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2.1. Introduction

We have discussed in the previous Chapter, that the
subject of Theory of Machines deals with the motion and
forcesacting on the parts (or links) of amachine. In thischap-
ter, we shall first discuss the kinematics of motion i.e. the
relative motion of bodieswithout consideration of theforces
causing the motion. In other words, kinematics ded with the
geometry of motion and concepts like displacement, velocity
and acceleration considered as functions of time.

2.2. Plane Motion
When the motion of a body is confined to only one

plane, the motion is said to be plane maotion. The plane mo-
tion may be either rectilinear or curvilinear.

2.3. Rectilinear Motion

Itisthe simplest type of motion and isalong astraight
line path. Such amotionisalso known astrandatory motion.

2.4. Curvilinear Motion

It isthe motion along a curved path. Such amotion,
when confined to one plane, is called plane curvilinear
motion.

When all the particles of abody travel in concentric
circular paths of constant radii (about the axis of rotation
perpendicular to the plane of motion) such asapulley rotating

8
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about a fixed shaft or a shaft rotating about its
own axis, then the motion is said to be a plane
rotational motion.

Note: The motion of a body, confined to one plane,
may not be either completely rectilinear nor completely
rotational. Such a type of motion is called combined
rectilinear and rotational motion. This motion is dis-
cussed in Chapter 6, Art. 6.1.

2.5. Linear Displacement

It may be defined as the distance moved
by a body with respect to a certain fixed point.
The displacement may be along a straight or a
curved path. In areciprocating steam engine, all
the particles on the piston, piston rod and cross-
head trace a straight path, whereas al particles
on the crank and crank pin trace circular paths,
whose centre lies on the axis of the crank shaft. It will beinteresting to know, that all the particleson
the connecting rod neither trace astraight path nor acircular one; but trace an oval path, whoseradius
of curvature changes from time to time.

The displacement of a body is a vector quantity, as it has both magnitude and direction.
Linear displacement may, therefore, be represented graphically by a straight line.

Spindle 2.6. Linear Velocity
(axis of rotation)

X - It may be defined as the rate of
R r.(/ré\__‘}.\::\. change of linear displacement of abody with

. l F"E“?j-’ L4 respect to the time. Since velocity isaways
o '%H G4/, " Reference €XPressedinaparticular direction, therefore
oy ‘f—;}'_,r-.’ olline it is a vector quantity. Mathematically, lin-
;‘. ~ earvelocity,

- v = dg/dt

ek o0 .?) Notes: 1. If the displacement is along a circular

= =———=" Axis of rotation path, then the direction of linear velocity at any

instant is along the tangent at that point.

2. The speed is the rate of change of linear displacement of a body with respect to the time. Since the
speed isirrespective of its direction, therefore, it is a scalar quantity.

2.7. Linear Acceleration

It may be defined asthe rate of change of linear velocity of abody with respect to thetime. It
isalso avector quantity. Mathematically, linear acceleration,

a=dv_d s d's O =
dt ot HdtH o2 B YT a8
Notes: 1. Thelinear acceleration may also be expressed as follows:

dv ds dv dv
a=—=—X— =V X—

dt dt ds ds

2. The negative acceleration is also known as deceleration or retardation.
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2.8. Equations of Linear Motion

The following equations of linear motion are
important from the subject point of view:

1
1. v=u+at 2.s:u.t+5a.t2
3. V=12 +2as
(u+v)
4, s=——" Xt =v, Xt
where u = Initial velocity of the body,

v = Final velocity of the body,
a = Acceleration of the body,
s= Displacement of the body in timet seconds, and
v,, = Average velocity of the body during the motion.

Notes: 1. The above equations apply for uniform = R

acceleration. If, however, theaccelerationisvariable, v = velocity (downward)
then it must be expressed as a function of either t, s g = 9.81 m/s? = acceleration
or v and then integrated. t=0s due to gravity

2. In case of vertical motion, the body is ~ V=0m/s
subjected to gravity. Thusg (acceleration dueto grav-
ity) should be substituted for ‘&’ in the above equa-

tions.

3. Thevalueof gistaken as+ 9.81 m/s?for t=1s
downward motion, and — 9.81 m/s? for upward mo- v=9.81m/s
tion of a body.

4. When a body falsfreely from aheight h,
then its velocity v, with which it will hit the ground is

givenby
v=.2gh t=2s

=19.62
2.9. Graphical Representation of ' i
Displacement with Respect
to Time

The displacement of amoving body in agiven time may be found by means of agraph. Such
agraphisdrawn by plotting the displacement as ordinate and the corresponding time as abscissa. We
shall discussthe following two cases:

1. When the body moveswith uniform vel ocity. When the body moveswith uniform vel ocity,
equal distancesare covered in equal intervalsof time. By plotting the distanceson Y-axisand timeon
X-axis, adisplacement-time curve (i.e. s-t curve) isdrawn whichisastraight line, asshowninFig. 2.1
(a). The motion of the body is governed by the equation s= u.t, such that

Velocity atinstant 1=s,/t;
Velocity atinstant 2=s,/t,
Since the velocity isuniform, therefore

bt
where tan 0 is called the slope of st curve. In other words, the slope of the s-t curve at any instant
givesthevelocity.
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2. When the body moves with variable velocity. When the body moves with variable velocity,
unequal distancesare coveredinequa intervalsof timeor equd distancesare coveredin unequd intervals
of time. Thus the displacement-time graph, for such a case, will beacurve, asshowninFig. 2.1 (b).

Y Y
A s-tcurve A

—
m(n
—

__________ s-tcurve
I

@ Spf-==-=-=---- | : @
Eosl oo . S | _____ Q/ |
£ b “E-‘s _____ p-0 3s
g 8 R
5 Sil- - P Q
k7] A a
a 0! | X : , R a 0 — —ot > X

O 4 b f3 4y I "X o _ ! —» i

Time () —» Time (1)
(a) Uniform velocity. (b) Variable velocity.

Fig. 2.1. Graphical representation of displacement with respect to time.

Consider apoint P on the s-t curve and let this point travelsto Q by asmall distance dsin a

small interval of timedt. Let the chord joining the points P and Q makesan angle 6 with the horizontal .
The average velocity of the moving point during the interval PQ is given by

tan 6= ds/ ot ... (From triangle PQR)

Inthelimit, when &t approachesto zero, the point Q will tend to approach P and the chord PQ
becomes tangent to the curve at point P. Thusthe velocity at P,

vV, = tan 6 = ds/dt
wheretan 6 isthe slope of thetangent at P. Thusthe slope of thetangent at any instant onthe s-t curve
givesthe velocity at that instant.
2.10. Graphical Representation of Velocity with Respect to Time
We shall consider the following two cases:

1. When the body moveswith uniform vel ocity. When the body moveswith zero acceleration,
then the body issaid to movewith auniform
velocity and the velocity-time curve (v-t
curve) is represented by a straight line as
shown by ABinFig. 2.2 (a).

We know that distance covered by a
body intimet second

= Areaunder thev-t curve AB
= Areaof rectangle OABC

Thus, the distance covered by a
body at any interval of timeisgiven by the
areaunder the v-t curve.

2. When the body moves with
variablevelocity. When the body moveswith
constant acceleration, the body is said to move with variable velocity. In such a case, thereis equal
variation of velocity in equal intervals of time and the velocity-time curve will be a straight
line AB inclined at an angle 8, as shown in Fig. 2.2 (b). The equations of motioni.e. v=u+at, and

s=ut+ Zat’> may beverified from this v-t curve.
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Let u= Initial velocity of amoving body, and
v = Final velocity of amoving body after timet.
BC _v-u_ Changein velocity

Th tan® =—— = . =Acceleration (a
. AC t Time @
Y Y
T A T 4 v-t curve
_ = { B
> v-t curve = /ME T
" A c
k| T ! o Ly
g l ! >| i 1 i
| : » : » X
o—i— ¥ O—  —p
— Time (t) —» — Time(t) —»
(8) Uniform velocity. (b) Variable velocity.

Fig. 2.2. Graphical representation of velocity with respect to time.

Thus, the slope of the v-t curve represents the accel eration of a moving body.

Now a=tanO= BC _v-u or v=u+ at
AC t N

Since the distance moved by abody is given by the area under the v-t curve, therefore

distance moved intime (t),

2.11.

s=AreaOABD = AreaOACD + AreaABC
1 1
:u.t+5(v -u)t =ut +EaLt2 (e v—u=at)

Graphical Representation of Acceleration with Respect to Time

<

Y a-t curve
! !
5 a-t curve S A
= = I
*@TA—Q.B g |
3 ! 3 :
Q 1 Q |
éf_i C py % o ! LC px
[ o—i— [P = —

—Time (t) — —— Time (t) —»
(8 Uniform velocity. (b) Variable velocity.

Fig. 2.3. Graphical representation of acceleration with respect to time.
We shall consider the following two cases:
1. When the body moves with uniform acceleration. When the body moves with uniform

acceleration, the accel eration-time curve (a-t curve) isastraight line, as shown in Fig. 2.3(a). Since
the change in velocity is the product of the acceleration and the time, therefore the area under the
a-t curve (i.e. OABC) represents the change in vel ocity.

2. When the body moves with variable acceleration. When the body moves with variable

acceleration, the a-t curve may have any shape depending upon the values of acceleration at various
instances, as shown in Fig. 2.3(b). Let at any instant of timet, the acceleration of moving body isa

Mathematically, a=dv/dt or dv=adt
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Integrating both sides,

v, f _ 2
= v, —Vv, =[ "a.dt
" dv J’ adt or L~V Ll

t1
where v, and v, are the velocities of the moving body at time intervalst, and t, respectively.
Theright hand side of the above expression representsthe area (PQQ, P,) under the a-t curve
between the time intervals t, and t, . Thus the area under the a-t curve between any two ordinates
representsthe changein velocity of the moving body. If theinitial and final velocities of the body are
u and v, then the above expression may be written as

t
v—u :Ioa.dt = Areaunder a-t curve AB = AreaOABC

Example 2.1. A car starts from rest and
accelerates uniformly to a speed of 72 km. p.h. over
a distance of 500 m. Calculate the acceleration and
the time taken to attain the speed.

If a further acceleration raises the speed to
90 km. p.h. in 10 seconds, find this acceleration and
the further distance moved. The brakes are now
applied to bring the car to rest under uniform
retardation in 5 seconds. Find the distance travelled
during braking.

Solution. Given: u=0; v=72km. p.h. =20 m/s; s=500 m

First of all, et us consider the motion of the car from rest.

Acceleration of the car

Let a= Acceleration of the car.

We know that vZ=u?+2as

0 (200°=0+2ax500=1000a or a=(20)% 1000 = 0.4 m/s®> Ans.
Time taken by the car to attain the speed

Let t = Time taken by the car to attain the speed.

We know that v=u+at

O 20=0+04xt or t=20/04=50s Ans.

Now consider the motion of the car from 72 km.p.h. to 90 km.p.h. in 10 seconds.

Given:* u=72km.p.h. =20m/s; v=96km.p.h.=25m/s;t=10s
Acceleration of the car

Let a= Acceleration of the car.

We know that v=u+at

25=20+ax10 or a=(25-20)/10=0.5m/s* Ans.

Distance moved by the car

We know that distance moved by the car,

s=ut +§a.t2 =20x10 % x0.5(10)? =225m Ans.

* Itisthe final velocity in thefirst case.
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Now consider the motion of the car during the application of brakes for brining it to rest in
5 seconds.

Given:*u=25m/s;v=0;t=5s

We know that the distance travelled by the car during braking,

s=——Xxt = x5 =62.5m Ans.

2
Example2.2. Themotion of a particleisgiven by a= t3—3t?+ 5, whereaisthe acceleration
in m/s? and t is the time in seconds. The velocity of the particle at t = 1 second is 6.25 nvs, and the
displacement is 8.30 metres. Calculate the displacement and the velocity at t = 2 seconds.
Solution. Given: a=t3-3t?+5

We know that the acceleration, a= dv/dt. Therefore the above equation may be written as

% =t3-3t>+5 or  dv=(t3-3t* +5)dt
Integrating both sides
t* 3 © e .
V=—-—+5t+C, =— -t~ +5t (1
L5 TG, +Cy ()

where C, is the first constant of integration. We know that whent = 1 s, v = 6.25 m/s. Therefore
substituting these values of t and v in equation (i),
6.25=025-1+5+C, =425+C, o C/ =2
Now substituting the value of C, in equation (i),

v:%—t3 +5¢ +2 (i)

Velocity at t = 2 seconds
Substituting the value of t = 2 sin the above equation,

4
v:%—z3 +5x2 +2 =8m/s Ans.
Displacement at t = 2 seconds
We know that the velocity, v = dg/dt, therefore equation (ii) may be written as
ds _ t4

3 [t4 3 g
—=——t"+5t4+2 or ds = -7 45t +2
a 4 54

Integrating both sides,

t°_t* 5t?
s=——-——+— 42t +C
20 4 2 : (ii)
where C, is the second constant of integration. We know that whent = 1's, s = 8.30 m. Therefore
substituting these values of t and sin equation (iii),

830=—+ -112404c,=434C, o C,=4
20 4 2

* Itisthefinal velocity in the second case.
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Substituting the value of C, in equation (iii),

5 4 2
5
s:—t ——t4 +—t +2t +4

Substituting the value of t = 2 s, in this equation,
2° 2% Bx2?
S=—-——+

20 4

Example 2.3. The velocity of a

train travelling at 100 knvh decreases by
10 per cent inthefirst 40 s after applica-
tion of the brakes. Calculate the velocity
at the end of a further 80 sassuming that,

during thewhole period of 120 s, there-
tardation is proportional to the velocity.

Solution. Given : Velocity in the
beginning (i.e. whent = 0), v, = 100 km/h

Sincethevelocity decreasesby 10
per cent in the first 40 seconds after the
application of brakes, therefore velocity at the end of 40 s,

V,o =100 x 0.9.= 90 km/h

+2 x2 +4 =15.6m Ans.

Let V,,o = Velocity at the end of 120 s (or further 80s).
Since the retardation is proportional to the velocity, therefore,
= EY =kv  or L = —k.dt
dt

wherek isa constant of proportionality, whose value may be determined from the given conditions.
Integrating the above expression,

log,v=-kt+C . (1)
where C is the constant of integration. We know that when t = 0, v = 100 km/h. Substituting these
valuesin equation (i),

log,100=C or C=2310g100=23x%x2=4.6
We also know that whent = 40 s, v = 90 km/h. Substituting these valuesin equation (i),
log,90 = —kx 40 + 4.6 (C=46)
2.31og 90 =40k + 4.6

_46-23log90 _ 4.6 -2.3x1.9542

- 40 - 40
Substituting the values of k and C in equation (i),

log,v=-0.0026 x t + 4.6

or 2.3logv =—-0.0026 x t + 4.6 .. (i)

Now substituting the value of t equal to 120 s, in the above equation,
2.3logv,,,=—0.0026 x 120 + 4.6 = 4.288

or logv,,,=4.288/2.3=1.864

O V0= 73.1km/h Ans ... (Taking antilog of 1.864)

or Kk =0.0026
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Example 2.4. The acceleration (a) of a slider block and its displacement (s) are related by
theexpression, a = k+/s , wherek isa constant. The vel ocity visin the direction of the displacement

and the velocity and displacement are both zero when time t is zero. Calculate the displacement,
velocity and acceleration as functions of time.

Solution. Given : a=k/s

We know that acceleration,
dv dv 0] dv_ds_ dv avd
=V X— =V X— [} — = —X— =V X
atviEs o ks=v ds Hdt dt ds  dsH
0 v xdv=k.s2ds

Integrating both sides,

Vv ks

_[ov.dv:k_[s“zds o S EG (i)

where C, isthefirst constant of integration whose valueisto be determined from the given conditions
of motion. Weknow that s= 0, whenv = 0. Therefore, substituting the values of sand vin equation (i),
weget C, =0.

2
2, 32 _ 4k a4 .
— ==k V= XS
O > =3 S or 3 (i)

Displacement, velocity and acceleration as functions of time

ds 4k
Weknow that ==V =, /3 xs¥/ ... [From equation (ii)]
ds 4k -3/4 /4k
— =, [—dt S ds=,/— dt
0 34 3 or 3

Integrating both sides,

Ioss‘3’4 ds= \/% I;dt

14
%:E xt+C, ...(iii)

where C, isthe second constant of integration. We know that displacement, s= 0whent = 0. There-
fore, substituting the values of sand t in equation (iii), we get C, = 0.

O Sl—M— 4—k><t rs—kz't4 Ans,
Ua N3 ST

We know that velocity,

ds _k*> 5 K243 0 K2t
=~ =—— x4t°=—" Ans ...[Differentiating
dt 144 36 i 1441

. dv _k* o, Kt? iy K2t
and acceleration, a=—=—x3t"=—— Ans. ...(Differentiating
dt 36 12 H:) 365
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Example 2.5. The cutting stroke of a planing
machine is 500 mm and it is completed in 1 second.
The planing table accelerates uniformly during the first
125 mm of the stroke, the speed remains constant during
the next 250 mmof the stroke and retar ds uniformly during
thelast 125 mm of the stroke. Find the maximum cutting
Speed.

Solution. Given : s =500 mm ;t =15s;
s, =125mm; s, =250 mm ; s, = 125 mm

Fig. 2.4 shows the acceleration-time and veloc-
ity-time graph for the planing table of aplaning machine.

Let

v = Maximum cutting speed in mm/s.

Average velocity of thetable during acceleration
and retardation,

Planing Machine.

Vy =(0+Vv)/2=v/2

Time of uniform acceleration t, = S5 15 :@s

Vy VI2 v

: s, 250
Time of constant speed, t, = m = Ts
S _ 125 _ 250
and time of uniform retardation, tp=—=="=""s

Vy VI2 v

Acceleration

i Retardation
|
+—t _’i‘_tz_’i‘_ta_’:
Velocity NN |
| oy i
Time —»
Fig. 2.4
Since the time taken to complete the stroke is 1 s, therefore
t+ +ty =t
250 N 250 . 250

——+—— =1 or v=750 mm/s Ans.
v v v

2.12. Angular Displacement

It may be defined asthe angle described by a particle from one point to another, with respect
to thetime. For example, let aline OB hasitsinclination 6 radiansto the fixed line OA, as shownin
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Fig. 2.5. If thislinemovesfrom OB to OC, through an angle 86 during C
a short interval of time dt, then 80 is known as the angular
displacement of the line OB. 50.

Since the angular displacement has both magnitude and

direction, thereforeit is also a vector quantity. 3 P A
2.13. Representation of Angular Displacement by Fig. 2.5. Angular
a Vector displacement.

In order to completely represent an angular displacement, by avector, it must fix the follow-
ing three conditions :

1. Direction of the axis of rotation. It isfixed by drawing aline perpendicular to the plane
of rotation, in which the angular displacement takes place. In other words, it isfixed along the axis
of rotation.

2. Magnitude of angular displacement. It is fixed by the length of the vector drawn along
the axis of rotation, to some suitable scale.

3. Sense of the angular displacement. It is fixed by aright hand screw rule. This rule
statesthat if ascrew rotatesin afixed nut in aclockwise direction, i.e. if the angular displacement
is clockwise and an observer islooking along the axis of rotation, then the arrow head will point
away from the observer. Similarly, if the angular displacement is anti-clockwise, then the arrow
head will point towards the observer.

2.14. Angular Velocity

It may be defined as the rate of change of angular displacement with respect to time. It is
usually expressed by a Greek letter w (omega). Mathematically, angular velocity,

w=do/dt

Since it has magnitude and direction, therefore, it isavector quantity. It may be represented
by avector following the same rule as described in the previous article.
Note : If the direction of the angular displacement is constant, then the rate of change of magnitude of the
angular displacement with respect to time is termed as angular speed.

2.15. Angular Acceleration
It may be defined as the rate of change of angular velocity with respect to time. It isusually
expressed by a Greek letter a (alpha). Mathematically, angular acceleration,

dt  dtBded o THY Tl
Itisalso avector quantity, but its direction may not be same asthat of angular displacement

and angular velocity.

2.16. Equations of Angular Motion

The following equations of angular motion corresponding to linear motion are important
from the subject point of view :

1. w=w, +at 2. 0=yt +%at2
+wjt
3w :(%)2 +2 00 4, 9:(0002)
where w, = Initial angular velocity in rad/s,

w= Final angular velocity in rad/s,
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t = Timein seconds,
0 = Angular displacement in timet seconds, and
o =Angular accelerationinrad / .
Note: If abody isrotating at the rate of N r.p.m. (revolutions per minute), then its angular velocity,
w= 21N / 60 rad/s

2.17. Relation between Linear Motion and Angular Motion
Following are the relations between the linear motion and the angular motion :

Particulars Linear motion Angular motion

Initial velocity u 0N

Final velocity v w

Constant acceleration a o}

Total distance traversed s 0

Formulafor final velocity v=u+at W=w+at
Formulafor distance traversed s=ut+ 1at? B=wt+ 3 ot
Formulafor final velocity vZ=u?+2as w= ()2 +20.8

2.18. Relation between Linear and Angular Quantities of Motion
Consider abody moving along acircular path from A to B asshown in Fig. 2.6.
Let r = Radius of the circular path,

0 = Angular displacement in radians,
s=Linear displacement,
v = Linear velocity,
w=Angular velocity,
a= Linear acceleration, and
o = Angular acceleration.
From the geometry of the figure, we know that
s=r.0

We also know that the linear velocity, Fig. 2.6. Motion of a body
along acircular path.

,o0s_d(e) _  de

Td . d a
- (i)
and linear acceleration a=Q=M=r Xd— =r.a .. (i)
’ dt dt dt

Example2.6. Awheedl accelerates uniformly fromrest to 2000 r.p.m. in 20 seconds. What isits
angular acceleration? How many revolutions does the whedl make in attaining the speed of 2000 r.p.m.?

Solution. Given: N, =0 or w=0;N=2000r.p.m. or = 21tx 2000/60 = 209.5rad/s ; t = 20s
Angular acceleration
Let o = Angular acceleration in rad/s%.

We know that
W=w,+ o.t or 2095=0+ax 20

O a= 209.5/20=10.475rad/s’ Ans.
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Number of revolutions made by the wheel

We know that the angular distance moved by the wheel during 2000 r.p.m. (i.e. when
w = 209.5 rad/s),

. (0 + 0t
2

Sincethe angular distance moved by thewheel during onerevolutionis 2mtradians, therefore
number of revolutions made by the wheel,
n =0 /2= 2095/2n=333.4 Ans.

(0+209.5)20
=2095 rad

2.19. Acceleration of a Particle along a Circular Path

Consider A and B, the two positions of aparticle displaced through an angle d0in time ot as
shown in Fig. 2.7 (8).

Let r = Radius of curvature of the circular path,
v = Velocity of the particleat A, and
v + dv = Velocity of the particle at B.

The change of velocity, as the particle moves from A to B may be obtained by drawing the
vector triangle oab, as shown in Fig. 2.7 (b). In this triangle, oa represents the velocity v and ob
represents the velocity v + dv. The change of velocity in time &t is represented by ab.

(®)

Fig. 2.7. Acceleration of a particle dlong acircular path.

Now, resolving ab into two componentsi.e. parallel and perpendicular to ca. Let ac and cb
be the components parallel and perpendicular to oa respectively.

O ac=o0c—0a=0bcosd0 —oa=(v+9dv)cosdb—v
and cb=0bsind6=(v+dv)sind0

Since the change of velocity of a particle (represented by vector ab) has two mutually
perpendicular components, therefore the accel eration of a particle moving along a circular path has
the following two components of the accel eration which are perpendicular to each other.

1. Tangential component of the acceleration. The acceleration of a particle at any instant
moving along acircular path in adirection tangential to that instant, isknown astangential component
of acceleration or tangential acceleration.

O Tangential component of the acceleration of particleat A or tangential acceleration at A,

_ac_ (v+0v)cosol —-v

ot ot
In the limit, when &t approachesto zero, then
a =dv/dt=our . ()

2. Normal component of the acceleration. The acceleration of a particle at any instant mov-
ing along acircular path in adirection normal to the tangent at that instant and directed towards the
centre of the circular path (i.e. in the direction from A to O) isknown as normal component of the
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acceleration or normal acceleration. It is also called radial or centripetal acceleration.
O Normal component of the acceleration of the particle at A or normal (or radial or centrip-
etal) accelerationat A,

_cb_(v+dv)sing
ot o
In the limit, when &t approachesto zero, then

de v VP .
SVX—— SV.WSV X = =@r .. (i
&n dt r r (i)

o [ de/dt = and w=v/r]
Since the tangential acceleration (g) and the normal accelera-
tion (a,) of the particle at any instant A are perpendicular to each other,
as shown in Fig. 2.8, therefore total acceleration of the particle (@) is
equal to the resultant acceleration of a and g,
O Total acceleration or resultant acceleration,

Fig. 2.8. Total acceleration
2 2 ;
a= (a{) +(aﬂ) of aparticle.
and its angle of inclination with the tangential acceleration isgiven by

tan6=a/g or B =tan (a/a)

The total acceleration or resultant accel eration may also be obtained by the vector sum of g
and a,.
Notes: 1. From equations (i) and (ii) we see that the tangential acceleration (g ) isequal to the rate of change of
the magnitude of the velocity whereas the normal or radial or centripetal acceleration (a,) depends upon its
instantaneous velocity and the radius of curvature of its path.

2. When a particle moves along a straight path, then the radius of curvature is infinitely great. This
means that v2/r is zero. In other words, there will be no normal or radial or centripetal acceleration. Therefore,

the particle hasonly tangential acceleration (inthe samedirection asitsvelocity and displacement) whosevalue
isgiven by
a=dvdt=aur
3. When aparticle moves with auniform velocity, then dv/dt will be zero. In other words, there will be
no tangential acceleration; but the particle will have only normal or radial or centripetal acceleration, whose
valueisgiven by
a,=Vvir =v.w=urr

Example 2.7. A horizontal bar 1.5 metres long and of small cross-section rotates about
vertical axisthrough one end. It accelerates uniformly from 1200 r.p.m. to 1500 r.p.m. in an interval
of 5 seconds. What is the linear velocity at the beginning and end of the interval ? What are the
normal and tangential components of the acceleration of the mid-point of the bar after 5 seconds
after the acceleration begins ?

Solution. Given : r = 1.5 m ; N, = 1200 r.p.m. or w, = 2 1t x 1200/60 = 125.7 rad/s ;
N =1500r.p.m.or w=2T1% 1500/60=157rad/s; t=5s
Linear velocity at the beginning

We know that linear velocity at the beginning,

Vo=T.0,=15x1257=188.6 m/sAns.
Linear velocity at the end of 5 seconds
We also know that linear velocity after 5 seconds,
Ve =r.w=15x157=2355m/sAns.
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Tangential acceleration after 5 seconds

Let o = Constant angular acceleration.
We know that w=w,*a.t
157=1257+ax5 o a=(157-125.7)/5=6.26 rad/s’
Radius corresponding to the middle point,
r=15/2=0.75m
O Tangential acceleration =a.r =6.26 x 0.75=4.7 m/s*> Ans.

Radial acceleration after 5 seconds

N

S e o

Radial acceleration = w?. r = (157)? 0.75 = 18 487 m/s” Ans

EXERCISES

A winding drum raises a cage through a height of 120 m. The cage has, at first, an acceleration
of 1.5 m/s? until the velocity of 9 m/s is reached, after which the velocity is constant until the
cage nears the top, when the final retardation is 6 m/s?. Find the time taken for the cage to reach
the top. [ Ans. 17.1s]

The displacement of a point is given by s = 2t% + t? + 6, where sis in metres and t in seconds.
Determine the displacement of the point when the velocity changesfrom 8.4 m/sto 18 m/s. Find also
the acceleration at the instant when the velocity of the particleis 30 m/s. [ Ans. 6.95m ; 27 m/s?]
A rotating cam operates a follower which moves in a straight line. The stroke of the follower is 20
mm and takes place in 0.01 second from rest to rest. The motion is made up of uniform acceleration
for 1/4 of the time, uniform velocity for % of the time followed by uniform retardation. Find the
maximum velocity reached and the value of acceleration and retardation.

[ Ans. 2.67 m/s; 1068 m/s? ; 1068 m/s* |

A cage descends amine shaft with an accel eration of 0.5 m/s?. After the cage hastravelled 25 metres,
astoneisdropped from the top of the shaft. Determine: 1. the time taken by the stone to hit the cage,
and 2. distance travelled by the cage before impact. [Ans.292s;41.73m ]
The angular displacement of abody is afunction of time and is given by equation :
6=10+ 3t + 61t wheret isin seconds.

Determine the angular velocity, displacement and acceleration when t = 5 seconds. State whether or
not it is a case of uniform angular acceleration. [Ans. 63 rad/s; 175rad ; 12 rad/s]
A flywheel is making 180 r.p.m. and after 20 secondsit is running at 140 r.p.m. How many revolu-
tions will it make, and what time will elapse before it stops, if the retardation is uniform ?

[ Ans. 135rev. ; 90 s]
A locomoativeisrunning at aconstant speed of 100 km/ h. The diameter of driving wheelsis1.8 m. The
stroke of the piston of the steam engine cylinder of the locomotive is 600 mm. Find the centrip-
etal acceleration of the crank pin relative to the engine frame. [ Ans. 288 m/s? ]

DO YOU KNOW ?

Distinguish clearly between speed and velocity. Give examples.

What do you understand by theterm ‘acceleration’ ? Define positive accel eration and negative accel -
eration.

Define ‘angular velocity’ and ‘angular acceleration’. Do they have any relation between them ?
How would you find out the linear velocity of arotating body ?

Why the centripetal acceleration is zero, when a particle moves along a straight path ?

A particle moving with auniform velocity has no tangential acceleration. Explain clearly.
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OBJECTIVE TYPE QUESTIONS

The unit of linear acceleration is

(@ kg-m (o) mis (© mig (d) rad/s?
The angular velocity (in rad/s) of abody rotating at N r.p.m. is

(@) TN/60 (b) 2T1N/60 (o) TmN/120 (d) T1N/180
Thelinear velocity of abody rotating at w rad/s along acircular path of radiusr is given by

@ wr (b) wir (© war (d)y wir
When a particle moves along a straight path, then the particle has

(@) tangentia acceleration only (b) centripetal acceleration only

(c) both tangential and centripetal acceleration
When a particle moves with a uniform velocity along a circular path, then the particle has
(@) tangentia acceleration only (b) centripetal acceleration only

(c) both tangential and centripetal acceleration

ANSWERS
© 2. (b) 3 @ 4. (3 5. (b)

o FIRST
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