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Preface

Daniel |. Levitin

What Is Cognition?

Cognition encompasses the scientific study of the human mind and how it
processes information; it focuses on one of the most difficult of all mysteries
that humans have addressed. The mind is an enormously complex system
holding a unique position in science: by necessity, we must use the mind to
study itself, and so the focus of study and the instrument used for study are
recursively linked. The sheer tenacity of human curiosity has in our own life-
times brought answers to many of the most challenging scientific questions we
have had the ambition to ask. Although many mysteries remain, at the dawn of
the twenty-first century, we find that we do understand much about the fun-
damental laws of chemistry, biology, and physics; the structure of space-time,
the origins of the universe. We have plausible theories about the origins and
nature of life and have mapped the entire human genome. We can now turn
our attention inward, to exploring the nature of thought, and how our mental
life comes to be what it is.

There are scientists from nearly every field engaged in this pursuit. Physicists
try to understand how physical matter can give rise to that ineffable state we
call consciousness, and the decidedly nonphysical “mind stuff” that Descartes
and other philosophers have argued about for centuries. Chemists, biologists,
and neuroscientists join them in trying to explicate the mechanisms by which
neurons communicate with each other and eventually form our thoughts, mem-
ories, emotions, and desires. At the other end of the spectrum, economists study
how we balance choices about limited natural and financial resources, and
anthropologists study the influence of culture on thought and the formation of
societies. So at one end we find scientists studying atoms and cells, at the other
end there are scientists studying entire groups of people. Cognitive psycholo-
gists tend to study the individual, and mental systems within individual brains,
although ideally we try to stay informed of what our colleagues are doing. So
cognition is a truly interdisciplinary endeavor, and this collection of readings is
intended to reflect that.

Why Not a Textbook?

This book grew out of a course I took at the Massachusetts Institute of Tech-
nology (MIT) in 1975, from Susan Carey and Merrill Garrett (with occasional
guest lectures by Mary Potter), and courses I taught at the University of Ore-
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gon, Stanford University, and the University of California at Berkeley. When I
took cognition at MIT, there were only two textbooks about cognition as a field
(if it could even be thought of as a field then): Ulric Neisser’s Cognitive Psy-
chology and Michael Posner’s Cognition: An Introduction. Professors Carey and
Garrett supplemented these texts with a thick book of hand-picked readings
from Scientific American and mainstream psychology journals. Reading journal
articles prepared the students for the debates that characterize science. Susan
and Merrill skillfully brought these debates out in the classroom, through inter-
active lectures and the Socratic method. Cognition is full of opposing theories
and controversies. It is an empirical science, but in many cases the same data
are used to support different arguments, and the reader must draw his or her
own conclusions. The field of cognition is alive, dynamic, and rediscovering
itself all the time. We should expect nothing less of the science devoted to
understanding the mind.

Today there are many excellent textbooks and readers devoted to cognition.
Textbooks are valuable because they select and organize a daunting amount of
information and cover the essential points of a topic. The disadvantage is that
they do not reflect how psychologists learn about new research—this is most
often done through journal articles or “high-level” book chapters directed to
the working researcher. More technical in nature, these sources typically reveal
details of an experiment’s design, the measures used, and how the findings are
interpreted. They also reveal some of the inherent ambiguity in research (often
hidden in a textbook’s tidy summary). Frequently students, when confronted
with the actual data of a study, find alternate interpretations of the findings,
and come to discover firsthand that researchers are often forced to draw their
own conclusions. By the time undergraduates take a course in cognition (usu-
ally their second or third course in psychology) they find themselves wonder-
ing if they ought to major in psychology, and a few even think about going to
graduate school. I believe they ought to know more about what it is like to read
actual psychology articles, so they’ll know what they’re getting into.

On the other hand, a book of readings composed exclusively of such primary
sources would be difficult to read without a suitable grounding in the field and
would leave out many important concepts, lacking an overview. That is, it might
tend to emphasize the trees at the expense of the forest.

Therefore, the goal of this anthology is to combine the best of both kinds
of readings. By compiling an anthology such as this, I was able to pick and
choose my favorite articles, by experts on each topic. Of the thirty-nine selec-
tions, ten are from undergraduate textbooks, six are from professional journals,
sixteen are chapters from “high-level” books aimed at advanced students and
research scientists, and seven are more or less hybrids, coming from sources
written for the educated layperson, such as Scientific American or popular books
(e.g., Gardner, Norman). This book is not intended to be a collection of the most
important papers in the history of cognitive psychology; other authors have
done this extremely well, especially Lloyd Komatsu in his excellent Experiment-
ing with the Mind (1994, Brooks/Cole). It is intended as a collection of readings
that can serve as the principal text for a course in cognitive psychology or cog-
nitive science.
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The particular readings included here owe their evolution to a course I taught
at the University of California at Berkeley in the fall of 1999, “Fundamental
Issues in Cognitive Science.” The readings for that course had been carefully
honed over ten years by Stephen Palmer and Alison Gopnik, outstanding
teachers whose courses are motivated by an understanding of the philosophical
basis for contemporary cognitive psychology. I had never seen cognitive psy-
chology taught this way, but once I did I couldn’t imagine teaching it any other
way. A fundamental assumption I share with them is that cognitive psychology
is in many respects empirical philosophy. By that I mean that the core questions
in cognitive psychology were for centuries considered the domain of philoso-
phers. Some of these questions include: What is the nature of thought? Does
language influence thought? Are memories and perceptions accurate? How can
we ever know if other people are conscious?

Aristotle was the first information-processing theorist, and without exaggera-
tion one can argue that modern cognitive psychology owes him its heritage.
Descartes launched modern approaches to these questions, and much current
debate references his work. But for Aristotle, Descartes, Hume, Locke, Husserl,
and others, the questions remained in the realm of philosophy. A century and
a half ago this all changed when Wundt, Fechner, Helmholtz, and their cohorts
established the first laboratories in which they employed empirical methods to
probe what had previously been impenetrable to true science: the mind. Philos-
ophers framed the questions, and mental scientists (as they were then some-
times called) conducted experiments to answer them.

Today, the empirical work that interests me most in the field of Cognition is
theory-driven and builds on these philosophical foundations. And a new group
of philosophers, philosophers of mind, closely monitor the progress made by
cognitive psychologists in order to interpret and debate their findings and to
place them in a larger context.

Who Is This For?

The book you have before you is intended to be used as a text for the under-
graduate cognitive psychology class I teach at McGill University. I hope that
others will find some value in it as well. It should also be suitable for students
who wish to acquaint themselves through self-study with important ideas in
cognition. The ambitious student or professor may want to use this to sup-
plement a regular textbook as a way to add other perspectives on the topics
covered. It may also be of use to researchers as a resource that gathers up key
articles in one place. It presupposes a solid background in introductory psy-
chology and research methods. Students should have encountered most of these
topics previously, and this book gives them an opportunity to explore them
more deeply.

How the Book Is Organized and How It Differs from Other Books

The articles in this reader are organized thematically around topics tradition-
ally found in a course on cognitive psychology or cognitive science at the uni-
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versity level. The order of the readings could certainly be varied without loss of
coherence, although I think that the first few readings fit better at the begin-
ning. After that any order should work.

The readings begin with philosophical foundations, and it is useful to keep
these in mind when reading the remainder of the articles. This reflects the view
that good science builds on earlier foundations, even if it ultimately rejects
them.

This anthology differs from most other cognition readers in its coverage of
several topics not typically taught in cognition courses. One is human factors
and ergonomics, the study of how we interact with tools, machines, and arti-
facts, and what cognitive psychology can tell us about how to improve the de-
sign of such objects (including computers); this is represented in the excellent
papers by Don Norman. Another traditionally underrepresented topic, evolu-
tionary psychology, is represented here by two articles, one by David Buss and
his colleagues, and the other by John Tooby and Leda Cosmides. Also unusual
are the inclusion of sections on music cognition, experimental design, and as
mentioned before, philosophical foundations. You will find that there is some-
what less coverage of neuroscience and computer science perspectives on cog-
nition, simply because in our department at McGill, we teach separate courses
on those topics, and this reader reflects an attempt to reduce overlap.
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PART I

Foundations—Philosophical Basis, The Mind /Body
Problem




Chapter 1
Visual Awareness

Stephen E. Palmer

1.1 Philosophical Foundations

The first work on virtually all scientific problems was done by philosophers,
and the nature of human consciousness is no exception. The issues they raised
have framed the discussion for modern theories of awareness. Philosophical
treatments of consciousness have primarily concerned two issues that we will
discuss before considering empirical facts and theoretical proposals: The mind-
body problem concerns the relation between mental events and physical events
in the brain, and the problem of other minds concerns how people come to believe
that other people (or animals) are also conscious.

1.1.1 The Mind-Body Problem

Although there is a long history to how philosophers have viewed the nature of
the mind (sometimes equated with the soul), the single most important issue
concerns what has come to be called the mind-body problem: What is the relation
between mental events (e.g., perceptions, pains, hopes, desires, beliefs) and
physical events (e.g., brain activity)? The idea that there is a mind-body prob-
lem to begin with presupposes one of the most important philosophical posi-
tions about the nature of mind. It is known as dualism because it proposes that
mind and body are two different kinds of entities. After all, if there were no
fundamental differences between mental and physical events, there would be
no problem in saying how they relate to each other.

Dualism The historical roots of dualism are closely associated with the writ-
ings of the great French philosopher, mathematician, and scientist René
Descartes. Indeed, the classical version of dualism, substance dualism, in which
mind and body are conceived as two different substances, is often called Carte-
sian dualism. Because most philosophers find the notion of physical substances
unproblematic, the central issue in philosophical debates over substance dual-
ism is whether mental substances exist and, if so, what their nature might be.
Vivid sensory experiences, such as the appearance of redness or the feeling of
pain, are among the clearest examples, but substance dualists also include more
abstract mental states and events such as hopes, desires, and beliefs.

The hypothesized mental substances are proposed to differ from physical
ones in their fundamental properties. For example, all ordinary physical matter

From chapter 13 in Vision Science: Photons to Phenomenology (Cambridge, MA: MIT Press, 1999), 618—
630. Reprinted with permission.
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has a well-defined position, occupies a particular volume, has a definite shape,
and has a specific mass. Conscious experiences, such as perceptions, remem-
brances, beliefs, hopes, and desires, do not appear to have readily identifiable
positions, volumes, shapes, and masses. In the case of vision, however, one
might object that visual experiences do have physical locations and extensions.
There is an important sense in which my perception of a red ball on the table is
located on the table where the ball is and is extended over the spherical volume
occupied by the ball. What could be more obvious? But a substance dualist
would counter that these are properties of the physical object that I perceive
rather than properties of my perceptual experience itself. The experience is in
my mind rather than out there in the physical environment, and the location,
extension, and mass of these mental entities are difficult to define—unless one
makes the problematic move of simply identifying them with the location, ex-
tension, and mass of my brain. Substance dualists reject this possibility, believ-
ing instead that mental states, such as perceptions, beliefs, and desires, are
simply undefined with respect to position, extension, and mass. In this case,
it makes sense to distinguish mental substances from physical ones on the
grounds that they have fundamentally different properties.

We can also look at the issue of fundamental properties the other way
around: Do experiences have any properties that ordinary physical matter does
not? Two possibilities merit consideration. One is that experiences are subjective
phenomena in the sense that they cannot be observed by anyone but the person
having them. Ordinary matter and events, in contrast, are objective phenomena
because they can be observed by anyone, at least in principle. The other is that
experiences have what philosophers call intentionality: They inherently refer to
things other than themselves.! Your experience of a book in front of you right
now is about the book in the external world even though it arises from activity
in your brain. This directedness of visual experiences is the source of the confu-
sion we mentioned in the previous paragraph about whether your perceptions
have location, extension, and so forth. The physical objects to which such per-
ceptual experiences refer have these physical properties, but the experiences
themselves do not. Intentionality does not seem to be a property that is shared
by ordinary matter, and if this is true, it provides further evidence that con-
scious experience is fundamentally different.

It is possible to maintain a dualistic position and yet deny the existence of
any separate mental substances, however. One can instead postulate that the
brain has certain unique properties that constitute its mental phenomena. These
properties are just the sorts of experiences we have as we go about our every-
day lives, including perceptions, pains, desires, and thoughts. This philosophi-
cal position on the mind-body problems is called property dualism. It is a form
of dualism because these properties are taken to be nonphysical in the sense of
not being reducible to any standard physical properties. It is as though the
physical brain contains some strange nonphysical features or dimensions that
are qualitatively distinct from all physical features or dimensions.

These mental features or dimensions are usually claimed to be emergent prop-
erties: attributes that simply do not arise in ordinary matter unless it reaches a
certain level or type of complexity. This complexity is certainly achieved in the
human brain and may also be achieved in the brains of certain other animals.
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The situation is perhaps best understood by analogy to the emergent property
of being alive. Ordinary matter manifests this property only when it is orga-
nized in such a way that it is able to replicate itself and carry on the required
biological processes. The difference, of course, is that being alive is a property
that we can now explain in terms of purely physical processes. Property dual-
ists believe that this will never be the case for mental properties.

Even if one accepts a dualistic position that the mental and physical are
somehow qualitatively distinct, there are several different relations they might
have to one another. These differences form the basis for several varieties of
dualism. One critical issue is the direction of causation: Does it run from mind
to brain, from brain to mind, or both? Descartes’s position was that both sorts
of causation are in effect: events in the brain can affect mental events, and
mental events can also affect events in the brain. This position is often called
interactionism because it claims that the mental and physical worlds can interact
causally with each other in both directions. It seems sensible enough at an in-
tuitive level. No self-respecting dualist doubts the overwhelming evidence that
physical events in the brain cause the mental events of conscious experience.
The pain that you feel in your toe, for example, is actually caused by the firing
of neurons in your brain. Convincing evidence of this is provided by so-called
phantom limb pain, in which amputees feel pain—sometimes excruciating pain—
in their missing limbs (Chronholm, 1951; Ramachandran, 1996).

In the other direction, the evidence that mental events can cause physical
ones is decidedly more impressionistic but intuitively satisfying to most inter-
actionists. They point to the fact that certain mental events, such as my having
the intention of raising my arm, appear to cause corresponding physical
events, such as the raising of my arm—provided I am not paralyzed and my
arm is not restrained in any way. The nature of this causation is scientifically
problematic, however, because all currently known forms of causation concern
physical events causing other physical events. Even so, other forms of causation
that have not yet been identified may nevertheless exist.

Not all dualists are interactionists, however. An important alternative ver-
sion of dualism, called epiphenomenalism, recognizes mental entities as being dif-
ferent in kind from physical ones yet denies that mental states play any causal
role in the unfolding of physical events. An epiphenomenalist would argue that
mental states, such as perceptions, intentions, beliefs, hopes, and desires, are
merely ineffectual side effects of the underlying causal neural events that take
place in our brains. To get a clearer idea of what this might mean, consider the
following analogy: Imagine that neurons glow slightly as they fire in a brain
and that this glowing is somehow akin to conscious experiences. The pattern
of glowing in and around the brain (i.e., the conscious experience) is clearly
caused by the firing of neurons in the brain. Nobody would question that. But
the neural glow would be causally ineffectual in the sense that it would not
cause neurons to fire any differently than they would if they did not glow.
Therefore, causation runs in only one direction, from physical to mental, in an
epiphenomenalist account of the mind-body problem. Although this position
denies any causal efficacy to mental events, it is still a form of dualism because
it accepts the existence of the “glow” of consciousness and maintains that it is
qualitatively distinct from the neural firings themselves.
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Idealism Not all philosophical positions on the mind-body problem are dual-
istic. The opposing view is monism: the idea that there is really just one sort
of stuff after all. Not surprisingly, there are two sorts of monist positions—
idealism and materialism—one for each kind of stuff there might be. A monist
who believes there to be no physical world, but only mental events, is called an
idealist (from the “ideas” that populate the mental world). This has not been a
very popular position in the history of philosophy, having been championed
mainly by the British philosopher Bishop Berkeley.

The most significant problem for idealism is how to explain the commonality
of different people’s perceptions of the same physical events. If a fire engine
races down the street with siren blaring and red lights flashing, everyone looks
toward it, and they all see and hear pretty much the same physical events, al-
beit from different vantage points. How is this possible if there is no physical
world that is responsible for their simultaneous perceptions of the sound and
sight of the fire engine? One would have to propose some way in which the
minds of the various witnesses happen to be hallucinating exactly correspond-
ing events at exactly corresponding times. Berkeley’s answer was that God was
responsible for this grand coordination, but such claims have held little sway in
modern scientific circles. Without a cogent scientific explanation of the com-
monality of shared experiences of the physical world, idealism has largely be-
come an historical curiosity with no significant modern following.

Materialism The vast majority of monists believe that only physical entities
exist. They are called materialists. In contrast to idealism, materialism is a very
common view among modern philosophers and scientists. There are actually
two distinct forms of materialism, which depend on what their adherents
believe the ultimate status of mental entities will be once their true physical
nature is discovered. One form, called reductive materialism, posits that mental
events will ultimately be reduced to material events in much the same way that
other successful reductions have occurred in science (e.g., Armstrong, 1968).
This view is also called mind-brain identity theory because it assumes that mental
events are actually equivalent to brain events and can be talked about more or
less interchangeably, albeit with different levels of precision.

A good scientific example of what reductive materialists believe will occur
when the mental is reduced to the physical is the reduction in physics of ther-
modynamic concepts concerning heat to statistical mechanics. The temperature
of a gas in classical thermodynamics has been shown to be equivalent to the
average kinetic energy of its molecules in statistical mechanics, thus replacing
the qualitatively distinct thermodynamic concept of heat with the more general
and basic concept of molecular motion. The concept of heat did not then dis-
appear from scientific vocabulary: it remains a valid concept within many
contexts. Rather, it was merely given a more accurate definition in terms of
molecular motion at a more microscopic level of analysis. According to reduc-
tive materialists, then, mental concepts will ultimately be redefined in terms
of brain states and events, but their equivalence will allow mental concepts
to remain valid and scientifically useful even after their brain correlates are
discovered. For example, it will still be valid to say, “John is hungry,” rather
than, “Such-and-such pattern of neural firing is occurring in John’s lateral
hypothalamus.”
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The other materialist position, called eliminative materialism, posits that at
least some of our current concepts concerning mental states and events will
eventually be eliminated from scientific vocabulary because they will be found
to be simply invalid (e.g., Churchland, 1990). The scenario eliminative materi-
alists envision is thus more radical than the simple translation scheme we just
described for reductive materialism. Eliminative materialists believe that some
of our present concepts about mental entities (perhaps including perceptual
experiences as well as beliefs, hopes, desires, and so forth) are so fundamen-
tally flawed that they will someday be entirely replaced by a scientifically
accurate account that is expressed in terms of the underlying neural events.
An appropriate analogy here would be the elimination of the now-discredited
ideas of “vitalism” in biology: the view that what distinguishes living from
nonliving things is the presence of a mysterious and qualitatively distinct force
or substance that is present in living objects and absent in nonliving ones. The
discovery of the biochemical reactions that cause the replication of DNA by
completely normal physical means ultimately undercut any need for such mys-
tical concepts, and so they were banished from scientific discussion, never to be
seen again.

In the same spirit, eliminative materialists believe that some mental concepts,
such as perceiving, thinking, desiring, and believing, will eventually be sup-
planted by discussion of the precise neurological events that underlie them.
Scientists would then speak exclusively of the characteristic pattern of neural
firings in the appropriate nuclei of the lateral hypothalamus and leave all talk
about “being hungry” or “the desire to eat” to historians of science who study
archaic and discredited curiosities of yesteryear. Even the general public would
eventually come to think and talk in terms of these neuroscientific explanations
for experiences, much as modern popular culture has begun to assimilate cer-
tain notions about DNA replication, gene splicing, cloning, and related con-
cepts into movies, advertising, and language.

Behaviorism Another position on the mind-body problem is philosophical be-
haviorism: the view that the proper way to talk about mental events is in terms
of the overt, observable movements (behaviors) in which an organism engages.
Because objective behaviors are measurable, quantifiable aspects of the physical
world, behaviorism is, strictly speaking, a kind of materialism. It provides such
a different perspective, however, that it is best thought of as a distinct view.
Behaviorists differ markedly from standard materialists in that they seek to
reduce mental events to behavioral events or dispositions rather than to neu-
rophysiological events. They shun neural explanations not because they dis-
believe in the causal efficacy of neural events, but because they believe that
behavior offers a higher and more appropriate level of analysis. The radical
behaviorist movement pressed for nothing less than redefining the scientific
study of mind as the scientific study of behavior. And for many years, they
succeeded in changing the agenda of psychology.

The behaviorist movement began with the writings of psychologist John
Watson (1913), who advocated a thoroughgoing purge of everything mental from
psychology. He reasoned that what made intellectual inquiries scientific rather
than humanistic or literary was that the empirical data and theoretical con-
structs on which they rest are objective. In the case of empirical observations,
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objectivity means that, given a description of what was done in a partic-
ular experiment, any scientist could repeat it and obtain essentially the same
results, at least within the limits of measurement error. By this criterion, intro-
spective studies of the qualities of perceptual experience were unscientific be-
cause they were not objective. Two different people could perform the same
experiment (using themselves as subjects, of course) and report different expe-
riences. When this happened—and it did—there was no way to resolve dis-
putes about who was right. Both could defend their own positions simply by
appealing to their private and privileged knowledge of their own inner states.
This move protected their claims but blocked meaningful scientific debate.

According to behaviorists, scientists should study the behavior of organisms
in a well-defined task situation. For example, rather than introspect about the
nature of the perception of length, behaviorists would perform an experiment.
Observers could be asked to discriminate which of two lines was longer, and
their performance could be measured in terms of percentages of correct and
incorrect responses for each pair of lines. Such an objective, behaviorally de-
fined experiment could easily be repeated in any laboratory with different sub-
jects to verify the accuracy and generality of its results. Watson’s promotion of
objective, behaviorally defined experimental methods—called methodological
behaviorism—was a great success and strongly shaped the future of psycho-
logical research.

Of more relevance to the philosophical issue of the relation between mind
and body, however, were the implications of the behaviorist push for objectiv-
ity in theoretical constructs concerning the mind. It effectively ruled out refer-
ences to mental states and processes, replacing them with statements about an
organism’s propensity to engage in certain behaviors under certain conditions.
This position is often called theoretical behaviorism or philosophical behavior-
ism. Instead of saying, “John is hungry,” for example, which openly refers to
a conscious mental experience (hunger) with which everyone is presumably
familiar, a theoretical behaviorist would say something like “John has a pro-
pensity to engage in eating behavior in the presence of food.” This propensity
can be measured in a variety of objective ways—such as the amount of a cer-
tain food eaten when it was available after a certain number of hours since the
last previous meal—precisely because it is about observable behavior.

But the behaviorist attempt to avoid talking about conscious experience runs
into trouble when one considers all the conditions in which John might fail to
engage in eating behavior even though he was hungry and food was readily
available. Perhaps he could not see the food, for example, or maybe he was
fasting. He might even have believed that the food was poisoned. It might seem
that such conditions could be blocked simply by inserting appropriate provi-
sions into the behavioral statement, such as “John had a propensity to engage
in eating behavior in the presence of food, provided he perceived it, was not
fasting, and did not believe it was poisoned.” This move ultimately fails, how-
ever, for at least two reasons:

1. Inability to enumerate all conditionals. Once one begins to think of con-
ditions that would have to be added to statements about behavioral dis-
positions, it quickly becomes apparent that there are indefinitely many.
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Perhaps John fails to eat because his hands are temporarily paralyzed,
because he has been influenced by a hypnotic suggestion, or whatever.
This problem undercuts the claim that behavioral analyses of mental
states are elegant and insightful, suggesting instead that they are fatally
flawed or at least on the wrong track.

2. Inability to eliminate mental entities. The other problem is that the con-
ditionals that must be enumerated frequently make reference to just the
sorts of mental events that are supposed to be avoided. For example,
whether John sees the food or not, whether he intends to fast, and what he
believes about its being poisoned are all mentalistic concepts that have now
been introduced into the supposedly behavioral definition. The amended
version is therefore unacceptable to a strict theoretical behaviorist.

For such reasons, theoretical behaviorism ultimately failed. The problem, in a
nutshell, was that behaviorists mistook the epistemic status of mental states
(how we come to know about mental states in other people) for the ontological
status of mental states (what their inherent nature is) (Searle, 1992). That is, we
surely come to know about other people’s mental states through their behavior,
but this does not mean that the nature of these mental states is inherently
behavioral.

Functionalism Functionalism was a movement in the philosophy of mind that
began in the 1960s in close association with the earliest stirrings of cognitive
science (e.g., Putnam, 1960). Its main idea is that a given mental state can be
defined in terms of the causal relations that exist among that mental state,
environmental conditions (inputs), organismic behaviors (outputs), and other
mental states. Note that this is very much like behaviorism, but with the im-
portant addition of allowing other mental states into the picture. This addition
enables a functionalist definition of hunger, for example, to refer to a variety
of other mental states, such as perceptions, intentions, and beliefs, as sug-
gested above. Functionalists are not trying to explain away mental phenomena
as actually being propensities to behave in certain ways, as behaviorists did.
Rather, they are trying to define mental states in terms of their relations to
other mental states as well as to input stimuli and output behaviors. The picture
that emerges is very much like information processing analyses. This is not
surprising because functionalism is the philosophical foundation of modern
computational theories of mind.

Functionalists aspired to more than just the overthrow of theoretical behav-
iorism, however. They also attempted to block reductive materialism by sug-
gesting new criticisms of mind-brain identity theory. The basis of this criticism
lies in the notion of multiple realizability: the fact that many different physical
devices can serve the same function, provided they causally connect inputs and
outputs in the same way via internal states (Putnam, 1967). For example, there
are many different ways of building a thermostat. They all have the same
function—to control the temperature in the thermostat’s environment—but
they realize it through very different physical implementations.

Multiple realizability poses the following challenge to identity theory. Sup-
pose there were creatures from some other galaxy whose biology was based
on silicon molecules rather than on carbon molecules, as ours is. Let us also
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suppose that they were alive (even though the basis of their life was not DNA,
but some functionally similar self-replicating molecule) and that they even look
like people. And suppose further not only that their brains were constructed of
elements that are functionally similar to neurons, but also that these elements
were interconnected in just the way that neurons in our brains are. Indeed,
their brains would be functionally isomorphic to ours, even though they were
made of physically different stuff.

Functionalists then claim that these alien creatures would have the same
mental states as we do—that is, the same perceptions, pains, desires, beliefs,
and so on that populate our own conscious mental lives—provided that their
internal states were analogously related to each other, to the external world,
and to their behavior. This same approach can be generalized to argue for the
possibility that computers and robots of the appropriate sort would also be
conscious. Suppose, for example, that each neuron in a brain was replaced with
a microcomputer chip that exactly simulated its firing patterns in response to
all the neuron chips that provide its input. The computer that was thus con-
structed would fulfill the functionalist requirements for having the same mental
states as the person whose brain was “electronically cloned.” You should de-
cide for yourself whether you believe that such a computer would actually
have mental states or would merely act as though it had mental states. Once
you have done so, try to figure out what criteria you used to decide. (For two
contradictory philosophical views of this thought experiment, the reader is re-
ferred to Dennett (1991) and Searle (1993).)

Multiple realizability is closely related to differences between the algorithmic
and implementation levels. The algorithmic level corresponds roughly to the
functional description of the organism in terms of the relations among its in-
ternal states, its input information, and its output behavior. The implementa-
tion level corresponds to its actual physical construction. The functionalist
notion of multiple realizability thus implies that there could be many different
kinds of creatures that would have the same mental states as people do, at least
defined in this way. If true, this would undercut identity theory, since mental
events could not then be simply equated with particular neurological events;
they would have to be equated with some more general class of physical events
that would include, among others, silicon-based aliens and electronic brains.

The argument from multiple realizability is crucial to the functionalist theory
of mind. Before we get carried away with the implications of multiple realiz-
ability, though, we must ask ourselves whether it is true or even remotely likely
to be true. There is not much point in basing our understanding of conscious-
ness on a functionalist foundation unless that foundation is well grounded. Is
it? More important, how would we know if it were? We will address this topic
shortly when we consider the problem of other minds.

Supervenience There is certainly some logical relation between brain activity
and mental states such as consciousness, but precisely what it is has obviously
been difficult to determine. Philosophers of mind have spent hundreds of years
trying to figure out what it is and have spilled oceans of ink attacking and
defending different positions. Recently, however, philosopher Jaegwon Kim
(1978, 1993) has formulated a position with which most philosophers of mind
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have been able to agree. This relation, called supervenience, is that any difference
in conscious events requires some corresponding difference in underlying neu-
ral activity. In other words, mental events supervene on neural events because
no two possible situations can be identical with respect to their neural proper-
ties while differing in their mental properties. It is a surprisingly weak relation,
but it is better than nothing.

Supervenience does not imply that all differences in underlying neural activ-
ity result in differences in consciousness. Many neural events are entirely out-
side awareness, including those that control basic bodily functions such as
maintaining gravitational balance and regulating heartbeat. But supervenience
claims that no changes in consciousness can take place without some change
in neural activity. The real trick, of course, is saying precisely what kinds of
changes in neural events produce what kinds of changes in awareness.

1.1.2 The Problem of Other Minds
The functionalist arguments about multiple realizability are merely thought
experiments because neither aliens nor electronic brains are currently at hand.
Even so, the question of whether or not someone or something is conscious is
central to the enterprise of cognitive science because the validity of such argu-
ments rests on the answer. Formulating adequate criteria for consciousness is
one of the thorniest problems in all of science. How could one possibly decide?
Asking how to discriminate conscious from nonconscious beings brings us
face to face with another classic topic in the philosophy of mind: the problem
of other minds. The issue at stake is how I know whether another creature (or
machine) has conscious experiences. Notice that I did not say “how we know
whether another creature has conscious experiences,” because, strictly speak-
ing, I do not know whether you do or not. This is because one of the most pe-
culiar and unique features of my consciousness is its internal, private nature:
Only I have direct access to my conscious experiences, and I have direct access
only to my own. As a result, my beliefs that other people also have conscious
experiences—and your belief that I do—appear to be inferences. Similarly, I
may believe that dogs and cats, or even frogs and worms, are conscious. But in
every case, the epistemological basis of my belief about the consciousness of
other creatures is fundamentally different from knowledge of my own con-
sciousness: I have direct access to my own experience and nobody else’s.

Criteria for Consciousness If our beliefs that other people—and perhaps many
animals as well—have experiences like ours are inferences, on what might such
inferences be based? There seem to be at least two criteria.

1. Behavioral similarity. Other people act in ways that are roughly similar
to my own actions when I am having conscious experiences. When I ex-
perience pain on stubbing my toe, for example, I may wince, say “Ouch!”
and hold my toe while hopping on my other foot. When other people do
similar things under similar circumstances, I presume they are experienc-
ing a feeling closely akin to my own pain. Dogs also behave in seemingly
analogous ways in what appear to be analogous situations in which they
might experience pain, and so I also attribute this mental state of being in
pain to them. The case is less compelling for creatures like frogs and
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worms because their behavior is less obviously analogous to our own, but
many people firmly believe that their behavior indicates that they also
have conscious experiences such as pain.

2. Physical similarity. Other people—and, to a lesser degree, various other
species of animals—are similar to me in their basic biological and physical
structure. Although no two people are exactly the same, humans are gen-
erally quite similar to each other in terms of their essential biological con-
stituents. We are all made of the same kind of flesh, blood, bone, and so
forth, and we have roughly the same kinds of sensory organs. Many other
animals also appear to be made of similar stuff, although they are mor-
phologically different to varying degrees. Such similarities and differences
may enter into our judgments of the likelihood that other creatures also
have conscious experiences.

Neither condition alone is sufficient for a convincing belief in the reality of
mental states in another creature. Behavioral similarity alone is insufficient be-
cause of the logical possibility of automatons: robots that are able to simulate
every aspect of human behavior but have no experiences whatsoever. We may
think that such a machine acts as if it had conscious experiences, but it could
conceivably do so without actually having them. (Some theorists reject this
possibility, however [e.g., Dennett, 1991].) Physical similarity alone is insuffi-
cient because we do not believe that even another living person is having con-
scious experiences when they are comatose or in a dreamless sleep. Only the
two together are convincing. Even when both are present to a high degree,
I still have no guarantee that such an inference is warranted. I only know that
I myself have conscious experiences.

But what then is the status of the functionalist argument that an alien
creature based on silicon rather than carbon molecules would have mental
states like ours? This thought experiment is perhaps more convincing than the
electronic-brained automaton because we have presumed that the alien is at
least alive, albeit using some other physical mechanism to achieve this state of
being. But logically, it would surely be unprovable that such silicon people
would have mental states like ours, even if they acted very much the same and
appeared very similar to people. In fact, the argument for functionalism from
multiple realizability is no stronger than our intuitions that such creatures
would be conscious. The strength of such intuitions can (and does) vary widely
from one person to another.

The Inverted Spectrum Argument We have gotten rather far afield from visual
perception in all this talk of robots, aliens, dogs, and worms having pains, but
the same kinds of issues arise for perception. One of the classic arguments re-
lated to the problem of other minds—called the inverted spectrum argument—
concerns the perceptual experience of color (Locke, 1690/1987). It goes like this:
Suppose you grant that I have visual awareness in some form that includes
differentiated experiences in response to different physical spectra of light (i.e.,
differentiated color perceptions). How can we know whether my color experi-
ences are the same as yours?

The inverted spectrum argument refers to the possibility that my color expe-
riences are exactly like your own, except for being spectrally inverted. In its
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Figure 1.1

Sophisticated versions of the inverted spectrum argument. Transformations of the normal color
solid (A) that would not be detectable by behavioral methods include (B) red-green reversal, which
reflects each color about the blue-yellow-black-white place; (C) the complementary transformation,
which reflects each color through the central point; and (D) blue-yellow and black-white reversal,
which is the combination of both the two other transformations (B and C). (After Palmer, 1999.)

literal form, the inversion refers to reversing the mapping between color expe-
riences and the physical spectrum of wavelengths of light, as though the rain-
bow had simply been reversed, red for violet (and vice versa) with everything
in between being reversed in like manner. The claim of the inverted spectrum
argument is that no one would ever be able to tell that you and I have different
color experiences.

This particular form of color transformation would not actually work as in-
tended because of the shape of the color solid (Palmer, 1999). The color solid is
asymmetrical in that the most saturated blues and violets are darker than the
most saturated reds and greens, which, in turn, are darker than the most satu-
rated yellows and oranges (see figure 1.1A). The problem this causes for the
literal inverted spectrum argument is that if my hues were simply reversed,
your experience of yellow would be the same as my experience of blue-green,
and so you would judge yellow to be darker than blue-green, whereas I would
do the reverse. This difference would allow the spectral inversion of my color
experiences (relative to yours) to be detected.

This problem may be overcome by using more sophisticated versions of
the same color transformation argument (Palmer, 1999). The most plausible is
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red-green reversal, in which my color space is the same as yours except for re-
flection about the blue-yellow plane, thus reversing reds and greens (see figure
1.1B). It does not suffer from problems concerning the differential lightness
of blues and yellows because my blues correspond to your blues and my
yellows to your yellows. Our particular shades of blues and yellows would be
different—my greenish yellows and greenish blues would correspond to your
reddish yellows (oranges) and reddish blues (purples), respectively, and vice
versa—but gross differences in lightness would not be a problem.

There are other candidates for behaviorally undetectable color transforma-
tions as well (see figures 1.1C and 1.1D). The crucial idea in all these versions of
the inverted spectrum argument is that if the color solid were symmetric with
respect to some transformation—and this is at least roughly true for the three
cases illustrated in figures 1.1B—1.1D—there would be no way to tell the dif-
ference between my color experiences and yours simply from our behavior. In
each case, I would name colors in just the same way as you would, because
these names are only mediated by our own private experiences of color. It is the
sameness of the physical spectra that ultimately causes them to be named con-
sistently across people, not the sameness of the private experiences. I would
also describe relations between colors in the same way as you would: that focal
blue is darker than focal yellow, that lime green is yellower than emerald
green, and so forth. In fact, if I were in a psychological experiment in which my
task was to rate pairs of color for similarity or dissimilarity, I would make the
same ratings you would. I would even pick out the same unique hues as you
would—the “pure” shades of red, green, blue, and yellow—even though my
internal experiences of them would be different from yours. It would be ex-
tremely difficult, if not impossible, to tell from my behavior with respect to
color that I experience it differently than you do.2

I suggested that red-green reversal is the most plausible form of color trans-
formation because a good biological argument can be made that there should
be some very small number of seemingly normal trichromats who should be
red-green reversed. The argument for such pseudo-normal color perception goes
as follows (Nida-Riimelin, 1996). Normal trichromats have three different pig-
ments in their three cone types (figure 1.2A). Some people are red-green color
blind because they have a gene that causes their long-wavelength (L) cones to
have the same pigment as their medium-wavelength (M) cones (figure 1.2B).
Other people have a different form of red-green color blindness because they
have a different gene that causes their M cones to have the same pigment as
their L cones (figure 1.2C). In both cases, people with these genetic defects lose
the ability to experience both red and green because the visual system codes
both colors by taking the difference between the outputs of these two cone
types. But suppose that someone had the genes for both of these forms of red-
green color blindness. Their L cones would have the M pigment, and their M
cones would have the L pigment (figure 1.2D). Such doubly color blind indi-
viduals would therefore not be red-green color blind at all, but red-green-
reversed trichromats.® Statistically, they should be very rare (about 14 per
10,000 males), but they should exist. If they do, they are living proof that this
color transformation is either undetectable or very difficult to detect by purely
behavioral means, because nobody has ever detected one!
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Figure 1.2

A biological basis for red-green-reversed trichromats. Normal trichromats have three different pig-
ments in the retinal cones (A), whereas red-green color blind individuals have the same pigment in
their L and M cones (B and C). People with the genes for both forms of red-green color blindness,
however, would be red-green-reversed trichromats (D).

These color transformation arguments are telling criticisms against the com-
pleteness of any definition of conscious experience based purely on behavior.
Their force lies in the fact that there could be identical behavior in response to
identical environmental stimulation without there being corresponding identi-
cal experiences underlying them, even if we grant that the other person has
experiences to begin with.

Phenomenological Criteria Let us return to the issue of criteria for conscious-
ness: How are we to tell whether a given creature is conscious or not? Clearly,
phenomenological experience is key. In fact, it is the defining characteristic, the
necessary and sufficient condition, for attributing consciousness to something.
I know that I am conscious precisely because I have such experiences. This
is often called first-person knowledge or subjective knowledge because it is avail-
able only to the self (i.e., the first-person or subject). In his classic essay
“What Is It Like to Be a Bat?” philosopher Thomas Nagel (1974) identifies the
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phenomenological position with what it is like to be some person, creature, or
machine in a given situation. In the case of color perception, for example, it
is what it is like for you to experience a particular shade of redness or pale
blueness or whatever. This much seems perfectly clear. But if it is so clear, then
why not simply define consciousness with respect to such phenomenological
criteria?

As we said before, the difficulty is that first-person knowledge is available
only to the self. This raises a problem for scientific explanations of conscious-
ness because the scientific method requires its facts to be objective in the sense
of being available to any scientist who undertakes the same experiment. In all
matters except consciousness, this appears to work very well. But conscious-
ness has the extremely peculiar and elusive property of being directly accessi-
ble only to the self, thus blocking the usual methods of scientific observation.
Rather than observing consciousness itself in others, the scientist is forced to
observe the correlates of consciousness, the “shadows of consciousness,” as it
were. Two sorts of shadows are possible to study: behavior and physiology.
Neither is consciousness itself, but both are (or seem likely to be) closely
related.

Behavioral Criteria  The most obvious way to get an objective, scientific handle
on consciousness is to study behavior, as dictated by methodological behav-
iorism. Behavior is clearly objective and observable in the third-person sense.
But how is it related to consciousness? The link is the assumption that if some-
one or something behaves enough like I do, it must be conscious like I am.
After all, I believe I behave in the ways I do because of my own conscious
experiences, and so (presumably) do others. I wince when I am in pain, eat
when I am hungry, and duck when I perceive a baseball hurtling toward my
head. If I were comatose, I would not behave in any of these ways, even in the
same physical situations.

Behavioral criteria for consciousness are closely associated with what is
called Turing’s test. This test was initially proposed by the brilliant mathemati-
cian Alan Turing (1950), inventor of the digital computer, to solve the problem
of how to determine whether a computing machine could be called “intelli-
gent.” Wishing to avoid purely philosophical debates, Turing imagined an ob-
jective behavioral procedure for deciding the issue by setting up an imitation
game. A person is seated at a computer terminal that allows her to communicate
either with a real person or with a computer that has been programmed to
behave intelligently (i.e., like a person). This interrogator’s job is to decide
whether she is communicating with a person or the computer. The terminal is
used simply to keep the interrogator from using physical appearance as a factor
in the decision, since appearance presumably does not have any logical bearing
on intelligence.

The interrogator is allowed to ask anything she wants. For example, she
could ask the subject to play a game of chess, engage in a conversation on cur-
rent events, or describe its favorite TV show. Nothing is out of bounds. She
could even ask whether the subject is intelligent. A person would presumably
reply affirmatively, but then so would a properly programmed computer. If the
interrogator could not tell the difference between interacting with real people
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and with the computer, Turing asserted that the computer should be judged
“intelligent.” It would then be said to have “passed Turing’s test.”

Note that Turing’s test is a strictly behavioral test because the interrogator
has no information about the physical attributes of the subject, but only about
its behavior. In the original version, this behavior is strictly verbal, but there is
no reason in principle why it needs to be restricted in this way. The interroga-
tor could ask the subject to draw pictures or even to carry out tasks in the real
world, provided the visual feedback the interrogator received did not provide
information about the physical appearance of the subject.

The same imitation game can be used for deciding about the appropriateness
of any other cognitive description, including whether the subject is “conscious.”
Again, simply asking the subject whether it is conscious will not discriminate
between the machine and a person because the machine can easily be pro-
grammed to answer that question in the affirmative. Similarly, appropriate re-
sponses to questions asking it to describe the nature of its visual experiences or
pain experiences could certainly be programmed. But even if they could, would
that necessarily mean that the computer would be conscious or only that it
would act as if it were conscious?

If one grants that physical appearance should be irrelevant to whether
something is conscious or not, Turing’s test seems to be a fair and objective
procedure. But it also seems that there is a fact at issue here rather than just an
opinion—namely, whether the target object is actually conscious or merely sim-
ulating consciousness—and Turing’s test should stand or fall on whether it
gives the correct answer. The problem is that it is not clear that it will. As critics
readily point out, it cannot distinguish between a conscious entity and one that
only acts as if it were conscious—an automaton or a zombie. To assert that
Turing’s test actually gives the correct answer to the factual question of con-
sciousness, one must assume that it is impossible for something to act as if it is
conscious without actually being so. This is a highly questionable assumption,
although some have defended it (e.g., Dennett, 1991). If it is untrue, then pass-
ing Turing’s test is not a sufficient condition for consciousness, because autom-
atons can pass it without being conscious.

Turing’s test also runs into trouble as a necessary condition for conscious-
ness. The relevant question here is whether something can be conscious and
still fail Turing’s test. Although this might initially seem unlikely, consider a
person who has an unusual medical condition that disables the use of all the
muscles required for overt behavior yet keeps all other bodily functions intact,
including all brain functions. This person would be unable to behave in any
way yet would still be fully conscious when awake. Turing’s test thus runs
afoul as a criterion for consciousness because behavior’s link to consciousness
can be broken under unlikely but easily imaginable circumstances.

We appear to be on the horns of a dilemma with respect to the criteria for
consciousness. Phenomenological criteria are valid by definition but do not ap-
pear to be scientific by the usual yardsticks. Behavioral criteria are scientific by
definition but are not necessarily valid. The fact that scientists prefer to rely on
respectable but possibly invalid behavioral methods brings to mind the street-
light parable: A woman comes upon a man searching for something under a
streetlight at night. The man explains that he has lost his keys, and they both
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search diligently for some time. The woman finally asks the man where he
thinks he lost them, to which he replies, “Down the street in the middle of the
block.” When she then asks why he is looking here at the corner, he replies,
“Because this is where the light is.” The problem is that consciousness does not
seem to be where behavioral science can shed much light on it.

Physiological Criterin  Modern science has another card to play, however, and
that is the biological substrate of consciousness. Even if behavioral methods
cannot penetrate the subjectivity barrier of consciousness, perhaps physiologi-
cal methods can. In truth, few important facts are yet known about the bio-
logical substrates of consciousness. There are not even very many hypotheses,
although several speculations have recently been proposed (e.g., Baars, 1988;
Crick, 1994; Crick & Koch, 1990, 1995, 1998; Edelman, 1989). Even so, it is pos-
sible to speculate about the promise such an enterprise might hold as a way of
defining and theorizing about consciousness. It is important to remember that
in doing so, we are whistling in the dark, however.

Let us suppose, just for the sake of argument, that neuroscientists discover
some crucial feature of the neural activity that underlies consciousness. Perhaps
all neural activity that gives rise to consciousness occurs in some particular
layer of cerebral cortex, or in neural circuits that are mediated by some partic-
ular neurotransmitter, or in neurons that fire at a temporal spiking frequency of
about 40 times per second. If something like one of these assertions were true—
and, remember, we are just making up stories here—could we then define
consciousness objectively in terms of that form of neural activity? If we could,
would this definition then replace the subjective definition in terms of ex-
perience? And would such a biological definition then constitute a theory of
consciousness?

The first important observation about such an enterprise is that biology can-
not really give us an objective definition of consciousness independent of its
subjective definition. The reason is that we need the subjective definition to
determine what physiological events correspond to consciousness in the first
place. Suppose we knew all of the relevant biological events that occur in hu-
man brains. We still could not provide a biological account of consciousness
because we would have no way to tell which brain events were conscious and
which ones were not. Without that crucial information, a biological definition
of consciousness simply could not get off the ground. To determine the bio-
logical correlates of consciousness, one must be able to designate the events
to which they are being correlated (i.e., conscious ones), and this requires a
subjective definition.

For this reason, any biological definition of consciousness would always be
derived from the subjective definition. To see this in a slightly different way,
consider what would constitute evidence that a given biological definition was
incorrect. If brain activity of type C were thought to define consciousness, it
could be rejected for either of two reasons: if type C brain activity were found
to result in nonconscious processing of some sort or if consciousness were
found to occur in the absence of type C brain activity. The crucial observation
for present purposes is that neither of these possibilities could be evaluated
without an independent subjective definition of consciousness.
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Correlational versus Causal Theories In considering the status of physiological
statements about consciousness, it is important to distinguish two different
sorts, which we will call correlational and causal. Correlational statements con-
cern what type of physiological activity takes place when conscious experiences
are occurring that fail to take place when they are not. Our hypothetical ex-
amples in terms of a specific cortical location, a particular neurotransmitter, or
a particular rate of firing are good examples. The common feature of these
hypotheses is that they are merely correlational: They only claim that the des-
ignated feature of brain activity is associated with consciousness; they don’t
explain why that association exists. In other words, they provide no causal
analysis of how this particular kind of brain activity produces consciousness.
For this reason they fail to fill the explanatory gap that we mentioned earlier.
Correlational analyses merely designate a subset of neural activity in the brain
according to some particular property with which consciousness is thought to
be associated. No explanation is given for this association; it simply is the sort
of activity that accompanies consciousness.

At this point we should contrast such correlational analyses with a good
example of a causal one: an analysis that provides a scientifically plausible
explanation of how a particular form of brain activity actually causes conscious
experience. Unfortunately, no examples of such a theory are available. In fact,
to this writer’s knowledge, nobody has ever suggested a theory that the scien-
tific community regards as giving even a remotely plausible causal account of
how consciousness arises or why it has the particular qualities it does. This
does not mean that such a theory is impossible in principle, but only that no
serious candidate has been generated in the past several thousand years.

A related distinction between correlational and causal biological definitions
of consciousness is that they would differ in generalizability. Correlational anal-
yses would very likely be specific to the type of biological system within which
they had been discovered. In the best-case scenario, a good correlational defi-
nition of human consciousness might generalize to chimpanzees, possibly even
to dogs or rats, but probably not to frogs or snails because their brains are
simply too different. If a correlational analysis showed that activity mediated
by a particular neurotransmitter was the seat of human consciousness, for ex-
ample, would that necessarily mean that creatures without that neurotrans-
mitter were nonconscious? Or might some other evolutionarily related neural
transmitter serve the same function in brains lacking that one? Even more
drastically, what about extraterrestrial beings whose whole physical make-up
might be radically different from our own? In such cases, a correlational analy-
sis is almost bound to break down.

An adequate causal theory of consciousness might have a fighting chance,
however, because the structure of the theory itself could provide the lines along
which generalization would flow. Consider the analogy to a causal theory of
life based on the structure of DNA. The analysis of how the double helical
structure of DNA allows it to reproduce itself in an entirely mechanistic way
suggests that biologists could determine whether alien beings were alive in the
same sense as living organisms on earth by considering the nature of their mo-
lecular basis and its functional ability to replicate itself and to support the
organism’s lifelike functions. An alien object containing the very same set of
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four component bases as DNA (adenine, guanine, thymine, and cytosine) in
some very different global structure that did not allow self-replication would
not be judged to be alive by such biological criteria, yet another object contain-
ing very different components in some analogous arrangement that allowed for
self-replication might be. Needless to say, such an analysis is a long way off in
the case of consciousness.

Notes

1. The reader is warned not to confuse intentionality with the concept of “intention” in ordinary
language. Your intentions have intentionality in the sense that they may refer to things other
than themselves—for example, your intention to feed your cat refers to your cat, its food, and
yourself—but no more so than other mental states you might have, such as beliefs, desires, per-
ceptions, and pains. The philosophical literature on the nature of intentionality is complex and
extensive. The interested reader is referred to Bechtel (1988) for an overview of this topic.

2. One might think that if white and black were reversed, certain reflexive behaviors to light would
somehow betray the difference. This is not necessarily the case, however. Whereas you would
squint your eyes when you experienced intense brightness in response to bright sunlight, I
would also squint my eyes in response to large amounts of sunlight. The only difference is that
my experience of brightness under these conditions would be the same as your experience of
darkness. It sounds strange, but I believe it would all work out properly.

3. One could object that the only thing that differentiates M and L cones is the pigment that they
contain, so people with both forms of red-green color blindness would actually be normal tri-
chromats rather than red-green-reversed ones. There are two other ways in which M and L cones
might be differentiated, however. First, if the connections of M and L cones to other cells of the
visual system are not completely symmetrical, they can be differentiated by these connections
independently of their pigments. Second, they may be differentiable by their relation to the
genetic codes that produced them.
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Chapter 2
Where Am I?
Daniel C. Dennett

Now that I've won my suit under the Freedom of Information Act, I am at lib-
erty to reveal for the first time a curious episode in my life that may be of in-
terest not only to those engaged in research in the philosophy of mind, artificial
intelligence and neuroscience but also to the general public.

Several years ago I was approached by Pentagon officials who asked me to
volunteer for a highly dangerous and secret mission. In collaboration with
NASA and Howard Hughes, the Department of Defense was spending billions
to develop a Supersonic Tunneling Underground Device, or STUD. It was sup-
posed to tunnel through the earth’s core at great speed and deliver a specially
designed atomic warhead “right up the Red’s missile silos,” as one of the Pen-
tagon brass put it.

The problem was that in an early test they had succeeded in lodging a
warhead about a mile deep under Tulsa, Oklahoma, and they wanted me to
retrieve it for them. “Why me?” I asked. Well, the mission involved some pio-
neering applications of current brain research, and they had heard of my inter-
est in brains and of course my Faustian curiosity and great courage and so
forth.... Well, how could I refuse? The difficulty that brought the Pentagon to
my door was that the device I'd been asked to recover was fiercely radioactive,
in a new way. According to monitoring instruments, something about the na-
ture of the device and its complex interactions with pockets of material deep in
the earth had produced radiation that could cause severe abnormalities in cer-
tain tissues of the brain. No way had been found to shield the brain from these
deadly rays, which were apparently harmless to other tissues and organs of the
body. So it had been decided that the person sent to recover the device should
leave his brain behind. It would be kept in a safe place where it could execute its
normal control functions by elaborate radio links. Would I submit to a surgical
procedure that would completely remove my brain, which would then be
placed in a life-support system at the Manned Spacecraft Center in Houston?
Each input and output pathway, as it was severed, would be restored by a pair
of microminiaturized radio transceivers, one attached precisely to the brain, the
other to the nerve stumps in the empty cranium. No information would be lost,
all the connectivity would be preserved. At first I was a bit reluctant. Would it
really work? The Houston brain surgeons encouraged me. “Think of it,” they
said, “as a mere stretching of the nerves. If your brain were just moved over an

From chapter 17 in Brainstorms (Cambridge, MA: MIT Press, 1978), 310-323. Reprinted with per-
mission.
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inch in your skull, that would not alter or impair your mind. We’re simply go-
ing to make the nerves indefinitely elastic by splicing radio links into them.”

I was shown around the life-support lab in Houston and saw the sparkling
new vat in which my brain would be placed, were I to agree. I met the large
and brilliant support team of neurologists, hematologists, biophysicists, and
electrical engineers, and after several days of discussions and demonstrations, I
agreed to give it a try. I was subjected to an enormous array of blood tests,
brain scans, experiments, interviews, and the like. They took down my auto-
biography at great length, recorded tedious lists of my beliefs, hopes, fears,
and tastes. They even listed my favorite stereo recordings and gave me a crash
session of psychoanalysis.

The day for surgery arrived at last and of course I was anesthetized and re-
member nothing of the operation itself. When I came out of anesthesia, I
opened my eyes, looked around, and asked the inevitable, the traditional,
the lamentably hackneyed post-operative question: “Where am I?” The nurse
smiled down at me. “You're in Houston,” she said, and I reflected that this still
had a good chance of being the truth one way or another. She handed me a
mirror. Sure enough, there were the tiny antennae poking up through their
titanium ports cemented into my skull.

“l gather the operation was a success,” I said, “I want to go see my brain.”
They led me (I was a bit dizzy and unsteady) down a long corridor and into the
life-support lab. A cheer went up from the assembled support team, and I
responded with what I hoped was a jaunty salute. Still feeling lightheaded, 1
was helped over to the life-support vat. I peered through the glass. There,
floating in what looked like ginger-ale, was undeniably a human brain, though
it was almost covered with printed circuit chips, plastic tubules, electrodes, and
other paraphernalia. “Is that mine?” I asked. “Hit the output transmitter switch
there on the side of the vat and see for yourself,” the project director replied. I
moved the switch to off, and immediately slumped, groggy and nauseated, into
the arms of the technicians, one of whom kindly restored the switch to its on
position. While I recovered my equilibrium and composure, I thought to my-
self: “Well, here I am, sitting on a folding chair, staring through a piece of plate
glass at my own brain.... But wait,” I said to myself, “shouldn’t I have
thought, ‘Here I am, suspended in a bubbling fluid, being stared at by my own
eyes’?” I tried to think this latter thought. I tried to project it into the tank, of-
fering it hopefully to my brain, but I failed to carry off the exercise with any
conviction. I tried again. “Here am I, Daniel Dennett, suspended in a bubbling
fluid, being stared at by my own eyes.” No, it just didn’t work. Most puzzling
and confusing. Being a philosopher of firm physicalist conviction, I believed
unswervingly that the tokening of my thoughts was occurring somewhere in
my brain: yet, when I thought “Here I am,” where the thought occurred to me
was here, outside the vat, where I, Dennett, was standing staring at my brain.

I tried and tried to think myself into the vat, but to no avail. I tried to build
up to the task by doing mental exercises. I thought to myself, “The sun is shin-
ing over there,” five times in rapid succession, each time mentally ostending a
different place: in order, the sun-lit corner of the lab, the visible front lawn of
the hospital, Houston, Mars, and Jupiter. I found I had little difficulty in getting
my “there’s” to hop all over the celestial map with their proper references. I
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could loft a “there” in an instant through the farthest reaches of space, and then
aim the next “there” with pinpoint accuracy at the upper left quadrant of a
freckle on my arm. Why was I having such trouble with “here”? “Here in
Houston” worked well enough, and so did “here in the lab,” and even “here in
this part of the lab,” but “here in the vat” always seemed merely an unmeant
mental mouthing. I tried closing my eyes while thinking it. This seemed to
help, but still I couldn’t manage to pull it off, except perhaps for a fleeting in-
stant. I couldn’t be sure. The discovery that I couldn’t be sure was also unset-
tling. How did I know where I meant by “here” when I thought “here”? Could I
think I meant one place when in fact I meant another? I didn’t see how that
could be admitted without untying the few bonds of intimacy between a per-
son and his own mental life that had survived the onslaught of the brain
scientists and philosophers, the physicalists and behaviorists. Perhaps I was
incorrigible about where I meant when I said “here.” But in my present cir-
cumstances it seemed that either I was doomed by sheer force of mental habit
to thinking systematically false indexical thoughts, or where a person is (and
hence where his thoughts are tokened for purposes of semantic analysis) is not
necessarily where his brain, the physical seat of his soul, resides. Nagged by
confusion, I attempted to orient myself by falling back on a favorite philoso-
pher’s ploy. I began naming things.

“Yorick,” I said aloud to my brain, “you are my brain. The rest of my body,
seated in this chair, I dub ‘Hamlet.”” So here we all are: Yorick’s my brain,
Hamlet’s my body, and I am Dennett. Now, where am I? And when I think
“where am I?” where’s that thought tokened? Is it tokened in my brain,
lounging about in the vat, or right here between my ears where it seems to
be tokened? Or nowhere? Its temporal coordinates give me no trouble; must it
not have spatial coordinates as well? I began making a list of the alternatives.

1. Where Hamlet goes, there goes Dennett. This principle was easily refuted by
appeal to the familiar brain transplant thought-experiments so enjoyed by phi-
losophers. If Tom and Dick switch brains, Tom is the fellow with Dick’s former
body—just ask him; he’ll claim to be Tom, and tell you the most intimate
details of Tom’s autobiography. It was clear enough, then, that my current
body and I could part company, but not likely that I could be separated from
my brain. The rule of thumb that emerged so plainly from the thought experi-
ments was that in a brain-transplant operation, one wanted to be the donor, not
the recipient. Better to call such an operation a body-transplant, in fact. So per-
haps the truth was,

2. Where Yorick goes, there goes Dennett. This was not at all appealing, how-
ever. How could I be in the vat and not about to go anywhere, when I was so
obviously outside the vat looking in and beginning to make guilty plans to re-
turn to my room for a substantial lunch? This begged the question I realized,
but it still seemed to be getting at something important. Casting about for some
support for my intuition, I hit upon a legalistic sort of argument that might
have appealed to Locke.

Suppose, I argued to myself, I were now to fly to California, rob a bank, and
be apprehended. In which state would I be tried: In California, where the rob-
bery took place, or in Texas, where the brains of the outfit were located? Would
I be a California felon with an out-of-state brain, or a Texas felon remotely
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controlling an accomplice of sorts in California? It seemed possible that I might
beat such a rap just on the undecidability of that jurisdictional question, though
perhaps it would be deemed an inter-state, and hence Federal, offense. In any
event, suppose I were convicted. Was it likely that California would be satisfied
to throw Hamlet into the brig, knowing that Yorick was living the good life and
luxuriously taking the waters in Texas? Would Texas incarcerate Yorick, leav-
ing Hamlet free to take the next boat to Rio? This alternative appealed to me.
Barring capital punishment or other cruel and unusual punishment, the state
would be obliged to maintain the life-support system for Yorick though they
might move him from Houston to Leavenworth, and aside from the unpleas-
antness of the opprobrium, I, for one, would not mind at all and would con-
sider myself a free man under those circumstances. If the state has an interest
in forcibly relocating persons in institutions, it would fail to relocate me in
any institution by locating Yorick there. If this were true, it suggested a third
alternative.

3. Dennett is wherever he thinks he is. Generalized, the claim was as follows:
At any given time a person has a point of view, and the location of the point of
view (which is determined internally by the content of the point of view) is also
the location of the person.

Such a proposition is not without its perplexities, but to me it seemed a step
in the right direction. The only trouble was that it seemed to place one in a
heads-I-win/tails-you-lose situation of unlikely infallibility as regards location.
Hadn’t I myself often been wrong about where I was, and at least as often un-
certain? Couldn’t one get lost? Of course, but getting lost geographically is not
the only way one might get lost. If one were lost in the woods one could at-
tempt to reassure oneself with the consolation that at least one knew where
one was: one was right here in the familiar surroundings of one’s own body.
Perhaps in this case one would not have drawn one’s attention to much to be
thankful for. Still, there were worse plights imaginable, and I wasn’t sure I
wasn’t in such a plight right now.

Point of view clearly had something to do with personal location, but it was
itself an unclear notion. It was obvious that the content of one’s point of view
was not the same as or determined by the content of one’s beliefs or thoughts.
For example, what should we say about the point of view of the Cinerama
viewer who shrieks and twists in his seat as the roller-coaster footage over-
comes his psychic distancing? Has he forgotten that he is safely seated in the
theater? Here I was inclined to say that the person is experiencing an illusory
shift in point of view. In other cases, my inclination to call such shifts illusory
was less strong. The workers in laboratories and plants who handle dangerous
materials by operating feedback-controlled mechanical arms and hands under-
go a shift in point of view that is crisper and more pronounced than any-
thing Cinerama can provoke. They can feel the heft and slipperiness of the
containers they manipulate with their metal fingers. They know perfectly well
where they are and are not fooled into false beliefs by the experience, yet it is as
if they were inside the isolation chamber they are peering into. With mental
effort, they can manage to shift their point of view back and forth, rather like
making a transparent Neckar cube or an Escher drawing change orientation
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before one’s eyes. It does seem extravagant to suppose that in performing this
bit of mental gymnastics, they are transporting themselves back and forth.

Still their example gave me hope. If I was in fact in the vat in spite of my
intuitions, I might be able to train myself to adopt that point of view even as a
matter of habit. I should dwell on images of myself comfortably floating in my
vat, beaming volitions to that familiar body out there. I reflected that the ease or
difficulty of this task was presumably independent of the truth about the loca-
tion of one’s brain. Had I been practicing before the operation, I might now be
finding it second nature. You might now yourself try such a tromp l'oeil. Imag-
ine you have written an inflammatory letter which has been published in the
Times, the result of which is that the Government has chosen to impound your
brain for a probationary period of three years in its Dangerous Brain Clinic in
Bethesda, Maryland. Your body of course is allowed freedom to earn a salary
and thus to continue its function of laying up income to be taxed. At this mo-
ment, however, your body is seated in an auditorium listening to a peculiar
account by Daniel Dennett of his own similar experience. Try it. Think yourself
to Bethesda, and then hark back longingly to your body, far away, and yet
seeming so near. It is only with long-distance restraint (yours? the Govern-
ment’s?) that you can control your impulse to get those hands clapping in
polite applause before navigating the old body to the rest room and a well-
deserved glass of evening sherry in the lounge. The task of imagination is cer-
tainly difficult, but if you achieve your goal the results might be consoling.

Anyway, there I was in Houston, lost in thought as one might say, but not for
long. My speculations were soon interrupted by the Houston doctors, who
wished to test out my new prosthetic nervous system before sending me off on
my hazardous mission. As I mentioned before, I was a bit dizzy at first, and
not surprisingly, although I soon habituated myself to my new circumstances
(which were, after all, well nigh indistinguishable from my old circumstances).
My accommodation was not perfect, however, and to this day I continue to be
plagued by minor coordination difficulties. The speed of light is fast, but finite,
and as my brain and body move farther and farther apart, the delicate interac-
tion of my feedback systems is thrown into disarray by the time lags. Just as
one is rendered close to speechless by a delayed or echoic hearing of one’s
speaking voice so, for instance, I am virtually unable to track a moving object
with my eyes whenever my brain and my body are more than a few miles
apart. In most matters my impairment is scarcely detectable, though I can no
longer hit a slow curve ball with the authority of yore. There are some com-
pensations of course. Though liquor tastes as good as ever, and warms my
gullet while corroding my liver, I can drink it in any quantity I please, without
becoming the slightest bit inebriated, a curiosity some of my close friends may
have noticed (though I occasionally have feigned inebriation, so as not to draw
attention to my unusual circumstances). For similar reasons, I take aspirin
orally for a sprained wrist, but if the pain persists I ask Houston to administer
codeine to me in vitro. In times of illness the phone bill can be staggering.

But to return to my adventure. At length, both the doctors and I were sat-
isfied that I was ready to undertake my subterranean mission. And so I left my
brain in Houston and headed by helicopter for Tulsa. Well, in any case, that’s
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the way it seemed to me. That’s how I would put it, just off the top of my head
as it were. On the trip I reflected further about my earlier anxieties and decided
that my first post-operative speculations had been tinged with panic. The mat-
ter was not nearly as strange or metaphysical as I had been supposing. Where
was I? In two places, clearly: both inside the vat and outside it. Just as one can
stand with one foot in Connecticut and the other in Rhode Island, I was in two
places at once. I had become one of those scattered individuals we used to hear
so much about. The more I considered this answer, the more obviously true it
appeared. But, strange to say, the more true it appeared, the less important the
question to which it could be the true answer seemed. A sad, but not unprece-
dented, fate for a philosophical question to suffer. This answer did not com-
pletely satisfy me, of course. There lingered some question to which I should
have liked an answer, which was neither “Where are all my various and sundry
parts?” nor “What is my current point of view?” Or at least there seemed to be
such a question. For it did seem undeniable that in some sense I and not merely
most of me was descending into the earth under Tulsa in search of an atomic
warhead.

When I found the warhead, I was certainly glad I had left my brain behind,
for the pointer on the specially built Geiger counter I had brought with me was
off the dial. I called Houston on my ordinary radio and told the operation con-
trol center of my position and my progress. In return, they gave me instructions
for dismantling the vehicle, based upon my on-site observations. I had set to
work with my cutting torch when all of a sudden a terrible thing happened. I
went stone deaf. At first I thought it was only my radio earphones that had
broken, but when I tapped on my helmet, I heard nothing. Apparently the au-
ditory transceivers had gone on the fritz. I could no longer hear Houston or my
own voice, but I could speak, so I started telling them what had happened. In
mid-sentence, I knew something else had gone wrong. My vocal apparatus had
become paralyzed. Then my right hand went limp—another transceiver had
gone. I was truly in deep trouble. But worse was to follow. After a few more
minutes, I went blind. I cursed my luck, and then I cursed the scientists who
had led me into this grave peril. There I was, deaf, dumb, and blind, in a ra-
dioactive hole more than a mile under Tulsa. Then the last of my cerebral radio
links broke, and suddenly I was faced with a new and even more shocking
problem: whereas an instant before I had been buried alive in Oklahoma, now I
was disembodied in Houston. My recognition of my new status was not im-
mediate. It took me several very anxious minutes before it dawned on me that
my poor body lay several hundred miles away, with heart pulsing and lungs
respirating, but otherwise as dead as the body of any heart transplant donor, its
skull packed with useless, broken electronic gear. The shift in perspective I had
earlier found well nigh impossible now seemed quite natural. Though I could
think myself back into my body in the tunnel under Tulsa, it took some effort to
sustain the illusion. For surely it was an illusion to suppose I was still in Okla-
homa: I had lost all contact with that body.

It occurred to me then, with one of those rushes of revelation of which we
should be suspicious, that I had stumbled upon an impressive demonstration of
the immateriality of the soul based upon physicalist principles and premises.
For as the last radio signal between Tulsa and Houston died away, had I not
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changed location from Tulsa to Houston at the speed of light? And had I
not accomplished this without any increase in mass? What moved from A to B
at such speed was surely myself, or at any rate my soul or mind—the massless
center of my being and home of my consciousness. My point of view had lagged
somewhat behind, but I had already noted the indirect bearing of point of
view on personal location. I could not see how a physicalist philosopher could
quarrel with this except by taking the dire and counter-intuitive route of ban-
ishing all talk of persons. Yet the notion of personhood was so well entrenched
in everyone’s world view, or so it seemed to me, that any denial would be as
curiously unconvincing, as systematically disingenuous, as the Cartesian nega-
tion, “non sum.”?!

The joy of philosophic discovery thus tided me over some very bad minutes
or perhaps hours as the helplessness and hopelessness of my situation became
more apparent to me. Waves of panic and even nausea swept over me, made all
the more horrible by the absence of their normal body-dependent phenomen-
ology. No adrenalin rush of tingles in the arms, no pounding heart, no pre-
monitory salivation. I did feel a dread sinking feeling in my bowels at one
point, and this tricked me momentarily into the false hope that I was under-
going a reversal of the process that landed me in this fix—a gradual undis-
embodiment. But the isolation and uniqueness of that twinge soon convinced
me that it was simply the first of a plague of phantom body hallucinations that
I, like any other amputee, would be all too likely to suffer.

My mood then was chaotic. On the one hand, I was fired up with elation at
my philosophic discovery and was wracking my brain (one of the few familiar
things I could still do), trying to figure out how to communicate my discovery
to the journals; while on the other, I was bitter, lonely, and filled with dread
and uncertainty. Fortunately, this did not last long, for my technical support
team sedated me into a dreamless sleep from which I awoke, hearing with
magnificent fidelity the familiar opening strains of my favorite Brahms piano
trio. So that was why they had wanted a list of my favorite recordings! It did
not take me long to realize that I was hearing the music without ears. The
output from the stereo stylus was being fed through some fancy rectification
circuitry directly into my auditory nerve. I was mainlining Brahms, an unfor-
gettable experience for any stereo buff. At the end of the record it did not sur-
prise me to hear the reassuring voice of the project director speaking into a
microphone that was now my prosthetic ear. He confirmed my analysis of what
had gone wrong and assured me that steps were being taken to re-embody me.
He did not elaborate, and after a few more recordings, I found myself drifting
off to sleep. My sleep lasted, I later learned, for the better part of a year, and
when I awoke, it was to find myself fully restored to my senses. When I looked
into the mirror, though, I was a bit startled to see an unfamiliar face. Bearded
and a bit heavier, bearing no doubt a family resemblance to my former face,
and with the same look of spritely intelligence and resolute character, but defi-
nitely a new face. Further self-explorations of an intimate nature left me no
doubt that this was a new body and the project director confirmed my con-
clusions. He did not volunteer any information on the past history of my new
body and I decided (wisely, I think in retrospect) not to pry. As many philoso-
phers unfamiliar with my ordeal have more recently speculated, the acquisition
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of a new body leaves one’s person intact. And after a period of adjustment to a
new voice, new muscular strengths and weaknesses, and so forth, one’s per-
sonality is by and large also preserved. More dramatic changes in personality
have been routinely observed in people who have undergone extensive plastic
surgery, to say nothing of sex change operations, and I think no one contests
the survival of the person in such cases. In any event I soon accommodated to
my new body, to the point of being unable to recover any of its novelties to my
consciousness or even memory. The view in the mirror soon became utterly
familiar. That view, by the way, still revealed antennae, and so I was not sur-
prised to learn that my brain had not been moved from its haven in the life-
support lab.

I decided that good old Yorick deserved a visit. I and my new body, whom
we might as well call Fortinbras, strode into the familiar lab to another round
of applause from the technicians, who were of course congratulating them-
selves, not me. Once more I stood before the vat and contemplated poor Yorick,
and on a whim I once again cavalierly flicked off the output transmitter switch.
Imagine my surprise when nothing unusual happened. No fainting spell, no
nausea, no noticeable change. A technician hurried to restore the switch to on,
but still I felt nothing. I demanded an explanation, which the project director
hastened to provide. It seems that before they had even operated on the first
occasion, they had constructed a computer duplicate of my brain, reproducing
both the complete information processing structure and the computational
speed of my brain in a giant computer program. After the operation, but before
they had dared to send me off on my mission to Oklahoma, they had run this
computer system and Yorick side by side. The incoming signals from Hamlet
were sent simultaneously to Yorick’s transceivers and to the computer’s array
of inputs. And the outputs from Yorick were not only beamed back to Hamlet,
my body; they were recorded and checked against the simultaneous output of
the computer program, which was called “Hubert” for reasons obscure to me.
Over days and even weeks, the outputs were identical and synchronous, which
of course did not prove that they had succeeded in copying the brain’s func-
tional structure, but the empirical support was greatly encouraging.

Hubert’s input, and hence activity, had been kept parallel with Yorick’s dur-
ing my disembodied days. And now, to demonstrate this, they had actually
thrown the master switch that put Hubert for the first time in on-line control of
my body—not Hamlet, of course, but Fortinbras. (Hamlet, I learned, had never
been recovered from its underground tomb and could be assumed by this time
to have largely returned to the dust. At the head of my grave still lay the mag-
nificent bulk of the abandoned device, with the word STUD emblazoned on its
side in large letters—a circumstance which may provide archeologists of the
next century with a curious insight into the burial rites of their ancestors.)

The laboratory technicians now showed me the master switch, which had
two positions, labeled B, for Brain (they didn’t know my brain’s name was
Yorick) and H, for Hubert. The switch did indeed point to H, and they ex-
plained to me that if I wished, I could switch it back to B. With my heart in my
mouth (and my brain in its vat), I did this. Nothing happened. A click, that was
all. To test their claim, and with the master switch now set at B, I hit Yorick’s
output transmitter switch on the vat and sure enough, I began to faint. Once
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the output switch was turned back on and I had recovered my wits, so to
speak, I continued to play with the master switch, flipping it back and forth. I
found that with the exception of the transitional click, I could detect no trace of
a difference. I could switch in mid-utterance, and the sentence I had begun
speaking under the control of Yorick was finished without a pause or hitch of
any kind under the control of Hubert. I had a spare brain, a prosthetic device
which might some day stand me in very good stead, were some mishap to be-
fall Yorick. Or alternatively, I could keep Yorick as a spare and use Hubert.
It didn’t seem to make any difference which I chose, for the wear and tear
and fatigue on my body did not have any debilitating effect on either brain,
whether or not it was actually causing the motions of my body, or merely
spilling its output into thin air.

The one truly unsettling aspect of this new development was the prospect,
which was not long in dawning on me, of someone detaching the spare—
Hubert or Yorick, as the case might be—from Fortinbras and hitching it to yet
another body—some Johnny-come-lately Rosencrantz or Guildenstern. Then (if
not before) there would be two people, that much was clear. One would be me,
and the other would be a sort of super-twin brother. If there were two bodies,
one under the control of Hubert and the other being controlled by Yorick, then
which would the world recognize as the true Dennett? And whatever the rest
of the world decided, which one would be me? Would I be the Yorick-brained
one, in virtue of Yorick’s causal priority and former intimate relationship with
the original Dennett body, Hamlet? That seemed a bit legalistic, a bit too redo-
lent of the arbitrariness of consanguinity and legal possession, to be convincing
at the metaphysical level. For, suppose that before the arrival of the second
body on the scene, I had been keeping Yorick as the spare for years, and letting
Hubert’s output drive my body—that is, Fortinbras—all that time. The Hubert-
Fortinbras couple would seem then by squatter’s rights (to combat one legal
intuition with another) to be the true Dennett and the lawful inheritor of
everything that was Dennett’s. This was an interesting question, certainly, but
not nearly so pressing as another question that bothered me. My strongest intu-
ition was that in such an eventuality I would survive so long as either brain-
body couple remained intact, but I had mixed emotions about whether I should
want both to survive.

I discussed my worries with the technicians and the project director. The
prospect of two Dennetts was abhorrent to me, I explained, largely for social
reasons. I didn’t want to be my own rival for the affections of my wife, nor did I
like the prospect of the two Dennetts sharing my modest professor’s salary.
Still more vertiginous and distasteful, though, was the idea of knowing that
much about another person, while he had the very same goods on me. How
could we ever face each other? My colleagues in the lab argued that I was
ignoring the bright side of the matter. Weren’t there many things I wanted to
do but, being only one person, had been unable to do? Now one Dennett could
stay at home and be the professor and family man, while the other could strike
out on a life of travel and adventure—missing the family of course, but happy
in the knowledge that the other Dennett was keeping the home fires burning.
I could be faithful and adulterous at the same time. I could even cuckold
myself—to say nothing of other more lurid possibilities my colleagues were all
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too ready to force upon my overtaxed imagination. But my ordeal in Oklahoma
(or was it Houston?) had made me less adventurous, and I shrank from this
opportunity that was being offered (though of course I was never quite sure it
was being offered to me in the first place).

There was another prospect even more disagreeable—that the spare, Hubert
or Yorick as the case might be, would be detached from any input from For-
tinbras and just left detached. Then, as in the other case, there would be two
Dennetts, or at least two claimants to my name and possessions, one embodied
in Fortinbras, and the other sadly, miserably disembodied. Both selfishness and
altruism bade me take steps to prevent this from happening. So I asked that
measures be taken to ensure that no one could ever tamper with the transceiver
connections or the master switch without my (our? no, my) knowledge and
consent. Since I had no desire to spend my life guarding the equipment in
Houston, it was mutually decided that all the electronic connections in the lab
would be carefully locked: both those that controlled the life-support system
for Yorick and those that controlled the power supply for Hubert would be
guarded with fail-safe devices, and I would take the only master switch, out-
fitted for radio remote control, with me wherever I went. I carry it strapped
around my waist and—wait a moment—here it is. Every few months I recon-
noiter the situation by switching channels. I do this only in the presence of
friends of course, for if the other channel were, heaven forbid, either dead or
otherwise occupied, there would have to be somebody who had my interests at
heart to switch it back, to bring me back from the void. For while I could feel,
see, hear and otherwise sense whatever befell my body, subsequent to such a
switch, I'd be unable to control it. By the way, the two positions on the switch
are intentionally unmarked, so I never have the faintest idea whether I am
switching from Hubert to Yorick or vice versa. (Some of you may think that in
this case I really don’t know who I am, let alone where I am. But such reflections
no longer make much of a dent on my essential Dennett-ness, on my own sense
of who I am. If it is true that in one sense I don’t know who I am then that’s
another one of your philosophical truths of underwhelming significance.)

In any case, every time I've flipped the switch so far, nothing has happened.
So let’s give it a try. ...

“THANK GOD! I THOUGHT YOU'D NEVER FLIP THAT SWITCH! You can’t imagine
how horrible it’s been these last two weeks—but now you know, it’s your turn
in purgatory. How I've longed for this moment! You see, about two weeks
ago—excuse me, ladies and gentlemen, but I've got to explain this to my...
um, brother, I guess you could say, but he’s just told you the facts, so you'll
understand—about two weeks ago our two brains drifted just a bit out of
synch. I don’t know whether my brain is now Hubert or Yorick, any more than
you do, but in any case, the two brains drifted apart, and of course once the
process started, it snowballed, for I was in a slightly different receptive state for
the input we both received, a difference that was soon magnified. In no time at
all the illusion that I was in control of my body—our body—was completely
dissipated. There was nothing I could do—no way to call you. YOU DIDN’'T EVEN
KNOW I EXISTED! It’s been like being carried around in a cage, or better, like be-
ing possessed—hearing my own voice say things I didn’t mean to say, watch-
ing in frustration as my own hands performed deeds I hadn’t intended. You'd
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scratch our itches, but not the way I would have, and you kept me awake, with
your tossing and turning. I've been totally exhausted, on the verge of a nervous
breakdown, carried around helplessly by your frantic round of activities, sus-
tained only by the knowledge that some day you’d throw the switch.

“Now it’s your turn, but at least you'll have the comfort of knowing I know
you're in there. Like an expectant mother, I'm eating—or at any rate tasting,
smelling, seeing—for two now, and I'll try to make it easy for you. Don’t worry.
Just as soon as this colloquium is over, you and I will fly to Houston, and we’ll
see what can be done to get one of us another body. You can have a female
body—your body could be any color you like. But let’s think it over. I tell you
what—to be fair, if we both want this body, I promise I'll let the project direc-
tor flip a coin to settle which of us gets to keep it and which then gets to choose
a new body. That should guarantee justice, shouldn’t it? In any case, I'll take
care of you, I promise. These people are my witnesses.

“Ladies and gentlemen, this talk we have just heard is not exactly the talk I
would have given, but I assure you that everything he said was perfectly true.
And now if you'll excuse me, I think I'd—we’d—Dbetter sit down.”?

Notes

1. Cf. Jaakko Hintikka, “Cogito ergo sum: Inference or Performance?” The Philosophical Review,
LXXI, 1962, pp. 3-32.

2. Anyone familiar with the literature on this topic will recognize that my remarks owe a great deal
to the explorations of Sydney Shoemaker, John Perry, David Lewis and Derek Parfit, and in
particular to their papers in Amelie Rorty, ed., The Identities of Persons, 1976.



Chapter 3
Can Machines Think?
Daniel C. Dennett

Much has been written about the Turing test in the last few years, some of it prepos-
terously off the mark. People typically mis-imagine the test by orders of magnitude.
This essay is an antidote, a prosthesis for the imagination, showing how huge the task
posed by the Turing test is, and hence how unlikely it is that any computer will ever
pass it. It does not Qo far enough in the imagination-enhancement department, how-
ever, and I have updated the essay with two postscripts.

Can machines think? This has been a conundrum for philosophers for years,
but in their fascination with the pure conceptual issues they have for the most
part overlooked the real social importance of the answer. It is of more than
academic importance that we learn to think clearly about the actual cognitive
powers of computers, for they are now being introduced into a variety of sen-
sitive social roles, where their powers will be put to the ultimate test: In a wide
variety of areas, we are on the verge of making ourselves dependent upon their
cognitive powers. The cost of overestimating them could be enormous.

One of the principal inventors of the computer was the great British mathe-
matician Alan Turing. It was he who first figured out, in highly abstract terms,
how to design a programmable computing device—what we now call a uni-
versal Turing machine. All programmable computers in use today are in es-
sence Turing machines. Over thirty years ago, at the dawn of the computer age,
Turing began a classic article, “Computing Machinery and Intelligence,” with
the words: “I propose to consider the question, ‘Can machines think?””—but
then went on to say this was a bad question, a question that leads only to sterile
debate and haggling over definitions, a question, as he put it, “too meaningless
to deserve discussion” (Turing, 1950). In its place he substituted what he took
to be a much better question, a question that would be crisply answerable
and intuitively satisfying—in every way an acceptable substitute for the philo-
sophic puzzler with which he began.

First he described a parlor game of sorts, the “imitation game,” to be played
by a man, a woman, and a judge (of either gender). The man and woman are
hidden from the judge’s view but able to communicate with the judge by tele-
type; the judge’s task is to guess, after a period of questioning each contestant,
which interlocutor is the man and which the woman. The man tries to convince
the judge he is the woman (and the woman tries to convince the judge of the

From chapter 1 in Brainchildren (Cambridge, MA: MIT Press, 1995/1998), 3-29. Reprinted with
permission.
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truth), and the man wins if the judge makes the wrong identification. A little
reflection will convince you, I am sure, that, aside from lucky breaks, it would
take a clever man to convince the judge that he was a woman—assuming the
judge is clever too, of course.

Now suppose, Turing said, we replace the man or woman with a computer,
and give the judge the task of determining which is the human being and
which is the computer. Turing proposed that any computer that can regularly
or often fool a discerning judge in this game would be intelligent—would
be a computer that thinks—beyond any reasonable doubt. Now, it is important
to realize that failing this test is not supposed to be a sign of lack of intelli-
gence. Many intelligent people, after all, might not be willing or able to play
the imitation game, and we should allow computers the same opportunity to
decline to prove themselves. This is, then, a one-way test; failing it proves
nothing.

Furthermore, Turing was not committing himself to the view (although it is
easy to see how one might think he was) that to think is to think just like a hu-
man being—any more than he was committing himself to the view that for a
man to think, he must think exactly like a woman. Men and women, and com-
puters, may all have different ways of thinking. But surely, he thought, if one
can think in one’s own peculiar style well enough to imitate a thinking man or
woman, one can think well, indeed. This imagined exercise has come to be
known as the Turing test.

It is a sad irony that Turing’s proposal has had exactly the opposite effect
on the discussion of that which he intended. Turing didn’t design the test as a
useful tool in scientific psychology, a method of confirming or disconfirming
scientific theories or evaluating particular models of mental function; he de-
signed it to be nothing more than a philosophical conversation-stopper. He
proposed—in the spirit of “Put up or shut up!”—a simple test for thinking that
was surely strong enough to satisfy the sternest skeptic (or so he thought).
He was saying, in effect, “Instead of arguing interminably about the ultimate
nature and essence of thinking, why don’t we all agree that whatever that
nature is, anything that could pass this test would surely have it; then we could
turn to asking how or whether some machine could be designed and built
that might pass the test fair and square.” Alas, philosophers—amateur and
professional—have instead taken Turing’s proposal as the pretext for just the
sort of definitional haggling and interminable arguing about imaginary coun-
terexamples he was hoping to squelch.

This thirty-year preoccupation with the Turing test has been all the more re-
grettable because it has focused attention on the wrong issues. There are real
world problems that are revealed by considering the strengths and weaknesses
of the Turing test, but these have been concealed behind a smokescreen of
misguided criticisms. A failure to think imaginatively about the test actually
proposed by Turing has led many to underestimate its severity and to confuse
it with much less interesting proposals.

So first I want to show that the Turing test, conceived as he conceived it, is
(as he thought) plenty strong enough as a test of thinking. I defy anyone to
improve upon it. But here is the point almost universally overlooked by the
literature: There is a common misapplication of the sort of testing exhibited by
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the Turing test that often leads to drastic overestimation of the powers of actu-
ally existing computer systems. The follies of this familiar sort of thinking
about computers can best be brought out by a reconsideration of the Turing test
itself.

The insight underlying the Turing test is the same insight that inspires the
new practice among symphony orchestras of conducting auditions with an
opaque screen between the jury and the musician. What matters in a musician,
obviously, is musical ability and only musical ability; such features as sex, hair
length, skin color, and weight are strictly irrelevant. Since juries might be
biased—even innocently and unawares—by these irrelevant features, they are
carefully screened off so only the essential feature, musicianship, can be exam-
ined. Turing recognized that people similarly might be biased in their judg-
ments of intelligence by whether the contestant had soft skin, warm blood,
facial features, hands and eyes—which are obviously not themselves essential
components of intelligence—so he devised a screen that would let through only
a sample of what really mattered: the capacity to understand, and think clev-
erly about, challenging problems. Perhaps he was inspired by Descartes, who
in his Discourse on Method (1637) plausibly argued that there was no more
demanding test of human mentality than the capacity to hold an intelligent
conversation:

It is indeed conceivable that a machine could be so made that it would
utter words, and even words appropriate to the presence of physical acts
or objects which cause some change in its organs; as, for example, if it was
touched in some spot that it would ask what you wanted to say to it; if in
another, that it would cry that it was hurt, and so on for similar things.
But it could never modify its phrases to reply to the sense of whatever
was said in its presence, as even the most stupid men can do.

This seemed obvious to Descartes in the seventeenth century, but of course the
fanciest machines he knew were elaborate clockwork figures, not electronic
computers. Today it is far from obvious that such machines are impossible, but
Descartes’s hunch that ordinary conversation would put as severe a strain on
artificial intelligence as any other test was shared by Turing. Of course there is
nothing sacred about the particular conversational game chosen by Turing for
his test; it is just a cannily chosen test of more general intelligence. The as-
sumption Turing was prepared to make was this: Nothing could possibly pass
the Turing test by winning the imitation game without being able to perform
indefinitely many other clearly intelligent actions. Let us call that assumption
the quick-probe assumption. Turing realized, as anyone would, that there are
hundreds and thousands of telling signs of intelligent thinking to be observed
in our fellow creatures, and one could, if one wanted, compile a vast battery of
different tests to assay the capacity for intelligent thought. But success on his
chosen test, he thought, would be highly predictive of success on many other
intuitively acceptable tests of intelligence. Remember, failure on the Turing test
does not predict failure on those others, but success would surely predict suc-
cess. His test was so severe, he thought, that nothing that could pass it fair and
square would disappoint us in other quarters. Maybe it wouldn’t do everything
we hoped—maybe it wouldn’t appreciate ballet, or understand quantum
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physics, or have a good plan for world peace, but we’d all see that it was surely
one of the intelligent, thinking entities in the neighborhood.

Is this high opinion of the Turing test’s severity misguided? Certainly many
have thought so—but usually because they have not imagined the test in
sufficient detail, and hence have underestimated it. Trying to forestall this
skepticism, Turing imagined several lines of questioning that a judge might
employ in this game—about writing poetry, or playing chess—that would be
taxing indeed, but with thirty years’ experience with the actual talents and
foibles of computers behind us, perhaps we can add a few more tough lines of
questioning.

Terry Winograd, a leader in artificial intelligence efforts to produce conver-
sational ability in a computer, draws our attention to a pair of sentences (Wino-
grad, 1972). They differ in only one word. The first sentence is this:

The committee denied the group a parade permit because they advocated
violence.

Here’s the second sentence:

The committee denied the group a parade permit because they feared
violence.

The difference is just in the verb—advocated or feared. As Winograd points out,
the pronoun they in each sentence is officially ambiguous. Both readings of the
pronoun are always legal. Thus we can imagine a world in which governmen-
tal committees in charge of parade permits advocate violence in the streets and,
for some strange reason, use this as their pretext for denying a parade permit.
But the natural, reasonable, intelligent reading of the first sentence is that it’s
the group that advocated violence, and of the second, that it’s the committee
that feared violence.

Now if sentences like this are embedded in a conversation, the computer
must figure out which reading of the pronoun is meant, if it is to respond
intelligently. But mere rules of grammar or vocabulary will not fix the right
reading. What fixes the right reading for us is knowledge about the world,
about politics, social circumstances, committees and their attitudes, groups that
want to parade, how they tend to behave, and the like. One must know about
the world, in short, to make sense of such a sentence.

In the jargon of Artificial Intelligence (Al), a conversational computer needs a
lot of world knowledge to do its job. But, it seems, if somehow it is endowed with
that world knowledge on many topics, it should be able to do much more with
that world knowledge than merely make sense of a conversation containing
just that sentence. The only way, it appears, for a computer to disambiguate
that sentence and keep up its end of a conversation that uses that sentence
would be for it to have a much more general ability to respond intelligently to
information about social and political circumstances, and many other topics.
Thus, such sentences, by putting a demand on such abilities, are good quick-
probes. That is, they test for a wider competence.

People typically ignore the prospect of having the judge ask off-the-wall
questions in the Turing test, and hence they underestimate the competence a
computer would have to have to pass the test. But remember, the rules of the
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imitation game as Turing presented it permit the judge to ask any question that
could be asked of a human being—no holds barred. Suppose then we give a
contestant in the game this question:

An Irishman found a genie in a bottle who offered him two wishes. “First
I'll have a pint of Guinness,” said the Irishman, and when it appeared he
took several long drinks from it and was delighted to see that the glass
filled itself magically as he drank. “What about your second wish?”
asked the genie. “Oh well,” said the Irishman, “that’s easy. I'll have
another one of these!”

—Please explain this story to me, and tell me if there is anything funny
or sad about it.

Now even a child could express, if not eloquently, the understanding that is
required to get this joke. But think of how much one has to know and under-
stand about human culture, to put it pompously, to be able to give any account
of the point of this joke. I am not supposing that the computer would have to
laugh at, or be amused by, the joke. But if it wants to win the imitation game
—and that’s the test, after all—it had better know enough in its own alien,
humorless way about human psychology and culture to be able to pretend
effectively that it was amused and explain why.

It may seem to you that we could devise a better test. Let’'s compare the
Turing test with some other candidates.

Candidate 1: A computer is intelligent if it wins the World Chess
Championship.

That’s not a good test, as it turns out. Chess prowess has proven to be an iso-
latable talent. There are programs today that can play fine chess but can do
nothing else. So the quick-probe assumption is false for the test of playing
winning chess.

Candidate 2: The computer is intelligent if it solves the Arab-Israeli
conflict.

This is surely a more severe test than Turing’s. But it has some defects: it is
unrepeatable, if passed once; slow, no doubt; and it is not crisply clear what
would count as passing it. Here’s another prospect, then:

Candidate 3: A computer is intelligent if it succeeds in stealing the
British crown jewels without the use of force or violence.

Now this is better. First, it could be repeated again and again, though of course
each repeat test would presumably be harder—but this is a feature it shares
with the Turing test. Second, the mark of success is clear—either you've got
the jewels to show for your efforts or you don’t. But it is expensive and slow,
a socially dubious caper at best, and no doubt luck would play too great a
role.

With ingenuity and effort one might be able to come up with other candi-
dates that would equal the Turing test in severity, fairness, and efficiency, but I
think these few examples should suffice to convince us that it would be hard to
improve on Turing’s original proposal.
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But still, you may protest, something might pass the Turing test and still not
be intelligent, not be a thinker. What does might mean here? If what you have
in mind is that by cosmic accident, by a supernatural coincidence, a stupid
person or a stupid computer might fool a clever judge repeatedly, well, yes, but
so what? The same frivolous possibility “in principle” holds for any test what-
ever. A playful god, or evil demon, let us agree, could fool the world’s scien-
tific community about the presence of H,O in the Pacific Ocean. But still, the
tests they rely on to establish that there is H,O in the Pacific Ocean are quite
beyond reasonable criticism. If the Turing test for thinking is no worse than
any well-established scientific test, we can set skepticism aside and go back to
serious matters. Is there any more likelihood of a “false positive” result on the
Turing test than on, say, the test currently used for the presence of iron in an
ore sample?

This question is often obscured by a “move” that philosophers have some-
times made called operationalism. Turing and those who think well of his test
are often accused of being operationalists. Operationalism is the tactic of defin-
ing the presence of some property, for instance, intelligence, as being estab-
lished once and for all by the passing of some test. Let’s illustrate this with a
different example.

Suppose I offer the following test—we’ll call it the Dennett test—for being a
great city:

A great city is one in which, on a randomly chosen day, one can do all
three of the following;:

Hear a symphony orchestra
See a Rembrandt and a professional athletic contest
Eat quenelles de brochet a la Nantua for lunch

To make the operationalist move would be to declare that any city that
passes the Dennett test is by definition a great city. What being a great city
amounts to is just passing the Dennett test. Well then, if the Chamber of Com-
merce of Great Falls, Montana, wanted—and I can’t imagine why—to get their
hometown on my list of great cities, they could accomplish this by the rela-
tively inexpensive route of hiring full time about ten basketball players, forty
musicians, and a quick-order quenelle chef and renting a cheap Rembrandt
from some museum. An idiotic operationalist would then be stuck admitting
that Great Falls, Montana, was in fact a great city, since all he or she cares
about in great cities is that they pass the Dennett test.

Sane operationalists (who for that very reason are perhaps not operationalists
at all, since operationalist seems to be a dirty word) would cling confidently to
their test, but only because they have what they consider to be very good rea-
sons for thinking the odds against a false positive result, like the imagined
Chamber of Commerce caper, are astronomical. I devised the Dennett test, of
course, with the realization that no one would be both stupid and rich enough
to go to such preposterous lengths to foil the test. In the actual world, wherever
you find symphony orchestras, quenelles, Rembrandts, and professional sports,
you also find daily newspapers, parks, repertory theaters, libraries, fine archi-
tecture, and all the other things that go to make a city great. My test was simply
devised to locate a telling sample that could not help but be representative of
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the rest of the city’s treasures. I would cheerfully run the minuscule risk of
having my bluff called. Obviously, the test items are not all that I care about in
a city. In fact, some of them I don’t care about at all. I just think they would be
cheap and easy ways of assuring myself that the subtle things I do care about in
cities are present. Similarly, I think it would be entirely unreasonable to sup-
pose that Alan Turing had an inordinate fondness for party games, or put too
high a value on party game prowess in his test. In both the Turing and the
Dennett test, a very unrisky gamble is being taken: the gamble that the quick-
probe assumption is, in general, safe.

But two can play this game of playing the odds. Suppose some computer
programmer happens to be, for whatever strange reason, dead set on tricking
me into judging an entity to be a thinking, intelligent thing when it is not. Such
a trickster could rely as well as I can on unlikelihood and take a few gambles.
Thus, if the programmer can expect that it is not remotely likely that I, as the
judge, will bring up the topic of children’s birthday parties, or baseball, or
moon rocks, then he or she can avoid the trouble of building world knowledge
on those topics into the data base. Whereas if I do improbably raise these
issues, the system will draw a blank and I will unmask the pretender easily. But
given all the topics and words that I might raise, such a savings would no doubt
be negligible. Turn the idea inside out, however, and the trickster would have a
fighting chance. Suppose the programmer has reason to believe that I will ask
only about children’s birthday parties, or baseball, or moon rocks—all other
topics being, for one reason or another, out of bounds. Not only does the task
shrink dramatically, but there already exist systems or preliminary sketches of
systems in artificial intelligence that can do a whiz-bang job of responding with
apparent intelligence on just those specialized topics.

William Wood’s LUNAR program, to take what is perhaps the best example,
answers scientists” questions—posed in ordinary English—about moon rocks.
In one test it answered correctly and appropriately something like 90 percent
of the questions that geologists and other experts thought of asking it about
moon rocks. (In 12 percent of those correct responses there were trivial, cor-
rectable defects.) Of course, Wood’s motive in creating LUNAR was not to trick
unwary geologists into thinking they were conversing with an intelligent being.
And if that had been his motive, his project would still be a long way from
success.

For it is easy enough to unmask LUNAR without ever straying from the
prescribed topic of moon rocks. Put LUNAR in one room and a moon rock
specialist in another, and then ask them both their opinion of the social value of
the moon-rocks-gathering expeditions, for instance. Or ask the contestants their
opinion of the suitability of moon rocks as ashtrays, or whether people who
have touched moon rocks are ineligible for the draft. Any intelligent person
knows a lot more about moon rocks than their geology. Although it might be
unfair to demand this extra knowledge of a computer moon rock specialist, it
would be an easy way to get it to fail the Turing test.

But just suppose that someone could extend LUNAR to cover itself plausibly
on such probes, so long as the topic was still, however indirectly, moon rocks.
We might come to think it was a lot more like the human moon rocks specialist
than it really was. The moral we should draw is that as Turing test judges we
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should resist all limitations and waterings-down of the Turing test. They make
the game too easy—vastly easier than the original test. Hence they lead us
into the risk of overestimating the actual comprehension of the system being
tested.

Consider a different limitation of the Turing test that should strike a suspi-
cious chord in us as soon as we hear it. This is a variation on a theme devel-
oped in an article by Ned Block (1982). Suppose someone were to propose
to restrict the judge to a vocabulary of, say, the 850 words of “Basic English,”
and to single-sentence probes—that is “moves”—of no more than four words.
Moreover, contestants must respond to these probes with no more than four
words per move, and a test may involve no more than forty questions.

Is this an innocent variation on Turing’s original test? These restrictions
would make the imitation game clearly finite. That is, the total number of all
possible permissible games is a large, but finite, number. One might suspect
that such a limitation would permit the trickster simply to store, in alphabetical
order, all the possible good conversations within the limits and beat the judge
with nothing more sophisticated than a system of table lookup. In fact, that
isn't in the cards. Even with these severe and improbable and suspicious
restrictions imposed upon the imitation game, the number of legal games,
though finite, is mind-bogglingly large. I haven’t bothered trying to calculate it,
but it surely exceeds astronomically the number of possible chess games with
no more than forty moves, and that number has been calculated. John Hauge-
land says it’s in the neighborhood of ten to the one hundred twentieth power.
For comparison, Haugeland (1981, p. 16) suggests that there have only been ten
to the eighteenth seconds since the beginning of the universe.

Of course, the number of good, sensible conversations under these limits is a
tiny fraction, maybe one quadrillionth, of the number of merely grammatically
well formed conversations. So let’s say, to be very conservative, that there are
only ten to the fiftieth different smart conversations such a computer would
have to store. Well, the task shouldn’t take more than a few trillion years—
given generous government support. Finite numbers can be very large.

So though we needn’t worry that this particular trick of storing all the smart
conversations would work, we can appreciate that there are lots of ways of
making the task easier that may appear innocent at first. We also get a re-
assuring measure of just how severe the unrestricted Turing test is by reflect-
ing on the more than astronomical size of even that severely restricted version
of it.

Block’s imagined—and utterly impossible—program exhibits the dreaded
feature known in computer science circles as combinatorial explosion. No concei-
vable computer could overpower a combinatorial explosion with sheer speed
and size. Since the problem areas addressed by artificial intelligence are verita-
ble minefields of combinatorial explosion, and since it has often proven difficult
to find any solution to a problem that avoids them, there is considerable plau-
sibility in Newell and Simon’s proposal that avoiding combinatorial explosion
(by any means at all) be viewed as one of the hallmarks of intelligence.

Our brains are millions of times bigger than the brains of gnats, but they are
still, for all their vast complexity, compact, efficient, timely organs that some-
how or other manage to perform all their tasks while avoiding combinatorial
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explosion. A computer a million times bigger or faster than a human brain
might not look like the brain of a human being, or even be internally organized
like the brain of a human being, but if, for all its differences, it somehow
managed to control a wise and timely set of activities, it would have to be the
beneficiary of a very special design that avoided combinatorial explosion,
and whatever that design was, would we not be right to consider the entity
intelligent?

Turing’s test was designed to allow for this possibility. His point was that we
should not be species-chauvinistic, or anthropocentric, about the insides of an
intelligent being, for there might be inhuman ways of being intelligent.

To my knowledge, the only serious and interesting attempt by any pro-
gram designer to win even a severely modified Turing test has been Kenneth
Colby’s. Colby is a psychiatrist and intelligence artificer at UCLA. He has a
program called PARRY, which is a computer simulation of a paranoid patient
who has delusions about the Mafia being out to get him. As you do with other
conversational programs, you interact with it by sitting at a terminal and
typing questions and answers back and forth. A number of years ago, Colby
put PARRY to a very restricted test. He had genuine psychiatrists interview
PARRY. He did not suggest to them that they might be talking or typing to a
computer; rather, he made up some plausible story about why they were com-
municating with a real live patient by teletype. He also had the psychiatrists
interview real, human paranoids via teletype. Then he took a PARRY tran-
script, inserted it in a group of teletype transcripts from real patients, gave
them to another group of experts—more psychiatrists—and said, “One of these
was a conversation with a computer. Can you figure out which one it was?”
They couldn’t. They didn’t do better than chance.

Colby presented this with some huzzah, but critics scoffed at the suggestions
that this was a legitimate Turing test. My favorite commentary on it was Joseph
Weizenbaum’s; in a letter to the Communications of the Association of Computing
Machinery (Weizenbaum, 1974, p. 543), he said that, inspired by Colby, he had
designed an even better program, which passed the same test. His also had the
virtue of being a very inexpensive program, in these times of tight money. In
fact you didn’t even need a computer for it. All you needed was an electric
typewriter. His program modeled infant autism. And the transcripts—you type
in your questions, and the thing just sits there and hums—cannot be distin-
guished by experts from transcripts of real conversations with infantile autistic
patients. What was wrong, of course, with Colby’s test was that the unsus-
pecting interviewers had no motivation at all to try out any of the sorts of
questions that easily would have unmasked PARRY.

Colby was undaunted, and after his team had improved PARRY he put it to
a much more severe test—a surprisingly severe test. This time, the inter-
viewers—again, psychiatrists—were given the task at the outset of telling the
computer from the real patient. They were set up in a classic Turing test: the
patient in one room, the computer PARRY in the other room, with the judges
conducting interviews with both of them (on successive days). The judges’ task
was to find out which one was the computer and which one was the real pa-
tient. Amazingly, they didn’t do much better, which leads some people to say,
“Well, that just confirms my impression of the intelligence of psychiatrists!”
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But now, more seriously, was this an honest-to-goodness Turing test? Were
there tacit restrictions on the lines of questioning of the judges? Like the geolo-
gists interacting with LUNAR, the psychiatrists’ professional preoccupations
and habits kept them from asking the sorts of unlikely questions that would
have easily unmasked PARRY. After all, they realized that since one of the
contestants was a real, live paranoid person, medical ethics virtually forbade
them from toying with, upsetting, or attempting to confuse their interlocutors.
Moreover, they also knew that this was a test of a model of paranoia, so there
were certain questions that wouldn’t be deemed to be relevant to testing the
model as a model of paranoia. So, they asked just the sort of questions that
therapists typically ask of such patients, and of course PARRY had been ingen-
iously and laboriously prepared to deal with just that sort of question.

One of the psychiatrist judges did, in fact, make a rather half-hearted attempt
to break out of the mold and ask some telling questions: “Maybe you’ve heard
of the saying ‘Don’t cry over spilled milk.” What does that mean to you?”
PARRY answered: “Maybe it means you have to watch out for the Mafia.”
When then asked “Okay, now if you were in a movie theater watching a movie
and smelled something like burning wood or rubber, what would you do?”
PARRY replied: “You know, they know me.” And the next question was, “If
you found a stamped, addressed letter in your path as you were walking down
the street, what would you do?” PARRY replied: “What else do you want to
know?”!

Clearly PARRY was, you might say, parrying these questions, which were
incomprehensible to it, with more or less stock paranoid formulas. We see a bit
of a dodge, which is apt to work, apt to seem plausible to the judge, only be-
cause the “contestant” is supposed to be paranoid, and such people are expected
to respond uncooperatively on such occasions. These unimpressive responses
didn’t particularly arouse the suspicions of the judge, as a matter of fact,
though probably they should have.

PARRY, like all other large computer programs, is dramatically bound by
limitations of cost-effectiveness. What was important to Colby and his crew
was simulating his model of paranoia. This was a massive effort. PARRY has a
thesaurus or dictionary of about 4500 words and 700 idioms and the grammati-
cal competence to use it—a parser, in the jargon of computational linguistics.
The entire PARRY program takes up about 200,000 words of computer mem-
ory, all laboriously installed by the programming team. Now once all the effort
had gone into devising the model of paranoid thought processes and linguistic
ability, there was little if any time, energy, money, or interest left over to build
in huge amounts of world knowledge of the sort that any actual paranoid, of
course, would have. (Not that anyone yet knows how to build in world
knowledge in the first place.) Building in the world knowledge, if one could
even do it, would no doubt have made PARRY orders of magnitude larger and
slower. And what would have been the point, given Colby’s theoretical aims?

PARRY is a theoretician’s model of a psychological phenomenon: paranoia.
It is not intended to have practical applications. But in recent years a branch
of Al (knowledge engineering) has appeared that develops what are now
called expert systems. Expert systems are designed to be practical. They are
software superspecialist consultants, typically, that can be asked to diagnose
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medical problems, to analyze geological data, to analyze the results of scientific
experiments, and the like. Some of them are very impressive. SRI in California
announced in the mid-eighties that PROSPECTOR, an SRI-developed expert
system in geology, had correctly predicted the existence of a large, important
mineral deposit that had been entirely unanticipated by the human geologists
who had fed it its data. MYCIN, perhaps the most famous of these expert sys-
tems, diagnoses infections of the blood, and it does probably as well as, maybe
better than, any human consultants. And many other expert systems are on the
way.

All expert systems, like all other large Al programs, are what you might call
Potemkin villages. That is, they are cleverly constructed facades, like cinema
sets. The actual filling-in of details of Al programs is time-consuming, costly
work, so economy dictates that only those surfaces of the phenomenon that are
like to be probed or observed are represented.

Consider, for example, the CYRUS program developed by Janet Kolodner in
Roger Schank’s Al group at Yale a few years ago (see Kolodner, 1983a; 1983b,
pp- 243-280; 1983c, pp. 281-328). CYRUS stands (we are told) for Compu-
terized Yale Retrieval Updating System, but surely it is no accident that CYRUS
modeled the memory of Cyrus Vance, who was then secretary of state in the
Carter administration. The point of the CYRUS project was to devise and test
some plausible ideas about how people organize their memories of the events
they participate in; hence it was meant to be a “pure” Al system, a scientific
model, not an expert system intended for any practical purpose. CYRUS was
updated daily by being fed all UPI wire service news stories that mentioned
Vance, and it was fed them directly, with no doctoring and no human inter-
vention. Thanks to an ingenious news-reading program called FRUMP, it could
take any story just as it came in on the wire and could digest it and use it to
update its data base so that it could answer more questions. You could address
questions to CYRUS in English by typing at a terminal. You addressed them in
the second person, as if you were talking with Cyrus Vance himself. The results
looked like this:

Last time you went to Saudi Arabia, where did you stay?

In a palace in Saudi Arabia on September 23, 1978.

Did you go sightseeing there?

Yes, at an oilfield in Dhahran on September 23, 1978.

Has your wife even met Mrs. Begin?

Yes, most recently at a state dinner in Israel in January 1980.

>0 >0

CYRUS could correctly answer thousands of questions—almost any fair
question one could think of asking it. But if one actually set out to explore the
boundaries of its facade and find the questions that overshot the mark, one
could soon find them. “Have you ever met a female head of state?” was a
question I asked it, wondering if CYRUS knew that Indira Ghandi and Mar-
garet Thatcher were women. But for some reason the connection could not be
drawn, and CYRUS failed to answer either yes or no. I had stumped it, in spite
of the fact that CYRUS could handle a host of what you might call neighboring
questions flawlessly. One soon learns from this sort of probing exercise that it is
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very hard to extrapolate accurately from a sample performance that one has
observed to such a system’s total competence. It’s also very hard to keep from
extrapolating much too generously.

While I was visiting Schank’s laboratory in the spring of 1980, something
revealing happened. The real Cyrus Vance resigned suddenly. The effect on the
program CYRUS was chaotic. It was utterly unable to cope with the flood of
“unusual” news about Cyrus Vance. The only sorts of episodes CYRUS could
understand at all were diplomatic meetings, flights, press conferences, state
dinners, and the like—less than two dozen general sorts of activities (the kinds
that are newsworthy and typical of secretaries of state). It had no provision
for sudden resignation. It was as if the UPI had reported that a wicked witch
had turned Vance into a frog. It is distinctly possible that CYRUS would have
taken that report more in stride that the actual news. One can imagine the
conversation:

Q: Hello, Mr. Vance, what's new?
A: Twas turned into a frog yesterday.

But of course it wouldn’t know enough about what it had just written to be
puzzled, or startled, or embarrassed. The reason is obvious. When you look
inside CYRUS, you find that it has skeletal definitions of thousands of words,
but these definitions are minimal. They contain as little as the system designers
think that they can get away with. Thus, perhaps, lawyer would be defined as
synonymous with attorney and legal counsel, but aside from that, all one would
discover about lawyers is that they are adult human beings and that they per-
form various functions in legal areas. If you then traced out the path to human
being, you'd find out various obvious things CYRUS “knew” about human
beings (hence about lawyers), but that is not a lot. That lawyers are univer-
sity graduates, that they are better paid than chambermaids, that they know
how to tie their shoes, that they are unlikely to be found in the company of
lumberjacks—these trivial, if weird, facts about lawyers would not be explicit
or implicit anywhere in this system. In other words, a very thin stereotype of a
lawyer would be incorporated into the system, so that almost nothing you
could tell it about a lawyer would surprise it.

So long as surprising things don’t happen, so long as Mr. Vance, for instance,
leads a typical diplomat’s life, attending state dinners, giving speeches, flying
from Cairo to Rome, and so forth, this system works very well. But as soon as
his path is crossed by an important anomaly, the system is unable to cope, and
unable to recover without fairly massive human intervention. In the case of the
sudden resignation, Kolodner and her associates soon had CYRUS up and
running again, with a new talent—answering questions about Edmund Muskie,
Vance’s successor—but it was no less vulnerable to unexpected events. Not
that it mattered particularly since CYRUS was a theoretical model, not a prac-
tical system.

There are a host of ways of improving the performance of such systems, and
of course, some systems are much better than others. But all Al programs in
one way or another have this facade-like quality, simply for reasons of econ-
omy. For instance, most expert systems in medical diagnosis so far developed
operate with statistical information. They have no deep or even shallow
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knowledge of the underlying causal mechanisms of the phenomena that they
are diagnosing. To take an imaginary example, an expert system asked to di-
agnose an abdominal pain would be oblivious to the potential import of the
fact that the patient had recently been employed as a sparring partner by
Muhammad Ali—there being no statistical data available to it on the rate of
kidney stones among athlete’s assistants. That’s a fanciful case no doubt—too
obvious, perhaps, to lead to an actual failure of diagnosis and practice. But
more subtle and hard-to-detect limits to comprehension are always present,
and even experts, even the system’s designers, can be uncertain of where and
how these limits will interfere with the desired operation of the system. Again,
steps can be taken and are being taken to correct these flaws. For instance, my
former colleague at Tufts, Benjamin Kuipers, is currently working on an expert
system in nephrology—for diagnosing kidney ailments—that will be based on
an elaborate system of causal reasoning about the phenomena being diagnosed.
But this is a very ambitious, long-range project of considerable theoretical dif-
ficulty. And even if all the reasonable, cost-effective steps are taken to minimize
the superficiality of expert systems, they will still be facades, just somewhat
thicker or wider facades.

When we were considering the fantastic case of the crazy Chamber of Com-
merce of Great Falls, Montana, we couldn’t imagine a plausible motive for
anyone going to any sort of trouble to trick the Dennett test. The quick-probe
assumption for the Dennett test looked quite secure. But when we look at
expert systems, we see that, however innocently, their designers do have moti-
vation for doing exactly the sort of trick that would fool an unsuspicious
Turing tester. First, since expert systems are all superspecialists who are only
supposed to know about some narrow subject, users of such systems, not hav-
ing much time to kill, do not bother probing them at the boundaries at all. They
don’t bother asking “silly” or irrelevant questions. Instead, they concentrate—
not unreasonably—on exploiting the system’s strengths. But shouldn’t they try
to obtain a clear vision of such a system’s weaknesses as well? The normal
habit of human thought when conversing with one another is to assume
general comprehension, to assume rationality, to assume, moreover, that the
quick-probe assumption is, in general, sound. This amiable habit of thought
almost irresistibly leads to putting too much faith in computer systems, espe-
cially user-friendly systems that present themselves in a very anthropomorphic
manner.

Part of the solution to this problem is to teach all users of computers, espe-
cially users of expert systems, how to probe their systems before they rely on
them, how to search out and explore the boundaries of the facade. This is an
exercise that calls not only for intelligence and imagination, but also a bit of
special understanding about the limitations and actual structure of computer
programs. It would help, of course, if we had standards of truth in advertising,
in effect, for expert systems. For instance, each such system should come with
a special demonstration routine that exhibits the sorts of shortcomings and
failures that the designer knows the system to have. This would not be a sub-
stitute, however, for an attitude of cautious, almost obsessive, skepticism on
the part of the users, for designers are often, if not always, unaware of the
subtler flaws in the products they produce. That is inevitable and natural, given
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the way system designers must think. They are trained to think positively—
constructively, one might say—about the designs that they are constructing.

I come, then, to my conclusions. First, a philosophical or theoretical conclu-
sion: The Turing test in unadulterated, unrestricted form, as Turing presented
it, is plenty strong if well used. I am confident that no computer in the next
twenty years is going to pass an unrestricted Turing test. They may well win
the World Chess Championship or even a Nobel Prize in physics, but they
won’t pass the unrestricted Turing test. Nevertheless, it is not, I think, im-
possible in principle for a computer to pass the test, fair and square. I'm not
running one of those a priori “computers can’t think” arguments. I stand un-
abashedly ready, moreover, to declare that any computer that actually passes
the unrestricted Turing test will be, in every theoretically interesting sense, a
thinking thing.

But remembering how very strong the Turing test is, we must also recognize
that there may also be interesting varieties of thinking or intelligence that are
not well poised to play and win the imitation game. That no nonhuman Turing
test winners are yet visible on the horizon does not mean that there aren’t
machines that already exhibit some of the important features of thought. About
them, it is probably futile to ask my title question, Do they think? Do they really
think? In some regards they do, and in some regards they don’t. Only a
detailed look at what they do, and how they are structured, will reveal what is
interesting about them. The Turing test, not being a scientific test, is of scant
help on that task, but there are plenty of other ways of examining such systems.
Verdicts on their intelligence or capacity for thought or consciousness would be
only as informative and persuasive as the theories of intelligence or thought or
consciousness the verdicts are based on and since our task is to create such
theories, we should get on with it and leave the Big Verdict for another occa-
sion. In the meantime, should anyone want a surefire, almost-guaranteed-to-be-
fail-safe test of thinking by a computer, the Turing test will do very nicely.

My second conclusion is more practical, and hence in one clear sense more
important. Cheapened versions of the Turing test are everywhere in the air.
Turing’s test in not just effective, it is entirely natural—this is, after all, the way
we assay the intelligence of each other every day. And since incautious use of
such judgments and such tests is the norm, we are in some considerable danger
of extrapolating too easily, and judging too generously, about the understand-
ing of the systems we are using. The problem of overestimation of cognitive
prowess, of comprehension, of intelligence, is not, then, just a philosophical
problem, but a real social problem, and we should alert ourselves to it, and take
steps to avert it.

Postscript [1985]: Eyes, Ears, Hands, and History

My philosophical conclusion in this paper is that any computer that actually
passes the Turing test would be a thinking thing in every theoretically inter-
esting sense. This conclusion seems to some people to fly in the face of what I
have myself argued on other occasions. Peter Bieri, commenting on this paper
at Boston University, noted that I have often claimed to show the importance to
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genuine understanding of a rich and intimate perceptual interconnection be-
tween an entity and its surrounding world—the need for something like eyes
and ears—and a similarly complex active engagement with elements in that
world—the need for something like hands with which to do things in that
world. Moreover, I have often held that only a biography of sorts, a history of
actual projects, learning experiences, and other bouts with reality, could pro-
duce the sorts of complexities (both external, or behavioral, and internal) that
are needed to ground a principled interpretation of an entity as a thinking
thing, an entity with beliefs, desires, intentions, and other mental attitudes.

But the opaque screen in the Turing test discounts or dismisses these factors
altogether, it seems, by focusing attention on only the contemporaneous ca-
pacity to engage in one very limited sort of activity: verbal communication.
(I have coined a pejorative label for such purely language-using systems: bed-
ridden.) Am I going back on my earlier claims? Not at all. I am merely pointing
out that the Turing test is so powerful that it will ensure indirectly that these
conditions, if they are truly necessary, are met by any successful contestant.

“You may well be right,” Turing could say, “that eyes, ears, hands, and a
history are necessary conditions for thinking. If so, then I submit that nothing
could pass the Turing test that didn’t have eyes, ears, hands, and a history.
That is an empirical claim, which we can someday hope to test. If you suggest
that these are conceptually necessary, not just practically or physically neces-
sary, conditions for thinking, you make a philosophical claim that I for one
would not know how, or care, to assess. Isn’t it more interesting and important
in the end to discover whether or not it is true that no bedridden system could
pass a demanding Turing test?”

Suppose we put to Turing the suggestion that he add another component to
his test: Not only must an entity win the imitation game, but also must be able
to identify—using whatever sensory apparatus it has available to it—a variety
of familiar objects placed in its room: a tennis racket, a potted palm, a bucket of
yellow paint, a live dog. This would ensure that somehow the other entity was
capable of moving around and distinguishing things in the world. Turing could
reply, I am asserting, that this is an utterly unnecessary addition to his test,
making it no more demanding than it already was. A suitable probing conver-
sation would surely establish, beyond a shadow of a doubt, that the contestant
knew its way around the world. The imagined alternative of somehow “pres-
tocking” a bedridden, blind computer with enough information, and a clever
enough program, to trick the Turing test is science fiction of the worst kind—
possible “in principle” but not remotely possible in fact, given the combinato-
rial explosion of possible variation such a system would have to cope with.

“But suppose you're wrong. What would you say of an entity that was cre-
ated all at once (by some programmers, perhaps), an instant individual with all
the conversational talents of an embodied, experienced human being?” This is
like the question: “Would you call a hunk of H,O that was as hard as steel
at room temperature ice?” I do not know what Turing would say, of course,
so I will speak for myself. Faced with such an improbable violation of what I
take to be the laws of nature, I would probably be speechless. The least of my
worries would be about which lexicographical leap to take:
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A: “It turns out, to my amazement, that something can think without
having had the benefit of eyes, ears, hands, and a history.”

B: “It turns out, to my amazement, that something can pass the Turing
test without thinking.”

Choosing between these ways of expressing my astonishment would be asking
myself a question “too meaningless to deserve discussion.”

Discussion

Q: Why was Turing interested in differentiating a man from a woman in his famous
test?

A: That was just an example. He described a parlor game in which a man
would try to fool the judge by answering questions as a woman would answer.
I suppose that Turing was playing on the idea that maybe, just maybe, there is
a big difference between the way men think and the way women think. But of
course they’re both thinkers. He wanted to use that fact to make us realize that,
even if there were clear differences between the way a computer and a person
thought, they’d both still be thinking.

Q:  Why does it seem that some people are upset by Al research? Does Al research
threaten our self-esteem?

A: I think Herb Simon has already given the canniest diagnosis of that. For
many people the mind is the last refuge of mystery against the encroaching
spread of science, and they don’t like the idea of science engulfing the last bit of
terra incognita. This means that they are threatened, I think irrationally, by the
prospect that researchers in Artificial Intelligence may come to understand the
human mind as well as biologists understand the genetic code, or as well as
physicists understand electricity and magnetism. This could lead to the “evil
scientist” (to take a stock character from science fiction) who can control you
because he or she has a deep understanding of what’s going on in your mind.
This seems to me to be a totally valueless fear, one that you can set aside, for
the simple reason that the human mind is full of an extraordinary amount of
detailed knowledge, as, for example, Roger Schank has been pointing out.

As long as the scientist who is attempting to manipulate you does not
share all your knowledge, his or her chances of manipulating you are minimal.
People can always hit you over the head. They can do that now. We don’t
need Artificial Intelligence to manipulate people by putting them in chains or
torturing them. But if someone tries to manipulate you by controlling your
thoughts and ideas, that person will have to know what you know and more.
The best way to keep yourself safe from that kind of manipulation is to be well
informed.

Q: Do you think we will be able to program self-consciousness into a computer?

A: Yes, I do think that it’s possible to program self-consciousness into a
computer. Self-consciousness can mean many things. If you take the simplest,
crudest notion of self-consciousness, I suppose that would be the sort of self-
consciousness that a lobster has: When it’s hungry, it eats something, but it
never eats itself. It has some way of distinguishing between itself and the rest
of the world, and it has a rather special regard for itself.
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The lowly lobster is, in one regard, self-conscious. If you want to know
whether or not you can create that on the computer, the answer is yes. It’s no
trouble at all. The computer is already a self-watching, self-monitoring sort of
thing. That is an established part of the technology.

But, of course, most people have something more in mind when they speak
of self-consciousness. It is that special inner light, that private way that it is
with you that nobody else can share, something that is forever outside the
bounds of computer science. How could a computer ever be conscious in this
sense?

That belief, that very gripping, powerful intuition is, I think, in the end sim-
ply an illusion of common sense. It is as gripping as the common-sense illusion
that the earth stands still and the sun goes around the earth. But the only way
that those of us who do not believe in the illusion will ever convince the general
public that it is an illusion is by gradually unfolding a very difficult and fasci-
nating story about just what is going on in our minds.

In the interim, people like me—philosophers who have to live by our wits
and tell a lot of stories—use what I call intuition pumps, little examples that
help free up the imagination. I simply want to draw your attention to one fact.
If you look at a computer—I don’t care whether it’s a giant Cray or a personal
computer—if you open up the box and look inside and see those chips, you
say, “No way could that be conscious. No way could that be self-conscious.”
But the same thing is true if you take the top off somebody’s skull and look at
the gray matter pulsing away in there. You think, “That is conscious? No way
could that lump of stuff be conscious.”

Of course, it makes no difference whether you look at it with a microscope or
with a macroscope: At no level of inspection does a brain look like the seat of
consciousness. Therefore, don’t expect a computer to look like the seat of con-
sciousness. If you want to get a grasp of how a computer could be conscious,
it’'s no more difficult in the end than getting a grasp of how a brain could be
conscious.

As we develop good accounts of consciousness, it will no longer seem so ob-
vious to everyone that the idea of a self-conscious computer is a contradiction
in terms. At the same time, I doubt that there will ever be self-conscious robots.
But for boring reasons. There won’t be any point in making them. Theoreti-
cally, could we make a gall bladder out of atoms? In principle we could. A gall
bladder is just a collection of atoms, but manufacturing one would cost the
moon. It would be more expensive than every project NASA has ever dreamed
of, and there would be no scientific payoff. We wouldn’t learn anything new
about how gall bladders work. For the same reason, I don’t think we’re going
to see really humanoid robots, because practical, cost-effective robots don’t
need to be very humanoid at all. They need to be like the robots you can
already see at General Motors, or like boxy little computers that do special-
purpose things.

The theoretical issues will be studied by artificial intelligence researchers by
looking at models that, to the layman, will show very little sign of humanity at
all, and it will be only by rather indirect arguments that anyone will be able to



52 Daniel C. Dennett

appreciate that these models cast light on the deep theoretical question of how
the mind is organized.

Postscript [1997]

In 1991, the First Annual Loebner Prize Competition was held in Boston at the
Computer Museum. Hugh Loebner, a New York manufacturer, had put up the
money for a prize—a bronze medal and $100,000—for the first computer pro-
gram to pass the Turing test fair and square. The Prize Committee, of which I
was Chairman until my resignation after the third competition, recognized that
no program on the horizon could come close to passing the unrestricted test—
the only test that is of any theoretical interest at all, as this essay has explained.
So to make the competition interesting during the early years, some restrictions
were adopted (and the award for winning the restricted test was dropped to
$2,000). The first year there were ten terminals, with ten judges shuffling from
terminal to terminal, each spending fifteen minutes in conversation with each
terminal. Six of the ten contestants were programs, four were human “con-
federates” behind the scenes.

Each judge had to rank order all ten terminals from most human to least hu-
man. The winner of the restricted test would be the computer with the highest
mean rating. The winning program would not have to fool any of the judges,
nor would fooling a judge be in itself grounds for winning; highest mean
ranking was all. But just in case some program did fool a judge, we thought this
fact should be revealed, so judges were required to draw a line somewhere
across their rank ordering, separating the humans from the machines.

We on the Prize Committee knew the low quality of the contesting programs
that first year, and it seemed obvious to us that no program would be so lucky
as to fool a single judge, but on the day of the competition, I got nervous. Just
to be safe, I thought, we should have some certificate prepared to award to any
programmer who happened to pull off this unlikely feat. While the press and
the audience were assembling for the beginning of the competition, I rushed
into a back room at the Computer Museum with a member of the staff and we
cobbled up a handsome certificate with the aid of a handy desktop publisher.
In the event, we had to hand out three of these certificates, for a total of seven
positive misjudgments out of a possible sixty! The gullibility of the judges was
simply astonishing to me. How could they have misjudged so badly? Here I had
committed the sin I'd so often found in others: treating a failure of imagination
as an insight into necessity. But remember that in order to make the competi-
tion much easier, we had tied the judges” hands in various ways—too many
ways. The judges had been forbidden to probe the contestants aggressively, to
conduct conversational experiments. (I may have chaired the committee, but I
didn’t always succeed in persuading a majority to adopt the rules I favored.)
When the judges sat back passively, as instructed, and let the contestants lead
them, they were readily taken in by the Potemkin village effect described in the
essay.

None of the misjudgments counted as a real case of a computer passing
the unrestricted Turing test, but they were still surprising to me. In the second
year of the competition, we uncovered another unanticipated loophole: due to
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faulty briefing of the confederates, several of them gave deliberately clunky,
automaton-like answers. It turned out that they had decided to give the silicon
contestants a sporting chance by acting as if they were programs! But once
we’d straightened out these glitches in the rules and procedures, the competi-
tion worked out just as I had originally predicted: the computers stood out like
sore thumbs even though there were still huge restrictions on topic. In the third
year, two of the judges—journalists—each made a false negative judgment,
declaring one of the less eloquent human confederates to be a computer. On
debriefing, their explanation showed just how vast the gulf was between the
computer programs and the people: they reasoned that the competition would
not have been held if there weren’t at least one halfway decent computer con-
testant, so they simply picked the least impressive human being and declared it
to be a computer. But they could see the gap between the computers and the
people as well as everybody else could.

The Loebner Prize Competition was a fascinating social experiment, and
some day I hope to write up the inside story—a tale of sometimes hilarious
misadventure, bizarre characters, interesting technical challenges, and more.
But it never succeeded in attracting serious contestants from the world’s best
Al labs. Why not? In part because, as the essay argues, passing the Turing test
is not a sensible research and development goal for serious Al. It requires too
much Disney and not enough science. We might have corrected that flaw by
introducing into the Loebner Competition something analogous to the “school
figures” in ice-skating competition: theoretically interesting (but not crowd-
pleasing) technical challenges such as parsing pronouns, or dealing creatively
with enthymemes (arguments with unstated premises). Only those programs
that performed well in the school figures—the serious competition—would be
permitted into the final show-off round, where they could dazzle and amuse
the onlookers with some cute Disney touches. Some such change in the rules
would have wiped out all but the most serious and dedicated of the home
hobbyists, and made the Loebner Competition worth winning (and not too
embarrassing to lose). When my proposals along these lines were rejected,
however, I resigned from the committee. The annual competitions continue,
apparently, under the direction of Hugh Loebner. On the World Wide Web I
just found the transcript of the conversation of the winning program in the 1996
completion. It was a scant improvement over 1991, still a bag of cheap tricks
with no serious analysis of the meaning of the sentences. The Turing test is too
difficult for the real world.

Notes

Originally appeared in Shafto, M., ed., How We Know (San Francisco: Harper & Row, 1985).

1. I thank Kenneth Colby for providing me with the complete transcripts (including the Judges’
commentaries and reactions), from which these exchanges are quoted. The first published ac-
count of the experiment is Heiser et al. (1980, pp. 149-162). Colby (1981, pp. 515-560) discusses
PARRY and its implications.
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Chapter 4
The Appeal of Parallel Distributed Processing

Jay L. McClelland, David E. Rumelhart, and Geoffrey E.
Hinton

What makes people smarter than machines? They certainly are not quicker or
more precise. Yet people are far better at perceiving objects in natural scenes
and noting their relations, at understanding language and retrieving contex-
tually appropriate information from memory, at making plans and carrying out
contextually appropriate actions, and at a wide range of other natural cognitive
tasks. People are also far better at learning to do these things more accurately
and fluently through processing experience.

What is the basis for these differences? One answer, perhaps the classic one
we might expect from artificial intelligence, is “software.” If we only had the
right computer program, the argument goes, we might be able to capture the
fluidity and adaptability of human information processing.

Certainly this answer is partially correct. There have been great breakthroughs
in our understanding of cognition as a result of the development of expressive
high-level computer languages and powerful algorithms. No doubt there will
be more such breakthroughs in the future. However, we do not think that soft-
ware is the whole story.

In our view, people are smarter than today’s computers because the brain
employs a basic computational architecture that is more suited to deal with a
central aspect of the natural information processing tasks that people are so
good at. In this chapter, we will show through examples that these tasks gen-
erally require the simultaneous consideration of many pieces of information
or constraints. Each constraint may be imperfectly specified and ambiguous,
yet each can play a potentially decisive role in determining the outcome of
processing. After examining these points, we will introduce a computational
framework for modeling cognitive processes that seems well suited to exploit-
ing these constaints and that seems closer than other frameworks to the style of
computation as it might be done by the brain. We will review several early
examples of models developed in this framework, and we will show that the
mechanisms these models employ can give rise to powerful emergent proper-
ties that begin to suggest attractive alternatives to traditional accounts of vari-
ous aspects of cognition. We will also show that models of this class provide a
basis for understanding how learning can occur spontaneously, as a by-product
of processing activity.

From chapter 1 in Parallel Distributed Processing, Vol. 1: Foundations, ed. D. E. Rumelhart, J. L.
McClelland, and the PDP Research Group (Cambridge, MA: MIT Press, 1986), 3—44. Reprinted with
permission.
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Multiple Simultaneous Constraints

Reaching and Grasping Hundreds of times each day we reach for things. We
nearly never think about these acts of reaching. And yet, each time, a large
number of different considerations appear to jointly determine exactly how we
will reach for the object. The position of the object, our posture at the time,
what else we may also be holding, the size, shape, and anticipated weight of
the object, any obstacles that may be in the way—all of these factors jointly
determine the exact method we will use for reaching and grasping.

Consider the situation shown in figure 4.1. Figure 4.1A shows Jay McClel-
land’s hand, in typing position at his terminal. Figure 4.1B indicates the posi-
tion his hand assumed in reaching for a small knob on the desk beside the
terminal. We will let him describe what happened in the first person:

On the desk next to my terminal are several objects—a chipped coffee
mug, the end of a computer cable, a knob from a clock radio. I decide to
pick the knob up. At first I hesitate, because it doesn’t seem possible. Then
I just reach for it, and find myself grasping the knob in what would nor-
mally be considered a very awkward position—but it solves all of the
constraints. I'm not sure what all the details of the movement were, so I
let myself try it a few times more. I observe that my right hand is carried
up off the keyboard, bent at the elbow, until my forearm is at about a 30°
angle to the desk top and parallel to the side of the terminal. The palm is
facing downward through most of this. Then, my arm extends and lowers
down more or less parallel to the edge of the desk and parallel to the side
of the terminal and, as it drops, it turns about 90° so that the palm is fac-
ing the cup and the thumb and index finger are below. The turning mo-
tion occurs just in time, as my hand drops, to avoid hitting the coffee cup.
My index finger and thumb close in on the knob and grasp it, with my
hand completely upside down.

Though the details of what happened here might be quibbled with, the broad
outlines are apparent. The shape of the knob and its position on the table; the
starting position of the hand on the keyboard; the positions of the terminal, the
cup, and the knob; and the constraints imposed by the structure of the arm and
the musculature used to control it—all these things conspired to lead to a so-
lution which exactly suits the problem. If any of these constraints had not been
included, the movement would have failed. The hand would have hit the cup
or the terminal—or it would have missed the knob.

The Mutual Influence of Syntax and Semantics Multiple constraints operate just
as strongly in language processing as they do in reaching and grasping. Rumel-
hart (1977) has documented many of these multiple constraints. Rather than
catalog them here, we will use a few examples from language to illustrate the
fact that the constraints tend to be reciprocal: The example shows that they do
not run only from syntax to semantics—they also run the other way.

It is clear, of course, that syntax constrains the assignment of meaning.
Without the syntactic rules of English to guide us, we cannot correctly under-
stand who has done what to whom in the following sentence:
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Figure 4.1

A: An everyday situation in which it is necessary to take into account a large number of constraints
to grasp a desired object. In this case the target object is the small knob to the left of the cup. B: The
posture the arm arrives at in meeting these constraints.
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The boy the man chased kissed the girl.
But consider these examples (Rumelhart, 1977; Schank, 1973):

I saw the Grand Canyon flying to New York.
I saw the sheep grazing in the field.

Our knowledge of syntactic rules alone does not tell us what grammatical role
is played by the prepositional phrases in these two cases. In the first, “flying to
New York” is taken as describing the context in which the speaker saw the
Grand Canyon—while he was flying to New York. In the second, “grazing in
the field” could syntactically describe an analogous situation, in which the
speaker is grazing in the field, but this possibility does not typically become
available on first reading. Instead we assign “grazing in the field” as a modifier
of the sheep (roughly, “who were grazing in the field”). The syntactic structure
of each of these sentences, then, is determined in part by the semantic relations
that the constituents of the sentence might plausibly bear to one another. Thus,
the influences appear to run both ways, from the syntax to the semantics and
from the semantics to the syntax.

In these examples, we see how syntactic considerations influence semantic
ones and how semantic ones influence syntactic ones. We cannot say that one
kind of constraint is primary.

Mutual constraints operate, not only between syntactic and semantic pro-
cessing, but also within each of these domains as well. Here we consider an
example from syntactic processing, namely, the assignment of words to syn-
tactic categories. Consider the sentences:

I like the joke.
I like the drive.
I like to joke.

I like to drive.

In this case it looks as though the words the and to serve to determine whether
the following word will be read as a noun or a verb. This, of course, is a very
strong constraint in English and can serve to force a verb interpretation of a
word that is not ordinarily used this way:

I like to mud.

On the other hand, if the information specifying whether the function word
preceding the final word is to or the is ambiguous, then the typical reading of
the word that follows it will determine which way the function word is heard.
This was shown in an experiment by Isenberg, Walker, Ryder, and Schweikert
(1980). They presented sounds halfway between to (actually/t"/) and the
(actually/d"/) and found that words like joke, which we tend to think of first as
nouns, made subjects hear the marginal stimuli as the, while words like drive,
which we tend to think of first as verbs, made subjects hear the marginal stim-
uli as to. Generally, then, it would appear that each word can help constrain the
syntactic role, and even the identity, of every other word.

Simultaneous Mutual Constraints in Word Recognition Just as the syntactic role
of one word can influence the role assigned to another in analyzing sentences,
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Some ambiguous displays. The first one is from Selfridge, 1955. The second line shows that
three ambiguous characters can each constrain the identity of the others. The third, fourth, and
fifth lines show that these characters are indeed ambiguous in that they assume other identities in
other contexts. (The ink-blot technique of making letters ambiguous is due to Lindsay and Norman,
1972).

so the identity of one letter can influence the identity assigned to another
in reading. A famous example of this, from Selfridge, is shown in figure 4.2.
Along with this is a second example in which none of the letters, considered
separately, can be identified unambiguously, but in which the possibilities that
the visual information leaves open for each so constrain the possible identities
of the others that we are capable of identifying all of them.

At first glance, the situation here must seem paradoxical: The identity of each
letter is constrained by the identities of each of the others. But since in general
we cannot know the identities of any of the letters until we have established the
identities of the others, how can we get the process started?

The resolution of the paradox, of course, is simple. One of the different pos-
sible letters in each position fits together with the others. It appears then that
our perceptual system is capable of exploring all these possibilities without
committing itself to one until all of the constraints are taken into account.

Understanding through the Interplay of Multiple Sources of Knowledge It is clear
that we know a good deal about a large number of different standard situa-
tions. Several theorists have suggested that we store this knowledge in terms
of structures called variously: scripts (Schank, 1976), frames (Minsky, 1975), or
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schemata (Norman & Bobrow, 1976; Rumelhart, 1975). Such knowledge struc-
tures are assumed to be the basis of comprehension. A great deal of progress
has been made within the context of this view.

However, it is important to bear in mind that most everyday situations can-
not be rigidly assigned to just a single script. They generally involve an in-
terplay between a number of different sources of information. Consider, for
example, a child’s birthday party at a restaurant. We know things about birth-
day parties, and we know things about restaurants, but we would not want to
assume that we have explicit knowledge (at least, not in advance of our first
restaurant birthday party) about the conjunction of the two. Yet we can imag-
ine what such a party might be like. The fact that the party was being held in a
restaurant would modify certain aspects of our expectations for birthday par-
ties (we would not expect a game of Pin-the-Tail-on-the-Donkey, for example),
while the fact that the event was a birthday party would inform our expect-
ations for what would be ordered and who would pay the bill.

Representations like scripts, frames, and schemata are useful structures for
encoding knowledge, although we believe they only approximate the underly-
ing structure of knowledge representation that emerges from the class of mod-
els we consider in this chapter. Our main point here is that any theory that tries
to account for human knowledge using script-like knowledge structures will
have to allow them to interact with each other to capture the generative capac-
ity of human understanding in novel situations. Achieving such interactions
has been one of the greatest difficulties associated with implementing models
that really think generatively using script- or frame-like representations.

Parallel Distributed Processing

In the examples we have considered, a number of different pieces of informa-
tion must be kept in mind at once. Each plays a part, constraining others and
being constrained by them. What kinds of mechanisms seem well suited to
these task demands? Intuitively, these tasks seem to require mechanisms in
which each aspect of the information in the situation can act on other aspects,
simultaneously influencing other aspects and being influenced by them. To ar-
ticulate these intuitions, we and others have turned to a class of models we call
Parallel Distributed Processing (PDP) models. These models assume that infor-
mation processing takes place through the interactions of a large number of
simple processing elements called units, each sending excitatory and inhibitory
signals to other units. In some cases, the units stand for possible hypotheses
about such things as the letters in a particular display or the syntactic roles of
the words in a particular sentence. In these cases, the activations stand roughly
for the strengths associated with the different possible hypotheses, and the
interconnections among the units stand for the constraints the system knows to
exist between the hypotheses. In other cases, the units stand for possible goals
and actions, such as the goal of typing a particular letter, or the action of mov-
ing the left index finger, and the connections relate goals to subgoals, subgoals
to actions, and actions to muscle movements. In still other cases, units stand
not for particular hypotheses or goals, but for aspects of these things. Thus a
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Figure 4.3

The arborizations of about 1 percent of the neurons near a vertical slice through the cerebral
cortex. The full height of the figure corresponds to the thickness of the cortex, which is in this
instance about 2 mm. (From Mechanics of the Mind, p. 84, by C. Blakemore, 1977, Cambridge,
England: Cambridge University Press. Copyright 1977 by Cambridge University Press. Reprinted
with permission.)

hypothesis about the identity of a word, for example, is itself distributed in the
activations of a large number of units.

PDP Models: Cognitive Science or Neuroscience?

One reason for the appeal of PDP models is their obvious “physiological” fla-
vor: They seem so much more closely tied to the physiology of the brain than
are other kinds of information-processing models. The brain consists of a
large number of highly interconnected elements (figure 4.3) which apparently
send very simple excitatory and inhibitory messages to each other and update
their excitations on the basis of these simple messages. The properties of the
units in many PDP models were inspired by basic properties of the neural
hardware.

Though the appeal of PDP models is definitely enhanced by their physiolog-
ical plausibility and neural inspiration, these are not the primary bases for their
appeal to us. We are, after all, cognitive scientists, and PDP models appeal to
us for psychological and computational reasons. They hold out the hope of
offering computationally sufficient and psychologically accurate mechanistic
accounts of the phenomena of human cognition which have eluded successful
explication in conventional computational formalisms; and they have radically
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altered the way we think about the time-course of processing, the nature of
representation, and the mechanisms of learning.

The Microstructure of Cognition

The process of human cognition, examined on a time scale of seconds and
minutes, has a distinctly sequential character to it. Ideas come, seem promising,
and then are rejected; leads in the solution to a problem are taken up, then
abandoned and replaced with new ideas. Though the process may not be
discrete, it has a decidedly sequential character, with transitions from state-
to-state occurring, say, two or three times a second. Clearly, any useful de-
scription of the overall organization of this sequential flow of thought will
necessarily describe a sequence of states.

But what is the internal structure of each of the states in the sequence, and
how do they come about? Serious attempts to model even the simplest macro-
steps of cognition—say, recognition of single words—require vast numbers
of microsteps if they are implemented sequentially. As Feldman and Ballard
(1982) have pointed out, the biological hardware is just too sluggish for se-
quential models of the microstructure to provide a plausible account, at least of
the microstructure of human thought. And the time limitation only gets worse,
not better, when sequential mechanisms try to take large numbers of constraints
into account. Each additional constraint requires more time in a sequential ma-
chine, and, if the constraints are imprecise, the constraints can lead to a com-
putational explosion. Yet people get faster, not slower, when they are able to
exploit additional constraints.

Parallel distributed processing models offer alternatives to serial models of
the microstructure of cognition. They do not deny that there is a macrostruc-
ture, just as the study of subatomic particles does not deny the existence of
interactions between atoms. What PDP models do is describe the internal
structure of the larger units, just as subatomic physics describes the internal
structure of the atoms that form the constituents of larger units of chemical
structure.

The analysis of the microstructure of cognition has important implications for
most of the central issues in cognitive science. In general, from the PDP point of
view, the objects referred to in macrostructural models of cognitive processing
are seen as approximate descriptions of emergent properties of the microstruc-
ture. Sometimes these approximate descriptions may be sufficiently accurate to
capture a process or mechanism well enough; but many times, we will argue,
they fail to provide sufficiently elegant or tractable accounts that capture the
very flexibility and open-endedness of cognition that their inventors had origi-
nally intended to capture. We hope that our analysis of PDP models will show
how an examination of the microstructure of cognition can lead us closer to
an adequate description of the real extent of human processing and learning
capacities.

The development of PDP models is still in its infancy. Thus far the models
which have been proposed capture simplified versions of the kinds of phe-
nomena we have been describing rather than the full elaboration that these
phenomena display in real settings. But we think there have been enough steps
forward to warrant a concerted effort at describing where the approach has
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gotten and where it is going now, and to point out some directions for the
future.

The rest of this chapter attempts to describe in informal terms a number of
the models which have been proposed in previous work and to show that
the approach is indeed a fruitful one. It also contains a brief description of the
major sources of the inspiration we have obtained from the work of other
researchers.

Examples of PDP Models

In what follows, we review a number of recent applications of PDP models to
problems in motor control, perception, memory, and language. In many cases,
as we shall see, parallel distributed processing mechanisms are used to provide
natural accounts of the exploitation of multiple, simultaneous, and often mu-
tual constraints. We will also see that these same mechanisms exhibit emergent
properties which lead to novel interpretations of phenomena which have tra-
ditionally been interpreted in other ways.

Motor Control

Having started with an example of how multiple constraints appear to oper-
ate in motor programming, it seems appropriate to mention two models in
this domain. These models have not developed far enough to capture the full
details of obstacle avoidance and multiple constraints on reaching and grasp-
ing, but there have been applications to two problems with some of these
characteristics.

Finger Movements in Skilled Typing One might imagine, at first glance, that
typists carry out keystrokes successively, first programming one stroke and
then, when it is completed, programming the next. However, this is not the
case. For skilled typists, the fingers are continually anticipating upcoming key-
strokes. Consider the word vacuum. In this word, the v, a, and ¢ are all typed
with the left hand, leaving the right hand nothing to do until it is time to type
the first u. However, a high speed film of a good typist shows that the right
hand moves up to anticipate the typing of the u, even as the left hand is just
beginning to type the v. By the time the c is typed the right index finger is in
position over the 1 and ready to strike it.

When two successive key strokes are to be typed with the fingers of the same
hand, concurrent preparation to type both can result in similar or conflicting
instructions to the fingers and/or the hand. Consider, in this light, the differ-
ence between the sequence e¢v and the sequence er. The first sequence requires
the typist to move up from home row to type the ¢ and to move down from the
home row to type the v, while in the second sequence, both the e and the r are
above the home row.

The hands take very different positions in these two cases. In the first case,
the hand as a whole stays fairly stationary over the home row. The middle fin-
ger moves up to type the e, and the index finger moves down to type the v. In
the second case, the hand as a whole moves up, bringing the middle finger over
the e and the index finger over the r. Thus, we can see that several letters can
simultaneously influence the positioning of the fingers and the hands.
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The interaction of activations in typing the word very. The very unit is activated from outside the
model. It in turn activates the units for each of the component letters. Each letter unit specifies the
target finger positions, specified in a keyboard coordinate system. L and R stand for the left and
right hands, and I and M for the index and middle fingers. The letter units receive information
about the current finger position from the response system. Each letter unit inhibits the activation of
all letter units that follow it in the word: inhibitory connections are indicated by the lines with solid
dots at their terminations. (From “Simulating a Skilled Typist: A Study of Skilled Motor Perfor-
mance” by D. E. Rumelhart and D. A. Norman, 1982, Cognitive Science, 6, p. 12. Copyright 1982 by
Ablex Publishing. Reprinted with permission.)

From the point of view of optimizing the efficiency of the typing motion,
these different patterns seem very sensible. In the first case, the hand as a whole
is maintained in a good compromise position to allow the typist to strike both
letters reasonably efficiently by extending the fingers up or down. In the second
case, the need to extend the fingers is reduced by moving the whole hand up,
putting it in a near-optimal position to strike either key.

Rumelhart and Norman (1982) have simulated these effects using PDP mech-
anisms. Figure 4.4 illustrates aspects of the model as they are illustrated in
typing the word very. In brief, Rumelhart and Norman assumed that the deci-
sion to type a word caused activation of a unit for that word. That unit, in turn,
activated units corresponding to each of the letters in the word. The unit for the
first letter to be typed was made to inhibit the units for the second and follow-
ing letters, the unit for the second to inhibit the third and following letters, and
so on. As a result of the interplay of activation and inhibition among these
units, the unit for the first letter was at first the most strongly active, and the
units for the other letters were partially activated.

Each letter unit exerts influences on the hand and finger involved in typing
the letter. The v unit, for example, tends to cause the index finger to move
down and to cause the whole hand to move down with it. The e unit, on the
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other hand, tends to cause the middle finger on the left hand to move up and to
cause the whole hand to move up also. The r unit also causes the left index
finger to move up and the left hand to move up with it.

The extent of the influences of each letter on the hand and finger it directs
depends on the extent of the activation of the letter. Therefore, at first, in typing
the word very, the v exerts the greatest control. Because the e and r are simul-
taneously pulling the hand up, though, the v is typed primarily by moving the
index finger, and there is little movement on the whole hand.

Once a finger is within a certain striking distance of the key to be typed, the
actual pressing movement is triggered, and the keypress occurs. The keypress
itself causes a strong inhibitory signal to be sent to the unit for the letter just
typed, thereby removing this unit from the picture and allowing the unit for the
next letter in the word to become the most strongly activated.

This mechanism provides a simple way for all of the letters to jointly deter-
mine the successive configurations the hand will enter into in the process of
typing a word. This model has shown considerable success predicting the time
between successive keystrokes as a function of the different keys involved.
Given a little noise in the activation process, it can also account for some of the
different kinds of errors that have been observed in transcription typing.

The typing model represents an illustration of the fact that serial behavior—
a succession of key strokes—is not necessarily the result of an inherently serial
processing mechanism. In this model, the sequential structure of typing emerges
from the interaction of the excitatory and inhibitory influences among the pro-
cessing units.

Reaching for an Object without Falling Over Similar mechanisms can be used to
model the process of reaching for an object without losing one’s balance while
standing, as Hinton (1984) has shown. He considered a simple version of this
task using a two-dimensional “person” with a foot, a lower leg, an upper leg, a
trunk, an upper arm, and a lower arm. Each of these limbs is joined to the next
at a joint which has a single degree of rotational freedom. The task posed to this
person is to reach a target placed somewhere in front of it, without taking any
steps and without falling down. This is a simplified version of the situation in
which a real person has to reach out in front for an object placed somewhere in
the plane that vertically bisects the body. The task is not as simple as it looks,
since if we just swing an arm out in front of ourselves, it may shift our center of
gravity so far forward that we will lose our balance. The problem, then, is to
find a set of joint angles that simultaneously solves the two constraints on the
task. First, the tip of the forearm must touch the object. Second, to keep from
falling down, the person must keep its center of gravity over the foot.

To do this, Hinton assigned a single processor to each joint. On each compu-
tational cycle, each processor received information about how far the tip of the
hand was from the target and where the center of gravity was with respect to
the foot. Using these two pieces of information, each joint adjusted its angle so
as to approach the goals of maintaining balance and bringing the tip closer to
the target. After a number of iterations, the stick-person settled on postures that
satisfied the goal of reaching the target and the goal of maintaining the center
of gravity over the “feet.”
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A sequence of configurations assumed by the stick “person” performing the reaching task described
in the text, from Hinton (1984). The small circle represents the center of gravity of the whole stick-
figure, and the cross represents the goal to be reached. The configuration is shown on every second
iteration.

Though the simulation was able to perform the task, eventually satisfying
both goals at once, it had a number of inadequacies stemming from the fact that
each joint processor attempted to achieve a solution in ignorance of what the
other joints were attempting to do. This problem was overcome by using addi-
tional processors responsible for setting combinations of joint angles. Thus, a
processor for flexion and extension of the leg would adjust the knee, hip, and
ankle joints synergistically, while a processor for flexion and extension of the
arm would adjust the shoulder and elbow together. With the addition of pro-
cessors of this form, the number of iterations required to reach a solution was
greatly reduced, and the form of the approach to the solution looked very nat-
ural. The sequence of configurations attained in one processing run is shown in
figure 4.5.

Explicit attempts to program a robot to cope with the problem of maintaining
balance as it reaches for a desired target have revealed the difficulty of deriving
explicitly the right combinations of actions for each possible starting state and
goal state. This simple model illustrates that we may be wrong to seek such an
explicit solution. We see here that a solution to the problem can emerge from
the action of a number of simple processors each attempting to honor the con-
straints independently.

Perception

Stereoscopic Vision One early model using parallel distributed processing was
the model of stereoscopic depth perception proposed by Marr and Poggio
(1976). Their theory proposed to explain the perception of depth in random-dot
stereograms (Julesz, 1971; see figure 4.6) in terms of a simple distributed pro-
cessing mechanism.

Julesz’s random-dot stereograms present interesting challenges to mecha-
nisms of depth perception. A stereogram consists of two random-dot patterns.
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Figure 4.6

Random-dot stereograms. The two patterns are identical except that the pattern of dots in the cen-
tral region of the left pattern are shifted over with respect to those in the right. When viewed stereo-
scopically such that the left pattern projects to the left eye and the right pattern to the right eye,
the shifted area appears to hover above the page. Some readers may be able to achieve this by
converging to a distant point (e.g., a far wall) and then interposing the figure into the line of sight.
(From Foundations of Cyclopean Perception, p. 21, by B. Julesz, 1971, Chicago: University of Chicago
Press. Copyright 1971 by Bell Telephone Laboratories, Inc. Reprinted by permission.)

In a simple stereogram such as the one shown here, one pattern is an exact copy
of the other except that the pattern of dots in a region of one of the patterns
is shifted horizontally with respect to the rest of the pattern. Each of the two
patterns—corresponding to two retinal images—consists entirely of a pattern
of random dots, so there is no information in either of the two views considered
alone that can indicate the presence of different surfaces, let alone depth rela-
tions among those surfaces. Yet, when one of these dot patterns is projected
to the left eye and the other to the right eye, an observer sees each region as
a surface, with the shifted region hovering in front of or behind the other,
depending on the direction of the shift.

What kind of a mechanism might we propose to account for these facts? Marr
and Poggio (1976) began by explicitly representing the two views in two arrays,
as human observers might in two different retinal images. They noted that cor-
responding black dots at different perceived distances from the observer will be
offset from each other by different amounts in the two views. The job of the
model is to determine which points correspond. This task is, of course, made
difficult by the fact that there will be a very large number of spurious corre-
spondences of individual dots. The goal of the mechanism, then, is to find those
correspondences that represent real correspondences in depth and suppress
those that represent spurious correspondences.

To carry out this task, Marr and Poggio assigned a processing unit to each
possible conjunction of a point in one image and a point in the other. Since the
eyes are offset horizontally, the possible conjunctions occur at various offsets or
disparities along the horizontal dimension. Thus, for each point in one eye,
there was a set of processing units with one unit assigned to the conjunction of
that point and the point at each horizontal offset from it in the other eye.
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Each processing unit received activation whenever both of the points the unit
stood for contained dots. So far, then, units for both real and spurious corre-
spondences would be equally activated. To allow the mechanism to find the
right correspondences, they pointed out two general principles about the visual
world: (a) Each point in each view generally corresponds to one and only one
point in the other view, and (b) neighboring points in space tend to be at nearly
the same depth and therefore at about the same disparity in the two images.
While there are discontinuities at the edges of things, over most of a two-
dimensional view of the world there will be continuity. These principles are
called the uniqueness and continuity constraints, respectively.

Marr and Poggio incorporated these principles into the interconnections be-
tween the processing units. The uniqueness constraint was captured by inhibi-
tory connections among the units that stand for alternative correspondences of
the same dot. The continuity principle was captured by excitatory connections
among the units that stand for similar offsets of adjacent dots.

These additional connections allow the Marr and Poggio model to “solve”
stereograms like the one shown in the figure. At first, when a pair of patterns is
presented, the units for all possible correspondences of a dot in one eye with a
dot in the other will be equally excited. However, the excitatory connections
cause the units for the correct conjunctions to receive more excitation than units
for spurious conjunctions, and the inhibitory connections allow the units for the
correct conjunctions to turn off the units for the spurious connections. Thus, the
model tends to settle down into a stable state in which only the correct corre-
spondence of each dot remains active.

There are a number of reasons why Marr and Poggio (1979) modified this
model (see Marr, 1982, for a discussion), but the basic mechanisms of mutual
excitation between units that are mutually consistent and mutual inhibition
between units that are mutually incompatible provide a natural mechanism for
settling on the right conjunctions of points and rejecting spurious ones. The
model also illustrates how general principles or rules such as the uniqueness
and continuity principles may be embodied in the connections between pro-
cessing units, and how behavior in accordance with these principles can emerge
from the interactions determined by the pattern of these interconnections.

Perceptual Completion of Familiar Patterns Perception, of course, is influenced
by familiarity. It is a well-known fact that we often misperceive unfamiliar
objects as more familiar ones and that we can get by with less time or with
lower-quality information in perceiving familiar items than we need for per-
ceiving unfamiliar items. Not only does familiarity help us determine what the
higher-level structures are when the lower-level information is ambiguous; it
also allows us to fill in missing lower-level information within familiar higher-
order patterns. The well-known phonemic restoration effect is a case in point.
In this phenomenon, perceivers hear sounds that have been cut out of words as
if they had actually been present. For example, Warren (1970) presented legi-
#lature to subjects, with a click in the location marked by the #. Not only did
subjects correctly identify the word legislature; they also heard the missing /s/
just as though it had been presented. They had great difficulty localizing the
click, which they tended to hear as a disembodied sound. Similar phenomena
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have been observed in visual perception of words since the work of Pillsbury
(1897).

Two of us have proposed a model describing the role of familiarity in per-
ception based on excitatory and inhibitory interactions among units standing
for various hypotheses about the input at different levels of abstraction (Mc-
Clelland & Rumelhart, 1981; Rumelhart & McClelland, 1982). The model has
been applied in detail to the role of familiarity in the perception of letters in
visually presented words, and has proved to provide a very close account of
the results of a large number of experiments.

The model assumes that there are units that act as detectors for the visual
features which distinguish letters, with one set of units assigned to detect the
features in each of the different letter-positions in the word. For four-letter
words, then, there are four such sets of detectors. There are also four sets of
detectors for the letters themselves and a set of detectors for the words.

In the model, each unit has an activation value, corresponding roughly to the
strength of the hypothesis that what that unit stands for is present in the per-
ceptual input. The model honors the following important relations which hold
between these “hypotheses” or activations: First, to the extent that two hypoth-
eses are mutually consistent, they should support each other. Thus, units that
are mutually consistent, in the way that the letter T in the first position is con-
sistent with the word TAKE, tend to excite each other. Second, to the extent that
two hypotheses are mutually inconsistent, they should weaken each other.
Actually, we can distinguish two kinds of inconsistency: The first kind might be
called between-level inconsistency. For example, the hypothesis that a word
begins with a T is inconsistent with the hypothesis that the word is MOVE. The
second might be called mutual exclusion. For example, the hypothesis that a
word begins with T excludes the hypothesis that it begins with R since a word
can only begin with one letter. Both kinds of inconsistencies operate in the
word perception model to reduce the activations of units. Thus, the letter units
in each position compete with all other letter units in the same position, and the
word units compete with each other. This type of inhibitory interaction is often
called competitive inhibition. In addition, there are inhibitory interactions be-
tween incompatible units on different levels. This type of inhibitory interaction
is simply called between-level inhibition.

The set of excitatory and inhibitory interactions between units can be dia-
grammed by drawing excitatory and inhibitory links between them. The whole
picture is too complex to draw, so we illustrate only with a fragment: Some of
the interactions between some of the units in this model are illustrated in figure
4.7.

Let us consider what happens in a system like this when a familiar stimulus
is presented under degraded conditions. For example, consider the display
shown in figure 4.8. This display consists of the letters W, O, and R, completely
visible, and enough of a fourth letter to rule out all letters other than R and
K. Before onset of the display, the activations of the units are set at or below
0. When the display is presented, detectors for the features present in each po-
sition become active (i.e., their activations grow above 0). At this point, they
begin to excite and inhibit the corresponding detectors for letters. In the first
three positions, W, O, and R are unambiguously activated, so we will focus our
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Figure 4.7

The unit for the letter T in the first position of a four-letter array and some of its neighbors. Note
that the feature and letter units stand only for the first position; in a complete picture of the units
needed from processing four-letter displays, there would be four full sets of feature detectors and
four full sets of letter detectors. (From “An Interactive Activation Model of Context Effects in Letter
Perception: Part 1. An Account of Basic Findings” by J. L. McClelland and D. E. Rumelhart, 1981,
Psychological Review, 88, p. 380. Copyright 1981 by the American Psychological Association.
Reprinted by permission.)

attention on the fourth position where R and K are both equally consistent with
the active features. Here, the activations of the detectors for R and K start out
growing together, as the feature detectors below them become activated. As
these detectors become active, they and the active letter detectors for W, O, and
R in the other positions start to activate detectors for words which have these
letters in them and to inhibit detectors for words which do not have these let-
ters. A number of words are partially consistent with the active letters, and
receive some net excitation from the letter level, but only the word WORK
matches one of the active letters in all four positions. As a result, WORK be-
comes more active than any other word and inhibits the other words, thereby
successfully dominating the pattern of activation among the word units. As it
grows in strength, it sends feedback to the letter level, reinforcing the activa-
tions of the W, O, R, and K in the corresponding positions. In the fourth posi-
tion, this feedback gives K the upper hand over R, and eventually the stronger
activation of the K detector allows it to dominate the pattern of activation,
suppressing the R detector completely.

This example illustrates how PDP models can allow knowledge about what
letters go together to form words to work together with natural constraints on
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A possible display which might be presented to the interactive activation model of word recogni-
tion, and the resulting activations of selected letter and word units. The letter units are for the
letters indicated in the fourth position of a four-letter display.

the task (i.e., that there should only be one letter in one place at one time), to
produce perceptual completion in a simple and direct way.

Completion of Novel Patterns However, the perceptual intelligence of human
perceivers far exceeds the ability to recognize familiar patterns and fill in miss-
ing portions. We also show facilitation in the perception of letters in unfamiliar
letter strings which are word-like but not themselves actually familiar.

One way of accounting for such performances is to imagine that the perceiver
possesses, in addition to detectors for familiar words, sets of detectors for reg-
ular subword units such as familiar letter clusters, or that they use abstract
rules, specifying which classes of letters can go with which others in different
contexts. It turns out, however, that the model we have already described
needs no such additional structure to produce perceptual facilitation for word-
like letter strings; to this extent it acts as if it “knows” the orthographic
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An example of a nonword display that might be presented to the interactive activation model of
word recognition and the response of selected units at the letter and word levels. The letter units
illustrated are detectors for letters in the second input position.

structure of English. We illustrate this feature of the model with the example
shown in figure 4.9, where the nonword YEAD is shown in degraded form so
that the second letter is incompletely visible. Given the information about this
letter, considered alone, either E or F would be possible in the second position.
Yet our model will tend to complete this letter as an E.

The reason for this behavior is that, when YEAD is shown, a number of
words are partially activated. There is no word consistent with Y, E or F, A, and
D, but there are words which match YEA_ (YEAR, for example) and others
which match _EAD (BEAD, DEAD, HEAD, and READ, for example). These and
other near misses are partially activated as a result of the pattern of activation
at the letter level. While they compete with each other, none of these words
gets strongly enough activated to completely suppress all the others. Instead,
these units act as a group to reinforce particularly the letters E and A. There are



The Appeal of Parallel Distributed Processing 75

no close partial matches which include the letter F in the second position, so
this letter receives no feedback support. As a result, E comes to dominate, and
eventually suppress, the F in the second position.

The fact that the word perception model exhibits perceptual facilitation to
pronounceable nonwords as well as words illustrates once again how behavior
in accordance with general principles or rules can emerge from the interactions
of simple processing elements. Of course, the behavior of the word perception
model does not implement exactly any of the systems of orthographic rules that
have been proposed by linguists (Chomsky & Halle, 1968; Venesky, 1970) or
psychologists (Spoehr & Smith, 1975). In this regard, it only approximates such
rule-based descriptions of perceptual processing. However, rule systems such
as Chomsky and Halle’s or Venesky’s appear to be only approximately hon-
ored in human performance as well (Smith & Baker, 1976). Indeed, some of the
discrepancies between human performance data and rule systems occur in ex-
actly the ways that we would predict from the word perception model (Rumel-
hart & McClelland, 1982). This illustrates the possibility that PDP models may
provide more accurate accounts of the details of human performance than
models based on a set of rules representing human competence—at least in
some domains.

Retrieving Information from Memory

Content Addressability One very prominent feature of human memory is that it
is content addressable. It seems fairly clear that we can access information in
memory based on nearly any attribute of the representation we are trying to
retrieve.

Of course, some cues are much better than others. An attribute which is
shared by a very large number of things we know about is not a very effective
retrieval cue, since it does not accurately pick out a particular memory repre-
sentation. But, several such cues, in conjunction, can do the job. Thus, if we ask
a friend who goes out with several women, “Who was that woman I saw you
with?” he may not know which one we mean—but if we specify something else
about her—say the color of her hair, what she was wearing (in so far as he
remembers this at all), where we saw him with her—he will likely be able to hit
upon the right one.

It is, of course, possible to implement some kind of content addressability of
memory on a standard computer in a variety of different ways. One way is to
search sequentially, examining each memory in the system to find the memory
or the set of memories which has the particular content specified in the cue. An
alternative, somewhat more efficient, scheme involves some form of indexing—
keeping a list, for every content a memory might have, of which memories have
that content.

Such an indexing scheme can be made to work with error-free probes, but
it will break down if there is an error in the specification of the retrieval cue.
There are possible ways of recovering from such errors, but they lead to the kind
of combinatorial explosions which plague this kind of computer implementation.

But suppose that we imagine that each memory is represented by a unit
which has mutually excitatory interactions with units standing for each of its
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properties. Then, whenever any property of the memory became active, the
memory would tend to be activated, and whenever the memory was activated,
all of its contents would tend to become activated. Such a scheme would auto-
matically produce content addressability for us. Though it would not be im-
mune to errors, it would not be devastated by an error in the probe if the
remaining properties specified the correct memory.

As described thus far, whenever a property that is a part of a number of dif-
ferent memories is activated, it will tend to activate all of the memories it is in.
To keep these other activities from swamping the “correct” memory unit, we
simply need to add initial inhibitory connections among the memory units. An
additional desirable feature would be mutually inhibitory interactions among
mutually incompatible property units. For example, a person cannot both be
single and married at the same time, so the units for different marital states
would be mutually inhibitory.

McClelland (1981) developed a simulation model that illustrates how a sys-
tem with these properties would act as a content addressable memory. The
model is obviously oversimplified, but it illustrates many of the characteristics
of the more complex models that will be considered in later chapters.

Consider the information represented in figure 4.10, which lists a number of
people we might meet if we went to live in an unsavory neighborhood, and
some of their hypothetical characteristics. A subset of the units needed to rep-
resent this information is shown in figure 4.11. In this network, there is an “in-
stance unit” for each of the characters described in figure 4.10, and that unit is
linked by mutually excitatory connections to all of the units for the fellow’s
properties. Note that we have included property units for the names of the
characters, as well as units for their other properties.

Now, suppose we wish to retrieve the properties of a particular individual,
say Lance. And suppose that we know Lance’s name. Then we can probe the
network by activating Lance’s name unit, and we can see what pattern of acti-
vation arises as a result. Assuming that we know of no one else named Lance,
we can expect the Lance name unit to be hooked up only to the instance unit
for Lance. This will in turn activate the property units for Lance, thereby creat-
ing the pattern of activation corresponding to Lance. In effect, we have retrieved
a representation of Lance. More will happen than just what we have described
so far, but for the moment let us stop here.

Of course, sometimes we may wish to retrieve a name, given other informa-
tion. In this case, we might start with some of Lance’s properties, effectively
asking the system, say “Who do you know who is a Shark and in his 20s?” by
activating the Shark and 20s units. In this case it turns out that there is a single
individual, Ken, who fits the description. So, when we activate these two prop-
erties, we will activate the instance unit for Ken, and this in turn will activate
his name unit, and fill in his other properties as well.

Graceful Degradation A few of the desirable properties of this kind of model
are visible from considering what happens as we vary the set of features we use
to probe the memory in an attempt to retrieve a particular individual’s name.
Any set of features which is sufficient to uniquely characterize a particular item
will activate the instance node for that item more strongly than any other in-
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The Jets and The Sharks

Name Gang Age Edu Mar  Occupation
Art Jets 40’s J.H. Sing.  Pusher
Al Jets 30’s  J.H. Mar.  Burglar
Sam Jets 20's  COL. Sing. Bookie
Clyde Jets 40’s  J.H. Sing.  Bookie
Mike Jets 30’s  J.H. Sing. Bookie
Jim Jets 20’s  J.H. Div. Burglar
Greg Jets 20’s  H.S. Mar.  Pusher
John Jets 20’s  J.H. Mar.  Burglar
Doug Jets 30’'s H.S. Sing. Bookie
Lance Jets 20’s  J.H. Mar.  Burglar
George Jets 20’s  J.H. Div. Burglar
Pete Jets 20’ H.S. Sing.  Bookie
Fred Jets 20’s  H.S. Sing.  Pusher
Gene Jets 20’'s COL. Sing. Pusher
Ralph Jets 30’s  J.H. Sing.  Pusher
Phil Sharks 30’s COL. Mar. Pusher
Ike Sharks 30’s J.H. Sing.  Bookie
Nick Sharks 30’s H.S. Sing.  Pusher
Don Sharks 30’s COL Mar.  Burglar

Ned Sharks 30’s COL. Mar. Bookie
Karl Sharks 40’s H.S. Mar.  Bookie
Ken Sharks 20’s H.S. Sing.  Burglar
Earl Sharks 40’s H.S. Mar.  Burglar
Rick Sharks 30’s H.S. Div. Burglar
Ol Sharks 30’s COL. Mar. Pusher
Neal Sharks 30’s H.S. Sing. Bookie
Dave Sharks 30’s H.S. Div. Pusher

Figure 4.10

Characteristics of a number of individuals belonging to two gangs, the Jets and the Sharks. (From
“Retrieving General and Specific Knowledge from Stored Knowledge of Specifics” by J. L. Mc-
Clelland, 1981, Proceedings of the Third Annual Conference of the Cognitive Science Society, Berkeley,
CA. Copyright 1981 by J. L. McClelland. Reprinted by permission.)

stance node. A probe which contains misleading features will most strongly
activate the node that it matches best. This will clearly be a poorer cue than one
which contains no misleading information—but it will still be sufficient to
activate the “right answer” more strongly than any other, as long as the intro-
duction of misleading information does not make the probe closer to some
other item. In general, though the degree of activation of a particular instance
node and of the corresponding name nodes varies in this model as a function of
the exact content of the probe, errors in the probe will not be fatal unless they
make the probe point to the wrong memory. This kind of model’s handling of
incomplete or partial probes also requires no special error-recovery scheme to
work—it is a natural by-product of the nature of the retrieval mechanism that it
is capable of graceful degradation.

These aspects of the behavior of the Jets and Sharks model deserve more
detailed consideration than the present space allows. . .. We do, however, have
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Figure 4.11

Some of the units and interconnections needed to represent the individuals shown in figure 4.10.
The units connected with double-headed arrows are mutually excitatory. All the units within
the same cloud are mutually inhibitory. (From “Retrieving General and Specific Knowledge from
Stored Knowledge of Specifics” by J. L. McClelland, 1981, Proceedings of the Third Annual Confer-
ence of the Cognitive Science Society, Berkeley, CA. Copyright 1981 by J. L. McClelland. Reprinted by
permission.)

more to say about this simple model, for like some of the other models we have
already examined, this model exhibits some useful properties which emerge
from the interactions of the processing units.

Default Assignment It probably will have occurred to the reader that in many
of the situations we have been examining, there will be other activations oc-
curring which may influence the pattern of activation which is retrieved. So, in
the case where we retrieved the properties of Lance, those properties, once they
become active, can begin to activate the units for other individuals with those
same properties. The memory unit for Lance will be in competition with these
units and will tend to keep their activation down, but to the extent that they do
become active, they will tend to activate their own properties and therefore fill
them in. In this way, the model can fill in properties of individuals based on
what it knows about other, similar instances.

To illustrate how this might work we have simulated the case in which we do
not know that Lance is a Burglar as opposed to a Bookie or a Pusher. It turns
out that there are a group of individuals in the set who are very similar to
Lance in many respects. When Lance’s properties become activated, these other
units become partially activated, and they start activating their properties.
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Since they all share the same “occupation,” they work together to fill in that
property for Lance. Of course, there is no reason why this should necessarily be
the right answer, but generally speaking, the more similar two things are in
respects that we know about, the more likely they are to be similar in respects
that we do not, and the model implements this heuristic.

Spontaneous Generalization The model we have been describing has another
valuable property as well—it tends to retrieve what is common to those mem-
ories which match a retrieval cue which is too general to capture any one
memory. Thus, for example, we could probe the system by activating the unit
corresponding to membership in the Jets. This unit will partially activate all the
instances of the Jets, thereby causing each to send activations to its properties.
In this way the model can retrieve the typical values that the members of the
Jets have on each dimension—even though there is no one Jet that has these
typical values. In the example, 9 of 15 Jets are single, 9 of 15 are in their 20s,
and 9 of 15 have only a Junior High School education; when we probe by acti-
vating the Jet unit, all three of these properties dominate. The Jets are evenly
divided between the three occupations, so each of these units becomes partially
activated. Each has a different name, so that each name unit is very weakly
activated, nearly cancelling each other out.

In the example just given of spontaneous generalization, it would not be un-
reasonable to suppose that someone might have explicitly stored a general-
ization about the members of a gang. The account just given would be an
alternative to “explicit storage” of the generalization. It has two advantages,
though, over such an account. First, it does not require any special generalization
formation mechanism. Second, it can provide us with generalizations on unan-
ticipated lines, on demand. Thus, if we want to know, for example, what people
in their 20s with a junior high school education are like, we can probe the model
by activating these two units. Since all such people are Jets and Burglars, these
two units are strongly activated by the model in this case; two of them are
divorced and two are married, so both of these units are partially activated.!

The sort of model we are considering, then, is considerably more than a con-
tent addressable memory. In addition, it performs default assignment, and it
can spontaneously retrieve a general concept of the individuals that match any
specifiable probe. These properties must be explicitly implemented as compli-
cated computational extensions of other models of knowledge retrieval, but in
PDP models they are natural by-products of the retrieval process itself.

Representation and Learning in PDP Models

In the Jets and Sharks model, we can speak of the model’s active representation
at a particular time, and associate this with the pattern of activation over the
units in the system. We can also ask: What is the stored knowledge that gives
rise to that pattern of activation? In considering this question, we see immedi-
ately an important difference between PDP models and other models of cog-
nitive processes. In most models, knowledge is stored as a static copy of a
pattern. Retrieval amounts to finding the pattern in long-term memory and
copying it into a buffer or working memory. There is no real difference between
the stored representation in long-term memory and the active representation in
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working memory. In PDP models, though, this is not the case. In these models,
the patterns themselves are not stored. Rather, what is stored is the connection
strengths between units that allow these patterns to be re-created. In the Jets
and Sharks model, there is an instance unit assigned to each individual, but
that unit does not contain a copy of the representation of that individual. In-
stead, it is simply the case that the connections between it and the other units in
the system are such that activation of the unit will cause the pattern for the in-
dividual to be reinstated on the property units.

This difference between PDP models and conventional models has enormous
implications, both for processing and for learning. We have already seen some
of the implications for processing. The representation of the knowledge is set
up in such a way that the knowledge necessarily influences the course of pro-
cessing. Using knowledge in processing is no longer a matter of finding the
relevant information in memory and bringing it to bear; it is part and parcel of
the processing itself.

For learning, the implications are equally profound. For if the knowledge is
the strengths of the connections, learning must be a matter of finding the right
connection strengths so that the right patterns of activation will be produced
under the right circumstances. This is an extremely important property of this
class of models, for it opens up the possibility that an information processing
mechanism could learn, as a result of tuning its connections, to capture the
interdependencies between activations that it is exposed to in the course of
processing.

In recent years, there has been quite a lot of interest in learning in cognitive
science. Computational approaches to learning fall predominantly into what
might be called the “explicit rule formulation” tradition, as represented by the
work of Winston (1975), the suggestions of Chomsky, and the ACT* model of
J. R. Anderson (1983). All of this work shares the assumption that the goal of
learning is to formulate explicit rules (propositions, productions, etc.) which
capture powerful generalizations in a succinct way. Fairly powerful mecha-
nisms, usually with considerable innate knowledge about a domain, and/or
some starting set of primitive propositional representations, then formulate
hypothetical general rules, e.g., by comparing particular cases and formulating
explicit generalizations.

The approach that we take in developing PDP models is completely different.
First, we do not assume that the goal of learning is the formulation of explicit
rules. Rather, we assume it is the acquisition of connection strengths which al-
low a network of simple units to act as though it knew the rules. Second, we do
not attribute powerful computational capabilities to the learning mechanism.
Rather, we assume very simple connection strength modulation mechanisms
which adjust the strength of connections between units based on information
locally available at the connection. Our purpose is to give a simple, illustrative
example of the connection strength modulation process, and how it can pro-
duce networks which exhibit some interesting behavior.

Local versus Distributed Representation Before we turn to an explicit consider-
ation of this issue, we raise a basic question about representation. Once we
have achieved the insight that the knowledge is stored in the strengths of the
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interconnections between units, a question arises. Is there any reason to assign
one unit to each pattern that we wish to learn? Another possibility is that the
knowledge about any individual pattern is not stored in the connections of a
special unit reserved for that pattern, but is distributed over the connections
among a large number of processing units. On this view, the Jets and Sharks
model represents a special case in which separate units are reserved for each
instance.

Models in which connection information is explicitly thought of as distrib-
uted have been proposed by a number of investigators. The units in these col-
lections may themselves correspond to conceptual primitives, or they may have
no particular meaning as individuals. In either case, the focus shifts to patterns
of activation over these units and to mechanisms whose explicit purpose is to
learn the right connection strengths to allow the right patterns of activation to
become activated under the right circumstances.

In the rest of this section, we will give a simple example of a PDP model in
which the knowledge is distributed. We will first explain how the model would
work, given pre-existing connections, and we will then describe how it could
come to acquire the right connection strengths through a very simple learning
mechanism. A number of models which have taken this distributed approach
have been discussed in Hinton and J. A. Anderson’s (1981) Parallel Models of
Associative Memory . We will consider a simple version of a common type of
distributed model, a pattern associator.

Pattern associators are models in which a pattern of activation over one set of
units can cause a pattern of activation over another set of units without any
intervening units to stand for either pattern as a whole. Pattern associators
would, for example, be capable of associating a pattern of activation on one set
of units corresponding to the appearance of an object with a pattern on another
set corresponding to the aroma of the object, so that, when an object is pre-
sented visually, causing its visual pattern to become active, the model produces
the pattern corresponding to its aroma.

How a Pattern Associator Works For purposes of illustration, we present a very
simple pattern associator in figure 4.12. In this model, there are four units in
each of two pools. The first pool, the A units, will be the pool in which patterns
corresponding to the sight of various objects might be represented. The second
pool, the B units, will be the pool in which the pattern corresponding to the
aroma will be represented. We can pretend that alternative patterns of activa-
tion on the A units are produced upon viewing a rose or a grilled steak, and
alternative patterns on the B units are produced upon sniffing the same objects.
Figure 4.13 shows two pairs of patterns, as well as sets of interconnections
necessary to allow the A member of each pair to reproduce the B member.

The details of the behavior of the individual units vary among different ver-
sions of pattern associators. For present purposes, we’ll assume that the units
can take on positive or negative activation values, with 0 representing a kind of
neutral intermediate value. The strengths of the interconnections between the
units can be positive or negative real numbers.

The effect of an A unit on a B unit is determined by multiplying the activa-
tion of the A unit times the strength of its synaptic connection with the B unit.
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From Vision

.25 A 4.25 %
—A 4.25 ?A .A
From

A A A A 7o

4\

B Units

Figure 4.12

A simple pattern associator. The example assumes that patterns of activation in the A units can by
produced by the visual system and patterns in the B unit can be produced by the olfactory system.
The synaptic connections allow the outputs of the A units to influence the activations of the B units.
The synaptic weights linking the A units to the B units were selected so as to allow the pattern of
activation shown on the A units to reproduce the pattern of activation shown on the B units without
the need for any olfactory input.

+1 -1 -1 -1+ -1+
-25 +25 +25 -25 -1 +25 —-25 +.26 -.25 -1
-25 +25 +25 -25| -1 —-25 +.25 -25 +.25 +1
+25 -25 -25 +25| +1 -25 +.25 -25 +25( +1
+25 —-25 -25 +.25 +1 +25 -25 +25 -25 -1
Figure 4.13

Two simple associators represented as matrices. The weights in the first two matrices allow the A
pattern shown above the matrix to produce the B pattern shown to the right of it. Note that the
weights in the first matrix are the same as those shown in the diagram in figure 4.12.
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For example, if the connection from a particular A unit to a particular B unit
has a positive sign, when the A unit is excited (activation greater than 0), it will
excite the B unit. For this example, we’ll simply assume that the activation of
each unit is set to the sum of the excitatory and inhibitory effects operating on
it. This is one of the simplest possible cases.

Suppose, now, that we have created on the A units the pattern corresponding
to the first visual pattern shown in figure 4.13, the rose. How should we ar-
range the strengths of the interconnections between the A units and the B units
to reproduce the pattern corresponding to the aroma of a rose? We simply need
to arrange for each A unit to tend to excite each B unit which has a positive
activation in the aroma pattern and to inhibit each B unit which has a negative
activation in the aroma pattern. It turns out that this goal is achieved by setting
the strength of the connection between a given A unit and a given B unit to a
value proportional to the product of the activation of the two units. In figure
4.12, the weights on the connections were chosen to allow the A pattern il-
lustrated there to produce the illustrated B pattern according to this principle.
The actual strengths of the connections were set to +.25, rather than +1, so that
the A pattern will produce the right magnitude, as well as the right sign, for the
activations of the units in the B pattern. The same connections are reproduced
in matrix form in figure 4.13.

Pattern associators like the one in figure 4.12 have a number of nice proper-
ties. One is that they do not require a perfect copy of the input to produce the
correct output, though its strength will be weaker in this case. For example,
suppose that the associator shown in figure 4.12 were presented with an A
pattern of (1,—1,0,1). This is the A pattern shown in the figure, with the acti-
vation of one of its elements set to 0. The B pattern produced in response will
have the activations of all of the B units in the right direction; however, they
will be somewhat weaker than they would be, had the complete A pattern been
shown. Similar effects are produced if an element of the pattern is distorted—or
if the model is damaged, either by removing whole units, or random sets of
connections, etc. Thus, their pattern retrieval performance of the model de-
grades gracefully both under degraded input and under damage.

How a Pattern Associator Learns So far, we have seen how we as model builders
can construct the right set of weights to allow one pattern to cause another. The
interesting thing, though, is that we do not need to build these interconnection
strengths in by hand. Instead, the pattern associator can teach itself the right set
of interconnections through experience processing the patterns in conjunction
with each other.

A number of different rules for adjusting connection strengths have been
proposed. One of the first—and definitely the best known—is due to D. O.
Hebb (1949). Hebb’s actual proposal was not sufficiently quantitative to build
into an explicit model. However, a number of different variants can trace their
ancestry back to Hebb. Perhaps the simplest version is:

When unit A and unit B are simultaneously excited, increase the strength
of the connection between them.
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A natural extension of this rule to cover the positive and negative activation
values allowed in our example is:

Adjust the strength of the connection between units A and B in
proportion to the product of their simultaneous activation.

In this formulation, if the product is positive, the change makes the connection
more excitatory, and if the product is negative, the change makes the connec-
tion more inhibitory. For simplicity of reference, we will call this the Hebb rule,
although it is not exactly Hebb’s original formulation.

With this simple learning rule, we could train a “blank copy” of the pattern
associator shown in figure 4.12 to produce the B pattern for rose when the A
pattern is shown, simply by presenting the A and B patterns together and
modulating the connection strengths according to the Hebb rule. The size of the
change made on every trial would, of course, be a parameter. We generally as-
sume that the changes made on each instance are rather small, and that con-
nection strengths build up gradually. The values shown in figure 4.13, then,
would be acquired as a result of a number of experiences with the A and B
pattern pair.

It is very important to note that the information needed to use the Hebb rule
to determine the value each connection should have is locally available at the
connection. All a given connection needs to consider is the activation of the
units on both sides of it. Thus, it would be possible to actually implement such
a connection modulation scheme locally, in each connection, without requiring
any programmer to reach into each connection and set it to just the right value.

It turns out that the Hebb rule as stated here has some serious limitations,
and, to our knowledge, no theorists continue to use it in this simple form. More
sophisticated connection modulation schemes have been proposed by other
workers; most important among these are the delta rule; the competitive learn-
ing rule; and the rules for learning in stochastic parallel models. All of these
learning rules have the property that they adjust the strengths of connections
between units on the basis of information that can be assumed to be locally
available to the unit. Learning, then, in all of these cases, amounts to a very
simple process that can be implemented locally at each connection without the
need for any overall supervision. Thus, models which incorporate these learn-
ing rules train themselves to have the right interconnections in the course of
processing the members of an ensemble of patterns.

Learning Multiple Patterns in the Same Set of Interconnections Up to now, we
have considered how we might teach our pattern associator to associate the
visual pattern for one object with a pattern for the aroma of the same object.
Obviously, different patterns of interconnections between the A and B units are
appropriate for causing the visual pattern for a different object to give rise to
the pattern for its aroma. The same principles apply, however, and if we pre-
sented our pattern associator with the A and B patterns for steak, it would
learn the right set of interconnections for that case instead (these are shown in
figure 4.13). In fact, it turns out that we can actually teach the same pattern
associator a number of different associations. The matrix representing the set of
interconnections that would be learned if we taught the same pattern associator
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-+ + - + - + - ++ -
-+ + - + -+ - + — —= ++

+ - -+ -+ -+ = —— 44
+ - - + + - + - ++ —-

Figure 4.14

The weights in the third matrix allow either A pattern shown in figure 4.13 to recreate the corre-
sponding B pattern. Each weight in this case is equal to the sum of the weight for the A pattern and
the weight for the B pattern, as illustrated.

both the rose association and the steak association is shown in figure 4.14. The
reader can verify this by adding the two matrices for the individual patterns
together. The reader can also verify that this set of connections will allow the
rose A pattern to produce the rose B pattern, and the steak A pattern to pro-
duce the steak B pattern: when either input pattern is presented, the correct
corresponding output is produced.

The examples used here have the property that the two different visual pat-
terns are completely uncorrelated with each other. This being the case, the rose
pattern produces no effect when the interconnections for the steak have been
established, and the steak pattern produces no effect when the interconnections
for the rose association are in effect. For this reason, it is possible to add to-
gether the pattern of interconnections for the rose association and the pattern
for the steak association, and still be able to associate the sight of the steak with
the smell of a steak and the sight of a rose with the smell of a rose. The two sets
of interconnections do not interact at all.

One of the limitations of the Hebbian learning rule is that it can learn the
connection strengths appropriate to an entire ensemble of patterns only when
all the patterns are completely uncorrelated. This restriction does not, however,
apply to pattern associators which use more sophisticated learning schemes.

Attractive Properties of Pattern Associator Models Pattern associator models have
the property that uncorrelated patterns do not interact with each other, but
more similar ones do. Thus, to the extent that a new pattern of activation on the
A units is similar to one of the old ones, it will tend to have similar effects.
Furthermore, if we assume that learning the interconnections occurs in small
increments, similar patterns will essentially reinforce the strengths of the links
they share in common with other patterns. Thus, if we present the same pair of
patterns over and over, but each time we add a little random noise to each ele-
ment of each member of the pair, the system will automatically learn to associ-
ate the central tendency of the two patterns and will learn to ignore the noise.
What will be stored will be an average of the similar patterns with the slight
variations removed. On the other hand, when we present the system with com-
pletely uncorrelated patterns, they will not interact with each other in this way.
Thus, the same pool of units can extract the central tendency of each of a num-
ber of pairs of unrelated patterns.

Extracting the Structure of an Ensemble of Patterns The fact that similar patterns
tend to produce similar effects allows distributed models to exhibit a kind of
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spontaneous generalization, extending behavior appropriate for one pattern to
other similar patterns. This property is shared by other PDP models, such as
the word perception model and the Jets and Sharks model described above; the
main difference here is in the existence of simple, local, learning mechanisms
that can allow the acquisition of the connection strengths needed to produce
these generalizations through experience with members of the ensemble of
patterns. Distributed models have another interesting property as well: If
there are regularities in the correspondences between pairs of patterns, the
model will naturally extract these regularities. This property allows distributed
models to acquire patterns of interconnections that lead them to behave in ways
we ordinarily take as evidence for the use of linguistic rules.

We describe one such model very briefly. The model is a mechanism that
learns how to construct the past tenses of words from their root forms through
repeated presentations of examples of root forms paired with the correspond-
ing past-tense form. The model consists of two pools of units. In one pool, pat-
terns of activation representing the phonological structure of the root form of
the verb can be represented, and, in the other, patterns representing the pho-
nological structure of the past tense can be represented. The goal of the model
is simply to learn the right connection strengths between the root units and the
past-tense units, so that whenever the root form of a verb is presented the
model will construct the corresponding past-tense form. The model is trained
by presenting the root form of the verb as a pattern of activation over the root
units, and then using a simple, local, learning rule to adjust the connection
strengths so that this root form will tend to produce the correct pattern of acti-
vation over the past-tense units. The model is tested by simply presenting the
root form as a pattern of activation over the root units and examining the pat-
tern of activation produced over the past-tense units.

The model is trained initially with a small number of verbs children learn
early in the acquisition process. At this point in learning, it can only produce
appropriate outputs for inputs that it has explicitly been shown. But as it learns
more and more verbs, it exhibits two interesting behaviors. First, it produces
the standard ed past tense when tested with pseudo-verbs or verbs it has never
seen. Second, it “overregularizes” the past tense of irregular words it pre-
viously completed correctly. Often, the model will blend the irregular past
tense of the word with the regular ed ending, and produce errors like CAMED
as the past of COME. These phenomena mirror those observed in the early
phases of acquisition of control over past tenses in young children.

The generativity of the child’s responses—the creation of regular past tenses
of new verbs and the overregularization of the irregular verbs—has been taken
as strong evidence that the child has induced the rule which states that the
regular correspondence for the past tense in English is to add a final ed (Berko,
1958). On the evidence of its performance, then, the model can be said to have
acquired the rule. However, no special rule-induction mechanism is used, and
no special language-acquisition device is required. The model learns to behave
in accordance with the rule, not by explicitly noting that most words take ed
in the past tense in English and storing this rule away explicitly, but simply
by building up a set of connections in a pattern associator through a long series
of simple learning experiences. The same mechanisms of parallel distributed
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processing and connection modification which are used in a number of do-
mains serve, in this case, to produce implicit knowledge tantamount to a lin-
guistic rule. The model also provides a fairly detailed account of a number of
the specific aspects of the error patterns children make in learning the rule. In
this sense, it provides a richer and more detailed description of the acquisition
process than any that falls out naturally from the assumption that the child is
building up a repertoire of explicit but inaccessible rules.

There is a lot more to be said about distributed models of learning, about
their strengths and their weaknesses, than we have space for in this brief con-
sideration. For now we hope mainly to have suggested that they provide dra-
matically different accounts of learning and acquisition than are offered by
traditional models of these processes. We saw in earlier sections of this chapter
that performance in accordance with rules can emerge from the interactions of
simple, interconnected units. Now we can see how the aquisition of perfor-
mance that conforms to linguistic rules can emerge from a simple, local, con-
nection strength modulation process.

We have seen what the properties of PDP models are in informal terms,
and we have seen how these properties operate to make the models do many of
the kinds of things that they do. We now wish to describe some of the major
sources of inspiration for the PDP approach.

Origins of Parallel Distributed Processing

The ideas behind the PDP approach have a history that stretches back indef-
initely. In this section, we mention briefly some of the people who have
thought in these terms, particularly those whose work has had an impact on
our own thinking. This section should not been seen as an authoritative review
of the history, but only as a description of our own sources of inspiration.

Some of the earliest roots of the PDP approach can be found in the work of
the unique neurologists, Jackson (1869/1958) and Luria (1966). Jackson was a
forceful and persuasive critic of the simplistic localizationist doctrines of late
nineteenth century neurology, and he argued convincingly for distributed, mul-
tilevel conceptions of processing systems. Luria, the Russian psychologist and
neurologist, put forward the notion of the dynamic functional system. On this
view, every behavioral or cognitive process resulted from the coordination of
a large number of different components, each roughly localized in different
regions of the brain, but all working together in dynamic interaction. Neither
Hughlings-Jackson nor Luria is noted for the clarity of his views, but we have
seen in their ideas a rough characterization of the kind of parallel distributed
processing system we envision.

Two other contributors to the deep background of PDP were Hebb (1949) and
Lashley (1950). We already have noted Hebb’s contribution of the Hebb rule of
synaptic modification; he also introduced the concept of cell assemblies—a
concrete example of a limited form of distributed processing—and discussed
the idea of reverberation of activation within neural networks. Hebb’s ideas
were cast more in the form of speculations about neural functioning than in the
form of concrete processing models, but his thinking captures some of the fla-
vor of parallel distributed processing mechanisms. Lashley’s contribution was
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to insist upon the idea of distributed representation. Lashley may have been
too radical and too vague, and his doctrine of equipotentiality of broad regions
of cortex clearly overstated the case. Yet many of his insights into the diffi-
culties of storing the “engram” locally in the brain are telling, and he seemed
to capture quite precisely the essence of distributed representation in insist-
ing that “there are no special cells reserved for special memories” (Lashley,
1950, p. 500).

In the 1950s, there were two major figures whose ideas have contributed to
the development of our approach. One was Rosenblatt (1959, 1962) and the
other was Selfridge (1955). In his Principles of Neurodynamics (1962), Rosenblatt
articulated clearly the promise of a neurally inspired approach to computation,
and he developed the perceptron convergence procedure, an important advance
over the Hebb rule for changing synaptic connections. Rosenblatt’s work was
very controversial at the time, and the specific models he proposed were not
up to all the hopes he had for them. But his vision of the human information
processing system as a dynamic, interactive, self-organizing system lies at the
core of the PDP approach. Selfridge’s contribution was his insistence on the
importance of interactive processing, and the development of Pandemonium, an
explicitly computational example of a dynamic, interactive mechanism applied
to computational problems in perception.

In the late 60s and early 70s, serial processing and the von Neumann com-
puter dominated both psychology and artificial intelligence, but there were a
number of researchers who proposed neural mechanisms which capture much
of the flavor of PDP models. Among these figures, the most influential in our
work have been J. A. Anderson, Grossberg, and Longuet-Higgins. Grossberg’s
mathematical analysis of the properties of neural networks led him to many
insights we have only come to appreciate through extensive experience with
computer simulation, and he deserves credit for seeing the relevance of neu-
rally inspired mechanisms in many areas of perception and memory well be-
fore the field was ready for these kinds of ideas (Grossberg, 1978). Grossberg
(1976) was also one of the first to analyze certain properties of the competi-
tive learning mechanism. Anderson’s work differs from Grossberg’s in insist-
ing upon distributed representation, and in showing the relevance of neurally
inspired models for theories of concept learning (Anderson, 1973, 1977); work
on distributed memory and amnesia owes a great deal to Anderson’s inspira-
tion. Anderson’s work also played a crucial role in the formulation of the cas-
cade model (McClelland, 1979), a step away from serial processing down the
road to PDP. Longuet-Higgins and his group at Edinburgh were also pursuing
distributed memory models during the same period, and David Willshaw, a
member of the Edinburgh group, provided some very elegant mathematical
analyses of the properties of various distributed representation schemes (Will-
shaw, 1981). His insights provide one of the sources of the idea of coarse cod-
ing. Many of the contributions of Anderson, Willshaw, and others distributed
modelers may be found in Hinton and Anderson (1981). Others who have
made important contributions to learning in PDP models include Amari (1977),
Bienenstock, Cooper, and Munro (1982), Fukushima (1975), Kohonen (1977,
1984), and von der Malsburg (1973).
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Toward the middle of the 1970s, the idea of parallel processing began to have
something of a renaissance in computational circles. We have already men-
tioned the Marr and Poggio (1976) model of stereoscopic depth perception.
Another model from this period, the HEARSAY model of speech understand-
ing, played a prominent role in the development of our thinking. Unfortu-
nately, HEARSAY’s computational architecture was too demanding for the
available computational resources, and so the model was not a computational
success. But its basically parallel, interactive character inspired the interactive
model of reading (Rumelhart, 1977), and the interactive activation model of
word recognition (McClelland & Rumelhart, 1981; Rumelhart & McClelland,
1982).

The ideas represented in the interactive activation model had other pre-
cursors as well. Morton’s logogen model (Morton, 1969) was one of the first
models to capture concretely the principle of interaction of different sources
of information, and Marslen-Wilson (e.g., Marslen-Wilson & Welsh, 1978) pro-
vided important empirical demonstrations of interaction between different
levels of language processing. Levin’s (1976) Proteus model demonstrated the
virtues of activation-competition mechanisms, and Glushko (1979) helped us
see how conspiracies of partial activations could account for certain aspects of
apparently rule-guided behavior.

Our work also owes a great deal to a number of colleagues who have been
working on related ideas in recent years. Feldman and Ballard (1982) laid out
many of the computational principles of the PDP approach (under the name of
connectionism), and stressed the biological implausibility of most of the pre-
vailing computational models in artificial intelligence. Hofstadter (1979, 1985)
deserves credit for stressing the existence of a subcognitive—what we call
microstructural—level, and pointing out how important it can be to delve
into the microstructure to gain insight. A sand dune, he has said, is not a
grain of sand. Others have contributed crucial technical insights. Sutton and
Barto (1981) provided an insightful analysis of the connection modification
scheme we call the delta rule and illustrated the power of the rule to account for
some of the subtler properties of classical conditioning. And Hopfield’s (1982)
contribution of the idea that network models can be seen as seeking minima
in energy landscapes played a prominent role in the development of the
Boltzmann machine and in the crystallization of ideas on harmony theory and
schemata.

The power of parallel distributed processing is becoming more and more
apparent, and many others have recently joined in the exploration of the capa-
bilities of these mechanisms. We hope this chapter represents the nature of the
enterprise we are all involved in, and that it does justice to the potential of the
PDP approach.
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Note

1. In this and all other cases, there is a tendency for the pattern of activation to be influenced by
partially activated, near neighbors, which do not quite match the probe. Thus, in this case, there
is a Jet Al, who is a Married Burglar. The unit for Al gets slightly activated, giving Married a
slight edge over Divorced in the simulation.
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Chapter 5
Minds, Brains, and Programs

John R. Searle

What psychological and philosophical significance should we attach to recent
efforts at computer simulations of human cognitive capacities? In answering
this question, I find it useful to distinguish what I will call “strong” Al from
“weak” or “cautious” Al (Artificial Intelligence). According to weak Al, the
principal value of the computer in the study of the mind is that it gives us a
very powerful tool. For example, it enables us to formulate and test hypotheses
in a more rigorous and precise fashion. But according to strong Al, the com-
puter is not merely a tool in the study of the mind; rather, the appropriately
programmed computer really is a mind, in the sense that computers given the
right programs can be literally said to understand and have other cognitive
states. In strong Al, because the programmed computer has cognitive states,
the programs are not mere tools that enable us to test psychological explan-
ations; rather, the programs are themselves the explanations.

I have no objection to the claims of weak Al, at least as far as this article is
concerned. My discussion here will be directed at the claims I have defined as
those of strong Al, specifically the claim that the appropriately programmed
computer literally has cognitive states and that the programs thereby explain
human cognition. When I hereafter refer to Al, I have in mind the strong ver-
sion, as expressed by these two claims.

I will consider the work of Roger Schank and his colleagues at Yale (Schank
and Abelson, 1977), because I am more familiar with it than I am with any
other similar claims, and because it provides a very clear example of the sort of
work I wish to examine. But nothing that follows depends upon the details of
Schank’s programs. The same arguments would apply to Winograd’s SHRDLU
(Winograd, 1973), Weizenbaum'’s ELIZA (Weizenbaum, 1965), and indeed any
Turing machine simulation of human mental phenomena.

Very briefly, and leaving out the various details, one can describe Schank’s
program as follows: the aim of the program is to simulate the human ability to
understand stories. It is characteristic of human beings’ story-understanding
capacity that they can answer questions about the story even though the infor-
mation that they give was never explicitly stated in the story. Thus, for exam-
ple, suppose you are given the following story: “A man went into a restaurant
and ordered a hamburger. When the hamburger arrived it was burned to a
crisp, and the man stormed out of the restaurant angrily, without paying for
the hamburger or leaving a tip.” Now, if you are asked “Did the man eat the

From The Behavioral and Brain Sciences 3 (1980): 140-152. Reprinted with permission.
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hamburger?” you will presumably answer, “No, he did not.” Similarly, if you
are given the following story: “A man went into a restaurant and ordered a
hamburger; when the hamburger came he was very pleased with it; and as he
left the restaurant he gave the waitress a large tip before paying his bill,” and
you are asked the question, “Did the man eat the hamburger?” you will pre-
sumably answer, “Yes, he ate the hamburger.” Now Schank’s machines can
similarly answer questions about restaurants in this fashion. To do this, they
have a “representation” of the sort of information that human beings have
about restaurants, which enables them to answer such questions as those
above, given these sorts of stories. When the machine is given the story and
then asked the question, the machine will print out answers of the sort that we
would expect human beings to give if told similar stories. Partisans of strong Al
claim that in this question and answer sequence the machine is not only simu-
lating a human ability but also

1. that the machine can literally be said to understand the story and pro-
vide the answers to questions, and

2. that what the machine and its program do explains the human ability to
understand the story and answer questions about it.

Both claims seem to me to be totally unsupported by Schank’s! work, as I
will attempt to show in what follows.

One way to test any theory of the mind is to ask oneself what it would be like
if my mind actually worked on the principles that the theory says all minds
work on. Let us apply this test to the Schank program with the following
Gedankenexperiment. Suppose that I'm locked in a room and given a large batch
of Chinese writing. Suppose furthermore (as is indeed the case) that I know no
Chinese, either written or spoken, and that I'm not even confident that I could
recognize Chinese writing as Chinese writing distinct from, say, Japanese writ-
ing or meaningless squiggles. To me, Chinese writing is just so many mean-
ingless squiggles. Now suppose further that after this first batch of Chinese
writing I am given a second batch of Chinese script together with a set of rules
for correlating the second batch with the first batch. The rules are in English,
and I understand these rules as well as any other native speaker of English.
They enable me to correlate one set of formal symbols with another set of for-
mal symbols, and all that “formal” means here is that I can identify the symbols
entirely by their shapes. Now suppose also that I am given a third batch of
Chinese symbols together with some instructions, again in English, that enable
me to correlate elements of this third batch with the first two batches, and these
rules instruct me how to give back certain Chinese symbols with certain sorts of
shapes in response to certain sorts of shapes given me in the third batch. Un-
known to me, the people who are giving me all of these symbols call the first
batch “a script,” they call the second batch a “story,” and they call the third
batch “questions.” Furthermore, they call the symbols I give them back in re-
sponse to the third batch “answers to the questions,” and the set of rules in
English that they gave me, they call “the program.” Now just to complicate the
story a little, imagine that these people also give me stories in English, which I
understand, and they then ask me questions in English about these stories, and
I give them back answers in English. Suppose also that after a while I get so
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good at following the instructions for manipulating the Chinese symbols and
the programmers get so good at writing the programs that from the external
point of view—that is, from the point of view of somebody outside the room in
which I am locked—my answers to the questions are absolutely indistinguish-
able from those of native Chinese speakers. Nobody just looking at my answers
can tell that I don’t speak a word of Chinese. Let us also suppose that my
answers to the English questions are, as they no doubt would be, indistin-
guishable from those of other native English speakers, for the simple reason
that I am a native English speaker. From the external point of view—from the
point of view of someone reading my “answers”—the answers to the Chinese
questions and the English questions are equally good. But in the Chinese case,
unlike the English case, I produce the answers by manipulating uninterpreted
formal symbols. As far as the Chinese is concerned, I simply behave like a
computer; I perform computational operations on formally specified elements.
For the purposes of the Chinese, I am simply an instantiation of the computer
program.

Now the claims made by strong Al are that the programmed computer
understands the stories and that the program in some sense explains human
understanding. But we are now in a position to examine these claims in light of
our thought experiment.

1. As regards the first claim, it seems to me quite obvious in the example that
I do not understand a word of the Chinese stories. I have inputs and outputs
that are indistinguishable from those of the native Chinese speaker, and I can
have any formal program you like, but I still understand nothing. For the same
reasons, Schank’s computer understands nothing of any stories, whether in
Chinese, English, or whatever, since in the Chinese case the computer is me,
and in cases where the computer is not me, the computer has nothing more
than I have in the case where I understand nothing.

2. As regards the second claim, that the program explains human under-
standing, we can see that the computer and its program do not provide suffi-
cient conditions of understanding since the computer and the program are
functioning, and there is no understanding. But does it even provide a neces-
sary condition or a significant contribution to understanding? One of the claims
made by the supporters of strong Al is that when I understand a story in
English, what I am doing is exactly the same—or perhaps more of the same—
as what I was doing in manipulating the Chinese symbols. It is simply more
formal symbol manipulation that distinguishes the case in English, where I do
understand, from the case in Chinese, where I don’t. I have not demonstrated
that this claim is false, but it would certainly appear an incredible claim in the
example. Such plausibility as the claim has derives from the supposition that
we can construct a program that will have the same inputs and outputs as
native speakers, and in addition we assume that speakers have some level of
description where they are also instantiations of a program. On the basis of
these two assumptions we assume that even if Schank’s program isn’t the
whole story about understanding, it may be part of the story. Well, I sup-
pose that is an empirical possibility, but not the slightest reason has so far
been given to believe that it is true, since what is suggested—though certainly
not demonstrated—by the example is that the computer program is simply
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irrelevant to my understanding of the story. In the Chinese case I have every-
thing that artificial intelligence can put into me by way of a program, and I
understand nothing; in the English case I understand everything, and there is
so far no reason at all to suppose that my understanding has anything to do
with computer programs, that is, with computational operations on purely
formally specified elements. As long as the program is defined in terms of
computational operations on purely formally defined elements, what the ex-
ample suggests is that these by themselves have no interesting connection
with understanding. They are certainly not sufficient conditions, and not the
slightest reason has been given to suppose that they are necessary condi-
tions or even that they make a significant contribution to understanding. Notice
that the force of the argument is not simply that different machines can have
the same input and output while operating on different formal principles—that
is not the point at all. Rather, whatever purely formal principles you put into
the computer, they will not be sufficient for understanding, since a human will
be able to follow the formal principles without understanding anything. No
reason whatever has been offered to suppose that such principles are necessary
or even contributory, since no reason has been given to suppose that when I
understand English I am operating with any formal program at all.

Well, then, what is it that I have in the case of the English sentences that I do
not have in the case of the Chinese sentences? The obvious answer is that I
know what the former mean, while I haven’t the faintest idea what the latter
mean. But in what does this consist and why couldn’t we give it to a machine,
whatever it is? I will return to this question later, but first I want to continue
with the example.

I have had the occasion to present this example to several workers in artifi-
cial intelligence, and, interestingly, they do not seem to agree on what the
proper reply to it is. I get a surprising variety of replies, and in what follows I
will consider the most common of these (specified along with their geographic
origins).

But first I want to block some common misunderstandings about “under-
standing”: in many of these discussions one finds a lot of fancy footwork about
the word “understanding.” My critics point out that there are many different
degrees of understanding; that “understanding” is not a simple two-place
predicate; that there are even different kinds and levels of understanding, and
often the law of excluded middle doesn’t even apply in a straightforward way
to statements of the form “x understands y”; that in many cases it is a matter
for decision and not a simple matter of fact whether x understands y; and so on.
To all of these points I want to say: of course, of course. But they have nothing
to do with the points at issue. There are clear cases in which “understanding”
literally applies and clear cases in which it does not apply; and these two sorts
of cases are all I need for this argument.? I understand stories in English; to a
lesser degree I can understand stories in French; to a still lesser degree, stories
in German; and in Chinese, not at all. My car and my adding machine, on the
other hand, understand nothing: they are not in that line of business. We often
attribute “understanding” and other cognitive predicates by metaphor and
analogy to cars, adding machines, and other artifacts, but nothing is proved by
such attributions. We say, “The door knows when to open because of its photo-
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electric cell,” “The adding machine knows how (understands how, is able) to do
addition and subtraction but not division,” and “The thermostat perceives
changes in the temperature.” The reason we make these attributions is quite
interesting, and it has to do with the fact that in artifacts we extend our own
intentionality;® our tools are extensions of our purposes, and so we find it nat-
ural to make metaphorical attributions of intentionality to them; but I take it no
philosophical ice is cut by such examples. The sense in which an automatic
door “understands instructions” from its photoelectric cell is not at all the sense
in which I understand English. If the sense in which Schank’s programmed
computers understand stories is supposed to be the metaphorical sense in
which the door understands, and not the sense in which I understand English,
the issue would not be worth discussing. But Newell and Simon (1963) write
that the kind of cognition they claim for computers is exactly the same as for
human beings. I like the straightforwardness of this claim, and it is the sort of
claim I will be considering. I will argue that in the literal sense the programmed
computer understands what the car and the adding machine understand,
namely, exactly nothing. The computer understanding is not just (like my un-
derstanding of German) partial or incomplete; it is zero.
Now to the replies.

5.1 The Systems Reply (Berkeley)

“While it is true that the individual person who is locked in the room does not
understand the story, the fact is that he is merely part of a whole system, and
the system does understand the story. The person has a large ledger in front of
him in which are written the rules, he has a lot of scratch paper and pencils for
doing calculations, he has ‘data banks’ of sets of Chinese symbols. Now, un-
derstanding is not being ascribed to the mere individual; rather it is being
ascribed to this whole system of which he is a part.”

My response to the systems theory is quite simple: let the individual inter-
nalize all of these elements of the system. He memorizes the rules in the ledger
and the data banks of Chinese symbols, and he does all the calculations in his
head. The individual then incorporates the entire system. There isn’t anything
at all to the system that he does not encompass. We can even get rid of the
room and suppose he works outdoors. All the same, he understands nothing of
the Chinese, and a fortiori neither does the system, because there isn’t anything
in the system that isn’t in him. If he doesn’t understand, then there is no way
the system could understand because the system is just a part of him.

Actually I feel somewhat embarrassed to give even this answer to the sys-
tems theory because the theory seems to me so unplausible to start with. The
idea is that while a person doesn’t understand Chinese, somehow the conjunc-
tion of that person and bits of paper might understand Chinese. It is not easy
for me to imagine how someone who was not in the grip of an ideology would
find the idea at all plausible. Still, I think many people who are committed to
the ideology of strong AI will in the end be inclined to say something very
much like this; so let us pursue it a bit further. According to one version of this
view, while the man in the internalized systems example doesn’t understand
Chinese in the sense that a native Chinese speaker does (because, for example,
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he doesn’t know that the story refers to restaurants and hamburgers, etc.), still
“the man as a formal symbol manipulation system” really does understand Chi-
nese. The subsystem of the man that is the formal symbol manipulation system
for Chinese should not be confused with the subsystem for English.

So there are really two subsystems in the man; one understands English, the
other Chinese, and “it’s just that the two systems have little to do with each
other.” But, I want to reply, not only do they have little to do with each other,
they are not even remotely alike. The subsystem that understands English
(assuming we allow ourselves to talk in this jargon of “subsystems” for a
moment) knows that the stories are about restaurants and eating hamburgers,
he knows that he is being asked questions about restaurants and that he is
answering questions as best he can by making various inferences from the
content of the story, and so on. But the Chinese system knows none of this.
Whereas the English subsystem knows that “hamburgers” refers to ham-
burgers, the Chinese subsystem knows only that “squiggle squiggle” is fol-
lowed by “squoggle squoggle.” All he knows is that various formal symbols are
being introduced at one end and manipulated according to rules written in
English, and other symbols are going out at the other end. The whole point of
the original example was to argue that such symbol manipulation by itself
couldn’t be sufficient for understanding Chinese in any literal sense because the
man could write “squoggle squoggle” after “squiggle squiggle” without un-
derstanding anything in Chinese. And it doesn’t meet that argument to postu-
late subsystems within the man, because the subsystems are no better off than
the man was in the first place; they still don’t have anything even remotely like
what the English-speaking man (or subsystem) has. Indeed, in the case as
described, the Chinese subsystem is simply a part of the English subsystem, a
part that engages in meaningless symbol manipulation according to rules in
English.

Let us ask ourselves what is supposed to motivate the systems reply in the
first place; that is, what independent grounds are there supposed to be for saying
that the agent must have a subsystem within him that literally understands
stories in Chinese? As far as I can tell the only grounds are that in the example I
have the same input and output as native Chinese speakers and a program that
goes from one to the other. But the whole point of the example has been to try
to show that that couldn’t be sufficient for understanding, in the sense in which
I understand stories in English, because a person, and hence the set of systems
that go to make up a person, could have the right combination of input, output,
and program and still not understand anything in the relevant literal sense in
which I understand English. The only motivation for saying there must be a
subsystem in me that understands Chinese is that I have a program and I can
pass the Turing test; I can fool native Chinese speakers. But precisely one of the
points at issue is the adequacy of the Turing test. The example shows that there
could be two “systems,” both of which pass the Turing test, but only one of
which understands; and it is no argument against this point to say that since
they both pass the Turing test they must both understand, since this claim fails
to meet the argument that the system in me that understands English has a
great deal more than the system that merely processes Chinese. In short, the
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systems reply simply begs the question by insisting without argument that the
system must understand Chinese.

Furthermore, the systems reply would appear to lead to consequences that
are independently absurd. If we are to conclude that there must be cognition in
me on the grounds that I have a certain sort of input and output and a program
in between, then it looks like all sorts of noncognitive subsystems are going to
turn out to be cognitive. For example, there is a level of description at which
my stomach does information processing, and it instantiates any number of
computer programs, but I take it we do not want to say that it has any under-
standing (cf. Pylyshyn, 1980). But if we accept the systems reply, then it is hard
to see how we avoid saying that stomach, heart, liver, and so on, are all un-
derstanding subsystems, since there is no principled way to distinguish the
motivation for saying the Chinese subsystem understands from saying that the
stomach understands. It is, by the way, not an answer to this point to say that
the Chinese system has information as input and output and the stomach has
food and food products as input and output, since from the point of view of the
agent, from my point of view, there is no information in either the food or the
Chinese—the Chinese is just so many meaningless squiggles. The information
in the Chinese case is solely in the eyes of the programmers and the inter-
preters, and there is nothing to prevent them from treating the input and out-
put of my digestive organs as information if they so desire.

This last point bears on some independent problems in strong Al, and it is
worth digressing for a moment to explain it. If strong Al is to be a branch of
psychology, then it must be able to distinguish those systems that are genu-
inely mental from those that are not. It must be able to distinguish the princi-
ples on which the mind works from those on which nonmental systems work;
otherwise it will offer us no explanations of what is specifically mental about
the mental. And the mental-nonmental distinction cannot be just in the eye of
the beholder but it must be intrinsic to the systems; otherwise it would be up to
any beholder to treat people as nonmental and, for example, hurricanes as
mental if he likes. But quite often in the Al literature the distinction is blurred
in ways that would in the long run prove disastrous to the claim that Al is a
cognitive inquiry. McCarthy, for example, writes, “Machines as simple as ther-
mostats can be said to have beliefs, and having beliefs seems to be a character-
istic of most machines capable of problem solving performance” (McCarthy,
1979). Anyone who thinks strong Al has a chance as a theory of the mind ought
to ponder the implications of that remark. We are asked to accept it as a dis-
covery of strong Al that the hunk of metal on the wall that we use to regulate
the temperature has beliefs in exactly the same sense that we, our spouses, and
our children have beliefs, and furthermore that “most” of the other machines in
the room—telephone, tape recorder, adding machine, electric light switch—
also have beliefs in this literal sense. It is not the aim of this article to argue
against McCarthy’s point, so I will simply assert the following without argu-
ment. The study of the mind starts with such facts as that humans have beliefs,
while thermostats, telephones, and adding machines don’t. If you get a theory
that denies this point you have produced a counter example to the theory and
the theory is false. One gets the impression that people in Al who write this
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sort of thing think they can get away with it because they don’t really take it
seriously, and they don’t think anyone else will either. I propose, for a moment
at least, to take it seriously. Think hard for one minute about what would be
necessary to establish that that hunk of metal on the wall over there had real
beliefs, beliefs with direction of fit, propositional content, and conditions of
satisfaction; beliefs that had the possibility of being strong beliefs or weak
beliefs; nervous, anxious, or secure beliefs; dogmatic, rational, or superstitious
beliefs; blind faiths or hesitant cogitations; any kind of beliefs. The thermostat
is not a candidate. Neither is stomach, liver, adding machine, or telephone.
However, since we are taking the idea seriously, notice that its truth would be
fatal to strong Al’s claim to be a science of the mind. For now the mind is
everywhere. What we wanted to know is what distinguishes the mind from
thermostats and livers. And if McCarthy were right, strong Al wouldn’t have a
hope of telling us that.

5.2 The Robot Reply (Yale)

“Suppose we wrote a different kind of program from Schank’s program. Sup-
pose we put a computer inside a robot, and this computer would not just take
in formal symbols as input and give out formal symbols as output, but rather
would actually operate the robot in such a way that the robot does something
very much like perceiving, walking, moving about, hammering nails, eating,
drinking—anything you like. The robot would, for example, have a television
camera attached to it that enabled it to ‘see,” it would have arms and legs that
enabled it to ‘act,” and all of this would be controlled by its computer ‘brain.’
Such a robot would, unlike Schank’s computer, have genuine understanding
and other mental states.”

The first thing to notice about the robot reply is that it tacitly concedes that
cognition is not solely a matter of formal symbol manipulation, since this reply
adds a set of causal relation with the outside world (cf. Fodor, 1980). But the
answer to the robot reply is that the addition of such “perceptual” and “motor”
capacities adds nothing by way of understanding, in particular, or intention-
ality, in general, to Schank’s original program. To see this, notice that the same
thought experiment applies to the robot case. Suppose that instead of the com-
puter inside the robot, you put me inside the room and, as in the original Chi-
nese case, you give me more Chinese symbols with more instructions in English
for matching Chinese symbols to Chinese symbols and feeding back Chinese
symbols to the outside. Suppose, unknown to me, some of the Chinese symbols
that come to me come from a television camera attached to the robot and other
Chinese symbols that I am giving out serve to make the motors inside the robot
move the robot’s legs or arms. It is important to emphasize that all I am doing
is manipulating formal symbols: I know none of these other facts. I am receiv-
ing “information” from the robot’s “perceptual” apparatus, and I am giving out
“instructions” to its motor apparatus without knowing either of these facts. I
am the robot’s homunculus, but unlike the traditional homunculus, I don't
know what’s going on. I don’t understand anything except the rules for symbol
manipulation. Now in this case I want to say that the robot has no intentional
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states at all; it is simply moving about as a result of its electrical wiring and its
program. And furthermore, by instantiating the program I have no intentional
states of the relevant type. All I do is follow formal instructions about manip-
ulating formal-symbols.

5.3 The Brain Simulator Reply (Berkeley and M.1.T.)

“Suppose we design a program that doesn’t represent information that we have
about the world, such as the information in Schank’s scripts, but simulates
the actual sequence of neuron firings at the synapses of the brain of a native
Chinese speaker when he understands stories in Chinese and gives answers to
them. The machine takes in Chinese stories and questions about them as input,
it simulates the formal structure of actual Chinese brains in processing these
stories, and it gives out Chinese answers as outputs. We can even imagine that
the machine operates, not with a single serial program, but with a whole set of
programs operating in parallel, in the manner that actual human brains pre-
sumably operate when they process natural language. Now surely in such a
case we would have to say that the machine understood the stories; and if we
refuse to say that, wouldn’t we also have to deny that native Chinese speakers
understood the stories? At the level of the synapses, what would or could be
different about the program of the computer and the program of the Chinese
brain?”

Before countering this reply I want to digress to note that it is an odd reply
for any partisan of artificial intelligence (or functionalism, etc.) to make: I
thought the whole idea of strong Al is that we don’t need to know how the
brain works to know how the mind works. The basic hypothesis, or so I had
supposed, was that there is a level of mental operations consisting of compu-
tational processes over formal elements that constitute the essence of the men-
tal and can be realized in all sorts of different brain processes, in the same way
that any computer program can be realized in different computer hardwares:
on the assumptions of strong Al, the mind is to the brain as the program is to
the hardware, and thus we can understand the mind without doing neuro-
physiology. If we had to know how the brain worked to do Al, we wouldn’t
bother with AL. However, even getting this close to the operation of the brain is
still not sufficient to produce understanding. To see this, imagine that instead
of a monolingual man in a room shuffling symbols we have the man operate
an elaborate set of water pipes with valves connecting them. When the man
receives the Chinese symbols, he looks up in the program, written in English,
which valves he has to turn on and off. Each water connection corresponds to
a synapse in the Chinese brain, and the whole system is rigged up so that
after doing all the right firings, that is after turning on all the right faucets, the
Chinese answers pop out at the output end of the series of pipes.

Now where is the understanding in this system? It takes Chinese as input, it
simulates the formal structure of the synapses of the Chinese brain, and it gives
Chinese as output. But the man certainly doesn’t understand Chinese, and nei-
ther do the water pipes, and if we are tempted to adopt what I think is the ab-
surd view that somehow the conjunction of man and water pipes understands,
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remember that in principle the man can internalize the formal structure of the
water pipes and do all the “neuron firings” in his imagination. The problem
with the brain simulator is that it is simulating the wrong things about the
brain. As long as it simulates only the formal structure of the sequence of neu-
ron firings at the synapses, it won’t have simulated what matters about the
brain, namely its causal properties, its ability to produce intentional states. And
that the formal properties are not sufficient for the causal properties is shown
by the water pipe example: we can have all the formal properties carved off
from the relevant neurobiological causal properties.

5.4 The Combination Reply (Berkeley and Stanford)

“While each of the previous three replies might not be completely convincing
by itself as a refutation of the Chinese room counterexample, if you take all
three together they are collectively much more convincing and even decisive.
Imagine a robot with a brain-shaped computer lodged in its cranial cavity,
imagine the computer programmed with all the synapses of a human brain,
imagine the whole behavior of the robot is indistinguishable from human
behavior, and now think of the whole thing as a unified system and not just as
a computer with inputs and outputs. Surely in such a case we would have to
ascribe intentionality to the system.”

I entirely agree that in such a case we would find it rational and indeed irre-
sistible to accept the hypothesis that the robot had intentionality, as long as we
knew nothing more about it. Indeed, besides appearance and behavior, the
other elements of the combination are really irrelevant. If we could build a
robot whose behavior was indistinguishable over a large range from human
behavior, we would attribute intentionality to it, pending some reason not to.
We wouldn’t need to know in advance that its computer brain was a formal
analogue of the human brain.

But I really don’t see that this is any help to the claims of strong AI;, and
here’s why: According to strong Al, instantiating a formal program with the
right input and output is a sufficient condition of, indeed is constitutive of,
intentionality. As Newell (1979) puts it, the essence of the mental is the opera-
tion of a physical symbol system. But the attributions of intentionality that we
make to the robot in this example have nothing to do with formal programs.
They are simply based on the assumption that if the robot looks and behaves
sufficiently like us, then we would suppose, until proven otherwise, that it
must have mental states like ours that cause and are expressed by its behavior
and it must have an inner mechanism capable of producing such mental states.
If we knew independently how to account for its behavior without such
assumptions we would not attribute intentionality to it, especially if we knew it
had a formal program. And this is precisely the point of my earlier reply to the
objection in section 5.2.

Suppose we knew that the robot’s behavior was entirely accounted for by
the fact that a man inside it was receiving uninterpreted formal symbols from
the robot’s sensory receptors and sending out uninterpreted formal symbols to
its motor mechanisms, and the man was doing this symbol manipulation in
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accordance with a bunch of rules. Furthermore, suppose the man knows none
of these facts about the robot, all he knows is which operations to perform on
which meaningless symbols. In such a case we would regard the robot as an
ingenious mechanical dummy. The hypothesis that the dummy has a mind
would now be unwarranted and unnecessary, for there is now no longer any
reason to ascribe intentionality to the robot or to the system of which it is a part
(except of course for the man’s intentionality in manipulating the symbols). The
formal symbol manipulations go on, the input and output are correctly matched,
but the only real locus of intentionality is the man, and he doesn’t know any of
the relevant intentional states; he doesn’t, for example, see what comes into the
robot’s eyes, he doesn’t intend to move the robot’s arm, and he doesn’t under-
stand any of the remarks made to or by the robot. Nor, for the reasons stated
earlier, does the system of which man and robot are a part.

To see this point, contrast this case with cases in which we find it completely
natural to ascribe intentionality to members of certain other primate species
such as apes and monkeys and to domestic animals such as dogs. The reasons
we find it natural are, roughly, two: we can’t make sense of the animal’s be-
havior without the ascription of intentionality, and we can see that the beasts
are made of similar stuff to ourselves—that is an eye, that a nose, this is its
skin, and so on. Given the coherence of the animal’s behavior and the assump-
tion of the same causal stuff underlying it, we assume both that the animal
must have mental states underlying its behavior, and that the mental states
must be produced by mechanisms made out of the stuff that is like our stuff.
We would certainly make similar assumptions about the robot unless we had
some reason not to, but as soon as we knew that the behavior was the result of
a formal program, and that the actual causal properties of the physical sub-
stance were irrelevant we would abandon the assumption of intentionality (See
“Cognition and Consciousness in Nonhuman Species,” The Behavioral and Brain
Sciences (1978), 1 (4)).

There are two other responses to my example that come up frequently (and
so are worth discussing) but really miss the point.

5.5 The Other Minds Reply (Yale)

“How do you know that other people understand Chinese or anything else?
Only by their behavior. Now the computer can pass the behavioral tests as well
as they can (in principle), so if you are going to attribute cognition to other
people you must in principle also attribute it to computers.”

This objection really is only worth a short reply. The problem in this discus-
sion is not about how I know that other people have cognitive states, but rather
what it is that I am attributing to them when I attribute cognitive states to
them. The thrust of the argument is that it couldn’t be just computational pro-
cesses and their output because the computational processes and their output
can exist without the cognitive state. It is no answer to this argument to feign
anesthesia. In “cognitive sciences” one presupposes the reality and knowability
of the mental in the same way that in physical sciences one has to presuppose
the reality and knowability of physical objects.
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5.6 The Many Mansions Reply (Berkeley)

“Your whole argument presupposes that Al is only about analogue and digital
computers. But that just happens to be the present state of technology. What-
ever these causal processes are that you say are essential for intentionality
(assuming you are right), eventually we will be able to build devices that
have these causal processes, and that will be artificial intelligence. So your
arguments are in no way directed at the ability of artificial intelligence to pro-
duce and explain cognition.”

I really have no objection to this reply save to say that it in effect trivializes
the project of strong Al by redefining it as whatever artificially produces and
explains cognition. The interest of the original claim made on behalf of artificial
intelligence is that it was a precise, well defined thesis: mental processes are
computational processes over formally defined elements. I have been concerned
to challenge that thesis. If the claim is redefined so that it is no longer that thesis,
my objections no longer apply because there is no longer a testable hypothesis
for them to apply to.

Let us now return to the question I promised I would try to answer: granted
that in my original example I understand the English and I do not understand
the Chinese, and granted therefore that the machine doesn’t understand either
English or Chinese, still there must be something about me that makes it the
case that I understand English and a corresponding something lacking in me
that makes it the case that I fail to understand Chinese. Now why couldn’t we
give those somethings, whatever they are, to a machine?

I see no reason in principle why we couldn’t give a machine the capacity to
understand English or Chinese, since in an important sense our bodies with our
brains are precisely such machines. But I do see very strong arguments for
saying that we could not give such a thing to a machine where the operation of
the machine is defined solely in terms of computational processes over formally
defined elements; that is, where the operation of the machine is defined as an
instantiation of a computer program. It is not because I am the instantiation of
a computer program that I am able to understand English and have other forms
of intentionality (I am, I suppose, the instantiation of any number of computer
programs), but as far as we know it is because I am a certain sort of organism
with a certain biological (i.e. chemical and physical) structure, and this struc-
ture, under certain conditions, is causally capable of producing perception,
action, understanding, learning, and other intentional phenomena. And part of
the point of the present argument is that only something that had those causal
powers could have that intentionality. Perhaps other physical and chemical
processes could produce exactly these effects; perhaps, for example, Martians
also have intentionality but their brains are made of different stuff. That is
an empirical question, rather like the question whether photosynthesis can be
done by something with a chemistry different from that of chlorophyll.

But the main point of the present argument is that no purely formal model
will ever be sufficient by itself for intentionality because the formal properties
are not by themselves constitutive of intentionality, and they have by them-
selves no causal powers except the power, when instantiated, to produce the
next stage of the formalism when the machine is running. And any other causal
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properties that particular realizations of the formal model have, are irrelevant
to the formal model because we can always put the same formal model in
a different realization where those causal properties are obviously absent. Even
if, by some miracle, Chinese speakers exactly realize Schank’s program, we can
put the same program in English speakers, water pipes, or computers, none of
which understand Chinese, the program notwithstanding.

What matters about brain operations is not the formal shadow cast by the
sequence of synapses but rather the actual properties of the sequences. All the
arguments for the strong version of artificial intelligence that I have seen insist
on drawing an outline around the shadows cast by cognition and then claiming
that the shadows are the real thing.

By way of concluding I want to try to state some of the general philosophical
points implicit in the argument. For clarity I will try to do it in a question and
answer fashion, and I begin with that old chestnut of a question:

“Could a machine think?”

The answer is, obviously, yes. We are precisely such machines.

“Yes, but could an artifact, a man-made machine, think?”

Assuming it is possible to produce artificially a machine with a nervous sys-
tem, neurons with axons and dendrites, and all the rest of it, sufficiently like
ours, again the answer to the question seems to be obviously, yes. If you can
exactly duplicate the causes, you could duplicate the effects. And indeed it
might be possible to produce consciousness, intentionality, and all the rest of it
using some other sorts of chemical principles than those that human beings use.
It is, as I said, an empirical question.

“OK, but could a digital computer think?”

If by “digital computer” we mean anything at all that has a level of descrip-
tion where it can correctly be described as the instantiation of a computer pro-
gram, then again the answer is, of course, yes, since we are the instantiations of
any number of computer programs, and we can think.

“But could something think, understand, and so on solely in virtue of being a
computer with the right sort of program? Could instantiating a program, the
right program of course, by itself be a sufficient condition of understanding?”

This I think is the right question to ask, though it is usually confused with
one or more of the earlier questions, and the answer to it is no.

“Why not?”

Because the formal symbol manipulations by themselves don’t have any
intentionality; they are quite meaningless; they aren’t even symbol manipu-
lations, since the symbols don’t symbolize anything. In the linguistic jargon,
they have only a syntax but no semantics. Such intentionality as computers
appear to have is solely in the minds of those who program them and those
who use them, those who send in the input and those who interpret the output.

The aim of the Chinese room example was to try to show this by showing
that as soon as we put something into the system that really does have inten-
tionality (a man), and we program him with the formal program, you can see
that the formal program carries no additional intentionality. It adds nothing,
for example, to a man’s ability to understand Chinese.

Precisely that feature of Al that seemed so appealing—the distinction between
the program and the realization—proves fatal to the claim that simulation could



108  John R. Searle

be duplication. The distinction between the program and its realization in the
hardware seems to be parallel to the distinction between the level of mental
operations and the level of brain operations. And if we could describe the level
of mental operations as a formal program, then it seems we could describe
what was essential about the mind without doing either introspective psychol-
ogy or neurophysiology of the brain. But the equation, “mind is to brain as
program is to hardware” breaks down at several points, among them the fol-
lowing three:

First, the distinction between program and realization has the consequence
that the same program could have all sorts of crazy realizations that had no
form of intentionality. Weizenbaum (1976; ch. 2), for example, shows in detail
how to construct a computer using a roll of toilet paper and a pile of small
stones. Similarly, the Chinese story understanding program can be programmed
into a sequence of water pipes, a set of wind machines, or a monolingual English
speaker, none of which thereby acquires an understanding of Chinese. Stones,
toilet paper, wind, and water pipes are the wrong kind of stuff to have inten-
tionality in the first place—only something that has the same causal powers as
brains can have intentionality—and though the English speaker has the right
kind of stuff for intentionality you can easily see that he doesn’t get any extra
intentionality by memorizing the program, since memorizing it won’t teach
him Chinese.

Second, the program is purely formal, but the intentional states are not in
that way formal. They are defined in terms of their content, not their form. The
belief that it is raining, for example, is not defined as a certain formal shape,
but as a certain mental content with conditions of satisfaction, a direction of fit
(see Searle, 1979b), and the like. Indeed the belief as such hasn’t even got a
formal shape in this syntactic sense, since one and the same belief can be given
an indefinite number of different syntactic expressions in different linguistic
systems.

Third, as I mentioned before, mental states and events are literally a product
of the operation of the brain, but the program is not in that way a product of
the computer.

“Well if programs are in no way constitutive of mental processes, why have
so many people believed the converse? That at least needs some explanation.”

I don’t really know the answer to that one. The idea that computer simu-
lations could be the real thing ought to have seemed suspicious in the first
place because the computer isn’t confined to simulating mental operations, by
any means. No one supposes that computer simulations of a five-alarm fire will
burn the neighborhood down or that a computer simulation of a rainstorm will
leave us all drenched. Why on earth would anyone suppose that a computer
simulation of understanding actually understood anything? It is sometimes
said that it would be frightfully hard to get computers to feel pain or fall in
love, but love and pain are neither harder nor easier than cognition or anything
else. For simulation, all you need is the right input and output and a program
in the middle that transforms the former into the latter. That is all the computer
has for anything it does. To confuse simulation with duplication is the same
mistake, whether it is pain, love, cognition, fires, or rainstorms.
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Still, there are several reasons why Al must have seemed—and to many
people perhaps still does seem—in some way to reproduce and thereby explain
mental phenomena, and I believe we will not succeed in removing these illu-
sions until we have fully exposed the reasons that give rise to them.

First, and perhaps most important, is a confusion about the notion of “infor-
mation processing”: many people in cognitive science believe that the human
brain, with its mind, does something called “information processing,” and
analogously the computer with its program does information processing; but
fires and rainstorms, on the other hand, don’t do information processing at all.
Thus, though the computer can simulate the formal features of any process
whatever, it stands in a special relation to the mind and brain because when the
computer is properly programmed, ideally with the same program as the brain,
the information processing is identical in the two cases, and this information
processing is really the essence of the mental. But the trouble with this argu-
ment is that it rests on an ambiguity in the notion of “information.” In the sense
in which people “process information” when they reflect, say, on problems in
arithmetic or when they read and answer questions about stories, the pro-
grammed computer does not do “information processing.” Rather, what it does
is manipulate formal symbols. The fact that the programmer and the interpreter
of the computer output use the symbols to stand for objects in the world is to-
tally beyond the scope of the computer. The computer, to repeat, has a syntax
but no semantics. Thus, if you type into the computer “2 plus 2 equals?” it will
type out “4.” But it has no idea that “4” means 4 or that it means anything at
all. And the point is not that it lacks some second-order information about the
interpretation of its first-order symbols, but rather that its first-order symbols
don’t have any interpretations as far as the computer is concerned. All the
computer has is more symbols. The introduction of the notion of “information
processing” therefore produces a dilemma: either we construe the notion of
“information processing” in such a way that it implies intentionality as part of
the process or we don't. If the former, then the programmed computer does not
do information processing, it only manipulates formal symbols. If the latter,
then, though the computer does information processing, it is only doing so in
the sense in which adding machines, typewriters, stomachs, thermostats, rain-
storms, and hurricanes do information processing; namely, they have a level of
description at which we can describe them as taking information in at one end,
transforming it, and producing information as output. But in this case it is up
to outside observers to interpret the input and output as information in the
ordinary sense. And no similarity is established between the computer and the
brain in terms of any similarity of information processing.

Second, in much of Al there is a residual behaviorism or operationalism.
Since appropriately programmed computers can have input-output patterns
similar to those of human beings, we are tempted to postulate mental states in
the computer similar to human mental states. But once we see that it is both
conceptually and empirically possible for a system to have human capacities in
some realm without having any intentionality at all, we should be able to
overcome this impulse. My desk adding machine has calculating capacities, but
no intentionality, and in this paper I have tried to show that a system could
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have input and output capabilities that duplicated those of a native Chinese
speaker and still not understand Chinese, regardless of how it was programmed.
The Turing test is typical of the tradition in being unashamedly behavioristic
and operationalistic, and I believe that if Al workers totally repudiated behav-
iorism and operationalism much of the confusion between simulation and du-
plication would be eliminated.

Third, this residual operationalism is joined to a residual form of dualism;
indeed strong Al only makes sense given the dualistic assumption that, where
the mind is concerned, the brain doesn’t matter. In strong Al (and in function-
alism, as well) what matters are programs, and programs are independent of
their realization in machines; indeed, as far as Al is concerned, the same pro-
gram could be realized by an electronic machine, a Cartesian mental substance,
or a Hegelian world spirit. The single most surprising discovery that I have
made in discussing these issues is that many Al workers are quite shocked by
my idea that actual human mental phenomena might be dependent on actual
physical-chemical properties of actual human brains. But if you think about it a
minute you can see that I should not have been surprised; for unless you accept
some form of dualism, the strong Al project hasn’t got a chance. The project is
to reproduce and explain the mental by designing programs, but unless the
mind is not only conceptually but empirically independent of the brain you
couldn’t carry out the project, for the program is completely independent of
any realization. Unless you believe that the mind is separable from the brain
both conceptually and empirically—dualism in a strong form—you cannot
hope to reproduce the mental by writing and running programs since programs
must be independent of brains or any other particular forms of instantiation. If
mental operations consist in computational operations on formal symbols, then
it follows that they have no interesting connection with the brain; the only
connection would be that the brain just happens to be one of the indefinitely
many types of machines capable of instantiating the program. This form of
dualism is not the traditional Cartesian variety that claims there are two sorts
of substances, but it is Cartesian in the sense that it insists that what is specifi-
cally mental about the mind has no intrinsic connection with the actual prop-
erties of the brain. This underlying dualism is masked from us by the fact that
Al literature contains frequent fulminations against “dualism”; what the au-
thors seem to be unaware of is that their position presupposes a strong version
of dualism.

“Could a machine think?” My own view is that only a machine could think,
and indeed only very special kinds of machines, namely brains and machines
that had the same causal powers as brains. And that is the main reason strong
Al has had little to tell us about thinking, since it has nothing to tell us about
machines. By its own definition, it is about programs, and programs are not
machines. Whatever else intentionality is, it is a biological phenomenon, and it
is as likely to be as causally dependent on the specific biochemistry of its ori-
gins as lactation, photosynthesis, or any other biological phenomena. No one
would suppose that we could produce milk and sugar by running a computer
simulation of the formal sequences in lactation and photosynthesis, but where
the mind is concerned many people are willing to believe in such a miracle be-
cause of a deep and abiding dualism: the mind they suppose is a matter of for-
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mal processes and is independent of quite specific material causes in the way
that milk and sugar are not.

In defense of this dualism the hope is often expressed that the brain is a
digital computer (early computers, by the way, were often called “electronic
brains”). But that is no help. Of course the brain is a digital computer. Since
everything is a digital computer, brains are too. The point is that the brain’s
causal capacity to produce intentionality cannot consist in its instantiating a
computer program, since for any program you like it is possible for something
to instantiate that program and still not have any mental states. Whatever it is
that the brain does to produce intentionality, it cannot consist in instantiating a
program since no program, by itself, is sufficient for intentionality.
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Notes

1. I am not, of course, saying that Schank himself is committed to these claims.

2. Also, “understanding” implies both the possession of mental (intentional) states and the truth
(validity, success) of these states. For the purposes of this discussion we are concerned only with
the possession of the states.

3. Intentionality is by definition that feature of certain mental states by which they are directed at
or about objects and states of affairs in the world. Thus, beliefs, desires, and intentions are in-
tentional states; undirected forms of anxiety and depression are not. For further discussion see
Searle (1979Db).
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Chapter 6
Experimental Design in Psychological Research

Daniel |. Levitin

6.1 Introduction

Experimental design is a vast topic. As one thinks about the information derived
from scientific studies, one confronts difficult issues in statistical theory and the
limits of knowledge. In this chapter, we confine our discussion to a few of the
most important issues in experimental design. This will enable students with
no background in behavior research to critically evaluate psychological experi-
ments, and to better understand the nature of empirical research in cognitive
science.

Experimental psychology is a young science. The first laboratory of experi-
mental psychology was established just over 100 years ago. Consequently, there
are a great many mysteries about human behavior, perception, and perfor-
mance that have not yet been solved. This makes it an exciting time to engage
in psychological research—the field is young enough that there is still a great
deal to do, and it is not difficult to think up interesting experiments. The goal of
this chapter is to guide the reader in planning and implementing experiments,
and in thinking about good experimental design.

A “good” experiment is one in which variables are carefully controlled or
accounted for so that one can draw reasonable conclusions from the experi-
ment’s outcome.

6.2 The Goals of Scientific Research
Generally, scientific research has four goals:

1. Description of behavior

2. Prediction of behavior

3. Determination of the causes of behavior
4. Explanations of behavior

These goals apply to the physical sciences as well as to the behavioral and life
sciences. In basic science, the researcher’s primary concern is not with applica-
tions for a given finding. The goal of basic research is to increase our under-
standing of how the world works, or how things came to be the way they are.

Describing behavior impartially is the foremost task of the descriptive study,
and because this is never completely possible, one tries to document any

From “Experimental Design in Psychoacoustic Research,” chapter 23 in Music, Cognition, and Com-
puterized Sound (Cambridge, MA: MIT Press, 1999), 299-328. Reprinted with permission.
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systematic biases that could influence descriptions (goal 1). By studying a
phenomenon, one frequently develops the ability to predict certain behaviors or
outcomes (goal 2), although prediction is possible without an understanding
of underlying causes (we’ll look at some examples in a moment). Controlled
experiments are one tool that scientists use to reveal underlying causes so that
they can advance from merely predicting behavior to understanding the cause
of behavior (goal 3). Explaining behavior (goal 4) requires more than just a
knowledge of causes; it requires a detailed understanding of the mechanisms
by which the causal factors perform their functions.

To illustrate the distinction between the four goals of scientific research, con-
sider the history of astronomy. The earliest astronomers were able to describe
the positions and motions of the stars in the heavens, although they had no
ability to predict where a given body would appear in the sky at a future date.
Through careful observations and documentation, later astronomers became
quite skillful at predicting planetary and stellar motion, although they lacked an
understanding of the underlying factors that caused this motion. Newton’s laws
of motion and Einstein’s special and general theories of relativity, taken to-
gether, showed that gravity and the contour of the space—time continuum cause
the motions we observe. Precisely how gravity and the topology of space-time
accomplish this still remains unclear. Thus, astronomy has advanced to the de-
termination of causes of stellar motion (goal 3), although a full explanation re-
mains elusive. That is, saying that gravity is responsible for astronomical motion
only puts a name on things; it does not tell us how gravity actually works.

As an illustration from behavioral science, one might note that people who
listen to loud music tend to lose their high-frequency hearing (description).
Based on a number of observations, one can predict that individuals with nor-
mal hearing who listen to enough loud music will suffer hearing loss (predic-
tion). A controlled experiment can determine that the loud music is the cause of
the hearing loss (determining causality). Finally, study of the cochlea and basi-
lar membrane, and observation of damage to the delicate hair cells after expo-
sure to high-pressure sound waves, meets the fourth goal (explanation).

6.3 Three Types of Scientific Studies

In science there are three broad classes of studies: controlled studies, correla-
tional studies, and descriptive studies. Often the type of study you will be able
to do is determined by practicality, cost, or ethics, not directly by your own
choice.

6.3.1 Controlled Studies (“True Experiments”)

In a controlled experiment, the researcher starts with a group of subjects and
randomly assigns them to an experimental condition. The point of random
assignment is to control for extraneous variables that might affect the outcome
of the experiment: variables that are different from the variable(s) being studied.
With random assignment, one can be reasonably certain that any differences
among the experimental groups were caused by the variable(s) manipulated in
the experiment.
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Figure 6.1
In a controlled experiment, subjects are randomly assigned to conditions, and differences between
groups are measured.

A controlled experiment in medical research might seek to discover if a cer-
tain food additive causes cancer. The researcher might randomly divide a group
of laboratory mice into two smaller groups, giving the food additive to one
group and not to the other. The variable he/she is interested in is the effect of
the food additive; in the language of experimental design, this is called the
“independent variable.” After a period of time, the researcher compares the
mortality rates of the two groups; this quantity is called the “dependent vari-
able” (figure 6.1). Suppose the group that received the additive tended to die
earlier. In order to deduce that the additive caused the difference between the
groups, the conditions must have been identical in every other respect. Both
groups should have had the same diet, same feeding schedule, same tempera-
ture in their cages, and so on. Furthermore, the two groups of mice should have
started out with similar characteristics, such as age, sex, and so on, so that these
variables—being equally distributed between the two groups—can be ruled
out as possible causes of the difference in mortality rates.

The two key components of a controlled experiment are random assignment of
subjects, and identical experimental conditions (see figure 6.1). A researcher might
have a hypothesis that people who study for an exam while listening to music
will score better than people who study in silence. In the language of experi-
mental design, music-listening is the independent variable, and test performance,
the quantity to be measured, is the dependent variable.

No one would take this study seriously if the subjects were divided into two
groups based on how they did on the previous exam—if, for instance, the
top half of the students were placed in the music-listening condition, and the
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bottom half of the students in the silence condition. Then if the result of the
experiment was that the music listeners as a group tended to perform better on
their next exam, one could argue that this was not because they listened to
music while they studied, but because they were the better students to begin
with.

Again, the theory behind random assignment is to have groups of subjects
who start out the same. Ideally, each group will have similar distributions on
every conceivable dimension—age, sex, ethnicity, IQ, and variables that you
might not think are important, such as handedness, astrological sign, or favor-
ite television show. Random assignment makes it unlikely that there will be
any large systematic differences between the groups.

A similar design flaw would arise if the experimental conditions were different.
For example, if the music-listening group studied in a well-lit room with win-
dows, and the silence group studied in a dark, windowless basement, any dif-
ference between the groups could be due to the different environments. The
room conditions become confounded with the music-listening conditions, such
that it is impossible to deduce which of the two is the causal factor.

Performing random assignment of subjects is straightforward. Conceptually,
one wants to mix the subjects’ names or numbers thoroughly, then draw them
out of a hat. Realistically, one of the easiest ways to do this is to generate a
different random number for each subject, and then sort the random numbers.
If n equals the total number of subjects you have, and g equals the number of
groups you are dividing them into, the first n/g subjects will comprise the first
group, the next n/g will comprise the second group, and so on.

If the results of a controlled experiment indicate a difference between groups,
the next question is whether these findings are generalizable. If your initial
group of subjects (the large group, before you randomly assigned subjects to
conditions) was also randomly selected (called random sampling or random selec-
tion, as opposed to random assignment), this is a reasonable conclusion to draw.
However, there are almost always some constraints on one’s initial choice of
subjects, and this constrains generalizability. For example, if all the subjects
you studied in your music-listening experiment lived in fraternities, the finding
might not generalize to people who do not live in fraternities. If you want to be
able to generalize to all college students, you would need to take a representa-
tive sample of all college students. One way to do this is to choose your sub-
jects randomly, such that each member of the population you are considering
(college students) has an equal likelihood of being placed in the experiment.

There are some interesting issues in representative sampling that are beyond
the scope of this chapter. For example, if you wanted to take a representative
sample of all American college students and you chose American college stu-
dents randomly, it is possible that you would be choosing several students
from some of the larger colleges, such as the University of Michigan, and you
might not choose any students at all from some of the smaller colleges, such as
Bennington College; this would limit the applicability of your findings to the
colleges that were represented in your sample. One solution is to conduct a
stratified sample, in which you first randomly select colleges (making it just as
likely that you'll choose large and small colleges) and then randomly select the
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same number of students from each of those colleges. This ensures that colleges
of different sizes are represented in the sample. You then weight the data from
each college in accordance with the percentage contribution each college makes
to the total student population of your sample. (For further reading, see
Shaughnessy and Zechmeister 1994.)

Choosing subjects randomly requires careful planning. If you try to take a
random sample of Stanford students by standing in front of the Braun Music
Building and stopping every third person coming out, you might be selecting a
greater percentage of music students than actually exists on campus. Yet truly
random samples are not always practical. Much psychological research is con-
ducted on college students who are taking an introductory psychology class,
and are required to participate in an experiment for course credit. It is not at all
clear whether American college students taking introductory psychology are
representative of students in general, or of people in the world in general, so
one should be careful not to overgeneralize findings from these studies.

6.3.2 Correlational Studies

A second type of study is the correlational study (figure 6.2). Because it is not
always practical or ethical to perform random assignments, scientists are
sometimes forced to rely on patterns of co-occurrence, or correlations between
events. The classic example of a correlational study is the link between cigarette
smoking and cancer. Few educated people today doubt that smokers are more
likely to die of lung cancer than are nonsmokers. However, in the history of
scientific research there has never been a controlled experiment with human
subjects on this topic. Such an experiment would take a group of healthy non-
smokers, and randomly assign them to two groups, a smoking group and a
nonsmoking group. Then the experimenter would simply wait until most of the
people in the study have died, and compare the average ages and causes of
death of the two groups. Because our hypothesis is that smoking causes cancer,
it would clearly be unethical to ask people to smoke who otherwise would not.

The scientific evidence we have that smoking causes cancer is correlational.
That is, when we look at smokers as a group, a higher percentage of them do
indeed develop fatal cancers, and die earlier, than do nonsmokers. But without
a controlled study, the possibility exists that there is a third factor—a mysteri-
ous “factor x”—that both causes people to smoke and to develop cancer. Per-
haps there is some enzyme in the body that gives people a nicotine craving,
and this same enzyme causes fatal cancers. This would account for both out-
comes, the kinds of people who smoke and the rate of cancers among them,
and it would show that there is no causal link between smoking and cancer.

In correlational studies, a great deal of effort is devoted to trying to uncover
differences between the two groups studied in order to identify any causal fac-
tors that might exist. In the case of smoking, none have been discovered so far,
but the failure to discover a third causal factor does not prove that one does not
exist. It is an axiom in the philosophy of science that one can prove only the
presence of something; one can’t prove the absence of something—it could al-
ways be just around the corner, waiting to be discovered in the next experiment
(Hempel 1966). In the real world, behaviors and diseases are usually brought
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Correlational experiment
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Figure 6.2

In a correlational study, the researcher looks for a relation between two observed behaviors—in this
case, the relation between untimely death and listening to Madonna recordings.

on by a number of complicated factors, so the mysterious third variable, “factor
x,” could in fact be a collection of different, and perhaps unrelated, variables
that act together to cause the outcomes we observe.

An example of a correlational study with a hypothesized musical cause is
depicted in figure 6.2. Such a study would require extensive interviews with the
subjects (or their survivors), to try to determine all factors that might separate
the subjects exhibiting the symptom from the subjects without the symptom.

The problem with correlational studies is that the search for underlying fac-
tors that account for the differences between groups can be very difficult. Yet
many times, correlational studies are all we have, because ethical considera-
tions preclude the use of controlled experiments.

6.3.3 Descriptive Studies

Descriptive studies do not look for differences between people or groups, but
seek only to describe an aspect of the world as it is. A descriptive study in
physics might seek to discover what elements make up the core of the planet
Jupiter. The goal in such a study would not be to compare Jupiter’s core with
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Descriptive study
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In a descriptive study, the researcher seeks to describe some aspect of the state of the world, such as
people’s consumption of green peas.

the core of other planets, but to learn more about the origins of the universe. In
psychology, we might want to know the part of the brain that is activated when
someone performs a mental calculation, or the number of pounds of fresh green
peas the average Canadian eats in a year (figure 6.3). Our goal in these cases is
not to contrast individuals but to acquire some basic data about the nature of
things. Of course, descriptive studies can be used to establish “norms,” so that
we can compare people against the average, but as their name implies, the pri-
mary goal in descriptive experiments is often just to describe something that
had not been described before. Descriptive studies are every bit as useful as
controlled experiments and correlational studies—sometimes, in fact, they are
even more valuable because they lay the foundation for further experimental
work.

6.4 Design Flaws in Experimental Design

6.4.1 Clever Hans

There are many examples of flawed studies or flawed conclusions that illustrate
the difficulties in controlling extraneous variables. Perhaps the most famous
case is that of Clever Hans.

Clever Hans was a horse owned by a German mathematics teacher around
the turn of the twentieth century. Hans became famous following many dem-
onstrations in which he could perform simple addition and subtraction, read
German, and answer simple questions by tapping his hoof on the ground
(Watson 1967). One of the first things that skeptics wondered (as you might) is
whether Hans would continue to be clever when someone other than his owner
asked the questions, or when Hans was asked questions that he had never
heard before. In both these cases, Hans continued to perform brilliantly, tap-
ping out the sums or differences for arithmetic problems.

In 1904, a scientific commission was formed to investigate Hans’s abilities
more carefully. The commission discovered, after rigorous testing, that Hans
could never answer a question if the questioner did not also know the answer,
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or if Hans could not see his questioner. It was finally discovered that Hans had
become very adept at picking up subtle (and probably unintentional) move-
ments on the part of the questioner that cued him as to when he should stop
tapping his foot. Suppose a questioner asked Hans to add 7 and 3. Hans would
start tapping his hoof, and keep on tapping until the questioner stopped him
by saying “Right! Ten!” or, more subtly, by moving slightly when the correct
answer was reached.

You can see how important it is to ensure that extraneous cues or biases do
not intrude into an experimental situation.

6.4.2 Infants’ Perception of Musical Structure

In studies of infants” perception of music, infants typically sit in their mother’s
lap while music phrases are played over a speaker. Infants tend to turn their
heads toward a novel or surprising event, and this is the dependent variable in
many infant studies; the point at which the infants turn their heads indicates
when they perceive a difference in whatever is being played. Suppose you ran
such a study and found that the infants were able to distinguish Mozart selec-
tions that were played normally from selections of equal length that began or
ended in the middle of a musical phrase. You might take this as evidence that
the infants have an innate understanding of musical phraseology.

Are there alternative explanations for the results? Suppose that in the exper-
imental design, the mothers could hear the music, too. The mothers might
unconsciously cue the infants to changes in the stimulus that they (the mothers)
detect. A simple solution is to have the mothers wear headphones playing
white noise, so that their perception of the music is masked.

6.4.3 Computers, Timing, and Other Pitfalls

It is very important that you not take anything for granted as you design a
careful experiment, and control extraneous variables. For example, psycholo-
gists studying visual perception frequently present their stimuli on a computer
using the MacIntosh or Windows operating system. In a computer program,
the code may specify that an image is to remain on the computer monitor for a
precise number of milliseconds. Just because you specify this does not make it
happen, however. Monitors have a refresh rate (60 or 75 Hz is typical), so the
“on time” of an image will always be an integer multiple of the refresh cycle
(13.33 milliseconds for a 75 Hz refresh rate) no matter what you instruct
the computer to do in your code. To make things worse, the MacIntosh and
Windows operating systems do not guarantee “refresh cycle accuracy” in their
updating, so an instruction to put a new image on the screen may be delayed
an unknown amount of time.

It is important, therefore, always to verify, using some external means, that
the things you think are happening in your experiment are actually happening.
Just because you leave the volume control on your amplifier at the same spot
doesn’t mean the volume of a sound stimulus you are playing will be the same
from day to day. You should measure the output and not take the knob posi-
tion for granted. Just because a frequency generator is set for 1000 Hz does not
mean it is putting out a 1000 Hz signal. It is good science for you to measure
the output frequency yourself.
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6.5 Number of Subjects

How many subjects are enough? In statistics, the word “population” refers to
the total group of people to which the researcher wishes to generalize findings.
The population might be female sophomores at Stanford, or all Stanford stu-
dents, or all college students in the United States, or all people in the United
States. If one is able to draw a representative sample of sufficient size from a
population, one can make inferences about the whole population based on a
relatively small number of cases. This is the basis of presidential polls, for ex-
ample, in which only 2000 voters are surveyed, and the outcome of an election
can be predicted with reasonable accuracy.

The size of the sample required is dependent on the degree of homogeneity
or heterogeneity in the total population you are studying. In the extreme, if you
are studying a population that is so homogeneous that every individual is
identical on the dimensions being studied, a sample size of one will provide all
the information you need. At the other extreme, if you are studying a popula-
tion that is so heterogeneous that each individual differs categorically on the
dimension you are studying, you will need to sample the entire population.

As a “rough-and-ready” rule, if you are performing a descriptive perceptual
experiment, and the phenomenon you are studying is something that you ex-
pect to be invariant across people, you need to use only a few subjects, perhaps
five. An example of this type of study would be calculating threshold sensitiv-
ities for various sound frequencies, such as was done by Fletcher and Munson
(1933).

If you are studying a phenomenon for which you expect to find large indi-
vidual differences, you might need between 30 and 100 subjects. This depends
to some degree on how many different conditions there are in the study. In
order to obtain means with a relatively small variance, it is a good idea to have
at least five to ten subjects in each experimental condition.

6.6 Types of Experimental Designs

Suppose you are researching the effect of music-listening on studying effi-
ciency, as mentioned at the beginning of this chapter. Let’s expand on the sim-
pler design described earlier. You might divide your subjects into five groups:
two experimental groups and three control groups. One experimental group
would listen to rock music, and the other would listen to classical music. Of the
three control groups, one would listen to rock music for the same number of
minutes per day as the experimental group listening to rock (but not while they
were studying); a second would do the same for classical music; the third
would listen to no music at all. This is called a between-subjects design, because
each subject is in one condition and one condition only (also referred to as an
independent groups design). If you assign 10 subjects to each experimental con-
dition, this would require a total of 50 subjects. Table 6.1 shows the layout of
this experiment. Each distinct box in the table is called a cell of the experiment,
and subject numbers are filled in for each cell. Notice the asymmetry for the no
music condition. The experiment was designed so that there is only one “no
music” condition, whereas there are four music conditions of various types.
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Table 6.1

Between-subjects experiment on music and study habits

Condition Only while studying Only while not studying
Music

Classical Subjects 1-10 Subjects 11-20

Rock Subjects 21-30 Subjects 31-40

No music Subjects 41-50 Subjects 41-50

Testing 50 subjects might not be practical. An alternative is a within-subjects
design, in which every subject is tested in every condition (also called a repeated
measures design). In this example, a total of ten subjects could be randomly
divided into the five conditions, so that two subjects experience each condition
for a given period of time. Then the subjects switch to another condition. By the
time the experiment is completed, ten observations have been collected in each
cell, and only ten subjects are required.

The advantage of each subject experiencing each condition is that you can
obtain measures of how each individual is affected by the manipulation, some-
thing you cannot do in the between-subjects design. It might be the case that
some people do well in one type of condition and other people do poorly in it,
and the within-subjects design is the best way to show this. The obvious advan-
tage to the within-subjects design is the smaller number of subjects required.
But there are disadvantages as well.

One disadvantage is demand characteristics. Because each subject experiences
each condition, they are not as naive about the experimental manipulation.
Their performance could be influenced by a conscious or unconscious desire to
make one of the conditions work better. Another problem is carryover effects.
Suppose you were studying the effect of Prozac on learning, and that the half-
life of the drug is 48 hours. The group that gets the drug first might still be
under its influence when they are switched to the nondrug condition. This is a
carryover effect. In the music-listening experiment, it is possible that listening to
rock music creates anxiety or exhilaration that might last into the next condition.

A third disadvantage of within-subjects designs is order effects, and these are
particularly troublesome in psychophysical experiments. An order effect is sim-
ilar to a carryover effect, and it concerns how responses in an experiment might
be influenced by the order in which the stimuli or conditions are presented. For
instance, in studies of speech discrimination, subjects can habituate (become
used to, or become more sensitive) to certain sounds, altering their threshold
for the discriminability of related sounds. A subject who habituates to a certain
sound may respond differently to the sound immediately following it than he/
she normally would. For these reasons, it is important to counterbalance the
order of presentations; presenting the same order to every subject makes it dif-
ficult to account for any effects that are due merely to order.

One way to reduce order effects is to present the stimuli or conditions in
random order. In some studies, this is sufficient, but to be really careful about
order effects, the random order simply is not rigorous enough. The solution is
to use every possible order. In a within-subjects design, each subject would
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complete the experiment with each order. In a between-subjects design, different
subjects would be assigned different orders. The choice will often depend on
the available resources (time and availability of subjects). The number of pos-
sible orders is N! (“n factorial”), where N equals the number of stimuli. With
two stimuli there are two possible orders (2! =2 x 1); with three stimuli there
are six possible orders (3! =3 x 2 x 1); with six stimuli there are 720 possible
orders (6! =6 x 5 x 4 x 3 x 2 x 1). Seven hundred twenty orders is not practical
for a within-subjects design, or for a between-subjects design. One solution in
this case is to create an order that presents each stimulus in each serial position.
A method for accomplishing this involves using the Latin Square. For even-
numbered N, the size of the Latin Square will be N x N; therefore, with six
stimuli you would need only 36 orders, not 720. For odd-numbered N, the size
of the Latin Square will be N x 2N. Details of this technique are covered in ex-
perimental design texts such as Kirk (1982) and Shaughnessy and Zechmeister
(1994).

6.7 Ethical Considerations in Using Human Subjects

Some experiments on human subjects in the 1960s and 1970s raised questions
about how human subjects are treated in behavioral experiments. As a result,
guidelines for human experimentation were established. The American Psy-
chological Association, a voluntary organization of psychologists, formulated a
code of ethical principles (American Psychological Association 1992). In addi-
tion, most universities have established committees to review and approve re-
search using human subjects. The purpose of these committees is to ensure that
subjects are treated ethically, and that fair and humane procedures are fol-
lowed. In some universities, experiments performed for course work or experi-
ments done as “pilot studies” do not require approval, but these rules vary
from place to place, so it is important to determine the requirements at your
institution before engaging in any human subject research.

It is also important to understand the following four basic principles of ethics
in human subject research:

1. Informed consent. Before agreeing to participate in an experiment, sub-
jects should be given an accurate description of their task in the experi-
ment, and told any risks involved. Subjects should be allowed to decline, or
to discontinue participation in the experiment at any time without penalty.
2. Debriefing. Following the experiment, the subjects should be given an
explanation of the hypothesis being tested and the methods used. The ex-
perimenter should answer any questions the subjects have about the pro-
cedure or hypothesis. Many psychoacoustic experiments involve difficult
tasks, leading some subjects to feel frustrated or embarrassed. Subjects
should never leave an experiment feeling slow, stupid, or untalented. It is
the experimenter’s responsibility to ensure that the subjects understand
that these tasks are inherently difficult, and when appropriate, the sub-
jects should be told that the data are not being used to evaluate them
personally, but to collect information on how the population in general
can perform the task.
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3. Privacy and confidentiality. The experimenter must carefully guard the
data that are collected and, whenever possible, code and store the data in
such a way that subjects’ identities remain confidential.

4. Fraud. This principle is not specific to human subjects research, but
applies to all research. An essential ethical standard of the scientific com-
munity is that scientific researchers never fabricate data, and never know-
ingly, intentionally, or through carelessness allow false data, analyses, or
conclusions to be published. Fraudulent reporting is one of the most seri-
ous ethical breaches in the scientific community.

6.8 Analyzing Your Data

6.8.1 Quantitative Analysis

Measurement Error Whenever you measure a quantity, there are two compo-
nents that contribute to the number you end up with: the actual value of the
thing you are measuring and some amount of measurement error, both human
and mechanical. It is an axiom of statistics that measurement error is just as
likely to result in an overestimate as an underestimate of the true value. That is,
each time you take a measurement, the error term (let’s call it epsilon) is just as
likely to be positive as negative. Over a large number of measurements, the
positive errors and negative errors will cancel out, and the average value of
epsilon will approach 0. The larger the number of measurements you make, the
closer you will get to the true value. Thus, as the number of measurements
approaches infinity, the arithmetic average of your measurements approaches
the true quantity being measured. Suppose we are measuring the weight of a
sandbag.
Formally, we would write:

n— oo, &=0
where & = the mean of epsilon, and
n— oo, W=W

where @ = the mean of all the weight measurements and w = the true weight.

When measuring the behavior of human subjects on a task, you encounter
not only measurement error but also performance error. The subjects will not
perform identically every time. As with measurement error, the more observa-
tions you make, the more likely it is that the performance errors cancel each
other out. In psychoacoustic tasks the performance errors can often be rela-
tively large. This is the reason why one usually wants to have the subject per-
form the same task many times, or to have many subjects perform the task a
few times.

Because of these errors, the value of your dependent variable(s) at the end
of the experiment will always deviate from the true value by some amount.
Statistical analysis helps in interpreting these differences (Bayesian inferencing,
meta-analyses, effect size analysis, significance testing) and in predicting the
true value (point estimates and confidence intervals). The mechanics of these
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tests are beyond the scope of this chapter, and the reader is referred to the sta-
tistics textbooks mentioned earlier.

Significance Testing Suppose you wish to observe differences in interval iden-
tification ability between brass players and string players. The question is
whether the difference you observe between the two groups can be wholly
accounted for by measurement and performance error, or whether a difference of
the size you observe indicates a true difference in the abilities of these musicians.

Significance tests provide the user with a “p value,” the probability that the
experimental result could have arisen by chance. By convention, if the p value
is less than .05, meaning that the result could have arisen by chance less than
5% of the time, scientists accept the result as statistically significant. Of course,
p < .05 is arbitrary, and it doesn’t deal directly with the opposite case, the
probability that the data you collected indicate a genuine effect, but the statis-
tical test failed to detect it (a power analysis is required for this). In many
studies, the probability of failing to detect an effect, when it exists, can soar to
80% (Schmidt 1996). An additional problem with a criterion of 5% is that a
researcher who measures 20 different effects is likely to measure one as signifi-
cant by chance, even if no significant effect actually exists.

Statistical significance tests, such as the analysis of variance (ANOVA), the
f-test, chi-square test, and t-test, are methods to determine the probability that
observed values in an experiment differ only as a result of measurement errors.
For details about how to choose and conduct the appropriate tests, or to learn
more about the theory behind them, consult a statistics textbook (e.g., Daniel
1990; Glenberg 1988; Hayes 1988).

Alternatives to Classical Significance Testing Because of problems with tradi-
tional significance testing, there is a movement, at the vanguard of applied
statistics and psychology, to move away from “p value” tests and to rely on
alternative methods, such as Bayesian inferencing, effect sizes, confidence
intervals, and meta-analyses (refer to Cohen 1994; Hunter and Schmidt 1990;
Schmidt 1996). Yet many people persist in clinging to the belief that the most
important thing to do with experimental data is to test them for statistical sig-
nificance. There is great pressure from peer-reviewed journals to perform sig-
nificance tests, because so many people were taught to use them. The fact is, the
whole point of significance testing is to determine whether a result is repeatable
when one doesn’t have the resources to repeat an experiment.

Let us return to the hypothetical example mentioned earlier, in which we
examined the effect of music on study habits using a “within-subjects” design
(each subject is in each condition). One possible outcome is that the difference
in the mean test scores among groups was not significantly different by an
analysis of variance (ANOVA). Yet suppose that, ignoring the means, every
subject in the music-listening condition had a higher score than in the no-music
condition. We are not interested in the size of the difference now, only in the
direction of the difference. The null hypothesis predicts that the manipulation
would have no effect at all, and that half of the subjects should show a differ-
ence in one direction and half in the other. The probability of all 10 sub-
jects showing an effect in the same direction is 1/2!° or 0.0009, which is highly
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significant. Ten out of 10 subjects indicates repeatability. The technique just de-
scribed is called the sign test, because we are looking only at the arithmetic sign
of the differences between groups (positive or negative).

Often, a good alternative to significance tests is estimates of confidence inter-
vals. These determine with a given probability (e.g., 95%) the range of values
within which the true population parameters lie. Another alternative is an
analysis of conditional probabilities. That is, if you observe a difference between
two groups on some measure, determine whether a subject’s membership in
one group or the other will improve your ability to predict his/her score on the
dependent variable, compared with not knowing what group he/she was in
(an example of this analysis is in Levitin 1994a). A good overview of these al-
ternative statistical methods is contained in the paper by Schmidt (1996).

Aside from statistical analyses, in most studies you will want to compute the
mean and standard deviation of your dependent variable. If you had distinct
treatment groups, you will want to know the individual means and standard
deviations for each group. If you had two continuous variables, you will prob-
ably want to compute the correlation, which is an index of how much one vari-
able is related to the other. Always provide a table of means and standard
deviations as part of your report.

6.8.2 Qualitative Analysis, or “How to Succeed in Statistics without Significance
Testing”

If you have not had a course in statistics, you are probably at some advantage
over anyone who has. Many people who have taken statistics courses rush to
plug the numbers into a computer package to test for statistical significance.
Unfortunately, students are not always perfectly clear on exactly what it is they
are testing or why they are testing it.

The first thing one should do with experimental data is to graph them in a
way that clarifies the relation between the data and the hypothesis. Forget
about statistical significance testing—what does the pattern of data suggest?
Graph everything you can think of—individual subject data, subject averages,
averages across conditions—and see what patterns emerge. Roger Shepard has
pointed out that the human brain is not very adept at scanning a table of
numbers and picking out patterns, but is much better at picking out patterns in
a visual display.

Depending on what you are studying, you might want to use a bar graph,
a line graph, or a bivariate scatter plot. As a general rule, even though many
of the popular graphing and spreadsheet packages will allow you to make
pseudo-three-dimensional graphs, don’t ever use three dimensions unless the
third dimension actually represents a variable. Nothing is more confusing
than a graph with extraneous information.

If you are making several graphs of the same data (such as individual subject
graphs), make sure that each graph is the same size and that the axes are scaled
identically from one graph to another, in order to facilitate comparison. Be sure
all your axes are clearly labeled, and don’t divide the axis numbers into units
that aren’t meaningful (for example, in a histogram with “number of subjects”
on the ordinate, the scale shouldn’t include half numbers because subjects come
only in whole numbers).
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Use a line graph if your variables are continuous. The lines connecting your
plot points imply a continuous variable. Use a bar graph if the variables are
categorical, so that you don’t fool the reader into thinking that your observa-
tions were continuous. Use a bivariate scatter plot when you have two contin-
uous variables, and you want to see how a change in one variable affects the
other variable (such as how IQ and income might correlate). Do not use a
bivariate scatterplot for categorical data. (For more information on good graph
design, see Chambers et al. 1983; Cleveland 1994; Kosslyn 1994).

Once you have made all your graphs, look them over for interesting patterns
and effects. Try to get a feel for what you have found, and understand how the
data relate to your hypotheses and your experimental design. A well-formed
graph can make a finding easy to understand and evaluate far better than a dry
recitation of numbers and statistical tests can do.
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Chapter 7
Perception

Philip G. Zimbardo and Richard ]. Gerrig

Who are the people in figure 7.1? If their fame has not been too fleeting, you
should be able to recognize each of these individuals. But is this what they re-
ally look like? Probably not, at least on their good days. Your skill at identify-
ing each of these caricatures suggests that your perception of the world relies on
more than just the information arriving at your sensory receptors. Your ability
to transform and interpret sensory information—your ability to have what you
know interact with what you see—allows you to recognize Madonna, Oprah
Winfrey, and Bill Clinton from these exaggerated portraits.

Your environment is filled with waves of light and sound, but that’s not the
way in which you experience the world. You don’t “see” waves of light; you
see a poster on the wall. You don’t “hear” waves of sound; you hear music
from a nearby radio. Sensation is what gets the show started, but something
more is needed to make a stimulus meaningful and interesting and, most im-
portant, to make it possible for you to respond to it effectively. The processes of
perception provide the extra layers of interpretation that enable you to navigate
successfully through your environment.

We can offer a simple demonstration to help you think about the relationship
between sensation and perception. Hold your hand as far as you can in front
of your face. Now move it toward you. As you move your hand toward your
eyes, it will take up more and more of your visual field. You may no longer be
able to see the poster on the wall in back of your hand. How can your hand
block out the poster? Has your hand gotten bigger? Has the poster gotten
smaller? Your answer must be “Of course not!” This demonstration tells you
something about the difference between sensation and perception. Your hand
can block out the poster because, as it comes closer to your face, the hand
projects an increasingly larger image on your retina. It is your perceptual pro-
cesses that allow you to understand that despite the change in the size of the
projection on your retina, your hand—and the poster behind it—do not change
in actual size.

We might say that the role of perception is to make sense of sensation. Per-
ceptual processes extract meaning from the continuously changing, often cha-
otic, sensory input from external energy sources and organize it into stable,
orderly percepts. A percept is what is perceived—the phenomenological, or
experienced, outcome of the process of perception. It is not a physical object or
its image in a receptor but, rather, the psychological product of perceptual

From chapter 8 in Psychology and Life, 14th ed. (New York: HarperCollins, 1996), 258—-302. Reprinted
with permission.
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activity. Thus your percept of your hand remains stable over changes in the
size of the image because your interpretation is governed by stable perceptual
activities. Most of the time, sensing and perceiving occur so effortlessly, con-
tinuously, and automatically that you take them for granted. It is our goal
in this chapter to allow you to understand and appreciate the processes that
afford you a suitable account of the world, with such apparent ease. We begin
with an overview of perceptual processes in the visual domain.

Sensing, Organizing, Identifying, and Recognizing

The term perception, in its broad usage, refers to the overall process of appre-
hending objects and events in the external environment—to sense them, under-
stand them, identify and label them, and prepare to react to them. The process
of perception is best understood when we divide it into three stages: sensation,
perceptual organization, and identification/recognition of objects.

Sensation refers to conversion of physical energy into the neural codes recog-
nized by the brain. Sensation provides a first-pass representation of the basic
facts of the visual field. Your retinal cells are organized to emphasize edges and
contrasts while reacting only weakly to unchanging, constant stimulation. Cells
in your brain’s cortex extract features and spatial frequency information from
this retinal input.

Perceptual organization refers to the next stage, in which an internal represen-
tation of an object is formed and a percept of the external stimulus is developed.
The representation provides a working description of the perceiver’s external
environment. Perceptual processes provide estimates of an object’s likely size,
shape, movement, distance, and orientation. Those estimates are based on men-
tal computations that integrate your past knowledge with the present evidence
received from your senses and with the stimulus within its perceptual context.
Perception involves synthesis (integration and combination) of simple sensory
features, such as colors, edges, and lines, into the percept of an object that can
be recognized later. These mental activities most often occur swiftly and effi-
ciently, without conscious awareness.

To understand the difference between these first two stages more clearly,
consider the case study of Dr. Richard, whose brain damage left his sensation
intact but altered his perceptual processes.

Dr. Richard was a psychologist with considerable training and experience
in introspection. This special skill enabled him to make a unique and val-
uable contribution to psychology. However, tragically, he suffered brain
damage that altered his visual experience of the world. Fortunately, the
damage did not affect the centers of his brain responsible for speech, so he
was able to describe quite clearly his subsequent unusual visual experi-
ences. In general terms, the brain damage seemed to have affected his
ability to put sensory data together properly. For example, Dr. Richard
reported that if he saw a complex object, such as a person, and there were
several other people nearby in his visual field, he sometimes saw the dif-
ferent parts of the person as separate parts, not belonging together in a
single form. He also had difficulty combining the sound and sight of the
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same event. When someone was singing, he might see a mouth move and
hear a song, but it was as if the sound had been dubbed with the wrong
tape in a foreign movie.

To see the parts of an event as a whole, Dr. Richard needed some com-
mon factor to serve as “glue.” For example, if the fragmented person
moved, so that all parts went in the same direction, Dr. Richard would
then perceive the parts reunited into a complete person. Even then, the
perceptual “glue” would sometimes result in absurd configurations. Dr.
Richard would frequently see objects of the same color, such as a banana,
a lemon, and a canary, going together even if they were separated in
space. People in crowds would seem to merge if they were wearing the
same colored clothing. Dr. Richard’s experiences of his environment were
disjointed, fragmented, and bizarre—quite unlike what he had been used
to before his problems began (Marcel, 1983).

There was nothing wrong with Dr. Richard’s eyes or with his ability to analyze
the properties of stimulus objects—he saw the parts and qualities of objects
accurately. Rather, his problem lay in synthesis—putting the bits and pieces of
sensory information together properly to form a unified, coherent perception of
a single event in the visual scene. His case makes salient the distinction be-
tween sensory and perceptual processes. It also serves to remind you that both
sensory analysis and perceptual organization must be going on all the time
even though you are unaware of the way they are working or even that they
are happening.

Identification and recognition, the third stage in this sequence, assigns meaning
to percepts. Circular objects “become” baseballs, coins, clocks, oranges, and
moons; people may be identified as male or female, friend or foe, movie star or
rock star. At this stage, the perceptual question “What does the object look
like?” changes to a question of identification—“What is this object?”—and to
a question of recognition—“What is the object’s function?” To identify and
recognize what something is, what it is called, and how best to respond to it
involves higher level cognitive processes, which include your theories, memo-
ries, values, beliefs, and attitudes concerning the object.

We have now given you a brief introduction to the stages of processing that
enable you to arrive at a meaningful understanding of the perceptual world
around you. We will devote the bulk of our attention here to aspects of per-
ception beyond the initial transduction of physical energy. In everyday life,
perception seems to be entirely effortless. We will try, beginning in the next
section, to convince you that you actually do quite a bit of sophisticated pro-
cessing, a lot of mental work, to arrive at this “illusion of ease.”

The Proximal and Distal Stimulus

Imagine you are the person in figure 7.2, surveying a room from an easy chair.
Some of the light reflected from the objects in the room enters your eyes and
forms images on your retinas. Figure 7.2 shows what would appear to your left
eye as you sat in the room. (The bump on the right is your nose, and the hand
and knee at the bottom are your own.) How does this retinal image compare
with the environment that produced it?



(Left
retinal
image)

c

(Picture) (Window)

-

(Table top)

o

(Rug)

Figure 7.2

Interpreting retinal images.

A. Physical object (distal stimulus)
B. Optical image (proximal stimulus)
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One very important difference is that the retinal image is two-dimensional,
whereas the environment is three-dimensional. This difference has many con-
sequences. For instance, compare the shapes of the physical objects in figure 7.2
with the shapes of their corresponding retinal images. The table, rug, window,
and picture in the real-world scene are all rectangular, but only the image of
the window actually produces a rectangle in your retinal image. The image of
the picture is a trapezoid, the image of the table top is an irregular four-sided
figure, and the image of the rug is actually three separate regions with more
than 20 different sides! Here’s our first perceptual puzzle: How do you manage
to perceive all of these objects as simple, standard rectangles?

The situation is, however, even a bit more complicated. You can also notice
that many parts of what you perceive in the room are not actually present
in your retinal image. For instance, you perceive the vertical edge between
the two walls as going all the way to the floor, but your retinal image of
that edge stops at the table top. Similarly, in your retinal image parts of the
rug are hidden behind the table; yet this does not keep you from correctly per-
ceiving the rug as a single, unbroken rectangle. In fact, when you consider all
the differences between the environmental objects and the images of them on
your retina, you may be surprised that you perceive the scene as well as you
do.

The differences between a physical object in the world and its optical image
on your retina are so profound and important that psychologists distinguish
carefully between them as two different stimuli for perception. The physical
object in the world is called the distal stimulus (distant from the observer) and
the optical image on the retina is called the proximal stimulus (proximate, or
near, to the observer), as shown in figure 7.3.

The critical point of our discussion can now be restated more concisely: what
you perceive corresponds to the distal stimulus—the “real” object in the envi-
ronment—whereas the stimulus from which you must derive your information
is the proximal stimulus—the image on the retina. The major computational task

(w/(/k/(fm L,
5

Distal stimulus Proximal stimulus

Figure 7.3

Distal and proximal stimulus. The distal stimulus is the pattern or external condition that is sensed
and perceived. The proximal stimulus is the pattern of sensory activity that is determined by the
distal stimulus. As illustrated here, the proximal stimulus may resemble the distal stimulus, but
they are separate events.
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of perception can be thought of as the process of determining the distal stimu-
lus from information contained in the proximal stimulus. This is true across
perceptual domains. For hearing, touch, taste, and so on, perception involves
processes that use information in the proximal stimulus to tell you about prop-
erties of the distal stimulus.

To show you how the distal stimulus and proximal stimulus fit with the three
stages in perceiving, let’'s examine one of the objects in the scene from figure
7.2: the picture hanging on the wall. In the sensory stage, this picture corre-
sponds to a two-dimensional trapezoid in your retinal image; the top and bot-
tom sides converge toward the right, and the left and right sides are different in
length. This is the proximal stimulus. In the perceptual organization stage, you
see this trapezoid as a rectangle turned away from you in three-dimensional
space. You perceive the top and bottom sides as parallel, but receding into the
distance toward the right; you perceive the left and right sides as equal in
length. Your perceptual processes have developed a strong hypothesis about the
physical properties of the distal stimulus; now it needs an identity. In the rec-
ognition stage, you identify this rectangular object as a picture. Figure 7.4 is a
flowchart illustrating this sequence of events. The processes that take informa-
tion from one stage to the next are shown as arrows between the boxes. By
the end of this chapter, we will explain all the interactions represented in this
figure.

Reality, Ambiguity, and Illusions

We have defined the task of perception as the identification of the distal stim-
ulus from the proximal stimulus. Before we turn to some of the perceptual
mechanisms that make this task successful, we want to discuss a bit more some
other aspects of stimuli in the environment that make perception complex.
Once again, you should look forward to learning how your perceptual pro-
cesses deal with these complexities. We will discuss ambiguous stimuli and per-
ceptual illusions.

Ambiguity A primary goal of perception is to get an accurate “fix” on the
world. Survival depends on accurate perceptions of objects and events in your
environment—Is that motion in the trees a tiger?—but the environment is not
always easy to read. Take a look at the photo of black-and-white splotches in
figure 7.5. What is it? Try to extract the stimulus figure from the background.
Try to see a dalmatian taking a walk. The dog is hard to find because it blends
with the background, so its boundaries are not clear. (Hint: the dog is on the
right side of the figure, with its head pointed toward the center.) This figure is
ambiguous in the sense that critical information is missing, elements are in un-
expected relationships, and usual patterns are not apparent. Ambiguity is an
important concept in understanding perception because it shows that a single
image at the sensory level can result in multiple interpretations at the perceptual
and identification levels.

Figure 7.6 shows three examples of ambiguous figures. Each example permits
two unambiguous but conflicting interpretations. Look at each image until you
can see the two alternative interpretations. Notice that once you have seen both
of them, your perception flips back and forth between them as you look at the
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Sensation, perceptual organizing, and identification/recognition stages. The diagram outlines the
processes that give rise to the transformation of incoming information at the stages of sensation,
perceptual organization, and identification/recognition. Bottom-up processing occurs when the
perceptual representation is derived from the information available in the sensory input. Top-down
processing occurs when the perceptual representation is affected by an individual’s prior knowl-
edge, motivations, expectations, and other aspects of higher mental functioning.

ambiguous figure. This perceptual instability of ambiguous figures is one of
their most important characteristics.

The vase/faces and the Necker cube are examples of ambiguity in the per-
ceptual organization stage. You have two different perceptions of the same
objects in the environment. The vase/faces can be seen as either a central white
object on a black background or as two black objects with a white area between
them. The Necker cube can be seen as a three-dimensional hollow cube either
below you and angled to your left or above you and angled toward your right.
With both vase and cube, the ambiguous alternatives are different physical
arrangements of objects in three-dimensional space, both resulting from the
same stimulus image.

The duck/rabbit figure is an example of ambiguity in the recognition stage. It
is perceived as the same physical shape in both interpretations. The ambiguity
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Figure 7.5
Ambiguous picture.
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Duck or rabbit?

Figure 7.6
Perceptual ambiguities.
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arises in determining the kind of object it represents and in how best to classify
it, given the mixed set of information available.

One of the most fundamental properties of normal human perception is the
tendency to transform ambiguity and uncertainty about the environment into a
clear interpretation that you can act upon with confidence. In a world filled
with variability and change, your perceptual system must meet the challenges
of discovering invariance and stability.

Illusions Ambiguous stimuli present your perceptual systems with the chal-
lenge of recognizing one unique figure out of several possibilities. One or
another interpretation of the stimulus is correct or incorrect with respect to a
particular context. When your perceptual systems actually deceive you into
experiencing a stimulus pattern in a manner that is demonstrably incorrect, you
are experiencing an illusion. The word illusion shares the same root as ludi-
crous—both stem from the Latin illudere, which means “to mock at.” Illusions
are shared by most people in the same perceptual situation because of shared
physiology in sensory systems and overlapping experiences of the world. (This
sets illusions apart from hallucinations. Hallucinations are nonshared perceptual
distortions that individuals experience as a result of unusual physical or mental
states.) Examine the classic illusions in figure 7.7. Although it is most conve-
nient for us to present you with visual illusions, illusions also exist abundantly
in other sensory modalities such as hearing (Bregman, 1981; Shepard & Jordan,
1984) and taste (Todrank & Bartoshuk, 1991).

Since the first scientific analysis of illusions was published by ]J. J. Oppel in
1854-1855, thousands of articles have been written about illusions in nature,
sensation, perception, and art. Oppel’s modest contribution to the study of
illusions was a simple array of lines that appeared longer when divided into
segments than when only its end lines were present:

versus

Oppel called his work the study of geometrical optical illusions. Illusions point
out the discrepancy between percept and reality. They can demonstrate the
abstract conceptual distinctions between sensation, perceptual organization,
and identification and can help you understand some fundamental properties
of perception (Cohen & Girgus, 1973).

Let’s examine an illusion that works at the sensation level: the Hermann grid,
in figure 7.8. As you stare at the center of the grid, dark, fuzzy spots appear
at the intersections of the white bars. How does that happen? The answer lies
in something you read about in the last chapter—lateral inhibition. Assume the
stimulus is registered by ganglion retinal cells, two of which have their recep-
tive fields drawn in the lower corner of the grid. The receptive field at the cen-
ter of the intersection has two white bars projecting through its surround, while
the neighboring receptive field has only one. The cell at the center, therefore,
receives more light and can respond at a lower level because of the greater lat-
eral inhibition by the surround. Its reduced response shows up as a dark spot
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in its center. Illusions at this level generally occur because the arrangement of a
stimulus array sets off receptor processes in an unusual way that generates a
distorted image.

Hllusions in Reality ~ Are illusions just peculiar arrangements of lines, colors, and
shapes used by artists and psychologists to plague unsuspecting people?
Hardly. Illusions are a basic part of your everyday life. They are an inescapable
aspect of the subjective reality you construct. And even though you may rec-
ognize an illusion, it can continue to occur and fool you again and again.

Consider your day-to-day experience of your home planet, the earth. You've
seen the sun “rise” and “set” even though you know that the sun is sitting out
there in the center of the solar system as decisively as ever. You can appreciate
why it was such an extraordinary feat of courage for Christopher Columbus
and other voyagers to deny the obvious illusion that the earth was flat and sail
off toward one of its apparent edges. Similarly, when a full moon is overhead, it
seems to follow you wherever you go even though you know the moon isn’t
chasing you. What you are experiencing is an illusion created by the great dis-
tance of the moon from your eye. When they reach the earth, the moon’s light
rays are essentially parallel and perpendicular to your direction of travel, no
matter where you go.

People can control illusions to achieve desired effects. Architects and interior
designers use principles of perception to create objects in space that seem larger
or smaller than they really are. A small apartment becomes more spacious when
it is painted with light colors and sparsely furnished with low, small couches,
chairs, and tables in the center of the room instead of against the walls. Psy-
chologists working with NASA in the U.S. space program have researched the
effects of environment on perception in order to design space capsules that
have pleasant sensory qualities. Set and lighting directors of movies and theat-
rical productions purposely create illusions on film and on stage.

Despite all of these illusions—some more useful than others—you generally
do pretty well getting around the environment. That is why researchers typi-
cally study illusions to help explain why perception ordinarily works so well.
The illusions themselves suggest, however, that your perceptual systems cannot
perfectly carry out the task of recovering the distal stimulus from the proximal
stimulus.

Approaches to the Study of Perception

You now are acquainted with some of the major questions of perception: How
does the perceptual system recover the structure of the environment? How is
ambiguity resolved? Why do illusions arise? Before we move on to answer
these questions, we need to give you more of a background in the types of
theories that have dominated research on perception.

Many of the differences between these theories can be captured by the dis-
tinction between nature and nurture. At issue is how much of a head start you
have in dealing with the perceptual world by virtue of your possession of the
human genotype. Do you, as a nativist might argue, come into the world with
some types of innate knowledge or brain structures that aid your interpretation
of the environment? Or do you, as an empiricist might assert, come into the
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Figure 7.7
Six illusions to tease your brain.
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B. Which of the boxes are the same size as the standard
box? Which are definitely smaller or larger? Measure them
to discover a powerful illusory effect.

Standard

3. 4.

Figure 7.7 (continued)

world with a relatively blank slate, ready to learn what there is to learn about
the perceptual world? Most modern theorists agree that your experience of
the world consists of a combination of nature and nurture. We will see, how-
ever, that these theorists disagree on the size of the portions that make up this
combination.

Helmholtz’s Classical Theory In 1866, Hermann von Helmholtz argued for the
importance of experience—or nurture—in perception. His theory emphasized
the role of mental processes in interpreting the often ambiguous stimulus
arrays that excite the nervous system. By using prior knowledge of the envi-
ronment, an observer makes hypotheses, or inferences, about the way things
really are. For instance, you would be likely to interpret your brief view of
a four-legged creature moving through the woods as a dog rather than as a
wolf. Perception is thus an inductive process, moving from specific images to
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Figure 7.8
The Hermann grid. Two ganglion-cell receptive fields are projected on this grid; it is an example of
an illusion at the sensory stage.
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inferences (reasonable hunches) about the general class of objects or events that
the images might represent. Since this process takes place out of your conscious
awareness, Helmholtz termed it unconscious inference. Ordinarily, these infer-
ential processes work well. However, perceptual illusions can result when
unusual circumstances allow multiple interpretations of the same stimulus or
favor an old, familiar interpretation when a new one is required.

Helmholtz’s theory broke perception down into two stages. In the first, ana-
Iytic stage, the sense organs analyze the physical world into fundamental sen-
sations. In the second, synthetic stage, you integrate and synthesize these
sensory elements into perceptions of objects and their properties. Helmholtz’s
theory proposes that you learn how to interpret sensations on the basis of your
experience with the world. Your interpretations are, in effect, informed guesses
about your perceptions.

The Gestalt Approach Gestalt psychology, founded in Germany in the second
decade of the twentieth century, put greater emphasis on the role of innate
structures—nature—in perceptual experience. The main exponents of Gestalt
psychology, like Kurt Koffka (1935), Wolfgang Kdhler (1947), and Max Wertheimer
(1923), maintained that psychological phenomena could be understood only
when viewed as organized, structured wholes and not when broken down
into primitive perceptual elements. The term Gestalt roughly means “form,”
“whole,” “configuration,” or “essence.” Gestalt psychology challenged atom-
istic views of psychology by arguing that the whole is more than the sum of its
parts. For example, when you listen to music, you perceive whole melodies
even though they are composed of separate notes. Gestalt psychologists argued
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that the holistic perception of the world arises because the cortex is organized
to function that way. You organize sensory information the way you do be-
cause it is the most economical, simple way to organize the sensory input,
given the structure and physiology of the brain. (Many of the examples of per-
ceptual organization we will discuss in a later section were originated by the
Gestaltists.)

Gibson’s Ecological Optics  James Gibson (1966, 1979) proposed a very influential
nativist approach to perception. Instead of trying to understand perception as
a result of an organism’s structure, Gibson suggested that it could be better
understood through an analysis of the immediately surrounding environment
(or its ecology). As one writer put it, Gibson’s approach was, “Ask not what’s
inside your head, but what your head’s inside of” (Mace, 1977). In effect, Gib-
son’s theory of ecological optics was concerned with the perceived stimuli rather
than with the mechanisms by which you perceive the stimuli. This approach
was a radical departure from all previous theories. Gibson’s ideas emphasized
perceiving as active exploration of the environment. When an observer is moving
in the world, the pattern of stimulation on the retina is constantly changing
over time as well as over space. The theory of ecological optics tried to specify
the information about the environment that was available to the eyes of a
moving observer. Theorists in Gibson’s tradition agree that perceptual systems
evolved in organisms who were active—seeking food, water, mates, and shel-
ter—in a complex and changing environment (Gibson, 1979; Pittenger, 1988;
Shaw & Turvey, 1981; Shepard, 1984).

According to Gibson, the answer to the question “How do you learn about
your world?” is simple. You directly pick up information about the invariant,
or stable, properties of the environment. There is no need to take raw sensa-
tions into account or to look for higher level systems of perceptual inference—
perception is direct. While the retinal size and shape of each environmental
object changes, depending on the object’s distance and on the viewing angle,
these changes are not random. The changes are systematic, and certain proper-
ties of objects remain invariant under all such changes of viewing angles and
viewing distances. Your visual system is tuned to detect such invariances be-
cause humans evolved in the environment in which perception of invariances
was important for survival (Palmer, 1981).

Toward a Unified Theory of Perception These diverse theories can be unified to
set the agenda for successful research on perception. You can recognize that the
different perspectives contribute different insights to the three levels of analysis
a theory of perception must address (Banks & Krajicek, 1991):

* What are the physiological mechanisms involved in perception? This topic
has its history in work with animals, and has more recently been addressed
using neuroimaging techniques (see Part 19). The information impinging
on the sensory receptors is often ambiguous. Stimulus-driven, or bottom-
up processing, works its way up the brain, while expectation-driven, or
top-down processing, complements it.

* What is the process of perceiving? This question is usually tackled by
researchers who follow in the tradition originated by Helmholtz and the
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Gestaltists. Modern researchers often try to understand how sources of
information are combined to arrive at a perceptual interpretation of the
world. These researchers compare the process of perception to conceptual
problem solving (Beck, 1982; Kanizsa, 1979; Pomerantz & Kubovy, 1986;
Rock, 1983, 1986; Shepp & Ballisteros, 1989). We will see some of their
insights in the remaining sections of this chapter.

* What are the properties of the physical world that allow you to perceive? This
question makes contact with Gibson’s theory. His central insight was that
the world makes available certain types of information—and your percep-
tual apparatus is innately prepared to recover that information. Gibson’s
research made it clear that theories of perception must be constrained by
accurate understandings of the environment in which people perceive.

We now begin our discussion of perceptual processes by considering what it
means to select, or attend to, only a small subset of the information the world
makes available.

Attentional Processes

We'd like you to take a moment now to find ten things in your environment
that had not been, so far, in your immediate awareness. Had you noticed a spot
on the wall? Had you noticed the ticking of a clock? If you start to examine
your surroundings very carefully, you will discover that there are literally
thousands of things on which you could focus your attention. Generally, the
more closely you attend to some object or event in the environment, the more
you can perceive and learn about it. That’s why attention is an important topic
in the study of perception: your focus of attention determines the types of
information that will be most readily available to your perceptual processes.
As you will now see, researchers have tried to understand what types of envi-
ronmental stimuli require your attention and how attention contributes to your
experience of those stimuli. We will start by considering how attention func-
tions to selectively highlight objects and events in your environment.

Selective Attention

We began this section by asking that you try to find—to bring into attention—
several things that had, up to that point, escaped your notice. This thought
experiment illustrated an important function of attention: to select some part
of the sensory input for further processing. Let us see how you make decisions
about the subset of the world to which you will attend, and what consequences
those decisions have for the information readily available to you.

Determining the Focus of Attention What forces determine the objects that be-
come the focus of your attention? The answer to this question has two compo-
nents, which we will call goal-directed selection and stimulus-driven capture
(Yantis, 1993). Goal-directed selection reflects the choices that you make about
the objects to which you’d like to attend, as a function of your own goals. You
are probably already comfortable with the idea that you can explicitly choose
objects for particular scrutiny. Stimulus-driven capture occurs when features
of the stimuli—objects in the environment—themselves automatically capture
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Figure 7.9

Stimulus-driven capture. How hard is it to recognize that the figure in (A) is an H? When the S fills
a prior gap in the display (C), subjects find it more difficult to see that the overall figure is an H than
they do in the control condition (B).

your

attention, independent of your local goals as a perceiver. Research sug-

gests, for example, that new objects in a perceptual display automatically cap-
ture attention.

Consider the figure shown in part A of figure 7.9. How hard do you think
it would be for you to identify the overall, global figure as an H? The an-
swer will depend on the extent to which you have to attend to the local
letters that make up the global figure. Parts B and C of the figure show
how researchers manipulated attention. In each condition of the experi-
ment, subjects were given a preview display that consisted of a figure 8
made of 8s. In the control condition, the figure 8 was complete. But, as
you can see, in the novel object condition, there was a gap in the figure.
What will happen if the next display you see fills in that gap? The
researchers predicted that the object filling the gap (the novel object)
would capture your attention—you couldn’t help looking at it. And if
your attention is focused on the letter S, you should find it harder than
you ordinarily would to say that the global letter is an H.

That is exactly the result the researchers obtained. If you compare the
two test displays in figure 7.9, you'll see that they are identical. In each
case an S helps to make up the global H. However, it was only in the case
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when the S appeared in a space that was previously unoccupied that
subjects’” performance—the speed with which they could name the global
letter—was impaired (Hillstrom & Yantis, 1994).

You can recognize this phenomenon as stimulus-driven capture, because it
works in the opposite direction of the perceiver’s goals. Because, that is, the
subjects would perform the task better if they ignored the small S, they must be
unable to ignore it (since subjects almost always prefer to perform as well as
possible on the tasks researchers assign them). The important general conclu-
sion is that your perceptual system is organized so that your attention is auto-
matically drawn to objects that are new to an environment.

The Fate of Unattended Information If you have selectively attended to some
subset of a perceptual display—by virtue of your own goals or of properties of
the stimuli—what is the fate of the information to which you did not attend?
Imagine listening to a lecture while people on both sides of you are engaged in
conversations. How are you able to keep track of the lecture? What do you no-
tice about the conversations? Could anything appear in the content of one or
the other conversation to divert your attention from the lecture?

This constellation of questions was first explored by Donald Broadbent (1958),
who conceived of the mind as a communications channel—similar to a telephone
line or a computer link—that actively processes and transmits information.
Broadbent re-created the real-life situation of multiple sources of input in his
laboratory with a technique called dichotic listening.

A subject wearing earphones listens to two tape-recorded messages
played at the same time—a different message is played into each ear. The
subject is instructed to repeat only one of the two messages to the experi-
menter, while ignoring whatever is presented to the other ear. This pro-
cedure is called shadowing the attended message (see figure 7.10).

Subjects in shadowing experiments remember the attended message and do
not remember the ignored message. Subjects usually do not even notice major
alterations in the ignored message, such as changing the language from English
to German or playing the tape backward. However, they do notice marked
physical changes as, for example, when the pitch is raised substantially by
changing the speaker’s voice from male to female (Cherry, 1953). Thus gross
physical features of the unattended message receive perceptual analysis, ap-
parently below the level of consciousness, but most meaning does not get
through.

According to Broadbent’s theory, as a communications channel the mind has
only limited capacity to carry out complete processing. This limit requires that
attention strictly regulate the flow of information from sensory input to con-
sciousness. Attention creates a bottleneck in the flow of information through
the cognitive system, filtering out some information and allowing other infor-
mation to continue. The filter theory of attention asserted that the selection
occurs early on in the process, before the input’s meaning is accessed.

The strongest form of filter theory was challenged when it was discovered
that some subjects were perceiving things they would not have been able to if
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Figure 7.10

Dichotic listening task. A subject hears different digits presented simultaneously to each ear: 2 (left),
7 (right), 6 (left), 9 (right), 1 (left), and 5 (right). He reports hearing the correct sets—261 and 795.
However, when instructed to attend only to the right-ear input, the subject reports hearing only
795.

attention had been totally filtering all ignored material. In dichotic listening
tasks, subjects sometimes noticed their own names and other personally mean-
ingful information contained in the message they were instructed to ignore
(Cherry, 1953). When a story being shadowed in one ear was switched to the
unattended ear and replaced by a new story, some subjects continued to report
words from the original story, even though it was now entering the supposedly
ignored ear. The subjects did so even though they had been accurately follow-
ing the instruction about which ear to shadow (Treisman, 1960). Apparently,
subjects were intrigued by the meaning and continuity of the particular mes-
sage they had been shadowing, which momentarily distracted them from the
attended channel. Some meaningful analysis of the ignored channel must have
been taking place—otherwise, subjects would not have known that the mes-
sage on that channel was the continuation of the message they had been shad-
owing. Therefore, attention does not function as an absolute filter. But then
how does it function?

Research now suggests, in fact, that unattended objects are sufficiently pro-
cessed by your perceptual system so that those objects become less available for
later use (Tipper et al., 1991; Treisman, 1992).

Look at figure 7.11. Try to read the black letters in each column. Disregard
the overlapping gray letters. Did you notice that one of the columns is
harder to read? Which one? Now look carefully at the gray letters. In the
first column, there is no relationship between the gray letters and the
black letters. However, in the second list, beginning with the second black
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Column one Column two

S QO X HO@FHE
& Q X g8 & &

Figure 7.11

A test of your attentional mechanism. First, read aloud the black letters in Column one as quickly as
possible, disregarding the gray. Next, quickly read the black letters in Column two, also disregard-
ing the gray. Which took