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APPENDIX |

More on Synthetic Division

As the name implies, synthetic division simulates the long division process, butin acon-
densed and more efficient form. It’s based on a few simple observations of long divi-
sion, as noted in the division (x* — 2x> — 13x — 17) + (x — 5) shown in Figure AL1.

Figure Al.1 Figure Al.2
£ ¥3x +2 1 3 2
x= 50 -2 — 13— 17 =51 -2 -13 -17
_@-sd) l 2
3% — 13x 3
— (3x* — 15x 15
2x — 17 2
= [2x — 10 ) 10
—7  remainder —7  remainder

A careful observation reveals a great deal of repetition, as any term in red is a dupli-
cate of the term above it. In addition, since the dividend and divisor must be written
in decreasing order of degree, the variable part of each term is unnecessary as we can
let the position of each coefficient indicate the degree of the term. In other words, we’ll
agree that

1 -2 —13 —17 represents the polynomial 1x* — 2% — 13x — 17.

Finally, we know in advance that we'll be subtracting each partial product, so we can
“distribute the negative,” shown at each stage. Removing the repeated terms and variable
factors, then distributing the negative to the remaining terms produces Figure AL2. The
entire process can now be condensed by vertically compressing the rows of the division
so that a minimum of space is used (Figure AL3).

Figure AL3 Figure Al.4
1 3 2 quotient 1 3 2
x=51 -2 =13 —17 dvidend x—5)1 -2 —13 —17 diidend
5 15 10 products 3 15 10 products
3 2 7 sums 1 3 2 —7  remainder
quotient

Further, if we include the lead coefficient in the bottom row (Figure AL4), the coef-
ficients in the top row (in blue) are duplicated and no longer necessary, since the quo-
tient and remainder now appear in the last row. Finally, note all entries in the product
row (in red) are five times the sum from the prior column. There is a direct connec-
tion between this multiplication by 5 and the divisor x — 5, and in fact, it is the zero
of the divisor that is used in synthetic division (x = 5 from x — 5 = 0). A simple
change in format makes this method of division easier to use, and highlights the loca-
tion of the divisor and remainder (the blue brackets in Figure AL5). Note the process
begins by “dropping the lead coefficient into place” (shown in bold). The full process
of synthetic division is shown in Figure AL6 for the same exercise.

Al
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Figure ALS
divisor (use 5,not —5) — 5| 1 —2 -13 —17  « coefficients of dividend
drop lead coefficient into place — 1 L« quotient and remainder

appear in this row

We then multiply this coefficient by the “divisor,” place the result in the next column
and add. In a sense, we “multiply in the diagonal direction,” and “add in the vertical
direction.”” Continue the process until the division is complete.

Figure AL6
51 -2 -13 —17  « coefficients of dividend
multiply by 5 \ /-,5 15 10
1 <] 2 =7 < quotient and remainder

appear in this row

7
The resultis x* + 3x + 2 + 5 read from the last row.
-
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Reduced Row-Echelon Form
A matrix is in reduced row-echelon form if it satisfies the following conditions:

1. All null rows (zeroes for all entries) occur at the bottom of the matrix.

2. The first non-zero entry of any row mustbe a 1.

3. For any two consecutive, nonzero rows, the leading 1 in the higher row is to the
left of the 1 in the lower row.

4. Every column with a leading 1 has zeroes for all other entries in the column.

Matrices A through D are in reduced row-echelon form.

1 0 0 5 1 0 0 5 1 0 5 0
B=|0 1 0 3 c=(0 1 3 -2 D=(0 1 2 0
0O 0 0 0 0 0 0 0 0 0 0 1

‘Where Gaussian elimination places a matrix in row-echelon form (satisfying the
first three conditions), Gauss-Jordan elimination places a matrix in reduced row-
echelon form. To obtain this form, continue applying row operations to the matrix until
the fourth condition above is also satisfied. For a 3 > 3 system having a unique solu-
tion, the diagonal entries of the coefficient matrix will be 1's, with 0’s for all other
entries. To illustrate, we'll extend Example 4 from Section 9.1 until reduced row-
echelon form is obtained.

2x+ y—2z= -7
Solve using Gauss-Jordan elimination: § x + y+ z = —1
D g
x4+ y—2z=-7 M
x+y+ z=-1 R1R2 matrix form — 2
=2y—- z=-3 0
11 i M1
201 ~2R1 + R2 —R2 ~1R2 — R2 0
0 -2 Lo i
! [t 1 1i-1]
01 2R2 + R3—R3 RTS A3 0 1 405
0 -2 0 0 1§ 1]
(o1 i 3R3 + R1— R [1 0 0{-3]
0 1 —R2 + R1—R1 0 1 45 0 1 0f1
0 0 Lo: ;0 i 1) oW3RR=Rn Lo g 44 al

The final matrix is in reduced row-echelon form with solution (—3, 1, 1) just as in Section 9.1.

A-3
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The Determinant of a General Matrix

To compute the determinant of a general square matrix, we introduce the idea of a
cofactor. For ann % n matrix A, A; = (—1)""/[My] is the cofactor of matrix element
a;, where |M | represents the determinant of the corresponding minor matrix. Note that
i+ j is the sum of the row and column of the entry, and if this sum is even,
(—1)"" = 1, while if the sum is odd, (—1)' "/ = —1 (this is how the sign table for a
3 X 3 determinant was generated). To compute the determinant of an n X n matrix,
multiply each element in any row or column by its cofactor and add. The result is a
tier-like process in which the determinant of a larger matrix requires computing the
determinant of smaller matrices. In the case of a 4 > 4 matrix, each of the minor matri-
ces will be size 3 X 3, whose determinant then requires the computation of other 2 > 2
determinants. In the following illustration, two of the entries in the first row are zero
for convenience. For

=2 0 3 0

20 -2

4=l 3 v 3 af

0 -3 2 1
2 0 =2 1 2 =2
we have: det(A) = =2-(-1)'"'|-1 4 1 +3)-(-133 -1 1
-3 2 1 0. =3 1

Computing the first 3 X 3 determinant gives — 16, the second 3 X 3 determinant is 14.
This gives:
det(A) = —2(—16) + 3(14)
=74
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Deriving the Equation of a Conic

The Equation of an Ellipse

In Section 10.2, the equation V/(x + e +y+ Vix - e) + 3y = 2a was devel-

oped using the distance formula and the definition of an ellipse. To find the standard

form of the equation, we treat this result as a radical equation, isolating one of the rad-

icals and squaring both sides.

\/(-‘ * “)2 +y =2a- \/(J\ -y +y isolate one radical
(x+eP+y =4 —daV(x —cf + ¥+ (x — )+ square bath sides

‘We continue by simplifying the equation, isolating the remaining radical, and squar-
ing again.
P+2x+ld+yY =4 —daV(x -+ + 2= 2cx+ P+ ) z)\(npua;'\jals
dex = da’ — 4aV/ (x— (')2 + )‘2 simplify
aViix—cP+y =da —cx isolate radical; divide by 4
uz[(x — )P+ )'2} = a* — 2dPex + 42 square both sides
a’ — 2a’cx + @’ + uz_v: =a* — 2d%x + 2 expand and distribute a* on left
add 2a%cx and rewrite equation

factor

divide by a%(a® — ¢?)

Since a > ¢, we know & > ¢ and a® — ¢* > 0. For convenience, we let
b? = &® — ¢* and it also follows that & > b> and @ > b (since ¢ > 0). Substituting

b for a® — ¢ we obtain the standard form olehe equation of an ellipse (major axis
2

: 2 i X ¥ P A
horizontal, since we stipulateda > b): — + I_’ = 1. Note once again the x-intercepts
a- b~

are (*a, 0), while the y-intercepts are (0, *b).

The Equation of a Hyperbola

Similar to the development of the equation of an ellipse, the equation
\/(x + e + 3t — \/(r — ¢)* + 3> = 2a could have been developed using the
distance formula and the definition of a hyperbola. To find the standard form of this
equation, we apply the same procedures as before.

Vix + (‘)2 +y=2a+ V(x—¢) +4 isolate one radical
(x + c')z + 3'2 = da" + da’V (x — c)z + y‘) + (x — \‘.‘)1 + }'1 square both sides
242+ 3+ yi= 4a” + daV fon—= c)z + )'3 + = 2ex + 2+ yz Zmandl
inomials
dex = 4a* + 4aV (x — (')2 + yz simplify
ex—at= u\/(.\' - c-)l + _\'2 isolate radical; divide by 4

3 3
A = 2a’ex + at

a*[(x — ¢ + 3] square both sides

A = 2a%ex + at = &8P — 2dPex + PP+ az_\'z expand and distribute a” on the right

- S | 4 2
=dc¢ —a add 2a’cx and rewrite equation
3. 2
= a'((" — aZ) factor
=1 divide by a%(c* — &%)

A-5
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From the definition of a hyperbola we have 0 < a < ¢, showing ¢* > & and

& 2 2 A :
¢> — a® > 0. For convenience, we let B> = ¢ — a” and substitute to obtain thg stan-
2

. . ; X ¥
dard form of the equation of a hyperbola (transverse axis horizontal): — — [—, =1
o /8

Note the x-intercepts are (0, *a) and there are no y-intercepts.

The Asymptotes of a Central Hyperbola

From our work in Section 10.3, a central hyperbola with a horizontal axis will have
asymplotes at y = ié.r. To understand why, recall that for asymptotic behavior we
investigate what happem to the relation for large values of x, meaning as x| — oo.

y
Starting w1th — “5 = 1, we have
& B

b2 — oyt = a?b? clear denominators
uz = p? = a’b isolate term with y
( ) factor out bx* from right side
a P
divide by &

J

y= t \‘, 1= square root both sides
X

ol

2

a b
As [x] = 00, —; — (0, and we find that for large values of x, y = *=x.
e a
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Proofs from Chapter 3
The Remainder Theorem
If a polynomial p(x) is divided by (x — ¢) using synthetic division,
the remainder is equal to p(c).
Proof of the Remainder Theorem
From our previous work, any number ¢ used in synthetic division will occur as the factor
(x — ¢) when written as (quotient)(divisor) + remainder: p(x) = (x — ¢)g(x) + r.
Here, ¢(x) represents the quotient polynomial and r is a constant. Evaluating p(c¢) gives
p(x) = (x = c)a(a) + r
ple) = (c = c)glc) + r
=0-g4(c) +r
=rv
The Factor Theorem
Given a polynomial p(x),
(1)ifple) = 0, then x — ¢ is a factor of p(x), and
(2)if x — ¢ is a factor of p(x), then p(c) = 0.
Proof of the Factor Theorem

1. Consider a polynomial p written in the form p(x) = (x — ¢)g(x) + r. From the
remainder theorem we know p(¢) = r, and substituting p(¢) for r in the equation
shown gives:

p(x) = (x = e)g(x) + ple)
and x — ¢ is a factor of p(x), if p(c) = 0
p(x) = (x = c)ale)

2. The steps from part 1 can be reversed, since any factor (x — ¢) of p(x), can be written
in the form p(x) = (x — ¢)g(x). Evaluating at x = ¢ produces a result of zero:

ple) = (¢ = c)alx)
=0/
Complex Conjugates Corollary
Given p(x) is a polynomial with real number coefficients, complex solutions must occur
in conjugate pairs. If a + bi, b # 0 is a selution, then a — bi must alse be a solution.
To prove this for polynomials of degree n > 2, weletz; = a + biand 7o = ¢ + di
be complex numbers, andletz, = @ — bi, and z, = ¢ — di represent their conjugates,
and observe the following properties:
1. The conjugate of a sum is equal to the sum of the conjugates.
sum: zy + 2 sum of conjugates: 7, + Z»
(a + bi) + (¢ + di) (a — bi) + (¢ — di)
(a+c)+ (b+di —conugateotsim— (a +¢)— (b +d)i s

A7
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2. The conjugate of a product is equal to the product of the conjugates.

product: z; + 22 product of conjugates: z; * Z»
(a + bi)-(c + di) (a — bi): (¢ — di)
ac + adi + bei + bdi? ac — adi — bei + bdi?

(ac — bd) + (ad + be)i - conjugate of product —»  (aec — bd) — (ad + be)i s

Since polynomials involve only sums and products, and the complex conjugate of
any real number is the number itself, we have the following:
Proof of the Complex Conjugates Corollary
Given polynomial p(x) = a,x" + @, "' + -+ aix' + a, where @ a1,
ay, dp are real numbers and z = a + bi is a zero of p, we must show that Z = a — biis

also a zero.
a +a,_ "'+ a +ag=p(z)  evalatepixatz
a a2t Fap=0 p(Z) = 0given
a,,z” + a,.- 1:’," Lo a]zl + ag = 6 conjugate both sides
& Fiqg " et E + ap = 0 property 1
a,z") + @u-(z" l) TR El(?l) +a,=0 property 2
a,(Z") + ap—1(Z" l) + ot al(El) +ap=0 conjugate of a real number is the number

p(z) =0 v result

An immediate and useful result of this theorem is that any polynomial of odd
degree must have at least one real root.

Linear Factorization Theorem

If p(x) is a complex polynomial of degree n = 1, then p has exactly n linear factors

and can be written in the form p(x) = a(x — ¢, (x —c3) ... (x — ¢,), where a, # 0
and cy, ¢y, . .., c,are complex numbers. Some factors may have multiplicities greater
than 1 (¢, ¢, . . ., ¢, are not necessarily distinct).

Proof of the Linear Factorization Theorem

Given p(x) = ax" + a, x" '+ -+ + a,x + a,is a complex polynomial, the Funda-
mental Theorem of Algebra establishes that p(x) has a least one complex zero, call
it ¢;. The factor theorem stipulates (x — ¢;} must be a factor of P, giving

plx) = (x — e))gi(x)

where g, (x) is a complex polynomial of degree n — 1.
Since ¢,(x) is a complex polynomial in its own right, it too must also have a
complex zero, call it ¢;. Then (x — ¢5) must be a factor of ¢,(x). giving

Px) = (x = c1)x = c2)galx)

where g,(x) is a complex polynomial of degree n — 2.
Repeating this rationale n times will cause p(x) to be rewritten in the form

pix)=(x—c){x —c2) » -+ - (x — cn)gu(x)
where g,(x) has a degree of n — n = 0, a nonzero constant typically called a,,.

The result is p(x) = a,(x — e;)(x —¢2) + -+ + (x — ¢,), and the proof is
complete.
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Proofs from Chapter 4
The Product Property of Logarithms

Given M, N, and b # 1 are positive real numbers,
log,(MN) = logyM + log,N.

Proof of the Product Property

For P = log,M and Q = log, N, we have b = M and b° = N in exponential form.
It follows that

logi(MN) = log,(b"b%) substitute b” for Mand b” for N
= logy(b"" %)
=P+0 log property 3
= log,M + log, N substitute log,Mfor Pand log,\ for 0

properties of exponents

The Quotient Property of Logarithms

Given M, N, and b # 1 are positive real numbers,

M
log;, N = logyM — log,N.

Proof of the Quotient Property

For P = log,M and Q = log, N, we have b* = M and b = N in exponential form.
It follows that

M bP o P 2
log,| — | = log, o substitute 5" for Mand b for N
N b
= oo ’
= lng,(b ) properties of exponents
=P~ Q log property 3

= log,M — log, N substitute log, M for P and log, Al for @

The Power Property of Logarithms

Given M and b # 1 are positive real numbers and any real number x,
logyM* = xlogyM.

Proof of the Power Property

For P = log,M, we have b” = M in exponential form.
It follows that

log,, (M)* = log, (b")*  substitute b°for M
= ng,,(bF") properties of exponents
= Px log property 3
= (logyM)x  substitute log, M for P

= xlog,M rewrite factors
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Proof of the Determinant Formula for the
Area of a Parallelogram

1
Since the area of a triangle is A = Eab sin 6, the area of the corresponding parallelogram

is twice as large: A = ab sin 6. In terms of the vectors u = {a, b> and v = (c, d}, we
have A = |u||v| sin 8, and it follows that

u
A Area = ufv|V 1 — cos’f, Pythagorean identity
v
_ i Jf (u- v)2 .
= |“”‘|\fﬁ L= ‘ulzlv‘j substitute for cos o

common denominator

ufvf
= VuPv? - (u-v)? simplify
= '\/(uz + 69 + d%) — (ac + bd)? substitute

3

= Ve + dd* + b’ + bd® — (a°c® + 2achd + b°d®) expand
= Vu2d2 — 2achd + B¢* simplify
= \/(ad = J'Jc}z factor

= |ad — be| result

Proof of Heron's Formula Using Algebra
Note that Va® — d* = h = V¢* — ¢ Tt follows that
‘/uz— 2= A /cz_ez

2
E-d=2-&

d

b az—(IJ—e)zzcz—ez
a — b +2be— = — &
@ =B =t = —2be
P+ —a
——=¢
2b
; 1
This shows: A= Ebh
1
= —pVit - &

Il
|
o

i 37(.52+ chaZ)z
z N " 2b

1 \/ . (b" + 2b%” — 2d°b* — 2d°F + d* + J)
3

2 4p*
1 \/ 457 (b“ + 2% — 28%B? — 2d%E + at + c“)
.y -
2V 4p? 4b*
. / 4’ — b = 2% + 2d°0 + 2d°%7 — d* — &
2N 45>
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1 3 5
= Z\/Zuzb‘ + 2477 + 20°% — ot — bt - &t

-+ Vila+ b7 - @& — (@ - b7

= ;\/(u +b+c)a+b—c)e+a—b)c—a+h)

From this point, the conclusion of the proof is the same as the trigonometric develop-
ment found on page 730.

Proof that u - v = comp, u x |v|

Consider the vectors in the figure shown, which form a triangle. Applying the Law of
Cosines to this triangle yields:

u-—v-=ul~+|v|°
B, 2 2

= 2|u||v| cos #

Using properties of the dot product (page 758), we can rewrite the left-hand side as
follows:

o= v =(u=v)-(u-v)
=uru—urv-oveu+vey
=u*-2u-v+ v’
Substituting the last expression for [u — v|2 from the Law of Cosines gives
[u)> = 2w-v + [v|> = u|> + [v]* = 2 u]|v| cos #
—2u:v=—2u||v|cos 8
u-v=|u||v|cos#
= |u| cos @ x |v|.
Substituting comp, u for |u| cos # completes the proof:

u-v = comp,ux |v|

Proof of DeMoivre’s Theorem:
(cos x + i sinx)" = cos(nx) + isin(nx)
Forn > 0, we proceed using mathematical induction.
1. Show the statement is true for n = | (base case):
(cos x + isinx)' = cos(1x) + i sin(1x)
cosx + isinx = cosx + isinx
2. Assume the statement is true for n = k (induction hypothesis):
(cos x + isinx)* = cos(kx) + i sin(kx)
3. Show the statement is true forn = k + 1:

k41

(cosx + isinx)*"1 = (cosx + i sinx)f(cos x + i sin x)"

[cos(kx) + i sin(kx)](cos x + i sinx) induction hypothesis

= cos(kx)cos x — sin{kx)sin x + i[cos(kx)sin x + sin(k,t)coso.r}
A F-0-I-L
= cos[(k + L)x] + isin[(k + 1)x] ¢ sum/difference identities
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By the principle of mathematical induction, the statement is true for all positive
integers. For n << 0 (the theorem is obviously true for n = 0), consider a positive
integer m, where n = —m.

(cosx + isinx)" = (cosx + isinx) ™"

1
= 7( ¥ isina)" negative exponent property
Cos x 18X

1
B DeMoivre’s theorem for n > 0
cos(mx) + i sin(mx)
= cos(mx) — isin(mx) multiply numerator and denom by
cos{mx) — isin{mx) and simplify

= cos(—mx) + i sin(—mx) even/odd identities

cos(nx) + i sin(nx) n=-m
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Families of Polar Curves

Circles and Spiral Curves

00 ¢

Circle Circle Circle
r:g—‘ r=acosf r=asinf =kl
- a represents the diameter of the circle
Roses: r = a sin(n@) (illustrated here) and r = a cos(n@)
Four-petal rose Three-petal rose Eight-petal rose Five-petal rose
r = a sin{28) r = a sin(36) r = asin(48) r = a sin(56)
If n is odd — there are n petals, if n is even — there are 2n petals.

lal represents the maximum distance from the origin
(the radius of a circumscribed circle)

A-13
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A-14 Appendix V' Families of Polar Graphs

Limacons: r = a + b sin 0 (illustrated here) and r = a + b cos @

Jae] +\[] la| +\[] la| +\Ib]
ja\- bl NG
Limagon Cardioid Apple Eye-ball
(inner loop if |a| < |b|) (limagon where |a| = |b]) (limagon where |a| = |b]) (limagon where |a| = 2|b])
r=a+bsinf r=a+hbsinf r=a+bsinf r=a+bsing

la] + || represents the maximum distance from the origin (along the axis of symmetry)

Lemniscates: r2 = a%sin(20) and r? = a’cos(260)

Lemniscate Lemniscate
2 = a? cos(26)
a represents the maximum distance from the origin

(the radius of a circumscribed circle)
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