring to the values seen by an observer at rest with
respect to the fixed CV.

The volume and surface integrals in the Reynolds transport theorem for a CV have a
physical interpretation different from the corresponding integrals in the system formula-
tion of the theorem. To understand the meaning of the volume integral in Eq. 7.5, let ECV

represent the total amount of a fluid property in a fixed CV at a certain time. Then ECV is
defined by the volume integral

ECV =
∫

CV
(ρε) dV (7.6)

and the time rate of change of the total amount of this property in the control volume is
given by

d ECV

dt
= d

dt

∫
CV

(ρε) dV

Since the CV is a fixed region in space, the time derivative may be put inside the inte-
gral sign, allowing us to write this as

d ECV

dt
=
∫

CV

∂

∂t
(ρε) dV (7.7)

Comparing Eqs. 7.7 and 7.5, we conclude that the volume integral is an accumulation
term that represents the rate at which the total amount of a fluid property within the fixed
CV is changing with time. A positive value for the accumulation term represents an in-
crease of the selected property within the CV.
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Figure 7.7 An arbitrary system and its 
coincident CV. 

System

S

V
CV

n

The derivation of the Reynolds transport
theorem for a CV provided here relies on
the system version of the theorem. It is
also possible to derive the CV version
directly.
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Next consider the surface integral in Eq. 7.5, 
∫

CS (ρε)(u • n) dS . From our discus-
sion of convective transport in Section 6.7.1, we recognize that this integral defines the
net outward convective transport of the fluid property represented by ε across the fixed
control surface. Representing the outward convective transport rate over the entire con-
trol surface with the symbol �CV, we can write

�CV =
∫

CS
(ρε)(u • n) dS (7.8)

A positive value for �CV represents a net outflow of property from the CV. Substituting
Eqs. 7.7 and 7.8 into Eq. 7.5 allows us to write the Reynolds transport theorem for a con-
trol volume as

d Esys

dt
= d ECV

dt
+ �CV (7.9)

We see that the rate of increase in the total amount of fluid property in a system is
equal to the rate of increase in the total amount of this property in the coincident CV
(accumulation), plus the instantaneous outflow of the fluid property through the control
surface (convective transport). The mass, momentum, energy, and angular momentum
balances for a CV developed later in this chapter are all based on Eq. 7.5; hence each
balance will include an accumulation term and a transport term.

Because of the prevalence of steady state operation of fluid-handling devices of all
types, as well as operation in a periodic or cyclic mode for which the time-averaged fluid
properties within a CV are constant, we may consider the flow in such devices to be a
steady process. By definition, the time rate of change of the amount of a fluid property
or other transportable substance in a fixed CV in a steady process is zero. Thus in a
steady process, we will always assume that

d ECV

dt
=
∫

CV

∂

∂t
(ρε)dV = 0 (7.10)

EXAMPLE 7 .1

Starting with Eq. 7.5, derive a form of Reynolds transport theorem for a CV that applies
to a fluid property λ defined on a per-unit-volume basis.

SOLUTION

From Eq. 6.34, the relationship between a property per unit volume and the same prop-
erty per unit mass is λ = ρε . Thus, the equivalent to Eq. 7.5 for a property per unit
volume is

d Esys

dt
=
∫

CV

∂(λ)

∂t
dV +

∫
CS

(λ)(u • n) dS



indicating that there is no accumulation of any type of
fluid property in a fixed CV. The assumption of a steady
process is normally made in a CV analysis of any fluid
machine that operates steadily or cyclically. Thus, a

compressor driven by an electric motor would normally qualify as a steady process, as
would an internal combustion engine operating at a constant rpm.

7.6 CONTROL VOLUME ANALYSIS

In the early stages of the engineering design process, the engineer often needs global
values of selected fluid properties and process parameters rather than the detailed infor-
mation provided by a solution to the governing differential equations. For example, in a
nozzle design, we may initially be interested only in the volume flowrate through the
nozzle, its relationship to the pressure difference across the inlet and outlet of the noz-
zle, and the nozzle geometry. Later, the flow in the nozzle may be calculated in more
detail by using a computational fluid dynamics code to optimize performance and refine
the geometry. Although preliminary design data can be obtained from a computational
solution to the governing differential equations, a CV analysis will provide the desired
information quickly and with far less effort and expense.

Control volume laws are derived from the equivalent system laws using the
Reynolds transport theorem for a CV to provide the necessary connection between the
system and its coincident CV. Thus in CV analysis, the conservation laws are applied in
integral form, rather than in the form of differential equations. In Sections 7.6.1 through
7.6.4 we employ the Reynolds transport theorem for a CV to develop integral conserva-
tion laws for a CV that is at rest in an inertial reference frame. These integral relation-
ships are the mass, momentum, energy, and angular momentum balances referred to
earlier. Although our derivation of these balances is based on a fixed CV containing
fluid only, the results also apply to problems involving a mixed CV that contains fluid
and solid.

The judicious selection of a control volume plays a critical role in CV analysis.
There is no simple rule about how to choose a CV for a specific problem, and experience
plays a role in making the most efficient choice. After reading our recommendations for
CV selection and studying the examples in this chapter, you should feel comfortable in
making your own informed choice of a CV, modifying the rules given here as necessary.

Control volume selection
1. Choose a fixed control volume at rest in an inertial reference frame.

2. Place sections of control surface at all fluid–solid interfaces to take advantage of
the no-slip, no-penetration boundary condition.

3. Place sections of control surface at all ports with the control surface oriented so
that the normal to the surface is aligned with the velocity vector at the port.

4. Place sections of control surface at locations where information is requested.

5. Place sections of control surface at locations where information is provided.

6. Place additional control surface segments to form a closed control volume.
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Control volume analysis may also be ap-
plied to moving and accelerating control
volumes, but the latter topic is not dis-
cussed in this text.



We employ these rules in the examples of CV analysis in the remainder of this
chapter. In some cases we will choose a CV containing only fluid, in others a mixed CV
that contains both fluid and solid. As you gain experience with CV analysis, you will
learn that the use of a mixed CV is preferable in problems of certain types.

7.6.1 Mass Balance

The derivation of an integral mass conservation law for a fixed CV begins with the
Reynolds transport theorem for a control volume, Eq. 7.5:

d Esys

dt
=
∫

CV

∂

∂t
(ρε) dV +

∫
CS

(ρε)(u • n) dS

Although our interest here is on what is happening inside and on the surface of a CV,
remember that the left-hand side of the theorem refers to the coincident system. To
develop a mass conservation statement, Esys is chosen as Msys , the total mass in the sys-
tem. The intensive counterpart of the total mass is the mass per unit mass, so we take
ε = 1. The transport theorem then states:

d Msys

dt
=
∫

CV

∂ρ

∂t
dV +

∫
CS

ρ(u • n) dS

Since mass is conserved for a system, we write d Msys/dt = 0 and rearrange the equa-
tion to obtain: ∫

CV

∂ρ

∂t
dV +

∫
CS

ρ(u • n) dS = 0 (7.11)

This is the integral mass conservation equation, or mass balance, for a fixed CV. In de-
riving this equation it was not necessary to say anything about the type of fluid; thus the
equation applies to all fluids, Newtonian or non-Newtonian, liquid or gas, and under all
circumstances.

The meaning of each term in Eq. 7.11 is revealed if we recognize that the rate at
which mass accumulates inside the control volume is d MCV/dt = ∫CV(∂ρ/∂t) dV ,
while the convective mass transport rate out of the control volume is
�CV = ∫CS ρ(u • n) dS . Thus we can write the integral mass conservation equation for
a fixed control volume as d MCV/dt = −�CV, which states that the rate of increase in
the total amount of mass in a fixed control volume is equal to the instantaneous convec-
tive transport of mass into the control volume.

To illustrate the use of Eq. 7.11, suppose we reconsider the compression of gas in a
cylinder as discussed earlier in connection with the derivation of Eq. 7.3. Using the rec-
ommended procedure for choosing a fixed CV, we choose a CV containing all the gas in
the cylinder as shown in Figure 7.8. The two integrals in Eq. 7.11 are to be evaluated in-
stantaneously at time t . Assuming a spatially uniform gas density within the CV, the
volume integral gives ∫

CV

∂ρ

∂t
dV = dρ

dt
–V (t)
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where –V (t) is the volume of the CV at time t . There is no mass transport across the con-
trol surfaces adjacent to the cylinder walls, but there is a mass transport across the
control surface near the piston as discussed earlier. The mass transport across this con-
trol surface is given by ∫

CS
ρ(u • n) dS = −ρ(t)AU(t)

since the velocity of the gas on the control surface just in front of the advancing piston
is U(t)i at time t , the outward unit normal is n = −i, the piston area is A, and the den-
sity is spatially uniform on the surface. Thus a mass balance by means of Eq. 7.11 gives 

dρ

dt
–V (t) − ρ(t)AU(t) = 0

which upon rearrangement is identical to the earlier result, Eq. 7.3.
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CV

U(t)

Figure 7.8 The fluid-only CV for the
compressor.

EXAMPLE 7 .2

Consider the charging of a gas bottle from a high pressure line as shown in Figure 7.9.
What is the time rate of change of density in the bottle at the instant shown?

Control volume

Fluid with
density �(t)

V1

x

Port has area A1,
outward unit
normal n � i, and
uniform gas pressure p1
and temperature T1.

High
pressure
line

Gas bottle

Figure 7.9 Schematic and control
volume definition for Example 7.2.
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SOLUTION

We can solve this problem by picking a fixed CV and performing a mass balance via
Eq. 7.11, 

∫
CV (∂ρ/∂t) dV + ∫CS ρ(u • n) dS = 0. By means of the recommended pro-

cedure, we choose a fixed CV containing all the gas in the bottle as shown in Figure 7.9.
Assuming a spatially uniform density within the bottle, the volume integral gives∫

CV (∂ρ/∂t) dV = (∂ρ/∂t)–V (t).
There is no transport across the control surfaces adjacent to the walls of the bottle,

but there is mass transport across the inlet surface. The mass transport across this 
control surface is calculated by realizing that the uniform velocity of the gas on the
inlet surface is −V1(t)i, and the outward unit normal is n = i. Thus we have
u • n = (−V1(t)i) • i = −V1(t). Assuming that the density ρ1 is uniform on the inlet
surface, the integrand of the surface integral is constant, so we find∫

CS ρ(u • n) dS = −ρ1 A1V1(t), where A1 is the inlet area. Thus, from Eq. 7.11 the
mass balance is (∂ρ/∂t)–V (t) − ρ1 A1V1(t) = 0, which upon rearrangement give:
∂ρ/∂t = ρ1 A1V1(t)/–V (t).

This answer is dimensionally correct, but we have not been given the density of the
gas entering the inlet to the bottle. However, since we know the pressure and tempera-
ture of the gas entering the bottle, we can use the perfect gas law to write the density as
ρ1 = p1/RT1, where R is the specific gas constant of the gas involved. Thus our final
expression for the time rate of change of the density of the gas inside the bottle at the
instant of time shown is ∂ρ/∂t = p1 A1V1(t)/RT1 –V (t).

The previous analysis requires a few comments. Recall that in Section 7.3 we sus-
pended our CV analysis of the gas compression problem after computing the convective
mass transport crossing the control surface in front of the advancing piston. At that point
we argued that it was not intuitively clear how to complete the analysis. The integral
mass conservation equation, Eq. 7.11, shows us that it is always necessary to account for
both the rate at which mass is accumulating within a fixed control volume and the mass
transport across the control surface. This is illustrated in Example 7.2.

To decide whether mass is accumulating within a CV, we must take into account the
compressibility of the fluid and the type of process the fluid is undergoing. The type of
fixed CV you select (i.e., containing fluid only or mixed), also affects the value of the
accumulation term in a mass balance. For example, given a steady flow of water dis-
placing gasoline in a tank as shown in Figure 7.10, let us perform a mass balance on the
mixed CV shown. The interface between the two fluids is not stationary, and the total
mass in the CV is increasing as the more dense water displaces the less dense gasoline.
Thus there is an unsteady density field within this CV even though the fluids entering
and leaving at a constant rate are both liquids of constant density. Although the flow is
steady, the displacement of the gasoline by the water is not a steady process. You will
have an opportunity to apply a mass balance to this problem later (see Problem 7.18).

In the following example, notice the difference in how the mass balance is applied
for a fixed and mixed control volume.
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Water

Gasoline

Water in

Control surface

Gasoline
out

Figure 7.10 Schematic and control volume
for water filling a tank partially filled with
gasoline.

EXAMPLE 7 .3

A rod enters a cylinder of glycerin as shown in Figure 7.11 at speed Vrod(t). Find an ex-
pression for the average velocity in the annular space between the rod and the cylinder.
If the rod is moving at a fixed speed of 1 in./s into the cylinder, determine how fast the
glycerin–air interface is moving.

SOLUTION

We are asked to determine the velocity of the glycerin in the annulus. Figure 7.11B
serves as a sketch of an appropriate fixed CV containing fluid only. Notice that we have
placed control surfaces at all fluid–solid interfaces, ports, and locations at which infor-
mation is given or requested. At this instant the CV contains only fluid. We know that
Rrod = 0.5 in., Rcyl = 1.5 in., z1 = 3 in., z2 = 10 in. , and the rod moves at speed Vrod(t).
The problem is solved by applying Eq. 7.11, 

∫
CV (∂ρ/∂t) dV + ∫CS ρ(u • n) dS = 0 to

Vrod(t)

r

z

(A)

CV contains
fluid only

(B)

III
II

I

IV

(C)

Mixed CV
V

Figure 7.11 Schematic for Example 7.3, (A) geometry, (B) fluid only CV, (C) mixed CV, (D) CFD solution.
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the CV at this instant of time. The CV is fixed and contains glycerin, a liquid. Thus the
density is constant, ∂ρ/dt = 0, and the volume integral representing mass accumulation
is zero. The key to this problem is the evaluation of the surface integrals where fluid is
crossing the control surface. In Figure 7.11B the control surface is broken into five parts.
To apply Eq. 7.11 we must know u and n for each surface, as well as the differential area
and limits of each integral. The following table summarizes this information.

Surface Description u n dS Limits

I Rod face Vrod(−k) k 2πr dr 0 to Rrod

II Rod side Vrod(−k) −er 2π Rrod dz z1 to z2

III Exit u k 2πr dr Rrod to Rcyl

IV Cylinder side wall 0 er 2π Rcyl dz 0 to z2

V Cylinder end wall 0 k 2πr dr 0 to Rcyl

The integrand for surface II is zero because on this surface u and n are perpendicular, so
that u • n = 0. As a result of the no-penetration condition, u • n = 0 on surfaces IV and
V. On surface I, just in front of the rod face, the integral is

∫ Rrod

0 ρVrod( −k • k)

2πr dr = −ρglyVrod(t)π R2
rod . At the exit, surface III, the velocity profile is unknown.

We use the concept of an average velocity and anticipate a mass transport out of the CV
to write the integral: 

∫ Rcyl

Rrod
ρ(u • k)2πr dr = ρglyV̄III(t)π(R2

cyl − R2
rod). Thus, the mass

balance becomes −ρglyVrod(t)π R2
rod + ρglyV̄III(t)π(R2

cyl − R2
rod) = 0. Solving for V̄III

while noting that density of glycerin is constant gives the average velocity in the annulus

V̄III(t) = Vrod(t)R2
rod

R2
cyl − R2

rod

(A)

The result has proper dimensions for velocity and is positive, indicating an outflow of
mass at the exit. Notice also that the answer is valid for a rod velocity that is a function
of time. For a rod moving at a constant speed Vrod = 1 in./s, substituting the known
quantities yields

V̄III = Vrod R2
rod

R2
cyl − R2

rod

= (1 in./s)(0.5 in.)2

(1.5 in.)2 − (0.5 in.)2
= 0.125 in./s

This is the average speed at which the glycerin–air interface is moving.
We can also solve this problem by using the mixed CV shown in Figure 7.11C.

Applying Eq. 7.11 to this mixed CV we have 
∫

CV (∂ρ/∂t) dV + ∫CS ρ(u • n) dS = 0.
In this case, the volume integral is nonzero because mass is accumulating within the CV.
Since the mass in the CV at any time is M(t) = ρrod –Vrod + ρgly –Vgly , the mass accumu-
lation rate is d M(t)/dt = ρrod(d –Vrod/dt) + ρgly(d –Vgly/dt) . By inspection we can cal-
culate the rate of accumulation of volume of rod as d –Vrod/dt = Vrodπ R2

rod , since this is
the additional amount of rod volume that enters the CV in the next instant of time. Since



A good way to remember the mass balance, Eq. 7.11, is to write it symbolically as

d MCV

dt
= Ṁin − Ṁout

where as explained earlier, d MCV/dt is the rate at which mass accumulates inside the
CV, Ṁin is the net rate at which mass is entering the CV (convective transport rate in),
and Ṁout is the net rate at which mass is leaving the CV (convective transport rate out).
If the input mass flowrate exceeds the output mass flowrate, then mass must be accu-
mulating within the CV, and d MCV/dt > 0. If we account for the mass transport at each
port of a CV separately, we can write the mass balance using the density, area, and
average velocity at each port as

d MCV

dt
=
∑

ρin AinV̄in −
∑

ρout AoutV̄out (7.12)
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the glycerin is incompressible, the accumulation rate of volume of glycerin must be the
negative of this, or d –Vgly/dt = −Vrod πR2

rod . Thus the net mass accumulation rate is:∫
CV

∂ρ

∂t
dV = d M(t)

dt
= ρrod

d –Vrod

dt
+ ρgly

d –Vgly

dt
= ρrodVrodπ R2

rod − ρglyVrodπ R2
rod

The mass transport for this mixed CV occurs across the top surface shown in Fig-
ure 7.11C. Thus we write 

∫
CS ρ(u • n) dS = ∫rod ρ(u • n) dS + ∫exit ρ(u • n) dS and

evaluate these terms to find∫
rod

ρ(u • n) dS = −ρrodVrodπR2
rod and

∫
exit

ρ(u • n) dS = ρglyV̄III π
(
R2

cyl − R2
rod

)

Assembling the mass balance we have

(
ρrodVrodπ R2

rod − ρglyVrodπ R2
rod

)− ρrodVrodπR2
rod + ρglyV̄III π

(
R2

cyl − R2
rod

) = 0

Solving for the average velocity at the exit reproduces the earlier answer (A), as
expected.

Notice that the use of a CV containing only fluid eliminated the mass accumulation
term, while choosing a mixed CV required us to evaluate this term.

A computational fluid dynamics code may be used to simulate the steady flow in
this problem for the rod moving at 1 in./s into the cylinder. This requires more resources
than the CV approach, but the result is a detailed description of the velocity field. The
streamlines and velocity vectors in the annulus are shown in Figure 7.11D. Note that
the no-slip boundary conditions at the rod and cylinder wall are satisfied, and that the
velocity profile in the annulus is not uniform. When viewing Figure 7.11D recognize
that the coordinate system has been rotated 90° clockwise and you are seeing only half
of the system (the rod is on the bottom).
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where the summation sign indicates that we add the contributions from each port, taking
inlets as positive and exits as negative contributions. If there is no mass accumulation,
then the mass conservation equation reduces to∑

ρin AinV̄in =
∑

ρout AoutV̄out (7.13)

which is simply a statement that the mass flowrate into the CV must equal the mass
flowrate out.

For example, suppose 10 ft3/min of air at 80oF and atmospheric pressure enters a
compressor through an inlet whose area is 1 in.2, and leaves at 100 psig and 120oF
through an outlet whose area is 0.25 in.2. What can a mass balance tell us about the
average velocities at the inlet and outlet? Applying Eq. 7.13, we have ρin AinV̄in =
ρout AoutV̄out. We can use the perfect gas law and thermodynamic properties for air to
establish the inlet and outlet densities as follows: 

ρin = pin

RTin
=

(
14.7 lbf

in.2

)(
144 in.2

ft2

)(
slug-ft

lbf-s2

)
[1716 ft2/(s2-◦R)](540◦R)

= 2.28 × 10−3 slug/ft3

ρout = pout

RTout
=

(
114.7 lbf

in.2

)(
144 in.2

ft2

)(
slug-ft

lbf-s2

)
[1716 ft2/(s2-◦R)](580◦R)

= 1.66 × 10−2 slug/ft3

We are given the volume flowrate at the inlet, i.e., AinV̄in = 10 ft3/min, and we know the
inlet area, so we can solve for the inlet velocity, getting

V̄in = (10 ft3/min)(1 min/60 s)

(1 in.2)(1 ft2/144 in.2)
= 24 ft/s

The mass flowrate is now calculated as

Ṁ = ρin AinV̄in = (2.28 × 10−3 slug/ft3)(1 in.2)(1 ft2/144 in.2)(24 ft/s2)

= 3.80 × 10−4 slug/s

This same mass flowrate occurs at the outlet, thus Ṁ = ρout AoutV̄out =
3.80 × 10−4 slug/s. We know the density and area at the outlet, so we can calculate the
average velocity there as

V̄out = Ṁ

ρout Aout
= 3.80 × 10−4 slug/s

(1.66 × 10−2 slug/ft3)

(
0.25 in.2

1 ft2

144 in.2

) = 13.2 ft/s

For problems involving a fixed CV filled with a single constant density fluid, we
may further simplify the mass conservation law, Eq. 7.11, by noting that when density is
constant the integrand of the volume integral is ∂ρ/∂t = 0, indicating that there is no
mass accumulation. The density may also be taken out of the mass transport term, so the
integral mass conservation law for a constant density fluid reduces to∫

CS
(u • n) dS = 0 (7.14)
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EXAMPLE 7 .4

A flow of constant density fluid enters a round pipe at low speed as shown in Fig-
ure 7.12. The uniform velocity field at the inlet can be represented by vr = 0, vθ = 0,
and vz(r, θ, z) = U0. The flow gradually changes until at some distance downstream it
becomes a fully developed Poiseuille flow described by vr = 0, vθ = 0, and
vz = Umax[1 − (r/R)2]. Find the ratio of Umax to U0.

SOLUTION

We can solve this problem with a mass balance, using the CV shown in Figure 7.12.
Since ρ is constant, Eq. 7.14 takes the form: 

∫
cs (u • n) dS = ∫inlet (u • n) dS +∫

exit (u • n) dS = 0. By inspection, the value of the integral on the inlet surface is∫
inlet (u • n) dS = −U0 A, where the pipe area is A = π(D2/4). The integral at the

exit is

∫
exit

(u • n) dS =
∫ 2π

0

∫ R

0
Umax

[
1 −

(
r

R

)2]
r dr dθ = 1

2
UmaxπR2

Note that we can write the volume flowrate at the exit as 1
2UmaxπR2 = 1

2Umax A. Thus
the mass balance gives us a relationship −U0 A + 1

2Umax A = 0, and we discover
Umax/U0 = 2.

An alternate approach to solving this problem is to use Eq. 7.15 to write
V̄in Ain = V̄exit Aexit , then cancel the areas and use the fact that the average velocity at
the inlet is U0 to write U0 = V̄exit . The remaining step is to recall that in Example 6.20
we showed that for a Poiseuille velocity profile, the maximum velocity is twice the
average velocity. Thus V̄exit = 1

2Umax, and we have U0 = V̄exit = 1
2Umax, which is the

same result.

Figure 7.12 Schematic for Example 7.4, velocity profiles at the entrance 
to a pipe.

Entrance length Fully developed flow

vz(r, �, z) � U0 vz(r) � Umax 1 �
2r

R

CV
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This is simply a statement that the net transport of fluid volume out of the control vol-
ume is zero. Under these conditions, Eq. 7.13 becomes∑

AinV̄in =
∑

AoutV̄out (7.15)

or equivalently ∑
Qin =

∑
Qout (7.16)

where Qin and Qout are volume flowrates in and out at the ports of a control volume.
With a constant density fluid, the fluid volume coming into the CV per unit time must
always equal the volume going out per unit time. This is because the fluid inside the CV
cannot be compressed.

The examples in this section give some indication of the variety of problems that
can be addressed by means of a mass balance. In each case note how the CV and equa-
tion expressing the mass balance are selected, and pay particular attention to why terms
are retained or dropped.

EXAMPLE 7 .5

Air flows steadily at low speed through the sudden expansion in a round air-conditioning
duct as shown in Figure 7.13A. Derive an expression relating the velocities and duct
diameters at the inlet and exit of the expansion.

(A)

CV

(B)

1 12 2

CV

SOLUTION

We can solve this problem with a mass balance, and we assume that the density of air
flowing at low speed in an air conditioning duct is constant. We will choose the CV
shown in Figure 7.13A, by using the recommended method. Applying Eq. 7.15 to this
CV, and noting that there is one inlet port and one exit port, we find

A1V̄1 = A2V̄2 (A)

This is identical to Eq. 3.21 in case study 3.3.2 (flow through area change). When we
used this formula earlier, we did not yet have the tools to derive it. Now we see that a
simple application of a mass balance is all that is needed.

Figure 7.13 Control volume for (A) sudden expansion and (B) gradual area change.
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EXAMPLE 7 .6

Derive an expression for the density of the mixture of oil and vinegar leaving the mixer
shown in Figure 7.14. Assume the free surface height remains fixed.

CV

Oil Vinegar

Mixture

Mixer

Avin

Amix

Aoil

SOLUTION

This appears to be a steady process involving liquids, so we suspect there is no mass
accumulation. Since two fluids are involved, however, we must be cautious in using
Eq. 7.13: ∑

ρin AinV̄in =
∑

ρout AoutV̄out

The CV ports are indicated in Figure 7.14. In this case there are two input streams and
one output stream so that, ρoil AoilV̄oil + ρvin AvinV̄vin = ρmix AmixV̄mix , where all vari-
ables are positive numbers. The mixture density here is that of the oil and vinegar emul-
sion, and the velocities are averages across the ports (since there is no information given
on the velocity distributions). Solving for the mixture density, we obtain:

ρmix = ρoil AoilV̄oil + ρvin AvinV̄vin

AmixV̄mix

It is common in industrial processes involving the mixture of liquids to control the
volume flowrates of input streams to be able to control the volume flowrate and compo-
sition of the output stream.

Figure 7.14 Schematic for Example 7.6.

For a round duct, the areas are given by the usual formulas. Thus we can also write
the following relationship between average velocities

V̄1

V̄2
= A2

A1
= D2

2

D2
1

(B)

These formulas also apply to flow through a gradual area change as shown in Fig-
ure 7.13B, as you can easily confirm by using the CV shown in that figure. Also note that
the result, (A), is stated in terms of average velocity and area, hence is not dependent on
the precise nature of the velocity profile and applies to a duct or pipe of any cross section.
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7.6.2 Momentum Balance

According to Newton’s second law, the time rate of
change of the total linear momentum of a system is
equal to the sum of the body and surface forces acting
on the fluid within the system. We express this by writ-
ing dLsys/dt = FB + FS , where Lsys is the total linear
momentum in the system, and FB and FS are the body
and surface forces, respectively. Now consider a fixed
CV that coincides with the system. According to the
Reynolds transport theorem for a control volume,
Eq. 7.5, we can also write

dLsys

dt
=
∫

CV

∂

∂t
(ρε) dV +

∫
CS

(ρε)(u • n) dS

where we have replaced Esys by Lsys, the total linear momentum in the system. Since the
linear momentum per unit volume is ε = ρu, this becomes

dLsys

dt
=
∫

CV

∂

∂t
(ρu) dV +

∫
CS

(ρu)(u • n) dS

The system and fixed CV coincide, so the total body and surface forces acting on the
system must also act on the fixed CV. Thus since dLsys/dt = FB + FS , the preceding
expression becomes∫

CV

∂

∂t
(ρu) dV +

∫
CS

(ρu)(u • n) dS = FB + FS (7.17)

This is the integral momentum conservation equation, or momentum balance, for a fixed
CV. Since it was not necessary to say anything about the type of fluid in deriving this
equation, it is valid for all fluids, under all conditions.

We can provide a physical interpretation for this equation by writing it symbolically as

dLCV

dt
= −�CV + FB + FS

where we have made use of the facts that the rate of accumulation of momentum inside
the CV is given by dLCV/dt = ∫CV(∂/∂t)(ρu) dV, and the net convective transport of
momentum into the CV is −�C = − ∫CS (ρu)(u • n) dS . Thus, the momentum balance
for a fixed CV states that the rate of accumulation of momentum within the CV is equal
to the sum of the net inflow of momentum into the CV and the rate at which momentum
is created by the sum of the body and surface forces.

A clearer understanding of the role of body and surface forces in the momentum bal-
ance can be gained by representing these forces by their corresponding integral expres-
sions. In Chapter 4, we showed that the total body force is given by a volume integral,
Eq. 4.7. Writing this integral over the CV gives FB = ∫CV ρ f dV . Similarly, the total sur-
face force is given by a surface integral, Eq. 4.21, which when written over the control
surface is FS = ∫CS � dS. We can use these integrals to write the momentum balance as∫

CV

∂

∂t
(ρu) dV +

∫
CS

(ρu)(u • n) dS =
∫

CV
ρ f dV +

∫
CS

� dS (7.18)

Students often experience difficulty in
deciding whether a mass balance is the
appropriate way to solve a problem. If a
question involves mass or volume
flowrates, the rate of change of density
within a control volume or device, or the
values of average velocity, density, or area
at a port, a mass balance is clearly indi-
cated. The momentum and energy bal-
ances discussed in the next two sections
are always accompanied by a mass bal-
ance, so it is a good idea to routinely per-
form a mass balance as part of every type
of CV analysis.



This form explicitly shows the integrals representing
the body and surface forces acting on the fluid inside
the CV.

Now consider the force terms on the right-hand
side of the momentum balance, Eq. 7.18. The total body
force is generated by the body force acting on each ele-
ment of fluid inside the CV. Consider the role of the
most common body force: gravity. The magnitude of
the total body force acting on a CV due to gravity is
WCV, the weight of the CV contents. Thus with the 
z axis in the vertical direction as usual, the body force
will appear in a momentum balance as −WCVk, and
account for the weight of the fluid and any other mater-
ial inside the CV.

The total surface force is generated by the stress
acting on the surface of the CV. Each section of a con-
trol surface has acting on it a stress vector that repre-
sents the surface force per unit area applied to the fluid

inside the CV by the fluid or other agent outside the CV. At ports, where fluid enters or
leaves a CV, the surface force is primarily due to the pressure in the fluid acting on the
control surface. On control surfaces located at the interface between a fluid and a solid,
the effects of both pressure and shear stress are important. We will see that the execution
of a momentum balance requires a good understanding of surface forces, their magni-
tude, and the direction in which they act on a given control surface.

The first term on the left-hand side of Eq. 7.18 represents the accumulation of mo-
mentum within the CV. Most flows of engineering interest involve a steady process in
which the accumulation of momentum in a properly chosen CV is zero. Thus for sim-
plicity we will limit ourselves to problems of this type in this book. Dropping the
momentum accumulation term in Eqs. 7.17 and 7.18, we can write the two equivalent
forms of the steady process momentum balance as∫

CS
(ρu)(u • n) dS = FB + FS (7.19a)

and ∫
CS

(ρu)(u • n) dS =
∫

CV
ρf dV +

∫
CS

� dS (7.19b)

It is important to keep in mind that the momentum balance is a vector equation. We can
therefore write the preceding equations in terms of their three Cartesian components as∫

CS
(ρu)(u • n) dS = FBx + FSx (7.20a)

∫
CS

(ρv)(u • n) dS = FBy + FSy (7.20b)

∫
CS

(ρw)(u • n) dS = FBz + FSz (7.20c)
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A momentum balance is a powerful tool in
engineering analysis. It is universally ap-
plicable, meaning that it applies to the un-
steady and steady flow of compressible or
incompressible fluids at any speed. Thus a
momentum balance can be applied to both
laminar and turbulent flow. You may be
surprised to learn that a momentum bal-
ance also applies to a fluid at rest. In a
fluid at rest, the velocity is zero, so Eq. 7.18
becomes

∫
CV ρf dV + ∫CS � dS = 0. Since

the stress vector in a fluid at rest is
given by Eq. 5.1b as � = −pn, the mo-
mentum balance in a fluid at rest is∫

CV ρf dV + ∫CS −pn dS = 0. Do you rec-
ognize this as Eq. 5.2, the integral hydro-
static equation?
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and ∫
CS

(ρu)(u • n) dS =
[∫

CV
ρ f dV

]
x

+
[∫

CS
� dS

]
x

(7.21a)

∫
CS

(ρv)(u • n) dS =
[∫

CV
ρ f dV

]
y

+
[∫

CS
� dS

]
y

(7.21b)

∫
CS

(ρw)(u • n) dS =
[∫

CV
ρ f dV

]
z

+
[∫

CS
� dS

]
z

(7.21c)

Writing the momentum balance in terms of its Cartesian components encourages us
to look carefully at all parts of the CV and control surfaces to get a sense of the magni-
tudes and directions of the momentum transport, body forces, and surface forces. In
some cases it is evident that there is only a single nonzero component of momentum
transport or surface force. This suggests that we need evaluate only the corresponding
component of the momentum balance. Although this approach minimizes the amount of
calculation, there is no harm in using one of the vector forms of the momentum balance
and calculating each term as a vector. In fact, we recommend this to you as a standard
approach to start with and illustrate it in many of the examples in this section.

A momentum balance is helpful in understanding the distributions of pressure and
shear stress in a flow, and it serves as a foundation for the empirical analysis of pressure
drop, lift and drag forces, and other quantities of engineering interest. You will find
connections to the case studies in a number of the examples that follow. The manner of
selecting the CV is an important element in the successful use of a momentum balance.
Study the next two examples and note how the CV selection allows us to isolate the
effects of pressure and shear stress.

EXAMPLE 7 .7

Use a momentum balance to analyze the steady, fully developed flow of constant den-
sity fluid in a round pipe. Find an expression relating the pressure drop down the pipe to
the wall shear stress. Consider laminar and turbulent flow as shown in Figure 7.15, and
use your results to investigate the friction factor.

SOLUTION

The laminar flow velocity profile in the pipe is parabolic, while the turbulent flow
velocity profile is nearly uniform (Figure 7.15A). We will analyze both cases by assum-
ing that the fully developed axisymmetric velocity field is given in cylindrical coordi-
nates by vr = 0, vθ = 0, and vz(r), and insert the appropriate function vz(r) for laminar
and turbulent flow later. To focus on the pressure drop and wall shear stress in the two
flows, we choose a CV consisting of all the fluid in a section of pipe of length L (see Fig-
ure 7.15B). The control surfaces consist of an inlet, an exit, and a surface along the wall
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of the pipe. We will refer to the latter as a decal surface to emphasize that this surface is
directly adjacent to the solid wall. Note that we have defined the CV by placing control
surfaces at the locations at which the pressures and shear stress act.

Since this is a steady constant density flow, we will apply Eq. 7.19b∫
CS

(ρu)(u • n) dS =
∫

CV
ρ f dV +

∫
CS

� dS

to this CV. Since gravity does not effect the pressure drop down the pipe, we will drop
the body force term. The flow is fully developed; thus the velocity fields at the inlet and
exit to the CV are the same. On the inlet we have u = vz(r)k, n = −k; thus
u • n = −vz(r). On the exit, u = vz(r)k, n = k, and u • n = vz(r). The momentum
transport into the CV is seen to be∫

inlet
(ρu)(u • n) dS =

∫ 2π

0

∫ R

0
(ρvz(r)k)(−vz(r))r dr dθ = −

∫ 2π

0

∫ R

0
ρvz(r)2k r dr dθ

while the transport out of the CV is∫
exit

(ρu)(u • n) dS =
∫ 2π

0

∫ R

0
(ρvz(r)k)(vz(r))r dr dθ = +

∫ 2π

0

∫ R

0
ρvz(r)2k r dr dθ

p1

�p2
� � ��wall(z)k

Decal surface
along pipe wall

(C)

(B)

r

z
n � �k

n � k

Inlet

Exit

(A)

Laminar
velocity profile

Turbulent
velocity profile

Figure 7.15 Schematic for Example 7.7: (A) velocity profiles for laminar and
turbulent flow in a round pipe, (B) CV, and (C) stress distribution on the fluid in
the CV.
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Because the unit normal to the inlet and exit ports point in opposite directions, and the
velocity profiles are the same, these terms add to zero irrespective of the exact nature of
the velocity profile. This is true of all fully developed flows: the net momentum trans-
port in the flow direction is zero. There is also no momentum transport across the decal
surface, since this surface is adjacent to the solid wall of the pipe. Thus the momentum
balance in this case reduces to 

∫
CS � dS = 0, which simply states that the net surface

force acting on the fluid inside the CV is zero. That is,∫
inlet

� dS +
∫

exit
� dS +

∫
decal

� dS = 0

where the terms refer to the inlet and exit ports, and the decal surface adjacent to the pipe
wall. We use Eq. 4.19 to write the stress vector in terms of its normal and tangential
components as

� = −p n + �

On the inlet and exit ports, the tangential stress is negligible; thus on these surfaces we
write the stress vector as � = −p n. On the decal surface, the stress consists of both
pressure and shear stress; thus on this surface we write � = −p n + �. The momentum
balance becomes∫

inlet
−p n dS +

∫
exit

−p n dS +
∫

decal
(−p n + �) dS = 0

The inlet and exit ports both have area A. Assuming uniform but different pressures on
the ports, and noting that the effect of pressure on the decal surface cancels owing to
axisymmetry, we have

p1 A k − p2 Ak +
∫

decal
� dS = 0

This result applies to both laminar and turbulent fully developed flow in a round pipe. It
shows that the force applied to fluid inside the CV by the pressure is balanced by the
frictional shear force exerted by the wall on the fluid.

A mass balance for this same CV confirms that the average velocity is the same at
the inlet and exit surfaces. Thus in a fully developed, steady, constant density flow, vis-
cous friction does not slow the fluid down. Instead it makes itself felt in a pressure drop
and a loss of the fluid energy associated with pressure, as discussed in Section 2.9.3. We
see that the use of control surface segments at the inlet and exit, along with a decal sur-
face adjacent to the pipe wall, introduces the pressure and shear stress into the momen-
tum balance via the surface force term.

To evaluate the remaining integral containing the shear stress, we note that by the
law of action–reaction, the shear force exerted by the wall on the fluid is equal and op-
posite to the shear force exerted by the fluid on the wall. Thus we can write∫

decal
� dS = −τ̄wall Awall k
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where τ̄wall is the average shear stress on the wall, and Awall is the area of the wall in
contact with the fluid. (In this case the flow is fully developed and axisymmetric, so the
shear stress τwall(z) acting on the wall is uniform (i.e., τwall(z) = τ̄wall = τwall ).) The
momentum balance thus gives

p1 A k − p2 Ak − τwall Awall k = 0

Figure 7.15C provides a visual representation of this equation. Solving for the pressure
drop yields:

p1 − p2 = τwall Awall

A
(A)

Noting that Awall = πDL and A = πD2/4, we can write the pressure drop as

�p = p1 − p2 = 4τwall
L

D
(B)

Thus the wall shear stress can be determined by measuring the pressure drop.
To investigate the friction factor recall that in case study 3.3.1 (flow in a round

pipe), the pressure drop is given in terms of the friction factor by Eq. 3.15 as
�p = ρ f (L/D)(V̄ 2/2). Equating this to the pressure drop predicted by the momentum
balance in (B), we find

�p = ρ f
L

D

V̄ 2

2
= 4τwall

L

D

Solving for the friction factor we have

f = 4τwall
1
2ρV̄ 2

(C)

We see that after using the methods outlined in case study 3.3.1 to calculate the friction
factor, we can also calculate the wall shear stress.

EXAMPLE 7 .8

The steady turbulent flow of a constant density fluid through a sudden expansion in a
round pipe is shown in Figure 7.16A. Find an expression for the pressure change across
the expansion, and use it to determine the loss coefficient. Assume a uniform flow at the
inlet and exit stations as shown, and neglect the effects of gravity.

SOLUTION

In Example 7.7 we saw that pressure and shear stress appear in the surface force terms
of a momentum balance. Since we are asked to derive an expression for the pressure
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change across the sudden expansion, we will perform a steady flow momentum balance
and choose a CV as shown in Figure 7.16B. Note the placement of control surfaces at
the inlet and exit of the expansion and two decal surfaces adjacent to the walls of the ex-
pansion. The latter are a wall decal surface adjacent to the round walls and a washer
decal surface adjacent to the washer-shaped shoulder. Upon applying Eq. 7.19, neglect-
ing the body force term, we have∫

CS
(ρu)(u • n) dS =

∫
CS

� dS

Momentum transport occurs only on the inlet and exit ports. We will use cylindri-
cal coordinates. On the inlet we have u = V1k, n = −k, and u • n = −V1. On the exit,
u = V2k, n = k, and u • n = V2. The momentum transport at the inlet port is given by ∫

inlet
(ρu)(u • n) dS =

∫ 2π

0

∫ R1

0
(ρV1k)(−V1)r dr dθ = −ρV 2

1 A1k

where A1 = π R2
1 . On the exit port, where A2 = π R2

2 , we get∫
exit

(ρu)(u • n) dS =
∫ 2π

0

∫ R2

0
(ρV2k)(V2)r dr dθ = ρV 2

2 A2k

r

z

r

z

(A) (B)

CV

V1

V2

0 0.5 0.50
A1�A2

1.0

�p

�V1
21

2

(C)

1.0

KE

A1�A2

1.0
(D)

Figure 7.16 Schematic for Example 7.8: (A) velocity distribution through the sudden expansion, (B) uniform
velocity distribution approximation and control volume, (C) normalized pressure change as a function of area ratio,
and (D) loss coefficient as a function of area ratio.
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A mass balance on this CV shows that Ṁ = ρ A1V1 = ρ A2V2 . Since the density is con-
stant and A2 > A1 for an expansion, we know from the mass balance that V1 > V2.
Thus, the momentum transport into and out of this CV differ, and the net momentum
transport can be written as (

ρV 2
2 A2 − ρV 2

1 A1
)

k = Ṁ(V2 − V1)k

The surface force acting on the fluid in the control volume is given by

∫
CS

� dS =
∫

inlet
� dS +

∫
exit

� dS +
∫

wall decal
� dS +

∫
washer decal

� dS

On the inlet and exit ports we write the stress vector as � = −p n. On the two decal sur-
faces the stress consists of both pressure and shear stress. Thus on these surfaces we use
� = −p n + �. The surface force becomes

∫
CS

� dS =
∫

inlet
−p n dS +

∫
exit

−p n dS +
∫

wall decal
(−p n + � ) dS +

∫
washer decal

(−p n + �) dS

The inlet and exit ports have areas A1 and A2. Assuming a uniform pressure on these
surfaces, and noting that the effect of pressure on the round decal wall surface cancels
for reasons of axisymmetry, we have

∫
CS

� dS = p1 A1 k − p2 A2k +
∫

wall decal
� dS +

∫
washer decal

(−p n + � ) dS

The momentum balance therefore becomes

(
ρV 2

2 A2 − ρV 2
1 A1

)
k = p1 A1 k − p2 A2k +

∫
wall decal

� dS +
∫

washer decal
(−p n + � ) dS

(A)

We see that the momentum transport vector is balanced by the pressure forces on the
inlet and exit, the shear force on the wall decal surface, and the pressure and shear force
on the washer decal surface adjacent to the shoulder of the expansion.

To evaluate the remaining integrals in (A), we will write the surface force on the
wall decal surface as 

∫
wall decal � dS = − τ̄wall Awallk, where τ̄wall is the average wall

shear stress, assumed to be acting on the wall in the flow direction. As in the preceding
example, the negative sign is needed because the shear stress acting on the adjacent CV
surface acts in the direction opposite to the wall shear stress. Now consider the washer
decal surface. The effect of shear stress on this surface cancels for reasons of axisym-
metry, so the surface force can be written in terms of an average pressure p̄washer as∫

washer decal
−pn dS = − p̄washer Awasher(−k) = p̄washer(A2 − A1)k
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Note the direction of the outward unit normal on this surface. Empirical data and com-
putational fluid dynamic simulations suggest that the pressure on this surface is uniform
and the same as that acting at the inlet. Taking p̄washer = p1, we find that the surface
force on the washer decal surface is p̄washer(A2 − A1)k = p1(A2 − A1)k.

The completed momentum balance is(
ρV 2

2 A2 − ρV 2
1 A1

)
k = p1 A1k − p2 A2k − τ̄wall Awallk + p1(A2 − A1)k

Solving for the pressure change we have 

(p2 − p1 )A2 = − (ρV 2
2 A2 − ρV 2

1 A1
)
k − τ̄wall Awall (B)

which can also be written by using Ṁ = ρ A1V1 = ρ A2V2 (i.e., V2 = V1(A1/A2)) as

p2 − p1
1
2ρV 2

1

= 2
A1

A2

(
1 − A1

A2

)
− τ̄wall Awall

1
2ρV 2

1 A2
(C)

Result (C) seems reasonable and tells us that the pressure change consists of an increase
in pressure due to the flow slowing down as the area increases and a decrease in pres-
sure due to the effects of the wall shear stress. Note that there is no expansion of the pipe
as A1/A2 → 1, and we find

p2 − p1
1
2ρV 2

1

= − τ̄wall Awall
1
2ρV 2

1 A2
or p1 − p2 = τ̄wall Awall

A2

The only pressure change in this case is a drop in pressure p1 > p2 due to the effect of
friction at the wall. This agrees with (B) of Example 7.7, which considered the flow
through a round pipe of constant diameter.

The flow through a sudden expansion at the high Reynolds numbers of engineering
interest is accompanied by recirculation zones near the expansion plane, which persist
for some distance downstream in the larger pipe, as shown in Figure 7.16A. The wall
shear stress is very small and is directed opposite to the flow direction because the wall
is exposed to a very low speed flow in the reverse direction. Thus the term in (C) in-
volving the wall shear stress is actually positive but small enough to be neglected, and
the pressure change for a flow through a sudden expansion is traditionally written as

p2 − p1
1
2ρV 2

1

= 2
A1

A2

(
1 − A1

A2

)
(D)

This formula is plotted in Figure 7.16C. It is easy to show that (D) predicts a maximum
pressure increase of (p2 − p1 )/ 1

2ρV 2
1 = 1

2 for A1/A2 = 0.5, and no change in pressure
for A1/A2 → 0 and A1/A2 → 1.

To determine the loss coefficient, recall that in our case study of Section 3.3.2, on
flow through an area change, the empirical formula for the pressure change across a sud-
den expansion is given by Eq. 3.20 as p2 − p1 = [ 1

2ρ(V̄ 2
1 − V̄ 2

2 )] − �pF , where �pF

is the frictional pressure loss. This loss, which is due to the effects of turbulence and
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recirculation, is given by Eq. 3.22 as �pF = KE
1
2ρV̄ 2

1 , where the KE is the expansion
loss coefficient. Combining these two equations we find:

p2 − p1 = [ 1
2ρ
(
V̄ 2

1 − V̄ 2
2

)]− KE
1
2ρV̄ 2

1 (E)

Our analysis of this problem by means of a momentum balance allows us to find the ex-
pansion loss coefficient. Rearranging (D) to put it into the form of (E), we have

p2 − p1 = 2
A1

A2

(
1 − A1

A2

)(
1

2
ρV 2

1

)

=
[

2
A1

A2
− 2

(
A1

A2

)2
](

1

2
ρV 2

1

)
+
(

1

2
ρV 2

1 − 1

2
ρV 2

2

)
−
(

1

2
ρV 2

1 − 1

2
ρV 2

2

)

=
(

1

2
ρV 2

1 − 1

2
ρV 2

2

)
−
[

1 − 2
A1

A2
+ 2

(
A1

A2

)2

− V 2
2

V 2
1

](
1

2
ρV 2

1

)

After using the fact that V 2
2 /V 2

1 = (A1/A2)
2 from the mass balance and simplifying,

we have

p2 − p1 =
(

1

2
ρV 2

1 − 1

2
ρV 2

2

)
−
[

1 − 2
A1

A2
+
(

A1

A2

)2
](

1

2
ρV 2

1

)

Since the flow is approximately uniform, V1 = V̄1 and V2 = V̄2. Thus we can write
KE = [1 − 2(A1/A2) + (A1/A2)

2] and conclude that the expansion loss coefficient
predicted by the momentum balance is

KE =
(

1 − A1

A2

)2

(F)

This result, which is plotted in Figure 7.16D (and appeared earlier in the case study
of Section 3.3.2 as Figure 3.13), is in excellent agreement with experimental
measurements.

Although a momentum balance can be used to an-
alyze a number of different aspects of a flow, it is often
employed to calculate the force exerted by a fluid on an
object or part of a structure. A question of this type may
be answered by choosing a CV that has a section of its
control surface adjacent to all parts of the object that are
in contact with the fluid. This section of the control sur-
face is called a decal surface, as explained earlier. By
the law of action–reaction, the force F exerted by the
fluid inside the control volume on the object is equal
and opposite to the reaction force R exerted by the
object on the fluid inside the CV. Since the decal sur-
face is placed at the interface between the object and
the fluid, the integral of the stress on this surface

Students often think of a momentum bal-
ance as an approximate method, but in
fact there is no approximation involved in
the momentum balance itself. However,
approximations are often introduced
into the momentum balance when differ-
ent terms are evaluated. If poorly chosen,
these approximations do have the poten-
tial to affect the accuracy of the final
answer. While it is good engineering prac-
tice to be aware of the approximations you
are making to evaluate terms, well-chosen
approximations do not change the funda-
mental principle that a momentum balance
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appears in the momentum balance and defines the reac-
tion force R. The desired force of the fluid on the object
F is the negative of the surface force on the decal sur-
face, thus F = −R. We can use momentum balance to
determine R, then calculate F, since F = −R.

For example, consider the flow through the sudden
expansion in Example 7.8, and suppose we are asked to
find the force F exerted on the expansion by the fluid
flowing inside it. The CV we selected earlier has two
decal surfaces adjacent to the solid surfaces of the ex-
pansion in contact with the fluid inside. Thus according

to the foregoing recommendation, this CV is satisfactory. The momentum balance for
this CV, (A) of Example 7.8, gives(
ρV 2

2 A2 − ρV 2
1 A1

)
k = p1 A1k − p2 A2k +

∫
wall decal

� dS +
∫

washer decal
(−pn + � ) dS

The sum of the two integrals over the decal surfaces is the total reaction force R applied
by the solid surfaces of the expansion to the fluid inside the CV. Thus we have 

R =
∫

wall decal
� dS +

∫
washer decal

(−pn + � ) dS

and the momentum balance can be written as(
ρV 2

2 A2 − ρV 2
1 A1

)
k = p1 A1k − p2 A2k + R

Rearranging terms, we find

−R = (p1 + ρV 2
1

)
A1k − (p2 + ρV 2

2

)
A2k

From the law of action–reaction, the reaction force R on the CV is equal and opposite to
the force of the fluid F on the wetted surface of the sudden expansion. That is F = −R,
and the momentum balance allows us to write the force applied by the fluid to the
expansion as

F = (p1 + ρV 2
1

)
A1k − (p2 + ρV 2

2

)
A2k

This fundamental idea of determining the reaction force R and then the force F ex-
erted by a fluid on an object or part of a structure by using a momentum balance and an
appropriately defined decal surface is also valid for a problem involving an external or
structural force. Suppose we are to calculate FE , an external force acting on a structure
or object. In this type of problem we first write a force balance on the object which in-
cludes the force F applied by all fluids, the body force acting on the object, and the ex-
ternal force FE acting on the object. Next we choose a CV that has a section of its con-
trol surface adjacent to all parts of the object that are in contact with a fluid. This section
of the control surface is the decal surface, and it allows us to include the reaction force
R in the momentum balance. Finally we use the momentum balance and force balance
together to determine the external force FE . This process is illustrated in detail in
Examples 7.9 and 7.10. After solving each problem with a CV containing fluid only, we
show how choosing a mixed CV that contains the object or structure greatly simplifies
the analysis of a problem involving external forces.

is an accurate expression of Newton’s
second law. For example, the assumptions
of uniform velocities and pressures at
ports are two common and well-accepted
approximations in applying a momentum
balance to problems involving turbulent
flow. These comments on the role of
approximations also apply to the mass,
energy, and angular momentum balances
discussed in this chapter.
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EXAMPLE 7 .9

A decorative fountain uses a nozzle that is press-fitted to the end of a high pressure water
line as shown in Figure 7.17A. Find the force that must be exerted on the nozzle by the
press fitting to keep it in place. Assume uniform velocities and pressures at the inlet and
exit of the nozzle.

Nozzle

Pipe

Press fit

Water

(A) (B)

CV

(C)

Exit
surface

n � k

n � �k

V2

V1

(D)

SII

pA

S � Sair 	 SI 	 SII
pA

SI
(E)

Nozzle is
plugged

Nozzle

p1gage

Sair

(F)

Mixed CV

Fwater 	 Fair 	 Fgravity 	 FE � 0

r

z

Figure 7.17 Schematic for Example 7.9: (A) geometry, (B) force balance, (C) fluid-only CV, (D) pressure
distribution, (E) pressure on plugged nozzle, and (F) mixed CV.
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SOLUTION

Figure 7.17A is a sketch of the physical arrangement. We will assume steady flow. The
nozzle is the object of interest, and the force applied by the fitting to the nozzle is an ex-
ternal force FE on the nozzle. Since we are asked to find this external force, we begin as
recommended by writing a vector force balance on the nozzle as shown in Figure 7.17B.
The forces acting on the nozzle include the forces due to the water inside and air outside,
the force of gravity, and the external force FE exerted on the nozzle by the press fit. The
force balance in vector form is

Fwater + Fair + Fgravity + FE = 0

Thus the external force applied by the fitting to the nozzle is given by

FE = −Fwater − Fair − Fgravity (A)

To find the external force, we must find the forces applied to the nozzle by gravity, the
water, and the air. The force of gravity on the nozzle is Fgravity = −Wnozzlek. The force
due to the water is found by considering the surface force applied by the water to the in-
terior wetted surface of the nozzle. This surface force is given by integrating the stress
vector over this surface, thus we can write

Fwater =
∫

nozzle
� dS =

∫
nozzle

(−pn + � ) dS

Since we are not given information about the pressure and shear stress distributions on
the nozzle, this integral cannot be evaluated directly. Thus we will find this force by
a momentum balance on the CV shown in Figure 7.17C. Note that by placing a decal
surface adjacent to the wetted surface of the nozzle, we can use the principle of
action–reaction to show that the unknown force Fwater is equal and opposite to the reac-
tion force R on the decal surface. Thus the force of the water on the nozzle can be found
from a momentum balance using the chosen CV.

Now consider the force of the air at atmospheric pressure on the outside of the nozzle.
The air is at rest, so the force is given by the integral Fair = ∫Sair

� dS = ∫Sair
−pAn dS ,

where the integral is taken over the exterior surface Sair of the nozzle in contact with the
air. We can use the following trick to evaluate this integral over a curved surface. Consider
the surface force due to atmospheric pressure on the surface S shown in Figure 7.17D.
This surface duplicates the exterior surface of the nozzle, but with the inlet and exit open-
ings closed. Since a constant pressure acts everywhere on this closed surface, the integral∫

S −pAn dS over the entire surface must be zero. Thus we can write∫
S
−pAn dS =

∫
Sair

−pAn dS +
∫

I
−pAn dS +

∫
II

−pAn dS = 0

Solving for the desired integral of atmospheric pressure over the exterior surface, which
is equal to Fair we have

Fair = −
∫

I
−pAn dS −

∫
II

−pAn dS
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If the nozzle wall is thin, the open surfaces I and II are virtually identical to the inlet and
exit CV surfaces, and the desired force of atmospheric pressure over the exterior surface
is given by

Fair = −
∫

inlet
−pAn dS −

∫
exit

−pAn dS (B)

This methodology for evaluating the force of atmospheric pressure on part of the
surface of an object should be noted for future use, since it allows us to calculate the sur-
face force due to atmospheric pressure on any surface with openings by considering the
standard integral of atmospheric pressure over each opening and changing the sign in
front of each integral.

Upon inserting the preceding results into the force balance (A), we see that the ex-
ternal force supplied by the press fitting is given by

FE = −
∫

nozzle
� dS +

∫
inlet

−pAn dS +
∫

exit
−pAn dS + Wnozzlek (C)

To evaluate the integral over the nozzle interior surface in (C), we use the CV with
a decal surface adjacent to the interior wall of the nozzle as shown in Figure 7.17C. Ap-
plying Eq. 7.19, we have∫

CS
(ρu)(u • n) dS =

∫
CV

ρf dV +
∫

CS
� dS

The momentum transport terms on the inlet and exit are evaluated by inspection. On the
inlet we have u = V1k, n = −k, and u • n = −V1, so that 

∫
inlet (ρu)(u • n) dS =

(ρV1k)(−V1)A1. On the exit, u = V2k, n = k, and u • n = V2, so that∫
exit (ρu)(u • n) dS = (ρV2k)(V2)A2 . The body force integral is simply the weight of

the fluid in the CV or −WCVk. The stress terms are evaluated by noting that the stress
on the inlet and exit is due to the pressure. Thus we find∫

CS
� dS =

∫
inlet

−p1n dS +
∫

exit
−p2n dS +

∫
decal

� dS

Although the stress on the decal surface is unknown, this integral is the reaction force R.
By the principle of action–reaction, we know that Fwater = −R. Thus in this problem
we can write 

∫
decal � dS = R = −Fwater = −∫nozzle � dS . The completed momentum

balance is then

ρV 2
2 A2k − ρV 2

1 A1k = −WCVk +
∫

inlet
−p1n dS +

∫
exit

−p2n dS −
∫

nozzle
� dS (D)

We now have two equations, (C) and (D), to determine the external force applied to the
nozzle by the fitting. Rearranging (D) we have

−
∫

nozzle
� dS = (ρV 2

2 A2k − ρV 2
1 A1j

)+ WCVk +
∫

inlet
p1n dS +

∫
exit

p2n dS
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Inserting this into (C) and combining the pressure integrals gives

FE = (ρV 2
2 A2k − ρV 2

1 A1k
)+ ∫

inlet
(p1 − pA)n dS +

∫
exit

(p2 − pA)n dS + (WCV + Wnozzle)k

We see that the effect of the air at atmospheric pressure on the outside of the
nozzle is equivalent to using gage pressure at the open surfaces of the control volume,
i.e., the inlet and exit. Since the pressure is uniform on these surfaces, these
integrals give

∫
inlet (p1 − pA)n dS = (p1 − pA)(−k)A1 and

∫
exit (p2 − pA)n dS =

(p2 − pA)(k)A2. Thus the external force on the nozzle is given by

FE = (p2gage + ρV 2
2

)
A2k − (p1gage + ρV 2

1

)
A1k + (WCV + Wnozzle)k (E)

This is the answer to the problem. To see whether it is reasonable, we can imagine the
situation in which the nozzle is plugged so that no water is flowing and a hydrostatic
pressure p1gage acts at the nozzle inlet, as shown in Figure 7.17E. The force of the water
on the inside of the nozzle is found by using the indirect method for a curved surface as
explained in Section 5.5.3. The result is

Fwater = − (p1gage

)
(−k)A1 − WCVk = p1gage A1k − WCVk

which is the inlet gage pressure acting on the projected area of the nozzle less the ex-
pected small weight contribution, which accounts for the fact that the static pressure on
the inside wetted surface of the nozzle is slightly less than p1gage at the higher elevations.
From the force balance (A), the required external force with the nozzle plugged is thus
FE = −(p1gage)A1k + (WCV + Wnozzle)k. By putting V1 = V2 = 0 and A2 = 0 into
(E), we get exactly the same result. In most cases the weight of the fluid in the CV and
weight of the nozzle are negligible, so the external force required with the nozzle
plugged is usually approximated as

FE = − (p1gage

)
A1k (F)

As expected, the press fitting must resist the tendency of the hydrostatic pressure to blow
the nozzle off the pipe.

When the water is moving, the jet of liquid exiting the nozzle is at atmo-
spheric pressure. Neglecting the effects of gravity, we have from (E) FE =
ρV 2

2 A2k − (p1gage + ρV 2
1 )A1k. A mass balance reveals that Ṁ = ρ A1V1 = ρ A2V2 , so

we can write this as

FE = − (p1gage A1
)

k + Ṁ(V2 − V1)k (G)

Once again we see that the press fitting must create a frictional force that resists the ten-
dency of the nozzle to be blown off the pipe. With the water moving, both pressure and
shear stress act on the nozzle, but now the pressure distribution inside the nozzle is far
from hydrostatic. If the nozzle inlet pressure p1gage is the same in both cases, which is
true for a reasonably small nozzle opening, comparing (G) and (F) shows that the force
required to keep the nozzle on the pipe is smaller with the nozzle open than when the
nozzle is plugged. Does this agree with your intuition?
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We can also observe that the completed momentum balance (D) allows us to write
the unknown force of the water on the nozzle as

Fwater =
∫

nozzle
� dS = −(ρV 2

2 A2 j − ρV 2
1 A1j

)− WCVk +
∫

inlet
−p1n dS +

∫
exit

−p2n dS

Evaluating the pressure terms and neglecting the weight of water in the control volume,
we have

Fwater = (p1 + ρV 2
1

)
A1k − (pA + ρV 2

2

)
A2k (H)

This example problem can be solved more quickly and efficiently by using a mixed
control volume that contains both fluid and solid, as shown in Figure 7.17F. The CV sur-
rounds the entire nozzle and has a decal surface along the press fit, where the external force
on the nozzle inside the CV occurs. Writing the momentum balance for this CV yields∫

inlet
(ρu)(u • n) dS +

∫
exit

(ρu)(u • n) dS =
∫

CV
ρf dV +

∫
inlet

� dS +
∫

exit
� dS +

∫
decal

� dS +
∫

air
� dS

where the integral of the surface force over the decal surface adjacent to the press fit defines
FE, the external force acting on the nozzle inside the CV. Solving for this force, we have

FE =
∫

decal
� dS =

∫
inlet

(ρu)(u • n) dS +
∫

exit
(ρu)(u • n) dS −

∫
CV

ρf dV −
∫

inlet
� dS −

∫
exit

� dS −
∫

air
� dS

Using the procedures outlined earlier to evaluate each term on the right-hand side yields

FE = (ρV1k)(−V1)A1 + (ρV2k)(V2)A2 + (WCV + Wnozzle)k − p1 A1k + p2 A2k − (−pA A1k + pA A2k)

Introducing gage pressures shows that this is identical to (E), the preceding result. Note
that the body force term in the momentum balance for a mixed CV must account for the
weight of the nozzle and the fluid inside the CV, since both the nozzle and its fluid con-
tents are inside the mixed CV. In this example, using a mixed CV to find the external
force is much quicker and easier than using a CV filled only with fluid. However, if the
problem had asked for the force of the water on the nozzle, this mixed CV would not
work because it does not have a decal surface adjacent to the wetted surface of the
nozzle.

EXAMPLE 7 .10

A liquid-fueled rocket is in steady operation on a test stand at sea level as shown in
Figure 7.18A. What is the force acting on the support pylon at the rocket attachment
point? What is the thrust produced by the rocket? Assume the velocity, pressure, and
temperature of the exhaust stream are uniform and known at the nozzle exit plane and
that the combustion gas obeys the perfect gas law. Neglect the effects of the flows of fuel
and oxidizer.
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SOLUTION

Figure 7.18A shows the physical arrangement, and Figure 7.18B is an idealized repre-
sentation of the pressure and shear stress acting inside the combustion chamber and
nozzle of the rocket. Both questions relate to the forces acting on the rocket, so we will
construct a force balance on the rocket as shown in Figure 7.18C. The relevant forces in-
clude the force applied by the high pressure combustion gas to the interior surfaces of
the engine, the force of atmospheric air on the outside, the force of gravity, and the

Mixed CV

(E)

y

z

VE, pE,
�E, TE

Rocket

y

z

(A) (B)

Pylon

(C)

FgasFair

FE

Fgravity y

z

(D)

pA

�gas
�gas

�gas
�gas

pgas

pgas

pgas

Combustion chamber

Decal
surface

CS lies within
combustion chamber

and nozzle walls

CV
contains
fluid only

Figure 7.18 Schematic for Example 7.10: (A) geometry, (B) stress on the combustion chamber, (C) free body 
diagram of the rocket, (D) interior CV, and (E) exterior CV that cuts through the support pylon.
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external force FE applied to the rocket by the support pylon. Thus we have
Fgas + Fair + Fgravity + FE = 0, and the external force acting on the rocket is
FE = −Fgas − Fair − Fgravity . However, in this example we are asked to find the force
Fpylon acting on the support pylon. Since this force is given by Fpylon = −FE , the force
balance can be written as

Fpylon = Fgas + Fair + Fgravity (A)

To find this force, we must find the forces applied to the rocket by the combustion
gas, the air, and gravity. The force of gravity on the rocket is Fgravity = −Wrocketk. The
force of the air is found by using the trick involving the negative of the integral of at-
mospheric pressure over the open surface of the engine. In this case, the only open sur-
face is the exit plane of the nozzle, so assuming that the nozzle wall is thin we have
Fair = − ∫exit −pAn dS = pA AE j. The force acting on the pylon is now

Fpylon = Fgas + pA AE j − Wrocketk (B)

The force of the gas on the rocket is defined by the integral of the stress vector over
the interior surfaces of the engine, Fgas = ∫engine � dS = ∫engine (−pn + � ) dS . Since
we are not given any information about the pressure or shear stress distributions in-
side the engine, this integral cannot be evaluated directly. Instead we will use a decal
surface and a momentum balance to find this force.

To evaluate the force of the combustion gas on the interior surface of the engine, we
will define a CV with a decal surface adjacent to the interior wall of the engine as shown
in Figure 7.18D. Applying a steady flow momentum balance to this CV, we have∫

CS
(ρu)(u • n) dS =

∫
CV

ρf dV +
∫

exit
� dS +

∫
decal

� dS

The terms on the exit port are u = VE j, n = j, and u • n = VE . Thus,∫
exit

(ρu)(u • n) dS = (ρVE j)(VE)AE = ρV 2
E AE j

The body force integral is simply the weight of the gas in the CV or −WCVk. The stress
on the exit port is due to the pressure, so we find that 

∫
exit � dS = ∫exit −pE n dS =

−pE AE j. The integral over the decal surface is the reaction force. By the principle of
action–reaction, we know that R = −Fgas; thus, 

∫
decal � dS = R = −Fgas . The com-

pleted momentum balance is then

ρE V 2
E AE j = −WCVk − pE AE j − Fgas (C)

We now have two equations, (B) and (C), to determine Fpylon. Solving for this force, we
find

Fpylon = −[ρE V 2
E AE + (pE − pA)AE

]
j − (WCV + Wrocket)k (D)

This is our answer. Since we know the pressure and temperature at the exit, we can use
the perfect gas law and the specific gas constant of the combustion products to find the
gas density. The exit velocity is typically very large (supersonic) for a rocket. We see
that our answer is reasonable. It predicts that the total weight of the rocket acts down-
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ward on the pylon and that the engine also applies a horizontal force on the pylon to the
left, as expected.

The thrust produced by a rocket engine is the force available to accelerate the
vehicle containing the engine. In this case we conclude from (D) that the thrust is

Fthrust = −[ρE V 2
E AE + (pE − pA)AE

]
j (E)

Combining (D) and (E) gives

Fpylon = Fthrustj − (WCV + Wrocket)k

which sensibly states that the force on the pylon is due to the thrust and the total weight.
Our analysis shows that the pressure at which the rocket exhaust stream exits the

nozzle influences the amount of thrust produced. There is a complex relationship
between the combustion chamber pressure, exit velocity, exit pressure, and ambient
pressure of a rocket nozzle, so the exit velocity and exit pressure are not independent.
The analysis of isentropic compressible flow through a converging–diverging nozzle, a
topic not covered in this text, shows that the maximum thrust occurs for an exit pressure
equal to the ambient pressure or pE = pA , thus the maximum thrust is given by
Fthrust = −ρE V 2

E AE j.
We can also solve this problem using a mixed CV with a decal surface to isolate the

force applied to the pylon. This CV is shown in Figure 7.18E. Writing a steady flow
momentum balance for this CV, we have 

∫
exit (ρu)(u • n) dS = ∫CV ρf dV +∫

decal � dS + ∫air � dS + ∫exit � dS . Evaluating the various terms and noting that by
action–reaction

∫
decal � dS = −Fpylon , we find

ρE V 2
E AE j = −(WCV + Wrocket)k − Fpylon + pA AE j + (−pE AE j)

which is identical to the earlier result (D), and much quicker.

Examples 7.9 and 7.10 suggest that in problems involving the determination of a
force, the first piece of control surface to assign is the decal surface, which is the surface
across which the desired force acts. Once the decal surface has been assigned, we place
sections of the control surface where we have information. This process tends to suggest
how the rest of the control surface should be selected, and whether it should contain
fluid only or be a mixed CV containing an object. If a problem asks for the force of
a fluid on a structure, a CV containing fluid only should be considered. If a problem asks
for an external force, a mixed CV usually works best. In most cases, either type of CV
will work, but the analysis is easier with the right control volume choice.

For example, consider the jet engine on a test stand shown in Figure 7.19. Suppose
you are asked to determine the thrust produced by this engine. Since thrust is the force
tending to push the engine forward, it is equal and opposite to the horizontal component
of the external force of the pylon on the engine. Thus, we assign a decal surface to cut
across the pylon to determine this external force. We are given information about the
velocities and flow properties at the engine inlet and exit so it makes sense to put sec-
tions of the control surface at these locations. Thus, we arrive at the mixed CV shown in
Figure 7.19. This is an excellent choice, as you may have guessed from studying
Example 7.10.



As you gain experience solving force questions with a momentum balance, it be-
comes possible to combine the ideas we have been discussing into a more streamlined
solution technique. This is particularly true in a problem in which all the forces are
obvious by inspection and only a single component of the force is to be determined.
This streamlined process is illustrated for a case involving a single force component 
in Example 7.11. As you study it, notice the mixed CV selection and observe how the
problem is solved by using only one component of the momentum balance and an un-
derstanding of the forces acting on the CV.
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Vin
pin
Ain

Vexit
pexit
Aexit

CV

Figure 7.19 CV for a jet engine on a test stand.

EXAMPLE 7 .11

What is the horizontal force required to hold the thin sluice gate of height H and length
L in the position shown in Figure 7.20A? You may assume 2D steady flow under the
gate, with uniform velocities and hydrostatic pressure distributions at the indicated
locations. What is the horizontal force required to hold the sluice gate in the closed
position as shown in Figure 7.20B if the water levels on both sides remain the same?

SOLUTION

This question asks for the horizontal component of the external force acting on the sluice
gate in the open and closed positions. We know that this force component must balance
the horizontal force of the air and water on the gate in each case. In the necessary sketches
for this problem (Figure 7.20A, 7.20B), the horizontal forces of air and water on the gate
are shown in the expected directions. The horizontal external force is shown pointing in
the negative y direction. Our horizontal force balance on the gate in each case is

Fwater − Fair − FE = 0 (A)

In the closed position the pressure distribution in the water is hydrostatic and it is
constant in the air. There is no need for a momentum balance, since we can write the net
hydrostatic force applied by both fluids on the gate by considering the pressure distrib-
ution on each side as shown in Figure 7.20B. The net horizontal force of the air and
water is found to be:

Fwater − Fair =
(

ρgD1

2

)
D1L −

(
ρgD2

2

)
D2L =

[
1

2
ρgD2

1 L − 1

2
ρgD2

2 L

]



7.6 CONTROL VOLUME ANALYSIS 417

pA

CV with
fluid only

(E)

Sluice gate (open)

D2

D1

D2

(C)

D1

D2

z

y

pA

(A)

Sluice gate (closed)

Sluice gate (open)

D1

D2

pA

pA pA

pApA

pA

pwater

pwater

(B)

FE

FE FE

FE

Fair

Fwater

Sluice gate (open)

Mixed CVMixed CV

D1

D2

pA

pwater

pwater

(D)

u � V1j

n � �j
u � V2 j

n � j

Rshear

FE

Figure 7.20 Schematic for Example 7.11: (A) geometry, (B) pressure distribution on the closed gate, (C) mixed
CV, (D) pressure distribution on open gate and (E) a fluid only CV.
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Using (A) the horizontal external force needed to keep the gate stationary in the closed
position is found to be

FE = 1
2ρgD2

1 L − 1
2ρgD2

2 L (B)

This positive value confirms that in the closed position the external force points to the
left as assumed in Figure 7.20B.

In the open position we choose a mixed CV as shown in Figure 7.20C and use
Eq. 7.20b, ∫

CS
(ρv) (u • n) dS = FBY + FSY

noting that the body force is zero in the y direction. On the inlet we have u = V1j,
n = −j, and u • n = −V1. On the exit, u = V2j, n = j, and u • n = V2. The momentum
transport terms are found to be (ρV 2

2 A2 − ρV 2
1 A1), where A1 = D1L and A2 = D2L .

We next examine each section of the control surface shown in Figure 7.20C, dropping
those on which the surface forces do not act in the y direction. The remaining surfaces
are the inlet, the decal surfaces on the left and right sides of the gate exposed to air (on
which the surface forces cancel each other), the vertical surfaces at the exit exposed to
air and water, respectively, and the decal surface adjacent to the bottom of the channel
where we have shown a reaction shear force Rshear acting to the left due to friction. We
must also include the external horizontal force FE . Since the gate is completely inside
and thus part of the mixed CV, this force is transmitted to the gate across some section
of the control surface. The horizontal momentum balance becomes

(
ρV 2

2 A2 − ρV 2
1 A1

) =
∫

inlet
p1(z) dS +

∫
air–exit

−pAdS +
∫

exit
−p2(z) dS − Rshear − FE

We are told that pressure distribution on the inlet and exit surface is hydrostatic. When
we sketch the pressure distributions on the inlet, exit and air–exit surface as shown in
Figure 7.20D, we see that the sum of the three integrals containing these pressures yields∫

inlet
p1(z) dS +

∫
air–exit

−pA dS +
∫

exit
−p2(z) dS

=
[

pA + ρgD1

2

]
D1L − pA(D1 − D2)L −

[
pA + ρgD2

2

]
D2L

= 1
2ρgD2

1 L − 1
2ρgD2

2 L

Thus the horizontal component of the external force needed to hold the gate open is

FE = ( 1
2ρgD2

1 L − 1
2ρgD2

2 L
)− (ρV 2

2 A2 − ρV 2
1 A1

)− Rshear

In most cases the reaction force due to shear on the bottom is neglected because it is
unknown and presumed to be small. Note that it is also possible to solve this problem
with the CV containing fluid only shown in Figure 7.20E.
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EXAMPLE 7 .12

Water is pumped steadily through a 90° reducing elbow welded onto the end of a pipe
and exits to the atmosphere as shown in Figure 7.21A. What is the force applied to the
elbow at the weld joint? Assume uniform conditions at the elbow inlet and exit and
neglect gravity.

Pipe Weld

(A)

z

y V1

p1

V2

p2

g

Reducing elbow

Weld

(B)

z

y

V1

V2

Fair

FG

FE

n1 � �j

n2 � �k

Control
volume

Figure 7.21 Schematic for Example 7.12: (A) geometry and (B) CV.

SOLUTION

We are asked for the structural force applied to the elbow by the pipe to which it is welded.
This force holds the elbow in place. From experience we know that this external force
must balance the forces of the water inside and air outside acting on the elbow, as well as
the weight of the elbow (Figure 7.21A). However, we are told to neglect gravity in this
problem.Although we would normally write a force balance on the elbow at this point, we
will instead go directly to a momentum balance on the mixed CV shown in Figure 7.21B.
Our CV selection is guided by the knowledge that a mixed control volume works best for
an external force. We have placed a decal surface through the weld where the external
force acts, and sections of control surface at the inlet and the exit of the elbow. The last sec-
tion of control surface is a decal surface placed on the outside of the elbow where the force
applied by the air occurs. A mass balance shows that Ṁ = ρ A1V1 = ρ A2V2.

Since we anticipate momentum transport terms in both the y and z directions and
the flow is steady, we will use the vector form of the steady flow momentum balance as
given by Eq. 7.19a: ∫

CS
(ρu)(u • n) dS = FB + FS

and neglect the body force. We will evaluate the momentum transport at the inlet and
exit, surface forces due to the pressure at these locations, the force applied by the air to
the decal surface on the outside of the elbow, and the external force FE applied by the
pipe at the decal surface at the weld. On the inlet we have u = V1j, n = −j, and
u • n = −V1. By inspection, the momentum transport vector there is −ρV 2

1 A1j. On the
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exit, u = −V2k, n = −k, and u • n = V2, and the momentum transport is −ρV 2
2 A2k.

The net momentum transport is (−ρV 2
1 A1j − ρV 2

2 A2k).
The surface force on the inlet and exit is due to the pressure at each location. These

terms are (−p1(−j)A1) + (−p2(−k)A2) = (p1 A1j + p2 A2k) . The force of the air on
the outside of the elbow can be included by using gage pressure in these terms. This as-
sumes the wall of the elbow is thin, which is not always the case. If the wall is not thin,
we can calculate the force of the air by using the trick as Fair = −pA(A1 + A1 W )j +
pA(A2 + A2 W )k, where we have included the wall areas in the terms. Upon gathering
the various terms, our momentum balance for a thin-walled elbow becomes
(−ρV 2

1 A1j − ρV 2
2 A2k) = (p1gage A1j + p2gage A2k) + FE . Solving for the external

force, we have FE = − (p1gage + ρV 2
1 )A1j − (p2gage + ρV 2

2 )A2k . The exit of the elbow
is at atmospheric pressure so p2gage = 0, and we have

FE = −(p1gage + ρV 2
1

)
A1j − ρV 2

2 A2k

This is the answer. It predicts that the weld must exert a force on the elbow to the left and
down. To see if this is sensible, we can imagine that the exit of the elbow is plugged,
so that the elbow is subjected to hydrostatic pressure on the inside. This would tend to
force the elbow to the right, which requires an external force to the left. With the elbow
open the pressure distribution inside will still force the elbow to the right, but also force
the elbow up. Think of the elbow exit acting as a jet to produce thrust upward.

7.6.3 Energy Balance

An integral equation expressing conservation of energy may be developed by applying
the laws of thermodynamics to a system. From thermodynamics we know that the time
rate of change of the internal plus kinetic energy in a system is equal to the rate at which
work is done on the system by body and surface forces, plus the rate at which energy is
added to the system across its boundary. There are a variety of ways in which energy
may be added to a system. Heat conduction occurs in many engineering applications.
Chemical reaction and other types of energy input (e.g., radiation and Joule heating), are
less frequently encountered, but important in specialized applications. We express con-
servation of energy for a system by writing

d�sys

dt
= ẆB + ẆS + Q̇C + Ṡ

where �sys is the sum of the internal plus kinetic energy in the system, ẆB and ẆS are
the rates at which work is done on the system by body and surface forces, Q̇C is the rate
at which energy is added to the system by heat conduction, and Ṡ is the net rate of any
additional types of energy input. Now consider a fixed CV that coincides with the sys-
tem. From the Reynolds transport theorem for a control volume, Eq. 7.5, we can write 

d�sys

dt
=
∫

CV

∂

∂t
(ρε) dV +

∫
CS

(ρε)(u • n) dS
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where Esys has been replaced by �sys, the sum of the internal plus kinetic energy in the
system. On a unit volume basis, the internal plus kinetic energy is given by ρε =
ρ(u + 1

2 u • u). Note the use of similar symbols representing different quantities: the
boldface u is the velocity vector while u is the internal energy per unit mass. The trans-
port theorem thus gives us a second expression for the time rate of change in total en-
ergy in the system:

d�sys

dt
=
∫

CV

∂

∂t

[
ρ
(
u + 1

2 u • u
)]

dV +
∫

CS
ρ
(
u + 1

2 u • u
)
(u • n) dS

Since the CV and system coincide, the work and energy inputs to the system are identi-
cal to the work and energy inputs to the CV. Thus we may combine the preceding ex-
pression with that written for the system to obtain∫

CV

∂

∂t

[
ρ
(
u + 1

2 u • u
)]

dV +
∫

CS
ρ
(
u + 1

2 u • u
)
(u • n) dS = ẆB + ẆS + Q̇C + Ṡ

(7.22)

This is the integral energy conservation equation, or energy balance, for a fixed CV.
Because the equation accounts for the various work and energy flows into and out of a
CV, it is useful for analyzing the performance of all types of fluid-handling devices
including pumps, blowers, turbines, and compressors. It is valid for all fluids, under all
conditions.

The appearance of a thermodynamic state variable such as the internal energy in the
energy balance should remind us that the value of a state variable is defined to be that
which would be seen by an observer moving with the fluid. Thus, if u(x, t) is the inter-
nal energy in a fluid flow at location x at time t , then this is the value of internal energy
that would be measured by an observer moving with the fluid particle that happens to be
at x at time t . Later we will show that it is possible to write the energy balance in terms
of other thermodynamic variables such as enthalpy, entropy, or temperature, as required
by the demands of a given problem. We do this by using the appropriate thermodynamic
relationships between state variables. The use of these other thermodynamic variables is
illustrated in several example problems.

To provide a physical interpretation of the energy balance we rewrite it in symbolic
form as

d�CV

dt
= −�C + ẆB + ẆS + Q̇C + Ṡ

where the rate of accumulation of internal plus kinetic energy within the control volume
is given by

d�CV

dt
=
∫

CV

∂

∂t

[
ρ
(
u + 1

2 u • u
)]

dV

the net convective transport of this energy into the control volume is

−�C = −
∫

CV
ρ
(
u + 1

2 u • u
)
(u • n) dS

and the four remaining terms account for the work and energy inputs already described.



Before we apply the energy balance in an example, it is helpful to have a clear un-
derstanding of the work and energy inputs. Consider the rate at which work is done by
body forces. As illustrated in Figure 7.22A, the work done by the body force on a mov-
ing fluid particle located at a point inside the CV is given by the dot product of the body
force vector acting on the particle with a vector element of length in the direction of the
particle’s path. To calculate the rate at which work is done on this particle, we use the
dot product of the body force vector and the velocity vector of the particle. In the Euler-
ian description, this dot product is given by ρf • u. Summing the contributions from all
parts of the CV, we find

ẆB =
∫

CV
ρ(f • u)dV (7.23)

which serves to remind us that the net rate at which work is done by body forces depends
on the nature of the body force and the movement of the fluid. For work to be done on
the fluid inside the CV, there must be a body force acting in the direction of the fluid
velocity field.

Next consider the work done by surface forces. As illustrated in Figure 7.22B, the
work done on a moving fluid particle instantaneously located at a point on the control
surface is given by the dot product of the stress vector, �, acting on the particle with a
vector element of length dx in the direction of the particle’s path. The work done on the
particle by the stress vector is given by � • dx, and the rate at which work is done on this
particle is given by the dot product of the stress vector and the particle’s velocity, i.e.,
� • u. Summing the contributions from all parts of the control surface, we obtain

ẆS =
∫

CS
(� • u) dS (7.24)

We see that the net rate at which work is done by surface forces depends on the stress on
the control surface, and on the velocity of the fluid. There must be a stress acting on the
control surface in the direction of the fluid velocity vector for work to be done on the
fluid.

The heat conduction term Q̇C may also be written in terms of an integral over the
control surface. The rate at which heat crosses the control surface by conduction may be
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Figure 7.22 (A) Body force acting on a fluid particle within a CV. (B) Surface force acting on a fluid
particle at the surface of a CV.
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represented as a diffusive transport of heat. Using Eq. 6.38, and adjusting the sign to get
the rate at which heat enters the CV, we have

Q̇C = −
∫

CS
k(∇T • n) dS (7.25)

where k is the thermal conductivity of the fluid. We see that an energy input across the
control surface occurs only in the presence of a temperature gradient normal to the con-
trol surface.

Finally, consider Ṡ, which represents the net rate of any additional types of energy
input. Many types of energy input such as those created by combustion, chemical reac-
tion, or Joule heating are modeled using a volume integral of the form

Ṡ =
∫

CV
ṡ(x, t) dV (7.26)

where ṡ(x, t) represents the energy release per unit volume within the fluid as a function
of space and time.

If we replace the work and energy terms in Eq. 7.22 with their integral representa-
tions, the energy balance becomes∫

CV

∂

∂t

[
ρ
(
u + 1

2 u • u
)]

dV +
∫

CS
ρ
(
u + 1

2 u • u
)
(u • n) dS

=
∫

CV
ρ(f • u) dV +

∫
CS

(� • u) dS −
∫

CS
k(∇T • n) dS +

∫
CV

ṡ(x, t) dV
(7.27)

Although detailed information is needed to calculate the various work and energy inte-
grals, in the next section we will show that it is usually possible to avoid the calculation
of these integrals altogether.

Gravitational Potential Energy: Consider the integral ẆB = ∫CV ρ(f • u) dV repre-
senting the rate at which work is done on the fluid inside the CV by body forces. Gravity
is a steady conservative body force and by far the most important body force in engi-
neering applications. We can account for the rate at which work is done by gravity by
employing an appropriate potential energy term that is included along with the internal
and kinetic energy in the accumulation and convective transport terms in the energy
equation. That is, we replace the integrand ρ(u + 1

2 u • u) with ρ(u + 1
2 u • u + gz) in

the accumulation and convective transport terms in the energy balance, and drop the
original term ẆB = ∫CV ρ(f • u) dV from the right-hand side of the energy balance.

Total Heat Transfer Rate: The total heat transfer rate into a CV is illustrated in 
Figure 7.23. In most engineering problems we do not know the exact temperature dis-
tribution over the control surface, so we cannot use the surface integral Q̇C =
−∫CS k(∇T • n) dS to calculate the total heat transfer rate. However, we can often
obtain information about the value of the total heat transfer rate by indirect physical
measurements. For example, in a water-cooled compressor or combustion engine, we
can calculate the total heat transfer rate by measuring both the coolant flowrate into the
compressor or engine and the temperature increase sustained by the coolant in passing
through the cooling passages. Thus, if coolant enters the engine at temperature T1 and



leaves at T2, we can write Q̇C = −Ṁc(T2 − T1), where Ṁ is the coolant mass flowrate
and c is the specific heat of the coolant. The negative sign indicates that cooling has oc-
curred, since our convention is that a positive value of Q̇C is associated with a heat
input. In some problems the value of Q̇C is provided on a unit mass of flowing fluid
basis, or is itself the parameter of interest, in which case we evaluate the other terms in
the energy balance, and Q̇C is the unknown.

Total Rate of Energy Addition: The term Ṡ = ∫CV ṡ(x, t) dV represents the rate at
which energy is added to the fluid in the CV from a variety of sources. We usually do not
know the energy release rate ṡ(x, t), but information about the total energy input is often
available. For example, gasoline has a heating value of approximately 21,000 Btu/lbm,
so in a combustion process involving the burning of gasoline we can write
Ṡ = ṁ(21,000 Btu/lbm) where ṁ is the mass flowrate of the gasoline being burned
inside the CV. Thus the associated integral is rarely evaluated, and we simply employ Ṡ
in the energy balance as shown in Figure 7.23.

Work Done by Surface Forces: To further simplify the energy balance, consider the
term ẆS = ∫CS (� • u) dS , which represents the rate at which work is done by surface
forces on the fluid inside the CV. The evaluation of this integral depends on the type of
control surface involved, as well as whether we have selected a CV containing fluid only
or a mixed CV. Here we will consider the four common types of control surface that
occur with both fluid only and mixed CVs. These four types of control surface,
illustrated in Figure 7.23, will be referred to as stationary wall, port, fluid power surface,
and shaft surface. To allow for any combination of these types of control surface in a
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problem, we can consider the surface work term to be the sum of contributions from
each type of control surface and write

ẆS = Ẇwall + Ẇport + Ẇpower + Ẇshaft (7.28)

Incorporating these results, the energy balance now becomes∫
CV

∂

∂t

[
ρ
(
u + 1

2 u • u + gz
)]

dV +
∫

CS
ρ
(
u + 1

2 u • u + gz
)
(u • n) dS

= Ẇwall + Ẇport + Ẇpower + Ẇshaft + Q̇C + Ṡ
(7.29)

The evaluation of the rate at which work is done by surface forces at each of these types
of control surface is explained in the subsections that follow.

Stationary Wall (Ẇwall): Consider the decal surfaces shown in Figure 7.23, which are
adjacent to the stationary solid walls. The value of the term Ẇwall = ∫wall (� • u) dS on
this type of control surface depends on the stress acting on the wall and the velocity at
the wall. Because of the no-slip, no-penetration conditions, the fluid velocity is zero on
all stationary surfaces. Thus the rate at which work is done on the fluid is identically zero
irrespective of the value of the stress, i.e, Ẇwall = 0, so we can ignore the surface work
term on stationary solid walls.

Port (Ẇport): A port is defined to be any portion of a control surface through which fluid
flows. Consider the generic CV and its CS as shown in Figure 7.23. The control surface
includes inlet and exit ports. To simplify the term Ẇport = ∫port (� • u) dS at an inlet or
exit port, we must first ensure that the port is properly defined. Recall that at a properly
defined port, the fluid velocity vector and unit normal to the control surface are parallel,
as shown in Figure 7.23. Since the work rate is defined by the dot product � • u, the only
component of the stress vector that can do work at a port is the normal stress. A tangen-
tial stress may exist at a properly defined port, but it does no work on the fluid because
the tangential stress is at a right angle to the velocity vector. As discussed earlier, in most
engineering applications the normal stress may be assumed to be equal to the negative
of the fluid pressure. Thus at an inlet or exit port we write � = −pn and the dot prod-
uct with the velocity vector is then � • u = −pn • u = −p(u • n). The rate at which
work is done by surface forces at the inlet and exit ports of a fixed CV is therefore given
by ∫

port
(� • u) dS = −

∫
port

p(u • n) dS

which we can also write as 
∫

port (� • u) dS = −∫port (p/ρ)ρ(u • n) dS . This is now seen
to be a convective transport integral involving the quantity p/ρ, and we will include this
contribution in the convective transport term on the left-hand side of the energy balance.
Thus the effects of the surface work term at inlet and exit ports are accounted for by
writing the convective transport term in the energy balance as∫

CS
ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS



We see that the term p/ρ acts like a potential energy. This is the pressure potential en-
ergy per unit mass discussed briefly in Section 2.9.3. Notice that this term arises from
the rate at which the fluid pressure does work at the inlet and exit ports of the CV. The
work term at a port of a CV is therefore normally accounted for by calculating the
transport of pressure potential energy at each inlet or exit port.

Fluid Power (Ẇpower): Work is done on fluid in compressors, pumps, turbines, and
other similar devices by moving solid surfaces. The moving surfaces can take the form
of blades, vanes, or pistons. If a control surface is placed adjacent to a moving solid sur-
face in contact with fluid, fluid power transmission occurs on this surface and must be
accounted for. For such surfaces as a piston in a cylinder, this calculation is possible
because the fluid velocity on the surface is equal to the piston velocity, as discussed for
the rod in Example 7.3. On the other hand, consider a CV selection that employs the
decal surface adjacent to a moving solid surface of the propeller shown in Figure 7.24A.
Power is transferred across this decal surface from the propeller to the fluid and this
transfer must be accounted for in an energy balance. Since the velocity is nonzero at a
moving surface, work is done on the fluid by both normal and shear stresses at a power
transmission surface. Although this type of surface is frequently encountered, we rarely
have the necessary information about the velocity and stress at each point on the surface.
However, recognizing that a moving surface is providing a power input Ẇpower to the
fluid through the interaction of the force of the moving surface on the fluid, we can write

Ẇpower =
∫

power
(� • u) dS (7.30)

to account for the surface work term on this type of control surface. In some cases the
power input (or output ) is the quantity to be found from the analysis, in others we are
given the power input or output can measure these externally. In both cases the effect is
accounted for by using Ẇpower to replace the corresponding integral.

Shaft Power (Ẇshaft): Finally consider the effect of a shaft that is transmitting power
to moving surfaces inside the CV. For example, consider the mixed CV shown in Fig-
ure 7.24B, and notice that this is the same physical arrangement discussed in the last sec-
tion, but with a different CV. The propeller is now inside the CV, so its surface is not part
of the control surface. Thus, there is no fluid power transmission term to consider.
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(B) Mixed CV, where the control surface cuts the propeller shaft.
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However, notice that the control surface now cuts
across the shaft. In this case the power input is given by 

Ẇshaft =
∫

shaft
(� • u) dS (7.31)

where the stress vector now acts on the shaft material. It can be seen that this result and
the preceding one, Eq. 7.30, are complementary, for the power transmitted by the shaft
must be equal to the power delivered to the fluid inside the CV by the moving surfaces
connected to the shaft. The occurrence of a shaft or fluid power input in the energy
balance depends on how the CV is defined.

Since we do not usually know the stress distribution in a shaft, we do not evaluate
the integral in Eq. 7.31. Instead we take advantage of the fact that the power transmitted
by a shaft is the product of the torque and angular velocity. This allows us to write

Ẇshaft = Tshaft ω (7.32)

where Tshaft is the magnitude of the torque transmitted by the shaft and ω is the shaft an-
gular velocity. Torque and angular velocity are easily measured, thus in energy balance
problems involving an external power input, it is convenient to use a mixed CV with the
fluid power transmission surfaces inside the CV. In such cases, the term Ẇpower is
dropped, and we use Eq. 7.32 to calculate Ẇshaft.

Upon incorporating all the standard simplifications described thus far, the energy
balance becomes∫

CV

∂

∂t

[
ρ

(
u + 1

2
u • u + gz

)]
dV +

∫
CS

ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS

= Ẇpower + Ẇshaft + Q̇C + Ṡ

(7.33)

Equation 7.33 is the starting point for an energy balance analysis of any type of unsteady
process. Recalling the discussion of the various forms of fluid energy in Section 2.9, we
see that the left-hand side of this equation contains a term describing the accumulation
of internal, kinetic, and gravitational potential energy, and a flux term that describes the
transport of the total energy e = u + p/ρ + 1

2 u • u + gz per unit mass. The total energy
per unit mass consists of internal energy u, pressure potential energy p/ρ, kinetic
energy 1

2 u • u, and gravitational potential energy gz. The use of the energy balance
to analyze the charging of a tank from a high pressure air line is shown in Example 7.13.

While energy integrals are rarely calcu-
lated by hand, they are often determined
numerically from CFD solutions. 

EXAMPLE 7 .13

An insulated air tank, initially at a pressure of 0 MPa (gage) and 20°C, is connected by
a valve to an air supply that provides air at a constant pressure of 0.5 MPa (gage) and the
same temperature. When the valve is opened, the initial mass flowrate into the tank is
found to be Ṁ0 = 0.05 g/s. If the volume of the tank is –V = 0.05 m3, and the cross-
sectional area of the supply line is 0.5 cm2, determine the initial rate of change of den-
sity and temperature in the tank.
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SOLUTION

We are asked to determine the initial rate of change of density and temperature during
the filling of an air tank. Figure 7.25 sketches the tank and connection to the air supply
as well as an appropriate fixed control volume for use in the solution of this problem. We
will assume that the air obeys the perfect gas law and that the values of fluid properties
on the section of the control surface defining the port are uniform. We will also assume
that the temperature, density, and other fluid properties inside the tank are spatially uni-
form, that air velocities are small, and that the effects of gravity are negligible.

To find ∂ρ/∂t , the rate of change of density in the tank, recall that the mass balance
Eq. 7.11, 

∫
CV (∂ρ/∂t) dV + ∫CS ρ(u • n) dS = 0, contains this term. Using our

assumptions of a spatially uniform density inside the tank and uniform properties at
the port, and applying this equation to the selected control volume, we find
(∂ρ/∂t) –V − ρ1V1(t)A1 = 0. Upon rearrangement we find

∂ρ

∂t
= ρ1 A1V1(t)

–V
= Ṁ(t)

–V
(A)

which agrees with our mass balance analysis in Example 7.2. We see that the rate of
change of density in the tank at any time is given by the instantaneous mass flowrate into
the tank divided by the volume of the tank. A check shows that (A) has the expected
dimensions of density per unit time. Since the initial mass flowrate is known to be
Ṁ0 = 0.05 g/s, the initial rate of change of density inside the tank is calculated as

[
∂ρ

∂t

]
0

= Ṁ0

–V
= 5 × 10−5 kg/s

5 × 10−2 m3
= 1 × 10−3 kg/(m3-s)

To find an expression for the rate of change of temperature in the tank, we apply an
energy balance to the CV, recalling that for a perfect gas internal energy and temperature

Tank

CV

p, T, �, uA1 � 0.5 cm2

V � 0.05 m3

M0 � 0.05 g/s

Air supply
p1, �1, T1, u1

.

V1(t)

_

Figure 7.25 Schematic for Example 7.13.
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are related. According to Eq. 7.33 we have∫
CV

∂

∂t

[
ρ

(
u + 1

2
u • u + gz

)]
dV +

∫
CS

ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS

= Ẇpower + Ẇshaft + Q̇C + Ṡ

Since there is no fluid power, shaft power, heat, or other energy input to this CV, the
right-hand side of this equation is zero. In addition, we will assume velocities are low
enough to permit us to neglect the kinetic energy terms. Since we have also decided to
neglect the effects of gravity the energy balance reduces to∫

CV

∂

∂t
(ρu) dV +

∫
CS

ρ

(
u + p

ρ

)
(u • n) dS = 0

With the assumption of uniform properties inside the tank and uniform properties on the
control surface defining the port which are the same as in the air supply, we evaluate the
integrals to find:

∂(ρu)

∂t
–V − ρ1V1(t)A1

(
u1 + p1

ρ1

)
= 0

Expanding the time derivative, the above yields [u(∂ρ/∂t) + ρ(∂u/∂t)] –V − ρ1V1(t)A1

(u1 + p1/ρ1) = 0. Now, Ṁ(t) = ρ1V1(t)A1, and from (A) we have ∂ρ/∂t = Ṁ(t)/–V .
Thus the preceding expression becomes

Ṁ(t)(u − u1) + ρ

(
∂u

∂t

)
–V − Ṁ(t)

(
p1

ρ1

)
= 0

For a perfect gas, the internal energy change in going from state 1 to state 2 is re-
lated to the temperature change by Eq. 2.21a as u2 − u1 = cV (T2 − T1). We can use this
relationship to write u − u1 = cV (T − T1), and ∂u/∂t = cV (∂T /∂t). We will also
make use of the fact that p = ρRT , and write the energy balance as
Ṁ(t)cV (T − T1) + ρcV (∂T /∂t)–V − Ṁ(t)RT1 = 0. Solving for the rate of change of
temperature in the tank, we have

∂T

∂t
= Ṁ(t)RT1

ρ(t) cV –V
− Ṁ(t)(T (t) − T1)

ρ(t)–V
(B)

This result is valid at any instant of time. To find the initial rate of change of temperature
in the tank, we make use of the fact that at the initial instant the temperature inside the
tank is the same as that in the supply line. Thus T(0) = T1, the second term in (B) is zero,
and [∂T /∂t]0 = Ṁ0 RT1/ρ0 cV –V . We are not given the density in the tank at the initial
instant, but we can make use of the perfect gas law to write the density inside the tank as
ρ0 = p0/RT(0) = p0/RT1 , once again making use of the fact that T(0) = T1. We now
have [

∂T

∂t

]
0

= Ṁ0(RT1)
2

p0cV –V
(C)
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Inserting the given data and values for R and cV from Table 2.4 into (C) we find

[
∂T

∂t

]
0

= Ṁ0(RT1)
2

p0cV –V
= (5 × 10−5 kg/s){[287(N-m)/(kg-m)](293 K)}2

(1.01 × 105 N/m2)[717(N-m)/(kg-K)](5 × 10−2m3)

= 9.8 × 10−2 K/s

Note that in using the perfect gas law we are required to use the absolute pressure
and temperature.

It is instructive to calculate the magnitude of the neglected kinetic energy flux into
the tank at the initial instant. This flux is seen to be

1

2
Ṁ0V1(0)2 = 1

2
Ṁ0

(
Ṁ0

ρ1 A1

)2

= 1

2
Ṁ3

0

(
RT1

p1 A1

)2

= 1

2
(5 × 10−5 kg/s)3

{
[287 (N-m)/(kg-K)](293 K)

[(0.5 + 0.101) × 106N/m2](5 × 10−5 m2)

}2

= 4.9 × 10−7 (kg-m2)/s3

The corresponding initial flux of pressure potential energy is

Ṁ0
p1

ρ1
= Ṁ0 RT1 = (5 × 10−5 kg/s)[287(N-m)/(kg-K)](293 K) = 4.2 (kg-m2)/s3

which can be seen to be many orders of magnitude larger. This is typical for gas flows
and justifies our neglect of the kinetic energy term in this flow.

As was the case in Example 7.12, in many problems of interest certain terms in the
energy balance are identically zero or may be neglected. For example, consider a steady
process, i.e., one in which the velocity and fluid and flow properties are independent of
time. The accumulation term in the energy balance, Eq. 7.33, is zero, and the total
amount of internal, kinetic, and gravitational potential energy inside the control volume
is fixed. The energy balance for a steady process is therefore given by∫

CS
ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS = Ẇpower + Ẇshaft + Q̇C + Ṡ (7.34)

EXAMPLE 7 .14

Use an energy balance to analyze the steady, fully developed flow of constant density
fluid in a round pipe shown in Figure 7.26. Consider laminar and turbulent flow, and
assume that the internal energy and pressure are uniform on any cross section of the pipe.
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SOLUTION

As discussed in Example 7.7, the laminar flow velocity profile in the pipe is parabolic
(Figure 7.26A), while the turbulent flow velocity profile is nearly uniform (Fig-
ure 7.26B). We will analyze each case by assuming that the fully developed,
axisymmetric velocity field is given in cylindrical coordinates by vr = 0, vθ = 0, and
vz(r), and inserting the appropriate function for laminar and turbulent flow. Consider a
CV containing all the fluid in a section of pipe of length L. Applying a mass balance, we
find that Ṁ = ρ1 A1V̄1 = ρ2 A2V̄2 . Since the density is constant and the areas are the
same, this result shows that the average velocity at each port is the same. The steady
process energy balance is given in general by Eq. 7.34 as∫

CS
ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS = Ẇpower + Ẇshaft + Q̇C + Ṡ

In this problem there is no fluid or shaft power input or energy addition; and because the
pipe is horizontal, the effects of gravity cancel. Thus, the energy balance can be written as∫

CS
ρ

(
u + p

ρ

)
(u • n) dS +

∫
CS

ρ

(
1

2
u • u

)
(u • n) dS =Q̇C (A)

Note how we have written the flux integral in two parts. Since we are told that the inter-
nal energy and pressure are uniform on the port surfaces in both the laminar and turbu-
lent flow, we can evaluate the first integral to obtain∫

CS
ρ

(
u + p

ρ

)
(u • n) dS = Ṁ

[(
u2 + p2

ρ

)
−
(

u1 + p1

ρ

)]

= Ṁ

[
(u2 − u1) + p2 − p1

ρ

] (B)

The value of the second integral in (A) depends in general on the density and the form of
the velocity profile at a port. For turbulent flow, the velocity profile may be assumed to
be uniform, and the integral defining the kinetic energy flux at the inlet and exit port gives∫

CS
ρ
(

1
2 u • u

)
(u • n) dS = 1

2ρ2 A2V̄ 3
2 − 1

2ρ1 A1V̄ 3
1 = 0

(A)

r

z
v1(r) v2(r)

p1
u1

p2
u2

QC

1 2 (B)

r

z
v1(r)

v2(r)

p1
u1

p2
u2

1 2

.
QC

.

Figure 7.26 Schematic for Example 7.14: (A) laminar and (B) turbulent flow in a pipe.



Additional simplification of the energy balance is possible if the velocity and other
fluid properties (including the gravitational potential energy under certain conditions)
are spatially uniform at ports of the CV. This is normally the case in turbulent flow in-
volving pumps, compressors, and comparable devices. In such cases we may write the
convective transport at each port in the form of a mass flowrate (with appropriate sign)
multiplied by the value of (u + p/ρ + 1

2 u • u + gz) at each port, where z is the
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Here we have made use of the fact that when the density is constant and the areas are the
same, the mass balance shows that the average velocities are also the same. For laminar
flow the velocity profile is not uniform but is parabolic. However, since the flow in the
pipe is fully developed, the velocity profile is the same at the inlet and exit ports. Fur-
thermore, the density is constant, so we can conclude that for laminar flow the integral
is also zero without bothering with the calculation. Thus we have in both cases∫

CS
ρ
(

1
2 u • u

)
(u • n) dS = 0 (C)

Inserting (B) and (C) into the energy balance (A), we find Ṁ[(u2 − u1) +
(p2 − p1)/ρ] = Q̇C , which after rearrangement and dividing by the mass flowrate
becomes

p1 − p2

ρ
= (u2 − u1) − Q̇C

Ṁ
(D)

We can interpret this result by noting that the pressure drop down the pipe due to friction
results in a loss of pressure potential energy per unit mass in the amount (p1 − p2)/ρ .
The energy balance shows that this energy loss appears as a combination of an increase
in the internal energy of the fluid per unit mass (u2 − u1), and a heat transfer per unit
mass out of the pipe −Q̇C/Ṁ .

Recall that in the case study of Section 3.3.1 (flow in a round pipe), the pressure
drop, �p = p1 − p2, is given in terms of the friction factor by Eq. 3.15 as
�p = ρ f (L/D)(V̄ 2/2). Upon using this to substitute for the pressure drop in the
energy balance (D), we find

f
L

D

V̄ 2

2
= (u2 − u1) − Q̇C

Ṁ
(E)

This result can be used to predict the increase in temperature of a liquid flowing in 
an insulated pipe, i.e., one for which Q̇C = 0, by making use of the fact that the tem-
perature change is related to the change in internal energy by the specific heat:
u2 − u1 = c(T2 − T1). Then according to (E) we have f (L/D)(V̄ 2/2) = c(T2 − T1).
Similarly, the temperature change in a low speed gas flow in an insulated pipe could be
estimated using the perfect gas relation Eq. 2.21a to obtain u2 − u1 = cV (T2 − T1),
with the result f (L/D)(V̄ 2/2) = cV (T2 − T1).
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elevation of the center of the port. That is, at each port of the control surface, the corre-
sponding flux term may be written as∫
port

ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS = ±Ṁport

(
u + p

ρ
+ 1

2
V̄ 2 + gz

)
port

(7.35)

where the sign of the mass flowrate is determined by whether the port is an inlet
(negative) or exit (positive). This approach is applicable to both the unsteady and steady
process energy balances. For example, consider a CV with one inlet and one outlet, and
a flow in which velocity and fluid properties are spatially uniform at each port. A mass
balance shows that the mass flowrates in and out of the CV are the same, and the steady
process energy balance under these conditions takes the following particularly simple
form that you may have learned in a thermodynamics course:

Ṁ

[(
u + p

ρ
+ 1

2
V̄ 2 + gz

)
out

−
(

u + p

ρ
+ 1

2
V̄ 2 + gz

)
in

]
= Ẇpower + Ẇshaft + Q̇C + Ṡ

(7.36)

The use of this form of steady process energy balance to solve practical engineering
problems is illustrated in the two examples that follow.

EXAMPLE 7 .15

A water pump runs steadily at a flowrate of Q = 80 gal/min with a pressure rise of
�p = 40 psi. The inlet and outlet areas are the same. (1) Determine the minimum power
input necessary to run the pump assuming an ideal pumping process. You may assume
that this ideal process involves no heat transfer and no increase in the internal energy of
the water passing through the pump. (2) If the pump actually requires 2 hp to run, but the
heat transfer is negligible, find the temperature increase in the water passing through the
pump, and calculate the pump efficiency. (3) What is the useful power input to the water
passing through the pump?

SOLUTION

This problem is concerned with the power input to run a pump under ideal and actual
conditions. Figure 7.27 shows an appropriate mixed CV containing the pump and
the fluid within it and the cut across the shaft connecting the pump to the pump motor.
We will assume turbulent flow at the inlet and outlet ports with uniform properties,
and that the inlet and outlet elevations are the same. A mass balance shows that
Ṁ = ρ1 A1V̄1 = ρ2 A2V̄2. Since the density is constant and the areas are the same, the
average velocity at each port is also the same, i.e., V̄1 = V̄2. For this steady constant
density flow with uniform properties Eq. 7.36 gives the energy balance. We will drop
the gravitational potential energy terms, and since there is no additional energy input,
and no fluid power input (all moving parts of the pump in contact with the fluid are
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inside the mixed control volume), the corresponding terms in Eq. 7.36 will also be
dropped leaving us with

Ṁ

[(
u2 + p2

ρ
+ 1

2
V̄ 2

2

)
−
(

u1 + p1

ρ
+ 1

2
V̄ 2

1

)]
= Ẇshaft + Q̇C

Since we know V̄1 = V̄2, the applicable form of the energy balance is

Ṁ

[(
u2 + p2

ρ

)
−
(

u1 + p1

ρ

)]
= Ẇshaft + Q̇C (A)

We will now apply this equation to analyze the two relevant cases.

1. Minimum power input: We are told the minimum power input corresponds to an
ideal pumping process in which heat transfer and internal energy changes are
absent. Thus the energy balance (A) becomes

Ṁ

[(
p2

ρ

)
−
(

p1

ρ

)]
= Ẇshaft

Since the shaft work in this case is the ideal shaft work required to run the pump
we will write this as Ṁ[(p2/ρ) − (p1/ρ)] = Ẇideal . Solving for the ideal shaft
work, and noting that Ṁ = ρQ , where Q is the volume flowrate, we find

Ẇideal = Q(p2 − p1) (B)

Equation (B) is often used to provide an estimate of the power required to pump
a constant density fluid. It corresponds to a perfectly efficient pump. Substitut-
ing the given data into (B) we obtain

Ẇideal = 80 gal/min

(
1 min

60 s

)(
1 ft3

7.48 gal

)
(40 lbf/in.2)

(
12 in.

1 ft

)2

= [1027(ft-lbf)/s]

[
1 hp

550(ft-lbf)/s

]
= 1.87 hp

Thus under ideal conditions we need Ẇideal = 1.87 hp to run the pump.

Wshaft

�2, p2, A2, V2

�1, p1, A1, V1

Pump
z

y

CV
Q � 80 gal/min

.

Figure 7.27 Schematic for Example 7.15.
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2. Pump efficiency: To consider an actual pumping process, we start with the
energy balance (A), and use the volume flowrate to write 

Ẇshaft = Ṁ(u2 − u1) + Q(p2 − p1) − Q̇C (C)

Since we defined Ẇideal = Q(p2 − p1), the energy balance for this process can
be written as

Ẇshaft = Ẇideal + Ṁ(u2 − u1) − Q̇C (D)

Equation (D) shows that the power required in the actual pumping process is in-
creased over that in an ideal process because of the increase in the internal en-
ergy of the fluid caused by viscous effects (friction) and any heat transfer that
leaves the CV. The efficiency of the pump can be defined as the ratio of the ideal
to actual power requirement or 

η = Ẇideal

Ẇshaft
(E)

For the pump in this example, the efficiency can be calculated from the data as
η = Ẇideal/Ẇshaft = 1.87/2 = 0.935, or approximately 94%.
We are told that the heat transfer is negligible in the operation of the pump. To
calculate the temperature increase in the water passing through the pump, we
drop the heat transfer term in (D) and solve for the internal energy change.
Noting that for a liquid u2 − u1 = c(T2 − T1), we find

T2 − T1 = Ẇshaft − Ẇideal

Ṁc
(F)

We can use the data to calculate the mass flowrate as 

Ṁ = ρQ = 1.94 slugs/ft3(80 gal/min)

(
1 min

60 s

)(
1 ft3

7.48 gal

)
= 3.46 × 10−1 slug/s

We also know that 

Ẇshaft − Ẇideal = (2 − 1.87) hp

[
550 (ft-lbf)/s

1 hp

]
= 71.5 (ft-lbf)/s

Converting the specific heat for water from Table 2.3 to BG, we have

c = 4186 J/(kg-K)

(
0.7376 ft-lbf

1 J

)(
14.59 kg

1 slug

)(
1 K

1.8◦F

)
= 2.5 × 104 (ft-lbf)/(slugs-◦F)

which is the same as the standard value for water of c = 1 Btu/(lbm-◦F) in EE.
The temperature increase is now calculated as

T2 − T1 = 71.5 (ft-lbf/s)

(3.46 × 10−1 slug/s)[25,027(ft-lbf)/(slugs -◦F)]
= 8.3 × 10−3◦F
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We see that the temperature increase is imperceptible because of the large heat
capacity of the water. The temperature increase in the fluid due to viscous dissi-
pation of energy is responsible for the heat transfer out of the CV. Since the tem-
perature increase is tiny, the heat transfer is negligible.

3. Useful power input: To determine the useful power input to the water passing
through the pump, note that the total energy in the water per unit mass is given
by (u + p/ρ + 1

2 V̄ 2 + gz). For a constant density fluid we can consider the
value of the mechanical energy per unit mass (p/ρ + 1

2 V̄ 2 + gz) to represent
useful or available energy, since this energy content can be extracted by devices
to produce shaft work. In this case the water pressure has increased in traveling
through the pump, and thus the pressure potential energy per unit mass has
increased. There is no change in the kinetic or potential energy of the water, so
the useful power input to the water is Ṁ[(p2/ρ) − (p1/ρ)] = Q(p2 − p1). We
see that this is the same as the ideal shaft work calculated earlier or
Ẇideal = 1.87 hp. This calculation shows that of the 2 hp delivered to the pump,
1.87 hp increases the useful energy of the water passing through the pump.
Losses in the pumping process absorb 0.13 hp, and this portion of the total shaft
work input causes the internal energy, and hence temperature of the water to
rise. We cannot make use of this energy to produce useful work.

EXAMPLE 7 .16

A small air compressor is running steadily at an inlet flowrate of Q1 = 4 ft3/min. The
inlet conditions for the air are p1 = 14.7 psia, T1 = 70◦F, A1 = 2 in.2; and the outlet
conditions are p2 = 100 psig = 114.7 psia, T2 = 200◦F, A2 = 0.05 in.2 . If the power
required to run the compressor is 2 hp, what is the heat transfer rate between the com-
pressor and the atmosphere?

SOLUTION

We must determine the heat transfer rate for a compressor operating under the given con-
ditions. Figure 7.28 shows a fixed CV containing the compressor and the air within it. We
will assume that all property distributions at the inlet and outlet ports are uniform, that
potential energy changes are negligible, and that the air may be treated as a perfect gas.
For this steady flow device, a mass balance gives Ṁ = ρ1 A1V̄1 = ρ2 A2V̄2, or equiva-
lently Ṁ = ρ1 Q1 = ρ2 Q2. Upon applying Eq. 7.36, and noting that for this mixed CV
we have a shaft power input and heat transfer but no fluid power or other energy input,
we write Ṁ[(u2 + p2/ρ2 + 1

2 V̄ 2
2 ) − (u1 + p1/ρ1 + 1

2 V̄ 2
1 )] = Ẇshaft + Q̇C . For a per-

fect gas we can introduce the enthalpy h = u + (p/ρ) and use Eq. 2.21b to write
h2 − h1 = cP(T2 − T1). Thus the energy balance becomes

Ẇshaft = Ṁ
[
cP(T2 − T1) + 1

2

(
V̄ 2

2 − V̄ 2
1

)] − Q̇C (A)
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We can also write this result on a per-unit-mass basis of air passing through the machine as

Ẇshaft

Ṁ
=
[

cP(T2 − T1) + 1

2

(
V̄ 2

2 − V̄ 2
1

)]− Q̇C

Ṁ
(B)

Using thermodynamic properties for air from Table 2–4, and the given data, we now
calculate

ρ1 = p1

RT1
=

(14.7 lbf/in.2)

(
12 in.

1 ft

)2

[53.3 (ft-lbf)/(lbf-◦R)] [(70 + 460)◦R]
= 7.49 × 10−2 lbm/ft3

ρ2 = p2

RT2
=

(114.7 lbf /in.2)

(
12 in.

1 ft

)2

[53.3(ft-lbf) /(lbm-◦R)] [(200 + 460)◦R]
= 0.470 lbm/ft3

Ṁ = ρ1 Q1 = (7.49 × 10−2 lbm/ft3)

(
4 ft3

min

)(
1 min

60 s

)
= 5.0 × 10−3 lbm/s

V̄1 = Ṁ

ρ1 A1
= 5.00 × 10−3 lbm/s

(7.49 × 10−2 lbm/ft3)(2 in.2)

(
1 ft

12 in.

)2 = 4.8 ft/s

V̄2 = Ṁ

ρ2 A2
= 5.00 × 10−3 lbm/s

(0.470 lbm/ft3)(0.05 in.2)

(
1 ft

12 in.

)2 = 30.6 ft/s

The individual terms in (B) are now calculated as

Ẇshaft

Ṁ
=

(2 hp)

[
550(ft-lbf)/s

1 hp

](
1 Btu

778 ft-lbf

)
5.00 × 10−3 lbm/s

= 283 Btu/lbm

Wshaft
QC

A2 � 0.05 in.2

T2 � 200�F
p2 � 100 psig

A1 � 2 in.2

T1 � 70�F
p1 � 14.7 psia
Q1 � 4 ft3/min

Compressor

CV

.
.

Figure 7.28 Schematic for Example 7.16.
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cP(T2 − T1) = [0.241 Btu/(lbm-◦R)][(660 − 530)(◦R)] = 31.3 Btu/lbm

1

2
V̄ 2

1 = 1

2
(4.8 ft/s)2

(
1 lbf-s2

32.2 lbm-ft

)(
1 Btu

778 ft-lbf

)
= 4.6 × 10−4 Btu/lbm

1

2
V̄ 2

2 = 1

2
(30.6 ft/s)2

(
1 lbf-s2

32.2 lbm-ft

)(
1 Btu

778 ft-lbf

)
= 1.9 × 10−2 Btu/lbm

1

2

(
V̄ 2

2 − V̄ 2
1

) = (1.9 × 10−2 Btu/lbm − 4.6 × 10−4 Btu/lbm) = 1.85 × 10−2 Btu/lbm

It is evident that the kinetic energy terms are very small compared with the enthalpy and
shaft work terms. You will find that in most problems involving gas flows, the kinetic
energy terms are negligible unless velocities are very high.

Using (A) to calculate the heat transfer rate, we have 

Q̇C = Ṁ
[
cP(T2 − T1) + 1

2

(
V̄ 2

2 − V̄ 2
1

)] − Ẇshaft

where

Ẇshaft = (2 hp)

[
550 (ft-lbf/s)

1 hp

](
1 Btu

778 ft-lbf

)
= 1.41 Btu/s.

Thus we find

Q̇C = 5.00 × 10−3 lbm/s [31.3 Btu/lbm + (1.85 × 10−2) Btu/lbm] − (1.41 Btu/s)

= −1.25 Btu/s

Since Q̇C is negative, heat is leaving the CV. It is worthwhile to consider a slightly dif-
ferent approach to this problem by rearranging the original energy balance to obtain

Ṁ

[
(u2 − u1) +

(
p2

ρ2
− p1

ρ1

)
+ 1

2

(
V̄ 2

2 − V̄ 2
1

)] = Ẇshaft + Q̇C

Introducing the perfect gas relationships, we have

Ẇshaft = Ṁ
[
cV (T2 − T1) + R(T2 − T1) + 1

2

(
V̄ 2

2 − V̄ 2
1

)] − Q̇C (C)

The first two terms on the right-hand side represent the internal energy and pressure po-
tential energy increase in the gas. We see from this equation that the ratio of the internal
energy increase to the pressure potential energy increase is 

ṀcV (T2 − T1)

Ṁ R(T2 − T1)
= cV

R
= R/(γ − 1)

R
= 1

γ − 1

where we have made use of the perfect gas relation Eq. 2.23c to write cV = R/(γ − 1).
Since the specific heat ratio for air is γ = 1.4, we find 1/(γ − 1) = 2.5. Now recall
that of the shaft work input of 1.41 Btu/s, 1.25 Btu/s escapes as heat. Neglecting the
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negligible kinetic energy increase, of the remaining 0.156 Btu/s, an amount
[(2.5/3.5)(0.156 Btu/s) = 0.111 Btu/s] increases the internal energy of the gas, and
only the remainder [(1/3.5)(0.156 Btu/s) = 0.045 Btu/s] increases the pressure poten-
tial energy of the gas. Unlike the case of a liquid, some of the internal energy of a gas
can be extracted by devices to produce useful work.

7.6.4 Angular Momentum Balance

Many fluid-handling devices have rotating parts that change the angular momentum of
the fluid passing through them. Examples include pumps, compressors, turbines, and
rotating lawn sprinklers. An angular momentum balance on a properly chosen mixed
CV that contains the rotating element can be used to analyze flows in which a change in
the angular momentum of a fluid is important. By taking the moment of Newton’s sec-
ond law, it can be shown that the time rate of change of the total angular momentum of
a system is equal to the sum of the moments created by body and surface forces acting
on the fluid within the system. We express conservation of angular momentum for a
system by writing

dAsys

dt
= MB + MS

where MB and MS are the moments created by the body and surface forces, respec-
tively, about a selected point. It is customary to refer to the moments MB and MS as
torques, so we will use moment and torque interchangeably.

Now consider a fixed CV that coincides with the system. Using the Reynolds transport
theorem for a control volume, Eq. 7.5, we can write dAsys/dt = ∫CV (∂/∂t)(ρε) dV +∫

CS (ρε)(u • n) dS , where Esys has been replaced by Asys, the total angular momentum
in the system, and the integrals are over the coincident CV. The angular momentum per
unit mass is ε = r × u, where r is the moment arm, hence we have ρε = ρ(r × u) =
r × ρu. Thus the transport theorem gives an alternate expression for the time rate of
change of the total angular momentum in a system as

dAsys

dt
=
∫

CV

∂

∂t
(r × ρu) dV +

∫
CS

(r × ρu)(u • n) dS

Since the CV and system coincide, the moments (torques) on the system created by the
body and surface forces acting on the fluid in the system are identical to those acting on
the fluid within the CV. Thus we may combine the preceding expression with that writ-
ten earlier to obtain∫

CV

∂

∂t
(r × ρu) dV +

∫
CS

(r × ρu)(u • n) dS = MB + MS (7.37)

This is the integral angular momentum conservation equation, or angular momentum
balance for a fixed CV. It is valid for all fluids, under all conditions, and it applies in an
inertial reference frame.



We can provide a physical interpretation for the angular momentum balance by
writing it as ∫

CV

∂

∂t
(r × ρu) dV = −

∫
CS

(r × ρu)(u • n) dS + MB + MS

We see that the rate of accumulation of angular momentum inside the CV

dACV

dt
=
∫

CV

∂

∂t
(r × ρu) dV

equals the net convective transport of angular momentum into the CV

−�C = −
∫

CS
(r × ρu)(u • n) dS

plus the rate at which angular momentum is created by the sum of the torques applied by
body and surface forces: MB + MS . That is, the equation can be written symbolically as

dACV

dt
= −�CV + MB + MS

We conclude that the angular momentum balance for a fixed CV states that the accumu-
lation of angular momentum within the CV is equal to the net inflow of angular mo-
mentum into the CV plus the torques acting on the contents of the CV due to body and
surface forces.

A more complete understanding of the body and surface moments acting on a CV
can be gained by representing these moments by their corresponding integral expres-
sions. In Chapter 5, we showed that the total body moment is given by a volume inte-
gral. Writing this integral for a CV we have MB = ∫CV (r × ρf) dV . Similarly, we can
write the total surface moment for a CV as MS = ∫CS (r × �) dS . Substituting these in-
tegrals for the body and surface moments in Eq. 7.37 yields the following equivalent
form of the angular momentum balance for a fixed CV:∫

CV

∂

∂t
(r × ρu) dV +

∫
CS

(r × ρu)(u • n) dS =
∫

CV
(r × ρf) dV +

∫
CS

(r × �) dS

(7.38)

Before applying this equation to a problem, it is worthwhile to examine the various
terms to better understand what they represent and how they enter an analysis. In most
problems it proves possible to employ a number of approximations and simplifications
as described next.

Steady Process: The term 
∫

CV (∂/∂t)(r × ρu) dV represents the accumulation of an-
gular momentum in the CV; hence it is zero for a steady process. Most problems
involving stationary fluid-handling devices are of this type. The flow in a steadily rotat-
ing machine can be considered to be a steady process when analyzed in an appropriate
rotating reference frame. This will be explained further in a subsequent section.

Angular Momentum Transport: The term 
∫

CS (r × ρu)(u • n) dS represents the net
transport of angular momentum out of the ports of the CV. In most cases we can assume
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a uniform, unidirectional velocity profile at each port. After evaluating the integral at
each port, we can write the result as:∫

CS
(r × ρu)(u • n) dS =

∑
± Ṁport[rport × uport] (7.39a)

where the summation symbol indicates we are to sum the contribution from each port.
Here Ṁport is the mass flowrate at a specific port, rport is the moment arm to the center
of the port, and uport is the uniform velocity vector at the port. The sign of Ṁport is neg-
ative at an inlet and positive at an exit.

Torque Due to Body Forces: The term 
∫

CV (r × ρf) dV represents the torque applied
by body forces to the CV. When the body force involved is gravity, we can write this
term as ∫

CV
(r × ρf) dV = rG × (−ρg –V k) = rG × (−WCVk) (7.39b)

where rG defines the point of application of the force (−WCVk) acting on the CV.

Torque Due to Surface Forces: The term 
∫

CS (r × �) dS represents the total torque
applied by surface forces acting on all parts of the control surface. In problems involv-
ing a rotating machine, it is best to employ a mixed CV that encloses the rotating parts
and cuts across the shaft, providing power to the part. Since the resulting control surface
will have segments cutting through a shaft, at other solid surfaces, at ports, and at exte-
rior surfaces, we will write the total torque as the sum of four terms∫

CS
(r × �) dS =

∫
shaft

(r × �) dS +
∫

solid
(r × �) dS +

∫
ports

(r × �) dS

+
∫

exterior
(r × �) dS

The first integral accounts for the torque created by a rotating shaft, the second for the
torque created by a stationary solid structural support of some kind, the third for the ef-
fects of surface forces at ports, and the fourth for the torque created by surface forces
acting on the exterior of a CV. Since we rarely know the stress distribution in a rotating
shaft, we will account for the torque applied by a rotating shaft by writing

Tshaft =
∫

shaft
(r × �) dS (7.39c)

which serves to introduce the shaft torque Tshaft into the CV analysis. Similarly we will
account for the torque applied to the CV by structural supports as

Tsolid =
∫

solid
(r × �) dS (7.39d)

At a properly chosen port, the stress vector is due to the pressure. For a uniform
pressure at each port, the corresponding integral can be written as a sum of terms:∫

ports
(r × �) dS =

∫
ports

(r × (−pn)) dS =
∑

[rport × (−pport Aportn)] (7.39e)



where rport is the moment arm to a port, Aport is the area, and (−pport Aportn) is the pres-
sure force acting at the port in question.

Finally, to account for the torque applied by surface forces to the exterior of a CV
we write

Texterior =
∫

exterior
(r × �) dS (7.39f)

Often the exterior surface of a CV will coincide with the exterior surface of a fluid-
handling device. If the machine is at rest in a stationary fluid, we have 

Texterior =
∫

exterior
[r × (−pAn)] dS (7.39g)

which accounts for the effect of an ambient or atmospheric pressure. If the machine is in
motion or there is a flow of fluid over the exterior of the machine, then normal and shear
stresses may act on the exterior surface of the machine and the integral defining Texterior

is written as

Texterior =
∫

exterior
[r × (−pn + � )] dS (7.39h)

We see that Texterior accounts for the retarding torque exerted by aerodynamic forces act-
ing on the exterior of the machine. This torque can be substantial in the case of high
speed rotation.

Upon substituting Eqs. 7.39a–7.39f into Eq. 7.38, the angular momentum balance
becomes∫

CV

∂

∂t
(r × ρu) dV +

∑
± Ṁport[rport × uport]

= rG × (−WCVk) + Tshaft + Tsolid +
∑

[rport × (−pport Aportn)] + Texterior

(7.40)
This equation may be used as the starting point for an angular momentum balance on a
fixed CV in an inertial reference frame.
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EXAMPLE 7 .17

Water flows steadily at 3 m/s through the vertical offset pipe bend shown in Figure 7.29.
The pipe diameter is 10 cm, the upstream gage pressure is 275 kPa, and the pressure
drop through the bend is estimated to be 50 kPa. Find the forces that must be exerted by
each flange on the pipe bend to keep it in place.

SOLUTION

We are asked to determine the forces applied to an offset pipe bend by two flanges under
the given conditions. Since the Reynolds number here may be calculated to be
Re = 2.7 × 105, the flow is turbulent, and we may assume uniform properties at the
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ports. Choosing the mixed CV shown in Figure 7.29A with a decal surface at each
flange, and noting that the density and areas are constant, a steady flow mass balance
gives Ṁ = ρ AV̄1 = ρ AV̄2 , or V̄1 = V̄2. Since we anticipate terms in the momentum
balance in both the z and y directions, we will use the vector form of the steady flow
momentum balance as given by Eq. 7.19a: 

∫
CS (ρu)(u • n) dS = FB + FS . To evaluate

the body force we write FB = −(Wpipe + Wwater)k to account for the weight of the pipe
and the water inside the pipe, since these are both inside the CV. To finish the momen-
tum balance, we will evaluate the momentum transport at the inlet and exit, the surface
force due to the pressure at these locations, the surface force applied by the air to the
decal surface on the outside of the bend, and the reaction forces R1 and R2 applied to
the CV by the flanges. The forces R1 and R2 are the requested forces applied to the pipe
bend by each flange. On the inlet we have u = V̄1j, n = −j, and u • n = −V̄1, so that
the momentum transport vector there is −ρV̄ 2

1 A1j. On the exit, u = V̄2j, n = j, and
u • n = V̄2, and the momentum transport is +ρV̄ 2

2 A2j. The net momentum transport is
(−ρV̄ 2

1 A1j + ρV̄ 2
2 A2j) = 0, since A1 = A2 = A and V̄1 = V̄2. The surface force on

the inlet and exit is due to the pressure at each location. Thus these terms give
(−p1(−j)A1) + (−p2(j)A2) = (p1 − p2)Aj . The force of the air on the outside of the

x
y

z

p1g � 275 kPa

G
V1 � 3 m/s

Mixed CV

Flanged
connection

D � 10 cm

O

L � 5 m

H � 2.5 m

g

H � 2.5 m

p1gA1

p2gA2

WwaterWpipe

R1

R2

(A) (B)

Figure 7.29 Schematic for Example 7.17.
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elbow will be accounted for by using gage pressure in these terms. Thus the momentum
balance for the offset pipe bend gives

0 = −(Wpipe + Wwater)k + (p1gage − p2gage)Aj + R1 + R2

Solving for the desired reaction forces we have

R1 + R2 = (p2gage − p1gage)Aj + (Wpipe + Wwater)k

This is a vector equation whose components are

R1x + R2x = 0 (A)

R1y + R2y = (p2gage − p1gage)A (B)

R1z + R2z = Wpipe + Wwater (C)

Equation (A) shows that if the flanges apply a force in the x direction, these components
must cancel. Since there is no reason to assume that these forces exist, we will assume
that R1X = R2X = 0. Frictional pressure losses ensure that p1gage > p2gage , thus we see
by (B) that the flanges must apply a reaction force to the left. Equation (C) shows that
the weight of the pipe and its contents is supported by the flanges. We will assume that
due to symmetry each flange supports half the total weight, i.e.,

R1z = R2z = 1
2 (Wpipe + Wwater) (D)

Note that (B) does not allow us to determine the y component of each reaction force sep-
arately, only their sum. Figure 7.29B shows the various forces acting on the CV. To
determine the y component of each reaction force, we will use Eq. 7.40 to apply a steady
angular momentum balance to this CV. In this problem, the shaft torque term is zero, and
the exterior torque is due to the ambient pressure (see Eq. 7.39g). Also, since the torque
Tsolid applied by solid supports to the control volume is created by the unknown reaction
forces R1 and R2, we can write the torque as Tsolid = r1 × R1 + r2 × R2 , where r1 and
r2 are the moment arms of each reaction force. With these substitutions Eq. 7.40
becomes∑

± Ṁport[rport × uport] = rG × (−WCVk) + r1 × R1 + r2 × R2

+
∑

[rport × (−pport Aportn)] +
∫

exterior
(r × (−pAn) dS

Since the only forces acting on the CV are in the y and z directions (see (A)), we antici-
pate that the only component of the angular momentum balance of interest in this prob-
lem is the x component. This component describes the tendency of the forces acting on
the CV to twist the pipe bend about the x axis.

Consider an origin O at the midpoint of the bend run (Figure 7.29A). To evaluate
the transport term in the angular momentum balance, note that on the inlet Ṁ1 =
ρ AV̄1, r1 = −H j + (L/2)k, u1 = V̄1j, hence r1 × u1 = [−H j + (L/2)k] × V̄1j =
−(L/2)V̄1 i. On the exit Ṁ2 = ρ AV̄2, r2 = H j − (L/2)k, u2 = V̄2j, and
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r2 × u2 = [H j − (L/2)k] × V̄2j = (L/2)V̄2 i . Accounting for the signs of Ṁ at each
port, and noting that Ṁ = ρ AV̄1 = ρ AV̄2 , we find∑

±Ṁport[rport × uport] = (−Ṁ1)

(
− L

2
V̄1 i
)

+ (Ṁ2)

(
L

2
V̄2 i
)

= Ṁ LV̄1i

Consider next the moment rG × (−WCVk) created by gravity acting on the CV.
Owing to the symmetry, the force of gravity −(Wpipe + Wwater)k acting on the CV may
be considered to act at the point O. Since the moment arm for a force acting at this lo-
cation is rG = 0, the moment about O contributed by the body force is zero. The terms
r1 × R1 and r2 × R2 are the unknowns in the angular momentum balance in this case,
so these are left alone.

To evaluate the torque applied by atmospheric pressure on the exterior of the CV,
note that if atmospheric pressure acted on the entire control surface (including the ports
and small decal surface at each flange), the resulting torque would be zero. We can ac-
count for the effects of atmospheric pressure acting on the portion of the control surface
in contact with air by using gage pressure at the inlet and exit ports. Thus we evaluate
this term and the corresponding term at the ports together by writing∑

[rport × (−pport Aportn)] +
∫

exterior
(r × (−pAn) dS

= r1 × (−p1gage A1n1) + r2 × (−p2gage A2n2)

Note that this approach assumes that the pipe wall is thin and the flange areas are negli-
gible. We have r1 = −H j + (L/2)k, n1 = −j, and r2 = H j − (L/2)k, n2 = j. Thus
on the inlet we evaluate the cross product and get [−H j + (L/2)k] × [−p1gage A1(−j)] =
−(L/2)p1gage A1i. On the exit, the cross product gives −(L/2)p2gage A2i. Since
A = A1 = A2, the two pressure terms together give

r1 × (−p1gage A1n1) + r2 × (−p2gage A2n2) = − L

2
(p2gage + p1gage)Ai

When all the terms have been gathered, the angular momentum balance becomes

ṀLV̄1i = [r1 × R1]O + [r2 × R2]O − L

2
(p2gage + p1gage)Ai

Solving for the torques applied by the flanges about point O we find

[r1 × R1]O + [r2 × R2]O =
[

Ṁ LV̄1 + L

2
(p2gage + p1gage)A

]
i

The left-hand side of this vector equation is evaluated by writing

[r1 × R1]O =
(

−H j + L

2
k
)

× (R1yj + R1zk) =
(

−H R1z − L

2
R1y

)
i

[r2 × R2]O =
(

H j − L

2
k
)

× (R2yj + R2zk) =
(

H R2z + L

2
R2y

)
i
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Thus the angular momentum balance becomes(
−H R1z − L

2
R1y

)
i +
(

H R2z + L

2
R2y

)
i =
[

Ṁ LV̄1 + L

2
(p2gage + p1gage)A

]
i

We see that there is only an x component to this equation, as expected. Earlier we
assumed each flange supports half the weight, thus we can put R1z = R2z . Solving for
R1y we obtain

R1y = R2y − 2Ṁ V̄1 − (p2gage + p1gage)A (E)

To solve for the y component of each reaction force, we can use (B) to write

R2y = −R1y + (p2gage − p1gage)A

Substituting the preceding expression into (E) and solving for R1y we find

R1y = −ṀV1 − p1gage A (F)

The remaining component is then found to be

R2y = ṀV1 + p2gage A (G)

The forces applied by the two flanges are thus

R1 = [0,−ṀV1 − p1gage A, 1
2 (Wpipe + Wwater)

]
and R2 = [0, ṀV1 + p2gage A, 1

2 (Wpipe + Wwater)
]

By using the data, we find

Ṁ = ρ AV̄1 = (998 kg/m3)

[
π(0.1 m)2

4

]
(3 m/s) = 23.5 kg/s

and with p1gage = 275 kPa, we know p2gage = 275 kPa − 50 kPa = 225 kPa. The y com-
ponents of the reaction force are

R1y = −Ṁ V̄1 − p1gage A = −(23.5 kg/s)(3 m/s) − (275,000 N/m2)

[
π(0.1 m)2

4

]
= −2.23 kN

R2y = ṀV1 + p2gage A = (23.5 kg/s)(3 m/s) + (225,000 N/m2)

[
π(0.1 m)2

4

]
= 1.84 kN

We are not given the weight of the pipe bend, so we will write the z components of the
reactions in symbolic form as R1z = R2z = 1

2 (Wpipe + Wwater).
The choice of an origin for the angular momentum balance is arbitrary. We could

choose point G in the figure to evaluate the angular momentum balance and obtain the
same results.
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In problems involving rotating machinery, it is highly advantageous to choose a
CV that rotates along with the rotating machine element. The CV is then fixed in a
rotating, noninertial reference frame. Since the angular momentum balance derived ear-
lier, Eq. 7.38:∫

CV

∂

∂t
(r × ρu) dV +

∫
CS

(r × ρu)(u • n) dS =
∫

CV
(r × ρf) dV +

∫
CS

(r × �) dS

is valid only in an inertial reference frame, it cannot be used without modification for a
rotating CV. The modification needed is straightforward: in a noninertial frame, we must
include in the body force term in Eq. 7.38 the additional body forces caused by the motion
of the noninertial frame with respect to an inertial frame. The velocities in the angular
momentum balance must also be taken as those relative to the rotating CV. As derived in
advanced fluid dynamics texts, the additional body forces per unit volume are given as:

ρ

[
−AO − (2� × u) − [� × (� × x)] −

(
d�

dt
× x
)]

where AO is the rectilinear acceleration of the noninertial frame, and � is the angular
velocity vector. The first term accounts for the additional body force due to the rectilin-
ear acceleration of the CV. This term is zero for a CV that is rotating but not translating.
The next two terms are the Coriolis and centrifugal forces due to rotation of the CV, and
the last is the force created by temporal variation in the rotation rate. For a CV at rest
with respect to a rotating machine element (with AO = 0), the general form of the body
force term in the angular momentum balance is

rG × (−WCVk) +
∫

CV
r × ρ

[
−(2� × u) − (� × (� × x) −

(
d�

dt
× x
)]

dV

In most cases we are interested in using an angular momentum balance to analyze
the performance of a pump, compressor, or other rotating machine operating at a con-
stant rotation rate. Under these conditions it is appropriate to assume a steady process
and drop the accumulation of angular momentum term in the equation. Since the rota-
tion rate is constant, d�/dt = 0, the term involving d�/dt may also be dropped. Thus
the steady angular momentum balance for a CV in constant rotation is∫
CS

(r × ρu)(u • n) dS =
∫

CV
(r × ρf) dV +

∫
CV

r × ρ[−(2� × u) − (� × (� × x)] dV

+
∫

CS
(r × �) dS

Introducing the simplifications discussed earlier, we get∑
±Ṁport[rport × uport] = rG × (−WCVk) +

∫
CV

r × ρ[−(2� × u) − (� × (� × x)] dV

+ Tshaft + Tsolid +
∑

[rport × (−pport Aportn)] + Texterior

(7.41)

Angular momentum considerations are fundamental to the design and analysis of all
types of rotating machinery. For these problems, it is normally possible and convenient
to select a coordinate system with the z axis aligned with rotation axis. A typical prob-
lem for which an angular momentum balance is performed is to determine the shaft
torque needed to run a machine or the torque produced by a machine.
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EXAMPLE 7 .18

It is proposed to use high pressure water in the design of a power unit for a rotary clean-
ing brush. As sketched in Figure 7.30, water enters the inlet of the power unit and exits
through N jets. If friction in the inlet bearing and aerodynamic drag are negligible, what
is the torque available to rotate the brush at a given angular velocity? How many jets
should be employed?

z

O

�

H

L

x y
Ainlet

Ajet

uB

Atube, Vtube

Vjet

Figure 7.30 Schematic for Example 7.18.

SOLUTION

We will choose a CV enclosing the power unit and rotating with it as shown in Fig-
ure 7.30, and assume that the unit has achieved a constant angular velocity. Assuming
equal flowrates out of each jet, we can use a mass balance to write Ṁ = ρQ = N Ṁjet ,
where Ṁjet = ρ AjetV̄jet is the jet mass flowrate, Ajet is the jet area, and V̄jet is the jet exit
velocity relative to the device. To apply a steady process angular momentum balance we
will employ Eq. 7.41:∑

±Ṁport[rport × uport] = rG × (−WCVk) +
∫

CV
r × ρ[−(2� × u) − (� × (� × x)] dV

+ Tshaft + Tsolid +
∑

[rport × (−pport Aportn)] + Texterior

and choose the origin on the rotation axis as shown in Figure 7.30. To account for the
angular momentum transport at each port of the CV, we write∑

±Ṁport[rport × uport] = −Ṁ[rB × uB] + N Ṁjet[rjet × ujet]

The angular momentum transport at the inlet port can be neglected. To understand why,
recall that the term −Ṁ[rB × uB] representing the transport at the inlet is actually given
by the integral 

∫
inlet (r × ρu)(u • n) dS . The velocity vector in this integral is relative to

the CV, and since the CV is rotating, the velocity entering the inlet is actually not unidi-
rectional and uniform but swirling relative to the CV. The angular momentum of this
incoming flow is very small, however, since the moment arm is always less than the
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radius of the inlet. Since this radius is small, we can neglect this term. The total angular
momentum transport is thus N Ṁjet[rjet × ujet]. To evaluate this term, consider the jet
leaving the tube aligned with the +y axis. The moment arm to this jet is rjet = H i + Lj,
the jet velocity vector is ujet = V̄jeti, and we obtain

Ṁjet[rjet × ujet] = Ṁjet[(H i + Lj) × V̄jeti] = −ṀjetLV̄jetk

The angular momentum transport for each of the remaining jets is the same, thus the
total angular momentum transport by the jets is∑

±Ṁport[rport × uport] = N Ṁjet[rjet × ujet] = −N ṀjetLV̄jetk = −Ṁ LV̄jetk (A)

Next consider the body force terms. Symmetry causes the term rG × (−WCVk)

representing the torque due to gravity to be zero. The term 
∫

CV r × ρ{−(2� × u)−
[� × (� × x)]} dV is evaluated as follows. Consider the portion of the CV that
includes the entire jet tube aligned with the y axis. We must account for the torque ex-
erted by the Coriolis and centrifugal forces acting on both the solid and fluid inside this
part of the CV. The centrifugal force does not create a torque about the rotation axis. We
can show this by observing that since the jet tube is of small diameter, the moment arm
to any point in the control volume is r = yj. The location of the point is also x = yj, and
� = ωk. Thus the centrifugal force � × (� × x) = ω2 yj acts along the tube in the 
y direction, and the cross product r × ρ[−(� × (� × x)] is zero.

To evaluate the torque created by the Coriolis force on this portion of the CV, we
need only consider the fluid, since the solid parts inside the CV are not moving relative to
the rotating reference frame. Let the uniform velocity of the fluid inside the portion of the
tube of length L lying along the y axis be given by uL = V̄tubej and that in the remaining
section of the tube of length H be given by uH = V̄tubei. For the tube section of length
L, we have −2� × u = −2ωk × V̄tubej = 2ωV̄tubei. The moment arm to a point in the
fluid inside is r = yj, and r × ρ[−(2� × u)] = ρ[yj × 2ωV̄tubei] = −2ωρyV̄tubek .
The integral over this portion of the CV for the N jet tubes can be evaluated for a tube of
area Atube as

N
∫

L−tube
r × ρ[−(2� × u)] dV = N Atube

∫ L

0
−2ωρyV̄tubek dy

= −ωL2 N (ρ AtubeV̄tube)k = −ωL2 Ṁk

(B)

where we used a mass balance to show that ρ AtubeV̄tube = ρ AjetV̄jet = Ṁjet , and
Ṁ = N Ṁjet .

For the section of the tube of length H, we have −2� × u = −2ωk × Vtubei =
−2ωVtube j. The moment arm to a point in this section of the CV can be written 
as r = x i + yj, and thus r × ρ[−(2� × u)] = ρ[(x i + yj) × (−2ωVtubej)] =
−2ωρVtubexk. The integral for all N tubes is 

N
∫

H−tube
r × ρ[−(2� × u)] dV = N Atube

∫ H

0
−2ωρx V̄tubek dx

= −ωH 2 N (ρ AtubeV̄tube)k = −ωH 2 Ṁk

(C)
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We are told to neglect friction in the inlet bearing, so we can set Tsolid to zero. Since
Texterior includes the effect of atmospheric pressure on the exterior (which is always pre-
sent), we will neglect the unknown aerodynamic drag but account for atmospheric pres-
sure by using gage pressures at the ports. Since each jet leaves at atmospheric pressure,
the gage pressures are all zero, and the term 

∑
[rport × (−pport Aportn)] needs be evalu-

ated only at the inlet. Because of the symmetry and alignment of the rotation axis, the
pressure on the inlet does not contribute a torque.

The term Tshaft represents the torque applied to the CV by the shaft on which the
brush mounts. By the principle of action–reaction, we can write the torque Tbrushk sup-
plied to the brush as

−Tbrushk = Tshaft (D)

Inserting (A) through (D) into the angular momentum balance, we find

−Ṁ LV̄jetk = −ωL2 Ṁk − ωH 2 Ṁk − Tbrushk

Solving for the torque available to turn the brush, we have

Tbrush = Ṁ LV̄jet − Ṁ ω(L2 + H 2) (E)

From this result we see that there is no apparent advantage to employing multiple jets,
since the torque delivered to the brush is independent of N. Notice also that the maxi-
mum torque is delivered to the brush when it is not turning. As the rpm of the brush
increases, the torque delivered decreases. The result also shows that it is advantageous
to keep the length H as short as possible.

7.7 SUMMARY

A system is a fixed identifiable quantity of fluid. Mass may not cross the system bound-
ary, but other interactions of the system and its surroundings are permitted. For exam-
ple, there may be a transport of energy across a system boundary by heat conduction,
and work may be done on the fluid within a system by body and surface forces. A sys-
tem is generally characterized by spatially and temporally variable properties. The sys-
tem approach is useful in those rare instances of system boundaries having shapes that
are either independent of time or easily described as a function of time.

A control volume (CV) is a closed region in space through which fluid flows. This
region is defined by its boundary or control surface. A segment of the control surface at
which fluid enters or leaves a CV is called a port. Ports are usually defined so that the ve-
locity vector at each port has only a normal component. Control volumes may be fixed
(stationary) or moving. The size and the shape of a moving CV do not change, thus the
velocity of each point on a moving control surface is the same.
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The Reynolds transport theorem is expressed for a system as 

d Esys

dt
=
∫

R(t)

∂

∂t
(ρε) dV +

∫
S(t)

(ρε)(u • n) dS

where R(t) is the region occupied by the system. This theorem states that the time rate of
change in the total amount of a property in a system may be calculated as the sum of a
volume integral, which accounts for the instantaneous change in the total amount of
property within the system due to temporal variations in fluid properties, and a surface
integral, which accounts for the contribution from the deformation of the system due to
the instantaneous motion of its boundaries.

If we consider a fixed CV that coincides with the system at a particular time, the
value of a fluid property at a point in the system is the same as the value of that property
at the same point in the CV. Thus, the integrals over the system may be interpreted as ap-
plying also to the coincident CV. An equivalent form of the transport theorem is
d Esys/dt = d ECV/dt + �CV. This equation tells us that the time rate of change of the
total amount of fluid property in a system is equal to the time rate of change of the total
amount of this property in a fixed coincident CV (accumulation), plus the instantaneous
outflow of the fluid property through the control surface (convective transport).

We can use the transport theorem to obtain the integral form of the mass conserva-
tion law (mass balance) for a fixed CV: 

∫
CV (∂ρ/∂t) dV + ∫CS ρ(u • n) dS = 0. This

expression states that the increase in the total amount of mass in a fixed CV is equal to
the instantaneous convective transport of mass into the CV.

Application of the transport theorem gives the integral momentum conservation equa-
tion (momentum balance) for a fixed CV:

∫
CV (∂/∂t)(ρu) dV + ∫CS (ρu)(u • n) dS =

FB + FS . The interpretation of this equation is that the accumulation of momentum
within the CV plus the net outflow of momentum from the CV is equal to the sum of the
body and surface forces. By using the definitions of body and surface forces, we obtain
an equivalent expression for the law of conservation of momentum: ∫

CV

∂

∂t
(ρu) dV +

∫
CS

(ρu)(u • n) dS =
∫

CV
ρf dV +

∫
CS

� dS

The integral energy conservation equation (energy balance) for a fixed CV is∫
CV

∂

∂t

[
ρ
(
u + 1

2 u • u
)]

dV +
∫

CV
ρ
(
u + 1

2 u • u
)
(u • n) dS = ẆB + ẆS + Q̇C + Ṡ

This equation shows that the rate of accumulation of internal plus kinetic energy within
the CV plus the net convective transport of this energy out of the CV is equal to the sum
of the rate at which work is done on the fluid in the CV by body and surface forces, and
the rate at which energy is added to the fluid by heat conduction and other energy inputs.

Finally, the integral angular momentum conservation equation (angular momentum
balance) for a fixed CV in an inertial reference frame is∫

CV

∂

∂t
(r × ρu) dV +

∑
±Ṁport[rport × uport]

= rG × (−WCVk) + Tshaft + Tsolid +
∑

[rport × (−pport Aportn)] + Texterior



We see that the rate of accumulation of angular momentum inside the CV plus the net
convective transport of angular momentum out of the CV equals the rate at which angu-
lar momentum is created by body and surface forces. For a CV rotating at constant an-
gular velocity, we can write the angular momentum balance for a steady process as∑

±Ṁport[rport × uport] = rG × (−WCVk) +
∫

CV
r × ρ[−(2� × u) − (� × (� × x)] dV

+ Tshaft + Tsolid +
∑

[rport × (−pport Aportn)] + Texterior
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Sections 7.4 and 7.5

7.7 Offer a physical interpretation of the
Reynolds transport theorem as applied to a
system.

7.8 Offer a physical interpretation of the
Reynolds transport theorem as applied to a
control volume.

7.9 Explain how the Reynolds transport
theorem provides the necessary link between
system and control volume analysis.

7.10 Give three examples of fluid proper-
ties that could be represented by the variable ε
in Eq. 7.4. Also provide two examples of fluid
properties that could be represented by the
variable λ in the equation developed in
Example 7.1.

7.11 Consider the fluid flow that occurs
when a fire extinguisher is discharged.
(a) Sketch this device and show an appropri-

ate control volume for use in the analysis
of this flow.

(b) Describe an appropriate choice for a sys-
tem for this flow.

(c) Write an appropriate form of the
Reynolds transport theorem for your con-
trol volume and offer a physical interpre-
tation for each term in this equation.

(d) Write an appropriate form of the
Reynolds transport theorem for your sys-
tem and offer a physical interpretation for
each term in this equation.

PROBLEMS

Section 7.2

7.1 Discuss the similarities and differences
between a thermodynamic system and a fluid
system.

7.2 Is it possible for a thermodynamic sys-
tem to be equivalent to a fluid system? If so,
give an example. If not, explain why this is
impossible.

7.3 Discuss the similarities and differences
between a fluid system and a (fluid) control
volume.

Section 7.3

7.4 Is the concept of a control volume more
compatible with the Lagrangian or Eulerian
method of description? Why?

7.5 Explain why the control volume ap-
proach was better suited to the description of
the single stage piston compressor described
in the text. Provide an example of another
fluid process that would offer a similar obsta-
cle to the use of a systems approach. In con-
trast, provide an example of a fluid process
that you believe could benefit from a systems
approach.

7.6 In the text the concept of mass conser-
vation for an isolated gas compression
process was discussed. Did you prefer the
systems approach or the control volume ap-
proach? Why?
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(e) Finally, state which approach (CV or
system) you would chose to solve this
problem. Justify your selection.

7.12 People are routinely walking into and
out of the corporate headquarters of Tar Foot
Consulting company. Use the Reynolds trans-
port theorem to describe the time rate of
change of the number of people in the
building.

7.13 Can the Reynolds transport theorem
be used to describe the time rate of change of
the number of bees in a beehive? How about
the time rate of change of the number of cars
in a parking garage? How about the time rate
of change of the number of people in the
maternity ward of a hospital?

Section 7.6

7.14 In the text we list recommenda-
tions for choosing a fixed control volume.
Discuss the reasons for each of these
recommendations.

7.15 After reviewing Example 7.2, find
your own example of a similar fluid device
and sketch an appropriate choice for a fixed
control volume.

Section 7.6.1

7.16 What types of fluid flow problem can
be solved by using control volume analysis
and a mass balance? Under what conditions
will a mass balance be helpful but insufficient
to completely solve the problem? Under what
conditions is it a bad idea to use a mass
balance?

7.17 Calculate the average velocity of fluid
in the space between the rod and the cup as
shown in Figure P7.1. The rod is moving at a
speed of 2 cm/s into the cup, which is filled
with water. Does it matter what fluid is in the
cup? Why or why not?

7.18 Reconsider the case of water displac-
ing gasoline in a tank as shown in Figure 7.10.
Select an appropriate control volume for this
problem and develop a quantitative expres-
sion for the mass conservation law.

7.19 A fume hood in a chemistry labora-
tory is being used to store an open container of
volatile liquid as shown in Figure P7.2. Mole-
cules of the liquid vapor are leaving the con-
tainer at a constant rate, and the concentration
of the vapor molecules within the hood is

Vrod

7 cm

Fluid
7 cm

2 cm
2 cm

Figure P7.1

CV
Control
surface

Volatile liquid

D � 6 in.

Inlet
(3 ft � 1.5 in.)

Fluid in
at V1

Fluid
out at V2

Figure P7.2



maintained at a constant rate by the ventila-
tion fan.
(a) Apply the Reynolds transport theorem

to the control volume indicated in Fig-
ure P7.2 and offer a physical interpreta-
tion for each term in this equation.

(b) The opening at the bottom of the fume
hood is 3 ft wide and 1.5 in. high, and the
air leaves the hood through a circular duct
of diameter 6 in. at a velocity of
400 ft/min. Determine the average air ve-
locity entering the hood through the rec-
tangular port.

(c) Suppose the ventilation fan fails so that
the average velocity at both the rectangu-
lar and circular ports is zero. Apply the
Reynolds transport theorem under these
conditions to the control volume indicated
in Figure P7.2 and offer a physical inter-
pretation for each term in this equation.

7.20 Water is flowing through the Y-shaped
piping system shown in Figure P7.3. The
velocities at the three ports are given by
V1 = 1.5 m/s (into the device), V2 = 2.5 m/s
(into the device), and V3 = 3.5 m/s (out of the
device). If the two pipes on the left each have
a diameter of 5 cm, determine the diameter of
the single pipe on the right.
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1 and 2 are given by V1 = 10 (in./s2) t and
V2 = 20 (in./s2) t . Determine the velocity at
port 3 during the period 0 < t < 2 s if the di-
ameter of the exit pipe is 3.5 in.

7.22 Reconsider the piping flow shown in
Figure P7.3. Water is flowing into the device
through port 1 with a mass flowrate of 5 slugs/s.
Water is flowing out of the device through port
3 with a volume flowrate of 0.8 ft3/s. Deter-
mine the average velocity and direction of
water flow through port 2 if the diameter of the
pipe at port 2 is 3 in.

7.23 Consider the multiport device shown
in Figure P7.4. Water is flowing through the
device, and you are given the following
information: A1 = 100 cm2, A2 = 200 cm2,
A3 = 300 cm2, A4 = 400 cm2, the average
velocity at port one is 3 m/s (into the device),
the volume flowrate at port 2 is 0.030 m3/s
(into the device) and the mass flowrate at port
3 is 40 kg/s (out of the device).
(a) Determine the average fluid velocity at

port 4.
(b) At which port is the magnitude of the av-

erage fluid velocity the greatest?

V3� 3.5 m/s

V2 � 2.5 m/s

V1 � 1.5 m/s

2

1

3

Figure P7.3

7.21 Reconsider the piping flow shown in
Figure P7.3. Let the two supply pipes have a
diameter of 2.5 in. and assume that over the
period 0 < t < 2 s, the velocities at ports

A3 � 300 cm2

A2 � 200 cm2

A4 � 400 cm2

A1 � 100 cm2

60�

Mass flowrate
� 40 kg/s

Volume
flowrate
� 0.030 m3/s

Average velocity
� 3 m/s

?
CS

Water

CV

Figure P7.4

7.24 Consider the multiport device shown
in Figure P7.4. Water is flowing through the
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device, and you are given the following
information: A1 = 100 cm2, A2 = 200 cm2,
A3 = 300 cm2, the average velocity at port
one is 2 m/s (into the device), the mass
flowrate at port 2 is 35 kg/s (out of the de-
vice), and the volume flowrate at port 3 is
0.040 m3/s (out of the device).
(a) Determine the mass flowrate at port 4.
(b) Determine the cross-sectional area of port 4

if the magnitude of the average velocity at
that port is the same that at port 2.

7.25 An inflatable backyard swimming
pool is being filled from a garden hose with a
flowrate of 0.12 gal/s.
(a) If the pool is 8 ft in diameter, determine

the time rate of change of the depth of the
water in the pool.

(b) Suppose that the pool has a drain port on
its side. Immediately after the drain is
opened, the rate of change of the depth of
the water in the pool is observed to de-
crease to 80% of the value calculated in
part a. If the diameter of the drain port is
0.5 in., determine the average fluid veloc-
ity at the drain port.

7.26 Consider the incompressible airflow
within the boundary layer over a flat plate as
shown in Figure P7.5. The velocity profile is
given by the equation u = U [2(y/h)−
(y/h)2]i, where h is a function of x. For the
specific value of x in this problem, the value
of h is given as 8 mm. If U is 80 m/s and
the plate has a width (into the paper) of 0.5 m,
determine the mass flowrate of air into or out
of the top surface of the control volume.

7.28 In Chapter 6 we learned that the ve-
locity profile for fully developed laminar flow
through a cylindrical pipe is given by
u = W0[1 − (r/RP )2]ez . As shown in Fig-
ure P7.6, however, when the fluid first enters
the pipe, the velocity profile is uniform. Use a
mass balance to determine the relationship be-
tween the initial uniform velocity, WI , and the
maximum velocity along the centerline of the
fully developed flow, WO .

vz (r, �, z) � WI

Entrance length Fully developed
flow

vz (r, �, z) � WO
r

RP
� 	 
� 2

1 �
r

z

Figure P7.6

vz (x, y, z) � WI

Entrance length Fully developed
flow

vz (x, y, z) � WO
x
h� 	 
� 2

1 �

h

h

r

z

Figure P7.7

h � 8 mm

UU CS

y

x

Figure P7.5

7.27 Reconsider the incompressible air-
flow described in Problem 7.26. At what value
of h will the mass flow out the top of the con-
trol volume be equal to the mass flow out of
the right-hand side of the control volume?

7.29 In Chapter 6 we learned that the
velocity profile for fully developed laminar
flow between flat plates is given by u =
W0[1 − (x/h)2] k. As shown in Figure P7.7,
however, when the fluid first enters the region
between the plates, the velocity profile is uni-
form. Use a mass balance to determine the re-
lationship between the initial uniform veloc-
ity, WI , and the maximum velocity along the
centerline of the fully developed flow, WO .

7.30 A new jet engine is being tested in a
wind tunnel as illustrated in Figure P7.8. Air,
with properties characteristic of U.S. Standard
Atmosphere at 6000 m enters the engine at a
velocity of 275 m/s through a circular intake



port of radius 0.5 m. Fuel enters the engine at
a mass flowrate of 2.5 kg/s. If the gas leaves
the engine with an average velocity of
300 m/s through an exit port of radius 0.4 m,
calculate the density of the exhaust gas. How
would your solution to this problem change if
the engine had been attached to the wing of an
airplane flying through still air at a velocity of
990 km/h?

7.31 Consider the velocity field
u = C1t x i + C2t xyj + C3t zk, where C1 =
1 s−2, C2 = 2 m−1s−2, and C3 = −2 s−2.
For the region, 0 < x < 1 m, 0 < y < 2 m,
and 0 < z < 3 m, use a mass balance to in-
vestigate the claim that this flow conserves
mass for a constant density fluid.

7.32 The Eulerian velocity field
u = C[x i − yj] is characteristic of what is
known as “flow in a corner.” Do a mass
balance over the area 0 < x < 5 m and
0 < y < 5 m to investigate the claim that this
flow conserves mass for a constant density
fluid.

7.33 Reinvestigate Example 7.3 using the
mixed control volume shown in Figure 7.11C.

Section 7.6.2

7.34 Provide a physical interpretation for
each of the terms of the momentum balance
given in Eq. 7.18.

7.35 Show how the integral momentum
balance equation can be simplified to yield the
integral hydrostatic equation under appropriate
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conditions. What other types of flow condi-
tions lead to simplification of the momentum
balance equations?

7.36 What types of fluid flow problems
suggest the use of the momentum balance
equation?

7.37 Some of the terms in the momentum
balance equation are generally more impor-
tant in gas flow problems than they are in
liquid flow problems. For which terms is this
true? Explain your answer.

7.38 Water flow through a horizontal coni-
cal nozzle is illustrated in Figure P7.9. The
fluid enters the nozzle through a circular port
of area 8 in.2 and leaves the nozzle through a
port of area 1.5 in.2. The fluid enters the nozzle
at a uniform pressure of 59 psig. The fluid
leaves the nozzle at atmospheric pressure with
an average velocity of 25 m/s.
(a) Use a mass balance to find the average

fluid velocity at the entrance port.
(b) Calculate the horizontal force necessary

to hold the nozzle in place.

Vair � 275 m/s

R � 0.5 m R � 0.4 m

Exhaust gas out
Vgas � 300 m/s

Fuel in at 2.5 kg/s

Test
engine

Stand

Figure P7.8

Conical
horizontal

nozzle

Support

FR

 uout � 25 m/s
 pout � 0 psig
Aout � 1.5 in.2

 uin � ?
 pin � 59 psig
Ain � 8 in.2

Figure P7.9

7.39 Flow through a vertical conical noz-
zle is illustrated in Figure P7.10. The fluid
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enters the nozzle through a circular port of
area 50 cm2 and leaves the nozzle through a
port of area 10 cm2. The average fluid velo-
city at the entrance port is 3 m/s. The pressure
across the entrance port is uniform at 210 kPa,
and the fluid leaves the nozzle at atmospheric
pressure. The mass of the nozzle is 1.5 kg.
(a) Calculate the total force necessary to hold

the nozzle in place. Neglect both the
weight of the nozzle and the weight of the
fluid in the nozzle.

(b) Calculate the total force necessary to hold
the nozzle in place. Include the weight of
both the nozzle and the fluid in the nozzle
in your calculations.

exit port is 6 cm. The volume flowrate of
water through the elbow is 42.5 L/s. The en-
trance pressure is 284 kPa, and the fluid exits
the elbow at atmospheric pressure. Determine
the magnitude and direction of the force nec-
essary to hold the elbow in place. Neglect the
weight of the elbow and the fluid in the elbow
in your calculations.

7.41 Flow through a horizontal 180° pipe
bend is shown in Figure P7.12. The pipe diam-
eter is constant at 15 cm, and the volume
flowrate is 125 L/s. The pressure at the entrance
port is 183 kPa, and the pressure at the exit port
is 148 kPa. Determine the magnitude and di-
rection of the force necessary to hold the elbow
in place. Neglect the weight of the elbow and
the fluid in the elbow in your calculations.

15 cm

FR

Support

Vertical
conical
nozzle

M � 1.5 kg

Ain � 50 cm2

 uin � 3 m/s
 pin � 210 kPa

Aout � 10 cm2

 pout � 1 atm

L � l m

Figure P7.10

90� Reducing elbow

Water

Dout � 6 cm
 pout � Atmospheric

Din � 12 cm
 pin � 284 kPa
  Q � 42.5 L/s

g

z

y

Figure P7.11

Q � 125 L/s

pin � 183 kPa

pout � 148 kPa

180� Horizontal elbow
diameter = 15 cm

Water

rbend � 25 cm

Figure P7.12

7.40 Flow through a 90° reducing elbow is
illustrated in Figure P7.11. The diameter of
the inlet port is 12 cm, and the diameter of the

7.42 Based on the results of the tests on the
prototype jet engine illustrated in Figure P7.8,
a second-generation engine has been de-
signed. During this stage of testing it is neces-
sary to determine the thrust generated by the
engine using the setup shown in Figure P7.13.
Air, with properties characteristic of U.S.
Standard Atmosphere at 6000 m enters the
engine at a velocity of 275 m/s through a cir-
cular intake port of radius 0.5 m. The mass
flowrate of the fuel is 2.5 kg/s. The exhaust
gas leaves the engine with an average velocity
of 300 m/s at atmospheric pressure. Calculate
the magnitude and direction of the force
exerted on the support structure.

7.43 A cylindrical container of diameter
20 in. is placed on a scale as shown in Fig-
ure P7.14. At steady state, the height of the



water in the tank is 2.5 ft. Water enters the
tank through a top port of diameter 6 in. at a
velocity of 24 ft/s. The water leaves the tank
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through two exit ports each with a diameter of
6 in. If the scale shows a reading of 585 lbf,
calculate the weight of the tank when it is
empty.

7.44 A sluice gate, like the one illustrated
schematically in Figure P7.15, is often used to
control the flow of a river to prevent or mini-
mize flood damage.
(a) Using the information provided in Fig-

ure P7.15, calculate the force per unit
width exerted on the gate.

(b) If the gate was closed to stop the flow and
the depth of the water remained at 10 ft,
would the force on the gate under static
conditions be greater than, less than, or
equal to the force you calculated in part a? 

7.45 Water from the nozzle of a fire hose
strikes a flat a stop sign as shown in Fig-

Scale

Water

h � 2.5 ftDout � 6 in.

Vin � 24 ft/s

Din � 6 in.

Dout � 6 in.

Dtank � 20 in.

Figure P7.14

Sluice gate (open)

z

y

pA

pA

D2 � 0.2 ft
V2 � 24 ft/s

D1 � 10 ft
V1 � 0.48 ft/s

Figure P7.15

Vin � 275 m/s

Rin � 0.5 m

Air in Exhaust out

Vout � 300 m/s
pout � Atmospheric

Test engine

Fuel in

Support

Figure P7.13
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ure P7.16. Water exits the nozzle at a velo-
city of 45 ft/s through a circular exit port of
diameter 5 in.
(a) Calculate the horizontal reaction force on

the stop sign support.
(b) What, if anything, can you conclude

about the fluid flow characteristics in the
vertical direction for this situation?

that turned the flow 45°, respectively. What
happens when the plate is parallel to the flow?
Consider the geometry shown in Fig-
ure P7.18. The fluid approaches the leading
edge of the plate with a uniform velocity
u = U0i. The no-slip condition at the plate
surface forces the fluid velocity to zero at
y = 0. The slowly moving fluid particles near
the surface exert a drag on the adjacent fluid
molecules such that a roughly parabolic
velocity profile develops in the boundary
layer. At any distance y from the leading
edge of the plate, the boundary layer has a
characteristic thickness δ. The velocity pro-
file at a specific value of x is given by
u = U0[2(y/δ) − (y/δ)2]i. In this particular
problem the fluid is air with a density of
1.22 kg/m3, U0 = 140 km/h, the x coordinate
has been selected such that δ = 1 cm, and the
plate has a width of 1.3 m.
(a) Calculate the volume flowrate of air

through the top surface of the indicated
control volume.

(b) Calculate the drag force on the plate in the
x direction.

7.48 Reconsider the syringe problem
examined in Example 7.8. This time assume
that the seal between the piston and syringe
wall is imperfect and allows some leakage of
fluid out the back end of the syringe. If the
volume flowrate of leaking fluid is 5% of the
volume flowrate of fluid out of designed exit
port of the syringe, calculate the net force
necessary to move the piston forward at a
velocity of 0.2 cm/s.

Section 7.6.3

7.49 Provide a physical interpretation for
each term in Eq. 7.22.

Stop sign

Water

Nozzle

D1 � 5 in.

V1 � 45 ft/s

Figure P7.16

Water 45�

Turning vane
D1 � 5 in.

V1 � 45 ft/s

Nozzle

Figure P7.17

y

x

� � 1 cm

CS
U0 U0

Figure P7.18

7.46 Suppose the water from the fire
hose described in Problem 7.45 strikes
the device shown in Figure P7.17. Neglecting
the change in water elevation as it moves
over the device, determine the magnitude and
direction of the force exerted by the water
stream on the device.

7.47 Problems P7.45 and P7.46 dealt with
a plate at 90° to the flow and an angled plate



7.50 What types of fluid flow problems
suggest the use of the integral energy conser-
vation equation for a control volume?

7.51 Discuss the differences between the
forms of the energy equation given in
Eqs. 7.22 and 7.33. That is, what simplifica-
tions and assumptions are built into Eq. 7.33,
and under what conditions are these changes
appropriate?

7.52 In Example 7.13 we investigated the
flow of air into an insulated tank. Reconsider
this flow with the initial mass flowrate un-
known and the initial rate of temperature
change in the tank measured to be 0.04 K/s.
Assume that the heat transfer rate is suffi-
ciently small that it can be neglected.

7.53 Compressed nitrogen is stored in a
tank of volume 0.3 m3 at 2.0 MPa and 58°C. If
when the valve is opened the instantaneous
mass flowrate is 45 g/s, calculate the initial
rate of temperature change.

7.54 Water is flowing horizontally through
a pump as shown in Figure P7.19. The
flowrate is 350 gal/min, the entrance port has
a cross-sectional area of 10 in.2, and the exit
port has a cross-sectional area of 1 in.2. The
pressures at the entrance and exit ports are
4 and 45 psig, respectively. If the tempera-
ture increase across the pump is 0.13°F,
calculate the power in horsepower required to
operate the pump. Assume that the process is
adiabatic.

7.55 Air is flowing through a horizontal
turbine as shown in Figure P7.20. At the en-
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trance port the conditions are V = 100 ft/s,
T = 320◦F, p = 160 psi, and area = 30 in.2.
The conditions at the exit port are
V = 300 ft/s, T = 50◦F, and p = 45 psi. It
is also known that there is a heat loss of
600,000 Btu/h at the turbine.
(a) Determine the density of the air at the exit

port.
(b) Determine the diameter of the circular

exit port.
(c) Determine the power (in hp) produced by

this turbine.
(d) Comment on the relative magnitudes of

the power generated and the heat loss.

Ain � 10 in.2

Q � 350 gal/min

pin � 4 psig

Aout � 1 in.2

pout � 45 psig
Pump

Figure P7.19

V1 � 100 ft/s
 T1 � 320�F
 p1 � 160 psi
A1 � 30 in.2

V2 � 300 ft/s
 T2 � 50�F
 p2 � 45 psi

Turbine

Q � �600,000 Btu/h
.

Figure P7.20

7.56 Steam is flowing through a horizontal
turbine as shown in Figure P7.21. The condi-
tions at the entrance port are V = 90 ft/s
and h = 1480 Btu/lbm. The corresponding
conditions at the exit port are V = 180 ft/s
and h = 1100 Btu/lbm. The mass flowrate 
is 100 lbm/s. The process is occurring
adiabatically.
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(a) Determine the change in kinetic energy
associated with this process.

(b) Determine the change in enthalpy associ-
ated with this process.

(c) Determine the power (in hp) produced by
this turbine.

(d ) Comment on the relative magnitudes of
the quantities calculated in parts a–c.

7.57 A horizontal air compressor requires a
power input of 650 hp for a mass flowrate of
0.7 slugs/s. Air enters the device at STP with
a negligible velocity and exits the device at
p = 55 psig, T = 110◦F through an exit port
of diameter 7 in.
(a) Use the ideal gas law to determine the

fluid density at the exit port.
(b) Calculate the average velocity at the exit

port.
(c) Determine the heat transfer rate for this

compressor.
(d ) Compare the magnitudes of the power

input, the heat transfer rate, and the change
in kinetic energy of the fluid for this
device.

7.58 The change in elevation of the water
passing over Niagara Falls is 52 m. Assuming
that the process is adiabatic and using the con-
trol volume shown in Figure P7.22, determine
the temperature change associated with this
flow. Note that V1 = V2 = 0, since we have
selected the control surfaces to be at the sur-
face of each large body of water.

7.59 Reconsider the flow illustrated in Fig-
ure P7.22. Suppose that you have conclusive
evidence that the water temperature at the sur-
face of the lower body of water is slightly
lower than that at the surface of the upper
body of water. Offer a viable explanation for
this observation.

7.60 A steady flow air-handling device
experiences a heat transfer rate into the device
of 67 kJ/s as illustrated in Figure P7.23.
The property values at each of the three ports
are as follows: port 1, diameter = 21 cm,
flowrate = 3.0 m3/s, T = 21◦C, p =
140 kPa, z = 0 m; port 2, diameter =
17 cm, flowrate = 1.5 m3/s, T = 92◦C,
p = 150 kPa, z = 0.5 m; port 3, diameter =
34 cm, T = 38◦C, p = 210 kPa, z = 1.2 m.
(a) Calculate the flowrate at port 3.
(b) Find the power input necessary to run the

device.

V1 � 90 ft/s
 h1 � 1480 Btu/lbm V2 � 180 ft/s

 h2 � 1100 Btu/lbm

Steam
turbine

Figure P7.21

Section 1

52 m

Control
volume

Section 2

Figure P7.22



Section 7.6.4

7.61 What kinds of fluid flow problems are
analyzed using an angular momentum balance
equation?

7.62 Provide a physical interpretation of
each term in Eq. 7.40. Also discuss the most
common simplifications associated with this
equation and the conditions under which each
simplification is justified.

7.63 What is the torque on the support due
to the nozzle shown in Figure P7.10. The
moment arm from the base of the support to
the centerline of the nozzle is L = 1 m.

7.64 Calculate the torque due to the flow
on the 180◦ horizontal pipe bend shown in
Figure P7.12. The radius of the bend is
rBEND = 25 cm. Do not consider body forces.

7.65 Reconsider the rotary cleaning brush
analyzed in Example 7.18. In the current de-
sign the jets are perpendicular (θ = 90◦) to
the x or y axis.You are now to analyze the brush
with the jets at an arbitrary angle θ. Determine
the torque available to turn the brush as in the
example, but now also as a function of θ.
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7.66 Water flows at 10 ft/s, up for H =
15 ft in a 5 in. diameter pipe. The inlet pres-
sure is 30 psi. At the top are two 4 in.
diameter, 90◦ elbows that are orthogonal to
each other. From the elbows run L = 1 ft pipe
stubs that discharge to the atmosphere (see
Figure P7.26). The flowrate through each dis-
charge is the same. The mass of the pipe and
water is 5 lbm/ft. Calculate the torque neces-
sary to hold the pipes in place.

Additional, Unclassified Control
Volume Problems

7.67 Describe the kinds of fluid problem
that suggest the use of each type of balance.
That is, under what conditions would you
attempt to solve a problem by using a mass
balance? When is the use of a momentum
balance indicated? When would you use an
energy balance? What about an angular
momentum balance? Provide simple exam-
ples of systems to support your conclusions.

7.68 Explain why a mass balance is fre-
quently used as the first step in solving a great
variety of fluid mechanics problems, while an
angular momentum balance is used far less
commonly.

0.5 m

1.2 m

z

Q2 � 1.5 m3/s
 T2 � 92�C
 p2 � 150 kPa
D2 � 17 cm

Q1 � 3 m3/s
 T1 � 21�C
 p1 � 140 kPa
D1 � 21 cm

 T3 � 38�C
 p3 � 210 kPa
D3 � 34 cm

Q � 67 kJ/s

Wpower

Air-handling
device

.

.

Figure P7.23
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7.69 What kind of balance (i.e., mass,
momentum, energy, or angular momentum,)
would you use to answer a question about the
torque exerted by a fluid on a rotating me-
chanical device? Why?

7.70 List and describe three different types
of fluid mechanics problem that cannot be
solved by means of the techniques described
in this chapter.

7.71 An incompressible fluid flow is
described by the velocity field U = C(x2i +
y2j + z2k), where C is a constant with dimen-
sions {L−1t−1}. Set up a cubic control volume
with one corner located at the origin and three
edges aligned along the positive x, y, and z
axes to investigate whether this flow conserves
mass. How could you use the vector concept of
a gradient to simplify this problem?

7.72 An incompressible fluid flow is
described by the velocity field U = C(x2 yi +
x3j − 2xyz k), where C is a constant with di-
mensions {L−2t−1}. Set up a cubic control
volume with one corner located at the origin
and three edges aligned along the positive x, y,
and z axes to investigate whether this flow
conserves mass. How could you use the vector
concept of a gradient to simplify this
problem?

7.73 Use a control volume analysis to ver-
ify that the flow over a cylinder defined in
Problem 6.12 conserves mass. How could you
use the vector concept of a gradient to sim-
plify this problem?

7.74 Use a control volume analysis to ver-
ify that the flow over a sphere defined in
Problem 6.13 conserves mass. How could you
use the vector concept of a gradient to sim-
plify this problem?

7.75 Use a control volume analysis to ver-
ify that the “tornado flow” defined in Problem
6.16 conserves mass. How could you use the
vector concept of a gradient to simplify this
problem?

7.76 Moist air enters a dehumidifier at the
rate of 0.2 lbm/s. Water drains out of the de-
vice at the rate of 16 lbm/h. Determine the
velocity at which the (less moist) air exits the
device if the area of the exit port is 0.5 ft2.

7.77 Consider the flow situation illustrated
in Figure P7.24. The oil has a specific gravity
of 0.90.
(a) Suppose that water is flowing into the

tank at exactly the same mass flowrate as
that of the oil flowing out of the tank. In
which direction, if at all, is air moving
through the vent?

(b) Suppose that water is flowing into the
tank at exactly the same volume flowrate
as that of the oil flowing out of the tank.
In which direction, if at all, is air moving
through the vent?

Air vent

Oil flow

Water flow

Air at 20�C

Oil (SG � 0.9)

Water

Figure P7.24

FR � 500 kPa

Solid

Water

D � 2 cm

V0

Figure P7.25

7.78 A water jet is turned through an angle
of 180° by the device shown in Figure P7.25.
The fluid stream has a constant diameter of
2 cm. If the magnitude of the restraining force



is 500 kPa, estimate the average water veloc-
ity of the incoming water jet. Do you think
this is a realistic set of flow conditions? Why
or why not?

7.79 Consider the flow of water through
the device shown in Figure P7.26. The supply
line is 0.5 in. in diameter and water is flowing
through the entrance port at a velocity of
10 ft/s and a pressure of 30 psi. The two exit
ports are each 0.4 in. in diameter, and water
exits the two ports at atmospheric pressure. If
the volume flowrates through the two exit
ports are the same, calculate the following.
(a) The average fluid velocity through either

exit port.
(b) The magnitude and direction of the

restraining force necessary to hold the
device in place [the mass of the piping
and water in the piping is 90 lbm].
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first entrance port has D = 10 in. and an av-
erage fluid velocity of V = A + B cos(ωt),
where A = 20 ft/s, B = 10 ft/s, and ω =
2π/s. The second entrance port has D = 6 in.
and V = 15 ft/s.
(a) Determine an expression for the average

velocity through the exit port as a func-
tion of time.

(b) Evaluate the volume flowrate through the
exit port at t = 1 min.

(c) Determine the minimum and maximum
mass flowrates through the exit port.

7.81 A circus act involves a dog balanc-
ing on a circular plate suspended above a
steady water jet as shown in Figure P7.27. The
diameter of the water jet is 1.5 in. and the mass
of the dog and plate is 25 lbm. What is the av-
erage velocity of the fluid in the vertical jet?

V3

p3 � Atmospheric

V1 � 10 ft/s
p1 � 30 psi

p2 � Atmospheric

15 ft

D3 � 0.4 in.

D1 � 0.5 in.

D2 � 0.4 in.

y

z

x

V2

Figure P7.26

Plate

Water

D1 � 1.5 in.

V1 � ?

Figure P7.27

7.80 A horizontal fluid-handling device
has two entrance ports and one exit port.
There is no accumulation of fluid in the de-
vice. The exit port has a diameter of 8 in. The

7.82 Air is flowing steadily through a
duct of constant cross-sectional area. At a
specific upstream cross section, the air pro-
perties are p = 100 psi, T = 85◦F, and
Vaverage = 250 ft/s. Given that the air proper-
ties at a downstream cross section of the duct
are p = 20 psi and T = 0◦F, determine the
average air velocity at the downstream cross
section.
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7.83 Two children are attempting to fill a
cylindrical inflatable swimming pool by using
garden hoses. One hose is supplying water at
the rate of 0.5 L/s, while the other hose is sup-
plying water at the rate of 0.4 L/s. Unfortu-
nately, the kids forgot to close the plug on the
drain. If the drain, which is on the side of the
pool near the bottom, is 1.2 cm in diameter,
calculate the average velocity at which fluid is
leaving the drain port if the water level in the
pool is independent of time. Do you think the
flow values in the problem are reasonable?
Why or why not?

7.84 One way to calibrate a flow meter is
to use a device known as a weigh tank as il-
lustrated in Figure P7.28. The weight of the
empty weigh tank is 200 N. Water is entering
the tank through a port of diameter 3 cm at an
average velocity of 5 m/s.
(a) Determine the reading on the scale after

the water has been flowing for 5 seconds.
(b) Does this value represent the true weight

of the water in the tank? If so, explain
why, if not calculate the true weight of the
water in the tank.

7.86 Consider the sluice gate shown in
Figure P7.29. The gate has a width of 8 m.
(a) Determine the magnitude of the horizon-

tal restraining force required to hold the
gate in place for the indicated flow condi-
tions. [Hint: The details of the flow condi-
tions directly under the sluice gate need
not be known to solve this problem.]

(b) What is the magnitude of the horizontal
restraining force required to hold the gate
in place when it is closed and the up-
stream water depth is 4 m?

(c) Compare your answers to those for parts a
and b and explain why they are different.

(d) Your professor believes that the horizontal
force on the sluice gate can be used to-
gether with knowledge of the upstream
depth and velocity to determine the down-
stream flow conditions. Do you agree with
this statement? If so, derive the relevant
equation(s). If not, explain why not.

D � 3 cm

V � 5 m/s

0 
 t 
 5 s

Water

Scale

Figure P7.28

D1 � 4.0 m
D2 � 2.5 m

V2 � 2.0 m�s

Sluice gate (open)

Figure P7.29

7.85 The steady flowrate of water through
a hydroelectric turbine is 2.5 × 106 gal/min.
The water is supplied to the turbine through a
cylindrical pipe of radius 15 ft. Determine the
Reynolds number characteristic of the fluid
flow through the supply pipe.

7.87 Consider the water tank on a friction-
less cart shown in Figure P7.30. The diameter
of the exit port is 1.5 in. and the average water
velocity through the exit port is 15 ft/s. Water
is entering through the tank from above in such
a way that the water level in the tank remains
constant. After exiting the tank, the water jet
is deflected by a vane through an angle of θ ,
where θ can be varied between 0 and 80°.
(a) Calculate the tension in the cable when

θ = 30◦ .
(b) At what angle will the tension in the cable

be a maximum?



7.88 A cone-shaped hole in the ground has
a depth of 2 m and a circular opening of diam-
eter 1.5 m. This hole is being filled with water
at the rate of 1.5 L/s.
(a) How long will it take to fill the hole with

water?
(b) Calculate the rate at which the depth of

the water is increasing after the water has
been flowing for 1 minute.

7.89 Figure P7.31 shows an illustration of
the fluid-handling device known as an expan-
sion chamber. The free surface of the water
has a diameter of 2 ft, and the diameter of the
entrance and exit ports is 1 ft. If the average
fluid velocity through the entrance port is
15 ft/s and the height of the free surface is
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increasing at the rate of 0.1 in./s, calculate the
mass flowrate through the exit port.

7.90 Under steady state conditions in a
wind tunnel test, a certain aircraft engine ex-
periences a flowrate of 2 slugs/s of air and
1.4 slugs/min of liquid fuel into the combus-
tion chamber through different ports. The
exhaust gases leave the combustion chamber
through an exit port of diameter 1 ft with an
average velocity of 1000 mph. Estimate the
density of the exhaust gases.

7.91 At time t = 0, water is flowing
through a straight horizontal pipe of diameter
1 ft at the rate of 9.0 ft3/s and exits the pipe 
at atmospheric pressure. The flowrate is in-
creasing at the rate of 0.5 ft3/s2. What is the

D1 � 1 ft

D3 � 2 ft

D2 � 1 ft

V1 � 15 ft�s
Water

dh
dt � 0.1 in.�s

Expansion
chamber

V2 � ?

Figure P7.31

Cart
Cable

�

D � 1.5 in.

V � 15 ft�s

Water supply pipe

Figure P7.30
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pressure in the pipe 200 ft upstream of the exit
port? Assume friction is negligible.

7.92 A water jet of velocity 5 m/s and di-
ameter 1.5 cm strikes a fixed cone as shown in
Figure P7.32. If the magnitude of the velocity
of the deflected fluid is also 5 m/s, determine
the magnitude of the horizontal restraining
force as a function of the cone angle θ .

7.93 Reconsider the flow geometry shown
in Figure P7.32. Let the properties of the in-
coming water jet remain the same, but rotate
the cone 180° so that its axis is still aligned
with the water stream but the tip of the cone
now points to the left. Determine the magni-
tude of the horizontal restraining force as a
function of the cone angle θ .

7.94 Suppose the cone in Figure P7.32 is
replaced with a hemispherical shell whose
axis is aligned with the incoming water jet
(open end facing jet). Determine the magni-
tude of the horizontal restraining force acting
on the shell. State any assumptions.

D1 � 0.2 m

D2 � 1.12 m

V1 � 6.0 m�s

V2 � ?
Hydraulic

jump

Figure P7.33

7.95 In Chapter 15 we will discuss open
channel flow in some detail. It will be shown
that under certain conditions, a flow feature
known as a hydraulic jump can develop. This
is illustrated in Figure P7.33. Upstream of the
hydraulic jump the water depth is 0.2 m, and
the average fluid velocity is 6.0 m/s. If the
depth of the water downstream of the jump is
1.12 m, calculate the average water velocity at
the downstream location. Do you think the
water heats up or cools down as it goes
through the jump? Why?

7.96 Reconsider the flow condition known
as a hydraulic jump as illustrated in Fig-
ure P7.33. Let the upstream water height be
D1 and the upstream velocity be V1. Use the
continuity and momentum equations to derive
expressions for the downstream water height,
D2, and downstream velocity, V2. Be sure to
state any assumptions.

7.97 A rocket has an initial mass of
12,000 kg. After a vertical liftoff it burns fuel at

F
D1 � 1.5 cm

V1 � 5 m/s �

Figure P7.32



the rate of 10 kg/s for 80 s until its fuel is ex-
hausted. During this time a constant thrust
of 220 kN is developed. Calculate the final
velocity of the rocket. You may neglect air
resistance.

7.98 Reconsider the incompressible air-
flow within the boundary layer over a flat
plate as shown in Figure P7.5 and described in
Problem 7.26. In this problem all flow condi-
tions are the same except that the horizontal
plate is porous and suction beneath the plate is
resulting in an average fluid velocity through
the plate of magnitude 5 mm/s. Determine the
volume flowrate of air into or out of the top
surface of the control volume.

7.99 The horizontal nozzle shown in Fig-
ure P7.34 is held together at the flange by a set
of six bolts. Each bolt has a diameter of 1/4 in.
The bolts are substandard, however, and
will fail when the stress in any bolt reaches
500 psi. The upstream diameter is 10 in. and
the downstream diameter is 5 in. The nozzle is
designed to operate with an upstream pressure
of 40 psi. and an upstream velocity of 15 ft/s.
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Will the flawed bolts be able to survive under
the design conditions?

7.100 A water jet of diameter 4 in. and
velocity 12 ft/s strikes a flat plate with a 3

4 in.
diameter hole drilled through it as shown in
Figure P7.35. If the velocity of the down-
stream jet is the same as that of the upstream
jet, calculate the magnitude and direction of
the force necessary to hold the plate station-
ary. State any assumptions.

7.101 A faculty member is about to go
from her office to the student center to get
some lunch. Unfortunately, it’s pouring out-
side. One of her students suggests that if she
runs, she will get less wet than walking. The
faculty member isn’t sure about the accuracy
of this advice so she does a quick calculation.
She approximates her body as a control vol-
ume in the shape of a rectangular prism. Did
she run or walk? Why.

7.102 Acylindrical tank is draining through
a circular hole in its base. The tank has a
diameter of 0.5 m and the depth of water in the

D1 � 10 in.
 p1 � 40 psi
 V1 � 15 ft/s

Bolt (1 of 6)
D � 0.25 in.

D2 � 5 in.
 p2 � Atmospheric

Nozzle

Figure P7.34

V1 � 12 ft/s

D1 � 4 in.

V2 � 12 ft/s

D2 � 0.75 in.

Figure P7.35
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 D1 � 10 in.
  p1 � 50 psi
Re1 � 5.5 � 105

D2 � 3 in.
 p2 � Atmospheric

Figure P7.36

tank is 0.4 m at the instant in question. If the
volume flowrate out of the tank is 0.005 m3/s
determine the following.
(a) The instantaneous rate of change of the

height of the liquid in the tank.
(b) The diameter of the hole in the bottom of

the tank.

7.103 Water flows through a horizontal
180° reducing bend as shown in Figure P7.36.
The diameters of the entrance and exit ports
are known to be D1 = 10 in. and D2 = 3 in.,
respectively. The pressure at the entrance port
is p1 = 50 psia and the exit port is at atmo-
spheric pressure. The Reynolds number at the
upstream cross section is 5.5 × 105.
(a) Calculate the upstream velocity.
(b) Calculate the downstream velocity.
(c) Calculate the magnitude and direction of

the restraining force required to hold the
reducing bend in place.

have (open) dimensions of 3 ft × 2 ft and the
door has (open) dimensions of 3 ft × 6.5 ft.
Plot the average air velocity through the door
as a function of the angle θ , which describes
the wind direction. Let θ vary from 0 to 180°.
What is the velocity of the air through the
doorway when the wind blows due north?

7.105 One the authors has a basement that
leaks during heavy rains. The basement floor
has an area of 1200 ft2 and the water depth has
been known to increase at a rate of 0.5 in./h.
What size pump should the author rent to
counter this influx of water (i.e., to keep the
water level constant)? If the goal is not to keep
the level constant, but rather to drain the base-
ment at a rate of 2.0 in./h, even during the
flooding, what capacity pump is required?
Note that pump capacities at the local Rent-A-
Pump store are reported in gallons per minute.

7.106 Consider the sluice gate shown in
Figure P7.38. The upstream water depth and
velocity are 10 m and 1 m/s, respectively. If
the downstream depth is 3 m, what is the force
on the gate due to the water?

7.107 In many industrial processes evapo-
rative cooling towers are used to extract heat
from circulating water. The process is illus-
trated in Figure P7.39. Water at T = 50◦C en-
ters the evaporator at a flowrate of 30 L/s and
exits the device at T = 32◦C with a flowrate
of 29.3 L/s. The flowrate of the moist air out
of the device is 19.8 kg/s.

N

Windows
(3 ft � 2 ft)

Door
(3 ft � 6.5 ft)

Wind
direction

�

Figure P7.37

7.104 A schematic illustration of a room in
a home is shown in Figure P7.37. The room
has air entering through three windows and
exiting through one doorway. The windows



(a) Calculate the flowrate of dry air into the
evaporator.

(b) Answer this question without doing a cal-
culation. If the water enters and exits the
device through ports of equal area, is the
average fluid velocity higher or lower at
the exit port? Why? 

(c) Answer this question without doing a
calculation. If the air enters and exits the
device through ports of equal area, is the
average fluid velocity higher or lower at
the exit port? Why? Are you sure?

7.108 A jet of compressed nitrogen gas has
a diameter of 1.5 cm and an average velocity
of 50 m/s. This jet strikes a flat plate at an
angle, as shown in Figure P7.40. If the gas
velocity remains constant, determine the mass
flowrates for each of the exit streams. Also
calculate the magnitude and direction of the
restraining force necessary to hold the flat
plate in place.
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average velocity of 10 ft/s. The drier air (55%
relative humidity) exits the device at 90°F and
atmospheric pressure. The water that drains
out of the dehumidifier is collected in a reser-
voir capable of holding one gallon of water.
The mass ratio of water vapor to air in the in-
coming flow is 3.2 × 10−2. If the reservoir is
initially empty, how long can the dehumidifier
run under these conditions before the reser-
voir is filled to 95% of its capacity?

7.110 The tank shown is Figure P7.41 is
resting on a frictionless surface. The volume
flowrate through the supply line is adjusted so
that the water level in the tank remains con-
stant. The upper exit port, which is located 1 ft
below the surface of the water, has a diameter
of 1 in. The lower exit port is located 2 ft
below the water surface. What diameter must
the lower exit port have if the tank is to remain
motionless? Hint: VExit =

√
2gh where h is

depth below the free surface.

D1 � 1.5 cm
V1 � 50 m/s

FR

Nitrogen

60�

Figure P7.40
D1 � 1 in.

2 ft

1 ft

D2

Supply line

Frictionless surface

Figure P7.41

Sluice gate

D1 � 10 m D2

V1 � 1 m/s

V2

Figure P7.38

Water in
T � 50�C
Q � 30 L/s

Water out
T � 32�C
Q � 29.3 L/s

Moist air out
m � 19.8 kg/s

Dry air in

Evaporator

.

Figure P7.39

7.109 A dehumidifier designed for use in 
a damp basement takes in moist air (100%
relative humidity) at 90°F and atmospheric
pressure through a port of area 2.5 in.2 at an
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Air

Hydraulic
fluid

D2 � 0.25 in.

D3 � 4 in.

V � 0.39 ft/s

D1 � 0.25 in.

Q �
0.25 gal/min

Figure P7.42

7.111 A rocket fueled by solid propellant
has no entrance ports and a single exit port.
Fuel combustion inside the rocket occurs at
T = 2250◦F and 140 psi to produce an ex-
haust gas (with near ideal gas behavior and
a molecular weight of 29). The flow condi-
tions at the exit port are area = 1.75 ft2,
p = 13 psi, V = 3750 ft/s, and T = 900◦F.
Calculate the mass of propellant required to
permit an engine operation time of 1 hour.
Does your answer seem reasonable?

7.112 Figure P7.42 shows a device known
as a hydraulic accumulator. It is designed to
reduce pressure variations in hydraulic sys-
tems. The entrance and exit ports each have a
diameter of 0.25 in. and the free surface has a
diameter of 4 in. If hydraulic fluid is flowing
into the device at the rate of 0.25 gal/min and
flowing out of the exit port at an average ve-
locity of 0.39 ft/s, calculate the rate at which
the free surface is rising or falling.

D1 � 1 in.

V1 � 30 ft/s

0.20 in.

4 in.

Figure P7.43

Fluid-handling
device

Q1 � 0.006 m3�s

Q2 � 0.010 m3�s

Q3 � 0.006 m3�s

D2 � 3 cm

D1 � 3 cm

D3 � 3 cm

Figure P7.44

7.114 Consider the fluid-handling device
shown in Figure P7.44. Each of the three ports
has a diameter of 3 cm. Water enters the cen-
ter port at 100 kPa gage and a volume flowrate
of 0.010 m3/s and exits to the atmosphere
through the upper and lower port at a volume
flowrate of 0.006 m3/s. Calculate the magni-
tude and direction of the force required to
hold the device in place.

7.113 A pop-up sprinkler head for a lawn
watering system is illustrated in Figure P7.43.
The water flows upward through a supply line
of diameter 1 in. at an average velocity of
30 ft/s. The water then moves radially out-
ward between the two parallel solid disks. The
disks are 4.0 in. in diameter and are separated
by a gap of 0.20 in. Calculate the water veloc-
ity as it leaves the sprinkler head.

7.115 The open channel flow device
known as a submerged or “drowned” weir is
illustrated in Figure P7.45. The channel has a
width of 50 ft and the upstream conditions are
Vu = 5 ft/s and hu = 10 ft. If the down-
stream velocity is 15 ft/s, calculate the magni-
tude of the horizontal force on the weir.



7.116 A device known as a jet pump is
shown in Figure P7.46. Water flows through
the smaller pipe (D = 7 cm) with an average
velocity of 50 m/s. As this flow exits the
supply pipe it entrains a secondary flow of
water in the washer-shaped (annular) region
between the inner and outer pipe walls. The
outer pipe has D = 25 cm. At a cross section
sufficiently downstream from the exit port of
the supply pipe, the two flows are fully mixed
and the average fluid velocity is found to be
8.528 m/s. Determine the average velocity of
the water in the annular region between the
supply pipe and the outer pipe at the plane of
the exit of the supply pipe.

7.117 Two fluid jets of equal cross-
sectional area collide to produce a single,
well-mixed, output stream as shown in Fig-
ure P7.47. If the velocity of the horizontal
input stream is 3 m/s and the angle θ is found
to be 30°, determine the velocity of the verti-
cal input stream.

7.118 Reconsider the flow geometry
shown in Figure P7.47. The two input streams
are equal in velocity, but while the horizontal
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stream is water, the vertical stream is SAE
30 W oil. Determine the relative velocity of
the exit stream (in terms of V0, the velocity of
the input streams, and the angle θ ).

7.119 A compressed gas tank used to in-
flate party balloons has a volume of 5 ft3 and
is filled with helium. When the valve is
opened, He flows out of the tank. The flow
conditions at the exit port are D = 0.25 in.,
V = 1000 ft/s, T = 0◦F, and p = 55 psi.
Calculate dρ/dt at this instant in time.

7.120 Two immiscible liquids are mixed
in the Y-shaped pipe illustrated in Fig-
ure P7.48. The first liquid has a specific grav-
ity of 1.05 and enters the device with a
flowrate of 1500 gal/min. The second liquid
has a specific gravity of 0.85 and enters the
device with a flow rate of 1200 gal/min. If the
mixture exits the device at a velocity of
30 ft/s, estimate the cross-sectional area of the
exit port.

�

90�D1 � D2

V1 � 3 m/s

V3

V2

D2 � D1

Figure P7.47

D1 � 7 cm

D3 � 25 cm

V2 � ? V3 � 8.528 m/s

V1 � 50 m/s

Figure P7.46

Vu � 5 ft/s

hu � 10 ft
VD � 15 ft/s

Figure P7.45
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7.121 One of the authors lives in a two-
story house attached to a single-story garage.
During a torrential downpour he wanders out-
side to see if his gutters and downspouts are
working properly. During his examination it
appears that the flowrate out of the longer
(2-story) downspout is greater than the
flowrate from the shorter (1-story) downspout.
He goes back inside and does a calculation to
determine the expected ratio of these two
flowrates. Attempt to reproduce this calcula-
tion. Be sure to state any assumptions.

7.122 When a cylindrical tank of radius R
drains through a circular hole or radius r in the

2R

2r

Conical tank

V � �2gh

h0

h

2
h0

Figure P7.49

center of its base, the velocity of the fluid
leaving the tank is approximately V = √

2gh ,
where h is the instantaneous height of the
liquid in the tank. Derive an expression for
the time required for the tank to drain from an
initial fluid height of h0 to a final height of
0.5h0.

7.123 Figure P7.49 shows a conical tank
with a maximum radius R and half-angle θ
draining through a circular hole of radius r at
its tip. The velocity of the fluid leaving the
tank is approximately V = √

2gh , where h is
the instantaneous height of the liquid in the
tank. Derive an expression for the time re-
quired for the tank to drain from an initial
fluid height of h0 to a final height of 0.5h0.

Liquid 1
  Q � 1500 gal/min
SG � 1.05

Mixture
V � 30 ft/s

Liquid 2
  Q � 1200 gal/min
SG � 0.85

Figure P7.48
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8.1 INTRODUCTION

One of the oldest approximations in fluid dynamics is that of an inviscid fluid. If such a
fluid existed, its viscosity would be exactly zero, it would be incapable of exerting a
shear stress, and its flow would be frictionless. The state of stress in an inviscid fluid is
characterized solely by the pressure distribution. Since there is no fluid whose viscosity
is zero, one might ask why we study the flow of an inviscid fluid, i.e., frictionless flow.
One answer, which is particularly relevant in engineering design, is that the highest per-
formance that can be achieved from a fluid-handling device is that which would occur in
the absence of friction. Thus the study of frictionless flow through a device may allow
us to optimize a preliminary design. A second answer, which is of great importance in

8 FLOW OF AN INVISCID FLUID:
THE BERNOULLI EQUATION
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aerodynamics, is that the principal phenomenon that arises from the existence of
viscosity, i.e. shear stress, is not significant in all flows.

To better understand this comment, consider the flow of the two fluids of greatest
engineering interest, air and water. The viscosity of these fluids is not zero, but it is small
in comparison to many other fluids. Now according to Eq. 1.2c, the relationship between
shear stress, viscosity, and velocity gradient is given by τ = µ(du/dy). It is easy to see
that if the viscosity is zero, then the shear stress must also be zero. The equation also
shows, however, that if the velocity gradient at a point in a flow of air or water is small,
then the local shear stress may be negligible (from an engineering point of view) even
though the viscosity is nonzero.

A number of important flows in engineering contain regions in which shear stresses
are in fact negligible. In these regions the flow is approximately frictionless and indis-
tinguishable from the flow of an inviscid fluid. Thus in this chapter we will consider
frictionless flow and the flow of an inviscid fluid to be synonymous, and we will inves-
tigate the characteristics of frictionless flow by employing the concept of an inviscid
fluid.

In the next section we use mass and momentum balances to investigate the charac-
teristics of frictionless flow along a streamline. The result of this analysis is the
Bernoulli equation, which describes the energy content of a flow along a streamline in
the absence of friction. After discussing the forms of the Bernoulli equation for incom-
pressible and compressible fluids, we introduce the concepts of static, dynamic, stagna-
tion, and total pressure. These “pressures” are all routinely used in fluid dynamics and
their definitions are based on terms in the Bernoulli equation. Next we discuss selected
applications of Bernoulli’s equation, and conclude the chapter by reviewing the rela-
tionship between the Bernoulli equation and the energy balance for steady flow along a
streamline. Although an energy balance is not needed to derive the Bernoulli equation,
it provides additional insight into the conditions under which the Bernoulli equation is
applicable.

CD/Kinematics/Streamlines and the Streamfunction/Streamlines in 3-D.

8.2 FRICTIONLESS FLOW ALONG A STREAMLINE

Consider a short segment of a streamline passing through a region of frictionless flow as
illustrated in Figure 8.1A. To understand how fluid and flow properties vary along this
streamline, we will write mass and momentum balances for a differential control volume
(CV) of length ds centered at an arbitrary point on this streamline at time t and bounded
by nearby streamlines as shown in Figure 8.1B. At any point along the streamline the
area is A = A(s), and the velocity is u = V (s, t)eS , where the unit vector eS lies along
the streamline. We will assume that the area A is small enough that the velocity and fluid
properties are uniform on any cross section and vary only in the s direction, that the only
body force acting is gravity, and that the viscosity of the fluid is zero.

We begin by applying a mass balance to the differential CV shown in Figure 8.1B.
Because the side of the CV is defined by other streamlines, the velocity vector on the



side is wholly tangential to the surface. Therefore transport only occurs across the inlet
and exit surfaces. We can write a mass balance for this CV using Eq. 7.11,∫

CV

∂ρ

∂t
dV +

∫
CS

ρ(u • n) dS = 0

Making use of the characteristics of the differential CV, we can evaluate the accumula-
tion and flux terms by writing the corresponding integrals in the following respective
forms:

∫
CV

∂ρ

∂t
dV =

∫ 2

1

∂ρ

∂t
A ds and

∫
CS

ρ(u • n) dS = −ρ1 A1V1 + ρ2 A2V2 =
∫ 2

1

d

ds
(ρ AV ) ds

Writing the mass balance as a single integral, we obtain∫ 2

1

[
∂ρ

∂t
A + d

ds
(ρ AV )

]
ds = 0

Since points 1 and 2 are arbitrary, we conclude that the following relationship holds at
each point along the streamline:

∂ρ

∂t
A + d

ds
(ρ AV ) = 0 (8.1)

We next write a momentum balance for the differential CV by applying Eq. 7.18:∫
CV

∂

∂t
(ρu) dV +

∫
CS

(ρu)(u • n) dS =
∫

CV
ρf dV +

∫
CS

� dS

Equation 4.19 allows us to write the stress vector in terms of its normal and tangential
components as � = −pn + � . Since the shear stress is zero in the flow of an inviscid
fluid, we have � = −pn, and the momentum balance becomes∫

CV

∂

∂t
(ρu) dV +

∫
CS

(ρu)(u • n) dS =
∫

CV
ρf dV +

∫
CS

−pn dS
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dS

(A) (B)

Streamlines

dS

g
p1, �1,
V1, A1

p2, �2,
V2, A2

S

�

Figure 8.1 (A) Streamlines of flow over an airfoil. (B) CV between streamlines.
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We are interested in calculating the component of this equation in the s direction along the
streamline. We will again make use of the geometry of the differential CV to evaluate
each term in the resulting momentum balance in the s direction. Evaluating the s compo-
nent of the accumulation term we find∫

CV

∂

∂t
(ρV ) dV =

∫ 2

1

∂

∂t
(ρV )A ds

Next we evaluate the s component of the flux term to obtain∫
CS

(ρV )(u • n) dS = −ρ1 A1V 2
1 + ρ2 A2V 2

2 =
∫ 2

1

d

ds
(ρ AV 2) ds

The s component of the body force term is given by∫
CV

ρ fS dV =
∫ 2

1
ρ (−g sin θ)A ds

where we have used the fact that fS , the component of the gravitational body force in the
s direction, is −g sin θ , where θ = θ(s), (see Figure 8.1B). For later use we note that
sin θ ds = dz , and thus sin θ = dz/ds .

Before considering the s component of the pressure integral, we use Gauss’s theo-
rem to write the surface integral as∫

CS
−pn dS =

∫
CV

−∇p dV

We are interested only in the component of the volume integral in the s direction. Since
the component of the pressure gradient in the s direction is dp/ds , the desired result is∫ 2

1 −(dp/ds)A ds . Gathering terms and writing the s component of the momentum bal-
ance as a single integral gives∫ 2

1

[
∂(ρV )

∂t
A + d

ds
(ρ AV 2) + ρ (g sin θ)A + dp

ds
A

]
ds = 0

Since points 1 and 2 are arbitrary, we conclude that at every point along the streamline
we have

∂(ρV )

∂t
A + d

ds
(ρ AV 2) + ρ (g sin θ)A + dp

ds
A = 0 (8.2)

Equations 8.1 and 8.2 describe frictionless flow along a streamline. We will use them in
the next section to derive the Bernoulli equation.

8.3 BERNOULLI EQUATION

In the flow of an inviscid fluid the only forces acting on the fluid are the inertial, body,
and pressure forces per unit volume. Viscous (friction) forces are absent. Recalling our
discussion in Chapter 2 of the forms of fluid energy, we intuitively expect that in a



frictionless flow, energy is conserved. The equation
expressing this fact, which is named after Daniel
Bernoulli, can be derived using the results of Sec-
tion 8.2.

Our derivation of Bernoulli’s equation begins with
Eq. 8.2:

∂(ρV )

∂t
A + d

ds
(ρ AV 2) + ρ(g sin θ)A + dp

ds
A = 0

which expresses conservation of momentum in the flow
of an inviscid fluid along a streamline. We can simplify
this equation further by expanding the first term as

∂(ρV )

∂t
A = ρ

∂V

∂t
A + ∂ρ

∂t
AV

= ρ
∂V

∂t
A − V

d

ds
(ρ AV )

where we have used Eq. 8.1 to write (∂ρ/∂t)A =
−(d/ds)(ρ AV ). We can now write the first and second
terms in Eq. 8.2 as:

∂(ρV )

∂t
A + d

ds
(ρ AV 2) = ρ

∂V

∂t
A − V

d

ds
(ρ AV ) + d

ds
(ρ AV 2)

= ρ
∂V

∂t
A + ρ A

d

ds

(
V 2

2

)
and write Eq. 8.2 as

ρ
∂V

∂t
A + ρ A

d

ds

(
V 2

2

)
+ ρ (g sin θ)A + dp

ds
A = 0

Dividing through by ρ A, and recognizing that sin θ = dz/ds , we obtain

∂V

∂t
+ d

ds

(
V 2

2

)
+ g

dz

ds
+ 1

ρ

dp

ds
= 0 (8.3)

Since this equation holds at every point on a streamline, we can integrate it along the
streamline from point 1 to point 2 to obtain∫ 2

1

[
∂V

∂t
+ d

ds

(
V 2

2

)
+ g

dz

ds
+ 1

ρ

dp

ds

]
ds = 0

Taking advantage of the exact differential form of the middle two terms, we can write
them as

∫ 2

1

d

ds

(
V 2

2

)
ds = 1

2

(
V 2

2 − V 2
1

)
and

∫ 2

1
g

dz

ds
ds =

∫ 2

1
g dz = g(z2 − z1)
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HISTORY BOX 8-1

Daniel Bernoulli (1700–1782) was a
member of a distinguished family of math-
ematicians from Basel, Switzerland. His
book Hydrodynamica, published in 1738,
described the physical phenomena pre-
dicted by the Bernoulli equation. However,
it was several years later that Leonhard
Euler first derived the Bernoulli equation
as we know it today. It is also interesting to
note that Johann Bernoulli, Daniel’s father,
published a book he called Hydraulica in
1743, but dated his work 1728 to take
credit from his son for this fundamental
physical relationship. Thus, our knowledge
of the relationship between pressure and
velocity is better understood than the
dynamics of this brilliant family.



We also have
∫ 2

1 (1/ρ)(dp/ds) ds = ∫ 2
1 dp/ρ, thus we can write the resulting equation as∫ 2

1

∂V

∂t
ds +

∫ 2

1

dp

ρ
+ 1

2

(
V 2

2 − V 2
1

)+ g(z2 − z1) = 0 (8.4)

This is the general form of the Bernoulli equation. It applies to the frictionless flow of a
compressible or incompressible fluid; the only restriction is that the path connecting the
two points must be an instantaneous streamline.

A number of important simplifications to the Bernoulli equation merit additional
discussion. These relate to whether the fluid is compressible or incompressible, and also
to whether the flow is steady. In most applications, we do not apply the general form of
the Bernoulli equation but rather use one of the simplified versions developed in the next
sections.

8.3.1 Bernoulli Equation for an Incompressible Fluid
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CD/Dynamics/Potential Flow/Incompressibility and Irrotationality.

Since the density of an incompressible fluid is constant, it may come outside the pres-
sure integral in the general form of the Bernoulli equation, Eq. 8.4. This allows us to
write the pressure integral as 

∫ 2
1 (dp)/ρ = (1/ρ)(p2 − p1). The Bernoulli equation for

unsteady flow of a constant density fluid is therefore given by∫ 2

1

∂V

∂t
ds + 1

ρ
(p2 − p1) + 1

2

(
V 2

2 − V 2
1

)+ g(z2 − z1) = 0 (8.5)

We can interpret the constant density Bernoulli equation in terms of fluid energy. Recall
that the total energy per unit mass in a fluid is defined as e = u + p/ρ + 1

2 u • u + gz
and that the sum p/ρ + 1

2 u • u + gz is referred to as the mechanical energy per unit
mass since each term relates to a mechanical rather than thermal form of energy. The total
energy is the sum of the thermal energy of the fluid (as measured by the internal energy),
and the mechanical energy. In the absence of viscous forces, the Bernoulli equation is a
statement about the mechanical energy at two points along a streamline in a constant den-
sity flow. In an unsteady flow, we see from Eq. 8.5 that the mechanical energy content of
the fluid at the two points differs only owing to the effects of the local acceleration,
represented here by 

∫ 2
1 (∂V /∂t) ds . This effect is illustrated in the next two examples.

Many flows of engineering interest involving incompressible fluids are steady. In
steady flow, ∂V /∂t = 0, and the leading term in Eq. 8.5 vanishes. Thus for a steady flow
of an incompressible fluid, the Bernoulli equation becomes

1

ρ
(p2 − p1) + 1

2

(
V 2

2 − V 2
1

)+ g(z2 − z1) = 0

We normally write this equation as

p1

ρ
+ 1

2
V 2

1 + gz1 = p2

ρ
+ 1

2
V 2

2 + gz2 (8.6)
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EXAMPLE 8 .1

A pipe open at the top and filled with a liquid is closed by a valve at the end as shown in
Figure 8.2. When the valve is opened, flow through the pipe begins. Assuming friction-
less flow, find an expression for the acceleration of the liquid in the pipe.

g
1

2

L
Streamline

Valve

Figure 8.2 Schematic for Example 8.1.

SOLUTION

We will apply the unsteady, constant density Bernoulli equation between points 1 and 2
along a streamline down the center of the pipe at the instant after the valve opens. For
this problem Eq. 8.5 takes the form∫ 2

1

∂V

∂t
ds + 1

ρ
(p2 − p1) + 1

2

(
V 2

2 − V 2
1

)+ g(z2 − z1) = 0

Since the flow is frictionless, the velocity at any pipe cross section is uniform, and a
mass balance yields V1 = V2. The pressure at each point is atmospheric and the differ-
ence in elevation is g(z2 − z1) = −gL . Thus we have∫ 2

1

∂V

∂t
ds − gL = 0 (A)

To evaluate the integral along the streamline, we note that a mass balance shows that V
is constant along s. Thus ∂V /∂t is also constant along s, and we can write∫ 2

1

∂V

∂t
ds = dV

dt

∫ 2

1
ds = dV

dt
(s2 − s1) = dV

dt
L

Substituting this into (A), we find (dV /dt)L = gL , or dV /dt = g. That is, the local
acceleration of the liquid is equal to g. The liquid is in free fall, and it is interesting to
observe that the resulting acceleration is independent of the density of the fluid. Thus
mercury and water behave the same in a frictionless free fall out of a tube.

The velocity of the liquid is now easily found to be V (t) = gt , and the kinetic
energy of the entire column of liquid at any time is 1

2 MV 2 = 1
2ρ[π(d2/4)L](gt)2 . In
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time t the fluid column has dropped a distance H = ∫ V (t) dt = 1
2 gt2 , and the work

done on the fluid by gravity is MgH = 1
2ρ[π(d2/4)L](gt)2 . As expected, the work done

equals the increase in kinetic energy. The force applied to the fluid by the gravity field
results in a constant acceleration of the liquid column in this frictionless flow. Notice
that if the Bernoulli equation is applied just before the valve is opened with the liquid at
rest, it predicts (1/ρ)(p2 − p1) − gL = 0, or p2 = p1 + ρgL , which agrees with the
hydrostatic equation.

EXAMPLE 8 .2

A liquid column of total length L oscillates in a U-tube as shown in Figure 8.3. Assum-
ing frictionless flow, find an expression predicting the frequency of oscillation.

V1

V2g

h1

h2
z

Streamline

L

Figure 8.3 Schematic for Example 8.2.

SOLUTION

We will apply the unsteady, constant density Bernoulli equation between points 1 and 2
along a streamline along the center of the U-tube at the instant shown. Since the flow is
frictionless, the velocity at any pipe cross section is uniform, and a mass balance shows
that at any instant V = V1 = V2. The pressure at each point is atmospheric, and the dif-
ference in elevation is g(z2 − z1) = g[h2 − (−h1)] = g(h2 + h1) . Thus writing the
Bernoulli equation, Eq. 8.5, under these conditions, we find∫ 2

1

∂V

∂t
ds + g(h2 + h1) = 0

To evaluate the integral, note that V and ∂V /∂t are independent of s; thus we can write∫ 2

1

∂V

∂t
ds = dV

dt

∫ 2

1
ds = dV

dt
(s2 − s1) = dV

dt
L



Recall that we discussed Equation 8.6 briefly in Chapter 2 and listed it there in another
form as Eq. 2.11. We can interpret the steady flow, constant density Bernoulli equation
in terms of the mechanical energy content of the fluid: in the absence of viscous forces,
the mechanical energy at two points along a streamline in a steady, constant density flow
is the same.

8.3.2 Cavitation

Low pressures routinely occur in regions of high velocity within fluid machinery such 
as on the inlet (suction) side of a pump and on rapidly rotating propellers and impellers
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Thus the differential equation governing the oscillation is
dV

dt
L + g(h2 + h1) = 0 (A)

To solve this equation we must remember that although L is constant, h1 = h1(t), and
h2 = h2(t). However, from Figure 8.3 we see that dh1/dt = −V1(t) = V , and
dh2/dt = V2(t) = V . This suggests that we differentiate (A) to obtain

d2V

dt2
L + g

(
dh2

dt
+ dh1

dt

)
= 0

Substituting for the first derivatives and rearranging, we get the second-order ordinary
differential equation

d2V

dt2
+ 2g

L
V = 0

The general solution to this equation is

V (t) = A sin

√
2g

L
t + B cos

√
2g

L
t

which describes an oscillation at a frequency

ω =
√

2g

L
(B)

Since the flow is frictionless, this motion is undamped. We see that the frequency de-
pends on gravity and the total length of the liquid column but, perhaps surprisingly, not
on the density or diameter of the tube. An experiment performed with a small diameter
U-tube filled with water shows that the motion is highly damped owing to viscous fric-
tion. Thus we need to be careful about assuming frictionless flow. Even though water
has a comparatively low viscosity, the flow in a small diameter tube is not properly mod-
eled as an inviscid flow because the velocity gradients are significant. Thus the shear
stresses (and hence friction) are not negligible.
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EXAMPLE 8 .3

Find an expression for the velocity and area of the falling jet of liquid shown in Figure 8.4.

Exit
1

L

z

Streamline

2

Figure 8.4 Schematic for Example 8.3.

SOLUTION

We will assume steady, constant density, frictionless flow, and apply Bernoulli’s equa-
tion on the central streamline from a point at the exit where z = 0 to a point below at
z = −L , where the velocity is V. We will also assume that the effects of surface tension
are negligible, hence the pressure in the jet is atmospheric. The steady, constant density
form of Bernoulli’s equation, Eq. 8.6, is

p1

ρ
+ 1

2
V 2

1 + gz1 = p2

ρ
+ 1

2
V 2

2 + gz2

Applying this equation between the exit plane and the point at z = −L , and noting that
the pressure is atmospheric at both locations, we have

pA

ρ
+ 1

2
V 2

E + g(0) = pA

ρ
+ 1

2
V 2 + g(−L)

Canceling terms and solving for the velocity at z = −L , we have

V (L) =
√

V 2
E + 2gL (A)

which shows that the velocity increases as a result of the acceleration of gravity. A mass
balance on the control volume shown reveals that ρV A = ρVE AE ; thus we can write
A(L) = AE(VE/V ) and use (A) to obtain the following formula for the area of the jet
at any location below the exit plane:

A(L) = AE VE√
V 2

E + 2gL

We see that the area of the jet decreases as it falls. This is necessary for mass to be con-
served. Observation of a falling jet of liquid shows that the jet breaks into droplets some
distance below the exit plane. Prior to the breakup, disturbances appear on the air–liquid
interface. These phenomena are not accounted for in the preceding formulas, so once
again we see the need for caution in applying the results of a Bernoulli equation analysis.
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EXAMPLE 8 .4

A decorative fountain employs a small nozzle attached to a high pressure water pipe as
shown in Figure 8.5. If the maximum pressure available in the water pipe is 100 psig,
how high will the water go? At what velocity does the water exit the nozzle?

p0 � 100 psig

z

H

1

2 Figure 8.5 Schematic for Example 8.4.

SOLUTION

We will assume steady, constant density, frictionless flow, and apply Bernoulli’s equa-
tion from a point inside the water pipe where z = 0 to a point at the top of the water jet
where z = H , and the velocity is zero. Since the nozzle area is small in comparison to
the cross-sectional area of the water pipe, we will assume that the water in the pipe is
nearly at rest at a pressure p0. The external water jet is at atmospheric pressure. Apply-
ing the steady, constant density form of Bernoulli’s equation, Eq. 8.6, to this situation
yields:

p0

ρ
+ 1

2
V 2

1 + g(0) = pA

ρ
+ 1

2
V 2

2 + gH

Neglecting the term 1
2 V 2

1 , since the velocity in the pipe is very small, we obtain
p0/ρ = pA/ρ + gH . Solving for the height and inserting the data gives:

H = p0 − pA

ρg
= (100 lbf/in.2)(144 in.2/ft2)

(1.94 slugs/ft3)(32.2 ft/s2)
= 230.5 ft

To find the exit velocity, we next apply Bernoulli’s equation from a point inside
the water pipe to the nozzle exit plane where the velocity is VE , obtaining
p0/ρ = pA/ρ + 1

2 V 2
E + ghE . Ignoring the slight change in gravitational potential

energy over the height hE , we find

p0

ρ
= pA

ρ
+ 1

2
V 2

E

After solving for the exit velocity and substituting, the data yield

VE =
√

2(p0 − pA)

ρ
=
√

2(100 lbf/ft2)(144 in.2/ft2)

1.94 slugs/ft3
= 121.8 ft/s
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(see Figure 8.6A). The result is the formation of water vapor bubbles in certain regions
within the flow and on moving surfaces. If bubbles are then swept to regions of higher
pressure, the bubbles implode. This phenomenon, called cavitation, can result in shock
waves accompanied by pressures on the order of 50,000 psi (345 MPa). You can easily
cause mild cavitation in a garden hose by bending the hose back on itself, nearly pinch-
ing shut the flow passage. The pinch creates a venturi in which the water moves at high
speed, creating a pressure low enough for cavitation to occur. Try this experiment and
listen for the sounds of cavitation.

As shown in Figure 8.6B, cavitation can result in significant damage to structural
materials. An understanding of cavitation requires a review of the concept of vapor pres-
sure. The vapor pressure of a liquid pv is the pressure at which a liquid will boil or
vaporize at a given temperature. This is why negative pressures in a liquid are never en-
countered. As the absolute pressure falls toward zero, the liquid boils and maintains a

Since H = (p0 − pA)/ρg , we can also write the previous formula as VE =
√

2gH ,
which illustrates that in the absence of friction, the kinetic energy in the flow as it exits
the nozzle is converted to gravitational potential energy as the flow reaches maximum
height. As you have undoubtedly experienced, water leaving a nozzle at high speed
breaks up into droplets that are quickly slowed by air resistance. Thus this estimate of
maximum height is highly optimistic. The result is useful for analyzing carefully
designed low speed water jets that maintain a contiguous smooth filament of water as
they rise.

Figure 8.6 (A) Cavitation can occur at the lower pressure areas of a propeller. (B) Damage may 
result from the cavitation as shown on this turbine blade.

(A) (B)
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small but positive pressure in the vapor cavities that form. Vapor pressures for several
liquids are given in Appendix A.

Boiling of a liquid in a vessel can be induced at a given pressure by increasing
temperature, or at a given temperature by decreasing pressure. For example, water boils
at 212°F at sea level (14.7 psia) but at 203°F in Denver (12.2 psia at 5000 ft). At 40°F
the vapor pressure is 0.122 psia, a value that is less than 1% of standard atmospheric
pressure. If you lowered the pressure on a container of water at 50°F below its vapor
pressure, what would happen? Some fluids, including silicon oils, have very low vapor
pressures that make them suitable for use in applications involving high vacuum, where
water and common liquids will boil away.

Cavitation may be thought of as boiling or vapor bubble formation at a point in a
moving liquid when the local pressure is below the vapor pressure at the point. We can
use the Bernoulli equation to predict the occurrence of cavitation, as illustrated in
Example 8.5.

EXAMPLE 8 .5

Water flows through a round horizontal venturi and exits to the atmosphere as shown in
Figure 8.7. Find an expression for the pressure at the throat, i.e., at the minimum area.

VI, pI

DT

VT, pT

VE
pE � pAD D

Streamline

z

Figure 8.7 Schematic for Example 8.5.

SOLUTION

We will assume steady, constant density, frictionless flow through the venturi and apply
the Bernoulli equation along the central streamline. Since the venturi is horizontal, the
change in gravitational potential energy is zero, and Eq. 8.6 can be written as

p1

ρ
+ 1

2
V 2

1 = p2

ρ
+ 1

2
V 2

2

A mass balance shows that VI A = VT AT , and also that VI A = VE A. Thus the veloci-
ties at the inlet and exit are the same, VI = VE , and the velocity at the throat is
VT = VI (D/DT )2. Applying the Bernoulli equation between the inlet and the throat,
we find

pI

ρ
+ 1

2
V 2

I = pT

ρ
+ 1

2
V 2

T = pT

ρ
+ 1

2
V 2

I

(
D

DT

)4
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Solving for the pressure at the throat, we obtain

pT

ρ
= pI

ρ
− 1

2
V 2

I

[(
D

DT

)4

− 1

]
(A)

We see that the pressure is lower at the throat. Applying the Bernoulli equation between
the inlet and exit, and noting that the pressure at the exit is atmospheric, i.e., pE = pA ,
we obtain

pI

ρ
+ 1

2
V 2

I = pA

ρ
+ 1

2
V 2

E

Since VI = VE , we conclude that

pI = pA (B)

The pressure is atmospheric at the inlet to the venturi, falls to a minimum at the throat,
and returns to atmospheric at the exit. Substituting (B) into (A), we can write the
following expression for the pressure in the throat

pT

ρ
= pA

ρ
− 1

2
V 2

I

[(
D

DT

)4

− 1

]
(C)

We see that for a given venturi geometry, we can lower the pressure at the throat by
increasing the flow speed. This works until we reach the vapor pressure pV , at which
point the liquid cavitates and prevents the pressure from decreasing further. The inlet
speed at which cavitation occurs can be estimated by inserting pT = pv into (C) and
solving for VI .

8.3.3 Bernoulli Equation for a
Compressible Fluid

To apply the Bernoulli equation to the frictionless flow
of a compressible fluid, we must calculate the pressure
integral in the general Bernoulli equation, Eq. 8.4. To
do this we need to make some assumptions about the
thermodynamic process undergone by the fluid in its
passage from point 1 to point 2. Typically the com-
pressible fluid of interest is a gas, and we can employ

the perfect gas law p = ρRT (Eq. 2.20b), to describe the relationship between pressure,
density, and temperature. A reversible, adiabatic process (i.e., an isentropic process) is
consistent with the frictionless flow assumption underlying Bernoulli’s equation. It can
be shown that an isentropic process for a perfect gas is described by 

p

p0
=
(

ρ

ρ0

)γ

(8.7)

A venturi may be used as a vacuum pump
by attaching the inlet to a garden hose. The
vacuum is created in a second hose at-
tached to a wall tap at the throat. The sec-
ond hose may then be used to draw a liquid
into the throat of the venturi, where it mixes
with the main stream, or to lower the pres-
sure on a vessel partially full of water to
demonstrate boiling at room temperature.



where γ = cP/cV is the ratio of specific heats, and the subscript 0 denotes a datum state.
We can also write this relationship as p = Kργ , where K is a constant. Writing the total
derivative of the pressure we have dp = γ Kργ−1, and the pressure integral in the gen-
eral form of the Bernoulli equation, Eq. 8.4, can be integrated to obtain∫ 2

1

dp

ρ
=
∫ 2

1

γ Kργ−1

ρ
dρ =

∫ 2

1
γ Kργ−2dρ = γ

γ − 1
Kργ−1

∣∣∣∣
2

1

= γ

γ − 1

p

ρ

∣∣∣∣
2

1

=
(

γ

γ − 1

)(
p2

ρ2
− p1

ρ1

)

Thus for an unsteady isentropic flow of a perfect gas the Bernoulli equation is

∫ 2

1

∂V

∂t
ds +

(
γ

γ − 1

)(
p2

ρ2
− p1

ρ1

)
+ 1

2

(
V 2

2 − V 2
1

)+ g(z2 − z1) = 0 (8.8)

An alternate way to write this equation is to note that for a perfect gas

u + p

ρ
= cV T + p

ρ
= p

ρ

(cV

R
+ 1
)

Since R = cP − cV , we can show that cV /R + 1 = γ/(γ − 1) and thus write(
γ

γ − 1

)(
p

ρ

)
= u + p

ρ

The Bernoulli equation for unsteady, isentropic flow is therefore often written as∫ 2

1

∂V

∂t
ds + (u2 − u1) +

(
p2

ρ2
− p1

ρ1

)
+ 1

2

(
V 2

2 − V 2
1

)+ g(z2 − z1) = 0 (8.9)

We see that in an unsteady isentropic flow, the total energy (i.e., the sum of the internal,
pressure potential, kinetic, and gravitational potential energy) differs at two points along
a streamline owing to the effects of local acceleration.

The steady flow versions of the Bernoulli equation for an isentropic flow of a
perfect gas are developed from Eqs. 8.8 and 8.9 by dropping the unsteady term and re-
arranging. The results are two equivalent forms of the Bernoulli equation for steady,
isentropic flow:(

γ

γ − 1

)(
p1

ρ1

)
+ 1

2
V 2

1 + gz1 =
(

γ

γ − 1

)(
p2

ρ2

)
+ 1

2
V 2

2 + gz2 (8.10)

and

u1 + p1

ρ1
+ 1

2
V 2

1 + gz1 = u2 + p2

ρ2
+ 1

2
V 2

2 + gz2 (8.11)

Equation 8.11 shows that the Bernoulli equation may be interpreted in this case as a
statement of energy conservation. In a steady isentropic flow of a gas, the total energy
(i.e., the sum of the internal, pressure potential, kinetic, and gravitational potential
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EXAMPLE 8 .6

A gas flows from a large plenum through a passage and exits to the atmosphere as shown
in Figure 8.8. If the pressure and temperature of the gas in the plenum and exit plane are
p0, T0, and pE , TE , respectively, find an expression for the exit velocity VE . Assume
steady, isentropic flow.

V0 � 0

Plenum

p0, T0

pE, TE

VE

Figure 8.8 Schematic for Example 8.6.

SOLUTION

We can solve this problem by applying the Bernoulli equation for steady isentropic flow
along a streamline between the two points shown in the figure. Since the passage is
horizontal g(z2 − z1) = 0 and we can write Eq. 8.10 as(

γ

γ − 1

)(
p1

ρ1

)
+ 1

2
V 2

1 =
(

γ

γ − 1

)(
p2

ρ2

)
+ 1

2
V 2

2

where point 1 refers to the plenum and point 2 to the exit. We will assume that in the large
plenum the kinetic energy of the gas is negligible. Solving for the exit velocity we find

VE =
√(

2γ

γ − 1

)(
p0

ρ0
− pE

ρE

)
(A)

We see that for given plenum conditions, the exit velocity depends on the pressure and
density at the exit. The maximum velocity corresponds to an exit pressure of zero. The
geometry of the passage plays a critical role in determining the actual exit conditions for
an isentropic flow. These phenomena are covered in books about compressible flow.

By using the perfect gas law, we can also write (A) as

VE =
√(

2γ R

γ − 1

)
(T0 − TE) (B)

We see that for a given plenum temperature, the exit velocity depends solely on the exit
temperature. If you have felt high pressure air escaping from a nozzle or hose, you know
the escaping air is cold. The maximum velocity that can be obtained corresponds to an
exit temperature of zero. This is not possible of course, since the air will liquefy, an ef-
fect not accounted for in the preceding analysis.



energy) at two points along a streamline, is the same. Finally we can recall that the
enthalpy of a perfect gas is given by Eq. 2.48 as h = u + p/ρ and that the relationship
between enthalpy change and temperature change is given by Eq. 2.21b:
h2 − h1 = cP(T2 − T1). Thus the Bernoulli equation can also be written in terms of en-
thalpy or temperature if desired.

The use of the steady flow Bernoulli equation is illustrated in Example 8.6. In this
particular example the flow is horizontal, so the change in gravitational potential energy
g(z2 − z1) is zero. In most applications of the Bernoulli equation in compressible flow
the change in gravitational potential energy g(z2 − z1) is negligible in comparison to
the other terms, so this term may be dropped regardless of the orientation of the flow.

8.4 STATIC, DYNAMIC, STAGNATION, AND TOTAL PRESSURE

If we multiply each term in the steady flow, constant density form of Bernoulli’s equa-
tion (Eq. 8.6) by the fluid density, we obtain an alternate form:

p1 + 1
2ρV 2

1 + ρgz1 = p2 + 1
2ρV 2

2 + ρgz2 (8.12)

This can also be written as

p + 1
2ρV 2 + ρgz = constant (8.13)

Since pressure occurs alone in this form of Bernoulli’s equation, dimensional consis-
tency requires that the remaining terms also have dimensions of pressure. Indeed, ex-
amination of those terms shows that they do have dimensions of {FL−2}, as expected.
Fluid mechanics traditionally refers to each term in this equation as a different kind of
pressure. The pressure p is often referred to as the static pressure, while the term 1

2ρV 2

is called the dynamic pressure. The remaining term, ρgz, called the hydrostatic pres-
sure, represents the change in the static pressure that would occur if the fluid moved
along the streamline to an elevation of zero. The sum of the static pressure and dynamic
pressure, p + 1

2ρV 2, is called the stagnation pressure, and the sum of all three terms,
p + 1

2ρV 2 + ρgz , is referred to as the total pressure. Since we potentially have to dis-
tinguish between several different “pressures” in a conversation with other engineers, it
is worthwhile to take a closer look at these “pressures” and understand where each name
comes from.

Static Pressure: The pressure p in fluid mechanics is a measure of the average normal
stress existing at a point in a fluid. It is defined to be the pressure that would be measured
by an observer or pressure sensor moving with the fluid. To such an observer, the fluid
appears to be static or stationary, so this pressure is often called the static pressure. The
static pressure might also be called the mechanical pressure, since it is defined by the
normal force on a surface exposed to the fluid. In a constant density flow, as well as in
nearly all other flows of interest, the mechanical pressure and the thermodynamic pres-
sure defined by an appropriate equation of state are identical. The symbol p in
Bernoulli’s equation represents the static or mechanical pressure, and this pressure is
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identical to thermodynamic pressure. Thus the pressure obtained by solving the hydro-
static equation, by performing a CV analysis, or from any analysis using the Bernoulli
equation is the static pressure p.

Since it is difficult, if not impossible, to measure pressure by means of a probe
moving with the fluid, the measurement of static pressure at a point in a fluid presents a
challenge. Fortunately, a number of methods have been developed that do not require a
moving probe. If the streamlines of a flow are straight and parallel, it can be shown that
there is no variation in pressure normal to the streamlines (other than that due to grav-
ity). This makes it possible to measure static pressure in a region of the flow where the
streamlines are straight by using a wall opening or wall tap oriented perpendicular to the
flow direction. Figure 8.9 shows a pressure tap located in the wall of the channel through
which the fluid is moving. Notice the straight parallel streamlines. By attaching the pres-
sure tap to a manometer or other type of pressure gage, it is possible to measure the sta-
tic pressure at the wall to determine actual static pressure for all points along the line
perpendicular to the flow direction. (A correction for the hydrostatic pressure variation
may be added if necessary.)

Dynamic Pressure: The dynamic pressure, 1
2ρV 2, represents the pressure increase that

would occur if all the kinetic energy of a fluid particle in a frictionless flow were con-
verted into a corresponding increase in pressure potential energy. We can construct an
imaginary situation in which this conversion would take place by considering a friction-
less stagnation point flow of a constant density fluid and analyzing flow along the stag-
nation streamline as shown in Figure 8.10.

If we consider the flow along the stagnation streamline shown in Figure 8.10 and
apply Eq. 8.12 between the point upstream where the speed is V∞ and a point on the
same streamline where the speed is VS , the result is

p∞ + 1
2ρV 2

∞ + ρgz∞ = pS + 1
2ρV 2

S + ρgzS
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Streamlines

Pressure gage Figure 8.9 The pressure tap in the pipe wall
does not disturb the streamlines; thus the gage
measures the static pressure.

p�, V�, z� pI, VI, zI

pS, VS, zSPoint I
Stagnation point

Figure 8.10 Flow along a streamline that ends
at a stagnation point.



These points lie on the same elevation, hence z∞ = zS . Because of the symmetry and
no-penetration conditions, VS = 0 at the stagnation point. Thus Bernoulli’s equation
predicts a pressure at the stagnation point given by

pS = p∞ + 1
2ρV 2

∞ (8.14)

In the process of the fluid coming to rest, the static pressure has increased from its value
upstream by an amount equal to the dynamic pressure 1

2ρV 2
∞ that exists in the upstream

flow.
Each point on the stagnation streamline has a distinct value for its static and

dynamic pressure. Consider the intermediate point labeled I in Figure 8.10. Applying
Eq. 8.12 between the upstream point and this point we have

p∞ + 1
2ρV 2

∞ = pI + 1
2ρV 2

I (8.15)

Since we can reasonably conclude that the flow is slowing down as it approaches the
stagnation point, the dynamic pressure at point I must be less than that upstream, i.e.,
1
2ρV 2

I < 1
2ρV 2

∞ . Thus we conclude that pI > p∞: the static pressure increases along
the streamline as the dynamic pressure decreases.

Stagnation Pressure: The pressure p0 at a point in a frictionless flow where the fluid
velocity is zero (i.e., the flow is stagnant) is known as the stagnation pressure. The con-
cept of a stagnation pressure can also be understood with reference to the stagnation
point flow of Figure 8.10. By definition, the stagnation pressure p0 occurs where
VS = 0; thus the pressure at the stagnation point pS is equal to the stagnation pressure,
i.e., p0 = pS . Now consider the point upstream. According to Eq. 8.14, we 
have pS = p∞ + 1

2ρV 2
∞ . Substituting p0 = pS , we find p0 = p∞ + 1

2ρV 2
∞ , which

shows that at the point upstream the sum of the static and dynamic pressures at this point
is equal to the stagnation pressure. We can also use Eq. 8.14 to write p0 = pI + 1

2ρV 2
I ,

which shows that in a frictionless flow the stagnation pressure is the same at every point
along the stagnation streamline.

Even if a point is not on a stagnation streamline, we can define the value of the stag-
nation pressure at the point by adding the static and dynamic pressures. Thus the
stagnation pressure at any point in a constant density flow is given by the sum

p0 = p + 1
2ρV 2 (8.16)

Total Pressure: In a constant density flow, the total pressure pT is defined as the sum
of the static, dynamic, and hydrostatic pressures:

pT = p + 1
2ρV 2 + ρgz (8.17)

Comparing this definition of total pressure with Bernoulli’s equation (Eq. 8.13)

p + 1
2ρV 2 + ρgz = constant

shows that the constant in Bernoulli’s equation is the total pressure. Thus in a friction-
less, constant density flow, the total pressure is a constant along a streamline.
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EXAMPLE 8 .7

A torpedo travels at 50 mph, 30 ft under the surface, as shown in Figure 8.11A. What are
the static, dynamic, stagnation, hydrostatic, and total pressures at the point upstream on
the stagnation streamline? What is the pressure at the stagnation point on the nose of the
torpedo?

V � 50 mph

(A)

30 ft

pA

V� � 50 mph
(B)

pA

z

y
x

z

y

x

30 ft

N�

Figure 8.11 Schematic for Example 8.7.

SOLUTION

In a frame of reference fixed to the earth the flow is unsteady. However, by employing a
frame of reference fixed to the torpedo, as shown in Figure 8.11B, we see that the flow
is steady and is described by the steady, constant density Bernoulli equation.

The static pressure upstream is p∞. For an observer moving with the fluid (which
is at rest), this static pressure is given by p∞ = pA + ρgD , where D is the depth. For
the given depth of 30 ft, the static pressure upstream is thus

p∞ = 14.7 psia + (2.00 slugs/ft3)(32.2 ft/s2)(30 ft)

(
1 ft2

144 in.2

)
= 28.1 psia (A)

The density of seawater is taken from Appendix A in kg/m3 and converted to slug/ft3.
The dynamic pressure at any location is 1

2ρV 2. Upstream the seawater approaches the
torpedo with a velocity V∞ = 50 mph. Thus the dynamic pressure upstream is

1

2
ρV 2

∞ = 1

2
(2.00 slugs/ft3)(50 mph)2

(
1.467 ft/s

1 mph

)2 ( 1 ft2

144 in.2

)
= 37.4 psia (B)

The stagnation pressure is defined to be the sum of the static and dynamic pressure; thus
the stagnation pressure upstream is

p0∞ = p∞ + 1
2ρV 2

∞ = 28.1 psia + 37.4 psia = 65.5 psia (C)

Since the stagnation streamline is at an elevation z = 0, the hydrostatic pressure term is
zero for all points on this streamline. The total pressure upstream is thus equal to the
stagnation pressure:

pT ∞ = p0∞ = 65.5 psia



The concepts of static, dynamic, stagnation, and
total pressure are not limited to constant density flow.
The various “pressures” at a point in a flow of a com-
pressible fluid are defined in a similar way. In a com-
pressible flow, the static pressure is p and the dynamic
pressure is 1

2ρV 2. The stagnation pressure, however, is
defined as the pressure that is obtained at a point of zero
velocity in a frictionless (isentropic) flow. Considering
a steady isentropic flow on a horizontal stagnation
streamline and applying Eq. 8.10, we find 

(
γ

γ − 1

)
p

ρ
+ 1

2
V 2 =

(
γ

γ − 1

)(
p0

ρ0

)

Thus the stagnation pressure in isentropic flow is given
by

p0

ρ0
= p

ρ
+ 1

2

(
γ − 1

γ

)
V 2 (8.18)

By using the perfect gas law and recalling that an isen-
tropic flow obeys Eq. 8.7, p/p0 = (ρ/ρ0)

γ , we can
employ the definition of Mach number as M = V/c,
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To find the pressure on the nose of the torpedo, consider the two points shown on
the stagnation streamline. Writing the Bernoulli equation in the form of Eq. 8.12
between these points we have

p∞ + 1
2ρV 2

∞ + ρgz∞ = pN + 1
2ρV 2

N + ρgzN

On the nose the velocity is zero. Also z∞ = zN , so the corresponding terms cancel.
Solving for the pressure on the nose we have

pN = p∞ + 1
2ρV 2

∞ (D)

We see that the static pressure on the nose of the torpedo at the stagnation point is the
sum of the upstream static pressure and the upstream dynamic pressure. The latter is also
equal to the upstream stagnation pressure, thus from (C) the static pressure at the stag-
nation point on the nose of the torpedo is equal to the stagnation pressure for this stream-
line or

pN = p0∞ = 65.5 psia

We see that the motion of the torpedo results in a substantial increase in static pressure
in the vicinity of the stagnation point.

A comparison of the dynamic pressure in a
low speed flow of air and water is instruc-
tive. For example, consider a flow at 50 mph
in air and water. The corresponding dy-
namic pressures using standard density
values are

1
2

ρV 2
∞ = 1

2
(0.002378 slug/ft3)(50 mph)2

×
(

1.467 ft/s
1 mph

)2 ( 1 ft2

144 in.2

)
= 4.4 × 10−2 psia for air

1
2

ρV 2
∞ = 1

2
(1.94 slugs/ft3)(50 mph)2

×
(

1.467 ft/s
1 mph

)2 ( 1 ft2

144 in.2

)
= 36.2 psia for water

Looking at this another way, a dynamic
pressure of 1 psia occurs at a speed of
348 ft/s in air, but only 12 ft/s in water.
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EXAMPLE 8 .8

A cruise missile flies at a Mach number M = 0.5 just above the surface of the ocean as
shown in Figure 8.12A. What is the pressure at the stagnation point on the nose of the mis-
sile? What pressure is predicted by assuming incorrectly that the air is incompressible?

z

y

x

z

y

x

Air

M � 0.5

V � Mc Air

(A) (B)

Ocean Ocean

p0
pA

Figure 8.12 Schematic for Example 8.8.

SOLUTION

As in Example 8.7, in a frame of reference fixed to Earth the flow is unsteady. However,
by choosing a reference frame fixed to the missile (see Figure 8.12B), the flow is steady
and is described by the steady, isentropic Bernoulli equation. We do not need to use this
equation, however, since we know that the pressure at the nose of the missile at the
stagnation point is the stagnation pressure. Upon applying Eq. 8.19 we find

p0

p
=
[

1 +
(

γ − 1

2

)
M2

]γ/(γ−1)

=
[

1 +
(

1.4 − 1

2

)
(0.5)2

]1.4/(1.4−1)

= 1.19

Thus with the static pressure known to be p = pA at sea level, the stagnation pressure
on the cruise missile at sea level is

p0 = 1.19(14.7 psia) = 17.4 psia

If we incorrectly assume that the air is incompressible and apply Eq. 8.16, a Mach num-
ber of 0.5 corresponds to V = Mc = 0.5(1117 ft/s) = 559 ft/s, where the sea-level
sound speed is calculated for T = 59°F taken from the Standard Atmosphere at sea
level (Appendix B). Then Eq. 8.16 predicts

p0 = p + 1

2
ρV 2 = 14.7 psia + 1

2
(0.002378 slug/ft3) (559 ft/s)2

(
1 ft2

144 in.2

)
= 17.3 psia

The error is not great at M = 0.5 but is much larger at higher Mach numbers. It is
generally accepted that compressibility effects become significant in flows at a Mach
number greater than 0.3 in air.



and sound speed as c =
√

γ RT to write the stagnation pressure as

p0

p
=
[

1 +
(

γ − 1

2

)
M2

]γ/(γ−1)

(8.19)

The total pressure, pT , in an isentropic flow is again defined as the sum of the static,
dynamic and hydrostatic pressures, but since the gravitational potential energy term is
negligible in high speed gas flows the total and stagnation pressures are the same. The
terms total pressure and stagnation pressure are thus used interchangeably in gas dy-
namics and in aerodynamics.

8.5 APPLICATIONS OF THE BERNOULLI EQUATION

Bernoulli’s equation is a powerful tool for finding the values of pressure and velocity at
two points along a streamline. In applying this equation, it is important to remember that
the underlying assumption of frictionless flow means that viscous effects are absent.
Since real flows do not perfectly satisfy these underlying assumptions, you should
always consider a result obtained with the Bernoulli equation to be an engineering
approximation.

In this section we discuss a number of applications of Bernoulli’s equation, using
practical flow problems to illustrate how the two points at which the equation is applied
are selected, and how the analysis is carried out. These applications also show how to
use control volume analysis and Bernoulli’s equation together to understand a given
flow situation.

8.5.1 Pitot Tube

The stagnation pressure can be measured using a device called a pitot (pronounced
pe • to) tube. As shown in Figure 8.13, a pitot tube is inserted into a flow with its open
end facing upstream. A suitable gage is used to read the pressure inside the hollow nose
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V�, p�

V � 0, p0

Pitot tube

Fluid

To pressure gage

Figure 8.13 Pitot tube used for the
measurement of stagnation pressure.



of the tube where the fluid has come to rest. It is known that viscous effects on the flow
approaching the pitot tube along the stagnation streamline are negligible. Thus as the fluid
decelerates to rest just inside the nose of the pitot tube, the flow is frictionless. In a con-
stant density flow, we can apply Bernoulli’s equation (Eq. 8.12) from a point upstream to
a point just inside the nose of the pitot tube to find

p∞ + 1
2ρV 2

∞ + ρgz∞ = p0 + 1
2ρV 2

0 + ρgz0

For a horizontal streamline, with the fluid inside the pitot tube at rest, the pressure p0

just inside the nose of the pitot tube is given by p0 = p∞ + 1
2ρV 2

∞ . The right side of this
equation is the upstream stagnation pressure, p0∞, confirming our claim that the pitot
tube measures the upstream stagnation pressure. Thus the equation governing the pitot
tube is

p0 = p∞ + 1
2ρV 2

∞ (8.20)

where p0 is the reading of the pitot tube, and the values of static pressure and velocity
refer to a location immediately upstream of the nose of the pitot tube. If we happen to
know the static pressure at the location of the pitot tube, we can use the stagnation pres-
sure reading of the pitot tube to calculate the velocity from

V∞ =
√

2(p0 − p∞)

ρ
(8.21)

A pitot tube will give an accurate reading of stagnation pressure provided it is aligned
with the flow and the probe is small relative to the length scale of the flow field.
Equation 8.21 can be used to interpret the reading of a pitot tube in flows of liquids, and
also in flows of gases at low Mach numbers, where the assumption of an incompressible
fluid is valid.

When a pitot tube is inserted into a gas flow at a low speed, it is reasonable to as-
sume the gas is behaving as an incompressible fluid. Thus Eqs. 8.20 and 8.21 are valid.
At higher subsonic speeds, compressibility effects become important, and these equa-
tions are not applicable. To develop an accurate formula for interpreting the pressure
reading from a pitot tube in a subsonic flow, we must apply the appropriate form of the
Bernoulli equation for an isentropic flow from a point upstream to a point just inside the
nose of the pitot tube, where the fluid is at rest. Writing Eq. 8.10 between these points
we find (

γ

γ − 1

)(
p∞
ρ∞

)
+ 1

2
V 2

∞ =
(

γ

γ − 1

)(
p0

ρ0

)

The fluid is at rest in the pitot tube, so the right side of this equation is the ratio of the
stagnation pressure and stagnation density. This expression is the same as that in the last
section, where we used it to discuss stagnation pressure in an isentropic flow. Thus we
can use Eqs. 8.18 and 8.19 to interpret the reading of the pitot tube. We can use Eq. 8.18
to write the upstream velocity as

V∞ =
√

2γ

γ − 1

(
p0

ρ0
− p∞

ρ∞

)
(8.22)
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EXAMPLE 8 .9

A pitot tube is mounted on the nose of an aircraft as shown in Figure 8.14. If the aircraft
is flying at an altitude of 15,000 ft and the reading of the tube is 8.8 psia, what is the
airspeed?

Pitot tube

V�, p�

Gage

Figure 8.14 Schematic for Example 8.9.

SOLUTION

We will choose a reference frame fixed to the aircraft so that the flow is steady. We will
also assume constant density flow and use Eq. 8.21, V∞ = √

2(p0 − p∞)/ρ , to predict
the airspeed. The air approaching the tube is at a static pressure p15,000 = 8.297 psia,
and density ρ15,000 = 0.001496 slug/ft3 as shown in the Standard Atmosphere table
in Appendix B. Since the reading of the tube is 8.8 psia, the speed of the approaching
air is

V∞ =
√

2(p0 − p∞)

ρ
=
√

2[(8.8 − 8.297) lbf/in.2](144 in.2/ft2)

0.001496 slug/ft3

= (311 ft/s)

(
1 mph

1.467 ft/s

)
= 212 mph

Thus the airspeed is 212 mph. To check the Mach number, we can calculate the sound
speed at 15,000 ft using data from the Standard Atmosphere table in Appendix B, and
calculate the Mach number as M = V∞/c15,000 = 311 ft/s/1058 ft/s = 0.29. Note that
this Mach number is just below the value of 0.3 at which compressibility effects cannot
be neglected.

but it is customary in a compressible flow to interpret the reading of the tube in terms of
Mach number. According to Eq. 8.19 we have

p0

p∞
=
[

1 +
(

γ − 1

2

)
M2

∞

]γ/(γ−1)

(8.23)



Thus the Mach number of the upstream flow is given by

M∞ =
√√√√ 2

γ − 1

[(
p0

p∞

)(γ−1)/γ

− 1

]
(8.24)

After determining the Mach number, we can calculate
velocity from the sound speed by means of the defini-
tion of Mach number, M∞ = V∞/c∞ . The sound speed
is calculated using the formula c∞ = √

γ RT∞ =√
γ p∞/ρ∞ , with data for the Standard Atmosphere

from Appendix B.
Figure 8.15 shows another type of pressure probe

called a pitot-static tube. Since we rarely know the
value of the static pressure in a nonuniform flow field, a
pitot-static tube combines a static pressure tap on its
side with a regular pitot tube nose tap. Thus a pitot-
static tube permits the simultaneous measurement of
the static and stagnation pressures at a point in a flow.
The equations governing the behavior of the pitot-static
tube are the same as those governing the pitot tube,
namely Eqs. 8.20 and 8.21 for an incompressible fluid
and Eqs. 8.22, 8.23, and 8.24 for a compressible fluid.
To obtain accurate readings, a pitot-static tube must be
aligned with the flow and of the proper size. Because of
the sensitivity of the static tap on the side of the pitot-
static tube, alignment can be difficult in an flow field
whose direction is unknown.
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To determine the Mach number at which it
is necessary to account for the effects of
compressibility on the reading of a pitot
tube, we can expand Eq. 8.23 in an infinite
series to yield

p0

p∞
=
[

1 +
(

γ − 1
2

)
M2

∞

]γ/(γ−1)

= 1 +
(

γ

γ − 1

)(
γ − 1

2

)
M2

∞

+
(

γ

γ − 1

)(
γ

γ − 1
− 1
)(

1
2

)

×
(

γ − 1
2

)2

M4
∞ + · · ·

= 1 + γ M2
∞

2
+ γ M4

∞
8

+ · · ·

Upon rearranging and writing this as

p0 − p∞
p∞

= γ M2
∞

2

[
1 + M2

∞
4

+ · · ·
]

we can make a comparison to the corre-
sponding result for an incompressible fluid
obtained from Eq. 8.20: p0 = p∞ + 1

2ρV 2
∞ .

Writing the latter in the same form as the
foregoing series, we find

p0 − p∞
p∞

= 1
2

ρ

p∞
V 2

∞ = γ M2
∞

2

For small Mach numbers, which we can
define as M2

∞/4 � 1, the incompressible
and compressible formulas for ( p0 − p∞)/
p∞ agree very well. An acceptable error of
2% in the value of ( p0 − p∞)/p∞ corre-
sponds to M2

∞/4 = 0.02, which is a Mach
number of M∞ = 0.28. As a rule of
thumb then, the incompressible pitot tube
formulas may be considered to be valid
up to Mach numbers of approximately
M∞ = 0.3, which corresponds to approxi-
mately 230 mph at sea level. This analysis
is also used to justify the neglect of the
effects of compressibility in the flow of air
for M < 0.3.

Static pressure tap, p�

h

V�, p�

Nose tap, p0

Pitot-static tube

Fluid

Figure 8.15 A pitot-static tube measures dynamic
pressure directly.
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EXAMPLE 8 .10

A commercial aircraft similar to the one shown earlier in Figure 8.14 cruises at an
altitude of 30,000 ft, and a pitot tube mounted on the nose reads 6.65 psia. Find the Mach
number of the aircraft and its airspeed.

SOLUTION

We will choose a reference frame fixed to the aircraft so that the flow is steady. Since this
is a commercial aircraft, we can assume that it is flying at a relatively large but subsonic
Mach number in excess of 0.3. Compressibility effects must therefore be considered.
We will apply Eq. 8.24 to determine M. The air approaching the tube is at a static pres-
sure p30,000 = 4.37 psia, density ρ30,000 = 8.907 × 10−4 slug/ft3 , and temperature
T30,000 = −47.83°F as read from the Standard Atmosphere table in Appendix B. The
sound speed at this altitude is calculated as usual using temperature data from Appen-
dix B and is found to be c30,000 = 995 ft/s. Inserting the data, we find

M∞ =
√√√√( 2

γ − 1

)[(
p0

p∞

)(γ−1)/γ

− 1

]

=
√√√√( 2

1.4 − 1

)[(
6.65 psia

4.37 psia

)(1.4−1)/1.4

− 1

]
= 0.8

Thus the aircraft is traveling at Mach 0.8, and its airspeed is 

V = Mc = 0.8 (995 ft/s)

(
1 mph

1.467 ft/s

)
= 543 mph

EXAMPLE 8 .11

A pitot-static tube like that shown in Figure 8.15, mounted inside an air duct, is con-
nected to a U-tube manometer that reads h = 0.2 in. of water. What is the airspeed at the
location of the tube?

SOLUTION

We will assume constant density flow and use Eq. 8.21, V∞ =
√

2(p0 − p∞)/ρ , to cal-
culate the speed, checking the result to ensure that the speed is low enough that the
assumption of constant density flow is appropriate. The manometer reading gives the
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pressure difference (p0 − p∞) in terms of the hydrostatic pressure in a column of water
of height h. Thus we can calculate the pressure equivalent of 0.2 in. of water as

p0 − p∞ = ρH2Ogh = (1.94 slugs/ft3)(32.2 ft/s2)(0.2 in.)

(
1 ft

12 in.

)
= 1.04 lbf/ft

2

Next we calculate the speed as

V =
√

2(p0 − p∞)

ρ
=
√

2 (1.04)lbf/ft2

2.377 × 10−3 slug/ft3
= 29.6 ft/s

which is certainly low enough to allow us to assume constant density flow. This speed,
which in practice is usually given in feet per minute (1775 ft/min), is typical for main
ducts in heating, ventilating, and air conditioning (HVAC) systems.

EXAMPLE 8 .12

Suppose the airplane shown in Figure 8.16 has a ground speed of 150 mph while flying
at a constant altitude of 5000 ft into a 50 mph headwind. What values of the static and
stagnation pressures will be measured by a pitot-static tube mounted on the aircraft?

5000 ft

Vwind � 50 mph

Vground � 150 mph

z

Figure 8.16 Schematic for Example 8.12.
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SOLUTION

At this relatively low speed we will assume constant density flow. From the Standard
Atmosphere table in Appendix B we find that the atmosphere ahead of the aircraft is at
a static pressure p5000 = 12.228 psia, and density ρ5000 = 2.048 × 10−3 slug/ft3 . The
ground speed of the aircraft is Vground = 150 mph = 220 ft/s, and the wind speed is
Vwind = 50 mph = 73.3 ft/s, where this value refers to the speed of the wind relative to
the ground.

It is critical to note that the pitot-static tube responds to the relative velocity of the
air with respect to the tube, i.e., to the airspeed, which is the speed of the aircraft with
respect to the air. If the air ahead of the aircraft were still, that is, not moving with
respect to the ground, the ground speed and the airspeed would be the same. In this case,
however, the air is moving at 50 mph toward the plane; thus the airspeed is
V = (150 + 50)mph = 200 mph = 293.3 ft/s, and this is the value we expect the tube
to provide based on Eq. 8.21, V∞ = √

2(p0 − p∞)/ρ .
Let us check this conclusion. The fact that both the plane and the air are moving

does not affect the static pressure upstream of the plane, since static pressure is defined
to be the pressure seen by an observer moving with the fluid. We will assume that the air
approaching the plane is at the pressure and density of the standard atmosphere at this
altitude; thus the static tap on the tube will read p5000. The stagnation pressure reading
of the tube is affected by the wind approaching the plane. We can calculate the stagna-
tion pressure seen by the tube by using Eq. 8.20 to write

p0 = p∞ + 1
2ρV 2

∞ = p5000 + 1
2ρ5000V 2

∞

The tube will therefore output a pressure difference of 

(p0 − p) = (p5000 + 1
2ρ5000V 2

∞ − p5000
) = 1

2ρ5000V 2
∞

Substituting this pressure difference into Eq. 8.21, we have

V∞ =
√

2(p0 − p∞)

ρ
=
√

2
(

1
2ρ5000V 2∞

)
ρ5000

= V∞

as expected. The actual pressure difference read by the tube under the indicated condi-
tions is

p0 − p∞ = 1

2
ρ5000V 2

∞ = 1

2
(2.048 × 10−3 slug/ft3)(293.3 ft/s)2

(
1 ft2

144 in.2

)
= 0.612 psia

Thus the tube will show a static pressure of p5000 = 12.228 psia and a stagnation pres-
sure of 

p0 = p5000 + 1
2ρ5000V 2

∞ = 12.228 psia + 0.612 psia = 12.84 psia
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8.5.2 Siphon

A siphon is a device that allows a liquid to be drawn from a storage vessel without the
use of a pump. As illustrated in Figure 8.17, a siphon may be as simple as a length of
hose. One end of the hose is inserted into the liquid to depth d, the other is positioned
below the level of the free surface at a distance H as shown. Experience shows that noth-
ing happens when the hose is inserted into the liquid. But if suction is applied to the free
end of the hose to start the flow, the flow will continue. We can investigate the operation
of the siphon after the flow starts by assuming steady, frictionless flow.

The assumption of steady flow is appropriate only if the tank is sufficiently large. To
better understand this statement, consider a mass balance on the control volume shown
in Figure 8.17. Since the density is constant, we obtain ρVS AS = ρV A, where VS is the
velocity at which the free surface falls, AS is the cross-sectional area of the free surface
(and tank) less the hose area, V is the average velocity in the hose, and A is the cross-
sectional area of the hose. The mass balance tells us that the mass flowrate out of the CV
(and thus out through the hose) must match the mass flowrate into the CV (due to the
motion of the free surface). Upon writing this as

VS = V

(
A

AS

)
(8.25)

we see that if the cross-sectional area of the hose is small in comparison to that of the
tank, the velocity at the free surface will be very small in comparison to the velocity in
the hose. If so, we may consider the free surface to be stationary, and flow in the tank
and hose to be steady. Thus the mass balance suggests that it is valid to assume steady
flow when A/AS � 1.

To explore the operation of a siphon, we have identified a number of points along a
possible streamline that begins at the free surface and follows the hose centerline.
Applying the steady, constant density Bernoulli equation, Eq. 8.6, between the free

VS

VE

S

D
I

d

h

H

C

E

CV

Streamline

z

Figure 8.17 Schematic for the analysis of a
siphon.



surface and hose exit we have

pS

ρ
+ 1

2
V 2

S + gzS = pE

ρ
+ 1

2
V 2

E + gzE

At the free surface the pressure is atmospheric, the kinetic energy is negligible, and the
elevation is zS = 0. At the exit the pressure is atmospheric, and the elevation is
zE = −H . Thus we find

pA

ρ
= pA

ρ
+ 1

2
V 2

E − gH

Solving for the exit velocity we have

VE =
√

2gH (8.26)

A mass balance on the hose shows that ρV A = ρVE A, thus V = VE and we also have

V =
√

2gH (8.27)

The flowrate leaving the hose is

Q = A
√

2gH (8.28)

We see that the siphon flowrate can be improved by increasing the size of the hose or by
positioning the exit end of the hose further below the free surface. The depth of insertion
of the hose, d, has no effect on the velocity or flowrate.

To further explore the effect of hose positioning on flowrate, we will apply the
Bernoulli equation between point C, which is located at the maximum elevation in the
system, and the exit. Applying Eq. 8.6 between these points we obtain

pC

ρ
+ 1

2
V 2

C + gzC = pE

ρ
+ 1

2
V 2

E + gzE

Since the velocities at points C and E are the same, these terms cancel. Inserting the
known pressure at the exit, pE = pA , and elevations zC = h and zE = −H yields
pC/ρ + gh = pA/ρ − gH . Solving for the pressure at point C we have

pC = pA − ρg(h + H) (8.29)

which shows that the pressure at point C is sub atmospheric. If we attempt to increase
the flowrate by increasing H with h fixed, the pressure at point C will approach the vapor
pressure of the liquid pv , vapor bubbles will form at point C, and the siphon will cease
to operate. The maximum flowrate thus occurs at the value of H for which pC = pv .
When we insert this value into Eq. 8.29 and solve for the value of H at which cavitation
first appears, we find

HC = pA − pv

ρg
− h (8.30)
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which suggests that we minimize h to improve the flowrate. Substituting Eq. 8.30 into
Eqs. 8.27 and 8.28 gives the velocity and flowrate at the onset of cavitation as

VC =
√

2g

(
pA − pv

ρg
− h

)
(8.31)

and

QC = A

√
2g

(
pA − pv

ρg
− h

)
(8.32)

We see that the maximum velocity and flowrate will occur with h = 0 at the onset of
cavitation. From Eq. 8.30 we calculate the maximum H as Hmax = (pA − pv)/g , and
Eqs. 8.31 and 8.32 with h = 0 give the corresponding velocity and flowrate as

Vmax =
√

2

(
pA − pv

ρ

)
(8.33)

and

Qmax = A

√
2

(
pA − pv

ρ

)
(8.34)

In some applications of a siphon we are more interested in maximizing the height
of an obstacle that can be cleared by the hose. This corresponds to the maximum
allowable value of h for a given H. The preceding analysis leading up to Eqs. 8.26, 8.27,
8.28, and 8.29 remains valid. From Eq. 8.29 we have pC = pA − g(h + H), thus if we
attempt to increase h with H fixed, the pressure at point C will again approach the vapor
pressure of the liquid pv , vapor bubbles will form at point C, and the siphon will cease
to operate. The maximum h for a given value of H thus also corresponds to pC = pv .
Inserting this value into Eq. 8.29 and solving for the value of h at which cavitation first
appears for a given H we find

hC = pA − pv

ρg
− H (8.35)

We see that to clear a tall obstacle, we should minimize H. The maximum obstacle is
cleared by setting H to zero, which corresponds to

hmax = pA − pv

ρg
(8.36)

What happens to the velocity and flowrate as h approaches hmax = (pA − pv)/ρg?
Since this corresponds to H = 0, Eqs. 8.27 and 8.28 predict that the velocity and
flowrate approach zero as well. We can check this by applying the Bernoulli equation
between the free surface and point C to find

pS

ρ
+ 1

2
V 2

S + gzS = pC

ρ
+ 1

2
V 2

C + gzC



Inserting known values and noting that V = VC , we have pA/ρ = pC/ρ + 1
2 V 2 + gh .

Solving for h we have

h = pA − pC

ρg
− V 2

2g
(8.37)

At hmax = (pA − pv)/ρg , we see that the velocity is zero.
What is the pressure at the inlet to the hose? Is the pressure there equal to the hy-

drostatic value pA + ρgd? To find out, we apply the Bernoulli equation between the free
surface and the inlet to obtain

pS

ρ
+ 1

2
V 2

S + gzS = pI

ρ
+ 1

2
V 2

I + gzI

Inserting known values gives pA/ρ = pI/ρ + 1
2 V 2

I − gd . Since V = VI, we can solve
for the pressure at the inlet to find

pI = (pA + ρgd) − 1
2ρV 2 (8.38)

which shows that the inlet pressure is below the hydrostatic pressure at this elevation.
To understand this as well as the other effects we have discussed in connection with

siphons, consider a fluid particle as it flows along the streamline from the free surface to
the hose inlet, then through the hose to the exit. The mechanical energy is conserved as
the particle moves along the streamline. At the free surface the particle has a mechani-
cal energy content per unit mass of

(
p

ρ
+ 1

2
V 2 + gz

)
S

= pA

ρ

which shows that the energy at the free surface is wholly in the form of pressure poten-
tial energy.

At the hose inlet the particle has a mechanical energy content of

(
p

ρ
+ 1

2
V 2 + gz

)
I

= pI

ρ
+ 1

2
V 2 − gd

At this location the energy consists of pressure potential energy, kinetic energy, and a
negative gravitational potential energy relative to the starting point. By using Eq. 8.38,
however, we can substitute pI = (pA + ρgd) − 1

2ρV 2 for the inlet pressure and obtain

pI

ρ
+ 1

2
V 2 − gd = (pA + ρgd) − 1

2ρV 2

ρ
+ 1

2
V 2 − gd

= pA

ρ
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which shows that the mechanical energy content of the
fluid has been conserved as expected.

At point C the mechanical energy content is(
p

ρ
+ 1

2
V 2 + gz

)
C

= pC

ρ
+ 1

2
V 2 + gh

At this location the energy consists of pressure potential
energy, kinetic energy, and positive gravitational poten-
tial energy. From Eqs. 8.29 [pC = pA − ρg(h + H)]
and 8.27 (V = √

2gH), this becomes

pC

ρ
+ 1

2
V 2 + gh = pA − ρg(h + H)

ρ

+ 1

2

(√
2gH

)2 + gh

= pA

ρ

which shows that the mechanical energy content here is also the same as at the free
surface.

Finally at the exit the mechanical energy content is(
p

ρ
+ 1

2
V 2 + gz

)
E

= pA

ρ
+ 1

2
V 2 − gH

By means of Eq. 8.27, V =
√

2gH , this simplifies to 

pA

ρ
+ 1

2

(√
2gH

)2 − gH = pA

ρ

Thus we see that in this steady, frictionless flow, the mechanical energy is redistributed
among the different possible energy types but otherwise is conserved in flow along a
streamline.
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The statement earlier in this section that
the pressure in the exit plane is atmos-
pheric is a part of a general principle we
will refer to as the exit rule. This rule may
be summarized as follows. A subsonic flow
(exit velocity less than sound speed in the
fluid under the exit conditions) exits at the
ambient pressure. A supersonic flow (exit
velocity greater than the sound speed
under the exit conditions) may exit at a
pressure above or below the ambient de-
pending on a number of other factors. Al-
though we will not discuss the rule further
in this text, it does tell us that a jet of liquid
or gas at subsonic velocity comes out at
the ambient or atmospheric pressure.

EXAMPLE 8 .13

Gasoline is siphoned from a tank with a hose as shown in Figure 8.18. The hose has an
inside diameter of 2 cm, the depth of the gasoline in the tank is 1.5 m, the highest point
of the tube is 0.5 m above the free surface, and the outlet of the hose is 1.0 m below the
free surface. Find the gasoline velocity and flowrate. Will cavitation occur? If a longer
hose is used and the outlet of the hose remains 1.0 m below the free surface, how far
above the free surface can the bend in the hose be raised?
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SOLUTION

We will assume steady frictionless flow and apply the results of this section. To deter-
mine the velocity in the hose the relevant equation is Eq. 8.27, V =

√
2gH , where H is

the distance of the open end of the hose below the free surface. From Figure 8.18,
H = 1.0 m, and we can calculate the velocity as

V =
√

2(9.8 m/s2)(1 m) = 4.43 m/s

For a round hose we can calculate the flowrate as Q = AV = (πD2/4)V . Inserting the
data, we have

Q = π(2 cm)2

4
(4.43 m/s)

(
100 cm

1 m

)
= 1.39 × 103 cm3/s

To express this in more familiar units, we can convert it to liters per minute as follows

Q = (1.39 × 103 cm3/s)

(
60 s

1 min

)(
1 L

103 cm3

)
= 83.5 L/min

In gallons per minute, this is flowrate of Q = (83.5 L/min) (1 gal/3.784 L) =
22 gal/min. To check for cavitation at the highest point, we can compute the
pressure there and compare with to the vapor pressure of gasoline, which is
pV = 5.51 × 104 N/m2 = 55.1 kPa from Appendix A. This is point C in the context of
this section, and according to Eq. 8.29 the pressure at this point is

pC = pA − ρg(h + H)

where h is the height of this point above the free surface. Here h = 0.5 m and
h + H = 1.5 m. We can use the density of gasoline from Appendix A, 680 kg/m3, and

1.5 m

H � 1.0 m

h � 0.5 m

2.0 cm i.d.

V

z

Figure 8.18 Schematic for Example 8.13.
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calculate the pressure at the highest point as

pC = pA − ρg(h + H) = 101.3 kPa − (680 kg/m3)(9.8 m/s2)(1.5 m)

= 91.3 kPa

The pressure at the highest point is well above the vapor pressure, so cavitation will not
occur.

If a longer hose is used and the outlet of the hose remains 1.0 m below the free
surface, the bend could be raised to just below the height at which cavitation occurs.
This height is given by Eq. 8.35 as hC = (pA − pV )/ρg − H . Inserting the data, we
find

hC =
[

101.3 kPa − 55.1 kPa

(680 kg/m3)(9.8 m/s2)

]
− 1.0 m = 5.95 m

Thus the siphon would fail if the bend approached 6 m above the free surface with the
hose end positioned 1.0 m below the free surface.

Sluice gate

D

h d

1

2

3

4

z

Figure 8.19 Schematic of a sluice gate.

8.5.3 Sluice Gate

A sluice gate is a simple device that may be used to control and measure the flow of
water in an open channel flow such as that in a river, drainage ditch, or irrigation canal.
In its simplest form, as shown in Figure 8.19, the movable gate is set at a distance h
above the bed of the channel. Once a steady flow condition has been established, the
flowrate can be predicted from measurements of the depths of the water upstream and
downstream of the sluice gate. To establish the relationship between the velocities and
stream depths upstream and downstream, we will assume steady, constant density,



frictionless flow through the sluice gate and apply the Bernoulli equation between points
1 and 3 as shown in Figure 8.19. Note that the assumption of frictionless flow implies
that the velocity profiles upstream and downstream are uniform.

Applying the steady, constant density Bernoulli equation, Eq. 8.6, between the
points 1 and 3 on the free surface upstream and downstream of the gate yields

p1

ρ
+ 1

2
V 2

1 + gz1 = p3

ρ
+ 1

2
V 2

3 + gz3

The pressures are both atmospheric, and a mass balance shows that the velocities are re-
lated by Q = V1(DW ) = V3(dW ), where Q is the volume flowrate and W is the gate
width. Thus we can write V1 = Q/DW and V3 = Q/dW . The elevations at points 1
and 3 are D and d, respectively. Thus the Bernoulli equation becomes

pA

ρ
+ 1

2

(
Q

DW

)2

+ gD = pA

ρ
+ 1

2

(
Q

dW

)2

+ gd

Solving for Q yields

Q = dW

√
2gD(1 − d/D)

1 − (d/D)2
(8.39)

Before discussing this result, it is instructive to ask what would happen in this
analysis if we had chosen points 2 and 4 on the channel bottom. Since the velocities are
uniform, the mass balance predicts V2 = Q/DW and V4 = Q/dW . The elevations are
now zero for both points, but the pressures at the two points are p2 = pA + ρgD and
p4 = pA + ρgd . Notice that the pressures are the hydrostatic values at the two locations
even though the water is moving along the bottom at the two points. We can assume the
pressures are hydrostatic because the streamlines are straight and parallel at these loca-
tions. Thus the only variation in pressure across the streamlines is that which occurs
from the free surface downward due to gravity. The Bernoulli equation between points
2 and 4 is: p2/ρ + 1

2 V 2
2 + gz2 = p4/ρ + 1

2 V 2
4 + gz4 , which after inserting the data

gives

pA + ρgD

ρ
+ 1

2

(
Q

DW

)2

+ g(0) = pA + ρgd

ρ
+ 1

2

(
Q

dW

)2

+ g(0)

It can be shown that this leads to Eq. 8.39.
The formula obtained here for the volume flowrate assumes that the flow under the

gate exhibits a vena contracta as illustrated in Figure 8.19. It would be desirable to elim-
inate the need for depth measurements both upstream and downstream by finding a way
to introduce the gate opening h in place of the downstream depth d. The ratio of d to h
defines the vena contracta; however, the tools we have available do not permit us to pre-
dict this ratio theoretically. In some conditions of operation, the downstream flow may
recirculate and climb up the back of the sluice gate. The flowrate in this condition is not
accurately predicted by Eq. 8.39.
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8.5.4 Flow through Area Change

In the case study of Section 3.3.2, on flow through area change, we briefly discussed the
types of area change encountered in duct and pipe systems and developed a method of
calculating the frictional pressure drop in the steady flow of an incompressible fluid
through a sudden enlargement or contraction. In this section we will apply Bernoulli’s
equation to examine the pressure changes that occur in nozzles, diffusers, and sudden
area changes in the absence of friction. It is important to keep in mind that in practical
applications most of these flows are turbulent, and the flow will experience a frictional
pressure drop in passing through the area change. This effect is not accounted for by
the Bernoulli equation. More accurate methods to account for the pressure change
and flowrate characteristics for turbulent flows through area change can be found in
Chapter 13, as well as in Section 3.3.2.

EXAMPLE 8 .14

A sluice gate similar to the one shown in Figure 8.19 is used to measure the water flow
in the spillway of a dam. The width of the gate is 100 ft, and the water heights are
D = 2 ft and d = 0.5 ft. What is the volume flowrate at the indicated condition of oper-
ation? What are the velocities upstream and downstream of the sluice gate?

SOLUTION

We will assume steady frictionless flow and apply the results of this section. The pres-
ence of a vena contracta indicates that we can apply Eq. 8.39,

Q = dW

√
2gD(1 − d/D)

1 − (d/D)2

From the data we have (d/D) = 0.5 ft/2 ft = 0.25. Substituting this result into the pre-
ceding equation yields 

Q = (0.5 ft)(100 ft)

√
2(32.2 ft/s2)(2 ft)(0.75)

0.9375
= 508 ft3/s

Recognizing that the volume flowrate is the product of the velocity and flow area allows
us to calculate that the upstream and downstream velocities, respectively, are

V1 = Q

DW
= 508 ft3/s

(2 ft)(100 ft)
= 2.54 ft/s

and

V2 = Q

dW
= 508 ft3/s

(0.5 ft)(100 ft)
= 10.2 ft/s



Consider a frictionless, steady, constant density flow through any of the area
changes shown in Figure 8.20. Applying the steady, constant density Bernoulli equation,
Eq. 8.6, between points 1 and 2 on the axial streamline upstream and downstream of the
area change, and ignoring the effects of gravity, we have p1/ρ + 1

2 V 2
1 = p2/ρ + 1

2 V 2
2 ,

which upon rearrangement gives

p2 − p1 = 1
2ρ
(
V 2

1 − V 2
2

)
(8.40)

A mass balance allows us to write

V1

V2
= A2

A1
(8.41)

Dividing Eq. 8.40 by 1
2ρV 2

1 , and using Eq. 8.41, we can also write

p2 − p1
1
2ρV 2

1

= 1 − A2
1

A2
2

(8.42)

We see that in a steady frictionless flow of a constant density fluid, if the area decreases
(A2/A1 < 1), the velocity increases, and the pressure decreases. If the area increases,
the velocity decreases, and the pressure increases. These equations are applicable to any
type of area change.

Equation 8.40 for frictionless flow may be compared with Eq. 3.20:

p2 − p1 = [ 1
2ρ
(
V̄ 2

1 − V̄ 2
2

)]− �pF

which was given in Section 3.3.2 as an empirical model for turbulent flow through a sud-
den area change. Recall that in our discussion of Eq. 3.20 we noted that the total change
in pressure as a flow passes through an area change maybe thought of as the sum of a
pressure change 1

2ρ(V̄ 2
1 − V̄ 2

2 ) associated with the change in average flow velocity
(which may be either positive or negative depending on whether the flow slows down or
speeds up), and a frictional pressure drop �pF (a negative pressure change). We see that
Eq. 8.40, derived from the Bernoulli equation, provides a basis for estimating the change
in pressure due to the area change. (You might wish to review Example 7.8.)
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p1, V1, A1
p2, V2, A2

(C) (D)

p1, V1, A1 p2, V2, A2

p1, V1, A1 p2, V2, A2
(A)

p1, V1, A1
p2, V2, A2

(B)

1

1

1

1

2 2

22

Figure 8.20 Basic types of area change: (A) nozzle, (B) diffuser, (C) sudden enlargement, and
(D) sudden contraction.
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EXAMPLE 8 .15

Water flows from a garden hose having an inner diameter of 0.5 in. through a nozzle
as shown in Figure 8.21. The pressure in the hose is 50 psig, and the nozzle exit is
0.125 in. I.D. Find the velocity and flowrate out of the nozzle. What is the velocity in
the hose?

SOLUTION

We can assume a steady, frictionless, constant density flow through the nozzle and
apply Eq. 8.42, (p2 − p1)/

1
2ρV 2

1 = (1 − A2
1/A2

2). Solving first for V1, the velocity in
the hose, we find

V1 =
√

2(p2 − p1)

ρ
(
1 − A2

1/A2
2

)
(A)

From Eq. 8.41, V1/V2 = A2/A1, the velocity in the nozzle is given by

V2 =
(

A1

A2

)
V1 (B)

The flowrate in the nozzle and hose are the same and can be calculated from

Q = A2V2 (C)

From the data we have A1/A2 = D2
1/D2

2 = (0.5/0.125)2 = 16, A2
1/A2

2 = (16)2 = 256,
and (p2 − p1) = −50 lbf/in.2. Thus from (A) the velocity in the hose is

V1 =
√

2(p2 − p1)

ρ
(
1 − A2

1/A2
2

) =
√

2(−50) lbf/in.2(144 in.2/ft2)

1.94 slugs/ft3(1 − 256)
= 5.4 ft/s

By using (B), we find that the velocity at the nozzle exit is

V2 =
(

A1

A2

)
V1 = 16(5.4 ft/s) = 86.4 ft/s

p1 � 50 psig

D1 � 0.5 in. VZ

NozzleHose

p2 � pA

D2 � 0.125 in.

V1

D2

Figure 8.21 Schematic for Example 8.15.
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EXAMPLE 8 .16

Air at 25°C flows through the diffuser shown in Figure 8.22. At the inlet the velocity and
area are 100 m/s and 0.5 m2. At the exit the area is 1.5 m2 and the pressure is atmos-
pheric. Find the exit velocity and pressure change through the diffuser.

V1 � 100 m/s

A1 � 0.5 m2

V2

A2 � 1.5 m2

21

Figure 8.22 Schematic for Example 8.16.

SOLUTION

The velocity here is high enough that the assumption of incompressible flow may be
incorrect. We can check this by calculating the Mach number and comparing it with
the Mach number that defines the limits of incompressible flow, i.e., M = 0.3. Recall-
ing the definition of Mach number as M = V/c, the sound speed as c = √

γ RT ,
and using R = 287 (N-m)/(kg-K) as the gas constant for air, we calculate
c = √

γ RT = √1.4[287(N-m)/(kg-K)](298 K)[(kg-m)/(N-s2)] = 346 m/s . Thus the
Mach number of this flow is M = V/c = 100

346 = 0.29, very close to the Mach number of
0.3, which defines the upper limit of incompressible flow. We can employ Eq. 8.41 to
calculate the velocity ratio as V1/V2 = A2/A1 = 1.5/0.5 = 3; thus the exit velocity is
V2 = V1/3 = 100 m/s/3 = 33 m/s.

and the flowrate is found from (C) as

Q = A2V2 =
(

π D2
2

4

)
V2 =

(
π

4

)(
(0.125 in.)2(1 ft2)

144 in.2

)
86.4 ft/s = 7.36 × 10−3 ft3/s

Since 7.48 gal = 1 ft3, this is a flowrate of

Q = 7.36 × 10−3 ft3/s(7.48 gal/ft3)

(
60 s

1 min

)
= 3.3 gal/min
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As Example 8.16 illustrates, the low speed gas flow through an area change can be
analyzed by assuming the gas to be incompressible. At higher speeds, the compressibil-
ity of the gas cannot be neglected. We can analyze a steady, isentropic flow of a gas
through the types of area change illustrated in Figure 8.20 by applying Eq. 8.10.
Neglecting the effects of gravity we have(

γ

γ − 1

)(
p1

ρ1

)
+ 1

2
V 2

1 =
(

γ

γ − 1

)(
p2

ρ2

)
+ 1

2
V 2

2 (8.43)

In this case a mass balance gives us

Ṁ = ρ1 A1V1 = ρ2 A2V2 (8.44)

Additional relationships among the flow variables can be developed by using the perfect
gas law, the definitions of Mach number and sound speed, and the isentropic relation-
ships between pressure, density, and temperature. The pressure–density relationship in
isentropic flow is given by Eq. 8.7, which we can write as

p1

p2
=
(

ρ1

ρ2

)γ

(8.45a)

Using the perfect gas law we can write the additional isentropic relationships:

p1

p2
=
(

T1

T2

)γ/(γ−1)

and
ρ1

ρ2
=
(

T1

T2

)1/(γ−1)

(8.45b, c)

Assuming steady frictionless constant density flow, we can use Eq. 8.42 to calculate
the pressure change through the diffuser:

p2 − p1
1
2ρV 2

1

= 1 − A2
1

A2
2

(A)

The value of the density of air at 25°C can be calculated by using the perfect gas law:

ρ = p

RT
= 101,325 N/m2

[287 (N-m)/(kg-K)](298 K)
= 1.18 kg/m3

where we have assumed the pressure in the diffuser is approximately atmospheric
throughout. Rearranging (A) and inserting the data, we have

p2 − p1 = 1

2
ρV 2

1

(
1 − A2

1

A2
2

)
= 1

2
(1.18 kg/m3)(100 m/s)2

(
1 − 1

9

)
= 5244 N/m2

Thus the pressure increases by 5.2 kPa in the diffuser because the flow slows down from
100 m/s to 33 m/s. The pressure in the diffuser is 96.1 kPa at the inlet and rises to
101.3 kPa at the exit. We see that the diffuser converts kinetic energy into pressure
potential energy. More discussion of diffusers can be found in Chapter 13.
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Mach number plays an important role in the description of compressible flow. If we
rearrange Eq. 8.43 to get 

(
γ

γ − 1

)(
p1

ρ1

)[
1 +

(
γ − 1

2

)(
ρ1V 2

1

γ p1

)]
=
(

γ

γ − 1

)(
p2

ρ2

)[
1 +

(
γ − 1

2

)(
ρ2V 2

2

γ p2

)]

then since ρV 2/γ p = V 2/γ RT = V 2/c2 = M2 , we find

(
γ

γ − 1

)(
p1

ρ1

)[
1 +

(
γ − 1

2

)
M2

1

]
=
(

γ

γ − 1

)(
p2

ρ2

)[
1 +

(
γ − 1

2

)
M2

2

]

Dividing out the common factor and using the perfect gas law yields 

T1

[
1 +

(
γ − 1

2

)
M2

1

]
= T2

[
1 +

(
γ − 1

2

)
M2

2

]

Writing this as a ratio gives

T1

T2
=




1 +
(

γ − 1

2

)
M2

2

1 +
(

γ − 1

2

)
M2

1


 (8.46a)

Next we can use the isentropic relationships Eqs. 8.45b and 8.45c to write

p1

p2
=




1 +
(

γ − 1

2

)
M2

2

1 +
(

γ − 1

2

)
M2

1




γ/(γ−1)

and
ρ1

ρ2
=




1 +
(

γ − 1

2

)
M2

2

1 +
(

γ − 1

2

)
M2

1




1/(γ−1)

(8.46b, c)

To develop an expression relating the area ratio to Mach number, we rearrange Eq. 8.44
to yield

A2

A1
= ρ1V1

ρ2V2
=
(

ρ1

ρ2

)(
M1

√
γ RT1

M2
√

γ RT2

)
=
(

ρ1

ρ2

)(
M1

M2

)(
T1

T2

)1/2

From Eqs. 8.46a and 8.46c, this becomes

A2

A1
=
(

M1

M2

)
1 +

(
γ − 1

2

)
M2

2

1 +
(

γ − 1

2

)
M2

1




(γ+1)/[2(γ−1)]

(8.46d)

These equations can be used to analyze an isentropic flow through an area change. Note,
however, that the density of a gas in isentropic flow is an additional variable, and com-
pressible flows have a number of unique features that distinguish them from incom-
pressible flows.
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EXAMPLE 8 .17

Air flows through a converging–diverging nozzle as shown in Figure 8.23. At section 1,
p = 930 kPa, T = 561 K, A = 0.2 m2 , and the Mach number is M = 1.2. If the noz-
zle exit area is 0.6 m2, find p, T, and M at the nozzle exit. Does the velocity of the gas
decrease in the diverging section?

 p1 � 930 kPa
 T1 � 561 K
M1 � 1.2
 A1 � 0.2 m2

A2 � 0.6 m2

1 2

Figure 8.23 Schematic for Example 8.17.

SOLUTION

We will assume steady isentropic flow and apply Eqs. 8.46a–8.46d, as well as the per-
fect gas law and definitions of M and c. At section 1, the sound speed is calculated as 

c1 =
√

γ RT1 =
√

1.4[287 (N-m)/(kg-K)](561 K) = 475 m/s

A Mach number of M1 = 1.2 corresponds to a velocity of V1 = M1c1 =
1.2 (475 m/s) = 570 m/s. To use Eqs. 8.46a–8.46c, we need to find M at the nozzle exit.
We do this by solving Eq. 8.46d with M1 = 1.2, and A2/A1 = 0.6 m2/0.2 m2 = 3.
One can use either iteration or a symbolic code to obtain the two mathematical solutions
M2 = 0.19 and M2 = 2.67. Of these, only M2 = 2.67 is physically possible. To calcu-
late the p and T at the nozzle exit, we use Eqs. 8.46a and 8.46b to find:

T1

T2
=




1 +
(

γ − 1

2

)
M2

2

1 +
(

γ − 1

2

)
M2

1


 =




1 +
(

1.4 − 1

2

)
(2.67)2

1 +
(

1.4 − 1

2

)
(1.2)2


 = 2.43

1.29
= 1.88

p1

p2
=




1 +
(

γ − 1

2

)
M2

2

1 +
(

γ − 1

2

)
M2

1




γ/(γ−1)

= (1.88)3.5 = 9.11

Thus the nozzle exit temperature is T2 = T1/1.88 = 561 K/1.88 = 298.4 K, and the
exit pressure is p2 = p1/9.11 = 930 kPa/9.11 = 102 kPa. With the exit temperature
known, we can compute the sound speed at the exit c2 =

√
γ RT2 =√

1.4[287(N-m)/(kg-K)](298 K) = 346 m/s, then use the exit Mach number to



8.5.5 Draining of a Tank

Consider the large cylindrical tank of diameter D and height h filled with liquid as
shown in Figure 8.24A. The tank is open to the atmosphere and has a well-rounded
nozzle of diameter d mounted on the bottom. Suppose the liquid is freely escaping to the
atmosphere through the nozzle. We will apply Bernoulli’s equation to predict the exit
velocity VE as a function of the fluid and flow parameters, using the streamline con-
necting points 1 and 2 as shown.

Before applying Bernoulli’s equation, challenge yourself with this question: Are
there any techniques already studied that might be helpful in understanding this flow? If
you thought to answer control volume analysis you are certainly correct. Applying a
mass balance to the CV shown in Figure 8.24A and noting that because liquid escapes,
the free surface will drop at some velocity VS , we obtain ρVS(π D2/4) = ρVE(πd2/4).
As expected, the mass flowrate out of the bottom of the CV (and thus out of the nozzle)
must match the mass flowrate into the top of the CV (due to the motion of the free
surface). Writing this as 

VS = VE

(
d2

D2

)
(8.47)

we see that if the cross-sectional area of the nozzle is small in comparison to that of the
tank, the free surface velocity will be very small in comparison to the nozzle velocity. If
so we may consider the flow in the tank and nozzle to be steady. Thus the mass balance
suggests that it is valid to employ the steady, constant density form of Bernoulli’s equa-
tion when (d2/D2) � 1.
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pE, VE(A) (B)

1
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h d

pE, VE

1

z

z

Figure 8.24 Liquid draining from a tank: (A) hole on the bottom and (B) hole on
the side.

calculate the exit velocity: V2 = M2c2 = 2.67(346 m/s) = 924 m/s. We see that the ve-
locity has increased, and the pressure and temperature have decreased, as the flow
passed through the diverging section. This is quite different from the behavior we saw in
Example 8.16, which featured a constant density flow through a diverging passage. In
that case the velocity decreased in the flow through the diverging passage.



8.5 APPLICATIONS OF THE BERNOULLI EQUATION 519

The selection of the two points in a Bernoulli
analysis is guided by a simple rule: put one of the points
at the location for which information is requested and
the other at a point for which information is known.
This assumes, of course, that these two points are on the
same streamline. In this case we will choose the second
(downstream) point to be at the exit plane and the first
to be at the free surface, assuming that a streamline con-
nects these points. Applying Eq. 8.6, we have

pS

ρ
+ 1

2
V 2

S + gzS = pE

ρ
+ 1

2
V 2

E + gzE

The kinetic energy per unit mass, 1
2 V 2

S , can be written
by using Eq. 8.47 as 1

2 V 2
S = 1

2 V 2
E(d4/D4), which for a

large tank is negligible. At the free surface the pressure
is atmospheric. The elevation of the free surface is zS = h. At the exit plane, the pres-
sure is also atmospheric (for reasons to be explained in a moment), and the elevation is
zE = 0. Thus Bernoulli’s equation becomes 1

2 V 2
E = gh , which is a statement that in the

absence of losses, all the gravitational potential energy is converted to kinetic energy.
Solving for the exit velocity, we find

VE =
√

2gh (8.48)

a result known as Torricelli’s law.
It is also worthwhile to do a Bernoulli analysis for the arrangement with a horizon-

tal nozzle shown in Figure 8.24B. In this case we use points 1 and 2 in the figure and
write the Bernoulli equation as pS/ρ + 1

2 V 2
S + gzS = pE/ρ + 1

2 V 2
E + gzE . Notice that

now the origin is at the elevation of the center of the exit, so that zE = 0, while the free
surface is at zS = h. The rest of the terms are evaluated exactly the same as before, so
the exit velocity is again given by Eq. 8.48.

If we consider a streamline located above or below the central axis of the nozzle,
the same analysis predicts a slightly lower or higher velocity. However, since the diam-
eter of the nozzle is assumed to be small, the slight variation of velocity with eleva-
tion across the nozzle itself is negligible. One can also analyze this problem by using
point 3. As shown in Figure 8.24B, this point lies well to the left of the nozzle, and
the velocity here is assumed to be zero. The Bernoulli analysis using this point starts
with p3/ρ + 1

2 V 2
3 + gz3 = pE/ρ + 1

2 V 2
E + gzE . Inserting values, we find p3/ρ =

pA/ρ + 1
2 V 2

E , and the question is, What is the pressure at point 3? The answer is that
since the fluid in the tank at point 3 is at rest or nearly so, the pressure at point 3 must be
hydrostatic, or p3 = pA + ρgh . Inserting this value into Bernoulli’s equation yields
p3/ρ = (pA + ρgh)/ρ = pA/ρ + 1

2 V 2
E . It is easy to see that this simplifies to

gh = 1
2 V 2

E and leads to the same result for the exit velocity VE , Eq. 8.48.
The shape of a nozzle has an effect on the diameter of the jet leaving the nozzle, but

not on the velocity, as one might otherwise expect. If the nozzle is well rounded, as
shown in Figure 8.25A, a Bernoulli analysis leads to the conclusion that Eq. 8.48 gives
the exit velocity right at the end of the nozzle. For a sharp-edged nozzle, as shown in
Figure 8.25B, the jet diameter is observed to be less than the diameter of the nozzle

HISTORY BOX 8-2

Evangelista Torricelli (1608–1647) was a
contemporary and close friend of Galileo
late in that great man’s life. Torricelli
invented the barometer, and a unit of pres-
sure equal to one millimeter of mercury is
named the torr in his honor. He performed
extensive experiments with liquids drain-
ing from tanks to develop Torricelli’s law
that the velocity is proportional to the
square root of the height of the liquid, i.e.,
V = √2gh.
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EXAMPLE 8 .18

Water escapes from a large storage tank through a small drain hole in the bottom. If the
water depth is 2 m. what is the exit velocity? If a similar tank contained gasoline, what
would the exit velocity be?

SOLUTION

We will solve this problem using Eq. 8.48, VE =
√

2gh . Since the density of the liquid
does not enter the formula, water and gasoline both exit at the same velocity:

VE =
√

2gh =
√

2(9.8 m/s)(2 m) = 6.26 m/s.

orifice, an effect known as vena contracta. Since the streamlines are curved at the orifice,
the pressure is atmospheric on the edge of the jet and higher in the middle. In this case,
the exit velocity predicted by Torricelli’s theorem occurs at the plane where the stream-
lines have become straight, since this is where the pressure is atmospheric throughout
the jet. The degree of contraction is given by a contraction coefficient based on the ratio
of the jet to nozzle orifice areas:

CC = AJ

AD
(8.49)

Values of this coefficient for different geometries are shown in Figure 8.26.

EXAMPLE 8 .19

Consider two nozzle designs for draining a liquid storage tank as shown in Figure 8.25.
Both nozzles have the same diameter. If the liquid level is the same, which nozzle
provides a larger mass flowrate out the exit?

SOLUTION

The exit velocity in each nozzle is the same as discussed in the text, but the mass
flowrate ρ AV in each nozzle differs as a result of the vena contracta effect. The well-
rounded nozzle has a contraction coefficient of unity, while the stub nozzle has a coeffi-
cient of 0.61 according to Figure 8.26A. Thus the well-rounded nozzle in Figure 8.26B
will deliver 39% more mass flow for any given liquid height. Whether this additional
flow is worth the added expense of constructing this kind of nozzle is a question of en-
gineering economics.
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AD AJ 
 AD(A) (B)

Figure 8.25 (A) Orifice with rounded edges. (B) Orifice
with sharp edges results in vena contracta, jet diameter
less than orifice diameter.

Cc � AJ�Ah � (dJ�dh)2

Cc � 0.61

(C)

Cc � 0.50

(D)

Cc � 1.0

(B)

Cc � 0.61

dh

dJ

(A)

Figure 8.26 Streamline patterns and
contraction coefficients for four orifice
shapes: (A) sharp edge, (B) well
rounded, (C) square, and (D) reentrant.

8.6 RELATIONSHIP TO THE ENERGY EQUATION

In deriving the Bernoulli equation, we did not use the energy equation. This seems curi-
ous, given our interpretation of the Bernoulli equation as a statement of energy conser-
vation. Perhaps we can learn something by writing an energy balance for flow along a
streamline and comparing the result with the Bernoulli equation. To apply an energy bal-
ance to the differential CV shown earlier in Figure 8.1B, we use Eq. 7.33:∫

CV

∂

∂t
ρ

(
u + 1

2
u • u + gz

)
dV +

∫
CS

ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS

= Ẇpower + Ẇshaft + Q̇C + Ṡ

Recalling that the total energy in a fluid is defined as e = u + p/ρ + 1
2 u • u + gz , we

can write the energy balance as∫
CV

∂

∂t

[
ρ

(
e − p

ρ

)]
dV +

∫
CS

ρ(e)(u • n) dS = Ẇpower + Ẇshaft + Q̇C + Ṡ



Evaluating the accumulation and flux terms in a manner
similar to that used earlier for the momentum balance,
we find

∫
CV

∂

∂t

[
ρ

(
e − p

ρ

)]
dV =

∫ 2

1

∂

∂t

[
ρ

(
e − p

ρ

)]
A ds

and∫
CS

ρe(u • n) dS = −(ρ1 A1V1)e1 + (ρ2 A2V2)e2

=
∫ 2

1

d

ds
(ρ AV e) ds

Since the work and energy terms on the right are
the net rates of work and energy additions to the CV be-
tween stations 1 and 2, we can write these terms as

Ẇpower + Ẇshaft + Q̇C + Ṡ

=
∫ 2

1

d

ds
(Ẇpower + Ẇshaft + Q̇C + Ṡ) ds

Writing the energy balance as a single integral, we find

∫ 2

1

{
∂

∂t

[
ρ

(
e − p

ρ

)]
A + d

ds
(ρ AV e) − d

ds
(Ẇpower + Ẇshaft + Q̇C + Ṡ)

}
ds = 0

Since points 1 and 2 are arbitrary, we conclude that

∂

∂t

[
ρ

(
e − p

ρ

)]
A + d

ds
(ρ AV e) = d

ds
(Ẇpower + Ẇshaft + Q̇C + Ṡ) (8.51)

along a streamline. In deriving Eq. 8.51 it has not been necessary to introduce any ap-
proximations; thus the equation applies to viscous flow.

We can use this equation to discuss the relationship between the energy balance and
the Bernoulli equation. For simplicity, we will consider only steady flow, for which the
energy balance becomes

d

ds
(ρ AV e) = d

ds
(Ẇpower + Ẇshaft + Q̇C + Ṡ)

Expanding the first term, we find

e
d

ds
(ρ AV ) + (ρ AV )

de

ds
= d

ds
(Ẇpower + Ẇshaft + Q̇C + Ṡ)

522 8 FLOW OF AN INVISCID FLUID: THE BERNOULLI EQUATION

It is possible to account for the unsteady
flow in a draining tank in the following ap-
proximate way. Referring to Figure 8.24,
and noting that at any instant of time the
mass balance leading up to Eq. 8.47 is
valid, we can write the velocity of the free
surface as VS = −dh/dt = VE (d 2/D2) .
Substituting VE = √2gh (Eq. 8.48), we
find dh/dt = − (d 2/D2)

√
2gh , which can

be integrated as 
∫ h

h0
dh/

√
h =

−(d 2/D2)
√

2g
∫ t

t0
dt , where the height of

water in the tank is h0 at time t0. The result
is the following expression for the height
of the liquid in the tank as a function of
time

2[
√

h(t) −
√

h0] = −
(

d 2

D2

)√
2g(t − t0)

(8.50)

A more accurate analysis of this problem
could be made by using the unsteady form
of the Bernoulli equation to provide a value
for VE as a function of time.



For a steady flow the mass balance, Eq. 8.1, is (d/ds)(ρ AV ) = 0, and the mass flowrate
ṁ = ρ AV is a constant. The first term in the preceding equation is thus zero, and the
steady flow energy balance becomes

(ρ AV )
de

ds
= d

ds
(Ẇpower + Ẇshaft + Q̇C + Ṡ) = 0

Dividing this equation by ṁ = ρ AV and integrating along a streamline yields

(
u2 + p2

ρ2
+ 1

2
V 2

2 + gz2

)
−
(

u1 + p1

ρ1
+ 1

2
V 2

1 + gz1

)

=
∫ 2

1

1

ṁ

d

ds
(Ẇpower + Ẇshaft + Q̇C + Ṡ) ds

Completing the integration, we have

(
u2 + p2

ρ2
+ 1

2
V 2

2 + gz2

)
−
(

u1 + p1

ρ1
+ 1

2
V 2

1 + gz1

)

= �Ẇpower

ṁ
+ �Ẇshaft

ṁ
+ �Q̇C

ṁ
+ �Ṡ

ṁ

(8.52)

where the terms on the right-hand side represent the work and energy inputs to the fluid
as it moves along the streamline. In developing this equation, the only assumption we
have made is steady flow. We did not introduce any assumptions related to frictionless
flow or the compressibility of the fluid. The energy balance tells us that in a steady flow
along a streamline, the change in total energy between two points is due to the work and
energy inputs to the fluid.

The energy balance for the flow of an inviscid fluid along a streamline can be de-
rived by recalling that the viscosity of an inviscid fluid is zero. We can argue that the
work terms must be zero because the presence of these terms is inconsistent with the ab-
sence of all shear stresses. This means that the Bernoulli equation cannot be used to de-
scribe flow through a power-producing or power-absorbing device. With these restric-
tions, the energy balance reduces to

(
u2 + p2

ρ2
+ 1

2
V 2

2 + gz2

)
−
(

u1 + p1

ρ1
+ 1

2
V 2

1 + gz1

)
= Q̇C

ṁ
+ Ṡ

ṁ
(8.53)

Thus, in a steady frictionless flow (compressible or incompressible) along a streamline,
a change in total energy can occur only in the presence of a heat addition or an energy
input per unit mass.

Suppose we compare this result with the Bernoulli equation for an incompressible
fluid. The Bernoulli equation for steady, constant density flow is given by Eq. 8.6 as

p1

ρ
+ 1

2
V 2

1 + gz1 = p2

ρ
+ 1

2
V 2

2 + gz2
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Rearranging the energy balance, Eq. 8.53, and noting that for an incompressible fluid,
ρ = ρ1 = ρ2, we can write the energy balance as

p1

ρ
+ 1

2
V 2

1 + gz1 =
(

p2

ρ
+ 1

2
V 2

2 + gz2

)
+
[
(u2 − u1) −

(
Q̇C

ṁ
+ Ṡ

ṁ

)]

Comparing the previous two equations, we see that for the Bernoulli equation to be
valid, it is necessary that

(u2 − u1) −
(

Q̇C

ṁ
+ Ṡ

ṁ

)
= 0 (8.54)

There are two ways in which this equation can be satisfied. Most commonly, heat or en-
ergy input of any type is absent, in which case the internal energy of the fluid must be
constant. This is the situation in all the examples of this chapter. The second possibility is
that the heat added plus energy input raises the internal energy of the fluid but does not
affect the mechanical energy. In this case we calculate the change in internal energy from

u2 − u1 = Q̇C

ṁ
+ Ṡ

ṁ
(8.55)

and apply the Bernoulli equation to determine the changes in pressure, and so on. The
flow itself is unaffected by the energy input except for the change in internal energy.

Finally, consider a steady isentropic flow for which the Bernoulli equation is given
by Eq. 8.11 as

u1 + p1

ρ1
+ 1

2
V 2

1 + gz1 = u2 + p2

ρ2
+ 1

2
V 2

2 + gz2

Comparing this with the energy balance, Eq. 8.53, we conclude that for the Bernoulli
equation to be valid in this type of flow we must have

Q̇C

ṁ
+ Ṡ

ṁ
= 0 (8.56)

i.e., no net energy addition is allowed.

8.7 SUMMARY

One of the oldest approximations in fluid dynamics is that of an inviscid fluid. If such a
fluid existed, its viscosity would be exactly zero, it would be incapable of exerting a
shear stress, and its flow would be frictionless. Although all real fluids exhibit nonzero
viscosity, there are many important engineering flows for with the inviscid assumption
yields reasonable results. For example, many flows of air and water for which the local
velocity gradient is small can be adequately modeled by using the inviscid assumption.

Bernoulli’s equation, which can be interpreted as a statement of conservation of en-
ergy in the flow of an inviscid fluid, can be written as 

∫ 2
1 (∂V /∂t) ds + ∫ 2

1 dp/ρ +
1
2 (V 2

2 − V 2
1 ) + g(z2 − z1) = 0. This form of the Bernoulli equation applies to the fric-

tionless flow of a compressible or incompressible fluid, with the only restriction being
that the path connecting points 1 and 2 be an instantaneous streamline. Note that if the
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flow is unsteady, i.e., the temporal derivative is nonzero, this equation shows that the
mechanical energy content of the fluid differs from point 1 to point 2 owing to the effects
of acceleration. For a steady flow of an incompressible fluid, the Bernoulli equation
takes the simplified form p1/ρ + 1

2 V 2
1 + gz1 = p2/ρ + 1

2 V 2
2 + gz2 , which shows that

in the absence of viscous forces, the mechanical energy at two points along a streamline
in a steady, constant density flow is the same.

The Bernoulli equation for unsteady, isentropic gas flow is often written in the form ∫ 2

1

∂V

∂t
ds + (u2 − u1) +

(
p2

ρ2
− p1

ρ1

)
+ 1

2

(
V 2

2 − V 2
1

)+ g(z2 − z1) = 0

If the isentropic gas flow is steady, then Bernoulli’s equation takes the form
u1 + p1/ρ1 + 1

2 V 2
1 + gz1 = u2 + p2/ρ2 + 1

2 V 2
2 + gz2 . In applications of the

Bernoulli equation in compressible flow, the change in gravitational potential energy
g(z2 − z1) is usually negligible in comparison to the other terms.

If we multiply each term in the steady flow, constant density form of Bernoulli’s
equation by the fluid density we obtain an alternate form p + 1

2ρV 2 + ρgz = constant.
Fluid mechanics traditionally refers to each term in this equation as a different kind of
pressure. The pressure p is referred to as the static, or mechanical, pressure. It is a mea-
sure of the average normal stress existing at a point in a fluid and is defined to be the
pressure that would be measured by an observer or pressure sensor moving with the
fluid. In a constant density flow, as well as in nearly all other flows of interest, the me-
chanical pressure and the thermodynamic pressure defined by an appropriate equation of
state are identical. The term 1

2ρV 2 is called the dynamic pressure, and it represents the
pressure increase that would occur if all the kinetic energy of a fluid particle in a fric-
tionless flow were converted into a corresponding increase in pressure potential energy.
The remaining term, ρgz, called the hydrostatic pressure, represents the change in the
static pressure that would occur if the fluid moved along the streamline to an elevation
of zero. The sum of the static pressure and dynamic pressure is called the stagnation
pressure, and the sum of all three pressure terms is referred to as the total pressure.

Bernoulli’s equation is a powerful tool for finding the values of pressure and veloc-
ity at two points along a streamline. In applying this equation, it is important to remem-
ber that the underlying assumption of frictionless flow means that viscous effects are ab-
sent. Real flows do not perfectly satisfy these underlying assumptions, which means that
you should consider the results obtained with Bernoulli’s equation to be an engineering
approximation.

The stagnation pressure can be measured by using a device called a pitot tube. A
pitot tube will give an accurate reading of stagnation pressure provided it is aligned with
the flow and if the probe is small relative to the length scale of the flow field. A pitot-
static tube, which combines a static pressure tap on its side with a regular pitot tube type
of nose tap, permits the simultaneous measurement of the static and stagnation pressures
at a point in a flow field.

If we compare the Bernoulli equation for steady, constant density flow with the
corresponding energy balance, we find that the condition (u2 − u1) − (Q̇C/ṁ +
Ṡ/ṁ) = 0 must be satisfied for the Bernoulli equation to be valid. There are two ways
in which this equation can be satisfied. Most commonly, an energy input of any type is
absent, in which case the internal energy of the fluid must be constant. This is the situa-
tion in all the flows examined in this chapter. The second possibility is that the energy
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PROBLEMS

Section 8.3

8.1 Air flows through a nozzle with a cen-
terline velocity of u = 50(1 + x)i m/s, where
x is in meters. Determine the pressure gradient
along the center line of the nozzle.

8.2 Water flows through a diffuser with
a centerline velocity of u = 5(1 − x)

sin(0.5t)i m/s, where x is in meters and t is in
seconds. Determine the pressure gradient in
the diffuser as a function of time.

8.3 Repeat Problem 8.2 with the diffuser in
the vertical direction such that w = 5(1 − z)
sin(0.5t)k m/s.

8.4 The velocity of air in a pipe is u =
200(1 + x)i m/s, where x is in meters. The
pressure and density are related by
p/ρn = A, where n and A are constants.
What is the change in pressure in the pipe
from x = 0 to x = 1 m?

8.5 The area of a nozzle varies according to
the equation A = Ainlet(1 − αx2/L2) where
α is a constant and L is the length of the noz-
zle. The volume flowrate is unsteady and is
described by Q = β sin(ωt) where β and ω
are constants. Derive an expression for the
pressure change between in the inlet and exit
of the nozzle.

8.6 A venturi flume (shown in Figure P8.1)
consisting of a bump on the channel floor is
used to measure the flowrate. Assuming uni-
form velocity profiles, derive an expression

for the flowrate as a function of the geometric
parameters w, H, D, and d.

8.7 Estimate the maximum height of the
flow resulting  from a water main break at
80 psig.

8.8 Water flows upward out of the variable
area nozzle shown in Figure P8.2. Determine
H as a function of Dexit.

8.9 The water flow from a garden hose is
10 ft/s. What is the maximum height the water
can go above the hose exit? If you place your
thumb over the exit to reduce the exit area by
half, how high can the water rise?

8.10 For the hose in Problem 8.9, how far
can the water shoot horizontally if the exit is
at 30°?

8.11 For the water flow system in Fig-
ure P8.3, what is the mercury manometer
reading if the velocity at the location of the
pressure reading is 1 m/s?

input raises the internal energy of the fluid but does not affect the mechanical energy. In
this case we calculate the change in internal energy from u2 − u1 = Q̇C/ṁ + Ṡ/ṁ and
apply the Bernoulli equation to determine the changes in pressure, and so on. The flow
itself is unaffected by the energy input except for the change in internal energy. For an
isentropic flow, consideration of the energy balance shows that for the Bernoulli equa-
tion to be valid we must have Q̇C/ṁ + Ṡ/ṁ = 0; i.e., no net energy addition is allowed.

D

H

d

w

Figure P8.1
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H

h

Dexit

p

D

Figure P8.2

8.12 Nitrogen flows isentropically in a 2 in.
diameter pipe. Conditions at one point are

v = 400 ft/s, p = 80 psia, and ρ = 2.03 ×
10−3 lbm/ft3. At a nearby point, the pressure
has fallen to 76 psia. What is the velocity at
the second point?

8.13 At a certain point in an isentropic
airflow v = 30 m/s, p = 375 kPa, and ρ =
2.85 kg/m3. At a second point on the same
streamline the velocity is 100 m/s. What is the
pressure at the second point?

Section 8.4

8.14 An airplane is flying 150 mph at
10,000 ft. What is the stagnation pressure on
the airplane? What is the pressure on top of the
wing, where the velocity reaches 195 mph?

8.15 What is the maximum pressure on
your hand if you stick it out of the car window
traveling at 70 mph through still air at stan-
dard conditions?

8.16 A 2 in. ID. pipe carries gasoline at
10 gal/min at a pressure of 50 psig. Determine
the stagnation pressure in psi and in feet of
gasoline.

8.17 Air flows past an object at 200 m/s.
Determine the stagnation pressure in the stan-
dard atmosphere at elevations of sea level,
2000 m, and 10,000 m.

8.18 If hurricane winds reach 100 mph,
what is the stagnation pressure on a window?
What is the force exerted on 6 ft2 window?

Section 8.5

8.19 Water is siphoned from a tank as
shown in Figure P8.4. Calculate the flowrate
and the pressure at the upper bend in the tube
(point B).

8.20 Fluid is drained from the reservoir by
using a plastic tube as shown in Figure P8.5.
The tube will collapse if p < pc . Derive an
expression for the maximum value of h for
which the fluid will flow.

h
0.5 m

3 m

p

Vexit

Dexit � 3 cm

D1 � 10 cm

V1

Hg

Figure P8.3



8.21 Oil (SG = 0.85) is drained through
the siphon (D = 50 mm) shown in Fig-
ure P8.6. What is the volume flowrate?
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C
Water

d � 0.75 in.

Siphon

2 ft

1 ft

B

A

V

Figure P8.4

C
Water

d

Siphon

H

h

B

A

Figure P8.5

Q

C

Oil
(SG � 0.85)

D � 50 mm

Siphon

3 m

2 m

B

A

Figure P8.6

Q

D � 0.09 m

h � 5 mm

Pitot-static tube

p0

p�

Manometer fluid
(SG � 1.07)

Figure P8.7

8.22 Consider the manometer connected to
the pitot-static tube shown in Figure P8.7.
What is the velocity in the channel if the flow-
ing fluid is JP-4 fuel (SG = 0.77), water, or air
at standard conditions?

8.23 Calculate the flowrate of water through
the pipe reduction shown in Figure P8.8.
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D � 0.1 m D � 0.05 m

h � 0.37 m

H

Free jet flow

Figure P8.10

8.24 Calculate the pressure and velocity at
points 2 and 3 for the water pipe shown in Fig-
ure P8.9.

z2 � 10 ft
z3 � 0

D3 � 8 in.

D2 � 10 in.

D1 � 14 in.
 p1 � 20 psi
 V1 � 5 ft/s

z1 � 15 ft

Figure P8.9

8.25 Repeat Problem 8.24 using air as the
fluid. Comment on the effect of the elevation
change for air as opposed to water.

8.26 Determine the height of fluid in the
manometer, H, for the flow shown in Fig-
ure P8.10, if the velocity before the contrac-
tion is 1.5 m/s.

8.27 What is the flowrate of water leaving
the tank shown in Figure P8.11?

8.28 A hose is added to the exit of Prob-
lem 8.27.At what exit height will the flow stop?

8.29 The flow of water from the cylindrical
tank is controlled by adjusting the air pressure
on top as shown in Figure P8.12. Derive an
expression for the volume flowrate of water as
a function of pair, H, Dexit, and ρwater.

D � 200 mm

d � 100 mm

0.6 m

1 m

30�

Figure P8.8
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8.33 Repeat Problem 8.31 with air flowing
through the pipe and water as the manometer
fluid.

8.34 Repeat Problem 8.32 with air flowing
through the pipe and water as the manometer
fluid.

8.35 The venturi shown in Figure P8.16 is
used to draw water into the airstream. Derive
an expression for the velocity of air in the pipe
that will draw water up to the pipe.

8.36 The water tank system shown in Fig-
ure P8.17 is in steady state; find the water
depth in the second tank H2.

8.37 Water flows from the tank shown in
Figure P8.18. Derive an expression for the exit
velocity based on H1, H2, ρwater SGoil, and Dexit.

p � 150 kN/m2

Q

Air

5 m
Water

p

2 m

Figure P8.11

Air

Dexit

H
Water

p

High pressure
air in Pressure gage

reads pair

Figure P8.12

8.30 Oil (SG = 0.85) flows from the tank
through the pipe shown in Figure P8.13. What
is the exit velocity?

8.31 Water flows through an 8 in. pipe as
shown in Figure P8.14. The U-tube manometer,
filled with mercury, is attached to a stagnation
pitot tube centered in the pipe and to a static
pressure tube on the wall. Calculate the volume
flowrate.

8.32 If the pipe from Problem 8.31 is ori-
ented at 45° and the manometer reading is as
shown in the Figure P8.15, calculate the vol-
ume flowrate.

Oil
(SG � 0.85)

A � 2 in.

10 ft

15 ft

Vent

Vexit

Air

Figure P8.13

Q
D � 8 in.

2 in.

Water

Hg

Figure P8.14
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Figure P8.15

8.38 Water flows under the sluice gate
shown in Figure P8.19. Calculate the flowrate
if the gate is 10 m wide.

8.39 Water flows up the ramp in the 10 ft
wide channel shown in the Figure P8.20. Cal-
culate the flowrate.

8.40 The spillway shown in Figure P8.21
is 5 m wide. Determine the flowrate in the
channel.

patm

h D � Dpipe

 p � patm

D � Dthroat

Vair

Water reservior

Figure P8.16

H1 � 5 ft

1.5 in. � D2

2 in. � D1

Q

H2

Figure P8.17

H1

H2
DexitWater

Oil

Air

Vexit

Figure P8.18

Sluice gate

H2 � 1 m
V2

H1 � 5 m

V1

Figure P8.19

D � 8 in.

10 in.

Q

Water

Hg

6 in.

45�
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8.44 The spillway shown in Figure P8.25
is 10 ft wide. Determine the flowrate in the
channel.

4 in.

Q

Q
H1 � 12 in.

H2 � 18 in.

Figure P8.20

H1 � 2 m

H2 � 1.5 m
H3 � 0.75 m

Q

Figure P8.21

8.41 Water flows down the ramp shown in
Figure P8.22. Use the Bernoulli equation to
determine the downstream depth. Comment
on the validity of your solution(s).

V1 � 3 m/s
D1 � 0.5 m

D2 � ?0.4 m

Figure P8.22

8.42 Water flows under the sluice gate
shown in Figure P8.23. Calculate the flowrate
if the gate is 15 ft wide.

D2 � 5 ft

D1 � 10 ft

Sluice gate

Figure P8.23

Q
0.5 m

d2 � 3 m

d1 � 1 m

Figure P8.24

d1 � 5 ft

d2 � 1 ft

Q

4 ft

Q

Figure P8.25

8.43 Water flows up the ramp in the 5 m
wide channel shown in the Figure P8.24. Cal-
culate the flowrate.

8.45 Water flows down the ramp shown in
Figure P8.26. Use the Bernoulli equation to
determine the downstream depth. Comment
on the validity of your solution(s).

8.46 The water level, H, in a tank is kept
constant. Determine at what height h a nozzle
with exit area A should be placed such that the
distance traveled by the resulting horizontal
jet is maximized.

8.47 As shown in Figure P8.27, a pitot tube
in an air duct is connected to a pressure gage
that reads 11.0 psig. An adjacent static pres-
sure gage reads 10.0 psig. What is the velocity
in the duct?
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8.49 Determine the volume flowrate of
water through the venturi meter shown in Fig-
ure P8.29 given that the fluid in the mano-
meter is mercury.

V1 � 10 ft/s

1 ft
d2

V2

d1 � 2 ft

Figure P8.26

p � 10.0 psig

V

p � 11.0 psig

Figure P8.27

V
Fluid with SG � �2

H

h

Manometer fluid, SG � �1

Figure P8.28

D1 � 12 cm

D � 6 cm

V

h1 � 14 cm

h3 � 30 cm

h2 � 2 cm

Figure P8.29

8.48 Use Figure P8.28 to derive an expres-
sion for the velocity in the duct.
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9.1 INTRODUCTION

Fluid mechanics problems can be dealt with by using analytical, computational, and ex-
perimental approaches to understand the distribution of fluid and flow properties and the
interaction of the fluid with its surroundings. In the preceding chapters you learned how
to apply mass, momentum, and energy balances and the Bernoulli equation. In this chap-
ter, we focus our attention on some of the experimental tools engineers use to solve fluid
mechanics problems. These tools, known as dimensional analysis, similitude, and mod-
eling, are very powerful but surprisingly easy to apply. Perhaps you remember that the
case study results were based on dimensional analysis and experiments. In a later sec-
tion of this chapter we will show you how dimensional analysis can be used to arrive at
the design formulas of those case studies. We will also show you how the tools you learn
about in this chapter allow an engineer to efficiently organize and understand the results
of experiments.

9 DIMENSIONAL ANALYSIS 
AND SIMILITUDE
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Did you know that most experimental studies in fluid mechanics involve the use of
scale models? Examples are shown in Figure 9.1. Perhaps it is obvious that a scale
model must be geometrically similar to an actual device or system, but what guarantee
do we have that the flow field that occurs with a scale model is similar to the flow field
of engineering interest? How do we apply data gathered from an experiment on a model
to the design of a full-scale device?

Dimensional analysis (abbreviated DA) is the source of answers to these and many
other questions involving experimental research. It is the foundation of the theories of
similitude and modeling, and it provides a means to design an efficient experimental
program. DA makes use of the principle that all terms of a physical equation must have
the same dimensions. Engineers take advantage of this by routinely checking a proposed
formula to make sure it is dimensionally consistent. However, this particular application
of DA, while helpful, is really of secondary importance compared to using DA to un-
derstand the behavior of a physical system without the need for complex mathematics.

Most engineers associate DA with the Buckingham Pi theorem, published in 1914
by E. Buckingham. With the aid of the Pi theorem, DA may be used to determine the

(A)

(C)

(B)

Figure 9.1 (A) Model of an aircraft in a wind tunnel. (B) scale model of a section of the Mississipi River. (C) Model of
San Antonio, Texas, used for determining wind patterns in this urban environment.



number and form of the dimensionless groups describing any fluid system. As discussed
in Chapter 3, a dimensionless group is a unitless algebraic combination of several of the
physical parameters of a problem. Recall that the most important dimensionless group
in fluid mechanics, the Reynolds number, is given by the product of density ρ, a fluid ve-
locity scale V, and a length scale L, all divided by viscosity, µ. Thus we have
Re = ρV L/µ. There are numerous other groups that arise from dimensional analysis.
For example, dividing the length of a pipe by its diameter yields the dimensionless
group L/D. A given fluid system may have from one to five or more dimensionless
groups, depending on its complexity. The value of each dimensionless group is a pure
number determined by the specific values of the problem parameters. With experience it
is possible to anticipate the behavior of a physical system simply by knowing the values
of the dimensionless groups that describe it.

You already know from the case studies that the use of dimensionless groups allows
an engineer to classify a fluid mechanics problem, relate it to work done by others, and
select an effective solution method. DA is also essential when one is conducting and an-
alyzing experiments. Proper selection of the values of each dimensionless group for a
scale model ensures that a condition known as similitude is achieved. Similitude guar-
antees that a particular experimental model is similar to the true physical system it is in-
tended to simulate and also assures us that experimental data obtained with the model
can be scaled and applied to a full-scale prototype. Finally, DA provides an understand-
ing of how to minimize the total number of experiments and enhances the correlation
and efficient compilation of experimental data.

The Buckingham Pi theorem is introduced in the following section, followed by a
discussion of DA using the repeating variable method of constructing dimensionless
groups. Next we demonstrate the use of dimensional groups in similitude and model de-
velopment, and in the correlation of experimental data. Finally, we revisit the case stud-
ies of Chapter 3 and demonstrate the power of DA and empirical correlations in the de-
sign of fluid mechanics devices and systems. We do this by showing how the empirical
relationships first presented in the case studies without explanation can now be seen to
be based on dimensional analysis.

9.2 BUCKINGHAM PI THEOREM

We begin our discussion of the Pi theorem by considering a practical problem in the de-
sign of a piping system. What size pump is required to move a particular liquid at a de-
sired flowrate through a pipe? It can be shown that the power needed is a function of the
pressure drop down the pipe, (see the case study in Section 3.3.1), which in turn depends
on the viscous dissipation of energy in the flow (see Section 2.7.1). The power required
also depends on the mass flowrate, defined as the mass of liquid moving through the
pipe per unit time. How can the Pi theorem contribute to answering this question?

The first step in a DA of pipe flow is to determine which fluid and flow properties
might influence the pressure drop. As illustrated in Figure 9.2, we postulate that the
pressure drop �p may depend upon the pipe length L , diameter D, wall roughness e,
average liquid velocity V̄ , liquid density ρ, and viscosity µ. The wall roughness, defined
as the average height of random protuberances, depends on the type of pipe and how
long it has been in service. How did we decide on this list of parameters? We know that
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�p is related to frictional losses (viscous dissipation). Since we expect frictional loses
to increase with an increase in viscosity, pipe length, and pipe wall roughness, it makes
sense to include µ, L, and e in our model. The inclusion of V̄ and D should also seem
reasonable to you if you remember that the volume flowrate, i.e., the volume of liquid
moving through the pipe per unit time, is given by the product of the average liquid ve-
locity and the cross-sectional area of the pipe. Finally, we include density as a variable
to be able to relate the volume flowrate to the mass flowrate.

The next step in the DA is to write the proposed functional relationship mathemat-
ically as

�p = f (L , D, e, V̄ , ρ, µ) (9.1)

According to Eq. 9.1, the pressure drop is a function of six independent variables. By the
principle of dimension consistency, the unknown function f must combine the indepen-
dent variables in such a way that it has dimensions of pressure. Suppose we try to deter-
mine f by experiment. To explore the effects of the six variables on �p we systemati-
cally vary each independent variable while holding the other independent variables
fixed. This can be time-consuming and expensive. Furthermore, the experiments may be
difficult to perform. For example, how can we vary viscosity significantly? Is it possible
to reduce the number of independent variables in Eq. 9.1?

Buckingham’s work established the theoretical basis for a process to reduce the
number of independent variables in a functional relationship like Eq. 9.1 to a minimum.
The Pi theorem is applicable to a function, f , of k dimensional variables, uk , in the form

u1 = f (u2, u3, . . . , uk) (9.2)

For example, in Eq. 9.2 the dependent variable u1 is the pressure drop and there are six
independent variables, so the total number of variables is k = 7. The Pi theorem states
that there exists a functional relationship between at most k − r dimensionless Pi
groups, �k−r , of the form

�1 = g(�2,�3, . . . ,�k−r ) (9.3)

where r is the number of base dimensions needed to describe those parameters. Thus
the Pi theorem proves that the number of independent variables in any functional rela-
tionship may be reduced from k to k − r if the relationship is expressed in terms of

Length, L

p1 p2

Average flow
velocity, V

Fluid with
viscosity �,

and density �
Diameter, D

Roughness, e

Roughness, e

Pressure drop, �p � p2 � p1

Pipe wall

Figure 9.2 The parameters that affect pressure drop in horizontal flow through a round pipe.



dimensionless groups. The r base dimensions in most
fluid mechanics problems are M, L , t, and T, repre-
senting mass, length, time, and temperature. In the
absence of thermal effects, a temperature scale T is
unnecessary.

What happens when we apply the Pi theorem
to our pipe flow problem? The seven physical parame-
ters in pipe flow can be written in terms of base dimen-
sions as

{�p} = M

t2L
, {L} = {D} = {e} = L , {V̄ } = L

t
, {ρ} = M

L3
, and {µ} = M

Lt

Notice that we did not use the base dimension for temperature, T, and it was not neces-
sary to introduce force, F, as a base dimension, since M, L , and t can be combined to
form the dimension of force. Thus, the base dimensions for pipe flow are M , L , and t
and we have r = 3. Table 9.1, which is a list of common fluid and flow properties and
their base dimensions, can be of assistance in this process.

According to the Pi theorem, using dimensionless groups reduces the number of in-
dependent variables in any functional relationship from k to k − r . For pipe flow, since
k = 7 and r = 3, the theorem suggests replacing Eq. 9.1 with a functional relationship:

�1 = g(�2,�3,�4)

where the four Pi groups are dimensionless algebraic combinations of the original set of
seven physical parameters. By design, the first Pi group includes the dependent variable,
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The implications of the Pi theorem are
twofold. First, in performing experiments it
is necessary to vary only the value of a di-
mensionless group rather than of each
physical parameters it contains. Second,
by working with dimensionless groups,
there are k − r independent variables
rather than k, a substantial reduction.

TABLE 9.1 Base Dimensions for Common Fluid and Flow Properties

Property Dimensions Property Dimensions
Acceleration Lt−2 Momentum M Lt−1

Angle Dimensionless Power M L2t−3

Angular momentum M L2t−2 Pressure M L−1t−2

Angular velocity t−1 Specific heat L2t−2T −1

Area L2 Specific weight M L−2t−2

Density M L−3 Strain Dimensionless

Energy M L2t−2 Stress M L−1t−2

Force M Lt−2 Surface tension Mt−2

Frequency t−1 Temperature T

Heat M L2t−2 Time t

Length L Torque M L2t−2

Mass M Velocity Lt−1

Modulus of elasticity M L−1t−2 Viscosity (dynamic) M L−1t−1

Moment of a force M L2t−2 Viscosity (kinematic) L2t−1

Moment of inertia (area) L4 Volume L3

Moment of inertia (mass) M L2 Work M L2t−2
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so �1 includes the pressure drop. Thus in pipe flow the theorem instructs us to think in
terms of a relationship between a dimensionless pressure drop and three other dimen-
sionless groups made up of the remaining physical parameters. We conclude that in per-
forming experiments on pipe flow, it is necessary to vary only the value of three dimen-
sionless groups rather than of the six physical parameters they contain.

EXAMPLE 9 .1

The drag force FD on a soccer ball is thought to depend on the velocity of the ball V ,
diameter D, air density ρ, and viscosity µ. Determine the number of Pi groups that can
be formed from these five parameters.

SOLUTION

We begin by writing FD = f (V, D, ρ, µ), and establishing that the total number of
variables is k = 5. The dimensions of these variables are

{FD} = M L

t2
, {V } = L

t
, {D} = L , {ρ} = M

L3
, and {µ} = M

Lt

Thus, the base dimensions are M, L, and t, and r = 3. The expected number of Pi groups
is k − r = 5 − 3 = 2.

EXAMPLE 9 .2

Suppose your company has a policy that engineers investigating the influence of an in-
dependent variable on a particular flow must use at least 10 different values of each
independent variable during testing. How many experiments would be required to
investigate the influence of the six independent variables for pipe flow listed in Eq. 9.1?
How many experiments are required if we make use of the Pi theorem with r = 3?

SOLUTION

If we require 10 experiments for each independent variable, we will need 10k experi-
ments to fully describe the influence of k independent variables. In the pipe flow prob-
lem, with k = 6, we would need to perform a million experiments. Once we understand
the power of the Pi theorem, however, we realize that we can collect equivalent data
with only 10k−r , or a thousand experiments. Will your knowledge of the Pi theorem save
your company time and money?
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The primary goal of DA is to determine the form of each dimensionless group predicted
by the Pi theorem. With experience, this may be done by inspection, since we know that
each group is dimensionless and that every valid physical parameter must appear in at
least one dimensionless group. In general, however, we recommend the use of the re-
peating variable method to construct dimensionless groups. It is quick and easy to im-
plement, and it provides the advantage of using a set procedure with less chance of error.
The required procedure, stated formally here, is explained in more detail in the subse-
quent example.

Repeating Variable Method
1. List all physical parameters, assigning one as the dependent variable, and ex-

press a relationship between this variable and the others in the form of Eq. 9.2.
Let k be the total number of variables, including the dependent variable.

2. Represent each variable in terms of its base dimensions, forming a base dimen-
sions table. Let r be the total number of different base dimensions needed.

3. Choose r independent variables to serve as repeating variables, making sure that
all base dimensions are included. There are (k − r) nonrepeating independent
variables left, with each appearing in a dimensionless Pi group.

4. Form a Pi group first for the nonrepeating dependent variable by multiplying it
by each repeating variable raised to a power. Choose the exponents of each of
the r repeating variables to make the overall product and resulting dependent Pi
group dimensionless. Repeat for the remaining (k − r − 1) nonrepeating inde-
pendent variables, forming a Pi group for each.

5. Check each Pi group to be sure it is dimensionless, and rearrange to obtain a
standard form if known.

6. Express the (k − r) Pi groups in the functional form of equation 9.3.

Let us now look at each of these steps in more detail by executing the complete pro-
cedure for the pipe flow shown earlier in Figure 9.2.

Step 1
We are told that the pressure drop �p depends on the pipe length L , diameter D, wall
roughness e, average velocity V̄ , liquid density ρ, and viscosity µ. The dependent vari-
able is �p, so the desired functional relationship between the physical parameters is
Eq. 9.1:

�p = f (L , D, e, V̄ , ρ, µ)

Counting all the physical parameters we see that k = 7.

Comments on Step 1: To simply list all the physical parameters that influence a flow
problem is deceptively difficult; yet this step is critical and usually a challenge for an in-
experienced engineer. We are required to list every fluid and flow property, geometric
parameter, and external agent that exerts an influence on the phenomenon of interest.
Constructing this list is guided by an understanding of the theoretical and practical

540 9 DIMENSIONAL ANALYSIS AND SIMILITUDE



9.3 REPEATING VARIABLE METHOD 541

aspects of fluid mechanics, and most importantly by experience. A review of published
work on the flow of interest is helpful.

If a noninfluential parameter is inadvertently included in a DA, an extra dimension-
less group containing that parameter will result. Experiments will, however, show the
extra group is superfluous and can be ignored. For example, if we had included gravity in
our pipe flow DA, we would have obtained an extra dimensionless group that would have
been shown by experiments to have no influence on �p. On the other hand, if an impor-
tant parameter is left out, the corresponding dimensionless group will be missing. The
effect of a missing group may not be discovered except in hindsight, when mysterious
variations in experimental data are finally understood. Therefore, we recommend that
you include every parameter in step 1 that can be reasonably expected to influence the
flow. This is why wall roughness is included for pipe flow. Does it seem reasonable that
the frictional pressure drop in a rough pipe might be different from that in a smooth pipe?

Be careful to avoid including redundant parameters in your parameter list. For ex-
ample, choosing to include both pipe diameter and cross-sectional area is inappropriate
because the effect of a change in the value of one of these parameters completely deter-
mines the change in the other. Tradition dictates that diameter be used in pipe flow. The
same thinking applies to including both the absolute viscosity µ and the kinematic vis-
cosity ν of a fluid along with the density. The two viscosities are not independent. We
recommend using µ rather than ν, but never both.

Step 2
We represented each variable in pipe flow in terms of base dimensions earlier. We there-
fore use those results to construct the following base dimensions table: 

	p L D e V̄ � �

M

t2 L
L L L

L

t

M

L3

M

t L

By inspection, the number of base dimensions used in the table is r = 3. Since there are
7 variables and 3 base dimensions, we anticipate finding a total of k − r = 7 − 3 = 4
dimensionless groups.

Comment on Step 2: It is usually straightforward to represent each physical parameter
in terms of its base dimensions and determine the total number of base dimensions in a
problem. Table 9.1 can be consulted as part of this process. The recommended default
set of base dimensions is M, L , t , with T included when needed in thermal problems.

Step 3
We must now choose r = 3 independent variables out of the set L , D, e, V̄ , ρ, µ to
serve as repeating variables, with only one stated constraint: that all base dimensions be
included. From the base dimensions table, it appears that a reasonable choice is
(D, V̄ , ρ). The remaining nonrepeating variables �p, L , e, µ will each appear in a di-
mensionless group.



Comments on Step 3: The set of repeating variables
shown is not the only possibility, so why pick these
three? For example, why not pick (L , V̄ , ρ),
(�p, e, D), or (L , V̄ , D)? The choice of repeating vari-
ables is restricted by certain requirements. First, each
base dimension must be represented among the repeat-
ing variables. Note that the (D, V̄ , ρ), (L , V̄ , ρ), and
(�p, e, D) sets satisfy this requirement, but the set
(L , V̄ , D) does not, since it doesn’t contain M. A sec-
ond requirement is that the dimensions of the repeating
variables be independent, meaning that the dimension
of one repeating variable should not be equal to that of
another raised to a power. The (�p, e, D) set fails this
test because e and D have the same dimension. The
third requirement is that the repeating variables not be
able to form a dimensionless group among themselves.
This is checked by inspection.

Both (D, V̄ , ρ) and (L , V̄ , ρ) satisfy the require-
ments for a valid set of repeating variables. How do we
choose from among several viable options? You should
select the set of repeating variables that results in the
traditional forms of dimensionless groups commonly
used in fluid mechanics (see Chapter 3). To understand
this directive, realize that virtually all dimensionless
groups generated by DA have already been generated
by engineers in one form or another. Thus, it makes
sense in communicating results to peers for us to use a
traditional form of each dimensionless group whenever
possible. For example, in pipe flow we expect to find
Reynolds number as one of the dimensionless groups.
Reynolds number for pipe flow is defined by using the
average velocity and the diameter of a pipe rather than
its length. The (D, V̄ , ρ) set will produce the tradi-
tional Reynolds number, but the (L , V̄ , ρ) set will not,
since L will appear in the Reynolds number rather
than D.

As a final comment, recall that the dependent vari-
able (in our example �p) may not serve as a repeat-
ing variable. The reason is that a dependent variable
chosen as a repeating variable will potentially appear
in every dimensionless group. When performing DA
in the context of the design or interpretation of
experiments, we want to isolate the effects of the inde-
pendent variables on the dependent variable, so the
latter must not appear in more than one dimensionless
group.
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At this point we pause to insert a word of
caution. Normally you can expect the Pi
theorem as stated to produce the correct
number of dimensionless groups. There are,
however, a few exceptions. Consider capil-
lary rise, the well-known phenomenon of a
liquid column rising in a tube inserted into
liquid as the result of surface tension (see
the discussion associated with Eq. 2.41).
The height of the column h is known to de-
pend on the tube diameter d, the surface
tension σ, and specific weight γ of the liq-
uid. Suppose we attempt to determine the
number of Pi groups that can be formed
from these four parameters. We begin by
writing h = f (d, σ, γ ) , and establishing
that the total number of variables is k = 4.
The dimensions of these variables are:

{h} = L , {d} = L , {σ } = M
t2

, and

{γ } = M
L2t2

Thus, the base dimensions are M, L,
and t, and r = 3. The expected number of
Pi groups is k − r = 4 − 3 = 1. However,
practical experience shows that we actually
need two Pi groups for this problem rather
than only one. What went wrong? The diffi-
culty results from the impossibility, in this
case, of picking three variables from which
a dimensionless group cannot be formed.
Thus, the third requirement described in
the comments on step 3 cannot be met. Try
it yourself. To complete the DA in a case
like this, we reduce r by one and use one
less repeating variable. In the capillary rise
case we reduce r from 3 to 2 and use only
two repeating variables, d and σ . These
include all the base dimensions but can-
not form a dimensionless group. This cor-
rectly results in the formation of two Pi
groups.
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Step 4
The first Pi group always involves the dependent variable. We form this group for pipe flow
by writing a product of the pressure drop with each of the repeating variables raised to a
power. Since we will pick these exponents to make the Pi group dimensionless, we have:

�1 = (�p)1(D)A(V̄ )B(ρ)C =
(

M

t2L

)1

(L)A

(
L

t

)B (M

L3

)C

= M0L0t0

Note that we have substituted the dimensions of each variable in the Pi group from the
base dimensions table. We can ensure that the first Pi group is dimensionless by equat-
ing exponents of each base dimension as follows:

(M)1+C = M0 , (L)−1+A+B−3C = L0 , and (t)−2−B = t0

The equations for the exponents are:

1 + C = 0, −1 + A + B − 3C = 0, and −2 − B = 0

and these are satisfied by choosing C = −1, B = −2, A = 0. Thus the first Pi group is

�1 = (�p)1(D)0(V̄ )−2(ρ)−1 = �p

ρV̄ 2

The remaining three Pi groups containing the three nonrepeating independent vari-
ables (L , e, µ) are constructed following the same procedure. The order in which the
remaining groups are created does not matter. The Pi group containing pipe length L is
constructed by writing

�2 = (L)1(D)A(V̄ )B(ρ)C = (L)1(L)A

(
L

t

)B (M

L3

)C

= M0L0t0

so the equations for the exponents are C = 0, 1 + A + B − 3C = 0, and −B = 0. By
inspection, A = −1, B = 0, and C = 0, so the second Pi group is

�2 = (L)1(D)−1(V̄ )0(ρ)0 = L

D

The next Pi group, containing wall roughness e, is constructed as follows:

�3 = (e)1(D)A(V̄ )B(ρ)C = (L)1(L)A

(
L

t

)B (M

L3

)C

= M0L0t0

The equations determining the required exponents are the same as those for pipe length,
since wall roughness and pipe length have the same dimensions. Thus the third Pi group is

�3 = (e)1(D)−1(V̄ )0(ρ)0 = e

D

The last Pi group, containing viscosity µ, is constructed as follows:

�4 = (µ)1(D)A(V̄ )B(ρ)C =
(

M

Lt

)1

(L)A

(
L

t

)B (M

L3

)C

= M0L0t0



The equations for the exponents are 1 + C = 0, −1 + A + B − 3C = 0, and
−1 − B = 0, so the resulting exponents are C = −1, B = −1, and A = −1. Thus the
final Pi group is

�4 = (µ)1(D)−1(V̄ )−1(ρ)−1 = µ

DV̄ ρ

The complete set of four Pi groups for pipe flow are

�1 = �p

ρV̄ 2
, �2 = L

D
, �3 = e

D
, �4 = µ

DV̄ ρ

Comment on Step 4: In this particular case, once pipe diameter has been selected as a
repeating parameter, it is possible to anticipate that the dimensionless groups containing
pipe length and wall roughness must simply involve the division of each by the pipe di-
ameter, since this immediately forms a dimensionless group. In effect, the pipe diameter
has been chosen as the length scale for this analysis. Thus you can form these groups by
inspection as indicated earlier. With experience, you may find that you can do the entire
DA this way.

Step 5
We now check each Pi group to be sure it is dimensionless, referring to the base dimen-
sions table as needed. In this case it is obvious that the second and third Pi groups are
dimensionless. Checking the other two, we have

{�1} =
{

�p

ρV̄ 2

}
= M/L t2

(M/L3)(L2/t2)
= M

L t2

L3

M

t2

L2
= 1

{�4} =
{

µ

DV̄ ρ

}
= M/L t

(L)(L/t)(M/L3)
= M

L t

1

L

t

L

L3

M
= 1

We conclude that all four Pi groups are dimensionless and that we have carried out the
procedure correctly. The next step is to rearrange individual Pi groups to put them into
standard form. In this case the fourth Pi group is the inverse of Reynolds number, so we
will invert it and write it as

�4 = ρV̄ D

µ

Comment on Step 5: To rearrange a Pi group, it is necessary to know the standard
forms of dimensionless groups in fluid mechanics. In Chapter 3 we discussed the im-
portant dimensionless groups in fluid mechanics and the context in which you are likely
to encounter them. You might wish to reread Section 3.2 at this time.

Step 6
The final step in a DA is to write a relationship between the dependent Pi group and the
remaining groups in the form of Eq. 9.3. For pipe flow, the relationship between pressure
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drop and the other physical parameters was originally expressed by Eq. 9.1 as

�p = f (L , D, e, V̄ , ρ, µ)

By using DA, we have discovered that this relationship can be expressed more com-
pactly as

�p

ρV̄ 2
= g

(
L

D
,

e

D
,

ρV̄ D

µ

)
(9.4)

Comments on Step 6: DA generally cannot tell us anything about the nature of the
functional relationship among Pi groups. The necessary additional information must
come from theory, experiment, intuition, or experience. For example, in pipe flow it is
known empirically that �p can be written as:

�p = ρ f
L

D

V̄ 2

2
(9.5a)

where the dimensionless parameter f , called the friction factor, is known from experi-
ments to be a function of the relative roughness e/D, and Reynolds number ρV̄ D/µ.
Thus we can rewrite Eq. 9.5a in a dimensionless form as

�p

ρV̄ 2
= 1

2

L

D
f

(
e

D
,
ρV̄ D

µ

)
(9.5b)

As you can see, this empirically based formula is consistent with the result of our DA
(Eq. 9.4). Notice also that the dependence of the dimensionless pressure drop on the di-
mensionless group L/D is linear. This is something DA alone could not predict. At this
point you might benefit from revisiting Section 3.3.1, where we presented the case study
on flow in a round pipe. In that section we simply gave you the required design formu-
las in the form of equations. Now it should be clear that those equations can be derived
by using DA.

The preceding analysis of pipe flow by means of the repeating variable method cer-
tainly looks long and unwieldy. This is because we have included comments about all
the things an engineer considers at each step. DA is normally a compact and straightfor-
ward procedure, as indicated by the following examples.

9.3 REPEATING VARIABLE METHOD 545

EXAMPLE 9 .3

In the following historical account, DA provided a critical insight into a wartime prob-
lem well in advance of a theoretical or intuitive understanding, and five years before a
first experiment could be performed. In 1940 an American explosives expert concluded
that the destructive effect of the release of energy through nuclear fission would not be
nearly as large as expected. G. I. Taylor, a leading British fluid mechanician, was asked
to determine the validity of this conclusion. Taylor was able to answer the question
rather easily by using DA. He set up the problem by assuming that the fireball in
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Figure 9.3 has a blast radius R at a time t∗ seconds after initiation and that the blast
radius depends only on the total energy E released by the bomb and on the initial
density ρ0 of the air in the atmosphere. See if you can recreate Taylor’s DA for this
problem.

SOLUTION

We apply the repeating variable method to implement the Buckingham Pi theorem by
means of the standard six-step procedure.

Step 1. We are told that the radius R of the fireball after the explosion depends on the
elapsed time t∗, total energy released E, and initial gas density ρ0. The desired func-
tional relationship between these physical parameters is R = f (E, ρ0, t∗). There are
four parameters, so k = 4.
Step 2. The base dimension table is:

The base dimensions are M, L, and t so r = 3 and we will have 4 − 3 = 1 dimension-
less groups.
Step 3. The only possible choice for the required set of 3 repeating variables is all three
independent variables E, ρ0, t∗. This selection includes all three base dimensions.
Step 4. The first and only Pi group in this problem is found by writing

�1 = (R)1(E)A(ρ0)
B(t)C = (L)1

(
M L2

t2

)A (
M

L3

)B

(t)C = M0L0t0

To obtain a dimensionless group we must have

(M)A+B = M0, (L)1+2A−3B = L0, and (t)−2A−C = t0

which gives the following equations for the exponents A + B = 0, 1 + 2A − 3B = 0,

and −2A − C = 0. Solving these we find A = − 1
5 , B = 1

5 , C = 2
5 . The single Pi

group in this problem is the dimensionless blast radius: �1 = R(ρ0)
1/5/E1/5(t∗)2/5 .

R E �0 t*

L
M L2

t2

M

L3
t

R

Figure 9.3 Schematic for Example 9.3.
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Step 5. Checking this group to see if it is dimensionless, we find

{�1} =
{

R(ρ0)
1/5

E1/5(t∗)2/5

}
= L(M/L3)1/5

(M L2/t2)1/5(t2/5)
= L2/5 M1/5

M1/5L2/5t0
= 1

So the dimensional analysis appears to be correct.
Step 6. There is only one Pi group here. With a little thought perhaps you can convince
yourself that in a problem with a single Pi group, dimensional consistency demands that
the single Pi group be equal to a dimensionless constant. Thus the relationship between
blast radius and the other physical parameters in this problem must be

�1 = R(ρ0)
1/5

E1/5(t∗)2/5
= C

where C is a dimensionless constant. Through further investigation Taylor determined
that this constant is approximately 1.0. The original New Mexico test had a 20 kiloton
(8 × 1013 J) yield, so E = 8 × 1013 J. At t∗ = 0.015 s after detonation, we can calcu-
late that R = 108 m by using an air density of ρ0 = 1.23 kg/m3. Compare this estimate
with the photograph in Figure 9.4.

Ground Ground

R

100 m.

Figure 9.4 Atomic fireball in New Mexico 0.015 s after ignition in 1945. Note the
scale and the fact that Taylor’s analysis was confirmed.

EXAMPLE 9 .4

Consider the open channel flow of water shown in Figure 9.5A. Under flow conditions
illustrated, a structure known as a hydraulic jump forms, causing a change of depth from
d1 upstream to d2 downstream as shown in the schematic Figure 9.5B. The downstream



548 9 DIMENSIONAL ANALYSIS AND SIMILITUDE

depth d2 is known to depend on the upstream depth d1, the upstream velocity V, and the
acceleration of gravity g, but (surprisingly) not on density and viscosity. Use DAto find the
number of dimensionless groups in this problem, and write a relationship between them.

SOLUTION

We apply the repeating variable method to implement the Buckingham Pi theorem by
using the standard six-step procedure.

Step 1. We are told that the downstream depth d2 in a hydraulic jump depends on the
upstream depth d1, velocity V, and the acceleration of gravity g. The desired functional
relationship between these physical parameters is d2 = f (d1, V, g). There are four pa-
rameters in all so k = 4.
Step 2. The base dimension table is:

The base dimensions are L, t so r = 2 and there will be 4 − 2 = 2 dimensionless groups.
Step 3. There are three choices for the two repeating variables: (d1, g), (d1, V ), or
(V, g). Each pair includes all base dimensions. We choose (d1, g), leaving V as the non-
repeating variable.
Step 4. The first Pi group in this problem contains the dependent variable d2, and is
found by writing

�1 = (d2)
1(d1)

A(g)B = (L)1(L)A

(
L

t2

)B

= L0t0

To obtain a dimensionless group, we must have (L)1+A+B = L0 and (t)−2B = t0, which
gives the following equations for the exponent: 1 + A + B = 0 and −2B = 0. By

d2 d1 V g

L L
L

t

L

t2

d1

d2

Flow, V

(B)

Figure 9.5 (A) Hydraulic jump caused by the flow over the spillway and (B) schematic illustration of the change
in depth.

(A)
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inspection we have A = −1, and B = 0, so the first Pi group is

�1 = d2

d1

The second Pi group containing V is found from

�2 = (V )1(d1)
A(g)B =

(
L

t

)1

(L)A

(
L

t2

)B

= L0t0

To obtain a dimensionless group we must have (L)1+A+B = L0 and (t)−1−2B = t0,
which yields 1 + A + B = 0 and −1 − 2B = 0. By inspection we have A = − 1

2 ,

B = − 1
2 , so the second Pi group is

�2 = V√
gd1

Comparing this with Eq. 3.7 we see that it is the Froude number.
Step 5. Checking these groups to see whether they are dimensionless, we see immedi-
ately that the first is. To check the second one we write

{�2} =
{

V√
gd1

}
= L/t

(L2/t2)1/2
= 1

So the dimensional analysis appears to be correct.
Step 6. There are two Pi groups, so in a hydraulic jump the relationship between down-
stream depth and the other physical parameters is

d2

d1
= g

(
V√
gd1

)

Thus we find that the depth ratio is solely determined by the Froude number.

CD/Dynamics/Reynolds Number: Inertia and Viscosity/Dynamic Simulation

CD/Video Library/Flow Past Cars

9.4 SIMILITUDE AND MODEL DEVELOPMENT

Experimental modeling is a fundamental tool in the design of fluid devices and systems,
and in the solution of many fluid mechanics problems. Experiments are used extensively
to validate the design of airplanes, ships, buildings, bridges, and harbors, where it is im-
portant to confirm that the device or system will perform as anticipated before incurring
the expense of construction. The large size of such engineering projects makes it



impractical and uneconomical to build full-scale prototypes of proposed designs. Thus,
the use of models becomes mandatory.

It is critical for an engineer to understand the issues involved in performing exper-
iments with a model rather than the actual device or system of interest. In most cases a
model is smaller than the actual device; however, it is sometimes prudent to build a
large-scale model of a device that is too small to permit measurements to be taken with
conventional sensors. In this section we discuss the design of scale model experiments
and the methods for using experimental data obtained from a model study to predict the
performance of a full-scale device or system.

There are three similarity conditions that must be met in an experiment using mod-
els. The model flow field must be geometrically, kinematically, and dynamically similar
to the full-scale prototype it is intended to represent. When all three conditions are satis-
fied, we achieve complete similarity between the model and full-scale flow. It is then pos-
sible to use the experimental results to predict what will occur with the full-scale device.
Let us now describe these conditions in more detail and explain how to achieve each one.

By definition, geometric similarity requires that a scale model have the precise
shape of the full-scale device or system of interest, with each of the model’s physical di-
mensions in a fixed ratio to the corresponding dimension of the full-scale prototype. For
example, a 1/10-scale model has each of its dimensions reduced by a factor of 10.
Achieving geometric similarity is the first condition needed to ensure that the fluid dy-
namic phenomena experienced in the full-scale flow are also present in experiments
conducted using the model. Although this looks like a straightforward requirement, it
may be impossible to reproduce the surface finish of a full-scale device in a small-scale
model. For example, the thousands of rivet heads of an aircraft wing are impossible to
incorporate into a wind tunnel model. It is up to the engineer to decide whether this loss
of perfect geometric similarity is important. The question to ask is, Does the absence of
the feature affect the flow field in a significant way? If it does not, there is no need for
concern. If it does, then the engineer must find a way to account for the effect of the
missing feature. The missing rivets on a model wing may affect the onset of turbulent
flow because the roughness of the model surface is different. Perhaps the model surface
could be roughened artificially to produce the missing flow disturbances. This potential
problem in using models is called scale effect.

The second condition, called kinematic similarity, is satisfied if the velocity vectors
in the model flow field have the same direction as those in the full-scale flow, with the
magnitudes of corresponding vectors related by a single velocity scale factor. The third
condition, dynamical similarity, is achieved if all forces in the model system have the
same direction as those in the full-scale device with the magnitudes of corresponding
forces related by a single force scale factor. It is not obvious how to achieve these re-
maining two conditions, but DA provides the necessary insight.

We are interested in performing experiments on a geometrically similar model in a
way that results in the achievement of complete similarity. This means that the set of ex-
perimental operating parameters must be picked so that kinematic and dynamic similar-
ity occur in the model flow field. To see how to pick these parameters, suppose a DA has
been performed on a full-scale device or system operating under the proposed design
conditions. The DA will yield a relationship between all relevant dimensionless groups
of the form given by Eq. 9.3:

�F S
1 = g

(
�F S

2 ,�F S
3 , . . . ,�F S

k−r

)
(9.6)
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and the proposed design conditions will yield full-scale values for each dimensionless
group. A DA performed on an experimental model under the same operating conditions
would yield an identical relationship

�M
1 = g

(
�M

2 ,�M
3 , . . . ,�M

k−r

)
(9.7)

but the dimensionless groups would likely take different values for the model and for the
full-scale device. Now suppose we adjust the experimental conditions so that each di-
mensionless group appearing in the function g of Eq. 9.7 has exactly the same value as
it would in Eq. 9.6 describing the full-scale device. That is, we design the experiment so
that the values of all the independent dimensionless groups are the same for the model
and full-scale flow:

�F S
2 = �M

2 , �F S
3 = �M

3 , and �F S
k−r = �M

k−r (9.8)

It can be shown that selecting the experimental conditions according to Eq. 9.8 guaran-
tees kinematic and dynamic similarity for a geometrically similar model. Thus, Eq. 9.8
embodies the rules for designing an experiment: use a geometrically similar model, and
pick a set of experimental conditions that causes each independent dimensionless group
to have the same value as in the proposed full-scale design.

How do we use experimental data from a properly designed experiment to predict the
behavior in the full-scale flow? If corresponding dimensionless groups on the right-hand

EXAMPLE 9 .5

The scale model of a prototype human-powered airplane is to be tested in a wind tun-
nel (see Figure 9.6). The design cruising speed of the plane is 20 mph, and it will have a
100 ft wingspan with a 4 ft chord (i.e., wing width in the flow direction). If the model is
tested at a tunnel velocity of 160 mph, at what geometric scale should the model be built
to maintain dynamic similarity? Assume the conditions of air in the wind tunnel are the
same as the atmosphere and that Reynolds number is the single important nondimen-
sional group.

SOLUTION

To maintain dynamic similarity, the Reynolds numbers of the prototype and model must
be equal. Thus we can write (

ρV L

µ

)
p

=
(

ρV L

µ

)
m

In this case, the length scale L is normally chosen as the chord. Because the density and
viscosity of air are the same for the prototype and model, the geometric scale of the
model is simply related to the velocity ratio by

geometric scale = Lm

L p
= Vp

Vm
= 20 mph

160 mph
= 1

8
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If the wing span for the human-powered vehicle is 100 ft, the model wing span must
be 12.5 ft.

Figure 9.6 The Gossamer Condor, the first human-powered air-
craft to demonstrate sustained, maneuverable flight, won a prize in
1977 for its developer, Paul MacCready.

EXAMPLE 9 .6

The model of a tidal channel in a coastline study is scaled to 1/100 of actual size. Fresh
water is to be used in place of seawater in the model. Assuming that the Reynolds num-
ber must be matched, what model velocity is needed to ensure dynamic similarity?
Will similarity also be achieved for free surface effects related to the Weber and Froude

side of the Eqs. 9.6 and 9.7 are identical, then the remaining dimensionless group must
have an identical value in the model and full-scale flow. Thus we can write

�F S
1 = �M

1 (9.9)

This is the desired relationship between dependent dimensionless groups, which permits
the results from an experiment to be applied to the full-scale device.

In many important applications, geometric similarity is achieved, but complete
kinematic and dynamic similarity are not possible. This type of scale effect occurs when
nongeometric Pi groups cannot be matched between the full-scale flow and a model. The
magnitude of influence of scale effects must be considered when one is designing model
tests. When scale effects cannot be avoided, care must be taken in interpreting results.
This is illustrated in Example 9.6.
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numbers? In your calculations, note that the appropriate velocity and length scales for
the actual tidal channel are V = 0.5 m/s and L = 10 m, respectively.

SOLUTION

To maintain dynamic similarity, the Reynolds number of the model must be the same
as that of the actual channel. For seawater (Appendix A) ρ = 1025 kg/m3 and
µ = 1.07 × 10−3 kg/(m-s), so

Re = ρV L

µ
= (1025 kg/m3)(0.5 m/s)(10 m)

1.07 × 10−3 kg/(m-s)
= 4.8 × 106

The length scale of the model channel is Lmodel = L (1/100) = (10 m/100) = 0.1 m.
For the fresh water in the model (Appendix A), ρ = 998 kg/m3 and µ =
1 × 10−3 kg/(m-s), so that the Reynolds number for the model is:

Rem =
(

ρV L

µ

)
m

= (998 kg/m3)Vm(0.1 m)

1 × 10−3 kg/(m-s)
= 4.8 × 106

Solving for Vm we obtain

Vm = (4.8 × 106)[1 × 10−3 kg/(m-s)]

(998 kg/m3)(0.1 m)
= 48 m/s

To check for similarity of surface effects, we must calculate the Weber and Froude num-
bers for the full-scale flow and the model. Surface tension for both seawater and fresh
water is found in Appendix A to be 7.28 × 10−2 N/m. The Weber numbers for the tidal
channel and the model are found by using Eq. 3.5a to be:

We = ρV 2L

σ
= (1025 kg/m3)(0.5 m/s)2(10 m)

7.28 × 10−2 N/m
= 3.5 × 104

and

Wem =
(

ρV 2L

σ

)
m

= (998 kg/m3)(48 m/s)2(0.1 m)

7.28 × 10−2 N/m
= 3.2 × 106

respectively. Thus, surface tension effects can be safely neglected for both the tidal
channel and model even though the Weber numbers do not exactly match. Next use
Eq. 3.3 to calculate Fr:

Fr = V√
gL

= 0.5 m/s√
(9.81 m/s2)(10 m)

= 5 × 10−2

Frm =
(

V√
gL

)
m

= 48 m/s√
(9.81 m/s2)(0.1 m)

= 48



9.5 CORRELATION OF EXPERIMENTAL DATA

Suppose you have been assigned to conduct an experimental program involving liquid
flow in a horizontal pipe as discussed in Section 9.1. From your preliminary study of the
physical system, you conclude that the pressure drop depends on the pipe length and di-
ameter, wall roughness, average velocity, liquid density, and viscosity. Furthermore, you
postulate a relationship among these variables as given by Eq. 9.1:

�p = f (L , D, e, V̄ , ρ, µ)

Thus, you anticipate that the pressure drop is a function of six independent variables.
Next you decide on some reasonable range for each of the independent variables and
elect to split that range into 10 equal intervals. As discussed in Example 9.2, the result
is, that 10 tests for each of six independent variables will require a total of 106 tests! DA
shows that the relationship among the variables may be expressed in dimensionless
groups by Eq. 9.4:

�p

ρV̄ 2
= g

{
L

D
,

e

D
,

ρV̄ D

µ

}

If we propose 10 tests to explore the effect of each of three dimensionless groups, there
will need to be 103 tests. This is still a large number of experiments to conduct, but a fac-
tor of a thousand less than needed originally.

Another benefit of using dimensionless groups becomes evident if we consider
what it means to vary the value of a dimensionless group rather than the value of a spe-
cific variable. Consider the group L/D. The influence of this group could be explored
by changing pipe diameter, pipe length, or a combination of the two. By electing to vary
length while holding diameter constant, we can avoid difficulties in making connections
to pumps, control valves, and so on. Similarly, we would have difficulty finding liquids
of different densities and viscosities. But by examining Re, we conclude that we can use
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There is a three-order-of-magnitude difference in Fr between the full-scale channel
(subcritical), and the model (supercritical). This difference will cause a significant scale
effect in the model’s ability to mimic the wave propagation characteristics of the full-
scale channel. In fact, it is impossible to match both Re and Fr for a scale model when
using the same liquid, and in this case we would notice that a velocity of 48 m/s based
on Re is impractical. Models of this type are usually used to investigate wave propaga-
tion and designed to match Fr rather than Re. Similarity-based on Fr results in
Vm = 5 × 10−2 m/s and Rem = 5 × 103. At this lower velocity, the Weber number is
Wem = 3.4, which does not match the value in the full-scale channel but is still satisfac-
tory. This problem illustrates the care required in the design of experimental fluid
mechanics models.



water for all tests in a pipe of fixed diameter, exploring the range of Reynolds numbers
by changing the average velocity rather than the fluid type. Working with dimensionless
groups not only reduces the number of tests but makes them far more convenient and
practical.

Finally, note that the use of dimensionless groups greatly enhances our ability to in-
terpret experimental data presented in the form of plots. For example, consider the
Moody diagram shown in Figure 9.7. This compact diagram contains the entire spec-
trum of information for flow in a round horizontal pipe. It is essentially a graphical pre-
sentation of Eq. 9.5b

�p

ρV̄ 2
= 1

2

L

D
f

(
e

D
,

ρV̄ D

µ

)

with friction factor, f, plotted as a function of Re, for various values of the relative
roughness.
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EXAMPLE 9 .7

The results of experiments using glycerin and very smooth 36 in. long tubes with diam-
eters of 0.25, 0.5, and 0.75 in. are summarized in the following data table.

D = 0.25 in. D = 0.5 in. D = 0.75 in.

V̄ (ft/s) 	 p (lbf/ft2) V̄ (ft/s) 	 p (lbf/ft2) V̄ (ft/s) 	 p (lbf/ft2)

0.44 3046 1.01 1748 2.01 1546

1.02 7062 1.98 3427 4.11 3162

1.51 10454 3.00 5192 6.02 4631

1.97 13638 4.04 6992 7.89 6069

2.50 17308 5.02 8688 9.95 7654

3.03 20977 5.96 10315 12.07 9285

3.54 24508 7.01 12133 14.01 10777

3.99 27623 7.97 13794 15.87 12208

4.44 30738 9.02 15611 17.98 13831

5.03 34823 9.99 17290 20.02 15400

Since flow in a very smooth tube does not depend on relative roughness, a DA sug-
gests that the relationship between dimensionless groups is

�p

ρV̄ 2
= g

(
L

D
,
ρV̄ D

µ

)

Correlate the preceding set of flow data. That is, first plot the data in raw form (�p vs V̄ )
and then replot the data in nondimensional form.

Correlation of Experimental Data
Glycerin @68°F
Density 2.44 slugs/ft3

Viscosity 3.13 × 10−2 (lbf-s)/ft2

Re (D = 0.2) L/(D × Re) 	 p/(�V̄2) Re (D = 0.5) L/(D × Re) 	 p/(�V̄2) Re (D = 0.7) L/(D × Re) 	 p/(�V̄2)
0.71 201.5142 6448.453 3.28 21.94709 702.3068 9.79 4.901395 156.8446
1.66 86.92768 2781.686 6.43 11.19523 358.2474 20.02 2.397032 76.70504
2.45 58.71936 1879.019 9.74 7.388852 236.4433 29.33 1.636512 52.36839
3.20 45.00824 1440.264 13.12 5.486772 175.5767 38.44 1.248644 39.95662
4.06 35.46649 1134.928 16.31 4.415649 141.3008 48.48 0.990131 31.68419
4.92 29.26278 936.409 19.36 3.719221 119.0151 58.81 0.816222 26.11911
5.75 25.04696 801.5026 22.77 3.162134 101.1883 68.26 0.703198 22.50233
6.48 22.22211 711.1076 25.89 2.781249 88.99998 77.32 0.620782 19.86501
7.21 19.96987 639.0359 29.30 2.45749 78.63967 87.60 0.547931 17.5338
8.17 17.62748 564.0794 32.45 2.218875 71.00399 97.54 0.492098 15.74714

Figure 9.8 Spreadsheet data used for the analysis of Example 9.7.
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SOLUTION

Using data from Appendix A and conversion factors from Appendix C we find for
glycerin at 68°F, ρ = 2.44 slugs/ft3 and µ = 3.13 × 10−2 (lbf-s)/ft2 . Then we use a
spreadsheet to calculate the product of the inverse Reynolds number, the geometric
variable L/D, and �p/(ρV̄ 2) (see Figure 9.8). A plot of the raw data is shown in Fig-
ure 9.9A and a similar plot of the correlated data is shown in Figure 9.9B. Note that the
data are linear and collapse into a single curve when correlated by means of the dimen-
sionless variables.
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Figure 9.9 Plots of (A) raw data and (B) correlated data for Example 9.7.

9.6 APPLICATION TO CASE STUDIES

An understanding of DA and the role of dimensionless groups enables an engineer to
employ the substantial database of previous empirical results describing a fluid flow of
interest. The case studies presented earlier in Chapter 3, Sections 3.3.1 to 3.3.6, repre-
sent a varied selection of this type of information. Now that we have dimensional analy-
sis tools available, let us briefly revisit those case studies and see what the methods in-
troduced in this chapter can tell us about the sources of the empirical formulas.

9.6.1 DA of Flow in a Round Pipe

In our first case study we considered steady, fully developed incompressible flow in a
straight, horizontal, round pipe (refer again to Figure 9.2). Our dimensional analysis of



this problem earlier in this chapter led to a relationship between pressure drop and
the various parameters describing pipe flow as given by Eq. 9.4: �p/ρV̄ 2 =
g(L/D, e/D, ρV̄ D/µ). After using Eq. 9.5a, i.e., �p = ρ f (L/D)(V̄ 2/2), to intro-
duce the concept of a friction factor, we found that the result of the DA could be written
as Eq. 9.5b: 

�p

ρV̄ 2
= 1

2

L

D
f

(
e

D
,
ρV̄ D

µ

)

If you compare these results with the formulas in the case study (Section 3.3.1), you will
see that they are identical. In that case study we noted that to arrive at a useful engi-
neering methodology to analyze pipe flow it is sufficient to provide information on how
to obtain the friction factor in laminar and turbulent flow. Thus we see that the combi-
nation of dimensional analysis and experimental data allows us to understand how to an-
alyze this important problem.

9.6.2 DA of Flow through Area Change

In presenting this case study in Chapter 3 we began by noting that the total change in pres-
sure as a flow passes through an area change may be thought of as the sum of a pressure
change associated with the change in average flow velocity, and a frictional pressure drop.
We postulated that a model for this effect in turbulent flow can be written as Eq. 3.20,

p2 − p1 = [ 1
2ρ
(
V̄ 2

1 − V̄ 2
2

)]− �pF

where p2 is the downstream pressure, p1 is the upstream pressure, and �pF is the fric-
tional pressure loss. The velocities V̄1 and V̄2 in this formula are the average velocities
in the upstream and downstream sections. Next we stated that we can calculate �pF , by
using DA and empirical results and gave formulas for the cases of sudden expansions
and sudden contractions. Suppose we now perform a DA on the case of a sudden ex-
pansion, the geometry of which was illustrated in Figure 3.12C. We can begin the DA by
assuming that the frictional pressure loss �pF is related to the other variables in the
problem by a functional relationship of the form �pF = f (A1, A2, ρ, V̄1), where A1 is
the inlet area, A2 is the outlet area, ρ is the density, and V̄1 is the average inlet velocity.
Note that we do not have to include V̄2 in our analysis, since a mass balance shows that
V̄1 A1 = V̄2 A2; thus the inclusion of V̄2 is redundant. According to the Buckingham
Pi theorem, there are two dimensionless groups. By using the repeating variable method to
define these groups, we can write �pF/ρV̄ 2

1 = g(A1/A2). Next we introduce the cus-
tomary factor of 1

2 to the ρV 2
1 term (to create a kinetic energy–like term) and define a

dimensionless loss coefficient KE for the enlargement as the ratio KE = �pF/( 1
2ρV̄ 2

1 ).
The DA then shows that KE is a function of the area ratio of the enlargement. If KE is
known, the frictional pressure drop can be calculated from

�pF = KE
1
2ρV̄ 2

1

which is Eq. 3.22 as given in the case study. Thus, as noted in Chapter 3, the problem re-
duces to finding the enlargement loss coefficient, and we presented the necessary data in
Figure 3.13.

558 9 DIMENSIONAL ANALYSIS AND SIMILITUDE
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A dimensional analysis of the sudden contraction leads to a similar expression
for the pressure drop. After defining the contraction loss coefficient KC as
KC = �pF/( 1

2ρV̄ 2
2 ), we see that the DA leads a formula for calculating the pressure

drop for the contraction as given by Eq. 3.23:

�pF = KC
1
2ρV̄ 2

2

Once again we see that DA and experimental correlations allow us to obtain very useful
engineering results without having to apply more complex theoretical methods.

9.6.3 DA of Pump and Fan Laws

In our case study on pump and fan laws, we noted that it is customary to use a parame-
ter called total head H in the design of pipe and duct systems. This total head, with di-
mensions of energy per unit mass (or equivalently {L2t−2}), is a measure of the total
load seen by a pump or fan moving fluid through the system. The power P required by
the pump or fan is also an important parameter in the design of these systems. Thus in
analyzing the performance of a pump or fan, the head H and power P are both consid-
ered to be important dependent variables. A DA of these fluid machines therefore
employs H and P as two separate dependent variables that are functions of the other
physical parameters.

We begin our DA of pumps and fans with the observation that for geometrically
similar machines of a given type, only one length scale is required to specify the ma-
chine geometry. This length scale is conveniently taken to be the diameter D of the im-
peller or other rotating element. We assume that the head and power of a fan or pump
depends on ω, the angular speed of the impeller, the volume flowrate, and the density
and viscosity of the fluid. Thus we write

H = f1(D, Q, ω, ρ, µ) and P = f2(D, Q, ω, ρ, µ)

The head and power are both valid candidates for DA, so we will use the head here as an
example, leaving the analysis of power as a homework assignment.

The steps in a DA of the head delivered by a pump or fan are as follows.

1. We are told that the head H depends on the impeller diameter D, angular speed
ω, the volume flowrate Q, density ρ, and viscosity µ. The desired functional
relationship is: H = f1(D, Q, ω, ρ, µ).

2. The base dimension table is:

H D Q � � �

L2

t2 L
L3

t

1

t

M

L3

M

t L

The base dimensions are M, L , t , so r = 3, and there will be 6 − 3 = 3 dimen-
sionless groups.

3. Choose ρ, ω, D as the three repeating variables. This set includes all base
dimensions.



4. Form the Pi groups as usual:
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1 = H �A�BDC 
2 = Q�A�BDC 
3 =��A�BDC

M0 L0t0 =
(

L2

t2

)(
M

L3

)A (1

t

)B

(L)C M0 L0t0 =
(

L3

t

)(
M

L3

)A (1

t

)B

(L)C M0 L0t0 =
(

M

Lt

)(
M

L3

)A (1

t

)B

(L)C

with the following result: 

�1 = H

ω2 D2
, �2 = Q

ω D3
, and �3 = µ

ρ ω D2

5. Checking these groups shows that each is dimensionless.

6. The DA shows that the relationship of dimensionless head to the remaining
groups is

H

ω2 D2
= g1

(
Q

ω D3
,
ρD2ω

µ

)
(9.10a)

where we have inverted and rearranged the third Pi group.

A similar application of DA to the proposed relationship involving power yields

P

ρω3 D5
= g2

(
Q

ω D3
,
ρD2ω

µ

)
(9.10b)

It is easy to see that these are identical to Eqs. 3.24a and 3.24b of the corresponding case
study in Section 3.3.3.

In pump and fan engineering, the dependent dimensionless groups H/ω2 D2 and
P/ρω3 D5 are known as the head and power coefficients, respectively. The independent
dimensionless group Q/ω D3 is known as the flow coefficient, while the group
ρD2ω/µ can be considered to be a form of the Reynolds number, since the product Dω

has the dimension of velocity.
From our discussions of the scaling of two geometrically similar systems, we know

that all independent dimensionless groups must be the same. However, for typical
pumps and fans it is found that the performance is independent of Re as defined earlier.
Thus in comparing two pumps or fans in the same family the appropriate scaling law is:

Q1

ω1 D3
1

= Q2

ω2 D3
2

(9.11a)

When the flow coefficients of two machines are equal, then the head and power coeffi-
cients are also equal:

H1

ω2
1 D2

1

= H2

ω2
2 D2

2

and
P1

ρω3
1 D5

1

= P2

ρω3
2 D5

2

(9.11b)
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These are the equations known as the pump laws or fan laws that we presented
in the earlier case study as Eqs. 3.25. Not only do they relate the performance of two
differently sized machines in the same family, but they also allow us to determine how
a given machine will operate under a new set of operating conditions. We can now see
that the form of these equations is predicted by dimensional analysis.

9.6.4 DA of Flat Plate Boundary Layer

Recall that the case study on a flat plate boundary layer (Section 3.3.4) was concerned
with the characteristics of a flow over a flat plate. The resulting boundary layer, in which
the fluid velocity changes smoothly from zero on the plate to its freestream value, may
be laminar or turbulent. We noted that the quantity of greatest interest in the flat plate
boundary layer is the wall shear stress. If we know how the wall shear stress varies along
the plate, we can calculate the frictional force applied by the fluid to the plate, and use
this model to analyze flow over relatively flat surfaces, such as the hulls of ships. The
geometry of the boundary layer was illustrated in Figure 3.18. Observations suggest that
in an incompressible flow at high Re, the shear stress τW on the wall in a flat plate
boundary layer depends on the distance from the leading edge x , the freestream veloc-
ity V, and the fluid density and viscosity. Thus for the first step in the DA we propose a
relationship between these variables of the form:

τW = f (x, V, ρ, µ)

A DA using the repeating variable method reveals that this relationship can be ex-
pressed as

τW
1
2ρV 2

= g

(
ρV x

µ

)

As noted in the case study, it is customary in boundary layer analysis to define the skin
friction coefficient Cf by means of Eq. 3.27 as Cf = τW /( 1

2ρV 2), and to define a
Reynolds number based on the distance x from the leading edge, using Eq. 3.28
(Rex = ρV x/µ) . From the DA we can immediately conclude that there is a relationship
between the skin friction coefficient and the Reynolds number of the form given in
Eq. 3.29:

Cf = Cf (Rex)

To complete the case study it was only necessary to provide theoretical and empirical
results for the skin friction coefficient in laminar and turbulent boundary layers.

CD/Special Features/Charts & Graphs/Drag Curves on Spheres & Cylinders



9.6.5 DA of Drag on Cylinders and Spheres

As you know, one of the most important problems in fluid mechanics is to determine
the drag on a body immersed in a moving fluid. In the case study of Section 3.3.5 we
discussed the drag in steady, incompressible flow for two very simple geometries: an
infinitely long circular cylinder, and a sphere. Suppose we apply a DA to the steady flow
over a cylinder. We are interested in the drag force FD on a cylinder of diameter D and
length L . The drag will depend on these two geometric parameters as well as on the
velocity, density, and viscosity of the fluid. We summarize the proposed relationship
mathematically as FD = f (D, L , V, ρ, µ). According to the Buckingham Pi theorem
there are three dimensionless groups. Using the repeating variable method we find that
the relationship between these groups is FD/D2V 2ρ = g(Re, L/D), where the Re is
based on the cylinder diameter. The standard way to present this result is to first write it
as FD = CD

1
2ρV 2 DL , which is Eq. 3.34. The DA predicts that CD = CD(Re, L/D).

This result was given in the case study as Eq. 3.36. All that remains is to provide the nec-
essary experimental correlation for the drag coefficient for a cylinder and we are imme-
diately able to do calculations in practical problems.

The DA of flow over a sphere is also straightforward. The drag force FD on a
smooth sphere of diameter D will depend on this single geometric parameter as well as
on the fluid velocity, density, and viscosity. We summarize the proposed relationship as

FD = f (D, V, ρ, µ)

According to the Buckingham Pi theorem, there are only two dimensionless groups.
From the repeating variable method, the relationship between these groups is found to be

FD

D2V 2ρ
= g(Re)

where the Re is based on the sphere diameter. The drag coefficient for a sphere is defined
by Eq. 3.39 as CD = FD/[ 1

2ρV 2(π D2/4)], and the DA shows that since there is
only one length scale for a sphere, the drag coefficient is only a function of 
Re: CD = CD(Re). This result is Eq. 3.40 of the case study.

9.6.6 DA of Lift and Drag on Airfoils

In the case study of Section 3.3.6 we presented results that allow us to calculate the lift
and drag forces on airfoil shapes exposed to a uniform incompressible flow. To perform
a DA on this problem, we can recall that the standard nomenclature for airfoil geometry
is illustrated in Figure 3.23. In steady subsonic flow the lift and drag forces, FL and FD ,
respectively, are each found to depend on the thickness t, span b, chord length c, and
angle of attack α. They also depend on the freestream velocity V, and on the fluid den-
sity and viscosity. We begin the DA as usual by writing the dependence of lift and drag
on the physical parameters as

FL = f (t, b, c, V, ρ, µ, α)

FD = f (t, b, c, V, ρ, µ, α)
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The remainder of the DA is straightforward and leads to the following standard rela-
tionships among dimensionless groups

FL
1
2ρV 2bc

= g1

(
Rec,

t

c
,

b

c
, α

)

FD
1
2ρV 2bc

= g2

(
Rec,

t

c
,

b

c
, α

)

where Rec is the Reynolds number based on chord length. The lift and drag coefficients
for an airfoil section are given in the case study as

CL = CL

(
Rec,

t

c
,

b

c
, α

)
and CD = CD

(
Rec,

t

c
,

b

c
, α

)

which leads to the formulas FL = CL
1
2ρV 2bc and FD = CD

1
2ρV 2bc, as given in the

case study by Eqs. 3.43a and 3.43b. The DA shows that the dependence of the lift and
drag coefficients on the various dimensionless groups. Once again we see that a DA ex-
plains why engineering formulas take their precise and customary forms.

In this section we hope we have persuaded you of both the power and the usefulness
of the tools you learned in this chapter. As completely new and different flows are en-
countered by engineers, there is no doubt that dimensional analysis and similitude will
continue to be key tools in understanding the relationships between various flow
parameters.

9.7 SUMMARY

Dimensional analysis (DA) makes use of the principle that all terms of a physical equa-
tion must have the same dimensions. Thus DA can be used to obtain a fundamental un-
derstanding of physical systems without the need for complex mathematics. The set of
dimensionless groups predicted by the Buckingham Pi theorem gives engineers the abil-
ity to classify fluid mechanics problems, apply known design formulas, and choose the
most effective solution methods for new problems. DA also helps ensure that experi-
mental models faithfully represent the intended physical system. The correlation and ef-
ficient compilation of experimental data is enhanced by DA.

The repeating variable method is used to determine the form of the dimensionless
groups required to describe a physical system. This method can be used to analyze any
fluid mechanics problem using the following procedure:

1. List the variables that influence the problem as expressed.

2. Represent each variable in terms of its basic dimensions.

3. Determine the total number of basic dimensions, r.

4. Choose r variables from among those listed in step 1 to be the repeating
variables.
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PROBLEMS

Section 9.2

9.1 The speed of propagation of a gravity
wave in deep water, V, is known to be a func-
tion of the wavelength λ, the water depth d,
the fluid density ρ, and the local gravitational
constant g. Determine the number of Pi
groups that can be formed from these five
parameters.

9.2 When a valve on a pipe is suddenly
closed, a wave is created that results in the

phenomenon known as water hammer. The
pressure associated with a wave of this type
can be substantial and may cause damage to
the pipe. The maximum pressure developed,
pmax, is known to be a function of the fluid
density ρ, the bulk modulus Ev , and the initial
flow velocity V. Determine the number of Pi
groups that can be formed from these four
parameters.

9.3 The wall shear stress τw in a boundary
layer is known to be a function of the fluid

5. Form each � group by multiplying one of the nonrepeating variables by all of
the repeating variables with each raised to an exponent to make the product
dimensionless.

6. Express the � groups in their common functional form.

Experimental modeling is a critically important approach in the solution of com-
plex fluid mechanics problems. In the design of an experiment, complete similarity
should be maintained by imposing the conditions of geometric, kinematic, and dynamic
similarity. To be geometrically similar, all the model’s linear dimensions must be related
to those of the full-scale prototype by a single geometric scale factor. Kinematic simi-
larity requires that all the velocity vectors in the flow field for the model have the same
direction as those for the full-scale prototype, and the magnitudes of the vectors must be
related by a single velocity scale factor. Dynamic similarity requires that all the forces
in the model system have the same direction, and their magnitudes must be related by
a single force scale factor to those of the prototype. Kinematic and dynamic similitude
requires that the value of each of the dimensionless � groups of the model be equal to
the corresponding value for the full-scale prototype.

DA is a useful tool in the design and execution of experiments and the subsequent
correlation of experimental data. For example, in horizontal pipe flow if 10 tests are re-
quired for each of six independent variables, a total of a million tests would be needed
to completely examine the cross-dependence of each variable. By using DA, the num-
ber of independent variables can be reduced to three, thus reducing the number of tests
to one thousand. A single diagram by Moody was used to present the experimental data
for this problem.

This chapter concludes with the application of DA to each of the six case studies:
fully developed flow in pipes and ducts, flow through sudden area change, pump and fan
laws, flat plate boundary layer, drag on bluff bodies (cylinders and spheres), and lift and
drag on airfoils. These case studies represent a substantial amount of the material with
which an engineer could practice design after a single course in fluid mechanics.
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density ρ and viscosity µ, the fluid free
stream velocity Vmax, and the distance from
the leading edge of the body, x. Determine the
number of Pi groups that can be formed from
these five parameters.

9.4 The power input, P, to a pump is known
to be a function of the volume flowrate Q,
density ρ, impeller diameter d, angular veloc-
ity ω, and fluid viscosity µ. Determine the
number of Pi groups that can be formed from
these six parameters.

9.5 The heat flux, q, from a hot body in a
stationary fluid is known to be a function of
the fluid’s thermal conductivity k, and kine-
matic viscosity, ν, the temperature difference
�T , the length of the object L, and the prod-
uct of the local gravitational constant and the
thermal expansion coefficient for the fluid,
gβ . Determine the number of Pi groups that
can be formed from these seven parameters.

9.6 The height of the capillary rise, h, in a
crack is known to be a function of the surface
tension of the fluid σ , the contact angle θc, the
width of the gap between the plates w, the fluid
density, ρ, and the gravitational constant, g.
Determine the number of Pi groups that can be
formed from these six parameters.

9.7 The boundary layer thickness, δ, asso-
ciated with flow over a smooth flat plate of
low speeds is known to be a function of the
fluid free stream velocity Vmax, the fluid den-
sity and viscosity ρ and µ, and the distance
from the leading edge of the plate, x. Deter-
mine the number of Pi groups that can be
formed from these five parameters.

9.8 The lift force, F, on a rocket is known
to be a function of its dimensions L and D, the
angle of attack, α, the rocket velocity, V, and
the fluid properties density, viscosity, and
sound speed, ρ, µ, and c. Determine the num-
ber of Pi groups that can be formed from these
eight parameters.

9.9 A civil engineering structure known as
a weir is shown in Figure P9.1. A weir is an
obstruction placed in an open channel that can
be used to determine the flowrate in the chan-
nel. The flowrate Q is known to vary with the
width of the weir (the dimension perpendicu-
lar to the view shown in Figure P9.1) w, the
upstream water height above the weir h, and
the local gravitational constant g. Determine
the number of Pi groups that can be formed
from these four parameters.

h

Q

Weir (of width w)

Figure P9.1

9.10 The diameter, D, of fluid droplets pro-
duced by a liquid spray nozzle is known to be
a function of the nozzle diameter d, the liquid
velocity at the nozzle exit V, and the fluid
properties density, viscosity, and surface ten-
sion, ρ,µ, and σ . Determine the number of
Pi groups that can be formed from these six
parameters.

9.11 In many sports the spin on a roughly
spherical ball can have a huge impact on the
game. In the case of a golf ball, the rate of spin
is related to the torque experienced by the ball
as a result of its motion through the air. The
torque, T, in turn is a function of the velocity
and angular velocity of the ball, V and ω, the
fluid properties ρ and µ, the diameter of the
ball D, and the diameter of the “dimples”
on the ball, d. Determine the number of Pi
groups that can be formed from these seven
parameters.
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9.12 The firing of art objects made from
clay can be accelerated using a kiln equipped
with a fan designed to produce forced convec-
tion heat transfer. In this situation the heat
flux q is known to be a function of the air
properties, ρ,µ, and cp , the airspeed V, the
temperature difference �T , and a characteris-
tic length scale L. Determine the number of
Pi groups that can be formed from these seven
parameters.

9.13 The power per unit area, PA , trans-
mitted by a sound wave is known to be a func-
tion of the wave speed V, the fluid density ρ,

and amplitude and frequency of the wave,
A and ω. Determine the number of Pi groups
that can be formed from these five parameters.

9.14 The time τ required to drain a cylin-
drical tank through a circular hole in its bot-
tom is known to be a function of the diameters
of the tank and hole, D and d, the fluid proper-
ties ρ and µ, the local gravitational constant g,
and the initial height h0, of the fluid in the
tank. Determine the number of Pi groups that
can be formed from these seven parameters.

9.15 The thrust (force in the direction of
motion, F) from a marine propeller is known
to be a function of the velocity of the boat V,
the diameter and angular velocity of the pro-
peller, D and ω, the fluid properties ρ,µ, and
p, and the local gravitational constant g.
Determine the number of Pi groups that can
be formed from these eight parameters. 

Section 9.3

(The problems in this section have corre-
sponding problems in Sections 9.2 and 9.4)

9.16 Use the repeating variable method to
determine the functional form of each of the Pi
groups associated with ocean wave described
in Problem 9.1. Verify that each Pi group is
dimensionless. Identify the names of each
dimensionless Pi group, if any, and rewrite the
relationship among Pi groups, using the appro-
priate symbols for each standard group.

9.17 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the water hammer
wave described in Problem 9.2. Verify that
each Pi group is dimensionless. Identify the
names of each dimensionless Pi group, if any,
and rewrite the relationship among Pi groups
using the appropriate symbols for each stan-
dard group.

9.18 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the wall shear stress
described in Problem 9.3. Verify that each
Pi group is dimensionless. Identify the names
of each dimensionless Pi group, if any, and
rewrite the relationship among Pi groups
using the appropriate symbols for each stan-
dard group.

9.19 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the pump described
in Problem 9.4. Verify that each Pi group is
dimensionless. Identify the names of each
dimensionless Pi group, if any, and rewrite the
relationship among Pi groups using the appro-
priate symbols for each standard group.

9.20 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the heat flux de-
scribed in Problem 9.5. Verify that each
Pi group is dimensionless. Identify the names
of each dimensionless Pi group, if any, and
rewrite the relationship among Pi groups,
using the appropriate symbols for each stan-
dard group.

9.21 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the caPillary rise
described in Problem 9.6. Verify that each
Pi group is dimensionless. Identify the names
of each dimensionless Pi group, if any, and
rewrite the relationship among Pi groups,
using the appropriate symbols for each stan-
dard group.



9.22 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the boundary layer
thickness described in Problem 9.7. Verify that
each Pi group is dimensionless. Identify the
names of each dimensionless Pi group, if any,
and rewrite the relationship among Pi groups,
using the appropriate symbols for each stan-
dard group.

9.23 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the lift force on a
rocket described in Problem 9.8. Verify that
each Pi group is dimensionless. Identify the
names of each dimensionless Pi group, if any,
and rewrite the relationship among Pi groups
using the appropriate symbols for each stan-
dard group.

9.24 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the weir described
in Problem 9.9. Verify that each Pi group is
dimensionless. Identify the names of each
dimensionless Pi group, if any, and rewrite the
relationship among Pi groups, using the ap-
propriate symbols for each standard group.

9.25 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the spray nozzle
described in Problem 9.10. Verify that each
Pi group is dimensionless. Identify the names
of each dimensionless Pi group, if any, and
rewrite the relationship among Pi groups,
using the appropriate symbols for each stan-
dard group.

9.26 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the golf ball
described in Problem 9.11. Verify that each
Pi group is dimensionless. Identify the names
of each dimensionless Pi group, if any, and
rewrite the relationship among Pi groups,
using the appropriate symbols for each stan-
dard group.
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9.27 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the kiln described in
Problem 9.12. Verify that each Pi group is
dimensionless. Identify the names of each
dimensionless Pi group, if any, and rewrite the
relationship among Pi groups, using the ap-
propriate symbols for each standard group.

9.28 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the sound wave
described in Problem 9.13. Verify that each
Pi group is dimensionless. Identify the names
of each dimensionless Pi group, if any, and
rewrite the relationship among Pi groups,
using the appropriate symbols for each stan-
dard group.

9.29 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the draining tank
described in Problem 9.14. Verify that each
Pi group is dimensionless. Identify the names
of each dimensionless Pi group, if any, and
rewrite the relationship among Pi groups
using the appropriate symbols for each stan-
dard group.

9.30 Use the repeating variable method to
determine the functional form of each of the
Pi groups associated with the marine propeller
described in Problem 9.15. Verify that each
Pi group is dimensionless. Identify the names
of each dimensionless Pi group, if any, and
rewrite the relationship among Pi groups,
using the appropriate symbols for each stan-
dard group.

Section 9.4

9.31 Define each of the following terms:
(a) Geometric similarity
(b) Kinematic similarity
(c) Dynamic similarity

9.32 If a thin rectangular plate of length L
and width w is oriented perpendicular to the
direction of flow of a fluid moving at velocity



V, the drag D on the plate is found to be a
function of L , w, V, and the fluid properties
ρ and µ. Application of the Buckingham
Pi theorem results in the equation

D

ρwV 2
= f

{w

L
, Rew

}

where the subscript on the Reynolds number
indicates that the characteristic dimension for
Re is w. Assume that L , w, V, ρ, and µ are
known for the prototype system and that the
width of the model, wm , has been specified.
(a) Describe the conditions required for there

to be similitude between the model and
the prototype system. 

(b) Derive an expression for the length of the
model plate, Lw .

(c) Derive an expression for the fluid velocity
in the model system, Vm .

(d) Derive an expression for the drag on the
prototype plate, D.

9.33 Your company is planning to build a
pipeline to transport gasoline from the refin-
ery to a field of storage tanks. The parameters
for the prototype system are a pipe diameter
of 1 m, with a flow velocity of 0.5 m/s at 25°C.
The model system will use water at STP with
a geometric scaling factor of 1 : 20. What fluid
velocity is required in the model system to
guarantee kinematic similarity in the form of
equal Reynolds numbers?

9.34 For wind tunnel testing of new golf
ball dimple patterns it is known that similarity
of both the Re and St numbers is necessary.
Experiments with a representative sampling of
members of the PGA tour indicate prototype
parameters of V = 250 ft/s and ω = 900 s−1.
The diameter of a golf ball is 1.68 in. The
company president wants to use a video clip
from your tests in a commercial and has told
you to use a geometric factor of 4 : 1 (the
model “ball” will be larger than the proto-
type). Determine the required model fluid
velocity and model angular velocity.

9.35 You have been asked to design a
blimp for your company. It is to cruise
through air at STP at a speed of 10 mph.
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Experience suggests that the drag on the
blimp created by the pressure distribution is of
primary importance.
(a) What dimensionless parameters do you

think should be matched to achieve simi-
larity between prototype and model for
this problem?

(b) Using a 1 : 20 scale model, determine the
velocity you will use in your model. State
any assumptions.

9.36 The pressure drop through an oil
(SAE 30W at 20°C) supply line at a service
station is to be modeled using the flow of
water at 20°C through an identical length of
tubing. The required oil velocity in the proto-
type is known to be 35 cm/s.
(a) Use Reynolds number similarity to find

the velocity of the model fluid.
(b) Use Euler number similarity to predict the

pressure drop in the prototype line given
that the pressure drop in the model was
0.05 psi.

9.37 An airplane wing with a 2 m chord is
designed to fly through standard atmosphere
at an elevation of 8 km and a velocity of
850 km/h. The wing is to be tested in a water
tank at STP. What fluid velocity is necessary
in the model to ensure Reynolds number sim-
ilarity? What other dimensionless groups
might be important in this flow?

9.38 You are in charge of testing a 1:50 scale
model of a flat bottom barge. The prototype
fluid is seawater at 20°C, and your analysis tells
you that you must obtain similarity of the
Reynolds and Froude numbers. What character-
istics must your model fluid possess? What fluid
would you recommend using for your model?

9.39 In a certain flow situation it is known
that both surface tension effects and cavitation
may be important. The prototype fluid is gaso-
line at 20°C and the model fluid is water at
20°C. The prototype operates at 101 kPa and
the vapor pressure of gasoline under these
conditions is 55.1 kN/m2. If the model system
must operate at pressures between 101 kPa
and 400 kPa, determine the appropriate range
of scaling factors for the model.



9.40 Analysis suggests that to predict flow
characteristics in a canal, it is vital that Froude
number similarity be maintained. If the model
scale is 1:100, and the fluid velocity in the
canal is estimated to be 7 ft/s, what fluid ve-
locity should be used in the model? A col-
league points out that because the prototype is
only 6 ft deep, the depth of the model will be
less than 0.75 in. In this situation the Weber
number might be important. If the prototype
flow involves water at STP, what characteris-
tics must the model fluid posses to satisfy both
Fr and We similarity?

9.41 The wind tunnel testing for the first
airplane to break the sound barrier, the Bell
X-1, employed a small scale model of about
1/25 scale. What velocity for the model at
sea-level conditions is required to maintain
dynamic similarity with the actual aircraft at
M = 1 and 40,000 ft? What is the Mach num-
ber for the model?

Section 9.5

9.42 An experiment to investigate the drag
force on smooth spheres consists of dropping
stainless steel (ρ = 8010 kg/m3) balls of dif-
ferent diameter in glycerin at 20°C. The time
for the balls to fall between two lines 25 cm
apart is recorded. It is assumed that the balls are
falling at constant velocity such that the drag
force is FD = Vballg(ρball − ρglycerin ). Plot
CD versus Re based on the following data:

D (cm) 	 t (s)
1.0 13,020
1.5 2,545
2.0 805
2.5 329
3.0 159
3.5 86
4.0 51
4.5 33
5.0 21

9.43 The experiment described in Problem
9.42 is repeated in water. Plot CD versus Re
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based on the following data:

D (cm) 	 t (s)
1.0 105
1.5 11.2
2.0 8.0
2.5 5.2
3.0 4.0
3.5 3.0
4.0 2.5
4.5 2.1
5.0 1.8

Section 9.6

9.44 Use the repeating variable method to
obtain the expression �pF/ρV 2

1 = g(A1/A2)

from the equation �pF = f (A1, A2, ρ, V1).

9.45 The manufacturer of a room air condi-
tioner for motel rooms has added a sudden
contraction of 8 in. to 6 in. in the round inter-
nal duct. Each unit provides 200 ft3/min of
supply air. The electric operating power re-
quired accommodate this modification is esti-
mated as 1.25Q�pF and costs $0.07/kW-h.
How much will this design modification cost a
100-room motel each year? Assume air at
standard conditions and that each unit oper-
ates 8 h/day.

9.46 Use the repeating variable method to
verify Eq. 9.10b.

9.47 Fill in the missing steps of the DA
leading to the equation FD/ 1

2 ρV 2 DL =
g(Re, L/D) for a cylinder.

9.48 Fill in the missing steps of the DA
leading to the equation FD/D2V 2ρ = g(Re)
for a sphere.

9.49 Fill in the missing steps of the DA
leading to the equation FL/ 1

2 ρV 2bc =
g1(Rec, t/c, b/c, α) for the lift on an airfoil.

9.50 Fill in the missing steps of the DA
leading to the equation FD/ 1

2 ρV 2bc =
g2(Rec, t/c, b/c, α) for the drag on an airfoil.
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10.1 Introduction
10.2 Lagrangian Kinematics

10.2.1 Particle Path, Velocity, Acceleration
10.2.2 Lagrangian Fluid Properties

10.3 The Eulerian–Lagrangian Connection
10.4 Material Lines, Surfaces, and Volumes
10.5 Pathlines and Streaklines
10.6 Streamlines and Streamtubes
10.7 Motion and Deformation
10.8 Velocity Gradient
10.9 Rate of Rotation

10.9.1 Vorticity
10.9.2 Circulation
10.9.3 Irrotational Flow and Velocity Potential

10.10 Rate of Expansion
10.10.1 Dilation
10.10.2 Incompressible Fluid and Incompressible Flow
10.10.3 Streamfunction

10.11 Rate of Shear Deformation
10.12 Summary
Problems

10.1 INTRODUCTION

Suppose you are assigned to investigate the possibility of dust, mildew, spores, bacteria,
and other debris accumulating in a building’s heating, ventilating, and air-conditioning
(HVAC) system. This is important because the accumulation of allergens like these may
cause respiratory discomfort. Experience suggests that deposits of airborne materials
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Region of sudden
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TURBULENT FLOW THROUGH A SUDDEN AXISYMMETRIC EXPANSIO

FIDAP 8.6.2
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Figure 10.1 (A) HVAC duct layout that includes a sudden expansion. (B) Streamlines in turbulent
flow in sudden expansion. Only the top half of the axis-symmetric flow is shown and the streamlines
correspond to time-averaged velocities.

occur in regions of slow or recirculating flow, so you are to review the HVAC design and
identify any regions in which allergens might accumulate. Now consider the proposed
duct layout for an HVAC return line illustrated in Figure 10.1A. Will regions of slow or
recirculating flow occur with this layout? Wouldn’t it be nice to be able to “see” the
corresponding flow in this duct section so that you could answer the flow question be-
fore the ducting was installed? Flow visualization is the tool that can help you with this
sort of task.

(B)
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To determine whether slow or recir-
culating flow exists in the proposed duct
layout, you need to know more about the
detailed flow structure at various loca-

tions. An experienced engineer is often able to predict
flow structure from the geometry and flowrate, or this
information may be acquired from a computer flow
simulation. For example, consider the sudden area
change in the return line in Figure 10.1. Predicting the
pressure drop in an area change was discussed in a case
study in Section 3.3.2, but nothing was said there about
flow structure. A computational fluid dynamics (CFD)
analysis of this geometry shows that fluid does tend
to recirculate in the region just downstream of the
expansion plane. In this recirculation zone, shown in

Figure 10.1B, particles carried along by the fluid may settle out and create a site for the
growth of mold and mildew. Thus, a CFD visualization of the flow field is helpful in
deciding whether it is necessary to modify the design.

CD/Video library/flow past a back step

CD/Special features/flow visualization

Several case studies in Chapter 3 contain
empirical results that are applicable to the
design and analysis of certain features of
an HVAC duct section like the one we are
considering, and additional relevant infor-
mation can be found in the applications
chapters of this text. Although we could use
those methods to size the fan for our duct
system, we cannot answer detailed ques-
tions about the flow field or predict particle
deposition without flow visualization. This
further illustrates why analytical, experi-
mental, and computational approaches to
the solution of problems are all important in
fluid mechanics.

Flow visualization is widely used in a variety of fluid mechanics applications. It is
helpful whenever there is a need to understand the detailed structure of a flow field: how
fluid moves, if and where boundary layers separate, whether recirculation is present, and
many other questions involving the velocity field. Although CFD can often be a cost-
effective approach for visualizing a flow, an engineer should also consider obtaining the
required information from a physical experiment. Carefully designed flow visualization
experiments can produce a wealth of information, with the following advantage: there is
no uncertainty about an underlying mathematical model.

The choice between computation and experiment is based on engineering judg-
ment. Some flow problems do not lend themselves to experimentation. Consider what
might be involved in modeling lava flow in the lab or the flow of interstellar gas
approaching a black hole. Other flow problems are entirely new, with no solutions avail-
able in the literature to guide the development of a new computational model. Fortu-
nately, most flow problems are amenable to the use of both approaches. The thought
processes involved in making this decision are illustrated in Example 10.1.

The elements of flow visualization presented in this chapter are applicable irre-
spective of whether a flow visualization is based on a physical experiment, an analytical
solution, or a computational simulation. Figure 10.2 illustrates the experimental flow
visualization process, in which a fluid entity (a point, line, surface or volume in a flow)
is marked with smoke, dye, suspended solid tracer particles, tiny helium or hydrogen
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Figure 10.2 Experimental flow visualization using (A) dye and (B) hydrogen bubbles.

EXAMPLE 10 .1

Consider each of the flow situations described and decide whether you would use a com-
putational analysis, experiments, or both to predict the flow characteristics.

A. Predict the reentry aerodynamics of a probe entering the atmosphere on Jupiter.

B. Investigate a manufacturer’s claim that their new golf ball will add 10 yards to
your drive.

C. Predict lift and drag for the wing of a next-generation passenger airplane.

D. Analyze the deposition of an airborne toxin in the human respiratory system.

SOLUTION

A. Owing to the difficulty in reproducing atmospheric conditions on Jupiter and
achieving the high reentry velocity, it might be difficult to achieve similitude in
an experiment. Thus, it seems reasonable to simulate this flow with a computa-
tional model. It is likely, however, that some experiments will be required
because of uncertainties in the CFD model and the high cost of failure.

B. An experimental approach seems appropriate, since it is easy to establish the
relevant test conditions. Since driving distances vary with any golfer, however,
statistical methods will be required to permit confidence in the experimental re-
sults. This suggests the use of a device that simulates a golf swing and strikes
the ball in a reproducible manner. A golf ball manufacturer might also decide to
do some computational modeling to predict how a change in dimple pattern
influences drag, since it will be expensive to manufacture golf balls with a range
of dimple patterns. Only the patterns that yield favorable computational results
would be manufactured and tested.

(B)(A)
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C. Aerodynamics is a well-established field of fluid dynamics, and many excellent
computational codes for predicting flow over a wing are in routine use. The
analysis and design of a new wing shape would be carried out first on the com-
puter with selected experiments to verify certain features of the best new design.

D. One cannot learn about the spread of a toxin in the human respiratory system
by exposing volunteers to the toxin, and it may be unethical to carry out such a
study in animals. This project appears to be a prime candidate for computational
simulation or perhaps an experiment that uses a benign tracer material. Intersub-
ject variability in the structure of the lung must be carefully considered.

bubbles, or other materials. The next step is to record an image of the marked fluid entity
at one or more time intervals, to permit the investigators to deduce some characteristic
of the fluid motion of interest. This creates a visual record of the flow, which an engineer
can analyze to better understand the underlying physical processes. Tracking a fluid
entity and analyzing the resulting record can also be carried out with an analytical or
computational solution.

The first half of this chapter is designed to teach you how to exploit basic features of
both the Lagrangian and Eulerian descriptions of fluid mechanics for use in applying and
interpreting a variety of flow visualization techniques. In the next section we begin by
discussing what can be learned about a flow by applying concepts from the Lagrangian
description of a fluid.

After completing our introduction to the subject of flow visualization we turn our
attention in Sections 10.7 through 10.11 to an analysis of flow structure. Flow structure
can be defined as a coherent organization and relationship between the values of veloc-
ity at a number of neighboring spatial points. This structure is best understood by con-
sidering the effect of a velocity field on a fluid element, a small volume of fluid of arbi-
trary shape that always contains the same fluid particles. In a nonuniform flow, different
parts of a fluid element have different velocity vectors. A fluid element therefore moves
and deforms as fluid particles within the element change their relative positions over
time. This behavior is not only the key to understanding flow structure, but also gives
rise to the stress–(rate of strain) response of the fluid.

An example of a flow structure that clearly exhibits a coherent relationship between
the values of velocity at a number of neighboring points is shown in Figure 10.3A. The
distinct oval “spot” is readily recognized as part of Jupiter’s “landscape.” This atmos-
pheric region is believed to be an enormous vortex or storm that has lasted for hundreds
of years. On a smaller scale, the human eye readily identifies the distinct arrangement of
a hurricane in the satellite image shown in Figure 10.3B. The flows you encounter every
day, from those in the atmosphere or ocean to flows in pumps, pipes, and other engi-
neering devices also exhibit flow structure. In many of these cases the structure is not
visible to the eye, but reveals itself when the velocity field is examined in detail.

CD/Videolibrary/The great red spot of Jupiter & Videolibrary/Everyday flows
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CD/Kinematics/Kinematics of points and fluid particles

CD/Kinematics/Kinematics of points and fluid particles/Particle kinematics

10.2 LAGRANGIAN KINEMATICS

Kinematics is the study of motion without regard for the forces involved or how the mo-
tion is created. From rigid body dynamics you know that the mathematical connection
between the position, velocity, and acceleration of a point mass is made with a time de-
rivative. The same is true for a fluid described in the Lagrangian model. Owing to the
deformable nature of a fluid, however, there are features of Lagrangian fluid kinematics
that you did not encounter in the study of rigid bodies.

The general motion of a rigid body consists of translation of the center of mass and
rotation about the center of mass. If we know the translational velocity vector U(t) and
the angular velocity vector �(t), we can use these two vectors to completely define the
motion of every particle in the rigid body. What is the corresponding situation for a mov-
ing fluid? Well, there is no overall orientation for a fluid, so there is no need for an an-
gular velocity vector. However, since the fluid is deformable, each fluid particle under-
goes a distinct motion that must be tracked separately. Therefore, a complete Lagrangian
description of motion consists of knowing the position of all fluid particles as a function
of time, plus any additional information needed to establish the thermodynamic state of
each fluid particle. The particle velocity and acceleration may be calculated by taking
the time derivative of the position similar to a rigid body.

10.2.1 Particle Path, Velocity, Acceleration

Figure 10.3 (A) An ancient storm on Jupiter (spot). (B) A storm on Earth.

(A) (B)

Consider a Cartesian coordinate system spanning the space occupied by fluid at a par-
ticular reference time t0 as shown in Figure 10.4A. Suppose we focus attention on a



single one of the many fluid particles in this space and
assign an initial position vector to this particle:

X0 = X0i + Y0j + Z0k (10.1)

where (X0, Y0, Z0) are its spatial coordinates at time t0.
At time t, the particle has moved to a new location (Fig-
ure 10.4B) given by its position vector:

X = X (t)i + Y (t)j + Z(t)k (10.2)

where X (t), Y (t), Z(t) are functions of time that pro-
vide this particle’s spatial coordinates at time t. Notice
that if we know the position vector of a fluid particle,
we know where it is going and where it has been. This
is the essential idea behind the Lagrangian description,
and it explains why the position vector X is referred to
as the particle path or particle trajectory.

To define the motion of a volume of fluid, we must
define the particle path for each of the large number of
fluid particles contained in that volume (Figure 10.4B).
We can account for every fluid particle without using a

separate particle path for each one by noting that two fluid particles cannot physically
occupy the same spatial location at the same initial time t0. The Lagrangian particle path
of Eq. 10.2 is therefore modified to account for all fluid particles in a flow by using
(X0, Y0, Z0) and time t as independent variables, and writing the particle path in vector
form as

X = X (X0, Y0, Z0, t)i + Y (X0, Y0, Z0, t)j + Z(X0, Y0, Z0, t)k (10.3)

Note that the three Cartesian components of this vector are defined by the functions

X = X (X0, Y0, Z0, t), Y = Y (X0, Y0, Z0, t), and Z = Z(X0, Y0, Z0, t)
(10.4a–c)

In interpreting Eq. 10.3 we say that X is the position at time t of the fluid particle
with initial position (X0, Y0, Z0) at time t0. Since the identity of each fluid particle is
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Although the Lagrangian description is
used in numerical simulations of certain
flow problems, and in flow visualization, we
shall not derive or solve the Lagrangian
equations of motion in this introductory
textbook. One difficulty in the Lagrangian
description lies in the need to model the
forces of interaction between fluid parti-
cles, and between fluid particles and
boundaries. Although there is a good un-
derstanding of molecular interactions in
liquids and gases, a model that directly de-
scribes the interactions of fluid particles is
lacking. Thus, the most common way to
obtain the governing equations of fluid
mechanics in the Lagrangian description is
to transform the Eulerian forms of the
same governing equations; for this task,
engineers use relationships developed
later in this chapter.

X0
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Z0
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Figure 10.4 (A) Lagrangian fluid particles at time t0. (B) The same particles at a later time t.
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EXAMPLE 10 .2

Consider the laminar flow through a channel driven by a pressure gradient as illustrated
in Figure 10.5A. The particle paths for this flow are given by

X = X0 +
[

h2(p1 − p2)

2µL

][
1 −

(
Y0

h

)2
]

(t − t0), Y = Y0, and Z = Z0

where 2h is the channel height, and the pressures are measured a distance L apart as
shown. Consider the fluid particle initially located at X0 = x1, Y0 = 0, Z0 = 0 at time
t0 as shown in Figure 10.5B. Where will this particle be at time t1 = t0 + 4µL/

[h(p1 − p2)]? Where will the particle initially located at X0 = x1, Y0 = h/2, Z0 = 0
be located at time t1?

y

x
z

1.5h

0.5h

2h

L

(B)
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h

h

h

(A)

x1 x2

p1 p2

Figure 10.5 Schematic for Example 10.2: (A) laminar flow through a channel driven by a pressure gradient and 
(B) particle paths for this flow.

SOLUTION

Examining the particle paths, we see that the Y and Z coordinates of a fluid particle can-
not change, but the X coordinate changes in time and depends on the initial coordinate
Y0. We are asked first for the future position of a fluid particle that is initially located on
the channel centerline at X0 = x1, Y0 = 0, Z0 = 0. To determine the future position, we
enter the specified initial values X0 = x1, Y0 = 0, Z0 = 0 and desired time
t1 = t0 + 4µL/[h(p1 − p2)] into the three components of the particle path to obtain

X = (x1) +
[

h2(p1 − p2)

2µL

][
1 −

(
0

h

)2
][

4µL

h(p1 − p2)

]

= (x1) +
[

h2(p1 − p2)

2µL

]
(1)

[
4µL

h(p1 − p2)

]
= x1 + 2h

Y = 0 and Z = 0

Thus, the location of this fluid particle at time t1 is given by the vector

X = (x1 + 2h)i + 0j + 0k
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specified by its initial position, we refer to (X0, Y0, Z0) as the identity variables. There
is a unique value of these variables for each fluid particle, so Eq. 10.3 (or 10.4a–10.4c)
describes the motion of an entire fluid volume.

CD/Kinematics/Kinematics of points and fluid particles/Kinematics of many particles

We can determine the sequence of points in space occupied by a selected fluid
particle by advancing the time variable in the Lagrangian position vector. By taking a
sufficiently large number of particles and using Eq. 10.3 to track each one through time,
we can see how the fluid moves as time evolves. For example, Figure 10.6 shows how
an initially vertical line of particles in the parallel plate flow of Example 10.2 would
advance in equal time steps. Notice how the velocity of each particle determines its po-
sition relative to its neighbors. Can you see why the Lagrangian position vector X is re-
ferred to as the particle path?

To plot each particle position in a sequence at a number of fixed time intervals, we
follow the procedure illustrated in Example 10.2 considering each new time in turn for

We see that the particle has moved the equivalent of one channel height to the right in
this amount of time as shown in Figure 10.5B. Note that since this flow is described by
Y = Y0 and Z = Z0, the values of these two coordinates never change for any fluid
particle.

The location of the second particle at time t1 is found using the same procedure to
be

X =
(

x1 + 3

2
h

)
i +
(

h

2

)
j + 0k

We see that as expected, this particle remains at its initial elevations Y0 = h/2,

Z0 = 0. It has moved in the X direction, but not as far as the first particle. Why is that?
From the velocity profile in Figure 10.5B we see that the velocity at the initial location
of the second particle is less than that at the initial location of the first. If we check for
the future location of fluid particles located initially on either wall (Y0 = +h or −h),
we find that these particles do not move at all. This is consistent with the no-slip, no-
penetration boundary conditions on the channel walls.

x

y

z

Figure 10.6 Particle paths for laminar
channel flow.



It is natural to follow the motion of a rigid body by keeping our eyes focused on the
moving body rather than by focusing on a region in space through which the rigid body
passes. (Recall in Section 1.3.4 the example of people’s heads turning in unison when
watching a tennis match.) Our inclination to track moving objects suggests that the
Lagrangian particle path is an instinctive and satisfying way to model fluid motion. In a
fluid flow, the presence of a large number of fluid particles makes visualization more dif-
ficult than observing a single tennis ball; but if you have observed debris blown around
by the wind, you have a sense of what a visualization of fluid flow in the Lagrangian
description is like.

We saw in Example 10.2 that the particle path allows us to determine the future
location of any fluid particle of known identity given by its initial location. In some ap-
plications we would like to be able to determine the location at an earlier time
t∗ = t0 − �t of a certain fluid particle. This information is also provided by the particle
path, Eq. 10.3, for this equation applies at any desired time, even at a time t∗ ≤ t0. We
find the desired past location at time t∗ by inserting t = t∗ into the particle path.

It is sometimes convenient to have an expression that gives the initial position of a
fluid particle as a function of its current position. This representation, called the inverse
particle path, is given in vector form as

X0 = X0(X, Y, Z , t)i + Y0(X, Y, Z , t)j + Z0(X, Y, Z , t)k (10.5)

and has three Cartesian components given by the functions

X0 = X0(X, Y, Z , t), Y0 = Y0(X, Y, Z , t), and Z0 = Z0(X, Y, Z , t) (10.6a–c)

The inverse particle path (Eq. 10.5) tells us that the particle now at position X at time t
was at initial position X0 at time t0. In principle, we can find the inverse particle path an-
alytically if we know the particle path, and vice versa. If the particle paths are complex,
however, this inversion may not be possible to carry out analytically.

The inversion process may be illustrated for a uniform flow in the X direction given
by

X = X0 + U∞(t − t0), Y = Y0, and Z = Z0

The inverse particle paths are found in this case by isolating the identity variables to
obtain

X0 = X − U∞(t − t0), Y0 = Y, and Z0 = Z

Since the inversion process is deceptively simple in this case, be sure to study Exam-
ple 10.3, which is slightly more difficult.
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a given particle, then doing the same thing for the desired number of different particles.
The same process is followed if an analytical solution is available. In that case we might
write a short computer code or use one of the popular symbolic codes to produce and
plot the points.
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EXAMPLE 10 .3

Find the inverse particle paths for the channel flow of Example 10.2. Show that the
initial position of the fluid particle located at X = (2h)i + 0j + 0k at time
t = t0 + 4µL/[h(p1 − p2)] is X0 = 0i + 0j + 0k.

SOLUTION

The process begins by inspecting the particle paths. As given earlier, these are

X = X0 +
[

h2(p1 − p2)

2µL

][
1 −

(
Y0

h

)2
]

(t − t0), Y = Y0, and Z = Z0

We immediately note that two of the inverse functions are available by inspection as

Y0 = Y and Z0 = Z

Isolating the X0 variable in the remaining function, we have

X0 = X −
[

h2(p1 − p2)

2µL

][
1 −

(
Y0

h

)2
]

(t − t0)

We are not finished, however, since the identity variable Y0 occurs in the right-hand side.
We must replace this identity variable, since the inverse function is only allowed to be a
function of (X, Y, Z , t). In general, the final step in developing an inverse function is to
get rid of any identity variables, and this can be difficult if highly complex functions are
involved. We do it here by substituting for Y0 using the previously determined inverse
Y0 = Y . The final component of the inverse is then

X0 = X −
[

h2(p1 − p2)

2µL

][
1 −

(
Y

h

)2
]

(t − t0)

To find the initial position of the indicated particle, we substitute the current position
X = (2h)i + (0)j + 0k and current time t = t0 + 4µL/[h(p1 − p2)] into the inverse
functions to obtain

X0 = 2h −
[

h2(p1 − p2)

2µL

][
1 −

(
0

h

)2
][

4µL

h(p1 − p2)

]
= 2h − 2h = 0

Y0 = Y = 0 and Z0 = Z = 0

The initial position of this particle is X0 = 0i + 0j + 0k as stated.



There are some engineering problems for which
the Lagrangian particle paths provide invaluable infor-
mation. For example, consider the automotive situation
shown in Figure 10.7. To determine whether there is
any possibility of carbon monoxide entering the pas-
senger compartment through a vent or open window,
you might want to know where the fluid particles leav-
ing the exhaust pipe go. The particle path provides the
required information. On the other hand, if we know
carbon monoxide is entering the passenger compart-
ment at a particular location, the inverse particle path
allows us to backtrack along the particle trajectories to
determine the origin of these fluid particles. Does this
explain why a disaster response team trying to warn
local residents of a moving toxic gas cloud would pre-
fer to have flow information in the form of particle
paths? Suppose another team was responsible for trying
to identify the source of the toxic material. Would they
prefer to know the inverse particle paths? If you an-
swered yes to both questions, you are correct.

As shown conceptually in Figure 10.8, the Lagrangian fluid velocity
V = V(X0, Y0, Z0, t) is defined to be the time rate of change of the position of the fluid
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The utility of these ideas on
tracking fluid particles is lim-
ited by the occurrence of
turbulence in many flows of

interest. Although the idea of fluid particle
tracking is sound, and works well in lami-
nar flows, we never have sufficient infor-
mation in a turbulent flow to track particles
for more than a very short period of time.
Flow visualization techniques normally use
a short time interval to avoid this difficulty.
Modern CFD codes attempt to compen-
sate for the effects of turbulence in ran-
domly perturbing the path of a fluid parti-
cle (or any other type of particle carried
along in the flow) by introducing a statisti-
cal model for the randomizing effects of
turbulence. How successful this approach
actually is remains an open question.

Figure 10.7 Car exhaust.

V(X0, Y0, Z0, t)

X(X0, Y0, Z0, t)
X(X0, Y0, Z0, t 	 �t)
�t 0

i
k

j

Figure 10.8 Definition of the Lagrangian
velocity vector.



particle whose identity is defined by its initial position (X0, Y0, Z0). The velocity vector
is represented in vector form as

V = U(X0, Y0, Z0, t)i + V (X0, Y0, Z0, t)j + W (X0, Y0, Z0, t)k (10.7)

where the three Cartesian components are

U = U(X0, Y0, Z0, t), V = V (X0, Y0, Z0, t), and W = W (X0, Y0, Z0, t)
(10.8a–c)

By definition, the Lagrangian velocity vector is the time rate of change of position.
Thus, it may be obtained from the particle path by taking a time derivative. It is cus-
tomary to write this relationship in vector form as 

V = dX
dt

(10.9)

rather than use a partial time derivative. This does not create confusion provided you re-
member the time derivative is taken for a specific fluid particle having a fixed set of
identity variables. On a component basis we have

U = d X

dt
, V = dY

dt
, and W = d Z

dt
(10.10a–c)

The Lagrangian acceleration vector A = A(X0, Y0, Z0, t) is represented in
Cartesian coordinates as

A = Ax(X0, Y0, Z0, t)i + Ay(X0, Y0, Z0, t)j + Az(X0, Y0, Z0, t)k (10.11)
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EXAMPLE 10 .4

Find the velocity and acceleration in a uniform flow in the X direction for which the par-
ticle paths are given by: X = X0 + U∞(t − t0), Y = Y0, and Z = Z0 .

SOLUTION

From Eqs. 10.10a–10.10c, the velocity is defined by U = d X/dt, V = dY/dt,
and W = d Z/dt . Taking derivatives of the particle path functions, we obtain:

U = d X

dt
= d

dt
(X0 + U∞(t − t0)) = U∞, V = dY

dt
= d

dt
(Y0) = 0

and

W = d Z

dt
= d

dt
(Z0) = 0

Thus, the velocity vector is V = U∞i + 0j + 0k, and, since this velocity is independent
of time, acceleration is zero. The results are consistent with the description of these par-
ticle paths as a uniform flow.
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EXAMPLE 10 .5

Find the velocity and acceleration in the channel flow of Example 10.2. The particle
paths are given by

X = X0 +
[

h2(p1 − p2)

2µL

][
1 −

(
Y0

h

)2
]

(t − t0), Y = Y0, and Z = Z0

SOLUTION

From Eqs. 10.10a–10.10c, the velocity is defined by U = d X/dt, V = dY/dt,
and W = d Z/dt . Taking derivatives of the particle path functions, we have

U = d X

dt
= d

dt

{
X0 +

[
h2(p1 − p2)

2µL

][
1 −

(
Y0

h

)2
]

(t − t0)

}

=
[

h2(p1 − p2)

2µL

][
1 −

(
Y0

h

)2
]

V = dY

dt
= d

dt
(Y0) = 0 and W = d Z

dt
= d

dt
(Z0) = 0

Thus the velocity vector is

V =
[

h2(p1 − p2)

2µL

][
1 −

(
Y0

h

)2
]

i + 0j + 0k

We note that the velocity is zero on the channel walls as expected, and has a maximum
value of V = {[h2(p1 − p2)]/2µL}i + 0j + 0k on the channel centerline.

According to Eq. 10.13, the three Cartesian components of the acceleration vector
are related to the particle path by second time derivatives:

Ax = d2 X

dt2
, Ay = d2Y

dt2
, and Az = d2 Z

dt2

We could also use Eq. 10.12 and write the three components of acceleration in terms of
a time derivative of velocity as

Ax = dU

dt
, Ay = dV

dt
, and Az = dW

dt

Applying the latter approach to the velocity just given, we find by inspection
A = 0i + 0j + 0k. The Lagrangian acceleration is zero in this channel flow.



and defined by the first time derivative of velocity

A = dV
dt

(10.12)

or, equivalently, by the second time derivative of particle path

A = d2X
dt2

(10.13)

Notice that the definitions of position, velocity, and acceleration are identical for a
fluid particle and for a point mass in dynamics. Identity variables are necessary in the
description of a fluid particle, so the position, velocity, and acceleration are functions of
time and identity variables, rather than of just time alone. Examples 10.4 and 10.5 illus-
trate the relationships between position, velocity, and acceleration in the Lagrangian
description.

As shown in Figure 10.9, the Lagrangian position vector of a fluid particle in cylin-
drical coordinates is represented as

X = R(R0, θ0, Z0, t)er + Z(R0, θ0, Z0, t)ez (10.14a)

where er is the unit vector in the radial direction and ez is the unit vector in the axial
direction. Note that there is no θ component in the position vector, but a complete
description of particle position requires that we know the function

θ = θ(R0, θ0, Z0, t) (10.14b)

The Lagrangian velocity vector, which does have three components, may be written as

V = Vr (R0, θ0, Z0, t)er + Vθ (R0, θ0, Z0, t)eθ + Vz(R0, θ0, Z0, t)ez (10.15)

while the Lagrangian acceleration vector is

A = Ar (R0, θ0, Z0, t)er + Aθ (R0, θ0, Z0, t)eθ + Az(R0, θ0, Z0, t)ez (10.16)

The relationships among position, velocity, and acceleration components in cylindrical
coordinates are somewhat unusual and worth noting. From dynamics, the relationships
between velocity and position are

Vr = d R

dt
= Ṙ, Vθ = R

dθ

dt
= Rθ̇ , and Vz = d Z

dt
= Ż (10.17)
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X R

�

Z z

r

ez
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Figure 10.9 The Lagrangian position vector in cylindrical
coordinates.
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EXAMPLE 10 .6

Laminar steady fluid flow through a round pipe, known as Poiseuille flow, is shown in
Figure 10.10. In cylindrical coordinates the corresponding particle paths are

R = R0, Z = Z0 +
{[

R2
P(p1 − p2)

4µL

][
1 −

(
R0

RP

)2
]}

(t − t0), and θ = θ0

where RP is the radius of the pipe and the pressures are measured as shown in Fig-
ure 10.10. Calculate the Lagrangian velocity and acceleration vectors for this flow.

r

z

�

Lp1 p2

Rp

Figure 10.10 Schematic for Example 10.6, Poiseuille
flow through a round pipe.

SOLUTION

First note that the particle paths indicate that all fluid particles move straight down the
pipe without changing their radial or angular positions. Thus, the particle paths coincide
with the streamlines shown in Figure 10.10. The velocity is calculated by using
Eqs. 10.17, with the result

Vr = d R

dt
= d

dt
(R0) = 0, Vθ = R

dθ

dt
= R

d

dt
(θ0) = 0

and

Vz = d Z

dt
= d

dt

{
Z0 +

[(
R2

P(p1 − p2)

4µL

)(
1 −

(
R0

RP

)2
)]

(t − t0)

}

=
(

R2
P(p1 − p2)

4µL

)(
1 −

(
R0

RP

)2
)

Thus,

V = 0er + 0eθ +
(

R2
P(p1 − p2)

4µL

)(
1 −

(
R0

RP

)2
)

ez



while those between acceleration and velocity are

Ar = dVr

dt
− Vθ

R

2

, Aθ = dVθ

dt
+ Vr Vθ

R
, and Az = dVz

dt
(10.18)

With these results, it is straightforward to show that position and acceleration are related by

Ar = R̈ − Rθ̇2, Aθ = Rθ̈ + 2Ṙθ̇ , and Az = Z̈ (10.19)
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CD/Kinematics/Fields, particles, and reference frames/Lagrangian representation:
scalar fields

10.2.2 Lagrangian Fluid Properties

CD/Videolibrary/Pipe flow

Note that the no-slip, no-penetration conditions are satisfied for a particle at R0 = RP ,
i.e., on the pipe wall, and that the single nonzero velocity component points in the flow
direction as expected. The maximum velocity, which occurs for a particle on the center-
line, is Vmax = 0er + 0eθ + {[R2

P(p1 − p2)]/4µL}ez .
The acceleration may be calculated using Eq. 10.18 or 10.19. Applying Eq. 10.18 to

the preceding velocity vector, we obtain

Ar = dVr

dt
− V 2

θ

R
= d

dt
(0) − (0)

R

2

= 0, Aθ = dVθ

dt
+ Vr Vθ

R
= d

dt
(0) + (0)(0)

R
= 0

and

Az = d

dt

[(
R2

P(p1 − p2)

4µL

)(
1 −

(
R0

RP

)2
)]

= 0

Thus we have A = 0er + 0eθ + 0ez . There is no Lagrangian acceleration in Poiseuille
flow.

Each fluid particle in a flow field possesses a Lagrangian position, velocity, and acceler-
ation, as well as other fluid and flow properties as discussed in Chapter 2. One of the
most important properties of a fluid particle is its density, ρ. We represent the density of
a fluid particle in the Lagrangian description as the scalar function

ρ = ρ(X0, Y0, Z0, t) (10.20a)

Like position, velocity, and acceleration, density is a function of the identity variables
and time. Thus, we interpret Eq. 10.20a by saying that ρ is the density at time t of the



fluid particle identified by the identity variables (X0, Y0, Z0). As time evolves and a
fluid particle moves, its density may change.

A fluid particle is also characterized by its pressure, internal energy, temperature
and other fluid and flow properties. Each of these Lagrangian fluid properties is written
as a function of (X0, Y0, Z0, t). For example, pressure in the Lagrangian description is
represented as

p = p(X0, Y0, Z0, t) (10.20b)

and temperature is

T = T (X0, Y0, Z0, t) (10.20c)

10.3 THE EULERIAN–LAGRANGIAN CONNECTION

590 10 ELEMENTS OF FLOW VISUALIZATION AND FLOW STRUCTURE

CD/Kinematics/Fields, particles, and reference frames/Eulerian and Lagrangian
frames: Vector quantities

Regardless of which description one uses to describe a flow, the Eulerian values of ve-
locity, acceleration, and other fluid and flow properties at a given point in space at a
given time must be the same as the corresponding Lagrangian values for the fluid parti-
cle that is at that spatial location at that instant of time. This is the basis for a connection
between the Lagrangian and Eulerian descriptions: a fluid particle whose position is X in
the Lagrangian description is located at x in the Eulerian description (see Figure 10.11).
Furthermore, the Eulerian velocity vector u at the point x at a given time is defined to be
the velocity V of the fluid particle that happens to be at that location at that instant of
time. The Eulerian acceleration vector a is likewise defined to be the acceleration A of
the fluid particle that happens to be located at the point in question. Thus, the formal
connection between the two descriptions takes the form 

X = x, V = u, and A = a (10.21)

x � xi 	 yj 	 zk
X � Xi 	 Yj 	 Zk

Y, y

X, x

Z, z

i
k

j

Figure 10.11 The equivalence of
Lagrangian and Eulerian position vec-
tors at an instant in time.



This connection extends to the components of each vector. Thus, for Cartesian coordi-
nates we find 

X = x, Y = y, and Z = z (10.22a)

U = u, V = v, and W = w (10.22b)

and

Ax = ax , Ay = ay, and Az = az (10.22c)

Since the particle path is the primary dependent variable in the Lagrangian descrip-
tion, and velocity plays this role in the Eulerian description, the connection between ve-
locities, V = u, is usually expressed in terms of the Lagrangian particle path as

dX
dt

= u (10.23a)

rather than as in Eq. 10.21. Similarly the connection for acceleration is usually ex-
pressed as

dV
dt

= a (10.23b)

From our discussion in Chapter 6 of the definition of a material derivative and its role
in defining acceleration in the Eulerian description, it should be clear that a time deriva-
tive in the Lagrangian description is equivalent to a material derivative in the Eulerian
description. Thus, we can also write these relationships for velocity and acceleration as

dX
dt

= u = Dx
Dt

and
dV
dt

= a = Du
Dt

(10.24a, b)

In analyzing a flow visualization experiment, an engineer would like to be able to use
data taken in the Lagrangian description to construct the corresponding quantities in the
Eulerian description. Similarly, after performing a flow simulation on the computer in
the standard Eulerian description, an engineer may wish to calculate particle paths in the
Lagrangian description to visualize the flow field. The connections described in Eqs. 10.21
through 10.24 provide a means of converting results from one description to the other.

In principle, the process of going from the Lagrangian description to the Eulerian
description is straightforward. Suppose you have obtained the Lagrangian particle path
X = X(X0, t) for a certain flow. From Eq. 10.24a the Eulerian velocity field may be
found by taking the time derivative of the particle path, since dX/dt = u. The Eulerian
acceleration is found by using Eq. 10.24b in the form d2X/dt2 = dV/dt = a. In both
cases it is necessary to eliminate the identity variables after the derivative has been
taken, and use X = x to complete the conversion. This means we must also have avail-
able the inverse particle path.

The conversion of the Eulerian description of a flow to the Lagrangian description
also makes use of the relationships developed in Eqs. 10.23 and 10.24, but the process
is often more difficult. Recall that we may write the relationship between velocities as
dX/dt = u. In Cartesian coordinates, this gives

d X

dt
= u,

dY

dt
= v, and

d Z

dt
= w (10.25a)
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while in cylindrical coordinates this relationship is

d R

dt
= vr , R

dθ

dt
= vθ , and

d Z

dt
= vz (10.25b)

When the Eulerian velocity field is known, the preced-
ing equations provide three coupled, nonlinear, ordi-
nary differential equations describing the Lagrangian
particle path in the corresponding coordinate system.
These equations are very complex, and it is often nec-
essary to integrate them numerically. Modern computa-
tional fluid dynamics packages have this capability,
however, so when a flow problem is solved numerically
in the Eulerian description, the Lagrangian particle

paths may be obtained as well. This can be extremely helpful in visualizing a complex
flow field.

Any fluid property written in the Eulerian description can be transformed into the
Lagrangian description and vice versa if the particle path and the inverse function are
known. The basis for the conversion is simply that the value of a fluid property at some
point in space at a given time is the same as the value of the Lagrangian property carried
by the fluid particle at the same point in space at that instant.
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The purpose of introducing the Eulerian–
Lagrangian connection in this text is to
convince you that it is possible to move
back and forth, in a quantitative sense,
from one method of description to the
other. Those who take additional fluid me-
chanics classes or go on to work in a re-
lated industry (or both) may well make use
of the equations in this section either di-
rectly or through the use of a CFD code.
We will not, however, discuss the quantita-
tive aspects of the Eulerian–Lagrangian
connection further in this introductory text.

CD/Demonstrations/Euler vs. Lagrange: What is steady and unsteady

10.4 MATERIAL LINES, SURFACES, AND VOLUMES

CD/Kinematics/Timelines/Definition of timelines and Videolibrary/Demonstration 
of stirring paint

Material lines, surfaces, and volumes are Lagrangian concepts. The adjective “material”
means that the line, surface, or volume in question is always made up of the same fluid
particles. It can be shown that to the extent that the continuum hypothesis holds, all
lines, surfaces, and volumes in a fluid have this characteristic. In thinking about this
statement, keep in mind that molecular diffusion eventually causes fluid molecules ini-
tially in a material entity of any type to wander away; but this effect is not accounted for
in a continuum model.

Suppose we have made a material line in a stationary fluid visible by marking the
fluid particles with dye as shown in Figure 10.12. If we attempt to cut the line with a
knife, the line will wrap itself around the edge of the blade. As the blade continues to
move, the distance between dyed particles in the material line will increase as the length
of the line increases, but the line will not break. This is readily observed in a viscous liq-
uid such as glycerin. In water, the knife may appear to cut the line. Material lines also
exist in a moving fluid. As shown in Figure 10.13, in a visualization experiment with a
moving fluid, if we instantaneously create a line of dyed fluid particles, then the dyed



line is a material line. After a material line has been cre-
ated, it moves with the fluid and thereby undergoes
stretching and deformation. If we know the velocity
field, it is possible to predict the shape of the line at any
later time by tracking each fluid particle over time.
Material lines are often referred to as time lines.

Next consider the concept of a material surface. In
the continuum hypothesis, every surface in a fluid is a
material surface containing the same fluid particles at

all times. Imagine marking a horizontal layer within a still liquid with dye and releasing
a heavy object just above the layer so that the object falls onto the fluid material surface.
We would observe that the object cannot penetrate the material surface. Instead, as
shown in Figure 10.14, the initially planar material surface deforms and wraps itself
around the object, stretching as needed to remain intact.

An interesting aspect of the process of mixing two miscible fluids by stirring is that
the interface between them is a material surface. Mixing takes place by the intricate
stretching and layering of the original interface. This is true regardless of whether the
mixing is accomplished by a moving object (e.g., stirring with a spoon) or by turbulent
fluid motion (e.g., the hot exhaust stream of a jet engine entering the surrounding air).
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Material line
at t � 0

Material line
at t � 2�t

Material line
at t � �t

Figure 10.12 Deformation of a material line.
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paths
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Material line
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Figure 10.13 Channel flow: (A) material lines and particle paths and (B) flow visualization of
material lines with hydrogen bubbles.

The reason the experiments illustrated in
Figures 10.12 through 10.14 work so
much better in glycerin than in water is
due to the effects of diffusion. A dyed
material line or surface in water quickly
becomes fuzzy and difficult to distinguish
because the dye diffuses more rapidly into
the surrounding water.

(B)



Ultimately, two fluids are brought into close proximity over a large interfacial area, at
which point molecular diffusion is able to complete the mixing process. Turbulence
greatly enhances the stretching and layering process thereby reducing the time needed to
thoroughly mix. Examine the photograph of the mixing of a plume of cigarette smoke
with the surrounding air shown in Figure 10.15. Can you identify the laminar and tur-
bulent mixing regions? In which region is the mixing occurring more rapidly?
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A material volume is a volume of fluid always made up of the same fluid particles.
In a nonuniform flow, a material volume of fluid tends to become distorted over time.
This effect is shown in Figure 10.16. The fluid system discussed in Chapter 7 is a

At t2 � t1, the center of the
sphere is well below the
plane of the dye sheet and
has stretched the dye sheet.

At t1 � 0, the center of
the sphere is in the plane
of the dye sheet and
dye sheet is deformed.

At t � 0, the sphere
is completely above
the dye sheet.

Dye sheet

Figure 10.14 Deformation of a material surface.

Figure 10.15 Mixing of a plume of
cigarette smoke with the surrounding air.



material volume. In that chapter we derived the integral governing equations of fluid
mechanics by invoking the Reynolds transport theorem to apply the laws of conserva-
tion of mass, momentum, and energy to a material volume of fluid. An extension of the
same approach leads to the governing differential equations of fluid mechanics as will
be shown in Chapter 11.

The inviolability of material entities of all types in the continuum model is a reflec-
tion of the fact that the molecular structure of the fluid comes into play only in certain
allowable ways. When dye is used to mark fluid particles, the blurring of the dyed line
or surface over time is evidence that the random motion of fluid molecules eventually
causes molecules initially in a material entity to leave and be replaced by others. The as-
sumed permanence of material lines, surfaces, and volumes in the continuum hypothe-
sis must be kept in mind when one is modeling physical phenomena. Some real phe-
nomena cannot be successfully modeled this way. For example, is the concept of
material entities consistent with the breaking up of a liquid jet into droplets?

The Lagrangian description provides a means for tracking material lines, surfaces,
and volumes and thus allows these concepts to be profitably employed in the experi-
mental and theoretical analysis of fluid flow by means of observations of marked fluid.
If we define the mathematical function that represents a material line, surface, or volume
at an initial instant, then the material entity at a later time can be described by using the
inverse Lagrangian particle paths to move each fluid particle in the original entity to the
correct position at the later time. Tracking material lines, surfaces, and volumes is
the basis for a number of techniques in experimental and computational flow visualiza-
tion. Example 10.7 illustrates the process of using the particle paths to predict the future
position and shape of a material entity.
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Figure 10.16 Deformation of a material volume at time t = 0 and
t = �t .
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EXAMPLE 10 .7

Consider the steady shear flow in the xy plane shown in Figure 10.17A. This flow is
described in Cartesian coordinates by the velocity field: u = αy, v = 0, and w = 0.
Suppose you have marked three material entities in this flow at time t0 with dye:

A. A line segment of slope β passing through the origin

B. A circular disk centered about the origin of radius Rc

C. A material volume in the shape of a cube centered at the origin.

Predict the shape of each of these entities at a later time.

y y yy

(C) (D)

x

Ellipse at
t � �t

x

Disk at
t � 0

Shape at t � �tCube at t � 0

x x

u � �y, v � w � 0

y y

x

(A) (B)

x

y

x

Slope at
t � 0 is 	 Slope at

t � �t
is less
than 	

Figure 10.17 Schematic for Example 10.7. Deformation of material entities in a shear flow: (A) shear flow velocity
vectors, (B) material line, (C) material surface, and (D) material volume.

SOLUTION

We are asked to predict the shape of three specified material entities of fluid at a future
time given the Eulerian velocity field for the flow of interest. Figure 10.17 is the appro-
priate sketch, and no assumptions are required. To solve this problem qualitatively, we
must recognize that in this uniform flow fluid particles do not move in either the y or the
z direction, and their velocity in the x direction is proportional to their initial y coordi-
nate. That is, as the initial positive y coordinate for a fluid particle increases, its velocity
in the x direction also increases. Fluid particles with an initial y coordinate less than zero
will have a velocity in the negative x direction, and particles with an initial y coordinate
of zero do not move at all in this flow.

A. Line segment of slope β passing through the origin: The fluid particle initially
located at the origin of the chosen coordinate system will remain at the origin
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for all times. Particles with positive initial y coordinates will move to the right
with velocities proportional to their distance from y = 0, and particles with
negative initial y coordinates will move to the left with velocities proportional
to their distance from y = 0. The result is that the slope of the material line will
decrease in time but never become negative, as shown in Figure 10.17B.

B. Circular disk centered about the origin: Using logic similar to that in case A, we
see that the upper half of the material surface will move to the right and the
lower half to the left such that the original circular boundary will become ellip-
tical over time (see Figure 10.17C). The marked fluid lies inside this boundary,
since fluid particles can never leave a material entity.

C. Material volume in the shape of a cube centered at the origin: The outer bound-
ary of the cube can be thought of as being defined by 8 horizontal lines and
4 vertical lines as shown in Figure 10.17D. The upper and lower sets of 4 hori-
zontal lines each move at the same constant speed to the right and left, respec-
tively, in this shear flow, while the 4 vertical lines change slope but remain
straight, as found in case A. The result is that over time, the initially square front
and back surfaces of the cube will take on the shape of a parallelogram. Once
again the marked fluid particles will remain in the material volume according to
continuum theory.

This exercise may also be solved quantitatively by using the concepts and equations
introduced in our discussion of the Eulerian–Lagrangian connection.

In Section 10.2.1, we stated that the particle path X = X(X0, Y0, Z0, t) provides the tra-
jectory through space of the fluid particle identified by (X0, Y0, Z0). We can see a parti-
cle path in a fluid flow by introducing a tiny quantity of dye instantaneously at a point in
the flow. As our eyes follow the motion of the dyed fluid particle, we are observing its
progress along its pathline. A pathline is the trajectory through space of a selected fluid
particle during a time interval. If the particle path is known analytically or from a nu-
merical simulation of the flow, a pathline may be constructed by plotting the location of
the particle at successive times and connecting these locations to form a line through
space. Modern computational fluid dynamics codes have this capability. Figure 10.18
shows the pathlines in laminar flow through a nozzle as calculated by means of the
FIDAP CFD code.

The process of marking a pathline to make it visible is different from that used to
make a material line visible. A material line is a line in the fluid always made up of the
same fluid particles. To make a material line visible we simultaneously dye, mark, or tag



its component fluid particles. The dyed entity is therefore a line in the fluid of some cho-
sen shape. Observation of the material line focuses on the movement and deformation of
the original dyed line rather than on the path of each particle in the line itself. A compar-
ison of material lines and pathlines for flow over a cylinder is shown in Figure 10.19.
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Figure 10.18 CFD visualization of pathlines of laminar flow through a planar nozzle.

Rather than injecting dye instantaneously at a set of spatial locations, we may in-
stead choose to dye all the fluid particles that pass through a chosen dye injection point
during some finite interval of time. Our eyes will see a line of dyed fluid particles ex-
tending from the injection point out into the flow field, as shown in Figure 10.20. This
line, called a streakline, is the locus of fluid particles that passed through the marking or
tagging point during the interval selected. The tagging point used to create a streakline
may be stationary or even moving. In either case, the length and shape of a streakline
line depends on the motion of the tagging point, how long the marking interval lasts, and
how much the flow stretches and deforms the streakline.

CD/Videolibrary/Flow past a blunt object
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Figure 10.19 The flow upstream
of the cylinder is steady. However,
in the wake a Karman vortex street
develops that is unsteady. (A)
Flow visualized with material
lines consisting of illuminated
hydrogen bubbles. (B) The same
flow visualized with pathlines that
are coincident with streaklines up-
stream of the cylinder where the
flow is steady. Because the flow
downstream of the cylinder is un-
steady, these are no longer path-
lines but still are considered to be
streaklines. This concept is ex-
plained in the text.

Figure 10.20 Experimental flow visualization by means of streak-
lines produced with dye injection.

It is important to realize that a streakline is
not the same as a pathline because the flow
might have changed direction or magnitude
during the marking interval. Figure 10.22 illus-

trates this point for a stationary injection point in an unsteady
flow. Notice how the particles in the streakline arrived at
their locations at the instant of time shown. In an unsteady
flow, the paths traveled by individual fluid particles in a
streakline can be very different. In a steady flow, it can be
shown that a pathline and streakline are identical. Pathlines
and streaklines are both Lagrangian concepts because they
are defined by the motion of fluid particles. The following
example will give you some idea of the logic involved in dis-
tinguishing pathlines and streaklines.

Figure 10.21 CFD visualization of the flow
shown in Figure 10.20. The streaklines are faith-
fully reproduced in the laminar region, but the
simulation cannot resolve the breakup of the lines
in the turbulent wake.
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Particle
pathlinesFixed dye

injection
device

StreakelineFigure 10.22 Schematic illustrating the difference
between streaklines and pathlines in unsteady flow.

EXAMPLE 10 .8

In each of the following cases, determine whether the visualized line is a pathline,
streakline, or material line.

A. The steam plume released from a vent pipe at a power plant
B. The vapor trail of a jet airplane
C. A stream of chum (a chopped bait and seawater mixture) pumped overboard

into the wake of a fishing vessel anchored in the Gulf Stream
D. The smoke released from a source upstream of a model in a wind tunnel

experiment
E. A neutrally buoyant helium balloon carried in the wind

SOLUTION

A. The steam is being released over a period of time from a fixed tagging point. At
any given instant, the plume marks the location of all the fluid particles that
passed near the vent during some finite period of time. The plume is a streakline
from a fixed tagging point.

B. In the strict sense, the vapor trail is a streakline from a moving tagging point.
However, if the wind speed is small in comparison to the plane’s speed, it may
be appropriate to think of a short length of the vapor trail as being created in-
stantaneously and then acted on by the velocity field. The short length of vapor
trail approximates a material line in the wind in that case.

CD/Kinematics/Flow lines and flow visualization
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C. The chum clearly marks a streakline from a fixed tagging point in the water.
However, if we can distinguish individual bits of chum and watch their progress
in the current, we are observing pathlines.

D. The wind tunnel flow is steady; thus the line of smoke is both a streakline from
a fixed tagging point, and a pathline.

E. A neutrally buoyant helium balloon can be thought of as a fluid particle carried
along in the flow. Thus the trajectory of the balloon over time is a pathline in the
flow.

The use of neutrally buoyant particles of various kinds in flow visualization experiments with both
gases and liquids is common. It is important for the particles to be small enough to accurately follow
the flow. Micrometer-sized particles are also used in both air and water to reflect laser light in the
measuring technique known as laser–Doppler velocimetry (Figure 10.23). This technique relies on
measuring the Doppler frequency shift in laser light scattered from seed particles to deduce the ve-
locity of those particles and of the surrounding fluid.

Laser

Beam
splitter

Transmitting
lens

Scattering
particles

Flow

Receiving
optics

Pin
hole Photo

detector

Signal processing
equipment

Figure 10.23 Schematic of a typical laser Doppler velocimetry system.

The traditional method for recording images of pathlines and streaklines has been
photography. Photographic techniques are excellent for gaining a qualitative under-
standing of flows. However, they are quite cumbersome when applied to the calculation
of particle velocities. A more recently developed technique, particle image velocimetry
(PIV), determines the velocity field by recording the light reflected from particles mov-
ing through a two-dimensional section of the flow, illuminated by a sheet of laser light
(see Figure 10.24). PIV systems provide the capability to experimentally measure a
complete velocity field in real time.



It should be evident that even though the Lagrangian description is not often used
to solve flow problems, an understanding of elements of Lagrangian kinematics is
important because those concepts provide an easily interpreted visual picture of a flow.
In many cases an engineer is able to optimize the design of a vehicle or piece of fluid-
handling equipment simply by reshaping contours of solid surfaces to change the way
the fluid moves. The combination of flow visualization and model testing, illustrated in
Figure 10.25, is quite helpful in this respect.
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CD/Kinematics/Streamlines and streamfunction
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Figure 10.24 Schematic of a typical
particle image velocimetry system.

Figure 10.25 Flow visualization using a 1/48-
scale model of an F-18.
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10.6 STREAMLINES AND STREAMTUBES

Material lines, pathlines, and streaklines are Lagrangian concepts that allow us to un-
derstand a flow field by observing the behavior of collections of marked fluid particles.
In contrast, a streamline is strictly an Eulerian concept. As mentioned in earlier chapters,
a streamline is defined to be a line in space that is everywhere tangent to the local ve-
locity vector. In a steady flow, the fluid velocity does not change in time, and it can be
shown that streamlines, pathlines, and streaklines are identical. Thus, a streamline may
be visualized in a steady flow by marking pathlines or streaklines. An array or rake of
continuously operating dye or smoke injection points creates a family of streaklines that,
in a steady flow, is also a family of streamlines. A picture of these streaklines provides
the direction of the velocity vector at each point along the coincident streamlines and so
makes the Eulerian velocity field visible. As shown in Figure 10.26, automobile compa-
nies use this technique to improve the aerodynamics of their vehicles. You may have
seen commercials designed to demonstrate the “streamlined” nature of automobiles. A
CFD visualization of a similar flow is shown in Figure 10.27.

In an unsteady flow the streamlines may change dramatically from one instant to
the next. Unsteady streamlines cannot be visualized by using tracers to mark fluid parti-
cles but they can be constructed from computational simulations of fluid flow. In an un-
steady flow, streamlines, streaklines, and pathlines are generally different, and each line
gives us a different picture of the underlying velocity field.

Figure 10.26 Visualization of flow around an
automobile by means of smoke. In this steady flow
the smoke lines are pathlines, streaklines, and
streamlines.

Figure 10.27 CFD visualization of flow
around an automobile.
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Now suppose we have a functional representation
of a velocity field in the Eulerian description, and we
want to plot the streamlines in a certain region. How is
this accomplished? How do we identify each streamline
and distinguish it from all others? First note that
streamlines generally do not cross one another. If they
did, a fluid particle at the intersection point would have
to be simultaneously moving in two different direc-
tions, as shown in Figure 10.29. This is physically im-
possible, of course, unless the velocity at the crossing
point happens to be zero. A streamline is uniquely iden-
tified by its passage through a specified point at a spec-
ified time.

The process for constructing the streamlines at a
given time t of a known 3D velocity field begins by ob-
serving that any line passing through space may be rep-
resented in Cartesian coordinates by two equations that
define the locus of points in the line. These two equa-
tions may be of any one of the following forms:

y = y(x) and z = z(x) (10.26a)

x = x(z) and y = y(z) (10.26b)

z = z(y) and x = x(y) (10.26c)

The functions corresponding to streamlines of a 3D velocity field can be identified as
follows. Let

dr = dx i + dyj + dzk (10.27)

be a differential vector element of length along a streamline passing through position
(x, y, z) at a given time, as shown in Figure 10.29B. The definition of a streamline as

In the design of low drag shapes of all
kinds, it is important to reduce or eliminate
boundary layer separation, which produces
regions of low pressure that contribute to
high drag. Boundary layer separation,
which will be discussed in Chapter 14, is a
complex physical phenomenon related to
the balance of inertial, pressure, and vis-
cous forces within the boundary layer. By
using smoke to visualize the streamlines in
a steady flow, it is usually possible to detect
regions of separation. An examples of such
a visualization is shown in Figure 10.28.

Figure 10.28 Separation zones are clearly visi-
ble in the flow over the bluff car model.

CD/Boundary Layers/Separation
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Figure 10.29 (A) Crossing streamlines are physically impossible unless the velocity at the intersection is zero.
(B) The vector element of length along a streamline.



tangent to the velocity vector at each point means that dr and u are parallel vectors pass-
ing through (x, y, z) at the selected instant of time. Parallel vectors have a zero cross
product, so a streamline must satisfy the following vector relationship:

dr × u = 0 (10.28)

This relationship is equivalent to three scalar differential equations:

w dy − v dz = 0, u dz − w dx = 0, and v dx − u dy = 0 (10.29a–c)

The solution to these equations provides the two functions that define the streamlines.
The process of finding the streamlines in a 3D flow at specified time requires that

we find a set of two functions (like those given in Eqs. 10.26) that describe a line satis-
fying all three conditions given in Eqs. 10.29. In unsteady flow, the two functions will
contain time t in their argument; but t is treated as a fixed parameter during the solution
process, since the streamlines found are those for that specific instant of time. In a 2D
velocity field, the absence of a third velocity component ensures that a streamline pass-
ing through a point in space never leaves the plane defined by the two nonzero velocity
components. Finding the streamlines in a 2D flow is therefore relatively straightforward:
there is only one function to be found, using the one remaining scalar differential equa-
tion of the original set of three.

To see how to find the streamlines in a 2D flow, consider a flow in the xy plane with
a velocity field given by u(x, y, t), v(x, y, t), 0. The single function y = y(x) in
Eq. 10.26a defines the streamlines of this flow, and only needs to satisfy 
Eq. 10.29c: v dx − u dy = 0. This can be rearranged to obtain

dy

dx
= v(x, y, t)

u(x, y, t)
(10.30)

which indicates that the slope of the streamline is such that the streamline is tangent to
the velocity vector as shown in Figure 10.30. Equation 10.30 is an ordinary differential
equation whose solution y = y(x) describes the streamlines in the flow and contains
one constant of integration that can be used to specify the point through which the
streamline passes. For an unsteady flow, Eq. 10.30 is solved with t as an independent
parameter. The solution in that case also has one constant of integration and describes
the streamlines at time t.
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Figure 10.30 The velocity vector is tangent to
the streamline.
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EXAMPLE 10 .9

Consider a steady velocity field as shown in Figure 10.31A, given by u = αx i −
αyj + 0k, where α is a constant with units of reciprocal seconds and the spatial coordi-
nates are measured in meters. Suppose the region of interest is defined by 0 < x < 5 and
0 < y < 5. Determine the equation for the streamlines of this flow, and find the streamline
passing through the point (1, 2). Plot several other streamlines in the region of interest.

y

Velocity vectors

x(A) (B)

y

x

y � 2
x

Streamlines

Figure 10.31 Stagnation point flow: (A) velocity field and (B) streamlines.

SOLUTION

We are asked to plot several streamlines for a known velocity field. The appropriate
sketch is shown in Figure 10.31, and no assumptions are required. This is a 2D flow in
the xy plane, thus the streamlines are described by Eq. 10.30: dy/dx =
[v(x, y, t)]/[u(x, y, t)]. Substituting the velocity components, we have dy/dx =
−αy/αx = −y/x . Separating variables and performing an indefinite integration, we
obtain

∫
dy/y = ∫ −dx/x , which yields ln y = −(ln x) + C . Using the properties of

the natural log, we can write this as xy = C or y = C/x . The value of the constant C
that corresponds to the streamline passing through some point (x0, y0) is found by in-
serting this point into the equation to obtain x0 y0 = C . Our final equation for the stream-
line can then be written as

y = x0 y0

x
The specific streamline passing through the point x0 = 1, y0 = 2 is found by writing

y = x0 y0

x
= (1)(2)

x
= 2

x
Anumber of other streamlines can be plotted by picking the constant C to correspond to var-
ious points in the indicated region. A plot of these streamlines is shown in Figure 10.31B.
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Streamlines also exist in 1D or unidirectional flow. In this case there is only a sin-
gle nonzero velocity component, and by definition, the streamlines must all be straight
lines aligned with the velocity vector. For example consider a 1D flow in which
u = u(y). From Eq. 10.30, we can write dy/dx = 0/u(y) = 0, so the streamlines are
given by y = C .

If we draw a closed line in space and enclose a bundle of streamlines, the set of
streamlines defines a streamtube, as shown in Figure 10.32. Since the surface of a
streamtube is comprised of streamlines, the velocity vector there is wholly tangential.
Therefore no fluid may escape a streamtube, and the cross-sectional area of a streamtube
anywhere along its length varies in such a way that the mass flow through the stream-
tube remains constant (see Figure 10.32).

Streamtubes exist in an unsteady flow, but as with unsteady flow streamlines, there
is no practical way to make them visible using dye. The streamtube concept is most use-
ful in steady flow, where a selected streamtube may be made visible by releasing a tracer
from an injection area rather than from an injection point. If we have an analytical or nu-
merical solution for a steady flow, we can construct a streamtube by plotting the bound-
ing streamlines. Streamtubes are useful for analyzing open turbomachines such as wind
turbines and propellers.

Streamtube Streamlines

Smaller cross-sectional
area corresponds to

higher average velocity
in constant density flow.

Larger cross-sectional
area corresponds to

lower average velocity
in constant density flow.

Figure 10.32 A streamtube is made up of a collection
of streamlines.

CD/Kinematics/Kinematics of points and fluid particles/motion of rigid bodies

10.7 MOTION AND DEFORMATION

To begin our discussion of flow structure it is helpful to briefly compare the behavior of
a nondeformable element of a moving rigid body with a deformable element of a fluid
in motion. As shown in Figure 10.33, the nondeformable element of the rigid body trans-
lates and rotates as the rigid body itself translates and rotates. A deformable fluid ele-
ment also translates and rotates in a flow, but as shown in Figure 10.34, it will also ex-
perience deformation owing to a change in the relative positions of its constituent fluid
particles.

The deformation of a fluid element can be divided into two types: expansion and
shear deformation. Expansion is defined to be a relative motion of fluid particles that
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increases (or decreases) their average separation distance without change of shape or ro-
tation. As illustrated in Figure 10.35A, this effect causes a net volume change for a fluid
element. If the volume change is positive, a fluid element expands and its density
decreases. If the volume change is negative, a fluid element contracts and its density
increases. Expansion cannot take place unless the density of the fluid changes. Thus, ex-
pansion is absent in all liquid flows and in any other flow that is considered to be in-
compressible.

As shown in Figure 10.35B, shear deformation is the relative movement of fluid
particles in the form of the sliding of one layer of fluid past another. In pure shear de-
formation, discussed in more detail shortly, the fluid element changes shape, but its vol-
ume is unchanged and it does not rotate. Recall from Newton’s law of viscosity that
shear stress is proportional to the shear strain rate. Therefore, the presence of shear stress
indicates shear deformation or strain.

We will now consider four simple example flows that illustrate the effects of the
basic types of fluid motion: translation, rotation, expansion, and shear deformation. A

y

x

z

�

V

Element of
rigid body
at time t � 0

Element of
rigid body
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Figure 10.33 Rigid body motion.
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Figure 10.35 Deformation due to (A) expansion and (B) shear.



uniform and purely translational fluid motion occurs when fluid is placed in a closed con-
tainer and the entire container is moved at a constant translational velocity U, as shown
in Figure 10.36A. After a time, viscosity will cause any initial motion of the fluid relative
to its container to cease. The steady velocity field in the fluid will then be given by

u = U i (10.31)

Each fluid element simply moves in the direction of the flow without rotation, change of
volume, or change of shape. It can be shown that in a mathematical sense, there is no ro-
tation, expansion, or shear deformation in this uniform translational velocity field be-
cause there is no spatial variation in the velocity field. Alternatively phrased, since all
partial derivatives of the velocity components with respect to the spatial variables are
zero, the types of motion known as rotation, expansion, and shear are absent.
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CD/Kinematics/Two dimensional flow and vorticity/Vorticity and rotation

We can create a velocity field that is purely rotational if we spin the same container
at a constant angular velocity �0 = (Ω0x ,Ω0y,Ω0z). Viscosity will damp out any rela-
tive motion, and every fluid particle will orbit about the axis of rotation at a speed
proportional to its distance from the axis. The corresponding velocity field in the fluid at
position x = (x, y, z) is

u = � × x (10.32a)

with velocity components 

u = Ω0yz − Ω0z y, v = Ω0z x − Ω0x z, w = Ω0x y − Ω0y x (10.32b)

This steady velocity field is referred to as rigid body rotation of the fluid. There is no net
translation, since every fluid element travels on a circular path, and each element rotates
at the same angular velocity without expansion or deformation.

Figure 10.36B illustrates rigid body rotation about the z axis with �0 = (0, 0,Ω0).
This flow has velocity components u = −Ω0 y, v = Ω0x, w = 0. It may look more
familiar to you when expressed in cylindrical coordinates as

vr = 0, vθ = rΩ0, vz = 0 (10.33)

This flow, like all others with a rotational component, has spatial derivatives of its ve-
locity components. In fact, we can calculate that ∂u/∂y = −Ω0 and ∂v/∂x = Ω0 .

y

z
x

y

z

x

u � Ui

u � � � x

Position at
time t � 0 

u � Ui

Position at
time t � �t(A) (B)

�

Figure 10.36 Rigid body (A) translation and (B) rotation.



A flow that exhibits expansion (and some translation) results from a steady release
of gas from a point source as illustrated in Figure 10.37. As the gas flows out radially
from the source, its density will decrease and the volume of a fluid element will increase.
Given a spherical CV of radius r surrounding the source, and with the mass flowrate
crossing any spherical surface surrounding the emission point defined as ṁ, a mass bal-
ance shows that

ρ(r)vr (r) = ṁ

4πr2
(10.34)

where ρ(r) and vr (r) are the density and radial velocity in spherical coordinates.
Although the exact form of the functions ρ(r) and vr (r) depends on the thermodynam-
ics of the expansion process, there is no rotation or shear deformation in this source
flow. This flow is not a pure expansion because every fluid element but the one centered
on the origin is also translating. The flow is useful, however, in illustrating the concept
of expansion and accompanying density variation. Notice also that this flow has a spa-
tial derivative of the radial velocity component, so expansion, like rotation, is connected
to the presence of a spatial variation of velocity.

It is difficult to describe a simple flow exhibiting shear deformation unless we limit
consideration to 2D flows. The flow of constant density fluid shown in Figure 10.38A is
described in Cartesian coordinates by

u = Cy, v = Cx, w = 0 (10.35)

where C is a constant. As shown in Figure 10.38B, this flow causes a fluid element
located at the origin to undergo pure shear deformation. Fluid elements at other loca-
tions experience translation and shear deformation but not expansion or rotation. The
flow has velocity variations as described by ∂u/∂y = C and ∂v/∂x = C .

It should be apparent from our four example flows that rotation, expansion, and
shear deformation are all connected to spatial variations in a velocity field. However, we
can often obtain a good understanding of a flow without a lot of mathematics by apply-
ing what we have learned from the four basic flows and an understanding of particle
paths. For example, consider the flow created when a fluid is sheared in a narrow gap be-
tween two large plates, as shown in Figure 10.39. In this familiar example the lower
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plate is stationary, and the upper plate is moving at a constant velocity U. Fluid dragged
in the direction of the top plate by the action of viscosity will create the velocity field
u = (U/�y) y, v = 0, w = 0, as shown in Figure 10.40. Does it appear to you that the
shearing action of the top plate on the fluid will cause translation? (Think about particle
paths to see that fluid particles will translate to the right.) Are there expansion, rotation,
and shear deformation of a fluid element? This is not an easy question to answer, is it?

The presence of a velocity variation in this flow tells us that expansion, rotation,
and shear deformation may be present. Consider rotation first, and examine the cylin-
drical fluid element shown in Figure 10.40. The sliding motion of the upper plate will be
transmitted through successive horizontal layers of the fluid by the action of viscosity.
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Since the sliding motion disappears at the fixed bottom plate, layers near the top plate
slide faster than layers near the bottom plate, and the top of the cylinder will move to the
right faster than the bottom of the cylinder. The net effect of this relative motion defi-
nitely looks as if it will cause rotation of the cylinder. This same relative motion will also
change the shape of the cylinder and drag its “center” to the right. Thus, we conclude
that translation, rotation, and shear deformation are all present in parallel plate flow.
What about expansion? Although it may not be obvious, a bit of work tracing particle
paths shows that the volume of any fluid element is unchanging. Therefore expansion is
absent in this flow. In Chapter 11 we will show how to use the continuity equation to de-
termine whether expansion is present in a particular flow.

Flows of engineering interest are generally more complex than those in the preced-
ing examples and do not lend themselves to a visual/graphical analysis. This complexity
motivates us to ask the following question: Is there a way to analyze the fluid velocity
field to determine the types of motion and underlying flow structure? If so, the mathe-
matical analysis must examine the velocity variations in a flow, since it is spatial varia-
tions in the velocity field that give rise to rotation, expansion, and shear deformation.

10.8 VELOCITY GRADIENT

Consider 3D flow in Cartesian coordinates. There are three velocity components, and
each of these components may vary in each of the three coordinate directions. To mea-
sure this variation completely requires nine partial derivatives, which together make up
the velocity gradient, ∇u. The velocity gradient is a tensor, a doubly directional quantity
like the stress tensor; hence it is conveniently represented in Cartesian coordinates by
the following array:

∇u =




∂u

∂x

∂v

∂x

∂w

∂x
∂u

∂y

∂v

∂y

∂w

∂y

∂u

∂z

∂v

∂z

∂w

∂z




(10.36)

In cylindrical coordinates the velocity gradient is given by

∇u =




∂vr

∂r

∂vθ

∂r

∂vz

∂r(
1

r

∂vr

∂θ
− vθ

r

) (
1

r

∂vθ

∂θ
+ vr

r

)
1

r

(
∂vz

∂θ

)
∂vr

∂z

∂vθ

∂z

∂vz

∂z




(10.37)

If we know the velocity field analytically, experimentally, or numerically, we can
calculate the velocity gradient by taking the indicated derivatives.
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As suggested earlier, information about the rotation, expansion, and shear deforma-
tion in a flow is contained in the partial derivatives making up the velocity gradient. In
advanced texts it is shown that ∇u itself can be written as the sum of three quantities
called the rate of rotation tensor, R, the rate of expansion tensor, E, and the rate of shear
deformation tensor, D. Thus we can write

∇u = R + E + D (10.38)
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EXAMPLE 10 .10

Find the velocity gradient in the flow between parallel plates with the top plate moving
as shown in Figure 10.41. The velocity field is given by u = (U/2)(y/h + 1)i, where
U is the velocity of the moving plate and 2h is the distance between the plates.

y

x


 �u � y
h

iU
2

Top plate moves
with velocity U

Bottom plate
is stationary

	 1

h

h

Figure 10.41 Schematic for Example 10.10.

SOLUTION

This exercise is solved by using Eq. 10.36. For this flow we have

u = U

2

(
y

h
+ 1

)
, v = 0, and w = 0

Substituting these values into Eq. 10.36 and taking the appropriate derivatives yields

∇u =




∂u

∂x

∂v

∂x

∂w

∂x
∂u

∂y

∂v

∂y

∂w

∂y
∂u

∂z

∂v

∂z

∂w

∂z




=




0 0 0
U

2h
0 0

0 0 0




Thus, the only nonzero term in the velocity gradient is the 2,1 element given by
(U/2h)ji.

The physical interpretation of this result is that the x component of velocity is
changing in the y direction at the rate of U/2h. The remaining elements are zero because
the v and w velocity components are zero, and the u velocity component does not vary
in the x or z directions.
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EXAMPLE 10 .11

Poiseuille flow through a steadily rotating circular pipe is illustrated in Figure 10.42.
The corresponding velocity field is given by 

vr = 0, vθ = rΩ0, and vz = (p1 − p2)R2

4µL

[
1 −

(
r

R

)2
]

where Ω0 is the angular velocity of the pipe, R is the pipe radius, and the pressures are
measured a distance L apart on the wall. Find the velocity gradient for this flow.

r

z

p2p1
Length, L

Fluid with
viscosity �

and density �


Pressure drop, �p � p1 � p2

vz(r)

v�(r)

Figure 10.42 Schematic for Example 10.11.

SOLUTION

This exercise is solved by using Eq. 10.37. Substituting the velocity components into
Eq. 10.37 and taking the appropriate derivatives yields:

∇u =




∂vr

∂r

∂vθ

∂r

∂vz

∂r(
1

r

∂vr

∂θ
− vθ

r

) (
1

r

∂vθ

∂θ
+ vr

r

)
1

r

(
∂vz

∂θ

)
∂vr

∂z

∂vθ

∂z

∂vz

∂z




=




0 Ω0

[−(p1 − p2)r

2µL

]
−Ω0 0 0

0 0 0




There are three nonzero components of the velocity gradient. The 1,2 and 2,1 compo-
nents arise from the dependence of the θ component of the velocity on r, while the 1,3
component is due to the variation in the axial velocity component in the r direction. The
physical interpretation of the latter term is that the z component of velocity is changing
in the r direction at the rate of [−(p1 − p2)r/2µL].



In Cartesian coordinates the rate of rotation tensor is given by 

R =




0
1

2

(
∂v

∂x
− ∂u

∂y

)
1

2

(
∂w

∂x
− ∂u

∂z

)
1

2

(
∂u

∂y
− ∂v

∂x

)
0

1

2

(
∂w

∂y
− ∂v

∂z

)
1

2

(
∂u

∂z
− ∂w

∂x

)
1

2

(
∂v

∂z
− ∂w

∂y

)
0




(10.39)

In the next section we show that the rotation tensor is the part of the velocity gradient
that causes a fluid element to rotate without changing shape or expanding.

The rate of expansion tensor E represents the part of the velocity gradient that
causes a fluid element to change its volume without changing its original shape or rotat-
ing. This tensor, which is discussed in more detail in Section 10.10, is defined in
Cartesian coordinates by

E =




1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
0 0

0
1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
0

0 0
1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)




(10.40)

Finally, the rate of shear deformation tensor, D, or the shear deformation rate, is the
part of the velocity gradient responsible for changing the shape of a fluid element with-
out a change in volume or rotation. This tensor, which is discussed in Section 10.11, is
given in Cartesian coordinates by

D =




∂u

∂x
− 1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
1

2

(
∂u

∂y
+ ∂v

∂x

)
1

2

(
∂u

∂z
+ ∂w

∂x

)
1

2

(
∂v

∂x
+ ∂u

∂y

)
∂v

∂y
− 1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
1

2

(
∂v

∂z
+ ∂w

∂y

)
1

2

(
∂w

∂x
+ ∂u

∂z

)
1

2

(
∂w

∂y
+ ∂v

∂z

)
∂w

∂z
− 1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)




(10.41)

Notice that each of these quantities is an array of combinations of partial derivatives
of velocity components. Furthermore, a term by term addition of the elements in the
three arrays adds up to the corresponding element in the velocity gradient.

Fluid mechanics also makes use of a quantity known as the rate of strain tensor S.
This quantity is responsible for the overall tendency of a fluid element to be strained or
deformed by spatial variations in the velocity field. In general, this effect simultaneously
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alters the shape and volume of a fluid element. By definition, the rate of strain tensor is
the sum of the rate of expansion and the rate of shear deformation. Thus we have
S = E + D, and by using Eqs. 10.40 and 10.41 we see that S can be written as

S =




∂u

∂x

1

2

(
∂v

∂x
+ ∂u

∂y

)
1

2

(
∂w

∂x
+ ∂u

∂z

)
1

2

(
∂u

∂y
+ ∂v

∂x

)
∂v

∂y

1

2

(
∂w

∂y
+ ∂v

∂z

)
1

2

(
∂u

∂z
+ ∂w

∂x

)
1

2

(
∂v

∂z
+ ∂w

∂y

)
∂w

∂z




(10.42)

Versions of the rotation, expansion, shear deformation, and rate of strain tensors in
cylindrical coordinates are not given in this book but can be found in many advanced
texts. If we know the velocity field, we can always calculate these three quantities. This
is illustrated in the following examples.
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EXAMPLE 10 .12

The velocity field for pressure-driven flow in the gap between stationary parallel plates
is shown in Figure 10.43. This flow is described in Cartesian coordinates by 

u(y) =
(

h2(p1 − p2)

2µL

)[
1 −

(
y

h

)2
]

, v = 0, and w = 0

where 2h is the channel height, and the pressures are measured a distance L apart, as
shown in Figure 10.43. Determine the rate of strain and rate of rotation in this flow.

Length, L

p1 p2

Fluid with
viscosity �

and density �

Channel
height, 2h

Pressure drop, �p � p1 � p2

y

x Velocity
profile, u(y)

Figure 10.43 Schematic for Example 10.12.
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SOLUTION

We can use Eq. 10.42, to calculate the rate of strain by inserting the various partial de-
rivatives into the array describing the rate of strain. The result is

S =




0
−(p1 − p2)y

2µL
0

−(p1 − p2)y

2µL
0 0

0 0 0




Next, from Eq. 10.39, the rate of rotation is found to be

R =




0
(p1 − p2)y

2µL
0

−(p1 − p2)y

2µL
0 0

0 0 0




We can check this result by using Eq. 10.36 to calculate the velocity gradient. The result is:

∇u =




0 0 0
−(p1 − p2)y

µL
0 0

0 0 0




which we see is also the result obtained by forming the term-by-term sum of S and R.

EXAMPLE 10 .13

A flow field given by u = (x2 y)i + (−xy2)j + 0k is illustrated in Figure 10.44. Find
the velocity gradient, rate of strain, rate of rotation, rate of expansion, and rate of shear
deformation in this flow.

SOLUTION

The velocity gradient is found by using Eq. 10.36:

∇u =




2xy −y2 0

x2 −2xy 0

0 0 0



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Next we use Eq. 10.42 to calculate the rate of strain, and Eq. 10.39 to calculate the rate
of rotation to find

S =

 2xy 1

2 (x2 − y2) 0
1
2 (x2 − y2) −2xy 0

0 0 0


 and R =


 0 − 1

2 (x2 + y2) 0
1
2 (x2 + y2) 0 0

0 0 0




The rate of expansion is calculated by using Eq. 10.40. From the velocity components
we find 1

3 (∂u/∂x + ∂v/∂y + ∂w/∂z) = 1
3 (2xy − 2xy + 0) = 0. Thus the rate of ex-

pansion is

E =




1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
0 0

0
1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
0

0 0
1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)




=
( 0 0 0

0 0 0
0 0 0

)

Finally, by using Eq. 10.41, we calculate the shear deformation rate as

D =

 2xy 1

2 (x2 − y2) 0
1
2 (x2 − y2) −2xy 0

0 0 0




We see that the rate of expansion is zero in this flow, while the rate of rotation and the
shear deformation rate are nonzero.
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Streamlines
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Figure 10.44 Schematic of the velocity field and streamlines for Example 10.13.



10.9 RATE OF ROTATION

In this section we will explore the characteristics of the rate of rotation tensor in more
detail. In Cartesian coordinates the rate of rotation is given by Eq. 10.39 as

R =




0
1

2

(
∂v

∂x
− ∂u

∂y

)
1

2

(
∂w

∂x
− ∂u

∂z

)
1

2

(
∂u

∂y
− ∂v

∂x

)
0

1

2

(
∂w

∂y
− ∂v

∂z

)
1

2

(
∂u

∂z
− ∂w

∂x

)
1

2

(
∂v

∂z
− ∂w

∂y

)
0




Note that the diagonal terms are all zero. In addition, each element below the diagonal
is simply the negative of the corresponding element above. Thus, there are only three
independent elements in this tensor. From vector calculus we know that the curl of the
velocity vector is defined to be ∇ × u = (∂w/∂y − ∂v/∂z)i + (∂u/∂z − ∂w/∂x)j +
(∂v/∂x − ∂u/∂y)k. Examining the various elements in the rate of rotation, we see that
we can write R in terms of the three components of ∇ × u as

R =




0 1
2 [∇ × u]z − 1

2 [∇ × u]y

− 1
2 [∇ × u]z 0 1

2 [∇ × u]x

1
2 [∇ × u]y − 1

2 [∇ × u]x 0


 (10.43)

This result suggests that the rate of rotation is closely related to the curl of the velocity
field.

What characteristic of a flow does the curl measure? Consider the special case of a
fluid in rigid body rotation at angular velocity �0. As discussed in Section 10.7, the an-
gular velocity vector in a rigid body rotation is the same at each point in the flow, and
the velocity field is given by Eq. 10.32a as u = �0 × x, where �0 = (Ω0x ,Ω0y,Ω0z) is
a constant vector. Equation 10.32b gives the corresponding velocity components as
u = Ω0yz − Ω0z y, v = Ω0z x − Ω0x z, w = Ω0x y − Ω0y x . The corresponding velocity
vector is

u = (Ω0yz − Ω0z y)i + (Ω0z x − Ω0x z)j + (Ω0x y − Ω0y x)k (10.44a)

and taking the curl of this vector, we find

∇ × u = ∇ × (�0 × x) = 2Ω0x i + 2Ω0yj + 2Ω0zk = 2�0 (10.44b)

This important result demonstrates that for a fluid in rigid body rotation at angular ve-
locity �0, the curl of the velocity field is a vector that points in the same direction as the
angular velocity vector and has twice its magnitude.

Because a fluid is a deformable material, different parts of moving fluid generally
rotate with different angular velocity vectors. Have you ever observed eddy motions in
a river or the chaotic swirls in the gas leaving a smokestack? Each eddy or swirl is a ro-
tating volume of fluid with a distinct rotation rate and axis of rotation (Figure 10.45).
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To characterize the rotation in a flow, we define the angular velocity vector, or rota-
tion vector, �(x, t), at a point in a fluid as

� = 1
2∇ × u (10.45)

Notice that this definition of rotation allows the rotation vector to be a function of posi-
tion and time, but reproduces Eq. 10.44b when applied to the velocity field in the special
case of rigid body rotation. We may interpret the value of the rotation vector at position
x in a fluid at time t in terms of the fluid particle that happens to be there. This fluid par-
ticle, if thought of as a tiny rigid body, would rotate with an angular velocity vector
equal to the rotation vector calculated by using Eq. 10.45. The sign convention for an
angular velocity vector is illustrated in Figure 10.46. In general, the resulting rotation is
clockwise when looking in the direction of �.

In Cartesian coordinates the three components of the rotation vector are

Ωx = 1

2

(
∂w

∂y
− ∂v

∂z

)
, Ωy = 1

2

(
∂u

∂z
− ∂w

∂x

)
, and Ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
(10.46a–c)

while in cylindrical coordinates, they are

Ωr = 1

2

(
1

r

∂vz

∂θ
− ∂vθ

∂z

)
, Ωθ = 1

2

(
∂vr

∂z
− ∂vz

∂r

)
, and Ωz = 1

2

[
1

r

(
∂(rvθ )

∂r
− ∂vr

∂θ

)]
(10.47a–c)
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(B)(A)

Figure 10.45 Eddys and swirls: (A) in a river and (B) from a smokestack.
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Substituting the components of the rotation vector defined by Eqs. 10.46 into the
rate of rotation tensor (Eq. 10.39) shows that we can write the latter in Cartesian coor-
dinates as

R =
( 0 Ωz −Ωy

−Ωz 0 Ωx

Ωy −Ωx 0

)
(10.48)

We see that the rate of rotation tensor is completely determined by the three components
of the rotation vector. A similar relationship holds in cylindrical coordinates.
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EXAMPLE 10 .14

Find the rotation vector in the flow between parallel plates with the top plate moving as
shown in Figure 10.47. Recall that the velocity field for this flow is u =
(U/2)(y/h + 1)i, where U is the velocity of the moving plate and 2h is the distance be-
tween the plates. Give the rotation and rate of rotation tensor in this flow.

Direction of rotation
of fluid element

�z 
 0 (CCW)

y

x

z 
 �u � y
h

iU
2

Top plate moves
with velocity U

Bottom plate
is stationary

	 1

h

h

z

Figure 10.47 Schematic for Example 10.14.

SOLUTION

The first part of this exercise is solved by using Eq. 10.46. For this flow we have

u = U

2

(
y

h
+ 1

)
, v = 0, and w = 0

Substituting these values into Eqs. 10.46 and taking the appropriate derivatives yields:

Ωx = 1

2

(
∂w

∂y
− ∂v

∂z

)
= 1

2
(0 − 0) = 0 , Ωy = 1

2

(
∂u

∂z
− ∂w

∂x

)
= 1

2
(0 − 0) = 0



10.9.1 Vorticity

The term “vortex,” designating a region of concentrated rotation in a flow, should be fa-
miliar to you. According to the dictionary, a vortex is “an eddy, whirlpool, the depres-
sion at the center of a whirling body of air or water.” Naturally occurring vortices in-
clude hurricanes, tornadoes, waterspouts, and dust devils. Vortices also occur on a
smaller scale in the wake of an object—for example, when a paddle is dragged through
water or a spoon moved through a cup of tea. It is fair to say that vorticity (and rotation)
is almost always present in a moving fluid. This is true even though an organized vortex
is not always evident.
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and

Ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
= 1

2

(
0 − U

2h

)
= − U

4h

Thus the rotation vector is � = 0i + 0j − (U/4h)k. To interpret this result, notice that in
Figure 10.47 the z axis is pointing out of the paper. Thus, since � = 0i + 0j − (U/4h)k
the z-component of rotation is negative and we should expect to “see” a counter clock-
wise rotation when looking in the +z direction. If we focus our attention on a thin fluid
material volume originally aligned with the y axis, we see that as time passes this fluid
element does indeed rotate in a counter clockwise direction as viewed in the+z direction.
Thus, our result appears reasonable and consistent with our discussion of this same flow
in the final example of Section 10.7. Recall that in that discussion we considered the effect
of the velocity field on a small cylinder of fluid.

To calculate the rate of rotation tensor, we can use Eq. 10.48, substituting the com-
ponents of the rotation vector to obtain

R =

 0 Ωz −Ωy

−Ωz 0 Ωx

Ωy −Ωx 0


 =




0 − U

4h
0

U

4h
0 0

0 0 0




We could also calculate the rate of rotation directly by using Eq. 10.39.

CD/Kinematics/Pathlines/Examples of complex flows

CD/Kinematics/Two dimensional flow and vorticity
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EXAMPLE 10 .15

Find and interpret the rotation vector in Poiseuille flow through a rotating circular pipe.
The velocity field is given in cylindrical coordinates by 

vr = 0, vθ = rΩ0, and vz = (p1 − p2)R2

4µL

[
1 −

(
r

R

)2
]

SOLUTION

Substituting the velocity components into Eqs. 10.47 we find

Ωr = 1

2

(
1

r

∂vz

∂θ
− ∂vθ

∂z

)
= 1

2

(
1

r
(0) − 0

)
= 0

Ωθ = 1

2

(
∂vr

∂z
− ∂vz

∂r

)
= 1

2

[
0 −

(
− (p1 − p2)r

2µL

)]
= (p1 − p2)r

4µL

Ωz = 1

2

[
1

r

(
∂(rvθ )

∂r
− ∂vr

∂θ

)]
= 1

2

[
1

r

(
∂(r2Ω0)

∂r
− 0

)]
= Ω0

The rotation vector in this flow is � = 0er + [(p1 − p2)r/4µL]eθ + Ω0ez . To inter-
pret this result, notice that in Figure 10.48 the z axis is pointing to the right along the axis
of the pipe. Since the fluid is rotating while simultaneously moving down the axis of the
pipe, the rotation vector has a component Ωz = Ω0, as expected. If we focus our atten-
tion on the thin fluid material volume originally aligned in the radial direction with
θ = 0, we see that as time passes this fluid element rotates in a clockwise direction as
viewed in the +θ direction owing to the nonuniform Poiseuille velocity profile. Thus,
the positive value for Ωθ = (p1 − p2)r/4µL is correct.

(B)

r

z

p2p1

Length, L

Pressure drop, �p � p1 � p2

vz(r)

v�(r)

z

�


� � 0 (CW)


z � 0 (CW)

(A)

Figure 10.48 Schematic for Example 10.15.



It is customary in fluid mechanics to characterize a velocity field in terms of its vor-
ticity rather than its rotation. The vorticity vector, �, is defined by

� = ∇ × u (10.49)

Comparing this definition of vorticity to that for the rotation vector, Eq. 10.45, we see
that these vectors are related by a factor of two:

� = 2� (10.50)

In general, vorticity is a function of position and time. Thus we speak of the vorticity
field in the fluid. From Eq. 10.50 and our expanded form for � (Eq. 10.46) we see that
the three components of vorticity in Cartesian coordinates are given by

ωx =
(

∂w

∂y
− ∂v

∂z

)
, ωy =

(
∂u

∂z
− ∂w

∂x

)
, and ωz =

(
∂v

∂x
− ∂u

∂y

)
(10.51a–c)

In cylindrical coordinates, the components of vorticity are

ωr =
(

1

r

∂vz

∂θ
− ∂vθ

∂z

)
, ωθ =

(
∂vr

∂z
− ∂vz

∂r

)
, and ωz = 1

r

(
∂(rvθ )

∂r
− ∂vr

∂θ

)
(10.52a–c)

Examination of these equations suggests that a 3D flow will generally have a 3D vortic-
ity field.

In the important case of a planar 2D flow, there is only one nonzero vorticity com-
ponent. For example, if the Cartesian velocity components are (u, v, 0) and are inde-
pendent of z, the only component of vorticity in the flow is the z component, given by
Eq. 10.51c as ωz = (∂v/∂x − ∂u/∂y). This vorticity component represents the ten-
dency of fluid particles to spin about an axis perpendicular to the xy plane of the flow
field. Thus, the rotation of a fluid element in a planar 2D flow can only be about an axis
perpendicular to the plane of the fluid motion.
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EXAMPLE 10 .16

Two of your friends are having an argument. They have been asked to find an example
of a 2D planar flow in Cartesian coordinates with a nonzero vorticity vector. One
claims that the stagnation point flow (see Figure 10.49), with the velocity field
u = αx i − αyj + 0k, fits the bill. Another argues that a better example is the shear flow
given by the velocity field u = Cyi + Cxj + 0k (see Eq. 10.35 and Figure 10.38A).
Whom will you support in this argument?

SOLUTION

The vorticity vector for a Cartesian flow can be found by using Eqs. 10.51. Examination
of these two velocity fields, however, shows that they are both 2D planar flows with u
and v independent of z. Therefore, the only component of vorticity that might be nonzero



Earlier we noted that vorticity is almost always present in a fluid in motion. This is
because vorticity is generated in a flow field by several mechanisms. The most impor-
tant of these is the no-slip condition at a solid boundary. To illustrate this effect, consider
the constant density 2D flow created by moving a thin flat plate at a constant velocity
−U i through stationary fluid, as shown in Figure 10.50. The vorticity in the fluid far to
the left of the moving plate is zero because the fluid velocity is zero there. However,
fluid that has passed near the plate has a nonzero vorticity. How is this vorticity created?

To analyze this situation it is helpful to change our reference frame to one fixed to
the flat plate. In this frame the flow is steady and the plate is at rest, as shown in Fig-
ure 10.51. Do you recognize the flat plate boundary layer discussed in the correspond-
ing case study of Section 3.3.4? The fluid is approaching the plate at a constant velocity
U i. In the boundary layer the no-slip condition ensures that there will be a nonzero ve-
locity gradient ∂u/∂y, since the velocity component u = 0 on the plate and u = U a
short distance away in the y direction outside the boundary layer. The single vorticity
component at any point in this 2D flow is given by Eq. 10.51c as ωz = ∂v/∂x − ∂u/∂y .
The value of ∂v/∂x is zero on the wall because v is zero everywhere on the plate by the
no-penetration condition, thus the change in v with x must be zero. In the boundary
layer, ∂v/∂x is negligible in comparison to ∂u/∂y, since the boundary is thin and the
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is given by Eq. 10.51c, ωz = (∂v/∂x − ∂u/∂y). Evaluating the z components of vor-
ticity for the stagnation point flow and the shear flow gives, respectively,

ωz =
(

∂v

∂x
− ∂u

∂y

)
= (0 − 0) = 0 and ωz =

(
∂v

∂x
− ∂u

∂y

)
= C − C = 0

Neither of these 2D flows exhibits a nonzero vorticity vector, so both colleagues are
in error. Can you identify an example of a 2D planar flow in Cartesian coordinates with
a nonzero vorticity vector? You might want to consider the flows in Examples 10.10
and 10.12.

y
Velocity vectors

Streamlines

x

y

x(A) (B)

Figure 10.49 Schematic for Example 10.16.



streamlines are nearly parallel to the wall. We therefore anticipate that the maximum
vorticity value in the boundary layer will occur at the wall where the velocity gradient
∂u/∂y is the largest. This maximum value is given by

ωz|wall =
(

∂v

∂x
− ∂u

∂y

)∣∣∣∣
y=0

= −∂u

∂y

∣∣∣∣
y=0

The wall shear stress is found for a Newtonian fluid by using Eq. 1.2c to obtain
τwall = µ(∂u/∂y)|y=0 . Comparing this with the vorticity at the wall, we discover that in
this flow ωz|wall = −τwall/µ.

An examination of Appendix A shows that in either the SI or BG unit systems, the
viscosity is a numerically small number (� 1) for air, water, and most other fluids.
Thus, a small shear stress on the plate is always accompanied by a large vorticity value.
We see that when a fluid is moving tangentially relative to a solid boundary, a large value
of vorticity will be present at the boundary owing to the no-slip condition. This vortic-
ity simultaneously diffuses into the fluid and is transported downstream. We see that the
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Flat plate moving
with velocity
u � �Ui
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x

Stationary fluidFigure 10.50 Velocity field
created by a flat plate moving
through a stationary fluid.
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Figure 10.51 Vorticity creation in the boundary layer in flow over a flat plate. The magni-
tude of the vorticity is dependent on the slope of the velocity field at the wall, (∂u/∂y)|y=0.
In the free stream (∂u/∂y)|y>δ = 0 and the vorticity is zero.



10.9 RATE OF ROTATION 627

EXAMPLE 10 .17

Recall that pressure-driven flow between stationary parallel flat plates, illustrated in 
Figure 10.52A, is described by 

u(y) = h2(p1 − p2)

2µL

[
1 −

(
y

h

)2
]

, v = 0, and w = 0

Determine the vorticity distribution for this flow and compare the magnitude of the wall
shear stress to the vorticity at the top and bottom plates.
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(B)
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�z(y 
 0) 
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Channel
height, 2h

y

x

z

p1 p2

bottom�y
�uSlope �

1

top�y
�uSlope �

1

Figure 10.52 Schematic for Example 10.17: Pressure-driven flow between stationary parallel
flat plates.

SOLUTION

We will use Eqs. 10.51 to calculate the vorticity, and Eq. 1.2c to calculate the magni-
tude of the wall shear stress. A straightforward calculation shows that the single compo-
nent vorticity vector in this flow is � = ωzk = (∂v/∂x − ∂u/∂y) k with ωz =
(p1 − p2)y/µL . Note that the vorticity changes sign in the gap between the plates,
meaning that fluid particles in the upper half of the channel rotate in the opposite direc-
tion to those in the lower half. Figure 10.52B is a plot of the vorticity contours for this
flow generated using the equation above. The contours are horizontal lines.



layer of fluid that passes near a solid boundary and consequently contains vorticity de-
fines the boundary layer.

It is possible to visualize the vorticity field in a fluid flow by using the same tech-
niques employed to visualize a velocity field. For example, we can use the vector plot of
many software packages to represent the vorticity in a 3D flow. A contour plot of the
magnitude of vorticity, like the one shown in Figure 10.52B for pressure-driven flow be-
tween parallel plates, is especially helpful for sensing where the highest rotation rates
occur in a 2D flow. Most commercial CFD packages produce plots of the vorticity.

Velocity and vorticity are examples of vector fields. Recall that streamlines are de-
fined to be lines in a fluid that are everywhere parallel to the velocity vectors. Vortex
lines are defined similarly, as lines that are everywhere parallel to the vorticity vectors.
Vortex lines generally do not cross one another because that would require that the vor-
ticity field be multivalued at the crossing point, a physical impossibility.

10.9.2 Circulation

Since vorticity is defined by the curl of the velocity field, it is natural to think that Stokes
theorem, which involves the curl of a vector field, might provide additional insight into
the physical phenomena associated with vorticity. Applying Stokes theorem to the
velocity field u, we have ∮

u • dr =
∫∫

S
(∇ × u) • n dS (10.53a)
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The vorticity at the top and bottom plates is found to be

ωz|top =
[
(p1 − p2)y

µL

]∣∣∣∣
y=h

= (p1 − p2)h

µL

and

ωz|bottom =
[
(p1 − p2)y

µL

]∣∣∣∣
y=−h

= (p1 − p2)(−h)

µL
= − (p1 − p2)h

µL

The vorticity has the same magnitude at each plate as expected from the symmetry.
The shear stress at each plate is found by using Eq. 1.2c. By the symmetry the wall

shear stress is the same on each plate. We can evaluate it at the bottom plate to obtain:

τwall = µ
∂u

∂y

∣∣∣∣
y=−h

= µ

(
h2(p1 − p2)

2µL

)(−2y

h2

)∣∣∣∣
y=−h

= (p1 − p2)h

L

The ratio of the magnitudes of vorticity to the shear stress at each plate is
|ωwall|/τwall = 1/µ. Since the magnitude of µ is small, the vorticity at each plate is large
in comparison to the local shear stress.



where the line integral is taken around the closed path that bounds the edge of an arbi-
trarily selected surface drawn in the fluid. The relationship between the orientation of
the path and the corresponding unit normal to the surface is shown in Figure 10.53. In-
troducing the vorticity, we see that the Stokes theorem becomes

∮
u • dr =

∫∫
S

� • n dS (10.53b)

Now consider an arbitrary surface in a fluid in motion and its associated path, ori-
ented as shown in Figure 10.54. If the flow possesses vorticity, then vortex lines may
penetrate this surface, and the path will define a vortex tube. A closed path like this in a
fluid is said to possess a flow property known as circulation. The circulation, C(t), of a
path is defined mathematically by the line integral

C(t) =
∮

u • dr (10.54)
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Figure 10.53 The closed path and surface used
in the Stokes theorem.

Figure 10.54 The vorticity flux
through the surface is related to the
circulation of the path.



where the integrand is the component of velocity tangent to the path as shown in Fig-
ure 10.54. By using the Stokes theorem, we can also write the circulation as

C(t) =
∫∫

S
� • n dS (10.55)

Thus, the Stokes theorem shows that the circulation around a closed path in a fluid is re-
lated to the normal component of vorticity on any surface bounded by the path.

To illustrate the connection between the vorticity flux through a surface and the
circulation around the associated path, consider the special case of a fluid in rigid body
rotation about the z axis with a constant angular velocity �0 = Ω0k and velocity field
given by Eq. 10.44a as u = (Ω0yz − Ω0z y)i + (Ω0z x − Ω0x z)j + (Ω0x y − Ω0y x)k .
Since (Ω0x ,Ω0y,Ω0z) = (0, 0,Ω0), we can write the velocity field as u =
−Ω0 yi + Ω0xj + 0k. (This flow may look more familiar when expressed in cylindrical
coordinates as u = rΩ0eθ ). The velocity field and streamlines are shown in Fig-
ure 10.55A. Applying Eqs. 10.51, the vorticity field is found to be 2Ω0k, as expected.
Thus the vortex lines are all perpendicular to the plane of motion, as shown in Fig-
ure 10.55B. Now consider a circular path of radius R centered on the rotation axis. The
surface integral defining the circulation in Eq. 10.55 is easy to evaluate if we select
the surface as a circular disk of area π R2 normal to the z axis and bounded by the
selected path. Since the unit normal of the disk is n = k, we find

C(t) =
∫∫

S
� • n dS =

∫∫
S

2Ω0k • k dS =
∫∫

S
2Ω0 dS

The value of the surface integral is therefore simply 2�0π R2. This value will also be
found for a surface of any shape that is bounded by this circular path. Thus, according to
Eq. 10.55, in a rigid body rotation, the circulation C(t) on any circular path oriented
normal to the z axis and centered on the axis of rotation in a flow in rigid body rotation
is a constant equal to 2Ω0π R2. We can verify this result by calculating the circulation
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Figure 10.55 (A) Velocity field and streamlines for a fluid in rigid body rotation. (B) The associated vortex lines.



by means of its definition as the line integral around the path bounding the circular disk
(Eq. 10.54). For this path we can write u • dr = vθ R dθ , and since the tangential com-
ponent of velocity at any point along the path is vθ = RΩ0, the line integral is∮

u • dr = ∫ 2π

0 (RΩ0)R dθ = 2Ω0π R2 , as found with the surface integral.
Circulation plays an important role in the 2D frictionless flow model describing the

aerodynamics of a wing. It can be shown that the lift produced by a long wing of length
L is related to the circulation around the airfoil by

FL = −ρUC L (10.56)

Here U is the speed of the fluid approaching the wing, ρ is the fluid density, and C is the
circulation on the path illustrated in Figure 10.56.
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x
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U Path

Bound vortex

Figure 10.56 A bound vortex can be
used to model the circulation and,
therefore, the lift of an airfoil.

EXAMPLE 10 .18

Calculate the circulation for the rectangular path shown in Figure 10.57 for the pressure-
driven flow between stationary parallel plates. The velocity field is given by

u(y) =
[

h2(p1 − p2)

2µL

][
1 −

(
y

h

)2
]

, v = 0, and w = 0

Does your answer agree with the value obtained by using Eq. 10.55?
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IV

III Figure 10.57 Schematic for
Example 10.18.



10.9.3 Irrotational Flow and Velocity Potential

From our discussion of how the no-slip condition creates vorticity in flows past a solid
boundary, it appears that we would rarely, if ever, encounter a flow in which vorticity is
absent. As engineers, however, we are always alert to the possibility of simplifying our
analysis with a valid approximation. For example, in high speed flow over a streamlined
body, the boundary layer in which vorticity is present is thin and attached (always adja-
cent to the body), so most of the flow field is free of vorticity. One can deduce certain as-
pects of this flow field by using a model that assumes the absence of vorticity. Such a
flow is referred to as an irrotational flow, since the fluid elements do not rotate. This is
one of the most important approximations in fluid dynamics, and it has a long and con-
tinuing history of use in aerodynamics. In an irrotational flow, the velocity field satisfies

∇ × u = 0 (10.57)

An interesting result from vector calculus is that the curl of the gradient of a scalar
is zero. This suggests that we define a scalar velocity potential φ(x, t) for irrotational
flow by writing

u = ∇φ (10.58)

By using the velocity potential, the condition of irrotational flow is automatically satis-
fied, and the three velocity components are replaced by a single scalar potential function.
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SOLUTION

We will use Eq. 10.54, C(t) = ∮ u • dr, to calculate the circulation on the indicated
path, with u = u(y) i + 0j + 0k and dr = dx i + dy j + dz k. On paths II and IV, we
have dr = dy j and dr = −dy j, respectively, so the dot product u • dr on these paths is
zero because i • j = 0. On paths I and III, we have dr = dx i and dr = −dx i, so the cor-
responding integrals are II = ∫ L

0 u(y)|y=h dx = 0 and IIII = ∫ L
0 −u(y)|y=−h dx = 0.

Thus, the circulation on this path is zero. To check this result, recall that we used
Eqs. 10.51 to calculate the vorticity in this flow in Example 10.17 and obtained
� = ωzk with ωz = [(p1 − p2)y]/µL . Applying Eq. 10.55, and noting that the unit
normal must be pointing out of the paper for this path, we have

C(t) =
∫∫

S
� • n dS =

∫∫
S
(ωzk) • (+k) dS

=
∫ h

−h

∫ L

0

[
(p1 − p2)y

µL

]
dx dy = p1 − p2

µ

∫ h

−h
y dy = 0

Thus, the two methods produce the same answer. Notice what actually occurs here: the
flux of vorticity in the top half of the channel cancels that in the bottom half.
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In Cartesian coordinates, the velocity components are related to the velocity poten-
tial by 

u = ∂φ

∂x
, v = ∂φ

∂y
, and w = ∂φ

∂z
(10.59a–c)

while in cylindrical coordinates the relationship is

vr = ∂φ

∂r
, vθ = 1

r

∂φ

∂θ
, and vz = ∂φ

∂z
(10.60a–c)

If we know the velocity potential, we can construct the velocity field by taking
the appropriate derivatives. Although the velocity potential will be discussed in more
detail in Chapter 12, to understand its power, consider the sink–vortex flow shown in
Figure 10.58. This interesting flow appears visually complex but can in fact be com-
pletely described by a velocity potential in cylindrical coordinates of the form
φ = A ln r − Bθ , where A and B are constants. Using Eqs. 10.60a–c, we can easily cal-
culate the velocity components in this flow as

vr = ∂φ

∂r
= A

r
, vθ = 1

r

∂φ

∂θ
= − B

r
, and vz = ∂φ

∂z
= 0

Although the irrotational flow approximation is used in both incompressible and
compressible flows, the equation of motion for incompressible, irrotational flow is par-
ticularly simple and noteworthy. As shown in Chapter 11, the governing equation ex-
pressing mass conservation for incompressible flow reduces to ∇ • u = 0. Substituting
for the velocity by means of Eq. 10.58, the velocity potential for irrotational, incom-
pressible flow can be seen to satisfy Laplace’s equation,

∇2φ = 0 (10.61)

one of the most well-understood linear partial differential equations in applied mathe-
matics. Techniques for solving problems involving this type of flow are highly devel-
oped. As we shall see in Chapter 12, many flow solutions are available for incompress-
ible, irrotational flow. In fact we have used the velocity fields for a number of these
solutions in the examples throughout this book.
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y

x

Figure 10.58 Flow streamlines pro-
duced by a sink and a vortex.



In Cartesian coordinates, the equation governing
the velocity potential is

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0 (10.62a)

while in cylindrical coordinates the potential satisfies

1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2

∂2φ

∂θ2
+ ∂2φ

∂z2
= 0 (10.62b)
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An engineer’s decision to use
the approximation of irrota-
tional flow in analyzing a given
problem bears on the type of

CFD analysis that would be selected.
Commercial CFD packages for irrotational
flow analysis are very different from those
that do viscous flow analysis.

EXAMPLE 10 .19

The flow illustrated in Figure 10.59A is given by u = A(x2 − y2), v = −2Axy, w = 0,
where A is a constant. Is this an irrotational flow? If so, find the velocity potential and
demonstrate that it satisfies Laplace’s equation.

60�

(A) (B)

Figure 10.59 Streamlines for Example 10.19.

SOLUTION

An irrotational flow has zero vorticity. We can calculate the vorticity in this flow by
using Eqs. 10.51a–c to obtain

ωx =
(

∂w

∂y
− ∂v

∂z

)
=
[

0 − ∂

∂z
(−2Axy)

]
= 0

ωy =
(

∂u

∂z
− ∂w

∂x

)
=
{

∂

∂z
[A(x2 − y2)] − 0

}
= 0

ωz =
(

∂v

∂x
− ∂u

∂y

)
=
{

∂

∂x
(−2Axy) − ∂

∂y
[A(x2 − y2)]

}
= [(−2Ay) − (−2Ay)] = 0



10.10 RATE OF EXPANSION

As noted earlier, the rate of expansion tensor is the part of the velocity gradient that
causes a change in the volume of a fluid element while leaving its shape unchanged. A
fluid must be compressible for the volume of a fluid particle (or element) to change.
Hence in discussing the rate of expansion tensor, we anticipate that we will discover a
connection to the fluid density. Before exploring this connection, recall that the rate of
expansion tensor is defined by Eq. 10.40 as

E =




1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
0 0

0
1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
0

0 0
1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)




The rate of expansion is an isotropic tensor, which implies that the deformation of a
fluid element is independent of its orientation. This isotropic characteristic can be easily
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We see that the flow is irrotational. To find the velocity potential, we use Eq. 10.59 to write

∂φ

∂x
= u = A(x2 − y2) ,

∂φ

∂y
= v = −2Axy , and

∂φ

∂z
= w = 0

Thus, the potential is a function of only x and y in this case. To find the potential, we
integrate the first equation with respect to x to obtain φ = A(x3/3 − xy2) + f (y) and
then take the derivative of φ with respect to y to find ∂φ/∂y = −2Axy + d f/dy . Com-
paring this result with ∂φ/∂y = v = −2Axy shows that d f/dy = 0 and, therefore, f is
a constant. Thus, the velocity potential is φ = A(x3/3 − xy2) + C . The constant is not
significant and may be set to zero. To check whether Laplace’s equation is satisfied by
this potential, we use Eq. 10.62a to obtain

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2

= ∂2

∂x2

[
A

(
x3

3
− xy2

)]
+ ∂2

∂y2

[
A

(
x3

3
− xy2

)]
+ ∂2

∂z2

[
A

(
x3

3
− xy2

)]
= (2Ax) + (−2Ax) + 0 = 0

Thus we see that the potential does indeed satisfy Laplace’s equation. The streamlines
for this flow are shown in Figure 10.59A. Note that engineers often make use of only
part of an irrotational flow. In this case the same velocity field also describes flow in the
other five pie-shaped regions, as shown in Figure 10.59B.



identified in any tensor (or square matrix) by noting that such a tensor is the product of
a scalar function and the unit matrix. Recall that the unit matrix has “1s” along the di-
agonal and “0s” elsewhere. In the case of the expansion tensor, the scalar function that
multiplies each of the “1s” is 1

3 (∂u/∂x + ∂v/∂y + ∂w/∂z).
Consider the spherical fluid element of radius R shown in Figure 10.60, and sup-

pose this element is embedded in a flow with a velocity field having rate of expansion
E. If we focus on the effect of E on the relative velocity of points on the surface
of this sphere, we find that a point on the surface has a relative velocity given by r • E
with respect to the center of the sphere. If we calculate this dot product for the point
marked A in Figure 10.60, we find r • E|A = R[ 1

3 (∂u/∂x + ∂v/∂y + ∂w/∂z)]i .
Assuming that 1

3 (∂u/∂x + ∂v/∂y + ∂w/∂z) is positive, the relative velocity vector
points radially outward at point A. Similarly, at point B we find r • E|B =
R[ 1

3 (∂u/∂x + ∂v/∂y + ∂w/∂z)] j. This relative velocity vector also points radially out-
ward and has the same magnitude as that at point A. In fact, the velocity vector at any point
on the surface points radially outward and has the same magnitude. We conclude that the
spherical fluid volume will expand (and remain spherical) at a rate proportional to the (pos-
itive) value of 1

3 (∂u/∂x + ∂v/∂y + ∂w/∂z). Thus, the contribution of E to the relative
motion of a fluid element is an expansion if 1

3 (∂u/∂x + ∂v/∂y + ∂w/∂z) > 0, and a
contraction if 1

3 (∂u/∂x + ∂v/∂y + ∂w/∂z) < 0. If 1
3 (∂u/∂x + ∂v/∂y + ∂w/∂z) = 0

in a given flow, the volume of a fluid element is unchanged in that flow. Does it seem to
you that these results must imply something about how the density of the fluid inside this
element is changing? The answer to this question is the topic of the next section.

10.10.1 Dilation

In fluid mechanics, we define the dilation, (sometimes called dilatation), � = �(x, t), as
the divergence of the velocity field:

� = ∇ • u (10.63)
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Figure 10.60 Illustration of a spherical fluid
element undergoing pure expansion.



The dilation is given in Cartesian and cylindrical coordinates, respectively, by

� = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
and � = 1

r

∂(rvr )

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
(10.64a,b)

Using the dilation, the rate of expansion tensor can be written as

E =



1
3� 0 0
0 1

3� 0
0 0 1

3�


 =




1
3∇ • u 0 0

0 1
3∇ • u 0

0 0 1
3∇ • u


 (10.65a,b)

The divergence of a velocity field defines the fractional rate of expansion in a fluid at a
point in a flow. If the divergence is positive at a point, the volume of the fluid particle lo-
cated there is increasing, its density is decreasing, and the particle is said to be dilating
because it is expanding. If the divergence is negative, the volume of the fluid particle is
decreasing and its density is increasing. A nonzero dilation, therefore, implies a com-
pressible fluid, while an incompressible fluid must always have zero dilation.

To prove these statements, consider a small fluid system and note that an equation
for the time rate of change of the volume of this system is given by 

d –V (t)

dt
= d

dt

∫
R(t)

1 dV

where –V (t) is the volume of the system. Using the Reynolds transport theorem, Eq. 7.4,
and noting that in this case we have ρε = 1, we obtain

d –V (t)

dt
= d

dt

∫
R(t)

1 dV =
∫

R(t)

∂

∂t
(1) dV +

∫
R(t)

(1) (u • n) dS

=
∫

R(t)
(1) (u • n) dS

Converting the surface integral to a volume integral with Gauss’s theorem, we obtain

d –V (t)

dt
=
∫

R(t)
(∇ • u) dV (10.66)

This result shows that the rate at which the volume of a fluid system is increasing is re-
lated to the divergence of the velocity field. We can also apply Eq. 10.66 to a fluid par-
ticle, since it qualifies as a small fluid system. Suppose the fluid particle’s volume
at some instant of time is δ–V . According to Eq. 10.66 its volume is changing at a rate
given by d(δ–V )/dt = ∫

δ –V (∇ • u) dV . Since all fluid properties are uniform for a fluid
particle, the volume integral is simply the integrand times the volume, so that
d(δ–V )/dt = (∇ • u)δ–V . Dividing both sides by δ–V , we find

1

δ–V

d(δ–V )

dt
= ∇ • u (10.67)

Thus, at a given instant of time, the fractional rate of increase in the volume of a fluid
particle located at a point in the fluid is given by the divergence of velocity at this point,
i.e., by the dilation.
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10.10.2 Incompressible Fluid and Incompressible Flow

There are two important approximations in fluid mechanics involving the modeling of
fluid density. The first approximation, that of an incompressible fluid, assumes a con-
stant fluid density. Thus, in a problem involving an incompressible fluid, the density sat-
isfies the condition

ρ(x, t) = ρ0 (10.68)

where ρ0 is simply a constant.
The second approximation, called incompressible flow, assumes that the density of

a fluid particle does not change as it moves. Since the rate of change of density follow-
ing the motion of a fluid particle is given by the material derivative of density, the in-
compressible flow condition is expressed mathematically as

Dρ

Dt
= 0 (10.69)

With the definition of the material derivative (see Eqs. 6.15 and 6.21), we can write the
incompressible flow condition in Cartesian coordinates as 

Dρ

Dt
= ∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0 (10.70a)

and in cylindrical coordinates as

Dρ

Dt
= ∂ρ

∂t
+ vr

∂ρ

∂r
+ vθ

r

∂ρ

∂θ
+ vz

∂ρ

∂z
= 0 (10.70b)

As discussed in Chapter 6, the rate of change of any quantity following the motion of a
fluid particle is given by the sum of the local rate of change (the temporal derivative
term) and the convective rate of change (the sum of the three terms involving spatial de-
rivatives). Thus, the density of a fluid particle, like its velocity, may be changing owing
to both local and convective effects.

If the density of a fluid is constant (an incompressible fluid), then we see immedi-
ately from Eq. 10.69 that the corresponding flow is also an incompressible flow. How-
ever, the presence of four terms in Eqs. 10.70a and 10.70b, means that the material de-
rivative of density may be zero in a flow in which the density is not constant. For
example, this can occur in a steady process (for which ∂ρ/∂t = 0) if the velocity field
takes the specific form needed to make the convective rate of change of density zero.
Consider the steady 2D flow shown in Figure 10.61 with a velocity field described by
u = u(x, y)i + v(x, y)j + 0k and a linear density variation in the vertical z direction
given by ρ(z) = ρ0 − αz , where α is a constant. This density field could result from a
vertical temperature gradient in the atmosphere or a body of water or from a variable salt
concentration in seawater. Applying Eq. 10.70a to these velocity and density fields, we
find that ∂ρ/∂t , ∂ρ/∂x , and ∂ρ/∂y are all zero. Thus, Dρ/Dt = w(∂ρ/∂z), and since
w = 0 in this flow, we have Dρ/Dt = 0. Therefore, this is an incompressible flow, the
rate of change in density following the motion of a fluid particle is zero, and the density
of a fluid particle does not change as it moves. Does this make sense in a flow in which
the density is spatially variable? Examining the velocity field, we see that a fluid particle
remains in the same horizontal layer throughout its motion. Since the density in any hor-
izontal layer is constant, each fluid particle retains its original density value as it moves.
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Density varies
in the z

direction

Fluid motion
is restricted to 
the xy plane

y
x

z

Figure 10.61 A 2D flow with a linear density
variation in the z direction.

EXAMPLE 10 .20

The velocity and density fields in a flow are given by u = kx2 y + α/y , v = −kxy2 +
β/x, w = ε, and ρ = ρ0 exp[−γ (xy − ct)], where k, α, β, ε, γ, ρ0, and c are constants.
Is this an incompressible flow? Does it involve an incompressible fluid?

SOLUTION

Since the density is a function of position and time, this is not an incompressible fluid.
An incompressible flow must satisfy Eq. 10.70a: Dρ/Dt = ∂ρ/∂t + u(∂ρ/∂x)+
v(∂ρ/∂y) + w(∂ρ/∂z) = 0. For the given velocity and density fields, we find:

Dρ

Dt
= ∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

= γ c{ρ0 exp[−γ (xy − ct)]} +
(

kx2 y + α

y

)
(−γ y){ρ0 exp[−γ (xy − ct)]}

+
(

−kxy2 + β

x

)
(−γ x){ρ0 exp[−γ (xy − ct)]}

Notice that both the local and convective derivatives of the density are nonzero for
this flow. Also note that although the flow is steady (i.e., the velocity field is indepen-
dent of time), it is not a steady process (since the density is a function of time). Simpli-
fying this result by writing γρ0 exp[−γ (xy − ct)] = γρ , we have Dρ/Dt =
γρ(c − kx2 y2 − α + kx2 y2 − β) = γρ(c − α − β) . Thus, this could only be an in-
compressible flow if the constants satisfy c − α − β = 0.



While as noted earlier, it is easy to confirm that an incompressible fluid satisfies the
equation defining incompressible flow, an incompressible flow does not necessarily
have a constant fluid density. When analyzing a flow, an engineer must often decide
whether to treat the fluid density as a variable (compressible flow) or to apply one of
the incompressible approximations. Since every fluid is compressible, varying only in
the degree of compressibility as expressed by the bulk modulus, using a compressible
flow model is never invalid. Because the resulting governing equations are complex and
expensive to solve, however, it is important to avoid using a compressible flow model
unnecessarily. Thus, the relevant question is this: When it is permissible to treat the fluid
density as a constant?

As you know, a liquid is normally modeled as a constant density or incompressible
fluid because there are relatively few circumstances in which the density of a liquid
changes significantly. One exception arises in problems involving the deep ocean, where
the pressure is so large that seawater is compressed. Another exception is related to the
fact that the transmission of sound in liquids is evidence of a change in density, albeit a
very small one. Although the pressure change in a sound wave (which causes the den-
sity change) is very small, a blast wave in a liquid creates a large pressure change and a
correspondingly larger density change. Thus, a sound or blast wave cannot be analyzed
in a liquid if constant density is assumed. Compressibility is also significant in problems
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EXAMPLE 10 .21

What percent density change would be expected for a flow of air with a characteristic
velocity equivalent to M = 0.3? What is the corresponding percent change in pressure
and temperature?

SOLUTION

This exercise is solved by using Eqs. 10.71 to estimate the various changes. Noting that
γ = 1.4 for air and M2 = (0.3)2 = 0.09, we find:

dρ

ρ
= 1

2
M2 = 1

2
(0.09) = 0.045

which is a 4.5% density change. The changes in pressure and temperature are calculated as

dp

p
= γ

2
M2 = 1.4

2
(0.09) = 0.063 = 6.3%

dT

T
= γ − 1

2
M2 = 0.4

2
(0.09) = 0.018 = 1.8%

A Mach number of 0.3 is generally accepted as the upper limit for assuming that air may
be modeled as an incompressible fluid. Nevertheless, since the sound speed in air is
about 340 m/s (1130 ft/s), a constant density model for air is appropriate in many
practical applications.



involving very high liquid pressures and velocities, as
in a water jet cutter. In most circumstances, however, it
is sensible to apply a constant density (i.e., incompress-
ible fluid) model to a liquid. 

Perhaps more remarkable than the need to occa-
sionally model a liquid as a compressible fluid is the
frequency with which a gas may be modeled as an in-
compressible fluid. Considering the highly compress-
ible character of all gases, modeling the density of a gas
as a constant seems like a contradiction. However, for a
gas flow at low speed in the absence of external heating,
the changes in pressure, density, and temperature of a

moving gas particle are very small. Compressible flow theory gives us the following es-
timates of the maximum changes in these variables as function of the Mach number,
M = V/c, in the isentropic flow of a perfect gas:

dp

p
= γ

2
M2 ,

dρ

ρ
= 1

2
M2 , and

dT

T
= γ − 1

2
M2 (10.71a–c)

where γ is the specific heat ratio, (γ = 1.4 for air). We see that if M is small, as it is in
low speed flow, the change in density is negligible and may be safely ignored, as indi-
cated by the Example 10.21.

A final contrasting example that illustrates the need for care in the use of the in-
compressible fluid approximation in fluid dynamics occurs in the analysis of liquid or
gas flows created by heating. Natural convection is the term used to describe flows that
result from buoyancy forces acting on a differentially heated fluid in a gravity field (see
Figure 10.62). For even modest temperature differences, the density change experienced
by a fluid particle is large enough for buoyancy forces to set it in motion. The density
change caused by heating may be estimated from known hot and cold temperatures by
means of the coefficient of thermal expansion. Applying the incompressible fluid
approximation in analyzing this type of problem would fail to capture the essence of
natural convection in either liquids or gases. With experience, you will recognize when
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Figure 10.62 Natural convection from a
warm body. The visualization was accom-
plished with the Schlieren method. 

It is important for an engineer
to understand the different
types of density approximation
available in fluid mechanics.

Among other things, the approximation
chosen strongly influences the type of
CFD code that will be employed and the
cost and complexity in the resulting CFD
analysis. The interested reader can consult
advanced texts and the user manuals for
the CFD codes of interest for further study
of this important issue. 



the use of an incompressible fluid model may result in an analysis that fails to predict
important physical phenomena.

There is an interesting connection between dilation, density, and incompressible
flow. To discuss this connection, it is necessary to use the governing differential equa-
tion expressing mass conservation. Although this equation, called the continuity equa-
tion, is derived in the next chapter, we will use it here to show how the value of the di-
lation is related to the fluid density. The continuity equation states that the connection
between density and the divergence of velocity, i.e., dilation, in a fluid is given by
Dρ/Dt + ρ∇ • u = 0. Writing this in terms of dilation � and rearranging, we have
(1/ρ)(Dρ/Dt) = −∇ • u = −�. The material derivative Dρ/Dt is the time rate of
change of density following the motion of a fluid particle at a point in the fluid. When
divided by the density, the result, (1/ρ)(Dρ/Dt) is the fractional rate of increase in
density of that particle. By Eq. 10.67, the divergence of velocity ∇ • u is the fractional
rate of increase in the volume of the same particle. Thus the continuity equation shows
that if the density of a particle is increasing at a certain fractional rate, the volume must
be decreasing at the same fractional rate and vice versa, a fact that is recognized as
expressing mass conservation.

Since both incompressible fluids and incompressible flows satisfy the equation
Dρ/Dt = 0, we can use the continuity equation to conclude that when either of these
important approximations holds, the corresponding velocity field must satisfy

∇ • u = � = 0 (10.72)

That is, the dilation is zero in an incompressible fluid or in an incompressible flow.
Gauss’s theorem, also known as the divergence theorem, provides additional in-

sight into the physical interpretation of dilation, the divergence of velocity, and the con-
cepts of incompressible fluid and incompressible flow. Consider a closed, bounded vol-
ume, as shown in Figure 10.63, filled with fluid in motion with a velocity field u(x, t).
Applying Gauss’s theorem to this volume, we find∫

S
(u • n) dS =

∫
V

(∇ • u) dV
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Surface, S

Surface
element, dS

Unit normal, n

Volume, V

Volume
element, dV

Velocity, u(x, t)Figure 10.63 A fluid volume that illustrates the
terms in Gauss’s theorem.



The surface integral is the volume flowrate across the surface of the fluid volume shown
in Figure 10.63. Thus, we can replace it with the volume flowrate Q to obtain

Q =
∫

V
(∇ • u) dV

The physical interpretation of this result is as follows. If the dilation is positive within
the volume, the volume integral is positive, and there is a net outflow of fluid (Q > 0).
If the dilation is negative, the integral is negative, and there is a net inflow (Q < 0). If
the dilation is zero, the net outflow through the closed surface is zero. This does not
imply that the normal velocity (u • n) is zero on every element of the surface, only that
when integrated over the whole surface, the net volume flow is zero. Fluid may be flow-
ing in on some part of the surface with (u • n) < 0, and flowing out elsewhere with
(u • n) > 0. It should come as no surprise to discover that for an incompressible fluid or
incompressible flow (∇ • u = 0), the volume flowrate into a control volume equals the
volume flowrate out.
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CD/Kinematics/Streamlines and streamfunction

10.10.3 Streamfunction

We have seen that the velocity field in an incompressible fluid or in an incompressible
flow must be such that the divergence of velocity is zero. This is true for steady and un-
steady flow. It is possible to use this result to draw some interesting conclusions about
the streamlines in 2D flows. Consider the general case of a 2D velocity field (u, v, 0)

whose components are functions of (x, y, t). The continuity equation (Eq. 10.72:
∇ • u = � = 0) reduces in Cartesian coordinates in this case to ∇ • u = ∂u/∂x +
∂v/∂y = 0. If we now define a function ψ = ψ(x, y, t) so that

u = ∂ψ

∂y
and v = −∂ψ

∂x
(10.73a, b)

the continuity equation is automatically satisfied, since

∂u

∂x
+ ∂v

∂y
= ∂

∂x

(
∂ψ

∂y

)
+ ∂

∂y

(−∂ψ

∂x

)
= ∂2ψ

∂x ∂y
− ∂2ψ

∂y ∂x
= 0

The function satisfying Eqs. 10.73 is called the streamfunction.
In a 2D flow described in cylindrical coordinates by velocity components

(vr , vθ , 0), the streamfunction ψ = ψ(r, θ, t) is defined by

vr = 1

r

∂ψ

∂θ
and vθ = −∂ψ

∂r
(10.74a, b)

In a 2D incompressible or constant density flow, the streamfunction automatically
satisfies the governing equation of mass conservation ∇ • u = 0. By defining a stream-
function, we have replaced the two scalar components of the velocity vector by the
single scalar streamfunction, a process that reduces the number of unknowns in a flow
problem. Many attempts at solving the governing equations of 2D flow have employed
the streamfunction to exploit this reduction in the number of unknowns.



The source of the name streamfunction comes from the connection between this
function and the streamlines of a 2D flow. Setting the streamfunction equal to a constant
defines a streamline in the flow. To prove this statement, let us assume that a certain
streamline is defined by the constant ψ0. The equation of this streamline is then

ψ(x, y, t) = ψ0 (10.75)

Consider the pattern of streamlines as they exist at an instant of time. Taking the total
derivative of the streamfunction while holding time fixed, we obtaindψ = (∂ψ/∂x) dx +
(∂ψ/∂y) dy . Substituting for the partial derivatives by using Eqs. 10.73 gives

dψ = −v dx + u dy (10.76)

Recall that a streamline in a 2D flow in the xy plane satisfies Eq. 10.29c, namely,
v dx − u dy = 0. Comparing this with Eq. 10.76, we conclude that on a streamline
dψ = 0, which shows that the streamfunction has a constant value on a streamline. Thus,
if we know the streamfunction, we can construct a family of streamlines by setting the
streamfunction equal to different constant values and plotting the resulting curves.

Suppose you are asked to find the equation of the streamline that passes through a
certain point (xP , yP) at some instant of time. To find the relevant equation, let the un-
known constant value of the streamfunction be ψP . Since the streamfunction is constant
on a streamline, we know that ψ(xP , yP) = ψP . The desired constant can therefore be
found by simply inserting the coordinates of the desired point into the streamfunction it-
self and evaluating the result to obtain the constant. The equation of the streamline
through the point is then given by ψ(x, y, t) = ψP .

There is an interesting relationship between streamlines and the lines of constant
potential of a 2D irrotational flow. The slope of a streamline in the xy plane is found by
recognizing that along a streamline dψ = −v dx + u dy = 0. Thus, on a streamline the
slope is (dy/dx)ψ = v/u . A line of constant potential, which is usually referred to as a
potential line, is defined in a 2D flow by dφ = (∂φ/∂x) dx + (∂φ/∂y) dy = 0. Ac-
cording to Eqs. 10.59a and 10.59b, we have u = ∂φ/∂x and v = ∂φ/∂y . Thus a poten-
tial line is defined by dφ = u dx + v dy = 0, and the slope of a potential line is
(dy/dx)φ = −u/v . We see that these slopes are the negative reciprocals of each other,
thus we conclude that streamlines and potential lines are orthogonal to one another as
shown in Figure 10.64.
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EXAMPLE 10 .22

The flow in a corner can be modeled with the streamfunction ψ = Axy, where A is a
constant. Sketch the streamlines corresponding to constant values of ψ of 0, A, 2A, 3A.
Also find the streamline that passes through the point (1, 1).

SOLUTION

To find the streamlines for constant values of ψ, we simply substitute the known value
into the streamfunction equation and solve for y. For ψ = 0, x = 0 and y = 0 are solu-
tions that make up the walls of the corner as shown in Figure 10.65. For ψ = A, the
equation for the streamline is y = 1/x . For ψ = 2A and 3A, the solutions are y = 1

2 x
and 1

3 x , respectively. These streamlines are also shown in Figure 10.65. To find the
streamline passing through point (1, 1) we substitute these values into the streamfunc-
tion equation to find that ψP = A. Thus, the desired streamline is the y = 1/x , which
we have already found.

1

1

x

y

� � 3A

� � 2A

� � A

Figure 10.65 Streamlines for Example 10.22.

If we know the streamfunction, we can directly construct the velocity field by tak-
ing the indicated derivatives of the streamfunction given in Eqs. 10.73 or 10.74. Con-
versely, if we know the velocity field, we can construct the streamfunction, since the
equations provide two first-order partial differential equations that define the unknown
streamfunction. Note that the equations are generally coupled to one another because
each velocity component depends on (x, y, t) or (r, θ, t). In steady flow, time does not
appear in these equations. In an unsteady flow, t is treated as a constant in solving the
equations. It should be remembered that although streamlines exist in 3D flow, the
streamfunction applies only to 2D, constant density, or incompressible flow.



Although the numerical value ψ0 defining a certain streamline has no meaning in
isolation, there is an important physical interpretation of the difference in the stream-
function values on different streamlines. This interpretation can be established by com-
puting the volume flux of fluid crossing a surface S, of width D into the paper, whose
edge is defined by the path C connecting two points on different streamlines as shown
in Figure 10.67A. In this 2D flow, the path C lies entirely in the xy plane. Let the two
streamlines be defined by the constants ψ1 and ψ2. The volume flux crossing this sur-
face is Q = ∫S (u • n) dS . To evaluate this integral, note that for a path lying wholly in
the xy plane we may write a differential vector element of length dr along the path as
dr = dx i + dy j. An oriented surface element, dA = n dS, on the surface shown in
Figure 10.67B, can be described by dA = dr × dz k. Completing the cross product, we
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EXAMPLE 10 .23

Find and plot the velocity field for the flow in the corner. The streamfunction is
ψ = Axy, where A is a constant.

SOLUTION

This exercise can be solved by using Eqs. 10.73: u = ∂ψ/∂y and v = −∂ψ/∂x . For the
streamfunction of interest we find

u = ∂ψ

∂y
= ∂

∂y
(Axy) = Ax and v = −∂ψ

∂x
= −∂

∂x
(Axy) = −Ay

A vector plot of this velocity field is shown in Figure 10.66. Note that this plot is entirely
consistent with the streamlines for this flow shown in Figure 10.65.

y

Velocity vectors

x

Figure 10.66 Velocity field for Example 10.23.



find n dS = dy dz i − dx dz j, from which it follows that (u • n) dS = u dy dz −
v dx dz. Thus, the volume flux crossing the surface is given by the double integral
Q = ∫∫ (u dy dz − v dx dz), with appropriate limits. If we perform the integration over
the z variable first, noting that the integrand does not depend on z, the volume flowrate
crossing the surface becomes Q = D

∫
(u dy − v dx). This result may also be written

as the line integral

Q = D
∫

C
(u dy − v dx) (10.77)

where the path C is defined by the edge of the surface.
From Eq. 10.76, we have dψ = −v dx + u dy . Thus the line integral of dψ from

point 1 to point 2 along this path is 

ψ2 − ψ1 =
∫

C
(u dy − v dx) (10.78)

Comparing Eqs. 10.77 and 10.78, we conclude that the volume flowrate Q crossing the
surface formed by projecting the path a depth D in the z direction is

Q = D (ψ2 − ψ1) (10.79)

Equation 10.79 describes an important result. If D is taken as a unit distance in the z di-
rection, we see that the difference ψ2 − ψ1 on two streamlines is the volume flowrate per
unit depth crossing the surface defined by the path connecting a point on each streamline.
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Figure 10.67 The relationship between streamlines and volume flux is illustrated by means of (A) the integral path C in
the xy plane, (B) the surface element used in the integration of volume flux, and (C) an alternate integral path for the cal-
culation of volume flux.



The integrand in Eqs. 10.77 and 10.78 is an exact differential form. Thus, the path
chosen to connect the two points on different streamlines is completely arbitrary. This
means that the values of Q and ψ2 − ψ1 will be the same for any path we might select.
Consider a new path made up of one segment CI along the x axis, and a second segment
CII along the y axis, as shown in Figure 10.67C. This path joins the same two points
joined by the original path. The two segments define two new surfaces SI and SII. The
volume flux across these new surfaces are QI and QII. Since the total volume flux must
be the same for any path, the volume flux on the original surface Q must be the sum of
the volume fluxes QI and QII on horizontal and vertical projections of this surface. Your
physical intuition should confirm that the volume flowrate of a constant density fluid
across the original surface must be the same as that crossing the two orthogonal
surfaces.

The preceding interpretation of the values of the streamfunction on different
streamlines plays an important role in flow visualization. Consider steady flow over a ro-
tating cylinder placed in a uniform oncoming stream of constant density fluid. The
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EXAMPLE 10 .24

The streamfunction for a parallel plate flow is ψ = G(h2 y − y3/3), where h is half the
gap height in centimeters and G is a constant with units of reciprocal centimeter-seconds
(cm-s)−1. Find the velocity field for this flow, then compare the volume flowrate through
the channel as calculated by using the direct volume flux calculation to that found with
the streamfunction by using Eq. 10.79. See Figure 10.68 for the geometry and use a
depth D into the paper.

SOLUTION

To determine the velocity field use Eqs. 10.73: u = ∂ψ/∂y and v = −∂ψ/∂x . By in-
spection, we see that v must be zero since ψ = ψ(y) only. We take the derivative of the
streamfunction to find u

u = ∂ψ

∂y
= ∂[G(h2 y − y3/3)]

∂y
= G(h2 − y2)

The flowrate through a surface spanning the channel and having a width D into the paper
is given by

Q =
∫

S
(u • n) dS =

∫ D/2

−D/2

∫ h

−h
G(h2 − y2)i • (i) dy dz

= G D

(
h2 y − y3

3

)∣∣∣∣
h

−h

= G D

[(
h3 − h3

3

)
−
(

−h3 + h3

3

)]
= 4G Dh3

3



streamlines in this flow are shown in Figure 10.69. Note the equal increments in the
streamfunction constant �ψ0 in the upstream region. Each pair of adjacent streamlines
forms a streamtube of upstream height h∞ and depth D in the z direction. By Eq. 10.79,
the volume flowrate traveling downstream in any streamtube is Q = �ψ0 D. Since fluid
cannot leave a streamtube, the volume flowrate through the streamtube at any point
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Using Eq. 10.79 and path C of Figure 10.68 we evaluate ψ at ±h and obtain

Q = D [ψ(+h) − ψ(−h)] = G D

[
h2(+h) − (+h)3

3

]
− G D

[
h2(−h) − (−h)3

3

]

= 4G Dh3

3

Thus, both methods yield the same result, as expected. Note that Q in units of cubic cen-
timeters per second is consistent with D and h in units of centimeters and G in recipro-
cal centimeter-seconds.

x

y
h

z

h

n

Surface, S

Path, C

Depth, D
�(	h)

�(�h)

Figure 10.68 Schematic for Example 10.24.
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Figure 10.69 Streamlines for flow
over a rotating cylinder.



along its length is the same. Upstream, the area of each streamtube there is A∞ = h∞ D.
Downstream, the streamtube area is A = h D. The average velocity in a streamtube is
the ratio of the volume flowrate to area, so in each streamtube upstream the average ve-
locity is V̄∞ = Q/A∞ = �ψ0 D/h∞ D = �ψ0/h∞ . At a point downstream where the
perpendicular distance between adjacent streamlines is h, the average velocity is
V̄ = Q/A = �ψ0 D/h D = �ψ0/h . We conclude that the ratio of average velocity at
the two points is 

V̄

V̄∞
= h∞

h
(10.80)

Equation 10.80 indicates that where adjacent streamlines are closer to each other, the
streamtube area is smaller, hence the average fluid velocity is larger. If adjacent streamlines
diverge from one another, the streamtube area is larger, and the average velocity is smaller.
By plotting a family of streamlines upstream of the cylinder that are originally a fixed dis-
tance h∞ apart, we create a flow visualization that tells us how fast the fluid is moving at
different points. This information can also be used to estimate the pressure distribution in
a flow if viscous losses are minimal. According to Bernoulli’s equation, in a flow of con-
stant density fluid, the pressure is higher where the fluid is moving more slowly. Thus the
streamline pattern in the flow over the rotating cylinder tells us that there is a higher pres-
sure on the bottom surface of the cylinder than on the top, giving a net upward vertical force
or lift on the spinning cylinder. A similar pressure difference explains the sharp, breaking
motion of a curve ball in baseball, or the effectiveness of top-spin in tennis.

10.11 RATE OF SHEAR DEFORMATION

The shear deformation rate is given by Eq. 10.41 as

D =




∂u

∂x
− 1

3

(
∂u
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∂y
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∂z

)
1
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)
1
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(
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∂z
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)
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(
∂v

∂x
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)
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∂y
− 1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
1

2

(
∂v

∂z
+ ∂w

∂y

)
1

2

(
∂w

∂x
+ ∂u

∂z

)
1

2

(
∂w

∂y
+ ∂v
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)
∂w

∂z
− 1

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)




The shear deformation plays a key role in the formulation of a constitutive model. As de-
scribed in Chapter 1, a constitutive model defines the relationship between the shear
stress and the shear deformation rate in a particular fluid. This relationship may be pos-
tulated or observed empirically. For a Newtonian fluid, the relationship between shear
stress and shear deformation rate is linear, with the absolute viscosity of the fluid serv-
ing as the proportionality factor. The complete form of the constitutive model for a
Newtonian fluid will be discussed in the next chapter.

Earlier we stated that the tensor D describes a change of shape of a fluid element ex-
posed to a velocity field (without a volume change or rotation). In general, the rate of
shear deformation is a complicated tensor with spatial derivatives of the velocity field
defining its various components. To gain further insight into the physical significance of
this tensor, reconsider the 2D shear flow shown in Figure 10.38, whose velocity field
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was given by Eq. 10.35 as u = Cy, v = Cx, w = 0. Before calculating the shear defor-
mation rate we will determine the velocity gradient, rate of rotation, and rate of expan-
sion. In Eq. 10.36, the velocity gradient is found to be

∇u =




∂u

∂x

∂v

∂x

∂w

∂x
∂u

∂y

∂v

∂y

∂w

∂y

∂u

∂z

∂v

∂z

∂w

∂z




=
( 0 C 0

C 0 0
0 0 0

)

The rate of rotation R, as defined in Eq. 10.43, is zero in this flow. This is readily
confirmed by examining the rotation vector or vorticity. The latter is given by the curl of
the velocity field, which in this case is

∇ × u =
(

∂w

∂y
− ∂v

∂z

)
i +
(

∂u

∂z
− ∂w

∂x

)
j +
(

∂v

∂x
− ∂u

∂y

)
k

= (0 − 0)i + (0 − 0)j + (C − C)k = 0

We conclude that this is an irrotational flow. It is easy to show that the flow can be de-
scribed by the velocity potential φ = Cxy.

The rate of expansion is given by Eqs. 10.65 as

E =



1
3� 0 0
0 1

3� 0
0 0 1

3�


 =




1
3∇ • u 0 0

0 1
3∇ • u 0

0 0 1
3∇ • u




According to Eq. 10.64a, the dilation is given in this case by � = ∂u/∂x + ∂v/∂y +
∂w/∂z = 0 + 0 + 0; thus we can conclude that this is an incompressible flow.

The rate of shear deformation for this flow can be determined using Eq. 10.41:

D =
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


Since ∂u/∂x + ∂v/∂y + ∂w/∂z = 0, we find

D =



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)
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We have established that this incompressible, irrotational flow has a zero rate of
rotation and expansion but a nonzero rate of shear deformation. Thus, it can be classified
as an example of a 2D shear flow, as suggested earlier when this flow was considered in
Section 10.7. Now consider the effect of this flow on a square element of fluid whose
side is one unit in length as shown in Figure 10.70; the velocity vectors on the corners
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Figure 10.70 Fluid element un-
dergoing shear deformation.

EXAMPLE 10 .25

Find the rate of shear deformation in the flow described by u = kx2 y + α/y ,
v = −kxy2 + β/x, w = ε , where k, α, β, and ε are constants.

SOLUTION

The shear deformation rate is given by Eq. 10.41 as

D =


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


Because of the many derivatives involved, it is best to solve this problem with a sym-
bolic mathematics code or calculator. The result is

D =




2kxy
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0 0 0




We see that in this flow the shear deformation varies significantly with position. This is
normally the case for all but the simplest flow fields.



of this element are shown, as are the positions of the fluid particles originally at the cor-
ners after one unit of time. Since this is an incompressible, irrotational flow, the fluid
element does not rotate or expand as it undergoes a shear deformation that changes its
shape from a square to a parallelogram.

10.12 SUMMARY

Flow visualization can be accomplished by means of physical experiment, analytical
solution, or computational simulation. The analysis of images generated by flow visual-
ization techniques leads to a visual record of the flow, which engineers can use to
enhance their understanding of the physical processes.

The Lagrangian model is useful in flow visualization. A complete Lagrangian de-
scription consists of knowing the positions of all fluid particles as a function of time, plus
any additional information needed to establish the thermodynamic state of each fluid
particle at every instant. The Lagrangian particle path allows us to determine the future
location of any fluid particle. The Lagrangian velocity vector may be obtained from the
particle path by taking a time derivative. Similarly, the Lagrangian acceleration vector is
defined by the first time derivative of the velocity, or equivalently, the second time deriv-
ative of the particle path. Identity variables are necessary in the description of a fluid par-
ticle, so the position, velocity, and acceleration are functions of time and identity variables.

The connection between the Lagrangian and Eulerian descriptions is based on the
observation that a fluid particle whose position is X in the Lagrangian description is
located at x in the Eulerian description. Thus, the Eulerian velocity vector u at the point
x at a given time is defined to be the velocity V of the fluid particle that happens to be at
that location at that instant of time. Similarly, the Eulerian acceleration vector a is de-
fined to be the acceleration A of the fluid particle that happens to be located at the point
in question. In accordance with the concept of a material derivative, the
Eulerian–Lagrangian connection is dX/dt = Dx/Dt = u and dV/dt = Du/Dt = a.
These equations provide an engineer with the opportunity to switch between the Euler-
ian and Lagrangian descriptions in the process of examining a flow field.

In the Lagrangian description, material lines, surfaces, and volumes are always
made up of the same fluid particles. To the extent that the continuum hypothesis holds,
all lines, surfaces, and volumes in a fluid are of the material type. Although over time,
molecular diffusion causes fluid molecules initially in a material entity to wander away,
this effect is not accounted for a continuum model.

A pathline is the trajectory through space of a selected fluid particle during a time in-
terval. A streakline is the locus of fluid particles that passed through a specified point dur-
ing a specified time interval. In general, a streakline is not the same as a pathline because
the flow might well have changed direction and magnitude during the marking interval.
Material lines, pathlines, and streaklines are Lagrangian concepts that allow us to under-
stand a flow field by observing the behavior of collections of marked fluid particles.

A streamline is an Eulerian concept. It is defined to be a line in space that is every-
where tangent to the local velocity vector. In a steady flow, streamlines, pathlines, and
streaklines are identical. A bundle of streamlines defined by a closed material line is
called a streamtube. Since the edge of a streamtube comprises streamlines, the fluid ve-
locity vector on the surface of a streamtube is wholly tangential. Therefore no fluid may
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escape a streamtube, and the cross-sectional area of a streamtube anywhere along its
length varies such that the mass flow through the streamtube remains constant.

Information about the rotation, expansion, and shear deformation in a flow is con-
tained in the partial derivatives making up the velocity gradient, ∇u. The velocity gra-
dient can be written as the sum of the rate of rotation, rate of expansion, and rate of shear
deformation: ∇u = R + E + D.

To characterize the rotation in a flow, we define the angular velocity vector, or rota-
tion vector, at a point in a fluid as � = 1

2∇ × u. It is customary, however, to character-
ize a velocity field in terms of a vorticity vector rather than its rotation vector. The vor-
ticity � is defined by � = ∇ × u, so that � = 2�. A flow with zero vorticity is called
an irrotational flow, and the assumption of irrotational flow is one of the most important
approximations in fluid dynamics. Noting that the curl of the gradient of a scalar is zero,
we define a scalar velocity potential φ(x, t) for irrotational flow by writing u = ∇φ.
With φ(x, t), the condition of irrotational flow is automatically satisfied, and the three
velocity components are replaced by a single scalar potential function.

The dilation, �, is defined as the divergence of the velocity field, � = ∇ • u. The di-
lation defines the fractional rate of expansion in a fluid at a point in a flow. If the dilation
is positive at a point, the volume of the fluid particle located at that point is increasing
and its density is decreasing.

There are two important approximations in fluid mechanics that involve the model-
ing of fluid density. In the approximation known as an incompressible fluid, the fluid
density is assumed to be constant. In the incompressible flow approximation, the density
of a fluid particle does not change as it moves; i.e., the material derivative is identically
zero. The dilation is zero in an incompressible fluid or in an incompressible flow. Con-
versely, a nonzero dilation implies a compressible flow.

For an incompressible fluid or flow, a 2D velocity field (u, v, 0) whose components
are functions of (x, y, t) must satisfy the relationship ∇ • u = ∂u/∂x + ∂v/∂y = 0. If
we define a function ψ = ψ(x, y, t) so that u = ∂ψ/dy and v = −∂ψ/dx , this re-
quirement is automatically satisfied. The function satisfying the preceding pair of equa-
tions is called the streamfunction. Setting the streamfunction equal to a constant defines
a streamline in the flow. Although the numerical value of the stream function on a given
streamline has no meaning by itself, the difference in the streamfunction values on dif-
ferent streamlines, ψ2 − ψ1, represents the volume flowrate per unit depth crossing the
surface defined by the path connecting a point on each streamline. One consequence of
this observation is that when adjacent streamlines are closer to each other the average
fluid velocity is larger. If adjacent streamlines diverge from one another, the average
velocity is smaller. By plotting a family of streamlines, we create a flow visualization
that immediately tells us how fast the fluid is moving at different points.
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PROBLEMS

Section 10.1

10.1 Consider each of the flow situations
and recommend the use of computational
and/or experimental analysis.

(a) The interaction of the wind with a bridge
(b) The performance of an artificial heart valve

10.2 Consider each of the flow situations
and recommend the use of computational
and/or experimental analysis.
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(a) The design of the piping systems for a
refinery

(b) The performance of a racing yacht

Section 10.2

10.3 The Lagrangian particle paths for a
flow are given by

X = X0eC(t−t0), Y = Y0e−C(t−t0)

and

Z = Z0

where C = 0.2 s−1 is a constant. Where will a
particle located at X0 = 1 m, Y0 = 1 m,
Z0 = 0 at t = t0 = 0 be located at t = 2 s?

10.4 For the flow given in Problem 10.3,
where was the same particle at t = −2 s?

10.5 Find the inverse of the particle paths
given in Problem 10.3. Find the initial
position of the particle located at (2m, 3m, 0)
at t = 3 s.

10.6 The Lagrangian particle paths for a
flow are given by

X = X0 + U(t − t0),

Y = Y0 + V sin

[
ω

(
t0 − X0

U

)]
(t − t0)

and

Z = Z0

where U m/s, V m/s, ω s−1 are constants. Find
the location of the particle at times π/4ω,
π/2ω, 3π/4ω, and π/ω initially located at
X0 = 0, Y0 = 0, Z0 = 0 at t = t0 = 0. If
t0 = π/4ω, where will the particle located at
X0 = 0, Y0 = 0, Z0 = 0 be at times
π/2ω, 3π/4ω, and π/ω?

10.7 For the flow given in Problem 10.6,
where was the particle at t = −π/4ω that is
currently located at X0 = Uπ/ω, Y0 = 0,
Z0 = 0 at t0 = 0?

10.8 Find the inverse of the particle paths
given in Problem 10.6. Find the initial position

of the particle located at (Uπ/ω, V π/ω, 0) at
t = π/ω.

10.9 The Lagrangian particle paths for an
irrotational vortex are given by

R = R0, θ = θ0 + K

2π R2
0

(t − t0)

and

Z = Z0

where K is a constant in m2/s. Where will the
particle located at R0 = 1m , θ0 = 0, Z0 = 0
at t0 = 0, be at t = πs?

10.10 For the flow given in Problem 10.9,
where was the same particle at t = −2π?

10.11 Find the inverse of the particle paths
given in Problem 10.9. Find the initial position
of the particle located at (2m, 0, 0) at t = πs .

Section 10.3

10.12 Determine the Lagrangian velocity
and acceleration for the flow given in Prob-
lem 10.3.

10.13 Determine the Eulerian velocity and
acceleration using the Lagrangian particle
paths given in Problem 10.3.

10.14 Determine the Lagrangian velocity
and acceleration for the flow given in Prob-
lem 10.6.

10.15 Determine the Eulerian velocity and
acceleration using the Lagrangian particle
paths given in Problem 10.6.

10.16 Determine the Lagrangian velocity
and acceleration for the flow given in Prob-
lem 10.9.

10.17 Determine the Eulerian velocity
using the Lagrangian particle paths given in
Problem 10.9.

Section 10.4

10.18 Find an expression that predicts the
shape of the material line initially located
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between (0, 0, 0) and (1, 1, 0) for the flow
given in Problem 10.3.

10.19 Find an expression that predicts the
shape of a disk of radius 0.5 m initially
centered at (1, 1, 0) for the flow given in
Problem 10.3.

10.20 Find an expression that predicts the
shape of a horizontal and a vertical material
line for the flow given in Problem 10.6.

10.21 Find an expression that predicts the
future shape of a line between the points (0, 0,
0) and (1, 0, 0) at t = 0 for the flow given in
Problem 10.9.

10.22 Find an expression that predicts the
future shape of the horizontal line between the
points (1, π/2, 0) and (

√
2, π/4, 0) at t = 0

for the flow given in Problem 10.9.

Section 10.5

10.23 For the flow described in Prob-
lem 10.3, sketch the streakline initiated at 
(1, 1, 0). Sketch the pathline for the particle
at this point at t = 0.

10.24 For the flow described in Prob-
lem 10.6, sketch the streakline initiated at
(0, 0, 0). Sketch the pathline for the particle
at this point at t = 0.

10.25 As you have seen in many of the fig-
ures in this book, hydrogen bubbles are often
used as flow visualization technique. The ve-
locity field for a flow is u = 2 ft/s i + 1 ft/s j
for 0 ≤ t < 1 and u = 1 ft/s i + 2 ft/s j for
1 ≤ t < 2 s. Plot the pathlines of bubbles that
leave (0, 0) at t = 0, 0.5, 1, 1.5, and 2 s. Indi-
cate the streakline at t = 2 s.

10.26 Find the equation for the Lagrangian
equation for the pathline that passes through a
point (X0, Y0) at time t = 0 for the Eulerian
velocity field u = C1x i + C2 y(C3 + t)j.
C1, C2 and C3 are constants of dimensions
t−1, t−2 and t, respectively.

10.27 A fluid particle is instantaneously
marked with dye and then a long exposure

photograph of the particle’s motion is taken. Is
the blurred line on the photograph a pathline, a
material line, or a streakline? Explain.

10.28 Given the velocity field u =
C(x2 − y2)i − 2Cxyj, where C = 1 m−1s−1,
show that the streaklines are given by the equa-
tion x2 y − y3/3 = K where K is a constant.
Sketch the streakline through the point (1,1).

10.29 Sketch the streakline through the
origin for the velocity field u = Cx i +
C3x(x − 1m)(y + 1m) j, where C = 1 s−1

and the dimensions are in meters.

Section 10.6

10.30 An advertisement for a CFD code
states that it can identify where streamlines
intersect in complex flows. Is this a good fea-
ture for a CFD code?

10.31 For the velocity field given in
Problem 10.26, sketch the streamlines at
t = 0 and 2 s.

10.32 Sketch the streamlines for the veloc-
ity field given in Problem 10.28.

10.33 Sketch the streamlines for the veloc-
ity field given in Problem 10.29.

10.34 The velocity field for a flow is given
by u = 3 s−1 y i + 2 ft/s j, where y is in feet.
Determine the equation for the steamlines and
make a sketch for the upper half-plane.

10.35 The velocity field for a flow is given
by

u = −Cy√
x2 + y2

i + Cx√
x2 + y2

j

where C is a constant. Determine the equa-
tions for the streamlines and make a sketch.

10.36 The velocity field for a flow is given
by u = 2 (m-s)−1x2i − 3(m-s)−1xyj, where
x and y are in meters. Determine the equations
for the streamlines and make a sketch.

10.37 The velocity field for a flow is given
by u = 2(m-s)−1xyi − 3(m-s)−1 y2j, where
x and y are in meters. Determine the equations
for the streamlines and make a sketch.
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10.38 The velocity field for a flow is given
by u = 5 s−1x i − 1 cm1/2s−1 y1/2j, where x
and y are in centimeters. Determine the equa-
tions for the streamlines and make a sketch.

Section 10.8

10.39 The velocity field u = Cx i − Cyj
models flow in a corner for the upper right
quadrant. Determine the velocity gradient for
this flow. What is the velocity gradient at
(1, 0) along the wall?

10.40 Given the velocity field
u = (x2 − y2)i − 2xyj determine the veloc-
ity gradient.

10.41 The velocity field for a flow is given
by u = 3 s−1 yi + 2 ft/s j, where y is in feet.
Find the equation for the velocity gradient.

10.42 The velocity field for a flow is given
by u = 2(m-s)−1x2i − 3(m-s)−1xyj, where
x and y are in meters. Determine the velocity
gradient.

10.43 The velocity field for a flow is given
by u = 5 s−1x i − 1(cm1/2/s)y1/2j, where x
and y are in centimeters. Determine the veloc-
ity gradient.

10.44 The velocity field for flow over a
cylinder is given by 

vr = −A cos θ

r2
+ U cos θ

vθ = −A sin θ

r2
− U sin θ

where A is a constant and U is the oncoming
velocity. Determine the velocity gradient at
r = (A/U)0.5.

Section 10.9

10.45 Determine the vorticity field for the
velocity field given in Problem 10.39.

10.46 Determine the vorticity field for the
velocity field given in Problem 10.40.

10.47 Determine the vorticity field for the
velocity field given in Problem 10.41.

10.48 Determine the vorticity field for the
velocity field given in Problem 10.42.

10.49 Determine the vorticity field for the
velocity field given in Problem 10.44.

10.50 Determine the circulation around
the path shown in Figure P10.1 for the veloc-
ity field given in Problem 10.39.

10.51 Determine the circulation around
the path shown in Figure P10.2 for the veloc-
ity field given in Problem 10.44.

I

III

IIIV

(1, 2) (2, 2)

(1, 1) (2, 1)

u � Cxi � Cyj
y

x

Figure P10.1

�
r

R

r � 2R � 2 A�

Path

u

Figure P10.2

10.52 Determine whether the flow given in
Problem 10.39 is irrotational. If it is, calculate
the velocity potential.
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10.53 Determine whether the flow given in
Problem 10.44 is irrotational. If it is, calculate
the velocity potential.

Section 10.10

10.54 Determine whether the flow given in
Problem 10.39 is an incompressible flow.

10.55 Determine whether the flow given in
Problem 10.40 is an incompressible flow.

10.56 Determine whether the flow given in
Problem 10.41 is an incompressible flow.

10.57 If the density distribution for the
flow given in Problem 10.39 is ρ = Bx ,
where B is a constant, is this an incompress-
ible fluid or an incompressible flow?

10.58 If the density distribution for the
flow given in Problem 10.44 is ρ = Br ,
where B is a constant, is this an incompress-
ible fluid or an incompressible flow?

Section 10.11

10.59 Determine the shear deformation
rate for the flow given in Problem 10.39.

10.60 Determine the shear deformation
rate for the flow given in Problem 10.40.

10.61 Determine the shear deformation
rate for the flow given in Problem 10.41.

10.62 Determine the shear deformation
rate for the flow given in Problem 10.42.

ADDIT IONAL
PROBLEMS
10.63 For the velocity field given in Prob-
lem 10.39, characterize the relative motion in
this flow at an arbitrary point (x, y, z) by deter-
mining the translation, rotation, expansion, and
shear deformation contributions to the velocity
at the nearby point (x + a, y + b, z + c).

10.64 For the velocity field given in Prob-
lem 10.40, characterize the relative motion in
this flow at an arbitrary point (x, y, z) by deter-
mining the translation, rotation, expansion, and
shear deformation contributions to the velocity
at the nearby point (x + a, y + b, z + c).

10.65 For the velocity field given in Prob-
lem 10.41, characterize the relative motion in
this flow at an arbitrary point (x, y, z) by deter-
mining the translation, rotation, expansion, and
shear deformation contributions to the velocity
at the nearby point (x + a, y + b, z + c).

10.66 For the velocity field given in Prob-
lem 10.44, characterize the relative motion in
this flow at an arbitrary point (x, y, z) by deter-
mining the translation, rotation, expansion, and
shear deformation contributions to the velocity
at the nearby point (x + a, y + b, z + c).
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11.1 INTRODUCTION

In this chapter we develop the differential form of the governing equations of fluid dy-
namics and describe how they are used to obtain a complete description of a flow. These
partial differential equations express conservation of mass, momentum, and energy. The
equations equate the time rate of change of mass, momentum, or energy at a point in a
fluid to source terms representing various physical mechanisms affecting the rate at
which these properties change over time.
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Engineers are normally taught to solve the governing equations that model a prob-
lem in engineering science. The attractive feature of a fluid mechanics solution is that it
provides a complete description of the flow at every point throughout time. Thus, when
a solution is available, there is virtually no limit on an engineer’s ability to answer ques-
tions concerning the transport of mass, momentum and energy, the kinematics and struc-
ture of the fluid velocity field, the distribution of forces within the fluid, and the interac-
tion of the fluid and its surroundings.

Unfortunately, the governing equations of fluid mechanics are a complex set of
nonlinear partial differential equations, and the number of known solutions of these
equations is small. The practice of fluid dynamics in the past has primarily involved the
judicious use of approximations, applying knowledge about the general behavior of a
fluid obtained from scarce analytical solutions, and performing a multitude of experi-
ments. Today, the number of known exact analytical solutions remains small, but the
likelihood of obtaining a numerical solution of the governing equations is far greater
than it once was. Engineers now routinely have access to powerful computational hard-
ware and software that are capable of providing a solution for many important flow
problems. We therefore believe that an exposure to the governing equations and their so-
lution, as provided in this chapter, is both an important part of an education in fluid me-
chanics techniques and serves as the foundation for an understanding of the power of
computational fluid dynamics. An example of a CFD solution of a complex flow is
shown in Figure 11.1.
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CD/Kinematics/Compressibility/The equation of continuity

Figure 11.1 The direct numerical solu-
tion of the governing equations was used
for this visualization of a supersonic jet.
The contours of vorticity magnitude indi-
cate the jet in the foreground; the near
acoustic field is visualized with gray lev-
els indicating divergence of velocity,
which highlights the weak shocks (dark)
and relatively broad expansions (light).

11.2 CONTINUITY EQUATION

The partial differential equation expressing conservation of mass is called the continu-
ity equation. The derivation of this scalar equation can be done in a number of ways, but
an elegant approach begins by applying the Reynolds transport theorem to calculate the



time rate of change of the total amount Esys of some property in a fluid system. We did
this earlier, in Chapter 7. The result, Eq. 7.4,

d Esys

dt
=
∫

R(t)

∂

∂t
(ρε) dV +

∫
S(t)

(ρε) u • n dS

expresses the time rate of change of the total amount Esys of some property in the fluid
system or material volume of fluid occupying a region R(t) in terms of a volume and a
surface integral over this region. To derive a mass conservation statement, Esys is cho-
sen as Msys, the total mass in the system. The intensive counterpart of the total mass is
the mass per unit mass, i.e., ε = 1, so choosing ρε = ρ we have

d Msys

dt
=
∫

R(t)

∂ρ

∂t
dV +

∫
S(t)

ρu • n dS

Since mass is conserved for a material volume of fluid, d Msys/dt = 0, and the integral
form for the law of conservation of mass for a material volume of fluid is∫

R(t)

∂ρ

∂t
dV +

∫
S(t)

ρu • n dS = 0

This is identical in form to the integral mass conservation equation for a CV (Eq. 7.11).
To derive the corresponding differential equation, we rewrite the surface integral in

this equation as a volume integral using the Gauss theorem. The result is ∫
R(t)

∂ρ

∂t
dV +

∫
R(t)

∇ • (ρu) dV = 0

Next, the two integrals over the same volume can be combined, giving∫
R(t)

(
∂ρ

∂t
+ ∇ • ρu

)
dV = 0

Since the volume is arbitrary, the integrand must be zero. This leads to the following dif-
ferential equation, known as the continuity equation:

∂ρ

∂t
+ ∇ • (ρu) = 0 (11.1a)

This form of the continuity equation, referred to as the divergence form, is frequently
used in computational fluid dynamics. Two other forms of the continuity equation are
also in common use. One of these, the expanded form, is obtained by substituting the
vector identity ∇ • (ρu) = u • ∇ρ + ρ∇ • u into Eq. 11.1a to obtain

∂ρ

∂t
+ u • ∇ρ + ρ∇ • u = 0 (11.1b)

The remaining form is obtained by replacing the first two terms in Eq. 11.1b by the ma-
terial derivative, Dρ/Dt = ∂ρ/∂t + (u • ∇)ρ , (see Eq. 6.9), to obtain:

Dρ

Dt
+ ρ∇ • u = 0 (11.1c)
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The continuity equation involves only the fluid density and the fluid velocity. It ap-
plies to all fluids, compressible and incompressible, Newtonian and non-Newtonian,
and for the whole range of flow speeds. As one of the three fundamental governing equa-
tions of fluid mechanics, it expresses the law of conservation of mass at each point in the
fluid. Thus, the continuity equation must be satisfied at every point in the flow field.

When expanded in Cartesian coordinates, the continuity equation is given by(
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)
+ ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
= 0 (11.2a)

In cylindrical coordinates the continuity equation is

(
∂ρ

∂t
+ vr

∂ρ

∂r
+ vθ

r

∂ρ

∂θ
+ vz

∂ρ

∂z

)
+ ρ

(
1

r

∂(rvr )

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z

)
= 0 (11.2b)
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EXAMPLE 11 .1  

Are the flows represented by the following velocity and density functions physically
possible?

A. u = Axy2, v = −Ax2 y, w = 0, and ρ = Bxy, where A and B are constants

B. vr = U∞(1 − R2/r2) cos θ , vθ = −U∞(1 + R2/r2) sin θ , vz = 0, and ρ =
Cz + ρ0, where U∞, R, C, and ρ0 are constants

SOLUTION

To be physically possible, the continuity equation must be satisfied. For case A, we
use Eq. 11.2a, [∂ρ/∂t + u(∂ρ/∂x) + v(∂ρ/∂y) + w(∂ρ/∂z)] + ρ(∂u/∂x + ∂v/∂y +
∂w/∂z) = 0, and substitute the given functions for u, v,w, and ρ. Since this a steady
flow, the time derivative is zero. Also, there is no z dependence in the density or velocity,
and the z velocity component is zero. Thus, after substituting we find:

(Axy2)
∂(Bxy)

∂x
+ (−Ax2 y)

∂(Bxy)

∂y
+ (Bxy)

(
∂(Axy2)

∂x
+ ∂(−Ax2 y)

∂y

)
= 0

Simplifying, we obtain:

(ABxy3) + (−ABx3 y) + (ABxy3) + (−ABx3 y) = (xy3 − x3 y) �= 0

Since this flow does not satisfy the continuity equation, it cannot be a physically possi-
ble flow.

For case B we use Eq. 11.2b:(
∂ρ

∂t
+ vr

∂ρ

∂r
+ vθ

r

∂ρ

∂θ
+ vz

∂ρ

∂z

)
+ ρ

(
1

r

∂(rvr )

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z

)
= 0
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and substitute the given functions, noting that this is a steady flow with vz = 0. Ignoring
terms that are zero, the result is

(Cz + ρ0)

(
1

r

∂{r[U∞(1 − R2/r2) cos θ]}
∂r

+ 1

r

∂[−U∞(1 + R2/r2) sin θ]

∂θ
+ ∂(0)

∂z

)
= 0

Evaluating the derivatives we find

(Cz + ρ0)

[
U∞ cos θ

r

(
1 − R2

r2
− 1 − R2

r2
+ 2R2

r2

)]
= 0

Since the continuity equation is satisfied, the flow described in case B is a physically
possible flow. In fact it describes inviscid flow over a cylinder.

EXAMPLE 11 .2

Consider an infinitesimal CV filled with fluid as shown in Figure 11.2. Apply a mass bal-
ance to this CV to derive the continuity equation in Cartesian coordinates.

dx

dy

dz

z

y

x

(x, y, z)

Figure 11.2 Schematic for Example 11.2.

SOLUTION

Figure 11.2 serves as the appropriate sketch. If the value of density at the cube center
located at (x, y, z) is ρ, then the value on the near face is given by a Taylor series as

ρnear = ρ +
(

∂ρ

∂x

)(
dx

2

)
+ 1

2!

(
∂2ρ

∂x2

)(
dx

2

)2

+ · · ·
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To the first order (since the cube is infinitesimal, we can safely assume that higher order
terms are negligible), we have ρnear = ρ + (∂ρ/∂x)(dx/2). Similarly, for velocity we
find

unear = u +
(

∂u

∂x

)(
dx

2

)
, vnear = v +

(
∂v

∂x

)(
dx

2

)
and

wnear = w +
(

∂w

∂x

)(
dx

2

)

The values on the far face are found to be

ρfar = ρ −
(

∂ρ

∂x

)(
dx

2

)
, ufar = u −

(
∂u

∂x

)(
dx

2

)
, vfar = v −

(
∂v

∂x

)(
dx

2

)
,

and

wfar = w −
(

∂w

∂x

)(
dx

2

)

The same procedure is applied to the other four faces, using the appropriate spatial de-
rivative and differential element in each case.

To apply a mass balance, we write
∫

CV(∂ρ/∂t) dV + ∫CS ρ(u • n) dS = 0 and use
the appropriate values of density and velocity to evaluate the integrals. Note that for an
infinitesimal cube, the integrand in each volume or surface integral is constant. For ex-
ample, the volume integral yields

∫
CV(∂ρ/∂t) dV = (∂ρ/∂t)–V = (∂ρ/∂t)(dx dy dz),

while each surface integral provides a term of the form
∫

CS ρ(u • n) dS = ρ(u • n)A,
where A is the area of the face. The value of ρ(u • n)A on each face involves only one ve-
locity component, and it is convenient to consider faces in pairs. For example, consider
the near and far faces. On the near face we have (u • n) = unear, and the mass flux is

ρ(u • n)A = ρnear(unear)(dy dz) =
[
ρ +

(
∂ρ

∂x

)(
dx

2

)][
u +

(
∂u

∂x

)(
dx

2

)]
(dy dz)

= (ρu) dy dz + 1

2

[
ρ

(
∂u

∂x

)
+ u

(
∂ρ

∂x

)]
dx dy dz +

[
1

4

(
∂ρ

∂x

)(
∂u

∂x

)
dx

]
dx dy dz

= (ρu) dy dz + 1

2

[
ρ

(
∂u

∂x

)
+ u

(
∂ρ

∂x

)]
dx dy dz to first order

On the far face we have (u • n) = −ufar , and the mass flux is

ρ(u • n)A = ρfar(−ufar)(dy dz) =
[
ρ −

(
∂ρ

∂x

)(
dx

2

)][
−u +

(
∂u

∂x

)(
dx

2

)]
(dy dz)

= (−ρu) dy dz + 1

2

[
ρ

(
∂u

∂x

)
+ u

(
∂ρ

∂x

)]
dx dy dz to first order



In Chapter 10 we discussed two important approximations in fluid mechanics,
namely, incompressible fluid and incompressible flow, and we pointed out that in ana-
lyzing a flow problem, an engineer must often decide whether to treat the fluid density
as a variable or as a constant. Recall that the definition of incompressible fluid is given
by Eq. 10.68 as ρ(x, t) = ρ0, where ρ0 is constant. In an incompressible flow, the den-
sity obeys Eq. 10.69, Dρ/Dt = 0. You should be able to easily verify that each term in
the material derivative of density is zero if the density is constant. Notice, however, that
only the sum of the various derivatives in the material derivative of density must be zero
for an incompressible flow. The various derivatives themselves may be nonzero, which
means that in an incompressible flow density may actually vary in space but only in a
prescribed way.

The continuity equation is considerably simplified by the assumption of either an
incompressible fluid or incompressible flow. To see this, note that the general form of
the continuity equation, applicable to all fluids and flows, is given by Eq. 11.1c as
Dρ/Dt + ρ∇ • u = 0. For an incompressible fluid or an incompressible flow, we know
Dρ/Dt = 0, thus the continuity equation reduces to

∇ • u = 0 (11.3)

The velocity field of an incompressible flow, and that of an incompressible fluid, must
satisfy this equation, which replaces the general continuity equation. Equation 11.3 says
that the dilation, or divergence of velocity, in such a case is zero. Thus in Cartesian
coordinates the velocity field must satisfy

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (11.4a)
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The two faces combine to give a net mass flux of [ρ(∂u/∂x) + u(∂ρ/∂x)] dx dy dz .
The other face pairs yield similar net mass fluxes of [ρ(∂v/∂y) + v(∂ρ/∂y)] dx dy dz
and [ρ(∂w/∂z) + w(∂ρ/∂z)] dx dy dz .

Completing the mass balance we find:

∂ρ

∂t
(dx dy dz) +

[
ρ

(
∂u

∂x

)
+ u

(
∂ρ

∂x

)]
dx dy dz +

[
ρ

(
∂v

∂y

)
+ v

(
∂ρ

∂y

)]
dx dy dz

+
[
ρ

(
∂w

∂z

)
+ w

(
∂ρ

∂z

)]
dx dy dz = 0

Dividing by (dx dy dz) and rearranging yields the continuity equation in the form of
Eq. 11.2a: (

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)
+ ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
= 0

We see that it is possible to derive this equation in different ways.



while in cylindrical coordinates the requirement is

1

r

∂(rvr )

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0 (11.4b)
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EXAMPLE 11 .3

Which of the following constant density flows are physically possible?

A. u =
(

h2(p1 − p2)

2µL

)[
1 −

(
y

h

)2
]

, v = 0, and w = 0

B. vr = 0, vθ = 0, and vz(r) =
(

R2
P(p1 − p2)

4µL

)[
1 −

(
r

RP

)2
]

SOLUTION

The velocity components must satisfy the simplified continuity equation for a constant
density fluid. This is Eq. 11.4a or 11.4b, depending on the coordinate system in use.

A. Since we have u = u(y) and (v = w = 0), substituting the three velocity com-
ponents into Eq. 11.4a gives

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= ∂

∂x
(u(y)) + ∂

∂y
(0) + ∂

∂z
(0) = 0

Equation 11.4a is satisfied, so this flow is possible. In fact, you may have rec-
ognized it as channel flow.

B. In this case the relevant equation is Eq. 11.4b:

1

r

∂(rvr )

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0

Since we are told vr = 0 and vθ = 0, this reduces to ∂vz/∂z = 0, which can be
seen to be satisfied by inspection. This flow is also possible; in fact, it is
Poiseuille flow in a round pipe.

CD/Dynamics/Newton’s second law of motion/The momentum equation

The partial differential equation expressing conservation of momentum for a Newtonian
fluid is called the Navier–Stokes equation. The derivation of this vector equation also



begins by applying the Reynolds transport theorem to a material volume of fluid in the
form:

d Esys

dt
=
∫

R(t)

∂

∂t
(ρε) dV +

∫
S(t)

(ρε)u • n dS

In this case Esys is chosen to be the total linear momentum in the volume, for which the
intensive counterpart is the linear momentum per unit mass ε = u. By Newton’s law, the
time rate of change of linear momentum within the material volume equals the sum of
the body and surface forces acting on the volume:∫

R(t)

∂

∂t
(ρu) dV +

∫
S(t)

(ρu)u • n dS =
∫

R(t)
ρf dV +

∫
S(t)

� dS

Note that the momentum equation for a material volume is identical to Eq. 7.18 for
a CV; moreover, we have used the fact that the total body force is given as usual by the
volume integral (Eq. 4.7) FB = ∫R(t) ρf dV , while the total surface force is given by
the surface integral (Eq. 4.21) FS = ∫S(t) � dS . To derive the differential momentum
equation, we will write the surface integral in terms of the stress tensor rather than the
stress vector, using Eq. 4.32 to write FS = ∫S (n • �) dS . Next we use Gauss’s theorem
to write the surface integral in terms of the volume integral of the stress divergence
(∇ • �), as defined by Eqs. 4.39a–4.39c in Section 4.7. Thus, the surface force is now
given by the volume integral FS = ∫R(t) (∇ • �) dV . Substituting this result into the
momentum equation for a material volume, we have∫

R(t)

∂

∂t
(ρu) dV +

∫
S(t)

(ρu)u • n dS =
∫

R(t)
ρf dV +

∫
R(t)

(∇ • �) dV

To derive a differential equation, we use Gauss’s theorem to transform the flux in-
tegral into a volume integral, noting that we need the tensor form because (ρu)u is a ten-
sor. Next, we combine all the volume integrals into one, obtaining∫

R(t)

(
∂(ρu)

∂t
+ ∇ • (ρuu) − ρf − ∇ • �

)
dV = 0

Since the volume is arbitrary, the integrand must be zero. Thus the differential equation
expressing the law of momentum conservation is given by

∂(ρu)

∂t
+ ∇ • (ρuu) = ρf + ∇ • �

The preceding equation is referred to as the conservative form of the differential mo-
mentum equation. This form serves as the starting point in many numerical algorithms
used to solve the governing equations in computational fluid dynamics.

The traditional form of the momentum equation is obtained by expanding the time
derivative and divergence terms, then rearranging the remaining terms to obtain

ρ

(
∂u
∂t

+ u • ∇u
)

+ u
[
∂ρ

∂t
+ u • ∇ρ + ρ∇ • u

]
= ρf + ∇ • �
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The term in the square bracket is the left-hand side of the continuity equation (see
Eq. 11.1b). Thus this term is equal to zero, and we can write the differential momentum
equation as 

ρ

(
∂u
∂t

+ u • ∇u
)

= ρf + ∇ • �

Using the material derivative, the differential momentum equation takes its traditional
form:

ρ
Du
Dt

= ρf + ∇ • �

In deriving the momentum equation, we have employed the fluid density, fluid ve-
locity, and stress tensor as variables but have not restricted the discussion to a certain
type of fluid. Thus the momentum equation, like the continuity equation, is applicable to
all fluids, compressible and incompressible, Newtonian and non-Newtonian, and for the
whole range of flow speeds. As one of the three fundamental governing equations of
fluid mechanics, it expresses the law of conservation of momentum at each point in the
fluid. Although every physically possible fluid flow must satisfy this equation, it cannot
be solved unless we introduce a constitutive model that provides relationships between
the stress tensor and the velocity field. We will discuss the constitutive model for a
Newtonian fluid in the next section.

Let us now consider what the various terms in the momentum equation represent.
Recalling that the material derivative of velocity defines the fluid acceleration, we see
that the left-hand side of the momentum equation is the product of density and fluid ac-
celeration. Thus we could write the momentum equation as 

ρa = ρf + ∇ • �

The left-hand side of this equation represents the inertial force per unit volume. The two
terms on the right represent the body and surface forces per unit volume (the latter in
terms of the stress divergence). Thus, the momentum equation represents a balance of
inertial, body, and surface force per unit volume at each point in a fluid. You may find it
worthwhile at this point to reread Section 4.7 and review the effects of stress variation
in a fluid.

Using the definition of the stress divergence, Eqs. 4.39, we can write the three com-
ponents of the momentum equation in Cartesian coordinates as

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρ fx +

(
∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

)
(11.5a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρ fy +

(
∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z

)
(11.5b)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρ fz +

(
∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z

)
(11.5c)
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EXAMPLE 11 .4

Consider an infinitesimal CV filled with fluid as shown in Figure 11.3A. Apply a mo-
mentum balance in the x direction to this CV to derive the x component of the momen-
tum equation in Cartesian coordinates.

(A) (B)

�xx �

�xx

x

dx
2 		

�yx 	

�yx


y
dy
2 		

�zx �

�zx

z

dz
2 		

�yx �

�yx


y
dy
2 		

�xx 	

�xx

x

dx
2 		

�zx 	

�zx

z

dz
2 		

z

y

x

dx

dy

dz

z

y

x

(x, y, z)

Figure 11.3 Schematic for Example 11.4: (A) infinitesimal fluid volume and (B) stress values.

SOLUTION

We are asked to derive the x component of the momentum equation in Cartesian coordi-
nates for a specified volume of fluid. Figure 11.3 serves as the sketch for this system. Re-
calling the procedure used to perform a mass balance for this CV in Example 11.2, we
will use a Taylor series expansion to relate the values of density, velocity, and stress on
each face to the values at the center of this cube. To apply a momentum balance, we
write (Eq. 7.18):∫

CV

∂

∂t
(ρu) dV +

∫
CS

(ρu)(u • n) dS =
∫

CV
ρf dV +

∫
CS

� dS

As discussed earlier, we will write the surface force in terms of the stress tensor rather
than the stress vector, using Eq. 4.32, FS = ∫S (n • �) dS . The resulting momentum bal-
ance is ∫

CV

∂

∂t
(ρu) dV +

∫
CS

(ρu)(u • n) dS =
∫

CV
ρ f dV +

∫
CS

(n • �) dS

The x component of this equation is 
∫

CV(∂/∂t)(ρu) dV + ∫CS(ρu)(u • n) dS =∫
CV ρ fx dV + ∫CS (n • �)x dS , where the integrand of the stress integral, (n • �)x ,

gives the stresses that act on the faces in the x direction as shown in Figure 11.3B. 
Notice in this figure that a first order Taylor series expansion has been used to relate the
value of a stress on a face to the value at the center of the cube.
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Each of the integrals in the x component momentum balance has a constant inte-
grand. We can therefore write the volume integrals in terms of the values of the integrand
at the center of the cube multiplied by the volume of the cube (dx dy dz), to obtain∫

CV

∂

∂t
(ρu) dV = ∂

∂t
(ρu) dx dy dz =

(
ρ

∂u

∂t
+ u

∂ρ

∂t

)
dx dy dz (A)

and ∫
CV

ρ fx dV = ρ fx dx dy dz (B)

The stress integral
∫

CS (n • �)x dS = (n • �)x A is evaluated by using the stress val-
ues shown in Figure 11.3B and considering each pair of faces in turn. For example, on the
near and far faces we find, respectively, (n • �)x A = [σxx + (∂σxx/∂x)(dx/2)] dy dz
and (n • �)x A = −[σxx − (∂σxx/∂x)(dx/2)] dy dz . The net surface force on this pair
of faces is therefore (n • �)x A = (∂σxx/∂x) dx dy dz . The contribution from the re-
maining two pairs of faces is found to be (∂σyx/∂y) dx dy dz + (∂σzx/∂z) dx dy dz ,
thus the total surface force on the cube is to first order(

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

)
dx dy dz (C)

The momentum flux integral is of the form 
∫

CS (ρu)(u • n) dS = (ρu)(u • n)A and
may be evaluated by using a Taylor series expansion (see Example 11.2) to define the
appropriate values of ρ, u, (u • n) and the area A on the six faces. For example, the mo-
mentum flux on the near face, where ρnear = ρ + (∂ρ/∂x)(dx/2) and (u • n) is given
by +unear = u + (∂u/∂x)(dx/2), takes the form

(ρu)(u • n)A =
[
ρ +

(
∂ρ

∂x

)(
dx

2

)][
u +

(
∂u

∂x

)(
dx

2

)][
u +

(
∂u

∂x

)(
dx

2

)]
dy dz

= ρuu dy dz +
(

ρu
∂u

∂x
+ 1

2
uu

∂ρ

∂x

)
dx dy dz to first order

where we have neglected higher order terms as usual. On the far face, where (u • n)

takes the value −ufar = −u + (∂u/∂x)(dx/2), we find 

(ρu)(u • n)A =
[
ρ −

(
∂ρ

∂x

)(
dx

2

)][
u −

(
∂u

∂x

)(
dx

2

)][
−u +

(
∂u

∂x

)(
dx

2

)]
dy dz

= −ρuu dy dz +
(

ρu
∂u

∂x
+ 1

2
uu

∂ρ

∂x

)
dx dy dz to first order

The sum of these two terms is(
2ρu

∂u

∂x
+ uu

∂ρ

∂x

)
dx dy dz



11.4 CONSTITUTIVE MODEL FOR A NEWTONIAN FLUID

Examination of the three Cartesian components of the momentum equation (11.5a–
11.5c) shows that they involve three velocity components, temporal and spatial deriva-
tives of these velocity components, and spatial derivatives of the six independent com-
ponents of the stress tensor. In their present form these governing equations are incom-
plete: there are too many unknowns and not enough equations. What is missing is a
relationship between stress and rate of strain for the particular fluid involved. This rela-
tionship is part of what is known as a constitutive model for a fluid. The key function of
a constitutive model is to provide the necessary relationships between the components
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or equivalently [
ρu

∂u

∂x
+ u

(
ρ

∂u

∂x
+ u

∂ρ

∂x

)]
dx dy dz

The two remaining pairs of faces contribute fluxes of [
ρv

∂u

∂y
+ u

(
ρ

∂v

∂y
+ v

∂ρ

∂y

)]
dx dy dz and

[
ρw

∂u

∂z
+ u

(
ρ

∂w

∂z
+ w

∂ρ

∂z

)]
dx dy dz

Thus, after some rearrangement, the total momentum flux is to first order

{
ρ

(
u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
+ u

[(
u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)
+ ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)]}
dx dy dz

(D)

Gathering terms A–D, rearranging, and dividing by the common factor dx dy dz yields

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
+ u

[(
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)
+ ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)]

= ρ fx +
(

∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

)

The final step is to realize that since the term in square brackets is the continuity equa-
tion in the form of Eq. 11.2a, it has a value of zero. Therefore the final result is

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρ fx +

(
∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

)

which is identical to Eq. 11.5a, as expected.



of the stress tensor and the fluid velocity field so that the
governing equations are mathematically well posed and
solvable.

The constitutive model employs parameters that
reflect the physical and molecular structure of the fluid
and its thermodynamic state. The complexity of a con-
stitutive model therefore depends on the molecular
structure of the fluid, and on whether the fluid consists
of a single component or a mixture of components.
There are many different engineering fluids ranging
from air, water, and other single component liquids and
gases to paints, slurries, colloidal suspensions, and
other complex fluid mixtures. Fortunately the entire
class of single component liquids and all gases are well
described by the Newtonian model. The more complex

liquids are challenging to analyze because their constitutive relationships are compli-
cated. Since we focus solely on the Newtonian model in this text, it will be important for
you to recognize the limitations of this model, to avoid being tempted to use it in inap-
propriate situations.

The first assumption of the Newtonian model is that the fluid possesses an isotropic
structure that is reflected in its behavior. One manifestation of this isotropic structure is
that the stress tensor is symmetric. As a result, there are only six independent compo-
nents in the (nine-term) stress tensor.  In addition, for an isotropic fluid, only two fluid
properties are required to define completely the relationship between stress and rate of
strain. The absolute viscosity µ defines the shearing behavior of the fluid and relates
shear stress to the rate of shear deformation. The bulk viscosity κ defines the compres-
sion and expansion behavior of a Newtonian fluid. The second assumption of the New-
tonian model is that the shear stress existing at a point in the fluid at time t is linearly re-
lated to the velocity gradient that exists at the same point in the fluid at that instant of
time. Thus, the fluid does not remember what has happened to it earlier, nor does it ex-
hibit hysteresis or other anomalous behavior. Non-Newtonian fluids that do have a
memory are called viscoelastic fluids. Examples include some liquid polymers, and in
some circumstances, blood.

In Cartesian coordinates the constitutive relationships defining the Newtonian fluid
are:

σxx = −p − 2

3
µ(∇ • u) + 2µ

∂u

∂x
(11.6a)

σyy = −p − 2

3
µ(∇ • u) + 2µ

∂v

∂y
(11.6b)
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It is not necessary to have a constitutive
model to describe the dynamics of a rigid
body because the rigid body approxima-
tion eliminates the state of stress within
the object from the governing equation of
motion. Since a rigid body is capable of
translation and rotation only, the velocity at
any point within the rigid body is always
known from the position of that point and
the angular velocity vector. The situation
for a fluid is dramatically different, since
fluid particles may move relative to one an-
other. It is the resistance of a fluid to the
relative motion of its different parts that
gives rise to a state of stress in the fluid.
This observation suggests that a constitu-
tive model should relate the components
of the stress tensor at a point to the spatial
velocity derivatives that describe the rela-
tive motion of a fluid at that same point.

CD/Newton’s second law of motion/Flow 
of particles vs. continuous fluids



σzz = −p − 2

3
µ(∇ • u) + 2µ

∂w

∂z
(11.6c)

σxy = σyx = µ

(
∂u

∂y
+ ∂v

∂x

)
(11.6d)

σyz = σzy = µ

(
∂v

∂z
+ ∂w

∂y

)
(11.6e)

σzx = σxz = µ

(
∂w

∂x
+ ∂u

∂z

)
(11.6f)

The role of pressure in these constitutive equations requires further discussion.
The pressure p is the mechanical or physical pressure. It is the pressure that would be
measured by an absolute pressure sensor moving with the fluid at the point in question.
We can also define a thermodynamic or equilibrium pressure, pe . This is the pressure
predicted by an equation of state. Since thermodynamic equilibrium may not exist at
every point in a flow field, the Newtonian model postulates a difference in the two
pressures that is given by p = pe − κ(∇ • u). The bulk viscosity κ is the fluid property
that measures the degree of departure of the mechanical pressure from its equilibrium
value.

For monatomic gases, the bulk viscosity is known to be zero. For gases with a com-
plex molecular structure and many liquids, the bulk viscosity is nonzero, and the effect
of this viscosity on the flow depends on the rate of expansion. Since we rarely encounter
situations in which the difference in the two pressures is significant, we will ignore the
effects of bulk viscosity in the remainder of this text, assuming that the constitutive re-
lations are given by Eq. 11.6, with the pressure p (which is equal to both the mechanical
and thermodynamic pressure) representing the actual physical pressure in the fluid.

Adding together Eqs. 11.6a–11.6c shows that the pressure is related to the normal
stresses by p = −(1/3)(σxx + σyy + σzz). We see that the pressure in a Newtonian
fluid at a point is defined by the negative of the average normal stress acting in the fluid
at that point. The negative sign reflects the common interpretation of pressure as a com-
pressive stress. Although a negative absolute pressure representing a tensile stress is
theoretically conceivable, as discussed in Chapter 2 negative pressures do not occur
physically. Finally, recall from fluid statics that in a stationary fluid each normal stress is
exactly the same and equal to the negative of the pressure; i.e., the static pressure acts
equally in all directions. You may confirm that the pressure in the Newtonian model has
these same characteristics in a stationary fluid by setting all velocity components and
their derivatives to zero in Eqs. 11.6a–11.6c.

There is a tendency to assume that the equality of normal stresses known to occur
in a fluid at rest also occurs in a fluid in motion. However, that is not necessarily the
case. What is true is that in many flows the differences in the three normal stresses are
vanishingly small. For example, in a constant density or incompressible flow, the conti-
nuity equation reduces to Eq. 11.3, ∇ • u = 0, and the viscous contributions to the nor-
mal stresses in Eqs. 11.6 are 2µ(∂u/∂x), 2µ(∂v/∂y), and 2µ(∂w/∂z). These contribu-
tions are usually negligible, so the differences in the three normal stresses are often
neglected in analyzing constant density and incompressible flows.
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In an incompressible flow, or a flow of an
incompressible fluid, the continuity equa-
tion reduces to Eq. 11.3, ∇ • u = 0, thus in
this case the difference in the mechanical
and equilibrium pressures is zero irrespec-
tive of the value of the bulk viscosity.



In cylindrical coordinates the constitutive relationships for a Newtonian fluid are: 

σrr = −p − 2

3
µ(∇ • u) + 2µ

∂vr

∂r
(11.7a)

σθθ = −p − 2

3
µ(∇ • u) + 2µ

(
1

r

∂vθ

∂θ
+ vr

r

)
(11.7b)

σzz = −p − 2

3
µ(∇ • u) + 2µ

∂vz

∂z
(11.7c)

σrθ = σθ r = µ

[
r

∂

∂r

(vθ

r

)
+ 1

r

∂vr

∂θ

]
(11.7d)

σθ z = σz θ = µ

(
∂vθ

∂z
+ 1

r

∂vz

∂θ

)
(11.7e)

σzr = σr z = µ

(
∂vz

∂r
+ ∂vr

∂z

)
(11.7f)

The next element of the Newtonian constitutive model is a set of equations of state
that relate the physical parameters µ and κ (and others that occur in the energy equation
to be developed later in this chapter) to the thermodynamic state of the fluid. The state
relationship is expressed symbolically for the viscosity µ as

µ = µ(p, T ) (11.8)

Similar relationships exist for other fluid properties. We also require an equation of state
that relates the pressure to the fluid density and temperature of the form 

p = p (ρ, T ) (11.9)

This state equation may be known empirically or through a model such as the perfect
gas law.

The final element of the Newtonian model is concerned with fluid transport. In
Eq. 6.36, we used Fourier’s law to define a diffusive flux vector for a property, relating
the flux vector to the gradient of the property. This relationship is valid only for a fluid
with an isotropic structure; thus it applies to Newtonian fluids and may be thought of as
part of the Newtonian constitutive model.

In summary, the constitutive model for a Newtonian fluid allows us to do two im-
portant things. First, it enables us to calculate all components of the stress tensor if we
know the velocity and pressure fields. Thus, if we have a solution to a flow problem, the
constitutive model allows us to answer any question that might arise in connection with
surface forces. Second, by using the constitutive model, we may remove the stress ten-
sor from the governing equations of fluid dynamics by replacing the various stress com-
ponents that appear in the momentum and energy equations with the corresponding ve-
locity gradients that appear in the constitutive model. In the next section we will use this
procedure to produce the Navier–Stokes equation of fluid mechanics.
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The constitutive relationships for a Newtonian fluid relate stress to rate of strain. We can see
this more clearly in Cartesian coordinates by first using the matrix representation of the stress tensor 

(Eq. 4.30), σ =
(

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

)
, and writing Eqs. 11.6 in matrix form as


 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


=


−p 0 0

0 −p 0
0 0 −p


+2µ




∂u
∂x

− 1
3

(∇ • u)
1
2

(
∂u
∂y

+ ∂v
∂x

)
1
2

(
∂u
∂z

+ ∂w
∂x

)
1
2

(
∂v
∂x

+ ∂u
∂y

)
∂v
∂y

− 1
3

(∇ • u)
1
2

(
∂v
∂z

+ ∂w
∂y

)
1
2

(
∂w
∂x

+ ∂u
∂z

)
1
2

(
∂w
∂y

+ ∂v
∂z

)
∂w
∂z

− 1
3

(∇ • u)




Recalling that the rate of expansion is given by Eq. 10.65b as

E =




1
3

∇ • u 0 0

0
1
3

∇ • u 0

0 0
1
3

∇ • u




and the rate of shear deformation tensor, D, or shear deformation rate, is given by Eq. 10.41 as

D =




∂u
∂x

− 1
3

(
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
1
2

(
∂u
∂y

+ ∂v
∂x

)
1
2

(
∂u
∂z

+ ∂w
∂x

)
1
2

(
∂v
∂x

+ ∂u
∂y

)
∂v
∂y

− 1
3

(
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
1
2

(
∂v
∂z

+ ∂w
∂y

)
1
2

(
∂w
∂x

+ ∂u
∂z

)
1
2

(
∂w
∂y

+ ∂v
∂z

)
∂w
∂z

− 1
3

(
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)




we can introduce the dilation to write the shear deformation rate as

D =




∂u
∂x

− 1
3

(∇ • u)
1
2

(
∂u
∂y

+ ∂v
∂x

)
1
2

(
∂u
∂z

+ ∂w
∂x

)
1
2

(
∂v
∂x

+ ∂u
∂y

)
∂v
∂y

− 1
3

(∇ • u)
1
2

(
∂v
∂z

+ ∂w
∂y

)
1
2

(
∂w
∂x

+ ∂u
∂z

)
1
2

(
∂w
∂y

+ ∂v
∂z

)
∂w
∂z

− 1
3

(∇ • u)




Using the unit matrix I =
(1 0 0

0 1 0
0 0 1

)
, we can write the stress tensor in vector form as

σ = −p I + 2µD
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As a final step, we note that the sum of the rate of strain tensor is S = E + D, so the preceding
relationship can also be written as

σ = −p I + 2µS − 2µE

We see that the Newtonian model does indeed relate stress to rate of strain, and also to the rate of
expansion. Since the rate of expansion is zero for an incompressible fluid or in an incompressible
flow, we can write the stress tensor when using these approximations as 

σ = −p I + 2µS

and recognize that in this case stress is related solely to rate of strain.

EXAMPLE 11 .5

Consider the flow of an incompressible Newtonian fluid between parallel plates with the
top plate moving as shown in Figure 11.4. The velocity field is u = U(y/h) i, where U
is the speed of the moving plate and h is the gap between the plates. Find the stresses in
this flow. What can the momentum equation tell us about this flow?

h

Top plate moves
with velocity U

u � u(y)i

y

x

Figure 11.4 Schematic for Example 11.5.

SOLUTION

We are asked to find the stresses in a given flow and to use the momentum equation to
gain insight into the nature of the flow. Figure 11.4 serves as the sketch for this fluid
system. To find the stresses we will use the Newtonian constitutive relationships,
Eqs. 11.6, with the known velocity components. The only nonzero velocity component
is u, and the density is constant. Since u is a function of y alone, all x and z spatial de-
rivatives of u are zero. We can begin by confirming that the velocity field satisfies the
continuity equation for an incompressible fluid. From Eq. 11.2a we find

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= ∂

∂x
(u(y)) + ∂

∂y
(0) + ∂

∂z
(0) = 0



11.4 CONSTITUTIVE MODEL FOR A NEWTONIAN FLUID 677

Inserting the velocity components into the Newtonian constitutive relationships,
Eqs. 11.6, we find

σxx = −p − 2

3
µ(∇ • u) + 2µ

∂u

∂x
= −p − 2

3
µ(0) + 2µ(0) = −p

σyy = −p − 2

3
µ(∇ • u) + 2µ

∂v

∂y
= −p − 2

3
µ(0) + 2µ(0) = −p

σzz = −p − 2

3
µ(∇ • u) + 2µ

∂w

∂z
= −p − 2

3
µ(0) + 2µ(0) = −p

σxy = σyx = µ

(
∂u

∂y
+ ∂v

∂x

)
= µ

[
∂

∂y

(
U

y

h

)
+ ∂

∂x
(0)

]
= µ

U

h

σzy = σyz = µ

(
∂w

∂y
+ ∂v

∂z

)
= µ

[
∂

∂y
(0) + ∂

∂z
(0)

]
= 0

σzx = σxz = µ

(
∂w

∂x
+ ∂u

∂z

)
= µ

[
∂

∂x
(0) + ∂

∂z

(
U y

h

)]
= 0

We see that the only nonzero shear stress is σxy = σyx = µ(U/h), a constant. Note,
however, that we do not know the pressure distribution because this was not given to us.
We can use these results to write the stress tensor in matrix form as

� =




−p
µU

h
0

µU

h
−p 0

0 0 −p




realizing that the pressure is an unknown function of the coordinates.
To find out what the momentum equation can tell us about this flow, we will sub-

stitute the velocity field into the momentum equations (Eqs. 11.5). The flow is steady,
so time derivatives of the velocity components are zero. The only body force is grav-
ity; thus the body force per unit mass is f = (0,−g, 0). The momentum equations
become

ρ

[
0 + u(0) + (0)

∂u

∂y
+ (0)(0)

]
= ρ(0) +

(
∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

)

ρ[0 + u(0) + (0)(0) + (0)(0)] = ρ(−g) +
(

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z

)

ρ[0 + u(0) + (0)(0) + (0)(0)] = ρ(0) +
(

∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z

)



When the constitutive relationships for a Newtonian
fluid (Eqs. 11.6) are used to replace the stresses in the
differential momentum equations (Eqs. 11.5), the result

is the Navier–Stokes equations in Cartesian coordinates. These equations, which de-
scribe the behavior of a Newtonian fluid with variable density and viscosity, are applic-
able to laminar and turbulent flows of liquids and gases throughout the entire range of
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We conclude that the derivatives of the various stresses obey the following equations:(
∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

)
= 0

ρ(−g) +
(

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z

)
= 0

(
∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z

)
= 0

Inserting the stresses found earlier into these reduced momentum equations, we find(
∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z

)
=
[

∂

∂x
(−p) + ∂

∂y

(
µU

h

)
+ ∂

∂z
(0)

]
= −∂p

∂x
= 0

ρ(−g) +
(

∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z

)
= ρ(−g) +

[
∂

∂x

(
µU

h

)
+ ∂

∂y
(−p) + ∂

∂z
(0)

]

= −ρg − ∂p

∂y
= 0

(
∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z

)
=
[

∂

∂x
(0) + ∂

∂y
(0) + ∂

∂z
(−p)

]
= −∂p

∂z
= 0

From the first and last of these equations we conclude that the pressure does not vary in
the x or z directions. Integrating the remaining equation ∂p/∂y = −ρg, noting that the
density is constant, and evaluating the constant of integration on the top plate at y = h,
we find p(y) = ph − ρg(y − h). Thus, the momentum equations have shown that the
pressure distribution in this shear flow is unchanged from the hydrostatic pressure dis-
tribution that would exist in the absence of flow. Notice that both the momentum equa-
tions and the constitutive relations are needed to solve this (typical) flow problem.

11.5 NAVIER–STOKES EQUATIONSDid you recognize that the flow in this last
example is the basis for the definition of
viscosity? Notice that the fluid is sheared
in the thin gap between parallel plates,
and since v and w are zero, we have
τ = σyx = µ(∂u/∂y + ∂v/∂x) = µ(∂u/∂y),
which is the defining equation used in our
discussion of Newton’s law of viscosity
(Eq. 1.2c) in Chapter 1.

CD/Dynamics/Navier–Stokes equations



flow speeds. They are the basic equations that all commercial CFD codes employ to
solve the most general class of fluid mechanics problems. The Navier–Stokes equations
are exceedingly complicated and difficult to solve. Since the flows of interest in this text
can be modeled as having constant density and constant viscosity, some simplification
is, however, possible. In this case, the continuity equation is given by Eq. 11.3,
∇ • u = 0, and spatial derivatives of the (constant) viscosity are zero. Without going
into all the details, we can write the continuity and Navier–Stokes equations for the im-
portant case of a constant density, constant viscosity fluid as (Eq. 11.4a) ∂u/∂x +
∂v/∂y + ∂w/∂z = 0, and

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρ fx − ∂p

∂x
+ µ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
(11.10a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρ fy − ∂p

∂y
+ µ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
(11.10b)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρ fz − ∂p

∂z
+ µ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)

(11.10c)

In interpreting these equations, we note that they are actually the three components of a
force balance on the fluid. We can write this balance in vector form as 

ρ
Du
Dt

= ρf − ∇p + µ∇2u (11.11)

You should be able to recognize that the inertial forces per unit volume, given by
ρa = ρ(Du/Dt), are balanced by the sum of body forces per unit volume, ρf, the pres-
sure forces per unit volume as given by −∇p, and viscous forces per unit volume
as given by µ∇2u. Thus, the vector equation ρ(Du/Dt) = ρf − ∇p + µ∇2u is an-
other way to write the Navier–Stokes equation for a constant density, constant viscosity
fluid.
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In cylindrical coordinates, the continuity and Navier–Stokes equations for a con-
stant density, constant viscosity fluid are (1/r)∂(rvr )/∂r + (1/r)∂vθ/∂θ + ∂vz/∂z =
0, which is Eq. (11.4b), and 

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
− v2

θ

r

)

= ρ fr − ∂p

∂r
+ µ

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
+ 1

r2

∂2vr

∂θ2
+ ∂2vr

∂z2
− vr

r2
− 2

r2

∂vθ

∂θ

)

(11.12a)



ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z
+ vrvθ

r

)

= ρ fθ − 1

r

∂p

∂θ
+ µ

(
∂2vθ

∂r2
+ 1

r

∂vθ

∂r
+ 1

r2

∂2vθ

∂θ2
+ ∂2vθ

∂z2
− vθ

r2
+ 2

r2

∂vr

∂θ

)

(11.12b)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)

= ρ fz − ∂p

∂z
+ µ

(
∂2vz

∂r2
+ 1

r

∂vz

∂r
+ 1

r2

∂2vz

∂θ2
+ ∂2vz

∂z2

)
(11.12c)

The continuity and Navier–Stokes equations just given provide a complete set of
governing equations to determine the velocity and pressure at every point in a flow. It is
not necessary in this case to solve the energy equation to determine the velocity and
pressure fields, because we have four equations and four unknowns: three components
of velocity and the pressure.

We have often mentioned that solving the governing equations is a difficult task. In
Chapter 12 we will demonstrate how to construct analytical solutions for a number of
important flows. Here we emphasize that saying we have obtained a solution to the gov-
erning equations means one of two things. In an analytical solution, the functions de-
scribing the velocity and pressure fields must satisfy all four equations simultaneously,
as well as the boundary conditions, when the functions are inserted into the equations
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HISTORY BOX 11.1

Claude Navier (1785–1836) entered the prestigious École Polytechnique in 1802 as a marginal
student but emerged at the top of his class. He inherited the role of the leading scholar of math-
ematics, science, and engineering in France from his teacher and friend Jean Baptiste Fourier. In
1822 he presented a paper that for the first time accurately described the role of friction in the
equations of motion for a fluid. His analysis started from a molecular view of fluid. It was left to
Jean-Claude de Saint-Venant to explain this result based on the viscous stresses in the fluid and
to identify the viscosity as the key material property.

George Stokes (1819–1903) held the Lucasian chair at Cambridge University, the same po-
sition held by Sir Isaac Newton. Thus, he was one of the leading scholars in England. He made
many contributions to fluid mechanics and the nature of light. With no knowledge of the work in
France, in 1845 Stokes published a derivation of the equations that bear his name, using an
analysis based on the internal friction of fluid much like we have presented here.

CD/History/Claude Navier and Sir George Stokes



and the various spatial derivatives evaluated. The next two examples demonstrate this
process. In a CFD solution, the set of numerical values for velocity and pressure consti-
tuting the solution on some number of spatial points satisfies a massive set of algebraic
equations representing the discretized form of the governing equations and boundary
conditions to some degree of approximation. This is about all we can say in general
about a CFD solution because the details depend to a great degree on the type of
approach used by the CFD model.
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EXAMPLE 11 .6

In the channel flow of a constant density, constant viscosity fluid shown in Figure 11.5,
suppose the complete description of the flow is given in Cartesian coordinates by the ve-
locity field u = {[h2(p1 − p2)]/2µL}[1 − (y/h)2], v = 0, and w = 0, and the pres-
sure field p(x) = p1 + [(p2 − p1)/L](x − x1). Here p1 and p2 are the pressures at the
indicated locations, and the slight hydrostatic variation in pressure across the channel
has been ignored. Show that this flow satisfies the constant density, constant viscosity
Navier–Stokes equations in Cartesian coordinates, with the body force neglected.

x1 x2

Length, L

p1 p2

Fluid with
viscosity �

and density �

Channel
height, 2h

Pressure drop, �p � p1 � p2

y

x
Velocity
profile

Figure 11.5 Schematic for Example 11.6.

SOLUTION

We will first substitute the three velocity components into the continuity equation for
an incompressible fluid, Eq. 11.4a, then substitute the velocity components and pres-
sure into the constant density, constant viscosity forms of the Navier–Stokes equa-
tions, Eqs. 11.10a–11.10c. Since we have u = u(y) only, with v and w zero, the conti-
nuity equation, ∂u/∂x + ∂v/∂y + ∂w/∂z = 0, is satisfied by inspection. Terms in
Eqs. 11.10a–11.10c that contain the velocity components v and w are zero, as are time
derivatives and spatial derivatives of u with respect to x and z. Writing only the remain-
ing nonzero terms, and setting the body force terms to zero, we find

0 = −∂p

∂x
+ µ

∂2u

∂y2
, 0 = −∂p

∂y
, and 0 = −∂p

∂z
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The last two equations are consistent with the given pressure distribution. Substituting
the x velocity component and pressure into the first pressure equation yields

0 = − ∂

∂x

(
p1 +

(
p2 − p1

L

)
(x − x1)

)
+ µ

∂

∂y

[
∂

∂y

((
h2(p1 − p2)

2µL

)[
1 −

(
y

h

)2
])]

0 = −
(

p2 − p1

L

)
+ µ

(
h2(p1 − p2)

2µL

)
∂

∂y

(
∂

∂y

[
1 −

(
y

h

)2
])

0 = −
(

p2 − p1

L

)
+ µ

(
h2(p1 − p2)

2µL

)( −2

h2

)
= 0

We see that the velocity and pressure do satisfy the appropriate forms of the continuity
and Navier–Stokes equations. It is also straightforward to show that the velocity field
satisfies the no-slip, no-penetration conditions at the channel walls.

EXAMPLE 11 .7

In the Poiseuille flow of a constant density, constant viscosity fluid in a round pipe,
(Figure 11.6), the velocity field is given in cylindrical coordinates by u = vr er +
vθeθ + vzez with components vr = 0, vθ = 0, and vz(r) = {[R2

P(p1 − p2)]/4µL}[1 −
(r/RP)2]. Find the pressure distribution in this flow if body forces are neglected.

Length, L

p1 p2

Fluid with
viscosity �

and density � Radius, RP

Pressure drop, �p � p1 � p2

r

z
Velocity
profile

Figure 11.6 Schematic for Example 11.7.

SOLUTION

The velocity field must satisfy the continuity equation, Eq. 11.4b, and the velocity field
and pressure distribution must satisfy Eqs. 11.12a–11.12c. We begin by checking the
continuity equation:

1

r

∂(rvr )

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0
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The formidable Navier–Stokes equations have generated many efforts to introduce
simplifying approximations. One of the earliest and most valuable of these approx-
imations is that of an inviscid fluid, defined in Chapter 8 to be a fluid whose viscosity
is zero. Upon substituting µ = 0 into the constitutive model for a Newtonian fluid
(Eqs. 11.6a–11.6f), we find the state of stress in an inviscid fluid in Cartesian coordi-
nates to be

σxx = −p, σyy = −p, σzz = −p (11.13a–c)

σxy = σyx = 0, σzy = σyz = 0, σzx = σxz = 0 (11.13d–f)

As expected, we see that an inviscid fluid is incapable of exerting a shear stress. This is
another way to define an inviscid fluid. The absence of shear stress indicates that an in-
viscid fluid does not obey the no-slip condition and therefore must slip along a solid sur-
face. The state of stress in an inviscid fluid, with its absence of shear stresses, is given
by a pressure distribution alone, just as is the case in a static fluid. However, as we will
see in a moment, in an inviscid fluid, the pressure distribution is related to both the body
force and the inertial force created by the velocity field, rather than to just the body force
as in a static fluid.
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Since we know vr = 0 and vθ = 0, this reduces to ∂vz/∂z = 0, which can be seen to
be satisfied by inspection, since vz = vz(r). Writing only the nonzero terms in
Eqs. 11.12a–11.12c, we have

0 = −∂p

∂r
, 0 = −1

r

∂p

∂θ
, and 0 = −∂p

∂z
+ µ

(
∂2vz

∂2r
+ 1

r

∂vz

∂r

)

Thus the pressure is a function of z only. Inserting the given velocity component into the
last equation and taking derivatives we find

∂p

∂z
= µ

(
R2

P(p1 − p2)

4µL

)[(
− 2

R2
P

)
+ 1

r

(
− 2r

R2
P

)]

= µ

(
R2

P(p1 − p2)

4µL

)(
− 2

R2
P

− 2

R2
P

)

which, after simplification, yields ∂p/∂z = (p2 − p1)/L . Integrating and evaluating the
resulting constant of integration at z = z1, we find p(z) = p1 + [(p2 − p1)/L](z − z1).
This is a linear drop in pressure down the pipe. Can you see by inspection that the no-slip,
no-penetration conditions are satisfied on the pipe wall?

CD/Dynamics/Potential Flow



The momentum equation governing the flow of an
inviscid fluid was derived by Euler well in advance of
the development of the Navier–Stokes equations for
viscous fluids. Although we will not describe his de-
rivation of the equation named in his honor, setting
µ = 0 in the vector form of Navier–Stokes equation,
Eq. 11.11, yields the Euler equation:

ρ
Du
Dt

= ρf − ∇p (11.14)

An alternate way of writing this in terms of acceleration
is:

ρa = ρf − ∇p (11.15)

Thus, the flow of an inviscid fluid is governed by a bal-
ance of inertial, body, and pressure forces alone. There
are no viscous forces of any kind.
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CD/History/Leonhard Euler

HISTORY BOX 11-2

Leonhard Euler (1705–1783) is truly one
of the great mathematical physicists in
general and fluid dynamicists in particular.
He is well known for his contributions to
the solution of ordinary differential equa-
tions. Of course, for our purposes here he
was the first to derive the differential mo-
mentum equations for inviscid fluid flow. In
fact, he was also the first to write the con-
tinuity equation. Euler was born in Basel,
Switzerland, where he was a student and
colleague of members of the Bernoulli
family.

The three components of the Euler equation in Cartesian coordinates are:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρ fx − ∂p

∂x
(11.16a)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρ fy − ∂p

∂y
(11.16b)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρ fz − ∂p

∂z
(11.16c)

In cylindrical coordinates they are:

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
− v2

θ

r

)
= ρ fr − ∂p

∂r
(11.17a)

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z
+ vrvθ

r

)
= ρ fθ − 1

r

∂p

∂θ
(11.17b)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)
= ρ fz − ∂p

∂z
(11.17c)

The Euler equations, together with the continuity equation, govern the flow of an
inviscid fluid. If we allow the density to be a variable and use the general form of the
continuity equation, the Euler equations describe the flow of a compressible, inviscid
fluid. If we use the incompressible form of the continuity equation, the Euler equations



describe the flow of an incompressible, inviscid fluid. Since an inviscid fluid does not
exist, it is tempting to think of the Euler equations as a historical oddity, or of academic
interest only. Actually, these equations are widely employed today in the design and
analysis of aircraft and turbomachinery! Perhaps you are wondering how this can be.
The answer lies in the fact that the Euler equations can also be considered to be the form
of the Navier–Stokes equations that apply to an inviscid flow. Notice carefully that we
are now talking about an inviscid flow rather than an inviscid fluid.

An inviscid flow is defined to be a one in which the effects of viscosity on the flow
are negligible. That is, rather than thinking of a fluid as having no viscosity, we consider
instead a flow of a real fluid such as air or water in which the spatial gradients in veloc-
ity are sufficiently small that the viscous stresses are negligible. For example, according
to Eqs. 11.6d–11.6f, the shear stresses in a Newtonian fluid are given in terms of veloc-
ity gradients by 

σxy = σyx = µ

(
∂u

∂y
+ ∂v

∂x

)
, σyz = σzy = µ

(
∂v

∂z
+ ∂w

∂y

)

and

σzx = σxz = µ

(
∂w

∂x
+ ∂u

∂z

)

Clearly the shear stresses vanish if the viscosity is zero. But if the values of the velocity
gradients are small in a flow of an otherwise low viscosity fluid such as air or water, then
the product of these gradients with the viscosity can also result in negligible shear
stresses. This is the fundamental idea behind the inviscid flow approximation. A similar
conclusion applies to the viscous contributions to the normal stresses. As a model for the
flow of a real viscous fluid, rather than substituting µ = 0 into the general version of the
Navier–Stokes equation, we can consider the inviscid flow approximation to involve
dropping the terms representing viscous effects. Either way, the result is the Euler equa-
tions, and these equations do provide an accurate description of many flows of great
practical importance.

The Euler equations given here apply to compressible as well as incompressible
flow, and also to an incompressible fluid. A solution to a problem in inviscid flow must
satisfy the appropriate form of the continuity and Euler equations.
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EXAMPLE 11 .8

The steady, 2D inviscid flow of an incompressible fluid shown in Figure 11.7 is de-
scribed by u = kx , v = −ky, w = 0, and p(x, y) = p0 − ρ(k2/2)(x2 + y2), where k
is a constant, p0 is the pressure at the origin, and body forces have been neglected. This
inviscid flow model for a constant density flow approaching a plane wall is referred to
as plane stagnation point flow. Show that this flow satisfies the continuity and Euler
equations, and comment on whether the no-slip, no-penetration conditions are or are not
satisfied.
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SOLUTION

We will check that the continuity equation for an incompressible fluid is satisfied by
substituting the velocity components into Eq. 11.4a, ∂u/∂x + ∂v/∂y + ∂w/∂z = 0, to
obtain

∂

∂x
(kx) + ∂

∂y
(−ky) + ∂

∂z
(0) = k − k = 0

y

x(A)

5

6

4

3

2

1

0
�2�3 �1 0 1 32(B)

y

5

6

4

3

2

1

0
�2�3 �1 0 1 32(C)

y

Figure 11.7 Schematic for Example 11.8: (A) velocity vectors, (B) streamlines, and (C) pressure contours
for plane stagnation point flow.
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Next we substitute the velocity components and pressure into the Euler equations for
inviscid flow in Cartesian coordinates, Eqs. 11.16a–c:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρ fx − ∂p

∂x

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρ fy − ∂p

∂y

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρ fz − ∂p

∂z

To simplify, note that the body forces are zero by assumption, the flow is steady, the
velocity components u and v are functions of only one variable and w = 0, and the pres-
sure does not depend on z. Inserting the velocity components and pressure, we have

ρ[0 + (kx)(k) + (−ky)(0) + 0] = − ∂

∂x

[
p0 − ρk2

2
(x2 + y2)

]
= ρk2

2
(2x)

ρ[0 + (kx)(0) + (−ky)(−k) + 0] = − ∂

∂y

[
p0 − ρk2

2
(x2 + y2)

]
= ρk2

2
(2y)

0 = − ∂

∂z

[
p0 − ρk2

2
(x2 + y2)

]
= 0

After simplifying we find

ρ(kx)(k) = ρk2

2
(2x), ρ(−ky)(−k) = ρk2

2
(2y) , and 0 = 0

Thus, the Euler equations are also satisfied for this flow.
At the wall, y = 0; thus we find u = kx, v = 0, w = 0 on the wall. The fluid satis-

fies the no-penetration condition but slips with u = kx in the x direction.

EXAMPLE 11 .9

The streamlines for the 2D, inviscid, constant density flow over a cylinder are shown in
Figure 11.8. The streamfunction for this flow is given in cylindrical coordinates by
ψ(r, θ) = U∞r(1 − R2/r2) sin θ , where U∞ is the freestream velocity and R is the
cylinder radius. If the body force is neglected, the pressure distribution is given by
p(r, θ) = p∞ + 1

2ρU 2
∞[1 − (1 − R2/r2)2 − 4(R2/r2) sin2 θ] . Show that the velocity

field in this case is described by

vr = U∞

(
1 − R2

r2

)
cos θ , vθ = −U∞

(
1 + R2

r2

)
sin θ , and vz = 0



688 11 GOVERNING EQUATIONS OF FLUID DYNAMICS

and that the continuity and Euler equations are satisfied. Comment on the boundary
conditions.

SOLUTION

The streamfunction for a 2D constant density or incompressible flow that is described in
cylindrical coordinates by velocity components (vr , vθ , 0) is defined by Eqs. 10.74a and
10.74b as

vr = 1

r

∂ψ

dθ
and vθ = −∂ψ

dr

Thus we can calculate the velocities from

vr = 1

r

∂ψ

dθ
= 1

r

∂

dθ

[
U∞r

(
1 − R2

r2

)
sin θ

]
= U∞

(
1 − R2

r2

)
cos θ

vθ = −∂ψ

dr
= − ∂

dr

[
U∞r

(
1 − R2

r2

)
sin θ

]

= −U∞ sin θ

[(
1 − R2

r2

)
+ r

(
2R2

r3

)]

= −U∞

(
1 + R2

r2

)
sin θ

We see that this agrees with the velocity components given in the problem statement.
Although we know that a streamfunction guarantees that the continuity equation

is satisfied, we can check these velocity components by substituting them into that
equation in cylindrical coordinates, Eq. 11.4b, (1/r)[∂(rvr )/∂r] + (1/r)(∂vθ/∂θ)+
∂vz/∂z = 0. The left hand side of this equation is

1

r

∂

∂r

[
rU∞

(
1 − R2

r2

)
cos θ

]
+ 1

r

∂

∂θ

[
−U∞

(
1 + R2

r2

)
sin θ

]
+ (0)

= U∞
r

(
1 − R2

r2

)
cos θ + U∞

(
2R2

r3

)
cos θ − U∞

r

(
1 + R2

r2

)
cos θ + (0) = 0

Figure 11.8 Schematic for Example 11.9: streamlines for invis-
cid flow over a cylinder.
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x
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To see if the Euler equations are satisfied, we will substitute these velocity compo-
nents and the pressure into Eqs. 11.17a–11.17c. Writing only the nonzero terms in these
equations yields

ρ

(
vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r

)
= −∂p

∂r
, ρ

(
vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vrvθ

r

)
= −1

r

∂p

∂θ

and

0 = −∂p

∂z

Since the pressure given in the problem statement is only a function of r and θ , the last
equation is satisfied. Although we leave the details of the final step as an exercise for the
interested reader (and we suggest the use of a symbolic mathematics code) substituting
the velocities and pressure into the remaining two equations shows that these are also
satisfied. On the cylinder, r = R, and we find vr = 0, vθ = −2U∞ sin θ, and vz = 0.
So the no-penetration condition is satisfied, but the fluid slips along the surface with a θ
velocity of vθ = −2U∞ sin θ .

11.6.1 Streamline Coordinates

It is possible to gain additional insight into the relationship between pressure and veloc-
ity in inviscid flow by making use of the Euler equation in a specialized set of coordi-
nates known as streamline coordinates. Consider a steady 2D flow in the xy plane. The
streamlines of the flow and the lines orthogonal to the streamlines form a set of orthog-
onal curvilinear coordinates, as illustrated in Figure 11.9. The vector form of the Euler
equation applies in any coordinate system, including this new set. At an arbitrary point

Streamlines

Lines orthogonal
to streamlines

y

x

eN

u

eS

Figure 11.9 Streamline coordinates.



on a streamline, the velocity is tangent to the streamline; thus the velocity vector is
u = V eS , where V is the speed and eS is a unit vector tangent to the streamline at the
point. The unit vector normal to the streamline at this point, eN , is chosen to point away
from the center of curvature. Our goal is to write components of the Euler equation in
each of these directions.

The Euler equation is written in terms of acceleration, a, using Eq. 11.15 as

ρa = ρf − ∇p

Writing the components of this equation along and normal to the streamline yields

ρaS = ρ fS − ∂p

∂s
and ρaN = ρ fN − ∂p

∂n
(11.18a, b)

where we have written the body force per unit mass and pressure gradient in terms of
their components along and normal to the streamline.

Now consider the acceleration of a fluid particle at the selected point on the stream-
line. The local acceleration is zero, since the flow is steady, and the convective acceler-
ation is given by (u • ∇)u. Writing the del operator in the streamline coordinates, we
find

∇ = ∂( )

∂n
eN + ∂( )

∂s
eS

Thus the dot product (u • ∇) is

(u • ∇) = V eS •

(
∂( )

∂n
eN + ∂( )

∂s
eS

)
= V

∂( )

∂s

Applying this to the velocity vector u = V eS , and noting that the unit vectors are func-
tions of position along the streamline, we see that the convective acceleration is given
by

(u • ∇) u = V
∂

∂s
(V eS) = V

∂V

∂s
eS + V 2 ∂es

∂s
= V

∂V

∂s
eS − V 2

� eN

where � is the radius of curvature of the streamline at this point. Note that we have made
use of a result you may have encountered in physics or dynamics: ∂es/∂s = −eN /�.

Substituting these components into Eqs. 11.18a and 11.18b yields the Euler equa-
tions in streamline coordinates

ρV
∂V

∂s
= ρ fS − ∂p

∂s
and −ρ

(
V 2

�
)

= ρ fN − ∂p

∂n
(11.19a, b)

These equations describe the relationship between pressure and speed at a point in an in-
viscid, 2D, steady flow of a compressible fluid.

To get a sense of how flow speed and the curvature of streamlines cause pressure
variations along and across streamlines, consider a constant density flow in the absence
of body forces. From Eq. 11.19a, the variation in pressure along a streamline is given by

∂p

∂s
= −ρV

∂V

∂s
(11.20a)
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indicating that an increase in speed along the streamline is accompanied by a decrease
in pressure and vice versa. From Eq. 11.19b, the variation in pressure normal to the
streamline is given by

∂p

∂n
= ρ

(
V 2

�
)

(11.20b)

which shows that at a point on a streamline, the pressure increases along a line normal
to the streamline and pointing away from the center of curvature in proportion to the
square of the flow speed. If body forces are present, their effect is additive, as can be de-
duced from Eqs. 11.19a and 11.19b.

To further appreciate the relationship between velocity and pressure in an inviscid
flow, consider the three steady, constant density, inviscid 2D flows shown in Fig-
ure 11.10. In the contraction, Figure 11.10A, the speed of the fluid increases along the
axial streamline, thus ∂V /∂s > 0, and according to Eq. 11.20a, ∂p/∂s < 0. The pres-
sure decreases as the speed increases, a result that is identical to that obtained from the
Bernoulli equation. If a streamline is curved, as shown in the 2D flow around a bend in
Figure 11.10B, the radius of curvature is finite, and according to Eq. 11.20b, ∂p/∂n > 0.
The pressure increases in the direction away from the center of curvature, and the in-
crease is more pronounced for sharper bends having a smaller radius of curvature. The
effect is further enhanced for any bend at higher flow speeds, since ∂p/∂n is propor-
tional to V 2. High speed flow around a sharp bend is accompanied by a relatively large
pressure variation across the streamlines from the concave side toward the convex
side. Finally, note that if streamlines are straight and parallel as in the flow shown in
Figure 11.10C, there is no variation in pressure normal to the streamlines.

These conclusions about pressure variations along and across streamlines are based
on the use of the inviscid flow approximation. Nevertheless, they are often used with
success to estimate how pressure varies along and across streamlines in viscous flows.
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Region of
higher V and
lower p

Region of
lower V and

higher p

Direction of
increasing p

(A) (B)

No variation in p in a
direction perpendicular
to straight streamlines

(C)

Figure 11.10 Streamlines for 2D inviscid, constant density flows through (A) a contraction, (B) a
bend, and (C) a straight section.



The accuracy of this approach depends, of course, on whether viscous effects on the
pressure are small. Several important cases that satisfy this restriction are shown in
Figure 11.11. As shown in Figure 11.11A, the lack of pressure variation across straight
parallel streamlines is the basis for measuring the pressure in wind tunnels by means of
a wall tap. The value of pressure measured on the tunnel wall is found to be identical to
that which occurs everywhere along a line spanning the test section perpendicular to the
oncoming flow. Although this line passes through the viscous boundary layer on the
wall, the pressure change across the boundary layer on a flat wall is negligible. A wall
tap is also the basis for measuring pressure in a pipe or channel flow, as shown in Fig-
ure 11.11B. If a wall tap is used on the curved surface of an airfoil, as in Figure 11.11C,
it accurately measures the pressure on the wall, but the value of the pressure cannot be
used to infer the pressure in the flow away from the wall without accounting for the
effects of streamline curvature. Examples 11.10 and 11.11 illustrate these ideas.

11.6.2 Derivation of the Bernoulli Equation

In an inviscid flow the only forces acting on the fluid are inertial, body, and pressure
forces per unit volume. Viscous forces, which are frictional, are absent. In Chapter 8 we
used a mass and momentum balance to derive the Bernoulli equation for the flow of an
inviscid fluid along a streamline. In this section we will derive the Bernoulli equation for
an inviscid fluid or inviscid flow from the Euler equation, Eq. 11.14,

ρ
Du
Dt

= ρf − ∇p
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P P

Test section(A) (B)

(C)

P

Figure 11.11 Pressure taps for (A) a wind tunnel, (B) a straight channel, and (C) an airfoil.
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EXAMPLE 11 .10

Consider a constant density fluid in solid body rotation in the absence of body forces as
shown in Figure 11.12. Use the Euler equations in streamline coordinates to analyze the
direction of pressure change. Use the Euler equations in cylindrical coordinates to con-
firm your findings.

r

z

�

Streamlines

Velocity vectors
v� � r


Figure 11.12 Schematic for Example 11.10.

SOLUTION

The velocity field in solid body rotation is described in cylindrical coordinates by

avr = 0, vθ = rΩ, and vz = 0

where Ω is a constant (see Eq. 10.33). By inspection the streamlines are circles. Con-
sider a point on a streamline of radius r. The velocity at this point is vθ = rΩ and is
directed along the streamline. Thus the speed is V = rΩ and does not change along the
streamline. The radius of curvature at this point is � = r . Applying the Euler equations
in streamline coordinates, Eqs. 11.20a and 11.20b, we find

∂p

∂s
= −ρV

∂V

∂s
= −ρ(rΩ)

∂

∂s
(rΩ) = 0

∂p

∂n
= ρ

(
V 2

�
)

= ρ

(
(rΩ)2

r

)
= ρrΩ2

Thus there is no change in pressure along a streamline, and the pressure increases with
increasing radius.
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The Euler equations in cylindrical coordinates, Eqs. 11.17a–11.17c, are

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
− v2

θ

r

)
= ρ fr − ∂p

∂r

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z
+ vrvθ

r

)
= ρ fθ − 1

r

∂p

∂θ

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)
= ρ fz − ∂p

∂z

Substituting the velocity components for solid body rotation, and noting the absence of
body force, we find

ρ

(
−v2

θ

r

)
= ρ

(
− (rΩ)2

r

)
= −ρrΩ2 = −∂p

∂r
, 0 = −1

r

∂p

∂θ
, and 0 = −∂p

∂z

Thus we have ∂p/∂r = ρrΩ2, and since n is equivalent to r in this case, this result can
be seen to be consistent with that obtained with the Euler equations in streamline
coordinates.

EXAMPLE 11 .11

Figure 11.13 shows a crude hurricane model in which the flow is circular, and the wind
speed increases linearly with radius from 0 at the center of the eye to 150 km/h at
R = 50 km. Estimate the pressure difference from the eye of the hurricane to the indi-
cated location R.

Velocity vectors
R � 50 km

V � 150 km/h

r
�

Figure 11.13 Schematic for Example 11.11.



If we expand the material derivative and divide by the density, we find

∂u
∂t

+ (u • ∇)u = f − ∇p

ρ

Next we employ the vector identity (u • ∇)u = 1
2∇(u • u) − u × (∇ × u) and substi-

tute this identity into the preceding equation. After rearranging slightly, we find

∂u
∂t

+ ∇p

ρ
+ 1

2
∇(u • u) − f = u × (∇ × u)

The most common body forces of interest in fluid dynamics are gravity and centrifugal
force. Both of these are conservative forces, hence may be represented by an appropri-
ate potential via the relationship f = −∇Ψ. Substituting for the body force in the pre-
ceding equation, and recalling that vorticity is defined by Eq. 10.49 as � = ∇ × u, we
obtain

∂u
∂t

+ ∇p

ρ
+ 1

2
∇(u • u) + ∇Ψ = u × � (11.21)

This is an alternate form of the Euler equation for a conservative body force.
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SOLUTION

Circular flow implies circular streamlines with r pointing in the n direction. A linear θ
velocity profile fitted to the data is given by

vθ (r) = αr =
(

150 km/h

50 km

)
r =

(
3

km/h

km

)
r

thus α = 3 (km/h)/km = 3/h. To determine the pressure distribution, we will apply
Eq. 11.20b, using V = vθ∂/∂n = ∂/∂r and � = r to write the equation as

dp

dr
= ρ

V 2

r
= ρ

(αr)2

r
= ρ α2r

Integrating to find the pressure difference, we have 
∫ pR

p0
dp = ∫ R

0 ρα2r dr , which yields

pR − p0 = ρ
α2r2

2

∣∣∣∣
R

0

= ρ
α2 R2

2

Inserting the data, we find that the pressure in the eye of the hurricane is lower than
that at R = 50 km by the amount

pR − p0 = 1.225 kg/m3
(3/h)

(
1 h

3600 s

)2

[(50 km)(103 m/1 km)]2

2
= 1063 N/m2

In reality, hurricanes are complex 3D phenomena; therefore, this result of approximately
10 millibars somewhat underestimates recorded pressure differences for hurricanes of
this strength. Can you confirm this result using Eq. 11-17a?



The three gradient terms in Eq. 11.21 are a clue to the next step in the derivation of
the Bernoulli equation. Using the fact that the line integral of an exact differential form
is independent of the path, and bearing in mind that the value of the integral is just the
difference in the value of the integrand at the end points, we propose to integrate this
equation along a path through a fluid as shown in Figure 11.14. Since this is a vector
equation, we will use a dot product of this equation with the vector element of path
length dr to obtain the component of the equation along the path, then integrate from
one end of the path to the other. Grouping the three divergence terms together, we find∫ 2

1

∂u
∂t

• dr +
∫ 2

1

[∇p

ρ
+ 1

2
∇(u • u) + ∇Ψ

]
• dr =

∫ 2

1
(u × �) • dr

The line integral on the right-hand side of this equation is zero in two important cir-
cumstances. First, if the path selected is everywhere parallel to the velocity vector, i.e.,
if the path is a streamline, the integrand u × � is a vector that is perpendicular to u, and
thus dr, so the dot product (u × �) • dr is zero. The second circumstance occurs when
� = ∇ × u = 0 everywhere in the flow. In Chapter 10 we noted that this condition de-
fines a special type of flow called an irrotational flow. Thus if the path is a streamline, or
the flow is irrotational, the preceding equation becomes∫ 2

1

∂u
∂t

• dr +
∫ 2

1

[∇p

ρ
+ 1

2
∇(u • u) + ∇Ψ

]
• dr = 0

The integral 
∫ 2

1 (∂u/∂t) • dr is not an exact differential form, so we leave it alone. The
pressure integral is also not an exact differential form, so we write it as∫ 2

1 (∇p/ρ) • dr = ∫ 2
1 (dp/ρ) to signify that to evaluate this term, we must know the

variation in pressure and density along the path. The integrals containing 1
2∇(u • u)

and ∇Ψ are in exact differential form; thus they can be evaluated as∫ 2
1

1
2∇(u • u) • dr = 1

2 (V 2
2 − V 2

1 ) and
∫ 2

1 ∇Ψ • dr = Ψ2 − Ψ1 . From these results we
obtain ∫ 2

1

∂u
∂t

• dr +
∫ 2

1

dp

ρ
+ 1

2

(
V 2

2 − V 2
1

)+ (Ψ2 − Ψ1) = 0 (11.22)

This is the general form of the Bernoulli equation for unsteady flow. It applies to either
a compressible or an incompressible fluid in a conservative body force field; the only re-
striction is that the path connecting the two points must be an instantaneous streamline.
If the flow is irrotational, the path is arbitrary and the two points do not need to be on the
same streamline.
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dr

u
Figure 11.14 Integration path.



In the case of flow in a gravity field, we have Ψ2 − Ψ1 = g(z2 − z1), and the
Bernoulli equation can be written as∫ 2

1

∂u
∂t

• dr +
∫ 2

1

dp

ρ
+ 1

2

(
V 2

2 − V 2
1

)+ g(z2 − z1) = 0 (11.23)

Applying this equation to two points on a streamline, we can write the velocity as
u = V (s)eS , where the unit vector eS lies along the streamline, and since dr is tangent
to the streamline, we have dr = ds eS . The dot product is then (∂u/∂t) • dr =
(∂V /∂t) ds , and we see that Eq. 11.23 becomes

∫ 2

1

∂V

∂t
ds +

∫ 2

1

dp

ρ
+ 1

2

(
V 2

2 − V 2
1

)+ g(z2 − z1) = 0

which is identical to the Bernoulli equation (Eq. 8.4) discussed in Chapter 8.
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CD/Dynamics/Potential flow/Potential flow builder

Applications of the Bernoulli equation to flow along a streamline were discussed in
Chapter 8. In this section we have shown that Bernoulli’s equation applies between any
two points in an irrotational flow. The use of this equation in an inviscid flow is illus-
trated in Example 11.12.

EXAMPLE 11 .12

A 2D steady, constant density, inviscid flow of air is described by the velocity field
u = Ax, v = −Ay , where A = 1.5 s−1 and the coordinates are measured in feet. Find
the pressure difference between a point at (1, 1, 0) and a point at (2, 2, 0). Are these two
points located on the same streamline?

SOLUTION

We are asked to find the pressure difference between two specified points in a flow and
to determine whether the points are located on the same streamline. Figure 11.15 serves
as a sketch for this flow problem. No additional assumptions are required to solve this
problem. Since this is an inviscid flow, we know that the Bernoulli equation is applica-
ble along a streamline. If the flow is also irrotational, then the Bernoulli equation is ap-
plicable between any two points in the flow field. We will first check for irrotational flow
in this 2D velocity field by using Eq. 10.51c to compute the vorticity. Inserting the
known velocity components we find

ωz =
(

∂v

∂x
− ∂u

∂y

)
=
[
∂(−Ay)

∂x
− ∂(Ax)

∂y

]
= 0
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Thus, the flow is irrotational and we can apply the Bernoulli equation, Eq. 11.23,
between points (1, 1, 0) and (2, 2, 0). For this steady constant density flow, Eq. 11.23 re-
duces to the traditional form of the Bernoulli equation as given by Eq. 8.6:

p1

ρ
+ 1

2
V 2

1 + gz1 = p2

ρ
+ 1

2
V 2

2 + gz2

Since the points are at the same elevation, z1 = z2. To calculate the kinetic energy terms
we write

V 2 = u2 + v2 = (Ax)2 + (−Ay)2 = A2(x2 + y2)

y

x(A)

(1, 1)

(2, 2)

5

6

4

3

2

1

0
�2�3 �1 0 1 32(B)

y

5

6

4

3

2

1

0
�2�3 �1 0 1 32(C)

y

Figure 11.15 Schematic for Example 11.12: (A) velocity vectors, (B) streamlines, and (C) pressure
contours for plane stagnation point flow.
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Thus at (1, 1, 0) we can determine that V 2
1 = A2(x2

1 + y2
1) = A2(12 + 12) = 2A2 (ft2) ,

and at the point (2, 2, 0) we have V 2
2 = A2 (x2

2 + y2
2) = A2 (22 + 22) = 8A2 (ft2) . In

this case the Bernoulli equation becomes p1/ρ + 1
2 2A2 (ft2) = p2/ρ + 1

2 8A2 (ft2), and
the pressure difference is p1 − p2 = 3 (ft2)ρ A2 . Inserting the data we find

p1 − p2 = 3 (ft2)ρ A2 = (3 ft2)(0.002378 slug/ft3)(1.5 s−1)2(lbf-s)/(slug-ft)

(
1 ft2

144 in.2

)
= 1.1 × 10−4 psia

To check whether these two points are on the same streamline, we can write the equa-
tion for a streamline in this steady flow, using Eq. 10.30 as

dy

dx
= v

u
= −Ay

Ax
= − y

x
Solving for the streamline we have dy/y = − dx/x , or x dy + y dx = 0. Thus the
streamlines are given by xy = C (see Example 10.9). The streamline through the point
(1, 1, 0) is xy = 1, and it is clear that this streamline does not pass through the point
(2, 2, 0).

The family of streamlines and the pressure contours for this flow are shown in Fig-
ure 11.15. The latter are obtained by realizing that at the origin the velocity is zero; thus
the pressure there is the stagnation pressure. Applying the Bernoulli equation between
the origin (0, 0, 0) and any point (x, y, 0) we can write p/ρ + 1

2 V 2 = p0/ρ + 1
2 V 2

0 ,
where the subscript zero denotes the origin. Since V 2 = u2 + v2 = A2(x2 + y2), and
V 2

0 = 0, we find p0 − p = 1
2ρ A2(x2 + y2), which shows that the pressure is constant

on circles centered on the origin.

11.7 THE ENERGY EQUATION

The partial differential equation expressing conservation of energy for a Newtonian
fluid is simply referred to as the energy equation. The derivation of this scalar equation,
which can be found in advanced texts, is based on the thermodynamic principle that the
time rate of change of internal energy plus kinetic energy for a volume of fluid is equal
to the rate at which work is done on the fluid plus the rate at which heat is added to the
fluid. The resulting differential energy equation is

ρ
Du

Dt
= −pe� + κ� 2 + ρΦ + ∇ • (k∇T ) (11.24)

where pe is the thermodynamic pressure discussed in Section 11.4, the dilation � is
given by Eq. 10.64a as � = ∂u/∂x + ∂v/∂y + ∂w/∂z , and the viscous dissipation per
unit mass, Φ, is defined by 

Φ = 2µ

ρ

[(
∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2
]

+ µ

ρ

[(
∂v

∂x
+ ∂u

∂y

)2

+
(

∂w

∂y
+ ∂v

∂z

)2

+
(

∂u

∂z
+ ∂w

∂x

)2
]

− 2

3

µ

ρ
� 2

(11.25)



Equation 11.24 is a scalar equation expressing the rate at which internal energy is
increasing at a point in the fluid. The terms on the right-hand side represent physical
processes that affect internal energy. From left to right these terms represent the re-
versible work of compression by the thermodynamic pressure, viscous dissipation of
energy by the bulk viscosity, viscous dissipation of energy by the shear viscosity, and
heat transfer by conduction. The dissipation terms, κ�2 and ρΦ, which were briefly dis-
cussed in Section 2.7.1, represent an irreversible transformation of fluid mechanical en-
ergy into internal energy, i.e., heat.

Thermodynamic properties such as the pressure, density, temperature, internal en-
ergy, and entropy may vary in a flowing fluid. As we saw in CV analysis, the values of
these quantities in a flow field are critical in understanding and predicting the perfor-
mance of engines, pumps, compressors, and turbomachinery. Since internal energy is
not directly accessible as an experimental variable, thermodynamic relationships are
used to express the internal energy in terms of more convenient thermodynamic quanti-
ties such as temperature. In the following discussion we show how the material deriva-
tive is used to write rate relationships among thermodynamic state variables, and we fur-
ther discuss some of the important underlying assumptions of the thermodynamic model
used in fluid dynamics.

The thermodynamic laws apply to a change from one equilibrium state to another
for a fluid system. In fluid mechanics this system is either a finite volume of fluid or an
infinitesimal fluid particle. Consider the first law for a reversible process as it applies to
a fluid particle: du = T ds − pe dv , where u is the internal energy, T is temperature, s is
entropy, pe is thermodynamic pressure, and v is the specific volume. Note that we have
used the reversible relationships dq = T ds and dw = −pe dv to replace the work and
heat terms in the first law, since the process is assumed to be reversible. Replacing spe-
cific volume with density in the preceding equation, we find du = T ds + pe(dρ/ρ2),
where we have made use of the fact that dv = d (1/ρ) = −dρ/ρ2 . We can express this
relationship as a time rate of change, or rate equation, by writing

du

dt
= T

ds

dt
+ pe

ρ2

dρ

dt
(11.26a)

This equation, which provides the rate of change in internal energy as a fluid particle
moves, is written in the Lagrangian description. To express the equation in the Eulerian
description, we replace the time derivatives with material derivatives, obtaining

Du

Dt
= T

Ds

Dt
+ pe

ρ2

Dρ

Dt
(11.26b)

By using the material derivative, any thermodynamic relationship written as a rate
equation for a fluid particle may also be expressed in the Eulerian description applied at
a point in a fluid. For example, consider the following thermodynamic relationship in-
volving entropy: ds = (cp/T )dT − (β/ρ)dpe , where cp is the specific heat at constant
pressure and β is the coefficient of thermal expansion of the fluid. For a fluid particle,
the corresponding rate equation is

ds

dt
= cp

T

dT

dt
− β

ρ

dpe

dt
(11.27a)
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and the same equation written in the Eulerian description using the material derivative is

Ds

Dt
= cp

T

DT

Dt
− β

ρ

Dpe

Dt
(11.27b)

We can also combine thermodynamic equations as needed. For example, combin-
ing Eqs. 11.26b and 11.27b gives

Du

Dt
= cp

DT

Dt
− βT

ρ

Dpe

Dt
− pe

ρ2

Dρ

Dt
(11.28)

which relates the change in internal energy to changes in temperature, pressure, and
density.

Since virtually all processes involving a moving fluid are irreversible, one might won-
der about the utility of the reversible expressions noted earlier in the analysis of real flows.
In fact, the power of the reversible expressions stems from the observation that they may
be used to relate thermodynamic state variables to one another within the energy equation
even when applied to the description of irreversible processes. This is a subtle point and
must not be taken to mean that changes of state in a moving fluid occur reversibly.

To better understand the irreversible thermodynamic model for a fluid, note that
the first law for a fluid undergoing an irreversible process may be written as
(D/Dt)(u + 1

2 u • u) = Dw/Dt + Dq/Dt , where the terms on the right represent re-
spectively the rate at which work is done on, and heat added to, the fluid. The key issue
is that although reversible relationships among state variables are used, expressions for
the irreversible work and heat terms must be developed that incorporate the effects of
viscosity and heat conduction. We do not use the rate form of the reversible Eulerian re-
lationships Dq/Dt = T (Ds/Dt) and Dw/Dt = −pe(Dv/Dt), since these approxi-
mations are not sufficiently accurate to evaluate the work and heat terms for the irre-
versible processes of fluid mechanics.

Since internal energy is not directly accessible as an experimental variable, the ther-
modynamic relationships developed here are transformed to express the energy equation
in terms of other more convenient thermodynamic quantities. For example, it is common
to write the energy equation in terms of temperature as

ρcp
DT

Dt
= κ�2 + ρΦ + β T

Dpe

Dt
+ ∇ • (k∇T ) (11.29)

This form of the differential energy equation for a Newtonian fluid is usually preferred
by mechanical engineers. Another form of the energy equation, involving entropy, is
often preferred for problems involving high speed gas flows and aerospace applications.

The energy equations given in Eqs. 11.24 and 11.29 are applicable to the general
case of a compressible Newtonian fluid with variable absolute and bulk viscosity. The
pressure that appears in the energy equation is the thermodynamic or equilibrium pres-
sure, pe. However, as discussed earlier, in most flow problems the bulk viscosity κ is neg-
ligible and the thermodynamic pressure may be assumed to be equal to the mechanical
pressure p. In this text we assume this to be the case, and Eqs. 11.24 and 11.29 become

ρ
Du

Dt
= −p� + ρΦ + ∇ • (k∇T ) (11.30a)

ρcp
DT

Dt
= ρΦ + β T

Dp

Dt
+ ∇ • (k∇T ) (11.30b)
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Since it is tedious, we will not write out these two forms
of the energy equation in Cartesian coordinates, but you
will find these equations written in various coordinate
systems in many advanced texts.

The continuity, Navier–Stokes, and energy equa-
tions, together with the Newtonian constitutive model,
constitute a complete mathematical description of fluid
flow. CFD codes use these three equations as the start-
ing point for describing fluid flows. As mentioned ear-
lier, however, it is not necessary to solve the energy
equation in the flow of a constant density, constant vis-

cosity fluid. In that case, the continuity and Navier–Stokes equations are sufficient to de-
termine the velocity and pressure fields. However, if a flow of this type involves heat
transfer, one may find the temperature distribution in the fluid by solving the energy
equation after the velocity and pressure fields have been obtained.

11.8 DISCUSSION

We conclude this chapter with a brief discussion of several concepts that have been
mentioned in earlier chapters and have direct relevance to solving the governing
equations.
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For problems that involve the mixing of dif-
ferent fluids, or the transport of some sub-
stance in a fluid, the Reynolds transport
theorem may be used to derive additional
governing equations that describe the
mixing or transport processes involved.
This task is beyond the scope of this intro-
ductory text, but the process of deriving
these equations is very similar to that de-
scribed in this chapter for mass, momen-
tum, and energy.

CD/Dynamics/Boundary conditions

11.8.1 Initial and Boundary Conditions

The continuity, Navier–Stokes, and energy equations, together with the appropriate con-
stitutive relationships and state equations, provide a complete mathematical description
of the flow of a Newtonian fluid. To obtain a solution of this complex set of governing
equations, we must specify an appropriate set of boundary and initial conditions for the
flow problem being analyzed. The basic set of unknowns for which a solution is sought
in the general case includes the three components of velocity, pressure, density, and the
temperature of the fluid.

A complete discussion of the required boundary conditions depends on the exact
nature of the problem, the approximations employed, and the set of equations to be
solved. Although this discussion is beyond the scope of this text, the boundary condi-
tions associated with the fluid velocity field are generally the no-slip, no-penetration
conditions as discussed in Section 6.6. In an unsteady flow problem, the initial condi-
tions take the form of the specification of the spatial distribution of the unknowns (ve-
locity, pressure, etc.) at an initial instant of time. The selection of appropriate boundary
and initial conditions will be demonstrated in Chapter 12, where a number of analytical
solutions to simplified forms of the governing equations will be discussed.



11.8.2 Nondimensionalization

In Section 3.2 we described many of the common dimensionless groups in fluid
mechanics including the Reynolds number, Re = ρV L/µ, the Froude number
Fr = V/

√
gL , the Euler number Eu = (p − p0)/

1
2ρV 2 , and the Strouhal number

St = ωL/V . We showed that these and other dimensionless groups naturally occur in
applying dimensional analysis (DA) to flow problems. In this section we extend our dis-
cussion of DA to describe the process known as nondimensionalization of the governing
equations. The value of this process is that complete similitude between two physical
systems (e.g., a prototype and the full-scale device of interest) is guaranteed if the di-
mensionless governing equations and boundary conditions for the two different systems
are identical. Another advantage of the dimensionless form of the governing equations
is that a solution is applicable over a range of geometric and flow parameters, provided
the values of those parameters leave the dimensionless coefficients in the governing
equations unchanged.

Nondimensionalization of a governing equation is accomplished by dividing every
dependent and independent variable in the equation by an appropriate combination of
characteristic dimensions, thereby making each variable dimensionless. A characteristic
dimension is a physical dimension that is in some way characteristic of the flow field
under investigation. Common examples of characteristic dimensions include a charac-
teristic length scale L, usually derived from the geometry; a characteristic velocity scale
U, usually defined as the average fluid velocity; a characteristic pressure P; and a char-
acteristic time scale T.

We will illustrate the process of obtaining nondimensional governing equations for
the case of a constant density, constant viscosity, flow of a Newtonian fluid. If we as-
sume that gravity is the only body force, and take the z axis upward as usual, the conti-
nuity and Navier–Stokes equations, (Eqs. 11.4a and 11.10a–c), are

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −ρg − ∂p

∂z
+ µ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)

Recall that for this case it is not necessary to solve the energy equation to determine the
velocity and pressure fields.
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The four unknowns in this model are u, v,w, and p, and we have four equations to
determine these unknowns. The total number of independent and dependent variables is
eight, and their nondimensional counterparts are obtained by dividing each quantity by
its corresponding characteristic dimension. Using an asterisk to denote a nondimen-
sional quantity, we write

x∗ = x

L
, y∗ = y

L
, z∗ = z

L
, t∗ = t

T
,

u∗ = u

U
, v∗ = v

U
, w∗ = w

U
, p∗ = p

P

(11.31)

To nondimensionalize the equations, we must derive the nondimensional form of vari-
ous time and space derivatives. The time derivative with respect to the dimensional vari-
able can be written as

∂( )

∂t
= ∂( )

∂t∗
∂t∗

∂t
= 1

T

∂( )

∂t∗

Similarly, the spatial derivatives are given by

∂( )

∂x
= ∂( )

∂x∗
∂x∗

∂x
= 1

L

∂( )

∂x∗ ,
∂( )

∂y
= ∂( )

∂y∗
∂y∗

∂y
= 1

L

∂( )

∂y∗ ,

∂( )

∂z
= ∂( )

∂z∗
∂z∗

∂z
= 1

L

∂( )

∂z∗

and

∂2( )

∂x2
= 1

L2

∂2( )

∂x∗2
,

∂2( )

∂y2
= 1

L2

∂2( )

∂y∗2
,

∂2( )

∂z2
= 1

L2

∂2( )

∂z∗2

Thus, the continuity equation becomes

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 1

L

∂(u∗U)

∂x∗ + 1

L

∂(v∗U)

∂y∗ + 1

L

∂(w∗U)

∂w∗

= U

L

(
∂u∗

∂x∗ + ∂v∗

∂y∗ + ∂w∗

∂z∗

)
= 0

Upon dividing by U/L , we have the following nondimensionalized form of the conti-
nuity equation:

∂u∗

∂x∗ + ∂v∗

∂y∗ + ∂w∗

∂z∗ = 0 (11.32)

By using a similar process, the corresponding nondimensionalized Navier–Stokes equa-
tions are found to be

(
L

U T

)
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ + w∗ ∂u∗

∂z∗

= −
(

P

ρU 2

)
∂p∗

∂x∗ +
(

µ

ρU L

)(
∂2u∗

∂x∗2
+ ∂2u∗

∂y∗2
+ ∂2u∗

∂z∗2

)
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(
L

U T

)
∂v∗

∂t∗ + u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗ + w∗ ∂v∗

∂z∗

= −
(

P

ρU 2

)
∂p∗

∂y∗ +
(

µ

ρU L

)(
∂2v∗

∂x∗2
+ ∂2v∗

∂y∗2
+ ∂2v∗

∂z∗2

)

(
L

U T

)
∂w∗

∂t∗ + u∗ ∂w∗

∂x∗ + v∗ ∂w∗

∂y∗ + w∗ ∂w∗

∂z∗

= −
(

gL

U 2

)
−
(

P

ρU 2

)
∂p∗

∂z∗ +
(

µ

ρU L

)(
∂2w∗

∂x∗2
+ ∂2w∗

∂y∗2
+ ∂2w∗

∂z∗2

)

We see that there are four dimensionless groups in the nondimensional Navier–Stokes
equations:

L

U T
,

gL

U 2

P

ρU 2
,

µ

ρU L

To identify the first of these, note that in an unsteady flow that involves a forced
oscillation of a body immersed in a moving fluid, the oscillation has a characteristic
frequency ω. The time scale in such a problem is T = 1/ω, and the group
L/U T = ωL/U can be identified as the Strouhal number, St = ωL/U . The second
group gL/U 2 may be seen to be related to the Froude number Fr = V/

√
gL ; in fact,

this group is gL/U 2 = 1/Fr2. The third group is a form of the Euler number. In Chap-
ter 3 we wrote Eu = (p − p0)/

1
2ρV 2 . Choosing the pressure scale to be a characteris-

tic pressure difference P = �p, we obtain P/ρU 2 = �p/ρU 2 = Eu/2. The remain-
ing group is recognized as the inverse of the Reynolds number, i.e., µ/ρU L = 1/Re.

With the introduction of these dimensionless groups, the Navier–Stokes equations
in nondimensional form are

(St)
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ + w∗ ∂u∗

∂z∗

= −
(

Eu

2

)
∂p∗

∂x∗ +
(

1

Re

)(
∂2u∗

∂x∗2
+ ∂2u∗

∂y∗2
+ ∂2u∗

∂z∗2

)

(St)
∂v∗

∂t∗ + u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗ + w∗ ∂v∗

∂z∗

= −
(

Eu

2

)
∂p∗

∂y∗ +
(

1

Re

)(
∂2v∗

∂x∗2
+ ∂2v∗

∂y∗2
+ ∂2v∗

∂z∗2

) (11.33)

(St)
∂w∗

∂t∗ + u∗ ∂w∗

∂x∗ + v∗ ∂w∗

∂y∗ + w∗ ∂w∗

∂z∗

= −
(

1

Fr2

)
−
(

Eu

2

)
∂p∗

∂z∗ +
(

1

Re

)(
∂2w∗

∂x∗2
+ ∂2w∗

∂y∗2
+ ∂2w∗

∂z∗2

)

It is also important to investigate the nondimensional form of the boundary and ini-
tial conditions. In most problems the BCs introduce a number of geometric parameters
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that serve to define the characteristic length L. We see that a solution to a flow problem
involving a constant density, constant viscosity fluid depends on the Strouhal, Froude,
Euler, and Reynolds numbers defined by the characteristic length, time, velocity, and
pressure scales, as well as the density and viscosity of the fluid. As you might suspect,
additional dimensionless groups appear in the nondimensional equations describing
more complicated flows. For example, the Mach number and the Prandtl number appear
in compressible flows, which require the use of the energy equation. The Prandtl num-
ber also appears in an incompressible flow involving heat transfer when the energy
equation is nondimensionalized. Thus the dimensionless groups discussed in Chapter 3
arise not only from classic dimensional analysis but also from a nondimensionalization
of the governing equations.

By nondimensionalizing the governing equations, we conclude that the solution to
a flow problem in a specified geometry depends only on the values of the relevant nondi-
mensional groups that appear in the transformed equations and boundary conditions.
This means that a given solution to the governing equations applies to any geometrically
similar flow that has the same value for the dimensionless groups. Thus, the solution ap-
plies to a flow with a different length scale but whose other scales are adjusted in such a
way that the dimensionless groups are the same. More importantly, however, we dis-
cover that the nondimensional governing equations for two physical systems that are
geometrically similar (usually a prototype and the full-scale system) are identical if the
values of the dimensionless groups in those governing equations are identical. This
proves that the flows are dynamically similar when the values of each dimensionless
group are the same, thereby confirming the requirements for complete similitude dis-
cussed in Chapter 9.

11.8.3 Computational Fluid Dynamics (CFD)

706 11 GOVERNING EQUATIONS OF FLUID DYNAMICS

CD/Dynamics/Navier–Stokes equation/Computational fluid dynamics

In this chapter you have been introduced to the continuity, Navier–Stokes, and energy
equations of fluid mechanics. Earlier we discussed the difficulty in finding analytical so-
lutions to this system of nonlinear partial differential equations. Since powerful digital
computers are now available in virtually every engineering office, the use of computa-
tional fluid dynamics to solve those equations numerically is becoming more common.
As computer hardware has improved, so too has the software. There are now many com-
mercial CFD codes available, most of them are based on the finite difference, finite ele-
ment, or finite volume approaches. These codes usually come complete with advanced
graphical user interfaces that make data input and output relatively easy. The choice of
topics and emphasis in this book is intended to prepare you to learn more about using
commercially available CFD software to analyze practical flow problems. You may en-
counter this software in elective courses in fluid mechanics or in your professional career.

The usefulness of CFD for an engineer can be appreciated by recalling that we were
able to determine much about the relationship between flowrate, pressure rise, power re-
quirements, and other aspects of pump performance by using dimensional analysis (case



study in Section 3.3.3) and control volume analysis. But what if you want to improve the
efficiency of a certain pump design? In that case a detailed description of the flow field
within the pump housing is needed, and this description is not provided by DA or CV
analysis. Flow fields of this kind can, however, be calculated by using CFD. An exam-
ple is shown in Figure 11.16. The use of CFD to investigate the details of the flow fields
of fluid machines, vehicles of all types, and virtually every other fluid-related applica-
tion, including golf balls, has become common.

Although the use of CFD may become widespread, it will never totally replace
physical experimentation, which is often needed simply to validate some aspect of a
CFD calculation. Figure 11.17A shows a series of streaklines generated around a prolate
spheroid as calculated by CFD. Figure 11.17B shows the same flow situation, in this
instance photographed from a physical experiment. The general validity of the CFD
solution is apparent. But close inspection of the streakline filaments where they break up
into turbulence downstream of the spheroid reveals a discrepancy in the CFD solution.
The computational resolution required to simulate the small-scale eddies of the turbu-
lence is not adequate here. In fact, only the largest computers have been able to simulate
turbulence through solutions of the Navier–Stokes equations. In most applications some
sort of turbulence model is employed, as discussed briefly in the next chapter. The diffi-
culty of simulating turbulence is one of the many aspects of CFD that will keep compu-
tational researchers active and experimentalists employed for the foreseeable future.

11.8 DISCUSSION 707

Figure 11.16 CFD solution for the flow in a
water pump for an automobile.

Figure 11.17 Series of streaklines around a prolate spheroid: (A) calculated by using CFD and (B) created in a water
tunnel.

(A) (B)



11.9 SUMMARY

The governing equations of fluid dynamics are partial differential equations that apply
at every point in the fluid and are completely sufficient to determine the behavior of a
fluid under a prescribed set of circumstances.

The differential equation expressing the law of mass conservation, known as the
continuity equation, is Dρ/Dt + ρ∇ • u = 0. For an incompressible flow, defined as
one in which the density of a fluid particle does not change as it moves, Dρ/Dt = 0. An
incompressible fluid, defined as a fluid of constant density, also satisfies this equation.
Thus, the continuity equation for either an incompressible fluid or incompressible flow
reduces to ∇ • u = 0.

The differential law of momentum conservation is ρ(Du/Dt) = ρf + ∇ • �.
Every physically possible fluid flow must satisfy this equation. The momentum equation
represents a balance of inertial, body, and surface force at each point in a fluid.

A constitutive model provides the link between the stress tensor and the fluid ve-
locity field by using parameters that incorporate the atomic-scale structure of the fluid
and its thermodynamic state. The complexity of a constitutive model depends on the
molecular structure of the fluid and on whether the fluid consists of a single component
or a mixture of components. The constitutive model for a Newtonian fluid, such as air or
water, is given by Eqs. 11.6a–11.6f.

When the constitutive model for a Newtonian fluid is used to replace the stresses in
the momentum equation, the result is the Navier–Stokes equations. These equations are
applicable to laminar and turbulent flows of liquids and gases throughout the entire
range of flow speeds. The terms in the Navier–Stokes equations represent the inertial,
body, and surface forces acting at a point in the fluid. The surface forces consist of a
component of the pressure gradient, which gives the pressure force per unit volume, and
terms involving the absolute and bulk viscosity that represent viscous forces. In solving
a flow problem for a constant density, constant viscosity fluid, the continuity and
Navier–Stokes equations provide a complete set of governing equations to determine
the velocity and pressure at every point in the fluid.

One of the most useful approximations in fluid dynamics is that of an inviscid fluid.
The momentum equation for the flow of an inviscid fluid, which was derived by Euler, is
expressed in vector notation as ρ(Du/Dt) = ρf − ∇p. The Euler equation shows that
the flow of an inviscid fluid is governed by a balance of inertial, body, and pressure
forces. We used the Euler equations in streamline coordinates to show that an increase in
speed along a streamline is accompanied by a decrease in pressure and vice versa. In ad-
dition, at a given point the pressure increases along a line normal to the streamline that is
pointing away from the center of curvature of the streamline. The magnitude of the pres-
sure increase is proportional to the square of the flow speed and the inverse of the local
curvature of the streamline. Thus, if a streamline is highly curved, the pressure increase
is significant. There is no variation in pressure perpendicular to straight streamlines.

The Bernoulli equation expressing conservation of energy for inviscid flow can be
derived from the Euler equation. For the steady flow of constant density fluid in a grav-
ity field, the Bernoulli equation takes the form p2/ρ + 1

2 V 2
2 + g(z2 − z0) =

p1/ρ + 1
2 V 2

1 + g(z1 − z0). Thus, in the absence of viscous forces, the sum of the pres-
sure potential, kinetic, and gravitational potential energies at one point along a streamline
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in the flow of a constant density fluid is equal to the sum of these energies at another
point. If the flow is irrotational, the two points need not be on the same streamline.

The differential energy equation, ρ(Du/Dt) = −p� + ρΦ + ∇ • (k∇T ), ex-
presses the rate at which internal energy is increasing at a point in the fluid. The terms
on the right-hand side represent, from left to right, the reversible work of compression
by the equilibrium pressure, viscous energy dissipation by the bulk viscosity, viscous
energy dissipation by the shear viscosity, and heat transfer by conduction. The dissipa-
tion terms represent an irreversible transformation of fluid energy into heat.

The presence of spatial and temporal derivatives in the governing equations sug-
gests the need for boundary and initial conditions. If the flow is unsteady, we require an
initial condition that specifies the spatial distribution of all flow parameters at t = 0. We
also require boundary conditions that describe the flow parameters on the physical
boundaries defining the flow for all times t ≥ 0. The most common boundary conditions
for fluid velocity are the no-slip, no-penetration conditions introduced in Section 6.6.
Although the no-slip condition is widely used, it is not applicable if the fluid is modeled
as inviscid or if the flow is modeled as an inviscid flow.

The value of the nondimensional forms of the governing equations is that dynamic
and geometric similitude between two physical systems (e.g., prototype and actual) is
guaranteed if the dimensionless coefficients of the equations and boundary conditions
are matched. The use of nondimensionalized equations also minimizes unit conversion
problems.

Commercially available computational fluid dynamics packages offer exciting op-
portunities for solving the governing equations introduced in this chapter.
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PROBLEMS

Section 11.2

11.1 Do the velocity field
u = x i + y(1 + t)j and density distribution
ρ = z + ρ0 represent a flow that is physically
possible?

11.2 The velocity field for a flow is given
by

u = −Cy√
x2 + y2

i + Cx√
x2 + y2

j

where C is a constant. The density distribution
is ρ = A(x2 + y2) + ρ0 , where A and ρ0 are
constants. Is this flow physically possible?

11.3 You are given the velocity field
u = (x2 − y2)i − 2xyj for a constant density
flow. Is this flow physically possible?

11.4 The velocity field for a constant den-
sity flow is u = A ln rer + Bθeθ , where A
and B are constants. Is this flow physically
possible?

11.5 For a two-dimensional incompress-
ible flow, the x component of velocity is
u = 2xy. What is the y component that will
satisfy continuity?

Section 11.4

11.6 The velocity distribution for a New-
tonian constant density fluid is given by

u = (6xy2 − 3x3)i + (9x2 y − 2y3)j

Determine the stress tensor for this flow.

11.7 The velocity distribution for the lami-
nar flow through the rectangular duct shown
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in Figure P11.1 with cross section 4ab and
length L is given by the equation

w(x, y) = 7

4
α

[
1 −

( y

b

)2
] [

1 −
( x

a

)6
]

where α is a constant with dimensions of
velocity. Find the stress tensor in this flow. If
a = 4b, which wall has greater stress?

11.8 The velocity distribution for a con-
stant density fluid falling down the outside of
a cylindrical tube is given by

vz = ρgR2

4µ

[
1 −

(
r

R

)2

+ 2a ln

(
r

R

)]

where R is the outside radius of the tube 
and r = a R corresponds to the free surface of
the falling film. Find the stress tensor for this
flow and determine the shear stress at the tube
wall and at the free surface.

11.9 For the velocity distribution given in
Problem 11.6 calculate the deformation rate
tensor.

11.10 For the velocity distribution given in
Problem 11.7 calculate the deformation rate
tensor.

Section 11.5

11.11 Poiseuille flow of a constant density,
constant viscosity, Newtonian fluid through a
steadily rotating circular pipe was illustrated
in Figure 10.42. The corresponding velocity
field is given by

vr = 0, vθ = rΩ0

and

vz = (p1 − p2)R2

4µL

[
1 −

(
r

R

)2
]

where Ω0 is the angular velocity of the pipe, R
is the pipe radius, and the pressures are
measured a distance L apart on the wall.
The pressure distribution in the z direction is
given by

p(z) = p1 +
(

p2 − p1

L

)
(z − z1)

Show that this flow satisfies the θ and z com-
ponents of the Navier–Stokes equations
(Eqs. 11.12b and 11.12c) and use the r com-
ponent of the Navier–Stokes equations
(Eq. 11.12a) to investigate the pressure distri-
bution in the radial direction. Ignore the body
force due to gravity.

11.12 Imagine taking the channel shown
in Figure 11.5 and rotating it 90° clockwise
about the z axis (while looking toward the ori-
gin) so that the flow is now aligned with the

y

x

a a

b

b

Figure P11.1

y

x
z

hh

Direction of
fluid flow

Figure P11.2
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direction of the gravitational force (see Fig-
ure P11.2). In the absence of an external pres-
sure gradient, the velocity field is found to be

u =
[

h2α

2µL

][
1 −

(
y

h

)2
]

, v = 0

and

w = 0

Use the Navier–Stokes equations for a con-
stant density, constant velocity flow, to inves-
tigate the relationship between the constant α
and the other parameters in the fluid system.

11.13 Show that the flow given in Prob-
lem 11.8 satisfies the constant density, con-
stant viscosity form of the Navier–Stokes
equation.

11.14 A thin layer of liquid of constant
thickness flow down an inclined plate such that
the only velocity component is parallel to the
plate. Use the Navier–Stokes equations to de-
termine the relationship between the thickness
of the layer and the flowrate per unit width.
Assume a steady, laminar, and uniform flow.
Also assume that air resistance is negligible.

11.15 An incompressible fluid flows
downward through a vertical cylindrical pipe
under the action of gravity. The flow is fully
developed and laminar. Use the Navier–
Stokes equations to derive an expression for
the flowrate for the case of zero pressure gra-
dient along the pipe.

Section 11.6

11.16 The streamfunction for an inviscid,
incompressible flow is given by
ψ = 2x2 y − 2

3 y3. Find the pressure distribu-
tion for this flow.

11.17 The streamfunction for an inviscid,
incompressible flow is given by
ψ = Ay2 − Bx . Find the pressure distribu-
tion for this flow.

11.18 The streamfunction for an inviscid,
incompressible flow is given by ψ =
2x2 y − 2

3 y3, where the stream function ψ is in
feet per second. Determine the flowrate pass-
ing through the line between (0, 0) and (0, 1).

11.19 The streamfunction for an inviscid,
incompressible flow is given by ψ =
−(x − y), where ψ the streamfunction has
units in meters per second. Find the pressure
distribution for this flow.

11.20 The flow near a corner as shown in
Figure P11.3 is approximated by
ψ = 2r4/3 sin 4

3 θ . Determine the pressure
gradient along the inclined wall.

r

3��4
�

Figure P11.3

11.21 The velocity distribution for an
inviscid flow is u = (x s−1 + 3 m/s)i +
(y s−1 + 4

3 m/s)j, where x and y are in meters.
The gravitational body force is in the z direc-
tion and ρ = 800 kg/m3. Find the stagnation
points in the flow. Determine the pressure dif-
ference between points (0, 0, 0) and (1, 1, 1).

11.22 Find the corresponding velocity
field for a flow with the streamfunction
ψ = 2x2 − 2y3.

11.23 Find the corresponding pressure
distribution for a steady, inviscid, incom-
pressible flow with the streamfunction
ψ = 6x2 y − 2y3 .

Section 11.7

11.24 Determine the viscous dissipation
for the flow between parallel plates given in
Example 11.3, case A.
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11.25 Determine the viscous dissipation
for the laminar flow through a rectangular
duct as given in Problem 11.7.

Section 11.8

11.26 Derive a nondimensional form of
the general form of the continuity equation in
Cartesian coordinates, Eq. 11.2a.

11.27 Derive a nondimensional form of
the z-component of the Euler equations in
Cartesian coordinates, Eq. 11.16c.

11.28 Derive a nondimensional form of
the z-component of the Euler equations in
cylindrical coordinates, Eq. 11.17c.

11.29 Give the nondimensional form of
the initial and boundary conditions for the
flow between parallel plates given in Example
11.3, case A.

11.30 Give the nondimensional form of
the initial and boundary conditions for
Poiseuille flow in a round pipe given in Ex-
ample 11.3, case B.
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12.1 INTRODUCTION

The analytical or computational solution of the governing equations of fluid dynamics
can be a challenging task. Not only are these equations nonlinear, but other complicat-
ing factors often come into play. Depending on the value of the Reynolds number and
other parameters, a flow may be steady or unsteady, laminar or turbulent, and incom-
pressible or compressible. In this chapter we focus on finding analytical and computa-
tional solutions to the governing equations for incompressible flows.
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To construct an analytical solution, we must make engineering approximations that
simplify the governing equations to the point that they can be solved. The judgment and
decision-making skills you will learn from studying the analytical solutions in this chap-
ter are also relevant to using CFD to solve flow problems. Today’s computers, while ex-
traordinarily powerful compared with those available even a few years ago, are still not
able to handle a brute force calculation of the majority of engineering flows. This is par-
ticularly true for turbulent flow, for which there are no known analytical solutions. Com-
putational solutions for turbulent flow are based on specialized models whose validity
and accuracy are critically dependent on the skill of the person employing the CFD
code.

CD/Video Library/Slow flow past a cylinder

The value of experience in solving flow problems can be illustrated by considering
the variety of flow fields observed in a uniform flow over a cylinder. Figure 12.1 shows
the geometry of this 2D flow. We are interested in understanding this flow over the en-
tire range of Reynolds and Mach numbers, beginning with low speed flows for which Re
and M are essentially zero.

In the flow of Figure 12.2, the Reynolds number based on diameter is 0.038 and M
is negligibly small. The flow in the vicinity of the cylinder is observed to be steady.
Since M is small, it is appropriate to describe this flow as incompressible, i.e., constant
density, even if the fluid is a gas. There is no need to solve the energy equation in this
case, and the flow is described by the incompressible continuity and Navier–Stokes

Uniform
velocity, U

Fluid with
density � and
viscosity �

D

Figure 12.1 Uniform, steady flow over
a cylinder.

Figure 12.2 Flow over a cylinder,
Re = 0.038. The flow visualization of
streamlines is accomplished with alu-
minum powder in glycerin.



equations. The low value of Re identifies this as a creeping flow. A creeping flow is dom-
inated by the effects of viscosity and is always laminar. Because the fluid velocity is very
slow, the Navier–Stokes equations may be simplified by dropping the local and convec-
tive acceleration terms, and the resulting governing equations are linear. Although
creeping flow over a cylinder looks simple enough to solve analytically, we are only able
to construct an approximate solution for a very limited range of Re. The drag coefficient
CD , given in the case study on the drag on cylinders and spheres, Eq. 3.42 of Sec-
tion 3.3.5, is based on this approximate analytical solution, valid for Re < 1 and M � 1.
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Figure 12.3 Flow over a cylinder,
Re = 19. The flow visualization of stream-
lines is accomplished with aluminum
powder and electrolytic precipitation in
water.

CD/Video library/Flow past a cylinder at moderate Reynolds number

CD/Video library/Vortex Shedding

The flow over a cylinder changes character as Re increases. The flow at Re = 19
and M ∼ 0 is shown in Figure 12.3. This flow is also observed to be steady and laminar,
and since M is small, it is an incompressible flow. At this higher Re, flow separation has
occurred, resulting in symmetric vortices and a well-defined wake. Clearly the velocity
field is more complex than in creeping flow at lower Reynolds numbers. Since the flow
is steady, the local acceleration terms in the Navier–Stokes equations are zero. The con-
vective acceleration terms are not negligible for Re = 19, however, and must be re-
tained. The viscous terms in the Navier–Stokes equations are important in the region
close to the cylinder surface (the boundary layer) and in the wake. There is no known
analytical solution for a flow at this Re even in an approximate form. The drag coeffi-
cient data for this flow, given in Figure 3.20 in the case study of Section 3.3.5, are based
on experimental observations, valid for M � 1.

With a further increase in Re vortices are shed and begin to form an oscillating
pattern in the wake establishing a structure known as a Karman vortex street (see Fig-
ure 12.4 for Re = 140). The laminar but unsteady, flow, with M negligible, is described
by the incompressible continuity and Navier–Stokes equations with no terms neglected,



and no analytical solution is available. The unsteady
flow over the cylinder causes a periodic lateral force on
the cylinder that is important in many applications. In
this case the flow upstream is steady, but the flow over
the cylinder is time dependent. Empirical data for this
flow are correlated by means of the Reynolds and
Strouhal numbers.

At still larger values of Re the boundary layer and wake become turbulent. This is
shown in Figure 12.5 for Re = 2 × 105. The Mach number here is still negligible, so the
flow is described by the incompressible continuity and Navier–Stokes equations. There
are no analytical solutions of the governing equations in the turbulent regime, and using
computational fluid dynamics to solve this problem requires the Reynolds equations and
a turbulence model (see Section 12.4).

As the flow speed increases further, it is no longer possible to assume incompress-
ible flow, and the air must be considered to be a compressible fluid. The problem is then
described by the continuity, Navier– Stokes, and energy equations. Figure 12.6 shows
the bow shock wave and the wake of a sphere at M = 1.7. A shock wave may be con-
sidered to be a discontinuity in a continuum flow field; therefore, special techniques are
required to treat shock waves analytically or numerically.

The discussion thus far illustrates the challenge you face if asked to solve a practi-
cal flow problem. As a first choice, could you use one of the tools you have learned ear-
lier, such as CV analysis or the Bernoulli equation? Should you attempt an analytical or
computational solution? Will a single parameter like the drag coefficient, CD , suffice, or
do you need a detailed description of the full flow field? In the case of flow over a cylin-
der, if CD alone is needed, how do known solutions and experimental data correlate with
the real objects of interest? For instance, can you apply the solutions for 2D flow over a
cylinder to the case of the wound wire bridge cables shown in Figure 12.7? Will the so-
lution for an infinitely long cylinder hold for a finite cylinder? Will adjacent objects
influence the flow field around the cylinder (see Figure 12.8)? The judgment required
to make such choices does not come easily. Even experienced engineers find these
questions challenging. We believe that if you encounter these issues in an introductory
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HISTORY BOX 12-1

Theodore von Karman (1881–1963) was
one of the great aeronautical scientists
of the twentieth century. He was born in
Budapest, Hungary, but studied under
Prandtl in Germany. He immigrated to the
United States to take a position at the Cal-
ifornia Institute of Technology; while there
he became a founder of the Jet Propulsion
Laboratory. He studied such theoretical
subjects as the vortex street that develops
behind a bluff body that is named in his
honor. He was on the committee organized
to study the Tacoma Narrows Bridge col-
lapse because of his work on that subject.
In fact for several decades he was at the
center of most of the technological ad-
vances in aerodynamics facilitated through
government research in the U.S.

Figure 12.4 Flow over a cylinder, Re = 140
illustrating the Karman vortex street. The flow
visualization of streamlines is accomplished by
electrolytic precipitation in water.
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Figure 12.5 Flow over a cylinder, Re = 2 × 105. The flow visualization in water illustrates cavitation in the wake.

Figure 12.6 Shadowgraph of a sphere at Mach 1.7. Figure 12.7 Golden Gate Bridge cables.
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Figure 12.8 (A) Flow over two cylinders, Re = 900. (B) Interference between the two wakes as the cylinders are
brought together. Flow visualization is by injected streaklines in water.

(A) (B)

fluids course, you will begin to acquire good judgment and decision-making skills early
in your career. This is essential for avoiding the major mistakes that can be made by
those who do not comprehend the full complexity of a fluid mechanics problem.

In the preceding chapters we have been careful to distinguish between an incom-
pressible fluid, i.e., a fluid of constant density, and an incompressible flow. In this chap-
ter our focus is on obtaining solutions of the governing equations for incompressible
flows. Although this need not always imply that the fluid density is constant, for sim-
plicity we will assume that all the flows in this chapter are incompressible by reason of
constant density. We begin our discussion by solving the governing equations for a num-
ber of steady, laminar, viscous flows; then we briefly consider the added complexity of
unsteady laminar flow. We close the chapter with a brief discussion of turbulent flows
and inviscid potential flows.

12.2 STEADY VISCOUS FLOW

In this section we apply the continuity and Navier–Stokes equations to analyze several
steady, laminar flow problems involving a fluid with constant density and viscosity.
We are interested in finding the three velocity components and pressure that satisfy the



appropriate forms of the governing equations and boundary conditions. The general
form of the continuity equation for a constant density fluid is Eq. 11.3, and the
Navier–Stokes equations for a constant density, constant viscosity fluid are given in
Cartesian and cylindrical coordinates by Eqs. 11.10a–11.10c and 11.12a–11.12c. Since
the flow is steady, the time derivatives of velocity in these equations are zero. We will
neglect the body force for the sake of concentrating on the relationship between the ve-
locity and pressure fields.

In Cartesian coordinates, the four unknowns, u, v,w, p, are functions of position
that satisfy the four governing equations

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (12.1a)

ρ

(
u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
(12.1b)
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(
u

∂v
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∂v
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∂v
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)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v
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)
(12.1c)

ρ
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u

∂w
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∂w

∂z

)
= −∂p

∂z
+ µ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
(12.1d)

For flows described in cylindrical coordinates, the velocity components and the pres-
sure, vr , vθ , vz, p, satisfy the following governing equations:

1

r
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+ 1

r

∂vθ

∂θ
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= 0 (12.2a)
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To analyze a steady flow problem we must solve the appropriate set of four partial dif-
ferential equations together with the associated boundary conditions. This process is il-
lustrated in the steady flows discussed in the next several sections.
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12.2.1 Plane Couette Flow

Consider the flow that results from the steady motion of a flat plate parallel to another
stationary plate with the gap between the plates filled with fluid. We are interested
in predicting the steady laminar flow in the gap. Flows of this type, which are cre-
ated by the tangential motion of enclosing walls, are referred to as Couette flows,
in honor of M. Couette. The physical arrangement of plane Couette flow is shown in
Figure 12.9A. You should recognize this flow as one we have used in a number of
examples.
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CD/History/M. Maurice Couette

Our first concern when solving any flow problem is to select a coordinate system.
In this case the geometry suggests the use of Cartesian coordinates and the governing
equations are Eqs. 12.1a–12.1d. We hope to solve these equations together with the no-
slip, no-penetration boundary conditions on the plates. Unfortunately, Eqs. 12.1 cannot
be solved without further simplification. To proceed, we ask ourselves what the physical
arrangement tells us about each velocity component and its possible dependence on each
spatial coordinate. Since we know that a viscous fluid obeys the no-slip condition, it
seems likely that the motion of the upper plate will drag fluid in the direction of travel.
We conclude that the flow must have a velocity component u in the x direction, and this
component must depend on y because the upper plate is moving and the lower plate
is fixed. However, u should not depend on x or z if the dimensions of the plates are
large in comparison to the gap. Let us assume that we have large plates and a relatively
small gap here. Similar reasoning suggests that if there is a velocity component v in
the y direction, it should not depend on x or z. What about the velocity component in
the remaining direction? Since there is no reason to think that the motion of the

y

x

Streamlines

Velocity profile,

u(y) �
Uy
h

�xy � �yx � � U
h

p0

p0

p0 p0h

(A) (B)

U

Figure 12.9 (A) Plane Couette flow and (B) the stresses on a fluid element.



upper plate will cause a velocity component in the z di-
rection, we will assume w = 0. Thus we postulate that
the flow of interest may have a velocity field of the form
u = u(y), v = v(y), w = 0.

The next step in developing a solution is to obtain
the simplified governing equations by inserting
u = u(y), v = v(y), w = 0 into Eqs. 12.1a–12.1d. The
result is

∂v

∂y
= 0,

ρv
∂u

∂y
= −∂p

∂x
+ µ

∂2u

∂y2
,

ρv
∂v

∂y
= −∂p

∂y
+ µ

∂2v

∂y2
, and

0 = −∂p

∂z

Since v = v(y), the first equation is satisfied by v = C , a constant. However, the no-
penetration condition on each plate is v = 0 at y = 0 and y = h. This can be satisfied
only if C = 0, which means that the first governing equation is now satisfied by v = 0.
After inserting v = 0 into the other equations, we have 0 = −∂p/∂x + µ(∂2u/∂y2),
0 = −(∂p/∂y), and 0 = −(∂p/∂z). From the second and third equations we con-
clude that the pressure must be a function of x alone. Thus the solution we are looking
for is described by unknown functions u = u(y) and p = p(x), which satisfy the
remaining governing equation, 0 = −(∂p/∂x) + µ(∂2u/∂y2). This equation can be
interpreted as expressing a balance between pressure and viscous forces. We must
solve this single equation to find the two unknown functions u = u(y) and p = p(x).
This appears to be impossible, since we have one equation and two unknowns. How-
ever, if we take a partial derivative with respect to x of this equation and interchange
derivatives, we obtain

0 = − ∂

∂x

(
∂p

∂x

)
+ µ

∂2

∂y2

(
∂u

∂x

)

The second term is zero because for u = u(y), the term ∂u/∂x = 0. Thus we know that
the unknown pressure p = p(x) satisfies (∂/∂x)(∂p/∂x) = 0. We conclude that the
pressure gradient ∂p/∂x must be a constant. It is customary to write the pressure gradi-
ent as ∂p/∂x = −G . The single governing equation describing the velocity profile in
the gap can now be written as

∂2u

∂y2
= −G

µ
(12.3)

Introducing the constant G does not solve the problem of one equation and two un-
knowns. However, it is logical to think of Eq. 12.3 as requiring us to determine the
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HISTORY BOX 12-2

M. Maurice Couette (1858–1941) lived a
happy and productive life as a scientist,
teacher, and family man. Couette studied
liquid friction under Gabriel Lippman, a
Noble Prize winner in physics, at the
Sorbonne in Paris. He taught for 43 years
at the Catholic University of Angers as
a professor of the physical sciences.
Couette’s careful experimental techniques
paved the way for the understanding of
the difference between laminar and turbu-
lent flow.



velocity profile u = u(y) for a known imposed value of
the pressure gradient. In the present case we are inter-
ested in the flow that results from the relative motion of
the plates in the absence of any externally imposed
pressure gradient. Thus we will assume that pressure
between the plates is uniform and equal to a constant.
This allows us to write the pressure distribution as

p = p0 (12.4)

Plane Couette flow is therefore described by p = p0,
where p0 is the constant ambient pressure in the gap, and by a velocity profile that sat-
isfies Eq. 12.3 with G = 0. Since u = u(y) only, we can write Eq. 12.3 with G = 0 as
the following second-order ordinary differential equation:

d2u

dy2
= 0 (12.5)

This equation expresses the fact that in plane Couette flow the net viscous force is zero.
This second-order differential equation requires two boundary conditions. We can

express the no-penetration conditions as v = 0 at y = h and at y = 0. Since we found
v = 0 everywhere in this case, the no-penetration conditions are automatically satisfied.
The no-slip conditions at the two plates are u = U, w = 0 at y = h , and u = 0, w = 0
at y = 0. Since we have assumed w = 0 everywhere at the outset, this part of the no-
slip boundary condition is automatically satisfied on both plates. Thus we need be con-
cerned only with the boundary conditions on u. Integrating Eq. 12.5 twice, we find that
u(y) = Ay + B . Next we evaluate this proposed solution at the two locations y = h
and y = 0 and insert the values of u prescribed by the no-slip conditions to obtain

u(h) = U = Ah + B and u(0) = 0 = A(0) + B

Solving these equations, we find B = 0 and A = U/h . The velocity profile between the
plates is thus given by

u(y) = U y

h
(12.6)

This linear velocity profile is shown in Figure 12.9A along with the streamlines. The
complete solution to the problem is therefore given by p = p0, and u(y) = U y/h,

v = w = 0. It is interesting to note that neither the density nor the viscosity of the fluid
enters the solution. This solution should describe the flow in the gap well away from the
edges of the plates, provided the gap is small in comparison to the plate dimensions, a
condition we can express for identical plates as h/L, h/W � 1. Figure 12.10 shows the
results of a flow visualization experiment for a Couette flow.

A characteristic feature of plane Couette flow is that the shear stress in the fluid is
constant. To see this, recall that the constitutive relationships for a Newtonian fluid are
given in Cartesian coordinates by Eqs. 11.6a–11.6f. Since ∇ • u = 0, these relationships
reduce for u(y) = U y/h, v = w = 0, and p = p0 to

σxx = −p0, σyy = −p0, σzz = −p0

722 12 ANALYSIS OF INCOMPRESSIBLE FLOW

If we include the effect of gravity in this
problem, we find that the velocity field is
exactly the same as given by Eq. 12.6. The
pressure field, rather than being uniform,
varies hydrostatically in the y direction.
Since the gap in plane Couette flow is typ-
ically small, it is permissible to ignore the
hydrostatic pressure variation as we have
done and simply assume a uniform pres-
sure p = p0 between the plates.



and

σxy = σyx = µ

(
∂u

∂y
+ ∂v

∂x

)
= µ

U

h
,

σzy = σyz = 0, σzx = σxz = 0

Recalling the convention for a stress (the first subscript
identifies the plane on which the force acts and the sec-
ond subscript indicates the direction of the force on this

plane), we see that σyx = µ(U/h) represents the shear stress acting in the x direction on
planes in the fluid parallel to the plates, and σxy = µ(U/h) represents the shear stress
acting in the y direction on planes perpendicular to the plates.

We can represent the state of stress in plane Couette flow using the stress tensor as

� =




−p0
µU

h
0

µU

h
−p0 0

0 0 −p0


 (12.7)

Our solution shows that in plane Couette flow, the normal stresses are each equal to
−p0, a constant. The only nonzero shear stresses are σxy and σyx , and these are each
equal to µ(U/h), which is also constant. The state of stress in the fluid may be described
as one of uniform pressure and uniform shear stress throughout the gap. For an illustra-
tion of this state of stress on a small fluid element in the gap between the plates, refer to
Figure 12.9B.

12.2.2 Circular Couette Flow

Although the viscosity of a fluid can be measured by using a plane Couette flow between
large parallel plates, a more practical viscometer consists of two concentric cylinders
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Figure 12.10 Couette flow of glycerin at
Re = 2.7 × 10−2. The dyed material line
indicates the velocity distribution.

It is also possible to develop solutions for
variations on the plane Couette problem in
which the lower plate is moving with the
upper plate at rest, or both plates are mov-
ing. These solutions can be obtained by
following the approach to simplifying the
equations, then satisfying the boundary
conditions that express the appropriate
velocities on the plates for each variation.



724 12 ANALYSIS OF INCOMPRESSIBLE FLOW

EXAMPLE 12 .1

Find the external force and power required to shear a sample of SAE 10W oil between
two square plates of edge length 50 cm positioned 0.1 mm apart if the upper plate is
moving at 5 cm/s as shown in Figure 12.11.

h � 0.1 mm

U � 5 cm/s

SAE 10W-30
oil at 20�C

Top plate
y

x

Force, Fext

Fext �
�UL2

h 		

Foil � �
�UL2

h 		 i 	 ( p0L2)j

iFair � �( p0L2)j

Figure 12.11 Schematic for Example 12.1.

SOLUTION

We are asked to find the external force and power required to shear a sample of oil.
Figure 12.11 serves a sketch for this system. It is clear that this is a plane Couette flow,
so we can employ the solution to that problem. We will assume that the ambient pressure
p0 outside is the same as the pressure between the plates, and neglect the small shear
force applied to the upper moving plate by the surrounding air. A vector force balance
on the upper plate will include the external force and the force exerted by the oil and air
on the moving plate: Fext + Foil + Fair = 0. The stress vector applied by the oil on the
inside of this plate is obtained from Eq. 4.31B, 

� = n • � = (nx , ny, nz)

(
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

)

where the unit normal is (0,−1, 0). From Eq. 12.7 we find 

� = n • � = (0,−1, 0)




−p0
µU

h
0

µU

h
−p0 0

0 0 −p0


 =

(
−µU

h

)
i + p0j + 0k

The total force applied to the upper plate by the oil is the product of the (constant) stress
vector and the plate area, or Foil = [(−µU/h)i + p0j + 0k]L2 = (−µU L2/h)i +
(p0L2)j. The total force applied by the air to this plate under the stated assumptions is
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given by Fair = (−p0L2)j. Inserting these results into the force balance and solving for
the external force, we obtain Fext = (µU L2/h)i. We see that the external force acts in
the direction of plate motion, as expected. The power required to move the upper plate
is given by P = Fext • U i = (µU 2L2)/h. Inserting L = 0.5 m, h = 0.0001 m, and
U = 0.05 m/s, and obtaining a value of viscosity of µ = 0.104 kg/(m-s) from Appen-
dix A, we find

Fext =
(

µU L2

h

)
i = [0.104 kg/(m-s)](0.05 m/s)(0.5 m)2

0.0001 m

= 13 (kg-m)/s2i = 13 N i

P = µU 2L2

h
= |Fext| U = (13 N)(0.05 m/s)

= 0.65 (N-m)/s = 0.65 W

Note that in this problem the lower plate is stationary. We can find the retarding force
that must act on the lower plate to hold it stationary by writing a force balance and find-
ing the force of the oil and air on the lower plate. The result is FR = −(µU L2/h)i =
−13 Ni. Since the movement of oil caused by the upper plate tends to drag the lower
plate in the direction of motion, the retarding force necessary to hold the lower plate in
place must act opposite to the direction of motion of the upper plate.

EXAMPLE 12 .2

A viscometer based on the characteristics of plane Couette flow is shown in Fig-
ure 12.12. The viscosity of a fluid sample is to be determined by inserting it into the
device and measuring the time �t it takes the falling weight of mass M to travel a given
distance d after reaching terminal velocity. Analyze this arrangement and provide a for-
mula for determining the fluid viscosity.

SOLUTION

We are asked to use our knowledge of Couette flow to obtain a formula for predicting
the viscosity of a fluid using the device illustrated in Figure 12.12. We can make use of
a result from Example 12.1, namely that the external force required to move the plate is
Fext = (µU L2/h)i. Assuming a frictionless pulley, the magnitude of the external force
must be equal to the weight of the mass, Mg, since the plate and the mass are moving at
constant velocity. Thus we have µU L2/h = Mg, and solving for the viscosity we ob-
tain µ = Mgh/U L2. Since the velocity of the weight and the plate are the same, we can
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make use of the fact that at constant velocity the weight travels a distance d in time �t
to write U = d/�t and obtain our final result µ = Mgh�t/d L2.

An alternate approach makes use of the fact that the work done to move the plate a
distance d is supplied by the gravitational field. The work done by gravity is Mgd, and
the power supplied is Mgd/�t . With no power lost to friction in the pulley, this power
is equal to the power required to move the plate, which from Example 12.1 is
P = µU 2L2/h. Setting the power supplied by gravity equal to this value, we find
Mgd/�t = µU 2L2/h, which yields µ = Mgdh/�tU 2L2. Inserting U = d/�t and
solving for the viscosity, we have µ = Mgh�t/d L2, which agrees with the earlier result.

U

d

Original
position of

weight

Pulley

Mass, MPosition of
weight �t

seconds later

h

y

x

Plate

Fixed plate

Figure 12.12 Schematic for Example 12.2.

with the outer cylinder rotating at a constant angular velocity and the inner cylinder
fixed. The fluid whose viscosity is to be determined fills the gap between the two
cylinders. The geometry of this circular Couette flow is illustrated in Figure 12.13. Our
interest is in finding a solution describing the steady laminar flow in the region well
away from the top and bottom of the cylinders for cases in which the gap between the
cylinders is small in comparison to their length; i.e., we require (RO − RI )/L � 1.

In this case the geometry suggests the use of cylindrical coordinates. We anticipate
that the rotation of the outer cylinder will create a flow with a component of velocity vθ

in the θ direction and that vθ must depend on r, since the outer cylinder is rotating and
the inner cylinder is at rest. Since the gap between the cylinders is small in comparison
to their length, vθ should not depend on z. In other words, end effects are negligible. In



addition, we will assume that the flow is axisymmetric, meaning that there is no varia-
tion of any flow property in the θ direction. Thus we conclude that vθ = vθ (r). Since
there is no reason to think that flow will occur in z direction, we will assume vz = 0. If
a component of velocity vr exists in the r direction, it should not depend on θ or z for
the reasons just given. Thus we postulate that this flow may have a velocity field of the
form vr = vr (r), vθ = vθ (r), vz = 0.

Next we insert vr = vr (r), vθ = vθ (r), vz = 0 into the governing equations, in this
case Eqs. 12.2a–12.2d, and make use of the assumption of axisymmetry, [∂( )/∂θ] = 0,
to obtain

1

r

∂(rvr )

∂r
= 0, ρ

(
vr

∂vr

∂r
− v2

θ

r

)
= −∂p

∂r
+ µ

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2

)

ρ

(
vr

∂vθ

∂r
+ vrvθ

r

)
= µ

(
∂2vθ

∂r2
+ 1

r

∂vθ

∂r
− vθ

r2

)
, and 0 = −∂p

∂z

We must solve these equations subject to the no-slip, no-penetration boundary condi-
tions on each cylinder. Since vr = vr (r) only, the first equation can be written as an
ordinary differential equation (1/r)[d(rvr )/dr] = 0, whose solution is vr = C/r .
Applying the no-penetration condition vr = 0 at either cylinder shows that C = 0. Thus
vr = 0, and the remaining equations simplify to

ρ
v2

θ

r
= ∂p

∂r
, 0 = ∂2vθ

∂r2
+ 1

r

∂vθ

∂r
− vθ

r2
, and 0 = −∂p

∂z

From the third equation we conclude that the pressure is a function of r only. Since
vθ = vθ (r), and p = p(r), the remaining governing equations can be written as two
ordinary differential equations:

dp

dr
= ρ

v2
θ

r
and

d

dr

(
1

r

d(rvθ )

dr

)
= 0
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Figure 12.13 Circular Couette flow.



where we have made use of the identity 

d2vθ

dr2
+ 1

r

dvθ

dr
− vθ

r2
= d

dr

(
1

r

d(rvθ )

dr

)

The equation for dp/dr represents the balance of centrifugal and pressure forces in the
r direction, the second equation is a statement that the net viscous force in the θ direc-
tion is zero. Integrating the second equation twice, we find

vθ (r) = Ar

2
+ B

r
(12.8)

where A and B are constants. Now we can find the pressure distribution by inserting this
velocity profile into the first equation. The result is

dp

dr
= ρ

v2
θ

r
= ρ

r

(
Ar

2
+ B

r

)2

= ρ

(
A2r

4
+ AB

r
+ B2

r3

)

Integrating this equation from r to r = RO , we obtain

p(RO) − p(r) = ρ

[
A2

8

(
R2

O − r2)+ AB ln

(
RO

r

)
− B2

2

(
1

R2
O

− 1

r2

)]
(12.9)

We now write the no-slip conditions at each cylinder as vθ = ROΩ at r = RO and
vθ = 0 at r = RI and evaluate the proposed solution for vθ , Eq. 12.8, at r = RO and
r = RI to obtain

vθ (RO) = ROΩ = ARO

2
+ B

RO
and vθ (RI ) = 0 = ARI

2
+ B

RI

Solving these algebraic equations we find A = 2R2
OΩ/(R2

O − R2
I ) and B = −R2

O R2
I Ω/

(R2
O − R2

I ). We can insert these values of A and B into the velocity profile and pressure
distribution to complete the solution. For example, the velocity profile is given by

vθ (r) =
(

R2
OΩ

R2
O − R2

I

)
r −

(
R2

O R2
I Ω

R2
O − R2

I

)
1

r
(12.10)

This profile is shown in Figure 12.14. With A and B known, we can now use Eq. 12.9 to
evaluate the pressure distribution. Note that neither fluid density nor viscosity enters the
solution.

A characteristic feature of circular Couette flow is that the shear stress in the fluid is
not constant. To see this, recall that the constitutive relationships for a Newtonian fluid
are given in cylindrical coordinates by Eqs. 11.12a–11.12f. Since ∇ • u = 0, these rela-
tionships reduce for vr = 0, vθ (r) = Ar/2 + B/r, vz = 0 and p = p(r), as given by
Eq. 12.9 to

σrr = −p(r), σθθ = −p(r), σrr = −p(r)

σrθ = σθr = µ

[
r

∂

∂r

(
B

r2

)]
= −2µ

B

r2
, σθz = σzθ = 0, and σzr = σr z = 0
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Recalling the convention for a stress, we see that
σrθ = −2µ(B/r2) represents the force acting in the θ
direction on a plane in the fluid perpendicular to r, and
σθr = −2µ(B/r2) represents the force acting in the r
direction on a plane in the fluid perpendicular to the θ
direction.

We can represent the state of stress in circular
Couette flow by using the stress tensor as

� =

 σrr σrθ σr z

σθr σθθ σθz

σzr σzθ σzz




=




−p(r) −2µ
B

r2
0

−2µ
B

r2
−p(r) 0

0 0 −p(r)




(12.11)

Our solution shows that in circular Couette flow, each of the normal stresses is related to the
pressure, which is a function of r. The only nonzero shear stresses are σrθ and σθr, and each
of these is equal to −2µ(B/r2), which is also a function of r. The state of stress in the fluid
may be described as one of nonuniform pressure and nonuniform shear stress in the gap.

However, for thin gaps the shear stress is nearly uniform and equal to σrθ =
−(2µΩR2

O)/(R2
O − R2

I ), and the circular Couette flow in a thin gap may be used as a
viscometer. This statement can be verified by noting that the ratio of the shear stress at
the inner end of the gap to that at the outer end is 

σrθ(inner)

σrθ(outer)
= R2

O

R2
I

= [RI + (RO − RI )]
2

R2
I

= 1 + 2 (RO − RI )

RI
+
(

RO − RI

RI

)2
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Figure 12.14 Flow distribution for circular Couette
flow.

If we include the effect of gravity in this
problem, we find the velocity field is still
given by Eq. 12.10. The pressure field, as
given by Eq. 12.9, must be modified to in-
clude a hydrostatic variation in the z direc-
tion. If the cylinder height is small enough,
it is permissible to ignore the hydrostatic
pressure variation, as we have done, and
use Eq. 12.9 to describe the radial variation
in pressure between the cylinders while
ignoring the vertical pressure variation.
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EXAMPLE 12 .3

Find the external tangential force, torque, and power required to shear a liquid sample in
the circular Couette flow arrangement shown in Figure 12.15. Give the tangential force
and torque applied by the liquid to the inner cylinder.

n � (�1, 0, 0)

RO

Fliquid/outer

Fext

Fair � 0




Fliquid/inner

Fret

n � (1, 0, 0)


 � 0

RI

r

z

�

L

RO
RI




Figure 12.15 Schematic for Example 12.3.

SOLUTION

We are asked to determine the force, torque and power associated with a particular cir-
cular Couette flow. Figure 12.15 is an illustration of the geometry. We begin by writing
a force balance in the θ direction on the rotating outer cylinder that includes the effect
of the external force, the liquid, and the air: Fext + Fliquid/outer + Fair = 0. If we neglect
the small tangential force due to the air, our tangential force balance becomes
Fext = −Fliquid/outer . The stress vector applied by the liquid on the inside of a cylindrical
surface of radius r is obtained from the cylindrical equivalent of Eq. 4.31b:

� = n • � = (nr , nθ , nz)

(
σrr σrθ σr z

σθr σθθ σθz

σzr σzθ σzz

)

where the outward unit normal to the inside is (−1, 0, 0). From Eq. 12.11 we find

� = n • � = (−1, 0, 0)




−p(r) −2µ
B

r2
0

−2µ
B

r2
−p(r) 0

0 0 −p(r)


 = p(r)er + 2µ

B

r2
eθ + 0ez
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and the tangential component of the stress is seen to be Σθ = 2µ(B/r2). The tangential
stress acting on the inside of the outer cylinder at r = RO is thus Σθ = 2µ(B/R2

O). The
tangential force applied to the outer cylinder by the liquid is the product of the constant
tangential stress and the cylinder area, or

Fliquid/outer =
(

2µ
B

R2
O

)
(2π RO L) = −4πµLΩ

(
RO R2

I

R2
O − R2

I

)

where we have made use of the expression obtained earlier for the constant B (see text
preceding Eq. 12.10). Note that the tangential force applied by the liquid acts opposite
to the rotation of the cylinder as expected. The force balance on the cylinder, Fext =
−Fliquid/outer, shows that to keep the cylinder moving at constant velocity, it must be
acted upon by a tangential external force in the direction of rotation, given by

Fext = 4πµLΩ

(
RO R2

I

R2
O − R2

I

)

The torque required to move the outer cylinder is given by the product of the mo-
ment arm and the force, or

Text = RO Fext = 4πµLΩ

(
R2

O R2
I

R2
O − R2

I

)

The power required to rotate the outer cylinder is given by the product of the torque
and angular velocity or

P = TextΩ = 4πµLΩ2

(
R2

O R2
I

R2
O − R2

I

)

To answer the questions concerning the inner cylinder, note that the stress vector
acting on the outside of a cylinder of radius r is given by

� = n • � = (1, 0, 0)




−p(r) −2µ
B

r2
0

−2µ
B

r2
−p(r) 0

0 0 −p(r)


 = −p(r)er − 2µ

B

r2
eθ + (0)ez

where we have been careful to write the outward unit normal as (1, 0, 0). The inner
cylinder is located at r = RI , thus the tangential stress is Σ

θ
= −2µ(B/R2

I ), and the
tangential force is 

Fliquid/inner =
(

−2µ
B

R2
I

)
(2π RI L) = 4πµLΩ

(
R2

O RI

R2
O − R2

I

)

which acts in the direction of rotation (i.e., the viscous liquid tends to drag the inner
cylinder in this direction, as expected). The retarding force necessary to hold the inner
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For a thin gap, (RO − RI )/RI � 1, and we see that
σrθ(inner)/σrθ(outer) ≈ 1.

12.2.3 Poiseuille Flow Between 
Parallel Plates

Consider the pressure-driven flow in the gap between
large parallel plates shown in Figure 12.16. The physi-
cal arrangement is identical to that of plane Couette
flow, but now both the plates are at rest, and the flow is
driven by a pressure difference in the x direction. We
are interested in predicting the steady laminar flow in
the gap for cases in which the gap is small in compari-

son to the plate dimensions. Flows of this type, which are created by pressure differ-
ences, are referred to as Poiseuille flows, in honor of J. L. M. Poiseuille. Although you
are already well acquainted with this flow, we will use the method of the two preceding
sections to construct the solution. The geometry suggests the use of Cartesian coordi-
nates so the governing equations are Eqs. 12.1a–12.1d. To simplify these equations, we
will neglect body forces and again ask ourselves the following question: What does the
physical arrangement tell us about each velocity component and its possible dependence
on each spatial coordinate?

In this case, the pressure difference p1 − p2 suggests that flow will occur in the x di-
rection for p1 > p2. Thus we expect to have a velocity component u in the x direction,
and this component will depend on y, since the no-slip condition demands that u = 0 on
each plate. Since, however, the plate dimensions are large compared with the gap, u
should not depend on x or z. Moreover, since there is no reason to think that this pressure
difference will cause a velocity in the z direction, we will assume w = 0. Experience
with plane Couette flow suggests that the velocity component v in the y direction will be

Our analysis of circular Couette flow
demonstrates that assuming vr = 0 is
consistent with the other assumptions but
does not exclude the possibility that the
axial velocity component vz is nonzero. In
fact, Problem 12.43 asks you to find a so-
lution for circular Couette flow that has an
axial velocity component vz = vz(r ) driven
by an axial pressure gradient. It is also
possible to develop a more general solu-
tion for circular Couette flow in which both
cylinders rotate by applying the appropri-
ate boundary conditions on each cylinder.

cylinder in place is

Fret = −Fliquid/inner = −4πµLΩ

(
R2

O RI

R2
O − R2

I

)

and the corresponding torque is

Tret = RI Fret = −4πµLΩ

(
R2

O R2
I

R2
O − R2

I

)

which is equal and opposite to the torque exerted by the external force on the outer
cylinder.

CD/History/Jean Louis-Marie Poiseuille



zero, but we can also argue that if v does exist, it should not depend on x or z. Thus, we
postulate that this flow may have a velocity field of the form u = u(y), v = v(y), w = 0.

The next step in developing a solution is to obtain the simplified governing equa-
tions by inserting u = u(y), v = v(y), w = 0 into Eqs. 12.1a–12.1d. The result is

∂v

∂y
= 0, ρv

∂u

∂y
= −∂p

∂x
+ µ

∂2u

∂y2
, ρv

∂v

∂y
= −∂p

∂y
+ µ

∂2v

∂y2
, and 0 = −∂p

∂z

Since v = v(y), the first equation is satisfied by v = C , a constant. However, the no-
penetration condition on each plate is v = 0 at v = −h and v = h. This can be satisfied
only if C = 0. The first governing equation is now satisfied. After inserting v = 0 into
the other equations, we have

0 = −∂p

∂x
+ µ

∂2u

∂y2
, 0 = −∂p

∂y
, and 0 = −∂p

∂z

From the second and third equations we conclude that the pressure is a function of x
alone. Thus the solution we are looking for is described by unknown functions u = u(y)

and p = p(x), which satisfy the last remaining governing equation, 0 = −∂p/∂x +
µ(∂2u/∂y2). This equation expresses the balance between pressure and viscous forces.
In this case, we must solve this single equation to find the two unknown functions
u = u(y) and p = p(x), which describe pressure-driven flow between parallel plates.
To proceed further, we will again take a partial derivative with respect to x of the equa-
tion and interchange derivatives to obtain

0 = − ∂

∂x

(
∂p

∂x

)
+ µ

∂2

∂y2

(
∂u

∂x

)

The second term is zero because for u = u(y) only, the term ∂u/∂x = 0. Thus the pres-
sure p = p(x) must satisfy (∂/∂x)(∂p/∂x) = 0, which means the pressure gradient
must be a constant, i.e., ∂p/∂x = −G . Thus, the governing equation describing the ve-
locity profile in this problem is ∂2u/∂y2 = −G/µ.

12.2 STEADY VISCOUS FLOW 733

Length, L

Pressure drop, �p � p1 � p2
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Figure 12.16 Poiseuille flow between parallel plates.



Since u = u(y) only we can write this as an ordinary differential equation and
integrate it twice to obtain u(y) = (−G/2µ)y2 + C1 y + C2 . The no-slip conditions on
the two plates are given by u = 0, w = 0 at y = h , and u = 0, w = 0 at y = −h . We
have assumed w = 0 everywhere at the outset, so this part of the no-slip boundary
condition is automatically satisfied on both plates. Applying the remaining boundary
conditions on u, we find:

u(h) = 0 =
(

− G

2µ

)
h2 + C1h + C2 and u(−h) = 0 =

(
− G

2µ

)
(−h)2 − C1h + C2

Solving for the constants we have C1 = 0 and C2 = Gh2/2µ, so the velocity profile is
given by

u(y) = Gh2

2µ

[
1 −

(
y

h

)2
]

(12.12)

The equation governing the pressure distribution is ∂p/∂x = −G . Since p = p(x)

only, this is an ordinary differential equation. According to Figure 12.16 we have
p = p1 at x = x1, and p = p2 at x = x2. Thus we can integrate from x1 to x to obtain
the linear pressure distribution p(x) = p1 − G(x − x1). Since p = p2 at x = x2, we
use this solution to write p2 = p1 − G(x2 − x1). Solving for G, we obtain G =
(p1 − p2)/(x2 − x1) = (p1 − p2)/L . The pressure distribution is therefore given by

p(x) = p1 −
(

p1 − p2

L

)
(x − x1) (12.13)

and the velocity profile can now be written as

u(y) = h2(p1 − p2)

2µL

[
1 −

(
y

h

)2
]

(12.14)

This parabolic velocity profile is shown in Figure 12.16. Note that the fluid viscosity oc-
curs in the solution for the velocity profile but does not influence the profile shape. This
solution describes the flow in the gap well away from the edges of the plates, provided
the gap is small compared with the linear dimensions of the plates, a condition we can
express for identical square plates as h/L � 1.

To determine the state of stress in the fluid, we insert the solution for the velocity
and pressure fields into the constitutive relationships for a Newtonian fluid. These are
given in Cartesian coordinates by Eqs. 11.6a–11.6f. Since ∇ • u = 0, these relationships
reduce in this case to

σxx = −p(x), σyy = −p(x), σzz = −p(x)

σxy = σyx = µ

(
∂u

∂y

)
= −(p1 − p2)y

L
, σzy = σyz = 0, and σzx = σxz = 0

Recalling the convention for a stress, we see that σyx = [−(p1 − p2)y]/L represents
the force acting in the x direction on planes in the fluid parallel to the plates,
and σxy = [−(p1 − p2)y]/L represents the force acting in the y direction on planes
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in the fluid perpendicular to the plates. The distribution of the shear stress
σyx = [−(p1 − p2)y]/L in the gap is shown in Figure 12.16.

We can represent the state of stress in Poiseuille flow between parallel plates by
using the stress tensor:

� =




−p(x)
−(p1 − p2)y

L
0

−(p1 − p2)y

L
−p(x) 0

0 0 −p(x)


 (12.15)

Note that each of the normal stresses is related to the pressure, which varies linearly in
the x direction. The only nonzero shear stresses are σxy and σyx , and these are each equal
to [−(p1 − p2)y]/L ; hence the shear stress varies linearly across the gap. The state of
stress in the fluid may be described as one of nonuniform pressure and nonuniform shear
stress throughout the gap. Figure 12.17 shows the results of a flow visualization experi-
ment for a plane Poiseuille flow.
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Figure 12.17 Pouiseuille flow of glyc-
erin between parallel plates at Re =
5.3 × 10−2. The dyed material line indi-
cates the velocity distribution.

EXAMPLE 12 .4

Find the expressions for volume flowrate, maximum and average velocity, and pressure
drop for Poiseuille flow between parallel plates. Use your result to estimate the pressure
drop encountered in blowing 60oF air at 2 ft/s through the gap shown in Figure 12.18.

SOLUTION

We will calculate the volume flowrate passing through a cross section perpendicular to
the flow direction as shown in Figure 12.18. The volume flowrate is given by
Q = ∫S (u • n) dS . We begin by setting dS = dy dz, n = i, and u = u(y)i, with u(y)
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given by Eq. 12.14 as

u(y) = h2(p1 − p2)

2µL

[
1 −

(
y

h

)2
]

Then the integral takes the form 

Q =
∫ W/2

−W/2

∫ h

−h

h2(p1 − p2)

2µL

[
1 −

(
y

h

)2
]

dy dz

Performing the integration yields:

Q = 2h3W

3µ

(p1 − p2)

L
(A)

The maximum velocity is found by inspection to be 

Vmax = h2(p1 − p2)

2µL
(B)

The average velocity can now be found by writing V̄ = Q/A = Q/2hW , and using (A)
to obtain

V̄ = h2

3µ

p1 − p2

L
(C)

Note that V̄ = 2
3 Vmax. Solving (C) for the pressure drop, we find

p1 − p2 = 3µV̄ L

h2
(D)

L � 20 ft

2h � 0.5 in.

Air at 60�F

p2

p1

y

x

z
h
y� 	 
� 2

1 �
h2(p1 � p2)

2�LVelocity profile, u(y) � 

V � 2 ft/s

Figure 12.18 Schematic for Example 12.4.



12.2.4 Poiseuille Flow in a Pipe

Consider the pressure-driven flow in a round pipe as shown in Figure 12.19. We are in-
terested in predicting the steady laminar flow in the pipe for cases in which the pipe di-
ameter is small compared with its length. This is a flow with which you are well ac-
quainted, but it is useful to go through the process of deriving the analytical solution.
The geometry suggests the use of cylindrical coordinates. We will neglect the body
forces and assume that the flow is axisymmetric; i.e., there is no variation of any flow
property in the θ direction. Because the pipe diameter is small in comparison to its
length, the flow in the pipe away from the inlet and exit should be fully developed. Thus
we will assume that the velocity field is independent of z. We anticipate that the pressure
difference will create a flow with a component of velocity vz , and this component must
depend on r because of the no-slip condition on the wall of the pipe. Next we consider
the possibility of velocity components in the r and θ directions. Since there is no reason
to think that this flow will have a swirl component, we can assume vθ = 0. If a radial ve-
locity component exists, it cannot depend on θ or z. Thus we postulate a velocity field of
the form vr = vr (r), vθ = 0, vz = vz(r).
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which we can also write in terms of the flowrate as

p1 − p2 = 3µQL

2h3W
(E)

Inserting the data into (D), we find

p1 − p2 = 3µV̄ L

h2
= 3[3.75 × 10−7(lbf-s)/ft2](2 ft/s)(20 ft)

(0.25 in.)2

(
1 ft2

144 in.2

) = 0.104 lbf/ft2

= 7.2 × 10−4 psi

where we have made use of Appendix A to find µ = 3.75 × 10−7 (lbf-s)/ft2 for air at
60oF. We should also check the Reynolds number for this flow noting from Appendix A
that for air at 60oF we have ν = 1.58 × 10−4 ft2/s2 . Using the gap, 2h, as the length
scale, we have Re = V̄ (2h)/ν . Inserting the known values, we find 

Re =
(2 ft/s)(0.5 in.)

(
1 ft

12 in.

)
1.58 × 10−4 ft2/s2

= 527

which indicates that the flow is laminar (the critical Re for this flow is about 1400).



Next we insert vr = vr (r), vθ = 0, vz = vz(r) into the governing equations, in this
case Eqs. 12.2a–12.2d, and make use of the assumption of axisymmetry, ∂( )/∂θ = 0, to
obtain

1

r

∂(rvr )

∂r
= 0, 0 = −∂p

∂θ
, ρvr

∂vr

∂r
= −∂p

∂r
+ µ

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2

)

and

ρvr
∂vz

∂r
= −∂p

∂z
+ µ

(
∂2vz

∂r2
+ 1

r

∂vz

∂r

)

We must solve these equations subject to the no-slip, no-penetration boundary condi-
tions (BCs) on the pipe wall. Since vr = vr (r) only, the first equation can be written as
an ordinary differential equation 

1

r

d(rvr )

dr
= 0

whose solution is vr = C/r . Applying the no-penetration condition vr = 0 at r = R
shows that C = 0. Thus vr = 0, and the remaining equations simplify to

0 = −∂p

∂r
, 0 = −∂p

∂θ
, and 0 = −∂p

∂z
+ µ

(
∂2vz

∂r2
+ 1

r

∂vz

∂r

)

From the first two equations, we conclude that the pressure is only a function of z. Thus
the solution we are looking for is described by unknown functions vz = vz(r) and
p = p(z) that satisfy the third equation. This last equation expresses the balance be-
tween pressure and viscous forces. We must solve this equation to find the two unknown
functions vz = vz(r) and p = p(z), which describe pressure-driven flow in a round
pipe. To proceed, we take a partial derivative with respect to z of the equation and inter-
change derivatives to obtain

0 = − ∂

∂z

(
∂p

∂z

)
+ µ

[
∂2

∂r2

(
∂vz

∂z

)
+ 1

r

∂

∂r

(
∂vz

∂z

)]
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Figure 12.19 Poiseuille flow in a round pipe.



Since vz = vz(r), ∂vz/∂z = 0 and the second term is zero. Thus the pressure p = p(z)
must satisfy ∂/∂z(∂p/∂z) = 0, and the pressure gradient must be a constant, ∂p/∂z =
−G . The governing equation then becomes 

∂2vz

∂r2
+ 1

r

∂vz

∂r
= −G

µ

Since vz = vz(r) only, we can also write this as

1

r

d

dr

(
r

dvz

dr

)
= −G

µ

Integrating this ordinary differential equation twice yields vz(r) = (−G/4µ)r2 +
A ln r + B .

To evaluate the constants A and B, note that the no-slip condition on the pipe wall
is vθ = 0, vz = 0 at r = R . We have assumed vθ = 0 everywhere at the outset, so this
part of the BC is automatically satisfied. Applying the remaining BC, we find vz(R) =
0 = (−G/4µ)R2 + A ln R + B . With no other BC available we seem to be stuck, since
we have one equation to determine two constants. The solution to this dilemma is to rec-
ognize that if A is nonzero, we will obtain an infinite value of vz on the axis of the pipe
at r = 0. Since this is physically impossible, we take A = 0 and solve the preceding
equation for B to obtain B = G R2/4µ. Thus, the velocity profile is given by

vz(r) = G R2

4µ

[
1 −

( r

R

)2
]

Note that the viscosity of the fluid does not affect the shape of the velocity profile.
The equation governing the pressure distribution is ∂p/∂z = −G . Since p = p(z)

only, this is an ordinary differential equation. According to Figure 12.19 we have
p = p1 at z = z1, and p = p2 at z = z2. Thus we can integrate from z1 to z to obtain the
linear pressure distribution p(z) = p1 − G(z − z1). Since p = p2 at z = z2 we use this
solution to write p2 = p1 − G(z2 − z1). Solving for G, we obtain G = (p1 − p2)/

(z2 − z1) = (p1 − p2)/L . The pressure distribution is therefore given by

p(z) = p1 −
(

p1 − p2

L

)
(z − z1) (12.16)

and the velocity profile can now be written as

vz(r) = R2(p1 − p2)

4µL

[
1 −

(
r

R

)2
]

(12.17)

This parabolic velocity profile is shown in Figure 12.19. This solution describes the
steady, laminar flow in a round pipe well away from the inlet and exit, provided the pipe
diameter is small in comparison to its length, a condition we can express as D/L � 1.
Figure 12.20 shows the results of a flow visualization experiment for Poiseuille flow in
a pipe.
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Figure 12.20 Material lines at the entrance to the
pipe are revealed using the hydrogen bubble
method. For this flow Re = 1.6 × 103. The fully
developed, parabolic profile is evident at the right
end of the pipe. The need for the restriction,
D/L � 1, of this solution is obvious. A discus-
sion of the developing flow in a pipe can be found
in Chapter 13.

EXAMPLE 12 .5

Find expressions for the volume flowrate, maximum and average velocity, and pressure
drop for Poiseuille flow in a round pipe. If a pressure drop of 500 kPa is measured in a
10 m long, 5 mm diameter tube when the flowrate of an unknown liquid is 10 cm3/s,
what is the fluid viscosity?

SOLUTION

We will calculate the volume flowrate passing through a cross section perpendicular to
the flow direction as shown in Figure 12.21. The volume flowrate is given by Q =∫

S (u • n) dS. Using cylindrical coordinates we have dS = r dr dθ, n = ez , and u =
vz(r)ez , with vz(r) given by Eq. 12.17 as vz(r) = {[R2(p1 − p2)]/4µL}[1 − (r/R)2].
The integral becomes

Q =
∫ 2π

0

∫ R

0

R2(p1 − p2)

4µL

[
1 −

(
r

R

)2
]

r dr dθ

D � 5 mm

L � 10 m and �p � 500 kPa

Fluid with viscosity �
and density �

R
r� 	 
� 2

1 �
R2(p1 � p2)

4�LVelocity profile, vz(r) �  

r

z Q � 10 cm3/s

Figure 12.21 Schematic for Example 12.5.



12.2.5 Flow over a Cylinder (CFD)

As discussed in the introduction to this chapter, the flow over a cylinder changes from a
steady, laminar flow at low Reynolds number to an unsteady, laminar flow at some in-
termediate value of Re and finally becomes turbulent. No analytical solution exists for
the low Re steady flow over a cylinder, although approximate solutions are known for
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which after substituting R = D/2, yields the following expression for the flowrate: 

Q = π D4(p1 − p2)

128 µL
(A)

The maximum velocity is found by inspection to be 

Vmax = R2(p1 − p2)

4 µL
(B)

Since V̄ = Q/A = 4Q/π D2 , we can use (A) to obtain

V̄ = D2(p1 − p2)

32 µL
(C)

Solving (C) for the pressure drop, we have

p1 − p2 = 32 µV̄ L

D2
(D)

which we can also write in terms of the flowrate as 

p1 − p2 = 128 µQL

π D4
(E)

To find the viscosity of the fluid passing through a tube under known conditions of
flowrate and pressure drop, we rearrange (E) to solve for the viscosity: 

µ = π D4(p1 − p2)

128 QL
(F)

Inserting the data, we find

µ = π(0.005 m)4(500 × 103 N/m2)

128(10 cm3/s)

(
1 m

100 cm

)3

(10 m)

= 7.67 × 10−2 (N-s)/m2



Re � 1. In this section we use a commercially available CFD code based on the finite
element method to develop a CFD solution for the problem of the 2D laminar steady
flow of a uniform stream over a cylinder at low Re. The geometry of this problem,
shown in Figure 12.22, suggests the use of cylindrical coordinates. However, it is more
convenient to use the Cartesian coordinates shown in the figure with the CFD code. The
problem of interest involves a cylinder exposed to a uniform stream with no other
nearby boundaries. In effect, the cylinder is inserted into an infinite mass of fluid, all of
which is moving at speed U. We are assuming that the flow is steady and 2D; that is, the
velocity field is given by u = u(x, y), v = v(x, y), w = 0. This assumption is justified
by noting that while the flow upstream is in the x direction, the flow must turn to pass
around the cylinder. Thus a velocity component in the y direction must be present, and
both components must depend on x and y. Neglecting the body force and inserting
u = u(x, y), v = v(x, y), w = 0 into the continuity and Navier–Stokes equations for
steady, constant density, viscous flow (Eqs. 12.1a–12.1d), we obtain

∂u

∂x
+ ∂v

∂y
= 0, ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+ ∂2u

∂y2

)

ρ

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+ ∂2v

∂y2

)
, and 0 = −∂p

∂z

The last equation allows us to conclude that the pressure is given by p = p(x, y). We
must solve the first three equations for the two unknown velocity components and pres-
sure subject to the no-slip, no-penetration conditions on the surface of the cylinder, and
an additional condition that expresses the fact that far from the cylinder in any direction,
the flow is uniform. In Cartesian coordinates, the no-slip, no-penetration conditions
on the surface of the cylinder are expressed by writing u = v = 0 on x2 + y2 = R2 .
This ensures that the velocity of the fluid on the surface of the cylinder matches the
velocity of the stationary cylinder, i.e., u = 0. The condition far from the cylinder may
be expressed by writing u = U, v = 0 as x2 + y2 → ∞. The governing equations
express the balance between inertial, pressure, and viscous forces in the x and y
directions.

As part of the computational solution, we must develop a finite element mesh that
covers the region in which flow occurs. The CFD solution consists of values of the
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Figure 12.22 Two-dimensional
flow over a cylinder.



velocity and pressure at a finite number of points in space, namely, at the nodes of the
mesh. To ensure the accuracy of the solution, the density of mesh nodes must be high in
regions where velocity gradients are large. In this case, a dense mesh is needed near the
cylinder, but the mesh density can decrease as we move further away from the cylinder.
In theory, the mesh must cover the region outside the cylinder and extend out in all di-
rections to infinity, since this is the region in which flow occurs. Because computer
memory is limited, however, we cannot extend the mesh to infinity. We can argue that at
some distance upstream, to the sides of the cylinder, and downstream, the disturbance to
the uniform stream caused by the presence of the cylinder will vanish. This suggests that
we limit the region of interest in our calculation in these directions to some number of
multiples of the cylinder diameter. The dashed box in Figure 12.23 shows the computa-
tional region that has been selected for further consideration.

In the CFD solution to the problem, the original boundary condition u = U, v = 0
as x2 + y2 → ∞will be replaced by u = U, v = 0 on the upstream, u = U, ∂v/∂y = 0
on the sides of the computational domain, and by an outflow condition ∂u/∂x =
∂v/∂x = 0 on the downstream side. Notice that the outflow condition replaces the con-
dition u = U, v = 0 as x2 + y2 → ∞ on the downstream side of the computational
domain. These boundary conditions are shown in Figure 12.23. At this point it should be
clear that a CFD solution to this problem is approximate and that its accuracy depends
on many factors, not least of which is the judgment, skill, and experience of the engineer
who is setting up the problem.

With the computation region selected, we can now use the meshing capability of
the commercial CFD package to construct a finite element mesh. The mesh used here
is shown in Figure 12.24. The final step in constructing the CFD solution is to use the
boundary condition and problem statement modules of the commercial package to
set the desired boundary conditions, select the appropriate set of governing equa-
tions to solve, and provide values for fluid properties such as density and viscosity.
In this case we instruct the commercial package that we wish to solve the continuity
and Navier–Stokes equations for a steady, 2D, constant density, constant viscosity lam-
inar flow, with BCs on the cylinder and four sides of the computational box as noted
earlier.

12.2 STEADY VISCOUS FLOW 743

u � U
v � 0

u � 0
v � 0
On surface

Finite computational domain

u � U,

v

y � 0

u � U,

v

y � 0


u

x � 0


v

x � 0

U

x

y

Figure 12.23 Finite compu-
tational domain and bound-
ary conditions for flow over a
cylinder.



744 12 ANALYSIS OF INCOMPRESSIBLE FLOW

X

Y

STEADY FLOW PAST CYLINDER IN FREESTREAM

FIDAP 8.6.2
30 Mar 04
 17:34:39

ELEMENT
MESH PLOT

SCREEN LIMITS
XMIN -.705E+01
XMAX 0.131E+02
YMIN -.891E+01
YMAX 0.891E+01

Figure 12.24 Actual CFD mesh used for flow over a cylinder.

After we have given the execution command, the CFD code solves the finite ele-
ment problem corresponding to the numerical version of the governing equations and re-
turns a set of data describing the distributions of velocity and pressure on all the nodes
of the finite element mesh. It is a simple matter to change the values of the BCs and fluid
properties if we wish and solve the problem again for a new set of conditions. After
obtaining a solution we can invoke the postprocessor capability of the commercial
package and examine the flowfield in detail. For example, Figure 12.25 shows the
streamlines, and pressure contours for Reynolds numbers of 0.1, 1, 10, and 50. Notice
how the flow changes as the Reynolds number changes.

12.3 UNSTEADY VISCOUS FLOW

In this section we will outline the method for using the continuity and Navier–Stokes
equations to analyze unsteady flow problems involving a constant density, constant
viscosity fluid in the absence of body forces. For the sake of simplicity, we will restrict
our discussion to problems best described in Cartesian coordinates. The governing
equations in this case are the continuity equation for a constant density fluid as given
by Eq. 12.1a, and the Navier–Stokes equations for a constant density, constant viscosity
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fluid, (Eqs. 11.10a–11.10c), with the body force terms dropped. For the conditions de-
scribed in this section the governing equations are

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (12.18a)
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∂t
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∂u

∂x
+ v
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(12.18b)
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(12.18c)
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∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
(12.18d)

A solution to an unsteady flow problem involving a fluid of known density and viscos-
ity consists of finding the three velocity components u, v,w, and pressure p that satisfy
these equations as a function of position and time. We must solve this set of four partial
differential equations together with the appropriate boundary and initial conditions.
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Figure 12.26 Starting flow between
parallel plates due to motion of the top
plate.

12.3.1 Startup of Plane Couette Flow

Consider the flow that results if the upper plate in the plane Couette flow arrangement il-
lustrated in Figure 12.26 is suddenly started into motion. Because of the no-slip condi-
tion, fluid directly adjacent to the upper plate will begin to move along with it. We are
interested in predicting the unsteady laminar flow in the gap between the plates for the
case in which the fluid is initially at rest and the upper plate is instantaneously brought
to velocity U in the x direction. After a sufficiently long time, we expect the flow to
reach steady state, at which point the flow should be described by the solution for plane
Couette flow given in Section 12.2.1.

Since the flow is unsteady, the governing equations are Eqs. 12.18a–12.18d. We
must solve these equations together with the no-slip, no-penetration boundary conditions



on the two plates, and the initial condition that the fluid is at rest. From the no-slip con-
dition we conclude that at any instant the unsteady flow must have a velocity component
u in the x direction, and this component must depend on y because the upper plate is
moving and the lower plate is fixed. Since the flow is unsteady, u must depend on t; but
since the dimensions of the plates are large in comparison to the gap, we will assume
that u does not depend on x or z. There is no reason to think that the impulsive motion of
the upper plate will cause a velocity component in the z direction, so we will assume
w = 0. We will also assume that velocity component v in the y direction is zero. Alter-
nately, the continuity equation and the no-penetration condition can be used to show that
v = 0. Thus we postulate that the unsteady flow of interest has a velocity field of the
form u = u(y, t), v = 0, w = 0.

Next we insert u = u(y, t), v = 0, w = 0 into Eqs. 12.18a–12.18d to obtain the
simplified governing equations:

0 = 0, ρ
∂u

∂t
= −∂p

∂x
+ µ

∂2u

∂y2
, 0 = −∂p

∂y
, and 0 = −∂p

∂z

We see that the continuity equation is now satisfied and that the pressure may be a func-
tion of x. Taking a derivative of the remaining momentum equation with respect to x
shows that the pressure gradient ∂p/∂x is either a constant or a function of time. To
focus attention on the flow created solely by the impulsive movement of the upper plate,
we will assume that the pressure gradient is zero. Thus the pressure distribution is given
by

p = p0 (12.19)

The velocity field is described by an unknown function u = u(y, t) that satisfies the
single governing equation

ρ
∂u

∂t
= µ

∂2u

∂y2
(12.20)

as well as the no-slip conditions on each plate (u = U at y = h for t > 0 and u = 0 at
y = 0 for t ≥ 0), and an initial condition (u = 0 at t = 0 for 0 ≤ y ≤ h ). The govern-
ing equation expresses the balance between inertial and viscous forces.

To solve this problem we introduce a change of variables, writing the unknown
function u(y, t) as the sum of the steady state solution for Couette flow u(y) = U y/h
and a flow transient w(y, t). That is, we define u(y, t) = U y/h + w(y, t). Then we
have

∂u

∂t
= ∂

∂t

(
U y

h
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+ ∂w
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∂2u

∂y2
= ∂2

∂y2

(
U y

h
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+ ∂2w

∂y2
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∂y2

The governing equation becomes

ρ
∂w

∂t
= µ

∂2w

∂y2
(12.21)

The boundary and initial conditions on u can now be used to derive the following bound-
ary and initial conditions on w:

w = 0 at y = h for t > 0, w = 0 at y = 0 for t ≥ 0
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and

w = −U y

h
at t = 0

The solution of this partial differential equation is usually the topic of advanced
mathematics courses not necessarily encountered by students enrolled in a first course in
fluid mechanics. Therefore, we will pass over the details of the solution procedure and
simply present the results so that we can interpret their significance. The solution to the
problem of startup of plane Couette flow is given by

u(y, t) = U y

h
+ 2U

π

∞∑
n=1

(−1)n 1

n
exp

(
−n2π2 νt

h2

)
sin

(
nπy

h

)
(12.22)

where n = 1, 2, 3, . . ..
This velocity profile is shown at different times after startup in Figure 12.27. Note

that the movement of the plate is transmitted first to the layer of fluid directly adjacent
to it; then the effect of viscosity is to gradually bring into motion all the fluid in the
gap except the fluid on the fixed plate, which must remain at rest owing to the no-slip
condition. The time t occurs as part of a dimensionless group νt/h2 where ν = µ/ρ is
the kinematic viscosity. This is not unexpected, since the dimensions of ν are
[ν] = L2/t , which is a diffusivity. The product νt has the dimension of a length
squared, or [νt] = L2 . It is customary to say that in time t, viscous diffusion causes a
velocity variation to diffuse a distance l(t) ≈ √

νt . The time it takes to diffuse a dis-
tance l is then estimated by t = l2/ν . In the solution for plane Couette flow, each ex-
ponential term has a separate time scale that depends on n. Thus we cannot simply
estimate the time for the velocity variation to diffuse across the gap as t = h2/ν . Also
note that although neither density nor viscosity of the fluid enters the steady state part
of the solution, both enter the transient part of the solution through the kinematic
viscosity.
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Figure 12.27 Development of the velocity distribution for starting flow between parallel plates.



12.3.2 Unsteady Flow over a Cylinder (CFD)

In Section 12.2.5 we discussed a CFD solution for the 2D steady flow over a cylinder.
Flows of this type occur for small Reynolds numbers. As Re increases, the flow over a
cylinder becomes unsteady, as evidenced by alternately shed vortices in the wake (the
Karman vortex street). The unsteadiness occurs even though upstream of the cylinder
the oncoming stream remains uniform and steady. In this section we will use a commer-
cially available CFD code based on the finite element method to develop a computa-
tional fluid dynamics (CFD) solution for the problem of the 2D unsteady flow of a uni-
form stream over a cylinder in a wind tunnel. The geometry of this problem is shown in
Figure 12.29A.

Using Cartesian coordinates, we employ a computational box that is extended in the
downstream direction to allow us to observe the wake region. We assume that the flow is un-
steady and 2D; that is, the velocity field is given by u = u(x, y, t), v = v(x, y, t), w = 0.
Neglecting the body force and inserting u = u(x, y, t), v = v(x, y, t), w = 0 into the
continuity and Navier–Stokes equations for unsteady, viscous flow (Eqs. 12.18a–12.18d),

752 12 ANALYSIS OF INCOMPRESSIBLE FLOW

When a constant pressure difference is suddenly applied to a long straight pipe, the fluid will begin
to accelerate en masse in the direction of decreasing pressure. After a sufficiently long time the flow
will reach steady state and will then be described by the solution for Poiseuille flow given in Sec-
tion 12.2.4. The initial transient period may be described as the starting flow in a pipe. Use of the pro-
cedure outlined in Section 12.2.5, with the obvious change of using the cylindrical coordinate ver-
sions of the continuity and Navier–Stokes equations, yields a complex solution for the transient flow
velocity field involving Bessel functions of the first and second kind. In Figure 12.28, which shows
this velocity field at different times after startup, we see that the suddenly applied pressure differ-
ence causes all the fluid to begin to accelerate, except for the fluid on the wall, which must remain
at rest because of the no-slip condition. After a sufficiently long time, the acceleration vanishes, and
the flow is governed by a balance of pressure and viscous forces alone. This required balance is
satisfied by the parabolic profile of steady Poiseuille flow.
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we obtain
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From the last equation and the fact that the flow is unsteady, we conclude that the pres-
sure is given by p = p(x, y, t). We must solve the first three equations for the two
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mesh.



unknown velocity components and pressure subject to the no-slip, no-penetration con-
ditions on the surface of the cylinder and side walls, an additional condition indicating
that far from the cylinder in the upstream direction the flow is uniform, an outflow con-
dition, and an initial condition.

The boundary condition on the cylinder surface is u = v = 0 on x2 + y2 = R2. The
actual boundary condition far from the cylinder upstream and downstream may be ex-
pressed by writing u = U, v = 0 as x2 + y2 → ∞. On the sides the velocity is zero. In
the CFD solution to the problem, the boundary condition is u = U, v = 0 upstream of the
computational domain, u = 0, v = 0 on the sides, and an outflow condition, ∂u/∂x =
∂v/∂x = 0, on the downstream side. The initial condition for this calculation, u = 0,

v = 0 at t = 0, allows the flow to develop over time and reach the desired periodic state.
As part of the computational solution, we must develop a finite element mesh that

covers the region in which flow occurs. The principles that govern the selection of this
mesh were discussed in Section 12.2.5. Here we are interested in the flow structure in
the wake, so this region is given a reasonably dense mesh as shown in Figure 12.29B.
The final step in constructing the CFD solution is to use the boundary condition and
problem statement modules of the commercial package to set the desired boundary con-
ditions, select the appropriate set of governing equations to solve, and provide values for
fluid properties such as density and viscosity. In this case we instruct the commercial
package that we wish to solve the continuity and Navier–Stokes equations for an un-
steady, 2D, constant density, constant viscosity laminar flow, with boundary conditions
on the cylinder and four sides of the computational box as noted earlier.

After we have given the execution command, the CFD code will solve the finite el-
ement problem corresponding to the numerical version of the governing equations and
return a data set describing the distributions of velocity and pressure on all the nodes of
the finite element mesh at a sequence of time steps. Upon obtaining this solution, we can
invoke the postprocessor capability of the commercial package and examine the flow
field in detail. For example, Figure 12.30 shows the streamlines for this flow at
Re = 100. The shed eddies of the Karman vortex street seen earlier in Figure 12.4 are
evident as disturbances in the streamlines persisting far downstream.
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CD/Boundary layers/Instability/transition, and turbulence

12.4 TURBULENT FLOW

Most flows in nature and in engineering practice are turbulent. As the Reynolds number
of a flow increases, the laminar flow that occurs at low Re undergoes a transition and
eventually becomes turbulent. Thus, the Reynolds number is the key nondimensional
parameter that determines the transition from laminar to turbulent flow. It is customary
to talk of a critical Reynolds number, Recr, at which transition takes place; but in reality,
transition in a given flow is affected by many different phenomena. The Recr for a cer-
tain type of flow should therefore be used only for guidance in deciding whether a flow
is likely to be turbulent. For example, in pipe flow transition may occur at Reynolds
numbers as low as Recr = 2300, for the flat plate boundary layer at Recr = 5 × 105, and
for flow over a cylinder at Recr = 3 × 105.
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Figure 12.30 CFD solution for flow over a cylinder showing the Karman vortex street.

At this point you might ask, What is turbulence? The answer is that a turbulent flow
is characterized by 3D, unsteady velocity and vorticity fields with a wide range of length
scales. The complexity of the turbulent flows illustrated in Figure 12.31 has led to the
use of the adjective “random” to describe turbulent flows. That is, although we are
confident that the governing equations of fluid mechanics describe these flows every bit
as well as they do laminar flows, we can never obtain enough information about the
precise nature of the disturbances that play a role in causing turbulent flows to consider
the problem of turbulence in a given physical system to be completely deterministic.
Mathematically, turbulent flows are solutions to the continuity, Navier–Stokes, and en-
ergy equations. But they are different from the laminar solutions described in preceding
sections because perturbations in initial or boundary conditions, which are damped out
in the laminar flow regime at lower Re, gain energy and grow when Re increases.

Figure 12.31 (A) Visualization of streak lines with dye in a pipe at Re = 1.5 × 103 (top), 2.34 × 103 (mid-
dle), and 7.5 × 103 (bottom) indicates laminar, transitional, and turbulent flow, respectively, and (B) visualiza-
tion of material lines over a flat plate showing the transition to turbulence.

(B)(A)



At present there are no known analytical solutions to the Navier–Stokes equations
that can be said to describe a turbulent flow. Recently, however, a number of numerical
simulations of the Navier–Stokes equations for turbulent flow have been achieved. Al-
though these are interesting, their primary value is in the tuning of turbulence models.
The latter are of interest in solving the Reynolds equations, a set of equations describing
turbulent flow that are discussed in Section 12.4.1. As you will see, the Reynolds equa-
tions are derived from governing equations by means of an averaging process.

In engineering practice empirical methods in forms such as friction factors and drag
coefficients have been, and will continue to be, used successfully for analysis and de-
sign. You have been exposed to these concepts briefly in the case studies of Chapter 3,
but these methods are discussed in greater detail in Chapters 13 and 14.

12.4.1 Reynolds Equations

The random-looking behavior of a turbulent flow suggests that it is useful to consider
each of the flow variables to consist of a mean and a fluctuating component. For exam-
ple, the u component of velocity is written as u = ū + u′ , where ū is called the mean
and u′ the fluctuation. The determination of the mean is more complicated than it may
appear. For our purposes we will consider the mean to be defined by a suitable time av-
erage over a period long enough to average out the effects of turbulent fluctuations but
not long enough to average out the slower time variations that may occur in the mean
values of an unsteady turbulent flow. In general we have

u(x, y, z, t) = ū(x, y, z, t) + u′(x, y, z, t)

and the remaining flow variables are written similarly. For example, the pressure is writ-
ten as 

p(x, y, z, t) = p̄(x, y, z, t) + p′(x, y, z, t)

The rules for the averaging process are discussed in specialized texts on turbulence. 
For simplicity, we will limit our discussion to turbulent flows that can be described

as steady insofar as the mean flow is concerned and have both constant density and
constant viscosity. The governing equations in Cartesian coordinates for such flows are
the continuity, and Navier–Stokes equations for unsteady flow given by Eqs. 12.18a–
12.18d, plus the necessary boundary and initial conditions. The process of deriving the
Reynolds equations for a turbulent flow consists of writing each flow variable u, v,w, p
as the sum of a mean and fluctuating component, inserting the sums into each governing
equation, then averaging each equation and employing the averaging rules to evaluate
each term. The result is the constant density, steady flow Reynolds equations for the
mean flow variables:

∂ ū

∂x
+ ∂v̄

∂y
+ ∂w̄

∂z
= 0 (12.23a)

ρ

(
ū

∂ ū

∂x
+ v̄

∂ ū

∂y
+ w̄

∂ ū

∂z

)
= −∂ p̄

∂x
+ µ

(
∂2ū

∂x2
+ ∂2ū

∂y2
+ ∂2ū

∂z2

)

− ρ

(
∂

∂x
(u′2) + ∂

∂y
(u′v′) + ∂

∂z
(u′w′)

) (12.23b)
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ρ

(
ū

∂v̄

∂x
+ v̄

∂v̄

∂y
+ w̄

∂v̄

∂z

)
= −∂ p̄

∂y
+ µ

(
∂2v̄

∂x2
+ ∂2v̄

∂y2
+ ∂2v̄

∂z2

)

− ρ

(
∂

∂x
(u′v′) + ∂

∂y
(v′2) + ∂

∂z
(v′w′)

) (12.23c)

ρ

(
ū

∂w̄

∂x
+ v̄

∂w̄

∂y
+ w̄

∂w̄

∂z

)
= −∂ p̄

∂z
+ µ

(
∂2w̄

∂x2
+ ∂2w̄

∂y2
+ ∂2w̄

∂z2

)

− ρ

(
∂

∂x
(u′w′) + ∂

∂y
(v′w′) + ∂

∂z
(w′2)

) (12.23d)

Applying the same process to the boundary conditions would show that the no-slip, no-
penetration conditions apply to both mean and fluctuating velocity components.

Note that equations 12.23b–12.23d resemble the Navier–Stokes equations written
in the mean flow variables ū, v̄, w̄, p̄ with additional terms on the right-hand sides.
These nine additional terms are referred to as the Reynolds stresses, and their presence
as additional unknowns means that Eqs. 12.31a–12.31d are not sufficient to describe the
flow. The fact that there are 13 unknowns and only four governing equations constitutes
the closure problem in turbulence. To solve this problem, additional equations must be
created which relate the Reynolds stresses to the mean flow variables. These additional
equations are provided by a turbulence model. 

Many different turbulence models have been developed over the years. Most are
based on empirical observation of the characteristics of turbulence and require some
fine-tuning. Although detailed coverage of these models is beyond the scope of this text,
the discussion of turbulent flow between parallel plates in the next section will give you
some insight into the application of the Reynolds equations and an appreciation of the
closure problem.

12.4.2 Steady Turbulent Flow Between Parallel Plates (CFD)

The analysis of turbulent flow by means of the Reynolds equations can be illustrated by
considering the steady turbulent flow between parallel plates. Earlier, in Section 12.2.3,
we discussed the laminar flow in this geometry. Using the geometry of Figure 12.16 and
reasoning similar to that used earlier, we will assume that the mean flow is described by
ū = ū(y), v̄ = w̄ = 0, and that the mean pressure is not a function of z. The Reynolds
stresses are assumed to be a function of y only. Inserting these velocity components into
Eqs. 12.23a–12.23d, we have

0 = 0, 0 = −∂ p̄

∂x
+ µ

(
∂2ū

∂y2

)
− ρ

∂

∂y
(u′v′), 0 = −∂ p̄

∂y
− ρ

∂

∂y
(v′2)

and

0 = −ρ
∂

∂y
(v′w′)

Integrating the last equation, we find (v′w′) = C . Since the no-slip, no-penetration con-
ditions require that each of the mean and fluctuating velocity components be zero at the
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walls, the constant C is zero. Next we integrate the second equation by writing ∫ h

y

∂ p̄

∂y
dy = −

∫ h

y
ρ

∂

∂y
(v′2) dy

After rearrangement, the result is p̄(x, y) = p̄(x, h) + ρ(v′2)|y=h − ρ(v′2). The no-
penetration condition requires that the fluctuation in the v velocity component disappear
at the wall, yielding ρ(v′2)|y=h = 0, and our final result is

p̄(x, y) = p̄(x, h) − ρ(v′2) (12.24)

This shows that the fluctuation in the y velocity component creates a pressure variation
across the channel. Here p̄(x, h) is the pressure distribution on the upper channel wall,
and from the symmetry we know that this must also be the pressure distribution on the
lower wall. At this point there is no way to know the variation in (v′2) in the y direction
across the channel and how this depends on Re. However, experiments suggest that the
effect on the pressure is very small.

Now consider the momentum equation in the x direction. Writing this equation as 

0 = −∂ p̄

∂x
+ ∂

∂y

[
µ

(
∂ ū

∂y

)
− ρ(u′v′)

]

and substituting for the pressure from  Eq. 12.24, we have

0 = − ∂

∂x

[
p̄(x, h) − ρ(v′2)

]+ ∂

∂y

[
µ

(
∂ ū

∂y

)
− ρ(u′v′)

]

Now recalling that ū, v′2, and u′v′ are assumed to be functions of y only, and since p̄(x, h)

is a function of x only, we can take an x derivative to conclude that (d/dx)[ p̄(x, h)] is a
constant. Thus we know that the wall pressure distribution is linear, i.e., of the form
p̄(x, h) = Ax + B. We can also write this as p̄(x, h) = p̄(0, h) + Ax . If the channel
length is L, we have p̄(L , h) = p̄(0, h) + AL , so A = −[ p̄(0, h) − p̄(L , h)]/L . Let-
ting p̄(0, h) = p̄1 and p̄(L , h) = p̄2, we have A = −( p̄1 − p̄2)/L , and the pressure
distribution on the channel walls is given by

p̄(x, h) = p̄1 −
(

p̄1 − p̄2

L

)
x (12.25)

The mean velocity profile can be seen to obey the equation 

∂

∂y

[
µ

(
∂ ū

∂y

)
− ρ(u′v′)

]
= −

(
p̄1 − p̄2

L

)

Were it not for the presence of the unknown Reynolds stress u′v′, we would integrate
this equation twice to determine the mean velocity profile.

To complete the solution it is necessary to employ a turbulence model that relates
u′v′ to the mean velocity ū. Many different turbulence models have been developed
over the years, and most are based on empirical observation of the characteristics of tur-
bulence. Although the discussion of these models is beyond the scope of this text, one of
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the simplest approaches is to use an eddy viscosity model. In this case the eddy viscos-
ity model allows us to write

−ρ(u′v′) = µT
∂ ū

∂y
(12.26)

where µT is called the eddy viscosity. Using Eq. 12.26, the remaining governing equa-
tion for turbulent flow between parallel plates becomes 

∂

∂y

[
(µ + µT )

∂ ū

∂y

]
= −

(
p̄1 − p̄2

L

)

However, we are still unable to solve the problem because the eddy viscosity µT (y) is
now an unknown flow property that must be determined. 

Modern CFD codes contain a number of built-in turbulence models as well as guid-
ance in their use. A CFD solution of the fully developed turbulent flow between parallel
plates at Re = 12,300 (based on the average velocity) yielded the mean velocity profile
shown in Figure 12.32.

12.4 TURBULENT FLOW 759

  0.00000   0.20000   0.40000   0.60000   0.80000   1.00000

  0.00000

  0.22192

  0.44384

  0.66575

  0.88767

  1.10959

O

O

O

O

O
O
O
O
OO
OO
OO
OO
OO
OO
OOO
OOO
OOO
OOO
OOO
OOO
OOOO

OOOO
OOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
O
O
O
O

O

O

O

O

COORDINATE

 UX 

2-D TURBULENT FLOW BETWEEN FLAT PLATES

FIDAP 8.6.2
30 Mar 04
 18:39:59

COORDINATE VS.
VARIABLE PLOT

X COMP. VELOC.

BOUNDARY GRP 
  LINE DEFN. 

Figure 12.32 CFD solution for the mean velocity profile in turbulent flow between parallel
plates at Re = 12,300.

CD/Dynamics/Potential flow



12.5 INVISCID IRROTATIONAL FLOW

As discussed in Chapter 11, a flow in which the effects of viscosity are negligible is
termed an inviscid flow. The governing equations for inviscid flow are the continuity
equation, the Euler equations, and an appropriate form of the energy equation. However,
for the constant density flows of interest in this chapter, we do not need the energy equa-
tion, and the velocity and pressure fields must satisfy only the continuity and Euler equa-
tions for a constant density fluid. The appropriate forms of the continuity equation in
Cartesian and cylindrical coordinates are Eqs. 12.1a and 12.2a, respectively. The Euler
equations in Cartesian and cylindrical coordinates are given in Chapter 11 by Eqs.
11.16a–11.16c and 11.17a–11.17c, respectively.

In Cartesian coordinates, the four unknowns, u, v,w, p, which describe an inviscid,
constant density flow, are functions of position and time that satisfy the four governing
equations:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (12.27a)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= ρ fx − ∂p

∂x
(12.27b)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= ρ fy − ∂p

∂y
(12.27c)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= ρ fz − ∂p

∂z
(12.27d)

In cylindrical coordinates, the four unknowns, vr , vθ , vz, p satisfy the equations

1

r

∂(rvr )

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0 (12.28a)

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
− v2

θ

r

)
= ρ fr − ∂p

∂r
(12.28b)

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z
+ vrvθ

r

)
= ρ fθ − 1

r

∂p

∂θ
(12.28c)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)
= ρ fz − ∂p

∂z
(12.28d)

To analyze an inviscid flow problem, we must solve the appropriate set of four partial
differential equations together with the relevant BCs. Because viscous effects are ab-
sent, an inviscid flow is able to slip along a solid surface. Thus the no-slip condition is
not applicable, and the only BC at a solid surface is the no-penetration condition.

The solution of the governing equations of inviscid flow is a challenging task. In the
special case of an irrotational flow, and in particular for 2D flows, methods are available
that simplify the problem of finding the velocity and pressure fields that satisfy
Eqs. 12.27a–12.27d or 12.28a–12.28d. Irrotational flows are of interest in the analysis of
external flows and have a long history of importance in aerodynamics. This is because
in aerodynamic flows the effect of viscosity is often confined to thin boundary layers. In
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the boundary layer the flow is viscous and rotational, but outside the boundary layer the
flow is inviscid and irrotational.

In the remainder of this section, we will discuss the important class of flows that are
both inviscid and irrotational. For reasons that will become clear in a moment, these
flows are also known as potential flows. Recall from Section 10.9.3 that in an irrota-
tional flow, the vorticity � = ∇ × u, is zero, and we can therefore define a scalar
velocity potential φ(x, t) by using Eq. 10.58 as u = ∇φ. By employing the velocity
potential, the condition of irrotational flow is automatically satisfied, and the three
velocity components are replaced by a single scalar potential function.

In Cartesian coordinates, the velocity components are related to the velocity poten-
tial by Eqs. 10.59a–10.59c: u = ∂φ/∂x, v = ∂φ/∂y , and w = ∂φ/∂z, while in cylin-
drical coordinates the relationship is given by Eqs. 10.60a–10.60c: vr = ∂φ/∂r ,
vθ = (1/r)(∂φ/∂θ), and vz = ∂φ/∂z. For a constant density flow, the continuity
equation reduces to Eq. 11.3: ∇ • u = 0. Substituting u = ∇φ into this equation, we
see that the velocity potential satisfies Laplace’s equation (Eq. 10.61): ∇2φ = 0. Writ-
ing this equation in Cartesian coordinates, we obtain (Eq. 10.62a): ∂2φ/∂x2 + ∂2φ/

∂y2 + ∂2φ/∂z2 = 0. In cylindrical coordinates the corresponding result (Eq. 10.62b) is 

1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2

∂2φ

∂θ2
+ ∂2φ

∂z2
= 0

The analytical solution to an inviscid flow problem can now be described in general
terms. The velocity field is obtained by solving Laplace’s equation together with the no-
penetration BC on a solid surface to obtain the velocity potential φ(x, t). Next we ob-
tain the velocity field by using Eq. 10.58, u = ∇φ, where we use Eqs. 10.62a or 10.62b
to evaluate this equation in the coordinate system of interest. To obtain the pressure
field, recall from Chapter 11 that the Bernoulli equation can be derived from the Euler
equations for inviscid flow. The Bernoulli equation holds along a streamline and, of
greater importance here, between any two points in an irrotational flow. Thus, the pres-
sure distribution can be obtained from the Bernoulli equation with a known velocity
field. Alternately, we can solve the Euler equations for the pressure distribution after in-
serting a known velocity field, or use one of the many well-developed CFD methods to
solve the Euler equations for both the velocity components and pressure. An example of
a CFD mesh for use in a potential flow analysis over an aircraft is shown in Figure 12.33.
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12.5.1 Plane Potential Flow

For simplicity we will now limit consideration to plane potential flow. These are 2D
flows that occur in the xy plane with velocity components u and v. In Cartesian coordi-
nates, with a velocity potential φ = φ(x, y, t) we have the relations

u = ∂φ

∂x
, and v = ∂φ

∂y
(12.29a)



and since the velocity potential satisfies Laplace’s equation, the potential must satisfy

∂2φ

∂x2
+ ∂2φ

∂y2
= 0 (12.29b)

In a 2D flow we can also make use of the streamfunction. We defined the streamfunction
for 2D flows in Section 10.10.3 and showed that streamlines and potential lines are or-
thogonal to one another. The relevant relationships between the velocity components
and streamfunction in Cartesian coordinates are repeated here for convenience:

u = ∂ψ

∂y
and v = −∂ψ

∂x
(12.29c)

For 2D flow in Cartesian coordinates the condition of irrotationality, ∇ × u = 0, re-
duces to ∂v/∂x − ∂u/∂y = 0. Substituting into this equation from Eq. 12.29c we
obtain

∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0 (12.29d)

Thus, we see that the streamfunction also satisfies Laplace’s equation. Equations
12.29a–12.29d are the basic equations governing plane potential flow in Cartesian coor-
dinates.

In cylindrical coordinates, with the potential given by φ = φ(r, θ, t), the relation-
ships between the velocity components and the potential are

vr = ∂φ

∂r
and vθ = 1

r

∂φ

∂θ
(12.30a)

and the potential satisfies Laplace’s equation:

1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2

∂2φ

∂θ2
= 0 (12.30b)
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Figure 12.33 CFD implementation of the
Euler equations for flow over the Boeing
747 carrying the space shuttle.The mesh rep-
resents panels of fundamental flows that will
be discussed in the following sections; thus
the mesh is used in the panel method.



In addition, we can relate the velocity components to the streamfunction by

vr = 1

r

∂ψ

∂θ
and vθ = −∂ψ

∂r
(12.30c)

The condition of irrotationality in cylindrical coordinates is

1

r

[
∂

∂r
(rvθ ) − ∂vr

∂θ

]
= 0

which means that the streamfunction also satisfies Laplace’s equation:

1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂θ2
= 0 (12.30d)

Thus a plane potential flow in cylindrical coordinates satisfies equations 12.30a–12.30d.
With the velocity potential for a plane potential flow known, we can construct the

pressure distribution using the Bernoulli equation, Eq. 11.22: ∫ 2

1

∂u
∂t

• dr +
∫ 2

1

dp

ρ
+ 1

2

(
V 2

2 − V 2
1

)+ (Ψ2 − Ψ1) = 0

For a steady, constant density flow in the absence of body forces, we can write this equa-
tion in Cartesian and cylindrical coordinates as

p1

ρ
+ 1

2

(
u2

1 + v2
1

) = p2

ρ
+ 1

2

(
u2

2 + v2
2

)
(12.31a)

p1

ρ
+ 1

2

(
v2

r1 + v2
θ1

) = p2

ρ
+ 1

2

(
v2

r2 + v2
θ2

)
(12.31b)

Stagnation points are important concepts related to inviscid flows and are defined to
be points in the flow or on the surface of a body where the velocity is zero. Upon apply-
ing the Bernoulli equation between the stagnation point and any other point in the flow
field, it is evident that the pressure at a stagnation point is a maximum. In inviscid flows
over bodies, stagnation points may be found near the nose of the body and near the tail.
We will discuss the locations of stagnation points in many of the flows of the following
sections.

Consider the problem of finding the velocity potential, streamfunction, and pressure
distribution for the uniform flow shown in Figure 12.34A. Uniform flow is an important
building block in the study of the irrotational flow created by a body such as a cylinder
or airfoil moving through a stationary fluid. In a frame of reference fixed to the moving
body, the body is at rest and the undisturbed flow far from the body is uniform. The
boundary conditions in such a case are the no-penetration condition on the body surface
and a uniform flow far from the body. Thus knowledge of the velocity potential, stream-
function, and pressure distribution for a uniform flow in both Cartesian and cylindrical
coordinates is of great interest.

The general approach to solving a problem in plane potential flow is to find a solu-
tion of Laplace’s equation that satisfies a set of boundary conditions appropriate to the
flow of interest. In this case the flow is simple and we can bypass the problem of finding
a solution to Laplace’s equation altogether. In Cartesian coordinates, we can write the
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two velocity components of a uniform flow by inspection (Figure 12.34A) as

u = U∞ cos β and v = U∞ sin β (12.32)

Applying Eq. 12.29a yields u = U∞ cos β = ∂φ/∂x and v = U∞ sin β = ∂φ/∂y . Inte-
grating the first equation with respect to x, we obtain φ = U∞x cos β + f (y). Taking
the y derivative of this result and comparing with ∂φ/∂y = U∞ sin β shows that
∂ f /∂y = U∞ sin β . Thus we conclude that f (y) = U∞y sin β . The velocity potential
in Cartesian coordinates for a uniform flow (Figure 12.34B) is thus 

φ(x, y) = U∞(x cos β + y sin β) (12.33a)

Inserting this potential into Eq. 12.29b shows that it satisfies Laplace’s equation. Note
that if the flow is in the x direction, this reduces to

φ(x, y) = U∞x (12.33b)

The streamfunction for this flow may be found by applying Eq. 12.29c to obtain

u = U∞ cos β = ∂ψ

∂y
and v = U∞ sin β = −∂ψ

∂x

Integrating the first equation with respect to y gives ψ = U∞y cos β + g(x), and after
taking the x derivative of this result and comparing with ∂ψ/∂x = −U∞ sin β , we con-
clude that g(x) = −U∞x sin β . Thus as shown in Figure 12.34B, the streamfunction for
a uniform flow is

ψ(x, y) = U∞(y cos β − x sin β) (12.34a)

For flow in the x direction we have

ψ(x, y) = U∞y (12.34b)

To find the velocity potential and streamfunction of a uniform flow in cylindrical
coordinates, we can make use of the fact that x = r cos θ, y = r sin θ . Substituting into
Eq. 12.33a we obtain

φ(r, θ) = U∞r(cos β cos θ + sin β sin θ) (12.35a)
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For a flow in the x direction we have

φ(r, θ) = U∞r cos θ (12.35b)

Similarly, the streamfunction in cylindrical coordinates is found to be

ψ(r, θ) = U∞r(cos β sin θ − sin β cos θ) (12.36a)

which for flow in the x direction reduces to

ψ(r, θ) = U∞r sin θ (12.36b)

The velocity components in cylindrical coordinates can be obtained by inserting the ve-
locity potential in Eq. 12.30a, or by inserting the streamfunction into Eq. 12.30c. Either
method yields

vr = U∞(cos β cos θ + sin β sin θ) and vθ = U∞(sin β cos θ − cos β sin θ)

(12.37a)

which reduces for flow in the x direction to

vr = U∞ cos θ and vθ = −U∞ sin θ (12.37b)

In a uniform inviscid flow we intuitively expect that in the absence of body forces,
the pressure is also uniform. Inserting the velocity components in either Cartesian
or cylindrical coordinates into the appropriate version of the Bernoulli equation
(Eqs. 12.31) shows that this is the case. For example, in Cartesian coordinates applying
Eq. 12.31a between any two points in a uniform flow as described by Eq. 12.32 gives

p1

ρ
+ 1

2
U 2

∞ = p2

ρ
+ 1

2
U 2

∞

and we see that p1 = p2, meaning that the pressure is uniform throughout the flow.
Now consider the problem of finding the velocity potential for uniform flow over a

cylinder. The unknown potential satisfies Laplace’s equation in cylindrical coordinates,
Eq. 12.30b, and the no-penetration boundary condition on the cylinder surface. It must
also become identical to the velocity potential for a uniform flow far from the cylinder.
The geometry of this flow is shown in Figure 12.35. The use of cylindrical coordinates
is indicated here, so we will solve Eq. 12.30b for the velocity potential. The unknown
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potential is a solution of

1

r

∂

∂r

(
r
∂φ

∂r

)
+ 1

r2

∂2φ

∂θ2
= 0

that satisfies the boundary conditions described. The no-penetration condition can be
expressed in terms of vr (see Figure 12.35) by writing vr = ∂φ/∂r = 0 at r = R. The
uniform flow far from the cylinder can be expressed by using Eq. 12.35b to write
φ = U∞r cos θ at r = ∞. At this point we could try a classic separation of variables so-
lution, and indeed this does work. However, by noticing that the unknown potential
must have the form of a uniform flow at r = ∞, we can try a separable solution of the
form φ(r, θ) = f (r) cos θ . The boundary condition on the cylinder now becomes
d f /dr = 0 at r = R, and the uniform flow condition requires that f = U∞r at r = ∞.
Substituting into Laplace’s equation shows that the function f satisfies the ordinary dif-
ferential equation d2 f /dr2 + (1/r)(d f /dr) − f/r2 = 0, whose solution is
f (r) = Ar + B/r . Since f = U∞r at r = ∞, we must have A = U∞. Then to satisfy
d f /dr = 0 at r = R, we take B = U∞ R2. Thus the potential for uniform flow over a
cylinder can be written as

φ(r, θ) = U∞r cos θ

(
1 + R2

r2

)
(12.38)

It is straightforward to calculate the velocity components by using Eq. 12.30a:

vr = ∂φ

dr
= U∞ cos θ

(
1 − R2

r2

)
(12.39a)

and

vθ = 1

r

∂φ

dθ
= −U∞ sin θ

(
1 + R2

r2

)
(12.39b)

With the velocity components known, the streamfunction can be calculated from
Eq. 12.30c. The result is

ψ(r, θ) = U∞r sin θ

(
1 − R2

r2

)
(12.40)

The streamlines and a velocity profile in this flow are shown in Figure 12.36A. Note the
fore and aft symmetry and that the flow is uniform far from the cylinder.

To find the location of any stagnation points, we set the velocity components to zero
and solve for the location of points that satisfy the resulting pair of equations. In this
case we have 

vr = 0 = U∞ cos θ

(
1 − R2

r2

)
and vθ = 0 = −U∞ sin θ

(
1 + R2

r2

)

Thus, one stagnation point occurs at (R, 0), and a second occurs at (R, π). These points
are on the surface of the cylinder as shown in Figure 12.36A.

We can also find the pressure distribution for flow over a cylinder by using
Eq. 12.31b and choosing the first point far upstream of the cylinder in the uniform flow,
where the pressure is equal to p∞. Substituting the known velocity components, noting
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that 1
2 (v2

r + v2
θ )|r=∞ = 1

2U 2
∞ , and rearranging, we find

p(r, θ) = p∞ − 1

2
ρU 2

∞

[
R4

r4
+ 2R2

r2
(sin2 θ − cos2 θ)

]
(12.41a)

On the surface of the cylinder, r = R, the pressure distribution is given by 

p(R, θ) = p∞ + 1
2ρU 2

∞(1 − 4 sin2 θ) (12.41b)

The pressure distribution on the surface is shown in Figure 12.36B. To find the pressure
at the two stagnation points on the surface of the cylinder, we substitute the location of
the points into Eq. 12.41b. The result is that

p(R, 0) = p∞ + 1
2ρU 2

∞ and p(R, π) = p∞ + 1
2ρU 2

∞

We see that the pressure at both stagnation points, p∞ + 1
2ρU 2

∞ , is the stagnation pres-
sure that would be read by means of a pitot tube inserted into the uniform flow upstream
of the cylinder.

In this inviscid flow the only stress that may exist is that due to the pressure. The
force applied by the fluid to the cylinder can be found by using Eq. 4.21: FS = ∫S � dS,
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where the stress vector acting on the cylinder is � = −pn, and p is the pressure on the
surface. From Figure 12.36C, the components of the stress vector in the x and y direc-
tions are given by �x = −p cos θ and �y = −p sin θ . The surface element is
dS = R dθ dz , thus the components of the force in these directions acting on a cylinder
of length L are given by

FSx =
∫

S
�x dS =

∫ L

0

∫ 2π

0
−p(R, θ) cos θ R dθ dz (12.42a)

FSy =
∫

S
�y dS =

∫ L

0

∫ 2π

0
−p(R, θ) sin θ R dθ dz (12.42b)

Performing these integrals with the pressure on the surface given by Eq. 12.41b reveals
that the inviscid flow results in no net force on the cylinder. The absence of lift or drag
force in this case should not be too surprising because shear stresses are absent and the
flow exhibits both fore and aft as well as above and below symmetry in the velocity and
pressure fields.

In our discussion of circulation in Chapter 10, we pointed out that circulation plays
an important role in the traditional 2D frictionless flow model describing the aerody-
namic properties of a wing. According to Eq. 10.56, the lift produced by a long wing of
length L is related to the circulation around the airfoil by FL = −ρUC L , where C is the
circulation on a path enclosing the airfoil. The circulation C(t) around the cylinder sur-
face produced by the uniform flow solution can be calculated by applying Eq. 10.54:
C(t) = ∮ u • dr and noting that for a circular path of radius R the line integral is
C(t) = ∫ 2π

0 vθ R dθ . The value of vθ on the cylinder surface can be found from
Eq. 12.39b to be vθ|r=R = −U∞ sin θ(1 + R2/r2)|r=R = −2U∞ sin θ , so the circula-
tion around the cylinder is

C(t) =
∫ 2π

0
−2U∞ sin θ R dθ = 0

We see that this results in a prediction of zero lift, which is consistent with our earlier
calculation using the pressure in Eq. 12.42b. In Section 12.5.4, where we consider a uni-
form flow over a cylinder with circulation, we will show that the resulting flow does cre-
ate lift on the cylinder.
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EXAMPLE 12 .6

Using the solution for uniform flow over a cylinder, plot the pressure distribution on the
stagnation streamline that extends from upstream at infinity and ends on the front stag-
nation point on the cylinder.

SOLUTION

The pressure distribution is given by Eq. 12.41a as

p(r, θ) = p∞ − 1

2
ρU 2

∞

[
R4

r4
+ 2R2

r2
(sin2 θ − cos2 θ)

]



A variety of well-developed analytical and computational methods exist for the ef-
ficient solution of more complex plane potential flow problems, particularly those that
involve a uniform flow over an airfoil or other body. An example of a CFD calculation
for flow over an airfoil is shown in Figure 12.38. Here we see the pressure distribution
about the airfoil as well as on its surface. With the exception of the superposition meth-
ods discussed shortly, most methods for solving plane potential flow problems are be-
yond the scope of this text. The interested reader should consult advanced fluid me-
chanics and aerodynamics books.
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The stagnation streamline is the line defined by θ = π . Inserting this value into the
equation and rearranging we obtain 

p(r, π) − p∞
1
2ρU 2∞

=
[

2

(
R

r

)2

−
(

R

r

)4
]

This relation is plotted in Figure 12.37. We see that the pressure increases along the stag-
nation point streamline and reaches its maximum at the front stagnation point, as
expected. The pressure on the stagnation streamline emanating from the rear of the
cylinder is also shown.

r�R 4 3 2 2101 3 4 r�R

p�

p� 	 �U�
2

p

Upstream Downstream

1
2

Figure 12.37 Pressure variation along a stagnation point streamline.

CD/Dynamics/Potential flow/Elementary potential flows

12.5.2 Elementary Plane Potential Flows

As a result of the linearity of Laplace’s equation, linear combinations of solutions are
also valid solutions. Thus, we can combine velocity potentials for known elementary



flows into a potential describing a more complex flow field. One such elementary flow
is the uniform flow already discussed. In this section we consider several other elemen-
tary flows: the point source and sink, the line vortex, and the doublet. In each case we
give the velocity potential, streamfunction, and velocity components in cylindrical co-
ordinates and describe the flow. For homework you may be asked to demonstrate that
the velocity potential and streamfunction of these flows satisfy Laplace’s equation.

A source or sink of strength m centered on the origin is described by

φ = m

2π
ln r, ψ = m

2π
θ, vr = m

2πr
, and vθ = 0 (12.43)

It can be seen that this flow has potential lines that are concentric circles centered on the
origin, and radial streamlines. As illustrated in Figure 12.39, the flow is radially outward
for a source, m > 0, and radially inward for a sink, m < 0. Note that the velocity be-
comes infinite at r = 0, an unrealistic feature but one that is not an issue in applications
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Figure 12.38 (A) Pressure contours
and (B) pressure coefficient for flow
over an airfoil obtained using an Euler-
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involving the use of a source or sink to construct a more complex flow. If we calculate
the volume flowrate (per unit length in the z direction) q, which crosses a circle of radius
r centered on the origin of a source or sink, we obtain

q =
∫ 2π

0
vrr dθ =

∫ 2π

0

(
m

2πr

)
r dθ = m

Thus the strength m is equal to the volume flowrate per unit length leaving the source or
entering the sink.

A line vortex of strength K is described by

φ = K θ, ψ = −K ln r, vr = 0, and vθ = K

r
(12.44)

and illustrated in Figure 12.40. It can be seen that the potential lines are radial lines, and
the streamlines are concentric circles centered on the origin. The name “line vortex” is
applied to this flow because of the rotary nature of the flow field, evident in the equations
vr = 0 and vθ = K/r . If K is positive, the vortex rotates counterclockwise, if K is neg-
ative the rotation is clockwise. We again note the presence of an unrealistic infinite
velocity at the origin. If we calculate the circulation, C(t), around a circular path of
radius r centered on the origin using Eq. 10.54 we obtain

C(t) =
∮

u • dr =
∫ 2π

0
vθr dθ =

∫ 2π

0

(
K

r

)
r dθ = 2π K (12.45)
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We see that the circulation of the line vortex is constant and independent of the radius of
the circle used to calculate it. The strength of a line vortex is thus related to the circula-
tion about a circular path around the vortex by K = C/2π . If we calculate the vorticity
for the line vortex, it is zero. This requirement for any irrotational flow may come as a
surprise to you considering that the flow is a vortex. In this 2D flow there is no variation
along the z direction.

A doublet of strength M, centered on the origin, and with its axis aligned with the x
axis, is described by

φ = M

r
cos θ, ψ = − M

r
sin θ, vr = − M

r2
cos θ, and vθ = − M

r2
sin θ

(12.46)

The doublet is a rather complex and unrealistic looking flow as illustrated in Fig-
ure 12.41, but it proves highly useful in constructing more complicated flows. This will
be demonstrated in the next section. The doublet may be thought of as the flow that re-
sults when a source and a sink are brought infinitely close together, in this case ap-
proaching each other (and the origin) along the x axis.
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Figure 12.40 Irrotational vortex (K > 0, counterclockwise, center at origin).

CD/Dynamics/Potential flow/Superposition of elementary flows

12.5.3 Superposition of Elementary Plane Potential Flows

As mentioned earlier, linear combinations of known solutions of Laplace’s equation are
also valid solutions. Thus we can combine the solutions for say, uniform flow and one or
more of the elementary flows discussed in Section 12.5.2, into new solutions that
describe more complex and possibly more useful flow fields. Since the velocity poten-
tial and streamfunction each satisfy Laplace’s equation, we can use this principle of



superposition to add together potentials as well as the corresponding streamfunctions.
The velocity components also add together; in most cases, however, it is best to deter-
mine these after the combined potential and streamfunction have been determined. The
pressure distribution of the combined flow is not the sum of the pressure distributions of
the elementary flows; rather the pressure must always be determined after the new ve-
locity components have been found. This is because Bernoulli’s equation involves the
sum of the squares of the velocity components; i.e., it is nonlinear.

To illustrate this process, consider the superposition of a sink and vortex at the ori-
gin to create the spiral flow shown in Figure 12.42. From Eqs. 12.43 and 12.44, the re-
sulting flow (m < 0) is given by

φ = m

2π
ln r + K θ, ψ = −K ln r + m

2π
θ, vr = m

2πr
, and vθ = K

r
(12.47)

Note that we have obtained the velocity components of the combined flow by adding
those of the elementary flows together. This is possible because both elementary flows
are defined in terms of a common set of cylindrical coordinates.
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The use of a set of local coordinates for each elementary flow allows us to include
elementary flows that are centered at points away from the origin. For example, suppose
we are interested in the flow created by a source and sink of the same strength, located
an equal distance d along the x axis on each side of the origin as shown in Fig-
ure 12.43A. Using the geometry shown, we can employ Eq. 12.43 to describe the source
and sink in two distinct sets of local polar coordinates, one centered on the source and
another on the sink. For the source we have φ2 = (m/2π) ln r2, ψ2 = (m/2π)θ2 , and
for the sink we find φ1 = (−m/2π) ln r1, ψ1 = (−m/2π)θ1 . The combined flow is
given by the sum of the terms for the elementary flows: φ = (m/2π)(ln r2 − ln r1),
ψ = (m/2π)(θ2 − θ1). Fundamental trigonometric relationships are used to relate the
local coordinates to the common coordinates r, θ as follows:

tan θ1 = r sin θ

r cos θ − d
, tan θ2 = r sin θ

r cos θ + d
(12.48a)

r2
1 = r2 − 2dr cos θ + d2, r2

2 = r2 + 2dr cos θ + d2 (12.48b)

Equation 12.48a is used to express the streamfunction as

ψ = − m

2π
tan−1

(
2dr sin θ

r2 − d2

)
(12.49)

The velocity components may be found using Eq. 12.30c. The result is

vr = −m

π

d(r2 − d2) cos θ

[(r2 − d2)2 + 4d2r2 sin2 θ]
vθ = −m

π

d(r2 + d2) sin θ

[(r2 − d2)2 + 4d2r2 sin2 θ]
(12.50)

The streamlines for this flow are shown in Figure 12.43B.
It is possible to create a flow over a body by superposition of a uniform flow in the

x direction and a source located at the origin. The uniform flow is given by Eqs. 12.35b,
12.36b, and 12.37b as

φ = U∞r cos θ, ψ = U∞r sin θ, vr = U∞ cos θ, and vθ = −U∞ sin θ

while a source of strength m centered on the origin is described by Eq. 12.43 as

φ = m

2π
ln r, ψ = m

2π
θ, vr = m

2πr
, and vθ = 0
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The combined flow is therefore described by

φ = U∞r cos θ + m

2π
ln r, ψ = U∞r sin θ + m

2π
θ

vr = U∞ cos θ + m

2πr
, vθ = −U∞ sin θ

(12.51)

Note that in this case we have obtained the velocity components of the combined flow
by adding the velocity components of the elementary flows together. This is possible be-
cause both elementary flows are defined in terms of a common set of cylindrical coordi-
nates. The flow corresponding to this combination of a source and a uniform stream is
shown in Figure 12.44A.

An interesting characteristic of an inviscid flow is that any streamline may poten-
tially define a solid surface. To understand why, recall that the no-penetration condition
is satisfied on any streamline because fluid does not cross a streamline. The motion of
fluid along the streamline is of no concern, since fluid is allowed to slip along a surface
in an inviscid flow. Thus a streamline in inviscid flow may represent a solid surface. In
Figure 12.44B we have highlighted a streamline that can be considered to define the
front surface of a body that extends indefinitely far downstream. The pressure distribu-
tion on the body surface can be obtained by applying the Bernoulli equation along this
streamline.

To obtain a body of finite length in a uniform stream, we must have a closed stream-
line. Since fluid inside a closed streamline cannot leave, to obtain a closed streamline we
must ensure that the flow leaving a source has someplace nearby to go. This reasoning
suggests that we add the potentials describing a uniform flow in the x direction and a
source and sink located an equal distance up and downstream of the origin on the axis,
as shown in Figure 12.45. Can you confirm that the resulting flow over a body known as
a Rankine oval is given by

ψ = U∞r sin θ − m

2π
tan−1

(
2dr sin θ

r2 − d2

)
(12.52a)

in cylindrical coordinates? Alternately, we can express this in Cartesian coordinates as

ψ = U∞y − m

2π
tan−1

[
2dy

(x2 + y2) − d2

]
(12.52b)
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The three parameters in this flow are U∞, d, and m. When combined into the single pa-
rameter U∞d/m , they control the shape of the Rankine oval. As the value of this para-
meter increases, the aspect ratio of the Rankine oval increases.

The flow over a Rankine oval at an angle of attack can be created by using a uni-
form stream that approaches the body at the desired angle. The streamfunction of the re-
sulting flow can be found by replacing the leading terms in Eqs. 12.52a and 12.52b that
describe the uniform stream by their counterparts for a uniform stream at an angle β .
The result is

ψ = U∞r(cos β sin θ − sin β cos θ) − m

2π
tan−1

(
2dr sin θ

r2 − d2

)
(12.52c)

in cylindrical coordinates. In Cartesian coordinates the corresponding streamfunction is

ψ = U∞(y cos β − x sin β) − m

2π
tan−1

[
2dy

(x2 + y2) − d2

]
(12.52d)
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Figure 12.45 Superposition of a uniform flow, a source, and a sink to form the flow over a Rankine oval.

EXAMPLE 12 .7

Using superposition, combine the streamfunctions for a doublet and a uniform stream
and describe the resulting flow.

SOLUTION

The streamfunction for a uniform flow is given by Eq. 12.36b as ψ(r, θ) = U∞r sin θ ,
and the streamfunction for a doublet is given by Eq. 12.46 as ψ = −(M/r) sin θ . Thus,
the combined streamfunction is

ψ = U∞r sin θ − M

r
sin θ = U∞r sin θ

(
1 − M

U∞r2

)



12.5.4 Flow over a Cylinder with
Circulation

In our analysis of steady uniform flow over a cylinder
in Section 12.5.1, we discovered that the force of the
fluid on the cylinder is zero. To obtain lift, there must be
circulation, and our calculation showed that the circula-
tion created by a doublet and uniform stream is zero.
Can we make use of the elementary flow solution for a
vortex to add circulation to the uniform flow over a
cylinder? The answer is yes. Recall that the strength K
of a line vortex is related to the circulation about a cir-
cular path around the vortex by K = C/2π , and that the
streamlines of the vortex are concentric circles. Adding
the vortex will provide circulation, and since its stream-
lines are concentric circles, it will not distort the cylin-
drical closed streamline created by a doublet and uni-
form stream.
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This streamfunction is plotted for U∞ = 5, M = 2 and r >
√

m/U∞ in Figure 12.46.
Note the closed streamline that forms a circle. Recalling that flow over a cylinder is
given by Eq. 12.40:

ψ(r, θ) = U∞r sin θ

(
1 − R2

r2

)

we see that the radius of the cylinder is defined by R2 = M/U∞ . Thus we have obtained
the solution for flow over a cylinder both by solving the potential equation and by using
the superposition of a uniform flow and a doublet.

R

U�

R �
M
U�

Figure 12.46 Superposition of a uniform flow
and a doublet to form the flow over a cylinder. The
radius of the cylinder is R.

Many interesting flows can be created by
the method of superposition. There are
several websites that allow one to combine
elementary flows and observe the resulting
flow fields graphically. Although the super-
position of elementary flows may not seem
to be a useful approach to solving prob-
lems with complicated geometries such as
those associated with aircraft, the compu-
tational approaches known as panel meth-
ods are widely used to model the inviscid
flow over virtually any shape by combining
a series of source–sink sheets called pan-
els. Vortex panels are used to model lifting
bodies. An example of the results obtained
with panel models for an airfoil was shown
in Figure 12.38. A more complicated panel
mesh was shown in Figure 12.33.



Suppose we now add a vortex at the center of the cylinder as given by Eq. 12.44:

φ = K θ, ψ = −K ln r, vr = 0 and vθ = K

r

to the solution for uniform flow over a cylinder given by Eqs. 12.38, 12.39, and 12.40:

φ = U∞r cos θ

(
1 + R2

r2

)
, ψ = U∞r sin θ

(
1 − R2

r2

)

vr = U∞ cos θ

(
1 − R2

r2

)
, vθ = −U∞ sin θ

(
1 + R2

r2

)
The combined flow is then described by

φ = U∞r cos θ

(
1 + R2

r2

)
+ K θ, ψ = U∞r sin θ

(
1 − R2

r2

)
− K ln r

vr = U∞ cos θ

(
1 − R2

r2

)
, vθ = −U∞ sin θ

(
1 + R2

r2

)
+ K

r

(12.53)

To check that a cylinder is present after adding the vortex, we look for a constant value
of the streamfunction for some value of r. At r = R the streamfunction is
ψ |r=R = −K ln R , which is a constant. When the circulation is not present, the value of
the streamfunction at r = R is zero. Since the addition of a constant to a streamfunction
has no impact on the velocity field, the fact that the streamfunction on the surface of the
cylinder is nonzero is not a problem. The streamlines and velocity vectors for this flow
are shown in Figure 12.47 for various values of the group K/2U∞ R. This group, which
is formed from the three available parameters U∞, K , and R , can be thought of as mea-
suring the relative contribution of the vortex to the velocity potential. Notice that al-
though the flow has fore and aft symmetry, it is no longer symmetric up and down be-
cause of the circulation.

778 12 ANALYSIS OF INCOMPRESSIBLE FLOW

(A) (B)

Stagnation
point
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K � 0 
 1K
2U�R

� 1K
2U�R

� 1K
2U�R

Figure 12.47 Streamlines and stag-
nation points around a circular cylin-
der with various levels of circulation.



To determine the pressure distribution, we use the Bernoulli equation in the form of
Eq. 12.31b, with the first point far upstream of the cylinder in the uniform flow where
the pressure is equal to p∞, and 1

2 (v2
r + v2

θ )|r=∞ = 1
2U 2

∞ . Substituting the velocity
components from Eq. 12.53 and rearranging, we find the pressure distribution to be

p(r, θ) = p∞ − 1

2
ρU 2

∞

{
R4

r4
+ R2

r2

[
2(sin2 θ − cos2 θ) +

(
K 2

U 2∞r2

)]
− 2

(
K

U∞ R

)
sin θ

(
R

r
+ R3

r3

)}

(12.54a)

On the surface of the cylinder, r = R, the pressure distribution is given by

p(R, θ) = p∞ + 1

2
ρU 2

∞

[
1 − 4 sin2 θ −

(
K 2

U 2∞ R2

)
+ 4

(
K

U∞ R

)
sin θ

]
(12.54b)

The pressure distribution on the surface of the cylinder is shown in Figure 12.48 for
K/U∞ R = 0.5. It is evident that the average pressure is higher on the upper half of the
cylinder than on the lower half, but the same on the front and the back.

The circulation C(t) around the cylinder surface can be calculated by applying
Eq. 10.54: C(t) = ∮ u • dr, and again noting that for a circular path of radius R the line
integral is C(t) = ∫ 2π

0 vθ R dθ . The value of vθ on the cylinder surface can be found
from Eq. 12.51 to be given by 

vθ |r=R = −U∞ sin θ

(
1 + R2

r2

)∣∣∣∣
r=R

+ K

r

∣∣∣∣
r=R

= −2U∞ sin θ + K

R

The circulation around the cylinder is thus found to be

C(t) =
∫ 2π

0

(
−2U∞ sin θ + K

R

)
R dθ = 2π K

We see that this is the same as the circulation calculated for the vortex, given earlier by
Eq. 12.45. According to Eq. 10.56, the lift produced by a long cylinder of length L is
related to the circulation around the cylinder by FL = −ρUC L . For the cylinder with
circulation C = 2π K and a uniform stream at speed U∞, this formula predicts that the
lift is

FL = −2πρU∞K L (12.55)
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tribution on the surface of a
cylinder for K/U∞ R = 0.5.
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The negative value means the force acts in the negative y direction (for K > 0). Note that
this is consistent with the action of the pressure distribution on the surface of the cylinder.

We can check this prediction by calculating the force applied by the fluid to the
cylinder using Eqs. 12.42 that we derived previously for flow over a cylinder:

FSx =
∫ L

0

∫ 2π

0
−p(R, θ) cos θ R dθ dz

and

FSy =
∫ L

0

∫ 2π

0
−p(R, θ) sin θ R dθ dz

Substituting the pressure on the surface as given by Eq. 12.54b and integrating, we find

FSx = 0

and

FSy = L R
∫ 2π

0
−
{

p∞ + 1

2
ρU 2

∞

[
1 − 4 sin2 θ −

(
K 2

U 2∞ R2

)
+ 4

(
K

U∞ R

)
sin θ

]}
sin θ dθ

Dividing the second integral into three parts and integrating, we have

−L R

{
p∞ + 1

2
ρU 2

∞

[
1 −

(
K 2

U 2∞ R2

)]}∫ 2π

0
sin θ dθ = 0

−L R

(
1

2
ρU 2

∞

)
4
∫ 2π

0
sin3 θ dθ = 0

−L R

(
1

2
ρU 2

∞

)
4

(
K

U∞ R

)∫ 2π

0
sin θ2 dθ = −L R

(
1

2
ρU 2

∞

)
4

(
K

U∞ R

)
π

= −2πρU∞K L

Thus we see that lift can be obtained either by using the circulation formula or by the di-
rect integration of the pressure on the surface of the cylinder.

12.6 SUMMARY

In this chapter we have developed solutions to the governing equations used to describe
incompressible flows. We began by applying the continuity and Navier–Stokes equa-
tions to analyze steady, laminar flow problems involving a constant density, constant
viscosity fluid. The general procedure to obtain solutions to these flow problems in-
volves the following steps:

1. Select an appropriate coordinate system based on the flow geometry.

2. List the corresponding forms of the continuity and Navier–Stokes equations.
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3. Simplify these equations by noting relevant aspects of the velocity and pressure
fields.

4. Determine the appropriate form of the no-slip, no-penetration boundary condi-
tions at the relevant solid surfaces.

5. Solve the simplified set of governing equations with the appropriate BCs to
obtain expressions for the velocity and pressure fields.

An example of this type of flow is plane Couette flow, which results from the steady
motion of a flat plate parallel to another stationary plate with the gap between the plates
filled with fluid. When we assumed that the pressure between the plates was uniform, we
found that there was a linear velocity profile between the plates and that the shear stress in
the fluid was constant. Circular Couette flow is characterized by two concentric cylinders
with a thin layer of fluid between them. The resulting velocity field involves only a single
component of velocity in the θ direction, but the magnitude of vθ is a function of the radial
coordinate. The pressure and shear stress distributions in this flow are also functions of r.

In Poiseuille flow between parallel plates, the physical arrangement is identical to
that of plane Couette flow but the plates are both at rest, and the flow is driven by a pres-
sure difference in the x direction. The result is a parabolic velocity profile, a pressure dis-
tribution that depends only on x (with a constant pressure gradient), and a shear stress
distribution that varies linearly across the gap. Pressure-driven flow in a round pipe,
known as Poiseuille flow, also exhibits a parabolic velocity profile and a constant pres-
sure gradient in the flow direction.

The flow over a cylinder changes from a steady, laminar flow at low Re, to an un-
steady, laminar flow at some intermediate value of Re, and finally becomes turbulent. No
analytical solution exists for low Re steady flow over a cylinder. Therefore, we devel-
oped a computational fluid dynamics (CFD) solution for the problem of the 2D steady
flow of a uniform stream over a cylinder using a commercial CFD code. The CFD code
solved the finite element problem corresponding to the original governing equations and
appropriate BCs and returned a data set describing the distributions of velocity and pres-
sure on all the nodes of the finite element mesh.

To analyze unsteady flows we must solve the appropriate set of four partial differ-
ential equations (continuity and three components of Navier–Stokes) along with the as-
sociated BCs and an appropriate initial condition. An example of an unsteady flow is the
startup phase of plane Couette flow.

The random-looking behavior of a turbulent flow suggests that it is useful to con-
sider each of the flow variables to consist of a mean and fluctuating component. To
derive the governing equations for a turbulent flow, one writes each flow variable as the
sum of a mean and fluctuating component, inserting the sums into each governing equa-
tion and BC, then averaging each equation, and employing the averaging rules to evalu-
ate each term. The result is the Reynolds equations for the mean flow variables. These
equations resemble the Navier–Stokes equations written in the mean flow variables with
nine additional terms on the right-hand sides. The presence of nine new unknowns and
only four governing equations constitutes the closure problem in turbulence. To solve
this problem, a turbulence model must be used to generate additional equations that re-
late the Reynolds stresses to the mean flow variables.

The analytical solution to an inviscid flow problem is developed as follows. First,
we solve Laplace’s equation with the no-penetration boundary condition on a solid
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surface to obtain the velocity potential φ(x, t). Next we obtain the velocity field using
u = ∇φ. Finally, we use the known velocity field to obtain the pressure distribution
from the Bernoulli equation. An important concept in an inviscid flow is the stagnation
point, defined to be a point in the flow or on the surface of a body at which the velocity
is zero (and the pressure is a maximum). In flows over bodies, stagnation points are
usually found near the nose of the body and near the tail.

Linear combinations of solutions of Laplace’s equation are also valid solutions, so
we can combine velocity potentials for elementary flows into a potential describing a
more complex flow field. Since velocity potential and streamfunction alike satisfy
Laplace’s equation, we can use this principle of superposition to add potentials as well as
the corresponding streamfunctions. The velocity components also add together; how-
ever, in most cases it is best to determine these after the overall potential and stream-
function have been determined. The pressure distribution of the combined flow is not the
sum of the pressure distributions of the elementary flows, rather the pressure must always
be determined after the new velocity components have been found. This is because the
Bernoulli equation involves the sum of the squares of the velocity components. An ex-
ample of the use of superposition is the modeling of a flow over a body by combining a
uniform flow and a source. To obtain a body of finite length in a uniform stream we must
add the potentials describing a uniform flow, a source, and sink to create what is known
as a Rankine oval. If we add a vortex to the model for a Rankine oval, we can obtain a
nonzero circulation that in turn permits the incorporation of lift in the model.
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PROBLEMS

Section 12.2

12.1 Given laminar, steady flow between
parallel plates (total gap width of 4 mm) of
oil, µ = 0.6 (N-s)/m2, with a pressure gradi-
ent of −1000 (N/m2)/m, find the volume
flowrate per unit width and the shear stress on
the upper plate.

12.2 Redo Problem 12.1 with the top plate
moving at 0.5 m/s. 

12.3 Redo Problem 12.1 with the top plate
moving at 0.5 m/s and the bottom plate mov-
ing at –0.5 m/s.

12.4 Redo Problem 12.1 with zero pressure
gradient and the top plate moving at 0.5 m/s. 

12.5 Redo Problem 12.1 with zero pressure
gradient, the top plate moving at 0.5 m/s, and
the bottom plate moving at –0.5 m/s.

12.6 Given laminar, steady flow between
parallel plates (total gap width of 0.05 in.) of
oil, µ = 0.015 (lbf-s)/ft2 with a pressure gra-
dient of −10 lbf/ft2/ft, find the volume
flowrate per unit width and the shear stress on
the upper plate.

12.7 Redo Problem 12.6 with the top plate
moving at 0.5 ft/s. 

12.8 Redo Problem 12.6 with the top plate
moving at 0.5 ft/s and the bottom plate mov-
ing at –0.5 ft/s.

12.9 Redo Problem 12.6 with zero pressure
gradient and the top plate moving at 0.5 ft/s. 

12.10 Redo Problem 12.6 with zero pres-
sure gradient, the top plate moving at 0.5 ft/s,
and the bottom plate moving at –0.5 ft/s.

12.11 A laminar, steady flow between par-
allel plates (total gap width of 10 mm) of oil,
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µ = 0.5 (N-s)/m2, has an average velocity of
0.5 m/s. Find the pressure drop per unit length
in the direction of flow and the maximum
velocity.

12.12 Redo Problem 12.11 with the top
plate moving at 0.5 m/s. 

12.13 Redo Problem 12.11 with the top
plate moving at 0.5 m/s and the bottom plate
moving at –0.5 m/s.

12.14 The jack at an auto repair shop can
support 50,000 N. The hydraulic fluid has a
viscosity µ of 0.2 (N-s)/m2. The diameter of
the piston is 0.25 m, the piston–cylinder gap
width is 1 mm, and the piston in the cylinder
is 0.25 m long when fully extended. Estimate
the leakage of fluid past the piston.

12.15 The jack in Problem 12.14 is over-
loaded by 50,000 N. Recalculate the leakage
rate and determine how fast the jack will
descend.

12.16 It is proposed that a 0.15 m diameter
piston of a stronger material replace the one
described in Problem 12.14. Everything else
being the same, what will be the new leakage
rate? Compare the two rates.

12.17 The flow in the inlet between paral-
lel plates shown in Figure P12.1 is uniform
with U = 3 cm/s. Downstream the flow be-
comes fully developed. If the fluid is glycerin
at 20°C and the gap is 1 cm, what is the max-
imum velocity?

Umax
U � 3 cm/s

1 cm

Figure P12.1

12.18 For the flow described in Problem
12.17, find the volume flowrate per unit width
and the shear stress on the lower plate.

12.19 Airflows through a heat exchanger
made up of 11 plates that form 10 channels as
shown in Figure P12.2. The plates are 4 m
long and 2 m wide, and each gap is 5 cm. If
the total flowrate is 100 m3/min, what is the
pressure drop across the heat exchanger and
what is the power required to move the air
through it?

Q � 100 m3/min

4 m

2 m
Heat exchanger

5 cm (typical)

Figure P12.2
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F � ?

V � 0.25 m/s

Fixed plate

Thin plate, 50 � 50 cm

Fixed plate

Fluid

1 cm

1 cm

Figure P12.3

Shaft

Bearing

Oil
0.2 mm

150 mm

D � 50 mm


 � 100 rpm

Figure P12.4

quired to overcome viscous friction? How
much more power is required?

12.24 For the shaft and bearing described
in Problem 12.22 the length of the bearing
must be increased to 300 mm. What will now
be the torque required to overcome viscous
friction? How much more power is required?

12.25 For the shaft and bearing described
in Problem 12.22 estimate the torque required
to overcome viscous friction, assuming that
this flow can be modeled as flow between
infinite parallel plates.

12.26 A journal bearing made up of two
concentric cylinders 24 and 25 mm in diame-
ter, and 80 mm long, rotates at 2000 rpm. The
torque needed to turn the bearing is 0.15 N-m.
What is the viscosity of the lubricating oil in
the gap?

12.27 For the bearing described in Prob-
lem 12.26 SAE 30 oil is now used as the lu-
bricant. What is the torque needed to turn the
bearing?

12.28 A viscometer is designed by using a
reservoir and capillary tube as shown in Fig-
ure P12.5. Develop an expression for the vis-
cosity as a function of the volume flowrate, the
density, and the geometry (H, D, L). Explain
any shortcomings of the design.

12.29 A capillary tube 0.35 mm in diame-
ter 0.4 m long is used in the construction of
the viscometer described in Problem 12.28. H
is maintained at 1 m. What will be the volume
flowrate if the fluid is gasoline? Comment on

12.20 A thin plate is located between
two fixed plates as shown in Figure P12.3.
The gap is filled with fluid of viscosity
µ = 0.055 kg/(m-s). What is the force needed
to pull the plate at a steady velocity of
0.25 m/s if the size of the plate is 50 × 50 cm?

12.21 Redo Problem 12.20 assuming a
pressure gradient of –10 N/m2/m is present.

12.22 A 50 mm diameter shaft has a
0.20 mm gap from a bearing as shown in Fig-
ure P12.4. If the shaft rotates as 100 rpm and
the oil has a viscosity µ of 0.18 (N-s)/m2, es-
timate the torque required to overcome vis-
cous friction. What is the power requirement?

12.23 For the shaft and bearing described
in Problem 12.22 the angular velocity is
doubled. What will now be the torque re-
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any difficulties that might be anticipated if the
flowrate is measured by collecting a known
volume of fluid leaving the tube.

12.30 Redo Problem 12.29 with SAE 30
oil at 20°C.

12.31 The device described in Problems
12.28 and 12.29 is being used to test a fluid
that has a density of 875 kg/m3. The measured
volume flowrate is 75 L/min. What is the vis-
cosity of the fluid? What is the uncertainty in
viscosity if the uncertainty of the flowrate
measurement is ±0.5 L/min?

12.32 Fuel oil with kinematic viscosity
of 4.44 × 10−3 ft2/s and specific gravity of
0.918 flows through 3000 ft of horizontal 6 in.
pipe. If the pressure drop is 150 psi, what is
the flowrate?

12.33 A fluid with kinematic viscosity of
2.24 × 10−3 ft2/s and specific gravity of
0.911 must be carried a horizontal distance
of 1000 ft from one side of a factory to an-
other at the rate of 0.7 ft3/s. If the pressure
change is not to exceed 8.0 psi, what size pipe
should be used?

12.34 What force is required to push
10.0 mm3/s of saline solution through a hypo-
dermic needle with diameter 0.1 mm and
length of 25 mm? The plunger diameter is
10 mm, and the viscosity of saline is 5 percent
greater than that of water.

12.35 For the hypodermic needle described
in Problem 12.34 what is the greatest speed

H
Fluid

L

Q
D

Figure P12.5

L

H

D
QFluid with density �

and viscosity �

Manometer fluid
with density �0

Figure P12.6

that the plunger can be withdrawn to suck
saline into the syringe? What force is required?

12.36 Derive an expression between the
tube diameter, Reynolds number, kinematic
viscosity, and g for a steady, laminar flow in
a vertical tube open at each end to the
atmosphere.

12.37 Flowrate is measured through the
use of the manometer shown in Figure P12.6.
Derive an expression for the flowrate as a
function of H.

12.38 If the liquid flowing in the tube
described in Problem 12.37 is SAE 50w oil,
the fluid in the manometer is water, L = 2 m,
D = 3 mm, and H = 2 mm, what is the
flowrate?

12.39 A fluid with viscosity of 9.0 ×
10−5(lbf-s)/ft2 and density of 1.6 slugs/ft3

flows steadily with an average velocity of
0.25 ft/s through a 1.5 in. diameter pipe. What
is the pressure drop per foot of pipe?

12.40 Water at 20°C flowing in a 5 cm di-
ameter tube at Re = 50 is used to model
blood flow in a 0.5 cm artery. The flow para-
meters in the model are selected so that the
wall shear stress in the model matches that in
the artery. The apparent (blood is non-
Newtonian) viscosity of blood is 1.25 times
that of water. Derive an expression for the
shear stress in the artery based on the model
parameters. What is the shear stress in this
case? What blood velocity in the artery corre-
sponds to this same shear stress?
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12.41 A novelty company is to produce a
giant straw. What is the maximum length
possible to draw up a drink in laminar flow?
Assume the drink has the properties of water
and the diameter is 1 cm.

12.42 An air straightening device consists
of a hundred 5 mm diameter tubes, each
40 cm long, as shown in Figure P12.7. Esti-
mate the pressure drop across the device for
air with an average velocity of 5 m/s.

12.45 What is the closure problem in tur-
bulence and how is it typically deal with?

12.46 The following velocity measure-
ments were taken from a traverse in a 20 cm
diameter pipe.

r (cm) v̄z (m/s) r (cm) v̄z (m/s)

100 Tubes each with
D � 5 mm
 L � 40 cm

Air

V � 5 m/s

Figure P12.7

rO

rI

r

z

vz

Figure P12.8

12.43 For the annular geometry shown in
Figure P12.8 write the differential equation
and boundary conditions to solve for the
laminar velocity distribution.

Section 12.4

12.44 In a turbulent flow the following
velocity data was recorded at 0.5 s intervals:

u (m/s) 25 38 55 10 –6 17 28 –15 28 47

v (m/s) 5 10 –2 –6 19 0 –15 3 7 11

Calculate ū, v̄, u′, v′, and u′v′.

9.95
9.90
9.85
9.80
9.75
9.50
9.00

8.50
8.00
7.50
7.00
6.50
0.00

1.45
2.42
2.99
3.51
3.71
4.12
4.51

4.91
5.09
5.22
5.43
5.53
6.49

Plot the velocity profile and determine the
volume flowrate and mean velocity in the
pipe.

12.47 Use the data provided in Problem
12.46 to calculate the wall shear stress in the
pipe.

Section 12.5

12.48 The velocity potential for a flow is
φ = −(x + y/2). Find the streamfunction for
this flow.

12.49 Find the difference in pressure be-
tween points (1, 1, 0) and (2, 2, 0) for the flow
described in Problem 12.48. Assume eleva-
tion change is zero, the fluid is air at 20°C, the
dimensions are in meters, and the units of φ
are square meters per second.
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12.50 For the flow described in Problem
12.48 the pressure is 100 kPa at point (0, 0, 0).
What is the pressure at point (3, 2, 0)? Assume
elevation change is zero, the fluid is air at
20°C, the dimensions are in meters, and the
units of φ are square meters per second.

12.51 The velocity potential for a flow is
φ = 3x3 − 9xy2. Find the streamfunction for
this flow.

12.52 Find the difference in pressure be-
tween points (0, 0, 0) and (1, 2, 0) for the flow
described in Problem 12.51. Assume eleva-
tion change is zero, the fluid is water, the
dimensions are in feet, and the units of φ are
square feet per second.

12.53 For the flow described in Problem
12.51 the pressure is 10 psig at point (1, 0, 0).
What is the pressure at point (2, 2, 0)? Assume
elevation change is zero, the fluid is water, the
dimensions are in feet, and the units of φ are
square feet per second.

12.54 The streamfunction for a flow is
given by ψ = 2x2 − 2y2. Find the velocity
potential for this flow.

12.55 Show that the Bernoulli equation
can be applied between any two points in the
flow described in Problem 12.54.

12.56 The velocity field for a flow is given
by u = x(s−1)i − y(s−1)j + 3(m/s)k where
the coordinates are measured in meters. Neg-
lecting gravity, find the pressure difference
between (0, 0, 0) and (1, 2, 0) if possible.

12.57 Determine whether the Bernoulli
equation can be applied between points
(r, θ) = (1, π/6), and (2, π/4) for the flow
u = (C/2πr)eθ , where C is a constant.

12.58 Use the velocity potential and
streamfunction to show that the velocity dis-
tribution for a source or sink is as given in
Eq. 12.43.

12.59 Use the velocity potential and stream-
function to show that the velocity distribution
for a line vortex is as given in Eq. 12.44.

12.60 Use the velocity potential and
streamfunction to show that the velocity dis-
tribution for a doublet is as given in Eq. 12.46.

12.61 Combine a sink of strength
m = 8000 ft2/s and line vortex of strength
K = 17,000 ft2/s. Determine the streamfunc-
tion and sketch the streamlines. Note that this
is a simplistic model of a tornado. What is the
pressure at the center?

12.62 A model of a Rankine body is placed
in a wind tunnel. If the model is 1 m thick, has
its source and sink each located a distance
0.75 m from the origin, and is exposed to an
upstream velocity of 25 m/s, what is the
equivalent source strength?

12.63 Find the streamfunction and sketch
some streamlines for the combination of two
sinks of strength −m at (−d, 0, 0) and −3m
at (+d, 0, 0).

12.64 Estimate the velocity of water flow
over a 10 cm diameter cylinder for which cav-
itation begins to occur? Assume the upstream
pressure is atmosphere.

12.65 Air at 40°C flows at 10 m/s over a
porous plate. Air is also injected into the flow
through the porous plate. Model this as a uni-
form flow and with sources of strength
m = 0.1 m2/s, 10 cm apart, as shown in
Figure P12.9. Use the streamfunction to calcu-
late the volume flowrate through a surface 1 m
above, and parallel to the plate and of unit depth.

12.66 For the flow described in Problem
12.65 find the streamfunction, velocity poten-
tial, and velocity field.

12.67 A Rankine body is formed with a
source and sink, 5 m apart, each of strength
10 m2/s, and a uniform flow of 5 m/s as shown
in Figure P12.10. Find the length L and thick-
ness t of the body.
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12.68 For the flow described in Problem
12.67 find the streamfunction, velocity poten-
tial, and velocity field.

12.69 Add the stagnation point flow
ψ = K xy to a source at the origin. Determine
the location of the stagnation point for this
new flow. This is equivalent to adding a bump
to the wall of the stagnation flow.

12.70 Find the streamfunction, velocity
potential, and velocity field for a vortex pair
located equidistant, d, from the x axis.

12.71 What is the volume flowrate in the
y direction per unit depth between (−d, 0)

and (+d, 0) for the flow described in Problem
12.70?

12.72 Model the flow into a drain as a line
vortex as shown in Figure P12.11. If the ve-
locity at r = 5 in. is 10 in./s, what is the ve-
locity at r = 3 in.?

12.73 Show that the streamfunction and
velocity potential for uniform flow and the
doublet satisfy Laplace’s equation.

12.74 Show that the streamfunction and
velocity potential for the point source flow
and line vortex satisfy Laplace’s equation.

m � 0.1 m2/s m � 0.1 m2/s m � 0.1 m2/s m � 0.1 m2/s

10 cm 10 cm10 cm

V � 10 m/s

Figure P12.9

L � ?

t � ?
5 m

Source

Rankine oval

Sink

m � �10 m2/sm � 10 m2/s
V� � 5 m/s

Figure P12.10

r

Figure P12.11
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13 FLOW IN PIPES AND DUCTS

CD/Video library/Flow in the human air duct

One of the challenges for mechanical, civil, and chemical engineers is to design systems
in which fluids are pumped through pipes and ducts. The Alaska Pipeline, shown in
Figure 13.1, is an example of such a system. Water supply, natural gas, sanitary, and
storm sewer systems are part of the critical infrastructure in every city and town, and
more complex systems are found in power plants, refineries, and other manufacturing
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environments. The Roman aqueducts and many ancient irrigation systems represent
remarkable engineering achievements, as do the modern heating, ventilation, and air-
conditioning systems that keep us comfortable year around in our homes, vehicles, and
workplaces. Vehicles of all types incorporate pipe and duct systems for the transport of
fuel, coolant, refrigerant, hydraulic fluids, and combustion products. Additional exam-
ples of successful designs involving flow in pipes and ducts are found in our bodies and
those of other animals and plants. Thus, it is safe to say that the material in this chapter
is of great practical importance in many fields of engineering, as well as in biology and
medicine.

In this text, we describe a round pipe as simply a pipe and employ the word “duct”
to describe a fluid passage of any other cross section. Pipe and duct flows are character-
ized as internal flows because the flow path is completely surrounded by solid surfaces.
In the next chapter we consider external flows. These are flows in which the flow path is
bounded on one side by a solid surface. Thus, the flows over the external surfaces of air-
planes, ships, cars, and sports balls are examples of external flows, as are the flows over
buildings and other natural and man-made structures.

Our discussion of flow in pipes and ducts began with three case studies in Chap-
ter 3. Recall that in Section 3.3.1 (flow in a round pipe), we showed how to use a fric-
tion factor to calculate the frictional pressure drop in a horizontal pipe. In the next case
study, on flow through an area change, we examined the frictional losses that occur
when the diameter of a pipe or duct is changed. A key consideration in the design of any
pipe or duct system is the selection of a fan or pump of the appropriate size and type.
This motivated our discussion of the fan and pump laws in Section 3.3.3. Additional
insight was gained when we used control volume analysis to study the flow in a round
pipe in Chapter 7, and also when we applied the Bernoulli equation to deduce some
characteristics of flow through an area change in Chapter 8. You will also find the ana-
lytical solution for laminar flow in a round pipe obtained in Chapter 12 to be valuable
background material in your study of flow in pipe and ducts.

In this chapter we provide a comprehensive look at the methods used to analyze
steady, constant density flow in a pipe or duct, as well as in more complex systems
that incorporate these and other components. In most systems of interest, turbulent flow
is the rule, since a laminar flow at the same flowrate would require much larger and more
costly components. Thus, this chapter’s focus is on turbulent flow, but we do provide
sufficient information to allow you to analyze laminar flow. Unsteady and compressible

Figure 13.1 The Alaska Pipeline.
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flows in pipes and ducts, although also of engineering interest, are not covered in
this text.

Our discussion begins with an analysis by means of mass, momentum, and energy
balances of the steady, fully developed flow of a constant density fluid in a single pipe
or duct. Our goal is to determine the relationship between pressure drop �p and volume
flowrate Q, since this must be known to predict the power required to move fluid
through the pipe or duct. We introduce the concepts of major head loss, friction factor,
and hydraulic diameter, and we show how to employ these concepts to analyze laminar
and turbulent flow. In the next section we apply mass and energy balances to analyze
flow in a single path system. The system may include a pump or fan, any number of
pipes or ducts of different diameters and lengths, and other components such as inlets,
exits, valves, and elbows. Next, we extend the analysis to multiple path systems, show-
ing how concepts introduced earlier may be applied to solve problems of this type. We
conclude with a brief section introducing elements of pipe and duct system design. Our
goal throughout this chapter is to show you how to analyze the pipe and duct flows en-
countered in engineering practice using nothing more than a calculator and charts. Al-
though today’s engineer will generally have access to a commercial code for pipe and
duct analysis and design, learning to do the analysis by hand will help you develop a
sound understanding of the fundamentals of pipe and duct flows.

13.2 STEADY, FULLY DEVELOPED FLOW IN A PIPE OR DUCT

A straight, constant area segment of a pipe or duct is the basic building block of any flow
system. Consider the system shown in Figure 13.2 in which a pump supplies fluid to a
single flow path consisting of various lengths of pipe joined together by elbows. In
Chapter 7 we defined the mechanical energy content of a fluid (per unit mass) as the sum

Expansion

Tank

Water

90� Elbows

Pipe sections

Pump

Figure 13.2 Schematic of single
path piping system.
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of the pressure potential, kinetic, and gravitational potential energies (per unit mass).
The mechanical energy represents the useful or available energy content of a fluid, since
it is possible to extract this energy by a device to perform useful work. As fluid moves
along the flow path shown in Figure 13.2, friction causes a loss of mechanical energy
content. As you probably recall, this is referred to as the head loss. The total head loss is
further divided into major and minor head loss. The major loss is defined to be the loss
incurred in steady, fully developed flow through a straight, constant area segment of
pipe or duct. The additional losses from the other components in a system, such as the
elbows in Figure 13.2, are called minor losses. In this section our goal is to determine
the major head loss and the relationship between pressure drop and volume flowrate.
Minor losses are discussed in Section 13.3.

CD/Video library/Pipe flow

Before we begin our analysis of the major head loss in a steady, fully developed
flow, we must recognize that in many instances, the flow in a straight segment of pipe or
duct is not fully developed. Consider the situation shown in Figure 13.3, in which a uni-
form flow enters a pipe and gradually becomes fully developed. For a laminar flow, with
Re < 2300, the length of pipe L required before a parabolic profile is achieved in a
round pipe of diameter D may be estimated as 

L

D
= 0.06 Re

where Re is based on the pipe diameter and average velocity. Thus fully developed flow
is achieved in a length of one diameter at Re = 16; at Re = 2000, however, it requires
a length of at least 100 diameters. For a turbulent flow, the length of pipe required to
achieve fully developed flow is given by

L

D
= 4.4 Re1/6

This formula gives the required length to achieve fully developed turbulent flow at the
Reynolds numbers normally encountered as 25 to 40 diameters.

Entrance length, L Fully developed flow

Uniform flow
at entrance

Figure 13.3 Developing flow in a pipe. Compare this sketch to the flow vi-
sualization shown in Figure 12.20.



Pipe or duct inlets are not the only locations in a
flow system at which we can observe flow that is not
fully developed. In fact, the velocity profile changes,
and fully developed flow is gradually reestablished
after all sources of minor head loss, i.e., downstream of
every component in a system. Nevertheless, experience
shows that we can ignore this effect in a major head loss
calculation and still obtain sufficient accuracy for engi-
neering purposes. Regions of non–fully developed flow
that cannot be ignored, such as those at inlets and area
change, are accounted for with an appropriate minor
loss calculation as will be explained in Section 13.3.

Now consider the steady, fully developed flow of a
constant density fluid in a straight, constant area section

of a pipe or duct inclined at angle θ as shown in Figure 13.4. Since the flow is fully de-
veloped, the velocity profiles at all cross sections along the passage are identical. We can
apply mass, momentum, and energy balances to the CV shown in Figure 13.4 to deter-
mine the flow characteristics. Since the density is constant, applying a mass balance
derived from Eq. 7.15 gives A1V̄1 = A2V̄2. The areas at the inlet and exit of the CV
are equal and also equal to the area A at any other cross section along the passage.
Therefore, the average velocities at each end of the CV are the same (and equal to the
average velocity V̄ at any section along the passage), i.e., 

V̄1 = V̄2 (13.1)

A momentum balance in the flow direction was given for a horizontal round pipe in
Example 7.7. Here we must allow for a noncircular cross section and the fact that the
pipe or duct is inclined. Following the approach of Example 7.7, for a steady constant
density flow, we apply the momentum balance as given in vector form by Eq. 7.19b:∫

CS
(ρu)(u • n) dS =

∫
CV

ρf dV +
∫

CS
� dS

Consider the component of this equation in the flow direction. To evaluate the flux terms
at the inlet and exit, we note that in a fully developed flow the velocity profiles at the
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The requirement for a certain number of
pipe diameters to ensure the reappear-
ance of a fully developed velocity profile
after any source of minor head loss can be
important. Most fans, pumps, flow meters,
heat exchangers, and filters are designed
to function optimally with fully developed
or uniform velocity profiles at their inlets. If
this is not the case, performance of the
device may be degraded. Thus, providing a
sufficient length of straight pipe in front of
devices of these types can be an important
part of the design process for a pipe or
duct system.

Control
volume

z2

A2

A1

z1

Length, L

�

gz

Figure 13.4 Schematic of fully
developed flow in a pipe oriented at
a nonhorizontal angle.



inlet and exit of the CV are the same. The net momentum transport in the flow direction
is therefore zero, since the momentum transport at the inlet is balanced by the momen-
tum transport at the exit.

From Figure 13.4, the gravitational body force acting in the flow direction is seen
to be given by∫

CV
ρ(−g sin θ) dV = −ρg sin θ

∫
CV

dV = −ρg sin θ(AL)

where AL is the volume of the CV. Since L sin θ = z2 − z1, we can write the body force
acting in the flow direction as

−ρg sin θ(AL) = −(z2 − z1)ρg A

The surface force acting in the flow direction consists of a contribution from the
pressures acting at each end of the CV, p1 A − p2 A, and a contribution from the shear
force exerted by the wall on the fluid inside the CV. To determine the latter, we note that
the shear force exerted by the fluid on the wall is τ̄wall Awall, where τ̄wall is the average
shear stress and Awall is the area of the wall in contact with the fluid. By applying
the principle of action–reaction, we find that the shear force exerted by the wall on the
fluid inside the CV is −τ̄wall Awall, and the total surface force in the flow direction is thus
given by p1 A − p2 A − τ̄wall Awall . The momentum balance in the flow direction is thus
given by

0 = −(z2 − z1)ρg A + p1 A − p2 A − τ̄wall Awall

After rearranging we have

p1 − p2 = ρg(z2 − z1) + τ̄wall Awall

A
(13.2)

This result shows that the pressure difference in steady, fully developed flow in an in-
clined pipe or duct of a specified length and cross section is determined by the difference
in elevation of each end of the passage, and viscous friction (in the form of the wall
shear stress). Conversely, Eq. 13.2 shows that the average wall shear stress can be
determined by measuring the pressure drop and the difference in elevation of the two
ends of a pipe.

To continue with our analysis of pipe and duct flow, we can also write the momen-
tum balance, Eq. 13.2, as:(

p1

ρ
+ gz1

)
−
(

p2

ρ
+ gz2

)
= τ̄wall Awall

ρ A
(13.3)

and recall that the mechanical energy content of the fluid at any point along a pipe or
duct is given by p/ρ + 1

2 V̄ 2 + gz . Thus the change in the mechanical energy content of
the fluid as it passes from point 1 to point 2 along the pipe or duct is given by
(p1/ρ + 1

2 V̄ 2
1 + gz1) − (p2/ρ + 1

2 V̄ 2
2 + gz2) . In a fully developed flow there cannot

be a change in the kinetic energy of the fluid. Thus the change in the mechanical energy
of the fluid in a fully developed flow is given solely by (p1/ρ + gz1) − (p2/ρ + gz2).
From the momentum balance, Eq. 13.3, we see that this loss of mechanical energy may
be attributed to friction in the form of the wall shear stress.

796 13 FLOW IN PIPES AND DUCTS
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EXAMPLE 13 .1

Water at 80°F flows through a 40 ft long, 6 in. diameter vertical pipe as shown in Fig-
ure 13.5. The pressure difference measured between points A and B is found to be
pA − pB = 21.8 psia. Find the direction of flow and average wall shear stress.

L � 40 ft

A

B

z

y

x

g

Figure 13.5 Schematic for Example 13.1.

SOLUTION

Before proceeding, it is helpful to observe that if the water in the pipe were stationary,
the pressure difference between points A and B could be calculated from the hydrostatic
equation (pA = pB + ρgL ) to be

pA − pB = ρgL = (62.4 lbf/ft3)(40 ft)

(
1 ft2

144 in.2

)
= 17.3 psia

Since the measured pressure difference of 21.8 psia is greater than this, water must
be flowing upward in the pipe, since that will create a frictional pressure drop contribu-
tion to the measured pressure difference. We conclude that the observed pressure differ-
ence is due to a gravitational pressure decrease ρgL = 17.3 psia and a frictional pres-
sure decrease of 4.5 psia due to water flowing upward in the pipe.

To apply Eq. 13.2, we must assign point 1 upstream, which in this case is at point A.
Solving Eq. 13.2 for the average wall shear stress, we have 

τ̄wall = A

Awall
[(p1 − p2) − ρg(z2 − z1)]



The question of where the lost mechanical energy goes can be answered by apply-
ing an energy balance to the CV shown in Figure 13.4 (see Example 7.13). Writing the
energy balance for a steady process as given by Eq. 7.34, we have∫

CS
ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS = Ẇpower + Ẇshaft + Q̇C + Ṡ

In flow in a pipe or duct there is no fluid or shaft power input or energy addition, so for
the CV shown in Figure 13.4, we can write the energy balance as∫

CS
ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS = Q̇C

It is convenient to split the flux integral and write this as ∫
CS

ρ

(
u + p

ρ
+ gz

)
(u • n) dS +

∫
CS

ρ

(
1

2
u • u

)
(u • n) dS = Q̇C

where the first integral gives the flux of internal, pressure potential, and gravitational po-
tential energy through the control surface and the second describes the flux of kinetic en-
ergy through the control surface. These integrals must be evaluated at the inlet and exit
of the CV. We will assume that the internal energy and pressure are uniform at each cross
section along the flow path, and evaluate the first flux integral at each end of the CV to
obtain∫

CS
ρ

(
u + p

ρ
+ gz

)
(u • n) dS = Ṁ

[
(u2 − u1) +

(
p2

ρ
+ gz2

)
−
(

p1

ρ
+ gz1

)]

The value of the kinetic energy flux depends on the form of the velocity profile.
Since this flow is fully developed, however, the velocity profiles at the inlet and exit of
the CV are the same, and the kinetic energy fluxes cancel: i.e., the flux integral is iden-
tically zero. The energy balance therefore reduces to

Ṁ

[
(u2 − u1) +

(
p2

ρ
+ gz2

)
−
(

p1

ρ
+ gz1

)]
= Q̇C
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Since the pipe is vertical (z2 − z1) = L , and for a round pipe A/Awall =
(π D2/4)/π DL = D/4L , we find:

τ̄wall = D

4L
[(pA − pB) − ρgL]

Inserting pA − pB = 21.8 psia and ρgL = 17.3 psia, we find the average wall shear
stress to be

τ̄wall = 0.5 ft

160 ft
(21.8 psia − 17.3 psia) = 1.4 × 10−2 psia = 2.03 lbf/ft

2



For discussion purposes it is useful to rearrange this re-
sult and write the energy equation as (

p1

ρ
+ gz1

)
−
(

p2

ρ
+ gz2

)
=
[
(u2 − u1) − Q̇C

Ṁ

]

(13.4)

This result shows that in a steady, fully developed flow
through a pipe or duct, the lost mechanical energy is
converted into a change in the internal energy of the
fluid and heat transfer. If the pipe is insulated, Q̇C = 0
and the internal energy (temperature) of the fluid must
increase. In most flows, the mechanical energy lost to
viscous friction appears as both an increase in the inter-
nal energy of the fluid and some heat transfer, usually
out through the wall of the pipe or duct. By combining
the energy balance, Eq. 13.4, with the momentum bal-
ance, Eq. 13.3, we obtain[

(u2 − u1) − Q̇C

Ṁ

]
= τ̄wall Awall

ρ A
(13.5)

which shows that as a viscous fluid passes through a pipe or duct, there is an irreversible
conversion of useful mechanical energy into internal energy and heat transfer due to
friction.

13.2.1 Major Head Loss

In most cases involving flow in a pipe or duct we are interested in predicting the pres-
sure drop, but rarely do we know the average wall stress or have sufficient information
to evaluate the change in internal energy or heat transfer. To overcome this difficulty,
we can make use of the concept of major head loss, hL , and write the energy balance for
fully developed flow, Eq. 13.4, as(

p1

ρ
+ gz1

)
−
(

p2

ρ
+ gz2

)
= hL (13.6)

It can be seen that the head loss has units of energy per unit mass. If the head loss is
known, Eq. 13.6 allows us to calculate the pressure drop. Comparing Eq. 13.6 with
Eqs. 13.3 and 13.4, we see that the major head loss is defined in two equivalent ways:

hL = τ̄wall Awall

ρ A
or hL = (u2 − u1) − Q̇C

Ṁ
(13.7a, b)

If the major head loss can be determined, Eq. 13.7a is useful in determining the average
wall shear stress, and Eq. 13.7b provides information about the change in internal
energy.
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If the flow through a pipe or duct were fric-
tionless, applying the steady, constant
density Bernoulli equation down the axis
of the passage between the inlet and exit
would yield(

p1

ρ
+ gz1

)
−
(

p2

ρ
+ gz2

)
= 0

showing that there is no loss of mechani-
cal energy in frictionless flow. Equa-
tion 13.3 then shows that in a frictionless
flow τ̄wall Awall/ρ A = 0; i.e., the wall shear
stress is zero as expected. In addition,
from Eq. 13.4 we find
(u2 − u1) − Q̇C/Ṁ = 0, which shows that
in frictionless flow a change in internal
energy can occur only if there is heat
transfer.
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EXAMPLE 13 .2

Water at 40°F flows from a supply tank as shown in Figure 13.6 through a buried 65 ft
long, 4 in. diameter insulated pipe before entering a building. If the pipe is horizontal,
and the measured pressure drop is 3 psia, find the head loss, average wall shear stress,
and internal energy change in the chilled water. What is the temperature increase in the
water due to friction?

Chilled water (40�F)
supply tank Chilled water

supply pipe
(insulated)

D � 4 in.

L � 65 ft, �p � 3 psia

1 2

Figure 13.6 Schematic for Example 13.2.

SOLUTION

We first apply Eq. 13.6 to determine the head loss. For a horizontal pipe we have
z1 = z2. Thus upon solving for the head loss we obtain

hL = p1 − p2

ρ
= (3 lbf/in.2)(144 in.2/ft2)

1.94 slugs/ft3
= 223 ft2/s2

Next we solve Eq. 13.7a for the average wall shear stress to obtain

τ̄wall = ρhL
A

Awall
= ρhL

D

4L
= (1.94 slugs/ft3)(223 ft2/s2)

[
0.33 ft

4(65 ft)

]
= 0.55 lbf/ft

2 = 3.8 × 10−3 psia

To find the internal energy change in the water, we apply Eq. 13.7b, assuming that
the heat transfer through the wall of the insulated pipe is negligible. Solving for the
internal energy change, we obtain u2 − u1 = hL = 223 ft2/s2 . Converting this result to
familiar thermodynamic units, we find

u2 − u1 = (223 ft2/s2)

(
lbf-s2

slugs-ft

)(
1 slug

32.2 lbm

)(
1 Btu

778 ft-lbf

)
= 8.9 × 10−3 Btu/lbm



13.2.2 Friction Factor

To obtain the major head loss in a given pipe or duct flow, we can make use of results
for the pressure drop obtained from experiments in horizontal pipes. Applying Eq. 13.6
to a horizontal pipe, we have z1 = z2 and thus the head loss is given by hL =
(p1/ρ − p2/ρ) = �p/ρ . As discussed in Chapters 3 and 9, a dimensional analysis of
pipe flow shows that we may write the pressure drop in flow in a horizontal pipe as
�p/ρV̄ 2 = g(L/D, e/D, ρV̄ D/µ), where g is an unknown function that depends on
L/D, the relative roughness e/D, and the Reynolds number. Rearranging, and intro-
ducing a factor of 1/2 by convention, we can write this as

�p

ρ
=
(

p1

ρ
− p2

ρ

)
= g

(
L

D
,

e

D
,
ρV̄ D

µ

)
V̄ 2

2

Since the flow is fully developed, the pressure drop should be in direct proportion to the
length of the pipe, i.e., the drop over a quarter of the length should be a quarter of the
drop over the full length. This means that the unknown function g must depend linearly
on L/D, and we can write the preceding equation as(

p1

ρ
− p2

ρ

)
= g1

(
e

D
,
ρV̄ D

µ

)
L

D

V̄ 2

2

We can now define the friction factor to be f = g1(e/D, ρV̄ D/µ) and obtain
(p1/ρ − p2/ρ) = f (L/D)(V̄ 2/2). Comparing this with the preceding expression for
the head loss in a horizontal pipe, hL = (p1/ρ − p2/ρ), we see that the relationship be-
tween major head loss and friction factor is defined for pipe flow by

hL = f
L

D

V̄ 2

2
(13.8)
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To calculate the temperature increase in the chilled water due to the frictional head loss,
we note that for liquids, the change in internal energy is directly related to the specific
heat of the liquid through the relationship u2 − u1 = c(T2 − T1). For water, with a spe-
cific heat from Table 2.3 of c = 4816 J/(kg-K), the temperature change is

T2 − T1 = u2 − u1

c
= 8.9 × 10−3 Btu/lbm

[4816 J/(kg-K)]

[
(2.3928 × 10−4 Btu)/(lbm-°R)

1 J/(kg-K)

]
= 7.7 × 10−3 °R

We see that the temperature increase in the chilled water due to viscous friction is
negligible.



802 13 FLOW IN PIPES AND DUCTS

EXAMPLE 13 .3

In the early stages of the design of the chilled water line of Example 13.2, the friction
factor was assumed to be f = 0.02 at a design flowrate of 400 gal/min, with a water
temperature of 40°F. What is the pressure drop predicted by using this value of f ? If the
line is installed so that the pipe exit is actually 3 ft above the inlet, what is the predicted
pressure drop?

SOLUTION

The chilled water line in Example 13.2 is horizontal, thus by applying Eq. 13.10 we have
(p1 − p2)/ρ = f (L/D)(V̄ 2/2). The volume flowrate is given by Q = AV̄ , and for a
design flowrate of 400 gal/min, the average velocity is calculated as

V̄ = Q

A
=

(400 gal/min)

(
1 ft3

7.48 gal

)(
1 min

60 s

)
(

π(0.33 ft)2

4

) = 10.4 ft/s

Comparing this expression with Eq. 13.7a, we see that 

f
L

D

V̄ 2

2
= τ̄wall Awall

ρ A

Noting that Awall = π DL and A = π D2/4, we can solve for the friction factor and
obtain

f = 8τ̄wall

ρV̄ 2
(13.9a)

which allows us to write the head loss as

hL =
(

8τ̄wall

ρV̄ 2

)
L

D

V̄ 2

2
(13.9b)

Since the head loss is due to the effects of friction alone, there is no dependence of
head loss (and friction factor) on the orientation of the pipe. Thus for an inclined pipe we
can make use of the friction factor as defined by Eq. 13.8 to write the energy balance,
Eq. 13.6, as (

p1

ρ
+ gz1

)
−
(

p2

ρ
+ gz2

)
= f

L

D

V̄ 2

2
(13.10)

This is the basic equation describing the steady, fully developed flow in a pipe. If the
friction factor is known, we can make use of this equation to determine the pressure
change corresponding to a known average velocity (and thus flowrate) in a pipe of
known inclination.



We can extend the preceding results to apply to flow in a duct by introducing the
concept of a hydraulic diameter DH . We define the hydraulic diameter of a duct of wet-
ted perimeter P and cross-sectional area A as

DH = 4A

P
(13.11)

and write the head loss in a duct of hydraulic diameter DH as

hL = f
L

DH

V̄ 2

2
(13.12)

The friction factor is related to the average wall shear stress in the duct by

f = 8τ̄wall

ρV̄ 2
(13.13a)

and the head loss is given by

hL =
(

8τ̄wall

ρV̄ 2

)
L

DH

V̄ 2

2
(13.13b)
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Solving for the pressure drop we have

p1 − p2 = ρ f
L

D

V̄ 2

2
= (1.94 slugs/ft3)(0.02)

(
65 ft

0.33 ft

)(
1

2

)
(10.4 ft/s)2

= 413 lbf/ft
2 = 2.9 psia

We see that the predicted pressure drop for a horizontal pipe is about the same as the
measured value of 3 psia.

If the pipe is inclined, applying Eq. 13.10 gives (p1/ρ + gz1) − (p2/ρ + gz2) =
f (L/D)(V̄ 2/2). Solving for the pressure difference we have p1 − p2 =
ρ f (L/D)(V̄ 2/2) + ρg(z2 − z1). The effect of friction is the same irrespective of the
inclination as long as the flowrate is the same, so from the preceding calculation we have

ρ f
L

D

V̄ 2

2
= 413 lbf/ft

2 = 2.9 psia

Since the exit of the pipe is now 3 ft above the inlet, we have

ρg(z2 − z1) = 1.94 slugs/ft3(32.2 ft/s2)(3 ft) = 187.4 lbf/ft
2 = 1.3 psia

and the predicted pressure drop is 

p1 − p2 = ρ f
L

D

V̄ 2

2
+ ρg(z2 − z1) = 2.9 psia + 1.3 psia = 4.2 psia

The additional pressure required at the inlet is not because of additional friction but
because of the elevation change.



Finally the energy balance is written as(
p1

ρ
+ gz1

)
−
(

p2

ρ
+ gz2

)
= f

L

DH

V̄ 2

2
(13.14)

To analyze a duct flow, the friction factor for a duct of hydraulic diameter DH and a
given value of the Re (based on DH ) is assumed to be the same as the friction factor for
a pipe of diameter DH at the same Re.

The hydraulic diameter model works very well in turbulent flow, but not nearly as
well in laminar flow. The failure of this concept in laminar flow is generally not a prob-
lem, however, because we have other methods to analyze laminar flow. Care must be
taken when one is using the DH model with turbulent flow in rectangular ducts with as-
pect ratios greater than 4. In general, the further the cross-sectional geometry of a duct
departs from a circle, the greater will be the error in using hydraulic diameter. The
hydraulic diameters of several other cross sections are given in Figure 13.7.
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DH � DO � DI

2b
2a

DO

DI

D

DH � D

2b

2a

DH �
4ab

a 	 b

a

b

DH �
4a2b2 � a4

a 	 2b

a2 	 b2
DH � 2(ab)2

Figure 13.7 The definition of
hydraulic diameter DH = 4A/P
for five cross section shapes.

EXAMPLE 13 .4

Air at 70°F and atmospheric pressure flows in a horizontal 40 ft length of sheet metal duct
at a rate of 2000 ft3/min as shown in Figure 13.8. If the duct cross section is rectangular
and 1 ft by 2 ft, and the appropriate friction factor is 0.016, what is the pressure drop?

SOLUTION

Applying Eq. 13.14 to this horizontal duct we have (p1 − p2)/ρ = f (L/DH )(V̄ 2/2).
The hydraulic diameter is given by Eq. 13.11 as DH = 4A/P , and for a rectangular
duct of height H and width W, we have A = H W , and P = 2(H + W ). Thus the



At this point it should be evident that analyzing the flow in a pipe or duct depends
on being able to determine the friction factor. For laminar flows we can often make use
of Eq. 13.9a, f = 8τ̄wall/ρV̄ 2, to compute the friction factor directly from a known an-
alytical solution. In turbulent flows the friction factor can be obtained from charts that
provide the dependence of the friction factor on the relative roughness of the pipe and
Reynolds number.

13.2.3 Friction Factors in Laminar Flow

In this section we will derive the friction factor for laminar flow in a pipe and in a rec-
tangular duct (friction factors can be found in advanced texts for laminar flow in many
other geometries). The steady, fully developed, constant density flow in both cases is of
the Poiseuille type, meaning that the flow is unidirectional and driven by a pressure
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hydraulic diameter is DH = 2H W/(H + W ). Inserting H = 1 ft and W = 2 ft we find
DH = 1.33 ft; and since L = 40 ft, L/DH = 40 ft/1.33 ft = 30. The volume flowrate
is given by Q = AV̄ , thus we have V̄ = Q/H W . Inserting the data, we find 

V̄ =
(2000 ft3/min)

(
1 min

60 s

)
2 ft2

= 16.7 ft/s

By using these results to calculate the pressure drop, we obtain 

p1 − p2 = ρ f
L

DH

V̄ 2

2
= (2.329 × 10−3 slug/ft3)(0.016)(30)

(
1

2

)
(16.7 ft/s)2

= 0.16 lbf/ft
2

It is customary to express the pressure drop in a duct flow of air in inches of water. This
means that we can write p1 − p2 = 0.16 lbf/ft2 = (ρH2O)gh . Solving for h we find

h = (0.16 lbf/ft2)(12 in./ft)

(1.94 slugs/ft3)(32.2 ft/s2)
= 0.03 in.

This is a very modest pressure drop. Most duct systems have significant minor losses.

Air (70�F) flowing
at 2000 ft3/min

L � 40 ft

H � 1 ft

W � 2 ft

z

y
x V

1 2

Figure 13.8 Schematic for Example 13.4.



gradient. Since the exact analytical solutions for the ve-
locity and pressure fields in both flows are known, it is
not necessary to use the friction factor or head loss con-
cept to analyze these flows. However, it is customary to
include the friction factor for laminar flow in a discus-
sion of flow in pipes and ducts.

Consider a Poiseuille flow in the horizontal pipe
illustrated in Figure 13.9. The velocity field and pres-
sure distribution for this flow were derived in Sec-
tion 12.2.4. The pressure distribution is given by
Eq. 12.16 as p(z) = p1 − [(p1 − p2)/L](z − z1), and
the velocity component in the flow direction is given by
Eq. 12.17 as vz(r) = [R2(p1 − p2)/4µL][1 − (r /R)2].
As can be seen from Example 12.5, the volume flowrate
through any cross section of the pipe is easily found by
integration to be:

Q =
∫

(u • n) dS =
∫ 2π

0

∫ R

0

R2(p1 − p2)

4µL

[
1 −

(
r

R

)2
]

r dr dθ = π R4(p1 − p2)

8µL

or in terms of diameter,

Q = π D4(p1 − p2)

128µL
(13.15)

Since Q = AV̄ = (π D2/4)V̄ , the average velocity in this flow is given by

V̄ = D2(p1 − p2)

32µL
(13.16)

To find the dependence of �p on V̄ in flow in a pipe, we can rearrange this equation and
obtain

p1 − p2 = 32µLV̄

D2
(13.17)

We see that the pressure drop is proportional to the average velocity. If we double the
flowrate, the pressure drop doubles. The pressure drop is also proportional to the fluid
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In problems involving duct flows of air, you
will often find the units of average velocity
given in feet per minute and the flowrate in
units of cubic feet per minute. This makes
it easy to go back and forth between
flowrate and average velocity by means of
the duct area in square feet. For example,
the 2000 ft3/min flow in Example 13.4
occurred in a duct whose area was 
given as A = 2 ft2 , so the average veloc-
ity is V̄ = Q/A = (2000 ft3/min)/2 ft2 =
1000 ft/min. Pressure differences in duct
flows are generally small, and it is custom-
ary to express them in inches of water.
Since we can write ( p1 − p2) = ρH2Ogh ,
useful conversion factors are 1 in. H2O =
5.2 lbf/ft2 = 0.036 psia.

y
r

x

z

L

� R

Figure 13.9 Cylindrical coordinates used for
pipe flows.



viscosity and to the pipe length, and inversely propor-
tional to the square of the pipe diameter.

To find the friction factor for this flow, first note
that to apply Eq. 13.10 to a horizontal pipe, we set
z1 = z2, and obtain

p1 − p2

ρ
= f

L

D

V̄ 2

2
(13.18)

To derive the friction factor, we divide Eq. 13.17 by the
density, and use Re = ρV̄ D/µ to write it as

p1 − p2

ρ
=
(

64

Re

)
L

D

V̄ 2

2

Comparing this with Eq. 13.18, we see that the friction
factor for laminar flow in a pipe is given by

f = 64

Re
(13.19)

The solution for Poiseuille-type flow through the
rectangular duct shown in Figure 13.10 can be found in
many advanced texts. Of interest to us here is the ve-
locity component in the flow direction, which for
−a ≤ x ≤ a,−b ≤ y ≤ b with a > b, can be ex-
pressed as the infinite series:
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2a

2b

z

xy Figure 13.10 Cartesian coordinates used for rectan-
gular duct flows.

τwall = −µ
∂vz

∂r

∣∣∣∣
r =R

= −µ
∂

∂r

×
{

R2( p1 − p2)
4µL

[
1 −

(
r
R

)2
]}∣∣∣∣∣

r =R

= D( p1 − p2)
4L

The wall shear stress is uniform, so the
average wall shear stress is τ̄wall =
[D( p1 − p2)]/4L . From Eq. 13.9a we can
now write f = 8τ̄wall/ρV̄ 2 and obtain
f = [2D( p1 − p2)]/ρV̄ 2L . Writing this in
terms of Re, and using the definition of V̄
(Eq. 13.16) gives f = 64/Re as expected.

It is worth noting that there is another way
to derive the friction factor f = 64/Re.
Since we know the velocity profile, we can
compute the wall shear stress and use Eq.
13.9a to write f = 8τ̄wall/ρV̄ 2 . The tan-
gential component of the stress acting in
the z direction on a surface in the fluid
normal to the r direction is σr z. The stress
on the wall of the pipe is −σr z, since the
wall is a negative r surface. This stress
component is given by Eq. 11.7f as
σr z = µ(∂vz/∂r + ∂vr /∂z) = µ(∂vz/∂r ) ,
since there is no velocity component in the
radial direction. Using the known velocity
field we find

w(x, y) = (p1 − p2)

2µL

×
[

b2 − y2 − 4

b

∞∑
n=0

(−1)n

m3

(
cosh mx

cosh ma

)
cos my

]

(13.20)



where m = [(2n + 1)π]/2b. The volume flowrate is given by

Q = 4ab3(p1 − p2)

3µL

[
1 − 192b

π5a

∞∑
n=0

tanh ma

(2n + 1)5

]

and since the duct area is A = 4ab, the average velocity is

V̄ = b2(p1 − p2)

3µL

[
1 − 192b

π5a

∞∑
n=0

tanh ma

(2n + 1)5

]

It is convenient to define a function F(a/b), which depends only on the aspect ratio 
a/b, as

F

(
a

b

)
=
[

1 − 192b

π5a

∞∑
n=0

tanh ma

(2n + 1)5

]
=
{

1 − 192b

π5a

∞∑
n=0

tanh[(2n + 1)πa]/2b

(2n + 1)5

}

This allows us to write the volume flowrate as

Q = 4ab3(p1 − p2)

3µL
F

(
a

b

)
(13.21)

and the average velocity as

V̄ = b2(p1 − p2)

3µL
F

(
a

b

)
(13.22)

To find the dependence of �p on V̄ , we can rearrange the last equation to obtain

p1 − p2 = 3µLV̄

b2 F(a/b)
(13.23)

We see that in laminar flow in a rectangular duct the pressure drop is proportional to the
average velocity, fluid viscosity, and duct length, and inversely proportional to the
height of the duct squared, and the aspect ratio as contained in F(a/b). This behavior is
characteristic of all laminar flows. Values of the geometric factor F(a/b) for various
aspect ratios can be found in Table 13.1.

By following a procedure similar to that used for the pipe, we can define a friction
factor for flow in a rectangular duct to use with the hydraulic diameter model. To apply
Eq. 13.14 to a horizontal duct, we set z1 = z2, and obtain

p1 − p2

ρ
= f

L

DH

V̄ 2

2
(13.24)

To derive the friction factor, we divide Eq. 13.23 by the density, and use Re = ρV̄ DH/µ

and DH = 4ab/(a + b) to write it as (p1 − p2)/ρ = (96/ReH )G(a/b)(L/DH )(V̄ 2/2),
where the geometric factor G(a/b) is defined by G(a/b) = 1/[(1 + b/a)2 F(a/b)].
Comparing our result to Eq. 13.24, we see that the analytical solution shows that the
friction factor is

f =
(

96

ReH

)
G

(
a

b

)
(13.25)
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Values of the geometric factor G(a/b) for various
aspect ratios are contained in Table 13.1, along with
values of f ReH = 96G(a/b). The hydraulic diameter
model requires that we use the friction factor for
flow in a round pipe, which is f = 64/ReH , or
f ReH = 64. For this to agree with the exact friction
factor for this flow given in Eq. 13.25, the value of
G(a/b) would have to be G(a/b) = 64/96 = 0.667,
or f ReH = 64 for every value of the aspect ratio a/b.
It is clear from Table 13.1 that this is not the case.
Since the exact solution is available for laminar flow in
a rectangular duct, we recommend the use of Eq. 13.23
and values of F(a/b) from Table 13.1 to determine the
pressure drop. Alternately, you can employ the exact
friction factor as given by Eq. 13.25 within the hy-
draulic diameter model to obtain an accurate value of
the pressure drop.

The analytical friction factors for laminar, fully
developed flow in round, rectangular, and several
other cross sections are summarized in Table 13.2 and
compared with f = 64/ReH . It is evident that in
laminar flow, the hydraulic radius approximation is
not always accurate. If we know the exact analytical
solution this does not matter; but if the solution for a
certain cross section is unknown, we can compute the
hydraulic diameter, assume the friction factor is
f = 64/ReH , and compute an approximate value for
the pressure drop.
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TABLE 13.1 Values for the Geometric Factors F(a/b) and G(a/b) as a Function of the Aspect Ratio a/b for
Rectangular Ducts

(a/b) F(a/b) G(a/b) fReH = 96G(a/b)

1 0.421733 0.592794 56.91

2 0.686045 0.647836 62.19

3 0.789951 0.712070 68.36

4 0.842439 0.759699 72.93

5 0.873951 0.794604 76.28

10 0.936975 0.882037 84.68

20 0.968488 0.936242 89.88

50 0.987395 0.973439 93.45

100 0.993698 0.986513 94.71

∞ 1 1 96.0

As the aspect ratio of a rectangular duct
gets very large, i.e., a/b → ∞, the flow
should become more similar to that be-
tween infinite parallel plates as discussed
in Section 13.2.3. Employing the solution
given there, the velocity component in the
flow direction is u (z) = ( p1 − p2)/2µL ×
[b2 − y2], and we see that this is the lead-
ing term in Eq. 13.20 describing the rec-
tangular duct. If the width of the parallel
plates is w, the volume flowrate through the
channel formed by the plates is given by

Q =
∫ w/2

−w/2

∫ b

−b

( p1 − p2)
2µL

[b2 − y2]dz dy

= w
[

2b3( p1 − p2)
3µL

]

If w = 2a, we have Q = [4ab3( p1 − p2)]/
3µL . The average velocity is then found
by dividing by 4ab to obtain V̄ =
[b2( p1 − p2)]/3µL , and the pressure
drop is related to the average velocity by
p1 − p2 = 3µLV̄ /b2 . Thus, the rectangu-
lar duct results are consistent with these
expressions if F (a/b) → 1 as a/b → ∞.
Table 13.1 shows that F (a/b) does indeed
behave this way.
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TABLE 13.2 Friction Factors for Laminar Fully Developed Flow for Various Cross Sections

Cross Section Shape Geometric Parameter f ReH

Circle (DH = D) NA 64

Rectangle

DH = 4ab

a + b

(a/b)

1
2
3
4
5

10
20
50

100
∞

56.91
62.19
68.36
72.93
76.28
84.68
89.88
93.45
94.71
96.00

Ellipse

DH ≈ 2
√

2(ab)√
a2 + b2

NA 64 

Right triangle

DH = 2a sin θ

1 + sin θ + cos θ

θ (degrees)

0
10
20
30
40
45

48.0
49.9
51.2
52.0
52.3
52.5

2b

2a

2b

2a

�

a

Equilateral triangle

DH = a
√

3

3

NA 53.3

Concentric annulus

DH = D2 − D1

D1/D2

0.0001
0.01
0.1
0.5
1.0

71.8
80.1
89.4
95.3
96.0

D1 D2
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EXAMPLE 13 .5

Microfluidic devices like that in Figure 13.11 are under development for a variety of ap-
plications ranging from medicine to environmental sampling. Suppose the dimensions of
the horizontal rectangular passage within such a device are H = 10 �m, W = 50 �m,
and L = 500 �m. Calculate the pressure drop through this passage for a flowrate of
2.4 × 106 �m3/s. The flow is steady, and the fluid is water at 30°C.

L

W

(B)

Figure 13.11 (A) Microfluidic channel used in DNA research. (B) Schematic.

(A)

SOLUTION

We will first calculate Re to check that this is a laminar flow. Using the definition 
of hydraulic diameter we find DH = 2H W/(H + W ) = [2(10 �m)(50 �m)]/
(10 �m + 50 �m) = 17 �m. The average velocity is calculated as 

V̄ = Q

A
= 2.4 × 106 �m3/s

(10 �m)(50 �m)
= 4.8 × 103 �m/s

Then Re is found to be

ReH = ρV̄ DH

µ
=

(995.7 kg/m3)(4.8 × 103 �m/s)(17 �m)

(
1 m

106 �m

)2

7.975 × 10−4 (N-s)/m
= 0.1



13.2.4 Friction Factors in Turbulent Flow

There are no analytical solutions for turbulent flow, so we cannot compute the friction
factor in a pipe or duct flow from an exact analytical formula for volume flowrate or av-
erage velocity. However, we know from dimensional analysis that the friction factor for
flow in a round pipe of diameter D is a function of the relative roughness e/D, and
Reynolds number ρV̄ D/µ. If we performed a DA on duct flow, we would find that f
depends on e/D, the Re, and additional geometric parameters that depend on the shape
of the duct. Determining f for every possible duct cross section is an enormous task, but
we can avoid this problem by using the hydraulic diameter concept and substituting the
friction factor for flow in a round pipe as explained earlier.

To determine the friction factor empirically for steady, fully developed turbulent
flow through a pipe, consider a series of experiments in which the pressure drop is mea-
sured in a flow through a horizontal section of a pipe. Applying Eq. 13.10 to a horizon-
tal pipe we set z1 = z2, and obtain (p1 − p2)/ρ = f (L/D)(V̄ 2/2). This shows that
a measurement of the pressure drop is sufficient to determine the friction factor for a
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which identifies this as a creeping flow, and hence laminar. To determine the pressure
drop we use Eq. 13.23, p1 − p2 = 3µLV̄ /[b2 F(a/b)], noting in this case that H = 2b
and W = 2a. Thus, b = 5 �m, a = 25 �m, and a/b = 25 �m/5 �m = 5. From
Table 13.1 we read F(a/b) = F(5) = 0.873951, thus

p1 − p2 = 3µLV̄

b2 F(a/b)
= 3[7.975 × 10−4(N-s)/m2](500 �m)(4800 �m/s)

(5 �m)2(0.873951)
= 263 N/m2

For comparison we can use the hydraulic diameter model to calculate �p. We will use
Eq. 13.24: (p1 − p2)/ρ = f (L/DH )(V̄ 2/2), and assume f = 64/ReH . Thus �p is es-
timated as p1 − p2 = ρ(64/ReH )(L/DH )(V̄ 2/2). Inserting the data and earlier results
we have

p1 − p2 = ρ
64

ReH

L

DH

V̄ 2

2

= (995.7 kg/m3)

(
64

0.1

)(
500 �m

17 �m

)(
1

2

)
(4800 �m/s)2

(
1 m

106 �m

)2

= 216 N/m2

This is 18% low, and it explains our earlier suggestion to use the exact solution if avail-
able for the cross section of interest. If you are wondering whether the flow in microflu-
idic devices is described by the continuum hypothesis, the length scale of these devices,
on the order of 10 �m, is several orders of magnitude larger than the average intermol-
ecular spacing in water.
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given flowrate and type of fluid. Now the friction factor is defined by Eq. 13.9a
( f = 8τ̄wall/ρV̄ 2), and the wall shear stress depends only on the motion of the fluid rel-
ative to the wall. We conclude once again that the friction factor does not depend on the
angle of inclination of the pipe. Thus there is no need to do experiments in which the
pipe is inclined at various angles. Repeating the experiment using various flowrates is
sufficient to establish the dependence of the friction factor on Re for the particular value
of e/D that applies to the pipe in question.

Through numerous experiments, the data needed to determine the friction factor
has been obtained for turbulent flow over the range of values of relative roughness
and Reynolds number encountered in engineering practice. This data is organized for
convenient use in the form of the chart of relative roughness shown in Figure 13.12,
and the Moody chart shown in Figure 13.13. The use of these charts as well as
Table 13.3, which contains data on the roughness of various types of pipe, is illustrated
in Example 13.6.

EXAMPLE 13 .6

A horizontal pipeline will carry crude oil at 60°C in 1 m diameter commercial steel pipe
at an average velocity of 3 m/s. If the oil’s specific gravity is 0.86 and its viscosity is
µ = 3.8 × 10−3 (N-m)/s2 , what is the friction factor? What is the pressure drop per
kilometer of pipe?

SOLUTION

A specific gravity of 0.86 corresponds to a density of ρ = 0.86(1000 kg/m3) =
860 kg/m3. The Reynolds number is then found to be 

Re = ρV̄ D

µ
= (860 kg/m3)(3 m/s)(1 m)

3.8 × 10−3 (N-m)/s2

= 6.8 × 105

From Figure 13.12, we read the value of the relative roughness as e/D = 4 × 10−5 and
then use the Moody chart, Figure 13.13, to read the friction factor as f = 0.012. The
pressure drop is then calculated by using Eq. 13.10 with z1 = z2 to write

p1 − p2 = ρ f
L

D

V̄ 2

2

= (860 kg/m3)(0.012)
1000 m

1 m

(
1

2

)
(3 m/s)2

= 4.6 × 104 N/m2

= 46 kPa
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5 � 10�4

2 � 10�3

5 � 10�3

2 � 10�2

5 � 10�2

10�2

10�1

10�3

2 � 10�4

10�5

2 � 10�5

5 � 10�5

10�4

e�
D

1000.1 0.2 0.4 0.6 0.8 2 4 6 8 10 20 40 60 801.0

D (in.)

D (m)

0.004 0.006 0.01 0.02 0.04 0.06 0.1 0.2 0.4 0.6 1.0 2.0

Concrete

Riveted steel

Wood
stave

Cast iron

Commercial steel

Galvanized iron

Drawn tubing

Figure 13.12 Relative roughness of new pipes.
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103 2(103) 2(104)4 6 8 4 6 8 2(105) 4 6 8
0.008

0.009

0.01

0.015

0.02

0.025

0.03

0.04

0.05

0.06

0.07

0.08
0.09

0.1

f

0.00001

0.00005

0.0001

0.0002

0.0004
0.0006
0.0008
0.001

0.002

0.004

0.006
0.008
0.01

0.015
0.02

0.03

0.04
0.05

e�
D

104 105 2(106) 4 6 8106 2(107) 4 6 8107 108

Re �
�VD

�

Transition
range

Laminar
flow

Smooth

Wholly turbulent flow

TABLE 13.3 Equivalent Roughness Values for Various Pipe Materials

Equivalent Roughness, e

Pipe Material ft mm
Riveted steel 0.003–0.03 0.9–9.0

Concrete 0.001–0.01 0.3–3.0

Wood stave 0.0006–0.003 0.18–0.9

Cast iron 0.00085 0.26

Galvanized iron 0.0005 0.15

Asphalted cast iron 0.0004 0.12

Commercial steel or wrought iron 0.00015 0.045

Drawn tubing 0.000005 0.0015

Plastic or glass Smooth Smooth

Figure 13.13 The Moody chart, showing the friction factor as a function of Reynolds number and relative roughness.
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EXAMPLE 13 .7

Find the friction factor for the duct flow described in Example 13.4. Recall that the rec-
tangular duct cross section is 1 ft by 2 ft with a hydraulic diameter DH = 1.33 ft. The
flowrate of 2000 ft3/min corresponds to an average velocity V̄ = 16.7 ft/s, and the air is
at 70°F and atmospheric pressure.

SOLUTION

To use the hydraulic diameter model, the friction factor for a duct flow at a certain Re
based on DH is obtained by assuming it to be the same as the friction factor for a flow
in a pipe of diameter D = DH at the same Re. It is also necessary that the pipe have the
same relative roughness e/D = e/DH as the duct. From Appendix A, the kinematic
viscosity of air at 70°F is ν = 1.64 × 10−4 ft2/s. The duct Reynolds number is calcu-
lated by using the hydraulic diameter:

Re = V̄ DH

ν
= (16.7 ft/s)(1.33 ft)

1.64 × 10−4 ft2/s
= 1.35 × 105

The duct is described as sheet metal, so we will use the smooth pipe value of relative
roughness on the Moody chart, Figure 13.13, to read the friction factor at
Re = 1.35 × 105 as f = 0.0165.

As an alternative to the use of the Moody chart, we can make use of the Colebrook
formula on which the chart is based. This formula, given in Chapter 3, Eq. 3.19a, is

1√
f

= −2.0 log

(
e/D

3.7
+ 2.51√

f Re

)
(13.26a)

As discussed in Chapter 3, this is a transcendental equation requiring iteration to deter-
mine the friction factor for known values of relative roughness and Reynolds number.

Figure 13.14 Scaling in a water pipe
after 40 years of service.
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The Chen equation, which was given in Chapter 3, Eq. 3.19b, is also repeated here for
convenience:

f =
{
−2.0 log

[
(e/D)

3.7065
− 5.0452

Re
log

(
(e/D)1.1098

2.8257
+ 5.8506

Re0.8981

)]}−2

(13.26b)

The advantage of the Chen equation is that it does not require iteration.
It is customary to state that the uncertainty in the value of the friction factor found

with any of these methods is on the order of ±10%. In arriving at a value for the friction
factor, keep in mind that pipes in service tend to degrade over time. The most common
forms of degradation are due to biological or corrosion-induced scaling as shown in Fig-
ure 13.14. Thus, the relative roughness of a new pipe is likely to be far less than that of
a pipe in service for several years. 

EXAMPLE 13 .8

Using the data of Example 13.6, compare the friction factor obtained with the Colebrook
and Chen formulas with that obtained with the Moody chart. How do the friction factors
change if the relative roughness increases by an order of magnitude as deposits accu-
mulate in the pipe over time?

SOLUTION

We know that e/D = 4 × 10−5, Re = 6.8 × 105, so from the Moody chart, Fig-
ure 13.13, we read f = 0.012. Using any appropriate computer code, the Colebrook for-
mula, Eq. 13.19a, can be iterated solved to yield f = 0.0131, while the Chen equation,
Eq. 13.19b, gives f = 0.01315. We see that all three methods produce friction factors
within 10%. If the relative roughness increases by a factor of 10 to e/D = 4 × 10−4, the
value of the friction factor found from the Moody chart is f = 0.0165. The Colebrook
formula gives f = 0.0167, and the Chen equation yields f = 0.0168.

As a final note in this section, you should be aware that pipe comes in well-defined
standard sizes, as shown in Table 13.4. The schedule of a pipe determines its usage.
Higher schedule number pipe has thicker walls and a higher pressure rating. Schedule 40
pipe is normally standard unless otherwise specified.

13.3 ANALYSIS OF FLOW IN SINGLE PATH PIPE AND DUCT SYSTEMS

The piping system shown earlier in Figure 13.2 contains a number of straight constant
area sections of pipe joined by elbows. Since all the fluid follows the same path through
the system, this is an example of a single path system. A mass balance on any single path
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TABLE 13.4 Actual Dimensions of Common Nominal Pipe Sizes

Nominal Diameter Inside Diameter Flow Area

(in.) Schedule ft cm ft2 cm2

1/8 40 0.02242 0.683 0.0003947 0.3664

80 0.01792 0.547 0.0002522 0.2350

1/4 40 0.03033 0.924 0.0007227 0.6706

80 0.2517 0.768 0.0004974 0.4632

3/8 40 0.04108 1.252 0.001326 1.233

80 0.03525 1.074 0.0009759 0.9059

1/2 40 0.05183 1.580 0.002110 1.961

80 0.04550 1.386 0.001626 1.508

160 0.03867 1.178 0.001174 1.090

3/4 40 0.06867 2.093 0.003703 3.441

80 0.06183 1.883 0.003003 2.785

160 0.03867 1.178 0.002043 1.898

1 40 0.08742 2.664 0.006002 5.574

80 0.07975 2.430 0.004995 5.083

160 0.06792 2.070 0.003623 3.365

11⁄4 40 0.1150 3.504 0.01039 9.643

80 0.1065 3.246 0.008908 8.275

160 0.09667 2.946 0.007339 6.816

11⁄2 40 0.1342 4.090 0.01313 13.13

80 0.1250 3.810 0.01227 11.40

160 0.1115 3.398 0.009764 9.068

2 40 0.1723 5.252 0.02330 21.66

80 0.1616 4.926 0.02051 19.06

160 0.1306 4.286 0.01552 13.43

21⁄2 40 0.2058 6.271 0.03325 30.89

80 0.1936 5.901 0.02943 27.35

160 0.1771 5.397 0.02463 22.88

3 40 0.2557 7.792 0.05134 47.69

80 0.2417 7.366 0.04587 42.61

160 0.2187 6.664 0.03755 34.88

31⁄2 40 0.2957 9.012 0.06866 63.79

80 0.2803 8.544 0.06172 57.33

4 40 0.3355 10.23 0.08841 82.19

80 0.3198 9.718 0.07984 74.17

120 0.3020 9.204 0.07163 66.54

160 0.2865 8.732 0.06447 59.88

5 40 0.4206 12.82 0.1389 129.10

80 0.4801 13.64 0.1810 168.30

120 0.3803 11.59 0.1136 105.50

160 0.3594 10.95 0.1015 94.17



system shows that the volume flowrate through each pipe or duct segment, and through
each component, is the same. Multiple path systems, in which the volume flowrate may
differ in the various flow paths in the system, will be discussed in the next section.

In both single and multiple path systems, each component along a given flow path
contributes to the overall loss of mechanical energy of the fluid passing through the
system along that path. In Section 13.2 we discussed the major head loss in the fully
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TABLE 13.4 (Continued )

Nominal Diameter Inside Diameter Flow Area

(in.) Schedule ft cm ft2 cm2

6 40 0.5054 15.41 0.2006 186.50

80 0.4801 13.64 0.1810 168.30

120 0.4584 13.98 0.1650 153.50

160 0.4823 13.18 0.1367 136.40

8 20 0.6771 20.64 0.3601 334.60

30 0.6726 20.50 0.3553 330.10

40 0.6651 20.27 0.3474 322.70

60 0.6511 19.85 0.3329 309.50

80 0.6354 19.37 0.3171 294.70

100 0.6198 18.89 0.3017 280.30

120 0.5989 18.26 0.2817 261.90

130 0.5834 17.79 0.2673 248.60

160 0.5678 17.31 0.2532 235.30

10 20 0.8542 26.04 0.5730 332.60

30 0.8446 25.75 0.5604 520.80

40 0.8350 25.46 0.5476 509.10

60 0.8125 24.77 0.5185 481.90

80 0.7968 24.29 0.4987 463.40

100 0.7760 23.66 0.4730 439.70

120 0.7552 23.02 0.4470 416.20

130 0.7292 22.23 0.4176 388.10

160 0.7083 21.59 0.3941 366.10

12 20 1.021 31.12 0.8185 760.60

30 1.008 30.71 0.7972 740.71

40 0.9948 30.33 0.773 722.50

60 0.9688 29.53 0.7372 684.90

80 0.9478 28.89 0.7056 655.50

100 0.9218 28.10 0.6674 620.20

120 0.8958 27.31 0.6303 585.80

130 0.8750 26.67 0.6013 558.60

160 0.8438 25.72 0.5592 519.60

20 20 (std) 1.604 48.89 2.021 1877.00

160 1.339 40.80 1.407 1307.00



developed flow in a straight section of pipe of constant area and related it to the action
of the wall shear stress. In this section we will discuss the use of a minor head loss to ac-
count for the loss of mechanical energy due to the presence of various components along
a flow path. The loss of the mechanical energy in flows through elbows, tees, valves, fil-
ters, and other components is due to not only friction in the form of an average wall
shear stress, but also to flow separation and the introduction of flow disturbances.

As a model for the effects of any type of component, consider a steady flow through
a system consisting of two straight sections of pipe of different diameters connected
by a reducing elbow as shown in Figure 13.15. We would like to predict the relationship
between the pressure drop and flowrate through this single path system. To identify the ad-
ditional loss of mechanical energy created by the reducing elbow, we will apply mass and
energy balances to a CV that encloses all of the fluid within the elbow as shown in Fig-
ure 13.15. Since the density is constant, applying a mass balance gives Ṁ = ρ A2V̄2 =
ρ A3V̄3. Under these conditions the energy balance can be written as ∫

CS
ρ

(
u + p

ρ
+ gz

)
(u • n) dS +

∫
CS

ρ

(
1

2
u • u

)
(u • n) dS =Q̇C

We will now assume that the internal energy and pressure are uniform at the inlet and
exit of the CV, and evaluate the first flux integral at each end of the CV to obtain∫

CS
ρ

(
u + p

ρ
+ gz

)
(u • n) dS = Ṁ

[
(u3 − u2) +

(
p3

ρ
+ gz3

)
−
(

p2

ρ
+ gz2

)]

The value of the kinetic energy flux, 
∫

CS ρ( 1
2 u • u)(u • n) dS , depends on the form of the

velocity profile at the inlet and exit of the CV. It is customary to introduce a kinetic en-
ergy coefficient α, and write the kinetic energy flux as∫

CS
ρ
(

1
2 u • u

)
(u • n) dS = ±α

(
1
2ρV̄ 3 A

)
(13.27)

where a positive sign is used for an exit. Since Ṁ = ρ AV̄ and α( 1
2ρV̄ 3 A) = Ṁ( 1

2αV̄ 2),
the total kinetic energy flux then is 

∫
CS ρ( 1

2 u • u)(u • n) dS = Ṁ( 1
2α3V̄ 2

3 − 1
2α2V̄ 2

2 ) .
The energy balance for steady flow through the reducing elbow is thus given by

Ṁ

[
(u3 − u2) +

(
p3

ρ
+ 1

2
α3V̄ 2

3 + gz3

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)]
= Q̇C
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After rearranging this result we have(
p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
−
(

p3

ρ
+ 1

2
α3V̄ 2

3 + gz3

)
= (u3 − u2) − Q̇C

Ṁ

In analogy to the major head loss, we now introduce the concept of a minor head loss

hM = (u3 − u2) − Q̇C

Ṁ
(13.28a)

and write the energy balance for the elbow as(
p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
−
(

p3

ρ
+ 1

2
α3V̄ 2

3 + gz3

)
= hM (13.28b)

The minor head loss (like the major head loss) has units of energy per unit mass and is
determined empirically as explained in the next section. We see from Eq. 13.28a that the
minor head loss accounts for the irreversible conversion of mechanical energy to ther-
mal energy as the flow passes through the reducing elbow. In reality, some of the energy
loss occurs in the disturbed flow downstream of the elbow. However, since we assume
fully developed flow in all pipe or duct segments, in the preceding analysis the loss due
to the disturbed flow is accounted for as if it occurred within the elbow.

Assuming steady, fully developed flow in each of the straight pipe segments in Fig-
ure 13.15, we can also use an energy balance to analyze each pipe segment, taking into
account the elevations, the length and diameter of each pipe, and the friction factor and
average velocity in each pipe. By using Eq. 13.10, we obtain(

p1

ρ
+ gz1

)
−
(

p2

ρ
+ gz2

)
= f A

L A

DA

V̄ 2
A

2

and (
p3

ρ
+ gz3

)
−
(

p4

ρ
+ gz4

)
= fB

L B

DB

V̄ 2
B

2

where the subscript on the friction factor indicates that it is to be evaluated appropriately
for each pipe. Adding these two equations, we obtain a relationship between conditions
at points 1 and 4:(

p1

ρ
+ gz1

)
−
(

p4

ρ
+ gz4

)
−
[(

p2

ρ
+ gz2

)
−
(

p3

ρ
+ gz3

)]
= f A

L A

DA

V̄ 2
A

2
+ fB

L B

DB

V̄ 2
B

2

Using Eq. 13.28b to eliminate the term in the square brackets, we can write the 
result as(

p1

ρ
+ 1

2
α2V̄ 2

2 + gz1

)
−
(

p4

ρ
+ 1

2
α3V̄ 2

3 + gz4

)
= f A

L A

DA

V̄ 2
A

2
+ hM + fB

L B

DB

V̄ 2
B

2

Since we are assuming fully developed flow in each pipe, the kinetic energy flux at the
ends of each pipe must be the same. Thus, we can write 1

2α2V̄ 2
2 = 1

2α1V̄ 2
1 and
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1
2α3V̄ 2

3 = 1
2α4V̄ 2

4 . After substituting these relations into the preceding equation, we
obtain(

p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p4

ρ
+ 1

2
α4V̄ 2

4 + gz4

)
= f A

L A

DA

V̄ 2
A

2
+ hM + fB

L B

DB

V̄ 2
B

2

This equation shows that we can analyze flow through a passage made up of two straight
pipe segments and a reducing elbow by setting the total change in the mechanical energy
content of the fluid equal to the sum of the major loss in each pipe segment and the
minor loss due to the elbow. Note carefully that the major loss term for each pipe seg-
ment employs the friction factor, length, diameter, and average velocity for the specific
segment.

Now consider a much more complex single path pipe or duct system that contains
any number of straight pipe or ducts segments plus any combination of components
such as elbows, valves, reducers, filters, and traps. From the foregoing analysis we con-
clude that we can analyze the flow through such a system by setting the total change in
the mechanical energy content of the fluid equal to the sum of the major and minor
losses for each pipe or duct segment and each component along the flowpath. If point 1
for this system is at the inlet and point 2 is at the exit, we can write an energy balance
from point 1 to point 2 as(

p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
=
∑

hL +
∑

hM (13.29a)

where the summation symbols indicate that a major loss term is to be supplied for the
major loss in each straight pipe or duct segment, and a minor loss term is to be sup-
plied for each component in the system. In a single path system, a mass balance also
shows that

A1V̄1 = A2V̄2 (13.29b)

thus Eqs. 13.29 are the basic equations governing flow through a single flow path
system.

The form of Eq. 13.29a suggests that we define the total head loss hT for a flow
path as

hT =
∑

hL +
∑

hM (13.30)

This allows us to write the energy balance from point 1 to point 2 along a flow path as(
p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
= hT (13.31)

To apply the energy balance in a practical problem, we must be able to determine the
total head loss as well as values of the kinetic energy coefficient α that occur at the de-
sired points along the flowpath. Now the major loss may be calculated by means of a
friction factor as discussed earlier, and in the next section we discuss methods for ob-
taining the minor head loss for various components. How do we determine the kinetic
energy coefficients?
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To answer this question, note that the kinetic energy coefficient is defined by
Eq. 13.27 as ∫

CS
ρ
(

1
2 u • u

)
(u • n) dS = ±α

(
1
2ρV̄ 3 A

)
From this we see that the coefficient depends on the velocity profile at the section of in-
terest. The values of this coefficent for steady, fully developed, laminar, and turbulent
flow are of particular importance. It is straightforward to show that α = 1 for a uniform
profile, such as might be used to approximate the velocity profile at an inlet, or at the exit
of a well designed nozzle, and that α = 2 for the parabolic profile of a fully developed
laminar pipe flow. In fully developed turbulent flow in a smooth pipe, we can employ an
empirical approximation for the mean velocity profile in the form of the following
power-law equation:

u(r) = U
(

1 − r

R

)1/n
(13.32)

where u(r) is the mean velocity at radius r, U is the centerline mean velocity, and R is
the pipe radius. The average velocity corresponding to this velocity profile is given by

V̄

U
= 2n2

(n + 1)(2n + 1)
(13.33)

and from Eq. 13.27, the kinetic energy coefficient is found to be given by

α = (n + 1)3(2n + 1)3

4n4(n + 3)(2n + 3)
(13.34)

The exponent n, in turn, depends on Reynolds number as shown in Figure 13.16. It can
be seen that n varies from about 6 to 10 over the range of Re usually encountered. The
power-law velocity profile in fully developed turbulent pipe flow lies between the two
extremes of parabolic and uniform as shown in Figure 13.17. Although the kinetic en-
ergy coefficient α is a function n, and hence Re, the functional dependence is weak and
it is customary to employ α = 1 for fully developed turbulent flow in a pipe irrespective
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of Reynolds number. The error introduced by using α = 1 for turbulent flow is typically
less than 8%. Thus, for engineering purposes we use α = 1 for uniform or turbulent
flow, and α = 2 for a laminar pipe flow.

13.3.1 Minor Head Loss

A minor head loss occurs whenever there is a change in direction or geometry along a
flow path. Consider the effects on the flow as it passes through the abrupt turn in the 90°
miter bend shown in Figure 13.18A. Relatively large eddies form in the corner and the
top of the base leg. The formation of these eddies is called flow separation. Within these
eddies mechanical energy is converted into heat through viscous dissipation; thus flow
separation and eddy formation is a key mechanism in the minor head loss. The eddies
also decrease the effective cross-sectional area of the passage because there is no net
flow downstream through them. The result is a flow structure known as a vena contracta.
The fluid speeds up as it passes through the vena contracta, and some of the additional
kinetic energy of this fluid is lost when it later slows down again. If guide vanes are
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Figure 13.18 Flow (Re = 2 × 103 through a 90° right angle bend (A) without and (B) with guide vanes.



added as shown in Figure 13.18B, the eddies in the base leg and vena contracta are elim-
inated. The result is a smaller loss of mechanical energy than in an abrupt turn without
guide vanes. In some applications, such as a closed-circuit wind tunnel, the investment in
turning vanes to reduce the minor head loss is justified not only by a lower operating ex-
pense, but also to maintain adequate performance (e.g., uniform flow in the test section).

A different approach to reducing head loss in a turn is to employ a gradual bend as
shown in Figure 13.19A. In this case there is no corner in which eddies form, and the ed-
dies in the base leg are less intense than those in the elbow. If guide vanes are added to
the bend (Figure 13.19B), there is no flow separation at all and the minor head loss is
further reduced. We could evaluate the flow in valves, reducers, filters and other flow el-
ements in a similar fashion to obtain a qualitative understanding of the source of the
minor head loss.

Values of the minor head loss for common flow system components are tabulated in
two forms. The first is in the form of a head loss coefficient K, defined by writing the
minor loss as

hM = K
V̄ 2

2
(13.35)

The second method is through the use of an equivalent pipe length Le . A flow element
is said to create a loss equivalent to the major loss that would occur at the same flowrate
in a length Le of the same pipe or duct. The minor loss is then written as

hM = f
Le

D

V̄ 2

2
(13.36)

where D, f, and V̄ refer to the adjacent pipe flow, and Le is tabulated for various com-
ponents.

Values of the loss coefficient K, or equivalent length Le, for a variety of flow ele-
ments are given as we develop the subject. It is important when using either form of minor
head loss coefficient to take note of its precise definition. In the case of an element in
which the inlet and outlet areas differ, it is critical to determine whether the coefficient is
based on the inlet or outlet average velocity. You will also find that many manufacturers
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Figure 13.19 Flow (Re = 2 × 103) through a 90° gradual bend (A) without and (B) with guide vanes.



of products such as valves, filters, and nozzles prefer to give pressure drop as a function
of flowrate. To obtain the corresponding minor loss in one of the two forms just described,
we can use Eqs. 13.29 to apply a mass and energy balance to the element, dropping the
major loss term in the energy balance, and assuming appropriate values for the kinetic en-
ergy coefficients.
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CD/Video library/Smoke stack

Inlets and Exits
The minor loss created by an inlet or exit is calculated using a loss coefficient K. There
are a variety of possible inlet configurations for connecting a pipe to a reservoir of some
type. These range from reentrant to well rounded, and it is possible to decrease the inlet
loss significantly if the expense of a well-rounded inlet is justified. Four types of pipe
inlet are shown in Figure 13.20, along with the corresponding values of the inlet loss
coefficient, Kin. According to Eq. 13.35, the minor loss at an inlet is hM = Kin(V̄ 2/2),
where the average velocity refers to the value in the pipe.

A similar set of exit configurations for joining a pipe to a reservoir is shown in Fig-
ure 13.21, along with the corresponding values of the exit loss coefficient, Kex. Since all
the kinetic energy contained in the fluid is eventually lost as the exiting fluid decelerates
and mixes with the surrounding fluid, there is no advantage whatsoever to employing a
certain exit configuration in an attempt to reduce the exit loss. The loss coefficient is
Kex = 1 for each type of exit, and the minor loss is hM = V̄ 2/2, where V̄ refers to the
value in the pipe. As discussed later, a diffuser, which is a type of gradual expansion,
may be used to reduce the kinetic energy loss at an exit.

(A) (B)

Kin � 0.8

Kin � 0.2

Kin � 0.5

Kin � 0.04

(D)(C)

Figure 13.20 Loss coefficients
for inlets: (A) reentrant, Kin =
0.8, (B) sharp edged, Kin = 0.5,
(C) slightly rounded, Kin = 0.2,
and (D) well rounded, Kin =
0.04.



13.3 ANALYSIS OF FLOW IN SINGLE PATH PIPE AND DUCT SYSTEMS 827

(1)

(2)

(A) (B)
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Kex � 1.0

Kex � 1.0

Kex � 1.0

Kex � 1.0

Figure 13.21 Loss coeffi-
cients for exits. (A) reentrant,
(B) sharp edged, (C) slightly
rounded, and (D) well rounded.
Kex = 1.0 for all exits.

EXAMPLE 13 .9

Find the pressure at the pump inlet shown in Figure 13.22 if the flowrate is 20 gal/min
in the 1 in. Schedule 40 galvanized iron inlet pipe. The water is at 60°F.

Pump

z

y

H � 10 ft

d � 2 ft

2

1

Figure 13.22 Schematic for Exam-
ple 13.9.
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SOLUTION

To compute the change in pressure we will apply Eq. 13.29a(
p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
=
∑

hL +
∑

hM

between a point at the free surface of the reservoir and a point at the pump inlet. We must
account for the reentrant inlet and the major loss associated with (d + H = 12 ft) of the
pipe. From Table 13.4, the inside diameter of the pipe is D = 1.049 in., the average ve-
locity corresponding to the 20 gal/min flowrate through this pipe is

V̄ = Q

A
=

(20 gal/min)

(
1 ft3

7.48 gal

)(
1 min

60 s

)

π
(1.049 in.)2

4

(
1 ft2

144 in.2

) = 7.43 ft/s

For a density ρ = 1.938 slugs/ft3 and kinematic viscosity of ν = 1.21 × 10−5 ft2/s, the
following Reynolds number is found:

Re = V̄ D

ν
=

(7.43 ft/s)(1.049 in.)

(
1 ft

12 in.

)
1.21 × 10−5 ft2/s

= 5.4 × 104

The flow is turbulent in the pipe, so we will assume α2 = 1. Writing Eq. 13.29a and not-
ing that the pressure at point 1 is atmospheric, and the kinetic energy is negligible,
we have (

pA

ρ

)
−
(

pin

ρ
+ 1

2
V̄ 2

in + gH

)
= f

L

D

V̄ 2
in

2
+ Kin

V̄ 2
in

2
(A)

Solving for the pressure at the pump inlet, we find

pin = pA − ρ
V̄ 2

in

2
− ρgH − f

L

D
ρ

V̄ 2
in

2
− Kinρ

V̄ 2
in

2
(B)

where L/D = (12 ft/1.049 in.)(12 in./1 ft) = 137.3, the relative roughness e/D =
0.006 is read from Figure 13.12, the friction factor is found from the Moody chart, Fig-
ure 13.13, to be f = 0.034 at Re = 5.4 × 104, and Kin is taken as Kin = 0.8. From this
equation we conclude that the pressure at the pump inlet is below atmospheric for four
reasons: (1) the increase in velocity of the water as it enters the pipe, (2) the higher ele-
vation of the pump inlet, (3) the major loss of 12 ft of pipe, and (4) the loss due to the
reentrant inlet. Using the data provided to evaluate each term in (B) yields

pA = 14.7 lbf/in.2
(

144 in.2

1 ft2

)
= 2117 lbf/ft

2



Sudden Area Change
The effect of a sudden area change should be familiar from the corresponding case study
in Chapter 3 (Section 3.3.2). As shown in Figure 13.23, the minor loss associated with a
sudden enlargement in a pipe is given by an enlargement loss coefficient KE . The minor
loss with an enlargement is expressed as hM = KE(V̄ 2

1 /2). Note that in this case the av-
erage velocity is that in the higher speed flow upstream, i.e., V̄1. In Example 7.8 we
showed that the expansion loss coefficient can be obtained by using a momentum bal-
ance. The result according to (F) of that example is KE = (1 − A1/A2)

2 . For a round
pipe, the enlargement loss coefficient can be computed from

KE =
[

1 −
(

D1

D2

)2
]2

(13.37)

or simply read from the plot shown in the figure.
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ρ
V̄ 2

in

2
= (1.938 slugs/ft3)(7.43 ft/s)2(0.5) = 53.5 lbf/ft

2

ρgH = (1.938 slugs/ft3)(32.2 ft/s2)(10 ft) = 624 lbf/ft
2

f
L

D
ρ

V̄ 2
in

2
= (0.034)(137.3)53.5 lbf/ft

2 = 250 lbf/ft
2

and

Kinρ
V̄ 2

in

2
= (0.8)53.5 lbf/ft

2 = 43 lbf/ft
2

Thus the pressure at the pump inlet is

pin = (2117 − 53.5 − 624 − 250 − 43) lbf/ft
2 = 1147 lbf/ft

2 = 7.97 psia

which is well below atmospheric pressure.
If the pressure at a pump inlet approaches the vapor pressure of water, cavitation

may occur in the pump with a loss of performance and possible damage. As discussed
further in Section 13.5.1, pump manufacturers specify a quantity known as the Net Pos-
itive Suction Head Required to describe the minimum inlet pressure for the pump.
Knowing this value, we can determine whether the pressure calculated at a pump inlet is
allowable. In this example it can be seen that the effects of elevation and major loss are
of the greatest significance. To increase the pressure at this pump inlet, we could con-
sider a design change that involves a lower elevation and/or a larger inlet pipe.

CD/Video library/Backward facing step



The effects of a sudden contraction are described by a contraction loss coefficient
KC and corresponding minor loss hM = KC(V̄ 2

2 /2) as illustrated in Figure 13.24. Note
carefully that the loss is calculated in terms of the higher average velocity V̄2 in the
downstream section of pipe. We cannot obtain a formula similar to Eq. 13.35 from a mo-
mentum balance in this case, so we must read the contraction loss coefficient from the
figure.
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Figure 13.23 Loss coefficient for a sudden
enlargement.

EXAMPLE 13 .10

An air-conditioning system employs horizontal, round sheet metal ducts of 6 and 12 in.
diameter. What is the pressure change in a 400 ft3/min flow of 70°F air through a sud-
den enlargement from the 6 in. to the 12 in. duct? What is the frictional pressure drop
caused by this enlargement? Find the corresponding quantities in a 400 ft3/min flow
through a sudden contraction between these duct sizes.

A1 A2

A2�A1

0
0

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1.0

hM � KC
V
–

2
2

2

KC

Figure 13.24 Loss coefficient for a sudden
contraction.
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SOLUTION

We are asked to determine the pressure change and frictional pressure drop caused by a
specified sudden enlargement in a piping system and then to compare these values with
the corresponding quantities caused by a contraction between the same two duct sizes.
Figures 13.23 and 13.24 show the appropriate geometries for the expansion and
contraction.

First we calculate the average velocity in the 6 in. and 12 in. ducts, respectively, as

V̄6 = Q

A
= 400 ft3/min

(π/4)(0.5 ft)2
= 2037 ft/min

and

V̄12 = Q

A
= 400 ft3/min

(π/4)(1 ft)2
= 509 ft/min

To analyze the enlargement, we will apply Eq. 13.29a:(
p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
=
∑

hL +
∑

hM

Assuming turbulent flow, and noting that the duct is horizontal with no major loses, we
write (p1/ρ + 1

2 V̄ 2
1 ) − (p2/ρ + 1

2 V̄ 2
2 ) = hM , where for the enlargement point 1 is in

the smaller duct. After combining Eqs. 13.35 and 13.37, we can write the minor loss as 

hM = KE
V̄ 2

2
=
[

1 −
(

D1

D2

)2
]2

V̄ 2

2

Thus the pressure change across the enlargement is given by 

p1 − p2 = 1

2
ρ
(
V̄ 2

2 − V̄ 2
1

)+ ρ

[
1 −

(
D1

D2

)2
]2

V̄ 2
1

2

The first term is the frictionless pressure increase due to the air slowing down; the sec-
ond term is the pressure drop due to friction. Inserting the data and evaluating each term
separately, we have (with V̄1 = V̄6 and V̄2 = V̄12)

1

2
ρ
(
V̄ 2

2 − V̄ 2
1

) = 1

2
(2.329 × 10−3 slug/ft3)[(509 ft/min)2 − (2037 ft/min)2]

(
1 min

60 s

)2

= −1.26 lbf/ft
2

ρ

[
1 −

(
D1

D2

)2
]2

V̄ 2
1

2
= (2.329 × 10−3 slug/ft3)

[
1 −

(
0.5

1

)2
]2 (

1

2

)
(2037 ft/min)2

(
1 min

60 s

)2

= 0.75 lbf/ft
2
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We see that that pressure change across the enlargement is

p1 − p2 = −1.26 lbf/ft
2 + 0.75 lbf/ft

2 = −0.51 lbf/ft
2

(
1 in. H2O

5.2 lbf/ft2

)
= −0.1 in. H2O

which is an increase in pressure. To understand this result, note that the effect of the area
increase is larger than that of the minor loss. The enlargement loss coefficient is seen
to be 

KE =
[

1 −
(

D1

D2

)2
]2

=
[

1 −
(

0.5

1

)2
]2

= 0.56

To analyze the contraction we again apply Eq. 13.29a, and assume turbulent flow
to write (p1/ρ + 1

2 V̄ 2
1 ) − (p2/ρ + 1

2 V̄ 2
2 ) = hM , where for the contraction, point 1 is in

the larger duct. The minor loss is hM = KC(V̄ 2
2 /2), where we read the value of KC

from Figure 13.23. Thus the pressure change across the contraction is given by
p1 − p2 = 1

2ρ(V̄ 2
2 − V̄ 2

1 ) + ρKC(V̄ 2
2 /2). The first term is the frictionless pressure

decrease due to the air speeding up; the second term is the pressure drop due to friction.
Note that the area ratio in this case is A2/A1 = D2

2/D2
1 = (0.5 ft)2/(1 ft)2 = 0.25,

hence KC = 0.41. Inserting the data with V̄1 = V̄12 and V̄2 = V̄6, we have

1

2
ρ
(
V̄ 2

2 − V̄ 2
1

) = 1

2
(2.329 × 10−3 slug/ft3)[(2037 ft/min)2 − (509 ft/min)2]

(
1 min

60 s

)2

= 1.26 lbf/ft
2

ρKC
V̄ 2

2

2
= (2.329 × 10−3 slug/ft3)(0.41)

(
1

2

)
(2037 ft/min)2

(
1 min

60 s

)2

= 0.55 lbf/ft
2

We see that that pressure change across the contraction is

p1 − p2 = 1.26 lbf/ft
2 + 0.55 lbf/ft

2 = 1.81 lbf/ft
2

(
1 in. H2O

5.2 lbf/ft2

)
= 0.35 in. H2O

which is a decrease due to the flow speeding up, and a decrease due to friction.

Diffusers and Nozzles
Diffusers and nozzles are examples of components in which a gradual area change oc-
curs. The conical diffuser and nozzle shown in Figure 13.25 are characterized respec-
tively by a diffuser loss coefficient K D and a nozzle loss coefficient KN . The corre-
sponding losses are given by hM = K D(V̄ 2

in/2) and hM = KN (V̄ 2
in/2). As shown in

Table 13.5, both K D and KN are functions of the angle θ and relevant area ratio. As
shown in Example 13.11, diffusers and nozzles are often used to change the area of a
flow passage while avoiding the substantial frictional pressure drop incurred with a
sudden expansion or contraction.
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TABLE 13.5 Loss Coefficients for Diffusers and Nozzles

Included Angle (°)

Area ratio, A1/A2 10 15 20 30 45 60 90 120 150 180

Diffuser loss coefficient, K D

0.06 0.21 0.29 0.38 0.6 0.84 0.88 0.88 0.88 0.88 0.88

0.1 0.21 0.28 0.38 0.59 0.76 0.8 0.83 0.84 0.83 0.83

0.25 0.16 0.22 0.3 0.46 0.61 0.68 0.64 0.63 0.62 0.62

0.5 0.11 0.13 0.19 0.32 0.33 0.33 0.32 0.31 0.30 0.30

Nozzle loss coefficient, KN

1 0 0 0 0 0 0 0 0 0 0

2 0.2 0.2 0.2 0.2 0.22 0.24 0.48 0.72 0.96 1

4 0.8 0.64 0.64 0.64 0.88 1.1 2.7 4.3 5.6 6.6

6 1.8 1.4 1.4 1.4 2 2.5 6.5 10 13 15

10 5 5 5 5 6.5 8 19 29 37 43

Vin
�

(A)

�

(B)

Vin

Figure 13.25 Angle definitions for (A) diffusers and (B) nozzles. Loss is based on V̄in as shown.

EXAMPLE 13 .11

If the sudden enlargement and contraction in the system described in Example 13.10 are
replaced with a conical diffuser and conical nozzle, respectively, and the included angle
of each is 10°, by how much is the frictional pressure drop reduced?

SOLUTION

To compare the frictional pressure drops calculated for the sudden enlargement and con-
traction with those for a 10° included angle diffuser and nozzle, we will first compare the
loss coefficients for each component. In Example 13.10 we found KE = 0.56, with a
frictional pressure drop of ρKE(V̄ 2

1 /2) = 0.75 lbf/ft2 for the enlargement. For the
diffuser with A1/A2 = 0.25 and θ = 10° we find from Table 13.5 that K D = 0.16.
The ratio of the loss coefficients is K D/KE = 0.16/0.56 = 0.29, which can be inter-
preted as a 71% decrease in the loss coefficient realized by replacing the enlargement
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with a diffuser. Since the loss associated with either device is referenced to the same
upstream velocity V̄in, the frictional pressure drop associated with the diffuser is simply
29% of that for the enlargement, or 0.22 lbf/ft2.

For the contraction we found KC = 0.41, and ρKC(V̄ 2
2 /2) = 0.55 lbf/ft2 . From

Table 13.5, we see that a nozzle with A1/A2 = 4.0 and θ = 10° has KN = 0.80. It
appears contradictory for KC to be less than KN but recall that the minor loss for the
contraction is based on the higher downstream velocity V̄2, while for the nozzle the table
values are based on the lower upstream velocity V̄in. The loss for the nozzle is

ρKN
V̄ 2

1

2
= (2.329 × 10−3 slug/ft3)(0.8)

(
1

2

)
(509 ft/min)2

(
1 min

60 s

)2

= 0.067 lbf/ft
2

which corresponds to a reduction in the frictional pressure drop of
(0.55 lbf/ft2 − 0.067 lbf/ft2)/0.55 lbf/ft2 × 100% = 88%.

The decrease in pressure drop due to the nozzle and diffuser can be translated into
reduced operating cost by recalling that the power needed to move the fluid, Q�p, is
supplied by a fan typically driven by an electric motor. This savings is offset by in-
creased initial construction costs. Another consideration in duct design is the amount of
space an installation will require. In this example each gradual transition requires almost
6 ft of length.

Gradual and Miter Bends
The minor head loss associated with both gradual and miter bends is given in terms
of an equivalent length Le , thus the minor loss is calculated from Eq. 13.36 as
hM = f (Le/D)(V̄ 2/2), where D, f, and V̄ refer to the adjacent pipe flow. Data for the
equivalent length to be used with both gradual and miter bends are given in Figure 13.26.
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Figure 13.26 Minor loss coefficients (Le/D) for (A) gradual and (B) miter bends.
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TABLE 13.6 Equivalent Lengths for Various Pipe Fittings

Pipe fitting Description Lc/D
Ball valve Fully open 3

Gate valve Fully open 8
3/4 open 35
1/2 open 160
1/4 open 900

Globe valve Fully open 340
1/2 open 500

Elbows 45° standard 16
90° standard 30
90° long radius 20

180° bend Close pattern return 50

90° bends Bend radius = 1 pipe diameter 20
Bend radius = 2 pipe diameters 12
Bend radius = 3 pipe diameters 16
Bend radius = 4 pipe diameters 24

Standard tee With flow through run 20
With flow through branch 60

Pipe Components
There are many different pipe components available for use in systems incorporating
threaded, flanged, welded, or glued connections. Values of equivalent lengths for some
of these components may be found in Table 13.6.

13.3.2 Pump and Turbine Head

Pumps, fans, blowers, and turbines occur in many pipe and duct systems. A pump, fan,
or blower increases the mechanical energy of a fluid flowing through them, while a tur-
bine decreases the mechanical energy of a fluid. To account for the presence of one of
these devices along a flow path, we will make use of the concepts of a pump head Hpump

and turbine head Hturbine and write the energy balance from point 1 to point 2 along a
flow path like the one shown in Figure 13.27 as(

p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
= hT − Hpump + Hturbine (13.38)

where hT is the total head loss. This equation can then be used to analyze a single path
system that includes a pump, fan, blower, or turbine along with any additional elements.

To derive an expression for either the pump or the turbine head, consider the me-
chanical energy change in the fluid passing through a power-producing or power-ab-
sorbing device. The energy change is determined as usual by the conditions at the inlet
and outlet of the device. At the inlet, the mechanical energy content per unit mass is
given by pin/ρ + 1

2αinV̄ 2
in + gzin . A similar term gives the energy content at the outlet.

For devices operating on a constant density fluid, it is usually appropriate to assume



turbulent flow with α = 1, uniform properties at the inlet and outlet, and identical inlet
and outlet areas and elevations. The increase in mechanical energy of the fluid passing
through the device is then given by (pout/ρ − pin/ρ), so the pump head is defined as

Hpump = pout − pin

ρ
(13.39)

In contrast, the turbine head, is defined as

Hturbine = pin − pout

ρ
(13.40)

Note carefully that as we have defined them, both pump and turbine heads are always
positive quantities. That is, a pump, fan, or blower, which increases the pressure of the
fluid, results in a positive value for Hpump, and a turbine, which decreases the pressure
of the fluid, also results in a positive value for Hturbine. These definitions are consistent
with the fact that on the right-hand side of Eq. 13.38, Hpump is subtracted from the total
head loss while Hturbine is added to hT .

To relate the pump head Hpump to the actual shaft power Ppump required to run the
pump, we will use the concept of an efficiency. Recall that in Example 7.15, we applied
an energy balance to analyze the steady, constant density flow through a pump. The
same analysis applies without modification to a fan or blower. In each case we assume
turbulent flow with α = 1, uniform properties at the inlet and outlet of the device, and
identical inlet and outlet elevations and areas. The energy balance on a CV that encloses
the device (see Example 7.15) is 

Ṁ

[(
uout + pout

ρ

)
−
(

uin + pin

ρ

)]
= Ẇshaft + Q̇C

where Ẇshaft = Ppump. Rearranging, we obtain

Ppump = Q(pout − pin) + [Ṁ(uout − uin) − Q̇C ]

In the absence of all losses, an energy balance would show that the ideal pump power is

Pideal = Q(pout − pin) (13.41)
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1
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Figure 13.27 Schematic of a single
pass flow system including pump,
turbine, and minor loss elements.



thus we can write the energy balance as

Ppump = Pideal + [Ṁ(uout − uin) − Q̇C ]

The term Ṁ(uout − uin) − Q̇C represents the additional power input required to over-
come losses in a real pump, fan, or blower. The efficiency of this type of device is de-
fined as the ratio of the ideal power Pideal to the actual power Ppump, or

ηpump = Pideal

Ppump
(13.42)

We can now write the required pump power by combining Eqs. 13.42 and 13.41 to write

Ppump = Q(pout − pin)

ηpump
(13.43)

From the definition of the pump head, Eq. 13.39, we can write (pout − pin) = ρHpump,
thus from the preceding expression we have the desired expression relating pump head
to the efficiency of the pump, shaft power input, and volume flowrate:

Hpump = ηpump Ppump

ρQ
(13.44)

This equation also applies to a fan or blower. Since the efficiency is always less than
unity, the head provided by the pump is always less than the shaft power input per unit
of mass flowrate.

Now consider a turbine. To account for the fact that the actual power output of a
turbine is always less than the power extracted from the fluid, turbine efficiency is
defined as

ηturbine = Pturbine

Pideal
(13.45)

and an energy balance on a turbine gives

Ṁ

[(
uout + pout

ρ

)
−
(

uin + pin

ρ

)]
= Ẇshaft + Q̇C

where now Ẇshaft = −Pturbine. (Recall that positive shaft work is done on the CV.) Rear-
ranging the energy balance, we can write

Pturbine = Q(pin − pout) − [Ṁ(uout − uin) − Q̇C ]

In the absence of all losses, an energy balance would show that the ideal turbine power is

Pideal = Q(pin − pout) (13.46)

and after combining this with Eq. 13.45, we obtain

Pturbine = ηturbine Q(pin − pout) (13.47)

We can now use Eqs. 13.47 and 13.40 to write

Hturbine = Pturbine

ρQηturbine
(13.48)
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EXAMPLE 13 .12

A small water turbine rated at 25 hp has an efficiency of 61% and operates at a flowrate
of 10 ft3/s. Find the turbine head and pressure drop across the turbine.

SOLUTION

We will apply Eq. 13.48 to determine the turbine head, then use Eq. 13.47 to determine
the pressure drop. Inserting the data into Eq. 13.48 we have

Hturbine = Pturbine

ρQηturbine
= (25 hp)[550 (ft-lbf)/(hp-s)]

(1.94 slugs/ft3)(10 ft3/s)(0.61)
= 1162 ft2/s2

The pressure drop across the turbine is found by rearranging Eq. 13.47 to obtain
pin − pout = Pturbine/ηturbine Q . Inserting the data yields

pin − pout = Pturbine

ηturbine Q
=

(25 hp)[550 (ft-lbf)/(hp-s)]

(
1 ft2

144 in.2

)
(0.61)(10 ft3/s)

= 15.7 psia

The 61% efficiency means that the effective power input to the turbine from the water is
41 hp. To look at the impact of the efficiency of this turbine another way, if the turbine
had 100% efficiency, the pressure drop would be only 9.5 psia.

13.3.3 Examples

Problems involving fully developed flow in a single path pipe or duct system are char-
acterized by four parameters: the pressure difference �p = p1 − p2, volume flowrate
Q, pipe diameter D or duct hydraulic diameter DH , and length L. By asking which of
these parameters is unknown, we can identify problems of four distinct types in such
flows. In this section we will describe the approaches used to solve each of these four
problem types.

The governing equations in the absence of a pump or turbine are the continuity and
energy equations as given by Eqs. 13.29a and 13.29b:(

p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
=
∑

hL +
∑

hM

and

A1V̄1 = A2V̄2

where the major loss for each pipe segment is given by Eq. 13.8 as hL =
f (L/D)(V̄ 2/2), and the minor losses are given by either Eq. 13.35 or 13.36 as hM =
K (V̄ 2/2) or hM = f (Le/D)(V̄ 2/2). In a duct flow, of course, we write these equations
in terms of hydraulic diameter. If a pump or turbine is present, we employ Eq. 13.38,



which includes the pump or turbine head terms:(
p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
= hT − Hpump + Hturbine

The elevation difference is normally assumed to be known, and the friction factor is deter-
mined by the relative roughness and Moody charts or by using one of the formulas given
earlier. A strategy for each type of problem is given, along with a reference to a relevant
example. It is helpful to study the indicated examples to learn how to apply the strategy.

1. Known: Q, D, or DH , and L; Unknown: 	 p With Q and D or DH known, we can
calculate V̄ and Re. The type of pipe or duct determines e/D, and we can read the fric-
tion factor from the Moody chart or obtain it from one of the formulas. Since L is also
known, we next solve the appropriate energy equation for the unknown �p. This strat-
egy was demonstrated in Examples 13.6 and 13.9.

2. Known: Q, D, or DH , and 	 p; Unknown: L With Q and D or DH known, we can
calculate V̄ and Re. The type of pipe or duct determines e/D, and we can read the fric-
tion factor from the Moody chart or obtain it from one of the formulas. Since �p is also
known, we can solve the appropriate energy equation for the unknown length. This
strategy is demonstrated in Example 13.13.
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EXAMPLE 13 .13

A new reservoir will use gravity to supply drinking water to a water treatment plant
serving several surrounding towns, as shown in Figure 13.28. The required flowrate is
5000 gal/min. The surface of the reservoir is 200 ft above the plain where the water
treatment plant is located, and the supply pipe is commercial steel, 3 ft in diameter. If the
minimum pressure required at the water treatment plant is 50 psig, how far away can the
reservoir be located with this size pipe? Assume that minor losses are negligible and that
the water is at 50°F.

Treatment
plant

Reservoir

200 ft

L

2

1

z

Figure 13.28 Schematic for Example 13.13.
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SOLUTION

We are asked to determine the maximum distance between a water treatment plant and
a reservoir given a set of piping constraints. Figure 13.28 serves as an appropriate sketch
for this flow situation. This is a type 2 problem in that the unknown is a length. We will
apply Eq. 13.29a:

(
p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
=
∑

hL +
∑

hM

To find the velocity in the pipe, V̄2, we write V̄2 = Q/A and insert the data to obtain 

V̄2 =
(5000 gal/min)

(
1 min

60 s

)(
1 ft3

7.48 gal

)
π(3 ft)2/4

= 1.58 ft/s

Using properties for water at 50°F, we find Re = V̄2 D/ν = [(1.58 ft/s)(3 ft)]/
(1.407 × 10−5 ft2/s) = 3.4 × 105 ; thus the flow is turbulent, as expected. From
Figure 13.12, the relative roughness for D = 3 ft commercial steel pipe is e/D =
5 × 10−5. The friction factor from Figure 13.13, or calculated using the Colebrook or
Chen equation, is found to be f = 0.0147.

To apply Eq. 13.29a, note that at point 1 on the reservoir surface, p1 = 14.7 psia =
0 psig, V̄ 2

1 is negligible and z1 = 200 ft. At point 2 we have p2 = 50 psig,
V̄2 = 1.58 ft/s, and z2 = 0 ft. We will assume α2 = 1 as usual. The major loss is hL =
f (L/D)(V̄ 2

2 /2), so after neglecting the minor losses, Eq. 13.29a becomes g(z1 − z2) −
(p2/ρ + 1

2α2V̄ 2
2 ) = f (L/D)(V̄ 2

2 /2). Solving for the length, we obtain 

L = 2D

f V̄ 2
2

[
g(z1 − z2) −

(
p2

ρ
+ 1

2
α2V̄ 2

2

)]

Inserting the data yields:

L = 2(3 ft)

(0.0147)(1.58 ft/s)2

×
[
(32.2 ft/s2)(200 ft) − (50 lbf/in.2)(144 in.2/ft2)

1.94 slugs/ft3
− 1

2
(1.58 ft/s)2

]
= 4.46 × 105 ft

This is a distance of about 84 miles. Note that in this problem we have used gage pres-
sure consistently throughout. In earlier problems we used absolute pressure throughout.
Both approaches are correct, but we cannot mix gage and absolute pressure in the head
loss equation.



3. Known: 	 p, D, or DH , and L; Unknown: Q With Q unknown, we cannot calculate
V̄ and Re. The problem requires iteration. Consider a flow in a pipe. One approach is to
assume a friction factor on the fully turbulent, i.e., horizontal, portion of the curve for the
value of e/D, then solve the appropriate energy equation for the estimated V̄ . We can
now calculate Re for this value of V̄ and use it to find a new value of f, followed by a new
estimate for V̄ . The iteration process stops when the change in the estimated average ve-
locity is sufficiently small. The final step is to calculate Q. The same approach is also
used for flow in a duct, but in that case we use e/D and Re based on DH . In Exam-
ple 13.14, note how this strategy is employed to determine the flowrate through a siphon.
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EXAMPLE 13 .14

Gasoline is siphoned from a tank with a smooth hose, i.d. 2 cm, as shown in Fig-
ure 13.29. For this grade of gasoline ρ = 719 kg/m3 and µ = 2.92 × 10−4 (N-s)/m2 .
Find the flowrate.

Siphon

0.25 m

0.25 m

0.50 m H � 1 m

VE

1

2

z

Figure 13.29 Schematic for Example 13.14.

SOLUTION

We are asked to determine the flowrate through a siphon associated with a gasoline tank.
Figure 13.29 serves as an appropriate sketch for this flow situation. Since the unknown
is Q, this is a type 3 problem. A similar problem was investigated in Example 8.13 by as-
suming frictionless flow. From the Bernoulli equation, the frictionless exit velocity was
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found to be VE =
√

2gH . If we employ that formula to obtain an estimate of the veloc-
ity and flowrate in this case the results are:

VE =
√

2(9.8 m/s2)(1 m) = 4.43 m/s

Qideal = VE AE = (4.43 m/s)

(
π

4

)
(0.02 m)2 = 1.4 × 10−3 m3/s

Here we intend to consider the effect of friction by including the effects of the major
and minor head loss. We will apply Eq. 13.29a:

(
p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
=
∑

hL +
∑

hM

with the first point on the free surface of the gasoline and the second point at the siphon
exit. At the free surface, the pressure is atmospheric and the kinetic energy is negligi-
ble; at the exit, the pressure is atmospheric, the average velocity is V̄E and the kinetic
energy coefficient is αE . Since z1 − z2 = H , we can write the resulting equation as
gH = 1

2αE V̄ 2
E +∑ hL +∑ hM . The quantity gH in this equation is the total

head available to drive the flow. As fluid moves from the free surface and through
the hose to the exit, this total or available head is reduced by the head loss associated
with the major and minor losses, leaving a velocity head at the exit of
1
2αEV̄ 2

E = gH −∑ hL −∑ hM . Solving this equation for the exit velocity we obtain

V̄E =
√

2(gH −∑ hL −∑ hM)

αE
(A)

To check this result, note that in a frictionless flow, the major and minor losses are zero,
the velocity profile is uniform, which means that αE = 1, and (A) predicts V̄E = √

2gH .
For a uniform velocity profile, VE = V̄E , so that the result from the Bernoulli equation,
VE = √

2gH , is reproduced. In a flow with friction, where αE ≥ 1 and the major and
minor losses are nonzero, the average exit velocity is less than 

√
2gH ; i.e., the velocity

and flowrate are reduced by friction.
The total head loss for this problem is due to 2.0 m of hose, a reentrant inlet, and

two consecutive 90° bends, each with 0.25 m radius of curvature. Since we are at, but
not beyond, the exit, and the kinetic energy of the flow at the exit is unchanged from its
value in the hose, there is no exit minor loss in this case. Using Figure 13.20A for the
reentrant inlet, we find that Kin = 0.8. For the bends, r/D = 0.25 m/0.02 m = 12.5,
so from Figure 13.26A we find that Le/D = 35. In this incompressible flow in a con-
stant area hose, the average velocity at any point along the hose is the same as at the exit.
The total head loss is therefore given by

∑
hL +

∑
hM = f

L

D

V̄ 2
E

2
+ Kin

V̄ 2
E

2
+ f

Le

D

V̄ 2
E

2
= V̄ 2

E

2

[
f

D
(L + Le) + Kin

]
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Substituting this result into (A) and solving for V̄E , we obtain

V̄E =
√

2gH

αE + [( f/D)(L + Le) + Kin]
(B)

It appears that we can solve directly for V̄E ; but note that we must be able to calculate
Re to find f and αE . Thus we must first guess V̄E and iterate. As a first guess we should
choose a value less than the frictionless result 4.43 m/s, since friction can be expected to
reduce the flowrate. Suppose we choose V̄ (1)

E = 4 m/s. Using property values given in
the problem statement, we find

Re(1) = ρV̄ D

µ
= (719 kg/m3)(4 m/s)(0.02 m)

2.92 × 10−4 (N-s)/m2 = 2 × 105

hence the flow is turbulent. We therefore assume αE = 1. From the Moody chart or the
Chen equation we can now determine f (1) = 0.0165, noting that e/D = 0 for smooth
tubes. Now we use (B) to determine V̄ (2)

E as

V̄ (2)
E =

√
2(9.81 m/s2)(1 m)

1 + [(0.0165/0.02 m)(2.0 + 1.4) + 0.8]
= 2.1 m/s

then use this result to calculate Re(2) and f (2), repeating the process until the value of
V̄E converges. The results of this iteration are shown in the following table.

Iteration V̄ (m/s) Re f

1 4.0 2 × 105 0.0165

2 2.1 1 × 105 0.0178

3 2.0 9 × 104 0.0175

4 2.0 9 × 104 0.0175

We see that the effect of friction on a siphon is significant, reducing the average veloc-
ity by over 50% of the ideal frictionless value. The final flowrate is found to be 

Q = V̄E AE = (2.0 m/s)

(
π

4

)
(0.02 m)2 = 6.3 × 10−4 m3/s

Notice also that we assumed α = 1 for this problem. In fact, Figure 13.16 and
Eq. 13.34 show that n is about 7 and α = 1.06. Repeating the iteration with this value
shows that our use of α = 1 results in a 3% error.



4. Known: 	 p, Q, and L; Unknown: D or DH With D or DH unknown, we cannot
calculate V̄ and Re, even though we know Q. The problem requires iteration. One
approach is to assume a value for D or DH , which allows V̄ and Re to be calculated.
Since D or DH is assumed known, e/D and the Moody chart can next be used to find f,
after which the appropriate energy equation is solved to find the estimated �p. The es-
timated �p is compared with the known value and used to adjust the diameter upward
or downward. If the estimated �p is larger than the actual value, D or DH should be
increased because this will result in a lower V̄ and Re, and ultimately a lower f and esti-
mated �p. The iteration process stops when the estimated �p agrees with the known
value. At this point the value of D or DH is known. This strategy is demonstrated in
Example 13.15.
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EXAMPLE 13 .15

A farmer needs to pump 50°F water to a spray irrigation system 100 ft away and 13 ft
above the pump as shown in Figure 13.30. The irrigation system requires 30 gal/min at
a minimum of 25 psig, and the farmer’s pump supplies 30 gal/min at no more than
50 psig. What is the minimum diameter of PVC pipe that will meet the requirements if
minor losses are neglected?

Water at 50�F

H � 13 ft

L � 100 ftPump can supply
30 gal/min with
pmax � 50 psig

Irrigation system inlet
(requires 30 gal/min
with p � 25 psig)

Pump

z
1

2

Figure 13.30 Schematic for Example 13.15.

SOLUTION

We are asked to determine the minimum pipe diameter that will meet the requirements of
a specified irrigation system. Figure 13.30 serves as an appropriate sketch for this flow
situation. Since the unknown is D, this is a type 4 problem. We will apply Eq. 13.29a(

p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
=
∑

hL +
∑

hM
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with the first point at the pump exit, and the second point at the inlet of the irrigation sys-
tem. The elevations of these two points are known, and we also know V̄ = V̄1 = V̄2, and
minor losses are negligible. We will assume turbulent flow with α = 1. Under these con-
ditions the equation reduces to (p1 − p2)/ρ + g(z1 − z2) = f (L/D)(V̄ 2/2) . Since
z1 − z2 = −H , we have:

(p1 − p2) − ρgH = ρ f
L

D

V̄ 2

2
(A)

Solving for the pressure at the pump we obtain

p1 = p2 + ρgH + ρ f
L

D

V̄ 2

2
(B)

We see that the pump output pressure p1, must at a minimum be greater than the ambi-
ent hydrostatic pressure to ρgH at the pump outlet plus the amount needed to overcome
the frictional pressure drop in the pipe, ρ f (L/D)(V̄ 2/2). In addition, the pump must
provide the pressure p2 required at the irrigation system. To find the maximum frictional
pressure drop that can be allowed, we evaluate the left-hand side of (A), using the
known values of p2 and p1, to obtain

(p1 − p2) − ρgH = (50 − 25) lbf/in.2 − (1.94 slugs/ft3)(32.2 ft/s2)(13 ft)

(
1 ft2

144 in.2

)
= 19.4 psi

We must now select a Schedule 40 pipe size whose diameter D results in a frictional
pressure drop less than or equal to the maximum allowable pressure drop of 19.4 psi.
We can express this requirement by using (A) and the preceding calculation as
ρ f (L/D)(V̄ 2/2) ≤ 19.4 psi. We will select an initial value of D(1)

40 , use the inside di-
ameter corresponding to this pipe size and the specified flowrate to calculate V̄ (1),

Re(1), and f (1), calculate [ρ f (L/D)(V̄ 2/2)](1) , then increase or decrease the D(2)
40

value to the next larger or smaller pipe size as needed to satisfy the inequality. We will
assume a relative roughness of zero for smooth plastic.

To illustrate the first iteration, note that for an initial guess of 3
4 in. pipe, D =

0.06867 ft. Using property values of ρ = 1.94 slugs/ft3 and ν = 1.407 × 10−5 ft2/s for
water at 50°F, we find that the average velocity V̄ (1) is given by 

V̄ (1) = Q

π D2/4
= 4(30 gal/min)

π(0.06867 ft)2(7.48 gal/ft3)(60 s/min)
= 18.0 ft/s

and the remaining parameters are found to be

Re(1) = V̄ (1) D(1)

ν
= (18.0 ft/s)(0.06867 ft)

(1.407 × 10−5 ft2/s)
= 87,850

f (1) = 0.0182
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ρ f
L

D

V̄ 2

2
=

(1.94 slugs/ft3)(0.0182)

(
100 ft

0.06867 ft

)
1

2
(18.0 ft/s)2

144 in.2/ft2
= 57.8 psi

Using this procedure we can generate the data shown in the following table:

D40 (in.) D (ft) V̄2(ft/s) Re f � f
L
D

V̄2

2
(psi)

3
4 0.06867 18.0 8.8 × 104 0.0182 57.8

1 0.08742 11.1 6.9 × 104 0.0192 18.2

1 1
4 0.1150 6.43 5.3 × 104 0.0205 4.98

The table indicates that a nominal 1 in. diameter pipe is satisfactory. If we assume that
the pump pressure with this size pipe is 50 psig, then by rearranging (B), the pressure
at the irrigation system is found to be

p2 = p1 − ρgH − ρ f
L

D

V̄ 2

2
= (50 − 5.6 − 18.2) psig = 26.2 psig

which is 1.2 psig above the required pressure of 25 psig. Since there are many uncer-
tainties in pipe flow calculations and the predicted margin is small, it may be prudent to
select the 1 1

4 in. pipe if the economics allow.

13.4 ANALYSIS OF FLOW IN MULTIPLE PATH PIPE AND DUCT SYSTEMS

In contrast to the single path piping systems we have studied thus far, most engineering
systems have multiple flow paths. In such a system, fluid may travel from inlet to exit
via different paths, and there may be multiple inlets and multiple exits. In this section we
will analyze multiple path systems by writing mass and energy balances between vari-
ous points and employing the concepts of major and minor losses. Consider the simple
two-branch system shown in Figure 13.31. The points where branches meet are called
nodes. In this case node A, located at the upstream entrance of the first tee, is the point
at which the two parallel branches of this system begin. The two branches end at node
B, located at the downstream exit of the second tee. Branches in a system may be serial
(end to end), or parallel, as shown in the system in Figure 13.31.

Suppose fluid enters the system at node A with average velocity V̄ at a flowrate Q.
Since the entrance and exit pipe diameters are the same, a mass balance shows that fluid
exits the system at node B at the same average velocity and flowrate. Some of the fluid



flows through branch 1 with average velocity V̄1 at
flowrate Q1, and the rest flows through branch 2 at av-
erage velocity V̄2 at flowrate Q2. Since all the fluid en-
tering node A leaves in the two branches, we have
Q = Q1 + Q2. (Since the pipe diameters are the same
in this case, we also have V̄ = V̄1 + V̄2.)

Now suppose the pressures and elevations at nodes
A and B and flowrate Q are known. How can we deter-
mine the unknown flowrate through each branch? To an-
swer this question we will use Eq. 13.31 to write energy
balances between the two nodes along each branch. For
branch 1, noting that V̄A = V̄B = V̄ , and assuming tur-

bulent flow with αA = αB = 1, we have (pA/ρ + gz A) − (pB/ρ + gzB) = hT 1 , where
hT 1 is the total head loss for fluid traveling along branch 1. Similarly, writing the energy
balance for branch 2, we obtain (pA/ρ + gz A) − (pB/ρ + gzB) = hT 2 . Comparing
these two equations, we conclude that hT 1 = hT 2, meaning that the total head loss must
be the same on the parallel branches joining nodes A and B.

These important results can be summarized in general by two statements:

1. The head loss in the parallel branches joining two nodes in a multiple path sys-
tem is the same.

2. The flowrate into a juncture where one or more branches meet is equal to the
sum of the flowrates out of the juncture on each branch.
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L2

L5

L4

L3

L1

L1

L1

L1

L4

L3

Branch 1

Branch 2

A B

V1

V2

VA VB

Figure 13.31 Multipath piping system.

Most pipe and duct systems are designed
with variable head loss components that
are adjusted to cause the flowrate in each
path to meet design specifications. This
process is known as flow balancing. The
variable head loss components are known
as control valves in pipe systems and
dampers in duct systems. You used one of
these devices the last time you washed
your hands in warm water in a sink or ad-
justed the air vent in your automobile.



We can now complete our analysis by writing an energy balance for each branch in-
cluding both major and minor losses. For branch 1 we obtain(

pA

ρ
+ gz A

)
−
(

pB

ρ
+ gzB

)
= 2

(
f1

L1

D

V̄ 2
1

2

)
+
(

f1
L2

D

V̄ 2
1

2

)

+ 2

(
f1

L tee

D

V̄ 2
1

2

)
+ 2

(
f1

Lelbow

D

V̄ 2
1

2

)

where L tee is the appropriate equivalent length for the branch run of the identical tees,
Lelbow is that for the elbow, and f1 is the friction factor for the relative roughness and the
Reynolds number in branch 1. Similarly, writing the energy balance for branch 2, we obtain(

pA

ρ
+ gz A

)
−
(

pB

ρ
+ gzB

)
= 2

(
f2

L1

D

V̄ 2
2

2

)
+ 2

(
f2

L3

D

V̄ 2
2

2

)
+ 2

(
f2

L4

D

V̄ 2
2

2

)

+
(

f2
L5

D

V̄ 2
2

2

)
+ 2

(
f2

L tee

D

V̄ 2
2

2

)
+ 6

(
f2

Lelbow

D

V̄ 2
2

2

)

From rule 2 we know Q = Q1 + Q2. To solve the problem for known pressures and
elevations at each node, we must iterate, beginning with a guess for Q (and thus V̄ ) in
each branch. The iteration stops when the head loss in each branch is same (rule 1) and
equal to (pA/ρ + gz A) − (pB/ρ + gzB), and the volume flowrates satisfy
Q = Q1 + Q2.
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EXAMPLE 13 .16

A heating system for a solar house is designed to circulate 120°F hot water from roof-
mounted solar collectors through a horizontal heat exchanger embedded in the concrete
floor of the living space as shown in Figure 13.32. Control is provided by a thermostat-
ically activated motorized 3

4 in. globe valve in the bypass line that allows the hot water
to return to the solar collectors. The heat exchanger consists of 3

4 in. Schedule 40 PVC
pipe with a total length of 988 ft, and 28 standard 90° elbows, while the bypass line con-
sists of 28 ft of the same pipe. The system is designed for a total flowrate of 80 gal/min.
Find the flowrate through the heat exchanger when the globe valve is one-half open.

SOLUTION

We are asked to determine the flowrate through one branch of a specified multiple path
flow system for a set of defined conditions. Figure 13.32 serves a sketch of the flow sys-
tem. We will assign node 1 at the inlet of the tee upstream of the heat exchanger and
node 2 at the outlet of the tee just downstream of the heat exchanger. Branch 1 contains
the branch run of the upstream tee, the heat exchanger, and the branch run of the down-
stream tee. Branch 2 contains the line run of the upstream tee, the bypass line and globe
valve (GV), and the line run of the downstream tee. Applying the first of the two
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principles governing parallel branches, we write Q = Q1 + Q2, or

Q2 = Q − Q1 (A)

where Q = 80 gal/min [(1 min/60 s)(1 ft3/7.48 gal)] = 1.78 × 10−1 ft3/s . Note that
in this case the piping is all of the same diameter, thus we also have V̄ = V̄1 + V̄2. We
now write the total head loss in each branch, accounting for the major and minor losses
to obtain:

hT 1 = 2 f1
L tee-branch

D

V̄ 2
1

2
+ f1

L1

D

V̄ 2
1

2
+ 28 f1

Lelbow

D

V̄ 2
1

2

hT 2 = 2 f2
L tee-line

D

V̄ 2
2

2
+ f2

L2

D

V̄ 2
2

2
+ KGV

V̄ 2
2

2

For convenience, we will write these equations in terms of the flowrates as

hT 1 =
[

2 f1
L tee-branch

D
+ f1

L1

D
+ 28 f1

Lelbow

D

]
8Q2

1

π D2

hT 2 =
[

2 f2
L tee-line

D
+ f2

L2

D
+ f2

LGV

D

]
8Q2

2

π D2

where L tee-branch/D = 60, L tee-line/D = 20, Lelbow/D = 30, and LGV /D = 500
from Table 13.6. Also, from the problem statement we calculate L1/D =
(988 ft/0.06867 ft) = 1.44 × 104 and L2/D = (28 ft/0.0687 ft) = 408. Thus these

Branch 1

Water at 120�F

Convoluted path
continues with a
total of twenty-
eight 90� elbows

Q1, V
–

1

Q2, V
–

2

Q, V
–

Branch 2

    in. globe valve

(    open)

    in. schedule

40 PVC pipe,
L � 28 ft

3
4

    in. schedule

40 PVC pipe,
L � 988 ft

3
4

3
4
1
4

1

2

Figure 13.32 Schematic of a heating system for Example 13.16.
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two equations become

hT 1 = (120 f1 + 1.44 × 104 f1 + 840 f1)
8Q2

1

π D2
= 1.54 × 104 f1

8Q2
1

π D2
(B)

hT 2 = (40 f2 + 408 f2 + 500 f2)
8Q2

2

π D2
= 948 f2

8Q2
2

π D2
(C)

Finally, applying the second principle that the total head loss in parallel branches is the
same, we write hT 1 = hT 2, and equate (B) and (C) to obtain

1.54 × 104 f1
8Q2

1

π D2
= 948 f2

8Q2
2

π D2

Solving for Q1, after using (A) to eliminate Q2, we obtain

Q1 = Q

1 +
√

948 f2

1.54 × 104 f1

(D)

We will now use (D) to iterate and solve for Q1, beginning with a guess for the
friction factors. To come up with an initial guess for the friction factors, suppose the
flowrate in the branches is the same, and equal to half the total flowrate. For 3

4 in.
Schedule 40 pipe, we find D = 0.06867 ft, and A = 3.70 × 10−3 ft2 (Table 13.4). The
average velocity in each branch is

V̄ = 1

2

Q

A
= 1.78 × 10−1 ft3/s

2(3.70 × 10−3 ft2)
= 24.0 ft/s

Using data for water at 120°F, this corresponds to Re = V̄ D/ν = [(24.0 ft/s) ×
(0.06867 ft)]/(6.067 × 10−6 ft2/s) = 2.7 × 105, and a friction factor f = 0.014,
where we have used the Moody chart and assumed a smooth pipe.

Our first iteration now begins by assuming Q(1)
1 = Q(1)

2 = 8.9 × 10−2 ft3/s,
V̄ (1)

1 = V̄ (1)
2 = 24.0 ft2/s, Re(1)

1 = Re(1)
2 = 2.7 × 105 and f (1)

1 = f (1)
2 = 0.014. Insert-

ing the latter into (D), we find 

Q(2)
1 = Q

1 +
√

948(0.014)

1.54 × 104(0.014)

= 0.8Q

and from (A) we have Q(2)
2 = 0.2Q . The next iteration now proceeds by using

Q(2)
1 = 0.8Q = 0.142 ft3/s, Q(2)

2 = 0.2Q = 3.56 × 10−2 ft3/s, V̄ (2)
1 = 38.5 ft/s,

V̄ (2)
2 = 9.6 ft/s, Re(2)

1 = 4.4 × 105, Re(2)
2 = 1.1 × 105, f (2)

1 = 0.013,and f (2)
2 = 0.018.

Inserting these values into (D) we find 

Q(3)
1 = Q

1 +
√

948(0.018)

1.54 × 104(0.013)

= 0.77Q



13.5 ELEMENTS OF PIPE AND DUCT SYSTEM DESIGN

There are several questions to be answered in the design of pipe and duct systems be-
yond the specification of the size and lengths of the component pipes and ducts. The
strength and durability of materials, maintenance issues related to the selection and lo-
cation of valves, filters, traps, and other components, and space limitations are but a few
elements of the overall design specification for a fluid transport system. The key design
decisions of relevance to fluid mechanics are generally based on the minimization of the
first cost of pipe, pump, and components, as opposed to the operating cost for pumping.
Since the frictional pressure drop in turbulent flow is found to be proportional to the av-
erage velocity squared, for a given flowrate, the lower first cost of using a smaller di-
ameter pipe and smaller components results in a larger pressure drop. A larger pressure
drop results in a higher operating cost of the pump, and in some cases, a higher first cost
for a pump of adequate pressure. Thus a successful pipe or duct design involves deci-
sions that require consideration of factors beyond the characteristics of the flow alone.
In this section we briefly discuss some of these additional factors.

The keys to understanding the operation of pipe or duct systems are the system and
pump (or fan) curves as shown in Figure 13.33. Both curves consist of pressure (or dif-
ferential) head plotted versus flowrate. First consider the system curve. The pressure or
head plotted is that required to drive the flow. Thus, at zero flowrate the curve will indi-
cate the hydrostatic head that must be overcome for the flow to proceed. As the flow be-
gins there is an increase in head required by reason of frictional losses. Thus the system
curve is found by using head loss calculations like those performed in the preceding sec-
tions. Pump curves like the one in Figure 13.33 are supplied by manufacturers for each
of their products, indicating the head provided by the pump as a function of flowrate.
This curve is a function of the pump geometry and the rotation speed (e.g., rpm) at
which it is run. The intersection of the system and pump curves represents the operating
point of the system, where the head provided by the pump equals the head required by
the system.
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and from (A) we have Q(3)
2 = 0.23Q. These new values turn out to be so close to the

earlier values that the friction factors are unchanged. We therefore consider the iteration
to have converged, and the final values for the flowrates are Q1 = 0.77Q = 61.6 gal/min
through the heat exchanger, and Q2 = 0.23Q = 18.4 gal/min through the bypass line.
The values of various parameters at each iteration are contained in the following table.

Iteration Q1 Q2 V̄1 (ft/s) V̄2 (ft/s) Re1 Re2 f1 f2

1 0.5Q 0.5Q 24.0 24.0 2.7 × 105 2.7 × 105 0.014 0.014

2 0.8Q 0.2Q 38.5 9.6 4.4 × 105 1.1 × 105 0.013 0.018

3 0.77Q 0.23Q 37.0 11.1 4.2 × 105 1.3 × 105 0.013 0.018



A typical design involves the flow of a known fluid, at a specified rate, from one lo-
cation to another. Thus, Q is known. The general layout of the pipe run is usually deter-
mined by outside constraints. For example, in designing a building the architect will
usually designate the location of the mechanical equipment room and pipe and duct
runs. Thus, L is known. The fundamental question is to optimize the overall cost, which
consists of the first cost of the pipe and pump and the operating cost, by judicious choice
of pipe diameter and pump. This is a type 1 problem, as discussed in Section 13.3.3: to
define the system curve, you must usually pick a D to calculate the required �p or head.
Figure 13.34 shows a series of system curves for each possible pipe diameter. Also
shown on Figure 13.34 are pump curves that represent different sizes or rpm. Note that
there is no intersection of the curves (operating point) exactly at the design flowrate be-
cause pipe and pumps have standard sizes. Control valves must be included in the de-
sign to adjust the system curve to achieve the proper flowrate.

Figure 13.34 illustrates that there is a choice of system and pump curves such that
it is necessary to optimize the design. This approach to optimizing the design consists of
assuming a pipe size, performing the head loss calculations, choosing the pump, and
determining the total first and operating costs, then assuming a different pipe size and
repeating this process until the minimum cost option is found. This can be a time-
consuming process. Fortunately, with experience, engineers become adept at choosing
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pipe sizes that are close to the optimum for typical installations. Also manufacturers of
pumps, fans, and pipe provide guidance to engineers in many formats for optimizing
designs. Finally, many software packages for piping system design that greatly reduce
the time required for system optimization are now available.

There are many other aspects to piping design that are important including the
choice of fittings and materials, safety, maintenance, and control. The pipe material and
assembly technique must be corrosion resistant. Other important considerations in ma-
terial selection are strength and assembly cost. The strength of a pipe is a function of the
wall thickness and assembly method as well as the material. The pipe wall must be
strong enough that the pressure difference between the inside of the pipe and the ambi-
ent does not cause the pipe to burst. As discussed earlier, commercial pipes are desig-
nated by schedule numbers that incorporate information about the pipe material, wall
thickness, and pressure difference that it can withstand. Standard pipe is designated as
Schedule 40. The higher the schedule number, the greater the wall thickness. Consult
Table 13.4 for pipe dimensions and other information regarding various schedules.

Most piping systems consist of more than straight pipe runs and a pump. The most
ubiquitous components are valves that allow for control and extra modes of operation
such as emergencies, as well as manual and remote control. There are many valve types
including control valves, two- and three-way on–off valves, one-way check valves, and
pressure relief valves as shown in Figure 13.35. Wide ranges of valve designs and ma-
terials are available for each valve type.

In addition to valves, piping systems require the choice and sizing of various ele-
ments such as the filters and heat exchangers. A typical design trade-off would be greater
size (increased capacity and lower head loss) for increased cost. Information regarding
the specific choice and placement of the variety of pipe system elements is beyond the
scope of this introductory textbook. 

13.5.1 Pump and Fan Selection

Pumps move liquids by imparting mechanical energy in the form of an increase in the liq-
uid pressure. Fans move gases in a similar fashion. Since the pump or fan is usually the
single most expensive item in a pipe or duct design, the selection of an appropriate pump
or fan is a very important step in the design of a pipe or duct system. An introduction to
the basic elements of the pump or fan selection process will be discussed in this section.
Additional information can be found in the literature of various manufacturers.
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Figure 13.35 Schematics of valve types.



Pumps and fans come in many different types. Dynamic types are categorized
based on how the fluid flows through them relative to the orientation of a rotating im-
peller. Thus we speak of axial or radial designs. In an axial design the fluid flows along
the axis of the rotating impeller, whereas in a radial design the fluid enters the pump nor-
mal to the rotation. The radial design is also called centrifugal and is the most common
type in use. Positive displacement pumps fill a fixed volume that is then discharged. The
heart and lung are examples of positive displacement pumps. Schematics of pump and
fan types are shown in Figure 13.36. Fans are also classified according to the extent to
which they raise the pressure in a gas. Pressure rise, in order of increasing magnitude, is
designated by the terms fan, blower, and compressor.

The optimization of pump and fan selection is greatly simplified through the use of
charts supplied by manufacturers. These charts have many forms, but the most common
show several pump or fan performance curves on the same plot. These curves are often
distinguished by rotational speed or size. As discussed in the case study of Section 3.3.3
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Propeller turbine Steam or gas turbine

Centrifugal compressor Centrifugal (radial flow) pumpAxial flow compressor

Radial flow fan Axial flow pump

Figure 13.36 Schematic of pumps, fan, compressors, and turbines.



(pump and fan laws), these curves are generated with the use of the pump and fan laws.
Superimposed on the performance curves are indications of efficiency. An example
chart is shown in Figure 13.37. To choose the best size and speed requires placing the
system curve, or simply the operating point, on one of these charts such that its position
is within the region of highest possible efficiency. Composite charts like the one shown
in Figure 13.38 show high efficiency regions for several pumps.

An important aspect of pipe and duct design is the uncertainty of the calculations
and operating conditions. The uncertainty in head loss calculations is at least 10%. Fur-
thermore, changes during construction due to interferences that result in greater losses
than anticipated in the design are common. Over time, the piping system will change.
Filters go from clean to dirty. Pipes develop scale or accumulate deposits. The result is
usually that the overall head loss increases. It is also common for piping system re-
quirements to change. Any increase in requirements would be very costly if the pipe and
pump needed to be changed. As a consequence, most designers will include a significant
safety factor in the pipe and pump selection process. Once again, the size of this safety
factor in different applications is learned through experience.

13.5 ELEMENTS OF PIPE AND DUCT SYSTEM DESIGN 855

ft

To
ta

l h
ea

d

Model

Size 1.5 � 1-6.38 in.

Speed 1800 rpmm

60

50

40

30

20

10
0 10 20

50 10 15

30 40 50 60 70 80

15

10

5

gal/min (U.S.)

m3/h

Type ANSI B73.1

38 � 25-162 mm

Max solid 0.4 in.

Impeller no.

Eye area         2.41     in.2    1552     mm2

Curve no. 

4.0 in.
2.5 in.

2.0 in.NPSHR
2.0 in. 0.5 Bhp

1.5 Bhp

1.7 Bhp

0.75 Bhp

4.6 in.

6.0 in.

1.25 Bhp

1.0 Bhp0.4 Bhp

54%

54%52%
48%45%40%34%28%

56%

56%

6.38 dia

6.00 dia

5.50 dia

5.00 dia

4.50 dia

4.00 dia

Pr
ef

er
re

d 
m

in
im

um
 f

lo
w

Capacity

Figure 13.37 A pump performance chart (Bhp, British horsepower). For explanation of NPSHR (net positive suction
head required), see later discussion following Eq. 13.50.



856 13 FLOW IN PIPES AND DUCTS
To

ta
l p

re
ss

ur
e,

 p
t (

in
.H

2O
)

Volume flowrate, Q (� 1000 ft3/min)

Figure 13.38 Composite fan selection chart.

EXAMPLE 13 .17

You are to choose the pipe diameter and pump for the system shown in Figure 13.39.
The flowrate is 1 ft3/s and the pipe is Schedule 40 commercial steel. The total length in-
cluding an equivalent length allowance for minor losses is 1800 ft. Choose the pump
based on the pump curves shown in Figure 13.40 and assume that the water is at 50°F.
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SOLUTION

We are asked to use a given set of pump curves to select an appropriate pump for a well-
defined single path system. Figure 13.39 serves as an appropriate sketch for this prob-
lem. There are many approaches one might take to optimize even a simple piping design
problem such as this one. We will find an equation for the system curve as a function of
the pipe diameter. Then we will use the information provided in the manufacturer’s data
to choose the most efficient pump by sketching the system curves over the pump curves.
Therefore, in this example we will be minimizing operating costs only.

We begin by applying Eq. 13.38 from the reservoir surface to the free exit
discharge:(

p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
= hT − Hpump + Hturbine

Using gage pressures, and noting that p1 = 0 psig, V̄ 2
1 ≈ 0, z1 = 0, and p2 = 0 psig,

we have

Hpump = 1
2 V̄ 2

2 + gz2 + hT (A)

where we have assumed α = 1 for turbulent flow. We see that the pump must generate
an amount of head Hpump = 1

2 V̄ 2
2 + gz2 + hT = Hsystem . The system head consists of

the increase of kinetic energy of the fluid, the elevation potential and the total frictional
head loss. The latter is the sum of the major and minor head losses and given by 

hT = f
L

D

V̄ 2
2

2
+ f

L E

D

V̄ 2
2

2
= f

(
L + L E

D

)
V̄ 2

2

2

We now want to superimpose the system head curve for each diameter choice. To do
so we must transform (A) to units of head in feet and flowrate in gallons per minute, with
the understanding that Hsystem = Hpump. By using Q = V̄2 A, hT = f [(L + L E)/D] ×
(V̄ 2

2 /2), and A = π D2/4, we obtain

Hsystem = Q2

2A2
+ gz2 + f

(
L + L E

D

)
Q2

2A2
=
[

1 + f

(
L + L E

D

)]
8Q2

π2 D4
+ gz2

Hsystem

g
=
[

1 + f

(
L + L E

D

)]
8Q2

gπ2 D4
+ z2 (B)

Inserting numerical values into (B) yields

Hsystem

g
=
(

1 + f
1800 ft

D

)(
0.0252(s2/ft)Q2

D4

)(
2.228 × 10−3 ft3/s

gal/min

)2

+ 10 ft

Hsystem

g
=
(

1 + f
1800 ft

D

)(
1.25 × 10−7 [ft5/(gal/min)2]Q2

D4

)2

+ 10 ft (C)
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where D is in feet and Q is gallons per minute. The friction factor can be found by using
the Moody chart or the Chen equation. You will find that this system is fully turbulent
such that f is independent of flowrate for each diameter. The friction factors are 0.0163,
0.0155, and 0.0139 for the 4, 5, and 6 in. pipes, respectively. Table 13.7 gives system
head in feet calculated by using (C) for three choices of pipe diameter and at several
flowrates. The entries for the design flow rate of 1 ft3/s = 450 gal/min are given in bold-
face. These data are superimposed on the pump curves of Figure 13.40.

First of all we can see that this particular pump could not deliver the design flowrate
through a 4 in. pipe. A 6 in. pipe could be used, but the pump would be oversized. Thus
the obvious choice for the design constraints of this problem is 5 in. diameter pipe. The
design point on the 5 in. system curve is not directly on a pump curve. The system curve
does intersect the 12.50 in. diameter impeller pump, providing 460 gal/min at 68 ft of
head. At this operating point the pump would have an efficiency of 78% and would re-
quire a 10 hp motor. To obtain 450 gal/min, an additional 2.2 ft of head loss could be
achieved through the use of a control valve. However, we also expect the head loss to in-
crease in the system over time. Another method for moving the operating point to the
design point is to change the pump curve by adjusting its rpm. In the case study of Sec-
tion 3.3.3 we found that the dimensionless group Q/ωD3, the flow coefficient, applies
to pumps and fans. The pump curves in Figure 13.40 are for ω = 1160 rpm. By using
the flow coefficient we find that the 12.50 in. diameter impeller operating at 1135 rpm
would provide 450 gal/min as desired. However, the head coefficient, H/ω2 D2, must
also be checked. Taking the head coefficient we find that at 1135 rpm the pump would
supply 65 ft of head, which is not enough to achieve the desired flowrate in the system.
Thus it should be understood that it is very difficult to make the operating point and
design point coincide without control valves.

Before leaving this problem, consider the pressure of a fluid particle moving
through this system as indicated in Figure 13.41. At the surface of the reservoir, sta-
tion 1, the pressure is atmospheric at 0 psig. The pressure increases due to hydrostatic
head at the pipe inlet, station A, where it then is drawn into the pipe by the pump. The
pressure decreases owing to frictional head losses in the pipe and reduced static head
from A to B. From station B to the pump inlet, station C, the reduction in pressure is due
to friction alone. Across the pump there is the pressure rise imparted by the pump. From
the pump exit, station D, to the pipe exit, station 2, the pressure decreases to atmospheric

TABLE 13.7 System Head (ft) as a Function of Pipe Size and Volume Flowrate

Pipe Diameter:
Volume Flowrate, Q (gal/min)

Nominal D (Actual D) 0 100 200 300 400 450 500 600 700 800

4 in. (0.3355 ft) 10 18.9 45.7 90.4 152.9 * * * * *

5 in. (0.4206 ft) 10 12.8 21.0 34.8 54.1 65.8 78.9 109.2 * *

6 in. (0.5054 ft) 10 11.1 13.2 19.6 27.0 31.5 36.5 48.2 62.0 77.9

*This combination of flowrate and pipe diameter is not possible.
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pressure due to frictional losses. However, the fluid at station 2 has greater mechanical
energy than at station 1 because it is at a greater elevation and has greater kinetic energy.

1

0

A B 2C-D
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Figure 13.41 Pressure through the piping
system analyzed in Example 13.17. The lines
connecting each point only give a sense of
the process involved and should not be taken
literally. For example, pressure changes
through a pump, inlet, or exit are typically
not linear. However, head loss calculations
are always applicable between stations, re-
gardless of the nature of the process between
them.

The inlet pressure to a pump is called the suction pressure. If the suction pressure
falls below the vapor pressure of the liquid, the liquid will boil; i.e., cavitation will
result. The vapor bubbles can damage the impeller as they pass through the pump, as
shown in Figure 13.42, and cause a decrease in efficiency. All pumping systems should
be designed to avoid cavitation.

The potential for cavitation is measured using a concept known as the Net Positive
Suction Head (NPSH). The NPSH at any point in a flow system is defined as

NPSH = p

ρg
+ V̄ 2

2g
− pv

ρg
(13.49)

where p is the pressure at the point of interest, V̄ is the average velocity, and pv is the
vapor pressure corresponding to the liquid temperature. The dimension of NPSH is
length and the units of this quantity are feet or meters. At the inlet of a pump we can cal-
culate the Net Positive Suction Head Available, or NPSHA, by inserting the calculated
values of the pump inlet pressure and inlet average velocity, as well as the vapor pres-
sure into Eq. 13.49. Thus we have

NPSHA = pin

ρg
+ V̄ 2

in

2g
− pv

ρg
(13.50)

Therefore, NPSHA defines the value of the net positive suction head at the pump inlet as
determined from a head loss calculation. For cavitation-free operation of a pump, the
manufacturer provides a parameter called the Net Positive Suction Head Required, or
NPSHR. The value of NPSHR is found experimentally and provided by pump manufac-
turers; for example, see Figure 13.37. Although NPSHR is specified only as a number in
units of feet or meters, NPSHR may be thought of as corresponding to a required combi-
nation of pressure and average velocity at the pump inlet, namely, pR/ρg + V̄ 2

R/2g,
which exceeds the vapor pressure head pv/ρg by a margin sufficient to prevent cavita-
tion from occurring in the high velocity regions inside the pump. For proper operation



of a given pump, the available value of the suction head must be greater than or equal to
the manufacturer’s required value of the suction head. Thus the condition for proper op-
eration of a pump is NPSHA ≥ NPSHR. We can use Eq. 13.50 to write this requirement
as

pin

ρg
+ V̄ 2

in

2g
− pv

ρg
≥ NPSHR (13.51)

A key question in the design of a system containing a pump is whether the available
NPSHA is greater than NPSHR for a given pump and system configuration. To place
this discussion in context, consider a system as shown in Figure 13.43 that has both
major and minor losses in the flowpath upstream of the pump. Applying Eq. 13.29a
between a point upstream and the pump inlet, we have(

p1

ρ
+ 1

2
V̄ 2

1 + gz1

)
−
(

pin

ρ
+ 1

2
V̄ 2

in + gzin

)
=
∑

hL +
∑

hM

which after dividing by g and rearranging gives(
p1

ρg
+ V̄ 2

1

2g
+ z1

)
−
(

pin

ρg
+ V̄ 2

in

2g
+ zin

)
=
∑ hL

g
+
∑ hM

g
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(B)(A)

Figure 13.42 (A) Cavitation bubbles forming on a model of a ship propeller. (B) Damage to a turbine blade
caused by cavitation.



From Eq. 13.50 we can write(
pin

ρg
+ V̄ 2

in

2g

)
= NPSHA + pv

ρg

Thus the preceding equation can be written as(
p1

ρg
+ V̄ 2

1

2g

)
−
(

NPSHA + pv

ρg
+ H

)
=
∑ hL

g
+
∑ hM

g

where we have defined H = zin − z1. Then solving for NPSHA we obtain

NPSHA =
(

p1

ρg
+ V̄ 2

1

2g

)
− pv

ρg
− H −

∑ hL

g
−
∑ hM

g
(13.52)

This equation can be used to evaluate NPSHA and to understand the effects of system
parameters. We see that NPSHA can be thought of as the value of the suction head at
point 1 minus the loss of head due to a pump elevation above point 1 and minus the loss
of head due to major and minor losses in the flow path. Example 13.18 illustrates the use
of NPSHR and NPSHA in evaluating the design parameters that effect pump perfor-
mance in a proposed system.
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Figure 13.43 Schematic of pump
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EXAMPLE 13 .18

Find the NPSHA for the pump and inlet system described in Example 13.9. This system
is shown in Figure 13.44. If the pump manufacturer specifies a value of NPHSR = 20 ft,
will the pump operate satisfactorily? If not, can you suggest a design modification that
does not change the design flowrate or pipe dimensions?
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SOLUTION

We are asked to evaluate a specified flow system to determine whether the suggested pump
is satisfactory. If our calculations show that the present design is not satisfactory, we are to
propose an improved design. Figure 13.44 serves as the appropriate sketch for this flow
system. We will use Eq. 13.50 to evaluate NPSHArather than Eq. 13.52 because the major
and minor losses were evaluated in Example 13.9, where we found the following values at
the pump inlet: pin = 800 lbf/ft2, and V̄in = 7.43 ft/s. For water at 60°F, Appendix A
gives ρ = 1.938 slugs/ft3 , so ρg = (1.938 slugs/ft3)(32.2 ft/s2) = 62.4 lbf/ft3 , and
pv = 0.2563 psia = 36.9 lbf/ft2 . Applying Eq. 13.50, we have NPSHA = pin/ρg +
V̄ 2

in/2g − pv/ρg, with

pin

ρg
= 800 lbf/ft2

62.4 lbf/ft3
= 12.8 ft ,

V̄ 2
in

2g
= (7.43 ft/s)2

2(32.2 ft/s2)
= 0.86 ft

Pump

z

y

H � 10 ft

d � 2 ft

Hnew � 3.1 ft

dnew � 8.9 ft

Original design New design

Pump

2

2

1 1

Figure 13.44 Schematic for Example 13.18.
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and

− pv

ρg
= −36.9 lbf/ft2

62.4 lbf/ft3
= −0.59 ft

Thus the net positive suction head available in this case is

NPSHA = pin

ρg
+ V̄ 2

in

2g
− pv

ρg
= 12.8 ft + 0.86 ft − 0.59 ft = 13.1 ft

Since we are told NPHSR = 20 ft, the pump will not operate satisfactorily. The design
must be changed to increase NPSHA to at least 20 ft.

In many cases, as here, the desired flowrate is fixed, but changes can be made in the
elevation of the pump, and in other design parameters that effect the major and minor
losses. If we are to keep both the flowrate and the pipe dimensions the same, we must
decrease the elevation of the pump above the free surface of the reservoir to a new value
Hnew, as shown in Figure 13.44, while leaving the piping and inlet configuration un-
changed. This will increase the pressure at the pump inlet and raise the NPSHA. To find
the new conditions at the pump inlet with a decrease in elevation to a value Hnew, we
need to repeat the head loss analysis of Example 13.9. However, in this case we do not
actually need the conditions themselves but can make use of Eq. 13.52 to write

NPSHA = pA

ρg
− H − pv

ρg
− f

L

D

V̄ 2
in

2g
− Kin

V̄ 2
in

2g

This result shows that with the frictional losses the same, the available suction head in-
creases in direct proportion to the decrease in H. Thus to increase NPSHA from 13.1 ft
to 20 ft, we must decrease H by 6.9 ft. Thus we conclude that redesigning the system
with Hnew = 10 ft − 6.9 ft = 3.1 ft will allow the pump to operate properly.

13.6 SUMMARY

In this chapter we investigated the methods used to analyze steady, constant density flow
in pipes and ducts. The emphasis was on determining the relationship between pressure
drop and volume flowrate, since these are the two parameters that must be known to pre-
dict the power required to move fluid through the pipe or duct. The concepts of major
head loss, friction factor, and hydraulic diameter were introduced and used to analyze
laminar and turbulent flow.

For steady, fully developed flow in a pipe or duct, the pressure difference necessary
to drive a fluid through a passage is affected by the length and shape of the passage, the
difference in elevation of each end of the passage, and viscous friction (in the form of
the wall shear stress). In a fully developed flow there is no change in the kinetic energy
per unit mass of fluid as it passes through the pipe or duct. Thus, the mechanical energy



that is lost in such a flow appears as a combination of a change in the internal energy of
the fluid and heat transfer, usually out through the wall of the pipe or duct. In most cases
the average wall shear stress is not known, nor do we have sufficient information to eval-
uate the change in internal energy or heat transfer. Instead we make use of the concept
of major head loss, hL . To determine hL we depend on empirical results based on the
friction factor f . The basic equations describing the steady, fully developed flow in pipes
and ducts are (p1/ρ + gz1) − (p2/ρ + gz2) = f (L/D)(V̄ 2/2) and (p1/ρ + gz1)−
(p2/ρ + gz2) = f (L/DH )(V̄ 2/2), respectively. If the friction factor is known, we can
make use of these equations to determine the pressure change corresponding to a known
average velocity (and thus flowrate) in a pipe or duct.

The friction factor for laminar flow in a pipe and a rectangular duct are given re-
spectively by f = 64/Re and f = (96/ReH )G(a/b), where G(a/b) is a geometric
factor that depends on the aspect ratio of the duct cross section (see Table 13.1). Friction
factors for laminar fully developed flow in round, rectangular, and other cross sections
are summarized in Table 13.2. In a turbulent flow f depends on the pipe diameter, its
physical condition, the density and viscosity of the fluid, and the average velocity. The
data needed to determine f were obtained for turbulent flow over the range of values of
e/D and Re encountered in engineering practice (see Figure 13.12, and the Moody chart
shown in Figure 13.13). Alternatively, one can make use of the Colebrook formula or the
Chen equation.

A single path pipe or duct system may contain multiple straight pipe or duct seg-
ments plus components such as elbows, valves, reducers, filters, and traps. We analyze
the flow through such a system by setting the change in the mechanical energy con-
tent of the fluid equal to the sum of the major and minor losses for each pipe or duct seg-
ment and each component along the flow path. The energy balance takes the form
(p1/ρ + 1

2α1V̄ 2
1 + gz1) − (p2/ρ + 1

2α2V̄ 2
2 + gz2) =∑ hL +∑ hM . In a single path

system, a mass balance also shows that A1V̄1 = A2V̄2. These two equations are the
basic equations governing flow through a single flow path system. To apply the energy
balance, we must know the values of α that occur at the selected points. For fully devel-
oped laminar pipe flow α = 2, and it is customary to employ α = 1 for fully developed
turbulent flow in a pipe even though it is known that α is a weak function of Re in such
flows.

Values of the minor head loss for components of flow systems are tabulated in two
forms. The first form is as a head loss coefficient, K, defined by hM = K (V̄ 2/2). The
second form is through an equivalent pipe length Le . The minor loss is then defined by
hM = f (Le/D)(V̄ 2/2), where D, f, and V̄ refer to the adjacent pipe flow. Values of K
and Le for a variety of flow elements are given in Section 13.3.1. In the case of an ele-
ment in which the inlet and outlet areas differ, it is critical to determine whether the
coefficient is based on the use of inlet or outlet average velocity.

A pump, fan, or blower increases the mechanical energy of a fluid flowing through
the device, while a turbine decreases the mechanical energy of a fluid. To account for the
presence of one of these devices along a flow path, we make use of the concepts of a
pump head Hpump and a turbine head Hturbine, and write the energy balance from point 1
to point 2 along a flow path as(

p1

ρ
+ 1

2
α1V̄ 2

1 + gz1

)
−
(

p2

ρ
+ 1

2
α2V̄ 2

2 + gz2

)
= hT − Hpump + Hturbine
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where hT is the total head loss. For devices operating on a constant density fluid, it is ap-
propriate to assume turbulent flow with α = 1, uniform properties at the inlet and out-
let, and identical inlet and outlet areas and elevations. The increase in mechanical energy
of the fluid passing through the device is then given by pout/ρ − pin/ρ , so the pump
head is defined as Hpump = (pout − pin)/ρ , while the turbine head, is defined as
Hturbine = (pin − pout)/ρ . The relationship between pump head and the pump effi-
ciency, shaft power input, and volume flowrate is Hpump = ηpump Ppump/ρQ . This equa-
tion also applies to a fan or blower. Since the efficiency is always less than unity, the
head provided by the pump is always less than the shaft power input per unit of mass
flowrate. For a turbine we find Hturbine = Pturbine/ρQηturbine .

Problems involving fully developed flow in a single path pipe or duct system are
characterized by four parameters: the pressure difference �p = p1 − p2, volume
flowrate Q, pipe diameter D or duct hydraulic diameter DH , and length L. By asking
which of these parameters is unknown, we can identify four distinct types of problems
in such flows.

1. Unknown is �p = p1 − p2: With Q and D known, we can calculate V̄ and Re.
The type of pipe or duct determines e/D, and we can read f from the Moody
chart. Since L is known, we can solve the appropriate energy equation for the
unknown �p.

2. Unknown is L: With Q and D or DH known, we can calculate V̄ and Re. The
type of pipe or duct determines e/D, and we can read f from the Moody chart.
Since �p is also known, we can solve the appropriate energy equation for the
unknown L.

3. Unknown is Q: With Q unknown, we cannot calculate V̄ and Re. The problem
requires iteration. One approach is to assume a friction factor on the fully turbu-
lent portion of the curve for the value of e/D, then solve the appropriate energy
equation for the estimated V̄ . For this value of V̄ we can now calculate Re and
use it to find a new value of f, followed by a new estimate for V̄ . The iteration
process stops when the change in the estimated V̄ is sufficiently small. The final
step is to calculate Q.

4. Unknown is D or DH : With D or DH unknown, we cannot calculate V̄ and Re
even though we know Q. The problem requires iteration. One approach is to as-
sume a value for D or DH , which this allows the V̄ and Re to be calculated.
Since D or DH is assumed known, e/D and the Moody chart can be used to find
f, after which the appropriate energy equation is solved to find the estimated �p.
The estimated �p is compared to the known value and is used to adjust the di-
ameter upward or downward. The iteration process stops when the estimated
pressure difference agrees with the known value. At this point the value of D or
DH is known.

Most engineering systems contain multiple flow paths, defined as those for which
fluid may travel from inlet to exit via different paths. The two key facts to keep in mind
when analyzing multiple flow paths are (1) the head losses in parallel branches joining
two nodes in a multiple path system are the same and (2) the flowrate into a juncture
where two or more branches meet is equal to the sum of the flowrates out of the juncture
on each branch.
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There are several questions to be answered in the design of pipe and duct systems
beyond the specification of the size and lengths of the component pipes and ducts. The
key design decisions of relevance to fluid mechanics are generally based on the mini-
mization of the first cost of pipe, pump, and components, as opposed to the operating
cost for pumping. Since the frictional pressure drop in turbulent flow is proportional to
the average velocity squared, for a given flowrate, the lower first cost of using a smaller
diameter pipe and smaller components results in a larger pressure drop. A larger pressure
drop results in a higher operating cost of the pump, and in some cases, a higher first cost
for a pump of adequate pressure. Thus a successful pipe or duct design involves deci-
sions that require consideration of factors beyond the characteristics of the flow alone.
Two of the major tools utilized to solve such problems are the system and pump (or fan)
curves described in Section 13.5. The pump or fan is usually the single most expensive
item in a pipe or duct design. The optimization of pump and fan selection is simplified
through the use of charts supplied by manufacturers. An important aspect of pipe and
duct design is the uncertainty of the calculations and operating conditions. The uncer-
tainty in head loss calculations is at least 10%. Furthermore, it is common for changes
due to interferences to occur during construction, resulting in greater losses than were
anticipated in the design. As a consequence, most designers will include a significant
safety factor in the pipe and pump selection process.

PROBLEMS 867

PROBLEMS

Section 13.2

13.1 A flow-measuring device requires
fully developed flow for maximum accuracy.
How far downstream of the elbow should the
device shown in Figure P13.1 be placed to
achieve maximum accuracy if water is flow-
ing in the pipe at 0.1 m/s? At 10 m/s?

13.2 The duct shown in Figure P13.2 car-
ries 1000 ft3/min of standard air. How far
downstream of the transition should the filter
be located to maximize its effectiveness? Ex-
plain your answer.

13.3 A 1 mm diameter tube, 10 cm in
length, is used as a viscometer. Its calibration
is based on fully developed laminar flow for
its whole length. Develop an equation for the
viscosity based on Q and �p. What is the
maximum flowrate for standard air and water
at 20°C?

13.4 For the device described in Prob-
lem 13.3 what is the viscosity of the fluid if
measurements of Q = 61 cm3/s and �p =
2000 kPa are taken? What is the potential
error of assuming fully developed flow for
this case?

13.5 Show that head loss is the viscous
dissipation normalized by the volume
flowrate for laminar fully developed flow
in a pipe. The dissipation in this case is

Flow measuring
device

L � ? D � 2 cm

V

V

Figure P13.1
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� = (µ/ρ)(∂vz/∂r)2 , and the head loss is
hL = (64/Re)(L/D)(V̄ 2/2).

13.6 For laminar fully developed flow in a
pipe, find the radial location at which the ve-
locity is equal to the average velocity.

13.7 What is the pressure drop in 50 ft of
1 ft diameter pipe for flow of 1000 ft3/min of
standard air? What is the wall shear stress for
this flow?

13.8 What is the pressure drop in 50 ft of
1 ft × 1 ft duct for flow of 1000 ft3/min of
standard air? What is the wall shear stress for
this flow?

13.9 Water at 30°C flows upward at the
rate of 80 cm/s through the 20 mm diameter
pipe shown in Figure P13.3. What is the pres-
sure change in the pipe?

13.10 For the pipe described in Prob-
lem 13.9, water is now flowing downward.
What is the pressure change in this case?

13.11 For the flow described in Prob-
lem 13.9, give the wall shear stress and the
change in temperature due to friction.

13.12 For the flow described in Prob-
lem 13.10, give the wall shear stress and the
change in temperature due to friction.

13.13 Air at 50°F is flowing through a 5 in.
diameter galvanized steel pipe at 1500 ft/min.
If the pipe is 100 ft long and horizontal, what
is the pressure change? What is the pressure
change if the pipe is vertical?

13.14 Water at 20°C flows in a horizontal
10 cm diameter cast iron pipe with a velocity
of 10 cm/s. Use the Moody chart to find the
pressure drop in the pipe per meter. What is
the power lost to friction per meter?

13.15 Redo Problem 13.14 using the
Colebrook equation and the Chen equation.

13.16 Someone designing a piping system
without taking a course in fluid mechanics
uses Eq. 13.19 for determining the friction
factor with Re = 5000. Assume that he is
using concrete pipe, and approximate the
error in his calculation. 

Q � 1000 ft3/m

Filter

24 in.

12 in.

12 in.

12 in.L � ?

Figure P13.2

H � 10 m

V � 80 cm/s

� � 30�

D � 20 mm

Figure P13.3
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13.17 A hypodermic needle is 0.2 mm in
diameter and 30 mm long. Determine the
flowrate for Re = 2800 for a drug with the
properties of water at 20°C. This Reynolds
number is in the transition zone between lam-
inar and turbulent flow. Calculate the pressure
drop assuming laminar flow and the pressure
drop calculated through the use of the Chen
equation for turbulent flow.

13.18 A 10-mile-long crude oil pipeline is
designed to be 1 ft diameter with a flowrate of
200 gal/min. The pipe material is commercial
steel. It is expected that over the lifetime of
the pipeline, fouling will reduce the effective
area by 10% and will double the roughness.
Calculate the expected frictional pressure
drop for the pipeline when new and at the end
of its service.

13.19 A water district has a 30 km
pipeline from a reservoir to the treatment
plant. The diameter of the pipe is 0.5 m and it
carries 1100 m3/day. Without cleaning the
commercial steel pipe will foul causing a 2%
reduction in diameter and 10% increase in
roughness per year? How much money can be
spent on cleaning per year if it is paid for by
savings in pumping costs and the price of
electricity is $0.07/kW-h?

13.20 Air at 30°C flows through a micro-
machine passage with cross section
0.1 mm × 0.05 mm and length 1 mm. What
is the pressure drop if the average velocity is
0.5 mm/s calculated by means of the hy-
draulic diameter model? 

13.21 Redo Problem 13.20 using the rec-
tangular duct solution if possible.

13.22 A horizontal air conditioning duct
50 in. × 10 in. carries 100 ft3/min of 55°F
air. What is the pressure drop per foot of duct
calculated by using the hydraulic diameter
model?

13.23 Redo Problem 13.22 using the rec-
tangular duct solution if possible.

13.24 Consider square duct (of side a) and
pipe (of diameter D) of equal area such that
a2 = π D2/4. Which will have the greatest
frictional losses? Use a calculation based on
the hydraulic diameter model to explain your
answer.

13.25 Consider equal area rectangular
ducts with aspect ratios of 2 and 4. Which will
have the greater frictional losses? Use a calcu-
lation based on the hydraulic diameter model
to explain your answer.

13.26 Air at 70°F flows through a smooth
1 ft diameter pipe. The duct is 75 ft long, and
the flowrate is 500 ft3/min. What is the eleva-
tion change between the inlet and outlet?

13.27 Water at 20°C flows through 5000 m
of 20 cm diameter pipe between two reservoirs
whose water surface elevation difference is
75 m. Find the flowrate if e/D = 0.0015.

Section 13.3

13.28 Use the power-law velocity profile
given in Eq. 13.32 to calculate the wall shear
stress for turbulent flow in a smooth pipe.
Compare values for n = 6 and 10.

13.29 Water flows through a 40 mm pipe
with a sudden contraction to 20 mm. If the
pressure drop across the contraction is 3.0 kPa,
what is the volume flowrate?

13.30 A gradual contraction of 20° is con-
sidered to replace the sudden contraction de-
scribed in Problem 13.29. What will now be
the volume flowrate if the pressure drop is
unchanged?

13.31 Gasoline flows from one tank to the
other as shown in Figure P13.4. The pipe is
1 in., Schedule 40 commercial steel. Calculate
the pressure above the gasoline in the first
tank that will result in a flowrate of
100 gal/min. The second tank is vented.

13.32 The system described in Prob-
lem 13.31 is cleaned with 200°F water. What
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pressure is required to move water at the rate
of 300 gal/min?

13.33 A 100 m length of 10 cm diameter
wrought iron pipe has one open globe valve,
one 45° regular elbow, and one pipe bend with
a radius of curvature of 1 m. If the fluid is
water at 30°C and the velocity is 2 m/s, what
is the total head loss?

13.34 How large must a wrought iron pipe
be to convey crude oil from one tank to an-
other at a rate of 1 m3/s if the pipe is 1000 m
long and the difference in elevation of the free
liquid surfaces that drives the flow is 15 m?

13.35 The 2 ft × 2 ft galvanized steel duct
shown in Figure P13.5 carries 1000 ft3/min of

air at 70°F when the filter is new. The filter pres-
sure drop is 0.25 in. H2O when new and should
be changed when it is 0.75 in. H2O. What is the
volume flowrate when the filter is changed?

13.36 For the system described in Prob-
lem 13.35, what total pressure for the system
is required to maintain 1000 ft3/min when the
filter is dirty?

13.37 Gasoline is being siphoned through
a 3

4 in. diameter plastic tube, as shown in Fig-
ure P13.6. What is the flowrate?

13.38 If the discharge of the siphon de-
scribed in Problem 13.37 is rotated to 45° to
the horizontal, as shown in Figure P13.7, what
is the new flowrate?

p � ?

Gasoline

Pipe

5 ft

5 ft

15 ft

50 ft 10 ft

Q � 100 gal/min

Vent

Figure P13.4

100 ft

Filter

10 ft

w � 2 ft

10 ft

Air2 ft Q

Galvanized steel duct

1 ft

Figure P13.5
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13.39 The two reservoirs shown in Fig-
ure P13.8 contain water at 20°C. The entrance
and exit are both square edged, the length and
diameter of the smooth pipe are 700 m and
6 cm, respectively. What will be the flowrate
if the difference in surface elevations is 20 m?

13.40 Redo Problem 13.39 to find the
flowrate for a diameter of 3 cm.

13.41 Redo Problem 13.39 to find the
flowrate for a roughness e/D of 0.0015.

13.42 Find the head loss in a pipeline con-
sisting of 100 ft of 2 in. diameter Schedule
40 steel pipe, four standard 90° elbows, and a
gate valve. The flowrate is 2 ft3/s kerosene.

13.43 Reconsider the pipeline described in
Problem 13.42. If the head loss remains the
same, what diameter pipe is required to dou-
ble the flowrate to 4 ft3/s?

13.44 Water at 20°C flows through a par-
tially opened control valve. If the average

4 ft

1 ft

6 in.

Siphon

Gasoline

D �      in.3
4

Q � ?

Figure P13.6

700 m

D � 6 cm 20 m

Q

Figure P13.8

Gasoline

1 ft

6 in. 4 ft

D �    in.3
4

Siphon

45�
Q

Figure P13.7
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velocity is 10 m/s and the pressure drop across
the valve is 1 × 105 N/m2, what would be the
head loss coefficient for the valve in this
position?

13.45 The spray wand at a car wash shown
in Figure P13.9 has a 1/4 in. exit nozzle and
requires 100 ft/s exit velocity. The piping sys-
tem from the pump consists of 50 ft of 1 in.
commercial steel pipe with three standard el-
bows, one open gate valve, 15 ft of rubber tub-
ing, and 4 ft of 1

2 in. commercial steel, which
makes up the wand. The pump is located
about 6 ft below the exit of the wand. What
pressure is required to drive water at 70°F
through the spray wand? 

13.46 A soap solution with a viscosity
10% lower than that of water but having the
same density as water is run through the spray
wand described in Problem 13.45. What pres-
sure is required for this flow?

13.47 To wash larger vehicles it is pro-
posed to add more rubber tubing to the spray
wand described in Problem 13.45. If the pump
exit pressure is 100 psig, how much more tub-
ing could be added to maintain 90 ft/s exit
velocity?

13.48 The pump at the car wash described
in Problem 13.45 has failed. A temporary re-
placement has a 50 psig exit pressure. What
will be the exit velocity?

13.49 An air-handling unit consisting of a
supply fan, filter, and heating/cooling coil
serve one room as shown in Figure P13.10.
The supply ductwork consists of 50 ft of
18 in. × 12 in. galvanized steel duct with
three mitered 90° elbows to the supply grille
at the exit (K = 2.5 combined). The return
ductwork consists of 45 ft of 18 in. × 12 in.

galvanized steel duct with two elbows from
the return grille and entrance (K = 1.9 com-
bined). The air-handling unit and the room
can be considered to be at the same elevation.
The coil and filter have a combined design
pressure drop of 1.0 in. H2O at
Q = 1500 ft3/min. What is the fan pressure
rise required for this system? Assume that the
supply air is 55°F.

13.50 To convert the room described in
Problem 13.49 to a clean room, a new air-
handling unit is installed with a high
efficiency particulate air (HEPA) filter. As-
sume the pressure drop across the filter and

6 ft

Pump

50 ft of 1 in. commercial
steel pipe with three
standard 90� elbows

Contains water
at 70�F

Spray
wand

V � 100 ft/s
4 ft of       in. commercial

steel pipe

15 ft of
rubber tubing

1
4

1
2

Exit nozzle with

D �      in.

Open gate
valve

Figure P13.9
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coil is now 2.0 in. H2O. If the fan produces
3.5 in. H2O of pressure rise, what will be the
flowrate?

13.51 It is decided that the clean room de-
scribed in Problems 13.49 and 13.50 has an
inadequate flowrate. What size duct, main-
taining one side as 18 in., is required to
achieve a flowrate of 3000 ft3/min?

13.52 For the air-handling system de-
scribed in Problem 13.49, what is the power
required by the fan if its efficiency is 75%.
Assume the pressure rise across the fan is
2.0 in. H2O.

13.53 The hydroelectric plant shown in
Figure P13.11 uses 200 m of 0.5 m diameter
cast iron pipe. If the flowrate is 2 m3/s, what
is the pressure drop across the turbine?
Neglect minor losses.

13.54 The water from the hydroelectric
plant described in Problem 13.53 is to be used
for irrigation. If the power output is 200 kW
and the turbine is 85% efficient, how far can
the pipeline be extended while maintaining a
flowrate of 2 m3/s?

13.55 Redo Problem 13.54 but choose the
diameter of the pipe extension such that the
extended length is 15 km.

13.56 The turbine for the hydroelectric
plant described in Problem 13.53 is to be
replaced with a more efficient model. If the
power output is 300 kW and the turbine effi-
ciency is 90%, what is the flowrate?

13.57 A maintenance check of the hydro-
electric plant described in Problem 13.53
indicates a flowrate of 1.95 m3/s and a power

Return
Room

Fan

Filter Coil

Supply

55�F

72�F

Figure P13.10

25 m

Water

Turbine

Discharges to
atmosphere

Cast iron pipe
L � 200 m

 D � 0.5 m

Q � 2 m3/s

Dam

Figure P13.11



874 13 FLOW IN PIPES AND DUCTS

output of 250 kW. What is the efficiency of
the turbine?

13.58 As shown in Figure P13.12 a foun-
tain is served a pump, 150 ft of 1 in. diameter
commercial steel pipe, five standard 90°
elbows, a filter, and two gate valves. The
fountain nozzle is 3/4 in. diameter. The filter
is a minor loss with K = 2.8. If the height of
the fountain h is 10 ft, how much pressure rise
must the pump generate?

13.59 For the fountain described in Prob-
lem 13.58 the gate valve on the pump exit
can be used to control the fountain height.
If the pump provides a 30 psi pressure rise,
what will be the height of the fountain if the
valve is one-quarter open, half-open, and fully
open?

13.60 How much does it cost per hour to
operate the fountain described in Prob-
lem 13.58 if h = 15 ft, the pump efficiency is
80%, and the cost of power is $0.07/kW-h?

13.61 Recirculated air for a cold storage
locker is cooled by means of the secondary
cooling loop shown in Figure P13.13. The
working fluid, ethylene glycol, is cooled from
40°C to 0°C in the heat exchanger located in
the chiller. The fluid proceeds to the second
heat exchanger in thermal contact with the re-
circulated air. Here the ethylene glycol ab-
sorbs heat and returns to 40°C. The piping
system consists of 50 m of 3 cm commercial
steel pipe, five standard 90° elbows, and two
gates valves, which isolate the pump. The
heat exchangers can be considered to be
minor losses with a coefficient of K = 2.0.
Assume no elevation changes. The density
and viscosity of ethylene glycol at the
working temperatures are ρ0 = 1128 kg/m3,
ρ40 = 1100 kg/m3, µ0 = 5.74 (kg-m)/s, and
µ40 = 0.95 (kg-m)/s, respectively. If the
flowrate for this system is 1 m3/s, what is the
pressure rise required from the pump?

13.62 For the cooling system described in
Problem 13.61 new coils are installed which

Fountain

Commercial steel pipe
L � 150 ft, D � 1 in.

Open gate
valves

Standard 90�
elbow (1 of 5)

10 ft

5 ft

Nozzle

D �     in.3
4

Pump

Filter
(K � 2.8)

Figure P13.12
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have a pressure drop of 15,000 × 104 N/m2.
If the pump is supplying 40,000 × 104 N/m2

pressure rise, what is the flowrate in the system?

13.63 For the cooling system described in
Problem 13.61, what is the power required by
the pump if its efficiency is 85%?

13.64 The beer supply system for a bar is
shown in Figure P13.14. The beer keg is pres-
surized to 30 psi by the CO2 tank. The keg is
connected to the tap through 1/4 in. plastic
tubing. The tap is 5 ft higher than the keg.
What distance from the keg can the tap be lo-
cated to allow a pint glass to be filled in 10 s?
Assume that beer has the properties of water at
40°F and that minor losses can be neglected.

13.65 If the tap is located 50 ft from the
keg in the beer system described in Problem
13.64, what will be the flowrate in pints per
minute?

13.66 For the beer system described in
Problem 13.64, what diameter tubing is re-
quired to maintain the flowrate at 0.1 pint/s if
the tap is 200 ft from the keg?

13.67 The intake and exit of a pump are
6 and 5 cm, respectively. The pressure change
across the pump is 20 kPa. The intake and exit
are at the same elevation. If the flowrate is
0.75 m3/s and the power input is 25 kW, what
is the efficiency of the pump?

Return
air

Supply
air

Glycol
return

Glycol
supply

Pump

Gate
valve

C
oi

l

C
oi

l

40�C

0�C

Chiller

Cold storage
locker

Figure P13.13

Beer

30 psi
CO2
tank

Plastic tubing
L � ?

D �      in.1
4

5 ft

Tap

Figure P13.14
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13.68 The turbine installation shown in
Figure P13.15 consists of 100 ft of 8 in. pipe,
75 ft of 6 in. pipe, all cast iron, two 8 in. 90° el-
bows, one 6 in. elbow, a 6 in. gate valve. If the
surface elevation is 125 ft above the discharge
and the flowrate is 0.15 ft3/s of 70°F water,
what is the power transferred from the flow?

13.69 All the piping on the turbine instal-
lation described in Problem 13.68 is changed

to 4 in. diameter. What is the new power
output?

Section 13.4

13.70 Three water tanks are connected as
shown in Figure P13.16. Determine the
flowrate in each pipe. Neglect minor losses.

13.71 Redo Problem 13.70 with cast iron
pipe instead of the given friction factors.

Turbine

Cast iron pipe
L � 100 ft
D � 8 in.

125 ft

6 in.
90� elbow

Q � 0.15 ft3/s

Cast iron pipe
L � 75 ft
D � 6 in.

Two 8 in. 90� elbows

6 in.
gate valve

Figure P13.15

z � 30 m

z � 75 m

z � 0

D � 10 cm
  f � 0.018
 L � 300 m

D � 8 cm
  f � 0.022
 L � 500 m

D � 5 cm
  f � 0.020
 L � 400 m

Figure P13.16
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13.72 Consider the reservoir system
shown in Figure P13.17. The elevations of
reservoirs A and B are 100 and 75 ft, respec-
tively. The junction elevation is 50 ft and the
discharge is at 10 ft. The pipe from A to the
junction is 1000 ft of 6 in. diameter cast iron,
from B to the junction is 900 ft of 5 in. diame-
ter cast iron, and from the junction to the dis-
charge is 1300 ft of 8 in. diameter cast iron.
Determine the flowrate in each pipe. Neglect
minor losses.

13.73 Redo Problem 13.72 assuming that
the elevation of reservoir B is unknown and
the flow rate leaving it to be 20 ft3/s.

13.74 Consider the schematic of the 
parallel pipe system in Figure P13.18. 
The globe valve in branch 2 is fully open. The
pressure and elevation at junction A are
1.5 × 105 N/m2 and 30 m, respectively. The
elevation of junction B is 20 m. The total
flowrate is 2 m3/s of 20°C water. Find the

z � 100 ft

Reservoir
A

Reservoir
B

z � 50 ft

z � 10 ft

Discharge

Cast iron pipe
D � 6 in.
 L � 1000 ft

Cast iron pipe
D � 8 in.
 L � 1300 ft

Cast iron pipe
D � 5 in.
 L � 900 ft

z � 75 ft

Figure P13.17

Globe
valve

Water

Q � 2 m3/s

 T � 20�C

A B

 pB � ?

HB � 20 m
 pA � 1.5 � 105 N/m2

HA � 30 m

Q1 � ?

Q2 � ?

Q3 � ?

1

2

3

Figure P13.18

Branch D (cm) L(m) f
1 10 200 0.020
2 8 10 0.018
3 10 150 0.020
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flowrate through each branch and the pressure
at junction B. Assume that minor losses are in-
cluded as equivalent length of pipe other than
the globe valve.

13.75 Redo Problem 13.74 with the globe
valve one-quarter open.

13.76 The commercial steel pipe system
shown in Figure P13.19 delivers kerosene at
20°C with a total flow rate of 0.05 m3/s. When
the pump is not running it can be considered a
minor loss with K = 1.4. Determine the
flowrate in each pipe and the pressure drop
between junctions A and B.

13.79 The air velocity must be maintained
at 150 ft/min through the open face of the lab-
oratory hood shown in Figure P13.21A.
Choose a blower to service the hood (0.1 in.
H2O head loss) from the selection given in
Figure P13.21B. Design steel ductwork from
the hood to the blower and from the blower to
the existing stack. Your choices should be
based on minimizing the overall cost. Assume
that the ductwork material and fabrication
cost is equal to the fan cost. Assume electri-
cal power costs of $0.07/kW-h. Assume a
5-year system life. Neglect the time value of
money.

13.80 Redo Problem 13.79 assuming that
a more hazardous material, requiring a face
velocity of 250 ft/min, is now to be worked
inside the hood.

13.81 The design of a nutrient system in a
biotechnology lab includes the locations of
the nutrient holding tank and the experiment
trays shown in Figure P13.22A and the pump
curve shown in Figure P13.22B. The required
flowrate is 2 gal/min, and the nutrient mix has
the properties of water at 70°F. The total
minor head losses are K = 6.0, not including
the control valve. Determine the placement of
an existing pump and select the diameter of
the plastic tubing.

Commercial steel pipe
L � 50 m, D � 8 cm

Commercial steel pipe
L � 45 m, D � 4 cm

Pump

BA

Kerosene, 20�C

Figure P13.19

Tank

Q � 60 gal/min
T � 70�F

Entrance

Nozzle

5 ft 5 ft Pump

Filter
(K � 3.0)

25 ft

5 ft

5 ft

Figure P13.20 System schematic.

13.77 Redo Problem 13.76 with the pump
running and delivering 35 kW to the flow.

Section 13.5

13.78 The system shown in Figure P13.20
continuously sprays water on fruit and vegeta-
bles moving along the conveyor. The water is
recycled in the tank. The pipe is Schedule 40
PVC.The minor losses include a reentrant inlet,
two regular 90°, threaded elbows, the filter
(K = 3.0) and the spray nozzle (10 psi pressure
loss at 60 gal/min). Based on the pump curve
in Figure 13.37, choose a pipe diameter to
maximize the pump efficiency. The water is
70°F.
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10 ft

10 ft

5 ft

5 ft

6 in. dia

6 in. dia

Stack

18 in.

Face velocity
150 ft/min

W � 3 ft
 T � 70�F

Blower

(A)
Hood

Figure P13.21 (A) System schematic. (B) Typical manufacturer’s chart of blower values.

Shaded Pole Blowers

Flow (ft3/min) at 60 Hz and rpm shown

Free 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Cutoff
air SP SP SP SP SP SP SP SP SP

350 340 328 312 296 274 240 202 158 1.00

350 340 328 312 296 274 240 202 158 1.00

465 428 396 352 305 227 125 — — 0.76

465 428 396 352 305 227 125 — — 0.76

490 460 425 390 350 305 235 — — 0.80

495 476 458 437 416 387 360 312 265 1.26

495 476 458 437 416 387 360 312 265 1.26

815 767 716 663 604 537 460 280 — 0.91

980 940 890 843 788 730 655 565 210 1.05

Two-Speed Blowers

Therm. Free Air Stock Lots shpg.
Volts Hz Protect. rpm Watts Amps No. List Each 4 Wt.

435 410 380 345 295 205 100 — — 0.78 115 60/50 Auto. 1350 175 2.17
4C565 $131.51 $78.75 $74.80 11.0

296 290 279 265 220 153 90 — — 0.75 900 110 1.41

480 465 445 425 400 370 340 300 245 1.16 115 60/50 Auto. 1525 250 3.55
4C566 169.50 101.55 96.43 13.0

375 365 355 340 320 295 265 230 160 1.12 1165 158 2.21

760 750 735 710 675 640 610 565 520 1.70 115 60/50 Auto. 1450 335 3.20
5C508 233.16 139.65 132.63 13.0

545 530 525 505 495 480 460 420 380 1.60 1100 215 2.07

PSC Blowers

382 349 335 319 300 279 248 204 145 1.10 115 60/50 Auto. 1550 125 1.21 4C666 158.11 94.70 89.94 11.0

488 470 450 430 406 377 336 282 217 1.18 115 60/50 Auto. 1580 157 1.43 4C667 168.24 100.75 95.70 12.0

745 715 683 647 605 560 506 — — 0.92 115/230 60/50 Auto. 1060 249 2.59 4C668 254.86 152.75 144.98 20.0

960 930 890 845 800 745 688 470 253 1.16 115/230 60/50 Auto. 1030 380 4.00 4C830 267.53 160.50 152.19 23.0

1210 1200 1190 1180 1175 1160 1135 1110 1092 2.20 115/230 60/50 Auto. 1400 910 8.60 4C831 300.00 179.75 170.66 22.0

(B)
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Heat
exchanger

Return Supply

T � 40�F T � 180�FPump

(A)

Gate
valve

Gate
valve

Figure P13.23 (A) System schematic and (B) pump curves.
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Figure P13.22 (A) System schematic and (B) pump curve.
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13.82 A heat exchanger can be used for
heating or cooling as shown in Figure P13.23A.
If the flowrate is 24,000 gal/min, choose the di-
ameter of cast iron pipe and the most efficient
pump based on the curves shown in Fig-
ure P13.23B for 40 or 180°F water. The total
length of pipe, including the equivalent length
of minor losses, is 1000 ft.

13.83 The NPSHR for the pump used in
Problem 13.78 is 5 ft. Do you recommend that
the elevation of the pump be changed?

13.84 Comment on how the location of the
pump and the rigidity of the tubing used in
Problem 13.81 could affect the performance
of the design.

13.85 For the pump system described in
Problem 13.82, determine if cavitation will
occur if the total head loss from the tanks to
the pump is 7 ft. Be sure and check for each
temperature.

0
200

4 8 12 16
Flow rate (U.S. gal/min � 1000)

T
ot

al
 h
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d 
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N
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H
 (

ft
)

20 24 28 32

300

400

500

600

50

700 30

40

20

3
436 in. dia

32 in. dia

28 in. dia

n � 1170 rpm

NPSH

65
%

72
%

78
%

82
%

85
%
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%
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%
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3500 Bhp
3000 Bhp

2500 Bhp2000 Bhp
1500 Bhp

Figure P13.23 (continued)
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14.4.2 Cylinders
14.4.3 Spheres
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14.5 Lift and Drag of Airfoils
14.6 Summary
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14.1 INTRODUCTION

An external flow occurs whenever an object moves through a fluid or a fluid passes by
the surface of a structure. Such flows are present everywhere in the world around us,
both in nature and as a result of modern technology. Nearly all living creatures, from the
smallest bacterium to the largest mammal, encounter air or water in motion. In fact,
some animals, such as pelicans and other diving birds, are equipped to deal with loco-
motion in both fluids. Humans have often looked to the animal world for inspiration in
their desire for enhanced mobility on land, sea, and air. Despite some success in simply
copying natural designs, the development of aircraft, ships, and to a lesser extent, land
vehicles such as automobiles could not have occurred without a good understanding of
external flow. Today, in technical problems ranging from how particles settle onto the
surface of the lung to the effects of wind blowing over a building, understanding the
interaction between an object moving through a fluid (or equivalently fluid moving over
an object or adjacent to a structure), remains of great practical importance.

14 EXTERNAL FLOW
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Some aspects of external flow have been mentioned in earlier chapters, both be-
cause they are fundamentally useful in engineering design and to provide a foundation
for this chapter. Before continuing you may find it helpful to revisit the case studies in
Sections 3.3.4 (flat plate boundary layer), 3.3.5 (drag on cylinders and spheres), and
3.3.6 (lift and drag on airfoils), as well as those dealing with fluid force exerted on a
body in an external flow in Sections 4.5.1 (flow over a flat plate), and 4.5.3 (lift and
drag). An experienced engineer can often obtain a good feel for the forces generated by
external flows by using flow visualization. Thus you may also wish to review the flow
visualization concepts in Chapter 10. Have you seen commercials featuring a car or
other vehicle in a wind tunnel with streamlines of smoke passing over the surface, as
shown in Figure 14.1? The streamlines reveal regions of flow separation that contribute
to drag. A number of other things you have learned are also relevant to your study of ex-
ternal flow. Examples include the analytical and computational fluid dynamics solutions
for flow over a cylinder presented in Chapter 12, and the brief discussion of turbulence
in that same chapter. As you will learn, turbulence plays a critical role in external flow.
The presence or absence of turbulence strongly influences boundary layer development,
flow separation, and the forces exerted by a fluid on an immersed object.

CD/Video library/Butterflies & Flow past a larvae & Gold fish & Pine cone & Pine 
needles & Sperm

Figure 14.1 Aerodynamic testing of a
truck with smoke in a wind tunnel.

CD/Video library/Flow past cars

Our discussion of external flow begins with the concept of a boundary layer, a thin
layer of moving fluid near a solid surface in which the no-slip condition and viscosity
combine to create a velocity gradient. That velocity gradient creates a shear stress on the
adjacent surface in the direction of the nearby flow. Since the flow in a boundary layer
can be laminar or turbulent, we will discuss the characteristics of each type, limiting our-
selves at first to the simplest case of flow along a flat plate. We next briefly discuss the
boundary layer on airfoils and other objects for which the curvature of the surface and
angle of incidence of the freestream are important. We conclude the chapter with



sections devoted to the discussion of drag coefficients, and lift and drag of airfoils.
Many of the results in these sections are based on empirical observations that have been
collapsed by dimensional analysis into lists of the familiar lift and drag coefficients
introduced in the case studies. Examples of the use of those coefficients in solving a va-
riety of external flow problems are provided. Throughout this chapter you will also find
a qualitative discussion of how lift and drag are generated by the flow field. We include
this discussion to help you understand how changes in the flow field about an immersed
body can have dramatic effects on the force applied to the body by the fluid.

884 14 EXTERNAL FLOW
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14.2 BOUNDARY LAYERS: BASIC CONCEPTS

When a body is immersed in a moving fluid, the fluid velocity along a line perpendicu-
lar to any point on the body surface is observed to vary from zero on the surface to a
maximum value some distance away. At small Reynolds numbers, the distance over
which the velocity variation occurs may be of the same magnitude as the dimensions of
the body itself. However, at large Re the variation occurs over a relatively small dis-
tance, and the body is said to have a boundary layer, meaning that there is a layer of fluid
near the surface of the body in which the velocity changes from zero on the surface to
the freestream value. Prandtl’s insight into this phenomenon and his subsequent devel-
opment of boundary layer theory are milestones in the development of fluid mechanics.

The characteristics of a boundary layer are affected by the shape of the solid surface
of interest, the orientation of the surface relative to the freestream, and many other fac-
tors. However, we can illustrate the basic concepts by examining the boundary layer on
a thin flat plate aligned with the freestream. Consider the boundary layer on the upper
surface of such a plate at large Reynolds number as shown in Figure 14.2. The flow is
steady, and we can define a Reynolds number for the flow by using the length L of the
plate and freestream velocity U to write ReL = U L/ν . In a fluid of relatively small
kinematic viscosity such as air or water, the requirement of a large Reynolds number
means that the freestream velocity U is large. Observation shows that at large Reynolds

y

x
v

u

Freestream
velocity, U

Laminar
Transition
L

Turbulent

u (x, y)

�(x)

Figure 14.2 Geometry for flow over a flat
plate.
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numbers the boundary layer is relatively thin, and the thickness of the boundary layer in-
creases in the downstream direction. Moreover, just downstream of the nose of the plate
the boundary layer is observed to be laminar, but at some point downstream transition
occurs and the boundary layer becomes turbulent.

At any location x along the plate, there is a smooth variation in the streamwise ve-
locity component u along a line perpendicular to the plate surface. Thus, u is a function
of x and y inside the boundary layer, but a constant U outside. The transverse velocity
component, v, is also observed to be a function of x and y inside the boundary layer, but
it is zero outside. The transverse velocity component v in a boundary layer is very small
compared to u. Thus one boundary layer characteristic is v � u. A second characteris-
tic is based on the observation that the velocity changes rapidly in a direction normal to
the surface, but slowly in the flow direction. This means that spatial derivatives of the
velocity in the flow direction inside the boundary layer are small in comparison to spa-
tial derivatives in the normal direction.

The approach of the streamwise velocity component u to the freestream value is
asymptotic. Nevertheless, we can define a boundary layer thickness δ as the height
above the plate at which u = 0.99 U , meaning that the streamwise velocity component
is within one percent of the freestream value. Observation shows that the boundary layer
thickness grows at one rate in the laminar region, another rate in the transition region,
and yet another rate in the turbulent region. Since the thickness of a boundary layer de-
pends on the location x along the plate, we write δ = δ(x) and recognize that this func-
tion is an important characteristic of a boundary layer, since it defines the edge where the
boundary layer and freestream meet. Note that this edge (dashed line in Figure 14.2) is
not a streamline. In fact, streamlines enter the boundary layer all along its length.

It is customary to define two additional quantities that also characterize the thick-
ness of a boundary layer. The first of these, called the displacement thickness and repre-
sented by δ∗, is defined by the following integral

δ∗ =
∫ ∞

0

(
1 − u

U

)
dy (14.1)

This integral takes a different value at each location x along the plate, so we write
δ∗ = δ∗(x). One rationale for defining the displacement thickness in this way is illus-
trated in Figure 14.3, where we have overlaid the velocity profile in the boundary layer
on top of the uniform velocity profile that would exist if the fluid were inviscid and able
to slip by the plate. The shaded area can be thought of as the volume flowrate per unit
width w into the paper that is missing because of the presence of the boundary layer. The
difference in volume flowrate carried by the two velocity profiles is seen to be given by
�Q = w

∫∞
0 U dy − w

∫∞
0 u dy . With a little rearrangement we can write this as

�Q = w

∫ ∞

0
(U − u) dy = wU

∫ ∞

0

(
1 − u

U

)
dy = Uwδ∗

Thus the missing volume flowrate in the boundary layer is seen to be given by
�Q = Uwδ∗ , and the missing mass flowrate is �Ṁ = ρUwδ∗ . From this analysis, and
recalling that the passage formed by two adjacent streamlines carries a certain volume
flowrate in proportion to their distance apart, it is customary to say that in comparison to
a fictitious inviscid flow over the plate, a boundary layer displaces streamlines a distance



δ∗ away owing to viscous effects. Another way of describing δ∗ is to say that the bound-
ary layer makes a body appear δ∗ thicker owing to the effects of viscosity in slowing
down fluid near the body surface. That is, the body surface is effectively defined by the
edge of the boundary layer.

The second additional quantity that is used to characterize the thickness of a bound-
ary layer is Θ = Θ(x), called the momentum thickness. The momentum thickness is de-
fined by

Θ =
∫ ∞

0

u

U

(
1 − u

U

)
dy (14.2)

A streamwise momentum balance can be used to show that in comparison to an inviscid
flow, the missing streamwise momentum flux in the boundary layer is equal to ρU 2wΘ.
Each of the three thicknesses, δ = δ(x), δ∗ = δ∗(x), and Θ = Θ(x) plays an important
role in discussions of boundary layers.

Additional quantities of importance in boundary layer theory are the wall shear
stress, τW = τW (x), which is a function of position along the plate because of the chang-
ing streamwise velocity profile, and the total force exerted by the fluid on the plate.

The total force on the plate can be thought of as consisting of lift and drag. The lift
component of this force is defined by Eq. 4.25b as FL = ∫S (−pn + �) • nL dS , where
the unit vector nL is normal to the plate. For a flat plate aligned with the freestream, the
wall shear stress acts along the plate, i.e., in the streamwise direction, so there can be no
contribution to lift from the shear stress. In addition, the symmetry of the flow ensures
that the pressure distribution on both sides of the plate is the same. Thus the lift is zero
and the total force on a flat plate aligned with the freestream consists solely of drag. The
drag force on the plate is defined by Eq. 4.26b as FD = ∫S (−pn + �) • n∞ dS , where
the unit vector n∞ points in the flow direction. Since the pressure acts normal to the
plate, it cannot contribute to the drag, and the drag on each side of a plate of width w and
length L is given by

FD = w

∫ L

0
τW (x) dx (14.3)
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and displacement thickness.
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From this we see that the wall shear stress distribution is indeed of great interest in
boundary layer analysis.

At this point we can begin to investigate the relationships among these boundary
layer parameters by employing dimensional analysis. In doing DA on this problem, it is
customary to choose the spatial coordinate x as the length scale, rather than the length of
the plate L. The DA is otherwise routine and yields the following relationships:

δ

x
= f1

(
U x

ν

)
= f1(Rex) (14.4)

τW

ρU 2
= f2

(
U x

ν

)
= f2(Rex) (14.5)

where the Reynolds number based on x is given by

Rex = U x

ν
(14.6)

Introducing the skin friction coefficient Cf = τW / 1
2ρU 2, we can write Eq. 14.5 as

Cf = f3

(
U x

ν

)
= f3(Rex) (14.7)

DA alone cannot tell us the form of these unknown relationships, but as shown in the
next two sections, theory and empirical data can.

14.2.1 Laminar Boundary Layer on a Flat Plate

H. Blasius, one of Prandtl’s students, analyzed the steady, laminar boundary layer on a
smooth flat plate aligned with the freestream in 1908. We can derive his result, known
as the Blasius solution, by using Cartesian coordinates with the plate aligned with the x
axis as shown in Figure 14.4. In general, the equations of motion for a steady, constant
density, constant viscosity flow are given by Eqs. 12.1a–12.1d. However, there is no rea-
son to expect a cross-stream velocity component w in the flow over a flat plate, nor any
variation of a flow property in the z direction. Thus the flow is 2D. Inserting w = 0, and

y

x

z

Freestream
velocity, U

Boundary layer
thickness, �(x)

Velocity profile

Flat plate

Boundary
layer

u(x, y)
Figure 14.4 The geome-
try of the boundary layer
over a flat plate.



dropping all derivatives with respect to z in Eqs. 12.1a–
12.1d, yields the following equations as the starting
point for a discussion of the flat plate boundary layer:

∂u

∂x
+ ∂v

∂y
= 0

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+ ∂2u

∂y2

)

ρ

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+ ∂2v

∂y2

)
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HISTORY BOX 14-1

Heinrich Blasius is famous in fluid me-
chanics for his boundary layer solution and
other contributions he made while study-
ing under Prandtl. However, later in life he
left fluid mechanics research to teach at a
Hamburg engineering school.

Further simplification of these equations can be made by recalling that the flow in a
boundary layer is predominantly parallel to the surface on which it occurs. Thus we can
assume v � u. Furthermore, the boundary layer is thin, which implies that derivatives
of flow variables with respect to x are much smaller than those with respect to y. By
using these two assumptions to simplify the preceding set of equations, we obtain

∂u

∂x
+ ∂v

∂y
= 0 (14.8a)

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂y2

)
(14.8b)

0 = −∂p

∂y
(14.8c)

These are the Prandtl boundary layer equations. They can be shown to be applicable to
boundary layers on moderately curved as well as flat surfaces, an important point to
keep in mind throughout the rest of our discussion.

Before we worry about solving these equations, notice that the last equation tells us
that the pressure in the boundary layer does not vary across the boundary layer. Thus we
conclude that the pressure inside the boundary layer on flat and moderately curved sur-
faces is the same as it is in the inviscid flow outside the boundary layer. This is a very
important aspect of Prandtl’s boundary layer equations, for it shows that the pressure
gradient in Eq. 14.8b may be considered to be known and determined by finding the
pressure distribution in the inviscid flow over the same surface shape.

Blasius was able to solve the Prandtl boundary layer equations for a flat plate by
recognizing that since the pressure in an inviscid flow over a flat plate is uniform, the
pressure gradient ∂p/∂x in Eq. 14.8b is zero. Thus the flat plate boundary layer is
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described by:

∂u

∂x
+ ∂v

∂y
= 0 (14.9a)

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= µ

(
∂2u

∂y2

)
(14.9b)

These two equations, with the associated boundary conditions, must be solved for the
unknown velocity components. The no-slip, no-penetration boundary conditions that
describe the flow over a flat plate are u(x, 0) = 0 and v(x, 0) = 0 for x > 0. We also
want the boundary layer solution to match the inviscid freestream solution u = U i that
exists upstream of the plate and above the plate outside the boundary layer. These last
two conditions can be written as u → U, v → 0 for x < 0, and u → U, v → 0 for
y 	 δ, i.e., outside the boundary layer. Here U is the magnitude of the freestream
velocity.

Although there is no known solution to Eqs. 14.9a and 14.9b that satisfies these
conditions exactly, Blasius showed that a similarity solution of these equations can be
obtained by introducing a new variable

η =
(

U

νx

)1/2

y (14.10a)

and employing a streamfunction 

ψ(x, y) = (Uνx)1/2 f (η) (14.10b)

The word “similarity” used to describe this solution indicates that when properly scaled
in the similarity variable, η = (U/νx)1/2 y , the velocity profiles at every location along
the flat plate collapse onto a single universal curve. Thus the profiles are similar.

Now by the definition of a streamfunction we have u = ∂ψ/∂y and v = −∂ψ/∂x ,
thus Eq. 14.9a is automatically satisfied. The velocity components are found to be
given by 

u = ∂

∂y
[(Uνx)1/2 f (η)] = ∂ f

∂η

∂η

∂y
= U

∂ f

∂η

and

v = −∂ψ

∂x
= − ∂

∂x
[(Uνx)1/2 f (η)] =

(
Uν

4x

)1/2 (
η
∂ f

∂η
− f

)

Substituting these velocity components into Eq. 14.9b, simplifying, and making the key
similarity assumption that the function f is not separately a function of x, we obtain the
following nonlinear, third-order, ordinary differential equation:

2
d3 f

dη3
+ f

d2 f

dη2
= 0 (14.11)



The boundary conditions for this equation are f = d f /dη = 0 at η = 0, and
d f /dη → 1 as η → ∞.

The function f (η) that satisfies this equation and boundary conditions defines the
Blasius solution. This function must be obtained numerically. Table 14.1 contains values
of f, d f /dη, and d2 f /dη2. These are readily found by using Mathematica or another
symbolic code to solve the differential equation. Notice that the edge of the boundary
layer, defined as the location at which d f /dη = u/U = 0.99, occurs at η ∼= 5.0.
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TABLE 14.1 Blasius Solution

η f

f

η


2f

η2

0 0 0 0.3321

0.5 0.0415 0.1659 0.3309

1.0 0.1656 0.3298 0.3230

1.5 0.3701 0.4868 0.3026

2.0 0.6500 0.6298 0.2668

2.5 0.9963 0.7513 0.2174

3.0 1.3968 0.8460 0.1614

3.5 1.8377 0.9130 0.1078

4.0 2.3057 0.9555 0.0642

4.5 2.7901 0.9795 0.0340

5.0 3.2833 0.9915 0.0159

5.5 3.7806 0.9969 0.0066

6.0 4.2796 0.9990 0.0024

6.5 4.7793 0.9997 0.0008

7.0 5.2792 0.9999 0.0002

7.5 5.7792 1.0000 0.0001

8.0 6.2792 1.0000 0.0000

The streamwise velocity profiles at various locations, shown in Figure 14.5A,
exhibit the growth in the thickness of the boundary layer at locations away from the
nose of the plate. When properly scaled in the similarity variable, all the profiles in Fig-
ure 14.5A collapse onto a single universal curve: the boundary layer velocity profile
u/U = d f /dη as shown in Figure 14.5B. We see the expected boundary layer behav-
ior: a zero velocity on the wall with a gradual approach to the freestream value near
η = 5.0.

Because the governing equations have been simplified to derive the Blasius solu-
tion, it is necessary to confirm experimentally that the velocity profiles in the flat plate
boundary layer do exhibit similarity. Figure 14.6A shows the similar profiles in the lam-
inar flow region beginning just downstream of the nose of the plate. In the bottom left
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corner of Figure 14.6B the laminar profile is also present. But after the onset of turbu-
lence the velocity profiles are no longer similar. Thus the Blasius similarity solution,
which is valid for the laminar flow boundary layer, confirmed Prandtl’s basic ideas about
the boundary layer.
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Figure 14.5 Flow over a flat plate: (A) boundary layer velocity profiles along the plate and (B) the equivalent simi-
larity profile.

CD/Demonstrations/Blasius and Falkner-Skan solutions

Figure 14.6 Flow visualization of flow over a flat plate using hydrogen bubbles to create material lines.
(A) Laminar boundary layer near the nose of the plate, and (B) A wider view showing the transition into a
turbulent boundary layer.
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The Blasius solution also provides information about the shear stress distribution on
the plate. The shear stress is given by Eq. 11.6d as σxy = σyx = µ(∂u/∂y + ∂v/∂x).
Evaluating this expression by using u = U(∂ f /∂η) and v = (Uν/4x)1/2 ×
[η(∂ f /∂η) − f ] results in a complicated expression involving f, ∂ f /∂η, and ∂2 f /∂η2.
However, at the wall y = 0, the expression for the shear stress simplifies to
σxy = σyx = µU

√
U/νx(∂2 f /∂η2) |y=0 , so only the value (∂2 f /∂η2) |y=0 = 0.3321

is needed to calculate τW .
Since transition to a turbulent boundary is observed at roughly Rex ≈ 5 × 105, the

Blasius solution is valid for a value of x greater than zero but smaller than
x ≈ 5 × 105(ν/U). However, the precise location of transition in a boundary layer is
not as certain as this appears to indicate. Thus this range of validity is approximate. In
fact it is possible to force the transition to a turbulent boundary layer near x = 0 by var-
ious means, including a trip wire or artificial roughness.

Within these constraints, the laminar flat plate boundary problem may be consid-
ered solved. The quantities of interest calculated from the Blasius solution may be sum-
marized as follows:

Rex = U x

ν
(14.12a)

δ(x)

x
= 5.0(Rex)

−1/2 (14.12b)

δ∗(x)

x
= 1.721(Rex)

−1/2 (14.12c)

�(x)

x
= 0.664(Rex)

−1/2 (14.12d)

τW (x) = 0.332ρU 2(Rex)
−1/2 (14.12e)

Cf (x) = 0.664(Rex)
−1/2 (14.12f)

By comparing these results and those obtained by DA in the Section 14.2
(Eqs. 14.4–14.7), we can see that the Blasius solution provides the unknown functional
dependence on Rex . In addition, it is evident that the similarity of the Blasius solution
justifies the use of x as the length scale in the dimensional analysis. The important char-
acteristics of the laminar flat plate boundary layer are found in Eqs. 14.12: the boundary
layer thickness grows at a rate δ(x) ∝ x1/2, and this is also true of the displacement and
momentum thicknesses; the wall shear stress decreases at a rate τW (x) ∝ x−1/2, as does
the skin friction coefficient.

It is possible to define a drag coefficient for a flat plate. Consider the drag con-
tributed by the boundary layer on one side of a plate of width w and length L. Inserting
Eq. 14.12e into the equation defining the drag force, Eq. 14.3, and substituting
Rex = U x/ν , we obtain

FD = w

∫ L

0
τW (x) dx = w

∫ L

0
0.332ρU 2

(
U x

ν

)−1/2

dx
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Completing the integration we find

FD = 0.664ρU 2wL√
ReL

(14.12g)

which corresponds to a drag coefficient based on the plate area wL of

CD = 1.328√
ReL

(14.12h)

Although some of these results appeared in Section 3.3.4, the example that follows
further illustrates the characteristics of a laminar flat plate boundary layer.

EXAMPLE 14 .1

A thin flat plate, 10 ft tall and 1 ft wide, forms the leading edge of a banner towed by an
aircraft at 100 mph on a 70°F day. How far from the leading edge of the plate does the
laminar portion of boundary layer extend? What is the boundary layer thickness at the
downstream end of the laminar boundary layer? Find the drag force on the plate con-
tributed by the laminar boundary layer, and the corresponding drag coefficient.

SOLUTION

The physical arrangement is shown in Figure 14.7. A laminar boundary layer is expected
to transition at Rex ≤ 5 × 105. Thus we can solve for the distance xC to the transition
point by using Eq. 14.12a to write: xC = (5 × 105ν)/U . Using U = 100 mph =
146.7 ft/s and, from Appendix A, ν = 1.64 × 10−4 ft2/s for air, we find

xC = 5 × 105[1.64 × 10−4 (ft2/s)]

146.7 ft/s
= 0.56 ft

W � 1 ft

y
z

x

L � 10 ft
OUP

Flat plate

Tow cable

U � 100 mph

Figure 14.7 Schematic for Example 14.1.



14.2.2 Turbulent Boundary Layer on a Flat Plate

There is no analytical solution available for a turbulent boundary layer on a smooth flat
plate, so we are forced in this case to rely on empirical observations. It is customary to
model the streamwise velocity profile in the turbulent boundary layer for 0 < y/δ ≤ 1,
by the power law

u

U
=
(

y

δ

)1/7

(14.13)

with u = U for y/δ > 1. Since the flow is turbulent, u is the average velocity. The
boundary layer thickness is a function of x as usual, hence δ = δ(x) and must also be de-
termined. Figure 14.8 compares the turbulent velocity profile with the laminar profile.
Note that the turbulent profile is fuller and the velocity gradient at the wall is larger than
in a laminar flow. The increased mixing due to the turbulence results in a higher stream-
wise velocity at any given distance from the wall in comparison to the laminar profile.
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Transition begins to occur just beyond the midpoint of the plate, and the rear portion of
the plate has a turbulent boundary layer. To find the laminar boundary layer thickness at
x = xC we use Eq. 14.12b to calculate the thickness as

δ(xC) = 5.0xC(Rex)
−1/2 = 5.0(0.56 ft)(5 × 105)−1/2 = 0.00396 ft = 0.048 in.

Thus the laminar boundary layer is only 0.048 in. thick when transition occurs. To find
the drag force on both sides of the plate due to the laminar boundary layer, we must
multiply Eq. 14.12g, which gives the drag on one side, by 2 and obtain
FD = 1.328ρU 2wL/

√
ReL . In this case, we must also be careful to insert L = xC ,

since this defines the portion of the plate covered by the laminar boundary layer. Using
ρ = 2.329 × 10−3 slug/ft3 from Appendix A, inserting the other data, and noting that
ReL = 5 × 105, we obtain

FD = 1.328ρU 2wL√
ReL

= 1.328√
5 × 105

(2.329 × 10−3 slug/ft3)(146.7 ft/s)2(10 ft)(0.56 ft) = 0.53 lbf

The total drag on the plate is actually much larger than this since we have not accounted
for the drag of the turbulent boundary layer. The drag coefficient for the laminar portion
of the boundary layer, which refers to one side of the plate only, is given by Eq. 14.12h
as CD = 1.328/

√
ReL = 0.0019.

CD/Boundary layers/Instability. transition, and turbulence



We cannot compute a wall shear stress in turbulent flow because the constitutive
relationship between shear stress and average velocity in a turbulent flow is unknown.
Instead, we make use of the following empirical result for the wall shear stress

τW (x) = 0.0225ρU 2

(
ν

Uδ

)1/4

(14.14a)

This allows us to write the skin friction coefficient as

Cf (x) = 0.045

(
ν

Uδ

)1/4

(14.14b)

However, neither formula is useful as is because we do not know the boundary layer
thickness δ = δ(x). A clever solution to this dilemma consists of making use of a
streamwise momentum balance on the boundary layer. Without going into the details
here, if the power law given by Eq. 14.13 and the shear stress given by Eq. 14.14a are
inserted into the streamwise momentum balance, the following boundary layer thick-
ness is found:

δ(x) = 0.370

(
ν

U

)1/5

x4/5 (14.15)

Comparing this to the corresponding laminar result, Eq. 14.12b, we see that the thick-
ness of the laminar layer grows at the rate δ(x) ∝ x1/2, while the turbulent boundary
layer grows at the faster rate δ(x) ∝ x4/5.

We can now use Eq. 14.15 to evaluate the wall shear stress, and since the velocity pro-
file is known, we can also compute the displacement and momentum thicknesses for the
turbulent boundary layer. The important characteristics of a turbulent boundary layer on a
flat plate predicted by the power-law velocity profile model are summarized as follows:

Rex = U x

ν
(14.16a)

δ(x)

x
= 0.370(Rex)

−1/5 (14.16b)
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and turbulent boundary layers.
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EXAMPLE 14 .2

A box-shaped truck body 2.5 m wide, 3 m high, and 7 m long (Figure 14.9) is traveling
at 20 m/s in 20°C air. Calculate the contributions to the total drag of the truck from the
sides and top of the truck body. Assume that a sheet metal seam near the leading edge of
each panel causes the boundary layer to be turbulent for the full length of the panel. Also
find the wall shear stress and boundary layer thickness along the top panel, and the max-
imum value of the wall shear stress and boundary layer thickness on this panel.

SOLUTION

We will first use Eq. 14.16a to calculate the maximum Reynolds number at the down-
stream edge x = L of each panel. With viscosity data from Appendix A, we obtain

ReL = U L

ν
= (20 m/s)(7 m)

1.51 × 10−5 m2/s
= 9.3 × 106

δ∗(x)

x
= 0.0463(Rex)

−1/5 (14.16c)

Θ(x)

x
= 0.0360(Rex)

−1/5 (14.16d)

τW (x) = 0.0288ρU 2(Rex)
−1/5 (14.16e)

Cf (x) = 0.0577(Rex)
−1/5 (14.16f)

FD = 0.036ρU 2wL(ReL)−1/5 (14.16g)

CD = 0.072(ReL)−1/5 (14.16h)

These results are known to be accurate for Reynolds numbers in the range
5 × 105 < Rex < 107. We see that in the turbulent flat plate boundary layer, the dis-
placement and momentum thicknesses also grow at a rate proportional to x4/5. The wall
shear stress decreases at a rate τW (x) ∝ x−1/5, as does the skin friction coefficient.

Note that a power-law model for the turbulent boundary layer on a flat plate is
not the only possible choice. Another model, based on a logarithmic velocity profile, is
said to offer the advantage of providing accurate results for the much wider range
105 < Rex < 109. The boundary layer characteristics of this model are:

δ(x)

x
= 0.14(Rex)

−1/7 (14.17a)

τW (x) = 0.0125ρU 2(Rex)
−1/7 (14.17b)

Cf (x) = 0.025(Rex)
−1/7 (14.17c)

FD = 0.015ρU 2wL(ReL)−1/7 (14.17d)

CD = 0.030(ReL)−1/7 (14.17e)
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This is just within the applicable range of Eqs. 14.16a–14.16h. The drag force on each
panel is calculated by using Eq. 14.16g. For the top we obtain

FDtop = 0.036ρU 2wL(ReL)−1/5

= 0.036(1.204 kg/m3)(20 m/s)2(2.5 m)(7 m)

(9.3 × 106)1/5

= 12.3 N

The drag on each side panel is found using the same formula with w = 3 m instead of
w = 2.5 m. Thus we can write FDside = (3/2.5)FDtop = 14.8 N. The drag of all three
panels is now calculated as FD = 2FDside + FDtop = 2(14.8 N) + 12.3 N = 41.9 N. To
find the boundary layer thickness and wall shear stress on the top panel, we use
Eqs. 14.16b and 14.16e, respectively. Writing these explicitly in terms of x we have

δ(x) = 0.370x

(
U x

ν

)−1/5

= 0.370

(
20 m/s

1.51 × 10−5 m2/s

)−1/5

x4/5 = 0.022x4/5 m1/5

τW (x) = 0.0288ρU 2

(
U x

ν

)−1/5

= 0.0288(1.204 kg/m3)(20 m/s)2

(
20 m/s

1.51 × 10−5 m2/s

)−1/5

x−1/5

= 0.83x−1/5 (N/m2)(m1/5)

U � 20 mph

L � 7 m

H � 3 m

W � 2.5 m

Figure 14.9 Schematic for Example 14.2.
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We can repeat the calculations of the last problem, using the logarithmic model to define the various
bounday layer characteristics. We will calculate values at ReL = U L/ν = 9.3 × 106 and use
Eq. 14.17d to calculate the drag, Eq. 14.17a to calculate the boundary layer thickness, and
Eq. 14.17b to calculate the wall shear stress. The drag on the top panel is given by

FD top = 0.015ρU2wL
( ReL )1/7

= 0.015(1.204 kg/m3)(20 m/s)2(2.5 m)(7 m)
(9.3 × 106)1/7

= 12.8 N

Each side panel contributes FDside = (3/2.5) FD top = 15.4 N, yielding a total drag of 43.6 N. This is
slightly larger than the 41.9 N drag calculated with the power-law model. For the boundary layer
thickness we use Eq. 14.17a to write δ(x) = 0.14x ( Rex)−1/7 and, after inserting the data, we obtain
δ(x) = 0.14x (Ux/ν)−1/7 = 0.14(20 m/s/1.51 × 10−5 m2/s)−1/7x 6/7 = 0.019x 6/7 m1/7 , which
yields a thickness at L = 7 m of δ(L) = 0.019x 6/7 m1/7 = 0.019(7 m)6/7 m1/7 = 0.1 m = 10 cm .
This is a slightly smaller value than that obtained with the power-law model. From Eq. 14.17b the wall
shear stress is given by

14.2.3 Boundary Layer on an Airfoil or Other Body

Consider the high speed flow over an airfoil at a small angle of attack as shown in Fig-
ure 14.10A. The upper and lower surfaces of the airfoil are curved, and neither surface
is aligned with the freestream. Thus the results obtained earlier for the boundary layer
on an aligned flat plate cannot be expected to apply to the boundary layer on this airfoil
or, for that matter, to other objects of finite thickness. In fact, observation of boundary
layers on airfoils and other bodies show that the shape of an object and its angle of inci-
dence to the freestream have a significant effect on the characteristics of both laminar
and turbulent boundary layers. For reasons that will become clear in a moment, this ef-
fect is described as the effect of a pressure gradient on the boundary layer.

τW (x) = 0.0125ρU2
(

Ux
ν

)−1/7

= 0.0125(1.204 kg/m3)(20 m/s)2
(

20 m/s
1.51 × 10−5 m2/s

)−1/7

x−1/7

= 0.80x −1/7 (N/m2)(m1/7)

and the wall shear stress at L = 7 m is found to be

τW (L) = 0.80L−1/7 (N/m2)(m1/7) = 0.80(7 m)−1/7(N/m2)(m1/7) = 0.61 N/m2

which is slightly larger than that calculated with the power-law model. For engineering purposes
these values are equivalent to those found with the power-law model.

Note that these results for δ(x) and τW (x) also apply to the side panels. The maximum
value of the shear stress and boundary layer thickness on each panel will occur at x = L .
Inserting the data we find:

δ(L) = 0.022L4/5m1/5 = 0.022(7 m)4/5m1/5 = 0.104 m = 10.4 cm

τW (L) = 0.83L−1/5(N/m2)(m1/5) = (0.83)(7 m)−1/5(N/m2)(m1/5) = 0.56 N/m2
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Figure 14.10 Flow around a NACA 4412 airfoil section visualized with smoke. (A) At a 2° angle of attack
there is no boundary layer separation. (B) At a 15° angle of attack there is significant boundary layer separation.
(C) Slightly increasing the angle of attack over 15° results in stall. In an airplane this would result in a loss of
lift such that the aircraft would begin to fall.

(A) (B)

(C)

Although a complete discussion of laminar and turbulent boundary layers on air-
foils and other bodies is beyond the scope of this text, some insight into the effects of
body shape and angle of incidence can be gained by considering a laminar boundary
layer. Recall that a laminar boundary layer is described by the Prandtl boundary layer
equations (Eqs. 14.8a–14.8c):

∂u

∂x
+ ∂v

∂y
= 0, ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂y2

)
, and 0 = −∂p

∂y

These equations apply to the laminar boundary layer on a curved surface, provided the
thickness of the boundary layer is small in comparison to the radius of curvature of
the surface. It is also necessary for the boundary layer to be attached, meaning that the
boundary layer must follow the contour of the surface. This is not the case if flow sepa-
ration occurs. These constraints are usually met by thin airfoil shapes at a small angle of
attack, as is the case in Figure 14.10A. However, if the angle of attack is increased, as
shown in Figure 14.10B, the flow begins to separate, the boundary layer is not com-
pletely attached, and recirculation occurs. At higher angles of attack the airfoil is said to
stall, as illustrated in Figure 14.10C. The lift of the airfoil decreases significantly when
an airfoil stalls.



To apply the Prandtl equations to an airfoil or other moderately curved surface, the
x coordinate axis is assumed to lie along the surface and the y coordinate axis is then nor-
mal to the surface as shown in Figure 14.11. Eq. 14.8c shows that component of the
pressure gradient normal to a curved surface, ∂p/∂y, is negligible, just as in the case
with the boundary layer on a flat plate. However, the component of the pressure gradi-
ent in the streamwise direction, ∂p/∂x , which is zero for a flat plate aligned with the
freestream, is nonzero on a curved surface and varies with x. Thus the boundary layer on
the curved surface of a body satisfies the following equations:

∂u

∂x
+ ∂v

∂y
= 0 (14.18a)

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂y2

)
(14.18b)

The streamwise pressure gradient, which may be positive or negative, depends on the
body shape and angle of incidence, as well as the location x along the body surface. To
solve Eqs. 14.18a and 14.18b for the velocity components and extract the desired char-
acteristics of the boundary layer such as its thickness and the wall shear stress, it is nec-
essary to know the pressure gradient.

An essential part of Prandtl’s boundary layer theory is the assumption that the
streamwise pressure gradient ∂p/∂x is determined by the inviscid flow just outside the
boundary layer. This can be explained as follows. Since the effects of viscosity are con-
fined to the boundary layer, the flow outside is an inviscid flow. There is no pressure
gradient ∂p/∂y normal to the surface in the boundary layer equations; thus the pressure
distribution inside the boundary layer is the same as that just outside. Furthermore, in an
unseparated flow at the high Reynolds numbers of interest, the boundary layer is very
thin and may be considered in a first approximation to have vanishingly small thickness
insofar as the inviscid flow is concerned. Thus in solving the inviscid flow problem, we
can neglect the presence of a boundary layer and its unknown thickness and simply con-
sider the inviscid flow over the same body at the desired freestream velocity.

After obtaining a solution for the inviscid flow, we can write the inviscid surface
pressure distribution on the body using the Bernoulli equation as

pS(x) + 1
2ρuS(x)2 = C (14.19)

where pS(x) is the pressure on the surface, uS(x) is the velocity on the surface as pre-
dicted by the inviscid flow solution, and C is a constant. The pressure distribution pS(x)

is assumed to be the pressure acting on the boundary layer, and we can use it to determine
the streamwise pressure gradient needed to solve the boundary layer equations, writing

∂p

∂x
= dpS(x)

dx
= −1

2
ρ

d

dx
[uS(x)2] (14.20)
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Figure 14.11 Boundary layer
flow geometry over a curved
surface.



From this discussion, we see that the effects of body shape and angle of incidence are
equivalent, insofar as a boundary layer is concerned, to a streamwise pressure gradient.
Thus, as mentioned earlier, it is customary to consider the effects of body shape and angle
of incidence together as being equivalent to the effect of an imposed pressure gradient.

This approach allows us to understand the effects of a pressure gradient on a lami-
nar flow: we use Eq. 14.20 to replace the pressure gradient in the boundary layer equa-
tions to obtain

∂u

∂x
+ ∂v

∂y
= 0 (14.21a)

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= 1

2
ρ

d

dx
[uS(x)2] + µ

(
∂2u

∂y2

)
(14.21b)

An interesting solution to these equations, called the Falkner–Skan solution, illus-
trates the effect of a pressure gradient on a laminar boundary layer by assuming that the
surface velocity is of the form uS(x) = cxm , where c and m are constants with c > 0.
Since [duS(x)]/dx = mcxm−1 , the flow is accelerating for m > 0 and decelerating for
m < 0. From Bernoulli’s equation, we know that if the flow is accelerating, the pressure
is falling, and vice versa. Thus m > 0 implies dp/dx < 0, meaning that the pressure is
decreasing in the flow direction. This is referred to as a favorable pressure gradient for
reasons explained shortly. Similarly, m < 0 implies dp/dx > 0, which is termed an un-
favorable pressure gradient. For m = 0, Eqs. 14.21 reduce to those describing the
boundary layer on a flat plate.

Although the details of the Falkner–Skan solution are beyond the scope of this text,
the qualitative results are important. The favorable pressure gradient of an accelerating
freestream tends to thin a laminar boundary layer and bring higher momentum fluid
nearer the surface, while the unfavorable pressure gradient of a decelerating freestream
tends to do the opposite. Thus, on an airfoil or other moderately curved body, we expect
a laminar boundary layer to be thin and to remain attached on portions of the surface
where the flow is accelerating, but to become thicker and possibly to separate from por-
tions of the surface where the flow is decelerating. The wall shear stress is zero at the
point of separation, and downstream of this point the flow near the wall reverses direc-
tion. This also occurs with turbulent boundary layers, although the latter are more resis-
tant to flow separation owing to the increased amount of higher momentum fluid near
the surface associated with the more blunt turbulent velocity profile.

These observations are confirmed by flow visualization studies. To illustrate bound-
ary layer separation, consider Figure 14.12 showing velocity profiles over an airfoil at
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D

Figure 14.12 Illustration of boundary layer flow
over an airfoil: A, a favorable pressure gradient; B,
an unfavorable pressure gradient; C, the separation
point; D, separation and flow reversal.



an angle of attack. At position A, the fluid has acceler-
ated over the front of the airfoil and the velocity profile
reflects the favorable pressure gradient. At position B
the effects of the unfavorable pressure gradient are ap-
parent in that the flow has slowed in the boundary layer
and the velocity profile has become steeper. At point C,
the velocity profile clearly shows that du/dy = 0,
which indicates that this is the point of separation. At
position D the flow has reversed near the airfoil surface.
Figure 14.13 is a flow visualization of velocity profiles
in a boundary layer on an airfoil.
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For a stationary object immersed in a moving stream,
drag is the component of force exerted on the object by
the fluid in the direction of the freestream. An engineer
often needs to account for the effect of drag in structural
design and stability analysis, since for stationary objects
ranging from buildings and trees exposed to wind to

bridge piers in a river, the drag exerted by the moving fluid can be significant. For an air-
craft or other object moving through a stationary fluid, the drag acts in the direction
opposite to the motion of the object. The power required to propel an object through a
fluid at constant speed is given by the product of drag and speed. Thus drag not only lim-
its the performance of man-made vehicles of all types and affects the economy of oper-
ation but exerts its effects in the natural world as well.

The drag on an object is defined by Eq. 4.26b as

FD =
∫

S
(−pn + �) • n∞ dS

where the unit vector n∞ points in the flow direction. From this we see that the total drag
force arises from two mechanisms: pressure and shear stress. The contribution to the
total drag due to the pressure is referred to as form drag because the shape or form of the
object determines the pressure distribution on its surface. The contribution to the total
drag due to the shear stress acting on an object is called friction drag. In a high Reynolds
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Figure 14.13 Flow visualization by the
spark tracing method (timelines) of veloc-
ity profiles in the boundary layer.

HISTORY BOX 14-2

The boundary layers on the airfoils of early
airplanes were turbulent over much of the
wing because of the presence of an unfa-
vorable pressure gradient over 90% of
that surface. Eastman Jacobs, an engineer
for the National Advisory Committee on
Aeronautics (NACA), designed an airfoil
shape with the intent of producing a favor-
able pressure gradient over as much as
60% of the wing, thus maintaining laminar
flow, reducing the friction drag, and in-
creasing fuel economy. He developed the
NACA-66 series of laminar flow airfoils
and published his results in 1939. Those
results were put to use by North American
Aircraft to produce the first airplane with a
laminar flow airfoil, the P-51 Mustang.



number flow, friction drag can be attributed to the boundary layer and wall shear stress
as discussed earlier.

An effective way to illustrate the concepts of friction and form drag is shown in Fig-
ure 14.14. For a flat plate aligned with the freestream (Figure 14.14A), the drag is wholly
due to the wall shear stress, i.e., skin friction. If the same plate is normal to the freestream
(Figure 14.14B), the drag is wholly due to the pressure difference on the front and back
surfaces. Note that there is a shear stress distribution on the plate in Figure 14.14B, but
the effect of the shear stress cancels owing to symmetry. Even in the absence of this sym-
metry, the shear stress does not act in the flow direction, hence makes no contribution to
drag on a flat plat normal to the freestream. In Figure 14.16C, we see that for a flat plate
at an angle of attack, the shear stress and pressure both contribute to the drag.
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Figure 14.14 Illustration of the types of drag using flow over a flat plate (A) aligned with the flow, friction drag only;
(B) normal to the flow, form drag only; and (C) friction and form drag, present for the plate at an angle to the flow.
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For any other type of body immersed in a freestream, the total drag will have con-
tributions from both friction and form drag. Although no precise rule can be given, in a
high Reynolds number flow the drag on bluff bodies, which share some of the charac-
teristics of a flat plate held normal to the freestream, tends to be dominated by form drag.
The drag on long thin bodies, like the flat plate aligned with the freestream, tends to be
dominated by skin friction. “Streamlining” is a term used to describe the attempt to de-
sign an optimum shape for a bluff body in a high Reynolds number flow by minimizing
the total drag. It generally takes the form of elongating the rear of the body. Although
this raises the friction drag, it lowers the form drag, and the total drag is reduced. Of
course, if the elongation is excessive, the friction drag eventually becomes large and the
total drag is not reduced at all. The airfoil at an angle of attack described in the preced-
ing section experiences both friction drag and form drag.
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CD/Special Features/Demonstrations/Streamlining

Cylinder of width
w into the paper
such that total

frontal area is wL

L

(A)

L

Airfoil of width w
into the paper such

that total frontal
area is also wL

(B)

10DUU

Diameter � D

Figure 14.15 The cylinder (A) and the airfoil (B) have the same frontal area, but the drag on the cylinder is much
greater.

Figure 14.16 The cylinder has much less frontal area than the airfoil, yet the two shapes have the
same drag.

The result of applying the concept of streamlining to a cylinder is illustrated in Fig-
ures 14.15 and 14.16. The cylinder and airfoil shape in Figure 14.15 have the same
frontal area wL , but the drag on the airfoil shape is a fraction of that on the cylinder. This
is emphasized in Figure 14.16, where we see a cylinder and airfoil shape having the
same drag. If you are wondering about the relevance of this, early biplanes used wire ca-
bles to structurally connect the two wings, but it was eventually recognized that the drag
could be lowered by using streamlined airfoil shaped struts instead of cables.
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Although computational fluid dynamics is increasingly being applied to the problem of
determining the drag on objects of engineering interest, much of what is known about
drag is the result of experiments. Suppose we apply dimensional analysis to the problem
of determining the drag on an object of a specified shape and include a comprehensive
set of physical parameters. The dimensionless group containing the drag force is found
to be FD/ρU 2L2, where L is a length scale, and U is the freestream velocity. This sug-
gests that the drag coefficient is naturally defined as CD = FD/ρU 2L2, however it is
customary to define the drag coefficient instead as

CD = FD
1
2ρU 2 A

(14.22a)

where the area A normally refers to the frontal area of the object, and the factor of 1
2 is

introduced to produce a denominator that is the product of the dynamic pressure of the
upstream flow 1

2ρU 2 times the frontal area. (In defining the drag coefficient for a wing,
the area is said to be the planform area, i.e., the area of the wing as seen from above.)

The DA further shows that the drag coefficient may be written as

CD = CD

(
Re, M, Fr, St, We,

e

L

)
(14.22b)

which shows that the drag coefficient for an object of a given shape may depend on
Reynolds number, Mach number, Froude number, Strouhal number, Weber number, and
relative roughness. In some cases the drag coefficient may even depend on additional
dimensionless groups. For example, if the object is rotating, the drag coefficient will
depend on a dimensionless rotation group. From your study of DA, you know that the
mere presence of a group in Eq. 14.22b does not mean that all groups are equally im-
portant. For example, it is difficult to see how the effect of surface tension, which is
characterized by the value of the Weber number, would be significant in engineering
applications involving ships and other large objects moving on or through an air–water
interface. On the other hand, if we were asked to estimate the drag experienced by a
water strider or other aquatic insect, the effect of surface tension would likely be quite
important. In the next four sections we present empirical results for the drag coefficient,
beginning with low Reynolds number flows.
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CD/Dynamics/Low Reynolds number flows

14.4.1 Low Reynolds Number Flow

Low Reynolds number flows of engineering interest include creeping flows, for which
Re � 1, as well as flows in which the Reynolds number is not large enough for a distinct
boundary layer to be observed. The Reynolds number range over which the boundary
layer is indistinct might be roughly estimated as 0.1 < Re < 100. In low Reynolds num-
ber flows involving air and water, the Reynolds number is usually small because the
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Figure 14.17 Drag coefficients for creeping flow. (Re = U L/ν � 1).

EXAMPLE 14 .3

A playful child left alone has run a vacuum cleaner in reverse, creating a dust cloud. If
the cloud consists of 0.001, 0.01, and 0.1 mm diameter particles, and the particle density
is 700 kg/m3, will the child be able to clean up the mess by dusting the furniture before
her mother returns an hour later? Assume that the particles near the ceiling must settle
2.5 m before depositing on various surfaces, and that the air temperature is 20°C.

length scale of the object is small. Viscous effects in low Reynolds number flows are not
confined near the body surface, and both friction and form drag contribute to the total
drag. Drag coefficients derived from analytical solutions can be found for many objects
of simple shape in creeping flows. Experimental data for slightly larger Reynolds num-
bers can also be found for cylinders and spheres. If analytical or experimental results are
not available for the shape of interest, it is also possible to use computational fluid dy-
namics to determine the flow over an object in both creeping flow and at slightly larger
Reynolds numbers. The drag coefficient can then be calculated directly from the solution.

Drag coefficients are shown in Figure 14.17 for a several shapes in creeping flow.
The dependence of these drag coefficients on the inverse of the Reynolds number can be
explained by recalling that inertial forces, which depend on the fluid density, are negli-
gible in creeping flows. This means that a dimensional analysis applicable only to creep-
ing flow would not include density; rather, it would assume FD = f (L , U, µ), where L
is the length scale defining a particular smooth object. Choosing L as a repeating param-
eter leads to FD/µU L = C , where C is a constant. This correctly indicates that a drag
coefficient for creeping flow should not contain density. However, since FD = CµU L ,
forming the drag coefficient in the customary way gives

CD = FD
1
2ρU 2L2

= C
µU L

1
2ρU 2L2

= 2C

Re

We see that all objects in creeping flow have drag coefficients that are proportional to
Re−1. Note carefully, however, that this decrease in drag coefficient with increasing
Reynolds number applies only to creeping flow, Re � 1, not to larger Reynolds num-
bers. The drag on an object in a creeping flow increases linearly with velocity.
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SOLUTION

For a particle settling at terminal velocity, a vertical force balance shows that

W = Fair

where W = ρP g –V is the weight of a particle of density ρP , and Fair is the total force
applied by the air to the particle. The force applied by the air consists of a drag force FD

that accounts for the relative motion of the particle through the stationary air and a buoy-
ancy force FB that accounts for the effects of the hydrostatic pressure variation in the air.
Because the buoyancy force is not included when the drag force is calculated by using a
drag coefficient, we must write

W = FD + FB (A)

(Another way to think about this problem is revealed by rearranging this equation as
W − FB = FD .. Since W − FB is the weight of the particle as measured in air, we see that
the force balance equates this weight, which causes the particle to settle, to the drag force
that resists the settling motion.) Substituting for each term in the force balance (A) gives

ρP g –V = CD
1
2ρairU 2 A + ρairg –V

Solving for the terminal velocity we obtain

U =
√

2(ρP − ρair)g –V

CDρair A
(B)

We will assume a spherical particle and a creeping flow drag coefficient given by
CD = 24/Re. Note that since CD = 24/Re = 24µ/(ρairU D) in this case, the terminal
velocity also occurs in the drag coefficient in (B). The area and volume are A = π D2/4
and –V = π D3/6, respectively; hence –V /A = 2D/3. Inserting these values into (B)
shows that the terminal velocity is given by

U = (ρP − ρair)gD2

18µ
(C)

The time needed for a particle to settle from a height H is t = H/U . Thus the settling
time is

t = 18µH

(ρP − ρair)gD2
(D)

Since the diameter occurs in the denominator, the smallest particles take the longest time
to settle. The maximum settling time tmax is found using H = 2.5 m. Inserting data for
air ρair = 1.2 kg/m3, µ = 1.81 × 10−5 (N-s)/m2, and other values into (B)–(D), we can
construct the following table showing tmax for each particle size:

D(mm) U (m/s) tmax (minutes) Re
0.001 2.1 × 10−5 2000 1.4 × 10−6

0.01 2.1 × 10−3 20 1.4 × 10−3

0.1 2.1 × 10−1 0.2 1.4



14.4.2 Cylinders

Figure 14.18 provides drag coefficient data for a smooth cylinder over a large range of
Reynolds number. The frontal area of the cylinder enters the drag coefficient as
A = DL , where D is the diameter of the cylinder and L its length. Although the data in
Figure 14.18 apply only in principle to a cylinder of infinite length, the information is
used to estimate the drag on finite length cylinders. The error made will increase as the
aspect ratio L/D decreases. In applications for which L/D < 4, it is better to use the
drag coefficient given later (Section 14.4.4, Table 14.2).

Examination of Figure 14.18 shows that the drag coefficient is a complex function
of Reynolds number. To understand the influence of Re on CD , consider Figure 14.19, a
flow visualization of the velocity profiles on a cylinder. As you follow the flow around
the cylinder, notice that the laminar boundary layer velocity profile is gradually
deformed until the flow reverses direction. The corresponding pressure distributions,
both the inviscid approximation and the empirically observed distribution, are shown in

908 14 EXTERNAL FLOW

CD/Video library/Flow past a cylinder
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Figure 14.18 Drag coefficient for a smooth cylinder.

The calculated Reynolds numbers confirm the validity of the creeping flow assumption.
It is evident that the smallest particles, which take ∼33 h to settle, will pose a problem.
Note that since ρair = 0.7% ρP , buoyancy is negligible in this example.
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Figure 14.20. Focus your attention on the true pressure
distribution and note that as the fluid in the boundary
layer moves from the front of the cylinder to the top, it
is accelerated by a favorable pressure gradient. How-
ever, as the fluid passes the top, the pressure gradient
becomes unfavorable, tending to slow the fluid down.
As long as the fluid has enough momentum, it can still
move forward; but viscous effects and the pressure gra-
dient tend to exert a decelerating effect. Eventually all
the forward momentum is dissipated and the flow re-
verses direction (see Figure 14.19). This is the phenom-
enon that was evident in the Falkner–Skan solution dis-
cussed earlier.

If the pressure distribution around the cylinder is in-
tegrated for the inviscid case, the net force is zero. That

is, the pressure drag in the inviscid model is identically zero. In Figure 14.20, however, it
can be seen that the actual pressure recovery is much less than that for the inviscid flow
case. Thus, for the real viscous flow we find a net force retarding the motion of the cylin-
der. This is the source of the pressure drag (or form drag) on a cylinder.

We are now in a position to explain the dependence of CD on Re for a cylinder, as
illustrated in Figure 14.18. In the low Reynolds number regime, the drag coefficient is
proportional to the inverse of Reynolds number as already explained. For 1 < Re < 103

the friction drag of the laminar boundary layer tends to dominate the form drag, so CD

varies with Re in much the same way that it did for laminar flow over an aligned flat
plate (i.e., CD ∝ Re−1/2). In the range 103 < Re < 105, CD has only a weak depen-
dence on Re and the total drag is dominated by the pressure or form drag. This behavior
is similar to that displayed by “bluff bodies,” as described later (Section 14.4.4).

Over the range 105 < Re < 106 the cylinder drag coefficient falls dramatically by
about 80%. At this critical point the drag actually decreases with increasing speed.
Imagine increasing the speed of your car while letting up on the gas. What accounts for
this extraordinary behavior? You might attribute it to the laminar-to-turbulent transition
of the boundary layer. Recall Figure 14.8, which shows laminar and turbulent velocity
profiles. The higher velocity and momentum flux near the surface for turbulent flow
causes an increase of friction drag, but results in a substantial decrease in pressure drag.
How is this possible? Well, remember that the boundary layer separates when the
streamwise momentum of the flow is insufficient to overcome the adverse pressure

Figure 14.19 Flow visualization of the
boundary layer on a cylinder created with
hydrogen bubbles.

The visual aspects of the flow field over a
cylinder are a strong function of the
Reynolds number. Consider the obvious
difference in the flows illustrated in Fig-
ures 12.2 and 12.3. In the creeping flow
shown in Figure 12.2 (Re = 0.038), there
is no wake behind the cylinder. However, in
Figure 12.3 (Re = 19), a wake has formed
because flow separation has occurred
even though there is no boundary layer
present. At much larger Reynolds numbers
the size of the wake is determined by
boundary layer separation, and as noted
earlier, this influences the pressure drag.
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Figure 14.20 Comparison of the pressure distribution
around a cylinder based on inviscid theory and empiri-
cal observations.

EXAMPLE 14 .4

A modern sculpture includes a wind gage in the form of a circular cylinder suspended
from two fine wires as shown in Figure 14.21. If the presence of the wires is assumed to
have a negligible influence on the flow field, at what angle will the cylinder hang in a
wind of 25 km/h? The cylinder weighs 6 N and its dimensions are D = 10 cm and
L = 1 m.

SOLUTION

Since the wind applies a lift and drag to the cylinder, after neglecting the tiny buoyancy
force on the cylinder, and writing a force balance on the cylinder in the x and y directions
we obtain

(FD cos θ + FL sin θ) − W sin θ = 0 and 2T − W cos θ + (FL cos θ − FD sin θ) = 0

Noting that the x component of force of the wind (FD cos θ + FL sin θ) =
CD

1
2ρair(U cos θ)2 A, the force balance in the x direction shows that

sin θ =
(
CD

1
2ρairU 2 A

)
(cos2 θ)

W
(A)
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We expect that the angle will be larger for a lighter cylinder at any given wind speed but
can never exceed 90°. For small angles, cos2θ = 1, and since A = DL , we obtain the
approximate result

θ = sin−1

(
CDρairU 2 DL

2W

)
(B)

Assuming 20°C air for which ρ = 1.2 kg/m3 and ν = 1.51 × 10−5 m2/s, the Reynolds
number is

Re = UD

ν
= (25 km/h)(1000 m/km)(h/3600 s)(0.1 m)

1.51 × 10−5 m2/s
= 4.6 × 104

From Figure 14.18, at this Reynolds number CD = 1.2. Inserting the data into (A) we
must iterate or use a symbolic code to solve

sin θ =
[
(1.2)(1.2 kg/m3)[(25 km/h)(1000 m/km)(h/3600 s)]2(0.1 m)(1 m)

2(6 N)

]
cos2θ

The result is θ = 27.2º. It is easy to confirm that (B) does not deliver good accuracy in
this case. Depending on the range of wind speeds expected at the sculpture site, it may
be best to employ a lighter cylinder to obtain a larger angle of deflection. We should also
be aware that the aspect ratio of the cylinder affects the drag coefficient so it may be best
to validate a design based on (A) or (B) by careful calibration experiments.

Fixed support

Twin support cables
each with tension T

Cylinder with
weight W � 6 N

L � 1 m

D � 10 cm

U � 25 km/h

W

FD

FL

�

�
�

�

2T

�U cos �

U
x

y

Figure 14.21 Schematic for Example 14.4.
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gradient. The increased momentum in the boundary layer in turbulent flow causes sepa-
ration to be delayed, and the resulting wake is smaller. The pressure on the downstream
side of the cylinder is therefore not quite as low as it is with a large wake, and the result
is a much lower form drag. This is evident in the changed pressure distribution on the
cylinder surface as shown in Figure 14.20.

Spinning a cylinder in a freestream results in an increase in drag if the rotation rate
is sufficiently large. The rotation also creates a side force or lift on the cylinder. This is
known as the Magnus effect. The lift and drag coefficients for a spinning cylinder are
shown in Figure 14.22. In this case the lift coefficient is defined as CL = FL/ 1

2ρU 2 DL .
Over the years a number of interesting uses for spinning cylinders have been proposed,
including a rotor-based wind-powered ship (Figure 14.23).

FL � 16.7 kN

(B)
U � 30 km/h FD � 7.1 kN

� � 200 rpm
y

x

(A)

Figure 14.23 (A) The Bruckau, designed by Anton Flettner. (B) Schematic for Example 14.5.
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CD/Video library/Flow past a sphere

14.4.3 Spheres

Figure 14.24 shows drag coefficient data for a smooth sphere over a broad range of Re.
The frontal area of the sphere enters the drag coefficient as A = π D2/4. Spheres exhibit
drag coefficient behavior with Reynolds number that is similar to that of cylinders, for
much the same reasons. The change in separation point due to the transition from a lam-
inar to turbulent boundary layer is evident in Figure 14.25.

It is interesting to note that golf balls in flight have Reynolds numbers near the point
at which the laminar-to-turbulent boundary layer transition occurs. To ensure that the
boundary layer is turbulent, roughness is added to the surface of the ball in the form of
dimples. These dimples reduce flow separation, thereby lowering the drag and increas-
ing the flight distance. The effect of roughness on CD for spheres near the turbulent tran-
sition is shown in Figure 14.26.

EXAMPLE 14 .5

The Flettner rotor-powered ship shown in Figure 14.23A had two rotors, each 3 m
diameter and 15 m tall. If ω = 200 rpm and the speed of the wind relative to the rotor is
30 km/h, find the force applied to each rotor by the wind.

SOLUTION

To find the force generated by each rotor, we will use the results for a spinning cylinder
as shown in Figure 14.22 to determine the lift and drag coefficients. First we calculate
the rotational velocity as

Vθ = Rω = (0.0015 km)(200 rpm)(2π rad/rev)(60 min/h) = 113 km/h

Dividing this value by the wind speed gives us the spin ratio W D/2U. Thus we have

Vθ

U
= 113 km/h

30 km/h
= 3.75

From Figure 14.22 we find CL = 8.9 and CD = 3.8. Thus the lift and drag forces are

FL = CL
1
2ρU 2 DL = (8.9)

(
1
2

)
(1.2 kg/m3)(8.33 m/s)2(3 m)(15 m) = 16.7 kN

FD = CD
1
2ρU 2 DL = (3.8)

(
1
2

)
(1.2 kg/m3)(8.33 m/s)2(3 m)(15 m) = 7.1 kN

where we have assumed air at 20°C in calculating the density. The force applied by the
wind to each rotor is thus given by Fwind = 7.1 kN i + 16.7 kN j as shown in Fig-
ure 14.23B. This force acts at an angle of θ = tan−1(16.7/7.1) = 67◦ to the left of the
relative wind direction.



914 14 EXTERNAL FLOW

400

200

100

60
40

20

10

6
4

2

1

0.6
0.4

0.2

0.1

0.06
10�1 100 101 102 103 1042 4 6 4 6 4 6 4 6 4 62 2 2 2 2 1054 6 2 1064 6

Re � �UD��

C
D

Theory due to Stokes

Figure 14.24 Drag coefficient for a smooth sphere.

Figure 14.25 Boundary layer separation on a sphere for (A) laminar flow and (B) turbulent
flow caused by roughing the nose.
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Figure 14.26 The effect of roughness on the drag on a sphere. 

EXAMPLE 14 .6

To make a car easier to find in crowded parking lots, a colorful 2 in. diameter smooth
plastic ball is attached to the end of the vehicle’s 3 ft antenna as shown in Figure 14.27.
What is the bending moment on the antenna due to the ball if the car is moving at
50 mph?

U � 50 mph

D � 2 in.

L � 3 ft

Figure 14.27 Schematic for Example 14.6.

SOLUTION

We will calculate the drag force on the ball, then find the resulting bending moment.
We will assume that the flow over the ball is the same as it would be without having the
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No discussion of the external flow over a sphere would be complete without in-
cluding the effect of rotation, which plays a prominent role in the flight of sport balls
of all types. As was the case with a cylinder, rotation of a sphere not only affects the
drag but also produces a sideforce or lift. The lift and drag coefficients for rotating
spheres are shown in Figure 14.28. The lift coefficient for a sphere is defined by
CL = FL/ 1

2ρU 2 A, where A = π D2/4.

14.4.4 Bluff Bodies

Suppose you were asked what feature buildings, billboards, and beams have in common
that might strongly affect their drag? If you recognized that each of these objects has a
relatively flat face with sharp edges, you are correct. These and other nonstreamlined ob-
jects are called bluff bodies. More formally, “bluff body” refers to an object that experi-
ences flow separation at a relatively low Reynolds number and has a flow field after sep-
aration occurs that is relatively unchanged as Re increases. As a result, the drag
coefficient for a bluff body after separation is nearly independent of Reynolds number
(over a large range of Re). The separation process on a bluff body is often, but not al-
ways, associated with a sharp corner or other change in geometry.

From our discussions, you know that the onset of flow separation generally corre-
sponds to an increase in total drag resulting from a substantial increase in the form drag,
and that form drag can be reduced by streamlining. Consider the tractor trailor truck

antenna nearby. Assuming air at 70°F,

Re = UD

ν
= (50 mph)[1.47 ft/(mph-s)](2 in.)(ft/12 in.)

1.64 × 10−4 ft2/s
= 7.5 × 104

From Figure 14.24 we find CD = 0.5. The drag force on the ball is calculated next from
FD = CD

1
2ρU 2 A, where A = π D2/4. Inserting the data, we find

FD = (0.5)

(
1

2

)
(2.329 × 10−3 slug/ft3)(73.3 ft/s)2 π(0.1667 ft)2

4

= 6.83 × 10−2 lbf

Ignoring any curvature of the antenna, the bending moment is

M = FD L = (6.83 × 10−2 lbf)(3 ft) = 0.2 ft-lbf

Would you recommend adding roughness to the ball?

CD/Boundary layers/Separation
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EXAMPLE 14 .7

A baseball pitcher throws his curve ball at 80 mph with a rotational speed of 1800 rpm.
The ball has a mass of 5 oz and a 9 in. circumference. Estimate how much this pitch will
break as it travels a distance of 55 ft in a spring game in New York, when the air tem-
perature is 50°F. What is the break in a summer game when the temperature is 90°F? In
your calculation, assume that the rotation axis of the ball is vertical.

SOLUTION

In the coordinates shown in Figure 14.29, the rotation of the ball will cause a force tend-
ing to move the ball in the y direction. The equation of motion for the ball in the y di-
rection of break is May =∑ Fy . The drag on the ball acts in the x direction and tends
to slow the ball down slightly during its travel to the plate. We will neglect this effect
and assume for the ball a constant velocity of 80 mph. The time of flight of the ball is
therefore given by

T = S

Vball
(A)

where S is the distance to the plate and Vball is the speed of the ball. Inserting the data,
we calculate a flight time 

T = S

Vball
=
(

55 ft

80 mph

)(
1 mph

1.467 ft/s

)
= 0.47 s
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Figure 14.28 Lift and drag coeffi-
cients for a spinning sphere.
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Gravity acts on the ball in the negative z direction and causes the ball to drop as it
travels to the plate. We will assume this effect acts independently of the lift force created
by the rotation of the ball; hence the drop can be calculated as approximately 2.9 ft. The
lift force for a rotating smooth sphere is given by

FL = 1

2
ρV 2

ball
πD2

4
CL (B)

and acts in the y direction. A baseball has raised stitches that are known to affect the tra-
jectory of a pitch. Since we have lift and drag data only for a smooth sphere as given in
Figure 14.29, we will use the smooth sphere data in our calculation. Finally, note that if
the rotational speed of the ball is assumed constant, then the lift force is constant during
the flight.

We can write the equation of motion for the ball in the y direction as may =
m(d2 y/dt2) = FL . Integrating this twice we obtain y(t) = (FL/m)(t2/2) + C0t + C1 .
To evaluate the constants, note that at time t = 0, the ball is at an initial location y0,
thus C1 = y0, and we can write y(t) − y0 = (FL/m)(t2/2) + C0t . The remaining con-
stant is found by assuming that the ball has no velocity component in the y direction
when released by the pitcher. This allows us to set C0 = 0 and obtain
y(t) − y0 = (FL/m)(t2/2). At time T the break or distance traveled in the y direction is
given by

�y = FL

m

T 2

2
(C)

Baseball with
W � 5 oz and
 C � 9 in.

U � 80 mph

S � 55 ft

y

z

x

 � 1800 rpm

Figure 14.29 Schematic for Example 14.7.
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shown in Figure 14.30A. The large flat section of the trailer exposed to the air above the
cab is a good example of a bluff body (the cab itself is somewhat streamlined); as such,
it causes substantial drag, which reduces gas mileage. Figure 14.30B shows a similar rig
with a wind deflector mounted on the roof of the cab in front of the bluff body. This sim-
ple and inexpensive streamlining device substantially reduces the drag on the trailer and,

Inserting (A) and (B) we have

�y = πD2ρCL S2

16m
(D)

To determine the lift coefficient, we first calculate the speed ratio 

U

Vball
= Dω

2Vball
= (2.865 in.)(ft/12 in.)(1800 rpm)(2π)(60 min/h)

2(80 mph)(5280 ft/mile)

= 0.19

then use the chart in Figure 14.28 to find that CL ≈ 0.05. To calculate the break at the
different air temperatures, note that ρ50 = 2.420 × 10−3 slug/ft3 , and ρ90 = 2.244 ×
10−3 slug/ft3. The diameter of the ball is found to be D = (9 in./π)(1 ft/12 in.) =
0.2387 ft. Thus from (D) we find the break at 50°F is

�y50 = πD2ρCL S2

16m

�y50 =
(

π

16

)(
1

5 oz

)(
1 oz

1.943 × 10−3 slug

)
(0.2387 ft)2(2.420 × 10−3 slug/ft3)(0.05)(55 ft)2

�y50 = 0.42 ft

At 90°F the break is

�y90 =
(

ρ90

ρ50

)
�y90 =

(
2.244 × 10−3 slug/ft3

2.420 × 10−3 slug/ft3

)
0.42 ft

= 0.39 ft

or about 8% less in the “lighter” summer air. This break is not sufficient to fool a batter
if the curve ball is thrown with the rotation axis vertical, as indicated in Figure 14.29.
Instead the pitcher throws the ball so that the break is down, i.e., the rotation axis is
nearly horizontal. Pitchers use a variety of spins to induce movement of the ball. A
knuckle ball is thrown with no spin and darts erratically owing to flow separation. A dis-
cussion of the physics of sports balls can be found in an article by R. D. Mehta entitled
“Aerodynamics of Sports Balls,” in Annual Review of Fluid Mechanics, volume 17,
pages 151–189, 1985.
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TABLE 14.2 Drag Coefficients for selected 3D objects.

Geometry Reference Area, A Drag Coefficient, CD, and Remarks

Sphere

Hemisphere

Ellipsoid of Revolution

Sphere in a Circular Duct

Thin Circular Disk

Circular Rod Parallel to Flow

π D2

4

π D2

4

π D2

4

π D2

4

π D2

4

π D2

4

Re 102 103 104 105 106 5 × 106

CD 1.0 0.41 0.39 0.52 0.12 0.18

For Re < 1, CD ≈ 24/{Re[1 + (3/16)Re]}.

CD = 0.42 (Sphere side facing upstream)

CD = 1.17 (Flat side facing upstream)

CD = 0.44(D/L) + 0.016(L/D) + 0.016(D/L)1/2

1 < L/D < 10.

Re < 2 × 105, laminar flow.

CD =
[

1 + 1.45

(
D

D0

)4.5
]

CD |D0/D=∞

0 < D/D0 < 0.92, CD(D0/D = ∞) is that of sphere above.

Re 1 2 5 10 102 103 104 105

CD 25 15 6 3.6 1.5 1.1 1.1 1.15

L/D CD

∼0 1.15

0.5 1.10

1.0 0.93

1.5 0.85 Re ≥ 104

2.0 0.83

3.0 0.85

4.0 0.85

5.0 0.85
(continued)

D

D

D

L

D0D

D

D

L



TABLE 14.2 (continued )

Geometry Reference Area, A Drag Coefficient, CD, and Remarks

Cylindrical Rod Perpendicular 
to Flow

Cone

Thin Rectangular Plate 
Perpendicular to Flow

Square Rod Parallel to Flow

Average Man

L D

π D2

4

L D

D2

See data at right.
For CD A product
appropriate to
different flow
directions and
posture.

L/D CD

1.0 0.64
1.98 0.68
2.96 0.74
5.0 0.74 Re ≥ 104

10. 0.82
20. 0.91
40. 0.98
∞ 1.20

θ

(deg) CD

10 0.30
20 0.40
30 0.55
40 0.65 Re ≥ 104

60 0.80
75 1.05
90 1.15

180 1.40

L/D CD

1.0 1.05
2.0 1.10
4.0 1.12
8.0 1.20 Re ≥ 104

10.0 1.22
12.0 1.22
17.8 1.33
∞ 1.90

L/D CD

∼0 1.25
0.5 1.25
1.0 1.15
1.5 0.97 Re ≥ 104

2.0 0.87
2.5 0.90
3.0 0.93
4.0 0.95
5.0 0.95

L

D

D�

L

D

L

D

D

→ CD A = 9 ft2 (0.84 m2)

↑ CD A = 1.2 ft2 (0.11 m2)

• CD A = 5 ft2 (0.46 m2)

Sitting → CD A = 6 ft2 (0.56 m2)

Crouching → CD A = 2 to 3 ft2 (0.19 m2 to 0.28 m2)



therefore, increases fuel economy. A person riding a bicycle is another example of a
bluff body. Have you noticed that riders in the Tour de France generally wear helmets
designed to provide a more streamlined shape and reduce pressure drag?

Table 14.2 includes drag coefficients for a few common bluff bodies as adapted
from a variety of sources. The data are for Re > 104 with accuracy of ±5%. The inter-
ested reader is referred to Applied Fluid Dynamics Handbook, by Robert Blevins for
a more complete listing of drag coefficients for bluff bodies. Notice that, as expected,
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(A) (B)

Figure 14.30 (A) Bluff body truck design. (B) Streamlined truck design.

EXAMPLE 14 .8

As shown schematically in Figure 14.31, square columns 4 in. × 4 in. and 10 ft tall are to
be used in the construction of a porch in south Florida. If the columns are exposed to hur-
ricane force winds of 100 mph (= 147 ft/s), what force must each column withstand?

Side view of
support column

Top view of
support column

Wind
direction

�

L � 4 in.

L � 4 in.

Figure 14.31 Schematic for Example 14.8.
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the reported CD values for sharp edged bluff bodies are either independent of, or only a
weak function of, Re over the range indicated.

Table 14.3 provides similar data for 2D bluff sections. A bluff section is defined to
be the (constant) cross section of an object that has infinite depth. The CD for the sec-
tions is based on force per unit span. The reported drag coefficients are also for
Re > 104 with accuracy of ±5%.

You may have noticed that the outside mirrors on modern automobiles are highly
streamlined in appearance, and noticeably different in shape from the disk-shaped mir-
rors seen on early automobiles. Door handles on automobiles have also undergone
changes over the years and are now almost always flush with the surface of the door
rather than projecting. Mirrors and door handles on automobiles are examples of protu-
berances, objects that are partly immersed in a freestream and capable of creating a con-
siderable amount of drag. The streamlining of mirrors and door handles reflects a
concern for fuel economy, as does the overall lowering of drag coefficients on vehicles
of all types. The effect of a protuberance is enhanced if the nearby flow has been accel-
erated to a high speed by the shape of the body to which the protuberance is attached.
Thus if a protuberance is necessary to the function of a vehicle or device, it is wise to
locate it in a region of retarded airflow rather than where the airflow is moving at or
above the freestream value. In the early days of automotive design, windshield wipers
on many models moved from the top of the windshield to the base, then were tucked
under the hood, getting them completely out of the airflow.

SOLUTION

The Reynolds number of the flow is found to be

Re = UD

ν
= (147 ft/s)(4 in.)(ft/12 in.)

1.64 × 10−4 ft2/s
= 3 × 105

which is above the value Re > 104 for which the data for a square section in Table 14.3
are valid. Thus it is appropriate to use the drag coefficient in this table for our analysis.
In Table 14.3 we see that for a square section, the maximum CD = 2.4 is at 45° angle to
the wind, thus the maximum force will occur for a wind that comes from this direction.
This is the force the column must potentially withstand in the worst case. To calculate it,
we will assume 70°F air and use A = (4/12 ft)(10 ft) = 3.33 ft2 and U = 147 ft/s. The
drag force is then found to be

FD = 1
2ρU 2 ACD = 1

2 (2.329 × 10−3 slug/ft3)[147 ft/s]2(3.33 ft2)(2.4) = 200 lbf

CD/Boundary layers/Separation/Airfoil separation

CD/Dynamics/Dependence of forces on Reynolds number and geometry/Effect of Re
and geometry on flow
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TABLE 14.3 Drag Coefficients for selected 2D sections.

Geometry Drag Coefficient, CD, and Remarks

Circular Cylinder

Cylinder Near a Wall

Cylinder Downstream of Another
Cylinder

Drag on Downstream Cylinder

Rectangle

Re 102 103 104 105 106 107

CD 1.4 1.0 1.1 1.2 0.4 0.8

For Re < 1, CD ≈ 8π/[Re loge (7.4/Re)].

E/D CD CL

0 0.8 0.6
0.25 1.1 0.25
0.5 1.2 0.15
1.0 1.3 0.05
1.5 1.2 0.02
2.0 1.2 0
4.0 1.2 0
6.0 1.2 0

104 < Re < 105

Lift force is away from wall.

T/D = 0 T/D = 0.5

L/D CD L/D CD

1.0 −0.4 1.0 0.65
1.5 −0.2 1.5 0.50
2.0 0.0 2.0 0.45
2.5 0.2 2.5 0.45
3.0 0.2 3.0 0.40
4.0 0.3 4.0 0.40

T/D = 1.0 T/D = 2

L/D CD L/D CD

1.0 1.1 1.0 1.1
1.5 1.0 1.5 1.0
2.0 0.70 2.0 1.0
2.5 0.70 2.5 1.0
3.0 0.65 3.0 1.0
4.0 0.65 4.0 1.0

104 < Re < 105

L/D CD L/D CD

0.1≤ 1.9 1.0 2.2
0.2 2.1 1.2 2.1
0.4 2.35 1.5 1.8 Re ≥ 104

0.5 2.5 2.0 1.6
0.65 2.9 2.5 1.4
0.8 2.3 3.0 1.3

6.0 0.89

D

D

E

D

T

L

D

L
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TABLE 14.3 (continued )

Geometry Drag Coefficient, CD, and Remarks

Two Cylinders Side by Side

Inclined Square

Rounded Nose Section

Thin Flat Plate Inclined to Flow

Thin Plate Extending from a Wall

Ellipse

E/D CD CL

0 1.6 0.8
0.25 1.0 0.6
0.5 0.9 0.4
1.0 1.1 0.2
1.5 1.3 0.1
2.0 1.2 0.05
4.0 1.2 0.0
6.0 1.2 0.0

CD, CL for each cylinder. 104 < Re < 105. Lift force is repulsive.

� (Deg) 0 5 10 15 20 25 30 35 40 45

CD 2.2 2.1 1.8 1.3 1.9 2.1 2.2 2.3 2.4 2.4

Re ≥ 104

L/D CD

0.5 1.16
1.0 0.90
2.0 0.70 Re ≥ 104

4.0 0.68
6.0 0.64

CN ≈




2π tan θ, θ < 8°
1

0.222 + 0.283/ sin θ
,

90° ≥ θ > 12° Re ≥ 104

CL = CN cos θ

CD = CN sin θ

There is a discontinuity in the range 8° < θ < 12° with CN ≈ 0.8 as
flow separates from upper surface. See Table 14.2 for θ = 0°.

CD = 1.4
Re ≥ 104

D/L CD

0.125 0.22
0.25 0.3
0.50 0.6 Re ≥ 104

1.0 1.0
2.0 1.6
Laminar flow only. (continued)

E

D

D

D�

D

L

T 
 0.1D

D

T

FN�

D

D

L
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14.5 LIFT AND DRAG OF AIRFOILS

As discussed briefly in the case study of Section 3.3.6 (lift and drag on airfoils), a wing
is a specially shaped body designed to produce lift when exposed to a stream of fluid.
Lift is defined to be the component of fluid force acting on a body at a right angle to the
oncoming stream. Thus lift is a vertical force for a vehicle or object in level flight. The
total lift developed by a wing supports the weight of an aircraft. The spoiler, or upside-
down wing, on a racing car produces negative lift, a downward force intended to keep
the car on the track.

The cross section at any given point along the span of a wing has the form known
as an airfoil. This airfoil shape is carefully designed to maximize lift and minimize
drag. There are many different airfoil shapes for different applications. Before dis-
cussing airfoil shapes and some of the characteristics of flow over an airfoil further, con-
sider the distribution of pressure and shear stress on a typical airfoil shape as shown in
Figure 14.32.

The lift applied by the fluid to this airfoil is defined by Eq. 4.25b as

FL =
∫

S
(−pn + �) • nL dS

where the unit vector nL is normal to the flow direction. The drag component of this same
force is

FD =
∫

S
(−pn + �) • n∞ dS

where the unit vector n∞ points in the flow direction. We conclude that in principle both
the pressure and the shear stress contribute to the lift and drag of an airfoil. In practice,

Flow

Pressure on surface

Shear on
surface

Figure 14.32 Typical pressure
(normal stress) and shear stress
distributions on an airfoil.

CD

Flow L/D

direction 0.5 1.0

→ 2.05 1.6
↑ 0.9 1.9

I Shape

TABLE 14.3 (continued )

Geometry Drag Coefficient, CD, and Remarks

L

D
Re ≥ 104
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the lift on an airfoil is found to be generated by the pressure distribution, with the shear
stress contributing very little to the lift force. The drag of an airfoil is found to be due to
both the pressure and shear stress distributions. From a drag perspective, an airfoil shape
may be thought of as the end result of streamlining an otherwise bluff body. The trade-
off in elongating the shape in the streamwise direction to decrease pressure drag is an in-
crease in friction drag. An appreciation of this process and the optimization that leads to
an airfoil shape can be seen by comparing drag coefficients as shown in Figure 14.33.
Notice that the drag coefficients vary by three orders of magnitude!

Although airfoils are used to construct wings for aircraft of all types, they are also
critically important in the design of turbomachinery and of streamlined structural mem-
bers such as wing struts. Symmetrical airfoils are used for struts because no lift is de-
sired. This geometry results in a symmetric pressure distribution on the top and bottom
of the airfoil, giving zero lift. Symmetric airfoils can provide lift if they are at an angle
of attack to the airstream.

The standard geometry and nomenclature for an airfoil were given in the case
study of Section 3.3.6, but it is worth revisiting the relevant material here. Considering
only steady subsonic flow, the lift and drag forces acting on a wing having a uniform air-
foil section all along its length are each found to depend on the thickness t, span b, chord
length c, and angle of attack α. These parameters are illustrated in Figure 14.34. The lift
and drag on the wing depend on these geometric parameters and on the freestream
velocity V , fluid density, and viscosity. Thus we can write

FL = f (t, b, c, V, ρ, µ)

FD = f (t, b, c, V, ρ, µ)

104

Flat plate

Flat plate

Circle

Ellipse

Airfoil

105 106 107

0.01

C
D

1.0

0.1

D

D

D

D

0.5D

0.18D

D

D

Re � �UD��

CD �
FD

�U2A1
2

A � D � unit span

Figure 14.33 Drag coefficient as a
function of Re and streamlining.



Applying dimensional analysis leads to the following relationships among dimension-
less groups:

FL
1
2ρV 2bc

= g1

(
Rec,

t

c
,

b

c
, α

)

FD
1
2ρV 2bc

= g2

(
Rec,

t

c
,

b

c
, α

)

where Rec is the Reynolds number based on chord length.
The lift and drag coefficients for an airfoil section are defined by Eqs. 3.43 as

CL = FL
1
2ρV 2bc

and CD = FD
1
2ρV 2bc

where the product bc is called the planform area. Thus we conclude that the dependence
of the lift and drag coefficients on the various dimensionless groups is given by

CL = CL

[
Rec,

t

c
,

b

c
, α

]
and CD = CD

[
Rec,

t

c
,

b

c
, α

]

For an infinitely long wing, the span does not enter the analysis, so the ratio of span
to chord, b/c, disappears from these expressions. We conclude that the lift and drag co-
efficients are a function of Reynolds number, the geometry of the airfoil as expressed by
the ratio of thickness to chord, and the angle of attack. For engineering purposes, em-
pirical data for a given airfoil shape are presented in the form of lift and drag coefficients
as a function of angle of attack for an infinitely long wing of the indicated shape. An ex-
ample of lift and drag data as a function of angle of attack for the symmetric airfoil
NACA 0018 is provided in Figure 14.35. Note that for this symmetric airfoil the lift is
zero at zero angle of attack (α = 0).

A comparison of the NACA 0018 airfoil shape (Figure 14.35) and the NACA 23012
airfoil shape (Figure 14.36) shows that while the centerline of the former is straight, the
centerline of the latter is curved. An airfoil with a curved centerline is said to be cam-
bered. Camber provides lift at zero angle of attack by making the flow field around the
airfoil nonsymmetrical. Fluid moving over the top of a cambered airfoil at zero angle of
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V

�
Angle of

attack
Span, b

Planform
area, bc

Thickness, t

Lift FL

Drag FD

Chord, c

Figure 14.34 Airfoil geometry.
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Figure 14.35 Lift and drag coefficients for the NACA 0018 airfoil: 3D test on smooth surface, 2% turbulence.

attack is moving at a higher velocity than the fluid along the bottom. Thus, Bernoulli’s
equation tells us that the pressure on top is lower than the pressure on the bottom. As al-
ways, an unequal pressure distribution is the source of lift. Lift and drag coefficient data
as a function of angle of attack for the cambered airfoil section NACA 23012 are shown
in Figure 14.36.

From the foregoing discussion it should be clear that high speed air must be flow-
ing over the top of an airfoil for it to produce lift. As the angle of attack of any airfoil in-
creases, the separation point moves forward from the rear of the airfoil. Eventually, if
the angle of attack becomes too great, a separation bubble will cover nearly the whole
top of the airfoil. This phenomenon, called stall, results in a loss of lift. The onset of stall
can be viewed in the series of flow visualizations in Figure 14.37. Figures 14.37C at
α = 30◦− and Figure 14.37D at α = 30◦+ indicate the abrupt onset of stall. An aircraft
will literally fall out of the sky if the wings stall.

Aircraft wings must operate in several different modes. For example, in level flight
minimized drag with maximized lift is desired. During landing, however, drag is bene-
ficial in slowing the plane down. Thus, no single wing or airfoil shape can be optimized
for all the operational modes. A solution to this problem lies in making the wing ad-
justable. Flaps, on both the leading and trailing edges, change the airfoil shape; i.e., they
can alter the amount of camber. Figure 14.38A shows an airfoil at a high angle of attack
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with flaps extended in a landing configuration. Figure 14.38B shows the cruise and take-
off configurations in comparison to the landing configuration.

If you look closely at Figure 14.38A you can see slots between the flaps that allow
air from the lower surface to flow to the top, helping to delay flow separation. This is
only one of the sophisticated methods of boundary layer control that have been devel-
oped. Figure 14.39 shows the upper surface of a wing of a commercial aircraft. Note the
array of protuberances on the wing surface. We know they will increase the friction
drag. However, by causing high momentum air to flow into the boundary layer, these
vortex generators keep the boundary layer attached longer, reducing pressure drag and/
or delaying the onset of stall.

So far, our discussion of the flow over an airfoil has been limited to 2D flow, such
as would occur if a wing were of infinite length. Real wings of finite length have greater
drag than is predicted by 2D airfoil theory. The increase in drag is called induced drag.
One cause is the leakage of high pressure air on the bottom of the wing to the low pres-
sure upper side around the wing tip. Figure 14.40 shows a flow visualization of the wing
tip vortices that are generated as a result of this phenomenon.

The next time you are in an airplane, the view from your window should be much
more interesting because you will be able to appreciate the complex physics of the air-
flow and the sophisticated design of the wing.
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Figure 14.36 Lift and drag coefficients for the NACA 23012 airfoil: 2D test in tunnel on smooth surface at 0.02%
turbulence.
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Figure 14.37 NACA 4412 airfoil section with a leading edge flap that delays flow separation from about 15° to 30°. 

(B)

(D)

(A)

(C)

Cruise configuration

Takeoff configuration

Landing configuration

(B)

Figure 14.38 (A) Airfoil section at a 25° angle of attack. (B) Sophisticated mechanical high lift devices for an airfoil
section.

(A)
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Figure 14.40 Wing tip vortex.Figure 14.39 Vortex generators on a com-
mercial aircraft.

EXAMPLE 14 .9

A fully loaded aircraft weighing 900 kN has a wing area of 230 m2. If the wing has the
characteristics of a NACA 23012 airfoil and during takeoff operates at a 6° angle of
attack, what is the required takeoff speed at sea level? What is the takeoff speed at an
elevation of 2000 m?

SOLUTION

To take off, the lift force must overcome the weight, so FL = W ,

1
2ρU 2 ACL = W

U =
√

2W

ρ ACL

From Appendix B for the U.S. Standard Atmosphere ρ(0 m) = 1.225 kg/m3 and
ρ(2000 m) = 1.007 kg/m3. From Figure 14.36 CL = 0.79. Substituting the data into
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the preceding expression yields:

U =
√

2(900 × 103 N)

(1.225 kg/m3)(230 m2)(0.79)
= 90 m/s = 324 km/h

at sea level and at 2000 m

U =
√

2(900 × 103 N)

(1.007 kg/m3)(230 m2)(0.79)
= 99 m/s = 356 km/h

Thus an increase of almost 10% in takeoff speed is required at the higher elevation.

14.6 SUMMARY

“External flow” is the term used to describe either an object moving through a fluid or
fluid moving over an object. The study of external flows is important in a wide variety
of fields including transportation (lift and drag) and structural design (fluid forces).

When a body is immersed in a moving fluid, the fluid velocity along a line perpen-
dicular to any point on its surface is observed to vary from zero on the surface to a max-
imum value some distance away. At large Re the variation occurs over a relatively small
distance, and the body is said to have a boundary layer. The boundary layer characteris-
tics are affected by several factors including the shape of the surface and its orientation
relative to the freestream.

The Blasius solution applies to the steady, laminar boundary layer on a smooth flat
plate aligned with the freestream and yields the following important results: (1) the pres-
sure inside the boundary layer is the same as it is in the inviscid flow outside the bound-
ary layer; (2) the boundary layer thickness grows at a rate δ(x) ∝ x1/2; and (3) the wall
shear stress and skin friction coefficient decreases at a rate τW (x) ∝ x−1/2. The quanti-
tative results from the Blasius solution are provided in Eqs. 14.12a–14.12h. Since it is
observed that the transition to turbulence occurs at Rex ≈ 5 × 105 for a flat plate, the
Blasius solution is valid for 0 < x < 5 × 105(ν/U).

There is no analytical solution for a turbulent boundary layer on a flat plate, so
we are forced to rely on empirical observations. The results of the corresponding 
power-law model are given in Eqs. 14.16a–14.16h and are valid for the range
5 × 105 < Rex < 107. The boundary layer thickness grows at a rate proportional to
x4/5, while the wall shear stress and skin friction coefficient decreases at a rate
proportional to x−1/5.

Observation of boundary layers on airfoils and other curved bodies show that an ob-
ject’s shape and angle of attack have a significant effect on the characteristics of both
laminar and turbulent boundary layers. For a boundary layer, the effects of shape and
angle of attack are equivalent to a streamwise pressure gradient. A pressure gradient
of the form dp/dx < 0, meaning that the pressure is decreasing (and the fluid is accel-
erating) in the flow direction, is referred to as a favorable pressure gradient, while



dp/dx > 0 is termed an unfavorable pressure gradient. The favorable pressure gradient
of an accelerating freestream tends to thin a laminar boundary layer and bring higher
momentum fluid nearer the surface, while the unfavorable pressure gradient of a decel-
erating freestream tends to do the opposite. Thus, on an airfoil a laminar boundary layer
is relatively thin and remains attached on portions of the surface where the flow is ac-
celerating, but becomes thicker and may separate from portions of the surface where the
flow is decelerating. At the point of separation the wall shear stress is zero, and down-
stream of this point the flow near the wall reverses direction. This also occurs with
turbulent boundary layers, although they are more resistant to flow separation owing to
the increased amount of higher momentum fluid near the surface associated with the
more blunt turbulent velocity profile.

For a stationary object immersed in a moving stream, drag is the component of
force exerted on the object by the fluid in the direction of the freestream. For an object
moving through a stationary fluid, the drag acts in the direction opposite to the object’s
motion. The power required to propel an object through a fluid at constant speed is given
by the product of the drag and the speed. Thus, drag limits the performance of vehicles
of all types and affects their fuel economy. The total drag force arises from two mecha-
nisms: pressure and shear stress. The pressure contribution to the total drag is referred to
as form drag, and the contribution due to the shear stress acting on an object’s surface is
called friction drag. In a high Re flows the drag on bluff bodies tends to be dominated
by form drag. The drag on long thin bodies tends to be dominated by skin friction.
“Streamlining” is a term used to describe the attempt to design an optimum shape for a
bluff body in a high Re flow by minimizing the total drag. It generally takes the form of
elongating the rear of the body. Although this raises the friction drag, it lowers the form
drag, and the total drag is reduced.

Although CFD is increasingly being used to determine the drag on objects of engi-
neering interest, much of what is known about drag is the result of experiments. Dimen-
sional analysis shows that the drag coefficient may depend on Re, M, Fr, St, We, and e/D.

Drag coefficients are shown in Figure 14.17 for a number of shapes in creeping
flow. All objects in creeping flow have drag coefficients that are proportional to Re−1.
Figure 14.18 provides CD data for a smooth cylinder. For Re < 103 the friction drag of
the laminar boundary layer dominates, so CD varies with Re as it did for laminar flow
over an aligned flat plate (i.e., CD ∝ Re−1/2). In the range 103 < Re < 105, CD has
only a weak dependence on Re and the total drag is dominated by pressure drag. Over
the range 105 < Re < 106, CD falls dramatically by about 80%. The drag actually de-
creases with increasing speed as a result of the laminar-to-turbulent transition of the
boundary layer. Spinning a cylinder can result in an increase in drag and also creates a
sideforce or lift on the cylinder. Figure 14.24 provides CD data for a smooth sphere. The
trends for the dependence of CD on Re for a sphere are similar to those for a cylinder,
for many of the same reasons. As was the case with a cylinder, rotation of a sphere not
only affects the drag but also produces lift.

The term “bluff body” refers to an object that experiences flow separation at a rela-
tively low Re and for which the point of separation is essentially independent of Re. The
fixed point of separation is often, but not always, associated with a sharp corner or
change in geometry. Since the flow separation point is independent of Re, the drag coef-
ficients for a bluff body is also nearly independent of Reynolds number (over a large
range of Re). Tables 14.2 gives the relevant geometry, characteristic area, and drag
coefficients for a few common bluff bodies.
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Airfoils are designed to maximize lift while minimizing drag. The lift on an airfoil
is primarily due to the pressure distribution. In contrast, the drag of an airfoil depends on
both the pressure and shear stress distributions. An airfoil shape may be thought of as the
end result of streamlining an otherwise bluff body. The trade-off in adding material to
decrease pressure drag is an increase in friction drag. Empirical data for two airfoil
shapes are presented in the form of lift and drag coefficients as a function of angle of
attack.

PROBLEMS

Section 14.2

14.1 Assuming that the wing on an air-
plane is behaving like a flat plate, what is the
length of the laminar boundary layer if it is
flying at a speed 150 mph at an altitude of
5000 ft.

14.2 Calculate δ, δ*, and Θ for the bound-
ary layer flow described in Problem 14.1.

14.3 Air, at 20°C, with incoming velocity
of U = 18 m/s, flows over a horizontal flat
plate. The velocity profile in the boundary
layer is modeled by

u

U
= sin

(
π

2

y

δ

)
+ C

where C is a constant. At x = 0.15 m the
boundary layer thickness is δ = 5.0 mm.
What are the boundary conditions that this

profile must satisfy? What is the value of C?
Is the boundary layer laminar or turbulent at
this point? Why?

14.4 Determine δ*, Θ, and τw at
x = 0.15 m for the flow described in Prob-
lem 14.3.

14.5 The laminar, and turbulent velocity
profiles in Figure P14.1 have the same bound-
ary layer thickness. The laminar profile is
parabolic

u

U
= 2

(
y

δ

)
−
(

y

δ

)2

and the turbulent profile is the 1/7-power law
equation

u

U
=
(

y

δ

)1/7

Calculate the moment flux for each profile.
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14.6 Calculate the kinetic energy flux for
each of the profiles given in Problem 14.5.

14.7 Determine δ*/δ and Θ/δ for each of
the profiles given in Problem 14.5.

14.8 A hydrofoil 1.4 ft long and 6 ft wide is
put in 50°F water flowing at 30 ft/s. Estimate the
boundary layer thickness at the end of the plate.

14.9 Estimate the drag force on the hydro-
foil described in Problem 14.8 assuming
turbulent flow from the leading edge.

14.10 Estimate the drag force on the
hydrofoil described in Problem 14.8 as-
suming laminar-to-turbulent transition at
Re = 5 × 105.

14.11 Redo Problem 14.8 in air.

14.12 Redo Problem 14.9 in air.

14.13 Redo Problem 14.10 in air.

14.14 The velocity profile of the atmos-
pheric boundary layer profile over a city is
estimated to be u = y0.40. If the velocity is
5 mph on the second floor at 25 ft, what is the
velocity on the 75th floor? Assume 12 ft for
each additional floor.

14.15 For the building described in Prob-
lem 14.14, what is the velocity pressure felt on
the windows on the second and 75th floors?

14.16 Which of these equal area plates
will have the most drag: L × L , L/2 × 2L
short side into the flow, 2L × L/2 long side
into the flow? Explain your answer.
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14.17 Would the object shown in Fig-
ure P14.2 have more drag moving toward
the left or toward the right? Explain your
answer.

Figure P14.2

x

y

U

1 2

34
CV

CS

� � 6 mm

u(x, y)

Figure P14.3

14.18 For the control volume shown in
Figure P14.3, determine the volume flowrate
leaving through surface 3-4. The entering pro-
file at 1-4 is uniform. The exiting profile at 
2-3 is parabolic. The free stream velocity is
U = 3 m/s and δ = 6.0 mm at surface 2-3.

14.19 Use the numerical solution obtained
by Blasius (Table 14.1) to determine the drag
force on a 100 cm long, 50 cm wide plate im-
mersed in SAE 30 oil at 20°C and moving at a
speed of 5 m/s. What is the boundary layer
thickness at the end of the plate?

14.20 For the flow described in Prob-
lem 14.3, determine the displacement thick-
ness by using numerical integration of the
Blasius solution data in Table 14.1. Compare
your answer to the one found using
Eq. 14.12c.

14.21 For the flow described in Prob-
lem 14.3, determine the momentum thickness
by using numerical integration of the Blasius
solution data in Table 14.1. Compare your
answer to the one found using Eq. 14.12d.



PROBLEMS 937

14.29 Sedimentation is one mechanism for
deposition of particles in the lung. Determine
the terminal velocity of fibers with a density
of 1100 kg/m3 in 37°C air. Model them as
2 �m diameter by 10 �m long rods settling
both normally and parallel.

14.30 Derive an expression for the termi-
nal velocity of a sphere of diameter D and
density ρ, in a fluid of density ρ f assuming
low Re flow.

14.31 Derive an expression for the settling
time of a distance h for a sphere of diameter D
and density ρ, in a fluid of density ρ f assum-
ing low Re flow.

14.32 Derive an expression for the viscos-
ity of a fluid µ if a sphere of diameter D and
density ρ, falls at terminal velocity Vt ,
through a fluid with density ρ f at Re < 1.

14.33 A 100 ft tall, 2 ft diameter smoke-
stack must withstand 100 mph winds during a
hurricane. What is the bending moment on the
stack? Assume a uniform velocity profile.

14.34 Redo Problem 14.33 assuming a
1/7 power-law profile.

14.35 An elevated spherical storage tank
20 m in diameter is supported by a 5 m
diameter cylindrical base that is 30 m tall.
Assuming that the drag on the tank and the
support can be calculated separately and
summed, what is the total bending moment on
the structure in a 50 km/h wind? Assume a
uniform velocity profile.

14.22 The instrument shown in Fig-
ure P14.4 determines the wall shear stress by
measuring the force at the base that holds the
surface element in place. Determine a formula
for τw as a function of F and the geometric
parameters L , w, d , and h.

14.23 For the device described in Prob-
lem 14.22, if water is flowing at 1 m/s,
L = 4 m, w = 5 mm, d = 2 mm, and
h = 12 mm, determine the value of F.

14.24 A fan consists of four blades, 18 in.
long and 6 in. wide, acting like flat plates. If
the fan rotates at 120 rpm, estimate the torque
required to overcome air friction.

14.25 Explain why shape is more critical
to the efficient operation of a diffuser than of
a nozzle.

Section 14.4

14.26 What is the drag force on pollen
falling in 20°C air? Assume the pollen are
10 �m diameter spheres with a density of
800 kg/m3.

14.27 Dirt has become suspended in the
water of a garden pool with a depth of 1.5 m.
If the smallest particles are 50 �m and the
density of the particles is 1250 kg/m3, how
long will it take for the pool to clear?

14.28 For the pool described in Prob-
lem 14.27, what is the size of the smallest par-
ticles if the pool clears in 2 h?

h

L

w

x

y

F

z

U Rectangular
surface has depth,
d, in z direction

Figure P14.4
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14.44 A golf ball with a mass of 1.62 oz
and a diameter of 1.68 in. is hit with an initial
speed of 240 ft/s at an angle of 18° above hor-
izontal. Determine the distance traveled by
the ball at sea level.

14.45 Redo Problem 14.44 at an elevation
of 5000 ft.

14.46 Redo Problem 14.44 assuming the
ball also has underspin of 1000 rpm.

14.47 A fastball pitcher releases the pitch
horizontally at 95 mph with an underspin of
250 rpm. How much will the elevation have
changed when the ball reaches the plate
approximately 55ft away? The ball has a mass
of 5 oz and a circumference of 9 in.

14.48 Redo Problem 14.47 with no
underspin.

14.49 Many curve ball pitchers have had
difficulty pitching in Denver. Investigate why
this is the case by redoing Example 14.7 at an
elevation of 5000 ft.

14.50 For the Flettner rotor described in
Example 14.5, estimate the power require-
ment if the wind speed is 40 km/h and the
rotation speed is 500 rpm.

14.51 In Example 14.6 the drag on the
antenna itself was not considered. Compare
the bending moment on the antenna if it is
1
4 in. in diameter with that created by the drag
on the ball.

14.52 For a laboratory demonstration, the
drag on a cylinder is to be investigated. If the
wind tunnel has a 1 m square test section,
what is the maximum size you would recom-
mend for the cylinder?

14.53 An underwater pipeline is 1 ft diam-
eter and 1 ft up from the bottom. If the water
flowrate over the pipe is 4 ft/s, what is the
force pulling the pipe off the bottom per unit
foot of pipe? What is the drag force on the
pipe?

14.36 What is the power per foot of length
required for a 0.5 in. diameter support wire on
an antique biplane at 80 mph at an altitude of
500 ft?

14.37 A spherical (d = 2 cm) lead (ρ =
11,340 kg/m3) weight hangs from a fishing
boat. The line is initially let out to a depth of
10 m in still water. The boat then begins to
troll at 10 km/h. At what angle to the vertical
will be the line? At what depth will be the
weight? Ignore the weight and drag on the
line.

14.38 Repeat Problem 14.37 considering
the drag on the line.

14.39 Bubbles released from the air tank
of a scuba diver are 2 cm in diameter at a
depth of 15 m. Calculate the terminal velocity
of a bubble as a function of depth. Use this
result to estimate the time needed for a bubble
to rise to the surface.

14.40 Estimate the terminal speed of hail-
stones the size of peas. State all assumptions.

14.41 A machine ejects a tennis ball hori-
zontally at a velocity of 100 km/h. How far
will the ball go before it drops 0.5 m? 2 m?
The ball has a mass of 57 g and diameter of
64 mm.

14.42 A home run ball hit into San
Francisco Bay is retrieved by your dog. How-
ever you drop the exchange. How fast will the
ball be falling into the bay? Assume the water
temperature is 50°F. The ball has a mass of
5 oz and a circumference of 9 in.

14.43 It was once thought that a baseball
dropped from the top of the Washington Mon-
ument would be impossible to catch. Estimate
the velocity of the ball dropped from the
550 ft level. The ball has a mass of 5 oz and
a circumference of 9 in. Explain all your
assumptions and suggest more accurate meth-
ods. This experiment was attempted and even-
tually the ball was caught.
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shown in Figure P14.6. What is the drag force
on the heat exchanger per unit width?

14.56 A large rectangular building,
50 m × 75 m, is 250 m tall. What is the total
force and bending moment on the building in
a 50 km/h wind directed on the short side of
the building? On the long side? Assume a
uniform velocity profile.

14.57 Redo Problem 14.56 assuming a
1/7 power-law profile.

14.58 A bridge pier is a canal is
1 m × 2 m, as shown in Figure P14.7. If the
flowrate is 10 m/s, what is the bending

14.54 A heat exchanger consists of the tube
arrangement as shown in Figure P14.5. What
is the drag per unit width on a tube in the third
row if the flowrate of air at 50°F is 10 ft/s? Use
the drag data supplied in Table 14.2.

14.55 Air at 100°C flows at 10 m/s over
the heat exchanger consisting of tubes as

Airflow U � 10 ft/s, T � 50�F

2 in.

D � 1 in.

3 in.

Figure P14.5

6 cm

6 cm

3 cm

D � 2 cm

Figure P14.6

10 m

20 m
1 � 2 m2

Figure P14.7
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14.69 To determine the viscosity, the time
is measured for a 1 cm diameter ball bearing
to fall 1 m inside a 2 cm diameter cylindrical
tube. The bearing is made of stainless steel,
ρss = 7800 kg/m3, and the density of the fluid
is measured to be ρ f = 820 kg/m3. What is
the viscosity of the fluid in the tube if the time
measured is 2.4 s? If the effect of the cylinder
walls was not taken into account, what would
be the error in the viscosity?

14.70 A 1 m per edge cubic crate weighing
9 × 104 N falls into the water from the deck
of a ship. How long will it take for the crate to
hit the bottom if the depth is 150 m?

14.71 How much drag is on a 5 cm di-
ameter disk oriented normal to the fluid with
a density of 900 kg/m3 and a viscosity of
2 × 10−3 (N-s)/m2?

14.72 Estimate the drag force on yourself
when you are standing in a 40 mph wind.

14.73 Estimate the reduction in drag
force obtained by a bicycle rider who was
crouching rather than sitting up while ped-
dling at 20 mph. 

Section 14.5

14.74 An aircraft uses a NACA 23012 air-
foil section at a 2° angle of attack for its wing.
The craft travels at 275 km/h at level flight
through standard conditions. Its mass is

moment on the pier? Assume a uniform
velocity profile.

14.59 Redo Problem 14.58 with a rounded
nose section.

14.60 A 10 cm square piling in 10 m of
water is acted on by flow of 2 m/s. Estimate
the maximum bending moment on the base of
the piling. State all assumptions.

14.61 What is the drag force on
15 ft × 9 ft billboard in a 50 mph wind?

14.62 A kite with a surface area of 1 m2 is
at an angle of 10° with the horizontal. Model
the kite as a flat plate to determine the resul-
tant force due to a wind of 25 km/h.

14.63 The scorekeeping sign carried at a
golf tournament is 4 ft wide by 3 ft high and is
mounted on a 3 ft pole. What is the moment felt
by the person walking at 5 mph with the sign?

14.64 A 10 cm × 5 cm elliptical wing
strut, 2 m in length, moves through the air at
sea level on takeoff at 130 km/h. What is the
drag on the strut?

14.65 A 3 m tall pylon with a 1 m equilat-
eral triangular cross section is used to display
announcements. Determine the moment on
the pylon in a 30 km/h wind.

14.66 Modeling your cupped hand as a
hemispherical cup and your arm as a cylinder,
estimate the drag created when you stick your
arm out the window of an automobile travel-
ing at 50 mph. State assumptions.

14.67 The four-cup anemometer shown in
Figure P14.8 starts to rotate with a breeze of
2 km/h. What is the starting torque due to the
breeze?

14.68 Estimate the power required to
cruise a mini-submarine at constant depth at
10 m/s. Model the submarine as an ellipsoid
of revolution of length 5 m and diameter 2 m.

12 cm

0

7.5 cm

U � 2 km/h

Figure P14.8
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14.81 Assume that an aircraft has lift and
drag characteristics of the NACA 23012
airfoil at an angle of attack of 5°. How far can
it glide from an altitude of 10,000 ft? This
problem is related to Problem 14.80.

14.82 An aircraft has a glide slope angle of
3°. Ten miles from the airport its engine fails.
What is the minimum elevation required for it
to make it to the airport? This problem is re-
lated to Problem 14.80.

14.83 A hydrofoil-based water craft trav-
els at 20 km/h on its foils. The mass of the
craft is 2000 kg. If the foils have lift and drag
coefficients of 1.65 and 0.58, respectively,
what is their effective area? What is the power
required at this speed?

14.84 If the hydrofoil water craft de-
scribed in Problem 14.83 has a power plant
that provides 120 kW to overcome the drag,
what is its top speed?

14.85 Assume that the lift coefficient for
an aircraft wing varies linearly between 0.1 at
0° angle of attack to 0.9 at 8°. At what angle of
attack must the wing be for the plane to fly
horizontally at 250 km/h at an altitude of
2000 m? The weight is 18 kN and the wing
area is 30 m2.

14.86 What wing area is required to sup-
port a 5500 lbf plane when flying at an angle
of attack of 4° at a speed of 90 ft/s. Use the lift
coefficient data given in Problem 14.85. 

900 kg. What is the effective area for lift for
this craft?

14.75 An aircraft weighing 4800 lbf with
a wing area of 340 ft2 takes off with a hori-
zontal velocity of 105 mph. What is the neces-
sary lift coefficient of the wing? Assume sea
level conditions.

14.76 An aircraft weighing 400 kN empty
has a wing area of 220 m2. It takes off at ve-
locity of 310 km/h at an angle of attack of 12°.
Assume that the wing has the characteristics
of the NACA 0018 and the air density is
1.19 kg/m3. Find the allowable weight of the
cargo.

14.77 Do you think it takes more power to
fly at an altitude of 1000 m or 10,000 m in
horizontal flight at the same altitude? Explain
your answer by using a calculation based on
an aircraft that has the same lift and drag char-
acteristics at each altitude.

14.78 A race car setup for the Indianapolis
500 has a CD = 0.669 based on A = 12 ft2.
At 220 mph, what is the drag force and how
much power is required to overcome the drag?
Assume that the air temperature is 70°F.

14.79 For the Indy car described in Prob-
lem 14.78, what is the downward force if the
lift-to-drag ratio is 2.92?

14.80 The glide slope angle θ is defined in
Figure P14.9 for an aircraft in unpowered
flight such that the lift, drag, and weight are in
equilibrium. Show that θ = tan−1(CD/CL).

�

Figure P14.9
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15.1 INTRODUCTION

15 OPEN CHANNEL FLOW

CD/Video library/River Flow

Open channel flow can be defined as a flow of liquid that occurs in a sloped channel hav-
ing a solid bottom and sidewalls and open to the atmosphere at the top. Thus a river qual-
ifies, and if you have been white water rafting or kayaking you have undoubtedly
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observed the incredible variety of waves and depressions on the water surface (see Fig-
ure 15.1A). These and other flow features that make a white water experience so much
fun are but one example of the interesting phenomena associated with open channel flow.

Predicting the flow of water in rivers, canals, culverts, flumes, and sewers is of sig-
nificant engineering interest. The well-defined geometries of man-made channels allow
us to use a relatively simple engineering analysis in the investigation of the resulting
flows. As the Roman aqueduct in Figure 15.1B attests, engineers have been designing
open channel flow structures for many centuries. The flow in rivers, streams, and tidal
channels, however, defies simple analysis and is beyond the scope of this text. The rea-
son of course is that their channels typically have very complex geometry. Consider, for
example, the satellite image of the river shown in Figure 15.1C. Imagine trying to

(A)

(C)

(B)

(D)

Figure 15.1 (A) Tellico River rapids. (B) Roman aqueduct. (C) Satellite photo of the Mississippi River.
(D) Flood waters.
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describe the geometry of each cross section along its length. Although we will not dis-
cuss the flow in natural channels further, many of the basic concepts introduced in this
chapter do apply to these natural open channel flows. This is fortunate because under-
standing these flows is of great importance in civil and environmental engineering. In
fact, the control of flows in natural channels is a vital topic in disaster abatement, as in-
dicated by the flood damage shown in Figure 15.1D.

CD/Video library/Glen Canyon Dam Outflow

The study of open channel flow traditionally includes some discussion of the flow
in weirs, sluice gates, and spillways. Examples of these structures are shown in Fig-
ure 15.2. Their purpose is to measure or control the flowrate in both natural and man-
made channels. Another interesting open channel flow phenomenon, which you may
have witnessed in miniature when rainwater drains down a steeply sloped parking lot or
gutter, is called a hydraulic jump. In a hydraulic jump, fast-moving water abruptly slows

Subcritical flow

Supercritical flow

(A) (B)

P

H

Drawdown
Weir crest

Nappe

L

Apron

Hydraulic jump

(C)

Figure 15.2 (A) Sluice gate. (B) Weir. (C) Spillway.
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down and its depth increases. An example of a full-size hydraulic jump, deliberately de-
signed to occur on a dam spillway, is shown in Figure 15.3.

In this chapter we discuss the basic concepts used to describe and analyze open
channel flow. Among the important considerations are the effects of depth and slope, the
shape of the channel, and the behavior of surface waves. Dimensional analysis shows
that the Reynolds and Froude numbers are the relevant parameters describing an open
channel flow. In most flows these numbers are very large, and the flow is governed
solely by value of the Froude number. We demonstrate the importance of the Froude
number in open channel flow by analyzing frictionless flow over a bump or depression,
flow through a channel of varying width, the behavior of surface waves, and the hy-
draulic jump. In each case we discover that the presence or absence of phenomena de-
pends on whether the Froude number is greater than or less than one. Next we use an en-
ergy balance, first to understand the role of gravity and friction in open channel flow, and
then to discuss the concept of specific energy. We continue our discussion by analyzing
two important cases: flow in a channel of uniform depth and flow in a channel in which
the depth varies slowly along the channel. Mass, momentum, and energy balances prove
valuable in developing a theory for predicting the nature of these two types of open
channel flow. The chapter concludes with a discussion of methods to analyze flow in
weirs and sluice gates. We begin Section 15.2 by describing the basic concepts and ter-
minology of this important area in civil and environmental engineering.

Figure 15.3 Spillway of the Itaipu Dam
in Brazil.

CD/Demonstrations/Boundary conditions between liquids, solids, and gases

15.2 BASIC CONCEPTS IN OPEN CHANNEL FLOW

In an open channel, liquid flows in a partially filled, sloped channel owing to the action
of gravity. As illustrated in Figure 15.4A, the liquid moving down the channel is in con-
tact with solid walls on part of its boundary, and a gas on the rest of its boundary.
Because of the no-slip, no-penetration condition, the liquid in contact with the solid
walls has zero velocity. Thus the moving liquid must exert a shear stress on the wall, and
vice versa. The magnitude of this shear stress is unknown; hence it must be determined
as part of the solution to the flow problem.



At the liquid–gas interface, which is referred to as a free surface, the liquid is free
to move. The exact location of the free surface is unknown, however, and must be de-
termined. At the free surface the no-slip, no-penetration condition ensures that the liquid
velocity matches the gas velocity, but the shear stress and liquid velocity at this interface
are unknown. However, by observing that the gas is easily dragged along by the moving
liquid, we can conclude that the shear stress at this interface is negligible. Moreover, by
noting that the velocity at the free surface is not large, we can use the Bernoulli equation
to deduce that the pressure, i.e., normal stress, on this surface is atmospheric.

It should be evident that open channel flows are quite different from the internal
flows covered in Chapter 13. For example, consider the balance of forces acting on the
fluid in each type of flow. In the steady internal flow shown in Figure 15.4B an exter-
nally imposed pressure gradient drives the fluid through the passage and is balanced by
the shear force exerted on the fluid by the enclosing solid boundaries. In contrast, in the
steady open channel flow shown in Figure 15.4A, the moving fluid is only partially en-
closed and is bounded on one side by a free surface. Although there is a hydrostatic pres-
sure variation in the liquid from the free surface to the channel bottom, there can be no
imposed pressure gradient in the flow direction under these conditions. What drives the
flow then? The answer is the down-slope component of the gravitational body force. In
an open channel flow, gravity drives the liquid down the channel and is opposed by the
shear force exerted on the liquid by the solid walls. The depth of an open channel flow
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is thus an important unknown, since it determines the amount of wetted solid surface
over which shear forces act.

Consider now the geometry of an open channel flow as illustrated in Figure 15.5,
and notice the two distinct sets of coordinates (X, D) and (x, y). Here h is the elevation
of the bottom of the channel (also called the bed) above a horizontal datum, X is the ac-
tual distance as measured along the bed, and D is the actual depth of the flow, i.e., the
distance from the channel bed to the free surface as measured along a line perpendicular
to the bed. The coordinate x is the distance along the horizontal, and y is defined as the
distance from the bottom of the channel to the free surface as measured vertically.
Because of the very small slopes encountered in open channel flow, we can assume
y = D and x = X as an engineering approximation. It also proves convenient to use
(x, y) in analyzing the flow rather than the natural coordinates (X, D).

Now consider the three slopes illustrated in Figure 15.5. We see that the slope of the
channel bed, called the bed slope, is given by dh/dx , and the slope of the free surface is
given by S = (d/dx)(y + h) = dy/dx + dh/dx . The variation in depth, D, along the
channel, or depth slope, is given by d D/d X . However, since we are using the small
slope approximation (y = D and x = X ), we can write dy/dx ≈ d D/d X . Thus in dis-
cussing open channel flow there are three physically distinct slopes of interest: the bed
slope dh/dx , the depth slope dy/dx , and the free surface slope S = dy/dx + dh/dx .
All three slopes are potentially different, and along with the depth y and distance along
the channel x, they play an important role in open channel flow.

Since the shear stress in open channel flow acts at the solid walls defining the chan-
nel cross section, the shape of the channel cross section is very important. A number of
cross sections of engineering interest are shown in Figure 15.6. Notice that the cross-
sectional area of a channel is easily determined if the geometry is known. However, the
area of greatest interest in open channel flow is the flow area A, defined to be the area
perpendicular to the flow direction through which liquid flows. It can be seen that the
flow area depends on the depth y.

There are a number of other geometric parameters of interest. The channel perime-
ter is defined as the length of the edge of the cross section as measured along the chan-
nel walls and bed but excluding the open side. This parameter may be calculated from
the known geometry. However, the wetted perimeter P, which is defined as the length of
the channel perimeter in contact with liquid, depends on the depth y. The hydraulic

x

z h2

h1
h(x)

y(x) D(X)
y2

y1

D2

Bed slope � 
dh
dx

Depth slope �       � dD
dX
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S �      	 
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dxFree surface slope

D1

X

Figure 15.5 Channel coordinates
and slope definitions.
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radius RH of an open channel flow is defined as the
ratio of the flow area to the wetted perimeter, i.e., as

RH = A

P
(15.1)

The hydraulic radius of an open channel flow depends
on both the channel cross section and the depth, since
together they determine the flow area A. We shall see in
a later section that an important length scale in open
channel flow is the hydraulic depth, defined as

yH = A

b
(15.2)

You probably recall that in internal flow the
hydraulic diameter is defined as four times
the cross section of the passage divided
by the perimeter. Since the fluid com-
pletely fills the passage in an internal flow,
the hydraulic diameter is defined entirely
by the geometry of the passage and does
not depend on any characteristic of the
flow. It is possible to define a hydraulic
diameter for open channel flow as
DH = 4A/P = 4RH , where A is the flow
area and P the wetted perimeter, but it is
customary to use the hydraulic radius.
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where b is the width of the free surface. Values of these different geometric characteris-
tics for channel cross sections of engineering interest are also included in Figure 15.6.

It is tempting to think that in an open channel flow the streamwise velocity at a
cross section is approximately uniform. However, this is not the case. Measured stream-
wise velocity contours are shown for several channel shapes in Figure 15.7. Notice that
there is wide variation in speed at different points in the cross sections and that the max-
imum streamwise velocity occurs some depth below the free surface. Because there is
negligible shear stress at the free surface, we would expect the maximum velocity to
occur on the free surface, with viscosity causing a reduction in velocity as the walls and
bottom are approached. This is not what is observed, however, because of the occur-
rence of secondary flows. Indeed, the location of the point of maximum velocity below
the free surface is an indication of the presence of secondary flows.

The use of the term “secondary flow” means that the velocity components in the
vertical and cross-stream directions are nonzero. The nonuniform flow in natural
streams and rivers is often cited as the driving force behind the development of meander
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Figure 15.7 Streamwise velocity contours. The numbers represent the relative speed.



in a streambed. A river with a prominent meander is shown in Figure 15.8A. The pres-
ence of a nonuniform flow tends to erode material at the outside of the bend and deposit
material at the inside, as shown in Figure 15.8B. Nonuniform flow can also be responsi-
ble for erosion at the base of man-made obstructions such as piers and pilings for bridges
and other structures. The secondary flow responsible for this process is sketched in
Figure 15.9.

Although we know that the velocity field in an open channel flow is actually three
dimensional, an open channel flow in a man-made channel is analyzed by assuming uni-
form, 1D flow, with the average streamwise velocity V (x) aligned parallel to the bed.
This assumption is illustrated in Figure 15.10 and used in the rest of this chapter. Since
V (x) is the average streamwise velocity in a cross section located at x, it is related to the
constant volume flowrate Q, and flow area A(x) by

V (x) = Q

A(x)
(15.3)
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Figure 15.9 Erosion near a bridge pier.
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An open channel may well incorporate changes in cross section along the channel
as well as changes in slope. In this text, our discussion of open channel flow is primar-
ily limited to those in prismatic channels, i.e., channels in which the cross section and
slope of the channel bed are fixed along the length of the channel. Open channel flow in
a prismatic channel is classified according to the manner in which the depth varies along
the flow direction. To understand these classifications, consider the depth slope dy/dx
at various locations in the flow illustrated in Figure 15.11.

If a flow occurs in a section of a prismatic channel with constant liquid depth, then
dy/dx = 0, the slope of the free surface is S = dy/dx + dh/dx = dh/dx , and the
flow in that section is referred to as a uniform flow (UF). The free surface in a uniform
flow is parallel to the bed, the flow is fully developed, and the velocity does not vary
along the channel.

A flow in a prismatic channel section with varying liquid depth has dy/dx �= 0 and
is referred to as nonuniform flow or varying flow (VF). In varying flow we can further
distinguish between a rapidly varying flow (RVF) for which dy/dx ≈ 1, and a gradu-
ally varying flow (GVF), where dy/dx � 1. The slope of the free surface,
S = dy/dx + dh/dx , may be greater or less than the slope of the channel bed dh/dx ,

V(x)

A(x) x

dy
dx � 0

Uniform

dy
dx  

 1

Gradually VF

dy
dx � 0

Uniform

dy
dx � 0

Uniform

dy
dx  

 1

Gradually VF

y(x)

h(x)z

x

dh
dx

Bed slope �
dh
dx

dy
dxFree surface slope S �  	 

Rapidly VF
dy
dx � 1

Figure 15.10 One-dimensional channel
flow.

Figure 15.11 Classification of flow with depth along a channel: VF, varying flow.



and since the depth y varies along the channel, the flow is not fully developed. Thus, the
velocity varies along the channel in nonuniform flow.

15.3 THE IMPORTANCE OF THE FROUDE NUMBER

An open channel flow may be steady or unsteady, laminar or turbulent, and it may in-
volve any liquid. For example, if you topple a can of motor oil on a sloped pavement, a
sheet of oil will flow downhill and create a laminar, unconfined open channel flow. On
the other hand, the flow in a river is a turbulent, confined open channel flow. Either of
these flows may be steady or unsteady depending on the circumstances.

The important parameters governing an open channel flow are revealed by a di-
mensional analysis. The DA of open channel flow begins by recognizing that for a given
channel geometry, the important factors are the density and viscosity of the fluid, the
speed of the flow V, gravity, a length scale L, and surface tension σ . After a dimensional
analysis has been performed, the dimensionless parameters are found to be the Reynolds
number Re = ρV L/µ, the Froude number Fr = V/

√
gL , and the Weber number

We = ρV 2L/σ .
Consider first the role of surface tension in open channel flow. The Weber number

may be thought of as the ratio of flow kinetic energy ρV 2L3 to the surface energy σ L2

associated with the surface tension. With the exception of a thin sheet of liquid flowing
downhill, as in the case of spilled motor oil mentioned earlier, the Weber numbers of
open channel flows are very large. For example, for water at 60◦F flowing at 1 ft/s in a
river with a hydraulic radius of 20 ft we find:

We = ρV 2 RH

σ
= (1.938 slugs/ft3)(1.00 ft/s)2(20.0 ft)

5.03 × 10−3 lbf/ft
= 7710

Thus the surface energy is negligible in comparison to the flow kinetic energy, and we
can safely ignore surface tension effects in large-scale open channel flows.

The value of the Reynolds number is important in predicting whether an open chan-
nel flow is laminar or turbulent. In most cases of interest, Re is relatively large and the
flow is turbulent. As a rule of thumb, an open channel flow may be assumed to be lami-
nar for Re based on hydraulic radius of less than 500 and turbulent if Re exceeds 12,500.
Using the data just given for the river, Re is found to be

ReR = ρV RH

µ
= (1.938 slugs/ft3)(1 ft/s)(20 ft)

2.344 × 10−5 (lbf-s)/ft2
= 1.7 × 106

This is well into the turbulent flow range. Observation suggests that a flow in a culvert or
flood control channel is also likely to be turbulent. As will be discussed in more detail
later, the frictional forces in large Re open channel flows are found to depend primarily
on the roughness of the channel walls; they are nearly independent of Re. Thus, Reynolds
number is not as important in open channel flow as in other flows you have studied.

The Froude number proves to be the single significant dimensionless parameter in
open channel flow. Using the river data given earlier, the Froude number is calculated as

Fr = V√
gRH

= 1 ft/s√
(32.2 ft/s2)(20 ft)

= 0.04

952 15 OPEN CHANNEL FLOW
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As will be explained further in the next section, this value corresponds to what is called
subcritical flow. Critical flow occurs at Fr = 1, and supercritical flow for Fr > 1. The
value of the Froude number is implicated in a number of interesting phenomena in open
channel flow, including flow over a bump or depression, the behavior of waves on a free
surface, the response of the flow to a change in channel area, and the phenomenon
known as hydraulic jump. This will be demonstrated in our discussion of these topics in
Sections 15.3.1 through 15.3.4. We begin by showing that the response of an open chan-
nel flow to a bump or depression in the bed of the channel depends on whether the flow
is subcritical or supercritical.

15.3.1 Flow over a Bump or Depression

Consider steady open channel flow in a horizontal rectangular channel of width w that
has a bump in the channel bed. To focus solely on the effects of the bump on the flow,
we will ignore friction. The geometry of the channel bed and coordinates used to de-
scribe the flow over a bump are shown in Figure 15.12A. The liquid depth at any loca-
tion x along the channel is given by y(x), and the height of the channel bed above an ar-
bitrarily chosen datum elevation is given by h(x). The channel bed and its bump are
described by z = h(x), and the free surface is given by z = y(x) + h(x). Upstream of
the bump at station x1 in the horizontal section, the depth of the stream is y1, the bed
height is z1 = h(x1), the uniform velocity is V1, and the flow area is A1 = y1w. At a
downstream station located at x, the depth of the stream is y(x), the bed height is
z = h(x), the uniform velocity is V (x), and the flow area is A(x) = y(x)w. Our goal is
to predict the depth, knowing the shape of the channel bed and the upstream conditions.
Thus the problem is to find the function y(x) with the function h(x) and the upstream
flow conditions known.

Applying a steady flow mass balance to the control volume shown in Figure 15.12A,
we have Ṁ = ρV1 A1 = ρV (x)A(x), which after substituting for the flow areas and
dividing by the density gives Q = V1 y1w = V (x)y(x)w. Thus we can write

V (x) = V1 y1

y(x)
(15.4)
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Figure 15.12 (A) Flow over a bump. (B) Flow over a depression.



954 15 OPEN CHANNEL FLOW

EXAMPLE 15 .1

Water flows through a horizontal rectangular channel as shown in Figure 15.13. The flow
depth and speed upstream are 2 ft and 2 ft/s, respectively. If the flow encounters the ramp
shown, determine the depth and free surface height at the downstream end of the ramp.

SOLUTION

We can use Eq. 15.7 to find the depth y(x) because we know the geometry of the
bed and thus h(x). Next we can obtain the free surface height, which is given by the

and also express the velocities in terms of flowrate as

V1 = Q

wy1
(15.5a)

V (x) = Q

wy(x)
(15.5b)

Next we apply Bernoulli’s equation for steady, constant density flow along the
streamline that defines the free surface. Writing this equation from the point on the free
surface upstream at location 1 to the point on the free surface at the downstream loca-
tion x, we obtain

p1

ρ
+ V 2

1

2
+ g[y1 + h(x1)] = p

ρ
+ V (x)2

2
+ g[y(x) + h(x)]

The pressure everywhere on the free surface is atmospheric, so after dividing by g the
Bernoulli equation becomes

V 2
1

2g
+ y1 + h(x1) = V (x)2

2g
+ y(x) + h(x) (15.6)

Substituting Eq. 15.4 into Eq. 15.6 and rearranging yields the following equation for the
unknown function y(x):

1

2g

[
V1 y1

y(x)

]2

+ y(x) + h(x) = V 2
1

2g
+ y1 + h(x1) (15.7)

We can use the same approach to analyze flow over a depression in a channel bed.
As shown in Figure 15.12B, the shape of the depression is also described by z = h(x),
and applying a mass balance and Bernoulli’s equation along the free surface leads to ex-
actly the same equations as found earlier for the bump. Thus if the function h(x) de-
scribing the complete shape of a channel bed with its bump or depression is known,
Eq. 15.7 can be used to find the water depth y(x) at all points along the channel for
known values of the upstream velocity V1, depth y1, and bed height h(x1). An example
of such a calculation is shown in Example 15.1.
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function y(x) + h(x), and construct the requested plots. It is convenient to choose the
datum elevation to coincide with the channel bed upstream and place the coordinate ori-
gin at the beginning of the ramp as shown. This allows us to represent the shape of the
ramp section as h(x) = 0.25x where the units of h and x are feet.

Multiplying Eq. 15.7 by y2 and rearranging we have

y3 + y2

[
h(x) − V 2

1

2g
− y1 − h(x1)

]
+ 1

2g
(V1 y1)

2 = 0

After substituting the known values h(x) = 0.25x ft, y1 = 2 ft, h(x1) = 0 ft, as well as
the values

V 2
1

2g
= (2 ft/s)2

2(32.2 ft/s2)
= 0.0621 ft ,

1

2g
(V1 y1)

2 = [(2 ft/s)(2 ft)]2

2(32.2 ft/s2)
= 0.248 ft3 ,

y1 � 2 ft

1 ft

0.25 ft Not to
scale

z

x

y(x)

y2

x2x1(A)

V1 � 2 ft/s

xx2x1

y1

y(x) 	 h(x)

y2 	 h2 � 1.98 ft

(C)

yC(x)

yB(x)

1.73 ft
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xx2x1

y1

y

(B)

Figure 15.13 Schematics for Example 15.1.
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we obtain 

y3 + y2[0.25x ft − 0.0621 ft − 2 ft − 0 ft] + 0.248 ft3 = 0 (A)

We expect to find three solutions to this cubic equation: yA(x), yB(x), and yC(x).
Each of these solutions for the depth distribution y(x) along the ramp will correctly
match the known upstream depth, y1 = 2 ft, and each will yield a different downstream
depth. The three downstream depths can be found by evaluating (A) at x = 1 ft to obtain

y3
2 + y2

2 [0.25 ft − 0.0621 ft − 2 ft − 0 ft] + 0.248 ft3 = 0

y3
2 + y2

2 [−1.812 ft] + 0.248 ft3 = 0
(B)

The three solutions to this cubic equation are y2 = −0.34 ft, 0.425 ft, and 1.73 ft, cor-
responding to the unknown depth distributions yA(x), yB(x), and yC(x). Which down-
stream depth is correct?

The negative depth can be dismissed on physical grounds, thus yA(x) can be ig-
nored, but how do we choose between 0.425 ft, and 1.73 ft, and the corresponding
solutions yB(x) and yC(x) to (A) as shown in Figure 15.13B? One way is to argue that
for a small change in bed height, we expect a small change in depth, thus we might guess
that yC(x), which has a downstream depth of 1.73 ft, is the depth profile along the ramp.
This turns out to be a lucky guess here but the argument cannot be relied upon in gen-
eral. The proper way to decide which of the two possible solutions is correct is to calcu-
late the Froude number downstream for each solution and compare it to that upstream.
In this case, the upstream Froude number is found to be Fr1 = V1/

√
gy1 = 0.249.

The Froude numbers for the two downstreams depths can be calculated by noting that
since V1 y1 = V2 y2, the downstream velocities for depths 0.425 ft and 1.73 ft are
V2 = 9.41 ft/s and 2.31 ft/s respectively. This allows us to calculate the corresponding
downstream Froude numbers as Fr2 = 2.54 and 0.31. As will be discussed in the next
section, this flow cannot go from a Froude number upstream less than 1 to a Froude
number downstream greater than 1. Thus solution yC(x) as shown in Figure 15.13B is
indeed the correct distribution of depth along the channel. The free surface height
y(x) + h(x) is shown in Figure 15.13C. Although not illustrated, note that the depth and
free surface height are each uniform upstream of the ramp leading edge and also uniform
downstream of the ramp trailing edge.

If the upstream speed in Example 15.1 is made large enough (or upstream depth
made small enough), the depth over the ramp will actually increase rather than decrease
as previously calculated. This difference in behavior is a result of differences in the
value of the upstream Froude number, which may be subcritical or supercritical de-
pending on the values of the speed and depth.

We can arrive at some general conclusions about flows over a bump or depression
if we differentiate Eq. 15.7 to obtain

− 1

g

[
(V1 y1)

2

y(x)3

]
dy

dx
+ dy

dx
+ dh

dx
= 0
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Using Eq. 15.4 and rearranging, we have

dy

dx
=

dh

dx[
V (x)2

gy(x)
− 1

]

where dy/dx is the depth slope (i.e., the rate of change of depth along the channel at sta-
tion x) and dh/dx is the bed slope. If we now define a local Froude number at the sta-
tion located at x as

Fr = V (x)√
gy(x)

(15.8)

the previous relationship between depth slope and bed slope becomes

dy

dx
= −dh/dx

[1 − Fr2]
(15.9a)

We can now use this result to write the free surface slope S = dy/dx + dh/dx as

S = −Fr2(dh/dx)

[1 − Fr2]
(15.9b)

and after combining the two preceding equations we obtain

S = Fr2 dy

dx
(15.9c)

The Froude number defined by Eq. 15.8 is said to be local because it varies along
the channel depending on the local values of velocity and depth. Thus Eqs. 15.9 are local
relationships, meaning that they apply at a location x, and use the values of Froude num-
ber, depth slope, and bed slope at that location.

It is significant that the term [1 − Fr2] in Eqs. 15.9a and 15.9b changes sign at
Fr = 1. Indeed you may have noticed that the right-hand sides of the two equations ap-
pear to “blow up” if Fr = 1. Although we will discuss this possibility in more detail in
a moment, a local Froude number of unity, i.e., Fr = 1, is termed the critical value. The
flow at a location where the value of the local Froude number is less than unity, or
Fr < 1, is called subcritical flow, while a flow at a location where the value of the local
Froude number is greater than unity, or Fr > 1, is called supercritical flow. The flow
where Fr = 1 is said to be critical.

Now consider how the value of the Froude number determines the characteristics of
flow over a bump or depression. Starting with Eq. 15.9c, we see first that the free surface
slope and the depth slope always have the same sign irrespective of the value of Fr.
Next, Eqs. 15.9a and 15.9b reveal that as we approach the leading edge of a bump (for
which dh/dx > 0), the depth slope and free surface slope will decrease for Fr < 1 but
increase for Fr > 1. Thus, as shown in Figure 15.14A, the liquid depth decreases and the
free surface elevation drops over a bump in a subcritical flow, but the depth increases



and free surface elevation rises over the same bump in a supercritical flow, as shown in
Figure 15.14B.

Furthermore, if the flow over a bump is critical at some location (i.e., if Fr = 1)
Eqs. 15.9a and 15.9b predict that the depth slope and free surface slope are infinite.
Since this is physically impossible, we conclude that critical flow must occur at a loca-
tion at which the bed slope dh/dx is zero. For the bump shown earlier in Figure 15.12A,
this means that critical flow can occur only at the peak of the bump. Later in this chap-
ter we will show that if critical flow does occur at the peak of a bump, then a subcritical
flow upstream of the bump may become a supercritical flow downstream if conditions
are right. However, if critical flow is not reached at the peak, the flow downstream of the
bump will remain subcritical.
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Figure 15.14 Flow over a bump that is
(A) subcritical and (B) supercritical. Flow
over a depression that is (C) subcritical
and (D) supercritical.
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Equations 15.9a and 15.9b also allow us to predict what will happen to the depth
slope and the free surface slope as we approach the leading edge of a depression (for
which dh/dx < 0). In this case these slopes will increase for Fr < 1 but decrease for
Fr > 1. That is, the liquid depth increases and the free surface elevation rises over a de-
pression in a subcritical flow (Figure 15.14C), but the depth decreases and free surface
elevation drops over the same depression in a supercritical flow (Figure 15.14D). As was
the case with a bump, critical flow can occur only where dh/dx = 0. Thus critical flow
can occur only if a depression has a trough or deepest point.

In Example 15.1 we showed how to find the water depth y(x) at all points along a
channel when the values of the upstream velocity V1, depth y1, and bed height h(x) are
known. In some cases we may know the value of the bed height only at a few points
along a channel bed. In that event we can make use of Eq. 15.7 and our new under-
standing of the behavior of subcritical and supercritical flow over a bump or depression
to calculate flow properties at these points. Example 15.2 illustrates this type of
problem.

EXAMPLE 15 .2

Water flows through a horizontal rectangular channel as shown in Figure 15.15A before
encountering a depression 1 ft deep. If the flow depth and speed upstream are 4 ft and
1 ft/s, respectively, find the water depth and flow speed over the depression.

(A)

V2 � ?y2 � ?
V1 � 1 ft/s

z
x

(B)

4 ft
5 ft V2 � 0.8 ft/sV � 1 ft/s

1 ft 1 ft

y1 � 4 ft

Figure 15.15 Schematics for Example 15.2.

SOLUTION

We can solve this problem by using equation 15.7:

1

2g

[
V1 y1

y(x)

]2

+ y(x) + h(x) = V 2
1

2g
+ y1 + h(x1)

where point 1 is upstream and x is the location of the arbitrary second point. At a point
anywhere along the depression where the bed height is z = h2, the water depth is y2.
Upstream the bed height is z = h1 and the water depth is y1. Thus we have the follow-
ing relationship between variables at these two points:

1

2g

[
V1 y1

y2

]2

+ y2 + h2 = V 2
1

2g
+ y1 + h1
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Multiplying this equation by y2
2 and rearranging, we have

y3
2 + y2

2

[
h2 − V 2

1

2g
− y1 − h1

]
+ 1

2g
(V1 y1)

2 = 0

It is convenient to choose the coordinate origin and datum elevation at the level of the
upstream bed as shown in Figure 15.15A. Then taking point 2 in the depression,
we have h1 = 0 ft, h2 = −1 ft, and h2 − h1 = −1 ft. The remaining known values are
V1 = 1 ft/s, y1 = 4 ft. Inserting these values into the preceding equation, we obtain

y3
2 + y2

2

[
−1 ft − (1 ft/s)2

2(32.2 ft/s2)
− 4 ft − 0 ft

]
+ 1

2(32.2 ft/s2)
[(1 ft/s)(4 ft)]2 = 0

as the equation to be solved to determine the value of y2. This equation simplifies to

y3
2 − (5.015 ft)y2

2 + 0.2484 ft3 = 0

Solving this cubic equation yields three possible values of the water depth: −0.217 ft,
+0.228 ft, and +5.00 ft. The negative value is not physically possible so can be ig-
nored. But how do we decide whether the water depth is +0.228 ft, or +5.00 ft? The an-
swer can be found by recalling that the behaviors of the depth slope and the free surface
slope depend on the value of the local Froude number. We can use Eq. 15.8 to calculate
the local Froude number upstream of the depression:

Fr1 = V1√
gy1

= 1 ft/s√
(32.2 ft/s2)(4 ft)

= 0.088

Since the flow is subcritical the water depth must increase (see Eq. 15.9a or Fig-
ure 15.14C). We conclude that the correct answer in this case is a water depth over the
depression of 5.00 ft, as illustrated in Figure 15.15B. The flow speed over the depression
can be determined by using Eq. 15.4: V (x) = V1 y1/y(x). Inserting the data, we have 

V2 = (1 ft/s)(4 ft)

5.00 ft
= 0.8 ft/s

Before concluding this example, notice carefully that if you choose to use a
different datum from which to measure bed height, say one such that the upstream bed
height is z = h0, then you would write h1 = h0, h2 = h0 − 1 ft, and get h2 − h1 =
(h0 − 1 ft) − h0 = −1 ft. This leads to the same equation for y2, and thus the same
answer. This is to be expected, since the choice of datum should not affect the answer.

In the last example did it seem odd to you that the depth increased by almost exactly
1 foot over the 1-foot-deep depression? There is an explanation for this, and by thinking
about it you can learn something interesting about the response of a subcritical flow to a
change in bed height. Take a fresh look at Eq. 15.9a, which relates the depth slope to the
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bed slope: dy/dx = −(dh/dx)/[1 − Fr2]. If the Froude number is very small, then
Fr2 is effectively zero and this equation becomes dy/dx = −dh/dx . Integrating this
result along the channel gives y2 − y1 = −(h2 − h1), or �y = −�h . Thus in the limit
of Fr ∼ 0 the depth increases by exactly the decrease in the bed height. Another way of
grasping this is to note that under these conditions the free surface slope is
S = dy/dx + dh/dx = (−dh/dx) + dh/dx = 0. In Example 15.2 the Fr = 0.088
qualifies as very small, and we did indeed find that a 1 foot decrease in bed height re-
sulted in a 1 foot increase in depth, leaving the free surface at the same elevation. This
analysis also predicts that for very small Fr if the bed height increases by some amount,
the depth will drop by the same amount.

By studying frictionless flow over a bump or depression in a channel bed, we con-
clude that the value of Fr allows us to predict what will happen to the depth of the liq-
uid and shape of the free surface in response to a change in the elevation of the channel
bed. Next we show that the value of the Froude number also plays a role in determining
the response of a flow in a horizontal channel to a change in the channel width.

15.3.2 Flow in a Horizontal Channel of Varying Width

As a second example illustrating the importance Fr in open channel flow, consider the
steady frictionless flow through a horizontal rectangular channel whose width w(x)

gradually changes downstream as shown in Figure 15.16. The depth of liquid at any lo-
cation along the channel is given by y(x). Since the channel bed is horizontal, it is con-
venient to locate the coordinate origin on the bed, hence h(x) = 0, and the free surface
is given by z = y(x). Upstream of the venturi section at station x1, the stream depth is
y1, the width is w1 = w(x1), the uniform velocity is V1, and the flow area is A1 = y1w1.
At a downstream location at x the stream depth is y(x), the width is w = w(x), the uni-
form velocity is V (x), and the flow area is A(x) = y(x)w(x). Our goal is to predict
the response of the flow to the change in channel width given the upstream conditions.
Thus the problem is to find the function y(x) knowing w(x) and the upstream flow
conditions.

Applying a steady flow mass balance to the control volume shown in Figure 15.16,
we have Ṁ = ρV1 A1 = ρV (x)A(x). Substituting for the flow areas and dividing by

x
w

w1

y1
y

z
x

V1

V

Figure 15.16 Flow through a horizontal channel with
changing width.



the density gives Q = V1 y1w1 = V (x)y(x)w(x). Thus we can write

V (x) = V1 y1w1

y(x)w(x)
(15.10)

and express the velocities in terms of flowrate as

V1 = Q

w1 y1
(15.11a)

V (x) = Q

w(x)y(x)
(15.11b)

Writing the Bernoulli equation along the free surface from the point upstream at loca-
tion 1 to a point at any downstream location x, we obtain p1/ρ + V 2

1 /2 + gy1 =
p/ρ + V (x)2/2 + gy(x). The pressure everywhere on the free surface is atmospheric.
Thus the pressure terms cancel and after dividing by g the Bernoulli equation becomes

V 2
1

2g
+ y1 = V (x)2

2g
+ y(x) (15.12)

Substituting Eq. 15.10 into Eq. 15.12, and rearranging yields:

1

2g

[
V1 y1w1

y(x)w(x)

]2

+ y(x) = V 2
1

2g
+ y1 (15.13)

If the function w(x) describing the width of the channel is known, Eq. 15.13 can be
solved to find the water depth y(x) for known values of the upstream velocity V1, water
depth y1, and width w1.

We can arrive at some general conclusions about the effect of a change in width on
the depth of the liquid if we differentiate Eq. 15.13 with respect to x to obtain

− 1

g

[
(V1 y1w1)

2

y(x)3w(x)3

] [
w

(
dy

dx

)
+ y

(
dw

dx

)]
+ dy

dx
= 0

Using Eq. 15.10, rearranging, and introducing the Froude number, we obtain

dy

dx
= (V 2/gw)(dw/dx)

[1 − Fr2]
(15.14)

We see that for subcritical flow through a contraction, for which [1 − Fr2] > 0 and
dw/dx < 0, Eq. 15.14 predicts dy/dx < 0. Thus, the depth will decrease. In supercrit-
ical flow through a contraction, we have dw/dx < 0 and [1 − Fr2] < 0, so dy/dx > 0,
and the depth will increase. Critical flow requires that dw/dx = 0.

For flow through an expansion, we have dw/dx > 0. Thus, in subcritical flow
through an expansion the depth will increase, while in supercritical flow the depth will
decrease. These general conclusions about the effect of a change in channel width are il-
lustrated in Figure 15.17.
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x

w

y

 � 0dw
dx

 � 0
dy
dx

Fr 
 1

(C)

x

w

y

 � 0dw
dx

 
 0
dy
dx

Fr � 1

(D)

z

x

z

x

x

z

x

w

y

 
 0dw
dx

 
 0
dy
dx

Fr 
 1

(A)

x

w

y

 
 0dw
dx

 � 0
dy
dx

Fr � 1

(B)

z

x

Figure 15.17 Contraction and expansion of channel width: (A) contraction with Fr < 1,
(B) contraction with Fr > 1, (C) expansion with Fr < 1, and (D) expansion with Fr > 1.

EXAMPLE 15 .3

Water flows through a 4 ft wide rectangular irrigation channel that gradually contracts to
a width of 3 ft as shown in Figure 15.18. If the water depth upstream of the contraction
is 1 ft, and the flow velocity there is 2 ft/s, find the water depth and flow speed down-
stream of the contraction.

x

4 ft

3 ft

y1 � 1 ftV1 � 2 ft/s
V2 � ? y2 � ?

z

x

Figure 15.18 Schematic
for Example 15.3.
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SOLUTION

We can solve this problem by applying Eq. 15.13 between a point upstream where the
velocity, width, and depth are V1, w1, and y1, and a point downstream where the veloc-
ity, width, and depth are V2, w2, and y2 as shown in Figure 15.18. Writing Eq. 15.13
between these points gives

1

2g

[
V1 y1w1

y2w2

]2

+ y2 = V 2
1

2g
+ y1

Multiplying by y2
2 and rearranging we obtain the cubic equation

y3
2 − y2

2

[
V 2

1

2g
+ y1

]
+ 1

2g

[
V1 y1w1

w2

]2

= 0

After inserting the data, we have y3
2 − y2

2 [1.062 ft] + 0.1104 ft = 0, which can be
solved to obtain the three solutions: −0.286 ft, 0.412 ft, and 0.936 ft. The negative root
can be immediately discarded on physical grounds. Next we calculate the downstream
velocities and corresponding Froude numbers for each of the positive roots. For
y2 = 0.412 ft we find:

V2 = V1 y1w1

y2w2
= (2 ft/s)(1 ft)(4 ft)

(0.412 ft)(3 ft)
= 6.47 ft/s

and

Fr2 = V2√
gy1

= 6.47 ft/s√
(32.2 ft/s2)(1 ft)

= 1.14

For y2 = 0.936 ft we find:

V2 = V1 y1w1

y2w2
= (2 ft/s)(1 ft)(4 ft)

(0.936 ft)(3 ft)
= 2.85 ft/s

and

F2 = V2√
gy1

= 2.85 ft/s√
(32.2 ft/s2)(1 ft)

= 0.50

Calculating the upstream Froude number, we find 

Fr1 = V1√
gy1

= 2 ft/s√
(32.2 ft/s2)(1 ft)

= 0.352

hence the flow is subcritical. Since the depth of a subcritical for flow must decrease in a
contraction, the correct depth downstream of the contraction is 0.936 ft and the corre-
sponding flow speed is 2.85 ft/s.
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It is clear that the behavior of a flow through a channel of varying width is similar
in many respects to the flow over a bump or depression. Both involve a change in flow
area. If we compare the corresponding equations for the depth slope in flow through an
open channel of varying width as given by Eq. 15.14,

dy

dx
= (V 2/gw)(dw/dx)

1 − Fr2

with the corresponding result for the depth slope in flow over a bump or depression,
Eq. 15.9a,

dy

dx
= −dh/dx

1 − Fr2

we see that a contraction (dw/dx < 0) is similar in its effect on depth slope to a bump
(dh/dx > 0), and an expansion (dw/dx > 0) is similar in effect to a depression
(dh/dx < 0). In both types of flow, knowing the value of the Froude number allows
us to make a qualitative prediction of the change in depth and behavior of the free
surface.

15.3.3 Propagation of Surface Waves

The behavior of surface waves in open channel flow is also governed by the value of the
local Froude number. We can demonstrate this important result by considering a hori-
zontal rectangular channel of width, w, filled with liquid at rest to a uniform depth, y. A
vertical wall at the left end of this channel is suddenly given a small constant velocity
VW i to the right, creating a surface wave of height �y that propagates down the channel
as shown in Figure 15.19A. Note that the depth of the liquid behind the wave is y + �y
and that the wave propagates at a constant speed c. The fluid ahead of the wave is at rest,
and the fluid behind the wave must be all moving to the right at speed VW as shown in
Figure 15.19A. If you are wondering about this last statement, think about how the mov-
ing wall is pushing the liquid to the right. Since the liquid cannot be compressed, and the
depth behind the wave is uniform, the liquid between the wall and the wave front must
be moving to the right at the same speed as the wall.

z
x

VW

VW

c
�y

y 	 �y y 	 �y

V � 0

y
c � VW y

(A) (B)

Aout
pout

c

Ain
pin

z
x

Figure 15.19 The moving end wall with (A) a fixed reference frame and (B) a moving reference frame.



We wish to analyze this model of wave motion and predict the relationships be-
tween wave speed c, wave height �y, and the other physical parameters of the problem.
Since the wave is propagating along the channel, the flow is unsteady for an observer in
a fixed reference frame attached to the channel. Rather than analyze this unsteady flow,
we can use a reference frame that is moving with the wave as shown in Figure 15.19B.
Since this reference frame is moving at constant velocity, it is inertial. In the moving
frame liquid appears to be approaching the stationary wave from the right at speed c, and
moving at speed c − VW to the left after passing through the wave. Thus the uniform ve-
locity vector on the upstream side of the stationary wave is u = −ci and on the down-
stream side it is u = −(c − VW )i as shown in Figure 15.19B. The flow is steady in this
frame.

Applying a steady flow mass balance to the control volume shown in Figure 15.19B,
we obtain −ρcAin + ρ(c − VW )Aout = 0, where the inlet and outlet flow areas can be
seen to be given by Ain = wy and Aout = w(y + �y). Thus the mass balance can be
written as 

−ρcy + ρ(c − VW )(y + �y) = 0 (15.15)

and we can solve for the wave speed to find

c = VW (y + �y)

�y
(15.16)

At this point, the wave height �y is unknown, so this single equation is not sufficient to
determine the wave speed. Alternately we can use Eq. 15.16 to write

VW = c�y

y + �y
(15.17)

We can obtain a second equation by applying a steady flow momentum balance in
the x direction to the control volume shown in Figure 15.19B. We will neglect friction
on the bed surface and assume that the pressure distributions on the inlet and exit sur-
faces are hydrostatic. The resulting surface forces can then be calculated to be
−wy(pA + ρgy/2)i on the inlet flow area, w(y + �y){pA + [ρg(y + �y)]/2}i on the
outlet flow area, and a contribution −pAw�yi from the free surface at atmospheric
pressure. The momentum balance in the x direction is

ρc2wy − ρ(c − VW )2w(y + �y)

= −wy
[

pA + ρgy

2

]
+ w(y + �y)

[
pA + ρg(y + �y)

2

]
− pAw�y

We can write the flux term at the outlet as

−ρ(c − VW )2w(y + �y) = −ρw(c − VW )[(c − VW )(y + �y)]

then use the mass balance, Eq. 15.15, to replace the term in the square brackets by cy
getting

−ρ(c − VW )2w(y + �y) = −ρwcy(c − VW )

966 15 OPEN CHANNEL FLOW
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Thus the two flux terms give ρc2wy − ρwcy(c − VW ) = ρwcyVW . Adding and sim-
plifying the three surface force terms, we obtain w�y(ρgy + ρg�y/2); thus the mo-
mentum balance is

ρwcyVW = w�y

[
ρgy + ρg�y

2

]

Solving for the wave speed we have

c = g�y

VW

[
1 + �y

2y

]
(15.18)

Equations 15.16 and 15.18 can now be used to determine the wave speed c and wave
height �y that describe the wave produced when a wall moves at velocity VW .

The moving wall concept was introduced at the beginning of our analysis as simply
the easiest way to visualize a wave propagating along a free surface. At this point we can
dispense with the moving wall. That is, we can now simply imagine a solitary wave
propagating at some wave speed c, with a wave height �y, with the liquid behind the
wave moving in the same direction at speed VW . The preceding analysis holds for this
isolated wave. Thus, using Eq. 15.17: VW = c�y/(y + �y), to eliminate VW from
Eq. 15.18, we find that the wave speed obeys the equation:

c =
√

gy

[
1 + �y

2y

] [
1 + �y

y

]
(15.19)

This equation applies to a wave moving in either direction. Equation 15.19 shows that
wave speed increases as the wave height, �y, increases. Also, by Eq. 15.17, a wave trav-
eling at speed c in stationary water causes the water to move at a speed
VW = c�y/(y + �y) in the direction of wave propagation.

If the amplitude of a wave is sufficiently small, i.e., �y/y � 1, Eq. 15.19 simpli-
fies to

c = √
gy (15.20)

We see that a small amplitude wave travels at a speed that is determined by the water
depth in which it is propagating. In water of uniform depth, a small amplitude
wave propagates at a constant speed, and since the wave speed does not depend on �y,
the wave travels without change of shape. Introducing the small amplitude approxima-
tion �y/y � 1 into Eq. 15.17 shows that such a wave causes a velocity in the direc-
tion of propagation of VW = c�y/y . The wave created in a still pond by tossing a

rock into the water is likely to satisfy the small
amplitude assumption. Can you think of a way of
determining the water depth in pond or lake by observ-
ing the propagation of ripples?

We can also analyze a wave propagating on
the surface of a moving stream, i.e., a wave traveling in
an open channel flow. Consider first a wave traveling
upstream at speed c in a stream moving at speed V .
This wave can be analyzed by making use of a change

The speed of a finite amplitude wave is al-
ways greater than c = √

gy. This is easily
seen by comparing Eqs. 15.19 and 15.20.
If you were using c = √

gy to estimate the
time of arrival of a large amplitude tidal
wave moving in shallow water, you might
not have allowed yourself enough time to
escape.
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EXAMPLE 15 .5

Most of the waves we observe are generated by the action of the wind over the surface
of the water. Tsunamis are waves generated by seismic activity such as earthquakes and
volcanoes, or by catastrophic events such as asteroids impacting in the ocean. A tsunami
would seem quite harmless if observed on the open ocean, where its amplitude might be
as small as 10 cm. However these waves transmit a tremendous amount of energy. What

EXAMPLE 15 .4

Figure 15.20 represents a wave-making machine at a water park. The machine works by
moving the wall into a pool 1.25 m deep. The wave amplitude is 0.3 m. Find the wave
speed and velocity of the water behind the wave.

VW

1.25 m

0.3 m

VW

Figure 15.20 Schematic for
Example 15.4.

SOLUTION

The wave speed is given by Eq. 15.19 as 

c =
√

gy

[
1 + �y

2y

] [
1 + �y

y

]

Inserting the data we obtain

c =
√

(9.81 m/s2)(1.25 m)[1 + 0.3 m/2(1.25 m)][1 + 0.3 m/1.25 m] = 4.13 m/s

If we had incorrectly assumed that the wave is of small amplitude and used Eq. 15.20
(c = √

gy), we would have obtained c = √
gy =

√
(9.8 m/s2)1.25 m = 3.5 m/s. By

checking the ratio of wave amplitude to depth, i.e., �y/y = 0.3 m/1.25 m = 0.24, we
would have recognized that the small amplitude approximation is invalid and likely to
produce erroneous results.

The speed of the water behind the wave, which is the same as the wall speed, can
be found by using Eq. 15.17 and the correct wave speed c = 4.13 m/s. The result is

VW = c�y

y + �y
= (4.13 m/s)(0.3 m)

1.25 m + 0.3 m
= 0.80 m/s
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of reference frame. Figure 15.22A shows the wave as seen by an observer fixed as usual
in the frame of reference attached to the channel. In Figure 15.22B, however, we have
changed to a frame of reference fixed to the undisturbed stream moving at speed V . In
this moving reference frame, the wave speed is now c + V , and the water behind the
wave is moving in the direction of wave motion at speed V − VR . The wave now looks
exactly like the preceding case of a wave propagating into stationary water, provided we
write VW = V − VR and recognize that the wave speed in the stationary water case is

is the wave speed of a tsunami traveling across the Pacific, where a typical depth is
4000 m? Compare this with the speed of a wave of the same amplitude in 1 m of water.

SOLUTION

The wave is sketched in Figure 15.21A. Clearly the small amplitude approximation,
Eq. 15.20, is appropriate for the tsunami in the open ocean. Inserting the data, we have

c = √
gy =

√
(9.81 m/s2)(4000 m) = 198 m/s

which is over 400 mph! When this wave approaches a coastline, it will slow down be-
cause the water is shallower, but its amplitude will grow because the energy flux, which
is a function of the speed and amplitude, is constant. Tsunamis are very destructive be-
cause their amplitude can easily exceed several meters. Figure 15.21B shows the effect
of a tsunami that struck Hawaii in 1960. 

For a 10 cm amplitude wave in 1 m deep water, we can calculate the wave speed from

c =
√

gy

[
1 + �y

2y

] [
1 + �y

y

]
=
√

(9.81 m/s2)(1 m)

[
1 + 0.1 m

2(1 m)

] [
1 + 0.1 m

1 m

]

= 3.37 m/s

Using the small amplitude approximation c = √
gy =

√
(9.81 m/s2)(1 m) for this

wave yields a wave speed of 3.13 m/s, which is in error by only about 7%.

4000 m

(A)

10 cm

V

(B)

Figure 15.21 (A) Schematic for Example 15.5. (B) Damage due to a tsunami that struck Hilo, Hawaii, in 1960.



now replaced by the sum c + V . We conclude that applying a mass and momentum
balance to a wave propagating upstream results in the same equations found for propa-
gation of a wave into stationary water. No additional analysis is required to solve this
new problem.

To modify the preceding results for a wave propagating upstream, we make the sub-
stitutions VW = V − VR , and c = c + V into the equations obtained earlier. For exam-
ple, the wave speed is found by substituting c + V for c in Eq. 15.19 to obtain

c =
√

gy

[
1 + �y

2y

] [
1 + �y

y

]
− V (15.21a)

To analyze a wave propagating downstream, we again use a reference frame mov-
ing with the undisturbed stream. The wave speed in the new frame is now c − V , and
the water behind the wave is moving in the direction of wave motion at speed V + VR .
Thus the wave speed for a wave propagating downstream may be obtained by substitut-
ing c − V for c in Eq. 15.19 to obtain

c =
√

gy

[
1 + �y

2y

] [
1 + �y

y

]
+ V (15.21b)

Notice that a wave that would travel at a speed c0 =
√

gy[1 + �y/2y][1 + �y/y] in
stationary liquid will propagate upstream in open channel flow at the reduced wave
speed c = c0 − V . That is, the wave’s rate of progress upstream relative to the channel
bed is reduced because of the motion of the liquid. However, if this wave travels down-
stream, its wave speed is increased to c = c0 + V .

We can summarize these results for the wave speed in an open channel flow at
speed V as

c = c0 ± V (15.22)

using the plus sign for propagation with the stream and the minus sign for propagation
against the stream. Note that a wave propagating upstream whose strength is such that
its wave speed in stationary water would be c0 will be stationary in a stream whose
speed is V = c0. Such stationary waves can often be observed in river rapids.

Now suppose the wave propagating in an open channel flow is of small amplitude.
Then the value of c0 is given by Eq. 15.20 as c0 = √

gy , and using Eq. 15.22, the speed
of this wave moving on the surface of an open channel flow is given by

c = √
gy ± V (15.23)
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y 	 �y y 	 �y
VR

V

c

(A)

V � VR

V � 0

yy

c 	 V

(B)

Figure 15.22 (A) Wave in fixed reference frame. (B) Wave in moving reference frame.
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where the minus sign is used for a wave propagating upstream. The significance of this
result is revealed if we think of the small amplitude wave as having been created by
some mechanism, perhaps an actual disturbance of the free surface or an obstruction of
some type. The resulting small amplitude wave carries information about the distur-
bance or obstruction to more distant parts of the stream both upstream and downstream.
The wave speed for travel upstream is c = √

gy − V . Now as the value of the channel
speed V is increased, the wave speed decreases. At a value V = √

gy , the wave speed
is zero and the wave is unable to propagate upstream at all. Thus information about a
surface disturbance or obstruction is not transmitted upstream when V = √

gy , and if
V >

√
gy , the wave is actually washed downstream. We conclude that the characteris-

tic of wave motion (and information flow) in an open channel flow changes dramatically
when V = √

gy . Rearranging this equation, we can write it as Fr = V/
√

gy = 1. Once
again we see that the critical Froude number plays a key role in a phenomenon of inter-
est in open channel flow. A small amplitude wave is able to propagate upstream in sub-
critical flow but not in supercritical flow. Thus the flow of information about surface dis-
turbances and obstructions, which is carried by small amplitude waves, is strongly
affected by the value of the local Froude number.

Keep in mind that our analysis of wave propagation on the surface of an open chan-
nel flow was based on a simple model. Wave phenomena are complex, and other factors

EXAMPLE 15 .6

If a person throws a pebble into a 10 ft deep river flowing at 1 ft/s (Figure 15.23), will
the resulting ripples travel upstream? At what speed will the ripples travel in each
direction?

y � 10 ft
V � 1 ft /s

Figure 15.23 Schematic for Example 15.6.

SOLUTION

For a small pebble, we can assume the waves (i.e., ripples) are of small amplitude. If that
is the case, the value of the Froude number allows us to determine if a ripple can propagate
upstream. A simple calculation yields Fr = V/

√
gy = 1 ft/s/

√
(32.2 ft/s2)(10 ft) =

0.056. Since Fr < 1, the ripples can travel upstream. For small amplitude waves, the
wave speed in stationary fluid of this depth is

c0 = √
gy =

√
(32.2 ft/s2)(10 ft) = 17.9 ft/s

Thus, the ripples will propagate upstream on this river at c = c0 − V = 17.9 − 1 =
16.9 ft/s and downstream at c = c+ − V = 17.9 + 1 = 18.9 ft/s.



such as wavelength may come into play in determining wave speed. For example, as you
have seen at the beach, waves break when they reach shallow water. Nevertheless, we
once again see that the value of the Froude number is of paramount importance in
predicting the behavior of isolated surface waves and understanding the flow of infor-
mation in open channel flow.

The hydraulic jump discussed in the next section can be thought of as a special case
of a surface wave. However, its importance in open channel flow merits a separate treat-
ment and discussion. As you will learn, a hydraulic jump can occur only when the flow
is supercritical, that is, when the Froude number is greater than one.

15.3.4 Hydraulic Jump

In Section 15.3.3 we showed that if a flow is supercritical, disturbances cannot propagate
upstream. Thus if downstream conditions require that a supercritical flow become sub-
critical, a smooth transition is impossible, and the flow goes through a phenomenon
known as a hydraulic jump. In a hydraulic jump, the flow changes from supercritical to
subcritical in a relatively short distance, with an abrupt decrease in velocity, increase in
depth, and a substantial head loss. An example of a hydraulic jump on a dam spillway was
shown in Figure 15.3, but you can also create a hydraulic jump yourself by running water
from the kitchen faucet onto a flat or slightly sloped surface. As the flow moves radially
outward on the surface, a hydraulic jump will occur if the flowrate is large enough.

The general characteristics of a hydraulic jump are shown in Figure 15.24. A hy-
draulic jump may occur on an inclined or horizontal bed, and in a channel of any shape.
For simplicity, we will assume a rectangular horizontal channel. Observations have de-
termined that the maximum length of a jump does not exceed seven downstream depths,
thus we will neglect the shear stress applied to the flow by the bed. Note, however, that
we are not assuming frictionless flow. In fact, our analysis must allow for a head loss due
to viscous dissipation in the jump. Although the turbulent velocity field in a hydraulic
jump is generally 3D, we can arrive at the important characteristics by assuming steady,
uniform flow, and applying a mass, momentum, and energy balance to the control vol-
ume as shown in Figure 15.24.

A mass balance on this CV yields Ṁ = ρQ = ρ A1V1 = ρ A2V2 , where A1 = wy1

and A2 = wy2. Thus we can write

V1 y1 = V2 y2 (15.24)
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To apply a momentum balance, we use Eq. 7.19b:∫
CS

(ρu)(u • n) dS =
∫

CV
ρf dV +

∫
CS

� dS

and consider the component of this equation in the x (flow) direction. The flux terms
on the inlet and outlet give [−ρV 2

1 A1 + ρV 2
2 A2] i, which we can write as

[−ρV 2
1 wy1 + ρV 2

2 wy2] i. There is no component of the body force in the x direction. To
evaluate the stress term, we will assume that the pressure distribution on the inlet and exit
are hydrostatic and given by p(y) = pA − ρg(y − y1) and p(y) = pA − ρg(y − y2),
respectively. The pressure on the free surface is atmospheric, and we can account for the
net force applied on this surface in the x direction by using gage pressure in the inlet and
outlet terms. On the bottom, the hydrostatic pressure varies from inlet to outlet but
contributes no net force in the x direction. The effect of the shear stress here is neglected
as explained earlier. The surface force terms involving pressure are∫

inlet
−pn dS +

∫
outlet

−pn dS =
∫ y1

0
−(−ρg(y − y1))(−i)w dy

+
∫ y2

0
−(−ρg(y − y2))(i)w dy

which yield [ρgw(y2
1/2) − ρgw(y2

2/2)] i. Combining terms, we see that the momen-
tum balance yields −ρV 2

1 wy1 + ρV 2
2 wy2 = ρgw(y2

1/2) − ρgw(y2
2/2) . Our final re-

sult after rearranging is

V 2
1

g
y1 + y2

1

2
= V 2

2

g
y2 + y2

2

2
(15.25)

We can write an energy balance for this CV by employing Eq. 7.33:

∫
CV

∂

∂t

(
ρ

(
u + 1

2
u • u + gz

))
dV +

∫
CS

ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS

= Ẇpower + Ẇshaft + Q̇C + Ṡ

There is no fluid power, shaft power, or other energy input in this case, and the flow is
steady. Thus after the inlet and outlet surfaces of the CV have been identified, the energy
balance is given by∫

inlet
ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS +

∫
outlet

ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS = Q̇C

On the inlet surface, the streamwise velocity is V1, the uniform internal energy is u1, the
pressure is p(y) = pA − ρg(y − y1), and the gravitational potential energy is given by
gz = gy. Thus on the inlet we can write

p

ρ
+ gz = pA

ρ
− g(y − y1) + gy = pA

ρ
+ gy1



which is a constant. At the exit we have V2 and u2, with gz = gy. Thus on this surface
we have 

p

ρ
+ gz = pA

ρ
+ gy2

Gathering terms and dividing by the mass flowrate Ṁ the energy balance yields

−
(

u1 + pA

ρ
+ gy1 + V 2

1

2

)
+
(

u2 + pA

ρ
+ gy2 + V 2

2

2

)
= Q̇C

Ṁ

The atmospheric pressure terms cancel, so after rearranging we have

gy1 + V 2
1

2
= gy2 + V 2

2

2
+ (u2 − u1) − Q̇C

Ṁ

In open channel flow, it is customary to define the head loss as

hL = 1

g

[
(u2 − u1) − Q̇C

Ṁ

]
(15.26a)

Notice that this head loss has units of energy per unit weight, i.e., units of length. The
corresponding head loss (and energy loss) per unit mass is then ghL , the head loss per
unit volume is ρghL , and the power consumed in the jump is

P = ρghL Q (15.26b)

where Q is the volume flowrate through the jump. Dividing the energy balance by g, we
obtain

V 2
1

2g
+ y1 = V 2

2

2g
+ y2 + hL (15.27)

A hydraulic jump is described by Eqs. 15.24, 15.25, and 15.27. A trivial solution of
the first two equations is y2 = y1, and V2 = V1, which using the energy equation corre-
sponds to hL = 0. This corresponds to no jump at all. The solution of interest can be
found by using Eq. 15.24 to write V2 = (y1/y2)V1, substituting into Eq. 15.25, and re-
arranging to obtain (y2/y1)

2 + y2/y1 − 2(V 2
1 /gy1) = 0. Writing the upstream Froude

number as Fr1 = V 2
1 /gy1, we have (y2/y1)

2 + y2/y1 − 2Fr2
1 = 0. By using the qua-

dratic formula, we find the two solutions to this equation for the depth ratio to be 

y2

y1
= −1

2
± 1

2

√
1 + 8Fr2

1

First consider the solution with the negative sign: y2/y1 = − 1
2 − 1

2

√
1 + 8Fr2

1 . Since
this predicts a negative depth ratio, it is physically meaningless. Thus we conclude that
the depth ratio across a hydraulic jump is given by taking the positive sign and writing
the depth as

y2

y1
= 1

2

(√
1 + 8Fr2

1 − 1

)
(15.28)
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To find the velocity ratio V1/V2, we can write the mass balance, Eq. 15.24, as
y2/y1 = V1/V2 and substitute this into Eq. 15.28 to obtain

V1

V2
= 1

2

(√
1 + 8Fr2

1 − 1

)
(15.29)

The curve y2/y1 = V1/V2 = 1
2 (

√
1 + 8Fr2

1 − 1) is plotted in Figure 15.25. Note that
depth ratios and Froude numbers less than one are not plotted.

The reason for excluding depth ratios and Froude numbers less than one can be ex-
plained as follows. First notice that we can rearrange Eq. 15.28 to obtain

Fr2
1 = 1

2

[(
y2

y1

)2

+ y2

y1

]
(15.30a)

Next by substituting V2 = (y1/y2)V1 into the energy balance, Eq. 15.27, we obtain the
dimensionless head loss in terms of the depth ratio and upstream Froude number as

hL

y1
= Fr2

1

2

[
1 −

(
y1

y2

)2
]

+
(

1 − y2

y1

)
(15.30b)

Finally by using Eq. 15.30a to eliminate Fr2
1 in Eq. 15.30b, we obtain

hL

y1
= 1

4

(y2/y1 − 1)3

y2/y1
(15.31)

Since the head loss must be positive, Eq. 15.31 shows that the depth ratio y2/y1 across
a hydraulic jump must be greater than one. Equation 15.30a then shows that the Froude
number must be greater than one. As a convenience, Figure 15.25 also includes plots of
the dimensionless head loss hL/y1 and velocity ratio V2/V1 as functions of Froude
number.

By using a mass, momentum, and energy balance, we have shown that a hydraulic
jump can only occur for Fr > 1. The hydraulic jump causes an increase in depth, a de-
crease in velocity, and an accompanying head loss.

Although we know the internal structure of a hydraulic jump is more complicated
than a 1D model suggests, the formulas derived here for depth ratio and head loss are

3
y2
y1

2

1

1 2 3 4 5
0

V1
V2

hL
y1

y2
y1

V1
V2

V2
V1

hL
y1

Fr

Figure 15.25 Depth ratio, velocity, and
head loss across the hydraulic jump as a
function of Froude number.



found to be quite accurate. Other features of the hydraulic jump have been determined
from experiments. For example, the classification of hydraulic jumps according to the
value of the upstream Fr and jump characteristics is illustrated in Figure 15.26. Fig-
ure 15.27 shows the experimentally determined jump length L as a function of upstream
Fr. Since the jump occurs over such a short length, our analysis, which ignores the slope
of the channel (and thus the body force acting in the flow direction), is also applicable to
inclined rectangular channels. In an inclined channel the error made in ignoring the body
force is proportional to the length of the CV and thus small. Hydraulic jumps also occur
in channels of other shapes, and results in such cases may be found in advanced texts.
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strong jump
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Figure 15.26 Types of hy-
draulic jump.
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Figure 15.27 Length of hydraulic jump
as a function of Froude number.
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Hydraulic jumps are used to safely dissipate energy in a high speed flow and to
prevent streambed erosion. An example of a model hydraulic jump is shown in Fig-
ure 15.28. There can be very large normal and shear stresses exerted on the bed under-
neath the jump itself, so it is important that the material of the bed underneath the jump
be able to withstand the severe scouring effects.

Spillway Chute blocks

Baffle piers

End still

Figure 15.28 Spillway with obstructions and
stilling basin to create a controlled hydraulic jump to
dissipate energy as recommended by the U.S. Bureau
of Reclamation.

EXAMPLE 15 .7

The flow of a stream from a steep slope to a horizontal section results in a hydraulic
jump. The depth in the horizontal section is 1 m and the velocity is 16 m/s. The stream
is 10 m wide. Determine the change in depth, velocity, and Froude number across the
jump, and the power dissipated in the jump.

SOLUTION

Figure 15.24 can serve as a sketch for this problem. The first step in solving any 
hydraulic jump problem is to find the upstream Froude number:

Fr1 = V1√
gy1

= 16 m/s√
(9.81 m/s2)(1 m)

= 5.1

Then from Eq. 15.28 the depth ratio across the jump is determined to be

y2

y1
= 1

2

(√
1 + 8Fr2

1 − 1

)
= 1

2

(√
1 + 8(5.1)2 − 1

)
= 6.7

Thus, since y1 = 1 m we find y2 = 6.7 m. The velocity ratio is given by
V1/V2 = y2/y1 = 6.7, so V2 = (16 m/s)/(6.7) = 2.4 m/s. The downstream Froude
number is now easily calculated to be 

Fr2 = V2√
gy2

= 2.4 m/s√
(9.81 m/s2)(6.7 m)

= 0.3



15.4 ENERGY CONSERVATION 
IN OPEN CHANNEL FLOW

In open channel flow the solid walls of the
channel apply a shear stress on the mov-
ing liquid. The retarding effect of this fric-
tional force is revealed if we perform an

energy balance on a steady flow in an inclined pris-
matic channel. For simplicity, we consider a long, rec-
tangular channel inclined at a small slope as shown in
Figure 15.29. In our analysis we will assume that the

streamwise velocity is uniform at any given cross section and that the pressure distribu-
tion at a cross section is hydrostatic. The depth of the liquid may vary slowly along the
channel, thus our analysis applies only to a gradually varying flow (GVF).
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The power dissipated in the jump is found from Eq. 15.26b: P = ρghL Q . We can ob-
tain the head loss by using Eq. 15.30 as follows:

hL

y1
= 1

4

[(y2/y1) − 1]3

y2/y1
= 1

4

[6.7 − 1]3

6.7
= 6.9

so hL = 6.9y1 = 6.9(1 m) = 6.9 m. The power dissipated in the jump is then

P = ρghL(wy1V1) = (1000 kg/m3)(9.81 m/s2)(6.9 m)[(10 m)(1 m)(16 m/s)]

= 1.1 × 107 (N-m)/s

This is over 10 megawatts of power. If you are wondering where this enormous amount of
energy goes, it is converted into heat. The heat capacity of water is so large however, that
the temperature rise is minimal. Perhaps you can estimate the temperature rise?

It has long been noted that open channel
flow and high speed compressible flow
share some remarkable similarities. Al-
though we will not develop the underlying
theoretical basis for this observation here,
we can point out that the Mach number of
compressible flow is analogous to the
Froude number of open channel flow. The
shock wave observed in supersonic flow
has its counterpart in the hydraulic jump of
open channel flow.

y2

y1

�

�

CV

hL
LSF �

h1 � h2

LSB �  � tan �

hL

h2h1z

V2

V1

Horizontal

V1
2

2g

Approx.

V1
2

2g  	 y1 	 h1	 	

V2
2

2g

Approx.

V2
2

2g  	 y2 	 h2	 	

Figure 15.29 A control volume for open channel flow.
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Applying a mass balance to the CV shown in Figure 15.29 yields Ṁ = ρQ =
ρ A1V1 = ρ A2V2, where A1 = wy1 and A2 = wy2. Thus we can write

Q

w
= V1 y1 = V2 y2 (15.32)

Next we write an energy balance for this CV by employing Eq. 7.33:∫
CV

∂

∂t

(
ρ

(
u + 1

2
u • u + gz

))
dV +

∫
CS

ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS

= Ẇpower + Ẇshaft + Q̇C + Ṡ

and noting that there is no fluid power, shaft power, or other energy input in this case.
The flow is steady, so after the inlet and outlet surfaces of the CV have been identified,
the energy balance is given by

∫
inlet

ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS +

∫
outlet

ρ

(
u + p

ρ
+ 1

2
u • u + gz

)
(u • n) dS = Q̇C

On the inlet surface, the velocity is V1, and the uniform internal energy is u1. The value
of z on this surface is z = h1 + y cos θ , and the hydrostatic pressure distribution is
p(y) = pA − ρg cos θ(y − y1). Thus on the inlet we can write

p

ρ
+ gz = pA

ρ
− g cos θ(y − y1) + g(h1 + y cos θ) = pA

ρ
+ g(y1 cos θ + h1)

which is a constant. At the exit we have V2, u2, z = h2 + y cos θ and p(y) =
pA − ρg cos θ(y − y2). Thus on this surface we obtain p/ρ + gz = pA/ρ +
g(y2 cos θ + h2), also a constant. After we have performed the flux integrals on the two
surfaces and divided by the mass flowrate Ṁ , the energy balance becomes

−
[

u1 + pA

ρ
+ g(y1 cos θ + h1) + V 2

1

2

]
+
[

u2 + pA

ρ
+ g(y2 cos θ + h2) + V 2

2

2

]
= Q̇C

Ṁ

The atmospheric pressure terms cancel, and after dividing by g, rearranging, and identi-
fying the head loss per unit weight, we obtain

y1 cos θ + h1 + V 2
1

2g
= y2 cos θ + h2 + V 2

2

2g
+ hL

The final step is to note that for the small slopes normally encountered in open channel
flow we can use the approximation cos θ ≈ 1. Thus the energy balance is

V 2
1

2g
+ y1 + h1 = V 2

2

2g
+ y2 + h2 + hL (15.33)

In open channel flow we define a quantity referred to as the bed slope SB as

SB = tan θ = h1 − h2

L
(15.34)



The value of SB may be positive or negative, but note that as shown in Figure 15.29, 
SB is defined so that if the channel bed elevation decreases in the flow direction, its
value is positive. An alternate form of the energy balance may be developed that in-
cludes the bed slope by first noting that h1 − h2 = SB L . Since the head loss in Eq. 15.33
has units of length, we can also define a dimensionless quantity SF = hL/L , called the
friction slope or slope of the energy line. The value of the friction slope SF is always
positive, since it involves the ratio of two positive-definite quantities. Using these two
slopes, we can write the energy balance Eq. 15.33 as

V 2
1

2g
+ y1 = V 2

2

2g
+ y2 + (SF − SB)L (15.35)

Now consider a rectangular channel of differential length L = dx , with the inlet at
x and the outlet at x + dx . Equation 15.35 can be written for this channel as[

V 2

2g
+ y

]
x

=
[

V 2

2g
+ y

]
x+dx

+ (SF − SB) dx

Rearranging, dividing by dx , and taking the limit as dx → 0, we obtain the following
differential statement of the energy balance for gradually varying flow in a rectangular
channel

d

dx

[
V 2

2g
+ y

]
= −(SF − SB) (15.36)

Here SF and SB are interpreted as local values of the friction slope and bed slope, re-
spectively. The complexity of gradually varying open channel flow is revealed if we
evaluate the derivative as

d

dx

[
V 2

2g
+ y

]
= V

g

dV

dx
+ dy

dx

and write Eq. 15.36 as

V

g

dV

dx
+ dy

dx
= −(SF − SB)

Noting that the volume flowrate for a rectangular channel is given by Q = V wy , where
w is the constant width of the channel, we have dV /dx = (d/dx)(Q/wy) =
−(Q/wy2)(dy/dx) = −(V/y)(dy/dx). Thus the preceding equation becomes
−(V 2/gy)(dy/dx) + (dy/dx) = −(SF − SB) . Rearranging and introducing the local
Froude number we obtain

dy

dx
= SB − SF

[1 − Fr2]
(15.37)

We see that the depth slope dy/dx at a given point along a gradually varying flow
in a rectangular channel is determined by the local values of the friction slope (always
positive), the local bed slope (positive or negative), and whether the local Froude num-
ber is less than unity (subcritical) or greater than unity (supercritical).
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15.4.1 Specific Energy

The energy balance for gradually varying flow in a rec-
tangular channel is given by Eq. 15.35 as V 2

1 /2g +
y1 = V 2

2 /2g + y2 + (SF − SB)L . We see that a
change in the value of [V 2/2g + y] at two points along
a channel is related to the difference between the fric-
tion and bed slopes. It is customary to define the spe-
cific energy E in an open channel flow as

E = V 2

2g
+ y (15.38)

where E has units of length. Using specific energy, we can write the energy balance as

E2 − E1 = (SB − SF)L (15.39)

Note that a positive bed slope (i.e., a bed sloping downward in the flow direction) in-
creases the specific energy, while a negative bed slope decreases the specific energy.
Friction always decreases the specific energy.

The specific energy in a rectangular channel flow can be written in terms of the
depth by recognizing that since the flowrate Q and width w of the channel are constant,
the mass balance as given by Eq. 15.32 can be written as Q/w = V1 y1 = V2 y2 = V y .
Thus we have V = Q/wy , and using Eq. 15.38 the specific energy is given by

E = Q2

2gw2 y2
+ y (15.40)

Since this is a cubic equation in y, for given values of Q and E there are three solutions.
We will designate these solutions as yneg, ysuper, and ysub, where the subscripts are de-
termined by ordering the solutions so that yneg < ysuper < ysub. The solutions ysuper and
ysub are positive, and thus are physically meaningful. The remaining solution yneg is neg-
ative, which represents a mathematically valid but physically meaningless result.

Now consider the specific energy diagram shown in Figure 15.30. For zero
flowrate, Eq. 15.40 reduces to E = y, which can be recognized as the straight line la-
beled Q = 0 in the figure. Each positive value of Q yields a distinct curve, and as
shown, each of these curves exhibits a minimum specific energy Emin. We can find the
depth at which this minimum occurs for each flowrate by setting d E(y)/dy =
(d/dy)[Q2/2gw2 y2 + y] = 0 and solving for y. The result is called the critical depth
yC for that particular flowrate. It is straightforward to show that the critical depth for a
flowrate Q is given by

yC =
[

Q2

gw2

]1/3

(15.41a)

and that the corresponding minimum specific energy for that flowrate is

Emin = 3
2 yC (15.41b)

For a frictionless flow, SF = 0 and
Eq. 15.37 becomes dy/dx = SB/[1 − Fr 2].
With a bed described by z = h(x), the value
of the bed slope is given by SB = −dh/dx,
and Eq. 15.37 becomes dy/dx =
(−dh/dx)/[1 − Fr 2]. This is identical to
Eq. 15.9a, obtained by applying the
Bernoulli equation to frictionless flow over
a bump or depression in a rectangular
channel in Section 15.3.1.
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Figure 15.30 Specific energy diagram.

EXAMPLE 15 .8

Determine the critical depth and flow velocity in a 10 m wide rectangular channel car-
rying 50 m3/s.

SOLUTION

No sketch is necessary here. We know the flowrate and channel width; thus we can use
Eq. 15.41a to calculate the critical depth as 

yC =
[

Q2

gw2

]1/3

=
[

(50 m3/s)2

(9.81 m/s2)(10 m)2

]1/3

= 1.37 m

The critical velocity is found from Eq. 15.41c as

VC = √
gyC =

√
(9.81 m/s2)(1.37 m) = 3.67 m/s

To find the velocity at critical depth we can evaluate Eq. 15.38 at the minimum and
obtain Emin = V 2

C/2g + yC . Then we can use Eq. 15.41b to write this as 3
2 yC =

V 2
C/2g + yC and obtain the critical velocity VC as

VC = √
gyC (15.41c)

Examining Eq. 15.41c, and recognizing that Fr = V/
√

gy , we conclude that the mini-
mum specific energy for a given flowrate occurs at Fr = 1. This explains why we have
used the adjective critical to describe the depth and velocity at the point of minimum
specific energy for a given flowrate. As Example 15.8 illustrates, the critical depth and
critical velocity can be calculated for any open channel flow for which the flowrate and
geometric data are known.
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Additional features of the specific energy diagram shown in Figure 15.30 are wor-
thy of mention. First we can observe that a line connecting the minimum energy point
on each curve must correspond to Fr = 1. To find the equation of this line, note that
since V 2/2g = 1

2 Fr2 y , we can write the specific energy as defined by Eq. 15.38 as
E = y( 1

2 Fr2 + 1). For Fr = 1, we find y = 2
3 E . The straight line y = 2

3 E must there-
fore pass through the minimum energy point on each curve. This is the dashed curve la-
beled Fr = 1 in Figure 15.30.

Also note that the specific energy curve for each flowrate has an upper and a lower
branch. For a certain flowrate, a given specific energy greater than the minimum corre-
sponds to a vertical line that intersects these upper and lower branches. Consider the ver-
tical dashed line in Figure 15.30. The two intersection points correspond to two allow-
able depths for the flow at this specific energy. The larger depth ysub lies on the upper
branch, and the smaller depth ysuper lies on the lower branch. The velocities correspond-
ing to these two depths may be calculated by noting that since V = Q/wy , we can write
Vsub ysub = Q/w and Vsuper ysuper = Q/w. Since Q and w are constant, we conclude that
Vsuper/Vsub = ysub/ysuper . Then since ysuper < ysub, we know Vsuper > Vsub. Thus the
flow speed is faster on the lower branch corresponding to a smaller depth. We see that
an open channel flow with a given flowrate and specific energy will manifest itself in
only two possible ways: at a high speed and shallow depth, or at a lower speed and
greater depth. At its minimum specific energy, the only possible manifestation of a flow
is at its critical speed and depth.

The value of the Froude number on each branch can be deduced by noting that at
depth y, Fr = V/

√
gy . Thus, at the critical point FrC = 1 = VC/

√
gyC . Forming the

ratio of these Froude numbers we obtain Fr = (V/VC)(yC/y)1/2 . Since the flowrate is
fixed on each curve, we also know that Q = V wy = VCwyC , and thus V/VC = yC/y .
Substituting this into the preceding expression gives

Fr =
(

yC

y

)3/2

(15.42)

Thus if we know the depth at any point on a specific energy curve, we can determine the
Froude number at that depth from this equation. On the upper branch we have y > yC ,
so Fr < 1, while on the lower branch we have y < yC , so Fr > 1. Thus the flow on the
upper branch is subcritical and the flow on the lower branch is supercritical. The two so-
lutions for depth correspond to the possibilities of a subcritical or supercritical flow at a
given flowrate and specific energy greater than the minimum.

With this background, we can employ the specific energy diagram shown in Fig-
ure 15.30 to make predictions about a flow in a rectangular channel. Our conclusions can
be summarized as follows.

1. In subcritical flow, an increase/decrease in specific energy is accompanied by an
increase/decrease in depth.

2. In supercritical flow, an increase/decrease in specific energy is accompanied by
a decrease/increase in depth.

3. If the flow is critical (i.e., at the point of minimum specific energy), a small in-
crease in specific energy causes a relatively large change in depth.

4. For a subcritical flow to become a supercritical flow, the specific energy must
first decrease. The flow must then go through the critical point and along the



supercritical branch. This process may occur, for exam-
ple, via a bump or decrease in channel width.

Although our discussion of specific energy has
been  limited to flow through a rectangular channel, we
can also develop results for flow through a prismatic
channel whose flow area is A. For this nonrectangular
channel, the specific energy is defined as

E = Q2

2g A2
+ y (15.43)

In this case A is a known function of y (and the width at the free surface b). The specific en-
ergy curve for a given flowrate can now be plotted, and the point of minimum specific en-
ergy for this flowrate located by setting d E/dy = (d/dy)(Q2/2g A2 + y) = 0. Taking
the derivative shows that at the critical point, the equation −(Q2/g A3)(d A/dy) + 1 = 0
is satisfied. Thus, this equation allows us to determine the critical depth yC . For a rectan-
gular channel we can solve for yC analytically, since A = wy = by. For a nonrectangular
channel, we may be able to solve the equation analytically for a regular shape such as those
shown in Figure 15.6, but we can always solve the equation numerically if necessary.

Now as shown in Figure 15.31, for a prismatic channel we can write d A = b dy ,
thus d A/dy = b, and the critical point is defined by Q2bC/g A3

C = 1, where bC is the
width of the free surface at the critical depth. Thus the critical area is given by

AC =
(

Q2bC

g

)1/3

(15.44a)

and, since Q = AV , the critical velocity is given by

VC =
√

g AC

bC
(15.44b)

Recalling that the hydraulic depth is defined by Eq. 15.2 as yH = A/b, we can write the
hydraulic depth at critical conditions, or critical hydraulic depth, as

yHC = AC

bC
(15.45)

Using the critical hydraulic depth, Eq. 15.44b becomes

VC = √
gyHC (15.46)

The Froude number in a nonrectangular channel is based on hydraulic depth and is
given by Fr = V/

√
gyH . Thus, at the point of minimum specific energy, where
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The preceding predictions, which were
obtained by graphical analysis of Fig-
ure 15.30, may be confirmed mathemati-
cally. By using Eq. 15.40 to write
dE = d (Q2/2gw 2y2 + y ) , completing
the derivative, and using the defini-
tion of Froude number, we obtain
dE = y [1 − Fr 2] dy . After rearranging,
we have dy = dE/y [1 − Fr 2], from which
the preceding conclusions can also be
derived.

A(y)

dy

dA � b dy

b

y

Figure 15.31 Prismatic channel with area A(y).
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yH = yHC and V = VC = √
gyHC , we have FrC = VC/

√
gyHC = 1. We see for the

nonrectangular channel that the Froude number based on hydraulic depth is unity at the
minimum on each curve. Further analysis shows that the flow in a nonrectangular channel
has the same four characteristics discussed earlier for flow in a rectangular channel. Thus
when flow in a prismatic channel is discussed in terms of hydraulic depth, and Fr is based
on hydraulic depth, it is similar to flow in a rectangular channel. It is straightforward to
show that the all these new formulas reduce to their equivalents for rectangular flow. To
prove this result, note that for the rectangular channel yHC = AC/bC = wyC/w = yC .

Finding the critical depth and other critical parameters for a nonrectangular channel
is not always easy. Note however, that since A is a known function of w and y (as shown
in Figure 15.6 for regular shapes), or known numerically (as in Figure 15.31), we can al-
ways determine the critical depth from the fundamental geometry of the channel and the
flowrate. Once the critical depth has been found, we can use the formulas to determine
other critical parameters, doing this numerically if necessary.

EXAMPLE 15 .9

Find the critical depth and critical flow velocity in a 20 ft wide, 45° trapezoidal channel
carrying water at the rate of 640 ft3/s. What are the critical hydraulic depth, critical area,
and critical free surface width?

SOLUTION

The geometry of the flow channel is shown in Figure 15.32. Using the formula for flow
area given in Figure 15.6 for a trapezoidal channel, A(y) = y(w + y cot θ), and evaluat-
ing this formula for 45°, we have A(y) = y(w + y). We also know d A/dy = b, thus we
find b = w + 2y. At the critical point the depth satisfies −(Q2/g A3)(d A/dy) + 1 = 0,
so yC is determined by solving 

Q2(w + 2yC)

g[yC(w + yC)]3
= 1 (A)

Generally speaking, this equation will need to be solved iteratively or with a symbolic
math code. To demonstrate the iterative approach, first note that (A) can be written as

Q2(w + 2yC)

g[yC(w + yC)]3
=

Q2w

(
1 + 2

yC

w

)

g

[
yCw

(
1 + yC

w

)]3 = 1

45�

20 ft

bC

yC Q � 640 ft3/sAC � ?

Figure 15.32 Schematic for Example 15.9.



15.4.2 Specific Energy Diagrams

The concepts of specific energy and supercritical and subcritical flow can be helpful in
understanding and solving a variety of open channel flow problems. For example, sup-
pose we revisit the hydraulic jump illustrated in Figure 15.24. The energy balance for a
hydraulic jump was given by Eq. 15.27 as V 2

1 /2g + y1 = V 2
2 /2g + y2 + hL . Writing

this in terms of specific energy E = V 2/2g + y , we have E1 = E2 + hL . Thus a su-
percritical flow enters the jump with a specific energy E1 and leaves the jump at a lower
specific energy E2 = E1 − hL . When written in terms of volume flowrate, Q = V wy ,
the energy balance for a hydraulic jump is given by Q2/2gw2 y2

1 + y1 =
Q2/2gw2 y2

2 + y2 + hL , where the specific energy is E = Q2/2gw2 y2 + y . Thus we
can draw the specific energy diagram for a hydraulic jump as illustrated in Figure 15.33.

We know that the flow approaches the jump with specific energy E1 and leaves the
jump at a lower specific energy E2; i.e., E2 = E1 − hL . If we draw a vertical line in
Figure 15.33 at specific energy E1, the intersection of this line with the specific energy
curve defines the two possible depths of the flow upstream. Since a hydraulic jump is
observed only in a supercritical flow, we conclude that point 1 on this line defines the up-
stream flow. Similarly, the flow exiting the jump can be at only one of the two possible
points on the vertical line shown in Figure 15.33 at specific energy E2. In a hydraulic
jump the flow downstream is known to be subcritical; hence the downstream flow must
be at point 2. The remaining question is, How did the flow get from point 1 to point 2?
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Rearranging, and solving for y3
C we have

y3
C =

Q2

(
1 + 2

yC

w

)

gw2

(
1 + yC

w

)3 = Q2

gw2

(
1 + 2

yC

w

)(
1 + yC

w

)−3

(B)

For yC � w, this equation can be approximated as y3
C ≈ Q2/gw2. Thus we can obtain

a first estimate for yC by writing 

yC,1 =
(

Q2

gw2

)1/3

The iteration converges when (A) or equivalently (B) is satisfied. In either case the result
for the critical depth is yC = 3.0 ft.

Since we know that A(y) = y(w + y) and b = w + 2y , the critical flow area and
critical free surface width are found to be

AC = yC(w + yC) = 3.0 ft(20 ft + 3.0 ft) = 69 ft2

and

bC = w + 2yC = 20 ft + 2(3.0 ft) = 26 ft

Also, since Q = AV , the critical velocity is given by VC = Q/AC = 640 ft3/s/69 ft2 =
9.28 ft/s. Finally, the critical hydraulic depth is found by inserting the data into
Eq. 15.45: yHC = AC/bC = 69 ft2/26 ft = 2.65 ft.
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1

E2Emin E1 E

hL

Fr � 1

2

y Figure 15.33 Specific energy curve for a
hydraulic jump.

EXAMPLE 15 .10

Water flows over a 0.25 m bump in a constant width, horizontal rectangular channel as
shown in Figure 15.34A. The upstream depth and velocity are 0.5 m and 0.2 m/s, re-
spectively. Draw the specific energy diagram for this flow and find the depth and veloc-
ity over the bump at point B. Then find the depth and velocity downstream of the bump
at point 2. Neglect the effect of friction.

Fr � 1

z

(A)

y1

yB

hB

V1
y2 V2

2

2�

0.502 m

(B)

y

0.151 m E

C

B

1
0.5 m

0.24 m

0.05 m

0.1 m

hC � 0.35 m

hB � 0.25 m

Figure 15.34 (A) Schematic for Example 15.10. (B) Specific energy diagram.

SOLUTION

We first calculate the upstream Froude number for the specified conditions as
Fr1 = V1/

√
gy1 = 0.2 m/s/

√
9.81 m/s2(0.5 m) = 0.09. Thus the flow is subcritical

and we expect the depth to decrease over the bump (see Figure 15.14A). The specific
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energy for flow in a rectangular channel is given by Eq. 15.38 as E = V 2/2g + y .
Substituting V = V1 y1/y , we find E = V 2

1 y2
1/2gy2 + y , inserting the data yields

E = (5.09 × 10−4 m3)/y2 + y . This equation forms the basis for the specific energy
diagram as shown in Figure 15.34B. Various points on this curve can now be identified.
Upstream at point 1 we have V1 = 0.2 m/s and y1 = 0.5 m, thus we can calculate
E1 = V 2

1 /2g + y1 = (0.2 m/s)2/2(9.81 m/s2) + (0.5 m) = 0.502 m. The critical
point C can be located by substituting Q = V1 y1w into Eq. 15.41a, yC = [Q2/gw2]1/3,
to obtain yC = [V 2

1 y2
1/g]1/3. Inserting the data, we find

yC =
[
(0.2 m/s)2(0.5 m)2

9.81 m/s2

]1/3

= 0.1006 m .

Next we use Eq. 15.41c to compute the velocity at the critical point:

VC = √
gyC =

√
(9.81 m/s2)(0.1006 m) = 0.993 m/s

Finally we use Eq. 15.41b to write Emin = 3
2 yC = 3

2 (0.1006 m) = 0.151 m.
To calculate the depth and velocity over the bump and downstream, recall that in

Section 15.3.1 we analyzed frictionless flow over a bump and obtained Eq. 15.6: 

V 2
1

2g
+ y1 + h(x1) = V (x)2

2g
+ y(x) + h(x)

Applying this equation between point 1 and any point downstream, we have
V 2

1 /2g + y1 + h1 = V 2/2g + y + h . Introducing the specific energy and noting that
with the choice of horizontal datum in Figure 15.34A h1 = 0, this equation becomes
E1 = E + h . For calculations we can write this as

E = E1 − h (A)

For the bump we know hB = 0.25 m, thus EB = E1 − hB = 0.502 m − 0.25 m =
0.252 m. Drawing a vertical line at this value of specific energy gives us two possible
depths over the bump, as expected. Before we find these two depths, note that we can
also use (A) to calculate the critical bump height hC , the bump height needed to make
the flow critical. If we write (A) as hC = E1 − Emin, we find hC = E1 − Emin =
0.502 m − 0.151 m = 0.35 m. We see immediately that the flow must remain subcriti-
cal, since the bump is only 0.25 m high, a value less than the 0.35 m needed for the flow
to become critical.

To find the depth yB over our 0.25 m bump, we make use of the equation of the spe-
cific energy diagram E = (5.09 × 10−4 m3)/y2 + y and write EB = 0.252 m =
(5.09 × 10−4 m3)/y2

B + yB . This yields the cubic equation y3
B − 0.252 m y2

B +
5.09 × 10−4 m3 = 0. The resulting three solutions are yB = −0.04 m,+0.05 m, and
+0.24 m. However, we already know from the specific energy diagram that the only
one of interest to us must lie between y1 = 0.5 m and yC = 0.1 m. Thus the solution of
interest is yB = 0.24 m. The velocity over the bump can now be calculated as 

VB = V1 y1

yB
= (0.2 m/s)(0.5 m)

(0.24 m)
= 0.42 m/s
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To find the depth and velocity at point 2 downstream, we use (A) to write E2 =
E1 − h2. Since h2 = 0 we have E2 = E1 = 0.502 m. The specific energy at point 2 is
given by E2 = 0.502 m = (5.09 × 10−4 m3)/y2

2 + y2 , which we can write as the cubic
equation y3

2 − 0.502 m y2
2 + 5.09 × 10−4 m3 = 0. One solution is known immedi-

ately: y2 = y1 = 0.5 m, corresponding to a subcritical flow identical to that upstream of
the bump. The other two solutions are +0.032 m, corresponding to a supercritical flow,
and −0.030 m, which is meaningless. The flow cannot become supercritical after the
bump unless it has gone through the critical point. Since the bump height of 0.25 m is
less than the critical bump height of 0.35 m calculated earlier, this could not have hap-
pened. Thus we conclude that at point 2, the depth and velocity are the same as that
upstream.

Before leaving this example, we could ask ourselves what we would observe if the
upstream conditions were fixed and the bump height was increased to exactly the criti-
cal height hC = 0.35 m. The answer is found by looking at the specific energy diagram
of Figure 15.34B and realizing that we would move along the upper branch of the spe-
cific energy curve from point 1 to point C. The flow would speed up going up the bump
and become critical at the crest of the bump. What would happen as the flow went down
the bump? The specific energy diagram reveals we could move back along the upper
branch to the initial subcritical state (points 1 and 2) or move along the supercritical
branch to point 2′. This point corresponds to a supercritical flow. Conditions far down-
stream determine which of these two possibilities occurs.

We could also ask what would happen if the upstream conditions were fixed and the
bump height increased beyond the critical height of 0.35 m. The answer to this question
is interesting, since now point B would not be on the specific energy curve correspond-
ing to the upstream conditions. Thus this flow is impossible with the upstream depth and
flowrate fixed. If the flowrate is fixed, and the flow at the crest is critical when the bump
height is slowly increased, then the flow at the crest will remain critical and the upstream
depth will increase as needed.

The control volume analysis presented here cannot give us the specific path because of
the complexity of this 3D flow field (we would need CFD to model this flow more com-
pletely). Therefore, we represent the path schematically by a dashed line in Figure 15.33.

15.5 FLOW IN A CHANNEL OF UNIFORM DEPTH

In a steady, fully developed flow in a prismatic channel, the liquid depth is constant, and
depth slope is dy/dx = 0. Thus the free surface is parallel to the bed as shown in Fig-
ure 15.35. This type of open channel flow is referred to as uniform flow or flow at nor-
mal depth. The latter name reflects the fact that the depth of a uniform flow is referred to
as the normal depth yN . Channels are often designed to have uniform flow, so under-
standing their characteristics is important.

We can analyze a uniform flow by using mass, momentum, and energy balances,
and noting that the flow is fully developed and steady. Applying a mass balance to the



CV shown in Figure 15.35, we have Ṁ = ρQ = ρ A1V1 = ρ A2V2 . For a prismatic
channel the flow area A is constant; thus

V1 = V2 (15.47)

The energy balance for flow of gradually varying depth in a rectangular channel
was given by Eq. 15.35 as V 2

1 /2g + y1 = V 2
2 /2g + y2 + (SF − SB)L . This result also

applies to gradually varying or uniform flow in any prismatic channel. Since in uniform
flow y1 = y2 = yN and V1 = V2, the energy balance reduces to

SF = SB (15.48a)

We see that in a flow at uniform depth, the friction slope and bed slope are the same.
According to Eq. 15.34 we have SB = tan θ = (h1 − h2)/L , and we know that the head
loss is defined by hL = L SF . Thus we can write SF = hL/L and SB = (h1 − h2)/L ,
and substitute these into Eq. 15.48a to obtain

hL = SF L = SB L = h1 − h2 (15.48b)

We see that since the head loss is positive, the friction slope and bed slope are also positive.
Thus flow at uniform depth can occur only in a downward-sloping channel. Finally, note
that in a uniform flow, gravitational potential energy is continuously lost as a result of the
action of viscous shear stresses. The energy loss per unit volume is ρghL = ρgSB L =
ρg(h1 − h2), and the rate at which energy is dissipated in a uniform flow is then

P = ρg(h1 − h2)Q (15.48c)

To determine the momentum balance for the CV shown in Figure 15.35, note that
since the flow is fully developed and the momentum flux at the inlet is equal in magni-
tude and opposite in sign to that at the outlet, the momentum balance reduces to
FB + FS = 0. That is, the sum of the body and surface forces acting on the CV equals
zero. The body force acting on the CV due to gravity is seen by inspection to be ρg –V
and acts vertically downward. Writing FB in terms of the flow area A and length L of the
CV, we see that the body force component acting in the flow direction is ρg AL sin θ .
The momentum balance shows that this force must be balanced by the sum of pressure
acting on each end of the CV and the shear force exerted on the CV at its wetted perime-
ter. Since the bed slope is assumed to be small, the pressure distribution may be assumed
to be hydrostatic throughout the CV. Thus for constant depth, the pressure forces on each
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V2 � V1

SB � tan � � 
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Figure 15.35 Uniform depth channel and control
volume.
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EXAMPLE 15 .11

The normal depth in a 6 m wide rectangular irrigation channel is 0.5 m. If the volume
flowrate is 0.75 m3/s, and the bed slope is 0.002, as shown in Figure 15.36, find the head
loss and power dissipation per kilometer of channel. What are the average velocity,
Froude number, and average wall shear stress in the channel?

Q � 0.75 m3/s

0.5 m

W � 6 m

SB � 0.002 yN

Figure 15.36 Schematic for Exam-
ple 15.11.

SOLUTION

From SB = tan θ = (h1 − h2)/L , which is Eq. 15.34, the drop in elevation per kilome-
ter of channel is found to be h1 − h2 = SB L = 0.002(1 km)(1000 m/1 km) = 2 m.
The head loss is given by Eq. 15.48b as hL = h1 − h2, so the head loss is hL = 2 m.
The power dissipation in a kilometer of channel is calculated by using Eq. 15.48c and
found to be 

P = ρg(h1 − h2)Q = 1000 kg/m3(9.81 m/s2)(2 m)(0.75 m3/s)

= 1.47 × 104 (N-m)/s ≈ 15 kW

Next we calculate the average velocity as V = Q/A = (0.75 m3/s)/[(6 m)(0.5 m)] =
0.25 m/s, and Fr = V/

√
gyN = (0.25 m/s)/

√
(9.81 m/s2)(0.5 m) = 0.11. Note that

this flow is subcritical. The average wall shear stress is calculated by Eq. 15.49:
τ̄W = ρgRH SB . Using RH = A/P = [(6 m)(0.5 m)]/(6 m + 1 m) = 0.429 m, we
find

τ̄W = ρgRH SB = (1000 kg/m3)(9.81 m/s2)(0.429 m)(0.002) = 8.42 N/m2

end of the CV cancel one another. The shear force, which acts opposite to the flow di-
rection, can be written as τ̄W P L , where τ̄W is the average shear stress acting at the chan-
nel walls, and P is the wetted perimeter. Thus the momentum balance gives
τ̄W P L = ρg AL sin θ , and we may solve for the average wall shear stress to obtain
τ̄W = ρg(A/P) sin θ . Next we use the hydraulic radius, given by Eq. 15.1 as RH =
A/P , to write τ̄W = ρgRH sin θ . The final step in this analysis is to write the bed slope
as SB = tan θ = sin θ/cos θ , and approximate this for the small slopes of interest as
SB ≈ sin θ . Thus the momentum balance for uniform flow can be written as

τ̄W = ρgRH SB (15.49)



You may have noticed that the preceding results are not sufficient to allow us to de-
sign a uniform flow to carry a certain flowrate. The reason is that we do not know the
head loss as a function of the various parameters. We encountered a similar situation in
analyzing pipe flow, where it proved necessary to introduce an empirical model for the
head loss in the turbulent flows of engineering interest via a friction factor. The same
basic approach is employed in open channel flow. Thus using f as the friction factor, and
recalling that head loss in open channel flow has units of feet, we write the head loss for
open channel flow as

hL = f
L

4RH

V 2

2g
(15.50)

Note the use of hydraulic radius rather than hydraulic diameter in this formula.
Now according to Eq. 15.48b, hL = L SB . Inserting this into Eq. 15.50 and solving

for the velocity we obtain

V =
√

8g

f

√
RH SB

The friction factor for open channel flow depends on the roughness of the channel walls,
but normally it is independent of Reynolds number. If we let C = √

8g/ f , the preced-
ing equation becomes

V = C
√

RH SB (15.51)

This is known as the Chezy equation, and the unknown term C that now contains the
friction factor is called the Chezy coefficient. This coefficient has the dimensions of 

√
g.

Manning performed a series of experiments to determine empirical values for C for
channels of various types and proposed that C be written as C = R1/6

H /n, where n is
called the Manning roughness coefficient. Thus the velocity in uniform open channel
flow is given by the Manning equation

V = R2/3
H S1/2

B

n
(15.52a)

where values for n may be obtained from Table 15.1. The flowrate is then given by

Q = AR2/3
H S1/2

B

n
(15.52b)

Notice that the values of n shown in Table 15.1 do not have a unit indicated despite
the ease with which we could demonstrate that the unit of n is time divided by length to
the one-third power. This is because the Manning equation was developed exclusively
with SI units. To avoid any confusion and to allow us to determine velocity and flowrate
in both SI and BG units, we will use the following equations instead:

V = C0

n
R2/3

H S1/2
B and Q = C0

n
AR2/3

H S1/2
B (15.53a, b)

The values of n to be used with Eqs. 15.53 are the original Manning coefficients given in
Table 15.1, but we will use the factor C0 = 1 for SI, and C0 = 1.49 for BG.

In the uniform flow described in Example 15.11 Fr = 0.11, hence the flow is
subcritical. Depending on conditions, including the wall roughness and bed slope, a
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uniform open channel flow can be subcritical, critical,
or supercritical. If the flow is critical, then the normal
depth yN must be equal to the critical hydraulic depth
yHC = AC/bC , and we also know VC = √

gyHC

(Eq. 15.46). Solving Eq. 15.53b for the critical bed
slope needed to produce this velocity we have 

SBC = V 2
C n2

C0 R4/3
HC

(15.54a)

which after substituting VC = √
gyHC , we can write as

SBC = gyHC n2

C0 R4/3
HC

(15.54b)

TABLE 15.1 Values of the Manning Roughness
Coefficient, n

Wetted Perimeter n
A. Natural channels

Clean and straight 0.030
Sluggish with deep pools 0.040
Major rivers 0.035

B. Floodplains

Pasture, farmland 0.035
Light brush 0.050
Heavy brush 0.075
Trees 0.15

C. Excavated earth channels

Clean 0.022
Gravelly 0.025
Weedy 0.030
Stony, cobbles 0.035

D. Artificially lined channels

Glass 0.010
Brass 0.011
Steel, smooth 0.012
Steel, painted 0.014
Steel, riveted 0.015
Cast iron 0.013
Concrete, finished 0.012
Concrete, unfinished 0.014
Planed wood 0.012
Clay tile 0.014
Brick work 0.015
Asphalt 0.016
Corrugated metal 0.022
Rubble masonry 0.025

The values of the Manning roughness 
coefficient in Table 15.1 were determined
from experiments conducted in SI units.
For a BG calculation it is convenient to be
able to use the same coefficients, intro-
ducing the factor C0 = 1.49 as a correc-
tion for the change in units. But where did
the value 1.49 come from? Note that
3.281 ft = 1 m and (3.281)1/3 = 1.49.
Thus, if we have a value of n from the
Table 15.1 in SI units of s/m

1
3 and we wish

to convert it into BG units of s/ft
1
3 we

would write nBG = nSI(1 m/3.281 ft)1/3 .
This is the justification for Eqs. 15.53.



or its equivalent

SBC = g AC n2

C0bc R4/3
HC

(15.54c)

The bed slope of a particular uniform flow is classified
according to the following criteria:

1. For yN > yHC , the slope must be SB < SBC , and
the slope is called mild or subcritical.

2. For yN = yHC , the slope must be SB = SBC , and
the slope is called critical.

3. For yN < yHC , the slope must be SB > SBC , and
the slope is called steep or supercritical.

For the important case of a very wide 2D rectangu-
lar channel of free surface width w = b, Figure 15.6
shows that RH = yH = y . Thus RHC = yHC = yC ,
and from Eq. 15.54b the critical slope is

SBC = gn2

C0 y1/3
C

(15.55)

For example, consider a critical uniform flow in a wide rectangular channel of unfin-
ished concrete at a normal depth of 0.5 ft. We have n = 0.014 from Table 15.1, and in
BG we take C0 = 1.49. The critical slope is found to be

SBC = (32.2 ft/s2)(0.014)2

1.49(0.5 ft)1/3
= 0.0053

To put this bed slope into perspective, note that this would be a drop of 28 ft per mile, or
5.3 m per kilometer. A bed slope less than this is mild, and one greater than this is steep.
However, if the same channel had walls of unfinished earth, then n = 0.022, and the
critical slope is found to be

SBC = (32.2 ft/s2)(0.022)2

1.49(0.5 ft)1/3
= 0.013

which is steeper by a factor of 2.47 owing to the greater frictional resistance of the
earthen walls.

15.5.1 Uniform Flow Examples

A uniform flow may be characterized by the size and shape of the channel, the normal
depth, the slope of the channel bottom, the roughness of the walls, and either the aver-
age velocity or flowrate. Thus a problem may require that we find any of these variables.
In addition, we may think of a problem as involving analysis or design. In an analysis
problem, we would typically be given information regarding the channel size, shape,
material, and slope, and we would be asked to find flowrate for a certain normal depth
or vice versa. In a design problem, we might be asked to determine the slope of a
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channel for a case in which the desired shape, flowrate,
and normal depth are specified. The examples in this
section include problems of both types. We begin with
several analysis problems, the first of which asks us to
determine flowrate.

In the problem discussed in Example 15.12 the
normal depth is given and no iteration is required to
determine the flowrate. As Example 15.13 illustrates,
iteration is required if an analysis problem asks for the
normal depth.

The slope of a channel can be described in
various ways. According to Eq. 15.34, the
bed slope is given by SB = tan θ =
(h1 − h2)/L . Thus a channel with a bed
slope of SB = 0.003 could be described
as having a drop of 3 m/km or 16 ft/mile.
But this channel could also be said to have
a slope of 0.17° or as having a slope of
0.003 radian.

EXAMPLE 15 .12

A 12 in. diameter, round cast iron drain pipe is laid on a 0.2° slope. Assuming uniform
flow, find the flowrate if the pipe is one-quarter, one-half, three-quarters, and completely
full. What are the velocity and Froude number for each of these flows?

SOLUTION

The pipe is sketched in Figure 15.37. From Table 15.1 the Manning coefficient for cast
iron is n = 0.013. Since we know that the slope of the channel is 0.2◦, we can use
Eq. 15.34 to calculate the bed slope as SB = tan θ = tan 0.2◦ = 0.00349. Using the for-
mulas in Figure 15.6 for a round pipe we can first calculate θ = 2 cos−1(1 − 2y/D),
where y is the depth, and D = 1 ft. Next we calculate the flow area A(y) =
(D2/8)(θ − sin θ), wetted perimeter P(y) = Dθ/2, and hydraulic radius RH (y) =
(D/4)(1 − sin θ/θ). The results are shown in Table 15.2. The volume flowrate is calcu-
lated next, from Eq. 15.53b: Q = (C0/n)AR2/3

H S1/2
B , with C0 = 1.49, since we are

working in BG units. Velocity can then be obtained from V = Q/A, and we can calcu-
late Fr = V/

√
gy . The results are included in Table 15.2.

0.2�

D � 1 ft

Figure 15.37 Schematic for Example 15.12.

TABLE 15.2 Solution Table for Example 15.12

yN (ft) θ rad
N A(y) ft2 P(y) ft RH(y) ft R2/3

H Q ft3/s V ft/s Fr

0.25 2.094 0.153 1.05 0.146 0.277 0.29 1.90 0.67

0.5 3.14 0.393 1.57 0.250 0.397 1.06 2.70 0.67

0.75 4.19 0.632 2.10 0.302 0.450 1.93 3.05 0.62

1.0 6.28 0.785 3.14 0.250 0.397 2.11 2.69 0.47
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EXAMPLE 15 .13

A culvert made of unfinished concrete and measuring 2 m × 2 m, as shown in Fig-
ure 15.38, carries a small stream. If the culvert drops 0.5 m over its 100 m length, and is
designed for uniform flow, what is the expected normal depth when the culvert is carry-
ing a flow of 4.7 m3/s?

2 m

100 m

0.5 m
y

Figure 15.38 Schematic for Example 15.13.

SOLUTION

The culvert is sketched in Figure 15.38. From Table 15.1 the Manning coefficient for un-
finished concrete is n = 0.014. Since we know that the slope of the channel is described
in terms of an elevation change over its length, we can use Eq. 15.34 to calculate the bed
slope as SB = (h1 − h2)/L = 0.5/100 = 0.005. The volume flowrate is given by
Eq. 15.53b, Q = (C0/n)AR2/3

H S1/2
B , with C0 = 1, since we are working in SI units.

Next we use Figure 15.6 to write the formulas A(y) = wy and RH (y) = wy/(w + 2y).
Inserting these into the formula for Q and rearranging yields

(wy)

(
wy

w + 2y

)2/3

= nQ

S1/2
B

(A)

The desired depth satisfies this equation. Inserting Q = 4.7 m3/s, n = 0.014,
SB = 0.005, and w = 2 m, we obtain

2y

(
2y

2 + 2y

)2/3

= 0.931

as the equation to be solved. Using a symbolic math code, we find y = 0.8 m.
We see that a flow of 4.7 m3/s in this culvert occurs at a depth of 0.8 m. The flow

area in that case is A = wy = 2 m(0.8 m) = 1.6 m2 , and the velocity is V = Q/A =
4.7 m3/s/1.6 m2 = 2.94 m/s. The Froude number is Fr = V/

√
gy = 2.94 m/s/√

(9.81 m/s2)(0.8 m) = 1.05. Thus the flow is supercritical.
Note that to iterate this problem by hand we can recognize that the answer must be

a depth of 2 m or less. Several iterations are shown:
for y = 0.6:

2y

(
2y

2 + 2y

)2/3

= 0.624

for y = 0.9:

2y

(
2y

2 + 2y

)2/3

= 1.33
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At times we may encounter a channel shape that is not standard or a channel whose
roughness is different on different walls. Example 15.14 illustrates how we can solve a
problem of this type.

In our final example, the slope of the channel is unknown, but the size and shape of
the channel is specified. This could be considered to be a design problem.

EXAMPLE 15 .14

A trapezoidal flood control channel has a relatively clean bottom but weedy sides, as
shown in Figure 15.39A. Find an expression for the equivalent Manning coefficient nE

for this channel.

w

b

�

w

l l

I

(B)(A)

II III

s s

yN

nBnS nS

yN

Figure 15.39 (A) Schematic for Example 15.14. (B) Decomposition of channel for Example 15.14.

SOLUTION

We can think of this channel first as a whole and suppose that it has an equivalent Man-
ning coefficient nE , a flow area AE , and a hydraulic radius RH E . From the geometry in
Figure 15.39A and the formulas in Figure 15.6 for a trapezoidal channel at normal depth
yN , we have 

AE = yN (w + yN cot θ) and RH E = yN (w + yN cot θ)

w + 2yN /sin θ

for y = 0.7:

2y

(
2y

2 + 2y

)2/3

= 0.77

for y = 0.8:

2y

(
2y

2 + 2y

)2/3

= 0.932
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By using Eq. 15.53b, Q = (C0/n)AR2/3
H S1/2

B , we can write the volume flowrate for the
whole channel as

QE = C0

nE
AE R2/3

H E S1/2
B (A)

The velocity in the channel is VE = QE/AE .
Next we can think of the channel as if it were three separate channels, as indicated

in Figure 15.39B, with the same velocity VE in each of them. The flowrates in the three
channels are then seen to be QI = VE AI , QII = VE AII , and QIII = VE AIII . The total
volume flowrate of the whole channel must then be given by the sum of the flows
occurring in the three subsections. We can write this as

QE = QI + QII + QIII (B)

Finally we will assume that the volume flowrate in each of the subsections may be cal-
culated separately as a uniform open channel flow in each subsection, with the flow cor-
responding to the characteristics of the particular subsection.

Two of these channels are triangular and can be seen to have a single wetted side of
length l = yN /sin θ and a free surface width s = yN /tan θ . Thus they have a flow area
AI = AIII = y2

N /(2 tan θ) and a wetted perimeter of PI = PIII = l = yN /sin θ . The hy-
draulic radius of each of the triangular channels is RHI = RHIII = 1

2 yN cos θ . By using
Eq. 15.53b, and writing the Manning coefficient for the weedy sides as nS , we can give
the following volume flowrate in each of these channels:

QI = QIII = C0

nS
AI R2/3

HI S1/2
B (C)

The central channel can be seen to have a flow area AII = wyN , wetted perimeter
PII = w, and thus a hydraulic radius RHII = yN . Again from Eq. 15.53b, and writing the
Manning coefficient for the clean bottom as nB , we find the volume flowrate in the cen-
tral section:

QII = C0

nB
AII R2/3

HII S1/2
B (D)

Inserting (A), (C), and (D) into (B) and simplifying, we obtain

1

nE

(
AE R2/3

H E

) = 2

nS

(
AI R2/3

HI

)+ 1

nB

(
AII R2/3

HII

)
(E)

This equation allows us to calculate the equivalent Manning coefficient for the entire
channel if we know the parameters describing the three subsections. After finding nE , we
can use (A) to calculate the flowrate in the whole channel. It is interesting to note that (E)
is similar to the formula for the equivalent electrical resistance of three resistors in
parallel. We see that in uniform open channel flow, Eq. 15.53b, Q = (C0/n)AR2/3

H S1/2
B ,

can be thought of as equivalent to Ohm’s law I = V/R, with the volume flowrate, Q,
equivalent to the current I, the square root of the bed slope S1/2

B , acting as the driving volt-
age V, and the resistance R equivalent to the combination n/(AR2/3

H ). Does it make sense
to you that the resistance of a channel to flow would increase with Manning coefficient?
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EXAMPLE 15 .15

The slope of the culvert in Example 15.13 is to be adjusted so that normal depth will be
at least 1.5 m when the culvert is carrying its design flowrate of 4.7 m3/s (Figure 15.40).
What slope would you recommend?

2 m
y � 1.5 mSB

Figure 15.40 Schematic for Example 15.15.

SOLUTION

We know that the volume flowrate is given by Eq. 15.53b, Q = (C0/n)AR2/3
H S1/2

B , with
C0 = 1, since we are working in SI units. Solving for the bed slope we obtain
SB = n2 Q2/C2

0 A2 R4/3
H . We can again use Figure 15.6 to write A(y) = wy and

RH (y) = wy/(w + 2y). Inserting these into the formula yields

SB = n2 Q2

(wy)2

(
wy

w + 2y

)4/3 (A)

Inserting the known values as well as a Manning coefficient n = 0.014 s/m1/3 (notice
the units here, which are often omitted in calculations) and width w = 2 m, we obtain

SB = (0.014 s/m1/3)2(4.7 m3/s)2

[(2 m)(1.5 m)]2

[
2 m(1.5 m)

2 m + 2(1.5 m)

] 4
3

= 9.5 × 10−4

Thus the bed slope needed is about one-fifth of the slope that produced the slightly
supercritical flow in Example 15.13.

15.5.2 Optimum Channel Cross Section

In designing an open channel for uniform flow, an engineer must consider the cost of ex-
cavation, the available slope, and the choice of liner materials to calculate the channel
shape and size. Now suppose the flowrate, slope, and liner material have been selected.
The question then becomes, What is the optimum channel cross section? Using the
Manning formula of Eq. 15.53b, Q = (C0/n)AR2/3

H S1/2
B , and RH = A/P , and noting



that the type of liner determines the Manning coefficient, we can write the flowrate as
Q = (C0/n)(A5/3/P2/3)S1/2

B . Solving for the flow area yields

A =
[

nQ

C0S1/2
B

]3/5

P2/5 (15.56)

This shows that the optimum channel shape is one that minimizes the wetted perimeter for
a given area, which is the same as saying the shape that minimizes the hydraulic radius.
Taking the shapes from Figure 15.6 (except for the 2-D flow), we can optimize each geom-
etry by writing the wetted perimeter as a function of flow area and depth. Next we set
d P/dy = 0 with A held constant and solve for the optimal depth, which for uniform flow
is the normal depth yN . This is the optimal normal depth for that channel geometry and
maximizes the flowrate for that particular cross section. The results of this process, includ-
ing expressions for the optimal normal depth and corresponding flow area, are summarized
in Figure 15.41. It can be seen that when optimized, each channel shape has a factor in its
expression for flow area that multiplies the common term [nQ/C0S1/2

B ]3/4. Since the
smallest factor gives the minimum flow area for the desired flowrate, liner, and bed slope,
it is evident that the optimal shape of any channel is circular and filled to the halfway point.
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EXAMPLE 15 .16

A highway drainage ditch is to carry 10 ft3/s of water in a finished concrete channel dur-
ing the worst expected rainstorm. If the slope is SB = 0.001, find the dimensions of the
optimum rectangular channel and compare with those of an optimum circular channel.
Assume uniform flow and that the water fills each channel to the brim at peak flow.

SOLUTION

No sketch is necessary here. From Table 15.1 the Manning coefficient for finished con-
crete is n = 0.012, and we can use the appropriate formulas in Figure 15.41 with
C0 = 1.49, since we are working in BG units. For the rectangular channel we have

yN = 2−1/8

[
nQ

C0S1/2
B

]3/8

= 2−1/8

[
(0.012)(10)

(1.49)(0.001)1/2

]3/8

= 1.30 ft

A = 23/4

[
nQ

C0S1/2
B

]3/4

= 23/4

[
(0.012)(10)

(1.49)(0.001)1/2

]3/4

= 3.39 ft2

Since the channel is filled to the brim and yN = w/2 = b/2, the rectangular channel is
1.30 ft deep and w = A/yN = 3.39 ft2/1.30 ft = 2.6 ft wide. For the optimum circular
channel, the calculations yield

yN = 25/8π−3/8

[
nQ

C0S1/2
B

]3/8

= 25/8π−3/8

[
(0.012)(10)

(1.49)(0.001)1/2

]3/8

= 1.42 ft



15.5 FLOW IN A CHANNEL OF UNIFORM DEPTH 1001

b

w

yN

b

yN

�

b

w

�

yN

b

D

yN

Figure 15.41 Optimal parameters for common channel cross sections.

Optimal Geometry Normal Depth, yN Flow Area, A

yN = w

2
= b

2
2−1/8

[
nQ

C0 S1/2
B

]3/8

23/4

[
nQ

C0 S1/2
B

]3/4

A = wyN = byN = 2y2
N 23/4 = 1.682

P = 4yN

θ = 45° 23/8

[
nQ

C0 S1/2
B

]3/8

23/4

[
nQ

C0 S1/2
B

]3/4

yN = b

2 23/4 = 1.682

A = 1
2 byN = y2

N

P = 2
√

2yN

θ = 60° b = 2w 21/4 3−3/16

[
nQ

C0 S1/2
B

]3/8

21/231/8

[
nQ

C0 S1/2
B

]3/4

yN =
√

3

2
w =

√
3

4
b 21/231/8 = 1.622

A =
√

3y2
N

P = 2
√

3yN

yN = D

2
25/8 π−3/8

[
nQ

C0 S1/2
B

]3/8

21/4 π1/4

[
nQ

C0 S1/2
B

]3/4

b = D 21/4π1/4 = 1.583

A = 1
2 πy2

N

P = πyN

A = 21/4π1/4

[
nQ

C0S1/2
B

]3/4

= 21/4π1/4

[
(0.012)(10)

(1.49)(0.001)1/2

]3/4

= 3.19 ft2

We see that the flow area (and required excavation) for the circular channel are indeed
smaller than that of the rectangular channel. The diameter of this semicircular channel is
2.84 ft.



15.6 FLOW IN A CHANNEL WITH GRADUALLY VARYING DEPTH

In Section 15.4, we derived the following relationship for the variation in depth slope in
gradually varying flow in a rectangular channel, Eq. 15.37:

dy

dx
= SB − SF

[1 − Fr2]

where dy/dx is the depth slope, SB is the bed slope, SF is the friction slope, and Fr is
based on the depth y. This equation can also be shown to apply to gradually varying flow
in a prismatic channel with other cross section shapes if Fr is calculated using the hy-
draulic depth yH , i.e., as Fr = V/

√
gyH . In principle, Eq. 15.37 can then be integrated

along the channel to determine the depth. However, to do so means we must be able to
determine the friction slope. It is customary to assume that the value of the friction slope
at any station along the channel can be approximated as being the same as that of the
uniform flow that would exist in the same channel at the given flowrate and depth y. If
we adopt this assumption, then we can make use of the fact that in uniform flow the fric-
tion slope and bed slope are the same and write SF = SBU , where SBU is the bed slope
of the uniform flow that would exist at depth y. With SF = SBU given by the formulas
derived in Section 15.5, the depth slope of a gradually varying flow in a prismatic flow
of arbitrary cross section is given by 

dy

dx
= SB − SBU

[1 − Fr2]
(15.57)

This equation can be integrated to determine the depth everywhere along the channel.
Although the solution process is beyond the scope of this text, we see that whether the
flow depth increases or decreases downstream depends on whether the bed slope is
greater or less than required to produce a uniform flow, and on the Froude number based
on hydraulic depth.

In the important case of a wide rectangular channel, it is possible to classify the
possible surface shapes using a system based on comparing (1) the actual bed slope SB

to the bed slope that would produce a critical normal flow SBC and (2) the actual depth
y to the normal depth yN . There are 12 surface profiles in which depth varies, and these
are named according to their slope and depth characteristics as shown in Table 15.3.
This table also contains corresponding surface profiles. Examples of ways in which
these profiles might occur in open channel flow are shown in Figure 15.42.

15.7 FLOW UNDER A SLUICE GATE

Sluice gates are structures used to control and measure the flowrate in systems such as
irrigation channels. As shown in Figure 15.43A, in a free discharge from a wide rectan-
gular sluice gate, the free surface drops smoothly from the edge of the gate. However if
the tailwater is high as shown in Figure 15.43B, the gate is said to be drowned and the
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TABLE 15.3 Surface Profiles in Gradually Varying Flow

Surface Profiles Curve Depth Flow Surface Slope

M1 y > yn > yc Subcritical Positive
M2 yn > y > yc Subcritical Negative
M3 yn > yc > y Supercritical Positive

S1 y > yc > yn Subcritical Positive

S2 yc > y > yn Supercritical Negative

S3 yc > yn > y Supercritical Positive

C1 y > yc = yn Subcritical Positive

C3 y < yc = yn Supercritical Positive

H2 y > yc Subcritical Negative

H3 y < yc Supercritical Positive

A2 y > yc Subcritical Negative

A3 y < yc Supercritical Positive
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Adapted from Gearhart, Gross, and Hochstein, Fundamentals of Fluid Mechanics, 2nd edition.
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(A) (B)
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1
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y1

yG
y2z V2
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y2
V2

Figure 15.43 (A) Free discharge from a wide rectangular sluice gate. (B) Fluid profile when the sluice gate is said to be
drowned.
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Figure 15.42 Possible surface shapes for flow in a wide rectangular channel; see Table 15.3 for the classification
of the 12 profiles shown. Adapted from Gearhart, Gross, and Hochstein, Fundamentals of Fluid Mechanics, 2nd
edition.

flow is quite different. Here we are interested in analyzing the free discharge condition
in which at a point upstream the water depth is y1, the streamlines are parallel to the hor-
izontal bed, and the (subcritical) flow velocity is V1. After passing through the gate,
whose open height is yG , the streamlines at a point sufficiently far downstream are again
parallel to the bed, the depth is y2, and the flow velocity is V2. We would like to predict
the flowrate through the gate as a function of the depths upstream and downstream and
the other physical parameters.

In our analysis we will assume frictionless flow and uniform velocities at both sta-
tions. The flow areas at the two stations are A1 = wy1 and A2 = wy2 where w is the
width of the gate. From a mass balance we know that Q = A1V1 = A2V2, thus we con-
clude that

Q

w
= V1 y1 = V2 y2 (15.58a)
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Writing the Bernoulli equation along a surface streamline that connects points 1 and 2
and travels along the inside surface of the gate, and noting that the pressure is atmo-
spheric at both end points, we obtain

V 2
1

2g
+ y1 = V 2

2

2g
+ y2 (15.58b)

Using Eq. 15.58a, we can write V2 = V1 y1/y2, and eliminate V2 to obtain the cubic
equation

y3
2 −

(
V 2

1

2g
+ y1

)
y2

2 + V 2
1 y2

1

2g
= 0 (15.58c)

We can solve this equation for the downstream depth given the upstream depth y1 and
velocity V1. This equation has one real root for subcritical upstream flow. Also, if we
write Eq. 15.58b in terms of flowrate, we obtain

Q2

2gw2 y2
1

+ y1 = Q2

2gw2 y2
2

+ y2 (15.58d)

Hence solving for flowrate yields

Q =
[

2gw2 y2
1 y2

2

y1 + y2

]1/2

(15.58e)

Since the specific energy of a flow at depth y is given by 

E = Q2

2gw2 y2
+ y

we see from Eq. 15.58d that the flow through a sluice gate occurs at constant specific en-
ergy, i.e., E1 = E2. Recalling the characteristics of a specific energy curve as discussed
in Section 15.4.1, we conclude that the upstream and downstream flows correspond to
the alternate depths on the specific energy curve for the given flowrate. This is illustrated
by the sluice gate, and its specific energy curve as shown in Figure 15.44A. The up-
stream state is subcritical, and since specific energy is constant, as the flow approaches
and passes under the gate it travels along the specific energy curve reaching the critical
state at a minimum specific energy, then becoming supercritical at the downstream state.

At a given flowrate there are generally two operating conditions for a sluice gate,
corresponding to two different sluice gate openings. These two operating conditions are
illustrated in Figure 15.44. To prove this statement, we can imagine that far upstream of
the gate, there is a reservoir at which the depth is y0 and the velocity is V0 = 0. Writing
the Bernoulli equation between this imaginary reservoir location and point 2 we have 

y0 = V 2
2

2g
+ y2 (15.59a)

and using Eq. 15.58b we can also write this as

y0 = V 2
1

2g
+ y1 (15.59b)



Rearranging and writing Eq. 15.59a in terms of flowrate, we obtain y0 = Q2/2gw2 y2
2 +

y2, or

(
y2

y0

)2 (
1 − y2

y0

)
= Q2

2gw2 y3
0

(15.59c)

This equation is plotted in Figure 15.45. We see that there are two depth ratios for any
given flowrate less than the maximum flowrate. These two operating conditions and the
corresponding gate openings are those illustrated earlier (Figure 15.44).
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y

Figure 15.44 Specific energy diagrams for
slow under a sluice gate at two different operat-
ing conditions.
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Figure 15.45 Relationship between
downstream depth and flowrate for
flow through a sluice gate.
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The labeling of the upper and lower branches in Figure 15.45 can be explained by
noting that to find the downstream depth at maximum flowrate, we write (d/dy2)

[Q2/2gw2] = 0, and use Eq. 15.59b to solve (d/dy)[y3
0(y2/y0)

2(1 − y2/y0)] =
0 = 2y0 y2 − 3y2

2 . The solution is

y2

y0
= 2

3
(15.60a)

Thus the maximum flowrate with a free discharge occurs when the gate opening is ad-
justed to produce this depth ratio. The value of the maximum flowrate for a given reser-
voir depth is then found from Eq. 15.59c to be given by

Q2
max

gw2
= 8

27
y3

0 (15.60b)

The downstream Froude number at the maximum flowrate can be found by writing
Fr2

2 = V 2
2 /gy2 and using the preceding results to obtain

Fr2
2 = V 2

2

gy2
= Q2

max

gw2 y3
2

= 8

27

(
y0

y2

)3

= 8

27

(
3

2

)3

= 1

Thus, at the maximum flowrate the downstream Froude number is unity, and with some
effort we can determine that the upper branch of the curve in Figure 15.45 corresponds
to subcritical downstream flow and the lower branch to supercritical downstream flow.

The final step in our analysis of the free discharge from a sluice gate is to determine
the sluice gate opening needed to produce a desired operating condition. Because the
flow passing through the gate undergoes a vena contracta (see Figure 15.43A), it is not
possible to establish an analytical relationship between the downstream depth y2 and the
height of the gate opening yG . However, it has been suggested that by using an empiri-
cal discharge coefficient CG , the free discharge flowrate can be modeled as

Q = CGwyG

√
2gy1 (15.61a)

where values for the discharge coefficient are given by

CG = 0.61√
1 + 0.61(yG/y1)

(15.61b)

provided yG/y1 < 0.5.

EXAMPLE 15 .17

A sluice gate in a 24 ft wide rectangular channel is observed to be operating with an up-
stream depth y1 = 6 ft and a downstream depth y2 = 1 ft (Figure 15.46). Find the vol-
ume flowrate passing through the channel and all other geometric and flow parameters.
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6 ft

1 ft
V2

V1

yG

1 2

Figure 15.46 Schematic for Example 15.17.

SOLUTION

Applying Eq. 15.58e, Q = [2gw2 y2
1 y2

2/(y1 + y2)]1/2 , the flowrate is found to be

Q =
[

2(32.2 ft/s2)(24 ft)2(6 ft)2(1 ft)2

6 ft + 1 ft

]1/2

= 436.8 ft3/s

The velocities upstream and downstream can now be determined by using Eq. 15.58a,
Q/w = V1 y1 = V2 y2 , to write V1 = Q/wy1 and V2 = Q/wy2. Inserting the data,
we find V1 = Q/wy1 = 436.8 ft3/s/24 ft(6 ft) = 3.0 ft/s and V2 = Q/wy2 =
436.8 ft3/s/24 ft(1 ft) = 18.2 ft/s. The corresponding Froude numbers are found to
be Fr1 = V1/

√
gy1 = 3.0 ft/s/

√
(32.2 ft/s2)(6 ft) = 0.22 and Fr2 = 18.2 ft/s/√

(32.2 ft/s2)(1 ft) = 3.21. The reservoir depth y0 is found by using Eq. 15.59a to write
y0 = V 2

2 /2g + y2 = (18.2 ft/s)2/2(32.2 ft/s2) + 1 ft = 6.14 ft . Note that we could
also have used Eq. 15.59b to write y0 = V 2

1 /2g + y1 = (3.0 ft/s)2/2(32.2 ft/s2)+
6 ft = 6.14 ft. To find the gate opening we rearrange Eq. 15.61a to obtain yG =
Q/CGw

√
2gy1 and note that the discharge coefficient is given by Eq. 15.61b:

CG = 0.61√
1 + 0.61(yG/y1)

Assuming CG = 0.61, a first iteration yields

yG = Q

CGw
√

2gy1
= 436.8 ft3/s

0.61(24 ft)
√

2(32.2 ft/s2)(6 ft)
= 1.52 ft

However the 1.52 ft corresponds to a discharge coefficient of 

CG = 0.61√
1 + 0.61(yG/y1)

= 0.61√
1 + 0.61(1.52 ft/6 ft)

= 0.57

so further iteration is required. The final results are yG = 1.13 ft and CG = 0.58.
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15.8 FLOW OVER A WEIR

A weir is a device used to measure and control open channel flows. A sharp crested weir
with a ventilated free nappe is illustrated in Figure 15.47A. This is the configuration of
greatest interest in measuring flowrate, hence it will be analyzed in this section. Opera-
tion is also possible with a partially or fully submerged nappe (Figure 15.47B, 15.47C).
The analysis of these flows is not covered here but may be found in advanced texts.

Although friction can be neglected in analyzing flow over a sharp crested weir, the
use of the Bernoulli equation is not straightforward because of streamline curvature and
nonuniform flow in the vicinity of the nappe. Additional complications arise when we
consider the three principal types of sharp crested weir illustrated in Figure 15.48 and
recognize the possibility of end effects. Thus we are forced to rely on empirical results.

In the case of either type of rectangular weir, empirical measurements show that the
flowrate can be written as

Q = CW w

(
L

w

)√
g(y1 − yW )3/2 (15.62a)

where CW is the rectangular weir discharge coefficient, w is the width of the weir, L is
the width of the nappe, yW is the weir height, and y1 is the upstream depth. The empiri-
cally determined discharge coefficient1 is given by

CW = 0.59 + 0.08

(
y1 − yW

yw

)
(15.62b)

(B) (C)

Drawdown

Water

Weir
y1 z

yW

w

(A)

Figure 15.47 Operating conditions for sharp crested weirs: (A) ventilated free nappe, (B) partially submerged
nappe, and (C) fully submerged nappe.

1 For more details on weirs see P. Ackers et al., Weirs and Flumes for Flow Measurement, Wiley,
New York, 1978.
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Ly1 � yW

LW

y1 � yW

L

(A) (B)w

y1 � yW

(C)w

�

Figure 15.48 Types of sharp crested weir: (A) full-width weir, (B) partial-width weir, and (C) V-notch weir.

EXAMPLE 15 .18

A 16 ft wide irrigation channel is equipped with a sharp-edged, full-width rectangular
weir as shown in Figure 15.49. The weir height is 3 ft, and at the maximum design flow
the upstream water depth is 4.5 ft. What is the discharge under these conditions? What
is the discharge of a 90° V-notch weir with the same weir head?

SOLUTION

We can calculate the flowrate of a full-width rectangular weir by using Eqs. 15.62a
and 15.62b, noting that the weir head y1 − yW = 4.5 ft − 3.0 ft = 1.5 ft exceeds the

For a full-width weir, as shown in Figure 15.48A, the width of the nappe L is equal to w
the width of the weir opening. However, on a partial-width weir, the width of the
nappe L is somewhat smaller than the width of the weir opening LW owing to a slight
horizontal contraction of the stream. This is illustrated in Figure 15.48B. A correction
for this effect can be made by using an empirical correction

L = LW − 0.2(y1 − yW ) (15.62c)

when one is applying Eq. 15.62a to a partial width weir.
The V-notch weir shown in Figure 15.48C is often employed for measuring low

flowrates and also has satisfactory operation over a wide range of flowrates because the
flow area changes as the square of the weir head (y1 − yW ). The flowrate of this type of
weir is modeled as 

Q = CW

(
tan

θ

2

)√
g(y1 − yW )5/2 (15.63a)

with the discharge coefficient taken as

CW = 0.44 (15.63b)

In general, the accuracy of any type of sharp crested weir as a flow measuring device is
about ±5%, provided the value of the weir head is at least 0.2 ft (0.06 m) and the weir
edge is kept sharp and free of debris.
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Flow over a broad crested weir in a rectangular channel is illustrated in Fig-
ure 15.50, to be discussed shortly, in Example 15.19. The operation of this device de-
pends on attaining critical flow over the weir block; thus it is necessary that the weir
height yW be large enough to accomplish this. From mass conservation we know that
Q = wV1 y1 = wVC yC , and since for critical flow we have VC = √

gyC , the flowrate is
given by

Q = w
√

gy3/2
C (15.64)

Neglecting friction and applying the Bernoulli equation from a point upstream to the
point at which critical flow occurs, we have V 2

1 /2g + y1 = V 2
C/2g + (yC + yW ). Since

we know V 2
C = gyC , we can write V 2

C/2g + (yC + yw) = 3
2 yC + yW , and rearrange the

Bernoulli equation to obtain

yC = 2

3

[
V 2

1

2g
+ (y1 − yW )

]

If we now imagine a reservoir condition far upstream of the weir, where the depth is y0

and the velocity is V0 = 0, then writing the Bernoulli equation between this imaginary
reservoir location and point 1 gives y0 = V 2

1 /2g + y1. Thus the preceding equation can
also be written as yC = 2

3 (y0 − yW ). In most cases the difference between reservoir
depth y0 and the upstream depth y1 is negligible, so this can be approximated as
yC = 2

3 (y0 − yW ) ≈ 2
3 (y1 − yW ). Substituting this into Eq. 15.64 yields the flowrate

Q = w
√

g
(

2
3

)3/2
(y1 − yW )3/2 (15.65)

minimum required value of 0.2 ft. To calculate the discharge coefficient we use
Eq. 15.62b: CW = 0.59 + 0.08 [(y1 − yW )/yw]. Inserting the data, we have CW =
0.59 + 0.08 [(4.5 − 3)/3] = 0.63. The flowrate is then found by using Eq. 15.62a:

Q = CW w

(
L

w

)√
g(y1 − yW )3/2

= 0.63(16 ft)

(
16 ft

16 ft

)√
32.2 ft/s2(4.5 ft − 3 ft)3/2 = 105 ft3/s

The 90° V-notch weir is described by Eqs. 15.63. Combining these equations and noting
that θ = 90◦, we have 

Q = 0.44
√

g(y1 − yW )5/2 = 0.44
√

32.2 ft/s2(4.5 ft − 3 ft)5/2 = 6.9 ft3/s

3 ft

16 ft

4.5 ft

Figure 15.49 Schematic for Example 15.18.



Thus we can use Eq. 15.65 to calculate the flowrate for a broad crested weir, provided the
downstream conditions permit critical flow over the weir block. For proper operation, the
length of the weir block LW should be roughly in the range 2 < LW /(y1 − yW ) < 10.

15.9 SUMMARY

The most important parameter in the analysis of open channel flows of engineering in-
terest is the Froude number, Fr = V/

√
gL . For example, as the flow approaches the

leading edge of a bump, the depth slope and free surface slope will decrease for Fr < 1
(subcritical flow) but increase for Fr > 1 (supercritical flow). Thus, the liquid depth
decreases and the free surface elevation drops over a bump in a subcritical flow, but the
depth increases and free surface elevation rises over the same bump in a supercritical
flow. Critical flow can occur only at the peak of the bump. If critical flow does occur at
the peak of a bump, then a subcritical flow upstream of the bump may become a super-
critical flow downstream if conditions are right.

1012 15 OPEN CHANNEL FLOW

EXAMPLE 15 .19

A broad crested weir rises 0.3 m high above the bottom of a stream channel. If the mea-
sured weir head is y1 − yW = 0.65 m, and the weir is 10 m wide, find the volume
flowrate crossing the weir and the critical water depth, yC .

SOLUTION

Figure 15.50 can serve as a sketch. To find the volume flowrate, we insert the data
into Eq. 15.65, obtaining Q = w

√
g ( 2

3 )3/2(y1 − yW )3/2 = 10 m
√

9.81 m/s2 ( 2
3 )3/2 ×

(0.65 m)3/2 = 8.9 m3/s. To find the crtical water depth, we note that yC ≈ 2
3 (y1 − yW ).

Since we know y1 − yW = 0.65 m, we obtain yC ≈ 2
3 (y1 − yW ) = 2

3 (0.65 m) =
0.43 m.

y0 y1

yC

V0 � 0

V1 VC

yW

LW

C

1

Figure 15.50 Schematic for Example 15.19.
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Similarly, as the flow approaches the leading edge of a depression, the depth slope
and free surface slope will increase for Fr < 1 but decrease for Fr > 1. That is, the
liquid depth increases and the free surface elevation rises over a depression in a subcrit-
ical flow, but the depth decreases and free surface elevation drops over the same depres-
sion in a supercritical flow. As was the case with a bump, critical flow can occur only
where the bed slope is horizontal, i.e., if a depression has a trough.

The value of Fr also plays a role in determining the response of a flow in a hori-
zontal channel to a change in the channel width. For subcritical flow through a contrac-
tion, the depth will decrease, while for supercritical flow through the same contraction
the depth will increase. For subcritical flow through an expansion the depth will in-
crease, while in supercritical flow the depth will decrease.

The behavior of surface waves in an open channel flow is also governed by the
value of the local Froude number. A small amplitude wave is able to propagate upstream
in subcritical flow but is unable to propagate upstream in supercritical flow. Thus the
flow of information about surface disturbances and obstructions, which is carried by
small amplitude waves, is strongly affected by the value of the local Froude number.

Since disturbances cannot propagate upstream in a supercritical flow, if down-
stream conditions require that a supercritical flow become subcritical, a smooth transi-
tion is impossible, and a phenomenon known as a hydraulic jump is observed in the
flow. In a hydraulic jump, the flow changes from supercritical to subcritical in a rela-
tively short distance, with an abrupt decrease in velocity, increase in depth, and a sub-
stantial head loss. Designers use hydraulic jumps to safely dissipate energy in a high
speed flow and thus prevent erosion in a streambed downstream.

Specific energy concepts can be used to make predictions of the following types
about a flow in a rectangular channel:

1. In subcritical flow, an increase/decrease in specific energy is accompanied by an
increase/decrease in depth.

2. In supercritical flow, an increase/decrease in specific energy is accompanied by
a decrease/increase in depth.

3. If the flow is critical, i.e., at the point of minimum specific energy, a small in-
crease in specific energy causes a relatively large change in depth.

4. For a subcritical flow to become a supercritical flow, the specific energy must
first decrease. The flow must then go through the critical point and along the su-
percritical branch. For example, this process may occur via a bump or decrease
in channel width.

In a steady, fully developed flow in a prismatic channel, the liquid depth is constant,
and depth slope is zero. Thus the free surface is parallel to the bed. This type of open chan-
nel flow is referred to as uniform flow or flow at normal depth. The latter name reflects the
fact that the depth of a uniform flow is referred to as the normal depth yN . Channels are
often designed to have uniform flow, so understanding their characteristics is of some im-
portance. The velocity in uniform open channel flow is given by the Manning equation,
V = R2/3

H S1/2
B /n, and the volume flowrate is given by Q = AR2/3

H S1/2
B /n. The bed slope

of a particular uniform flow is classified according to the following criteria:

1. For yN > yHC , the slope must be SB < SBC , and the slope is called mild 
or subcritical.



2. For yN = yHC , the slope must be SB = SBC , and the slope is called critical.

3. For yN < yHC , the slope must be SB > SBC , and the slope is called steep 
or supercritical.

A uniform flow may be characterized by the size and shape of the channel, the nor-
mal depth, the slope of the channel bottom, the roughness of the wall, and either the av-
erage velocity or the flowrate. Thus a problem may require that we find any of these
variables. In addition, we may think of a problem as involving analysis or design. In an
analysis problem, we would typically be given information regarding the channel size,
shape, material, and slope and be asked to find flowrate for a certain normal depth or
vice versa. In a design problem, we might be asked to determine the slope of a channel
for a case in which the desired shape, flowrate, and normal depth are specified.

Sluice gates are structures used to control and measure the flowrate in systems such
as irrigation channels. Given the depths upstream and downstream of the gate and the
other physical parameters of the flow, one can predict the flowrate through the gate.

A weir is a device used to measure and control open channel flows. Although fric-
tion can be neglected in analyzing flow over a sharp crested weir, the use of the
Bernoulli equation is not straightforward because of streamline curvature and nonuni-
form flow in the vicinity of the nappe. Thus we are forced to rely on empirical results. In
general, the accuracy of any type of sharp crested weir as a flow-measuring device is
about ±5%, provided the value of the weir head is at least 0.2 ft (0.06 m) and the weir
edge is kept sharp and free of debris.
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PROBLEMS

Section 15.1

15.1 Find four photographs of open chan-
nel flow on the Internet. Include both natural
and man-made examples.

15.2 Find the geometry and flow character-
istics of a river or stream near your school.
What is the Reynolds number?

Section 15.2

15.3 Water flows in a rectangular, open
channel that is 36 ft wide and 8 ft deep. The
flow rate is Q = 2 × 106 gal/min. Determine
the average velocity.

15.4 Determine the expression for the
hydraulic radius RH for a trapezoidal channel
of width w, depth d, and slope angle θ .

Section 15.3

15.5 For the data you found in Prob-
lem 15.2, determine the Froude number.

15.6 For the flow described in Prob-
lem 15.3, determine the Froude number.

15.7 Water flows at 1.5 m/s and a depth of
0.8 m in a horizontal rectangular channel. If
this flow encounters a bump of 0.1 m, what is
the depth above the bump?

15.8 In Problem 15.7, what is the Froude
number upstream?

15.9 Redo Problem 15.7 with a flow
4.5 m/s.

15.10 In Problem 15.9, what is the Froude
number upstream?
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15.11 A flow in a rectangular channel 1 m
deep with a velocity of 0.3 m/s approaches a
smooth channel rise of 0.3 m. What is the
depth after the rise?

15.12 A flow in a 3 ft wide rectangular
channel is 3 ft deep and has a flow rate of
0.2 ft3/s approaching a smooth drop of 2.5 in.
What is the depth after the drop?

15.13 Water flows through a 4 ft wide rec-
tangular channel at a velocity of 3 ft/s and a
depth of 2 ft. If the channel width contracts to
3 ft what is downstream depth?

15.14 Redo Problem 15.13 if the upstream
depth is 0.5 ft and the volume flow rate is
24 ft3/s.

15.15 A width contraction in a horizontal
channel is called a venturi flume. If the up-
stream channel width and depth are 0.6 and
0.3 m, respectively, and the flow rate is
0.1 m3/s, find the downstream critical depth,
velocity, and width.

15.16 The width of a horizontal, rectangu-
lar channel expands smoothly from 6 ft to 7 ft.
The upstream depth is 3 ft and the velocity is
5 ft/s. What is the downstream depth?

15.17 Redo Problem 15.16 with an up-
stream velocity of 10 ft/s.

15.18 Two objects are dropped in a stream
two seconds apart; the stream is 4 m deep and
is flowing at 1 m/s. Sketch two circular ripples
one second after the second object hits the
surface of the water.

15.19 Redo Problem 15.18 with the stream
flowing at 10 m/s.

15.20 An object is dropped in a stream of
uniform depth. The resulting wave travels
downstream 15 ft and upstream 6 ft in one
second. Determine the velocity and depth of
the stream.

15.21 A submerged object breaks the sur-
face of a stream causing a wave as shown in
Figure P15.1. If the stream depth is 1 ft and
the half-angle of the wedgelike wave pattern
is 40°, what are the flow speed and Froude
number?

Side view

Top view

Object

1 ft

Flow
direction
u � ?

40�

40�

Wave

Flow
direction

Object

u � ?

Figure P15.1

15.22 Redo Problem 15.21 with a half-
angle of 20°.

15.23 The flowrate into a hydraulic jump is
0.3 m3/s; the square channel is 0.5 m wide and
the depth downstream of the jump is 0.4 m.
Determine the depth upstream of the jump, the
Froude numbers upstream and downstream of
the jump, the headloss, and the power dissi-
pated in the jump.

15.24 A hydraulic jump is formed in a
150 ft wide channel. If the upstream and
downstream depths are 1 and 3 ft, respec-
tively, determine the upstream velocity,
headloss, and the power dissipated.
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15.25 Downstream from a sluice gate a
hydraulic jump occurs. Leaving the sluice
gate the flow depth is 2 in. and the velocity is
16 ft/s. Determine the downstream headloss
and power dissipation per foot of width.

15.26 A hydraulic jump occurs in a rectan-
gular channel that carries a flow with a depth
of 0.3 m and a flow rate of 0.6 m3/s per meter
of width. Determine the downstream headloss
and power dissipation per meter of width.

15.27 For the hydraulic jump described
in Problem 15.24, determine the increase in
temperature of the water if all the power dissi-
pated is converted to heat that is absorbed by
the water. Comment on whether the tempera-
ture change could easily be measured.

15.28 A moving hydraulic jump, as shown
in Figure P15.2, is possible naturally in the
form of a tidal bore, or can be created by sud-
denly opening a sluice gate. The conditions
can be calculated by using the same procedure
as for a stationary hydraulic jump if we con-
sider the velocities relative to the wave. Obtain
an expression for the velocity of the wave in
terms of the depth on either side of the wave. 

10 m wide and carries 20 m3/s of water.
Determine the critical depth, critical hydraulic
depth, critical area, critical velocity, and criti-
cal free surface width.

15.32 Draw the specific energy diagram
for the flow described in Problem 15.7, and
use it to solve this problem.

15.33 Draw the specific energy diagram
for the flow described in Problem 15.9, and
use it to solve this problem.

15.34 Draw the specific energy diagram
for the flow described in Problem 15.11, and
use it to solve this problem.

15.35 Draw the specific energy diagram
for the flow described in Problem 15.12, and
use it to solve this problem.

15.36 Draw the specific energy diagram
for the flow described in Problem 15.24.

15.37 Draw the specific energy diagram
for the flow described in Problem 15.25.

15.38 Draw the specific energy diagram
for the flow described in Problem 15.26.

Section 15.5

15.39 Water flows in a rectangular chan-
nel 25 ft wide, with a Manning coefficient of
0.022. Plot a graph of flow rate as a function
of slope for several depths.

15.40 A creek has area, wetted perimeter,
and slope of 130 ft2, 46 ft, and 0.04 ft/100 ft,
respectively. Determine the velocity and the
average shear stress on the wetted perimeter
of the creek channel.

15.41 A 5 m wide rectangular channel
has a slope of 0.004 m/m and carries 20 m3/s
of water at a depth of 4 m. Determine the
Manning coefficient and the average shear
stress on the channel walls and bottom.

Vsurge

y2

y1

Quiescent fluid

Figure P15.2

Section 15.4

15.29 Determine the critical depth and
flow velocity in a 40 ft wide rectangular chan-
nel carrying water at 1800 ft3/s.

15.30 For the flow described in Prob-
lem 15.29, if the actual depth is 20 ft, what is
the Froude number?

15.31 A 60° trapezoidal channel (similar
in shape to the one shown in Figure 15.32) is
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15.42 Water flows in a 35° trapezoidal
channel that is 10 ft wide. The depth is 6 ft and
the slope is 0.0015. Determine the flowrate
if this is a clean excavated earth channel.
Also determine what the flowrate would be if
weeds covered the perimeter.

15.43 Water flows in a 45° trapezoidal
channel that is 10 m wide. The depth is 5 m,
and the slope is 0.0012. Determine the
flowrate if the channel is lined with finished
concrete. Also determine what the flowrate
would be for a lining of unfinished concrete.

15.44 At a mine, a rectangular channel
lined with wood carries 200 ft3/s of water at a
slope of 1 ft per 100 ft of length. What is the
normal depth of the flow?

15.45 A flooded stream can be modeled
as shown in Figure P15.3. What is the
flowrate if the channel is considered to be
clean and straight and the floodplain is farm-
land? Assume that the slope is 0.001.

15.46 Redo Problem 15.45 with the flood-
plain covered by trees.

15.47 A 1 m diameter clay tile sewer pipe
runs one-third full on a slope of 0.25°. Deter-
mine the flowrate.

15.48 Redo Problem 15.47 for a com-
pletely full pipe.

15.49 Redo Problem 15.48 using the pipe
flow methods of Chapter 13.

15.50 Two sewer pipes like the one de-
scribed in Problem 15.47 flow into a single
finished concrete pipe at the same slope. What

diameter should it be such that it is one-third
full?

15.51 Derive the expression for optimal
depth for a rectangular channel given in
Figure 15.6.

15.52 What are the best dimensions for a
rectangular channel lined with finished con-
crete to carry 10 m3/s of water with a slope of
0.0015?

15.53 What are the best dimensions for a
wooden rectangular channel to carry 100 ft3/s
of water with a slope of 0.0012?

15.54 Derive the expression for optimum
depth for a trapezoidal channel given in
Figure 15.6.

15.55 What is the optimum depth for a
60° trapezoidal channel lined with finished
concrete to carry 10 m3/s of water with a
slope of 0.0015?

15.56 What is the optimum depth for a
60° trapezoidal earth channel to carry
100 ft3/s of water with a slope of 0.0012?

15.57 Derive the expression for optimal
depth for a triangular channel given in
Figure 15.6.

15.58 What is the optimum depth for a
45° triangular channel lined with finished
concrete to carry 10 m3/s of water with a
slope of 0.0015?

15.59 What is the optimum depth for a
45° triangular channel lined with rough con-
crete to carry 100 ft3/s of water with a slope
of 0.0012?

1.0 m

5 m 5 m3 m

1.5 m

Figure P15.3
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15.60 Derive the expression for optimal
depth for a pipe given in Figure 15.6.

Section 15.7

15.61 A sluice gate is located in a rectan-
gular channel 10 ft wide. The depth upstream
of the gate is 6 ft. What is the flowrate if the
gate is opened 1 ft? Assume free outflow.

15.62 A sluice gate is located in a rectan-
gular channel 4 m wide. The depth upstream
of the gate is 3 m. What is the flowrate if the
gate is opened 0.5 m? Assume free outflow.

15.63 A sluice gate is located in a 20 ft
wide wooden rectangular channel that has a
slope of 0.020. The upstream depth is 8 ft and
the gate is open 3 ft. Determine the flowrate
and explain whether the depth increases or
decreases downstream.

15.64 A sluice gate is located in a 5 m
wide finished concrete channel that has a
slope of 0.010. The upstream depth is 2 m and
the gate is open 1 m. Determine the flowrate
and explain whether the depth increases or de-
creases downstream.

Section 15.8

15.65 A sharp crested weir is located in a
20 ft wide rectangular channel. The weir is
10 ft tall and the upstream depth is 11 ft.
Determine the flowrate.

15.66 A sharp crested weir is located in a
2 m wide rectangular channel. The weir is 1 m
tall and the upstream depth is 1.1 m. Deter-
mine the flowrate.

15.67 A channel 12 ft wide requires a
sharp crested weir. Choose the height of the
weir such that the flow is 40 ft3/s when the
upstream depth is 8 ft.

15.68 A channel 2 m wide requires a sharp
crested weir. Choose the height of the weir
such that the flow is 2 m3/s when the up-
stream depth is 2 m.

15.69 Water flows over a 50° V-notch
weir. If the height differential is 1 ft, what is
the flowrate?

15.70 Water flows over a 60° V-notch
weir. If the height differential is 1 m, what is
the flowrate?

15.71 A 10 m deep reservoir discharges
over a broad crested weir. If the crest of the
weir is 0.5 m below the level of the reservoir,
what is the flowrate per unit width?

15.72 A 12 ft deep reservoir discharges
over a broad crested weir. If the crest of the
weir is 1 ft below the level of the reservoir,
what is the flowrate per unit width?
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TABLE A.3 Physical Properties of Water in BG Units*

Specific Dynamic Kinematic Surface Vapor Speed of
Density Weight Viscosity Viscosity Tension** Pressure Sound

Temperature � � � 	 
 pv c
(°F) (slug/ft3) (lb/ft3) [(lb . s)/ft2] (ft2/s) (lb/ft) [lb/in.2 (abs)] (ft/s)

32 1.940 62.42 3.732 E − 5 1.924 E − 5 5.18 E − 3 8.854 E − 2 4603

40 1.940 62.43 3.228 E − 5 1.664 E − 5 5.13 E − 3 1.217 E − 1 4672

50 1.940 62.41 2.730 E − 5 1.407 E − 5 5.09 E − 3 1.781 E − 1 4748

60 1.938 62.37 2.344 E − 5 1.210 E − 5 5.03 E − 3 2.563 E − 1 4814

70 1.936 62.30 2.037 E − 5 1.052 E − 5 4.97 E − 3 3.631 E − 1 4871

80 1.934 62.22 1.791 E − 5 9.262 E − 6 4.91 E − 3 5.069 E − 1 4819

90 1.931 62.11 1.500 E − 5 8.233 E − 6 4.86 E − 3 6.979 E − 1 4960

100 1.927 62.00 1.423 E − 5 7.383 E − 6 4.79 E − 3 9.493 E − 1 4995

120 1.918 61.71 1.164 E − 5 6.067 E − 6 4.67 E − 3 1.692 E + 0 5049

140 1.908 61.38 9.743 E − 6 5.106 E − 6 4.53 E − 3 2.888 E + 0 5091

160 1.896 61.00 8.315 E − 6 4.385 E − 6 4.40 E − 3 4.736 E + 0 5101

180 1.883 60.58 7.207 E − 6 3.827 E − 6 4.26 E − 3 7.507 E + 0 5195

200 1.869 60.12 6.342 E − 6 3.393 E − 6 4.12 E − 3 1.152 E + 1 5089

212 1.860 59.83 5.886 E − 6 3.165 E − 6 4.04 E − 3 1.469 E + 1 5062

*Adapted from various sources.
**In contact with air.

TABLE A.4 Physical Properties of Water in SI Units*

Specific Dynamic Kinematic Surface Vapor Speed of
Density Weight Viscosity Viscosity Tension** Pressure Sound

Temperature � � � 	 
 pv c
(°C) (kg/m3) (kN/m3) [(N . s)/m2] (m2/s) (N/m) [N/m2 (abs)] (m/s)

0 999.9 9.806 1.787 E − 3 1.787 E − 6 7.56 E − 2 6.105 E + 2 1403

5 1000.0 9.807 1.519 E − 3 1.519 E − 6 7.49 E − 2 8.722 E + 2 1427

10 999.7 9.804 1.307 E − 3 1.307 E − 6 7.42 E − 2 1.228 E + 3 1447

20 998.2 9.789 1.002 E − 3 1.004 E − 6 7.28 E − 2 2.338 E + 3 1481

30 995.7 9.765 7.975 E − 4 8.009 E − 7 7.12 E − 2 4.243 E + 3 1507

40 992.2 9.731 6.529 E − 4 6.580 E − 7 6.96 E − 2 7.376 E + 3 1526

50 988.1 9.690 5.468 E − 4 5.534 E − 7 6.79 E − 2 1.233 E + 4 1541

60 983.2 9.642 4.665 E − 4 4.745 E − 7 6.62 E − 2 1.992 E + 4 1552

70 977.8 9.589 4.042 E − 4 4.134 E − 7 6.44 E − 2 3.116 E + 4 1555

80 971.8 9.530 3.547 E − 4 3.650 E − 7 6.26 E − 2 4.734 E + 4 1555

90 965.3 9.467 3.147 E − 4 3.260 E − 7 6.08 E − 2 7.010 E + 4 1550

100 958.4 9.399 2.818 E − 4 2.940 E − 7 5.89 E − 2 1.013 E + 5 1543

*Adapted from various sources.
**In contact with air.
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TABLE A.5 Physical Properties of Air at Standard Atmospheric Pressure in BG Units*

Specific Dynamic Kinematic Specific Speed of
Density Weight Viscosity Viscosity Heat Ratio Sound

Temperature � � � 	 k c
(°F) (slug/ft3) (lb/ft3) [(lb.s)/ft2] (ft2/s) (ft/s)
−40 2.939 E − 3 9.456 E − 2 3.29 E − 7 1.12 E − 4 1.401 1004

−20 2.805 E − 3 9.026 E − 2 3.34 E − 7 1.19 E − 4 1.401 1028

0 2.683 E − 3 8.633 E − 2 3.38 E − 7 1.26 E − 4 1.401 1051

10 2.626 E − 3 8.449 E − 2 3.44 E − 7 1.31 E − 4 1.401 1062

20 2.571 E − 3 8.273 E − 2 3.50 E − 7 1.36 E − 4 1.401 1074

30 2.519 E − 3 8.104 E − 2 3.58 E − 7 1.42 E − 4 1.401 1085

40 2.469 E − 3 7.942 E − 2 3.60 E − 7 1.46 E − 4 1.401 1096

50 2.420 E − 3 7.786 E − 2 3.68 E − 7 1.52 E − 4 1.401 1106

60 2.373 E − 3 7.636 E − 2 3.75 E − 7 1.58 E − 4 1.401 1117

70 2.329 E − 3 7.492 E − 2 3.82 E − 7 1.64 E − 4 1.401 1128

80 2.286 E − 3 7.353 E − 2 3.86 E − 7 1.69 E − 4 1.400 1138

90 2.244 E − 3 7.219 E − 2 3.90 E − 7 1.74 E − 4 1.400 1149

100 2.204 E − 3 7.090 E − 2 3.94 E − 7 1.79 E − 4 1.400 1159

120 2.128 E − 3 6.846 E − 2 4.02 E − 7 1.89 E − 4 1.400 1180

140 2.057 E − 3 6.617 E − 2 4.13 E − 7 2.01 E − 4 1.399 1200

160 1.990 E − 3 6.404 E − 2 4.22 E − 7 2.12 E − 4 1.399 1220

180 1.928 E − 3 6.204 E − 2 4.34 E − 7 2.25 E − 4 1.399 1239

200 1.870 E − 3 6.016 E − 2 4.49 E − 7 2.40 E − 4 1.398 1258

300 1.624 E − 3 5.224 E − 2 4.97 E − 7 3.06 E − 4 1.394 1348

400 1.435 E − 3 4.616 E − 2 5.24 E − 7 3.65 E − 4 1.389 1431

500 1.285 E − 3 4.135 E − 2 5.80 E − 7 4.51 E − 4 1.383 1509

750 1.020 E − 3 3.280 E − 2 6.81 E − 7 6.68 E − 4 1.367 1685

1000 8.445 E − 4 2.717 E − 2 7.85 E − 7 9.30 E − 4 1.351 1839

1500 6.291 E − 4 2.024 E − 2 9.50 E − 7 1.51 E − 3 1.329 2114

*Adapted from various sources.

TABLE A.6 Physical Properties of Air at Standard Atmospheric Pressure in SI Units*

Specific Dynamic Kinematic Specific Speed of
Density Weight Viscosity Viscosity Heat Ratio Sound

Temperature � � � 	 k c
(°C) (kg/m3) (N/m3) [(N . s)/m2] (m2/s) (m/s)
−40 1.514 14.85 1.57 E − 5 1.04 E − 5 1.401 306.2

−20 1.395 13.68 1.63 E − 5 1.17 E − 5 1.401 319.1

0 1.292 12.67 1.71 E − 5 1.32 E − 5 1.401 331.4

5 1.269 12.45 1.73 E − 5 1.36 E − 5 1.401 334.4

10 1.247 12.23 1.76 E − 5 1.41 E − 5 1.401 337.4

15 1.225 12.01 1.80 E − 5 1.47 E − 5 1.401 340.4
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20 1.204 11.81 1.82 E − 5 1.51 E − 5 1.401 343.3

25 1.184 11.61 1.85 E − 5 1.56 E − 5 1.401 346.3

30 1.165 11.43 1.86 E − 5 1.60 E − 5 1.400 349.1

40 1.127 11.05 1.87 E − 5 1.66 E − 5 1.400 354.7

50 1.109 10.88 1.95 E − 5 1.76 E − 5 1.400 360.3

60 1.060 10.40 1.97 E − 5 1.86 E − 5 1.399 365.7

70 1.029 10.09 2.03 E − 5 1.97 E − 5 1.399 371.2

80 0.9996 9.803 2.07 E − 5 2.07 E − 5 1.399 376.6

90 0.9721 9.533 2.14 E − 5 2.20 E − 5 1.398 381.7

100 0.9461 9.278 2.17 E − 5 2.29 E − 5 1.397 386.9

200 0.7461 7.317 2.53 E − 5 3.39 E − 5 1.390 434.5

300 0.6159 6.040 2.98 E − 5 4.84 E − 5 1.379 476.3

400 0.5243 5.142 3.32 E − 5 6.34 E − 5 1.368 514.1

500 0.4565 4.477 3.64 E − 5 7.97 E − 5 1.357 548.8

1000 0.2772 2.719 5.04 E − 5 1.82 E − 4 1.321 694.8

*Adapted from various sources.

TABLE A.7 Properties of Common Liquids at Standard Atmospheric Pressure and 20°C in SI Units

Dynamic Surface Vapor Bulk Viscosity
Density Viscosity Tension* Pressure Modulus Parameter C†

� � 
 pv k
Liquid (kg/m3) [kg/(m-s)] (N/m) (N/m2) (N/m2)
Ammonia 608 2.20 E − 4 2.13 E − 2 9.10 E + 5 — 1.05

Benzene 881 6.51 E − 4 2.88 E − 2 1.01 E + 4 1.4 E + 9 4.34

Carbon tetrachloride 1,590 9.67 E − 4 2.70 E − 2 1.20 E + 4 9.65 E + 8 4.45

Ethanol 789 1.20 E − 3 2.28 E − 2 5.7 E + 3 9.0 E + 8 5.72

Ethylene glycol 1,117 2.14 E − 2 4.84 E − 2 1.2 E + 1 — 11.7

Freon 12 1,327 2.62 E − 4 — — — 1.76

Gasoline 680 2.92 E − 4 2.16 E − 2 5.51 E + 4 9.58 E + 8 3.68

Glycerin 1,260 1.49 6.33 E − 2 1.4 E − 2 4.34 E + 9 28.0

Kerosene 804 1.92 E − 3 2.8 E − 2 3.11 E + 3 1.6 E + 9 5.56

Mercury 13,550 1.56 E − 3 4.84 E − 1 1.1 E − 3 2.55 E + 10 1.07

Methanol 791 5.98 E − 4 2.25 E − 2 1.34 E + 4 8.3 E + 8 4.63

SAE 10W oil 870 1.04 E − 1‡ 3.6 E − 2 — 1.31 E + 9 15.7

SAE 10W-30 oil 876 1.7 E − 1‡ — — — 14.0

TABLE A.6 (continued )

Specific Dynamic Kinematic Specific Speed of
Density Weight Viscosity Viscosity Heat Ratio Sound

Temperature � � � 	 k c
(°C) (kg/m3) (N/m3) [(N . s)/m2] (m2/s) (m/s)

(continued)
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SAE 30W oil 891 2.9 E − 1‡ 3.5 E − 2 — 1.38 E + 9 18.3

SAE 50W oil 902 8.6 E − 1‡ — — — 20.2

Water 998 1.00 E − 3 7.28 E − 2 2.34 E + 3 2.19 E + 9 Table A.4

Seawater (30%) 1,025 1.07 E − 3 7.28 E − 2 2.34 E + 3 2.33 E + 9 7.28

*In contact with air. 
†The viscosity parameter C can be used to estimate the liquid viscosity as a function of temperature using the empirical relationship
µ/µ20°C = exp[C(293 K/T K − 1)] with an accuracy of ±6% in the range of 0 ≤ T ≤ 100°C.
‡Representative values.

TABLE A.8 Physical Properties of Common Gases at Standard Atmospheric Pressure and 20°C in SI Units*

Dynamic
Viscosity

Molecular R �g � Specific Heat Power-law
Gas Weight [m2/(s2 . K)] (N/m3) [(N. s)/m2] Ratio Exponent n**
H2 2.016 4124 0.822 9.05 E − 6 1.41 0.68

He 4.003 2077 1.63 1.97 E − 5 1.66 0.67

H2O 18.02 461 7.35 1.02 E − 5 1.33 1.15

Ar 39.944 208 16.3 2.24 E − 5 1.67 0.72

Dry air 28.96 287 11.8 1.80 E − 5 1.40 0.67

CO2 44.01 189 17.9 1.48 E − 5 1.30 0.79

CO 28.01 297 11.4 1.82 E − 5 1.40 0.71

N2 28.02 297 11.4 1.76 E − 5 1.40 0.67

O2 32.00 260 13.1 2.00 E − 5 1.40 0.69

NO 30.01 277 12.1 1.90 E − 5 1.40 0.78

N2O 44.02 189 17.9 1.45 E − 5 1.31 0.89

Cl2 70.91 117 28.9 1.03 E − 5 1.34 1.00

CH4 16.04 518 6.54 1.34 E − 5 1.32 0.87

*Adapted from various sources.

**The power law exponent, n, can be used to estimate the liquid viscosity as a function of temperature by using the relationship
µ/µ293K ≈ (T K/293 K)n with an accuracy of ±6% in the range of 250 ≤ T ≤ 1000 K.

TABLE A.7 (continued )

Dynamic Surface Vapor Bulk Viscosity
Density Viscosity Tension* Pressure Modulus Parameter C†

� � 
 pv k
Liquid (kg/m3) [kg/(m-s)] (N/m) (N/m2) (N/m2)



APPENDIX B PROPERTIES OF THE U.S. STANDARD

ATMOSPHERE

TABLE B.1 Properties of the U.S. Standard Atmosphere in BG Units

Acceleration Pressure Density Dynamic Viscosity
Altitude Temperature of Gravity p � �

(ft) (°F) g (ft/s2) [lb/in.2 (abs)] (slug/ft3) [(lb · s)/ft2]

−5,000 76.84 32.189 17.554 2.745 E − 3 3.836 E − 7

0 59.00 32.174 14.696 2.377 E − 3 3.737 E − 7

5,000 41.17 32.159 12.228 2.048 E − 3 3.637 E − 7

10,000 23.36 32.143 10.108 1.756 E − 3 3.534 E − 7

15,000 5.55 32.128 8.297 1.496 E − 3 3.430 E − 7

20,000 −12.26 32.112 6.759 1.267 E − 3 3.324 E − 7

25,000 −30.05 32.097 5.461 1.066 E − 3 3.217 E − 7

30,000 −47.83 32.082 4.373 8.907 E − 4 3.107 E − 7

35,000 −65.61 32.066 3.468 7.382 E − 4 2.995 E − 7

40,000 −69.70 32.051 2.730 5.873 E − 4 2.969 E − 7

45,000 −69.70 32.036 2.149 4.623 E − 4 2.969 E − 7

50,000 −69.70 32.020 1.692 3.639 E − 4 2.969 E − 7

60,000 −69.70 31.990 1.049 2.256 E − 4 2.969 E − 7

70,000 −67.42 31.959 0.651 1.392 E − 4 2.984 E − 7

80,000 −61.98 31.929 0.406 8.571 E − 5 3.018 E − 7

90,000 −56.54 31.897 0.255 5.610 E − 5 3.052 E − 7

100,000 −51.10 31.868 0.162 3.318 E − 5 3.087 E − 7

150,000 19.40 31.717 0.020 3.658 E − 6 3.511 E − 7

200,000 −19.78 31.566 0.003 5.328 E − 7 3.279 E − 7

250,000 −88.77 31.415 0.000 6.458 E − 8 2.846 E − 7

B-1



TABLE B.2 Properties of the U.S. Standard Atmosphere in SI Units

Acceleration Pressure Density Dynamic Viscosity
Altitude Temperature of Gravity p � �

(m) (°C) g (m/s2) [N/m2 (abs)] (kg/m3) [(N · s)/m2]

−1,000 21.50 9.810 1.139 E + 5 1.347 E + 0 1.821 E − 5

0 15.00 9.807 1.013 E + 5 1.225 E + 0 1.789 E − 5

1,000 8.50 9.804 8.988 E + 4 1.112 E + 0 1.758 E − 5

2,000 2.00 9.801 7.950 E + 4 1.007 E + 0 1.726 E − 5

3,000 −4.49 9.797 7.012 E + 4 9.093 E − 1 1.694 E − 5

4,000 −10.98 9.794 6.166 E + 4 8.194 E − 1 1.661 E − 5

5,000 −17.47 9.791 5.405 E + 4 7.364 E − 1 1.628 E − 5

6,000 −23.96 9.788 4.722 E + 4 6.601 E − 1 1.595 E − 5

7,000 −30.45 9.785 4.111 E + 4 5.900 E − 1 1.561 E − 5

8,000 −36.94 9.782 3.565 E + 4 5.258 E − 1 1.527 E − 5

9,000 −43.42 9.779 3.080 E + 4 4.671 E − 1 1.493 E − 5

10,000 −49.90 9.776 2.650 E + 4 4.135 E − 1 1.458 E − 5

15,000 −56.50 9.761 1.211 E + 4 1.948 E − 1 1.422 E − 5

20,000 −56.50 9.745 5.529 E + 3 8.891 E − 2 1.422 E − 5

25,000 −51.60 9.730 2.549 E + 3 4.008 E − 2 1.448 E − 5

30,000 −46.64 9.715 1.197 E + 3 1.841 E − 2 1.475 E − 5

40,000 −22.80 9.684 2.871 E + 2 3.996 E − 3 1.601 E − 5

50,000 −2.50 9.654 7.978 E + 1 1.027 E − 3 1.704 E − 5

60,000 −26.13 9.624 2.196 E + 1 3.097 E − 4 1.584 E − 5

70,000 −53.57 9.594 5.221 E + 0 8.283 E − 5 1.438 E − 5

80,000 −74.51 9.564 1.052 E + 0 1.846 E − 5 1.321 E − 5

B-2 APPENDIX B PROPERTIES OF THE U.S. STANDARD ATMOSPHERE



APPENDIX C UNIT CONVERSION FACTORS

C-1

Length

cm m km inch foot mile
1 cm (cgs) = 1 10−2 10−5 3.937 × 10−1 3.281 × 102 6.214 × 10−6

1 m (SI) = 102 1 10−3 3.937 × 101 3.281 6.214 × 10−4

1 km = 105 103 1 3.937 × 104 3.281 × 103 6.214 × 10−1

1 inch = 2.540 2.540 × 10−2 2.540 × 10−5 1 8.333 × 10−2 1.578 × 10−5

1 foot (EE, BG) = 3.048 × 101 3.048 × 10−1 3.048 × 10−4 1.200 × 101 1 1.894 × 10−4

1 mile = 1.609 × 105 1.609 × 103 1.609 6.336 × 104 5.280 × 103 1

nautical mile = 1.151 miles

Area

cm2 m2 km2 inch2 foot2 1 mile2 acre
1 cm2 (cgs) = 1 10−4 10−10 1.550 × 10−1 1.076 × 10−3 3.863 × 10−11 1.681 × 1014

1 m2 (SI) = 104 1 10−6 1.550 × 103 1.076 × 101 3.863 × 10−7 1.681 × 1010

1 km2 = 1010 106 1 1.550 × 109 1.076 × 107 3.863 × 10−1 1.681 × 104

1 inch2 = 6.452 6.452 × 10−4 6.452 × 10−10 1 6.944 × 10−3 2.491 × 10−10 1.593 × 10−7

1 foot2 (EE, BG) = 9.290 × 102 9.290 × 10−2 9.290 × 10−8 1.440 × 102 1 3.587 × 10−9 2.294 × 10−5

1 mile2 = 2.589 × 1010 2.589 × 106 2.589 4.014 × 109 2.788 × 108 1 6.40 × 102

1 acre = 5.948 × 105 5.948 × 101 5.948 × 10−5 6.278 × 106 4.360 × 104 1.563 × 10−3 1

Volume

cm3 m3 l inch3 foot3 gallon
1 cm3 (cgs) = 1 10−6 10−3 6.102 × 10−2 3.531 × 10−5 2.641 × 10−4

1 m3 (SI) = 106 1 103 6.102 × 104 3.531 × 101 2.641 × 102

1 L = 103 10−3 1 6.102 × 101 3.531 × 10−2 2.641 × 10−1

1 inch3 = 1.639 × 101 1.639 × 10−5 1.639 × 10−2 1 5.787 × 10−4 4.329 × 10−3

1 foot3 (EE, BG) = 2.832 × 104 2.832 × 10−2 2.832 × 101 1.728 × 103 1 7.481

1 gallon = 3.786 × 103 3.786 × 10−3 3.786 2.310 × 102 1.337 × 10−1 1

1 cm3 = mL
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Mass

g kg slug lbm

1 g (cgs) = 1 10−3 6.852 × 10−5 2.204 × 10−3

1 kg (SI) = 103 1 6.852 × 10−2 2.204

1 slug = 1.459 × 104 1.459 × 101 1 3.217 × 101

1 lbm (EE) = 4.537 × 102 4.537 × 10−1 3.108 × 10−2 1

Density

g/cm3 kg/m3 slug/ft3 lbm/in.3 lbm/ft3

1 g/cm3 (cgs) = 1 103 1.940 3.612 × 10−2 6.241 × 101

1 kg/m3 (SI) = 10−3 1 1.940 × 10−3 3.612 × 10−5 6.241 × 10−2

1 slug/ft3 (BG) = 5.154 × 10−1 5.154 × 102 1 1.862 × 10−2 3.217 × 101

1 lbm/in.3 = 2.764 × 101 2.764 × 104 5.371 × 101 1 1.728 × 103

1 lbm/ft3 (EE) = 1.601 × 10−2 1.601 × 101 3.108 × 10−2 5.787 × 10−4 1

Time

second minute hour day year
second (cgs, SI, EE, BG) = 1 1.667 × 10−2 2.778 × 10−4 1.157 × 10−5 3.169 × 10−8

minute = 6.000 × 101 1 1.667 × 10−2 6.944 × 10−4 1.901 × 10−6

hour = 3.600 × 103 6.000 × 101 1 4.167 × 10−2 1.141 × 10−4

day = 8.640 × 104 1.440 × 103 2.400 × 101 1 2.738 × 10−3

year = 3.156 × 107 5.259 × 105 8.766 × 103 3.652 × 102 1

Force

dyne N lbf poundal
1 g cm s−2 (dyne), (cgs) = 1 10−5 2.248 × 10−6 7.233 × 10−5

1 kg m s−2 = N (SI) = 105 1 2.248 × 10−1 7.233

1 slug ft s−2 (lbf), (BG, EE) = 4.448 × 105 4.448 1 3.217 × 101

1 lbm ft s−2 (poundal) = 1.383 × 104 1.383 × 10−1 3.108 × 10−2 1

Velocity

cm s−1 m s−1 km h−1 ft s−1 mile h−1 knot
1 cm s−1 (cgs) = 1 10−2 3.6 × 10−2 3.281 × 10−2 2.237 × 10−2 1.944 × 10−2

1 m s−1 (SI) = 102 1 3.600 3.281 2.237 1.944

1 km h−1 = 2.778 × 101 2.778 × 10−1 1 9.113 × 10−1 6.214 × 10−1 5.400 × 10−1

1 ft s−1 (EE, BC) = 3.048 × 101 3.048 × 10−1 1.097 1 6.818 × 101 5.925 × 101

1 mile h−1 = 4.470 × 101 4.470 × 10−1 1.6009 1.467 1 8.689 × 10−1

1 knot = 5.144 × 101 5.144 × 10−1 1.852 1.688 1.151 1

1 knot = nautical mile h−1.
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Pressure

dyne cm−2 N m−2 bar atm psi psf mmHg in H2O

1 dyne cm−2 (cgs) = 1 10−1 10−6 9.869 × 10−7 1.450 × 10−5 2.089 × 10−3 7.501 × 10−4 4.015 × 10−4

1 N m−2 (Pa), (SI) = 101 1 10−5 9.869 × 10−6 1.450 × 10−4 2.089 × 10−2 7.501 × 10−3 4.015 × 10−3

1 bar 106 105 1 9.869 × 10−1 1.450 × 101 2.089 × 103 7.501 × 102 4.015 × 102

1 atmosphere 1.013 × 106 1.013 × 105 1.013 1 1.470 × 101 2.116 × 103 7.600 × 102 4.068 × 102

1 lbf in.−2 (psi) = 6.895 × 104 6.895 × 103 6.895 × 10−2 6.805 × 10−2 1 1.440 × 102 5.171 × 101 2.768 × 101

1 lbf ft−2 (psf), 4.788 × 102 4.788 × 101 4.788 × 10−4 4.725 × 10−4 6.944 × 10−3 1 3.591 × 10−1 1.922 × 10−1

(EE, BG) =
1 mmHg 1.333 × 103 1.333 × 102 1.333 × 10−3 1.316 × 10−3 1.934 × 10−2 2.785 1 5.353 × 10−1

1 in. H2O = 2.491 × 103 2.491 × 102 2.491 × 10−3 2.458 × 10−3 3.613 × 10−2 5.202 1.868 1

H2O @ 4°C, Hg @ 0°C

Absolute Viscosity

centipoise poise kg m−1 s−1 lbf s ft−2 lbm ft−1 s−1

1 centipoise = 1 10−2 10−3 2.089 × 10−5 6.720 × 10−4

1 g cm−1 s−1 (poise), (cgs) = 102 1 10−1 2.089 × 10−3 6.720 × 10−2

1 kg m−1 s−1 (SI) = 103 10 1 2.089 × 10−2 6.720 × 10−1

1 lbf s ft−2 (EE, BG) = 4.788 × 104 4.788 × 102 4.788 × 101 1 3.217 × 101

1 lbm ft−1 s−1 = 1.488 × 103 1.488 × 101 1.488 3.108 × 10−2 1

Kinematic Viscosity

centistoke stoke m2 s−1 ft2 s−1 ft2 h−1

1 centistoke = 1 10−2 10−6 1.395 × 102 3.875 × 10−2

1 cm2 s−1 (stoke), (cgs) = 102 1 10−4 1.395 × 104 3.875

1 m2 s−1 (SI) = 106 104 1 1.395 × 108 3.875 × 104

1 ft2 s−1 (EE, BG) = 7.169 × 10−3 7.169 × 10−5 7.169 × 10−9 1 2.778 × 10−4

1 ft2 h−1 = 2.581 × 101 2.581 × 10−1 2.581 × 10−5 3.600 × 103 1

Volume Flowrate

cm3 s−1 m3 s−1 l min−1 in.3 s−1 ft3 s−1 ft min−3 gal min−1 gal h−1

1 cm3 s−1 (cgs) = 1 10−6 6.000 × 10−2 6.102 × 10−2 3.531 × 10−5 2.119 × 10−3 1.585 × 10−2 9.510 × 10−1

1 m3 s−1 (SI) = 106 1 6.000 × 104 6.102 × 104 3.531 × 101 2.119 × 103 1.585 × 104 9.510 × 105

1 l min−1 1.667 × 101 1.667 × 10−5 1 1.017 5.885 × 10−4 3.531 × 10−1 2.641 × 10−1 1.585 × 101

1 in.3 s−1 1.639 × 101 1.639 × 10−5 9.833 × 10−1 1 5.787 × 10−4 3.472 × 10−2 2.598 × 101 1.559 × 101

1 ft3 s−1 (EE, BG) = 2.832 × 104 2.832 × 10−2 1.699 × 103 1.728 × 103 1 6.000 × 101 4.489 × 102 2.693 × 104

1 ft3 min−1 = 4.719 × 102 4.719 × 10−4 2.832 × 101 2.880 × 101 1.667 × 10−2 1 7.481 4.489 × 102

1 gal min−1 = 6.309 × 101 6.309 × 10−5 3.786 3.849 × 10−2 2.228 × 10−3 1.337 × 10−1 1 1.667 × 10−2

1 gal h−1 = 1.052 1.052 × 10−6 6.310 × 10−2 6.416 × 10−2 3.713 × 10−5 2.223 × 10−3 6.000 × 101 1
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Energy, Work, Heat

erg joule kW-h calorie lbm ft2 s−2 ft lbf Btu hp h−1

1 g cm2 s−2 (erg), 1 10−7 2.778 × 10−14 2.389 × 10−8 2.373 × 10−6 7.376 × 10−8 9.481 × 10−11 3.725 × 10−14

(cgs) =
1 kg m2 s−2 ( joule), 107 1 2.778 × 10−7 2.389 × 10−1 2.373 × 101 7.376 × 10−1 9.481 × 10−4 3.725 × 10−7

(SI) =
1 kW-h = 3.600 × 1013 3.600 × 106 1 8.601 × 105 8.543 × 107 2.655 × 106 3.413 × 103 1.341

1 calorie 4.186 × 107 4.186 1.163 × 10−6 1 9.922 × 101 3.087 3.968 × 10−3 1.559 × 10−6

1 lbm ft2 s−2 4.214 × 105 4.214 × 10−2 1.171 × 10−8 1.008 × 10−2 1 3.108 × 10−2 3.994 × 10−5 1.570 × 10−8

(EG, BG) = 4

1 ft lbf = 1.356 × 107 1.356 3.766 × 10−7 3.239 × 10−1 3.217 × 101 1 1.285 × 10−3 5.051 × 10−7

1 Btu = 1.055 × 1010 1.055 × 103 2.930 × 10−4 2.520 × 102 2.504 × 104 7.779 × 102 1 3.929 × 10−4

1 hp h−1 = 2.685 × 1013 2.685 × 106 7.547 × 10−1 6.414 × 105 6.371 × 107 1.980 × 106 2.545 × 103 1

Power

erg s−1 watt kilowatt ft lbf s−1 cal s−1 Btu h−1 hp
1 erg s−1 (cgs) = 1 10−7 10−10 7.376 × 10−8 2.389 × 10−8 3.413 × 10−7 1.341 × 10−10

1 joule s−1 (watt), (SI) = 107 1 10−3 7.376 × 10−1 2.389 × 10−1 3.413 1.341 × 10−3

1 kilowatt = 1010 103 1 7.376 × 102 2.389 × 102 3.413 × 103 1.341

1 ft lbf s−1 (EE, BG) = 1.356 × 107 1.356 1.356 × 10−3 1 3.239 × 10−1 4.628 1.818 × 10−3

1 cal s−1 = 4.186 × 107 4.186 4.186 × 10−3 3.087 1 1.429 × 101 5.613 × 10−3

1 Btu h−1 = 2.930 × 106 2.930 × 10−1 2.930 × 10−4 2.161 × 10−1 7.000 × 10−2 1 3.929 × 10−4

1 horsepower = 7.457 × 109 7.457 × 102 7.457 × 10−1 5.500 × 102 1.782 × 102 2.545 × 103 1

Temperature

°C K °F °R
Celsius = 1 K − 273.15 (5/9)°F − 17.78 (5/9)°R − 273.15

Kelvin = °C + 273.15 1 (5/9)°F + 255.37 (5/9)°R

Fahrenheit = (9/5)°C + 32 (9/5)K − 459.7 1 °R − 459.7

Rankine = (9/5)°C + 491.7 (9/5)K °F + 459.7 1
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A
Absolute pressure, 53–54
Absolute viscosity, 16, 701–702, 1029

conversion factors for, 1029
vs. dynamic viscosity, 16
introduction to, 701–702

Acceleration, fluid, 229–233, 312–319,
578–589, 690

convective acceleration, 316–318, 690
coordinates for, 316–319
introduction to, 312–314
local acceleration, 316–318, 690
particle paths for, 314–316
pathlines for, 314–316
rectilinear acceleration, 229–233
substantial/material/co-moving derivatives 

of, 315–316
Taylor series expansions for, 315

Addition rates, total energy, 424
Air, 1019–1020, 1022–1024
Airfoils, 926–933. See also under

individual topics
attack angles and, 928
Bleriot airfoils, 138
boundary layers of, 898–902
camber and, 928–931
chords and, 928
Clark Y airfoils, 138
drag and, 137–140, 177, 562–563, 926–933
Göttingen airfoils, 138
historical perspectives of, 138
introduction to, 926–932
Joukowsky airfoils, 138
lift and, 137–140, 562–563, 926–933
M-6 airfoils, 138
National Advisory Committee on Aeronautics

(NACA) airfoils, 899–902, 928–933
NACA 0018, 928
NACA 66 series, 902
NACA 4412, 899
NACA 23012, 928–933

nomenclature of, 138
of P-51 Mustangs, 902
planforms and, 928
protuberances and, 930–931
spans and, 928
stall and, 929
thicknesses and, 928
vortices and, 932

Aligned surfaces, planar, 234–238, 256–260
Ammonia, 1023
Amplitude waves, small, 971–972

flow analyses, 817–851
multipath analyses, 846–851
single path analyses, 817–846

incompressible flow analyses, 713–788
introduction to, 713–718, 780–782
of inviscid irrotational flow, 760–780
of problems for, 782–788

of steady viscous flow, 718–744
of turbulent flow, 754–759
of unsteady viscous flow, 744–754

system volume analyses, 376–382
Angle valves, conventional, 853
Angles, 90, 138

attack angles, 138
contact angles, 90

Angular momentum, 341, 439–450
balance, 439–450

examples for, 442–446, 448–450
introduction to, 439–440
reaction forces and, 443
steady processes and, 440
torque and, 439–440

body forces and, 441
introduction to, 439–440
surface forces and, 441–442

introduction to, 341
transport, 440–441

Apparent forces, 148–149
Applied Fluid Dynamics Handbook, 922–923
Aqueducts, Roman, 4, 934
Archimedes, 5, 273
Archimedes’ principle, 58–60, 269–275
Area change flow, 120–124, 511–518, 558–559
Area conversion factors, 1027
Atmosphere models, 217–218
Atmosphere properties, standard U.S., 45–46,

222–224, 1025–1026
Attack angles, 138, 903, 928
Attractive forces, intermolecular, 80–83
Average densities, 363
Average velocities and flow rates, 358–363

average densities for, 363
examples for, 360–362
introduction to, 358–363

Axial flow compressors and pumps, 854
Axial stress, 252
Axisymmetric flow, 327–330

B
Balance, 187–190, 386–450. See also under

individual topics
angular momentum balance, 439–450
energy balance, 420–439
force balance, 187–190
mass balance, 386–397
momentum balance, 397–420

Ball valves, 853
Barometric pressure, 213–215
Bed slopes, 947
Bends, gradual vs. miter, 834–835
Benzene, 1023
Bernoulli, Daniel, 7, 478
Bernoulli, Johann, 478
Bernoulli equation, 477–521

applications of, 496–521

area change flow and, 511–518
Bernoulli, Daniel and, 7, 478
Bernoulli, Johann and, 478
bubbles and, 485
case study applications of, 121
cavitation and, 482–487
compressible fluids and, 487–490
contraction coefficients and, 

520–521
diffusers and, 512
examples for, 480–487, 489, 500–502,

507–509, 511, 513–515, 
517–518, 520

historical perspectives of, 7, 478
Hydraulica and, 478
incompressible fluids and, 479–482
introduction to, 477–479
inviscid fluid flow and, 477–490, 496–521.

See also Inviscid fluid flow and
Bernoulli equation

isentropic processes and, 487–488
Mach numbers and, 499
nozzles and, 512
oscillation frequencies and, 481
perfect gas law and, 487–488, 515
pitot-static tubes, 499
pitot tubes, 496–503
pressure variations and, 60
siphons and, 503–509
sluice gates, 509–511
steady fully-developed flow and, 799
subsonic flow, 507
sudden contraction and, 512
sudden enlargement and, 512
supersonic flow, 507
tank draining, 518–521
Torricelli, E. and, 519
Torricelli’s law and, 519–521
U-tube manometers, 500–501
vapor bubbles and, 504–505
vapor pressure and, 485–487, 504
vena contracta effects and, 510, 520–521
venturi and, 486–487

Bessel functions, 752
BG (British Gravitational) Unit System, 31
Blasius, H., 130–131, 887–888
Blasius solution, 887–894
Bleriot airfoils, 138
Blevins, Robert, 922–923
Blow fans, radial, 854
Bluff bodies, 177, 904
Body forces, 148–160, 177, 200–201

examples for, 152–154
gravitational body force per unit mass,

152–153
hydrostatic stress and, 200–201
introduction to, 148–160
origins of, 149–151
streamlined body drag, 177

INDEX



INDEX I-2

Bond numbers, 112
Boundaries. See also under individual topics

boundary layers, 128–132, 171–172, 561,
603–605, 884–916

of airfoils, 898–902
Blasius, H. and, 887–888
Blasius solution and, 887–894
of curved surfaces, 900
displacement thicknesses of, 885–886
drag and, 886–887
external flow and, 884–902
Falkner-Skan solution and, 901
of flat plates, 128–132, 171–172, 

561, 887–898
historical perspectives of, 902
introduction to, 884–887
Jacobs, Eastman and, 902
kinematic viscosity and, 884–885
laminar boundary layers, 130–131,

887–894
lift and, 886–887
momentum thicknesses of, 886–887
National Advisory Committee on

Aeronautics (NACA) and, 902
power-law velocity profile model and,

895–896
Prandtl equations for, 888–894
Reynolds numbers for, 884–887
separation of, 604–605, 916
streamfunctions of, 889
streamlines and streamtubes of, 604–605
thicknesses of, 885–887
turbulent boundary layers, 894–898
wall shear stress of, 886–887

bounding surfaces, 339
conditions of, 336–340, 702–703

equations for, 702–703
Navier-Stokes equations and, 702–703
no-slip vs. no-penetration conditions,

336–337
permeable vs. impermeable conditions,

339–340
Bourdon tube pressure gages, 54
British Gravitational (BG) Unit System, 31
Broad crested weirs, 1012
Brukau, 914
Bubbles, 88–89, 485, 504–505, 593, 599

hydrogen bubbles, 593, 599
introduction to, 485
surface tension and, 88–89
vapor bubbles, 504–505

Buckingham Pi theorem, 536–540
Bulk compressibility modulus, 73–80

examples of, 74–79
introduction to, 73–74
isentropic processes and, 74–78
isothermal processes and, 74
Mach numbers and, 79–80
speed of sound and, 76–80
values of, 73–74

Bulk viscosity, 83–85, 673, 700–702
Bumps, flow over, 953–961
Buoyancy, 269–275

Archimedes’ principle and, 58–60, 269–275
center of gravity vs. center of buoyancy,

277–278
examples for, 271–272, 274–275
fluid statics and, 269–275
introduction to, 269
Newton’s second law and, 269–270
pressure and, 58–60

C
Calderas, 218–219
Camber, 928–931
Capillary actions, 90–93, 111

Carbon compounds, 1019–1024
carbon dioxide, 1019–1020, 1024
carbon monoxide, 1024
carbon tetrachloride, 1020, 1023

Cartesian coordinates, 301–302, 316, 
397–398, 678–679, 684

Case study applications, 103–145. 
See also under individual topics

for Bernoulli equation, 121
for common dimensionless groups, 103–114
for dimensional analyses (DA) and similitude,

557–563
for flow classifications, 332
introduction to, 103–105, 140–141
problems for, 141–145
specific examples of, 114–140

airfoil lift and drag, 137–140
area change flow, 120–122
attack angles, 138
Bernoulli equation and, 121
Blasius, H. and, 130–131
chord lengths, 138
cylinder drag, 132–137
drag coefficients, 133–137
examples for, 118–120, 123–124, 127–128,

131–132, 136–137, 139–140
fan laws, 124–128
flat plate boundary areas, 128–132
head coefficients, 127–128
introduction to, 114–115
laminar boundary layers, 130–131
laminar flow, 117
laminar-to-turbulent transitions, 129
National Advisory Committee on

Aeronautics (NACA) and, 138–140
planforms, 138
power coefficients, 127–128
Prandtl, Ludwig and, 128–129
pump and fan laws, 124–128
round pipe flow, 115–120
skin fiction coefficients, 130
span, 138
sphere drag, 132–137
sudden contraction, 124
sudden expansion, 122–124
total head parameters, 125
turbulent boundary layers, 131–132
turbulent flow, 117–118
Wright brothers and, 138

for velocity fields, 306
Cavitation, 482–487, 860–862

Bernoulli equation and, 482–487
system design elements and, 860–862

Celsius temperature scale, 64–65
Center of gravity vs. center of buoyancy,

277–278
Centrifugal compressors and pumps, 854
Centrifugal forces, 148–149
CFD (computational fluid dynamics), 14,

706–707, 752–759
cylinder flow and, 752–754
equations for, 706–707
historical perspectives of, 14
parallel plates and, 757–759

Channels, 942–1018. See also under individual
topics

open channel flow applications, 942–1018
optimal channel cross sections, 999–1002
perimeters of, 947–948
prismatic channels, 951
varying width horizontal channels, 

961–965
Chen equation, 817
Chezy, Antoine, 994
Chezy coefficient, 992
Chezy equation, 992
Chords and chord lengths, 138, 928

Circular Couette flow, 723–732
Circular disks, 906, 909
Circular rods, 909
Circulation, 628–632
Clark Y airfoils, 138
Classifications, 148–149, 320–336. 

See also under individual topics
of flow, 320–336
of fluid forces, 148–149

Clermont, 52
Closed vs. open surfaces, 341
Co-moving derivatives, 315–316
Coefficients. See also under

individual topics
Chezy coefficient, 992
contraction coefficients, 520–521
diffusion coefficients, 351–352
drag coefficients, 133–134, 905–926
head coefficients, 127–128, 560
head loss coefficients, 825–826
inlet coefficients, 826–829
kinetic energy coefficients, 822–823
Manning roughness coefficient, 992–993
power coefficients, 127–128, 560
skin friction coefficients, 130, 887
thermal expansion coefficients, 67–70

Colebrook formula, 816–817
Common dimensionless groups, 103–114. 

See also Dimensionless groups
Common gas parameters, 72
Common nominal pipe size dimensions,

818–819
Compressibility, 18, 73–80, 487–490

bulk compressibility modulus, 73–80
compressible fluids, 487–490
introduction to, 18

Compressors, axial flow and 
centrifugal, 854

Computational fluid dynamics (CFD), 14,
706–707, 752–759

cylinder flow and, 752–754
equations for, 706–707
historical perspectives of, 14
parallel plates and, 757–759

Concentrations, 341
Conductivity, thermal, 65–66
Cones, 910
Conservation, energy, 978–989
Constant density fluids, 211–233

in gravity fields, 211–218
in rectilinear acceleration, 229–233
in rigid rotations, 222–229
vs. variable density fluids, 218–222

Constitutive model, Newtonian fluids, 
671–678

equations for, 671–678
examples for, 676–678
introduction to, 671–672

Contact angles, 90
Continuity equation, 660–666

examples for, 662–666
Gauss’s theorem and, 661
introduction to, 660–662
Reynolds transport theorem and, 660–662

Continuum hypothesis, 22–24
Continuum models, 301, 348–350, 595
Continuum vs. noncontinuum descriptions,

24–26
Contour plots, 305–308

density contour plots, 308
speed contour plots, 305–306
streamline contour plots, 307
temperature contour plots, 309, 322–323

Contraction, 120, 510–521
coefficients for, 520–521
sudden contraction, 124, 512
vena contracta effects and, 510, 520–521
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Control volume (CV) analyses, 375–473
basic concepts of, 376–377
convective mass transport rates and, 381
description and components of, 385–450

angular momentum balance, 439–450. 
See also Angular momentum

Cartesian coordinates and, 397–398
decal surfaces and, 400–420
energy balance, 420–439. See also Energy
examples for, 387–392, 394–396, 399–406,

408–420, 427–439, 442–446, 448–450
gage pressure and, 411
hydrostatic pressure and, 411
introduction to, 385–386
mass balance, 386–397
momentum balance, 397–420
Newton’s second law and, 397, 407
perfect gas law and, 412
Poiseuille flow and, 394
press-fitted nozzles and, 408
pressure stress and, 399
reaction forces and, 407–410
selection criteria for, 385–386
shear stress and, 399–405, 413–415
sluice gates and, 416
sudden expansion and, 395, 402–403
thrust and, 412

introduction to, 375–376, 450–452
mixed control volume (CV) analyses,

377–381, 415–420
problems for, 452–473
Reynolds transport theorem, 376, 381–385
vs. system volume analyses, 376–382

Convective acceleration, 316–318, 690
Convective flux integrals, 341
Convective mass transport rates, 381
Convective transport, 338–348
Conventional valves, angle and globe, 853
Conversion factors, unit, 33–34, 1027–1030
Coordinates. See also under individual topics

Cartesian coordinates, 301–302, 316, 397–398,
678–679, 684

cylindrical coordinates, 301–302, 317–319,
344–345, 674, 684

polar coordinates, 301–302
streamline coordinates, 689–692

Coriolis forces, 148–149
Couette, Maurice, 720–722
Couette flow, 720–752

circular flow, 723–732
plane flow, 720–723, 749–752

Crack penetration, 92–93
Creeping flow, 905–908
Critical depth, 981–982
Critical vs. supercritical flow, 953
Curves, 87–90, 248–252, 852, 900

curved interfaces, 87–90
curved surfaces, 248–252, 900
pump curves, 852
system curves, 852

CV (control volume) analyses, 375–473. 
See also Control volume (CV)
analyses

Cylinders. See also under individual topics
cylindrical coordinates, 301–302, 317–319,

344–345, 674, 684
drag and, 132–137, 562, 908–915
flow fields over, 107, 741–744, 752–754,

777–780

D
DA (dimensional analyses), 534–570. 

See also Dimensional analyses (DA)
and similitude

D’Alembert, Jean le Rond, 7–8, 12, 337
Decal surfaces, 400–420

Deformation, 607–612, 650–653, 675–676
expansion and, 607–608
introduction to, 607–612
rigid bodies and, 608–612
shear deformation, 608–609, 650–653,

675–676
visualization and structure elements for,

607–612
Density, 43–51, 211–233, 308, 363, 1028. 

See also Mass, weight, and 
density

average densities, 363
constant density fluids, 211–233
conversion factors for, 1028
density contour plots, 308
examples for, 44, 49–51
introduction to, 43–45
variable density fluids, 218–222

Depth slopes, 947
Derivatives, substantial/material/co-moving,

315–316
Design elements, systems, 851–864

cavitation and, 860–862
compressors, 854–855
examples for, 856–860, 862–864
fans, 853–864
introduction to, 851–853
Net Positive Suction Heads (NPSHs),

860–862
pumps, 853–864
system curves and, 852
turbines, 854–855
valves, 852–853

Differential analyses. See also under individual
topics

fluid dynamics governing equations for,
659–712

incompressible flow analyses, 713–788
visualization and structure elements, 573–658

Differential hydrostatic equation, 205–210
Diffusers, 512
Diffusion, 351–352, 593–594

coefficients for, 351–352
introduction to, 593–594

Diffusity, thermal, 114
Diffusive flux vectors, 351
Diffusive transport, 338–339, 348–352
Dilation, 636–638
Dimension descriptions, 29–30
Dimensional analyses (DA) and similitude,

534–570
Buckingham Pi theorem and, 536–540

base dimensions, fluid and flow 
properties, 538

examples for, 539
introduction to, 536–540

case study applications for, 557–563
experimental data correlations for, 554–557
introduction to, 534–536, 563–564
problems for, 564–570
repeating variable method of, 540–549
similitude and model development, 549–554

dynamical similarity, 550–551
examples for, 551–554
Froude numbers and, 553
geometric similarity, 550
Gossamer Condor and, 552
introduction to, 549–552
kinematic similarity, 550
MacCready, Paul and, 552
Weber numbers and, 553

Dimensionless groups, 103–114
capillary effects and, 111
case study applications of, 103–114
flow fields over cylinders and, 107
introduction to, 103
Karman vortices and, 113

kinematic viscosity and, 114
numbers for, 104–135

Bond numbers, 112
Euler numbers, 112–113
Froude numbers, 109–110
Mach numbers, 107–109
Reynolds numbers, 104–107, 117–118,

129, 135
Strouhal numbers, 113–114
Weber numbers, 110–112

surface tension and, 111–112
Tacoma Narrows Bridge and, 113
thermal diffusity and, 114

Displacement thicknesses, 885–886
Dissipation, 83–85, 699–700

energy dissipation rates, 83–85
viscous dissipation, 83, 699–700

Doublets, irrotational, 775–778
Drag. See also under individual topics

attack angles and, 903
boundary layer separation and, 886–887, 916
circular disks and, 906, 909
circular rods and, 909
coefficients for, 133–134, 905–926
cones and, 910
creeping flow and, 905–908
ellipsoid of revolution and, 909
external flow applications of, 902–926
Flettner, Anton and, 914
hemispheres and, 906, 909
introduction to, 175–177, 902–904
numbers and equations for, 905–916
square rods and, 910
types of, 132–140, 177, 562–563, 904–933

Draining, tanks, 518–521
Dry air, 1024
Duct flow applications, 791–881. See also Pipe

and duct flow applications
introduction to, 791–793, 864–867
multiple path flow analyses, 846–851
problems for, 867–881
single path flow analyses, 817–846
steady fully developed flow, 793–817

Dynamic pressure, 490–496
Dynamic viscosity, 16
Dynamical similarity, 550–551

E
Earth’s atmosphere models, 217–218
Eddys, 620
EE (English Engineering Unit System), 32
Elbows, reducing, 821–822
Electromagnetic forces, 150–151
Electrostatic precipitators, 150
Elementary plane potential flow, 761–777
Elements, visualization and structure, 573–658.

See also Visualization and structure
elements

Ellipsoid of revolution, 909
Energy. See also under individual topics

conservation of, 978–989
critical depth and, 981–982
energy line slopes, 980
friction slopes and, 980
gradually varying flow (GVF) and,

978–979
introduction to, 978–981
specific energy and, 981–989
specific energy diagrams and, 986–989

conversion factors for, 1030
energy balance, 420–439

energy addition rates, total, 424
examples for, 427–439
fluid power, 426
gravitational potential energy, 423
introduction to, 420–423
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ports, 425–426
secondary walls, 425
shaft power, 426–427
torque, 427
total heat transfer rates, 423–424
work done by surface forces, 424–425

energy dissipation rates, 83–85
energy equation, 699–702
fluid energy, 93–97
internal energy, 93–94, 341, 799
kinetic energy, 94–95, 341
line slopes for, 980
mechanical energy content, 796
potential energy, 95
specific energy, 981–989
surface energy, 86–87
total energy, 95–96

Energy equation, 699–702
absolute viscosity and, 701–702
vs. Bernoulli equation, 521–524
bulk viscosity and, 700–702
introduction to, 699–702
Reynolds transport theorem and, 702
shear viscosity and, 700
viscous dissipation and, 699–700

English Engineering (EE) Unit System, 32
Enlargement, sudden, 512
Enthalpy, 70–71, 96
Entrance lengths, 794
Equations, 659–712. See also under individual

topics
Bernoulli equation, 60, 477–521, 

692–699, 799
Blasius solution, 887–894
boundary conditions and, 702–703
Colebrook formula, 816–817
computational fluid dynamics (CFD) and,

706–707
constitutive model and, 671–678
continuity equation, 660–666
energy equation, 699–702

viscous dissipation and, 699–700
Euler equations, 682–699
Falkner-Skan solution, 901
hydrostatic equation, 201–210
initial conditions and, 702–703
introduction to, 659–660, 708–709
Laplace’s equation, 633–635
momentum equation, 666–671
Navier-Stokes equations, 6–12, 667–668,

678–683, 702–703
Newtonian fluid constitutive model and,

671–678
nondimesionalization and, 703–706
power-law equation, 823
Prandtl boundary layer equations, 888–894
problems for, 709–712
Reynolds equations, 756–757

Equilibrium, 275–278, 673
of immersed bodies, 275–278
pressure and, 673

Ethanol, 1023
Ethylene glycol, 1023
Euler, Leonhard, 7–8, 112–113, 684
Euler equations, 682–699

acceleration and, 690–692
convective acceleration, 690
local acceleration, 690

Bernoulli equation derivation and, 692–699
coordinates for, 684, 689–692
Euler, Leonhard and, 684
examples for, 685–689
historical perspectives of, 684
introduction to, 683–692
pressure variations and, 691–692
solid body rotation and, 693
vorticity and, 695

Euler numbers, 112–113, 703
Eulerian descriptions, 27–28, 300–312
Eulerian-Langrangian connections, 590–592
Examples. See also under individual topics

for basic/fundamental concepts, 16–34
description methods, 24–25, 29, 31, 

33–34
gases, liquids, and solids (basic

terminology), 16, 18–19, 21–22
for case study applications, 108–140

common dimensionless groups, 108,
111–112, 114

specific applications, 118–120, 123–124,
127–128, 131–132, 136–137, 
139–140

for control volume (CV) analyses, 384–450
angular momentum balance, 442–446,

448–450
description and components, 387–392,

394–396, 399–406, 408–420, 427–439,
442–446, 448–450

energy balance, 427–439
Reynolds transport theorem, 384

for dimensional analyses (DA) and similitude,
539–557

Buckingham Pi theorem, 539
experimental data correlations, 556–557
repeating variable method, 545–549
similitude and model development,

551–554
for equations, 204–210, 480–520, 662–678

for Bernoulli equation, 480–520
constitutive model, Newtonian fluids,

676–678
continuity equation, 662–666
Euler equations, 685–689
hydrostatic equation, 204–210
momentum equation, 669–671
Navier-Stokes equations, 681–683
Newtonian fluid constitutive model,

676–678
for external flow applications, 893–933

airfoil drag and lift, 932–933
boundary layers, 893–894, 896–898
drag, 906–908, 912–913, 917–923

for fluid forces, 152–154, 184–187
body forces, 152–154
fluid stress, 184–187
surface forces, 161, 164–167, 169–171

for fluid properties, 44–97
bulk compressibility modulus, 74–79
fluid energy, 94, 96–97
mass, weight, and density, 44, 49–51
pressure, 52, 55–63
surface tension, 89, 92
temperature and thermal properties, 

66–69, 72
viscosity, 81–82, 84–85

for fluid statics, 236–275
buoyancy, 271–272, 274–275
hydrostatic equation, 204–210
hydrostatic forces, 236–237, 240–241,

244–252
hydrostatic moments, 255, 258–259,

261–263, 265–267
hydrostatic pressure distribution, 198–199,

213–214, 216–218, 220–221, 223,
225–226, 228–230, 232–233

for incompressible flow analyses, 724–777
inviscid irrotational flow, 768–769,

776–777
steady viscous flow, 724–726, 730–732,

735–737, 740–741
for inviscid fluid flow, 480–520

Bernoulli equation and applications,
480–487, 489, 500–502, 507–509,
511, 513–515, 517–518, 520

static, dynamic, stagnation, and total
pressure, 493–494

for open channel flow applications, 982–1001
energy conservation, 982, 985–989
Froude numbers, 954–978
hydraulic jumps, 977–978
uniform depths, 991, 994–1001
weirs, 1010–1011

for pipe and duct flow applications, 797–864
friction factors, 802–805, 813, 816–817
multiple path flow analyses, 848–851
single path flow analyses, 827–846
steady fully-developed flow, 797–798,

800–801, 804–805, 813, 816–817
system design elements, 856–860, 

862–864
for velocity fields and fluid transport,

302–362
average velocities and flow rates, 360–362
flow classifications, 324–327, 335
fluid transport, 338, 344–345, 349–350,

353–358
velocity fields, 302–304, 309–312

for visualization and structure elements,
576–653

expansion rates, 639–640, 645–646,
648–649

Langrangian kinematics, 576–578,
580–581, 585–586, 588–589

material lines, surfaces, and volumes,
596–597

pathlines vs. streaklines, 600–601
rotation rates, 621–622
shear deformation rates, 652–653
streamlines and streamtubes, 606–607
velocity gradients, 613–614, 616–618
vorticity, 623–625, 627–628, 631–632,

634–635
Exits, 826–829
Expansion, 67–70, 122–124, 315, 395, 402–403,

607–608, 636–649
deformation and, 607–608
motion and, 607–608
rates of, 635–650

dilation and, 636–638
examples for, 639–640, 645–646, 648–649
Gauss’s theorem and, 637, 642–643
incompressible fluids and incompressible

flows and, 638–643
introduction to, 635–636
Reynolds transport theorem and, 637
Schlieren method and, 641
streamfunctions and, 643–650

sudden expansion, 122–124, 395, 402–403
Taylor series expansions, 315
thermal expansion, 67–70

Experimental data correlations, 554–557
External flow applications, 882–941

airfoil drag and lift, 926–933
boundary layers and, 884–902
drag and, 902–926
introduction to, 882–884, 933–935
problems for, 935–941
skin friction coefficients and, 887

F
F-18 Hornets, 602
Fahrenheit temperature scale, 64–65
Falkner-Skan solution, 901
Fans, 124–128, 559–561, 853–864

fan laws, 124–128, 559–561
radial blow fans, 854
selection criteria for, 853–864

Fields, velocity, 299–374. See also Velocity fields
and fluid transport

Fitting lengths, pipe, 835



Flat plate boundary layers, 128–132, 171–172,
561, 887–898

flow over, 171–172
introduction to, 128–132, 171–172
laminar boundary layers, 887–894
turbulent boundary layers, 894–898

Flettner, Anton, 914
Flow-related topics. See also under individual

topics
applications, 789–1018

external flow applications, 882–941
open channel flow applications, 942–1018
pipe and duct flow applications, 791–881

differential analyses, 571–788
fluid dynamics governing equations,

659–712
incompressible flow analyses, 713–788
visualization and structure elements,

573–658
flow classifications, 320–336

axisymmetric flow, 327–330
case study applications for, 332
examples for, 324–327, 335
fully developed flow, 330–332
introduction to, 320–321
Karman vortices and, 334
one-dimensional flow, 321–327
spatially periodic flow, 327–330
steady flow, 332–336
steady processes and, 332–336
Strouhal numbers and, 335
temperature contour plots and, 322–323
temporally periodic flow, 332–336
three-dimensional flow, 321–327
two-dimensional flow, 321–327
uniform flow, 327–330
velocity vector plots and, 322–323,

328–329
{FLtT} systems, 31–32
Fluid acceleration, 312–319

acceleration, convective and local, 316–318
coordinates for, 316–319

Cartesian coordinates, 316
cylindrical coordinates, 317–319

introduction to, 312–314
particle paths for, 314–316
pathlines for, 314–316
substantial/material/co-moving derivatives of,

315–316
Taylor series expansions for, 315

Fluid dynamics governing equations, 659–712.
See also Equations

Bernoulli equation, 692–699
computational fluid dynamics (CFD) and,

706–707
constitutive model, Newtonian fluids,

671–678
continuity equation, 660–666
energy equation, 699–702
Euler equations, 683–692
initial and boundary conditions and, 702–703
introduction to, 659–660, 708–709
momentum equation, 666–671
Naiver-Stokes equations, 678–683
nondimesionalization and, 703–706
problems for, 709–712

Fluid energy, 93–97
enthalpy and, 96
internal energy, 93–94
introduction to, 93
kinetic energy, 94–95
potential energy, 95
total energy, 95–96

Fluid forces, 146–196
body forces, 148–160
classifications of, 148–149

apparent forces, 148–149

body forces, 148–149
centrifugal forces, 148–149
Coriolis forces, 148–149
introduction to, 148
surface forces, 148–149

fluid stress, 178–187
force balance, 187–190
introduction to, 146–148, 190–191
Mount St. Helens volcano and, 147
origins of, 149–151

electromagnetic forces and, 
150–151

electrostatic precipitators and, 150
gravitational forces and, 149–150

problems for, 191–196
surface forces, 148–151

Fluid properties, 42–102, 1019–1026
Archimedes’ principle and, 58–60
bulk compressibility modulus, 73–80
comparison data for, 1019–1024
fluid energy, 93–97
introduction to, 42–43, 97–98
Langrangian fluid properties, 589–590
mass, weight, and density, 43–51
origins of, 149–151
pressure, 51–64
problems for, 99–102
surface tension, 85–93
temperature and thermal properties, 

64–70
viscosity, 80–85

Fluid statics, 197–298
buoyancy and, 269–275
hydrostatic equation and, 201–210
hydrostatic forces and, 233–252
hydrostatic moments and, 252–267
hydrostatic pressure distribution and,

198–199, 210–233
hydrostatic stress and, 199–201
immersed bodies, equilibrium and stability 

of, 275–278
introduction to, 197–199, 278–280
problems for, 280–298
resultant forces and points of application

(POAs), 267–269
Fluid stress, 178–187

examples for, 184–187
introduction to, 178–179
stress tensors and, 178–187
stress vectors and, 178–187

Fluid transport, 299–374. See also Velocity
fields and fluid transport

average velocities and flow rates and,
358–363

description and components of, 337–358
flow classifications and, 320–336
fluid acceleration, 312–319
fluid velocity fields, 300–312
introduction to, 299–300, 363–365
no-slip vs. no-penetration boundary

conditions and, 336–337
problems for, 365–374
substantial derivatives and, 319–320

Fluid velocity fields, 299–374. See also Velocity
fields and fluid transport

Fluids, basic terminology, 14–22
Flux, 341, 351

convective flux integrals, 341
diffusive flux vectors, 351

{FMLtT} systems, 31–32
Forces. See also under individual topics

apparent forces, 148–149
centrifugal forces, 148–149
conversion factors for, 1028
Coriolis forces, 148–149
electromagnetic forces, 150–151
fluid forces, 146–196

gravitational body forces and, 149–150,
210–211

hydrostatic forces, 233–252
reaction forces, 407–410, 443
resultant forces and points of application

(POAs), 267–269
surface forces, 148–151, 160–177
work done by surface forces, 424–425

Form/pressure drag, 177, 903, 911–912
Fourier, Jean Baptiste, 680
Fourier’s law, 65–67, 351
Free surface slopes, 946–947
Freon 12, 1023
Frequencies, oscillation, 481
Friction factors, 475–477, 793, 801–817, 

903, 980
Chen equation and, 817
Colebrook formula and, 816–817
examples for, 802–805, 813, 816–817
friction drag, 903
friction slopes, 980
frictionless flow, 475–477
hydraulic diameters and, 803–804
introduction to, 793, 801–805
in laminar flow, 805
Moody charts and, 813–815
pipe schedules and, 817
Poiseuille flow and, 806–807
relative roughness and, 813–815
turbulent flow and, 812–817

Froude, William, 109
Froude numbers, 109–110, 553, 703, 952–978
Full-width weirs, 1010
Fully-developed flow, 173–174, 330–332,

793–817. See also Steady
fully-developed flow

Fulton, Robert, 52

G
Gages, 53–54, 411

Bourdon tube pressure gages, 54
pressure and, 53–54, 411

Gas turbines, 854
Gases, liquids, and solids (basic terminology),

14–22
Gasoline, 1023
Gates, 416, 509–511, 853, 944, 1003–1008

sluice gates, 416, 509–511, 944, 1003–1008
wedge gate valves, 853

Gauss’s theorem, 205–210, 477, 637, 642–643,
661–662, 667

Geometric similarity, 550
Globe valves, conventional, 853
Glycerin, 1019–1020, 1023
Gossamer Condor, 552
Göttingen airfoils, 138
Governing equations, 659–712. 

See also Equations
Gradients, velocity, 17, 475, 612–618
Gradual vs. miter bends, 834–835
Gradually varying flow (GVF), 951, 

978–979
Gravity, 49–51, 149–153, 210–211, 

277–278, 423
center of gravity vs. center of buoyancy,

277–278
gravitational body forces, 149–153, 

210–211
gravitational potential energy, 423
gravity fields, 211–222
hydrostatic pressure distribution and, 211–222
specific gravity, 49–51

Groups, dimensionless, 103–114. See also
Dimensionless groups

Guide vanes, 824
GVF (gradually varying flow), 951, 978–979
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H
Heads and head loss, 125–128, 560, 793–846,

860–862
coefficients for, 127–128, 560, 825–826
head loss, 793, 799–801, 824–835

coefficients for, 825–826
major head loss, 793, 799–801
minor head loss, 824–835

Net Positive Suction Heads (NPSHs),
860–862

pump and turbine heads, 835–846
total head parameters, 125

Heat, 222, 341, 423–439, 573–578, 1030
conversion factors for, 1030
fluid transport and, 341
heating, ventilating, and air-conditioning

(HVAC) systems, 573–578
specific heat, 222, 439
total heat transfer rates, 423–424

Helium, 1019–1020, 1024
Hemispheres, 906, 909
Heptane, 1019–1020
Historical perspectives, 4–14. See also under

individual topics
of airfoils, 138
of books, 7–8

Mathematical Principles of Natural
Philosophy, 7–8

Principia, 7–8
of boundary layers, 902
of computational fluid dynamics 

(CFD), 14
of equations, 478, 680–684

Bernoulli equation, 478
Euler equations, 684
Navier-Stokes equations, 680

of incompressible flow analyses, 716
introduction to, 4–14
of persons, 4–14

Archimedes, 5, 273
Bernoulli, Daniel, 7
da Vinci, Leonardo, 5
d’Alembert, Jean le Rond, 7–8, 12
Euler, Leonhard, 7–8
Navier, Claude, 8
Newton, Isaac, 7, 14
Pascal, Blaise, 5
Pitot, Henri, 8–9
Poiseuille, J. L. M., 8–9
Prandtl, Ludwig, 12–13
Stokes, George, 8, 14
Torricelli, E., 5
von Karman, T., 12
Wright, Wilbur, 12
Wright brothers, 12

Roman aqueducts, 4
of steady viscous flow, 721–722
of uniform depths, 994

Hoop stress, 252
Horizontal channels, varying width, 961–965
Hydraulic diameters, 793
Hydraulic jumps, 972–978

classifications of, 976–978
impossible jumps, 976
rough, intermittent, strong 

jumps, 976
stable, balanced, steady jumps, 976
standing wave/undulant jumps, 976
weak jumps, 976

examples for, 977–978
introduction to, 548, 972–978
spillways and, 977

Hydraulic radius, 948
Hydrogen, 1019
Hydrogen bubbles, 593, 599
Hydrostatic equation, 201–210

differential hydrostatic equation, 205–210

examples for, 204–210
Gauss’s theorem and, 205–210
integral hydrostatic equation, 202–205,

242–248
introduction to, 201–202
Newton’s second law and, 202

Hydrostatic forces, 233–252
examples for, 236–237, 240–241, 

244–252
integral hydrostatic equation and, 202–205,

242–248. See also Hydrostatic
equation

introduction to, 233–234
outward unit normal for, 235
stress and, 233–234, 251–253

axial stress, 252
hoop stress, 252
stress vectors, 233–234

surfaces and, 234–252
curved surfaces, 248–252
planar aligned surfaces, 234–238
planar nonaligned surfaces, 238–248

Hydrostatic moments, 252–267
examples for, 255, 258–259, 261–263,

265–267
introduction to, 252–256
planar nonaligned surfaces and, 260–267
surfaces and, 256–267

planar aligned surfaces, 256–260
planar nonaligned surfaces, 260–267

Hydrostatic pressure distribution, 198–199,
210–233

barometric pressure and, 213–215
calderas and, 218–219
constant density fluids and, 211–233
control volume (CV) analyses and, 411
Earth’s atmosphere models and, 217–218
gravitational body forces and, 210–211
gravity fields and, 211–222
introduction to, 210–211
isothermal perfect gasses and, 221–222
Lake Nyos and, 218–219
polytropic law and, 221–222
pump intakes and, 213
rectilinear acceleration and, 229–233
rigid rotations and, 222–229
specific heat and, 222
U-tube manometers and, 215–218
U.S. standard atmosphere properties and,

222–224
vapor pressure, mercury, 214–215
variable density fluids and, 218–222

Hydrostatic stress, 199–201
body forces and, 200–201
introduction to, 199–200
Newton’s second law and, 200–201
normal stress and, 199–200
static pressure and, 201
stress vectors and, 199–200

Hypotheses, continuum, 22–24

I
Immersed bodies, equilibrium and stability,

275–278
Impermeable vs. permeable boundaries,

339–340
Incompressible flow analyses, 713–788

historical perspectives of, 716
introduction to, 713–718, 780–782
of inviscid irrotational flow, 760–780
Karman vortices and, 715–717
Newtonian fluid constitutive model and,

672–673
of problems for, 782–788
of steady viscous flow, 718–744
of turbulent flow, 754–759

of unsteady viscous flow, 744–754
von Karman, Theodore and, 716

Incompressible fluids, 479–482
Initial conditions, 702–703
Inlets, 826–829
Intakes, pumps, 213
Integral hydrostatic equation, 202–205, 242–248
Integrals, convective flux, 341
Interfaces, curved, 87–90
Intermolecular attractive forces, 80–83
Internal energy, 70–71, 93–94, 341, 799
Internal surfaces, 339
Inviscid fluid flow and Bernoulli 

equation, 474–533
Bernoulli equation and applications, 477–490,

496–521
energy equation and, 521–524
introduction to, 474–475, 524–526
problems for, 526–533
shear stress and, 475
static, dynamic, stagnation, and total pressure

and, 490–496
dynamic pressure, 491–492
examples for, 493–494
introduction to, 490
isentropic flow and, 494–496
perfect gas law and, 494–496
speed of sound and, 496
stagnation pressure, 492
static pressure, 490–491
total pressure, 492–496

streamline frictionless flow and, 475–477
Gauss’s theorem and, 477
introduction to, 475–477

velocity gradients and, 475
viscosity and, 475

Inviscid irrotational flow, 760–780
cylinder flow and, 777–780
elementary plane potential flow and, 761–777
examples for, 768–769, 776–777
introduction to, 760–761
panel methods and, 777
superimposition and, 772–777

Irrotational flow, 632–635, 760–780. 
See also under individual topics

doublets, 775–778
inviscid flow, 760–780
inviscid irrotational flow, 760–780
vorticity and, 632–635

Isentropic processes, 74–78, 487–488
Isothermal perfect gasses, 221–222
Isothermal processes, 74

J
Jacobs, Eastman, 902
Joukowsky airfoils, 138
Jumps, 87–90, 548, 972–978

hydraulic jumps, 548, 972–978. 
See also Hydraulic jumps

impossible jumps, 976
pressure jumps, 87–90
rough, intermittent, strong jumps, 976
stable, balanced, steady jumps, 976
standing wave/undulant jumps, 976
weak jumps, 976

K
Karman, Theodore von, 12, 716
Karman vortices, 113, 334, 599, 715–717
Kerosene, 1019–1020, 1023
Kinematics. See also under

individual topics
kinematic similarity, 550
kinematic viscosity, 82–83, 114, 884–885,

1020, 1029
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Kinematics (continued)
Langrangian kinematics, 576–590

acceleration and, 578–589
Euler-Langrangian connection and,

590–592
examples for, 576–578
introduction to, 578
Langrangian fluid properties and, 589–590
particle paths and, 578–589
rigid body dynamics and, 578
velocity and, 578–589

Kinetic energy, 94–95, 341, 822–823
coefficient for, 822–823
introduction to, 94–95, 341

Kinetic theory, 71

L
Lake Nyos, 218–219
Laminar boundary layers, 130–131, 887–894
Laminar flow, 104, 117, 805, 793
Langrangian descriptions, 27
Langrangian fluid properties, 589–590
Langrangian kinematics, 576–590

acceleration and, 578–589
Euler-Langrangian connection and, 590–592
examples for, 576–578
introduction to, 578
Langrangian fluid properties and, 589–590
particle paths and, 578–589
rigid body dynamics and, 578
velocity and, 578–589

Laplace’s equation, 633–635
Laws and principles. See also under individual

topics
Archimedes’ principle, 58–60, 269–275
Fan laws, 124–128, 559–561
Fourier’s law, 65–67, 351
Newton’s laws, 17, 67, 80–83, 200–201,

269–270, 397, 407, 666–671
Newton’s law of viscosity, 17, 67, 80–83
Newton’s second law, 200–201, 269–270,

397, 407, 666–671
perfect gas law, 70–73, 221–222, 412,

487–488, 515, 674–675
polytropic law, 221–222
power-law equation, 823
power-law velocity profile model, 895–896
pump laws, 124–128, 559–561
Torricelli’s law, 519–521

Length conversion factors, 1027
Lift, 137–140, 175–177, 562–563, 866–867,

926–933
airfoil lift, 137–140, 562–563, 926–933
boundary layers and, 886–887
introduction to, 175–177

Lines, material, 592–597
Liquids, solids, and gases (basic terminology),

14–22
Local acceleration, 316–318, 690
Low Reynolds numbers flow, 905–908

M
M-6 airfoils, 138
MacCready, Paul, 552
Mach, Ernst, 107
Mach numbers, 79–80, 107–109, 499
Magnus effect, 914
Major head loss, 793, 799–801
Manning, Robert, 994
Manning equation, 992–993
Manning roughness coefficient, 992–993
Manometers, 57–58, 215–218, 500–501

readings of, 57–58
U-tube manometers, 57–58, 215–218,

500–501

Mass, weight, and density, 43–51. See also under
individual topics

density, 44–45, 48
examples for, 44, 49–51
introduction to, 43–45
mass, 43–51, 343, 381, 386–397, 1028

convective mass transport rates, 381
conversion factors for, 1028
examples for, 44, 49–51
flowrates of, 343
fluid transport and, 341
introduction to, 43
mass balance, 386–397

molecular weight, 47–48
Schlieren method and, 45
solar ponds and, 47
specific gravity, 49–51
specific volume, 44–45
specific weight, 48–49
standard temperature and pressure (STP),

46–51
U.S. standard atmosphere properties and,

45–46, 1025–1026
Material derivatives, 315–316
Material lines, surfaces, and volumes, 592–597

continuum models and, 595
diffusion and, 593–594
examples for, 596–597
hydrogen bubbles and, 593
introduction to, 592–597

Material surfaces, 592–597
Material volumes, 592–597
Mathematical Principles of Natural Philosophy,

7–8
Mechanical energy content, 796
Mercury, 214–215, 1020, 1023
Methane, 1019–1020
Methanol, 1023
Methods of description, 22–34. See also

Description methods
Minor head loss, 794, 824–835
Mississippi River, 934
Miter vs. gradual bends, 834–835
Mixed control volume (CV) analyses, 377–381,

415–420. See also Control volume
(CV) analyses

{MLtT} systems, 30–32
Models. See also under individual topics

constitutive model, Newtonian fluids,
671–678

examples for, 676–678
introduction to, 671–678

continuum hypotheses, 22–24
continuum models, 301, 348–350, 595
Earth’s atmosphere models, 217–218
Newtonian fluid constitutive model, 671–678
power-law velocity profile model, 895–896
similitude and model development, 549–554

Modulus. See also under individual topics
bulk compressibility modulus, 73–80
shear modulus, 16

Molecular descriptions, 26
Molecular weight, 47–48, 70
Moments, hydrostatic, 252–267. See also

Hydrostatic moments
Momentum. See also under individual topics

angular momentum, 341, 439–450
momentum equation, 666–671

examples for, 669–671
Gauss’s theorem and, 667
introduction to, 666–671
Newton’s second law and, 666–671

momentum thicknesses, 886–887
Moody charts and diagrams, 555, 813–815
Motion and deformation, 607–612. 

See also Deformation
expansion, 607–608

introduction to, 607–612
rigid body motion, 608
rigid body rotation, 609–612
shear deformation, 608–609

Mount St. Helens volcano, 147
Multiple path flow analyses, 846–851

examples for, 848–851
introduction to, 846

N
National Advisory Committee for Aeronautics

(NACA), 138–140, 899–933
airfoils of, 899–933. See also Airfoils
introduction to, 138–140

Navier, Claude, 8, 680
Navier-Stokes equations, 6–12, 667–668,

678–683, 702–703
conditions and, 702–703

boundary conditions, 702–703
initial conditions, 702–703

coordinates for, 678–680
Cartesian coordinates, 678–679
cylindrical coordinates, 679–680

examples for, 681–683
Fourier, Jean Baptiste and, 680
historical perspectives of, 680
introduction to, 6–12, 667–668, 678–683
Navier, Claude and, 680
Newton, Isaac and, 680
Stokes, George and, 680

Net Positive Suction Heads (NPSHs), 860–862
Newton, Isaac, 7, 14, 680
Newtonian fluids, 16–17, 21, 667–668

constitutive model of, 668–678
bulk viscosity and, 673
cylindrical coordinates of, 674
as equation set, 671–678
equilibrium pressure and, 673
examples for, 676–678
incompressible flow and, 672–673
introduction to, 671–678
vs. non-Newtonian fluids, 662–671
perfect gas law and, 674–675
shear deformation and, 675–676
strain tensors and, 676
stress tensors and, 672–676

vs. non-Newtonian fluids, 21, 662–671
Newton’s laws, 17, 67, 80–83, 200–202,

269–270, 397, 407, 666–671
Newton’s law of viscosity, 17, 67, 80–83
Newton’s second law, 200–202, 269–270,

397, 407, 666–671
Nitrogen compounds, 1024

nitrogen dioxide, 1024
nitrogen oxide, 1024

No-penetration boundary conditions, 336–337
No-slip vs. no-penetration boundary conditions,

336–337
Nominal pipe size dimensions, 818–819
Non-Newtonian fluids, 21, 662–671
Nonaligned surfaces, planar, 238–248, 260–267
Noncontinuum vs. continuum descriptions,

24–26
Nondimesionalization, 703–706

equations for, 703–706
introduction to, 703–706
numbers for, 703
similitude and, 706

Normal stress, 163–171, 199–200
Nozzles, 408, 512, 832–834
NPSHs (Net Positive Suction Heads), 860–862
Numbers. See also under individual topics

Bond numbers, 112
Euler numbers, 112–113, 703
Froude numbers, 109–110, 553, 703, 

952–978
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Mach numbers, 79–80, 107–109, 499
Reynolds numbers, 104–107, 117–118, 129,

135, 555, 703, 884–887, 905–908
Strouhal numbers, 113–114, 335, 703
Weber numbers, 110–112, 553

O
Octane, 1019–1020
Oil, 1019–1020, 1023–1024
One-dimensional flow, 321–327
Open channel flow applications, 

942–1018
channel perimeters and, 947
Colorado River and, 950
energy conservation and, 978–989
Froude numbers and, 952–978
of gradually varying depths, 1003
gradually varying flow (GVF) and, 951
hydraulic radius and, 947–948
introduction to, 942–951, 1012–1014
Mississippi River and, 934
prismatic channels and, 951
problems for, 1014–1018
rapidly varying flow (RVF) and, 951
Roman aqueducts and, 934
secondary flow and, 949–950
slopes and, 946–947
sluice gates, 944, 1003–1008
spillways, 944
Tellico River and, 934
of uniform depths, 989–1002
uniform flow (UF) and, 951
weirs, 944, 1009–1012

Open vs. closed surfaces, 341
Optimal channel cross sections, 

999–1002
Oscillation frequencies, 481
Outward unit normal, 161–163, 235

P
P-51 Mustangs, 902
Panel methods, 777
Parallel plates, 732–737, 757–759
Partial-width weirs, 1010
Particle image velocimetry (PIV), 601–602
Particle paths, 314–316, 578–589
Pascal, Blaise, 5
Pathlines vs. streaklines, 597–603

examples for, 600–601
F-18 Hornets and, 602
hydrogen bubbles and, 599
introduction to, 314–316, 597–603
Karman vortices and, 599
particle image velocimetry (PIV) and,

601–602
Paths, 314–316, 578–589, 817–851

multiple path flow analyses, 846–851
particle paths, 314–316, 578–589
single path flow analyses, 817–846

Penetration, crack, 92–93
Perfect gas law, 70–73, 221–222, 412, 487–488,

515, 674–675
applicability limits of, 71–73
Bernoulli equation and, 487–488, 515
common gas parameters and, 72
control volume (CV) analyses and, 412
enthalpy and, 70–71
internal energy and, 70–71
introduction to, 70
isothermal perfect gasses and, 221–222
kinetic theory of gasses and, 71
molecular weight and, 70
specific gas constant, 70
specific heats of, 70–71
universal gas constant, 70

Perimeters, 947–948, 993
channel perimeters, 947–948
wetted perimeters, 993

Periodic flow, 327–336
spatially periodic flow, 327–330
temporally periodic flow, 332–336

Permeable vs. impermeable boundaries,
339–340

Pi theorem, Buckingham, 536–540. See also
Buckingham Pi theorem

Pipe and duct flow applications, 791–881
introduction to, 791–793, 864–867
multiple path flow analyses, 846–851
pipe size dimensions, 818–819
problems for, 867–881
round pipe flow, 115–120, 173–174, 557–558
single path flow analyses, 817–846
steady fully developed flow, 793–817
steady viscous flow in, 737–741
system design elements, 851–864

Pitot, Henri, 8–9
Pitot-static tubes, 499
Pitot tubes, 496–503
PIV (particle image velocimetry), 601–602
Planar surfaces, 234–267

aligned surfaces, 234–238, 256–260
nonaligned surfaces, 238–248, 260–267

Plane Couette flow, 720–723, 749–752
Plane potential flow, elementary, 761–777
Planforms, 138, 928
Points of application (POAs), 267–269
Poise, 83
Poiseuille, J. L. M., 8–9, 732
Poiseuille flow, 394, 732–741, 806–807
Polar coordinates, 301–302
Polytropic law, 221–222
Ponds, solar, 47
Ports, 425–426
Potential energy, 95
Power, 127–128, 426–427, 560, 823, 

895–896, 1030
coefficients for, 127–128, 560
conversion factors for, 1030
fluid power, 426
power-law equation, 823
power-law velocity profile model, 895–896
shaft power, 426–427

Prandtl, Ludwig, 12–13, 128–129, 337, 884–885
Prandtl boundary layer equations, 888–894
Precipitators, electrostatic, 150
Preferred unit systems, 32
Press-fitted nozzles, 408
Pressure, 51–64. See also under individual topics

absolute pressure, 53–54
barometric pressure, 213–215
Bourdon tube pressure gages and, 54
buoyancy and, 58–60
conversion factors for, 1029
dynamic pressure, 490–496
equilibrium pressure, 673
examples for, 52, 55–63
form/pressure drag and, 177, 903, 911–912
Fulton, Robert and, 52
gage pressure, 53–54, 411
hydrostatic pressure distribution, 198–199,

210–233, 411. See also Hydrostatic
pressure distribution

introduction to, 51–52
jumps of, 87–90
manometer readings of, 57–58
pressure stress, 399
pumps and, 64
stagnation pressure, 490–496
standard temperature and pressure (STP),

46–51
static pressure, 201, 490–496
surface tension and, 87–90

total pressure, 490–496
vapor pressure, 214–215, 485–487, 504
variations of, 54–57, 60–64, 691–692

Bernoulli equation and, 60
in moving fluids, 60–64
in stationary fluids, 54–57
venturi and, 60–62

Principia, 7–8
Prismatic channels, 950–951
Problem solving approaches, 34–35

introduction to, 34–35
procedures for, 35

Processes, 332–336, 430, 440, 487–488
isentropic processes, 487–488
steady processes, 332–336, 430, 440

Propeller turbines, 854
Properties. See also under individual topics

fluid properties, 42–102, 149–151,
1019–1024. See also
Fluid properties

standard U.S. atmosphere properties, 45–46,
1025–1026

thermal properties, 64–70
Protuberances, 930–931
Pumps, 64, 124–128, 213, 559–561, 835–864

axial flow pumps, 854
centrifugal/radial flow pumps, 854
heads of, 835–846
intakes of, 213
performance of, 855
pressure and, 64
pump curves, 852
pump laws, 124–128, 559–561
selection of, 853–864

R
Radial pumps, 854
R.A.F. (Royal Air Force) airfoils, 138
Rapidly varying flow (RVF), 951
Reaction forces, 407–410, 443
Rectilinear acceleration, 229–233
Reducing elbows, 821–822
Repeating variable method, 540–549

examples for, 545–549
hydraulic jumps and, 548
introduction to, 540
steps of, 540–545
surface tensions and, 542
Taylor, G. I. and, 545–546

Resultant forces, 267–269. See also Points of
application (POAs)

Reynolds, Osborne, 104
Reynolds equations, 756–757
Reynolds numbers, 104–107, 117–118, 129, 135,

555, 703, 884–887, 905–908
Reynolds transport theorem, 376, 381–385, 637,

660–662, 702
for control volumes (CVs), 382–385
examples for, 384
introduction to, 376, 381, 637, 660–662, 702
for system volumes, 381–382

Rigid bodies, 222–229, 578, 609–630
dynamics of, 578
motion of, 608
rotation of, 222–229, 609–612, 619–620, 630

Roman aqueducts, 4, 934
Rotation and rotation rates, 619–622

eddys and, 620
examples for, 621–622
introduction to, 619–622
rigid body rotation, 222–229, 609–612,

619–620, 630
solid body rotation, 693
swirls and, 620

Round pipe flow, 115–120, 173–174, 
557–558
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Royal Air Force (R.A.F.) airfoils, 138
RVF (rapidly varying flow), 951

S
SAE oil, 1019–1020, 1023–1024
Schedules, pipe, 817
Schlieren method, 45, 641
Seawater, 1024
Secondary flow, 949–950
Secondary walls, 425
Separation, flow, 820–821
Shaft power, 426–427
Sharp crested weirs, 1010
Shear. See also under individual topics

deformation and deformation rates, 608–609,
650–653, 675–676

modulus, 16
strain and strain rates, 15–16
strain rates of, 16
stress, 15, 399–405, 413–415, 475, 886–887
viscosity, 83, 700
wall shear stress, 886–887

SI (Système International d’Unités), 30–31
Similitude, 534–570. See also Dimensional

analyses (DA) and similitude
Gossamer Condor and, 552
introduction to, 549–552
MacCready, Paul and, 552
model development and, 549–554
nondimesionalization and, 706
numbers for, 553–554
similarities, 550–551

Single-dimensional flow, 321–327
Single path flow analyses, 817–846

coefficients for, 822–829
common nominal pipe size dimensions,

818–819
examples for, 827–846
exits and, 826–829
flow separation and, 820–821
gradual vs. miter bends and, 834–835
guide vanes and, 824
inlets and, 826–829
introduction to, 817–824
minor head loss and, 824–835
nozzles and, 832–834
pipe fitting lengths and, 835
power-law equation and, 823
pump and turbine heads and, 835–846
reducing elbows and, 821–822
sudden area changes and, 829–832

Single path piping systems, 793
Siphons, 503–509
Skin friction coefficients, 130, 887
Slopes, 947–980

bed slopes, 947
depth slopes, 947
energy line slopes, 980
free surface slopes, 946–947
friction slopes, 980
open channel flow applications and, 946–947

Sluice gates, 416, 509–511, 944, 1003–1008
Small amplitude waves, 971–972
Solar ponds, 47
Solid body rotation, 693
Solid tubes, 90–93
Solids, liquids, and gases (basic 

terminology), 14–22
Sound, speed of, 76–80, 107–109, 499
Span, 138, 928
Spatially periodic flow, 327–330
Specific energy, 981–989
Specific gas constant, 70
Specific gravity, 49–51
Specific heat, 65–66, 70–71, 222
Specific volume, 44–45

Speed contour plots, 305–306
Speed of sound, 76–80, 107–109, 499
Spheres, drag, 132–137, 562
Spillways, 944
Square rods, 910
Stability, immersed bodies, 275–278
Stagnation pressure, 490–496
Stall, 929
Standard atmosphere properties, U.S., 45–46,

222–224, 1025–1026
Standard temperature and pressure (STP), 46–51
Statics, fluid, 197–298. See also

Fluid statics
buoyancy and, 269–275
hydrostatic equation and, 201–210
hydrostatic forces and, 233–252
hydrostatic moments and, 252–267
hydrostatic pressure distribution and,

210–233
hydrostatic stress and, 199–201
immersed bodies, equilibrium and stability of,

275–278
introduction to, 197–199, 278–280
problems for, 280–298
resultant forces and points of application

(POAs), 267–269
static pressure and, 201, 490–496

Stationary fluids, pressure variations, 54–57
Steady fully developed flow, 332–336, 

793–817
Bernoulli equation and, 799
entrance lengths and, 794
examples for, 797–798, 800–801, 804–805,

813, 816–817
friction factors and, 793
hydraulic diameters and, 793
internal energy and, 799
introduction to, 332–336, 793–799
laminar flow and, 793
major head loss and, 793–794, 799–801
mechanical energy content and, 796
single path piping systems and, 793
turbulent flow and, 793

Steady processes, 332–336, 430, 440
Steady viscous flow, 718–744

Couette, Maurice and, 720–722
Couette flow, 720–732
cylinder flow and, 741–744
examples for, 724–726, 730–732, 735–737,

740–741
historical perspectives of, 721–722
introduction to, 718–720
parallel plates and, 732–737
in pipes, 737–741
Poiseuille, J. L. M. and, 732
Poiseuille flow and, 732–741

Steam turbines, 854
Stokes, George, 8, 14, 83, 680
Stokes theorem, 628–632, 916
STP (standard temperature and pressure), 46–51
Strain, 15–16, 676

shear, 15–16
tensors, 676

Streaklines vs. pathlines, 597–603
examples for, 600–601
F-18 Hornets and, 602
hydrogen bubbles and, 599
introduction to, 314–316, 597–603
Karman vortices and, 599
particle image velocimetry (PIV) and,

601–602
Streamfunctions, 643–650, 889
Streamlines and streamtubes, 177, 603–607,

923–924
body drag and, 177
boundary layer separation and, 604–605
contour plots for, 307

coordinates for, 689–692
examples for, 606–607
introduction to, 603–607, 923–924
streamline frictionless flow, 475–477

Gauss’s theorem and, 477
introduction to, 475–477

Stress. See also under individual topics
axial stress, 252
fluid stress, 178–187
hoop stress, 252
hydrostatic stress, 199–201
normal stress, 163–171, 199–200
pressure stress, 399
shear stress, 15, 399–405, 413–415, 475,

886–887
tensors, 178–187, 350–351, 672–676
vectors, 160–161, 178–187, 199–200,

233–234
wall shear stress, 886–887

Strouhal, Vincenz, 113
Strouhal numbers, 113–114, 335, 703
Structure elements, 573–658. See also

Visualization and structure elements
Eulerian-Langrangian connections of,

590–592
expansion rates, 635–650
introduction to, 573–578, 653–654
Langrangian kinematics, 578–590
material lines, surfaces, and volumes,

592–597
motion and deformation, 607–612
pathlines vs. streaklines, 597–603
problems for, 654–658
rotation rates, 619–622
shear deformation rates, 650–653
streamlines and streamtubes, 

603–607
velocity gradients, 612–618
vorticity, 622–635

Subsonic flow, 507
Substantial derivatives, 315–320
Sudden area changes, 829–832
Sudden contraction, 124, 512
Sudden enlargement, 512
Sudden expansion, 122–124, 395, 402–403
Supercritical vs. critical flow, 953
Superimposition, 772–777
Supersonic flow, 507
Surface forces, 86–87, 148–177. See also under

individual topics
drag, 175–177

airfoil drag, 177
bluff body drag, 177
introduction to, 175–177
pressure/form drag, 177
streamlined body drag, 177

flat plates and, 171–172
boundary layers of, 171–172
flow over, 171–172

fully developed flow and, 173–174
introduction to, 148–151, 160–161
lift, 175–177
origins of, 149–151
outward unit normal of, 161–163
round pipe flow, 173–174
stress, 160–171

Surface tension, 85–93
bubbles and, 88–89
capillary actions and, 90–93
contact angles and, 90
crack penetration and, 92–93
curved interfaces and, 87–90
dimensionless groups and, 111–112
examples for, 89, 92
introduction to, 85–86
pressure jumps and, 87–90
in solid tubes, 90–93
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surface energy and, 86–87
values for, 87
wetting and, 90

Surfaces. See also under individual topics
bounding surfaces, 339
closed vs. open surfaces, 341
curved surfaces, 248–252, 900
decal surfaces, 400–420
free surface slopes, 946–947
internal surfaces, 339
material surfaces, 592–597
planar surfaces, 234–267
surface energy, 86–87
surface forces, 148–177
surface tension, 85–93, 542
surface wave propagation, 965–972
work done by surface forces, 424–425

Swirls, 620
System curves, 852
System design elements, 851–864

cavitation and, 860–862
compressors, 854–855
examples for, 856–860, 862–864
fans, 853–864
introduction to, 851–853
Net Positive Suction Heads (NPSHs),

860–862
pumps, 853–864
system curves and, 852
turbines, 854–855
valves, 852–853

Système International d’Unités (SI), 30–31

T
Tacoma Narrows Bridge, 113
Tangents, vector, 163
Tanks, draining of, 518–521
Taylor, G. I., 545–546
Taylor series expansions, 315
Tellico River, 934
Temperature and thermal properties, 64–70, 114,

309, 322–323, 1030
conductivity, thermal, 65–66
contour plots for, 309, 322–323
conversion factors for, 1030
diffusity, thermal, 114
examples for, 66–69, 72
expansion, thermal, 65–70
introduction to, 64–65
laws for, 65–73
specific heat, 65–66
temperature scales, 64–65

Temporally periodic flow, 332–336
Tension, surface, 85–93. See also Surface

tension
Tensors, 178–187, 350–351, 672–676

strain tensors, 676
stress tensors, 178–187, 350–351, 672–676

Theorems. See also under individual topics
Buckingham Pi theorem, 536–540
Gauss’s theorem, 205–210, 477, 637,

642–643, 661–662, 667
Reynolds transport theorem, 376, 381–385,

637, 660–662, 702
Stokes theorem, 628–632, 916

Thermal properties, 64–70. See also
Temperature and thermal properties

Thicknesses, 885–887, 928
of airfoils, 928
of boundary layers, 885–887
displacement thicknesses, 885–886
momentum thicknesses, 886–887

Three-dimensional flow, 321–327
Thrust, 412
Time, conversion factors, 1028
Torque, 427, 439–440

Torricelli, E., 5, 519
Torricelli’s law, 519–521
Total energy, 95–96, 424
Total head parameters, 125
Total heat transfer rates, 423–424
Total pressure, 490–496
Total transport, 352–358
Transitions, 104, 129

laminar-to-turbulent transitions, 129
turbulent transitions, 104

Transport. See also under individual topics
angular momentum transport, 440–441
convective mass transport rates, 381
fluid transport, 299–374
Reynolds transport theorem, 376, 381–385,

637, 660–662, 702
Tsunamis, 968–969
Tubes. See also under individual topics

pitot-static tubes, 499
pitot tubes, 496–503
solid tubes, 90–93
streamlines and streamtubes, 177, 603–607,

923–924
U-tube manometers, 500–501

Turbines, 835–854
gas turbines, 854
heads of, 835–846
propeller turbines, 854
steam turbines, 854

Turbulent boundary layers, 894–898
Turbulent flow, 104, 117–118, 754–756, 793,

812–817
friction factors for, 812–817
incompressible analyses and, 754–756
vs. laminar flow, 104
steady fully developed flow and, 793

Turbulent transitions, 104
Two-dimensional flow, 321–327

U
U-tube manometers, 57–58, 215–218, 500–501
UF (uniform flow), 327–330, 951
Uniform depths, 992–1002

Chezy, Antoine, 994
Chezy coefficient and, 992
Chezy equation and, 992
introduction to, 989–994
Manning, Robert and, 994
Manning equation and, 992–993
Manning roughness coefficient and, 992–993
open channel flow applications and,

989–1002
optimal channel cross sections and, 999–1002
wetted perimeters and, 993

Uniform flow (UF), 327–330, 951
Unit conversion factors, 33–34, 1027–1030
Unit system description methods, 22–34

British Gravitational (BG) Unit 
System, 31

continuum hypothesis, 22–24
for continuum vs. noncontinuum descriptions,

24–26
for conversions, 33–34
decision-making criteria for, 28–29
for dimension descriptions, 29–30
English Engineering (EE) Unit 

System, 32
examples for, 24–25, 29, 31, 33–34
introduction to, 22, 29–30
for specific descriptions, 26–31
Système International d’Unités (SI), 30–31
for systems, 30–32

Universal gas constant, 70
Unsteady viscous flow, 744–754

Bessel functions and, 752
cylinder flow and, 752–754

introduction to, 744–749
plane Couette flow and, 749–752

U.S. standard atmosphere properties, 45–46,
222–224, 1025–1026

V
V-notch weirs, 1010
Valves, 852–853

ball valves, 853
conventional valves, angle and 

globe, 853
types of, 852–853
wedge gate valves, 853

Vanes, guide, 824
Vapor, 214–215, 485–487, 504–505

bubbles, 504–505
mercury vapor pressure, 214–215
pressure, 214–215, 485–487, 504

Variations. See also under individual topics
pressure variations, 54–57, 60–64
repeating variable method, 540–549
variable density fluids, 218–222
varying width horizontal channels, 961–965

Vectors. See also under individual topics
diffusive flux vectors, 351
plots of, 302
stress vectors, 160–161, 178–187, 199–200,

233–234
tangents for, 163
velocity plots of, 322–323, 328–329

Velocimetry, particle image, 601–602
Velocity fields and fluid transport, 299–374

average velocities and flow rates, 358–363
conversion factors for, 1028
flow classifications and, 320–336
fluid acceleration, 312–319
fluid transport, 337–358
introduction to, 299–300, 363–365
Langrangian kinematics and, 

578–589
no-slip vs. no-penetration boundary

conditions and, 336–337
power-law velocity profile model, 895–896
problems for, 365–374
substantial derivatives of, 319–320
velocity fields, 300–312

Cartesian coordinates for, 301–302
case study applications for, 306
continuum models of, 301
cylindrical coordinates for, 301–302
density contour plots for, 308
Eulerian description of, 300–312
examples for, 302–304, 309–312
introduction to, 300–301
polar coordinates for, 301–302
speed contour plots for, 305–306
streamline contour plots for, 307
temperature contour plots for, 309
vector plots of, 302

velocity gradients, 17, 475, 612–618
velocity potential, 632–635
velocity vector plots, 322–323, 328–329
vorticity and, 632–635

Vena contracta effects, 510, 520–521
Venturi, 60–62, 486–487
Viscosity, 80–85. See also under individual

topics
absolute viscosity, 16, 701–702, 1029
bulk viscosity, 83–85, 673, 700–702
conversion factors for, 1029
dynamic viscosity, 16
energy dissipation rates and, 83–85
examples for, 81–82, 84–85
intermolecular attractive forces and, 80–83
introduction to, 80–85
inviscid fluid flow and, 475
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Viscosity (continued)
kinematic viscosity, 82–83, 114, 884–885,

1020, 1029
Newton’s law of viscosity, 17, 67, 80–83
poise and, 83
shear viscosity, 83–85, 700
stoke and, 83
viscous dissipation, 83, 699–700
viscous flow, 718–754

Visualization and structure elements, 573–658
Eulerian-Langrangian connections of,

590–592
expansion rates, 635–650
heating, ventilating, and air-conditioning

(HVAC) systems and, 573–578
introduction to, 573–578, 653–654
Langrangian kinematics, 576–590
material lines, surfaces, and volumes,

592–597
motion and deformation, 607–612
pathlines vs. streaklines, 597–603
problems for, 654–658
rotation rates, 619–622
shear deformation rates, 650–653
streamlines and streamtubes, 

603–607
velocity gradients, 612–618
vorticity, 622–635

circulation and, 628–632
examples for, 623–625, 627–628, 631–632,

634–635
introduction to, 622–628
irrotational flow and, 632–635
Laplace’s equation and, 633–635

rigid body rotation and, 630
Stokes theorem and, 628–632
velocity potential and, 632–635

Volumes. See also under individual topics
control volume (CV) analyses, 375–473
conversion factors for, 1027
flowrates for, 343, 1029
fluid transport and, 341
material volumes, 592–597
specific volume, 44–45
system volume analyses, 376–382

Von Karman, Theodore, 12, 716
Vortices and vorticity, 622–635. See also under

individual topics
airfoils and, 932
circulation and, 628–632
Euler equations and, 695
examples for, 623–625, 627–628, 631–632,

634–635
introduction to, 622–628
irrotational flow and, 632–635
Karman vortices, 113, 334, 599, 715–717
Laplace’s equation and, 633–635
rigid body rotation and, 630
Stokes theorem and, 628–632
velocity potential and, 632–635
visualization and structure elements and,

622–635

W
Walls, 425, 886–887

secondary walls, 425
shear stress of, 886–887

Water, 1019–1021, 1024
Waves, 965–972

small amplitude waves, 971–972
surface wave propagation, 965–972

Weber, Mortiz, 110–111
Weber numbers, 110–112, 553
Wedge gate valves, 853
Weight, 43–51. See also Mass, weight, and

density
examples for, 44, 49–51
introduction to, 43–45
molecular weight, 47–48
specific weight, 48–49

Weirs, 944, 1009–1012
broad crested weirs, 1012
full-width weirs, 1010
introduction to, 944, 1009–1012
open channel flow applications and, 944,

1009–1012
partial-width weirs, 1010
sharp crested weirs, 1010
V-notch weirs, 1010

Wetted perimeters, 993
Wetting and surface tension, 90
Work, 424–425, 1030

conversion factors for, 1030
surface force work, 424–425

Wright, Wilbur, 12
Wright brothers, 12, 138
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