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9.1.9.1.9.1.9.1.9.1. IntrIntrIntrIntrIntroductionoductionoductionoductionoduction

We have already discussed, that when the two ele-
ments of a pair have a surface contact and a relative motion
takes place, the surface of one element slides over the sur-
face of the other, the pair formed is known as lower pair. In
this chapter we shall discuss such mechanisms with lower
pairs.

9.2.9.2.9.2.9.2.9.2. PantographPantographPantographPantographPantograph

A pantograph is an
instrument used to repro-
duce to an enlarged or a re-
duced scale and as exactly
as possible the path de-
scribed by a given point.

It consists of a
jointed parallelogram
ABCD as shown in Fig. 9.1.
It is made up of bars connected by turning pairs. The bars BA
and BC are extended to O and E respectively, such that

OA/OB = AD/BE

Fig. 9.1. Pantograph.

Pantograph
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Thus, for all relative positions of the bars,

the triangles OAD and OBE are similar and the points
O, D and E are in one straight line. It may be proved
that point E traces out the same path as described by
point D.

From similar triangles OAD and OBE, we
find that

               OD/OE = AD/BE

Let point O be fixed and the points D and E
move to some new positions D′  and E′ . Then

                OD/OE = OD′/OE′
A little consideration will show that the

straight line DD′ is parallel to the straight line EE′.
Hence, if O is fixed to the frame of a machine by means of a turning pair and D is attached to a point
in the machine which has rectilinear motion relative to the frame, then E will also trace out a straight
line path. Similarly, if E is constrained to move in a straight line, then D will trace out a straight line
parallel to the former.

A pantograph is mostly used for the reproduction of plane areas and figures such as maps,
plans etc., on enlarged or reduced scales. It is, sometimes, used as an indicator rig in order to repro-
duce to a small scale the displacement of the crosshead and therefore of the piston of a reciprocating
steam engine. It is also used to guide cutting tools. A modified form of pantograph is used to collect
power at the top of an electric locomotive.

9.3. Straight Line Mechanisms

One of the most common forms of the constraint mechanisms is that it permits only relative
motion of an oscillatory nature along a straight line. The mechanisms used for this purpose are called
straight line mechanisms. These mechanisms are of the following two types:

1. in which only turning pairs are used, and

2. in which one sliding pair is used.

These two types of mechanisms may produce exact straight line motion or approximate straight
line motion, as discussed in the following articles.

9.4. Exact Straight Line Motion Mechanisms Made up of Turning Pairs

The principle adopted for a mathematically correct
or exact straight line motion is described in Fig.9.2. Let O
be a point on the circumference of a circle of diameter OP.
Let OA be any chord and B is a point on OA produced, such
that

OA × OB = constant

Then the locus of a point B will be a straight line
perpendicular to the diameter OP. This may be proved as
follows:

Draw BQ perpendicular to OP produced. Join AP.
The triangles OAP and OBQ are similar.

Fig. 9.2. Exact straight line
motion mechanism.

Pantograph.
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∴
OA OQ

OP OB
=

or OP × OQ = OA × OB

or
OA OB

OQ
OP

×=

But OP is constant as it is the diameter of a circle, there-
fore, if OA × OB is constant, then OQ will be constant. Hence
the point B moves along the straight path BQ which is perpen-
dicular to OP.

Following are the two well known types of exact straight
line motion mechanisms made up of turning pairs.

1. Peaucellier mechanism. It consists of a fixed link
OO1 and the other straight links O1A , OC, OD, AD, DB, BC and
CA are connected by turning pairs at their intersections, as shown
in Fig. 9.3. The pin at A  is constrained to move along the cir-
cumference of a circle with the fixed diameter OP, by means of
the link O1A . In Fig. 9.3,

 AC = CB  = BD = DA ; OC = OD ; and OO1 = O1A

It may be proved that the product OA × OB remains
constant, when the link O1A  rotates. Join CD to bisect A B at R.
Now from right angled triangles ORC and BRC, we have

         OC2  = OR2 + RC2 ...(i)

and                 BC2  = RB2 + RC2 ...(ii)

Subtracting equation (ii) from (i), we have

OC2 – BC2 = OR2 – RB2

                 = (OR + RB) (OR – RB)

                 = OB × OA

Since OC and BC are of constant length, therefore
the product OB × OA remains constant. Hence the point B
traces a straight path perpendicular to the diameter OP.

2. Hart’s mechanism. This mechanism requires only
six links as compared with the eight links required by the
Peaucellier mechanism. It consists of a fixed link OO1 and other straight links O1A , FC, CD, DE and
EF are connected by turning pairs at their points of intersection, as shown in Fig. 9.4. The links FC
and DE are equal in length and the lengths of the links CD and EF are also equal. The points O, A  and
B divide the links FC, CD and EF in the same ratio. A little consideration will show that BOCE is a
trapezium and OA and OB are respectively parallel to * FD and CE.

Hence OAB is a straight line. It may be proved now that the product OA × OB is constant.

Fig. 9.3. Peaucellier mechanism.

* In ∆ FCE, O and B divide FC and EF in the same ratio, i.e.
                                       CO/CF = EB/EF
∴  OB is parallel to CE. Similarly, in triangle FCD, OA is parallel to FD.

A modified form of pantograph is
used to collect electricity at the
top of electric trains and buses.
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From similar triangles CFE and OFB,

                   
CE OB

FC OF
=         or        

CE OF
OB

FC

×= ...(i)

and from similar triangles FCD and OCA

                   
FD OA

FC OC
=        or        FD OC

OA
FC

×= ...(ii)

Fig. 9.4. Hart’s mechanism.

Multiplying equations (i) and (ii), we have

2

FD OC CE OF OC OF
OA OB FD CE

FC FC FC

× × ×× = × = × ×

Since the lengths of OC, OF and FC are fixed, therefore
    OA × OB = FD × CE × constant ...(iii)

2
... substituting constant

OC OF

FC

× =  

Now from point E, draw EM parallel to CF and EN perpendicular to FD. Therefore
FD × CE = FD × FM ...(∵ CE = FM )

= (FN + ND) (FN – MN) = FN2 – ND2 ...(∵ MN = ND)

= (FE2 – NE2) – (ED2 – NE2)
...(From right angled triangles FEN and EDN )

= FE2 – ED2 = constant ...(iv)
...(∵ Length FE and ED are fixed)

From equations (iii) and (iv),

    OA × OB = constant

It therefore follows that if the mechanism is pivoted about O as a fixed point and the point A
is constrained to move on a circle with centre O1, then the point B will trace a straight line perpendicu-
lar to the diameter OP produced.

Note: This mechanism has a great practical disadvantage that even when the path of B is short, a large amount
of space is taken up by the mechanism.

9.5. Exact Straight Line Motion Consisting of One Sliding Pair-Scott
Russell’s Mechanism

It consists of a fixed member and moving member P of a sliding pair as shown in Fig. 9.5.
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The straight link PAQ is connected by turning pairs to the link OA and the link P. The link OA rotates
about O. A little consideration will show that the mechanism OAP is same as that of the reciprocating
engine mechanism in which OA is the crank and PA  is the
connecting rod. In this mechanism, the straight line mo-
tion is not generated but it is merely copied.

In Fig. 9.5, A  is the middle point of PQ and
OA = AP = AQ. The instantaneous centre for the link PAQ
lies at I in OA produced and is such that IP is perpendicu-
lar to OP. Join IQ. Then Q moves along the perpendicular
to IQ. Since OPIQ is a rectangle and IQ is perpendicular
to OQ, therefore Q moves along the vertical line OQ for
all positions of QP. Hence Q traces the straight line OQ′. If
OA makes one complete revolution, then P will oscillate
along the line OP through a distance 2 OA on each side of O and Q will oscillate along OQ′ through
the same distance 2 OA above and below O. Thus, the locus of Q is a copy of the locus of P.

Note: Since the friction and wear of a sliding pair is much more than those of turning pair, therefore this
mechanism is not of much practical value.

9.6. Approximate Straight Line Motion Mechanisms

The approximate straight line motion mechanisms are the modifications of the four-bar chain
mechanisms. Following mechanisms to give approximate straight line motion, are important from the
subject point of view :

1. Watt’s mechanism. It is a crossed four bar chain mechanism and was used by Watt for his
early steam engines to guide the piston rod in a cylinder to have an approximate straight line motion.

Fig. 9.6. Watt’s mechanism.

In Fig. 9.6, OBAO1 is a crossed four bar chain in which O and O1 are fixed. In the mean
position of the mechanism, links OB and O1A  are parallel and the coupling rod A B is perpendicular to
O1A  and OB. The tracing point P traces out an approximate straight line over certain positions of its
movement, if PB/PA  = O1A/OB. This may be proved as follows :

A little consideration will show that in the initial mean position of the mechanism, the instan-
taneous centre of the link B A lies at infinity. Therefore the motion of the point P is along the vertical
line B A . Let OB′ A ′O1 be the new position of the mechanism after the links OB and O1A  are displaced
through an angle θ and φ respectively. The instantaneous centre now lies at I. Since the angles θ and
φ are very small, therefore

arc B B′ = arc A A′         or      OB × θ = O1 A  × φ ...(i)

Fig. 9.5. Scott Russell’s mechanism.
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∴ OB / O1 A = φ / θ
Also A ′P′ = IP′ × φ, and B′P′ = IP′  × θ
∴ A ′P′ / B′P′ = φ / θ ...(ii)

From equations (i) and (ii),

                            
1

OB A P AP

O A B P BP

′ ′
= =

′ ′ or
1O A PB

OB PA
=

Thus, the point P divides the link A B into two parts whose lengths are inversely proportional
to the lengths of the adjacent links.

2. Modified Scott-Russel mechanism. This mechanism, as shown in Fig. 9.7, is similar to
Scott-Russel mechanism (discussed in Art. 9.5), but in this case AP is not equal to AQ and the points
P and Q are constrained to move in the horizontal and vertical directions. A little consideration will
show that it forms an elliptical trammel, so that any point A
on PQ traces an ellipse with semi-major axis AQ and semi-
minor axis AP.

If the point A  moves in a circle, then for point Q to
move along an approximate straight line, the length OA must
be equal (AP)2 / A Q. This is limited to only small
displacement of P.

3. Grasshopper mechanism. This mechanism is a
modification of modified Scott-Russel’s mechanism with
the difference that the point P does not slide along a straight
line, but moves in a circular arc with centre O.

It is a four bar mechanism and all the pairs are turning pairs as shown in Fig. 9.8. In this
mechanism, the centres O and O1 are fixed. The link OA oscillates about O through an angle AOA1
which causes the pin P to move along a circular arc with
O1 as centre and O1P as radius. For small angular dis-
placements of OP on each side of the horizontal, the point
Q on the extension of the link PA  traces out an approxi-
mately a straight path QQ′, if the lengths are such that OA
= (AP)2 / AQ.

Note: The Grasshopper mechanism was used in early days as
an engine mechanism which gave long stroke with a very short
crank.

4. Tchebicheff’s mechanism. It is a four bar
mechanism in which the crossed links OA and O1B are of
equal length, as shown in Fig. 9.9. The point P, which is
the mid-point of A B traces out an approximately straight
line parallel to OO1. The proportions of the links are, usually, such that point P is exactly above O or
O1 in the extreme positions of the mechanism i.e. when B A lies along OA or when B A lies along BO1.
It may be noted that the point P will lie on a straight line parallel to OO1, in the two extreme positions
and in the mid position, if the lengths of the links are in proportions A B : OO1 : OA = 1 : 2 : 2.5.

5. Roberts mechanism. It is also a four bar chain mechanism, which, in its mean position, has
the form of a trapezium. The links OA and O1 B are of equal length and OO1 is fixed. A  bar PQ is
rigidly attached to the link A B at its middle point P.

Fig. 9.7. Modified Scott-Russel
mechanism.

Fig. 9.8. Grasshopper mechanism.
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A little consideration will show that if the mechanism is displaced as shown by the dotted
lines in Fig. 9.10, the point Q will trace out an approximately straight line.

Fig. 9.9. Tchebicheff’s mechanism. Fig. 9.10. Roberts mechanism

9.7. Straight Line Motions for Engine Indicators

The application of straight
line motions is mostly found in the
engine indicators. In these
instruments, the cylinder of the
indicator is in direct
communication with the steam or
gas inside the cylinder of an
engine. The indicator piston rises
and falls in response to pressure
variation within the engine
cylinder. The piston is resisted by
a spring so that its displacement is
a direct measure of the steam or
gas pressure acting upon it. The
displacement is communicated to
the pencil which traces the
variation of pressure in the
cylinder (also known as indicator
diagram) on a sheet of paper
wrapped on the indicator drum
which oscillates with angular
motion about its axis, according to
the motion of the engine piston.
The variation in pressure is
recorded to an enlarged scale.
Following are the various engine
indicators which work on the
straight line motion mechanism.

1. Simplex indicator. It closely resembles to the pantograph copying mechanism, as shown
in Fig. 9.11. It consists of a fixed pivot O attached to the body of the indicator. The links A B, BC, CD

Airplane’s Landing Gear.

Tyres absorb some
energy

Liquid
spring

Hydraulic
cylinder folds

wheels for
storage

Internal damper
absorbs shock

Note : This picture is given as additional information and is not a direct
example of the current chapter.
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and DA form a parallelogram and are pin jointed. The link BC is extended to point P such that O, D
and P lie in one straight line. The point D is attached to the piston rod of the indicator and moves
along the line of stroke of the piston (i.e. in the vertical direction). A little consideration will show
that the displacement of D is reproduced on an enlarged scale, on the paper wrapped on the indicator
drum, by the pencil fixed at point P which describes the path similar to that of D. In other words,
when the piston moves vertically by a distance DD1, the path traced by P is also a vertical straight line
PP1, as shown in Fig. 9.11.

Fig. 9.11. Simplex indicator.

The magnification may be obtained by the following relation :

1

1

PPOP OB BP

OD OA BC DD
= = =

From the practical point of view, the following are the serious objections to this mechanism:

(a) Since the accuracy of straight line motion of P depends upon the accuracy of motion of
D, therefore any deviation of D from a straight path involves a proportionate deviation of
P from a straight path.

(b) Since the mechanism has five pin joints at O, A , B, C and D, therefore slackness due to
wear in any one of pin joints destroys the accuracy of the motion of P.

2. Cross-by indicator. It is a modified form
of the pantograph copying mechanism, as shown in
Fig. 9.12.

In order to obtain a vertical straight line
for P, it must satisfy the following two conditions:

1. The point P must lie on the line joining
the points O and A , and

2. The velocity ratio between points P and
A  must be a constant.

This can be proved by the instantaneous
centre method as discussed below :

The instantaneous centre I1 of the link AC
is obtained by drawing a horizontal line from A
to meet the line ED produced at I1. Similarly, the
instantaneous centre I2 of the link BP is obtained by drawing a horizontal line from P to meet the
line BO at I2. We see from Fig. 9.12, that the points I1 and I2 lie on the fixed pivot O. Let vA, vB,
vC and vP be the velocities of the points A , B , C and P respectively.

We know that   
C 1 2

A 1 2

v I C I C

v I A I A
= = ...(i)

Fig. 9.12. Cross-by indicator.
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and
P 2

C 2

v I P

v I C
= ...(ii)

Multiplying equations (i) and (ii), we get

                             
C P 2 2

A C 2 2

v v I C I P

v v I A I C
× = ×     or     

P 2

A 2

v I P OP

v I A OA
= = ...(iii)

...(∵ O and I2 are same points.)
Since AC is parallel to OB, therefore triangles PAC and POB are similar.

∴
OP BP

OA BC
= ...(iv)

From equations (iii) and (iv),

          
P

A

constant
v OP BP

v OA BC
= = = ...(∵ Lengths BP and BC are constant.)

3. Thompson indicator. It consists of the links OB, BD, DE and EO. The tracing point P lies
on the link BD produced. A little consideration will show that it constitutes a straight line motion of
the Grasshopper type as discussed in Art.9.6. The link BD gets the motion from the piston rod of the
indicator at C which is connected by the link AC at A  to the end of the indicator piston rod. The
condition of velocity ratio to be constant between P and A  may be proved by the instantaneous centre
method, as discussed below :

Fig. 9.13. Thompson indicator.

Draw the instantaneous centres I1 and I2 of the links BD and AC respectively. The line I1P
cuts the links AC at F. Let vA, vC and vP be the velocities of the points A , C and P respectively.

∴  
C 2

A 2

v I C

v I A
= ...(i)

From similar triangles I1CF and I2CA

                                  
2 1

2 1

I C I C

I A I F
=     or     

C 2 1

A 2 1

v I C I C

v I A I F
= = ...(ii)

...[From equation (i)]

Also  
P 1

C 1

v I P

v I C
= ...(iii)

Multiplying equations (ii) and (iii), we get

                            
C P 1 1

A C 1 1

v v I C I P

v v I F I C
× = ×   or  P 1

A 1

v I P

v I F
= ...(iv)
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Now if the links AC and OB are parallel, the triangles PCF and PBI1 are similar.

∴
1

1

I P BP

I F BC
= ...(v)

From equations (iv) and (v),

P 1

A 1

constant
v I P BP

v I F BC
= = = ...(∵ Lengths BP and BC are constant)

Note: The links AC and OB can not be exactly parallel, nor the line I1P be exactly perpendicular to the line of
stroke of the piston for all positions of the mechanism. Hence the ratio BP/BC cannot be quite constant. Since
the variations are negligible for all practical purposes, therefore the above relation gives fairly good results.

4. Dobbie Mc Innes indicator. It is similar to Thompson indicator with the difference that the
motion is given to the link DE (instead of BD in Thompson indicator) by the link AC connected to the
indicator piston as shown in Fig. 9.14. Let vA, vC, vD and vP be the velocities of the points A , C, D and
P respectively. The condition of velocity ratio (i.e. vP  / vA) to be constant between points P and A  may
be determined by instantaneous centre method as discussed in Thompson indicator.

Fig. 9.14. Dobbie McInnes indicator.
Draw the instantaneous centres I1 and I2 of the links BD and AC respectively. The line I1P

cuts the link AC at F. Draw DH perpendicular to I1P. We know that

∴
C 2

A 2

v I C

v I A
=

...(i)

From similar triangles I1CF and I2CA,

                                  
2 1

2 1

I C I C

I A I F
=    or     

C 2 1

A 2 1

v I C I C

v I A I F
= = ...[From equation (i)]   ...(ii)

Again from similar triangles I1CF and I1DH,

                                  1 1

1 1

I C I D

I F I H
=    or    C 1

A 1

v I D

v I H
= ...[From equation (ii)] ...(iii)

Since the link ED turns about the centre E, therefore

D

C

v ED

v EC
= ...(iv)
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Also
P 1

D 1

v I P

v I D
= ...(v)

Multiplying equations (iii), (iv) and (v), we get

                
C D P 1 1

A C D 1 1

v v v I D I PED

v v v I H EC I D
× × = × ×     or     P 1

A 1

v I P ED

v I H EC
= ×                         ...(vi)

From similar triangles I1BP and PDH,

1

1

I P PB

I H BD
=

∴                                  
P

A

constant
v PB ED

v BD EC
= × = ...[From equation (vi)]

...[∵ Lengths PB, BD, ED and EC are constant.]

9.8. Steering Gear Mechanism

The steering gear mechanism is used for
changing the direction of two or more of the wheel
axles with reference to the chassis, so as to move the
automobile in any desired path. Usually the two back
wheels have a common axis, which is fixed in direc-
tion with reference to the chassis and the steering is
done by means of the front wheels.

In automobiles, the front wheels are placed
over the front axles, which are pivoted at the points
A  and B , as shown in Fig. 9.15. These points are fixed to the chassis. The back wheels are placed
over the back axle, at the two ends of the differential tube. When the vehicle takes a turn, the
front wheels along with the respective axles turn about the respective pivoted points. The back
wheels remain straight and do not turn. Therefore, the steering is done by means of front wheels
only.

Fig. 9.15. Steering gear mechanism.
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In order to avoid skidding
(i.e. slipping of the wheels side-
ways), the two front wheels must
turn about the same instantaneous
centre I which lies on the axis of
the back wheels. If the instanta-
neous centre of the two front
wheels do not coincide with the in-
stantaneous centre of the back
wheels, the skidding on the front
or back wheels will definitely take place, which will cause more wear and tear of the tyres.

Thus, the condition for correct steering is that all the four wheels must turn about the same
instantaneous centre. The axis of the inner wheel makes a larger turning angle θ than the angle φ
subtended by the axis of outer wheel.

Let                a  =  Wheel track,

                     b =  Wheel base, and

                       c =  Distance between the pivots A  and B of the front axle.

Now from triangle IBP,

                cot
BP

IP
θ =

and from triangle IAP,

                cot cot
AP AB BP AB BP c

IP IP IP IP b

+φ = = = + = + θ ...(∵ IP = b)

∴  cot φ – cot θ = c / b

This is the fundamental equation for correct steering. If this condition is satisfied, there will
be no skidding of the wheels, when the vehicle takes a turn.

9.9. Davis Steering Gear

The Davis steering gear is shown in Fig. 9.16. It is an exact steering gear mechanism. The
slotted links A M and BH are attached to the front wheel axle, which turn on pivots A  and B respec-
tively. The rod CD is constrained to move in the direction of its length, by the sliding members at P
and Q. These constraints are connected to the slotted link A M and BH by a sliding and a turning pair
at each end. The steering is affected by moving CD to the right or left of its normal position. C ′D′
shows the position of CD for turning to the left.

Let                 a = Vertical distance between A B and CD,

                      b = Wheel base,

                      d = Horizontal distance between AC and BD,

                       c = Distance between the pivots A  and B of the front axle.

                       x = Distance moved by AC to AC ′ = CC ′ = DD′, and

                      α = Angle of inclination of the links AC and BD, to the vertical.

From triangle A A′ C′,

     tan ( )
A C d x

A A a

′ ′ +α + φ = =
′ ...(i)
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From triangle A A′C,

tan
A C d

A A a

′
α = =

′ ...(ii)

From triangle BB′D′,

–
tan ( – )

B D d x

BB a

′ ′
α θ = =

′ ...(iii)

Fig. 9.16. Davis steering gear.

We know that        
tan tan

tan ( )
1 – tan .tan

α + φα + φ =
α φ

or               
/ tan tan

1 – / tan – tan

d x d a d a

a d a a d

+ + φ + φ= =
× φ φ

...[From equations (i) and (ii)]

             (d + x) (a – d tan φ) = a (d + a tan φ)

a. d – d 2 tan φ + a. x – d.x tan φ = a.d + a2 tan φ

              tan φ (a2 + d2 + d.x) = ax     or    
2 2

.
tan

.

a x

a d d x
φ =

+ +
...(iv)

Similarly, from tan 
–

( – ) ,
d x

a
α θ =  we get

                                    2 2
tan

– .

ax

a d d x
θ =

+ ...(v)

We know that for correct steering,

                       cot – cot
c

b
φ θ =      or    

1 1
–

tan tan

c

b
=

φ θ

             
2 2 2 2. – .

–
. .

a d d x a d d x c

a x a x b

+ + + = ...[From equations (iv) and (v)]
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or
2 .

.

d x c

a x b
= or 2 d c

a b
=

∴ 2 tan
c

b
α = or tan

2

c

b
α = ...(∵ d / a = tan α)

Note: Though the gear is theoretically correct, but due to the presence of more sliding members, the wear will
be increased which produces slackness between the sliding surfaces, thus eliminating the original accuracy.
Hence Davis steering gear is not in common use.

Example 9.1. In a Davis steering gear, the distance between the pivots of the front axle is 1.2
metres and the wheel base is 2.7 metres. Find the inclination of the track arm to the longitudinal axis
of the car, when it is moving along a straight path.

Solution. Given :     c = 1.2 m ; b = 2.7 m

Let                  α = Inclination of the track arm to the longitudinal axis.

We know that   
1.2

tan 0.222
2 2 2.7

c

b
α = = =

×
or α = 12.5° Ans.

9.10. Ackerman Steering Gear

The Ackerman steering gear mechanism is much simpler than Davis gear. The difference
between the Ackerman and Davis steering gears are :

1. The whole mechanism of the Ackerman steering gear is on back of the front wheels;
whereas in Davis steering gear, it is in front of the wheels.

2. The Ackerman steering gear consists of turning pairs, whereas Davis steering gear
consists of sliding members.

Fig. 9.17. Ackerman steering gear.

In Ackerman steering gear, the mechanism ABCD is a four bar crank chain, as shown in Fig.
9.17. The shorter links BC and AD are of equal length and are connected by hinge joints with front
wheel axles. The longer links A B and CD are of unequal length. The following are the only three
positions for correct steering.

1. When the vehicle moves along a straight path, the longer links A B and CD are parallel and
the shorter links BC and AD are equally inclined to the longitudinal axis of the vehicle, as shown by
firm lines in Fig. 9.17.

2. When the vehicle is steering to the left, the position of the gear is shown by dotted lines in
Fig. 9.17. In this position, the lines of the front wheel axle intersect on the back wheel axle at I, for
correct steering.



246  �   Theory of Machines

3. When the vehicle is steering to the right, the similar position may be obtained.

In order to satisfy the fundamental equation for correct steering, as discussed in Art. 9.8, the
links AD and DC are suitably proportioned. The value of  θ and φ  may be obtained either graphically
or by calculations.

9.11. Universal or Hooke’s Joint

A *Hooke’s joint is used to connect two shafts,  which are intersecting at a small angle, as
shown in  Fig. 9.18. The end of each shaft is forked to U-type and each fork provides two bearings

          Fig. 9.18. Universal or Hooke’s joint.

for the arms of a cross. The arms of the cross are perpendicular to each other. The motion is transmit-
ted from the driving shaft to driven shaft through a cross. The inclination of the two shafts may be
constant, but in actual practice it varies, when the motion is transmitted. The main application of the
Universal or Hooke’s joint is found in the transmission from the **gear box to the differential or back
axle of the automobiles. It is also used for transmission of power to different spindles of multiple
drilling machine. It is also used as a knee joint in milling machines.

* This joint was first suggested by  Da Vinci and was named after English physicist and mathematician
Robert Hooke who first applied it to connect two offset misaligned shafts.

** In case of automobiles, we use two Hooke’s joints one at each end of the propeller shaft, connecting the
gear box on one end and the differential on the other end.

Universal Joint.

Axis 2

Axis 1

Body 1

Body 2
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9.12. Ratio of the Shafts Velocities

The top and front views connecting the two shafts by
a universal joint are shown in Fig. 9.19. Let the initial posi-
tion of the cross be such that both arms lie in the plane of the
paper in front view, while the arm A B attached to the driving
shaft lies in the plane containing the axes of the two shafts.
Let the driving shaft rotates through an angle θ, so that the
arm A B moves in a circle to a new position A 1 B1 as shown in
front view. A little consideration will show that the arm CD
will also move in a circle of the same size. This circle when
projected in the plane of paper appears to be an ellipse. There-
fore the arm CD takes new position C1D1 on the ellipse, at an
angle θ. But the true angle must be on the circular path. To
find the true angle, project the point C1 horizontally to inter-
sect the circle at C2. Therefore the angle COC2 (equal to φ) is
the true angle turned by the driven shaft. Thus when the driv-
ing shaft turns through an angle θ, the driven shaft turns
through an angle φ. It may be noted that it is not necessary
that φ  may be greater than θ or less than θ. At a particular
point, it may be equal to θ.

In triangle OC1M, ∠  OC1M = θ

∴      
1

tan
OM

MC
θ =                 ...(i)

and in triangle   OC2 N,  ∠ OC2 N = φ

∴    
2 1

tan
ON ON

NC MC
φ = =                                                 2 1...( )NC MC=� ...(ii)

Dividing equation (i) by (ii),

1

1

tan

tan

MCOM OM

MC ON ON

θ = × =
φ

But                  OM = ON1 cos α = ON cos α
...(where α = Angle of inclination of the driving and driven shafts)

∴               tan cos
cos

tan

ON

ON

θ α= = α
φ

or tan θ =  tan φ . cos α ...(iii)

Let ω=  Angular velocity of the driving shaft = dθ / dt
ω1 =  Angular velocity of the driven shaft = dφ / dt

Differentiating both sides of equation (iii),

sec2 θ × dθ / dt = cos α . sec2 φ × dφ / dt

sec2 θ × ω = cos α . sec2 φ × ω1

∴
2

1
2 2 2

sec 1

cos .sec cos .cos .sec

ω θ= =
ω α φ θ α φ ...(iv)

Fig. 9.19. Ratio of shafts
velocities.
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We know that       
2

2 2
2

tan
sec 1 tan 1

cos

θφ = + φ = +
α

...[From equation (iii)]

                                      
2 2 2 2

2 2 2 2

sin cos .cos sin
1

cos .cos cos .cos

θ θ α + θ= + =
θ α θ α

                                      
2 2 2 2 2 2 2

2 2 2 2

cos (1 – sin ) sin cos – cos .sin sin

cos .cos cos .cos

θ α + θ θ θ α + θ= =
θ α θ α

2 2

2 2

1 – cos .sin

cos .cos

θ α=
θ α ...(∵ cos2 θ + sin2 θ = 1)

Substituting this value of sec2 φ in equation (iv), we have veloity ratio,

                                 
2 2

1
2 2 2 2 2

1 cos .cos cos

cos .cos 1 – cos .sin 1 – cos .sin

ω θ α α= × =
ω θ α θ α θ α ...(v)

Note:   If N = Speed of the driving shaft in r.p.m., and

N1 = Speed of the driven shaft in r.p.m.

Then the equation (v) may also be written as

                  
1

2 2

cos
.

1 – cos .sin

N

N

α=
θ α

9.13. Maximum and Minimum Speeds of Driven Shaft

We have discussed in the previous article that velocity ratio,

                 
1

2 2

cos

1 – cos .sin

ω α=
ω θ α        or      1 2 2

.cos

1 – cos .sin

ω αω =
θ α ...(i)

The value of ω1 will be maximum for a given value of α, if the denominator of equation (i) is
minimum. This will happen, when

                          cos2 θ = 1,     i.e.  when θ = 0°, 180°, 360° etc.

∴    Maximum speed of the driven shaft,

                 1( ) 2 2

cos cos

cos1 – sin cos
max

ω α ω α ωω = = =
αα α ...(ii)

or                                     1( ) cosmax
N

N =
α ...(where N and N1 are in r.p.m.)

Similarly, the value of ω1 is minimum, if the denominator of equation (i) is maximum. This
will happen, when (cos2 θ . sin2 α) is maximum, or

                           cos2 θ = 0, i.e. when θ = 90°, 270° etc.

∴  Minimum speed of the driven shaft,

                           ω1 (min) = ω cos α

or                                      N1 (min) = N cos α ...(where N and N1 are in r.p.m.)

Fig. 9.20, shows the polar diagram depicting the salient features of the driven shaft speed.
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From above, we see that

1. For one complete revolution of the driven shaft,
there are two points i.e. at 0° and 180° as shown by points
1 and 2 in Fig. 9.20, where the speed of the driven shaft is
maximum and there are two points i.e. at 90° and 270° as
shown by point 3 and 4 where the speed of the driven shaft
is minimum.

2. Since there are two maximum and two mini-
mum speeds of the driven shaft, therefore there are four
points when the speeds of the driven and driver shaft are
same. This is shown by points, 5,6,7 and 8 in Fig. 9.20 (See
Art 9.14).

3. Since the angular velocity of the driving shaft is
usually constant, therefore it is represented by a circle of radius ω. The driven shaft has a variation in
angular velocity, the maximum value being ω/cos α and minimum value is ω cos α. Thus it is repre-
sented by an ellipse of semi-major axis ω/cos α and semi-minor axis ω cos α, as shown in Fig. 9.20.

Note:  Due to the variation in speed of the driven shaft, there will be some vibrations in it, the frequency of
which may be decreased by having a heavy mass (a sort of flywheel) on the driven shaft. This heavy mass of
flywheel does not perform the actual function of flywheel.

9.14. Condition for Equal Speeds of the Driving and Driven Shafts

We have already discussed that the ratio of the speeds of the driven and driving shafts is

1
2 2

cos

1 – cos .sin

ω α=
ω θ α   or

2 2
1 (1 – cos .sin )

cos

ω θ α
ω =

α
For equal speeds,  ω = ω1, therefore

            cos α = 1 – cos2 θ . sin2 α   or cos2 θ . sin2 α = 1 – cos α

and  
2

2

1 – cos
cos

sin

αθ =
α ...(i)

We know that 2 2
2 2

1 cos 1 – cos
sin 1 – cos 1 – 1 –

sin 1 – cos

− α αθ = θ = =
α α

   
1 – cos 1 cos

1 – 1 –
(1 cos ) (1 – cos ) 1 cos 1 cos

α α= = =
+ α α + α + α ...(ii)

Dividing equation (ii) by equation (i),
2 2

2

sin cos sin

1 cos 1 – coscos

θ α α= ×
+ α αθ

or       
2 2

2
2 2

cos sin cos .sin
tan cos

1 – cos sin

α α α αθ = = = α
α α

∴         tan cosθ = ± α
There are two values of θ corresponding to positive sign and two values corresponding to

negative sign. Hence, there are four values of θ, at which the speeds of the driving and driven shafts
are same. This is shown by point 5, 6, 7 and 8 in Fig. 9.20.

9.15. Angular Acceleration of the Driven Shaft

We know that
2 2 –1

1 2 2

cos
.cos (1 – cos .sin )

1 – cos .sin

ω αω = = ω α θ α
θ α

Fig. 9.20. Polar diagram-salient
features of driven shaft
speed.
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Differentiating the above expression, we have the angular acceleration of the driven shaft,

2 2 – 2 21 cos –1(1 – cos sin ) (2 cos sin sin )
d d

dt dt

ω θ = ω α θ α × θ θ α 
2 2

2 2 2

– cos sin 2 .sin

(1 – cos sin )

ω α × θ α=
θ α ...(i)

...( 2 cos θ sin θ = sin 2 θ, and dθ/dt = ω)

The negative sign does not show that there is always retardation. The angular acceleration
may be positive or negative depending upon the value of sin 2 θ. It means that during one complete
revolution of the driven shaft, there is an angular acceleration corresponding to increase in speed of
ω1 and retardation due to decrease in speed of ω1.

For angular acceleration to be maximum, differentiate dω1 / dt with respect to θ and equate to
zero. The result is * approximated as

2 2

2

sin (2 – cos 2 )
cos 2

2 – sin

α θθ =
α

Note:  If the value of α is less than 30°, then cos 2 θ may approximately be written as

2

2

2sin
cos 2

2 – sin

αθ =
α

9.16. Maximum Fluctuation of Speed

We know that the maximum speed of the driven shaft,
 ω1 (max) = ω/cos α

and minimum speed of the driven shaft,
ω1 (min) = ω cos α

∴  Maximum fluctuation of speed of the driven shaft,

                                                    1( ) 1( )– – cos
cosmax minq

ω= ω ω = ω α
α

   
2 21 1 – cos sin

– cos
cos cos cos

   α ω α= ω α = ω =    α α α   
= ω tan α . sin α

Since α is a small angle, therefore substituting cos α = 1, and sin α = α radians.

∴  Maximum fluctuation of speed
= ω . α2

Hence, the maximum fluctuation of speed of the driven shaft approximately varies as the
square of the angle between the two shafts.

Note:  If the speed of the driving shaft is given in r.p.m. (i.e. N r.p.m.), then in the above relations ω may be
replaced by N.

9.17. Double Hooke’s Joint

We have seen in the previous articles, that the velocity of the driven shaft is not constant, but
varies from maximum to minimum values. In order to have a constant velocity ratio of the driving and
driven shafts, an intermediate shaft with a Hooke’s joint at each end as shown in Fig. 9.21, is used.
This type of joint is known as double Hooke’s joint.

* Since the differentiation of dω1/dt is very cumbersome, therefore only the result is given.
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Let the driving, intermediate and driven shafts, in the same time, rotate through angles θ, φ

and γ from the position as discussed previously in Art. 9.12.
Now for shafts A  and B, tan θ = tan φ . cos α ...(i)

and       for shafts B and C, tan γ= tan φ . cos α ...(ii)

From equations (i) and (ii), we see that θ = γ or ωA = ωC.

Fig. 9.21. Double Hooke’s joint.

This shows that the speed of the driving and driven shaft is constant. In other words, this joint
gives a velocity ratio equal to unity, if

1. The axes of the driving and driven shafts are in the same plane, and

2. The driving and driven shafts make equal angles with the intermediate shaft.

Example. 9.2.  Two shafts with an included angle of 160° are connected by a Hooke’s joint.
The driving shaft runs at a uniform speed of 1500 r.p.m. The driven shaft carries a flywheel of mass
12 kg and 100 mm radius of gyration. Find the maximum angular acceleration of the driven shaft
and the maximum torque required.

Solution.  Given :  α = 180° – 160° = 20°; N = 1500 r.p.m.; m = 12 kg ; k = 100 mm = 0.1 m

We know that angular speed of the driving shaft,

ω = 2 π × 1500 / 60 = 157 rad/s

and mass moment of inertia of the driven shaft,

I = m.k2 = 12 (0.1)2 = 0.12 kg - m2

Maximum angular acceleration of the driven shaft

Let dω1 / dt = Maximum angular acceleration of the driven shaft, and

 θ = Angle through which the driving shaft turns.

We know that, for maximum angular acceleration of the driven shaft,
2 2

2 2

2sin 2sin 20
cos 2 0.124

2 – sin 2 – sin 20

α °θ = = =
α °

∴              2θ = 82.9°     or θ = 41.45°

and                        
2 2

1
2 2 2

cos .sin 2 .sin

(1 – cos .sin )

d

dt

ω ω α θ α=
θ α

2 2
2

2 2 2

(157) cos 20 sin82.9 sin 20
3090 rad/s

(1 – cos 41.45 sin 20 )

°× ° × °= =
° × °

 Ans.

Maximum torque required

We know that maximum torque required

= I × d ω1 / dt = 0.12 × 3090 = 371 N-m Ans.
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Example. 9.3. The angle between the axes of two shafts connected by Hooke’s joint is 18°.
Determine the angle turned through by the driving shaft when the velocity ratio is maximum and
unity.

Solution.  Given : α = 98°

Let                θ = Angle turned through by the driving shaft.

When the velocity ratio is maximum

We know that velocity ratio,

1
2 2

cos

1 – cos .sin

ω α=
ω θ α

The velocity ratio will be maximum when cos2 θ is minimum, i.e. when

                      cos2 θ = 1 or      when θ = 0°    or 180°  Ans.

When the velocity ratio is unity

The velocity ratio (ω / ω1) will be unity, when

     1 – cos2 θ . sin2 α = cos α or
2

2

1 – cos
cos

sin

αθ =
α

∴                         2 2

1 – cos 1 – cos 1
cos

1 cossin 1 – cos

α αθ = ± = ± = ±
+ αα α

                                 
1 1

0.7159
1 cos18 1 0.9510

= ± = ± = ±
+ ° +

∴               θ  = 44.3° or     135.7°  Ans.

Example. 9.4. Two shafts are connected by a Hooke’s joint. The driving shaft revolves
uniformly at 500 r.p.m. If the total permissible variation in speed of the driven shaft is not to exceed
± 6% of the mean speed, find the greatest permissible angle between the centre lines of the shafts.

Solution.  Given : N = 500 r.p.m. or ω = 2 π × 500 / 60 = 52.4 rad/s

Let α = Greatest permissible angle between the centre lines of the shafts.

Since the variation in speed of the driven shaft is ± 6% of the mean speed (i.e. speed of the
driving speed), therefore total fluctuation of speed of the driven shaft,

q = 12 % of mean speed (ω) = 0.12 ω
We know that maximum or total fluctuation of speed of the driven shaft (q),

 
21 – cos

0.12
cos

 αω = ω  α 
    or   cos2 α + 0.12 cos α – 1 = 0

and                                 
2– 0.12 (0.12) 4 – 0.12 2.0036

cos 0.9418
2 2

± + ±α = = =

...(Taking + sign)
                                                                                                                                                                                 α = 19.64° Ans.

Example. 9.5. Two shafts are connected by a universal joint. The driving shaft rotates at a
uniform speed of 1200 r.p.m. Determine the greatest permissible angle between the shaft axes so that
the total fluctuation of speed does not exceed 100 r.p.m. Also calculate the maximum and minimum
speeds of the driven shaft.
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Solution.  Given : N = 1200 r.p.m.; q = 100 r.p.m.
Greatest permissible angle between the shaft axes

Let                          α = Greatest permissible angle between the shaft axes.
We know that total fluctuation of speed (q),

                                   
2 21 – cos 1 – cos

100 1200
cos cos

N
   α α= =      α α   

∴                      
21 – cos 100

0.083
cos 1200

α = =
α

  cos2 α + 0.083 cos α – 1 = 0

and                                         
2– 0.083 (0.083) 4

cos 0.9593
2

± +
α = = ...(Taking + sign)

∴                          α = 16.4° Ans.

Maximum and minimum speed of the driven shaft

We know that maximum speed of the driven shaft,

                            N1 (max) = N / cos α = 1200 / 0.9593 = 1251 r.p.m.  Ans.

and minimum speed of the driven shaft,

                              N1 (min) = N  cos α = 1200 × 0.9593 = 1151 r.p.m.  Ans.

Example. 9.6. The driving shaft of a Hooke’s joint runs at a uniform speed of 240 r.p.m. and
the angle α between the shafts is 20°. The driven shaft with attached masses has a mass of 55 kg at
a radius of gyration of 150 mm.

1. If a steady torque of 200 N-m resists rotation of the driven shaft, find the torque required
at the driving shaft, when θ = 45°.

2. At what value of ‘α’will the total fluctuation of speed of the driven shaft be limited to 24
r.p.m ?

Solution. Given :  N = 240 r.p.m or ω = 2 π × 240/60 = 25.14 rad/s ; α = 20° ; m = 55 kg ;
k = 150 mm = 0.15 m ; T1 = 200 N-m ; θ = 45° ; q = 24 r.p.m.

1.  Torque required at the driving shaft

Let T′ = Torque required at the driving shaft.

We know that mass moment inertia of the driven shaft,

I = m.k2 = 55 (0.15)2 = 1.24 kg-m2

and angular acceleration of the driven shaft,

                    
2 2 2 2

1
2 2 2 2 2 2

– cos .sin 2 .sin – (25.14) cos 20 sin90 sin 20

(1 – cos sin ) (1 – cos 45 sin 20 )

d

dt

ω ω α θ α °× °× °= =
θ α ° °

                              = – 78.4 rad / s2

∴  Torque required to accelerate the driven shaft,

                         1
2 1.24 – 78.4 – 97.2 N m

d
T I

dt

ω
= × = × = −



254  �   Theory of Machines

and total torque required on the driven shaft,

                          T = T1 + T2 = 200 – 97.2 = 102.8 N– m

Since the torques on the driving and driven shafts are inversely proportional to their angular
speeds, therefore

                     T ' . ω = T . ω1

or                     
1

2 2

. cos

1 – cos .sin

T T
T

ω α′ = =
ω θ α

1
2

cos
...

1 – cos .sin

 ω α=  ω θ α 
�

                        2 2

102.8 cos 20
102.6 N-m

1 – cos 45 sin 20

°= =
° °

 Ans.

2.  Value of ααααα for the total fluctuation of speed to be 24 r.p.m.

We know that the total fluctuation of speed of the driven shaft (q),

                        
2 21 – cos 1 – cos

24 240
cos cos

N
   α α= =      α α   

or         
21 – cos 24

0.1
cos 240

α = =
α

cos2 α + 0.1 cos α – 1 = 0

2– 0.1 (0.1) 4
cos 0.95

2

± +
α = = ...(Taking + sign)

∴                                     α = 18.2°  Ans.

Example 9.7. A double universal joint is used to connect two shafts in the same plane. The
intermediate shaft is inclined at an angle of 20° to the driving shaft as well as the driven shaft. Find
the maximum and minimum speed of the intermediate shaft and the driven shaft if the driving shaft
has a constant speed of 500 r.p.m.

Solution. Given α = 20° ; NA = 500 r.p.m.

Maximum and minimum speed of the intermediate shaft

Let  A , B  and C are the driving shaft, intermediate shaft and driven shaft respectively. We
know that for the driving shaft (A ) and intermediate shaft (B),

Maximum speed of the intermediate shaft,

A
B ( )

500
532.1 r.p.m

cos cos 20max
N

N = = =
α °

Ans.

and minimum speed of the intermediate shaft,

NB (min) = NA cos α = 500 × cos 20° = 469.85 r.p.m.  Ans.

Maximum and minimum speed of the driven shaft

We know that for the intermediate shaft (B) and driven shaft (C),

Maximum speed of the driven shaft,

                                   
B( ) A

C( ) 2 2

500
566.25 r.p.m.

cos cos cos 20

max
max

N N
N = = = =

α α °
Ans.
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and minimum speed of the driven shaft,

NC (min) = NB (min) × cos α = NA. cos2 α
= 500 × cos2 20° = 441.5 r.p.m. Ans.

EXERCISES
1. Fig. 9.22 shows the link GAB which oscillates on a fixed centre at A  and the link FD on a fixed

centre at F. The link A B is equal to AC and DB, BE, EC and CD are equal in length.

Fig. 9.22

(a) Find the length of AF and the position of centre F so that the point E may move in a straight line.

(b) If  the  point  E  is  required  to move in a circle passing through centre A , what will be the path
of point D ? [Ans. AF = FD]

(Hint. The mechanism is similar to Peaucellier’s mechanism)

2. Fig. 9.23 shows a part of the mechanism of a circuit breaker. A  and D are fixed centres and the lengths
of the links are : A B = 110 mm, BC = 105 mm, and CD = 150 mm.

            

All dimensions in mm.

Fig. 9.23 Fig. 9.24

Find the position of a point P on BC produced that will trace out an approximately straight vertical
path 250 mm long.

3. The mechanism, as shown in Fig. 9.24, is a four bar kinematic chain of which the centres A and B are
fixed. The lengths are : A B = 600 mm, AC = BD = CD = 300 mm. Find the point G on the centre line
of the cross arm of which the locus is an approximately straight line even for considerable displace-
ments from the position shown in the figure. [Ans. 400 mm.]
(Hint : It is a Robert’s approximate straight line mechanism. Produce AC and BD to intersect at point
E. Draw a vertical line from E to cut the centre line of cross arm at G. The distance of G from CD is
the required distance).
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4. The distance between the fixed centres O and O1 of a Watt’s straight line motion, as shown in Fig. 9.6,
is 250 mm. The lengths of the three moving links OB, B A and AO1 are 150 mm, 75 mm and 100 mm
respectively. Find the position of a point P on B A which gives the best straight line motion.

5. A Watt’s parallel motion has two bars OA and O′B pivoted at O and O′ respectively and joined by the
link A B in the form of a crossed four bar mechanism. When the mechanism is in its mean position, the
bars OA and O′B are perpendicular to the link A B. If OA = 75 mm, O′B = 25 mm and A B = 100 mm,
find the position of the tracing point P and also find how far P is from the straight line given by the
mean position of A B, when
1.  OA and OB are in one straight line, and    2.  O′B and A B are in one straight line.

[Ans. 37.5 mm, 6.5 mm,12 mm]

6. Design a pantograph for an indicator to obtain the indicator diagram of an engine. The distance from
the tracing point of the indicator is 100 mm. The indicator diagram should represent four times the gas
pressure inside the cylinder of an engine.

7. In a Davis steering gear, the distance between the pivots of the front axle is 1 metre and the wheel base
is 2.5 metres. Find the inclination of the track arm to the longitudinal axis of the car, when it is moving
along a straight path. [Ans. 11.17°]

8. A Hooke’s joint connects two shafts whose axes intersect at 150°. The driving shaft rotates uni-
formly at 120 r.p.m. The driven shaft operates against a steady torque of 150 N-m and carries a
flywheel whose mass is 45 kg and radius of gyration 150 mm. Find the maximum torque which will be
exerted by the driving shaft. [Ans. 187 N-m]

(Hint : The maximum torque exerted by the driving shaft is the sum of steady torque and the maxi-
mum accelerating torque of the driven shaft).

9. Two shafts are connected by a Hooke’s joint. The driving shaft revolves uniformly at 500 r.p.m. If the
total permissible variation in speed of a driven shaft is not to exceed  6% of the mean speed, find the
greatest permissible angle between the centre lines of the shafts. Also determine the maximum and
minimum speed of the driven shaft. [Ans. 19.6° ; 530 r.p.m. ; 470 r.p.m.]

10. Two inclined shafts are connected by means of a universal joint. The speed of the driving shaft is 1000
r.p.m. If the total fluctuation of speed of the driven shaft is not to exceed 12.5% of this, what is the
maximum possible inclination between the two shafts?

With this angle, what will be the maximum acceleration to which the driven shaft is subjected and
when this will occur ? [Ans. 20.4° ; 1570 rad/s2 ; 41.28°]

DO YOU KNOW ?
1. Sketch a pantograph, explain its working and show that it can be used to reproduce to an enlarged

scale a given figure.

2. A circle has OR as its diameter and a point Q lies on its circumference. Another point P lies on the line
OQ produced. If OQ turns about O as centre and the product OQ × OP remains constant, show that
the point P moves along a straight line perpendicular to the diameter OR.

3. What are straight line mechanisms ? Describe one type of exact straight line motion mechanism
with the help of a sketch.

4. Describe the Watt’s parallel mechanism for straight line motion and derive the condition under which
the straight line is traced.

5. Sketch an intermittent motion mechanism and explain its practical applications.

6. Give a neat sketch of the straight line motion ‘Hart mechanism.’ Prove that it produces an exact
straight line motion.

7. (a) Sketch and describe the Peaucellier straight line mechanism indicating clearly the conditions
under which the point P on the corners of the rhombus of the mechanism, generates a straight
line.

(b) Prove geometrically that the above mechanism is capable of producing straight line.
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8. Draw the sketch of a mechanism in which a point traces an exact straight line. The mechanism must be

made of only revolute pairs. Prove that the point traces an exact straight line motion.
(Hint. Peaucellier straight line mechanism)

9. Sketch the Dobbie-McInnes indicator mechanism and show that the displacement of the pencil
which traces the indicator diagram is proportional to the displacement of the indicator piston.

10. What is the condition for correct steering ? Sketch and show the two main types of steering gears
and discuss their relative advantages.

11. Explain why two Hooke’s joints are used to transmit motion from the engine to the differential of an
automobile.

12. Derive an expression for the ratio of shafts velocities for Hooke’s joint and draw the polar diagram
depicting the salient features of driven shaft speed.

OBJECTIVE TYPE QUESTIONS
1. In a pantograph, all the pairs are

(a) turning pairs (b) sliding pairs

(c) spherical pairs (d) self-closed pairs

2. Which of the following mechanism is made up of turning pairs ?

(a) Scott Russel’s mechanism (b) Peaucellier’s mechanism

(c) Hart’s mechanism (d) none of these

3. Which of the following mechanism is used to enlarge or reduce the size of a drawing ?

(a) Grasshopper mechanism (b) Watt mechanism

(c) Pantograph (d) none of these

4. The Ackerman steering gear mechanism is preferred to the Davis steering gear mechanism, because

(a)   whole of the mechanism in the Ackerman steering gear is on the back of the front wheels.

(b) the Ackerman steering gear consists of turning pairs

(c) the Ackerman steering gear is most economical

(d) both (a) and (b)

5. The driving and driven shafts connected by a Hooke’s joint will have equal speeds, if

(a) cos θ = sin α (b) sin tanθ = ± α

(c) tan cosθ = ± α (d) cot θ = cos α

     where θ =  Angle through which the driving shaft turns, and

α =  Angle of inclination of the driving and driven shafts.

ANSWERS
1. (a) 2. (b), (c) 3. (c) 4. (d) 5. (c)
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