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Preface

Systems biology aims at understanding biological systems at system level.
It is a growing area in biology, due to progress in several fields. The most
critical factor has been rapid progress in molecular biology, furthered
by technologies for making comprehensive measurements on DNA se-
quence, gene expression profiles, protein-protein interactions, etc. With
the ever-increasing flow of biological data, serious attempts to under-
stand biological systems as systems are now almost feasible. Handling this
high-throughput experimental data places major demands on computer
science, including database processing, modeling, simulation, and anal-
ysis. Dramatic progress in semiconductor technologies has led to high-
performance computing facilities that can support system-level analysis.

This is not the first attempt at system-level analysis; there have been
several efforts in the past, the most notable of which is cybernetics, or bio-
logical cybernetics, proposed by Norbert Wiener more than 30 years ago.
With the limited understanding of biological processes at the molecular
level at that time, most of the work was on phenomenological analysis
of physiological processes. There have also been biochemical approaches,
such as metabolic control analysis, and although restricted to steady-state
flow, it has successfully been used to explore system-level properties of bi-
ological metabolism. Systems biology, just like all other emerging scientific
disciplines, is built on multiple efforts that share the vision. However, sys-
tems biology is distinct from past attempts because for the first time we are
able to understand biology at the system level based on molecular-level
understanding, and to create a consistent system of knowledge grounded
in the molecular level. In addition, it should be noted that systems biology
is intended to be biology for system-level studies, not physics, systems
science, or informatics, which try to apply certain dogmatic principles to
biology.

When the field has matured in the next few years, systems biology will
be characterized as a field of biology at the system level with extensive
use of cutting-edge technologies and highly automated high-throughput
precision measurement combined with sophisticated computational tools
and analysis. Systems biology clearly includes both experimental and
computational or analytical studies. However, systems biology is not a
mere combination of molecular biology and computing science to reverse



engineer gene networks. Of course, it is one of the topics included, but
system-level understanding requires more than understanding structures.
Understanding of (1) system structures, (2) dynamics, (3) control methods,
and (4) design methods are major four milestones of systems biology
research. One of the most important missions of this book, which I tried
hard in my chapter, is to define the scope and provide the vision and
perspectives of this new born field.

I am very pleased to see that interest is rapidly growing among both
experimental biologists and those who with computing and engineering
backgrounds are seriously interested in biological systems. Not many peo-
ple understood what I was trying to describe when I was using the term
“systems biology” a few years ago, because it was well before human
genome sequence to complete, high-throughput experiments were to be
considered as realistic option, and it was a new term nobody used before.
But, today more and more people are using the concept and the term. Of
course, it is the actual research that matters, but the term is also important
because it symbolically represents what we are trying to accomplish. To-
day, we find more and more researchers are getting involved, as well as
numbers of research groups and institutions are being formed focusing on
systems biology.

Fortunately, I managed to convince the Japanese government to sup-
port the initiation of a new international conference. The First Interna-
tional Conference on Systems Biology (ICSB2000) was held in Tokyo from
November 14–16, 2000, supported by the Japan Science and Technology
Corporation, an agency belonging to the Science and Technology Agency
of the Japanese government. It was the first international conference that
clearly focused on systems biology work. Since then, various international
and national conferences, symposiums, and seminars have started orga-
nize systems biology sessions. The second conference will be held at the
California Institute of Technology in 2001 with the support of Caltech. In
fact, Caltech is one of the first institutions that seriously explored systems
biology. I still remember the overwhelming reaction when I gave a talk
“Perspectives on Systems Biology” at Caltech in March 1998.

This book is the first book on systems biology, and consists of papers
representing work in the systems biology field. It is loosely based on pa-
pers that were presented at ICSB2000. Of course, many research studies
related to systems biology are already underway, and I must state that
this book is by no means an exhaustive collection of such works. Also,
the experimental aspects of systems biology are under-represented here,
because many of the projects aiming at next-generation experiments are
at their early stage and so are not ready for publication. Nevertheless, the
book covers the central themes of systems biology: comprehensive and
automated measurements, reverse engineering of gene and metabolic net-
works from experimental data, software issues, modeling and simulation,
and system-level analysis.
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Although it it based on a long history, systems biology is a field in
its infancy. This book serves two purposes: first, to inform interested
researchers on the current state of the research and challenges before us,
and second, to be an archival collection of papers to record the initial stage
of the research. It is likely, just as in any fast-growing research area, that
the technical contents of the book will quickly become obsolete. However,
it is often the case that the vision, concept, and philosophy are still valid
and add value. I hope the field will quickly grow and flourish beyond its
present boundaries, but that the vision outlined herein is enduring.

Finally, this book could not have been completed without the sup-
port of many people. Mineo Morohashi has done a beautiful job in sort-
ing out and formatting all papers, communicating with authors as well as
with The MIT Press, and many other tasks. While I was preoccupied with
establishing the new research institution, The Systems Biology Institute
(http://www.systems-biology.org/), he did most of the editorial assistant
work for me. Thank you, Mineo. Members of the systems biology group of
ERATO Kitano Symbiotic Systems Project have been a great help in solicit-
ing papers and, more important, in formulating the basic concepts and vi-
sion behind systems biology. John Doyle, Mel Simon, Hamid Bolouri, and
Mark Borisuk have been particularly cooperative and supportive. Mario
Tokoro and Toshi Doi provided me with a superb research environment at
Sony Computer Science Laboratories, Inc. Bob Prior at The MIT Press sup-
ported me in this project from the beginning; it was in the summer of 1997
at the International Joint Conference on Artificial Intelligence (IJCAI-97) in
Nagoya that Bob walked up to me with a printout of the web page from a
talk I had given on systems biology at the University of Cambridge, and
asked me to publish this book. I am deeply indebted to all of you.

Hiroaki Kitano
Senior Researcher, Sony Computer Science Laboratories, Inc.
Director, ERATO Kitano Symbiotic Systems Project, JST, and
Director, The Systems Biology Institute
Tokyo, Japan
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1 Systems Biology: Toward System-level
Understanding of Biological Systems

Hiroaki Kitano

Systems biology is a new field in biology that aims at system-level un-
derstanding of biological systems. While molecular biology has led to re-
markable progress in our understanding of biological systems, the cur-
rent focus is mainly on identification of genes and functions of their prod-
ucts which are components of the system. The next major challenge is to
understand at the system level biological systems that are composed of
components revealed by molecular biology. This is not the first attempt at
system-level understanding, since it is a recurrent theme in the scientific
community. Nevertheless, it is the first time that we may be able to under-
stand biological systems grounded in the molecular level as a consistent
framework of knowledge. Now is a golden opportunity to uncover the es-
sential principles of biological systems and applications backed up by in-
depth understanding of system behaviors. In order to grasp this opportu-
nity, it is essential to establish methodologies and techniques to enable us
to understand biological systems in their entirety by investigating: (1) the
structure of the systems, such as genes, metabolism, and signal transduc-
tion networks and physical structures, (2) the dynamics of such systems,
(3) methods to control systems, and (4) methods to design and modify sys-
tems for desired properties. This chapter gives an overview of the field of
systems biology that will provide a system-level understanding of life.

INTRODUCTION

The ultimate goal of biology is to understand every detail and principle of
biological systems. Almost fifty years ago, Watson and Crick identified the
structure of DNA (Watson and Crick, 1953), thus revolutionizing the way
biology is pursued. The beauty of their work was that they grounded bio-
logical phenomena on a molecular basis. This made it possible to describe
every aspect of biology, such as heredity, development, disease, and evo-
lution, on a solid theoretical ground. Biology became part of a consistent
framework of knowledge based on fundamental laws of physics.

Since then, the field of molecular biology has emerged and enormous
progress has been made. Molecular biology enables us to understand bi-
ological systems as molecular machines. Today, we have in-depth un-



derstanding of elementary processes behind heredity, evolution, devel-
opment, and disease. Such mechanisms include replication, transcription,
translation, and so forth.

Large numbers of genes and the functions of their transcriptional
products have been identified, with the symbolic accomplishment of the
complete sequencing of DNA. DNA sequences have been fully identi-
fied for various organisms such as mycoplasma, Escherichia coli (E. coli),
Caenorhabditis elegans (C. elegans), Drosophila melanogaster, and Homo sapi-
ens. Methods to obtain extensive gene expression profiles are now avail-
able that provide comprehensive measurement at the mRNA level. Mea-
surement of protein level and their interactions is also making progress
(Ito et al., 2000; Schwikowski et al., 2000). In parallel with such efforts,
various methods have been invented to disrupt the transcription of genes,
such as loss-of-function knockout of specific genes and RNA interference
(RNAi) that is particularly effective forC. elegans and is now being applied
for other species.

There is no doubt that our understanding of the molecular-level mech-
anisms of biological systems will accelerate. Nevertheless, such knowl-
edge does not provide us with an understanding of biological systems as
systems. Genes and proteins are components of the system. While an un-
derstanding of what constitutes the system is necessary for understanding
the system, it is not sufficient.

Systems biology is a new field of biology that aims to develop a
system-level understanding of biological systems (Kitano, 2000). System-
level understanding requires a set of principles and methodologies that
links the behaviors of molecules to system characteristics and functions.
Ultimately, cells, organisms, and human beings will be described and
understood at the system level grounded on a consistent framework of
knowledge that is underpinned by the basic principles of physics.

It is not the first time that system-level understanding of biological
system has been pursued; it is a recurrent theme in the scientific commu-
nity. Norbert Wiener was one of the early proponents of system-level un-
derstanding that led to the birth of cybernetics, or biological cybernetics
(Wiener, 1948). Ludwig von Bertalanffy proposed general system theory
(von Bertalanffy, 1968) in 1968 in an attempt to establish a general theory
of the system, but the theory was too abstract to be well grounded. A pre-
cursor to such work can be found in the work of Cannon, who proposed
the concept of “homeostasis” (Cannon, 1933). With the limited availability
of knowledge from molecular biology, most such attempts have focused
on the description and analysis of biological systems at the physiologi-
cal level. The unique feature of systems biology that distinguishes it from
past attempts is that there are opportunities to ground system-level un-
derstanding directly on the molecular level such as genes and proteins,
whereas past attempts have not been able to sufficiently connect system-
level description to molecular-level knowledge. Thus, although it is not
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the first time that system-level understanding has been pursued, it is the
first time to have an opportunity to understand biological systems within
the consistent framework of knowledge built up from the molecular level
to the system level.

The scope of systems biology is potentially very broad and different
sets of techniques may be deployed for each research target. It requires
collective efforts from multiple research areas, such as molecular biol-
ogy, high-precision measurement, computer science, control theory, and
other scientific and engineering fields. Research needs to be carried out
in four key areas: (1) genomics and other molecular biology research, (2)
computational studies, such as simulation, bioinformatics, and software
tools, (3) analysis of dynamics of the system, and (4) technologies for high-
precision, comprehensive measurements.

This constitutes a major multi-disciplinary research effort that will
enable us to understand biological systems as systems. But what does
this mean? “System” is an abstract concept in itself. It is basically an
assembly of components in a particular formation, yet it is more than a
mere collection of components. To understand the system, it is essential
that it can be not only to describe in detail, but also it to comprehend what
happens when certain stimuli or disruptions occur. Ultimately, we should
be able to design the system to meet specific functional properties. It takes
more than a simple in-depth description; it requires more active synthesis
to ensure that we have fully understood it.

To be more specific, in order to understand biological systems as sys-
tems, we must accomplish the following.

System Structure Identification: First of all, the structures of the sys-
tem need to be identified, primarily such as regulatory relationships of
genes and interactions of proteins that provide signal transduction and
metabolism pathways, as well as the physical structures of organisms,
cells, organella, chromatin, and other components.
Both the topological relationship of the network of components as well
as parameters for each relation need to be identified. The use of high-
throughput DNA microarray, protein chips, RT-PCR, and other methods
to monitor biological processes in bulk is critical. Nevertheless, methods
to identify genes and metabolism networks from these data have yet to be
established.
Identification of gene regulatory networks1 for multicellular organisms is
even more complex as it involves extensive cell-cell communication and
physical configuration in three-dimensional space. Structure identification
for multicellular organisms inevitably involves not only identifying the
structure of gene regulatory networks and metabolism networks, but also
understanding the physical structures of whole animals precisely at the

1 In this article, the term “gene regulatory networks” is used to represent networks of gene
regulations, metabolic pathways, and signal transduction cascades.
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cellular level. Obviously, new instrumentation systems need to be devel-
oped to collect necessary data.
System Behavior Analysis: Once a system structure is identified to a cer-
tain degree, its behavior needs to be understood. Various analysis meth-
ods can be used. For example, one may wish to know the sensitivity of
certain behaviors against external perturbations, and how quickly the sys-
tem returns to its normal state after the stimuli. Such an analysis not only
reveals system-level characteristics, but also provides important insights
for medical treatments by discovering cell response to certain chemicals
so that the effects can be maximized while lowering possible side effects.
System Control: In order to apply the insights obtained by system struc-
ture and behavior understanding, research into establishing a method to
control the state of biological systems is needed. How can we transform
cells that are malfunctioning into healthy cells? How can we control can-
cer cells to turn them into normal cells or cause apoptosis? Can we control
the differentiation status of a specific cell into a stem cell, and control it to
differentiate into the desired cell type? Technologies to accomplish such
control would enormously benefit human health.
System Design: Ultimately, we would like to establish technologies that
allow us to design biological systems with the aim of providing cures for
diseases. One futuristic example would be to actually design and grow
organs from the patient’s own tissue. Such an organ cloning technique
would be enormously useful for the treatment of diseases that require
organ transplants. There may be some engineering applications by using
biological materials for robotics or computation. By using materials that
have self-repair and self-sustaining capability, industrial systems will be
revolutionized.

This chapter discusses scientific and engineering issues to accomplish
in-depth understanding of the system.

MEASUREMENT TECHNOLOGIES AND EXPERIMENTALMETHODS

Toward Comprehensive Measurements

A comprehensive data set needs to be produced to grasp an entire picture
of the organism of interest. For example, the entire sequence has been de-
duced for yeast, and a microarray that can measure the expression level
of all known genes is readily available. In addition, extensive studies of
protein-protein interactions using the two-hybrid method are being car-
ried out (Ito et al., 2000; Schwikowski et al., 2000). Efforts to obtain high-
resolution spatiotemporal localization data for protein are underway.
C. elegans is an example of an intensively measured multi-cellular

organism. A complete cell lineage has already been identified (Sulston et
al., 1983; Sulston and Horvitz, 1977), the topology of the neural system
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has been fully described (White et al., 1986), the DNA sequence has been
fully identified (The C. elegans Sequencing Consortium, 1998), a project
for full description of gene expression patterns during development using
whole-mount in situ hybridization (Tabara et al., 1996) is underway, and
the construction of a systematic and exhaustive library of mutants has
begun. In addition, a series of new projects has started for measuring
neural activity in vivo, and for automatic construction of cell lineage in real
time using advanced image processing combined with special microscopy
(Yasuda et al., 1999; Onami et al., 2001a).

While yeast and C. elegans are examples of comprehensive and exhaus-
tive understanding of biological systems, similar efforts are now being
planned for a range of biological systems. Although these studies are cur-
rently limited to understanding the components of the system and their
local relationship with other components, the combination of such exhaus-
tive experimental work and computational and theoretical research would
provide a viable foundation for systems biology.

Measurement for Systems Biology

Although efforts to systematically obtain comprehensive and accurate
data sets are underway, systems biology is much more demanding for
experimental biologists than the current practice of biology. It requires a
comprehensive body of data and control of the quality of data produced
so that it can be used as a reference point of simulation, modeling, and
system identification. Eventually, many of the current experimental pro-
cedures must be automated to enable high-throughput experiments to be
carried out with precise control of quality. Needless to say, not all bio-
logical experiments will be carried out in such an automated fashion, for
important contributions will be made by small-scale experiments. Never-
theless, large-scale experiments will lay the foundation for system-level
understanding.

High-throughput, comprehensive, and accurate measurement is the
most essential part of biological science. While expectations are high for
a computational approach to overcome limitations in the traditional ap-
proach in biology, it will never generate serious results without experi-
mental data upon which computational studies can be grounded. For the
computational and systems approach to be successful, measurement has
to be (1) comprehensive, (2) quantitatively accurate, and (3) systematic.

While the requirement for quantitative accuracy is obvious, the other
two criteria need further clarification. Comprehensiveness can be further
classified into three types:

Factor comprehensiveness: Comprehensiveness in terms of target factors
that are being measured, such as numbers of genes and proteins. It is im-
portant that measurement is carried out intensively for the factors (genes
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and proteins) that are related to the central genes and proteins of interest.
Unless all genes and proteins are measured, how effectively measurement
covers the factors of interest is more important, rather than the sheer num-
ber of factors measured.
Time-series comprehensiveness: In modeling and analysis of a dynami-
cal system, it is important to capture its behavior with fine-grain time se-
ries. Traditional biological experiments tend to measure only the change
before and after a certain event. For computational analysis, data mea-
sured at a constant time interval are essential in addition to traditional
sampling points.
Item comprehensiveness: There are cases where several features, such as
transcription level, protein interaction, phosphorylation, localization, and
other features, have to be measured intensively for the specific target.

“Systematic” means that measurement is performed in such a way that
obtained data can be consistently integrated. The ideal systematic mea-
surement is simultaneous measurement of multiple features for a single
sample. It is not sufficient to develop a sophisticated model and perform
analysis using only the mRNA or protein level. Multiple data need to be
integrated. Then, each data point has to be obtained using samples that are
consistent across various measurements. If samples are prepared in sub-
stantially different ways, two data points cannot be integrated. Although
this requirement sounds obvious, very few data sets meet these criteria
today.

These criteria are elucidated in the scenario below with some examples
of requirements for experimental data.

For example, to infer genetic regulatory networks from an expression
profile, comprehensive measurement of the gene expression profile needs
to be carried out. Expression data in which only the wild-type is measured
is generally unusable for this purpose. The data should have a compre-
hensive set of deletion mutant and overexpression of each gene. Desirable
data sets knock out all genes that are measured in the microarray. If only
a limited number of genes can be knocked out due to cost and time con-
straints, it is critical that genes that are expected to be tightly coupled are
intensively knocked out rather than knocking out genes sparsely over the
whole possible regulatory network. This is due to computational char-
acteristics of the reverse engineering algorithm that constructs the gene
regulatory network from profile data. With such algorithms, sparse data
points leave almost unlimited ambiguities on possible network structures.
Even with the same number of data points, the algorithm produces much
more reliable network hypotheses if measured genes are closely related.
This is what is meant by factor comprehensiveness.

Time-series comprehensiveness is required for phenomena that are
time aligned. Time-series profile data need to be prepared with particu-
lar caution in terms of time synchronization of samples to be measured.
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It is often the case in traditional experiments that only two measurement
points are set: one before the event and one after the event. For example,
many studies in cellular aging research measured the expression level of
aging-related genes for young cells, aged cells, and immortalized cells,
without measuring changes of expression level on fine-grain time series.
In some cases, time-series changes of expression level can be important
information to create candidate hypotheses or eliminate possible mecha-
nisms. In addition to measurements before and after a biologically inter-
esting event, measurement should be carried at a constant time interval.
Expression profile data that has reliable sample time synchrony and con-
stant time interval is most useful to enable the computational algorithm
to reliably fit models and parameters to experimental data.

Additional information from protein-protein interactions, such as
from yeast two-hybrid experiments, is very useful to infer protein-level
interactions that fill the gap between regulation of genes. Both protein in-
teractions and expression profiles should be measured on samples that are
prepared identically. This systematic measurement requirement is rather
hard to meet currently, because not many research groups are proficient
in multiple measurement techniques.

After obtaining gene regulatory networks, one needs to find out spe-
cific parameters used in the network. To understand dynamics, it is essen-
tial that each parameter regarding the network is obtained, so that various
numerical simulations and analyses can be performed. Such parameters
are binding constant, transcription rate, translation rate, chemical reaction
rate, degradation rate, diffusion rate, speed of active transport, etc. Except
for special cases, such as red blood cells, these constants are not readily
available. Measurement using extracts provides certain information, but
often these rate constants vary drastically in vivo. Ideally, comprehensive
measurement of major parameters would be performed in vivo, but any
measurement that gives reasonable estimates would be of great help. In
addition to parameter measurement, it is critically important to measure
the phosphorylation state at high resolution.

While accuracy is important, the level of accuracy required may vary
depending on which part of the system is to be measured. In some parts of
the network, the system behavior is sensitive to specific parameter values,
and thus has to be measured with high accuracy. In other parts of the
system, the system may be robust against fluctuations of large magnitude.
In such a case, it may often suffice to confirm that the parameter values fall
within the range of stability, instead of obtaining highly accurate figures.
The point is that not all parts of the system need to be tuned with the
same precision. For example, components for jet engines may have to
be produced with high precision, but seat belts do not have to achieve
the same precision as jet engine components. In future, the type and
accuracy requirements for experiments may be determined by theoretical
requirements.
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The examples given so far have focused on the process of identification
of network structure and parameters that enable simulation and analysis
of biochemical networks under the simplified assumption that all materi-
als are distributed homogeneously in the environment. Unfortunately, this
is not the case in biological systems. There are subcellular structures and
localization of transcription products that cause major diversion from a
naive model. Multi-cellular systems require measurement of cell-cell con-
tact, diffusion, cell lineage, gene expression during development, etc. For
accurate simulation and analysis, these features have to be measured in
a comprehensive, accurate, and systematic manner. We have not devel-
oped devices to obtain high-throughput measurements for any of these
features. This is a serious issue that has to be addressed.

Next-generation Experimental Systems

To cope with increasing demands for comprehensive and accurate mea-
surement, a set of new technologies and instruments needs to be devel-
oped that offers a higher level of automation and high-precision measure-
ment.

First, dramatic progress in the level of automation of experimen-
tal procedures for routine experiments is required in order to keep up
with increasing demands for modeling and system-level analysis. High-
throughput experiments may turn into a labor-intensive nightmare un-
less the level of automation is drastically improved. Further automation
of experimental procedures would greatly benefit the reliability of experi-
ments, throughput, and total cost of the whole operation in the long run.

Second, cutting-edge technologies such as micro-fluid systems, nano-
technology and femto-chemistry may need to be introduced to design and
build next-generation experimental devices. The use of such technologies
will enable us to measure and observe the activities of genes and proteins
in a way that is not possible today. It may also drastically improve the
speed and accuracy of measurement for existing devices.

In those fields where there are obvious needs, such as sequencing
and proteomics, the above goals are already pursued. Beyond the devel-
opment of high-throughput sequencers using high-density capillary ar-
ray electrophoresis, efforts are being made to develop integrated micro-
fabricated devices that enable PCR and capillary electrophoresis in a sin-
gle micro device (Lagally et al., 1999; Simpson et al., 1998). Such devices
not only enable miniaturization and precision measurements, but will also
significantly increase the level of automation.

In the developmental biology of C. elegans, identification of cell lin-
eage is one of the major issues that needs to be accomplished to assist
analysis of the gene regulatory network for differentiation. The first at-
tempt to identify cell lineage was carried out entirely manually (Sulston
et al., 1983; Sulston and Horvitz, 1977), and it took several years to iden-
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tify the lineage of the wild type. Four-dimensional microscopy allowed
us to collect multi-layer confocal images at a constant time interval, but
lineage identification is not automatic. With the availability of exhaus-
tive RNAi knockout for C. elegans, high-throughput cell lineage identifi-
cation is essential to explore the utility of the exhaustive RNAi. Efforts are
underway to fully automate cell lineage identification, as well as three-
dimensional nuclei position data acquisition (Onami et al., 2001a), fully
utilizing advanced image processing algorithms and massively parallel
supercomputers. Such devices meet some of the criteria presented ear-
lier, and provide comprehensive measurement of cell positions with high
accuracy. With automation, high-throughput data acquisition can be ex-
pected. If the project succeeds, it can be used to automatically identify the
cell lineage of all RNAi knockout for early embryogenesis. The technology
may be augmented, but with major efforts, to automatically detect cell-cell
contact, protein localization, etc.

Combined with whole mount in situ hybridization and possible future
single-cell expression profiling, complete identification of the gene regu-
latory network for C. elegansmay be possible in the near future.

SYSTEM STRUCTURE IDENTIFICATION

There are various system structures that need to be identified, such as
the structural relationship among cells in the developmental process, de-
tailed cell-cell contact configuration, membrane, intra-cellular structures,
and gene regulatory networks. While each of these has significance in cor-
responding research in systems biology, this section focuses on how the
structure of gene regulatory networks can be identified, primarily because
it is a subject of growing interest due to the rapid uncovering of genomic
information, and it is the control center of various cellular phenomena.

In order to understand a biological system, we must first identify
the structure of the system. For example, to identify a gene regulatory
network, one must identify all components of the network, the function of
each component, interactions, and all associated parameters. All possible
experimental data must be used to accomplish this non-trivial task. At
the same time, inference results from existing experiments should enable
the prediction of unknown genes and interactions, which can then be
experimentally verified.

The difficulty is that such a network cannot be automatically inferred
from experimental data based on some principles or universal rules, be-
cause biological systems evolve through stochastic processes and are not
necessarily optimal. Also, there are multiple networks and parameter val-
ues that behave quite similar to the target network. One must identify the
true network out of multiple candidates.

This process can be divided into two major tasks: (1) network structure
identification, and (2) parameter identification.
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Network Structure Identification

Several attempts have already been made to identify gene regulatory
networks from experimental data. They can be classified into two ap-
proaches.

BOTTOM-UP APPROACH

The bottom-up approach tries to construct a gene regulatory network
based on the compilation of independent experimental data, mostly
through literature searches and some specific experiments to obtain data
of very specific aspects of the network of interest. Some of the early at-
tempts of this approach are seen in the lambda phage decision circuit
(McAdams and Shapiro, 1995), early embryogenesis of Drosophila (Reinitz
et al., 1995; Hamahashi and Kitano, 1998; Kitano et al., 1997), leg formation
(Kyoda and Kitano, 1999a), wing formation (Kyoda and Kitano, 1999b),
eye formation on ommatidia clusters and R-cell differentiation (Moro-
hashi and Kitano, 1998), and a reaction-diffusion based eye formation
model (Ueda and Kitano, 1998). This approach is suitable when most of
the genes and their regulatory relationship are relatively well understood.
This approach is particularly suitable for the end-game scenario where
most of the pieces are known and one is trying to find the last few pieces.
In some cases, biochemical constants can be measured so that very precise
simulation can be performed. When most parameters are available, the
main purpose of the research is to build a precise simulation model which
can be used to analyze the dynamic properties of the system by changing
the parameters that cannot be done in the actual system, and to confirm
that available knowledge generates simulation results that are consistent
with available experimental data.

There are efforts to create databases that describe gene and metabolic
pathways from the literature. KEGG (Kanehisa and Goto, 2000) and Eco-
Cyc (Karp et al., 1999) are typical examples. Such databases are enor-
mously useful for modeling and simulation, but they must be accurate
and represented in such a way that simulation and analysis can be done
smoothly.

There have been some preliminary attempts to predict unknown genes
and their interactions (Morohashi and Kitano, 1998; Kyoda and Kitano,
1999a,b). These attempts manually searched possible unknown interac-
tions to obtain simulation results consistent with experimental data, and
did not perform exhaustive searches of all possible spaces of network
structures.

TOP-DOWN APPROACH

The top-down approach tries to make use of high-throughput data us-
ing DNA microarray and other new measurement technologies. Already,
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there have been some attempts to infer groups of genes that have a tight
relationship based on DNA microarray data using clustering techniques
for the yeast cell cycle (Brown and Botstein, 1999; DeRisi et al., 1997;
Spellman et al., 1998) and development of mouse central neural systems
(D’haeseleer et al., 1999). Clustering methods are suitable for handling
large-scale profile data, but do not directly deduce the network structures.
Such methods only provide clusters of genes that are co-expressed in sim-
ilar temporal patterns. Often, easy-to-understand visualization is required
(Michaels et al., 1998).

Some heuristics must be imposed if we are to infer networks from such
methods. Alternative methods are now being developed to directly infer
network structures from expression profiles (Morohashi and Kitano, 1999;
Liang et al., 1999) and extensive gene disruption data (Akutsu et al., 1999;
Ideker et al., 2000). Most of the methods developed in the past translate
expression data into binary values, so that the computing cost can be
reduced. However, such methods seriously suffer from information loss
in the binary translation process, and cannot obtain the accurate network
structure. A method that can directly handle continuous-value expression
data was proposed (Kyoda et al., 2000b; Onami et al., 2001b) and reported
accurate performance without a serious increase in computational costs.
An extension of this method seems to be very promising for any serious
research on inference of gene regulatory networks.

Genetic programming has been applied to automatically reconstruct
pathways and parameters that fit experimental data (Koza et al., 2001).
The approach requires extensive computing power, and an example of
such is the 1,000 CPU cluster Beowulf-class supercomputer, but the ap-
proach has the potential to be practical given the expected speed up of
processor chips.

Such extensions include the development of a hybrid method that
combines the bottom-up and the top-down approach. It is unlikely that
no knowledge is available before applying any inference methods; in
practical cases, it can be assumed that various genes and their interactions
are partially understood, and that it is necessary to identify the rest of the
network. By using knowledge that is sufficiently accurate, the possible
space of network structures is significantly reduced.

One major problem is that such methods cannot directly infer possible
modifications and translational control. Future research needs to address
integration of the data of the expression profile, protein-protein interac-
tions, and other experimental data.

Parameter Identification

It is important to identify only the structure of the network, but a set of
parameters, because all computational results have to be matched and
tested against actual experimental results. In addition, the identified net-
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work will be used for simulating a quantitative analysis of the system’s
response and behavioral profile.

In most cases, the parameter set has to be estimated based on exper-
imental data. Various parameter optimization methods, such as genetic
algorithms and simulated annealing, are used to find a set of parame-
ters that can generate simulation results consistent with experimental data
(Hamahashi and Kitano, 1999). In finding a parameter set, it must be noted
that there may be multiple parameter sets which generate simulation re-
sults equally fitted to experimental data. An important feature of parame-
ter optimization algorithms used for this purpose is the capability to find
as many local minima (including a global minima) as possible, rather than
finding single global minima. This needs to be combined with a method
to indicate specific experiments to identify which one of such parameter
sets is the correct parameter set.

There are several methods to find optimal parameter sets such as
brute force exhaustive search, genetic algorithms, simulated annealing,
etc. Most of them are computationally expensive, and have not been con-
sidered viable options in the past. But the situation has changed, and it
will change in future, too.

Although it is important to accurately measure and estimate the gen-
uine parameter values, in some cases parameters are not that critical. For
example, it was shown through an extensive simulation that the segment
polarity network in Drosophila exhibits a high level of robustness against
parameter change (von Dassow et al., 2000). For certain networks that are
essential for survival the networks need to be built robust against vari-
ous changes in parameters to cope with genetic variations and external
disturbances. For this kind of network, the essence is embedded into the
structure of the network, rather than specific parameters of the network.
This is particularly the case when feedback control is used to obtain ro-
bustness of the circuits, as seen in bacterial chemotaxis (Yi et al., 2000).

Thus, parameter estimation and measurement may need to be com-
bined with theoretical analysis on sensitivity of certain parameters to
maintain functionalities of the circuit.

SYSTEM BEHAVIOR ANALYSIS

Once we understand the structures of the system, research will focus on
dynamic behaviors of the system. How does it adapt to changes in the
environment, such as nutrition, and various stimuli? How does it main-
tain robustness against various potential damage to the system, such as
DNA damage and mutation? How do specific circuits exhibit functions
observed? To attain system-level understanding, it is essential to under-
stand the mechanisms behind (1) the robustness and stability of the sys-
tem, and (2) functionalities of the circuits.

It is not a trivial task to understand the behaviors of complex biolog-
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ical networks. Computer simulation and a set of theoretical analyses are
essential to provide in-depth understanding on the mechanisms behind
the circuits.

Simulation

Simulation of the behavior of gene and metabolism networks plays an im-
portant role in systems biology research, and there are several ongoing
efforts on simulator development (Mendes and Kell, 1998; Tomita et al.,
1999; Kyoda et al., 2000a; Nagasaki et al., 1999). Due to the complexity of
the network behavior and large number of components involved, it is al-
most impossible to intuitively understand the behaviors of such networks.
In addition, accurate simulation models are prerequisite for analyzing the
dynamics of the system by changing the parameters and structure of the
gene and metabolism networks. Although such analysis is necessary for
understanding the dynamics, these operations are not possible with actual
biological systems. Simulation is an essential tool not only for understand-
ing the behavior, but also for the design process. In the design of complex
engineering systems, various forms of simulation are used. It is unthink-
able today that any serious engineering systems could be designed and
built without simulation. VLSI design requires major design simulation,
thus creating one of the major markets for supercomputers. Commercial
aviation is another example. The Boeing 777 was designed based almost
entirely on simulation and digital prefabrication. Once we enter that stage
of designing and actively controlling biological systems, simulation will
be the core of the design process.

For simulation to be a viable methodology for the study of biological
systems, highly functional, accurate, and user-friendly simulator systems
need to be developed. Simulators and associated software systems often
require extensive computing power such that the system must run on
highly parallel cluster machines, such as the Beowulf PC cluster (Okuno
et al., 1999). Although there are some simulators, there is no system that
sufficiently covers the needs of a broad range of biology research. Such
simulators must be able to simulate gene expression, metabolism, and
signal transduction for a single and multiple cells. It must be able to
simulate both high concentration of proteins that can be described by
differential equations, and low concentration of proteins that need to be
handled by stochastic process simulation. Some efforts on simulating a
stochastic process (McAdams and Arkin, 1998) and integrating it with
high concentration level simulation are underway.

In some cases, the model requires not only gene regulatory networks
and metabolic networks, but also high-level structures of chromosomes,
such as heterochromatin structures. In the model of aging, some attempts
are being made to model heterochromatin dynamics (Kitano and Imai,
1998; Imai and Kitano, 1998). Nevertheless, how to model such dynamics
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and how to estimate the structure from sparse data and the current level
of understanding are major challenges.

The simulator needs to be coupled with parameter optimization tools,
a hypothesis generator, and a group of analysis tools. Nevertheless, algo-
rithms behind these software systems need to be designed precisely for
biological research. One example that has already been mentioned is that
the parameter optimizer needs to find as many local minima (including
global minima) as possible, because there are multiple possible solutions
of which only one is actually used. The assumption that the most opti-
mal solution is used in an actual system does not hold true in biological
systems. Most parameter optimization methods are designed to find the
global optima for engineering design and problem solving. While existing
algorithms provide a solid starting point, they must be modified to suit
biological research. Similar arguments apply to other software tools, too.

A set of software systems needs to be developed and integrated to
assist systems biology research. Such software includes:

• a database for storing experimental data,
• a cell and tissue simulator,
• parameter optimization software,
• bifurcation and systems analysis software,
• hypotheses generator and experiment planning advisor software, and
• data visualization software.

How these modules are related and used in an actual work flow is
illustrated in Figure 1.1. While many independent efforts are being made
on some of this software, so far only limited efforts have been made to
create a common platform that integrates these modules. Recently, a group
of researchers initiated a study to define a software platform for systems
biology. Although various issues need to be addressed for such a software
platform, the rest of this section describes some illustrative issues.

Efforts are being made to provide a common and versatile software
platform for systems biology research. The Systems Biology Workbench
project aims to provide a common middleware so that plug-in modules
can be added to form a uniform software environment.

Beside the software module itself, the exchange of data and the inter-
face between software modules is a critical issue in data-driven research
tools. Systems Biology Mark-up Language (SBML) is a versatile and com-
mon open standard that enables the exchange of data and modeling in-
formation among a wide variety of software systems (Hucka et al., 2000,
2001). It is an extension of XML, and is expected to become the industrial
and academic standard of the data and model exchange format.

Ultimately, a group of software tools needs to be used for disease mod-
eling and simulation of organ growth and control; this requires a compre-
hensive and highly integrated simulation and analysis environment.
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Figure 1.1 Software tools for systems biology and their workflow

Analysis Methods

There have been several attempts to understand the dynamic properties
of systems using bifurcation analysis, metabolic control analysis, and sen-
sitivity analysis. For example, bifurcation analysis has been used to un-
derstand the Xenopus cell cycle (Borisuk and Tyson, 1998). The analysis
creates a phase portrait based on a set of equations describing the essen-
tial process of the Xenopus cell cycle. A phase portrait illustrates in which
operation point the system is acting, and how it changes behavior if some
of the system parameters are varied. By looking at the landscape of the
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phase portrait, a crude analysis of the robustness of the system can be
made.

A group of analysis methods such as flux balance analysis (FBA)
(Varma and Palsson, 1994; Edward and Palsson, 1999) and metabolic con-
trol analysis (MCA) (Kacser and Burns, 1973; Heinrich and Rapoport,
1974; Fell, 1996) provides a useful method to understand system-level be-
haviors of metabolic circuits under various environments and internal dis-
ruptions. It has been demonstrated that such an analysis method can pro-
vide knowledge on the capabilities of metabolic pathways that are consis-
tent with experimental data (Edward et al., 2001). While such methods are
currently aiming at analysis of the steady-state behaviors with linear ap-
proximation, extention to dynamic and nonlinear analysis would certainly
provide a powerful tool for system-level analysis of metabolic circuits.

Several other analysis methods have already been developed for com-
plex engineering systems, particularly in the area of control dynamic sys-
tems. One of the major challenges is to describe biological systems in the
language of control theory, so that we can abstract essential parts of the
system within the common language of biology and engineering.

ROBUSTNESS OF BIOLOGICAL SYSTEMS

Robustness is one of the essential features of biological systems. Under-
standing the mechanism behind robustness is particularly important be-
cause it provides in-depth understanding on how the system maintains its
functional properties against various disturbances. Specifically, we should
be able to understand how organisms respond to (1) changes in environ-
ment (deprived nutrition level, chemical attractant, exposure to various
chemical agents that bind to receptors, temperature) and (2) internal fail-
ures (DNA damage, genetic malfunctions in metabolic pathways). Obvi-
ously, it is critically important to understand the intrinsic functions of the
system, if we are eventually to find cures for diseases.

Lessons from Complex Engineering Systems

There are interesting analogies between biological systems and engineer-
ing systems. Both systems are designed incrementally through some sort
of evolutionary processes, and are generally suboptimal for the given task.
They also exhibit increased complexity to attain a higher level of robust-
ness and stability.

Consider an airplane as an example. If the atmospheric air flow is
stable and the airplane does not need to change course, altitude, or weight
balance, and does not need to take off and land, the airplane can be built
using only a handful of components. The first airplane built by the Wright
brothers consisted of only a hundred or so components. The modern jet,
such as the Boeing 747, consists of millions of components. One of the
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major reasons for the increased complexity is to improve stability and
robustness. Is this also the case in biological systems?

Mycoplasma is the smallest self-sustaining organism and has only
about 400 genes. It can only live under specific conditions, and is very
vulnerable to environmental fluctuations. E. coli, on the other hand, has
over 4,000 genes and can live under varying environments. As E. coli
evolved it acquired genetic and biochemical circuits for various stress
responses and basic behavioral strategies such as chemotaxis (Alon et
al., 1999; Barkai and Leibler, 1997). These response circuits form a class
of negative feedback loop. Similar mechanisms exist even in eukaryotic
cells2.

A crude speculation is that further increases in complexity in multicel-
lular systems toward homo sapiens may add functionalities that can cope
with various situations in their respective ecological niche.

In engineering systems, robustness and stability are achieved by the
use of (1) system control, (2) redundancy, (3) modular design, and (4)
structural stability. The hypothesis is that the use of such an approach
is an intrinsic feature of complex systems, be they artificial or natural.

System Control: Various control schemes used in complex engineering
systems are also found in various aspects of biological systems. Feedfor-
ward control and feedback control are two major control schemes, both
of which are found almost ubiquitously in biological systems. Feedfor-
ward control is an open-loop control in which a set of predefined reaction
sequences is triggered by a certain stimulus. Feedback is a sophisticated
control system that closes the loop of the signal circuits to attain the de-
sired control of the system. A negative feedback system detects the differ-
ence between desired output and actual output and compensates for such
difference by modulating the input. While there are feedforward control
methods, feedback control is more sophisticated and ensures proper con-
trol of the system and it can be used with feedforward control. It is one
of the most widely used methods in engineering systems to increase the
stability and robustness of the system.
Redundancy: Redundancy is a widely used method to improve the sys-
tem’s robustness against damage to its components by using multiple
pathways to accomplish the function. Duplicated genes and genes with
similar functions are basic examples of redundancy. There is also circuit-
level redundancy, such as multiple pathways of signal transduction and
metabolic circuits that can be functionally complementary under different
conditions.
Modular Design: Modular design prevents damage from spreading lim-
itlessly, and also improves ease of evolutionary upgrading of some of the

2 Discussion of similarity between complexity of engineering and biological systems as
described in this section was first made, as far as the author is aware, by John Doyle at
Caltech.
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Figure 1.2 Feedforward control and feedback control

components. At the same time, a multi-functional module can help over-
come system failure in a critical part by using modules in other less critical
parts. Cellular systems are typical examples of modular systems.
Structural Stability: Some gene regulatory circuits are built to be stable
for a broad range of parameter variations and genetic polymorphisms.
Such circuits often incorporate multiple attractors, each of which corre-
sponds to functional state of the circuit; thus its functions are maintained
against change in parameters and genetic polymorphisms.

It is not clear whether such engineering wisdom is also the case in bi-
ological systems. However, the hypothesis is that such features are some-
what universal in all complex systems. It is conceivable that there are cer-
tain differences due to the nature of the system it is built upon, as well as
the difference between engineering systems that are designed to exhibit
certain functions and natural systems that have reproduction as a single
goal where all functions are only evaluated in an integrated effect. Never-
theless, it is worth investigating the univerality of principles. And, if there
are differences, what are they?

The rest of the section focuses on how three principles of robustness
exist also in biological systems. Of course, not all biological systems are
robust, and it is important to know which parts of the systems are not
robust and why. However, for this particular chapter, we will focus on
robustness of biological systems, because it is one of the most interesting
issues that we wish to understand.

Control

The use of explicit control scheme is an effective approach to improv-
ing robustness. Feedforward control and feedback control are two major
methods of system control (Figure 1.2).

Feedforward control is an open-loop control in which a sequence of
predefined actions is triggered by a certain stimulus. This control method
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is the simplest method that works when possible situations and counter-
measures are highly predictable.

Feedback control, such as negative feedback, is a sophisticated control
method widely used in engineering. It feeds back the sign-inverted error
between the desired value and the actual value to the input, then the input
signal is modulated proportional to the amount of error. In its basic form,
it acts to minimize the output error value.

Feedback plays a major role in various aspects of biological processes,
such as E. coli chemotaxis and heat shock response, circadian rhythms, cell
cycle, and various aspects of development.

The most typical example is the integral feedback circuits involved in
bacterial chemotaxis. Bacteria demonstrates robust adaptation to a broad
range of chemical attractant concentrations, and so can always sense
changes in chemical concentration to determine its behavior. This is ac-
complished by a circuit that involves a closed-loop feedback circuit (Alon
et al., 1999; Barkai and Leibler, 1997). As shown in Figure 1.3, ligands that
are involved in chemotaxis bind to a specific receptor MCP that forms a
stable complex with CheA and CheW. CheA phosphorylates CheB and
CheY. Phosphorylated CheB demethylates the MCP complex, and phos-
phorylated CheY triggers tumbling behavior. It was shown through ex-
periments and simulation studies that this forms a feedback circuit which
enables adaptation to changes in ligand concentration. Specifically, for
any sudden change in the ligand concentration, the average activity level
that is characterized by the tumbling frequency quickly converges to the
steady-state value. This means that the system only detects acute changes
of the ligand concentration that can be exploited to determine tumbling
frequency, but is insensitive to the absolute value of ligand concentration.
Therefore, the system can detect and control its behavior to move to a
high attractant concentration area in the field regardless of the absolute
concentration level without saturating its sensory system. Detailed anal-
ysis revealed that this circuit functions as an integral feedback (Yi et al.,
2000) — the most typical automatic control strategy.

In bacteria, there are many examples of sophisticated control embed-
ded in the system. The circuit that copes with heat shock, for example, is
a beautiful example of the combined use of feedforward control and feed-
back control (Figure 1.4). Upon heat shock, proteins in E. coli can no longer
maintain their normal folding structures. The goal of the control system is
to repair misfolding proteins by activating a heat shock protein (hsp), or
to dissociate misfolding proteins by protease. As soon as heat shock is im-
posed, a quick translational modulation facilitates the production of σ 32

factor by affecting the three-dimensional structure of rpoH mRNA that
encodes σ 32. This leads to the formation of σ 32-RNAP holo-enzyme that
activates hsp that repair misfolded proteins. This process is feedforward
control that pre-encodes the relationship between heat shock and proper
course of reactions. In this process, there is no detection of misfolded pro-
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Figure 1.3 Bacterial chemotaxis related feedback loop

teins to adjust the translational activity of σ 32. Independently, DnaK and
DnaJ detect misfolded proteins and release σ 32 factor, that has been bound
with DnaK and DnaJ. Free σ 32 activates transcription of hsp, so that mis-
folded proteins are repaired. This process is negative feedback control,
because the level of misfolded proteins is monitored and it controls the
activity of σ 32 factor.

Another example demonstrating the critical role of the feedback sys-
tem is seen in growth control of human cells. Growth control is one of the
most critical parts of cellular functions. The feedback circuit involved in
p53 presents a clear example of how feedback is used (Figure 1.5). When
DNA is damaged, DNA-dependent kinase DNA-PK is activated. Also,
ATM is phosphorylated, which makes ATM itself in an active state and
promotes phosphorylation of the specific locus of the p53 protein. When
this locus is phosphorylated, p53 no longer forms a complex with MDM2,
and escapes from dissociation. The phosphorylation locus depends on
what kind of stress is imposed on DNA. Under a certain stress, phospho-
rylation takes place at the Ser15 site of p53, and promotes transcription of
p21 that eventually causes G1 arrest. In other cases, it promotes activation
of apoptosis inducing genes, such as pig-3, and results in apoptosis. For
those cells that entered G1 arrest, DNA-PK and ATM activity are lost as
soon as DNA is repaired. The loss of DNA-PK and ATM activity decreases
phosphorylation of p53, so p53 will bind with MDM2 and dissolve.

Without phosphorylation, the p53 protein promotes mdm-2 transcrip-
tion. It is interesting to know that mdm-2 protein forms a complex to deac-
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Figure 1.4 Heat shock response with feedforward and feedback control

tivate the p53 protein. This is another negative feedback loop embedded
in this system.

Redundancy

Redundancy also plays an important role in attaining robustness of the
system, and is critical for coping with accidental damage to components of
the system. For example, the four independent hydraulic control systems
in a Boeing 747 render the systems functionally normally even if one or
two of them are damaged. In aircraft, control systems and engines are
designed to have a high level of redundancy. In a cellular system, signal
transduction and cell cycle are equivalent to control systems and engines.

A typical signal transduction pathway is the MAP kinase cascade.
The MAP kinase cascade involves extensive cross talk among collateral
pathways. Even if one of these pathways is disabled due to mutation or
other causes, the function of the MAP kinase pathway can be maintained
because other pathways still transduce the signal (Figure 1.6).

Cell cycle is the essential process of cellular activity. For example, in
the yeast cell cycle, the Cln and Clb families play a dominant role in the
progress of the cell cycle. They bind with Cdc28 kinase to form Cdk com-
plex. Cln is redundant because knock-out of up to two of three Cln (Cln1,
Cln2, Cln3) does not affect the cell cycle; all three Cln have to be knocked
out to stop the cell cycle. Six Clb have very similar features, and may have
originated in gene duplication. No single loss-of-function mutant of any
of the six Clb affects growth of the yeast cell. The double mutants of CLB1
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and CLB2, as well as CLB2 and CLB3s are lethal, but other double mutant
combinations do not affect phenotype. It is reasonable that the basic mech-
anism of the cell cycle has evolved to be redundant, thus robust against
various perturbations.

Redundancy can be exploited to cope with uncertainty involved in
stochastic processes. McAdams and Arkin argued that duplication of
genes and the existence of homologous genes improve reliability so that
transcription of genes can be carried out even when only a small number
of transcription factors are available (McAdams and Arkin, 1999). The use
of a positive feedback loop to autoregulate a gene to maintain its own ex-
pression level is an effective means of ensuring the trigger is not lost in the
noise.

Although its functional implication has not been sufficiently investi-
gated, an analysis of MAP kinase cascade revealed that it utilizes non-
linear properties intrinsic in each step of the cascade and positive feedback
to constitute a stable all-or-none switch (Ferrell and Machleder, 1998).

In the broader sense, the existence of metabolic pathways that can al-
ternatively function to sustain cellular growth with changing environment
can be viewed as redundancy. Bacteria is known to switch metabolic path-
ways if deprived of one type of nutrition, and to use other types of nu-
trition that are available. Theoretical analysis combined with experimen-
tal data indicate that different pathways are used to attain essentially the
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same objective function (Edward et al., 2001).
Once we understand the stability and robustness of the system, we

should be able to understand how to control and transform cells. We will
then be ready to address such questions as how to transform cells that are
malfunctioning into normal cells, how to predict disease risk, and how to
preemptively treat potential diseases.

Modular Design

Modular design is a critical aspect of the robustness: it ensures that dam-
age in one part of the system does not spread to the entire system. It may
also ensure efficient reconfiguration throughout the evolutionary process
to acquire new features.

The cellular structure of the multicellular organism is a clear example.
It physically partitions the structure so that the entire system does not
collapse due to local damage.

Gene regulatory circuits are considered to entail a certain level of mod-
ularity. Even if part of the circuit is disrupted due to mutation or injection
of chemicals, it does not necessary affect other parts of the circuit. For ex-
ample, mutation in p53 may destroy the cell cycle check point system that
leads to cancer. However, it does not destroy metabolic pathways, so the
cells continue to proliferate. How and why such modularity is maintained
is not well understood at present.

Modularity reflects hierarchical organization of the system that can be
viewed as follows:

Component: An elementary unit of the system. In electronics, transistors,
capacitors, and resistors are components. In biological systems, genes and
proteins, which are transcriptional products, are components.
Device: A minimum unit of the functional assembly. NAND gates and
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flip-flops are examples of devices3. Transcription complexes and replica-
tion complexes are examples of devices. Some signal transduction circuits
may be considered as devices.
Module: A large cluster of devices. CPU, memory, and amplifiers are
modules. In biological systems, organella and gene regulatory circuits for
the cell cycle are examples of modules.
System: A top-level assembly of modules. Depending on the viewpoint,
a cell or entire animal can be considered as a system.

In engineering wisdom, each low-level module should be sufficiently
self-contained and encapsulated so that changes in higher-level structure
do not affect internal dynamics of the lower-level module. Whether is this
also the case for biological systems and how it can be accomplished are of
major interest from a system perspective.

Structural Stability

Some circuits may, after various disturbances to the state of the system,
resume as one of multiple attractors (points or periodic). Often, feedback
loops play a major role in making this possible. However, feedback does
not explicitly control the state of the circuit in tracking or adapting to
stimuli. Rather, dynamics of the circuit exhibit certain functions that are
used in the larger sub-systems.

The most well understood example is seen in one of the simplest
organisms, lambda phage (McAdams and Shapiro, 1995). Lambda phage
exploits the feedback mechanism to stabilize the committed state and
to enable switching of its pathways. When lambda phage infects E. coli,
it chooses one of two pathways: lysogeny and lysis. While a stochastic
process is involved in the early stage of commitment, two positive and
negative feedback loops involving CI and Cro play a critical role in stable
maintenance of the committed decision. In this case, whether to maintain
feedback or not is determined by the amount of activator binding to the
OR region, and the activator itself cuts off feedback if the amount exceeds
a certain level. This is an interesting molecular switch that is not found
elsewhere. Overall, the concentration mechanism of Cro is maintained
at a certain level using positive feedback and negative feedback. It was
reported that the fundamental properties of the lambda phage switch
circuit are not affected even if the sequence of OR binding sites is altered
(Little et al., 1999). This indicates that properties of the lambda phage
decision circuit are intrinsic to the multiple feedback circuit, not specific
parametric features of the elements, such as binding sites.

Relative independence from specific parameters is an important fea-

3 In electronics, “device” means transistors and other materials mentioned in “compo-
nents.” NAND gates and flip-flops are recognized as minimum units of the circuit.
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ture of a robust system. Recent computational studies report that circuits
that are robust against a broad range of parameter variations are found
in Xenopus cell cycle (Morohashi et al., unpublished) and body segment
formation (von Dassow et al., 2000). Using the simulation of parasegment
formation of Drosophila, it was found that some parameters in the circuit
accountable for pattern formation are tolerant to major parameter varia-
tions. This strongly suggests that the structure of the circuit that is dom-
inantly responsible for pattern formation rather than specific parameter
values (von Dassow et al., 2000).

Such circuit features of structural stability also play important roles
in development. A recent review article (Freeman, 2000) elucidates some
interesting cases of feedback circuits that play a dominant role in the de-
velopment process. Such cases include temporal arrangement of signal-
ing in the JAK/STAT signaling pathway, pattern formation in Drosophila
involving Ubx and Dpp, maintenance of patterns of expression for sonic
hedgehog (Shh) that forms ZPA and Fgf, forming AER in limb develop-
ment, etc. In these examples, structure of circuits play the dominant role
rather than specific set of parameters.

THE SYSTEOME PROJECT

In order to promote scientific research of systems biology, it is critically
important to create a comprehensive data resource that describes sys-
tems’ features, as does the human genome project. This is an enormous
challenge, and it requires significant efforts far beyond the capability of
any single research group. Therefore, the author proposes “The Systeome
Project” as a grand challenge in the area of systems biology.

Systeome is an assembly of system profiles for all genetic variations
and environmental stimuli responses. A system profile comprises a set of
information on the properties of the system that includes the structure of
the system and its behaviors, analysis results such as phase portfolio, and
bifurcation diagrams. The structure of the system includes the structure
of gene and metabolic networks and its associated constants, physical
structures and their properties.

Systeome is different from a simple cascade map, because it assumes
active and dynamic simulations and profiling of various system statuses,
not a static entity. The author suggests that the project be established
for comprehensive efforts for profiling the Systeome of human, mouse,
Drosophila, C. elegans, and yeast.

The goal of the Human Systeome Project is defined as “To complete
a detailed and comprehensive simulation model of the human cell at
an estimated error margin of 20 percent by the year 2020, and to finish
identifying the system profile for all genetic variations, drug responses,
and environmental stimuli by the year 2030.”

Undoubtedly, this is an ambitious project, and requires several mile-
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stones and pilot projects leading to the final goal. Initial pilot projects can
using yeast and C. elegans be set with a time frame of five or seven years
after full-scale budget approval. The Human Systeome Project shall be
commenced concurrently with such pilot projects.

The impact of this project will be far-reaching. It will be a standard
asset for biological research as well as providing fundamental diagnostics
and prediction for a wide range of medical practices.

The Systeome Project is expected to contribute to system-level under-
standing of life by providing exhaustive knowledge of system structures,
dynamics, and their sensitivities against genetic variations and environ-
mental stimuli. By using the system profile, it is expected that more pre-
cise medical diagnosis and treatment can be accomplished due to quan-
titative understanding of the metabolic state of the system. For example,
a list of all possible feedback loops and their sensitivities, gain, and time
delay should be obtained, to be used for drug design and clinical appli-
cations. The behaviors of feedback systems are often counterintuitive and
often eliminate or compensate the effects of external stimuli. Understand-
ing of complex circuit dynamics such as these will contribute to accurate
prediction of the effects of medical treatments.

The Systeome Project should maintain close links with genome and
Proteome data, particularly with various individual genetic variations,
including single nucleotide polymorphisms (SNPs). SNPs are a typical
example of an attempt to understand the relationship between genetic
variations and clinical observations.

It is inevitable that in some cases the effects of SNPs are masked by a
mechanism that compensates such variations. In this case, corresponding
SNPs do not seem to affect the behavior of the cell. However, if such a
compensation mechanism is disrupted by SNPs in a locus that constitutes
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the compensation mechanism, the effects of SNPs will show up directly
in the cell’s behavior. In such a case, it will be observed that for certain
groups of cells, SNPs affect phenotype, but for other groups SNPs do not
seem to affect phenotype.

While SNPs provide certain information on individual variations at
the genetic level, they do not provide the quantitative status of mRNA
and proteins. Many biological phenomena have a certain quantitative
sensitivity. The cell cycle, for example, is expected to take place when
cyclin synthesis and degradation rate are within a certain range. SNPs and
other existing genetic analysis cannot provide insights into quantitative
aspects of such phenomena.

Scientifically, a detailed understanding of circuits and their dynamics
will contribute to a deeper understanding of the biological systems, as
already discussed elsewhere.

Identification of metabolic and signal transduction circuits in various
model systems provides an interesting opportunity to compare evolution-
ary conserved genetic information not only at the gene level, but also at
the circuit level.

Evolutionary conserved circuits will be an important concept that may
be widely used in the study of gene and metabolic network behaviors.
Several circuits that may be found in yeast and C. elegans may be used
also in mouse and human, similar to the idea of homologue genes.

Some of the feedback circuits, for example, may be so essential that
they have been conserved through the course of evolution. At the same
time, a certain circuit may be duplicated and a revised version is used for
other parts of the system. As the Systeome Project progresses in various
model systems, such comparative studies and homology searches at the
circuit level will become possible.

Many scientific opportunities will open up once the Systeome Project
has commenced and its data is made available for scientific research.

The Systeome Project will be a major commitment. However, it is in-
dispensable for promoting systems biology as quickly as possible and for
contributing to a better understanding of living systems and for medical
practice. The Systeome Project involves the major engineering project of
developing the measurement and software platform. The best way to pro-
ceed with this project is to initiate it as an international joint project on a
scale comparable to the human genome project.

IMPACTS OF SYSTEMS BIOLOGY

Combined with the Systeome Project and other efforts in medical appli-
cation of genomics, systems biology may have major impacts on medical
research and practice. In-depth knowledge of the dynamical state of cells
and development of high-performance measurement systems will drasti-
cally change medical practice.
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First, the fast and precise measurement of an individual systeome will
enable us to make precise assessment and simulation of disease risk, as
well as detailed planning of countermeasures. Establishment of “preemp-
tive molecular medicine” is one of the major applications of systems bi-
ology research. This means that patient models, or disease models, can
be grounded on the cellular model, instead of being an empirical phe-
nomenological model.

Second, drug design and treatment procedure may change to reflect
the precise system dynamics of each patient. Rather than rely on a single
drug, there many be increasing use of system drugs, a group of drugs that
cooperatively act to control the metabolic state of malfunctioning cells.
The point of such a treatment is to minimize side-effects, while maintain-
ing maximum efficacy in disease treatment. By specifically identifying a
series of effector points of chemical agents, we may be able to control cell
status much more effectively than current medical practice.

Third, system-level understanding, especially simulation, control, and
design capability, may lead to a totally new method of organ cloning. Just
like engineers perform digital pre-assembly, we may be able to digitally
pregrow organs for transplant. There will be a special incubation system
that can monitor and control a growing organ inside the incubator. Cur-
rently, regenerative medicine is now being practiced, but it is limited to
re-generation of relatively simple tissue systems such as skin. For growing
more complex organs such as the heart and kidney, sophisticated growth
monitoring and control are required. This is “closed-loop manufacturing,”
where the growth process is monitored and data is fed back to control the
biochemical status of the incubation system to guide the organ growth to
the desired shape.

There will be many more medical applications. The Systeome Project
is perhaps the best way to accelerate progress in the technology of system-
level biology.

CONCLUSION

Systems biology is a new and emerging field in biology that aims at
system-level understanding of biological systems. System-level under-
standing requires a range of new analysis techniques, measurement tech-
nologies, experimental methods, software tools, and new concepts for
looking at biological systems. The work has just begun and there is a long
way to go before we arrive at a deep understanding of biological systems.
Nevertheless, the author believes that systems biology will be the domi-
nant paradigm in biology, and many medical applications as well as sci-
entific discoveries are expected.
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2 Automatic Acquisition of Cell Lineage
through 4DMicroscopy and Analysis of
Early C. elegans Embryogenesis

Shuichi Onami, Shugo Hamahashi, Masao
Nagasaki, Satoru Miyano, and Hiroaki Kitano

Cell lineage analysis is an important technique for studying the develop-
ment of multicellular organisms. We have developed a system that au-
tomatically acquires cell lineages of C. elegans from the 1-cell stage up to
approximately the 30-cell stage. The system utilizes a set of 4D Nomarski
DIC microscope images of C. elegans embryo consisting of more than 50
focal plane images at each minute for about 2 hours. The system detects
the region of cell nucleus in each of the images, and makes 3D nucleus
regions, each of which is a complete set of nucleus regions that represent
the same nucleus at the same time point. Each pair of 3D nucleus regions
is then connected, if they represent the same nucleus and their time points
are consecutive, and the cell lineage is created based on these connections.
The resulting cell lineage consists of the three-dimensional positions of nu-
clei at each time point and their lineage. Encouraged by the performance
of our system, we have started systematic cell lineage analysis of C. ele-
gans, which will produce a large amount of quantitative data essential for
system-level understanding of C. elegans embryogenesis.

INTRODUCTION

In the last few decades, biology has been mainly focusing on identifying
components that make up the living system. Today, as a result of success
in molecular biology and genomics, thousands of genes have been identi-
fied, so the focus of biology is now moving toward the next step, under-
standing how those components work as a whole system. The ultimate
goal of this step is the computer simulation of life, that is, reconstruction
of living systems on the computer. However, it is still difficult to perform
reliable computer simulation even of a single cell.

The first reason for this difficulty is the lack of biological knowledge.
Based on the genomic sequence, the number of human genes was pre-
dicted as approximately 26,000 (Venter et al., 2001), and about 4300 genes
were predicted even for Eschericia coli, a single-cellular prokaryote (Barrick



et al., 1994). However, with some exceptions, information on the functions
of those genes is quite limited. In order to determine those functions effi-
ciently, automation of biological experiments is necessary. Such automa-
tion, following on from the automatic DNA sequencer, the DNA microar-
ray system, etc., will greatly increase the quality of computer simulation.

The second reason is the lack of quantitative information. Historically,
biology has been mainly accumulating qualitative information, such as
“the expression of gene increases” and “the nucleus moves to the ante-
rior.” However, for computer simulation, quantitative information is nec-
essary, such as “the expression of gene increases at v ng/s,” and “the po-
sition of the nucleus is (x, y, z).” To obtain such quantitative information,
precisely controlled analytical instruments need to be developed.

The third reason is the immaturity of modeling technology and sim-
ulation technology. Several software packages have been developed for
biological computer simulation (Mendes, 1993; Morton-Firth and Bray,
1998; Tomita et al., 1999; Shaff and Loew, 1999; Kyoda et al., 2000). These
efforts have greatly improved modeling and simulation technology for
simple biological processes, such as reactions among free molecules, and
so the accuracy and reliability of computer simulation have been greatly
increased for single-cellular organisms and individual cells. However, al-
most no technology has been developed for more complicated biological
processes, such as sub-cellular localization of molecules and organelles,
cell division, and three-dimensional positioning of cells. These technolo-
gies are essential for reliable simulation of multicellular organisms.

This chapter reviews our automatic cell lineage acquisition system,
which is one of our approaches we have developed for computer simu-
lation of C. elegans. The system automates biological experiments and pro-
duces quantitative data. The end of this chapter briefly reviews our other
approaches, which are improving modeling and simulation technology,
and then briefly overviews our approaches as a whole.

THE NEMATODE, C. ELEGANS

There are good introductions to C. elegans in other literatures (Wood et
al., 1988; Riddle et al., 1997), so a detailed introduction of this organism is
omitted. Briefly, C. elegans is the simplest multicellular organism that has
been most extensively analyzed in molecular and developmental biology.
This organism is also the first multicellular organism whose genome se-
quence has been completely identified (The C. elegans Sequencing Con-
sortium, 1998), and is leading the other multicellular experimental organ-
isms in post genome sequencing analysis, such as functional genomics
and proteomics. Thus, C. elegans is expected to be the first multicellular
organism whose life is fully reconstructed on the computer.
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Figure 2.1 Cell lineage. When the fertilized egg undergoes a series of cell
divisions shown on the left, the cell lineage is described as shown on the right. In
the cell lineage, the vertical axis represents the time and the horizontal axis
represents the direction of division (left-right and anterior-posterior).

Figure 2.2 The complete cell lineage of C. elegans (Sulston et al., 1983).

CELL LINEAGE AND ITS APPLICATION

Generally, a multicellular organism is a mass of cells that are generated
from a single cell – i.e. the fertilized egg – through successive cell divi-
sions. Each cell division is a process whereby a single mother cell pro-
duces a pair of daughter cells. Cell lineage is a tree-like description of such
mother-daughter relationships starting from the fertilized egg (in a wide
sense, starting from a specific cell) (Moody, 1999) (Figure 2.1). It usually
includes information on the timing and the direction of each cell division.
The complete cell lineage – from the fertilized egg to the adult – has been
identified for several simple multicellular organisms, such as C. elegans
(Sulston et al., 1983) and Halocynthia roretzi (Nishida, 1987)(Figure 2.2).

The most typical application of cell lineage is gene function analysis
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Figure 2.3 Comparison of cell lineage between wild type and mutant animals.
When the wild type and the mutant cell lineages are described as in this figure,
the mutated gene plays some roles in the differentiation of the two daughter cells
produced at the first cell division

by comparing cell lineages among wild type and mutant animals (Fig-
ure 2.3). Through such analysis, many gene functions have been uncov-
ered. So, cell lineage analysis is an important technique for studying the
development of multicellular organisms, as well as in situ hybridization,
immunohistochemistry, and GFP-fusion gene expression.

HISTORY OF CELL LINEAGE ANALYSIS PROCEDURE

This section reviews the history of the cell lineage analysis procedure,
focusing on the procedure for C. elegans. But with some difference in the
dates, the history is almost the same in other animals.

The entire cell lineage of C. elegans was reported by Sulston et al. in
1983 (Sulston et al., 1983). In this work, they used a rather primitive pro-
cedure whereby they directly observed the animal through a Nomarski
DIC microscope and sketched it. A Nomarski DIC microscope visualizes
subtle differences of thickness and refraction index in the light path, and
has an advantage that the intra-cellular structure of living transparent cells
can be studied without staining (Spector et al., 1998). Through this micro-
scope, moving the focal plane up and down, Sulston et al. observed and
sketched a 14-hour process of C. elegans embryogenesis, from fertilization
to hatching (Figure 2.4), which must have been quite laborious.

The four-dimensional microscope imaging system (4D microscope),
developed by Hird et al. in 1993, greatly reduced the laboriousness of
cell lineage analysis (Hird and White, 1993). By controlling the focusing
device and the camera, the system automatically captures microscope
images of different focal planes, and repeats the process with a given
interval. This system obtains a set of microscope images that contain the
3D structure information of an embryo at different time points starting
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Figure 2.4 Nomarski DIC microscope images of different focal planes.
Nomarski DIC microscope images of a 2-cell stage embryo are shown. Moving
the focal plane up and down, the 3D structure of the embryo can be recognized.

from fertilization (Figure 2.5). Then, those images are closely analyzed to
derive the cell lineage. A GUI supporting tool, developed by Schnabel
et al. in 1997, further reduced the laboriousness of cell lineage analysis
(Schnabel et al., 1997).

As is reviewed above, cell lineage analysis has become much easier
than that in Sulston’s era, but it is still quite laborious. The number of
mutants whose cell lineage is identified, is quite small compared with the
number of mutants whose responsible gene is identified and sequenced.

AUTOMATIC CELL LINEAGE ACQUISITION

We are developing a system that automatically acquires cell lineages of
C. elegans (Yasuda et al., 1999). The latest version of our system has the
ability to acquire the cell lineage from the 1-cell stage up to approximately
the 30-cell stage (Hamahashi et al., unpublished). This section reviews the
process of our system.

The system utilizes a set of 4D Nomarski DIC microscope images to
extract the cell lineage (Figure 2.5). The 4D microscope system is able
to capture more than 50 images per minute, changing the focal plane
position by 0.5 µm for each image. With this system, a set of multi-focal
plane images of a C. elegans embryo is captured every minute for about
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Figure 2.5 4D microscope images.

Figure 2.6 Example of an nucleus detection filter.

2 hours. Since the height of the embryo is about 25 µm, each multi-focal
plane image includes all 3D structure information of the embryo at the
corresponding time point.

The system then processes each of the images captured in the previ-
ous step, and detects the regions of cell nucleus in the image (Figure 2.6).
In the Nomarski microscope image, the region of cytoplasm looks bumpy
as a result of the existing organelles, such as lysosome and mitochondria.
On the other hand, the nucleus region, without those organelles, looks
smooth. We found that several basic image-processing filters (i.e. Kirsch’s
edge detection filter (Kirsch, 1971), entropy filter (Jahne et al., 1999), etc.)
efficiently detect those nucleus regions (Yasuda et al., 1999; Hamahashi et
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Figure 2.7 Detected nucleus regions. Each of the detected nucleus regions is
enclosed by a white line.

al., unpublished). Several new filters applicable to this nucleus detection
were also developed (Yasuda et al., 1999; Hamahashi et al., unpublished).
By appropriately combining those filters, we established an excellent nu-
cleus detection algorithm (Hamahashi et al., unpublished). With this algo-
rithm, non-error nucleus detection is carried out from the 1-cell stage to
about the 30-cell stage (Figure 2.7).

In wild type embryo, the diameter of a nucleus is about 7 µm at the 2-
cell stage and 4.5 µm at the 20-cell stage, whereas our system captures mi-
croscope images every 0.5 µm of focal plane position. Therefore, at every
time point, a nucleus is detected on several different focal planes. In the
next step, the system makes 3D nucleus regions, each of which is a com-
plete set of nucleus regions that represent the same nucleus at the same
time point. Then, the system connects each pair of 3D nucleus regions,
if they represent the same nucleus and their time points are consecutive.
In the previous two steps, a pair of nucleus regions is recognized as rep-
resenting the same nucleus, when one nucleus region overlaps the other
either on the same focal plane at the next time point or on the next focal
plane at the same time point. As the result, the lineage of 3D nucleus re-
gions is recognized through out the entire period of the 4D microscope
images.

Finally, the cell lineage is created based on the above 3D nucleus region
lineage. The system calculates the centroid position of each 3D nucleus
region, and outputs those centroid positions and their lineage (Figure 2.8).

This section briefly reviews the process of our cell lineage detection
system. The current system utilizes our Beowulf PC cluster (Okuno et
al., 2000), made up of 32 PCs, to execute all the above processes except
4D microscope image recording, and within 9 hours, can deduce the cell
lineage up to the 30- to 40-cell stage after setting the 4D microscope images
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Figure 2.8 Text data for C. elegans cell lineage.

(Hamahashi et al., unpublished). We also developed a software package
that three-dimensionally visualizes the resulting lineage data (Hamahashi
et al., unpublished), which may help three-dimensional understanding of
nucleus movement and division (Figure 2.9). Moreover, with this package,
lineages of two different individuals – e.g., wild type and mutant – can be
visualized on the same screen.

ADVANTAGESOFAUTOMATICCELLLINEAGEACQUISITIONSYSTEM

As noted in the previous section, we have successfully developed a high-
performance automatic cell lineage acquisition system. The advantages of
this system are outlined below.

The most significant advantage of this system is automation, as can
easily be imagined from the contribution of the automatic DNA sequencer
to biology. The required human effort for our system is almost the same
as that of the DNA sequencer. The processing time of 9 hours is almost
the same as that of the sequencer in its early days. With this system, large
scale and systematic cell lineage analysis is made possible.

The second advantage is quantitative data production. The three-
dimensional nucleus position at each time point which the system outputs
is quantitative data, which is essenaital for simulation studies, especially
when simulation models are developed and simulation results are ana-
lyzed. Our system can be applied to many individual animals, wild types
and mutants, and the resulting data will greatly improve the accuracy of
computer simulation.

The third advantage is the reproducibility of the results. When cell lin-
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Figure 2.9 Three-dimensional view of a C. elegans cell lineage. The centroid
positions of 3D nucleus regions are traced from 1-cell to 19-cell stage. The white
circles represent the centroid positions at the viewing time point. On this viewer,
it is possible to freely change the viewing time point forward and backward, and
also rotate the viewing point three-dimensionally.

eages are manually analyzed, the resulting cell lineage is unreproducible.
For example, the definitions of nucleus position and cell division time may
vary depending on who made the analysis and, even if the same people
made it, when it was done. In our system, such definitions are exactly the
same through all individual measurements and the results are completely
reproducible. The results are thus suitable for statistical analysis, such as
calculating the mean, variance, standard error, etc.

Fourthly, the system is applicable to other organisms. The basis of
the system is an image-processing algorithm for Nomarski microscope
images. Thus, in principle, the system is applicable to all transparent cells
and embryos. Future application to other organisms, such as Halocynthia
roretzi, mouse, is promising.

Finally, the system offers complementarity of cell lineage data. As a
result of success in molecular biology and genomics, a variety of large-
scale analyses are currently undertaken, such as DNA mircoarray, protein
chip, and systematic in situ hybridization. However, combinations of those
analyses are not so fruitful since they all measure the same object – gene
expression level. Cell lineage data is quite complementary to gene expres-
sion data, therefore, the combination of our cell lineage analysis with gene
expression analyses will provide useful information for biology.

47 Automatic Acquisition of Cell Lineage



Figure 2.10 Systematic cell lineage analysis of C. elegans.

FUTURE DEVELOPMENT OF THE CELL LINEAGE ACQUISITION
SYSTEM

As described in this chapter, the current version of our system extracts a
C. elegans cell lineage of up to the 30-cell stage in 9 hours.

The biggest challenge in the future system development is, of course,
to extend the applicable embryonic period, up to the 100-cell stage, 200-
cell stage, and beyond. The current limit of the applicable period is im-
posed by the performances of the 4D microscope system, such as the speed
of the z-axis driving motor and the image-capturing period of the CCD
camera. The performance of these devices is rapidly being improved, so
such device-dependent limit will likely be overcome in the near future.
The limit of the current algorithm may be around the 60-cell stage. For
the later stages, an improved algorithm will be required. Nucleus detec-
tion is quite difficult even for humans after the 100-cell stage, so for later
stages, GFP-labeling of nucleus or other nucleus labeling techniques may
be necessary.

Shortening the processing time is another important challenge, but the
solution seems relatively easy. Dramatic improvement of CPU speed will
greatly shorten the processing time of our system.

SYSTEMATIC CELL LINEAGE ANALYSIS

Encouraged by the performance of the current cell lineage acquisition sys-
tem, we have started systematic cell lineage analysis of C. elegans embryo
(Figure 2.10).

As the first step, we are currently accumulating many wild type cell
lineages in order to establish the standard wild type cell lineage, which
describes the mean value of nucleus position at each time point together
with some statistical data, such as the variance, error distribution, etc. As
well as wild type animals, we are also analyzing cell lineages for many
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mutants that are already known to play important roles in early embryo-
genesis. By analyzing the results, we will confirm and also improve the
current understanding of early embryogenesis.

In C. elegans, there is a quite well organized mutant-stocking system
(Caenorhabditis Genetic Center 1). In addition, several whole genome
knock-outing projects are being undertaken either by efficient mutagen-
esis (Gengyo-Ando and Mitani, 2000) or RNAi (Fraser et al., 2000), tak-
ing advantage of the complete genome sequence data (The C. elegans Se-
quencing Consortium, 1998). We are planning to start a systematic cell
lineage analysis for those knock-out animals in future. The resulting data,
together with the systematic gene expression data (Tabara et al., 1996), will
provide useful information for the complete understanding of C. elegans.

COMPUTER SIMULATION OF C. ELEGANS

Our cell lineage system can produce a large amount of quantitative data,
which is useful for computer simulation. To achieve computer simulation
of C. elegans embryogenesis, the authors are also running several other
closely related projects, as outlined below.

The quality of computer simulation is largely dependent on the simu-
lation model, thus the model construction is an important process in sim-
ulation studies. To help this process, we are developing gene regulatory
network inference methods. An efficient method has been developed for
large-scale gene expression data, such as DNA microarray data (Kyoda
et al., 2000). Currently, we are developing a sophisticated gene network
modeling scheme based on this method, and are also trying to develop a
gene network inference method that utilizes the cell lineage information.

For improving the technology of biological computer simulation, we
are developing a model description language for biological computer sim-
ulation (Nagasaki et al., 1999), named bio-calculus. The language will be
able to describe a variety of biological processes observed in multicellular
organisms, such as sub-cellular positioning of molecules and organelles,
cell division, and three-dimensional positioning of cells. We are also de-
veloping several software packages so that a variety of biological mod-
els described using the language can be executed (Nagasaki et al., 1999).
Currently, a very early period of C. elegans embryo is being modeled and
simulated (Nagasaki et al., unpublished) in order to improve the appli-
cability of the language and its software packages (Figure 2.11, 2.12). In
future, utilizing our cell lineage information, we will gradually refine our
C. elegans model and extend the target period, to improve the modeling
and simulation technology further.

1 http://biosci.umn.edu/CGC/CGChomepage.htm
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Figure 2.11 Pronucleus movement of C. elegans embryo. a)–c) Nomarski DIC
microscope images of very early C. elegans embryo just after fertilization. The
anterior is left. The oocyte pronucleus (left) and the sperm pronucleus (right)
move toward each other and finally meet in the posterior hemisphere. The
movement of the sperm pronucleus mainly depends on microtubules (MTs) (Hird
and White, 1993). d)–f) Confocal microscope images of C. elegans embryo stained
with MT specific antibody. MTs are growing from the centrosomes on the sperm
pronucleus.

CONCLUSION

This chapter reviewed our automatic cell lineage acquisition system. The
system will produce a large amount of quantitative data, which is valu-
able for computer simulation, though the data are still insufficient for the
complete C. elegans simulation. We must therefore keep developing new
experimental technologies. It is hoped that all our approaches will func-
tionally work together to enable us to achive the ultimate goal – the com-
puter simulation of life.
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Figure 2.12 Computer simulation of MT dependent sperm pronucleus
movement in C. elegans embryo. The small circle represents the sperm pronucleus
and the white lines growing from the sperm pronucleus represents MTs growing
from the centrosomes on the pronucleus.
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3 The DBRF Method for Inferring a Gene
Network from Large-Scale Steady-State
Gene Expression Data

Shuichi Onami, Koji M. Kyoda, Mineo Morohashi,
and Hiroaki Kitano

Complete genome sequence has enabled whole-genome expression profil-
ing and genome deletion projects, which are generating large-scale gene
expression profiles corresponding to hundreds of deletion mutants. To ob-
tain valuable information from those profiles is an important challenge
in current biology. This chapter reviews the Difference-Based Regulation
Finding (DBRF) method, which infers the underlying gene network from
those profiles. The method 1) infers direct and indirect gene regulations by
interpreting the difference of gene expression level between wild-type and
mutant, and 2) eliminates the indirect regulations. One of the major char-
acteristics of the method is its applicability to continuous-value expression
data, whereas the other existing method can only deal with binary data.
The performance of the method was evaluated using artificial gene net-
works by varying the network size, indegree of each gene, and the data
characteristics (continuous-value or binary). The results showed that the
method is superior to the other methods. The chapter also reviews the ap-
plicability of the DBRF method to real gene expression data. The method
was applied to a set of yeast DNA microarray data which consisted of
gene expression levels of 249 genes in each of single gene deletion mu-
tants for the 249 genes. In total, 628 gene regulatory relationships were
inferred, where the accuracy of the method was confirmed in MAP kinase
cascade. The DBRF method will be a powerful tool for genome-wide gene
network analysis.

INTRODUCTION

Recent progress in the field of molecular biology enables us to obtain
huge amounts of data. The rapidly increasing amount of known sequence
data, or massive gene expression data, requires computational effort to
extract information from them. So far, much attention has been focused on
developing various advanced computational tools, such as for homology
search, protein classification, gene clustering, and so forth.



Several significant studies have attempted to establish a method to in-
fer a gene regulatory network from large-scale gene expression data. The
gene expression data are primarily obtained as either 1) time series, or
2) steady-state data. For analyzing the time series, networks are inferred
by employing various techniques (e.g., information theory (Liang et al.,
1998), genetic algorithms (Morohashi and Kitano, 1999), or simulated an-
nealing (Mjolsness et al., 1999)). One of the shortcomings of the time series
approach is that it requires experimental data that are taken at very short
intervals and are almost free from experimental noise. These requirements
are almost impossible to meet with current techniques.

On the other hand, some methods have already been proposed for in-
ferring regulatory relationships using steady-state gene expression data.
The steady-state data can be obtained by altering specific gene activities,
such as knock-outing or overexpressing genes. Gene knock-outing is cur-
rently being developed on a large scale for a variety of experimental an-
imals, such as S. cerevisiae (Winzeler et al., 1999; Hughes et al., 2000), C.
elegans (Gengyo-Ando and Mitano, 2000), and Drosophila (Spradling et al.,
1999), by which various gene expression profiles will be produced in a
unified manner. Moreover, the discovery of RNA interference enables us
to create gene knockout animals easily and is applicable to C. elegans and
Drosophila (Sharp, 1999). Akutsu et al. (1998) calculated upper and lower
bounds on the number of experiments that would be required if the net-
work were Boolean. More recently, Ideker et al. (2000) proposed an in-
ference method called predictor. The predictor method provides candidate
networks represented by a Boolean network that are consistent with ex-
pression data by employing combinatorial optimization techniques.

A drawback of these methods is that they assume a gene network as
a Boolean network where the expression levels are represented as binary
values. In general, experimental data have continuous values, and thus
the data should be translated into binary data in order to apply the meth-
ods. Such translation may cause the data to lack the information needed
to infer regulatory relationships. If binary data are used, even 3-state (e.g.,
wild-type, deletion, and overexpression) levels may be impossible to be
represented, in which case the underlying inherent regulatory relation-
ships cannot be accurately represented.

In this chapter, we review the Difference-Based Regulation Finding
(DBRF) method which is a gene network inference method using steady-
state gene expression data (Kyoda et al., 2000). The DBRF method is
applicable to expression data represented as not only binary values, but
also continuous values. The chapter is organized as follows: in the next
section, we review the algorithm of the DBRF method. In the third section,
the performance of the DBRF method is reviewed. The performance was
studied using artificial gene regulatory networks. In the fourth section,
we review our application of this method to yeast DNA microarray data.
In the fifth section, we discuss the advantages and characteristics of this
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method.

THE DIFFERENCE-BASED REGULATION FINDINGMETHOD

We describe the DBRF method for inferring a gene regulatory net-
work from the steady-state gene expression data of wild-type and dele-
tion/overexpression mutants (Kyoda et al., 2000). An example of interac-
tion matrix I is shown in Figure 3.1(a), which represents gene interactions.
Rows of I represent the genes that regulate the genes in columns (e.g., a0

activates both a2 and a3, and a2 represses a3). We assume that the data
are given by an expression matrix E , a set of observed steady-state gene
expression levels for all genes over all mutation experiments. An exam-
ple of E is shown in Figure 3.1(b). Rows of E represent the deleted genes
while columns represent the steady-state expression levels in each gene.
We apply the method to the expression matrix E in order to derive the
interaction matrix I .

The basic procedure of the DBRF method involves two steps: 1) infer
direct and indirect regulations among the genes from expression data, and
2) eliminate the indirect regulations from the above regulations to infer a
parsimonious network.

a0 a1 a2 a3
a0 + +
a1 +
a2 −
a3

x0 x1 x2 x3
wt 3.750 3.750 8.939 0.078
a0
− − 3.750 8.769 0.011

a1
− 3.750 − 8.769 0.086

a2
− 3.750 3.750 − 5.476

a3
− 3.750 3.750 8.939 −

(a) The interaction matrix I (b) The expression matrix E

Figure 3.1 An example of the matrices which show the regulations and
steady-state data of a network. (a) An interaction matrix I . (b) An expression
matrix E . The values in the matrix are calculated by model equations shown in
Figure 3.3(b).

Inference of a Redundant Gene Regulatory Network

A simple way to determine the regulatory relationships between genes
is to see the difference of expression level 1 between wild-type (wt) and
mutant data. In the first step, the DBRF method derives the relationships
between genes as such. The gene regulatory relationship is inferred ac-
cording to the rule shown in Table 3.1. It is clear that gene a activates
(represses) the expression of gene b if the expression level of gene b goes

1 ‘expression level’ is represented as absolute or relative quantities of mRNA or proteins.
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down (up) when gene a is deleted. The computational cost of this com-
parison process is O(n2).

This process can infer not only direct gene regulations but also indi-
rect ones. For example, the process infers a gene interaction from gene a1

to gene a3, since the expression level x3 is different between wt and a−1
(Figure 3.1(b)). However, this interaction is an indirect gene interaction
through gene a2 (Figure 3.3(a)). In the subsequent process, these indirect
gene regulations are eliminated, and a parsimonious gene regulatory net-
work is inferred.

Table 3.1 Inference rule of genetic interaction between gene a and gene b from
steady-state gene expression data of wild-type, single deletion and
overexpression mutant.

Expression level of gene b
up down

deletion a � b a → bGene a
overexpression a→ b a � b

Inference of a Parsimonious Gene Regulatory Network

This step infers a parsimonious gene regulatory network from the re-
dundant gene regulatory network inferred above by eliminating indi-
rect edges (gene regulations). In order to eliminate those indirect edges,
for each pair of genes, we 1) find out whether there are more than one
route between those genes, 2) check whether regulatory effects (activa-
tion/inactivation) of those routes are the same, and 3) eliminate redun-
dant routes if the effects are the same.

Figure 3.2 shows the algorithm for inferring a parsimonious gene
regulatory network. In order to develop 1) and 2), we modified Warshall’s
algorithm (Gross and Yellen, 1999). Warshall’s algorithm is based on the
transitive rule that there is an edge from ai to ak if edges from ai to a j , and
from a j to ak exist. For example, if there are edges from ai to ak , from ai
to a j , and from a j to ak , the algorithm finds out that there are two routes
from ai to ak . Even if a route consists of more than three genes, 1) can
be done using this algorithm. 2) is implemented by adding a function
counting the number of negative regulations in each route to Warshall’s
algorithm. The regulatory effect only depends on the parity of the number
of negative regulations involved in the route (Thieffry and Thomas, 1998).
For example, given two routes connecting the same pair of genes, the
regulatory effects of those two routes are the same if the parities of that
number are the same. The number of negative regulations is counted in
each route found in 1), and groups of routes whose regulatory effects are
the same, are detected in the algorithm. For 3), we define that if there
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procedure
var input: an n-node gene regulatory network G

with node a1, a2, ..., an .
output: the transitive closure of gene regulatory network G.
tn: total number of negative regulations.

begin

initialize gene regulatory network G0 to be network G.
for i = 1 to n do
for j = 1 to n do
if (a j , ai ) is an edge in network Gi−1
for k = 1 to n do
if (ai , ak) is an edge in network Gi−1
tn = (a j , ai )negat ive num. + (ai , ak )negat ive num.

if (a j , ak)negat ive num. is even, and tn is even.
eliminate edge (a j , ak ) to Gi−1.
(a j , ak)negat ive num. = tn.

if (a j , ak)negat ive num. is odd, and tn is odd.
eliminate edge (a j , ak ) to Gi−1.
(a j , ak)negat ive num. = tn.

return gene regulatory network Gn

end

Figure 3.2 An algorithm for inferring a parsimonious gene regulatory network.
Here let G be an n-node digraph with nodes a1, a2,...,an. This algorithm
constructs a sequence of digraphs, G0, G1,...,Gn, such that G0 = G, Gi is a
subgraph of Gi−1 , i = 1,...,n because of eliminating redundant edges
subsequently. (ap, aq ) is the p-q element of the interaction matrix I . Each element
of the interaction matrix I has the storage for total negative regulation number
between gene p and gene q.

is more than one possible route between a given pair of genes and their
regulatory effects are the same, the route consisting of the largest number
of genes is the parsimonious route and the others are redundant. Thus, for
each pair of genes, the number of genes in each route of the same effect
is counted, and all but the one consisting of the largest number of genes
are eliminated in the algorithm. The computational cost of this algorithm
is O(n3).

COMPUTATIONAL EXPERIMENTS

Since the experimental data of deletion mutants are being produced by
several yeast genome deletion projects (Winzeler et al., 1999; Hughes et
al., 2000), it is reasonable to examine the performance of the DBRF method
using expression data of all single gene deletions. To this end, a series of
gene networks and all single gene deletion mutants for each network are
simulated to generate sets of target artificial steady-state gene expression
data. After generating the data sets, we apply the DBRF method to these
data, and infer a gene regulatory network (Kyoda et al., 2000).
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dv0/dt = 1.5g(0)− 0.2v0

dv1/dt = 1.5g(0)− 0.2v1

dv2/dt = 1.8g(0.8v0 + 0.8v1)− 0.2v2

dv3/dt = 1.1g(2.0v0 − 1.3v2)− 0.2v3

(a) A network with weight values (b) The model equations of the network

Figure 3.3 Example of a gene regulatory network model

Network Model

Here, we present the network model used for generating the artificial
gene expression data. A gene regulatory network is described as a graph
structure consisting of nodes an (n = 0, 1, · · · , N), directed edges be-
tween nodes with weights, and a function gn for each node. A node repre-
sents a gene, and a directed edge represents a gene regulation. The weight
of a directed edge takes a positive/negative value representing activa-
tion/repression effect on the target gene. The expression level of a gene
an is determined by gn , which is a nonlinear sigmoidal function reported
to describe a gene expression (Mjolsness et al., 1999; Kosman et al., 1998).
Thus, the expression level of gene a is described by the following equa-
tion:

dva

dt
= Rag

(∑
b

Wabvb + ha
)
−λav

a (3.1)

where va represents the expression level of gene a, Ra is the maximum
rate of synthesis from gene a, and g(u) is a sigmoidal function given by
g(u) = (1/2)[(u/

√
u2 + 1)+ 1]. Wab is a connection-weight matrix element

which describes gene regulatory coefficients.
∑
b W

abvb can be replaced by∏
b W

abvb , allowing the equation to describe cooperative activation and
repression (Mannervik et al., 1999). ha summarizes the effect of general
transcription factors on gene a, and λa is a degradation (proteolysis) rate of
the product of gene a. We assume that this level always takes a continuous
value.

Figure 3.3 shows an example of a small network with four genes. In
Figure 3.3(a), each gene an is represented by a circle with gene number n.
Each directed edge has an effective weight for the target gene. The model
equations for each gene are shown in Figure 3.3(b).

The target artificial networks were generated over a range of gene
number N and maximum indegree k. For constructing a target network T
with N genes and maximum indegree k, the edges were chosen randomly
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so that the indegree of each gene would be distributed between 1 and k.
Besides, each network was generated containing cyclic-regulations, but
without containing self-regulations. The parameters in the model equa-
tions and regulation type (whether each gene is regulated by gene(s) in-
dependently or cooperatively) were randomly determined. For each net-
work, we simulated all single deletion mutants. For each of network sizes
N and k, we simulated 100 target networks.

Performance of the DBRF Method

We analyzed the above artificial data with the DBRF method, and com-
pared the inferred networks with the original target networks. The sim-
ilarity between each inferred network and its target network was evalu-
ated by two criteria, sensitivity and specificity. Sensitivity is defined as the
percentage of edges in the target network that are also present in the in-
ferred network, and specificity is defined as the percentage of edges in the
inferred network that are also present in the target network. The results
from the experiments over a range of N and k are shown in Table 3.2. As
can be seen in Table 3.2, the average of specificity is always higher than
that of sensitivity, and sensitivity increases in proportion to the network
size N . The average of specificity is about 90% for the indegree k = 2,
independent of N . The averages of sensitivity and specificity decrease in
proportion to the increase of k.

Comparison between Continuous-value Data and Binary Data

One of the major characteristics of the DBRF method is its applicability
to continuous-value expression data. To confirm the superiority of us-
ing continuous-value expression data, we applied the DBRF method to
continuous-value data and binary data, and compared the results. The
continuous-value expression data were translated into binary data accord-
ing to a threshold; the threshold is determined as the middle value be-

Table 3.2 The results from the experiments over a range of N and k. Each
measurement is an average over 100 simulated target networks, with standard
error given in parentheses.

Total sim. Total inferred Num. sharedN k
edges edges edges

Sensitivity Specificity

10 2 15.2(1.6) 8.9(3.0) 8.1(2.9) 53.1% 90.4%
20 2 30.5(0.6) 20.6(4.9) 18.6(4.7) 61.1% 90.6%
50 2 75.5(0.7) 60.7(8.7) 54.4(7.9) 72.1% 89.8%

100 2 150.4(0.6) 133.9(10.4) 119.2(9.5) 79.2% 89.1%
20 4 80.0(0.0) 20.3(8.9) 17.0(7.4) 21.3% 84.1%
20 8 117.1(11.8) 15.1(8.6) 9.6(6.1) 8.1% 61.3%
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tween the minimum expression level xmin (which is zero, because all ex-
pression data over single deletion mutant are given) and the maximum
expression level xmax . The results from the experiments over a range of N
and k are shown in Table 3.3. Both sensitivity and specificity, in the case of
the continuous-value data, were much higher than those in the case of the
binary data.

Table 3.3 The results from continuous-value and binary expression data over a
range of N and k. Each measurement is an average over 100 simulated target
networks.

Continuous-value raw data Binary translated dataN k
sensitivity specificity sensitivity specificity

10 2 53.1% 90.4% 20.3% 58.6%
20 2 61.1% 90.6% 20.9% 61.7%
50 2 72.1% 89.8% 22.2% 63.1%
100 2 79.2% 89.1% 22.9% 65.3%
20 4 21.3% 84.1% 9.7% 60.1%
20 8 8.1% 61.3% 6.4% 47.3%

Comparison with the Predictor Method

The predictor method is the most recently reported gene network infer-
ence method for steady-state data (Ideker et al., 2000), and thus is consid-
ered to be the most powerful method. Therefore, we compared the per-
formance between the DBRF method and the predictor method. The pre-
dictor method is designed to analyze binary data, and is not applicable
to continuous-value data. Thus, the predictor method was applied to bi-
nary data translated from the original continuous-value data as described
above, whereas the DBRF method was applied to the original data.

The results show that the performance of the DBRF method is superior
to that of the predictor method (Table 3.4). In the case of N = 20, k = 8,
although the sensitivity of the predictor method is slightly higher than
that of the DBRF method, the difference is not significant (P<0.5). In Table
3.4, the symbol ‘∗’ means that the predictor method is not applicable
because of NP-complete (Ideker et al., 2000). On the other hand, since
the cost of the DBRF method is about O(n3), the DBRF method can infer
gene regulatory networks even in the case of N = 100, k = 2. We also
found that the performance of the predictor method is lower than that of
the DBRF method even when both methods were applied to the binary
translated data (compare Table 3.3, binary translated data and Table 3.4,
the predictor method). The performance of the predictor method here was
much lower than the previously published results (Ideker et al., 2000).
In our experiment, continuous-value gene expression data was generated
and then binarized to apply the predictor method, whereas in the previous

66 Shuichi Onami, et al.



work, the applied data was directly generated from a Boolean network
model (see discussion).

Table 3.4 The results using the DBRF method and the predictor method over a
range of N and k. Each measurement is an average over 100 simulated target
networks. The symbol ‘∗’ means computationally infeasible.

DBRF method Predictor methodN k
sensitivity specificity sensitivity specificity

10 2 53.1% 90.4% 7.1% 12.5%
20 2 61.1% 90.6% 7.9% 8.4%
50 2 72.1% 89.8% 3.3% 7.7%

100 2 79.2% 89.1% ∗ ∗
20 4 21.3% 84.1% 9.2% 23.4%
20 8 8.1% 61.3% 8.2% 34.8%

APPLICATION TO YEAST GENE EXPRESSION DATA

We applied the DBRF method to a set of yeast gene expression data ob-
tained by DNA microarray (Kyoda et al., unpublished). The gene expres-
sion data consisted of gene expression levels of 249 genes in each of single
gene deletion mutants for the 249 genes (Hughes et al., 2000). For each
gene, expression levels in wild-type and mutants were statistically ana-
lyzed, and the significance of difference in gene expression level between
wild-type and mutants was evaluated with the p-value (Hughes et al.,
2000). In the following experiment, the DBRF method detected the gene
expression difference with a p-value of less than 0.01.

Figure 3.4 shows the inferred gene network for the 249 genes. In total,
628 gene regulatory relationships were inferred. It took about 5 seconds to
infer this gene regulatory network, suggesting that the DBRF method has
scalability for gene network size. The DBRF method will be able to infer
a gene regulatory network from a complete set of gene expression data
obtained from yeast for all 6,000 single gene deletions, or other higher
organisms with a large number of genes.

In the above result, for example, 13 gene regulatory relationships were
inferred in MAP kinase signal transduction cascade (Figure 3.5). In these
13 relationships, all 5 regulations from ste12, the only transcription factor
in this cascade, were consistent with the known transcriptional regula-
tions (Roberts et al., 2000; Oehlen et al., 1996; Dietzel and Kurjan, 1987;
Errede and Ammerer, 1989; Oehlen and Cross, 1998). All 5 regulations to
ste12 were coming from genes whose active forms indirectly up-regulate
the transcription of ste12, and thus consistent with the known gene regu-
latory relationships (Roberts et al., 2000; Ren et al., 2000). The remaining
3 relationships were newly discovered in this study. The results suggest
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Figure 3.4 The inferred gene network from yeast 249 gene expression data with
the DBRF method. Each box represents gene, and each edge represents gene
regulatory relationship.

that the DBRF method infers a gene regulatory network quite effectively.

DISCUSSION

In the above sections, we reviewed the algorithm of the DBRF method.
The performance of the method and its application to real experimental
data were also reviewed. In this section, we discuss several characteristics
of this method.
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Figure 3.5 MAP kinase signal transduction cascade. (a) Known gene network
from recent publications and database. (b) Inferred gene network. Solid-lined
arrows mean consistent gene regulations with known gene network, and
dashed-lined arrows mean new gene regulations.

Algorithm

The DBRF method infers a gene regulatory network with high specificity
but sensitivity is much lower than specificity when the method is ap-
plied to a set of single deletion mutant expression data. One reason for
the lower sensitivity is that the DBRF method cannot detect the differ-
ence between gene expression of wild-type and deletion mutant if a gene
is not expressed under the wild-type condition. If we also have the data
of overexpression mutants, the sensitivity will increase, because the dif-
ference can be detected between wild-type and overexpression mutants.
Furthermore, if this happens, the specificity will also increase. The number
of inferred direct edges increases with the addition of overexpression data,
and those edges prevent several indirect edges from being inferred as di-
rect edges. The expression data monitored over multiple gene mutations
can be used for the DBRF method, which will reveal the network struc-
ture more accurately. Although the algorithm finds out “indirect” edges
and eliminates them, some indirect edges may play a redundant role in
the actual network. The DBRF method can distinguish those differences if
sufficient experimental data are available.

We found that when using the data of a network which contains cyclic-
regulations, a unique network may not necessarily be inferred. We allow
gene regulatory networks containing cyclic-regulations in the computa-
tional experiments. When such a cyclic network is treated by the DBRF
method, the inferred network differs depending on the order of the genes
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in the interaction matrix I . Several direct edges are eliminated ahead if the
eliminating process in Figure 3.2 algorithm starts from an indirect edge.
The DBRF method infers several different networks when we change the
order of the genes in the interaction matrix I for a given cyclic network.
However, all the inferred networks are consistent with the original expres-
sion data. It is possible to extend the DBRF method to output all possible
candidates of the gene network instead of providing one candidate, but
we do not know which is useful for users. This is an open problem when
considering cyclic networks.

Advantage of Using Continuous-value Data

Using the continuous-value data was clearly superior to using the binary
data. One of the main reasons is that binary data lacks much of the infor-
mation present in the original data. Binary data cannot reflect the states of
even three levels (e.g., increased, non-changed, and decreased level). As-
suming three expression levels with intermediate level as wild-type, we
can detect the difference of both increased and decreased levels. On the
other hand, if we assume two binary levels, the wild-type level should be
grouped into either higher or lower level, hence only either level can be
detected (e.g., if wild-type level is 1, only lower level can be detected). We
think this is a critical disadvantage of applying a Boolean network model,
using binary data, to a gene regulatory network.

The DBRF Method versus the Predictor Method

The performance of the DBRF method is much better than that of the pre-
dictor method. In our experiment, the sensitivity and the specificity of the
predictor method were much lower than the previously published results
(Ideker et al., 2000). In our experiment, continuous-value gene expression
data were generated, and then the data were binarized before applying the
predictor method, whereas in the previous work, the applied data was di-
rectly generated from a Boolean network model. We believe that our result
is more realistic since real experimental data have continuous values. Un-
expectedly, the performance of the DBRF method, even when using binary
data, was significantly superior to that of the predictor method. Since the
predictor method compares not only between wild-type and mutant but
also between different mutants, we expected that the predictor method
would be able to infer more candidates of gene regulations than the DBRF
method when both methods were applied to the same binary translated
data. The DBRF method only compares between wild-type and mutant.
We found that the algorithm of minimum set finding, which plays a key
role in comparison between different mutants in the predictor method, did
not function as intended in this experiment. Data binarization eliminates
many relationships between genes, and it naturally reduces the number of
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truly inferred edges. With those reduced number of true edges, the mini-
mum set finding tends to create many mistakes, thus lowering the sensi-
tivity and the specificity. One of the typical mistakes is to infer edges in
the opposite direction.

Since the computational cost of the DBRF method is O(n3), we can
compute large-scale steady-state expression data. On the other hand, the
predictor method is computationally infeasible to analyze a large-scale ex-
pression data, because the minimum set covering task is NP-complete.
Ideker et al. suggested that they could solve this problem by setting the
maximum number of indegrees k (Ideker et al., 2000). However, this solu-
tion is not suitable for real gene regulatory networks. No one knows the
maximum number of indegrees, such as the maximum number of tran-
scriptional factors binding to the cis-regulatory region. In the course of
examining the predictor method, we also found several cases where the
maximum number of indegrees in the network inferred became larger
than that in the original target network. This indicates that it is very dif-
ficult to set the maximum number of indegrees for the predictor method
even if we know this number for real networks.

Application to Yeast Gene Expression Data

Since yeast gene expression data contain noise coming from the experi-
mental procedure, we need to allow slight fluctuation of gene expression
to avoid inferring wrong gene regulations. The range of noise for each
gene should be determined by statistical analysis of a series of the gene
expression data with negative control experiments. The significance of the
difference between two data is represented by the p-value calculated with
an error model such as the gene-specific error model (Hughes et al., 2000).
In the above yeast expression analysis, the DBRF method was allowed to
detect only the gene expression difference with significance at P<0.01 in
the gene-specific error model.

Compared with the known gene network, the DBRF method inferred
many indirect gene regulations in MAP kinase cascade. As mentioned
above, the DBRF method tends to infer indirect regulations when single
gene deletion data are applied. However, in this case, the number of indi-
rect regulations does not decrease even if overexpression data or double
mutant data are applied. We found that the indirect gene regulations arise
from gene regulations through protein phosphorylation. To infer those
post-transcriptional regulations systematically, a large scale protein ex-
pression or modification analysis such as protein chip analysis (Zhu et
al., 2000) is required. If we obtain protein phosphorylation data, the DBRF
method may infer more direct regulations and fewer indirect regulations.

A post-transcriptional regulation cascade regulates the ste12 activity.
The DBRF method inferred 5 gene regulations to ste12 coming from genes
in this cascade, because the activated ste12 up-regulates its transcription

71 The DBRF Method for Inferring a Gene Network from Gene Expression Data



(Ren et al., 2000). In the following, we consider the case when the DBRF
method is applied to DNA microarray data on a set of single deletion
mutants. When the activity of a transcription factor is regulated by post-
transcriptional regulation cascade, the DBRF method infers gene regula-
tions to the transcription factor coming from genes in this cascade if the
transcription factor self-regulates its transcription. Alternatively, gene reg-
ulations from those genes to the direct targets of the transcription factor
are inferred if the self-regulation does not exist. Hence, althouogh the
DBRF method basically infers transcriptional regulation between genes,
it also provides valuable information on post-transcriptional regulations.

CONCLUSION

In this chapter, we reviewed the DBRF method, a method for inferring
a gene regulatory network from steady-state gene expression data. The
DBRF method is applicable to continuous values of expression data,
whereas the other methods that also use steady-state data can only deal
with binary data. The performance of the DBRF method was evaluated by
varying the network size, indegree of each gene, and the data character-
istics (continuous-value or binary). The DBRF method was shown to be
superior to the other existing methods. We also reviewed the applicability
of the DBRF method to real gene expression data. The method was shown
to have scalability for large-scale gene expression data. The accuracy of
the method was shown in MAP kinase cascade, where several consistent
and new relationships were inferred. Overall, the DBRF method will be a
powerful tool for genome-wide gene network analysis.
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4 The Analysis of Cancer Associated Gene
Expression Matrices

Mattias Wahde and Zoltan Szallasi

An important part of the analysis of cancer associated gene expression ma-
trices is the identification of a subset of genes displaying consistent mis–
regulation in a given type of tumor samples. Such a subset of genes forms,
together with an appropriate function, a separator that can distinguish
between normal and tumor samples. The identification of separators is a
difficult problem, due to the very large sizes of the search spaces involved.
In this paper, we introduce and discuss briefly a method for identification
of separators using genetic algorithms.

Due to the high level of gene expression diversity detected in cancer,
separators can appear by chance. In order to find the true separators, it is
important to weed out such chance separators. There are several statisti-
cal methods for estimating whether the appearance of a given separator
is due to chance. The accuracy of such tests will, however, depend on the
null hypothesis provided by the data structure. In this paper we intro-
duce and describe generative models that simulate random, discrete gene
expression matrices which retain the key features of massively parallel
measurements in cancer. These include the number of changeable genes
and the level of gene co–regulation as reflected in their pair–wise mu-
tual information content. By analyzing several cancer–related data sets,
we demonstrate that the probability of the chance appearance of separa-
tors can be underestimated by many orders of magnitude if random and
independent selection of mis–regulated genes is assumed, instead of using
more advanced generative models as outlined in this paper.

INTRODUCTION

The recent publication of several cancer associated large-scale gene ex-
pression matrices has clearly indicated that tumor biology has entered
a new phase of analytical approaches. These matrices contain quantita-
tive information about a large number of directly measured parameters,
usually gene expression levels, that are typically listed as the rows of the
matrix. The columns in these experiments correspond to different pheno-
types such as different types of tumors or different treatments of either
normal or neoplastic cells.



There are two obvious ways of exploiting cancer associated gene ex-
pression matrices. Identification of separators or gene expression func-
tions (Szallasi, 1998) determines a subset of genes the status of which,
when coupled by an appropriate rule, will define the phenotypic state of
cells. The classification of phenotypic samples on the other hand is sup-
posed to identify subsets of samples with above average molecular simi-
larity. These subsets can be later used to search for common genetic mark-
ers. This procedure, which was recently termed as tumor class discovery
in cancer research (Golub et al., 1999), is supposed to yield a group of tu-
mor samples sharing a common set of genetic markers. In principle, these
two types of analysis are overlapping since a new tumor subclass is sup-
posed to be determined by a subset of genes that obviously form a sep-
arator differentiating the new phenotype from the rest of the samples. In
practice, however, the two methods show a clear distinction regarding the
possible number of genes involved. Identification of separators searches
for the fewest possible genes that will distinguish between phenotypes,
whereas classification or cluster analysis may be based on a much larger
subset, hundreds or even thousands of genes.

Initial efforts in the field have met with limited success, which could be
the result of at least three possible causes: (a) working with incomplete or
inaccurate data sets (i.e. some of the relevant genes were not measured),
(b) working with analytical tools of inadequate power, and (c) ignoring
the special characteristics of massively parallel gene expression matrices.
When identifying separators the last two of the possible difficulties mani-
fest themselves in the following way: we need to be able to extract correct
separators within a reasonably short period of time and then show that
these separators did not emerge by accident in the gene expression ma-
trix.

Here we will address both difficulties: first we show that the power
of identifying separators could be significantly improved by genetic algo-
rithms and then demonstrate the importance of internal data structure in
statistically validating separators that were extracted from cancer associ-
ated gene expression matrices. The successful identification of separators
or tumor subclasses will depend on several factors including (1) the num-
ber of genes involved; (2) the complexity of the rule between these genes;
(3) the available number and diversity of gene expression samples for a
given phenotype; (4) the overall diversity of gene expression patterns be-
tween normal and tumor samples; and (5) the overall noise level of gene
expression measurements.

A rather unfavorable, but not that unlikely scenario holds that the
number of sufficiently diverse gene expression patterns will be too lim-
ited relative to the order (number of genes involved) and complexity of
separators involved in cancer. In this case our analytical efforts will prob-
ably fail unless we understand the overall mechanism of how gene ex-
pression patterns are generated in cancer. For example, it is obvious that

78 Mattias Wahde and Zoltan Szallasi



not all gene expression patterns are compatible with life. This may allow
excluding significant portions of the gene expression space from further
consideration, which would significantly improve our analytical chances.

Statistical analysis of cancer associated gene expression matrices also
emphasizes the importance of understanding internal data structure. Can-
cer associated gene expression patterns show a high level of diversity. The
average number of mis-regulated genes is on the order of 10% of all genes
expressed in the given cell type (Perou et al., 1999) which inevitably leads
to the accidental appearance of separators and clusters in these data sets.
However, the highly diverse differential gene expression patterns in can-
cer are the result of transitions of a self-consistent genetic network con-
tained within the cell (Klus et al., 2001). This involves the co-regulation of
genes that is reflected by the internal data structure of cancer associated
gene expression matrices. Ignoring the co-regulation of genes may lead to
a significant misestimate of statistical significance. We will overcome this
problem by introducing generative models in order to estimate the proba-
bility of accidental features of cancer associated gene expression data sets.

SEPARATORS

The purpose of separators is to identify patterns of gene expression indica-
tive of neoplasticity. Thus, a separator S = S(g1, g2, . . . , gK ) is a discrete
function of several inputs which takes the value 1 if the corresponding
sample is in a neoplastic state and 0 otherwise. In this paper, we will fo-
cus on the problem of identifying separators in discretized gene expres-
sion data. Continuous cDNA microarray measurements can be converted
into ternary data as described by (Chen et al., 1997). Their algorithm first
calibrates the data internally to each microarray and statistically deter-
mines whether the data justifies the conclusion that a given gene is up- or
down-regulated at a certain confidence level. Accordingly, in these data
sets, the expression level of each gene can take one of three values, namely
-1 (down–regulated), 0 (unchanged), or 1 (up–regulated).

Cancer associated gene expression measurements have provided two
main types of data sets so far. In the first case, all samples are in the
neoplastic state (i.e. S = 1), and the down– or up–regulation is measured
relative to an appropriate normal control. In the second case, the data set
consists of both neoplastic (S = 1) and normal tissue samples (S = 0).
In such cases the up– or down–regulation of a gene can, for instance, be
defined relative to the average expression level of that gene throughout
the normal samples.

Let us here consider the case in which all samples are in the neoplastic
state S = 1, and let N denote the number of genes in each sample, M−
and M+ the number of down– and up–regulated genes, respectively, and
M their sum, i.e. M = M− + M+. The number of samples is denoted E .
The easiest case is a one–gene separator (K = 1) when all tumor samples
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carry at least one consistent gene mis-regulation. We provided a detailed
statistical analysis of single gene separators elsewhere (Wahde et al., 2001).
Clearly, any set of genes (g1, ..., gK ) for which there exists at least one
sample such that g1 = g2 = ... = gK = 0 cannot describe a separator, since
some change in the expression levels is needed to arrive at the neoplastic
state. Thus, in this case, the first step in identifying a separator of K inputs,
is to find all combinations of K genes such that, in each sample, at least
one of the K genes is down– or up–regulated. Any such combination of
genes defines a separator.

IDENTIFICATIONOF SEPARATORS IN NOISY DATA

The discussion above concerning separators is somewhat simplistic in that
it assumes data to be more or less noise–free, so that a simple determinis-
tic Boolean function of a few genes can separate tumors from normal sam-
ples. Given the high noise levels in gene expression data, and the great
diversity of gene expression in cancer samples, a more realistic approach
would instead make the assumption that genes related to cancer are often,
but not always, mis–regulated, so that a given degree of mis–regulation of
a weighted average of a few such genes could be used as an indicator of a
tumor. Several such indicators could then be combined using e.g. Boolean
functions, much in the same way as the expression levels of single genes
were combined in the method described above.

The problem, of course, is to identify the relevant genes. As an exam-
ple, consider a case where a weighted average of the expression level of
four genes is to be used as an indicator. A typical sample includes mea-
surements of thousands of genes. With 103.5 measured genes, an exhaus-
tive search would require checking of order 1012 different combinations.

Clearly, exhaustive searches are not optimal in these cases. A good al-
ternative is provided by genetic algorithms, which we will now introduce.

Genetic algorithms

Genetic algorithms (GAs) are based on the principles of Darwinian evolu-
tion, involving gradual hereditary change of candidate solutions.

When a GA is applied to a problem, a population (i.e. a set) of can-
didate solutions is maintained. The candidate solutions themselves are
called individuals. The information needed to form the individuals is en-
coded in strings of digits known as chromosomes, where, in keeping with
the biological terminology, the individuals digits are referred to as genes.

A GA is initialized by assigning random values to the genes in the
chromosomes. The next step is to decode the chromosomes of each in-
dividual, and to perform the evaluation. Both the decoding process and
the evaluation procedure are, of course, problem dependent. As a spe-
cific example, we may consider a case in which the chromosomes encode
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the identities of N genes that are to be used for distinguishing tumors
from normal samples, by forming an average over the expression levels
of the N genes, and comparing it to a threshold which is also encoded in
the chromosome. In such a case, the decoding procedure simply identifies
the genes whose expression levels are to be averaged. Then, the average
of those genes are formed, for each sample, and the result is compared
with the threshold obtained from the chromosome. If the average exceeds
the threshold, the sample is placed in the tumor category, otherwise it is
placed in the normal category. When all samples have been evaluated,
a performance measure (the fitness) is assigned to the individual. In the
classification task, the fitness can, for instance, be defined as the fraction
of samples that are correctly classified.

When all the individuals of the first generation have been evaluated,
the second generation is formed by selecting individuals in a fitness-
proportionate way, i.e. such that individuals with high fitness have a
larger probability of being selected than individuals with low fitness.
When two individuals have been selected, their offspring is formed
through crossover (with a certain probability, usually taken to be close
to 1) and mutation. In crossover, the chromosomes of the two individu-
als are cut at a randomly chosen point (the crossover point), and the first
part of the first chromosome is combined with the second part of the sec-
ond chromosome, and vice versa to form two new chromosomes. Each of
the two new chromosomes is then subjected to mutation, during which a
random number is drawn for each gene. If the random number is smaller
than a pre–specified mutation probability, then the gene is assigned a new,
random value. If not, the gene is left unchanged.

The procedures of selection, crossover, and mutation is repeated until
there are as many new chromosomes as in the first generation. Then, the
old chromosomes are replaced by the new ones, and all the individuals of
the new generation are evaluated. The third generation is formed by se-
lecting individuals from the second generation, and performing crossover
and mutation on their chromosomes. The whole procedure is repeated for
a large number of generations, until a satisfactory solution to the problem
has been achieved.

There exists many different versions of genetic algorithms that use
different ways of selecting individuals for reproduction, different ways of
assigning fitness values, as well as different methods of maintaining the
population. Furthermore, in practical applications of GAs, the procedure
often becomes more complex than in the simple case introduced above.
For example, it is not uncommon that chromosomes of varying length
need to be used, which makes the crossover procedure more complicated.
For a more comprehensive introduction to GAs, which also discusses
some of the more advanced issues, see e.g. (Mitchell, 1995).
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Figure 4.1 A simple chromosome for gene identification.

Amethod for automatic identification of genes

We will now briefly discuss the issue of identification of cancer relevant
genes using GAs, and suggest a specific method for this problem.

The first step in the application of a GA is to select an encoding scheme
for the chromosomes. Clearly, it is not difficult to devise chromosomes
that encode very complex classifiers. However, a good classifier should
preferably be as simple as possible, especially in cases where the num-
ber of available samples is strongly limited. A classifier which uses, say,
three parameters and which can classify perfectly a set of 50 samples is
obviously more likely to be reliable than a classifier that uses, say, 25 pa-
rameters. On the other hand, it is difficult to know beforehand what the
appropriate number of parameters is, and so one should preferably allow
it to be determined by the GA.

For simplicity, let us consider a specific method in which a simple
average (i.e. with equal weights for all genes) is used, and where there is
only one condition. In this case, all that needs to be encoded are the genes
from which the average should be formed, and the value of the threshold
which determines the category into which an evaluated sample will fall.
Note that, in order not to confuse the genes of the expression matrix with
the genes of the chromosomes used by the GA, we will in this section refer
to the latter as ”entries” rather than genes.

Here, an encoding scheme of the kind shown in Figure 4.1 can be
used. The first entry of the chromosome encodes the number (M) of genes
for which the average should be formed, and the following M entries
determine the identity of those genes. The final entry of the chromosome
set is the value of the threshold. The entries take value between 0 and
1, and are then rescaled to form numbers between 1 and Ng (for the
entries identifying genes) and between −1 and 1 for the final entry of the
chromosome.

Normally, the chromosomes of the first generation are generated ran-
domly. However, when there is biological information present, it should
of course be used. An inspection of a gene expression matrix indicates
that some genes are less likely to be of importance than others. For in-
stance, some genes never change (in any sample), whereas others change
in a more or less random way.

Thus, a sensible approach is to first rank the genes in descending
order of importance, placing at the top those genes that show a large and
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consistent difference between the tumor samples and the normal samples.
The measure of such a difference can be selected in various ways: mutual
information is one possibility (Butte and Kohane, 2000). An alternative
relevance measure can be defined as

r = (|n
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where superscript 1 denotes the normal samples and superscript 2 the
tumors, and where n−, n0, and n+ denote the number samples in which
the gene in question is down-regulated, unchanged, and up-regulated, re-
spectively. This measure assigns high relevance values to genes that show
a large difference in the expression patterns between normal samples and
tumors, and for which the mis-regulation of the tumor samples is consis-
tent, i.e. either down-regulation or up-regulation.

Now, in order to begin the search starting from the simplest possible
classifiers, the chromosomes of the initial population should all have M =
1 (corresponding to a simple K = 1 separator as defined in the beginning
of this chapter) and the decoding scheme identifying the genes should be
based on the relevance ranking described above. Thus, the entry defining
the single gene should be initialized to a low value. As an example, if it
were to be set exactly to 0, the corresponding gene would be the one with
the highest score in the relevance ranking.

A useful fitness measure in this case would be

f = max(p − 1, pq(M−1)), (4.2)

where p denotes the number of correctly classified samples, q is a number
slightly smaller than 1, and M , as usual, denotes the number of entries
identifying genes in the chromosome of the classifier. Thus, an optimal
classifier would be one that could correctly classify all samples using the
measurement of only one gene. The max function is needed in order to
prevent that a classifier with a lower value of p receives a higher fitness
value than one with a higher value of p. Thus, a limit on the punishment
for overly complicated classifiers is introduced.

This concludes our brief description of a possible GA-based method
for the identification of interesting genes in neoplastic samples. Needless
to say, the procedure could be improved in various ways, for instance by
allowing Boolean combinations of several conditions. Such improvements
will not be discussed here, however.

Furthermore, not all samples should be used in the determination
of the classifier: some should be retained for validation purposes. If the
number of samples is small, a procedure can be implemented in which a
random set of samples is used by the GA, and the rest are used for the
validation. Several runs can be carried out, with different validation sets.
Those genes that appear in many or all of the classifiers obtained by the
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GA are them likely to be interesting candidates for further study.

Statistical validation of separators extracted from gene expression
matrices

In the previous section we have presented search strategies for separators
in gene expression matrices. The high level of gene expression diversity in
cancer samples, however, makes it probable that separators can occur by
chance. In order to identify the true separators in a data set, such chance
separators must first be identified and removed. In order to do so, one
needs some way of estimating the probability that any given separator
is due to chance. This probability can be readily estimated by analytical
means only in the case of low order separators (preferably K = 1) and
special gene expression matrices, when mis-regulated genes are randomly
and independently selected (Wahde et al., 2001). In more realistic data
sets analytical calculations become intractable and one needs to rely on
computer simulations. In other words, one needs a generative modelwhich
can generate artificial data sets, the analysis of which can provide estimate
of the probability of the chance appearance of a separator.

Generative models

The aim of a generative model is to produce an artificial and random data
matrix which shares the essential characteristics of the original data ma-
trix. The artificial data obtained by means of the generative model can
then be used to form null hypotheses for the estimation of the probabil-
ity of separators discovered in the real data set, thus making it possible to
distinguish chance separators from actual separators. Generative models
can be derived from either theoretical considerations or empirical observa-
tions. In cancer research, theory–based generative models can use either
genetic network modeling or aneuploidy driven gene mis–regulation as
their starting point.

Malignant transformation can be considered as an attractor transition
of a self–organizing gene network (Kauffman, 1993; Szallasi and Liang,
1998) providing numerical estimates about the overall quantitative fea-
tures of attractor transition like the expected number of up– or down–
regulated (with a common term, mis–regulated) genes. There is an in-
creasing evidence of the ploidy regulation of gene expression levels as
well (Galitski et al., 1999). We have provided initial indications that the
aneuploidic distribution of chromosomes may also be used to model the
expected gene expression patterns in cancer (Klus et al., 2001). At the cur-
rent stage of theory and available data sets, however, we can best rely on
generative models based on empirical observations. This approach starts
with extracting overall quantitative features of cancer associated gene ex-
pression matrices. These include the number of genes that can be mis–
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regulated, the ratio of up– versus down–regulated genes and the level of
co–regulation of mis–regulated gene groups. We will now discuss two
very different approaches to generative models which will shed some
light on the importance of a careful selection of such models.

The first method simply forms a randomized gene expression matrix
while preserving certain overall features of the real data matrix, such as
the number of mis–regulated genes in each sample. Mutual information
based generative models, which is the second method introduced here,
preserve additional features of the real data, namely the co–regulation of
genes.

Randomization based generative models

The simplest method of generating artificial data consists simply of in-
serting, for each sample, M+ 1’s and M− -1’s randomly in a null N × E
matrix. In general, the values of M− and M+ will of course vary from sam-
ple to sample, so either an average value or the actual values of Mi− and
Mi+ (i = 1, . . . , E) from the real data can be used. It turns out that the for-
mula for the expected number of separators is very sensitive to the values
of Mi− and Mi+, and therefore the use of average values is not to be rec-
ommended. The randomization method that uses the actual values of Mi−
and Mi+, will be referred to as simple randomization. As a simple example,
consider the case of a K = 2 gene separator. Assume that two genes, de-
noted g1 and g2, are being studied. In a given sample i , the approximate
probability pis(2) of at least one of these two genes being changed (up– or
down–regulated) is

pis(2) = 1− (pi0)
2, (4.3)

where pi0 = (N − Mi )/N denotes the probability of a given gene being
unchanged (Mi = Mi+ + Mi−, where Mi+ and Mi− denote, as before, the
number of up– and down–regulated genes in sample i , respectively). Note
that the approximation is valid as long as 1 << Mi << N . In a typical
neoplastic sample it is safe to make this assumption, since ∼10% of the
genes are changed (i.e. Mi ∼ 0.1N). The probability of at least one of the
genes being changed in each of the E samples equals

Ps(2) =
E∏
i=1

pis(2) ≡
E∏
i=1

(1− (pi0)
2). (4.4)

Thus, the expected number of such separators is

Ns (2) =
(
N

2

)
Ps(2). (4.5)
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Table 4.1 A K = 2 separator. The final column shows the value of the function S
(the separator) for the given input configuration.

g1 g2 S
-1 -1 1
-1 0 0
-1 1 0
0 -1 1
0 0 0
0 1 0
1 -1 0
1 0 0
1 1 1

Generalizing these formulae, it is easy to see that the expected number of
separators of K inputs is

Ns(K ) =
(
N

K

)
Ps(K ) ≡

(
N

K

) E∏
i=1

pis(K ) (4.6)

where

pis(K ) = 1− (pi0)
K . (4.7)

This analysis gives an estimate of the total number of separators of K
inputs expected in a randomized artificial data set. Using similar meth-
ods, the approximate probability of discovering any specific separator in
artificial data can also be obtained. In the case of K inputs, the total num-
ber of combinations of the input variables equals 3K . The estimate of the
probability of a specific separator begins by the computation of the prob-
ability, for one sample i , of obtaining one of those combinations for which
S = 1. This probability is denoted piR . The expected number of separators
in the data set is then given by

NR =
(
N

K

)
PR ≡

(
N

K

) E∏
i=1

piR. (4.8)

As an example, consider a separator defined by the entries of Table 4.1. In
any given sample i , the probability of having S = 1 equals

piR = pi−1,−1 + pi0,−1 + pi1,1 = (pi−)2 + pi0 pi− + pi+ pi+, (4.9)

where pi0 = (N − Mi− − Mi+)/N , pi− = Mi−/N , and pi+ = Mi+/N . The
approximate number of expected separators of this type is then

NR =
(
N

2

)
PR =

(
N

2

) E∏
i=1

piR. (4.10)

Armed with the tools presented above, we can proceed to analyze sets of
cancer–related gene expression data. As an example, we have analyzed
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the colon cancer data published by Alon et al. (1999). These data consist of
DNA-oligomer chip based gene expression measurements on 2,000 genes
in 22 patient matched neoplastic and normal samples.

According to Eq. 4.6, increasing the sample number (in this case to
22) decreases the expected number of separators appearing by chance.
Indeed, applying this equation, the expected number of separators with
K = 2, assuming random and independent selection is found to be 2.3 ×
10−12 <<< 1. On the other hand, the actual number of separators with
K = 2 was equal to 1 for this data set, strongly suggesting that this
separator might play a role in colon cancer.

Analysis of other cancer–related data sets yield essentially identical
result: the number of separators found in the real data set always exceeds
by far the number of separators expected on the base of random and
independent selection.

The assertion that these results are significant hinges on one impor-
tant assumption, namely that random and independent selection forms
a reasonable null hypothesis for cancer–related data. Alas, this is not the
case: the data structure of cancer–related gene expression is in fact very
far from that obtained using random and independent selection. This is
readily noticed when the distribution of pair-wise correlation of gene ex-
pression changes is examined. For discretized data mutual information is
an appropriate measure, which is high (close to its maximum, 1) if the
mis-regulation of a given gene is highly indicative of the mis-regulation
of another gene. (For details see e.g. (Klus et al., 2001; Butte and Kohane,
2000)) In cancer associated gene expression matrices the distribution of
pairwise mutual information indicates a far from independent selection of
mis-regulated genes.

In order to illustrate this we have performed an analysis on the breast
cancer associated gene expression matrix published by Perou et al. (1999).
This publicly available data set contains cDNA microarray based relative
expression levels of about 5,600 genes for a number of both normal and
neoplastic breast epithelial samples. For our analysis we have used only
gene expression measurements derived from either breast cancer cell lines
or primary breast tumors, 16 samples altogether. We have retained only
those genes in our analysis that showed an at least 3.5–fold up– or down–
regulation in at least two samples.

Using these threshold values we have transformed the original data
set into a 1082x16 ternary data matrix. The upper panel of Figure 4.2
shows a histogram of the pairwise mutual information distribution ob-
tained from the real data, whereas the middle panel shows the mutual
information distribution obtained from a data set using simple random-
ization of the data matrix. Clearly, the two distributions are very different,
which indicates that the assumption of random and independent selection
does not form a reliable null hypothesis for cancer–related gene expression
data.
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Mutual–information based generative models

As a first step towards the identification of a better null hypothesis, one
should take into account two restrictions present in biological systems.
First, not every gene can be mis–regulated. The number of changeable
genes can be calculated as described elsewhere (Wahde et al., 2001) by con-
ditional probabilities. Second, mis–regulated genes are not independently
selected. Gene expression levels in cancer are determined by several fac-
tors, such as the regulatory input of other genes and the actual DNA–copy
number of the given gene present in a cell (Galitski et al., 1999). This will
obviously lead to a high level of interdependence between gene expres-
sion levels which is readily quantified by mutual information content.

The aim of mutual information based generative models is to produce
random gene expression matrices while retaining the overall level and
distribution of co–regulation of mis–regulated genes. There are several
possible algorithms to achieve this. Here we present a strategy that starts
with a random rearrangement of a real data matrix and then a simple
form of evolutionary algorithm keeps rearranging this randomized matrix
until the new mutual information distribution will closely approximate
the distribution detected in the real data.

Generative algorithm

The generative algorithm begins by generating a random data matrix R,
by rearranging the matrix elements of the real data set D. A simple al-
gorithm for arriving at a data set of this type is defined as follows: Loop
through all genes. For each gene, loop through each sample, select ran-
domly another sample, and swap the corresponding matrix elements.
Note that, with this procedure, the values of M− and M+ will change, since
they are measured column-wise. However, since the computation of mu-
tual information is based on comparison of genes (rows in the expression
matrix), rather than samples (columns) this is the correct way to random-
ize the matrix in this case. This randomization method will be referred
to as permutative randomization. Once the permutative randomization
has been performed a histogram of pairwise mutual information values is
generated. A similar histogram is also generated for the real data set, and
the distance between the two histograms is computed as

�(HG, HD) =
Nbins∑
m=1

|HG(m)− HD(m)|
max(HD(m), 1)

, (4.11)

where HG is the histogram for the generated data set, HD is the histogram
for the real data set, and Nbins is the number of bins in the histograms,
for which the bin width thus equals 1/Nbins. The algorithm then proceeds
as follows: A gene j is selected at random among the N genes, and
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its contribution to the histogram is computed by checking the pairwise
mutual information between gene j and all other genes. The contribution
of gene j to the histogram is subtracted, and the matrix elements in the
corresponding row of the data matrix are rearranged, with probability
pswap by the same swapping procedure as was used in the permutative
randomization algorithm. Then, the new contribution of gene j to the
histogram is computed and the histogram thus obtained is compared with
the histogram present before the rearrangement of gene j .

If the distance is smaller than before the rearrangement, the new his-
togram (and, of course, the corresponding matrix) is kept. If not, the old
matrix, and the old histogram, are retained and thus only improvements
are kept. This procedure – selection of a random gene, subtraction from the
histogram, partial rearrangement, and formation of the new histogram,
and finally selection of either the old or the new configuration – is repeated
many times, until the distance between the histogram for the artificial data
and that of the actual data is smaller than user–defined critical value �c.
Usually, �c was taken to be of order 10% of the initial distance between D
and R.

This algorithm, which is relatively easy to implement, will restore the
original distribution of gene co-regulation in a random fashion as demon-
strated in the lower panel of Figure 4.2. In addition to the breast cancer
data set introduced above we have examined the effect of mutual infor-
mation based generative models on two other gene expression matrices
derived from various cancer types. This analysis has yielded some in-
sightful results. We were focusing on the chance appearance of K = 2
separators. Applying Eq. (4.6) we found for the breast cancer data set,
that the expected number of separators assuming random and indepen-
dent selection is 8.6. This was also confirmed by our simple randomiza-
tion generative model, yielding an estimate of 8.5 ± 7.7 separators. How-
ever, the actual number of potential separators, obtained from the real data
set, equals 16,997. Clearly, a comparison with the randomized data matrix
would indicate that this is a very significant number indeed. Comparing,
however, with the results obtained using the generative algorithm, the re-
sult is very different. In this case, the average number of expected sep-
arators equals 25, 481 ± 897. We have also analyzed the gene expression
data published by Khan et al. (1998). This data set consisted of 13 sam-
ples altogether, seven of them alveolar rhabdomyosarcoma samples and
the rest commonly used human cancer cell lines. The data matrix con-
tained ternary expression information about 1248 genes. The actual num-
ber of separators for this data set was 16,124. Using Eq. (4.6), an estimate
of 0.017 << 1 separators was obtained, again much lower than the actual
value. Using instead the generative algorithm, an average of 17,252±133
separators were obtained. Finally, we have analyzed a colon cancer asso-
ciated gene expression matrix published by Alon et al. (1999).

DNA-oligomer chip based gene expression measurements were pub-
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lished on 2000 genes in twenty two patient matched neoplastic and nor-
mal colon samples by Alon et al. (1999). According to Eq. (4.6), increasing
the sample number (in this case to 22) decreases the expected number of
separators appearing by chance. Indeed, applying this equation, the ex-
pected number of separators assuming random and independent selection
is found to be 2.3 × 10−12 <<< 1. On the other hand, the actual number
of potential separators with K = 2 was equal to 1 for this data set, sug-
gesting that this separator might play a role in colon cancer. This assump-
tion, however, must be reevaluated after applying the mutual information
based generative models. If the essential structure of the colon cancer as-
sociated gene expression matrix is retained then the expected number of
separators is increased by twelve orders of magnitude to 3.7±1.4. This re-
sult has questioned the significance of the potential separator found in the
data. This doubt was reinforced by the fact that neither gene involved in
the separator has any documented involvement with any forms of human
cancer. These initial results indicated, that the chance of random appear-
ance of separators is severely underestimated by ignoring the high level
of co-regulation of mis-regulated genes.

Nevertheless, it was also clear that for more accurate estimates our al-
gorithm needs further refinement. The distribution presented in the lower
panel of Figure 4.2 showed signs of over-fitting by accurately reproducing
the original distribution instead of approximating a theoretical curve de-
scribing the mutual information distribution of cancer associated gene ex-
pression matrices. This over-fitting also manifested itself in our numerical
results. For each of the three data sets the number of expected separators
provided by the generative algorithm was 1.07 to 3.7-fold higher than the
number of separators present in the actual data sets. On average, however,
these gene expression matrices should contain at least as many separators
as expected by chance. This over-fitting can probably be avoided by fitting
a theoretical curve on the mutual information distribution and then the al-
gorithm described above would approach this curve instead of the actual
distribution of a given data set. Current efforts are underway to generate
this theoretical distribution.
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Figure 4.2 Upper panel: mutual information distribution from the Perou data
set. Middle panel: the mutual information distribution obtained after simple
randomization. Lower panel: the mutual information distribution obtained using
a generative model.
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5 Automated Reverse Engineering of
Metabolic Pathways from Observed Data by
Means of Genetic Programming

John R. Koza, William Mydlowec, Guido Lanza,
Jessen Yu, and Martin A. Keane

Recent work has demonstrated that genetic programming is capable of au-
tomatically creating complex networks (e.g., analog electrical circuits, con-
trollers) whose behavior is modeled by linear and non-linear continuous-
time differential equations and whose behavior matches prespecified out-
put values. The concentrations of substances participating in networks
of chemical reactions are modeled by non-linear continuous-time differ-
ential equations. This chapter demonstrates that it is possible to auto-
matically create (reverse engineer) a network of chemical reactions from
observed time-domain data. Genetic programming starts with observed
time-domain concentrations of substances and automatically creates both
the topology of the network of chemical reactions and the rates of each
reaction of a network such that the behavior of the automatically cre-
ated network matches the observed time-domain data. Specifically, ge-
netic programming automatically created a metabolic pathway involving
four chemical reactions that consume glycerol and fatty acid as input, use
ATP as a cofactor, and produce diacyl-glycerol as the final product. The
metabolic pathway was created from 270 data points. The automatically
created metabolic pathway contains three key topological features, includ-
ing an internal feedback loop, a bifurcation point where one substance is
distributed to two different reactions, and an accumulation point where
one substance is accumulated from two sources. The topology and sizing
of the entire metabolic pathway was automatically created using only the
time-domain concentration values of diacyl-glycerol (the final product).

INTRODUCTION

A living cell can be viewed as a dynamical system in which a large num-
ber of different substances react continuously and non-linearly with one
another. In order to understand the behavior of a continuous non-linear
dynamical system with numerous interacting parts, it is usually insuf-
ficient to study behavior of each part in isolation. Instead, the behavior



must usually be analyzed as a whole (Tomita et al., 1999).
Considerable amounts of time-domain data are now becoming avail-

able concerning the concentration of biologically important chemicals in
living organisms. Such data include both gene expression data (obtained
from microarrays) and data on the concentration of substances participat-
ing in metabolic pathways (Ptashne, 1992; McAdams and Shapiro, 1995;
Loomis and Sternberg, 1995; Arkin et al., 1997; Yuh et al., 1998; Liang et
al., 1998; Mendes and Kell, 1998; D’haeseleer et al., 1999).

The concentrations of substrates, products, and catalysts (e.g., en-
zymes) participating in chemical reactions are modeled by non-linear
continuous-time differential equations, such as the Michaelis-Menten
equations (Voit, 2000).

The question arises as to whether it is possible to start with observed
time-domain concentrations of substances and automatically create both
the topology of the network of chemical reactions and the rates of each re-
action that produced the observed data — that is, to automatically reverse
engineer the network from the data.

Genetic programming (Koza et al., 1999a) is a method for automati-
cally creating a computer program whose behavior satisfies certain high-
level requirements. Recent work has demonstrated that genetic program-
ming can automatically create complex networks that exhibit prespecified
behavior in areas where the network’s behavior is governed by differential
equations (both linear and non-linear).

For example, genetic programming is capable of automatically creat-
ing both the topology and sizing (component values) for analog electri-
cal circuits (e.g., filters, amplifiers, computational circuits) composed of
transistors, capacitors, resistors, and other components merely by speci-
fying the circuit’s output — that is, the output data values that would be
observed if one already had the circuit. This reverse engineering of cir-
cuits from data is performed by genetic programming even though there
is no general mathematical method for creating the topology and sizing of
analog electrical circuits from the circuit’s desired (or observed) behavior
(Koza et al., 1999b). Seven of the automatically created circuits infringe on
previously issued patents. Others duplicate the functionality of previously
patented inventions in a novel way.

As another example, genetic programming is capable of automati-
cally creating both the topology and sizing (tuning) for controllers com-
posed of time-domain blocks such as integrators, differentiators, multipli-
ers, adders, delays, leads, and lags merely by specifying the controller’s
effect on the to-be-controlled plant (Koza et al., 1999c, 2000a). This reverse
engineering of controllers from data is performed by genetic program-
ming even though there is no general mathematical method for creat-
ing the topology and sizing for controllers from the controller’s behavior.
Two of the automatically created controllers infringe on previously issued
patents.

96 John R. Koza, et al.



As yet another example, it is possible to automatically create antennas
composed of a network of wires merely by specifying the antenna’s high-
level specifications (Comisky, Yu, and Koza 2000).

Our approach to the problem of automatically creating both the topol-
ogy and sizing of a network of chemical reactions involves

(1) establishing a representation involving program trees (composed of
functions and terminals) for chemical networks,
(2) converting each individual program tree in the population into an
electrical circuit representing a network of chemical reactions,
(3) obtaining the behavior of the network of chemical reactions by simu-
lating the electrical circuit,
(4) defining a fitness measure that measures how well the behavior of an
individual network in the population matches the observed data, and
(5) applying genetic programming to breed a population of improving
program trees using the fitness measure.

The implementation of our approach entails working with five differ-
ent representations for a network of chemical reactions, namely

Reaction Network: Biochemists often use this representation (shown in
Figure 5.1) to represent a network of chemical reactions. In this represen-
tation, the blocks represent chemical reactions and the directed lines rep-
resent flows of substances between reactions.
Program Tree: A network of chemical reactions can also be represented
as a program tree whose internal points are functions and external points
are terminals. This representation enables genetic programming to breed
a population of programs in a search for a network of chemical reactions
whose time-domain behavior concerning concentrations of final product
substance(s) closely matches observed data.
Symbolic Expression: A network of chemical reactions can also be rep-
resented as a symbolic expression (S-expression) in the style of the LISP
programming language. This representation is used internally by the run
of genetic programming.
System of Non-Linear Differential Equations: A network of chemical
reactions can also be represented as a system of non-linear differential
equations.
Analog Electrical Circuit: A network of chemical reactions can also be
represented as an analog electrical circuit (as shown in Figure 5.3). Rep-
resentation of a network of chemical reactions as a circuit facilitates simu-
lation of the network’s time-domain behavior.
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STATEMENT OF THE ILLUSTRATIVE PROBLEM

The goal is to automatically create (reverse engineer) both the topology
and sizing of a network of chemical reactions.

The topology of a network of chemical reactions comprises (1) the num-
ber of substrates consumed by each reaction, (2) the number of products
produced by each reaction, (3) the pathways supplying the substrates (ei-
ther from external sources or other reactions) to the reactions, and (4) the
pathways dispersing the reaction’s products (either to other reactions or
external outputs). The sizing of a network of chemical reactions consists of
the numerical values representing the rates of each reaction.

We chose, as an illustrative problem, a network that incorporates three
key topological features. These features include an internal feedback loop,
a bifurcation point (where one substance is distributed to two different re-
actions), and an accumulation point (where one substance is accumulated
from two sources). The particular chosen network is part of a phospho-
lipid cycle, as presented in the E-CELL cell simulation model (Tomita et
al., 1999). The network’s external inputs are glycerol and fatty acid. The
network’s final product is diacyl-glycerol. The network’s four reactions
are catalyzed by Glycerol kinase (EC2.7.1.30), Glycerol-1-phosphatase
(EC3.1.3.21), Acylglycerol lipase (EC3.1.1.23), and Triacylglycerol lipase
(EC3.1.1.3). Figure ?? shows this network of chemical reactions with the
correct rates of each reaction in parenthesis. The rates that are outside the
parenthesis are the rates of the best individual from generation 225 of the
run of genetic programming.

Diacyl-glycerol

Triacylglycerol
lipase

Fatty Acid

Acylglycerol
lipase

EC3.1.1.23
K = 1.95 (1.95)

Glycerol
kinase

Glycerol

Glycerol-1-
phosphatase

INT-2C00162

C00116

INT-1

C00116C00162

C00165

Cell Membrane

EC3.1.1.3
K =1.45 (1.45)

EC3.1.3.21
K = 1.17 (1.19)

EC2.7.1.30
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Glycerol

OUTPUT
(MEASURED)

ATP

C00002

Figure 5.1 Network of chemical reactions involved in the phospholipid cycle
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BACKGROUND ONGENETIC PROGRAMMING

Genetic programming (Koza, 1992, 1994a,b; Koza et al., 1999a,b; Koza and
Rice, 1992) is a method for automatically creating a computer program
whose behavior satisfies user-specified high-level requirements. Genetic
programming is an extension of the genetic algorithm (Holland, 1992) in
which the population being bred consists of computer programs. Genetic
programming starts with a primordial ooze of thousands of randomly cre-
ated computer programs (program trees) and uses the Darwinian princi-
ple of natural selection, crossover (sexual recombination), mutation, gene
duplication, gene deletion, and certain mechanisms of developmental bi-
ology to breed a population of programs over a series of generations. Al-
though there are many mathematical algorithms that solve problems by
producing a set of numerical values, a run of genetic programming can
create both a graphical structure and a set of numerical values. That is, ge-
netic programming will produce not just numerical values, but the struc-
ture in which those numerical values reside.

Genetic programming breeds computer programs to solve problems
by executing the following three steps:

(1) Generate an initial population of compositions (typically random) of
the functions and terminals of the problem.
(2) Iteratively perform the following substeps (referred to herein as a
generation) on the population of programs until the termination criterion
has been satisfied:

(A)Execute each program in the population and assign it a fitness
value using the fitness measure.

(B)Create a new population of programs by applying the following
operations. The operations are applied to program(s) selected from
the population with a probability based on fitness (with reselection
allowed).

(i) Reproduction: Copy the selected program to the new popula-
tion.
(ii) Crossover: Create a new offspring program for the new pop-
ulation by recombining randomly chosen parts of two selected
programs.
(iii) Mutation: Create one new offspring program for the new
population by randomly mutating a randomly chosen part of the
selected program.
(iv) Architecture-altering operations: Select an architecture-altering
operation from the available repertoire of such operations and
create one new offspring program for the new population by ap-
plying the selected architecture-altering operation to the selected
program.
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(3) Designate the individual program that is identified by result desig-
nation (e.g., the best-so-far individual) as the result of the run of genetic
programming. This result may be a solution (or an approximate solution)
to the problem.

The individual programs that are evolved by genetic programming
are typically multi-branch programs consisting of one or more result-
producing branches and zero, one, or more automatically defined func-
tions (subroutines).
The architecture of such a multi-branch program involves

(1) the total number of automatically defined functions,
(2) the number of arguments (if any) possessed by each automatically
defined function, and
(3) if there is more than one automatically defined function in a program,
the nature of the hierarchical references (including recursive references),
if any, allowed among the automatically defined functions.

Architecture-altering operations enable genetic programming to auto-
matically determine the number of automatically defined functions, the
number of arguments that each possesses, and the nature of the hierarchi-
cal references, if any, among such automatically defined functions.

Additional information on genetic programming can be found in
books such as (Banzhaf et al., 1998); books in the series on genetic pro-
gramming from Kluwer Academic Publishers such as (Langdon, 1998); in
edited collections of papers such as the Advances in Genetic Programming
series of books from the MIT Press (Spector et al., 1999); in the proceedings
of the Genetic Programming Conference (Koza et al., 1998); in the proceed-
ings of the annual Genetic and Evolutionary Computation Conference
(combining the annual Genetic Programming Conference and the Inter-
national Conference on Genetic Algorithms) held starting in 1999 (Whit-
ley et al., 2000); in the proceedings of the annual Euro-GP conferences
held starting in 1998 (Poli et al., 2000); at web sites such as www.genetic-
programming.org; and in the Genetic Programming and Evolvable Ma-
chines journal (from Kluwer Academic Publishers).

REPRESENTATION OF CHEMICAL REACTION NETWORKS

This section describes a method for representing a network of chemical re-
actions as a program tree suitable for use in a run of genetic programming.
Each program tree represents an interconnected network of chemical re-
actions involving various substances. A chemical reaction may consume
one or two substances and produce one or two substances. The consumed
substances may be external input substances or intermediate substances
produced by reactions. The chemical reactions, enzymes, and substances
of a network may be represented by a program tree that contains
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• internal nodes representing chemical reaction functions,
• internal nodes representing selector functions that select the reaction’s
first versus the reaction’s second (if any) product,
• external points (leaves) representing substances that are consumed and
produced by a reaction,
• external points representing enzymes that catalyze a reaction, and
• external points representing numerical constants (reaction rates).

Each program tree in the population is a composition of functions from
the problem’s function set and terminals from the problem’s terminal set.

Repertoire of Functions

There are four chemical reaction functions and two selector functions.
The first argument of each chemical reaction (CR) function identifies

the enzyme that catalyzes the reaction. The second argument specifies
the reaction’s rate. In addition, there are two, three, or four arguments
specifying the substrate(s) and product(s) of the reaction. Table 5.1 shows
the number of substrate(s) and product(s) and overall arity for each of the
four chemical reaction functions. The runs in this chapter use a first-order
and second-order rate law.

Table 5.1 Four chemical reaction functions

Function Substrates Products Arity
CR 1 1 1 1 4
CR 1 2 1 2 5
CR 2 1 2 1 5
CR 2 2 2 2 6

Each function returns a list composed of the reaction’s one or two
products. The one-argument FIRST function returns the first of the one or
two products produced by the function designated by its argument. The
one-argument SECOND function returns the second of the two products
(or, the first product, if the reaction produces only one product).

Repertoire of Terminals

Some terminals represent substances (input substances, intermediate sub-
stances created by reactions, or output substances). Other terminals repre-
sent the enzymes that catalyze the chemical reactions. Still other terminals
represent numerical constants for the rate of the reactions.
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Constrained Syntactic Structure

The trees are constructed in accordance with a constrained syntactic struc-
ture. The root of every result-producing branch must be a chemical reac-
tion function. The enzyme that catalyzes a reaction always appears as the
first argument of its chemical reaction function. A numerical value rep-
resenting a reaction’s rate always appears as the second argument of its
chemical reaction function. The one or two input arguments to a chemical
reaction function can be either a substance terminal or selector function
(FIRST or SECOND). The result of having a selector function as an input
argument is to create a cascade of reactions. The one or two output argu-
ments to a chemical reaction function must be substance terminals. The
argument to a one-argument selector function (FIRST or SECOND) is al-
ways a chemical reaction function.

Example

The chemical reactions, enzymes, and substances of a network of chemical
reactions may be completely represented by a program tree that contains

• internal nodes representing chemical reaction functions,
• internal nodes representing selector functions that select the reaction’s
first versus the reaction’s second (if any) product,
• external points (leaves) representing substances that are consumed and
produced by a reaction,
• external points representing enzymes that catalyze a reaction, and
• external points representing numerical constants (reaction rates).

Each program tree in the population is a composition of functions from
the following function set and terminals from the following terminal set.

Figure 5.2 shows a program tree that corresponds to the metabolic
pathway of Figure 5.1. The program tree is presented in the style of
the LISP programming language. The program tree (Figure 5.2) has two
result-producing branches, RPB0 and RPB1. These two branches are con-
nected by means of a connective PROGN function.

As can be seen, there are four chemical reaction functions in Figure
5.2. The first argument of each chemical reaction function is constrained
to be an enzyme and the second argument is constrained to be a numerical
rate. The remaining arguments are substances, such as externally supplied
input substances, intermediate substances produced by reactions within
the network, and the final output substance produced by the network.
The remaining arguments of each chemical reaction function are marked,
purely as a visual aid to the reader, by an arrow. An upward arrow
indicates that the substance at the tail of the arrow points to a substrate
of the reaction. An downward arrow indicates that the head of the arrow
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points to a product of the reaction.
There is a two-substrate, one-product chemical reaction function

CR 2 1 in the lower left part of Figure 5.2. For this reaction, the enzyme
is Acylglycerol lipase (EC3.1.1.23) (the first argument of this chemical re-
action function); its rate is 1.95 (the second argument); its two substrates
are fatty acid (C00162) (the third argument) and Glycerol (C00116) (the
fourth argument); and its product is Monoacyl-glycerol (C01885) (the fifth
argument).

There is a FIRST-PRODUCT function between the two chemical reac-
tion functions in the left half of Figure 5.2. The FIRST-PRODUCT func-
tion selects the first of the two products of the lower CR 2 1 function.
The line in the program tree from the lower chemical reaction function to
the FIRST-PRODUCT function and the line between the FIRST-PRODUCT
function and the higher CR 2 1 reaction means that when this tree is con-
verted into a network of chemical reactions, the first (and, in this case,
only) substance produced by the lower CR 2 1 reaction is a substrate to
the higher reaction. In particular, the product of the lower reaction func-
tion (i.e., an intermediate substance called Monoacyl-glycerol) is the sec-
ond of the two substrates to the higher chemical reaction function (i.e.,
the fourth argument of the higher function). Thus, although there is no
return value for any branch or for the program tree as a whole, the re-
turn value(s) of all but the top chemical reaction function of a particular
branch (as well the return values of a FIRST-PRODUCT function and a
SECOND-PRODUCT function) define the flow of substances in the net-
work of chemical reactions represented by the program tree.

Notice that the fatty acid (C00162) substance terminal appears as a
substrate argument to both of these chemical reaction functions (in the
left half of Figure 5.2 and also in the left half of Figure 5.1). The repetition
of a substance terminal as a substrate argument in a program tree means
that when the tree is converted into a network of chemical reactions, the
available concentration of this particular substrate is distributed to two
reactions in the network. That is, the repetition of a substance terminal as
a substrate argument in a program tree corresponds to a bifurcation point
where one substance is distributed to two different reactions in the net-
work of chemical reactions represented by the program tree. There is an-
other bifurcation point in this network of chemical reactions where Glyc-
erol (C00116) appears as a substrate argument to both the two-substrate,
one-product chemical reaction function CR 2 1 (in the lower left of Fig-
ure 5.2 and in the upper left part of Figure 5.1) and the two-substrate,
two-product chemical reaction function CR 2 2 (in the upper right part of
Figure 5.2 and in the upper right part of Figure 5.1).

Glycerol (C00116) has two sources in this network of chemical reac-
tions. First, it is externally supplied (shown at the top right of Figure 5.1).
Second, this substance is the product of the one-substrate, two-product
chemical reaction function CR 1 2 (in the middle of Figure 5.1 and in the
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lower right of Figure 5.2). When a substance in a network has two or more
sources (by virtue either of being externally supplied, by virtue of being a
product of a reaction of a network, or any combination thereof), the sub-
stance is accumulated. When the program tree is converted into a network,
all the sources of this substance are pooled. That is, there is an accumula-
tion point for the substance.

Also, Glycerol (C00116) appears as part of an internal feedback loop
consisting of two reactions, namely

• the one-substrate, two-product chemical reaction function CR 1 2 cat-
alyzed by EC3.1.3.21 (in the middle of Figure 5.1 and in the lower right of
Figure 5.2) and
• the two-substrate, two-product chemical reaction function CR 2 2 cat-
alyzed by EC2.7.1.30 (in the upper right part of Figure 5.2 and in the right
part of Figure 5.1).

The presence of an internal feedback loop is established in this net-
work because of the following two features of this program tree:

• There exists a substance, namely sn-Glycerol-3-Phosphate (C00093)
such that this substance

–is a product (sixth argument) that is produced by the two-substrate,
two-product chemical reaction function CR 2 2 (catalyzed by EC2.7.1.30)
in the upper right part of Figure 5.2, and

–is also a substrate that is consumed by the one-substrate, two-
product chemical reaction function CR 1 2 (catalyzed by EC3.1.3.21)
in the lower right part of Figure 5.2 that lies beneath the CR 2 2 func-
tion.

• There exists a second substance, namely glycerol (C00116), that

–is a product that is produced by the chemical reaction function
CR 1 2 (catalyzed by EC3.1.3.21) and

–is a substrate that is consumed by the chemical reaction function
CR 2 2 (catalyzed by EC2.7.1.30).

In summary, the network of Figure 5.2 contains the following three
noteworthy topological features:

• an internal feedback loop in which Glycerol (C00116) is both consumed
and produced in the loop,
• two bifurcation points (one where Glycerol is distributed to two differ-
ent reactions and one where and fatty acid is distributed to two different
reactions), and
• an accumulation point where one substance, namely Glycerol, is accu-
mulated from two sources.

A Stanford University technical report provides additional details and
explanatory figures (Koza, Mydlowec, Lanza, Yu, and Keane 2000).
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Figure 5.2 Program tree corresponding to metabolic pathway of Figure 5.1.

Figure 5.3 shows the electrical circuit corresponding to the network of
Figure 5.1. The triangles in the figure represent integrators.

PREPARATORY STEPS

Six major preparatory steps are required before applying genetic program-
ming: (1) determine the architecture of the program trees, (2) identify the
functions, (3) identify the terminals, (4) define the fitness measure, (5)
choose control parameters for the run, and (6) choose the termination cri-
terion and method of result designation. For additional details, see (Koza
et al., 2000b).

Program Architecture

Each program tree in the initial random population (generation 0) has
one result-producing branch. In subsequent generations, the architecture-
altering operations (patterned after gene duplication and gene deletion
in nature) may insert and delete result-producing branches to particular
individual program trees in the population. Each program tree may have
four result-producing branches.

Function Set

The function set, F, consists of six functions.
F = {CR1 1, CR1 2, CR2 1, CR2 2, FIRST, SECOND}.
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Figure 5.3 Electrical circuit corresponding to the chemical reaction network of
Figure 5.1.

Terminal Set

The terminal set, T, is

T = {�,C00116,C00162,C00002,C00165, I NT 1, I NT 2, I NT 3,

EC2 7 1 30, EC3 1 3 21, EC3 1 1 23, EC3 1 1 3}.
� denotes a perturbable numerical value. In the initial random generation
(generation 0) of a run, each perturbable numerical value is set, individu-
ally and separately, to a random value in a chosen range (from 0.0 and 2.0
here).

In the illustrative problem herein, C00116 is the concentration of glyc-
erol. C00162 is the concentration of fatty acid. These two substances are
inputs to the illustrative overall network of interest herein. C00002 is the
concentration of the cofactor ATP. C00165 is the concentration of diacyl-
glycerol. This substance is the final product of the illustrative network
herein. INT 1, INT 2, and INT 3 are the concentrations of intermediate
substances 1, 2, and 3 (respectively).

INT 1, INT 2, and INT 3 are the concentrations of intermediate sub-
stances 1, 2, and 3 (respectively).

EC2 7 1 30, EC3 1 3 21, EC3 1 1 23, and EC3 1 1 3 are enzymes.
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Fitness Measure

Genetic programming is a probabilistic algorithm that searches the space
of compositions of the available functions and terminals under the guid-
ance of a fitness measure. In order to evaluate the fitness of an individual
program tree in the population, the program tree is converted into a di-
rected graph representing the network. The result-producing branches are
executed from left to right. The functions in a particular result-producing
branch are executed in a depth-first manner. One reactor (representing the
concentration of the substances participating in the reaction) is inserted
into the network for each chemical reaction function that is encountered
in a branch. The reactor is labeled with the reaction’s enzyme and rate. A
directed line entering the reactor is added for each of the reaction’s one or
two substrate(s). A directed line leaving the reactor is added for each of
the reaction’s one or two product(s). The first product of a reaction is se-
lected whenever a FIRST function is encountered in a branch. The second
product of a reaction is selected whenever a SECOND function is encoun-
tered in a branch.

After the network is constructed, the pathway is converted into an
electrical circuit. A SPICE netlist is then constructed to represent the elec-
trical circuit. We provide SPICE with subcircuit definitions to implement
all the chemical reaction equations. This SPICE netlist is wrapped inside
an appropriate set of SPICE commands to carry out analysis in the time
domain (described below). The electrical circuit is then simulated using
our modified version of the original 217,000-line SPICE3 simulator (Quar-
les et al., 1994). We have embedded our modified version of SPICE as a
submodule within our genetic programming system.

Each individual chemical reaction network is exposed to nine time-
domain signals (table 2) representing the time-varying concentrations of
four enzymes (EC2.7.1.30, EC3.1.3.21, EC3.1.1.23, and EC3.1.1.3) over 30
half-second time steps. None of these time series patterns are extreme.
Each has been structured so as to vary the concentrations between 0 and
2.0 in a pattern to which a living cell might conceivably be exposed.

There are a total of 270 data points. The data was obtained from the
E-CELL cell simulation model (Tomita et al., 1999; Voit, 2000).

The concentrations of all intermediate substances and the network’s
final product are 0 at time step 0.

For the runs in this paper, Glycerol (C00116), Fatty acid (C00162), and
ATP (C00002) are externally supplied at a constant rate (table 3). That is,
these values are not subject to evolutionary change during the run.

Fitness is the sum, over the 270 fitness cases, of the absolute value
of the difference between the concentration of the end product of the
individual reaction network and the observed concentration of diacyl-
glycerol (C00165). The smaller the fitness, the better. An individual that
cannot be simulated by SPICE is assigned a high penalty value of fitness
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Table 5.2 Variations in the levels of the four enzymes

Signal EC2.7.1.30 EC3.1.3.21 EC.1.1.23 EC3.1.1.3
1 Slope-Up Sawtooth Step-Down Step-Up
2 Slope-Down Step-Up Sawtooth Step-Down
3 Step-Down Slope-Up Slope-Down Step-Up
4 Step-Up Slope-Down Step-Up Step-Down
5 Sawtooth Step-Down Slope-Up Step-Up
6 Sawtooth Step-Down Knock-Out Step-Up
7 Sawtooth Knock-Out Slope-Up Step-Down
8 Knock-Out Step-Down Slope-Up Sawtooth
9 Step-Down Slope-Up Sawtooth Knock-Out

Table 5.3 Rates for three externally supplied substances

Substance Rate
Glycerol (C00116) 0.5
Fatty acid (C00162) 1.2
ATP (C00002) 1.5

(108). The number of hits is defined as the number of fitness cases (0 to
270) for which the concentration of the measured substances is within 5%
of the observed data value.

See (Koza et al., 2000b) for additional details.

Control Parameters for the Run

The population size, M, is 100,000. A generous maximum size of 500
points (for functions and terminals) was established for each result-
producing branch. The percentages of the genetic operations for each
generation is 58.5% one-offspring crossover on internal points of the pro-
gram tree other than perturbable numerical values, 6.5% one-offspring
crossover on points of the program tree other than perturbable numerical
values, 1% mutation on points of the program tree other than perturbable
numerical values, 20% mutation on perturbable numerical values, 10%
reproduction, 3% branch creation, and 2% subroutine deletion. The other
parameters are the default values that we apply to a broad range of prob-
lems (Koza et al., 1999a).

Termination

The run was manually monitored and manually terminated when the fit-
ness of many successive best-of-generation individuals appeared to have
reached a plateau.
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Implementation on Parallel Computing System

We used a home-built Beowulf-style (Sterling et al., 1999; Koza et al.,
1999a) parallel cluster computer system consisting of 1,000 350 MHz Pen-
tium II processors (each accompanied by 64 megabytes of RAM). The sys-
tem has a 350 MHz Pentium II computer as host. The processing nodes are
connected with a 100 megabit-per-second Ethernet. The processing nodes
and the host use the Linux operating system. The distributed genetic al-
gorithm with unsynchronized generations and semi-isolated subpopula-
tions was used with a subpopulation size of Q = 500 at each of D = 1,000
demes. As each processor (asynchronously) completes a generation, four
boatloads of emigrants from each subpopulation are dispatched to each of
the four toroidally adjacent processors. The 1,000 processors are hierarchi-
cally organized. There are 5× 5 = 25 high-level groups (each containing 40
processors). If the adjacent node belongs to a different group, the migra-
tion rate is 2% and emigrants are selected based on fitness. If the adjacent
node belongs to the same group, emigrants are selected randomly and the
migration rate is 5% (10% if the adjacent node is in the same physical box).

RESULTS

The population for the initial random generation (generation 0) of a run
of genetic programming is created at random. The fitness of the best
individual (Figure 5.4) from generation 0 is 86.4. This individual scores
126 hits (out of 270). Substance C00162 (fatty acid) is used as an input
substance to this metabolic pathway; however, glycerol (C00116) and ATP
(C00002) are not. Two of the four available reactions (EC 3.1.1.23 and
EC 3.1.1.3) are used. However; a third reaction (EC 3.1.3.21) consumes a
non-existent intermediate substance (INT 2) and the fourth reaction (EC
2.7.1.30) is not used at all. This metabolic pathway contains one important
topological feature, namely the bifurcation of C00162 to two different
reactions. However, this metabolic pathway does not contain any of the
other important topological features of the correct metabolic pathway.

In generation 10, the fitness of the best individual (Figure 5.5) is 64.0.
This individual scores 151 hits. This metabolic pathway is superior to the
best individual of generation 0 in that it uses both C00162 (fatty acid) and
glycerol (C00116) as external inputs. However, this metabolic pathway
does not use ATP (C00002). This metabolic pathway is also defective in
that it contains only two of the four reactions.

In generation 25, the fitness of the best individual (figure 5.6) is 14.3.
This individual scores 224 hits. This metabolic pathway contains all four
of the available reactions. This metabolic pathway is more complex than
previous best-of-generation individuals in that it contains two topologi-
cal features not previously seen. First, this metabolic pathway contains an
internal feedback loop in which one substance (glycerol C00116) is con-
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sumed by one reaction (catalyzed by enzyme EC 2.7.1.30), produced by
another reaction (catalyzed by enzyme EC 3.1.3.21), and then supplied as
a substrate to the first reaction. Second, this metabolic pathway contains
a place where there is an addition of quantities of one substance. Specifi-
cally, glycerol (C00116) comes from the reaction catalyzed by enzyme EC
3.1.3.21 and is also externally supplied. This metabolic pathway also con-
tains two substances (C00116 and C00162) where a substance is bifurcated
to two different reactions.

d[AT P]

dt
= 1.5− 1.69[C00116][C00002][EC2.7.1.30] (5.1)

In generation 120, the fitness of the best individual (Figure 5.7) is 2.33.
The cofactor ATP (C00002) appears as an input to this metabolic pathway.
This pathway has the same topology as the correct network. However,
the numerical values (sizing) are not yet correct and this individual scores
only 255 hits.

The best-of-run individual (Figure 5.1) appears in generation 225. Its
fitness is almost zero (0.054). This individual scores 270 hits (out of 270).
In addition to having the same topology as the correct metabolic pathway,
the rate constants of three of the four reactions match the correct rates (to
three significant digits) while the fourth rate differs by only about 2% from
the correct rate (i.e., the rate of EC 3.1.3.21 is 1.17 compared with 1.19 for
the correct network).

In the best-of-run network from generation 225, the rate of production
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of the network’s final product, diacyl-glycerol (C00165), is given by

d[C00165]

dt
= 1.45[C00162][ I NT2][EC3.1.1.3] (5.2)

Note that genetic programming has correctly determined that the re-
action that produces the network’s final product diacyl-glycerol (C00165)
has two substrates and one product; it has correctly identified enzyme
EC3.1.1.3 as the catalyst for this final reaction; it has correctly determined
the rate of this final reaction as 1.45; and it has correctly identified the
externally supplied substance, fatty acid (C00162), as one of the two sub-
strates for this final reaction. None of this information was supplied a pri-
ori to genetic programming.

Of course, genetic programming has no way of knowing that bio-
chemists call the intermediate substance (INT 2) by the name Monoacyl-
glycerol (C01885) (as indicated in Figure 5.1). It has, however, correctly
determined that an intermediate substance is needed as one of the two
substrates of the network’s final reaction and that this intermediate sub-
stance should, in turn, be produced by a particular other reaction (de-
scribed next).

In the best-of-run network from generation 225, the rate of production
and consumption of the intermediate substance INT 2 is given by
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d[I NT2]

dt
= 1.95[C00162][C00116][EC3.1.1.23]

−1.45[C00162][ I NT2][EC3.1.1.3] (5.3)

Again, genetic programming has correctly determined that the reac-
tion that produces the intermediate substance (INT 2) has two substrates
and one product; it has correctly identified enzyme EC3.1.1.23 as the cat-
alyst for this reaction; it has correctly determined the rate of this reaction
as 1.95; it has correctly identified two externally supplied substances, fatty
acid (C00162) and glycerol (C00116), as the two substrates for this reaction.

In the best-of-run network from generation 225, the rate of production
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and consumption of the intermediate substance INT 1 in the internal
feedback loop is given by

d[I NT1]

dt
= 1.69[C00116][C00002][EC2.7.1.30]−1.17[I NT1][EC3.1.3.21]

(5.4)

Note that the numerical rate constant of 1.17 in the above equation is
slightly different from the correct rate (as shown in Figure 5.1).

Here again, genetic programming has correctly determined that the
reaction that produces the intermediate substance (INT 1) has two sub-
strates and one product; it has correctly identified enzyme EC2.7.1.30 as
the catalyst for this reaction; it has almost correctly determined the rate of
this reaction to be 1.17 (whereas the correct rate is 1.19, as shown in Figure
5.1); it has correctly identified two externally supplied substances, glyc-
erol (C00116) and the cofactor ATP (C00002), as the two substrates for this
reaction.

Genetic programming has no way of knowing that biochemists call
the intermediate substance (INT 1) by the name sn-Glycerol-3-Phosphate
(C00093) (as indicated in Figure 5.1). Genetic programming has, how-
ever, correctly determined that an intermediate substance is needed as
the single substrate of the reaction catalyzed by Glycerol-1-phosphatase
(EC3.1.3.21) and that this intermediate substance should, in turn, be pro-
duced by the reaction catalyzed by Glycerol kinase (EC2.7.1.30).

In the best-of-run network from generation 225, the rate of supply and
consumption of ATP (C00002) is

d[AT P]

dt
= 1.5− 1.69[C00116][C00002][EC2.7.1.30] (5.5)

The rate of supply and consumption of fatty acid (C00162) in the best-
of-run network is

d[C00162]

dt
= 1.2− 1.95[C00162][C00116][EC3.1.1.23]

−1.45[C00162][ I NT2][EC3.1.1.3] (5.6)

The rate of supply, consumption, and production of glycerol (C00116)
in the best-of-run network is

d[C00116]

dt
= 0.5+ 1.17[I NT1][EC3.1.3.21]

−1.69[C00116][C00002][EC2.7.1.30]

−1.95[C00162][C00116][EC3.1.1.23] (5.7)
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Again, note that the numerical rate constant of 1.17 in the above equa-
tion is slightly different from the correct rate (as shown in Figure 5.1).

Notice the internal feedback loop in which C00116 is both consumed
and produced.

In summary, driven only by the time-domain concentration values of
the final product C00165 (diacyl-glycerol), genetic programming created
both the topology and sizing for an entire metabolic pathway whose time-
domain behavior closely matches that of the naturally occurring pathway,
including

• the total number of reactions in the network,
• the number of substrate(s) consumed by each reaction,
• the number of product(s) produced by each reaction,
• an indication of which enzyme (if any) acts as a catalyst for each reac-
tion,
• the pathways supplying the substrate(s) (either from external sources
or other reactions in the network) to each reaction,
• the pathways dispersing each reaction’s product(s) (either to other re-
actions or external outputs),
• the number of intermediate substances in the network,
• emergent topological features such as

–internal feedback loops,

–bifurcation points,

–accumulation points, and

• numerical rates (sizing) for all reactions.

Genetic programming did this using only the 270 time-domain con-
centration values of the final product C00165 (diacyl-glycerol).

For additional details, see (Koza et al., 2000b).
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CONCLUSION

Genetic programming automatically created a metabolic pathway involv-
ing four chemical reactions that took in glycerol and fatty acid as input,
used ATP as a cofactor, and produced diacyl-glycerol as its final prod-
uct. The metabolic pathway was created from 270 data points. The auto-
matically created metabolic pathway contains three key topological fea-
tures, including an internal feedback loop, a bifurcation point where one
substance is distributed to two different reactions, and an accumulation
point where one substance is accumulated from two sources. This exam-
ple demonstrates the principle that it is possible to reverse engineer a
metabolic pathway using only observed data for the concentration values
of the pathway’s final product.

FUTUREWORK

Numerous directions for future work are suggested by the work described
herein.

Improved Program Tree Representation

Although the representation used herein yielded the desired results, the
authors believe that alternative representations for the program tree (i.e.,
the function set, terminal set, and constrained syntactic structure) would
significantly improve efficiency of the search. The authors are currently
contemplating a developmental approach.

Minimum Amount of Data Needed

The work in this chapter has not addressed the important question of the
minimal number of data points necessary to automatically create a correct
metabolic pathway or the question whether the requisite amount of data
is available in practical situations.

Opportunities to Use Knowledge

There are numerous opportunities to incorporate and exploit preexisting
knowledge about chemistry and biology in the application of the methods
described in this chapter.

The chemical reactions functions used in this chapter (i.e., CR 1 1,
CR 1 2, CR 2 1, CR 2 2) are intentionally open-ended in the sense that
they permit great flexibility and variety in the networks that can be cre-
ated by the evolutionary process. However, there is a price, in terms of
efficiency of the run, that is paid for this flexibility and generality. Alter-
native chemical reaction functions that advantageously incorporate pre-
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existing knowledge might be defined and included in the function set.
For example, a particular substrate, a particular product, or both might

be made part of the definition of a new chemical reaction function. For ex-
ample, a variant of the CR 2 2 chemical reaction function might be defined
in which ATP is hard-wired as one of the substrates and ADP is hard-
wired as one of products. This new chemical reaction function would have
only one free substrate argument and one free product argument. This
new chemical reaction function might be included in the function set in
addition to (and conceivably in lieu of) the more general and open-ended
CR 2 2 chemical reaction function. This new chemical reaction function
would exploit the well-known fact that there are a number of biologically
important and biologically common reactions that employ ATP as one of
its two substrates and produce ADP as one of its products.

Similarly, a particular enzyme might be made part of the definition of a
new chemical reaction function. That is, a chemical reaction function with
k substrates and j products might be defined in which a particular enzyme
is hard-wired. This new chemical reaction function would not possess an
argument for specifying the enzyme. This new chemical reaction function
would exploit knowledge of the arity of reactions catalyzed by a particular
enzyme.

Also, a known rate might be made part of the definition of a new
chemical reaction function. This approach might be particularly useful in
combination with other alternatives mentioned above.

Designing Alternative Metabolisms

Mittenthal et al. (1998) have presented a method for generating alterna-
tive biochemical pathways. They illustrated their method by generating
diverse alternatives to the non-oxidative stage of the pentose phosphate
pathway. They observed that the naturally occurring pathway is espe-
cially favorable in several respects to the alternatives that they generated.
Specifically, the naturally occurring pathway has a comparatively small
number of steps, does not use any reducing or oxidizing compounds, re-
quires only one ATP in one direction of flux, and does not depend on
recurrent inputs.

Mendes and Kell (1998) have also suggested that novel metabolic
pathways might be artificially constructed.

It would appear that genetic programming could also be used to gen-
erate diverse alternatives to naturally occurring pathways. Conceivably,
realizable alternative metabolisms might emerge from such evolutionary
runs.

In one approach, the fitness measure in a run of genetic programming
might be oriented toward duplicating the final output(s) of the naturally
occurring pathway (as was done in this chapter). However, instead of
harvesting only the individual from the population with the very best
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value of fitness, individuals that achieve a slightly poorer value of fitness
could be examined to see if they simultaneously possess other desirable
characteristics.

In a second approach, the fitness measure in a run of genetic program-
ming might be specifically oriented to factors such as the pathway’s effi-
ciency or use or non-use of certain specified reactants or enzymes.

In a third approach, the fitness measure in a run of genetic program-
ming might be specifically oriented toward achieving novelty. Genetic
programming has previously been used as an invention machine by em-
ploying a two-part fitness measure that incorporates both the degree to
which an individual in the population satisfies the certain performance
requirements and the degree to which the individual does not possess the
key characteristics of previously known solutions (Koza et al., 1999a,c).
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6 The ERATO Systems Biology Workbench:
An Integrated Environment for Multiscale
and Multitheoretic Simulations in Systems
Biology

Michael Hucka, Andrew Finney, Herbert Sauro,
Hamid Bolouri, John Doyle, and Hiroaki Kitano

Over the years, a variety of biochemical network modeling packages have
been developed and used by researchers in biology. No single package
currently answers all the needs of the biology community; nor is one likely
to do so in the near future, because the range of tools needed is vast and
new techniques are emerging too rapidly. It seems unavoidable that, for
the foreseeable future, systems biology researchers are likely to continue
using multiple packages to carry out their work.

In this chapter, we describe the ERATO Systems Biology Workbench
(SBW) and the Systems Biology Markup Language (SBML), two related ef-
forts directed at the problems of software package interoperability. The
goal of the SBW project is to create an integrated, easy-to-use software
environment that enables sharing of models and resources between simu-
lation and analysis tools for systems biology. SBW uses a modular, plug-in
architecture that permits easy introduction of new components. SBML is
a proposed standard XML-based language for representing models com-
municated between software packages; it is used as the format of models
communicated between components in SBW.

INTRODUCTION

The goal of the ERATO Systems BiologyWorkbench (SBW) project is to create
an integrated, easy-to-use software environment that enables sharing of
models and resources between simulation and analysis tools for systems
biology. Our initial focus is on achieving interoperability between seven
leading simulations tools: BioSpice (Arkin, 2001),DBSolve (Goryanin, 2001;
Goryanin et al., 1999), E-Cell (Tomita et al., 1999, 2001), Gepasi (Mendes,
1997, 2001), Jarnac (Sauro, 1991; Sauro and Fell, 2000), StochSim (Bray et
al., 2001; Morton-Firth and Bray, 1998), and Virtual Cell (Schaff et al., 2000,
2001). Our long-term goal is to develop a flexible and adaptable environ-



ment that provides (1) the ability to interact seamlessly with a variety of
software tools that implement different approaches to modeling, param-
eter analysis, and other related tasks, and (2) the ability to interact with
biologically-oriented databases containing data, models and other rele-
vant information.

In the sections that follow, we describe the Systems Biology Work-
bench project, including our motivations and approach, and we summa-
rize our current design for the Workbench software environment. We also
discuss the Systems Biology Markup Language (SBML), a model description
language that serves as the common substrate for communications be-
tween components in the Workbench. We close by summarizing the cur-
rent status of the project and our future plans.

Motivations for the Project

The staggering volume of data now emerging from molecular biotechnol-
ogy leave little doubt that extensive computer-based modeling, simula-
tion and analysis will be critical to understanding and interpreting the
data (e.g., Abbott, 1999; Gilman, 2000; Popel and Winslow, 1998; Smaglik,
2000). This has lead to an explosion in the development of computer tools
by research groups across the world. Example application areas include
the following:

• Filtering and preparing data (e.g., gene expression micro- and macro-
array image processing and clustering/outlier identification), as well as
performing regression and pattern-extraction;
• Database support, including remote database access and local data stor-
age and management (e.g., techniques for combining gene expression data
with analysis of gene regulatory motifs);
• Model definition using graphical model capture and/or mathematical
description languages, as well as model preprocessing and translation
(e.g., capturing and describing the three-dimensional structure of sub-
cellular structures, and their change over time);
• Model computation and analysis, including parameter optimization,
bifurcation/sensitivity analysis, diffusion/transport/buffering in com-
plex 3-D structures, mixed stochastic-deterministic systems, differential-
algebraic systems, qualitative-qualitative inference, and so on; and
• Data visualization, with support for examining multidimensional data,
large data sets, and interactive steering of ongoing simulations.

This explosive rate of progress in tool development is exciting, but the
rapid growth of the field has been accompanied by problems and pressing
needs. One problem is that simulation models and results often cannot be
compared, shared or re-used directly because the tools developed by dif-
ferent groups often are not compatible with each other. As the field of sys-
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tems biology matures, researchers increasingly need to communicate their
results as computational models rather than box-and-arrow diagrams. But
they also need to reuse each other’s published and curated models as li-
brary elements in order to succeed with large-scale efforts (e.g., the Al-
liance for Cellular Signaling, Gilman, 2000; Smaglik, 2000). These needs
require that models implemented in one software package be portable to
other software packages, to maximize public understanding and to allow
building up libraries of curated computational models.

A second problem is that software developers often end up duplicat-
ing each other’s efforts when implementing different packages. The rea-
son is that individual software tools typically are designed initially to ad-
dress a specific set of issues, reflecting the expertise and preferences of the
originating group. As a result, most packages have niche strengths which
are different from, but complementary to, the strengths of other packages.
But because the packages are separate systems, developers end up having
to re-invent and implement much general functionality needed by every
simulation/analysis tool. The result is duplication of effort in developing
software infrastructure.

No single package currently answers all the needs of the emerging
systems biology community, despite an emphasis by many developers to
make their software tools omnipotent. Nor is such a scenario likely: the
range of tools needed is vast, and new techniques requiring new tools
are emerging far more rapidly than the rate at which any single package
may be developed. For the foreseeable future, then, systems biology re-
searchers are likely to continue using multiple packages to carry out their
work. The best we can do is to develop ways to ease sharing and commu-
nication between such packages now and in the future.

These considerations lead us to believe that there is an increasingly
urgent need to develop common standards and mechanisms for sharing
resources within the field of systems biology. We hope to answer this need
through the ERATO Systems Biology Workbench project.

THE SYSTEMS BIOLOGYMARKUP LANGUAGE

The current inability to exchange models between simulation/analysis
tools has its roots in the lack of a common format for describing models.
We sought to address this problem from the very beginning of the project
by developing an open, extensible, model representation language.

The Systems Biology Workbench project was conceived at an ERATO-
sponsored workshop held at the California Institute of Technology, USA,
in December, 1999. The first meeting of all the collaborators at The First
Workshop on Software Platforms for Molecular Biology was held at the same
location in April, 2000. The participants collectively decided to begin by
developing a common, XML-based (Bosak and Bray, 1999), declarative
language for representing models. A draft version of this Systems Biology
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Markup Language (SBML) was developed by the Caltech ERATO team
and delivered to all collaborators in August, 2000. This draft version un-
derwent extensive discussion over mailing lists and then again during The
Second Workshop on Software Platforms for Molecular Biology held in Tokyo,
Japan, November 2000. A revised version of SBML was issued by the Cal-
tech ERATO team in December, 2000, and after further discussions over
mailing lists and in meetings, a final version of the base-level definition of
SBML was released publicly in March, 2001 (Hucka et al., 2001).

The Form of the Language

SBML Level 1 is the result of merging modeling-language features from
the seven tools mentioned in the introduction (BioSpice, DBSolve, E-Cell,
Gepasi, Jarnac, StochSim, and Virtual Cell). This base level definition of
the language supports non-spatial biochemical models and the kinds of
operations that are possible in these analysis/simulation tools. A num-
ber of potentially desirable features were intentionally omitted from the
base language definition. Subsequent releases of SBML (termed levels) will
add additional structures and facilities currently missing from Level 1.
By freezing sets of features in SBML definitions at incremental levels,
we hope to provide the community with stable standards to which soft-
ware authors can design to, while at the same time allowing the simula-
tion community to gain experience with the language definitions before
introducing new elements. At the time of this writing, we are actively
developing SBML Level 2, which is likely to include the ability to repre-
sent submodels, arrays and array connectivity, database references, three-
dimensional geometry definition, and other features.

X0 k1X0−−→ S1

S1 k2S1−−→ X1

S1 k3S1−−→ X2

Shown at right is an example of a simple, hypothetical
biochemical network that can be represented in SBML.
Broken down into its constituents, this model contains a
number of components: reactant species, product species,
reactions, rate laws, and parameters in the rate laws. To
analyze or simulate this network, additional components
must be made explicit, including compartments for the
species and units on the various quantities. The top level of an SBML
model definition simply consists of lists of these components:

beginning of model definition
list of unit definitions (optional)
list of compartments
list of species
list of parameters (optional)
list of rules (optional)
list of reactions

end of model definition
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The meaning of each component is as follows:

Unit definition: A name for a unit used in the expression of quantities in a
model. Units may be supplied in a number of contexts in an SBML model,
and it is convenient to have a facility for both setting default units and for
allowing combinations of units to be given abbreviated names.
Compartment: A container of finite volume for substances. In SBML

Level 1, a compartment is primarily a topological structure with a vol-
ume but no geometric qualities.
Specie: A substance or entity that takes part in a reaction. Some example

species are ions such as Ca2++ and molecules such as glucose or ATP. The
primary qualities associated with a specie in SBML Level 1 are its initial
amount and the compartment in which it is located.
Parameter: A quantity that has a symbolic name. SBML Level 1 provides

the ability to define parameters that are global to a model, as well as
parameters that are local to a single reaction.
Reaction: A statement describing some transformation, transport or bind-

ing process that can change the amount of one or more species. For ex-
ample, a reaction may describe how certain entities (reactants) are trans-
formed into certain other entities (products). Reactions have associated
rate laws describing how quickly they take place.
Rule: In SBML, a mathematical expression that is added to the differential

equations constructed from the set of reactions, and can be used to set
parameter values, establish constraints between quantities, etc.

A software package can read in a model expressed in SBML and trans-
late it into its own internal format for model analysis. For instance, a pack-
age might provide the ability to simulate a model, by constructing a set of
differential equations representing the network and then performing nu-
merical time integration on the equations to explore the model’s dynamic
behavior. The output of the simulation might consist of plots of various
quantities in the model as they change over time.

SBML allows models of arbitrary complexity to be represented. We
present a simple, illustrative example of using SBML in Appendix A, but
much more elaborate models are possible. The complete specification of
SBML Level 1 is available from the project’s World Wide Web site (http:
//www.cds.caltech.edu/erato/).

Relationships to Other Efforts

There are a number of ongoing efforts with similar goals as those of SBML.
Many of them are oriented more specifically toward describing protein
sequences, genes and related elements for database storage and search.
These are generally not intended to be computational models, in the sense
that they do not describe entities and behavioral rules in such a way that
a simulation package could “run” the models.
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The effort closest in spirit to SBML is CellML
TM

(CellML Project, 2001).
CellML is an XML-based markup language designed for storing and ex-
changing computer-based biological models. It includes facilities for rep-
resenting model structure, mathematics and additional information for
database storage and search. Models are described in terms of networks
of connections between discrete components; a component is a functional
unit that may correspond to a physical compartment or simply a con-
venient modeling abstraction. Components contain variables and con-
nections contain mappings between the variables of connected compo-
nents. CellML provides facilities for grouping components and specify-
ing the kinds of relationships that may exist between components. It uses
MathML (Ausbrooks et al., 2001) for expressing mathematical relation-
ships and provides the ability to use ECMAScript (formerly known as
JavaScript; ECMA, 1999) to define functions.

The constructs in CellML tend to be at a more abstract and general
level than those in SBML Level 1, and it provides somewhat more general
capabilities. By contrast, SBML is closer to the internal object model used
in model analysis software. Because SBML Level 1 is being developed in
the context of interacting with a number of existing simulation packages,
it is a more concrete language than CellML and may be better suited to its
purpose of enabling interoperability with existing simulation tools. How-
ever, CellML offers viable alternative ideas and the developers of SBML
and CellML are actively engaged in ensuring that the two representations
can be translated between each other.

THE SYSTEMS BIOLOGYWORKBENCH

In this section, we describe how we approached the development of the
Systems Biology Workbench from both philosophical and technical stand-
points; we also summarize the overall architecture of the system and ex-
plain how it enables integration and sharing of software resources.

Driving Principles

The Systems Biology Workbench is primarily a system for integrating re-
sources. It provides infrastructure that can be used to interface to software
components and enable them to communicate with each other. The com-
ponents in this case may be simulation codes, analysis tools, user inter-
faces, database interfaces, script language interpreters, or in fact any piece
of software that conforms to a certain well-defined interface.

We knew from the outset that the success of the Workbench would be
contingent on contributors benefitting from sharing resources through the
system. For this reason, we made three commitments toward this goal:
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• The Systems Biology Workbench software will be made publicly and
freely available under open-source licensing (O’Reilly, 1999; Raymond,
1999). The agency funding the development of the Workbench (the Japan
Science and Technology Corporation) has formally agreed that all SBW
code can be placed under open-source terms. At the same time, the li-
cense terms will not force contributors to apply the same copying and dis-
tribution terms to their contributed software—developers will be free to
make their components available under license terms that best suit them.
They may choose to make a component available under the same open-
source license, in which case it may be packaged together with the Sys-
tems Biology Workbench software distribution; however, there is nothing
preventing an author from creating an SBW-compatible component that is
closed-source and distributed privately.
• The Workbench architecture is designed to be symmetric with respect to
facilities made available to components. All resources available through
the Workbench system are equally available to all components, and no
single component has a controlling share. All contributors thereby benefit
equally by developing software for the Workbench.
• The direct interface between a software component and the Systems Bi-
ology Workbench is a specific application programming interface (API).
The component’s authors may chose to implement this API directly and
publish the details of the operations provided by the component. Alterna-
tively, they may enter into a formal agreement with us (the authors of the
Workbench) in which they reveal only to us their component’s API, and
we will write an interface between the Workbench and this API. The latter
alternative allows contributors to retain maximum confidentiality regard-
ing their component, yet still make the component available (in binary
executable form) for users of the Workbench.

The Overall Architecture of the Workbench

Although our initial focus is on enabling interaction between the seven
simulation/analysis packages already mentioned, we are equally inter-
ested in creating a flexible architecture that can support future develop-
ments and new tools. We have approached this by using a combination
of three key features: (1) a framework divided into layers, (2) a highly
modular, extensible structure, and (3) inter-component communications
facilities based on message-passing.

Layered Framework

We sought to maximize the reusability of the software that we developed
for the Workbench by dividing the Workbench infrastructure into two
layers: the Systems Biology Workbench itself, and a lower-level substrate
called the Biological Modeling Framework (BMF). The latter is a general
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software framework that can be used in developing a variety of biological
modeling and analysis software applications. It not directly tied to the
current architecture of SBW, allowing us the freedom to evolve and change
SBW in the future while still maintaining a relatively stable foundation.

BMF provides basic scaffolding supporting a modular, extensible ap-
plication architecture (see below), as well as a set of useful software com-
ponents that can be used as black boxes in constructing a system (cf. Fayad
et al., 1999). Other projects should be able to start with BMF, add their
own domain- and task-specific elements, and thereby implement a sys-
tem specialized for other purposes. This is how the neuroscience-oriented
Modeler’s Workspace (Hucka et al, 2000) is being implemented. Compu-
tational biologists and other users do not need to be aware of the existence
of BMF—it is scaffolding used by the developers of SBW and other tools,
and not a user-level construct.

SBW is a particular collection of application-specific components lay-
ered on top of BMF. These collectively implement what users experience
as the “Systems Biology Workbench”. Some components add functionality
supporting the overall operation of the Workbench, such as the message-
passing communications facility; other components implement the inter-
faces to the specific simulation/analysis tools made available in the Work-
bench. Figure 6.1 illustrates the overall organization of the layers.
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Figure 6.1 The Systems Biology Workbench (SBW) is a collection of software
components layered on top of a simple plug-in architecture called the Biological
Modeling Framework (BMF).
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Highly Modular, Extensible Architecture

The Biological Modeling Framework layer that underlies SBW is imple-
mented in Java and provides (1) support for managing pluggable com-
ponents (“plug-ins”) and (2) a collection of basic components (such as an
XML Schema-aware parser, file utilities, basic plotting and graphing utili-
ties, etc.) that are useful when implementing the typical kinds of applica-
tions for which BMF is intended.

The kinds of application-specific plug-ins that comprise SBW can gen-
erally be grouped by their purposes: user interfaces, simulator/analyzer
interfaces, scripting language interfaces, and database interfaces. Other
kinds are possible, but these are the primary application-specific plug-
in types that we foresee being developed. There can be any number of
plug-ins in a given system, subject to the usual limitations on computer
resources such as memory. Each plug-in needs to conform to certain min-
imal interface requirements dictated by the framework, discussed further
below. A plug-in can make use of any public services provided by BMF,
the core plug-ins, and application-specific plug-ins.

By virtue of the software environment provided by the Java 2 Plat-
form (Flanagan, 1999; Gosling et al., 1996), plug-ins can be loaded dynam-
ically, without recompiling or even necessarily restarting a running appli-
cation. This can be used to great advantage for a flexible and powerful
environment. For example, an application could be designed to be smart
about how it handles data types, loading specialized plug-ins to allow a
user to interact with particular data objects on an as-needed basis. If the
user does not already have a copy of a certain plug-in stored on the local
disk, the plug-in could be obtained over the Internet, much like current-
generation Web browsers can load plug-ins on demand. In this manner,
plug-ins for tasks such as displaying specific data types or accessing third-
party remote databases could be easily distributed to users.

Message-Passing for Inter-Component Communications

One of the challenges in developing a modular system, especially one that
allows incremental addition and change by different developers, is de-
signing appropriate interfaces between components. Knowledge of an el-
ement’s interface necessarily becomes encoded in its structure; otherwise,
component A would not know how to communicate with component B.
Many frameworks are designed around a hierarchy of object classes and
interfaces; this lets them provide a rich selection of features. However, for
this project, class hierarchies have two important disadvantages:

• Methods and calling conventions for accessing different objects become
scattered throughout the structure of each component in the system. The
effects of changing an interface are not localized in client code: changing
the interface of a fundamental object may require rewriting code in many
different locations in every other component that uses it.
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• The task of creating interfaces to components written in other program-
ming languages is more complex. If the component is a library, the foreign-
function bridge (whether it is implemented using the Java Native Interface
[JNI] or other) must expose all of the methods provided by the compo-
nent’s interface, which requires substantial programming effort and sig-
nificant maintenance. Similarly, if the component is a stand-alone appli-
cation, the mechanism used to communicate with it must provide access
to all or most of the classes and methods provided by the component’s
interface. CORBA (Object Management Group, 2001; Seetharman, 1998;
Vinoski, 1997) is one technology that could be used to cope with these is-
sues, but we decided to avoid requiring its use in SBW because we feared
its complexity would be too daunting to potential contributors.

We began developing SBW using the common approach of design-
ing object class hierarchies representing different functions and simu-
lation/analysis capabilities, but soon decided that the problems above
would become too onerous. We chose instead to base inter-component
communications on passing messages via byte streams.

In this approach, each component or component wrapper needs to
expose a simple programmatic interface, consisting of only a handful of
methods. The main method in this interface (PluginReceive) is the entry
point for exchanging messages. Other methods in the interface provide
a way for starting the execution of the component (PluginStart), and for
obtaining its name and a list of strings describing the kinds of capabilities
it implements (PluginRegistrationInformation). The latter can be used
by other components to discover programmatically what services a new
component provides.

A message in this framework is a stream of bytes that encodes a service
identifier and a list of arguments. The service identifier is determined
from the list of services advertised by the component. The arguments are
determined by the particular service. For example, a command to perform
steady-state analysis on a biochemical network model would require a
message that encodes the model and a list of parameters on the kind of
analysis desired. The result passed back by the component would be in
the form of another message.

The representation of the data in a message is encoded according
to a specific scheme. The scheme in SBW allows for the most common
data types to be packaged into a message. Each element in a message
is preceded by a byte that identifies its data type. The types currently
supported include character strings, integers, double-sized floating-point
numbers, arrays of homogeneous elements, and lists of heterogeneous
elements.

How does this approach help cope with the two problems listed
above? At first glance, it may seem that this approach merely hides func-
tionality behind a simple façade. After all, changing the operation of a
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component still requires other components to be changed as well, for ex-
ample to compose and parse messages differently as needed. However,
in this approach, the effects of actual interface changes are more localized,
typically affecting fewer objects in other components.

The message-passing approach also simplifies the task of interfacing
to components implemented in different programming languages. Rather
than have to provide native-code interfaces (say, using Java JNI) to ev-
ery method in a large class hierarchy, only a few methods must be im-
plemented. Likewise, it is much simpler to link components that run as
separate processes or on remote computers. A simple message-passing
stream is easily implemented through a TCP/IP socket interface, the sim-
plest and most familiar networking facility available nearly universally on
almost every computer platform.

The current message-passing scheme can be used to exchange mes-
sages encoded in XML, which makes this approach similar to XML-
RPC (Winer, 1999) and SOAP (Box et al., 2000). However, our message
protocol allows other data types to be encoded as well. Using XML ex-
clusively would require binary data to be encoded into, and unencoded
from, a textual representation, which would impact performance and po-
tentially affect floating-point accuracy. We therefore designed the protocol
to allow binary data as well as XML to be exchanged.

Advantages of an Extensible Framework Approach

The modular framework approach is pervasive throughout the design of
the system. Both the underlying BMF layer and an application layer such
as SBW are implemented as plug-ins attached to a small core. Nearly all of
the functionality of both layers are determined by the plug-ins themselves.

The primary benefits of using a modular framework approach accrue
to software developers. For a developer who would like to build upon
BMF and create a new system, or take an existing system such as SBW and
create enhancements or specialized components, the following are some
of the benefits (Fayad et al., 1999):

• Modularity. A framework is composed of modules, each of which en-
capsulates implementation details behind a stable interface. Design and
implementation changes to individual modules are less likely to have an
impact on other modules or the overall system.
• Reusability. A framework offers a set of elements that represent common
solutions to recurring problems. Reusing the elements saves design and
development time.
• Extensibility. Extensibility is designed into a framework by providing
well-defined ways to add new modules and extend existing modules. In
its most essential form, a framework is a substrate for bringing software
modules together.
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Although frameworks were invented by software developers to sim-
plify the implementation of complex software, users also benefit when a
system is based on a framework approach. For a biologist or other user
who would like to employ a tool built on top of BMF and SBW, there are
two primary gains:

• Control. Users are given greater control over the composition of a
framework-based system than a system based on a more traditional ar-
chitecture. They can use just those modules that they need, and they have
the freedom to chose different implementations of the same functionality,
or even develop their own implementations, all without altering the rest
of the system.
• Reusability. A successful framework may be reused to implement other
domain-specific tools, reducing the burden on a user by allowing them to
carry over their experiences involving the common parts.

Motivations for Using Java

We chose Java as the implementation language for the underlying BMF
layer of SBW because it offers a number of attractive features and meets
several objectives. In particular, Java arguably provides one of the most
portable cross-platform environments currently available. Java also pro-
vides a built-in mechanism for dynamic loading of code, simplifying the
implementation of an architecture oriented around plug-ins. Finally, Java
provides a rich platform for development, with such things as remote in-
vocation facilities and GUI widgets, on all supported platforms.

It is worth noting that plug-ins for the system are not required to be
written in Java. Java provides mechanisms for interfacing to software writ-
ten in other languages, through the Java Native Interface. Thus, although
Java is used to implement the core of the system, plug-ins can be written
in other languages and incorporated into an application built on top of the
framework.

Although Java has received negative publicity in the past with respect
to performance (Tyma, 1998), we do not feel that choosing Java will have a
significant impact on run-time performance. The reason is that the core of
the Systems Biology Workbench is a thin layer and most of the execution
time in an application is spent within application-specific plug-ins. Those
can be written in other languages if performance becomes an issue.

SUMMARY AND STATUS

The aim of the Systems Biology Workbench project is to create a modular,
open software environment that enables different simulation and analysis
tools to be used together for systems biology research. As part of this
effort, we have also developed a model description language, the Systems
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Biology Markup Language, that can be used to represent models in a form
independent of any specific simulation/analysis tool. SBML is based on
XML for maximal flexibility, interchangeability, and future compatibility.

Availability

We will make the software available under open-source terms from the
Caltech ERATO team’s web site, http://www.cds.caltech.edu/erato/. At
the time of this writing, we are in the process of developing and imple-
menting the core functionality of the Systems Biology Workbench, along
with an initial set of plug-ins. The aim of this effort is to demonstrate the
concepts described above and provide a medium through which we will
develop and refine the APIs. We expect to make this initial implementa-
tion available in the first half of 2001, and to release the first full version of
the Workbench by the end of 2001.

Future Plans

The final specification for SBML Level 1 was released in March, 2001. The
relevant documents are available from the Caltech ERATO team’s web
site, mentioned above. SBML Level 2 is currently under development, and
we anticipate making a preliminary specification available later in the year
2001. We will publish the specification documents on the web site as they
become available.
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APPENDIX

A EXAMPLE OF AMODEL ENCODED IN XML USING SBML

Consider the following hypothetical branched system:

X0 k1X0−−→ S1

S1 k2S1−−→ X1

S1 k3S1−−→ X2

The following is the main portion of an XML document that encodes the
model shown above:

<sbml level="1" version="1">
<model name="Branched">

<notes>
<body xmlns="http://www.w3.org/1999/xhtml">

<p>Simple branched system.</p>
<p>reaction-1: X0 -> S1; k1*X0;</p>
<p>reaction-2: S1 -> X1; k2*S1;</p>
<p>reaction-3: S1 -> X2; k3*S1;</p>

</body>
</notes>
<listOfCompartments>

<compartment name="A" volume="1"/>
</listOfCompartments>
<listOfSpecies>

<specie name="S1" initialAmount="0" compartment="A"
boundaryCondition="false"/>

<specie name="X0" initialAmount="0" compartment="A"
boundaryCondition="true"/>

<specie name="X1" initialAmount="0" compartment="A"
boundaryCondition="true"/>

<specie name="X2" initialAmount="0" compartment="A"
boundaryCondition="true"/>

</listOfSpecies>
<listOfReactions>

<reaction name="reaction_1" reversible="false">
<listOfReactants>

<specieReference specie="X0"
stoichiometry="1"/>

</listOfReactants>
<listOfProducts>

<specieReference specie="S1"
stoichiometry="1"/>

</listOfProducts>
<kineticLaw formula="k1 * X0">

<listOfParameters>
<parameter name="k1" value="0"/>

</listOfParameters>
</kineticLaw>

</reaction>
<reaction name="reaction_2" reversible="false">

<listOfReactants>
<specieReference specie="S1"

stoichiometry="1"/>
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</listOfReactants>
<listOfProducts>

<specieReference specie="X1"
stoichiometry="1"/>

</listOfProducts>
<kineticLaw formula="k2 * S1">

<listOfParameters>
<parameter name="k2" value="0"/>

</listOfParameters>
</kineticLaw>

</reaction>
<reaction name="reaction_3" reversible="false">

<listOfReactants>
<specieReference specie="S1"

stoichiometry="1"/>
</listOfReactants>
<listOfProducts>

<specieReference specie="X2"
stoichiometry="1"/>

</listOfProducts>
<kineticLaw formula="k3 * S1">

<listOfParameters>
<parameter name="k3" value="0"/>

</listOfParameters>
</kineticLaw>

</reaction>
</listOfReactions>

</model>
</sbml>

The XML encoding shown above is quite straightforward. The outer-
most container is a tag, smbl, that identifies the contents as being systems
biology markup language. The attributes level and version indicate that
the content is formatted according to version 1 of the Level 1 definition
of SBML. The version attribute is present in case SBML Level 1 must be
revised in the future to correct errors.

The next-inner container is a single model element that serves as the
highest-level object in the model. The model has a name, “Branched”. The
model contains one compartment, four species, and three reactions. The
elements in the listOfReactants and listOfProducts in each reaction refer
to the names of elements listed in the listOfSpecies. The correspondences
between the various elements should be fairly obvious.

The model includes a notes annotation that summarizes the model in
text form, with formatting based on XHTML. This might be useful for a
software package that is able to read such annotations and render them in
HTML.
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7 Automatic Model Generation for Signal
Transduction with Applications to
MAP-Kinase Pathways

Bruce E. Shapiro, Andre Levchenko, and Eric
Mjolsness

We describe a general approach to automatic model generation in the de-
scription of dynamic regulatory networks. Several potential areas of ap-
plication of this technique are outlined. We then describe how a particular
implementation of this approach, Cellerator, has been used to study the
mitogen-activated protein kinase (MAPK) cascade. These signal transduc-
tion modules occur both in solution and when bound to a scaffold protein,
and we have generalized the technique to include both types of module.
We show that the results of simulations with the Cellerator–created model
are consistent with our previously published report, where an indepen-
dently written model was developed. New results made possible by the
use of Cellerator are also presented. An important aspect of Cellerator op-
eration – explicit output description at several steps during model gener-
ation – is emphasized. This design allows intervention and modification
of the model “on the go” leading to both a more flexible of model descrip-
tion and a straightforward error correction mechanism. We also outline
our future plans in Cellerator development.

INTRODUCTION

In the past few decades the rapid gain of information about intracellular
signal transduction and genetic networks has led to the view of regulatory
biomolecular circuits as highly structured multi-component systems that
have evolved to perform optimally in very uncertain environments. This
emergent complexity of biochemical regulation necessitates the develop-
ment of new tools for analysis, most notably computer assisted mathemat-
ical models. Computer modeling has proved to be of crucial importance
in the analysis of genomic DNA sequences and molecular dynamics sim-
ulations and is likely to become an indispensable tool in biochemical and
genetic research. Several platforms have been (or are being) developed
that enable biologists to do complex computational simulations of vari-
ous aspects of cellular signaling and gene regulatory networks.



In spite of their promise, these new modeling environments have
not been widely utilized in the biological research community. Arguably,
among the reasons for this is a relative inaccessibility of the modeling
interface for the typical classically trained geneticist or biochemist. In-
stead of cartoon representations of signaling pathways, in which activa-
tion can be represented simply by an arrow connecting two molecular
species, users are often asked to write specific differential equations or
chose among different modeling approximations. Even for fairly modest
biomolecular circuits such a technique would involve explicitly writing
dozens (or even hundreds) of differential equations, a job that can be te-
dious, difficult, and highly error prone, even for an experienced mod-
eler. Thus it would be extremely helpful to have a modeling interface
that would automatically convert a cartoon- or reaction-based biochem-
ical pathway description into a mathematical representation suitable for
the solvers built into various currently existing software packages.

In addition to being more accessible to a wider research community,
a tool allowing the automatic generation of mathematical models would
facilitate the modeling of complex networks and interactions. For ex-
ample, in intracellular signal transduction it is not uncommon to find
multi-molecular complexes of modifiable proteins. The number of differ-
ent states that a multi-molecular complex, along with the number of equa-
tions required to fully describe the dynamics of such a system, increases
exponentially with the number of participating molecules or classes of
molecules. One typical complex – scaffolds in MAPK cascades – will be
studied in detail later in this report. It is often the case that the dynamics
of each state is of interest. A modeler then faces the unpleasant, and po-
tentially error prone task, of writing dozens, if not hundreds, of equations.
Automatic equation generation can significantly ease this task.

In this report we consider a general approach to automatic model gen-
eration for the description of dynamic regulatory networks. Several po-
tential areas of application of this technique will be outlined. We then
will describe how a particular implementation of this approach, Cellera-
tor, has been used to study the mitogen-activated protein kinase (MAPK)
cascade signal transduction modules operating in solution or when bound
to a scaffold protein. An important aspect of Cellerator operation – ex-
plicit output description and flexible user intervention at several steps
through the model generation – will be emphasized. This design, which
allows intervention and modification of the model “on the fly” leads to
increased model design flexibility and provides an immediate error cor-
rection mechanism.
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AUTOMATIC MODEL GENERATION

Canonical Forms for Cell Simulation

We can loosely classify the components needed to perform cell simulation
in order of their biological complexity: simple chemical reactions includ-
ing degradation, enzymatic reactions in solution, multi-molecular com-
plexes with a non-trivial number of states (e.g., scaffold proteins), multiple
interacting and non-overlapping pathways, transcription, translation, in-
tracellular components, transport processes and morphogenesis. We will
examine these processes and attempt to derive general canonical forms that
can be used to describe these processes in the following paragraphs. These
canonical forms can be either input forms, such as chemical reactions, or
output forms, such as differential equations that are automatically gener-
ated by the program. It is crucial to identify these canonical forms so that
an efficient mapping from the input forms to the output forms can be im-
plemented. Specific examples of how these forms may be implemented in
a computer program are given in the following section.

Biochemistry is frequently referred to as the language of biology, in
much the same way that mathematics has been called the language of
physics. Cellular activity is generally expressed in terms of the biochemi-
cal cascades that occur. These chemical reactions constitute the core of our
input forms; the corresponding differential equations constitute the core
of our output forms. (Differential equations can be thought of as output
because they are passed on to solver and/or optimizer modules to han-
dle). A fundamental library of simple chemical reactions can be quickly
developed; such reactions take the form

∑
X i∈S ′⊂S

Xi
k−→

∑
Yi∈S ′′⊂S

Yi (7.1)

where S is a set of reactants and S′ and S′′ are (possible empty and possibly
non-distinct) subsets of S and k is a representation of the rate at which the
reaction proceeds. In general there are rarely more than two elements in
either S′ or S′′ but it is possible for there to be more. For example, all of the
following chemical reactions fall into this form:

A + B → C = AB complex formation

C = AB → A + B dissociation

A→ B conversion (7.2)

A→ φ degradation

φ→ A creation (e.g., through transcription)

Enzyme kinetic reactions, which are usually written as
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S + E → P + E (7.3)

where E is an enzyme that facilitates the conversion of the substrate S into
the product P , would also fall into this class. More generally, equation (7.3)
is a simplification of the cascade

S + E ↔ SE → S + P (7.4)

where the bi-directional arrow indicates that the first reaction is reversible.
Thus (7.4) is equivalent to the triplet of reactions

{S + E → SE, SE → S + E, SE → S + P} (7.5)

The reactions (7.4) or (7.5) can be written compactly with the following
double-arrow notation

S
E
=⇒ P (7.6)

which should be read as “the conversion of S to P is catalyzed by an
enzyme E .” If there is also an second enzyme, G, that can catalyze the
reverse reaction

P
G
=⇒ S = {P + G → GP,GP → G + P,GP → G + S} (7.7)

we further use the double-double arrow notation

S
E
⇐⇒
G

P (7.8)

to compactly indicate the pair of enzymatic reactions given by (7.6) and
(7.7). The enzyme above the arrow always facilitates the forward reaction,
and the enzyme beneath the reaction always facilitates the reverse reac-
tion. For example, E might be a kinase and G might be a phosphatase
molecule. Since each of equations (7.6) and (7.7) represent a triplet of sim-
pler reactions, we observe that the notation of equation (7.8) compactly
represents a total of six elementary reactions, each of which is in the form
given by equation (7.1). We therefore take equation (7.1) as our input
canonical form for chemical reactions. The corresponding output canoni-
cal form is given by the set of differential equations
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τi Ẋ i =
∑
α

ciα
∏
j

X
niα j
j (7.9)

where the τi and ciα are constants that are related to the rate constants , the
signs of the cia are determined from which side of equation (7.1) the terms
in equation (7.9) correspond to, and the niα j represent the cooperativity
of the reaction. The summation is taken over all equations in which Xi
appears. Multi-molecular reactions (e.g., binding to a scaffold protein) and
multiple interacting and overlapping pathways are described in much the
same way - there are just more reactions that must be included in our
model. The canonical forms (7.1) and (7.9) can still describe each one of
these reactions.

Genetic transcription and translation into proteins can be described by
an extension of equation (7.9) to include terms of the form

τi Ẋ i =
∏
β

ciβ X
nβ

β

K
nβ

iβ + X
nβ

β

(7.10)

where the product runs over the various transcription factors Xβ that
influence production of Xi . If there are any reactions of the form (7.1) for
Xi then the expression on the right side of equation (7.10) would be added
to the right hand side of (7.9). In a more realistic system, a gene would be
influenced by a (possibly large) set of promoter and enhancer elements Xi
that bind to different sites. A hierarchical model could describe this set of
interactions

τi Ẋ i = Jui
1+ Jui − λi Xi (7.11)

ui =
∏
α∈i

1+ Jαṽα

1+ Ĵαṽα

(7.12)

ṽα = K̃α ũα

1+ K̃αũα

(7.13)

ũα =
∏
b∈α

1+ Kbvn(b)j (b)

1+ K̂bvn(b)j (b)

(7.14)

where i and j index transcription factors, α indexes promoter modules,
b indexes binding sites, the function j (b) determines which transcription
factor j binds at site j , the J and K are constants, and λ is a degradation
rate.

Sub-cellular components represent a higher order of biological com-
plexity. If we assume perfect mixing each component can be treated as a
separate pool of reactants which we can describe by the reaction
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XA → XB (7.15)

This is taken to mean that X in pool A is transported into pool B at some
rate. When the concentration changes and distances involved are small
such processes can be described by the canonical forms in equation (7.1).
In large or elongated cells with long processes (such as neurons) or when
the molecules have a net charge the transport process defined in equation
(7.15) can not be described by the output canonical form (7.9). Instead we
must modify this ordinary differential equation into a partial differential
equation to allow for diffusion,

τi
∂Xi
∂ t
= ∇ • (Di∇Xi + Ci Di∇V )+

∑
α

ciα
∏
j

X
niα j
j (7.16)

where the Di are (possibly spatially dependent) diffusion constants for
species Xi , Ci are charge and temperature dependent constants, and V is
the voltage. Other voltage and pressure dependent movement between
compartments (especially those with membranes) that are controlled by
channels and transport proteins could be described by including addi-
tional terms on the right hand side of equation (7.16) (e.g., Hodgkin-
Huxley type expressions).

IMPLEMENTATION

In standard biochemical notation, protein cascades are represented by a
arrow-sequence of the form

A⇒ B ⇒ · · · (7.17)

where each step (the A, B ,...) would represent, for example, the activation
of a particular molecular species. Our goal is to translate the cascade (7.17)
into a computable form while retaining the biological notation in the user
interface. Mathematically, we can specify such as cascade as a multiset

C = {P, R, IC, I, F} (7.18)

where P is a set of proteins, R is a set of reactions, IC is a set of initial
conditions, I is a set of input functions, and F is a set of output functions.

To illustrate this transformation process (from the biochemical nota-
tion, such as in equation (7.17), to the mathematical notation, as in equa-
tion (7.18)), we consider the example where equation (7.17) represents a
simple linear phosphorylation cascade. In this case equation (7.17) would
mean that A facilitates the phosphorylation of B , which in turn facilitates
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the phosphorylation of C , and so forth. In general, a cascade can have any
length, so we define the elements of a cascade with a simple indexed no-
tation, e.g.,

K4 ⇒ K3 ⇒ K2 ⇒ K1 (7.19)

where K is used to indicate that all the members of the cascade induce
phosphorylation of their substrates, that is they are kinases. In general,
activation can proceed by any specified means.

This indexed notation is always used internally by the program. The
user, however, has the option of using either common names or the in-
dexed variables. There is still a great deal of information hidden in this
expression, such as how many phosphate groups must be added to make
each successive protein active. In the MAPK cascade for example (as ex-
plained below), the input signal that starts this cascade is K4. The output,
however, is not K1, as this notation would suggest, but a doubly phospho-
rylated version of K1. Hence for MAPK cascade we introduce a modified
notation:

K3

K4

=⇒ K ∗3

K2

K ∗3
=⇒ K ∗2

K ∗3
=⇒ K ∗∗2 (7.20)

K1

K ∗∗2
=⇒ K ∗1

K ∗∗2
=⇒ K ∗∗1

where each phosphate group that has been added is indicated with an
asterisk. From this notation it is clear that the input is K4 and the output
is K ∗∗1 .

In general, suppose we have a cascade formed by n proteins K1, K2,...,
Kn , and that the i th protein Ki can be phosphorylated ai times. Denote by
K j
i the fact that kinase Ki has be phosphorylated j (possibly zero) times.

The set P of all kinases Ki j in an n-component cascade is then

P =
{
K j
i |i = 1, 2, ..., n, j = 0, 1, . . . , ai

}
(7.21)

The reactions in the cascade are of the form

R =

K j

i

K ai+1
i+1
=⇒ K j+1

i

∣∣ i = 1, . . . , n − 1, j = 0, . . . , a j − 1


 (7.22)

We note at this point that this notation describes a linear cascade, in which
each element Ki is only phosphorylated by the active form of Ki+1. It does
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not include other reactions, when, for example, K3 might, under special
circumstances, phosphorylate K1 directly without the intermediate step
of first phosphorylating K2. Such additional reactions could be added, but
they have been omitted from this presentation to simplify the discussion.
We can also add the dephosphorylation enzymes, or phosphatases, with a
double-arrow notation:

R =

K j

i

K ai+1
i+1
=⇒
Phi

K j+1
i

∣∣ i = 1, . . . , n − 1, j = 0, . . . , a j − 1


 (7.23)

In general, it is not necessary to specify explicit conservation laws with
this notation because they are built directly into the equations. For exam-
ple, we do not have to separately specify that the quantities

KTotali =
ai∑
j=0

K j
i (7.24)

because this is implicit in the differential equations that are built using this
notations. We do, however, have to specify the initial conditions,

IC =
{
K j
i (0) | i = 1, 2, ..., n, j = 0, 1, . . . , ai

}
(7.25)

Next, we need to specify how the cascade is initiated. For example if K4 is
not present until some time ton and then is fixed at a level c, would write
the set of input functions as

I = {K4(t) = cH (t − ton)} where H (t) =
{

0 (t < 0)

1 (t ≥ 0)
(7.26)

is the Heaviside step function. In some cases, we are only interested in the
total quantity of each substance produced as a function of time, e.g., K j

i (t).
More generally, we would also specify a set of output functions F . For
example we might have F = { f, g } where f (T ) is the total accumulated
protein concentration after some time T ,

f (T ) =
∫ T

ton
K a1

1 (t)dt (7.27)

and g(c) is the steady state concentration of activated kinase,

g(c) = lim
ton→∞

[
lim
t→∞ K

a1
1 (t)

]
(7.28)

where c is the input signal specified I . Then the cascade is then completely
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specified by the multiset C = {P, R, IC, I, F}.
If we have an additional regulatory protein, such as a scaffold that

holds the various proteins in equation (7.20) together there are additional
reactions. These describe binding of the enzymes to the scaffold and phos-
phorylation within the scaffold. We describe the scaffold itself by defining
an object Sp1, p2,··· ,pn where n is as before (the number of kinases that may
bind to the scaffold, or alternatively, the number of “slots” in the scaf-
fold) and pi ∈ ε, 0, 1, . . . , ai indicates the state of phosphorylation of the
proteins in each slot. Thus if pi = ε (or, alternatively, -1) the slot for Ki is
empty, if pi = 0, K 0

i is in the slot, etc. For a three-slot scaffold, for example,
we would add to the set P the following set

P ′ = {
Si jk

∣∣ i = ε, 0, 1, . . . , a1, j = ε, 0, 1, . . . , a2, k = ε, 0, 1, . . . , a3
}

(7.29)

To describe binding to the scaffold, we would also add to the set R the
following reactions

R′ =
{
Sp1,··· ,pi=ε,··· ,pn + K j

i ↔ Sp1,··· ,pi= j,··· ,pn
}

(7.30)

where the indices run over all values in the range

pi =
{

ε, 0, 1, . . . , ai , i �= j
0, 1, . . . , ai , i = j

(7.31)

For the three-member scaffold this would be

R′ =
{
Sε j k + K i1 ↔ Si jk , i = 0, . . . , a1, j = ε, 0, . . . , a2, k = ε, 0, . . . , a3

}
⋃ {

Siεk + K j
2 ↔ Si jk , i = ε, 0, . . . , a1, j = 0, . . . , a2, k = ε, 0, . . . , a3

}
⋃ {

Si jε + Kk3 ↔ Si jk , i = ε, 0, . . . , a1, j = ε, 0, . . . , a2, k = 0, . . . , a3

}
(7.32)

Finally, we have phosphorylation in the scaffold. This can be done either
by a protein that is not bound to the scaffold, e.g., for the input signal,

R′′ =
{
Sp1,··· ,pi−1= j<ai−1 , pi=ai ,··· ,pn + K ⇔ Sp1,··· ,pi−1= j+1, pi=ai ,··· ,pn

}
(7.33)

where the two-sided double arrow (⇔) is used as shorthand for the (possi-
bly bi-directional) enzymatic reaction, or by one that is bound to the scaf-
fold,

R′′′ =
{
Sp1,··· ,pi−1= j<ai−1 , pi=ai ,··· ,pn → Sp1,··· ,pi−1= j+1, pi=ai ,··· ,pn

}
(7.34)
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or by some combination of the two, all of which must be added to the
reaction list R. For the three-slot scaffold with external signal K4 that
activates K3, we have

R′′ = {
Si,a2,k → Si+1,a2,k, i = 0, . . . , a1 − 1, k = ε, 0, . . . , a3

}
⋃ {

Si, j,a3 → Si, j+1,a3 , i = ε, 0, . . . , a1, j = ε, 0, . . . , a2 − 1
}

(7.35)

and

R′′′ =
{
Si jk ⇔K4

Ph3
Si, j,k+1, i = ε, 0, . . . , a1, j = ε, 0, . . . , a2, k = 0, . . . , a3 − 1

}
(7.36)

Typical ai values for this type of cascade are a1 = a2 = 2 and a3 = 1.
As an example, let us continue with the above-mentioned three-

member cascade that is initiated with K4. In what follows, we refer to
Cellerator, a Mathematica R© package that implements the above algo-
rithms. In Cellerator we have defined the function

genReacts[kinase-name, n, {ai}, phosphatase-name],
where kinase-name and phosphatase-name are the names we want to give to
the sequences of kinases and phosphatases, respectively, and n and ai are
as before. The following Cellerator command then generates the above set
of reactions (7.20),

The input is in the first line while the output is the second line. Alter-
natively, the user could specify the set of reactions explicitly, or copy the
output to a later cell to manually add additional reactions. If RAF has been
set up as an alias for K3 then the rate constants are specified by a content-
addressable syntax, e.g., as

corresponding to
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RAF + RAFK
a1

⇐⇒
d1

RAF − RAFK
k1

=⇒ RAF∗ + RAFK (7.37)

and

RAF∗ + RAFP
a2

⇐⇒
d2

RAF∗ − RAFP
k2

=⇒ RAF + RAFP (7.38)

and so forth, where the numbers over the arrows indicate the rate con-
stants (and not enzymes, as with the double arrow notation). Cellerator
first translates the five high-order reactions (equation (7.20)) into the cor-
responding set of 30 low-level reactions. Each low-level reaction (such as
intermediate compound formation) is determined by applying the appro-
priate enzyme-kinetics description, and has a unique rate constant. The
low-level reactions are subsequently translated into the appropriate set of
21 differential equations for the eight kinases, three phosphatases and ten
intermediate compounds. When scaffold proteins are included (discussed
below) these numbers increase to 139 high level reactions, 348 low-level
reactions (300 without kinases), and 101 differential equations (85 without
kinases).

MAPKPATHWAYWITHSCAFFOLDS: EXPERIMENTALBACKGROUND

The mitogen-activated protein kinase (MAPK) cascades (Figure 7.1) are a
conserved feature of a variety of receptor mediated signal transduction
pathways (Garrington and Johnson, 1999; Widmann et al., 1999; Gustin et
al., 1998). In humans they have been implicated in transduction of signals
from growth factor, insulin and cytokine receptors, T cell receptor, het-
erotrimeric G proteins and in response to various kinds of stress (Garring-
ton and Johnson, 1999; Putz et al., 1999; Sternberg and Alberola-Ila, 1998;
Crabtree and Clipstone, 1994; Kyriakis, 1999). A MAPK cascade consists of
three sequentially acting kinases. The last member of the cascade, MAPK
is activated by dual phosphorylation at tyrosine and threonine residues by
the second member of the cascade: MAPKK. MAPKK is activated by phos-
phorylation at threonine and serine by the first member of the cascade:
MAPKKK. Activation of MAPKKK apparently proceeds through different
mechanisms in different systems. For instance, MAPKKK Raf-1 is thought
to be activated by translocation to the cell membrane, where it is phospho-
rylated by an unknown kinase. All the reactions in the cascade occur in
the cytosol with the activated MAPK translocating to the nucleus, where
it may activate a battery of transcription factors by phosphorylation.
MAPK cascades have been implicated in a variety of intercellular pro-
cesses including regulation of the cell cycle, apoptosis, cell growth and
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Figure 7.1 The topology of MAPK signaling cascade. Each double arrow
represents activation through dual phosphorylation. Two and three-member
scaffolds have been identified experimentally and are depicted here.

responses to stress. These molecules are of crucial importance in the de-
velopment of memory and wound healing. Abnormal changes in MAPK
pathway regulation often mediate various pathologies, most notably can-
cer. This central role of MAPK mediated signal transduction in most reg-
ulatory processes makes it an especially attractive research and modeling
object.

Signal transduction through a MAPK cascade can be very inefficient
unless additional regulatory proteins, called scaffolds, are present in the
cytosol. Scaffold proteins nucleate signaling by binding two or more MAP
kinases into a single multi-molecular complex. It has been reported pre-
viously that scaffolds can both increase and decrease the efficiency of sig-
naling in a concentration dependent manner (Levchenko et al., 2000). In
addition they can reduce the non-linear activation characteristics of the
cascade. These properties may be crucial for global and local activation of
MAPK as scaffold proteins may selectively translocate to small subcellu-
lar compartments, thus locally facilitating or inhibiting MAPK activation.
In this report we show how the use of Cellerator software package has
allowed us to substantially improve our earlier model and study its para-
metric dependence in a manner not investigated in the preceding report.
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MAPK PATHWAYWITH SCAFFOLDS: RESULTS

As described above, addition of scaffold proteins into the MAPK reaction
system results in markedly increased number of states and equations de-
scribing transitions between them. Here the benefits provided by Cellera-
tor can really be appreciated, as a simple sequence of commands can lead
to automatic description of all reactions involving scaffold-kinase com-
plexes (see Figure 7.2).

In our simulations the first goal was to verify the automatic model gen-
eration for scaffold-medicated MAPK cascade as implemented in Cellera-
tor. As a basis for the comparison we referred to our previous report de-
scribing a quantitative model of the effect scaffold proteins can play in
MAPK mediated signal transduction. When all the assumptions of that
model were made again exactly the same solution for the three-member
scaffold case was obtained. This convergence of results verified the model
generated by Cellerator. In addition, the difficulty of manual generation
of all the necessary equations, a limiting factor of the previous study, has
now been removed. We thus attempted to study a more detailed model,
in which some of the previous assumptions were relaxed.

Figure 7.2 The implementation of automatic generation of the MAP kinases
activation reactions (through phosphorylation) in the scaffold in the Cellerator
environment. All the possible scaffold states (species) are generated as are the
transition reactions between them. The indexes in the parentheses indicate the
phosphorylation status of the kinase in the corresponding position, with –1
corresponding to the absence of the kinase from the scaffold complex. K[4,1]
represents the external kinase activating the first MAP kinase (MAPKKK) in the
cascade.

The use of Cellerator has allowed us to perform systematic sensitivity
analyses of the assumptions made in our description of the role of scaf-
fold proteins in MAPK cascade regulation (Levchenko et al., 2000). We
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previously described dual MAPKK and MAPK phosphorylation within
the scaffold to proceed as a single step (processive activation). This is sub-
stantially different from a two-step dual phosphorylation sequence occur-
ring in solution. In this distributive activation, the first phosphorylation
event is first followed by complete dissociation from the activating ki-
nase and subsequently the second phosphorylation reaction occurs. The
assumption of processive phosphorylation in the scaffold has some exper-
imental basis. Mathematically, it is equivalent to assuming that the rate of
the second phosphorylation reaction is fast compared to the first reaction.
Although this assumption was partially relaxed in our previous report,
no systematic study of relaxation of this assumption has been performed.
Using Cellerator we performed a systematic investigation of the role of in-
creasing or decreasing the rate of the second phosphorylation within the
scaffold compared to reactions in solution. The results for the case when
the two rates are equal are presented in Figure 7.3. It is clear that relax-
ation of this assumption results in a substantial decrease of efficiency of
signal propagation.

Similar simulations were performed to investigate the effect of al-
lowing formation of a complex between MAPKKK in the scaffold and
MAPKKK-activating kinase, as well as the effect of allowing phosphatases
to dephosphorylate scaffold-bound kinases. In all cases the parameter val-
ues used in simulation are equal to those used for corresponding reactions
in solution (for the full list of parameters see Levchenko et al. (2000)). The
results are presented in Figure 7.3. Again, new assumptions resulted in
substantial down-regulation of efficiency of signal propagation. It is of
interest that the position of the optimum scaffold concentration (at which
the maximum signaling is achieved) is insensitive to making these new as-
sumptions. This agrees with the analysis in (Levchenko et al., 2000), which
suggested that the position of the optimum is determined only by the total
concentrations of the kinases and their mutual interaction with the scaf-
fold.

DISCUSSION AND FUTURE DIRECTIONS

We have shown that automatic model generation can simplify the transi-
tion from an informal, cartoon-based description of a reaction pathway
(or a network of pathways) to a system of differential equations. This
transition is obtained via a rigorous description of enzymatic kinetics and
other biochemical processes and is implemented utilizing symbolic trans-
lation. In addition to facilitating the potentially burdensome task of cor-
rectly writing out all of the necessary equations, this methodology pro-
vides an explicit and flexible way of controlling successive stages of model
creation. Furthermore, user intervention is possible both at the stage of
conversion of an informal pathway description into a set of chemical reac-
tions and at the later stage of mapping these reactions to the correspond-
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Figure 7.3 The effect of relaxing several assumptions made in the previous
report. The time integral of free dually phosphorylated MAPK over first 100 sec is
plotted vs. scaffold concentration. The “control” curve reproduces the data with
all the assumptions made previously, whereas the other curves represent the
results of relaxation of these assumptions as described in the legend. All data are
obtained using the Cellerator package and are plotted in Microsoft Excel.

ing mathematical forms. This flexibility is likely to increase the ability of
the user to participate in building and modifying the model at a level lim-
ited only by his or her expertise.

We have demonstrated the automatic generation of symbolic differen-
tial equations using a generic three-member scaffold, the MAPK cascade
mediated signaling system. The implementation that we have presented
– Cellerator – is capable of generating and solving these 101 differential
equations, a task not achieved in the previous detailed study of the effect
of scaffolds. Such automated model generation will prove especially use-
ful in describing even more complex biochemical reactions that involve
the formation of multi-molecular complexes. Such complexes may exist
in numerous states, each requiring a corresponding equation for its dy-
namical description. Because of the combinatoric expansion of reaction
possibilities, correctly writing out all of these equations by hand rapidly
becomes impossible.

We intend to pursue the research into role of scaffolds in signal trans-
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duction regulation using this new tool. In particular we intend to use
extended indexing to specify reactions occurring in various sub-cellular
compartments. This will facilitate the study of the effect of scaffold
translocation to the cell membrane observed in gradient sensing and other
important regulatory processed. In addition we will attempt to develop
our algorithm to allow for scaffold dimerization, an experimentally ob-
served phenomenon.

Currently, Cellerator is “tailor-made” for modeling events in a lin-
ear pathway mediated by sequential covalent modification. It is within
our immediate plans to make the code more universal to include other
canonical forms and variable structure systems. In particular, we are in
the process of adapting Cellerator to two test cases: NF-κB and PKA path-
ways. Consideration of these pathways will necessitate implementation of
the elementary reactions describing transcription, translation and protein
degradation. In addition, complex formation will be considered as a high
level reaction leading to an activation step within the pathway.
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8 Modeling Large Biological Systems From
Functional Genomic Data: Parameter
Estimation

Pedro Mendes

A very positive outcome of the emerging“omic” disciplines in biology
(genomics, proteomics, etc.) is the trend away from extreme reduction-
ism to systems descriptions and analyses. Data is now becoming available
consisting of simultaneous measurements of thousands of cellular compo-
nents such as mRNA and proteins. If sequences of these are put together
they will form movies of the cellular machinery in action, and it should
be possible to build dynamic models that describe it. Such comprehen-
sive models will represent explicitly large numbers of biochemical reac-
tions at some level of detail. A challenging step due to the non-linearity of
these models in constructing and tuning them is to estimate the large set
of numerical parameters that they contain. The inverse problem of esti-
mating parameter values from variables requires software that combines
simulation with a breadth of optimization algorithms capable of search-
ing global minima in large dimensional spaces. Numerical experiments
carried out with the program Gepasi are presented, which suggest a com-
bination of evolutionary algorithms and local minimization methods ap-
pear to be suitable for this purpose.

INTRODUCTION

Modern experimental biology is moving away from analyses of single el-
ements (genes, enzymes, etc.) to whole-organism measurements. In par-
ticular, technologies such as DNA microarrays (Shalon et al., 1996) and
chips (Lockhart et al., 1996) and various mass spectrometry methods (Pen-
nington et al., 1997; Ducret et al., 1998) provide the means to measure the
levels of thousands of mRNA and protein species in a single experiment.
Technologies for measuring large sets of small metabolites are also being
developed (Oliver et al., 1998; Trethewey et al., 1999). These approaches
of measuring cellular components at the genomic scale are sometimes re-
ferred to as transcriptomics, proteomics and metabolomics. What makes these
different from previous molecular biology approaches is that by nature of
measuring so many components of the cell, one does not have to decide



a priori which ones are more likely to be affected by some specific exper-
imental manipulation of the system. Instead, we now have the luxury of
making unbiased observations. By measuring a large proportion of the
cell’s components one obtains a near-complete snapshot of the average
state of cell culture or tissue. These technologies have mostly been dis-
cussed in the context of aiding in identifying the function of some 40% of
all known open reading frames that are still unidentified - the functional
genomics agenda. Usually “function” is taken to mean the name of the
protein corresponding to the gene or the nature of the immediate molec-
ular action of that protein (Oliver, 1996; Kell and King, 2000), for example
that a certain gene codes for a protein phosphatase. This molecular func-
tion, though, is ultimately only a piece of the cellular machinery and to
understand and predict how cells behave we better look at how the vari-
ous cellular components work together in the whole system - the systems
biology agenda.

It is important to mention that the systems biology agenda is itself not
new and that much work has been dedicated to it in the past, mostly from
theoretical angles (Bertalanffy, 1964; Rosen, 1970; Kacser and Burns, 1973;
Savageau, 1976) but also computationally (Garfinkel et al., 1961; Higgins,
1965). However it is only now, with the advances in transcriptomics,
proteomics, and metabolomics, that we are starting to be in a position
to obtain data in the amount and extent that is required to decode the
complex behavior of whole living cells (from a systems perspective). It
is fortunate that indeed much theory and numerical methods are already
in place to allow us to make good use of these rich data sets. That is the
subject of this manuscript.

These novel “omic” technologies are now being used by a growing
number of laboratories producing large data sets that contain detailed
characterizations of the state of cells. The progression of publications pre-
senting such results suggests that soon it will become laboratory routine
to capture snapshots of nearly all the mRNAs, proteins and metabolites
present in any specific cell type. Biological research is undergoing a trans-
formation from manual (hand-craft) measurement of single cellular com-
ponents towards an automatic (high-throughput) parallel measurement
of large numbers of components. Given the large numbers of components
and the complexity of their interconnections it is no longer productive
or even practical to interpret our observations based on the reductionist
approach that was dominant in molecular biology. We will be forced to
replace these single-molecule qualitative models of cell function by others
that consider the cell as a whole, and which can explain quantitatively its
emergent properties. In the sections that follow I will discuss the issues,
biological, mathematical and computational, surrounding the challenge
of constructing dynamical models of cells from those rich data sets. In the
section Simulation of biochemical kinetics I will present the type of predictive
mathematical models that can be used to “play the movie”. In Parameter
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estimation through optimization, numerical optimization methods are pre-
sented which can be used to automatically tune a model to experimental
data. Reverse engineering a simple system presents a numerical experiment
illustrating how one can reverse engineer biological systems and discusses
which optimization methods are most likely to perform satisfactorily with
very large data sets. Finally, a discussion of the results puts in perspective
the issues that appear to be hardest to overcome and suggests that rather
than being deluged with data, biologists will soon be hungry for much
more.

SIMULATION OF BIOCHEMICAL KINETICS

We are interested in the dynamics of biochemical systems at the level of
pools (or populations) of molecular species. A pool is a set of molecules
that cannot be distinguished from each other. These pools are the compo-
nents of the system, the biochemical network of a cell type, and are thus
the variables of the mathematical models required for simulation. The net-
work is formed of biochemical reactions and transport steps that connect
several pools. The dynamics (or perhaps more appropriately the kinetics)
of each pool can be described mathematically by an ordinary differential
equation (ODE) such as Equation 8.1, the system being the collection of all
equations representing all the pools.

dxi
dt
=

∑
f (x)−

∑
g(x) (8.1)

Equation 8.1 has a convenient form in which all positive components,
f (x), correspond to the steps leading to this pool, and the negative com-
ponents, g(x), to the steps leading out of the pool (given that in general
reactions are reversible it is necessary to first establish a positive direction
of flux). This allows for automation of the process of translating the net-
work into differential equations, which is conveniently implemented in
the simulator Gepasi (Mendes, 1993, 1997). It is also this special form that
allowed the development of algorithms that resolve the structural prop-
erties of the system (those that arise solely from the connection scheme)
(Reder, 1988; Schuster et al., 1999).

The mathematical representation of the system in the form of equa-
tions like 8.1 describes the evolution of the system in time. Thus, given
a certain initial state of the system, those equations can be used to de-
scribe the changes in all pool sizes (concentrations). They also allow one
to calculate steady states of the system, which are zeroes of the system of
equations. For the time evolution, one typically uses an ordinary differen-
tial equation solver, such as LSODA (Petzold, 1983), for the steady state
a combination of the Newton-Raphson method with an ODE solver is an
efficient strategy (Mendes, 1993). Several software packages exist (Sauro,
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1993; Mendes, 1993; Ehlde and Zacchi, 1995; Schaff et al., 1997; Tomita et
al., 1999) that allow one to construct mathematical models of biochemical
networks and simulate their behavior. These are essential tools for systems
biology.

The single largest benefit of computer simulation of biochemical net-
works is that it allows the exploration of the behavior of the model very
easily. Simulation allows one to easily ask “what-if?” type of questions,
and with the speed of today’s computers thousands of these questions
can be asked in short time. Rather than a substitute for experiments, such
simulations should be seen as excellent means of generating hypotheses
about the real system, themselves they provide no real answers. It is then
with experiments that we can investigate if the model was correct. If not,
then it is time to refine it such that it can represent the newfound evidence
and we go back in this process. Simulation is an essential tool for modeling
and should always be part of the scientific process. (Of course, even when
we do not construct mathematical computer models, we still do simula-
tions in our own thoughts, they are just less rigorous than if they were
made explicit.)

Models are intentionally smaller representations of real entities. The
success of modeling is exactly the ability to ignore those features of the
real system that are irrelevant to the phenomenon studied. So models are
by definition simpler than the real system but not in any random way: the
model must still capture the essential features of the phenomenon. The
art of modeling resides in the process of removing the irrelevant features
while retaining the essential ones. Perhaps one could now think that these
modern whole-cell technologies are not so useful after all. It may seem
at first counterproductive that we should use a technique that floods us
with information about all (or at least a large number) of the system’s
components when we are only interested in a restricted part. Why not
just measure those components that we think are important? The answer
is simply that at this stage we do not know which ones are important
and which are irrelevant — such measurements actually provide a means
for us to decide, knowing that very little is escaping our eyes. Unbiased
observation is essential for successful model construction!

Traditionally, computer models of biochemical networks only repre-
sent the reactions that form the carbon flow of the small molecules, the
metabolic pathway. This assumes that the concentrations of the proteins
do not change which then implies that the concentrations of mRNA and
ribosomes are also constant. In these conditions, the genetic component
can be regarded as invariant and so a parameter of the model. Equally,
one can also model the genetic subsystem on its own, without consider-
ing the metabolic part. The assumption now is that metabolism is so fast
that it is essentially in equilibrium and its state is dictated by the genetic
part. In both cases, one has to postulate that the genetic and metabolic
parts are decoupled. While there are conditions such that these two sub-
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systems may be decoupled (due to very different timescales (Bentem et
al., 2000)), it is easy to argue that this is not always the case and may even
not be that common. In the same spirit of not deciding a priori something
that can be observed in the data anyway, perhaps all kinetic models for
genomics should include both metabolism and gene expression.

Figure 8.1 shows how one would represent a single metabolic reaction
converting metabolite A to B including the genetic component. The en-
zyme E and its corresponding mRNA are represented explicitly as are the
steps that synthesize and degrade them. The synthesis and degradation of
the macromolecules if modeled as single steps represent an aggregation
of various molecular processes, such as initiation, elongation, termination
and splicing for the mRNA synthesis. One can make the model more de-
tailed than Figure 8.1, but at some stage, it becomes counterproductive to
do so if indeed it is the systemic properties that we aim to understand.
Given that these four steps of synthesis and degradation of E and mRNA
are phenomenological rather than based on molecular mechanisms, it is
important to examine a little how their rates should be expressed math-
ematically. Table 8.1 shows proposals for the kinetic functions associated
with these steps. Important features to note are: i) the rate of mRNA syn-
thesis is constant only in the absence of inhibitor and activator, these can
act cooperatively but cannot make the rate go negative; ii) the synthesis
of protein is a saturable function on the concentration of mRNA; iii) these
functions ignore the concentration of precursors (nucleotides and amino
acids), therefore these are assumed constant. The functions proposed here
are just indications of how one could build such kinetic functions, obvi-

S P

E

mRNA

Figure 8.1 Model for a single metabolic reaction including the genetic
component. Solid arrows represent mass transfer, dashed arrows represent
kinetic effects. mRNA activates production of E which in turn activates the
metabolic reaction. The substrate S is here an activator of the transcription step.
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Table 8.1 Phenomenological rate functions for synthesis and degradation of
mRNA and protein.

Step Rate Parameters Variables

mRNA synthesis V(
1+ I

Ki

)ni (
1+ Ka

A

)na V , Ki , Ka , ni , na I , A

mRNA degradation kgG kg G
protein synthesis VG

K0.5+G V , K0.5 G

protein degradation kp P kp P

NOTE: V is a basal rate; kg and kp are first order rate constants; Ki , Ka and K0.5
are affinity constants; ni and na are degrees of cooperativity

NOTE: G is the concentration of mRNA, P is the concentration of protein, I is the
concentration of an inhibitor and A the concentration of an activator

ously there will be circumstances in which one needs to add further details
to these functions in order to better explain the data. As an example con-
sider the case of modeling cells which live in a medium limited in amino
acid sources, then the rates of protein synthesis should include the depen-
dence on that (or those) limited amino acids. The equation for the mRNA
synthesis can be easily modified to include more activators or inhibitors,
by multiplying additional terms of the same form (this assumes they act
independent of each other).

With these tools one should be able to construct a model of the
known biochemistry of a specific cell, including the hierarchical levels of
metabolism, protein synthesis and gene expression. Such a model would
be considerably large. Micro-organisms such as the yeast Saccharomyces
cerevisiae have around 6000 genes, therefore 6000 mRNA species and 6000
proteins. Actually, the mRNA and protein species would be less than
the number of genes as some code for tRNA and several proteins are
composed by more than one type of polypeptide. This approximation
is enough for this purpose, though. The number of small metabolites is
somewhat less (due to the high interconnectedness of the metabolic map),
perhaps one order of magnitude. In total this would mean some 12600
variables with 30000 different reactions in the model. By all measures such
a model has to be considered very large and will require special attention
since the scale implies several problems that are not usually associated
with smaller models. Until now, published biochemical kinetic models
have usually well under 100 variables and reactions.

So far this description has concentrated on how one simulates the
behavior of biochemical networks through the construction and solution
by computer of mathematical models. But how does one construct such
models from observations of the system? This consists of three phases:

1. identification of relationships between the various model variables (the
biochemical reactions, their substrates, products and effectors)
2. identification of mathematical functions that appropriately express the
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rate of each reaction as a function of the substrates, products and effectors
3. estimation of the numerical values of the parameters that are included
in the mathematical functions above

Steps 1 and 2 fall outside the scope of this text. It is perhaps relevant
to say here that they are far from being solved yet, especially step 2. Nev-
ertheless, below it will be assumed that one can carry out these two steps
by some means and the rest of this work will be focused on the last step,
the estimation of the parameters of the model. Once that has happened,
running the computer simulation is like playing a movie that has been
constructed from the single snapshots (experimental data). Furthermore,
we can use the same model to hypothesize about how the biological sys-
tem would respond to other types of changes in its environment. That is
the power of computer simulation of biochemical networks.

PARAMETER ESTIMATION THROUGHOPTIMIZATION

In the real biological system, the metabolite, protein and mRNA concen-
trations are controlled by a number of parameters such as time, physico-
chemical properties and the state of the environment around the system.
The state of a cell thus depends on its temperature, on the kinetic con-
stants of its various biochemical processes, and on the concentration of
nutrients and other chemical compounds. In simulation, one does indeed
start with the parameters (kinetic constants and concentrations of external
substrates and products) and uses the computer to calculate the concen-
trations of the metabolites, proteins and mRNAs along time. In contrast to
this, what one does in an experiment is to measure the metabolites, pro-
teins and/or mRNA aiming to determine the values of the parameters.
This is known as an inverse problem (Mendes and Kell, 1996) and it is
similar to what happens in other areas of science and engineering such as
inverse kinematics (what forces to apply in a mechanical device to make it
reach a certain point in space), and crystallography (given a X-ray diffrac-
tion pattern how were the atoms arranged in the crystal).

This inverse problem of estimating the parameters of a large biochem-
ical network from observations of concentrations is in essence not new. In
enzymology the exact same problem has been routinely dealt with for a
long time, where one uses time courses or initial rates of reaction to deter-
mine kinetic parameters of a single enzymatic reaction. The major differ-
ence to what is proposed here is the scale, whereas in whole-cell models
we have not one but a large number of simultaneous biochemical reac-
tions, thus a very high number of parameters to estimate.

Irrespective of scale and whether one uses an automatic method or
prefers to do it manually, parameter estimation is done according to this
procedure (see also Figure 8.2):

1. compare the experimental values with simulated ones
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2. if the difference is small enough, stop, otherwise adjust parameters in
the model
3. simulate the experiment
4. go back to 1

Step 2 is indeed where all the action occurs, more specifically in the
process of adjusting the parameters. In enzyme kinetics, step 2 can be car-
ried out using linear regression if the rate equation can be linearized in the
parameters, such as in the double-reciprocal plot (Lineweaver and Burk,
1934). More recently it has been argued (Duggleby, 1986; Johnson, 1992)
that nonlinear regression is more appropriate. Here one uses a numerical
optimization method to carry out step 2 above, usually the Levenberg-
Marquardt (Levenberg, 1944; Marquardt, 1963) method.

The process of measuring the distance between data and model (step 1
above) requires one to carry out simulations (step 3), which are in a
sense the inverse of optimization. In simulation we calculate the values
of the variables given the parameters, in optimization we do exactly the
opposite (Mendes, 1998). The actual comparison of real and simulated
data is usually done through a function consisting of the sum of the
squares of the difference between the measured and simulated values:

∑
i

(xi − yi )2 (8.2)

The algorithm above requires the combination of optimization rou-
tines with software that is capable of simulating biochemical networks
(Mendes, 1998). The program Gepasi (Mendes, 1993, 1997, 1998) fulfils this
requirement as it provides means to carry out simulation and optimiza-
tion using several different optimization methods. The program is also
specialized to internally construct the appropriate sum of squares when
it is supplied with a file containing experimental data. This software can
be used equally for single-enzyme problems and for whole-cell parameter
estimation using functional genomics data. Figure 8.2 depicts the process
of carrying out parameter estimation for biochemical dynamics problems.
This figure clearly shows how simulation and optimization are somewhat
opposites but that both have to be combined to estimate the parameter
values.

It is well known (e.g. (Wolpert and Macready, 1997)) that no single nu-
merical optimization algorithm is best for all problems. An optimization
method’s performance is dictated by the problem and the data themselves,
and vary considerably. Fortunately there are many different numerical
optimization algorithms, the most used fall in three classes: i) gradient
search, ii) deterministic direct search and iii) stochastic direct search.

Gradient search methods look for the nearest minimum of the function
by following a direction that is determined from derivatives of the func-
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Optimization

Measurements

Simulation

Steady stateTime course

Parameter values Kinetic functions

Figure 8.2 The simulation-optimization method for tuning models. Given a set
of kinetic functions with numeric values for their parameters simulation
calculates a steady state or a time course. The distance between these and
(experimental) measured values is computed; optimization methods change the
parameter values based on this distance, closing the loop.

tion. Many have originated from the Newton method that uses first and
second derivatives, while steepest descent uses only first derivatives. With
noiseless data the Newton method would converge to the minimum of a
quadratic function in exactly one iteration. There are indeed many meth-
ods in this class, the most popular being the Levenberg-Marquardt (Lev-
enberg, 1944; Marquardt, 1963) method and some quasi-Newton methods
like L-BFGS-B (Byrd et al., 1995). One common feature to all these meth-
ods is that when they converge it is always to the minimum that is closest
to the initial guess. This has severe negative implications to our problem
because the sum of squares function has several minima and the one clos-
est to the initial guess has low probability of being the global minimum
(the best solution).

Direct search methods are those that do not require or calculate deriva-
tives to minimize an objective function. A number of these are determin-
istic, which means that they do not use random numbers and anytime
they run with the same data and initial guess will provide the same an-
swer. These deterministic direct search methods employ strategies which
are based on keeping a memory of a number of previous candidate solu-
tions and deciding on how to go down on the error hyper-surface based on
that limited memory. Popular methods of this type are those described by
Nelder and Mead (Nelder and Mead, 1965) and Hooke and Jeeves (Hooke
and Jeeves, 1961). One advantage of these methods is that they are more
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robust than those based on gradients even though they may converge
slower than the latter for well-behaved functions.

Finally, stochastic direct search methods base their operation on ran-
dom numbers and thus do not in general provide the same answer when
run with the same initial guess and data. Methods of this class include
evolutionary algorithms (Bäck and Schwefel, 1993) and simulated anneal-
ing (Kirkpatrick et al., 1983). The former are based on biological evolution
and population dynamics, evolving a population of solutions towards the
minimum. Simulated annealing minimizes functions by following a pro-
cess analogous to that of producing perfect crystals. The major advantage
of these methods is that they can find global minima, however this is at
the expense of much larger run times that the methods of the other two
classes.

Nonlinear least squares in enzyme kinetics has been mostly carried
out with gradient descent methods (mainly the Levenberg-Marquardt
method) or deterministic direct search methods that are local minimizers.
There are arguments pertaining to this being a poor choice due to the
sum of squares function often having several minima (Mendes, 1998). The
problem is more severe when the number of parameters is very large,
such as the case with whole-cell models (or even models with only a
few enzymatic reactions). It seems that for these we will have to resort to
methods that are able to locate global minima, like stochastic direct search
methods. One further problem of these large models is that the data from
microarray and proteomics experiments is currently very noisy. There
should be little expectation that parameter values should be determined
to any great precision. Neither should that be important as long as the
behavior of the real system is reproduced by the model. The target should
be to obtain models that can be used to extrapolate without much error
and that carry very similar properties to those observed in the real system.
It is important to remember that it is not the actual parameter values we
care for but that the model reproduces the observed phenomena!

REVERSE ENGINEERING A SIMPLE SYSTEM

To demonstrate how the procedure proposed here would work, an exam-
ple is now described. This example is also the seed for a larger scale study
of optimization methods for parameter estimation in whole-cell models,
currently in progress in this laboratory. In the example shown here, ex-
perimental data will not be used, instead a model of a pathway will be
adopted and data will be generated by simulation, which will correspond
to the experimental data mentioned in the previous section. This choice is
important because one of the present aims is to compare the performance
of several algorithms. That can only be possible when the source of the
data is known, so that one can compare the estimated parameters with
the real ones. Were data from an actual experiment to be used, it would be
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Figure 8.3 A model of 3-enzyme pathway with gene expression. Solid arrows
indicate mass transfer reactions and point to the positive direction of flux (but are
chemically reversible). Dashed arrows indicate activation and dashed curves
with blunt ends indicate inhibition

impossible to judge how good the parameter estimation worked since we
would never know the values of the parameters in the real system. It is
also useful to be able to control the level of noise in the data as this allows
for a study of robustness of the optimization methods to noise. Using this
approach it is possibly to add noise with well-defined properties to the
data.

We will consider a small pathway of three enzymatic steps including,
as discussed above, the enzymes and mRNAs explicitly. Figure 8.3 con-
tains a diagram illustrating the network of reactions and kinetic effects
(feedback loops). This is a rather small model compared with those dis-
cussed in the previous sections. Indeed, it is not a whole-cell model or
even close to that, but later it will become obvious that this is already very
hard to reverse engineer from data. A long-term objective is to extend this
analysis to models of large biochemical networks, but for now we can
learn something out of this exercise.

The model pathway, as in Figure 8.3, was defined in the program
Gepasi1 and then the kinetics for each step selected. The rate of each
enzymatic step follows Equation 8.3, where A is the substrate, P is the
product, E is the enzyme, Keq is the equilibrium constant of the step, kcat ,
Kam and K p

m are kinetic constants.

1 available at http://www.gepasi.org

173 Modeling Biological Systems and Parameter Estimation



Table 8.2 Kinetic parameter values of 3-step biochemical model.

Step type Parameter Value

enymatic reaction Keq 1
enymatic reaction kcat 1
enymatic reaction Kam 1
enymatic reaction K pm 1
protein synthesis V 0.1
protein synthesis K0.5 1
protein degradation kp 0.1
mRNA synthesis V 1
mRNA synthesis Ki 1
mRNA synthesis Ka 1
mRNA synthesis ni 2
mRNA synthesis na 2
mRNA degradation kg 1

NOTE: All steps of the same type have the same numerical parameters

kcat E

(
A− P

Keq

)
Kam

1+ A
Kam
+ P

K p
m

(8.3)

The rates of the transcription steps follow equation 8.4:

V

1+
(
I
Ki

)ni + (
Ka
A

)na (8.4)

This is similar to the one presented in Table 8.1, except for the denom-
inator, which has a slightly different form — in this case the action of the
inhibitor and activator are not independent. The protein synthesis, mRNA
and protein degradation steps follow the exact same kinetics as presented
in Table 8.1. The numerical values of the constants are summarized in Ta-
ble 8.2. To obtain a reference state for this model, the concentration of sub-
strate S was set to 2 and the product P to 0.5. A preliminary simulation
was then run to calculate the steady-state concentrations and these were
set as the initial state of the system.

Having put the model in a steady state, a perturbation was then added:
the concentration of the product of the pathway (P) was decreased to 0.05,
which causes the pathway to adjust to a state of higher disequilibrium,
therefore a larger flux from S to P. The model was once again simulated,
this time to follow how the initial concentrations adjust to the new envi-
ronmental conditions. Gepasi was instructed to sample the concentrations
of M1, M2, E1, E2, E3, G1, G2, and G3 along time. This corresponds to the
experimental situation in which one would measure the transcriptome,
the proteome and the metabolome for each sample. No noise was added
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to these data, which is rather unrealistic. This was on purpose, so that a
best-case scenario could be established. The effects of noise superimposed
to the data will be studied later. The information on the concentrations
of those chemical species against time corresponds to the “experimental”
data that will be used for parameter estimation. This time course was sam-
pled with 20 time points.

Once in possession of the “experimental” data it is then time to at-
tempt to go back and recover the original parameter values from these
data. Most methods require that an initial guess of the parameter values
be made. Here this was set to the arbitrary value of 10−7, except for the
degrees of cooperativity that were set to unity and the equilibrium con-
stants, which were left at their nominal value. There will be no attempt to
estimate the latter, since it is assumed that they can be determined from
in vitro experiments. The value 10−7 was chosen to be very far from the
actual value, since in a real setting one has high probability of guessing
a value badly. A total of 36 parameters are then to be estimated. At this
stage we will assume that the degrees of cooperativity will lie between 0.1
and 10 and that all other parameters between 10−12 and 106. This means
that in each dimension (except those of the degrees of cooperativity) we
have 18 orders of magnitude to search, a very hard problem indeed.

Having defined the parameter estimation problem with the simulation
software, all that remains to be done now is to choose an optimization
method and to run the program. Given the nature of this exercise, sev-
eral methods were applied. Given their popular status in enzyme kinetic
non-linear regression, the gradient descent methods were the first to be
tried. Of these, L-BFGS-B was the best, but still only managed to reduce
the sum of squares to around 0.6, which is a poor solution. The Levenberg-
Marquardt method performed very poorly (1.16602), in fact slightly worse
than the steepest descent method (1.16599). The worse being NL2SOL
(Dennis et al., 1981) (2.53908). The direct search method of Hooke and
Jeeves performed better (0.215) than the gradient methods, however that
solution is still poor. The evolutionary programming method, one of the
available evolutionary algorithms in Gepasi, did a much better job, reduc-
ing the sum of squares to around 0.0051. Visual inspection of plots of real
versus simulated data indicates that this solution could already be seen as
a reasonable qualitative fit.

Evolutionary algorithms are known to be good at pushing the solution
towards the vicinity of the minimum, but rather bad at actually reaching
it. But that is is exactly what local optimizers are good at. In light of this,
the solution obtained above with evolutionary programming was used as
a initial guess for the same set of optimization methods that had failed
previously. Hooke and Jeeves managed to take the sum of squares further
down to 0.0037, while Levenberg-Marquardt diverged away to 0.76. How-
ever, when Levenberg-Marquardt was applied to the solution of Hooke
and Jeeves, it then converged down to 0.0022. A final iteration of Hooke
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and Jeeves took the value down to 0.0020, Figure 8.4 illustrates how the
model fits the data. This clearly illustrates the convergence requirement of
gradient descent algorithms to be close to the solution.

Inspection of Figure 8.4 reveals that although the fit is not perfect, in
particular with the time courses of E2, G2 and G3, it appears to be of very
high quality from this graphical representation. Some could argue that
even thought the time courses are very similar, that the model could have
other properties unacceptably divergent from the real system. Indeed in
terms of the distribution of control there are considerable divergences, but
steady state concentrations and fluxes are very similar. Finally it should be
noted that some of the parameters were estimated very badly as seen in
Table 8.3.

DISCUSSION

General systems science was a field in much activity in the period of 1950–
1980. This attempted to be a unifying approach to science using concepts
from engineering. Those early efforts were not very productive in terms
of large-scale models, mostly because the technology to do so was not
in place. In fact some would argue that even in the present days of mi-
croarrays we do not yet have sufficiently good technology to do so, but
it would be hard to contest that, at least, this is now in the horizon. Es-
sentially the same happened with the computational aspects, where the
computers those days hardly managed to cope with small models (simu-
lated annealing and evolutionary algorithms can easily require millions of
simulations to be ran). Nevertheless those early studies gave us a valuable
body of theory, which is indeed very useful today. For example Metabolic
Control Analysis (MCA) was developed independently by Kacser and
Burns (Kacser and Burns, 1973) and Heinrich and Rapoport (Heinrich and
Rapoport, 1974) (but see also (Higgins, 1963)). MCA emphasizes the sys-
temic approach to measuring control and regulation in metabolic path-
ways and nicely links the properties of single components to the global
system’s properties. More importantly, MCA reveals some emergent prop-
erties of the system, such as the summation theorems (Kacser and Burns,
1973; Westerhoff and Chen, 1984). MCA is now used by a growing num-
ber of experimental biochemists (Fell, 1992) and the approach seems also
to benefit from genomic technologies (Kell and Mendes, 2000) (and vice
versa (Oliver, 1996)). The first wave of research in systems biology was
motivated by the then new technology of electronics; the current one is
motivated by the perspective of being able to measure a large number of
variables in parallel and by the abundant (and maybe underused) com-
puting power.

Here a very small example was studied by computer simulation and
optimization that pertained to illustrate the issues surrounding the use of
genomics data for construction of large-scale cellular models. This study
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Figure 8.4 Comparison of best regression model and real system. Observed
time course plotted with open diamonds, simulated data with crosses.

focused on the numerical optimization algorithms that can be used to
fit the model to the data. It was not the intention to discuss the issues
involved in the determination of the structure of the pathway from data
or the form of the mathematical equations for the reaction rates. The main
purpose here was really estimating the numerical values of the parameters
contained in those functions.

It is clear from this example that the popular gradient descent methods
are inadequate on their own as one cannot guarantee that they will be able
to minimize the sum of squares function from any initial guess (they are
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not robust). Ironically, the popular Levenberg-Marquardt and the highly
regarded NL2SOL methods had the worst performances in our example.
This is only a reflection of the seriousness of the problem that we will face
when instead of dealing with a small 3-enzyme model we will attempt
to use gene expression, proteomics and metabolomics data for modeling
whole cells. It is by virtue of the high-dimensionality of parameter space
that the gradient methods are not robust. These can fail to converge in two
distinct situations that depend solely on the data (there are other ways in
which they diverge, but those are related to the methods themselves). The
first situation is when the derivatives of the sum of squares function of
some or all of the parameters are close to zero (a flat region of parameter
space). In this case the gradient methods fail to find a descent direction
and usually halt prematurely (i.e. as if they had converged to the solution).
The second case is when these methods are trapped in a local minimum.
Here there is no direction to improve the solution and the methods also
halt prematurely. It is clear that solely relying on gradients will be a
problem.

Direct search methods, especially those that use random numbers, are
robust to local minima and to flat error regions. These methods may take a
long time to move but they will eventually do so and therefore are more re-
liable. Evolutionary algorithms seem especially appropriate for these sit-
uations. The method that managed to attract the model towards the solu-
tion in the example above was indeed evolutionary programming. Once
it got close to the solution, then the gradient descent, and other local op-
timizers, were able to approximate the solution even better. This suggests
that a hybrid algorithm combining evolutionary and gradient methods
(e.g. (Pál, 1996)) might be especially well suited to these problems.

For the same problem, evolutionary algorithms usually require con-
siderably longer run times than any of the deterministic methods (gradi-
ent or direct search). This can be measured for problems in which all these
algorithms converge, such as with an inhibition kinetics data set analyzed
by Kuzmic (Kuzmic, 1996) and Mendes (Mendes, 1998). Of course in cases
such as that analyzed here, there is no comparison because the determin-
istic methods did not converge to a good solution. In the example shown
here, evolutionary programming took some 3 hours and 1.5 million sim-
ulations to run on a Pentium III 600Mhz processor. This number would
increase more or less linearly with the number of measured samples and
superlinearly with the number of parameters to estimate. Obviously fit-
ting a whole-cell model will require a very long time indeed on a simi-
lar machine. Fortunately, evolutionary algorithms are among the simplest
to parallelize. Gradient descent methods are not the most sound for this
problem since they are harder to code efficiently for parallel computers
and don’t benefit as much from that as do evolutionary algorithms. There
is also evidence that parallel implementations of genetic algorithms not
only run faster as produce higher quality solutions (Elketroussi and Fan,
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1994). This lends even stronger support for using these methods for large-
scale modeling of biochemical systems.

In the example shown here, the best estimation of parameter values
was not equally successful for all the parameters (Table 8.3). Some, such
as Kam and Kbm (Michaelis constants) of the first two enzymatics steps are
indeed estimated to values very far from reality. It could seem a contradic-
tion that an acceptable solution could contain parameters so badly off, but
in reality a model will not be equally sensitive to all the parameters. Two
explanations are possible for this lack of fit of some model parameters.
The first is that if we had better estimates to start with, the optimization
would have converged even for these parameters. Indeed there is a good
scope of improving the process above by making more educated guesses
of the values of the parameters (for example it could be possible to esti-
mate the order of magnitude of the parameters that are rate constants).
The second one is that for this time course data, those parameters could
change considerably without any observable effect on the time courses —
the model would be insensitive to them. In that case one would be advised
to simplify the model, somehow removing them.

The second explanation for lack of fit over some parameters is perhaps
the correct one here, since the amount of data that was used was very
small: only 20 samples of the same time course were used to estimate
36 parameters. Even to estimate standard deviations for the fit would
require a minimum of 38 time points in the time course. Although it would
have been very easy to collect more data here, this is hardly the case in
large-scale experiments. Using the numbers calculated in the introduction,
a whole cell model with 30,000 reactions would have on the order of
100,000 parameters, and so would require 100,001 samples to calculate
a simple standard deviation! It is best to prepare ourselves to the fact
that we are not going to be able to predict all those 100,000 parameters
with equal precision. Note that to increase the chance of being able to
estimate all parameters one does not have to just sample the same time
course with higher frequency, as the data in that time course are highly
correlated to each other and so the information content would not increase
much (Wahde and Hertz, 2000). It would be necessary to carry out other
experiments where the system would be perturbed in different ways.
Such comprehensive perturbation experiments are probably not going
to happen soon due to limitations on time, money and/or the current
technology.

179 Modeling Biological Systems and Parameter Estimation



Table 8.3: Parameter values produced by the best estimation.

Step Parameter True Value Estimated Value

S to M1 kcat 1 0.5604
S to M1 Kam 1 3.455 · 10−7

S to M1 K p
m 1 4.467 · 10−6

M1 to M2 kcat 1 0.4924
M1 to M2 Kam 1 8.413 · 10−12

M1 to M2 K p
m 1 1.225 · 105

M2 to P kcat 1 0.8174
M2 to P Kam 1 0.1299
M2 to P K p

m 1 0.01463
E1 synthesis V 0.1 0.05648
E1 synthesis K0.5 1 0.1015
E1 degradation kp 0.1 0.1128
E2 synthesis V 0.1 0.09027
E2 synthesis K0.5 1 0.09431
E2 degradation kp 0.1 0.2356
E3 synthesis V 0.1 0.03572
E3 synthesis K0.5 1 0.1638
E3 degradation kp 0.1 0.1013
G1 synthesis V 1 0.5466
G1 synthesis Ki 1 94.11
G1 synthesis Ka 1 0.07055
G1 synthesis ni 2 10
G1 synthesis na 2 0.5431
G1 degradation kg 1 0.5887
G2 synthesis V 1 0.2373
G2 synthesis Ki 1 2.050
G2 synthesis Ka 1 0.1861
G2 synthesis ni 2 9.973
G2 synthesis na 2 0.6880
G2 degradation kg 1 0.3074
G3 synthesis V 1 0.09607
G3 synthesis Ki 1 1.685
G3 synthesis Ka 1 0.01500
G3 synthesis ni 2 3.507
G3 synthesis na 2 0.3388
G3 degradation kg 1 0.2606

Some say that with all the high-throughput parallel experimental
methods available today biologists are already deluged with data. Cer-
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tainly if we look at the volume of data, reflected for example in the disk
space needed to store it, it seems that indeed there is a great deal of in-
formation around. However, the calculation in the previous paragraph
should enlighten us to the reality that biology needs much more data than
it can possibly generate in the near future. In fact the argument should be
that we need to collect much more (informative) data than we are doing
right now.

181 Modeling Biological Systems and Parameter Estimation



This page intentionally left blank



References
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9 Towards a Virtual Biological Laboratory

Jörg Stelling, Andreas Kremling, Martin Ginkel,
Katja Bettenbrock and Ernst Dieter Gilles

For a system-level understanding of living cells, a quantitative represen-
tation of these systems involving mathematical models and correspond-
ing computer tools is required. Our approach focuses on a modeling con-
cept which relies upon modular structuring of cellular systems focusing
strongly on the biomolecular structure of these systems. Mathematical
submodels for functional units comprising metabolism and regulation can
be aggregated in a hierarchical way to obtain more complex modules. In
the Virtual Biological Laboratory, the process modeling tool PROMOT con-
tains an object-oriented knowledge base with reusable modeling entities
and enables a purely symbolical model development process via a graph-
ical user interface. The simulation environment DIVA then uses the model
library for dynamic simulation, parameter estimation and model analysis.
Two examples of models of complex regulatory networks in Escherichia
coli and in Saccharomyces cerevisiae are given to demonstrate the usefulness
of this approach. It can provide a framework for straightforward develop-
ment of virtual representations for cellular systems.

INTRODUCTION

Although it is one of the most important challenges in modern biology, a
system-level understanding of how cells and organisms function is actu-
ally very rudimentary. This is mainly due to the following two reasons:
The overwhelming part of experimental investigations can be character-
ized as qualitative and descriptive, directed towards the understanding
of biomolecular details. The concomitant lack of quantitative data will
certainly be reduced by further development and wider application of
massively parallel experimental methods in functional genomics and pro-
teomics (Uetz et al., 2000; Roberts et al., 2000). Furthermore, due to the
complexity of cellular systems even the (nearly) complete measurement
of the systems’ states per sewill not enable an integrated understanding of
all relevant functional connections and their influence on the observable
behaviour (Hartwell et al., 1999).

Recent efforts for a system-level understanding in biology rely on in-
terdisciplinary approaches combining concepts from biology, information



sciences and systems engineering. They especially stress the importance of
mathematical modeling of complex biological systems in order to come to
a virtual representation of cells and organisms. In the end, this representa-
tion should allow for computer experiments similar to experiments with
real biological systems. Thus systematic testing of biological hypotheses
as well as purpose-driven design of cellular functionality are perspectives
of these approaches (Hartwell et al., 1999; Stokes, 2000).

The use of mathematical models including the development of com-
puter tools for model formulation and simulation has been demonstrated,
for example, by Tomita et al. (Tomita et al., 1999) who were able to establish
a hypothetical cell comprising 127 genes. Schaff et al. (Schaff et al., 1997)
follow comparable approaches in the development of a ”Virtual Cell” .
However, two major challenges for the application of mathematical con-
cepts in the life sciences still have to be resolved: (i) the work on a concep-
tional framework promoting interdisciplinary research in this direction
by finding a ”common”, non-mathematical language and (ii) a clearly de-
fined modeling concept adapted to cellular systems that allows for easy
model development and interpretation (Stokes, 2000).

Focusing on the internal structure of cellular systems, one central, in-
creasingly accepted notion is that these systems are composed of ’func-
tional units’ or ’modules’. In this respect, biological systems are more
closely related to synthetic, engineered systems than to physical systems
(Hartwell et al., 1999; Lauffenburger, 2000). Therefore, a promising way to
come to a system-level understanding of cells and organisms is to extend
successful theoretical concepts established for the analysis and synthesis
of complex technical systems (Gilles, 1998) to biological systems.

On this basis we are currently developing a system- and signal-
orientated modeling concept for cellular systems (Kremling et al., 2000;
Lengeler, 2000). It relies on the modular structuring of these systems and
a systematic representation of biomolecular components in modeling ob-
jects. The modeling concept will be outlined in the following section.
Afterwards we provide a short sketch of the nature of interdisciplinary
research to be carried out in order to establish a ”Virtual Biological Lab-
oratory”. The usefulness and validity of our approach will be demon-
strated by two examples of cellular functional units: the system control-
ling catabolite repression in Escherichia coli and aspects of a complex regu-
latory network involved in cell cycle regulation in budding yeast.

MODULARMODELING CONCEPT

The notion of a living cell being composed of subunits of limited auton-
omy (functional units) plays a prominent role for the modular modeling
concept. For the mathematical modeling of cellular systems, this modu-
lar structure raises the possibility to independently develop mathematical
models for each of the functional units. Hence, submodels as entities in
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the ”model world” correspond to functional units in the ”real world”.
These submodels can later be connected to obtain a description at the
system-level. As this approach depends on the identification and repre-
sentation of functional units, one important question is how to demarcate
these units, i.e. how to decompose a complex cellular biochemical network
into smaller units. Before we discuss this topic, we will first give a sketch
of the overall structure of cellular systems in order to point out broader
lines of what to include in the modeling process under our paradigm and
then explain how this is done.

General reflections on metabolism and cellular regulation

At a very abstract level, a cell can be divided into two general subnet-
works, a regulatory network and a metabolic network (Kremling et al.,
2000) as shown in Fig. 9.1. These networks possess very different charac-
teristics: The metabolic network is mainly occupied with substance trans-
formation, e.g. to provide metabolites and cellular structures. In many
cases it involves fast biochemical reactions. The regulatory network’s
main task is information processing, e.g. for the adjustment of enzyme
concentrations to the requirements of variable internal and external con-
ditions. This network involves the use of genetic information. Compared
to information flow, mass flow only plays a subordinate role in the regu-
latory network. In this sense, the regulatory network is superimposed onto
the metabolic network, fulfilling functions analogous to a controller in a
technical process.

control action

metabolic network

metabolites
cellular structures

products

regulatory network

DNA, RNA
proteins

amino acids
nucleotides

proteins

sensor signals

Figure 9.1 Regulatory network and metabolic network: Cellular components
constituting the networks and the major connections between them implying
signal exchange (left) and substance flow (right).

The interaction between both networks is necessarily bound to sub-
stance exchange due to the requirements for precursors and proteins.
However, the main connections consist in directed signal flow, i.e. sensor
signals (e.g. generation of second messengers) and control action (e.g. ad-
justment of enzyme concentrations). For a system-wide understanding
and description of cellular function, these relations between metabolism
and regulation imply two major consequences: Firstly, due to their promi-
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nent role in bringing about the systems’ behaviour, cellular regulation has
to be described in a more coherent (and detailed) way than in ”traditional”
approaches to mathematical modeling. Secondly, more attention has to be
given to a signal-oriented view of these systems, which until now have
mainly been considered from a mass-flow oriented point of view.

As cellular regulation is established by especially complex gene and
protein networks, a closer look at the overall structure of cellular regu-
lation may help to deal with this kind of complexity. In this respect, one
important feature of the regulatory network is its hierarchical structure. As
shown in Fig. 9.2 for transcriptional regulation in budding yeast, the sys-
tem’s possible behaviour on a lower level is constrained by regulation at
higher levels. For example, the presence of RNA-Polymerase offers a wide
variety of different gene expression patterns, but the actual gene expres-
sion is adjusted by combinatorial control involving associated factors and
specific transcription factors. Transcription is thus affected by layers above
the influence of gene-specific regulators, which enables the cell to estab-
lish global to local layers of regulation by controlling the availability of
more and more specific components associated with a general transcrip-
tional machinery (Holstege et al., 1998). Similar control structures can be
found as a common theme in translation (Sachs and Buratowski, 1997) and
in intracellular proteolysis (Kirschner, 1999).

Differentiation,
extreme environ-
mental conditions

Substrate availability,
Cell cycle status

1

~ 300

RNA-Polymerase II

Associated factors

Transcription
factors

Genes

Growth

~ 80

~ 6200

Components: Signals:

Figure 9.2 Hierarchical structure of the regulatory network: Example of
transcriptional regulation in budding yeast. Specificity of regulation increases
from global regulation to single gene expression (top to bottom), whereby the
components involved (left) become more specific as well as the internal or
external signals (right) processed. Shaded areas at each regulatory level indicate
the respective behaviour in a system-theoretical sense (Williems, 1989; Willems,
1991) allowed by the combination of all regulatory interactions including higher
levels of control.

For the system-wide description of a cell, capturing these constitutive
principles in the modeling process has first of all the negative consequence
of resulting in detailed and thus seemingly more complex mathematical
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models. This is compensated for by several advantages as the detailed
description enables (i) to consider system-wide coupling of cellular regu-
lation and hence to describe the interplay of global and local control, (ii) to
integrate knowledge on well-characterized general components in order
to greatly factilitate parameter determination for special subsystems and
(iii) to exploit hierarchical network structures for model reduction (Krem-
ling et al., 2000). These aspects will be discussed in more detail in the con-
text of the example systems provided in the following sections.

Identification and representation of functional units

The modular modeling approach presented here depends on the identifi-
cation and representation of functional units. As we aim at integrating cel-
lular mass- and signal processing functions, each of these functional units
has to be composed of a part of the metabolic network and a correspond-
ing part of the regulatory network. Due to their functional dominance (see
above), regulatory interactions also have to have a prominent role for the
demarcation of functional units (or modules).

For this demarcation, we use a preliminary set of three biologically
motivated criteria. To be (relatively) self-contained, the modules have

(i) to perform a common physiological task such as represent a linear
pathway for amino acid synthesis,
(ii) to be controlled at the genetic level by common regulators i.e. identical
transcription factors / the organization in one operon
(iii) and to possess a common information processing (signal transduc-
tion) network.

The essential feature of this approach is the combination of classical con-
cepts in the analysis of metabolic systems with a signal-oriented per-
spective to cellular regulation. Distinct to our approach, several authors
adressed the question of demarcation in a more quantitative, flux-oriented
way regarding either metabolic pathways (Rohwer et al., 1996; Schuster et
al., 2000a; Schilling et al., 2000) or intracellular signal processing networks
(Kholodenko et al., 1997; Schuster et al., 2000b). Because systematic inves-
tigations on larger modular systems such as the work by van der Gugten
et al. (Gugten and Westerhoff, 1997) are only at the beginning we use this
heuristic way of demarcating functional units. Further work on these theo-
retical questions will be necessary to come to a more stringent formulation
of the criteria cited above.

The application of these criteria enables an entire cellular system to be
structured and therefore means a holistic approach to cellular function.
Depending on the desired degree of resolution of subsystems, it offers
a flexible description of hierarchically nested modules (Fig. 9.3). An en-
zymatic reaction in glycolysis belongs accordingly to the functional unit
”glycolysis” which in turn is part of the larger unit ”catabolism”.
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Our modular modeling approach involves the systematic representation
of the above identified biological functional units in submodels (mod-
eling objects). At the most fundamental level, a finite and disjunct set
of so-called ”elementary modeling objects” (Fig. 9.4) has been defined.
In Fig. 9.3, for example, each reaction and each storage in the symbolic
scheme of glycolysis is described by such an elementary modeling object.
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Figure 9.3 Structural decomposition of cellular systems (II): Example for
hierarchical nesting of modules
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Figure 9.4 Hierarchy of elementary modeling objects for cellular systems.
Substance exchange is marked by bold lines whereas arrowheads are used to
indicate signal connections.
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Elementary modeling objects as well as modeling objects of higher
structure are characterized by the following three properties:

(i) They have structural properties representing the number and types of
inputs and outputs. A simple submodel for an enzymatic reaction, for
instance, needs at least two inputs / outputs connected with mass flow
of substrate / product and one control signal for enzyme concentration.
(ii) The modeling objects are assigned behavioural properties, i.e. mathe-
matical equations describing the dynamic behaviour. Depending on the
modeling objectives these equations include algebraic equations, ordi-
nary or partial differential equations (ODEs / PDEs). Often the mathe-
matical equations as the ”core” of each modeling object are derived from
elementary chemical reaction networks applying chemical kinetic theory
(detailed models). To allow for an adjustable degree of model accuracy as
well as for efficient simulation, model reduction e.g. via quasi steady-state
assumptions is carried out where appropriate. In the case of the single-
enzyme example, a Michaelis-Menten kinetic equation could be used.
(iii) Furthermore, each modeling object is assigned a specific symbolic rep-
resentation. Thus even for complicated models (see examples in the follow-
ing sections) a high degree of biological transparency is guaranteed due
to the modular model structure. This is especially important to facilitate
interdisciplinary discussions on the underlying biological structures and
mechanisms.

The elementary modeling objects are used to represent the basic pro-
cesses of substance formation (either via simple enzymatic processes or
via polymerization processes involving global components like RNA
polymerase), degradation and storage. The set of modeling objects is com-
pleted by those units representing the corresponding signal transforma-
tion processes: Here we define two major subclasses for the control of
polymerization processes (transcription / translation) and for the general
description of interactions between, for example, proteins. For further
details on these elementary modeling objects and their prototypical be-
havioural characteristics see (Kremling et al., 2000).

Elementary modeling objects can subsequently be interconnected to
form higher aggregated structures (Fig. 9.5). A modeling object for tran-
scription comprises polymerization via RNA polymerase and the control
of this process. The modeling object for gene expression is obtained by the
linkage of transcription and translation submodels.

In summary, the modular modeling approach enables one to progres-
sively obtain a holistic description of more complex functional units. The
organization of these modeling objects in an object-oriented class hier-
archy also lays the basis for computer-aided model development as de-
scribed in the next section.
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Figure 9.5 Composition of higher structured modeling objects. Elementary
modeling objects are linked to a submodel describing gene expression (left). The
aggregated model is assigned the representation given on the right hand side.

THE VIRTUAL BIOLOGICAL LABORATORY: AN OUTLINE

One main purpose of the Virtual Biological Laboratory is to enable com-
puter experiments with cellular systems in analogy to experiments carried
out with real biological systems in the laboratory. Applications include the
quantitative and qualitative analysis of overall behaviour, systematic de-
sign of functional units by genetic modifications and the systematic plan-
ning of real laboratory experiments. The Virtual Biological Laboratory has
to integrate mathematical models with a sound biological background
and methods for data storage, computer-aided modeling, simulation and
model analysis in a software tool (Fig. 9.6). Accordingly, the development
of such a tool requires the close cooperation of biologists, information sci-
entists and system scientists.

Laboratory
Biological

Virtual

Visuali-
zation

Data-
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Synthesis

Modeling Concept

Quantitative

Analysis
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biological
functional

units

Models of

Genetic
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Sciences

Biology Hypo-
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Figure 9.6 Elements to be integrated into a Virtual Biological Laboratory.
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The necessity of contributions by each of the three disciplines arises
also from the fact that model development has to be understood as an it-
erative process leading to a maximal convergence of ”model world” and
”real world”. It always requires a careful evaluation of all hypotheses
and assumptions by comparison with experimental data. Two of the main
tasks of biology are to provide these data and to develop methods for
specific perturbation of cellular processes. Information science is needed
for database design including a systematic representation of experimen-
tal and kinetic data, the development of computer-based modeling tools
and finally the implementation of visualization techniques. The system
sciences primarily have to provide theoretical methods for demarcation
of network structures, system-level analysis and synthesis. General con-
trol principles derived from the analysis of cellular networks may also
prove beneficial for further development of hierarchical concepts (Raisch
et al., 2000) to be applied to control technical systems.

The Virtual Biological Laboratory is currently under development and
major parts of it have already been established: The process modeling tool
PROMOT, originally designed for application in chemical engineering, al-
lows for the computer-aided development and implementation of mathe-
matical models for living systems (Ginkel et al., 2000). For the numerical
analysis of the resulting models the simulation environment DIVA (Man-
gold et al., 2000) is used. The overall structure of the software is shown in
Fig. 9.7.

The modeling methodology of PROMOT distinguishes structural, be-
havioural and object-oriented modeling. During structural modeling,
modules and their interfaces, the so called terminals, are identified ac-
cording to the biological modeling concept shown in the previous section
and aggregated in an aggregation hierarchy of modules. On every level
of this hierarchy the modules are linked together using their terminals.
These links represent the (possibly bi-directional) exchange of material,
momentum, energy or information between the modules.

Modules contain behavioural modeling entities, i.e. variables and
equations. They form a differential algebraic equation system (DAE), that
is used during the simulation. The description of the behaviour is done
in a symbolic way, thus no background knowledge about special numeric
algorithms and their implementation is required. PROMOT not only al-
lows for the development of separate models but, as shown in Fig. 9.7,
it also enables the implementation and use of flexible, object-oriented
knowledge bases containing reusable modeling entities. The structural
and behavioural modeling entities are represented as modeling classes
that are organized in an inheritance hierarchy. In this hierarchy abstract
superclasses are described, which pass on common modeling knowledge
to a set of special modeling entities (subclasses). Hence users can not only
aggregate modeling entities which are already contained in the know-
ledge base but they are also able to extend modeling classes by a special
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Figure 9.7 Current software architecture of the Virtual Biological Laboratory.

subclass (e.g. to use a special enzyme kinetic) without re-implementing
the common parts.

Models in PROMOT can be implemented using the declarative Model
Definition Language (MDL) (Tränkle et al., 1997) as well as a graphical
user interface (GUI). These two parts can be used alternatingly during
model development. The GUI especially supports structural modeling
with aggregation and linking of modules and provides a graphical repre-
sentation whereas MDL is well suited for the description of the behaviour
with variables and equations. MDL is also the storage format for the
knowledge bases. For the modeling of catabolite repression in E.coli (see
next section) a knowledge base has been developed which contains the el-
ementary modeling objects described above and some common metabolic
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subnetworks. An example for a simple metabolic pathway modeled in
PROMOT is shown in Fig. 9.8.

Figure 9.8 Structure of a simple pathway within PROMOT. Lactose is taken up
with the help of the enzyme lacy and is split into glucose and galactose by lacz.
An important by-product is Allolactose. The products can be used outside this
module by the terminals gluc out and glac out.

Using knowledge bases, model formulation means the selection and
linking of pre-defined modeling objects via the GUI and parametrizing
the resulting model. The design and implementation techniques in Pro-
MoT are derived from the object-oriented methodology in computer sci-
ence which was developed for building very complex and flexible soft-
ware. Using flexible and seperately tested modules it should be possible
to build up very large and complex cellular models in a similar way, e. g.
a model of a whole cell. With respect to object-oriented and graphically
supported model development, the Virtual Biological Laboratory differs
significantly from other biological simulation environments such as E-
Cell (Tomita et al., 1999). Although E-Cell also has object-oriented primi-
tive modeling entities like substances and reactions, the users are not able
to build their own classes for metabolic networks. Speed and easiness of
model development - even without knowing exactly about the underlying
mathematical formulations - are thus greatly increased.

Mathematical models generated using PROMOT can be analyzed
within the simulation environment DIVA (Mangold et al., 2000, and refs.
therein). This simulation tool has been designed especially for dealing
with large-scale dynamical (differential-algebraic) systems, which arise in
chemical process engineering, but also in the mathematical modeling of
complex cellular networks. The model representation for DIVA is com-
piled from FORTRAN sources (shown as ‘Simulation Module’ in Fig. 9.7)
to machine code. These FORTRAN files are generated by PROMOT using
the Code Generator (Köhler et al., 1997). Models in DIVA are handled by
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sparse-matrix numerics which makes the simulator capable to work on
models with up to 5000 differential equations.

Inside DIVA many different numerical computations can be performed
based on the same model, including dynamic and steady state simulation,
parameter estimation, optimization and the analysis of nonlinear dynam-
ics. There are currently four methods of special interest for cellular mod-
els:

(i) Dynamic simulation of the model with different integration algorithms
(ii) Sensitivity analysis for parameters with respect to experimental data
(iii) Parameter identification according to experimental data
(iv) Model-based experimental design.

Most numerical algorithms in DIVA are taken from professional nu-
merical libraries like HARWELL (Harwell Subroutine Library, 1996) and
NAG (NAG, 1993) and are therefore very sophisticated. The system of-
fers also additional methods like steady state continuation and bifurcation
analysis which are currently only used for process engineering tasks but
may also become interesting for cellular systems in the future.

The visualization and postprocessing of the simulation results are
done within the standard numeric software MATLAB. This shows one of
the drawbacks of the currently available software structure: it consists
of rather loosely coupled programs that can exchange data almost only
in one direction. To form an efficient workbench (like that depicted in
(Kitano, 2000)), the single parts should be integrated more tightly, e. g.
to allow the control of the simulation directly from the modeling GUI or
to include simulation results as parameters for a simulation module back
into PROMOT.

The combination of PROMOT and DIVA is well suited to form the
core of the ”electronic infrastructure” of a Virtual Biological Laboratory.
Examples for the content of the Virtual Biological Laboratory will be given
in the following two sections. We will present signal-oriented models for
catabolite repression in E. coli and for aspects of cell cycle regulation in
budding yeast, respectively.

EXAMPLE: CATABOLITE REPRESSION IN E. COLI

The expression of carbohydrate uptake systems and metabolizing en-
zymes is very well controlled in bacteria in order to avoid the useless
expression of proteins. For growth, some carbohydrates are preferred to
others, resulting in the sequential use of different carbohydrates in mixed
cultures. The best examined example of this phenomenon is the diauxic
growth of E. coli in cultures with glucose and lactose (Neidhardt et al.,
1990). Different regulatory proteins contribute to controlling the expres-
sion of the corresponding operons and the activity of carbohydrate uptake
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systems. Being extensively studied over the past few decades, glucose-
lactose diauxie of E. coli is a perfect model system of complex regulatory
networks. Fig. 9.9 gives a survey on the whole model. The symbols for the
individual modeling objects can be found in Figs. 9.4 / 9.5. The following
functional units are discussed:
Lactose transport and metabolism. The regulatory proteins involved in

glucose-lactose diauxie in E. coli influence the expression of the lactose
metabolizing enzymes. The lactose repressor, LacI, is able to bind to a con-
trol sequence in front of the lac operon in the absence of lactose, thereby
inhibiting transcription from lacZp. This repression is relieved in the pres-
ence of allolactose, the natural molecular inducer of the lac operon.
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Figure 9.9 Catabolite repression in E. coli : Representation of the model
structure by using the symbols introduced above. The model comprises lactose
and glucose transport and their control by the global signal transduction system
crpmodulon, named after the regulator Crp.

Global signal transduction. Additional control is exerted by the Crp
protein. This protein is active in the regulation of a number of oper-
ons, most involved in carbohydrate uptake. The Crp protein is able to
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form a complex with cAMP, that acts as a transcriptional activator for
the lac operon as well as for the other members of the crp modulon
(e.g. further glucose uptake systems). The concentration of the alarmone
cAMP inside the cell is regulated by complex mechanisms. These mech-
anisms are basically understood, but despite many well-established de-
tails some questions remain. Central in its regulation is the action of the
phosphoenolpyruvate-dependent phosphotransferase systems (PTSs), es-
pecially the glucose PTS. If the PTSs are not active in the uptake of sub-
strates, the PTS proteins, including Crr which acts as the EIIA in glucose
transport, accumulate in their phosphorylated form. Crr∼P is needed for
the activation of the enzyme adenylate cyclase (CyaA) that converts ATP
into cAMP. Hence, an activation of CyaA is possible only in the absence of
PTS substrates or their transport respectively. This leads to an increased
level of cAMP inside the cell and in the formation of the cAMP·Crp ac-
tivator complex. As a result operons like the lac operon that depend on
the Crp·cAMP complex for transcription can only be expressed if no PTS-
substrates are present. Vice versa PTS-substrates in the medium repress
transcription of the members of the crp modulon. This regulation has
therefore been termed catabolite repression.

A mathematical model describing carbon catabolite repression was
developed and validated with a set of experiments. The model equations
describing signal processing in the global signal transduction system can
be found in (Kremling and Gilles, 2000). A further contribution describing
the remaining system as well as the experimental setup is in preparation.
The model comprises ODEs for the components in the liquid and the bio-
phase. Furthermore algebraic equations are used to describe protein-DNA
interactions during gene expression. As can be seen in Fig. 9.9, the model
shows a hierarchical structure: The pathways for glucose and lactose are
under the control of a superimposed signal transduction pathway.

To validate the model, isogenic mutants, i.e. strains derived from one
identical wild type strain with a defined mutation in the signal transduc-
tion pathways, were constructed and analyzed. In the experiments the car-
bohydrate supply in the growth medium as well as in the preculture was
varied.

Parameter identification was performed by a two step procedure: (i)
Parameter analysis was performed to get those parameters which could
be estimated according to the available measurement (see Fig. 9.10). The
procedure is based on the calculation of the Fisher information matrix
(Posten and Munack, 1990; Ljung, 1999). With measurement data for eight
states, 15 of 85 parameters could be estimated together. (ii) Parameter
estimation was performed using the SQP (SequentialQuadratic Program-
ming) algorithm E04UPF from the NAG library (NAG, 1993). Fig. 9.10
shows the time course of the measured states as well as simulation results
(solid lines).
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Figure 9.10 Catabolite repression in E. coli : Simulation and experimental results
for E. coli K-12 wildtype. Experiments were carried out with the wildtype strain
LJ110 (Zeppenfeld et al., 2000) growing in standard phosphate medium (Tanaka
et al., 1967) supplemented with glucose and lactose. Given are the time courses of
biomass, glucose, lactose, galactose, cAMP and acetate in the liquid phase.
Measurement of intracellular EIIA and LacZ as well as simulation of further
intracellular states are also shown (open symbols and ’+’ indicate measurement;
solid lines indicate simulation results). Quantification of carbohydrates and
acetate in the growth medium was carried out by using the respective testkits of
Roche Diagnostics GmbH (Germany) according to the instructions of the
manufacturer. Determination of β-galactosidase activity was done as described
by (Pardee and Prestige, 1961). Determination of phosphorylation state of Crr
was carried out essentially as described by (Hogema et al., 1998). The amount of
extracellular cAMP was determined with the Cyclic AMP Enzyme Immunoassay
Kit of Cayman Chemical (Ann Arbor, USA).
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To summarize the results of this model, it can be stated that (i) the
model quantitatively describes experimental results obtained with a num-
ber of mutant strains, (ii) the model allows the prediction of the time
course of not yet measurable variables like cAMP, (iii) the model can
be used as a basis for further analysis. It is now used to test hypothe-
sises about regulatory phenomena influencing the growth of some mutant
strains.

EXAMPLE: CELL CYCLE REGULATION IN BUDDING YEAST

In all eukaryotic cells the cell division cycle is characterized by a fixed
sequence of cell cycle phases (Fig. 9.11), during which the main cellular
tasks are switched from simple mass growth (G1 phase) to DNA repli-
cation (S phase) and finally to chromosome separation and cytokinesis
(G2 / M phase). In response to multiple internal and external signals, the
sequence is mainly controlled by cyclin dependent kinases (CDKs). They
are activated by phase-specific cyclins forming distinct kinase complexes
with different functionality.
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Figure 9.11 Cell cycle regulation in Saccharomyces cerevisiae : Main cellular tasks
in specific cell cycle phases, checkpoints, DNA-content, cell cycle regulators (left)
and a schematic view of the corresponding cyclin concentrations (right).

Even in the relatively simple yeast Saccharomyces cerevisiae, one cat-
alytic subunit (Cdc28) and nine cyclins (Cln1-3 / Clb1-6) are involved in
cell cycle regulation (Mendenhall and Hodge, 1998). The phase-specific
cyclin fluctuation in this organism relies upon such diverse processes as
regulated transcription of cyclin genes, constitutive or controlled protein
degradation and specific inactivation of Clb-CDKs via the CDK inhibitor
Sic1. All regulators are embedded in a highly interconnected network in-
cluding positive and negative feedback loops (Mendenhall and Hodge,
1998). Additionally, cell cycle regulation in budding yeast not only serves
as an example for a complex regulatory network; it also involves many of
the known regulatory mechanisms at the DNA, mRNA and protein levels
which generally have to be accounted for during model development.
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In the cell cycle, the G1/S-transition plays a crucial role, because at
this boundary – via the associated checkpoint called ”START” – the cells
ultimately have to decide whether to undergo a new round of replication
and division or not. The accumulation of sufficient cellular material, i.e.
the attainment of a critical cell size, constitutes the major prerequisite for
this transition (Mendenhall and Hodge, 1998). At the molecular level, the
transition is governed by an approximately constant level of Cln3, which
surprisingly results in the sudden activation of a transcription factor com-
posed of Swi4 / Swi6. In this way the production of G1 cyclins Cln1/2
induces the transition to the S phase. Whereas these regulatory mecha-
nisms are well established, finding a consistent explanation for the sudden
appearance of G1 cyclins as a function of cellular growth is complicated
(Mendenhall and Hodge, 1998).

To quantitatively analyze the system’s dynamics, a submodel was for-
mulated according to the modeling concept outlined above. Its structure,
which is based solely on the known regulatory mechanisms, is shown in
Fig. 9.12. Special attention was given to incorporate the interaction be-
tween regulatory processes at the DNA as well as at the protein level.
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Figure 9.12 Model structure capturing the regulatory network for the control of
the G1 / S-transition during the cell cycle in Saccharomyces cerevisiae. Symbols
represent modeling objects as defined in Figs. 9.4 / 9.5.
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Unfortunately, in the area of cell cycle regulation kinetic parameters
and absolute concentrations are available only for specific cases like the
Swi4-promoter interaction (Taylor et al., 2000). According to the modeling
concept outlined above, we therefore first used quantitative data from lit-
erature concerning global components like RNA polymerase II (Thomas
et al., 1997) to constrain the possible model behaviour to the range found
in vivo. Further parameter values were obtained by taking into account
structural characteristics (e.g. gene lengths) and data from microarray ex-
periments for (relative) concentration profiles (Cho et al., 1998) as well
as for mRNA stability (Holstege et al., 1998). Based on experimental data
covering single mechanistic aspects like (Yaglom et al., 1995) and connec-
tions between growth rate and G1 length (Aon and Cortasse, 1999), the or-
der of magnitude of the remaining parameters was estimated. Parameter
analysis finally revealed the submodel as being robust, i.e. being relatively
insensitive to the precise values of model parameters with respect to its
qualitative behaviour (see below). As with other complex regulatory net-
works (Alon et al., 1999; von Dassow et al., 2000), this seems to be a direct
consequence of the network’s architecture. It also gives a first hint at the
correctness of the model structure.

Several conclusions regarding the character of the G1 / S transition can
be drawn from the simulation results (Fig. 9.13): Although held at an ap-
proximately constant concentration, Cln3 is able to drive the transition as
a function of cellular growth. Mechanistically, the control of CLN1/2 tran-
scription via Swi4/6 plays a prominent role in this process. Due to sev-
eral positive and negative feedback loops, the system behaves as a switch
function as soon as a Cln3 threshold is reached. The known regulatory
mechanisms therefore sufficiently explain the behaviour observed in vivo.
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Figure 9.13 Simulation results for regulation of the G1 / S transition: Protein
concentrations of G1 cyclins, CDK inhibitor and transcription factor Swi4 (left)
and transcriptional regulation of the CLN1/2 genes (right).

Differing from a published mathematical model of cell cycle regulation
in budding yeast (Chen et al., 2000), our (partial) model is based on
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the deduction of dynamic properties from a more detailed description
of regulatory mechanisms: Without implementing, for example, an ultra-
sensitive switch function for the activation of the transcription factor SBF,
the behaviour results from an interplay of regulated gene expression,
phosphorylation / dephosphorylation reactions and cooperative binding
to multiple sites on the DNA.

To summarize, the major biological findings obtained by this model
are: (i) biological knowledge on the regulatory network under consider-
ation is sufficient to explain the observed behaviour, (ii) the seemingly
complex behaviour results from the interplay of regulatory circuits, which
have to be viewed in a quantitative way to get a clue on the entire net-
work’s function and (iii) mathematical modeling gives hints that this net-
work constitutes a relatively robust regulatory module.

CONCLUSIONS

Finding concepts to deal with the complexity of living systems represents
the major challenge on the way to a system-level understanding of cells
and organisms. In this contribution, we present a framework which is de-
rived from concepts in engineering science and systems theory. It essen-
tially relies upon the modular mathematical modeling of the overall be-
haviour of cellular functional units. The decomposition of cells into such
units is oriented at the modular biomolecular structure of cellular systems.
This demarcation also represents the most crucial aspect of the modeling
concept as mainly heuristic criteria are applied at the moment. In the fu-
ture, theoretical work in this area will be intensified. Finally, the modeling
concept should guarantee a high degree of biological transparency and
promote the interdisciplinary cooperation between biologists and system
engineers.

A long-term perspective of our work is the establishment of a Virtual
Biological Laboratory combining mathematical models of cellular systems
with tools for their efficient development, simulation and analysis. The
purpose of this laboratory is to enable computer experiments with cellular
systems similar to the analysis and design of cellular systems in the ”real”
world. One milestone in reaching this aim is the development of process
modeling and simulation tools forming the ”core” of the Virtual Biological
Laboratory. As we have shown, computational tools like PROMOT and
DIVA are already available and allow for a straight-forward realization of
the modular modeling concept outlined in this contribution. For two small
example systems, we showed a systematic formulation of mathematical
models based on (structural) biological knowledge. This can lead to an
adequate description of experimentally observable cellular behaviour and
to new insight into how cellular biochemical networks operate.

For the system-level description of more complex systems, even of a
simple bacterium like E. coli, an intensified cooperation of biology, infor-
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mation sciences and systems sciences is essential. However, with regard to
the modular structure of cellular systems, a virtual representation of real
cellular systems could be achieved through cooperation and division of
labour.
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10 Computational Cell Biology — The
Stochastic Approach

Thomas Simon Shimizu and Dennis Bray

Although the need for computational modelling and simulation in cell
biology is now widely appreciated, existing methods are still inadequate
in many respects. The conventional approach of representing biochemical
reactions by continuous, deterministic rate equations, for example, cannot
easily be applied to intracellular processes based on multiprotein com-
plexes, or those that depend on the individual behaviour of small num-
bers of molecules. Stochastic modelling has emerged in recent years as an
alternative, and physically more realistic, approach to phenomena such
as intracellular signalling and gene expression. We have been using and
developing a stochastic program, STOCHSIM as a tool to investigate the
molecular details of the bacterial chemotaxis signalling pathway. In this
chapter, we briefly review the STOCHSIM algorithm and provide a com-
parison with another popular stochastic approach developed by Gillespie.
We then describe our current efforts in extending STOCHSIM to include a
spatial representation and conclude by considering directions for future
development.

INTRODUCTION

In broad terms, the current interest in “computational cell biology” reflects
the contemporary fascination with electronic networks of all kinds. There
is a widespread feeling that the speed of computers and the sophistication
of programmers can at last match the bewildering molecular complexity
of living cells. This viewpoint is encouraged and fed by recent genomic
studies, which have built up such an impetus that they are now pushing
into areas outside the genome. Evidently, sequence information by itself
cannot explain the functioning of a living cell or organism. It is also
true that we have built up, over the past century, an enormous body of
information about proteins and other molecules inside cells. Why should
we not — the argument goes — store, collate and analyze these data by
comprehensive, computer-intensive techniques similar to those currently
employed to analyze genomes?

Unfortunately, no consensus presently exists as to how best to perform
this analysis, or to what we can expect as a result. One clear-cut function



of computers in cell biology is to store large amounts of information in a
logical and accessible form. This role has seen its most public triumph in
the generation of genomic databases, but also underpins the giant strides
made in the determination of protein structure. Many databases contain-
ing integrated information on specific organisms have been developed
and some of these allow the user to access specific molecular details on
individual cells, such as WormBase (Stein et al., 2001) and EcoCyc (Karp
et al., 2000). There are also large programs containing information about
specific cell types, such as the software developed by Denis Noble to an-
alyze the behavior of heart muscle cells (Noble, 2001). Several ambitious
projects have been initiated that aim to simulate entire cells or parts of cells
at a molecular level, such as E-CELL (Tomita et al., 1999) and the Virtual
Cell (Schaff et al., 1997).

Computers were of course used by biologists before the genomic era.
The area of metabolic modeling, for example, with its roots in enzyme
kinetics, was one of the earliest to be adapted to computer simulation.
Many software packages have been written that allow the kinetic per-
formance of enzyme pathways to be represented and evaluated quanti-
tatively, such as GEPASI (Mendes, 1993), MIST (Ehlde and Zacchi, 1995)
and SCAMP (Sauro, 1993). This is also an area of commercial interest and
biotechnology companies engaged in the production of food or drugs by
fermentation or allied processes routinely evaluate their production by
flux-analysis programs, often aided by metabolic control analysis.

Neurobiology is another computationally rich area. Whether because
of their background in the physical science, or because of the computer-
like nature of the brain, neurophysiologists have always been much more
open to the use of computers than cell biologists. Several large computer
packages have been developed and (what is far more significant) widely
used as adjuncts to research neurophysiology. Packages such as GENE-
SIS (Wilson et al., 1989) and NEURON (Hines, 1993) provide integrated
suites of routines for the recording and analysis of electrical data, the sim-
ulated performance of individual axons, and the investigation of networks
of nerve cells and cortical activity.

In contrast to the above areas, topics that come under the rubric of
core cell biology — those not directly concerned with DNA sequences,
ions, or low molecular weight metabolites — are more difficult to handle
computationally. Cell signalling, cell motility, organelle transport, gene
transcription, morphogenesis and cellular differentiation cannot easily be
accommodated into existing computational frameworks. Attempts to use
computers in these areas are still at a stage of exploratory software de-
velopment, usually in the hands of individual research groups. Conven-
tional approaches using the numerical integration of continuous, deter-
ministic rate equations sometimes provide a convenient route, especially
when systems are very large or when molecular details are of little impor-
tance. But as the resolution of experimental techniques increases, so the
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limitations of conventional models become more evident. Difficulties in-
clude the combinatorial explosion of large numbers of different species,
the importance of spatial location within the cell, and the instability asso-
ciated with reactions between small numbers of molecular species.

STOCHASTIC SIMULATION OF CELLULAR PROCESSES

In recent years, a number of research groups have attempted to use a radi-
cally different approach to the processes occurring within cells (McAdams
and Arkin, 1997; Stiles et al., 1998; Morton-Firth and Bray, 1998). The
idea is to represent individual molecules rather than the concentrations
of molecular species, and to apply Monte Carlo methods to predict their
interactions. Motivation for this new approach comes from the realiza-
tion that many crucial events in living cells depend on the interaction
of small numbers of molecules and hence are sensitive to the underlying
stochasticity of the reaction processes. Under these conditions, the usual
approach taken to biochemical reactions of analyzing their characteristic
continuous, deterministic rate equations breaks down and fails to predict
the behavior of the system accurately. Signalling pathways, for example,
commonly operate close to points of instability and frequently employ
feedback and oscillatory reaction networks that are sensitive to the opera-
tion of small numbers of molecules (Hallett, 1989; Goldbeter, 1996). Only
200 K+ and Na+ channels responsive to changes in intracellular Ca2+ are
responsible for a key step in many neutrophil signalling pathways (Hal-
lett, 1989). Gene transcription is controlled by small assemblies of proteins
operating in an all-or-none fashion, so that whether a specific protein is ex-
pressed or not is, to some extent, a matter of chance (Ko, 1991; Kingston
and Green, 1994; Tjian and Maniatis, 1994; McAdams and Arkin, 1999).
The performance of sensory detectors such as retinal rod outer segments
(Lamb, 1994; Van Steveninck and Laughlin, 1996) and even the firing of
individual nerve cells (Smetters and Zador, 1996; White et al., 1999) are
intrinsically stochastic.

In the stochastic modeling approach, rate equations are replaced by
individual reaction probabilities and the output has a physically-realistic
stochastic nature. Techniques are available by which large numbers of re-
lated species can be coded in an economical fashion and key concepts,
such as signalling complexes and the thermally-driven flipping of protein
conformations, can be embodied into the program. Stochastic modeling
may help us to integrate biochemical and thermodynamic data in a coher-
ent and manageable way.

MODELING BACTERIAL CHEMOTAXIS

We have used both deterministic and individual-based stochastic pro-
grams to investigate the pathway of intracellular signals used by coliform
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bacteria in the detection of chemotactic stimuli (Bray et al., 1993; Bray and
Bourret, 1995; Morton-Firth, 1998)1. The models are based on physiolog-
ical data collected from single tethered bacteria of over 60 mutant geno-
types. Quantitative discrepancies between computer simulations and ex-
perimental data throw a spotlight on areas of uncertainty in the signal
transduction pathway, highlighting the importance of spatial organiza-
tion to the logical operation of the pathway. In particular they emphasize
the function of a specific, well-characterized, cluster of proteins associated
with the chemotaxis receptors which acts like a self-contained computa-
tional cassette.

The individual-based stochastic simulation program STOCHSIM was
written by Carl Firth as part of his PhD work at the University of Cam-
bridge (Morton-Firth, 1998). It was developed as part of a study of bac-
terial chemotaxis to be a more realistic way of representing the stochas-
tic features of this signalling pathway and also as a means to handle the
large numbers of individual reactions encountered (Morton-Firth, 1998;
Morton-Firth et al., 1999). The program provides a general-purpose bio-
chemical simulator in which each molecule or molecular complex in the
system is represented as an individual software object. Reactions between
molecules occur stochastically, according to probabilities derived from
known rate constants. An important feature of the program is its ability
to represent multiple post-translational modifications and conformational
states of protein molecules.

DESCRIPTION OF THE STOCHSIM ALGORITHM

In STOCHSIM, each molecule (not each population of molecular species)
is represented as an individual software object, and a number of dummy
molecules, or “pseudo-molecules”, are also included in the reaction sys-
tem. Time is quantized into a series of discrete, independent time-slices,
the size of which is determined by the most rapid reaction in the system. In
each time-slice, STOCHSIM first chooses one molecule at random from the
population of “real” molecules, and then makes another selection from
the entire population including the pseudo-molecules. If two molecules
are selected, they are tested for all possible bimolecular reactions for the
particular reactant combination. If one molecule and one pseudo-molecule
are chosen, the molecule is tested for all possible unimolecular reactions it
can undergo.

Reaction probabilities are pre-computed at initialization time, and
stored in a look-up table so that they need not be calculated during the ex-
ecution of each time-slice. These probabilities scale linearly with the size
of the time-slice (Eqs. 10.1 and 10.2 below), so that if the time-slices are suf-

1 A resumé of this work together with a list of published references can be found at http:
//www.zoo.cam.ac.uk/comp-cell.
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ficiently small, a single random number can be used to test for all possible
reactions that a particular combination of reactants can undergo. Once the
reactant molecules are chosen, the set of possible reactions are retrieved
from the look-up table with their probabilities. STOCHSIM then iterates
through these reactions in turn and computes a “cumulative probability”
for each of the possible outcomes. The set of cumulative probabilities can
then be compared with a single random number to choose which reaction,
if any, occurs. If a reaction does occur, the system is updated accordingly
and the next time-slice begins with another pair of molecules being se-
lected.

The probabilities stored in the look-up table are calculated from the
following five parameters: (i) the deterministic rate constant (k1 and k2

for uni- and bi-molecular reactions, respectively), (ii) the size of the time
increment (�t), (iii) the number of molecules in the system (n), (iv) the
number of pseudo-molecules in the system (n0), and (v) the volume of
the system (V ). Using these parameters, the probabilities for uni- and bi-
molecular reactions (p1 and p2, respectively) are obtained by:

p1 = k1n(n + n0)�t

n0
(10.1)

and

p2 = k2n(n + n0)�t

2NAV
. (10.2)

The previously published derivation of these expressions (Morton-Firth
and Bray, 1998; Morton-Firth, 1998) is summarized in Appendix A for
reference.

Whenever a molecular species in the system can exist in more than
one state, then the program encodes it as a “multistate molecule” with
a series of binary flags. Each flag represents a state or property of the
molecule, such as a conformational state, the binding of ligand, or covalent
modification (e.g. phosphorylation, methylation, etc.). The flags specify
the instantaneous state of the molecule and may modify the reactions it
can participate in. For instance, a multistate molecule may participate in
a reaction at an increased rate as a result of phosphorylation, or fail to
react because it is in an inactive conformation. The flags themselves can
be modified in each time step as a result of a reaction, or they can be
instantaneously equilibrated according to a fixed probability. The latter
tactic is used with processes such as ligand binding or conformational
change that occur several orders of magnitude faster than other chemical
reactions in the system.

Let us say that in a particular time step, STOCHSIM has selected one or
more multistate molecules. It then proceeds in the following manner. First
any rapidly-equilibrated “fast flags” on the molecule are assigned to be on
or off according to a weighted probability. A protein conformation flag, for
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example, can be set to be active or inactive, according to which other flags
of the molecules are currently on. A ligand binding flag can, if desired, be
set in a similar fashion, based on the concentration of ligand and the Kd .
Once the fast flags have been set, then the program inspects the reactions
available to the two species A and B . The chemical change associated
with each type of reaction (binding, phosphotransfer, methylation, etc.)
is represented in the program together with “base values” of the reaction
rate constants. The particular instantiation of the reaction, specified by the
current state of the flags on A and B , is accessed from an array of values
calculated at the beginning of the program, when the reaction system
is being initialized. Values in the array modify the reaction probability
according to the particular set of binary flags. In this manner, STOCHSIM

calculates a set of probabilities, corresponding to the reactions available
to the particular states of molecules A and B , and then uses a random
number to select which reaction (if any) will be executed in the next step.
The reaction will be performed, if appropriate, and the relevant slow flag
flipped.

Although it sounds complicated, the above sequence of events within
an individual iteration takes place very quickly and even a relatively slow
computer can carry out hundreds of thousands of iterations every sec-
ond. Moreover, the strategy has the advantage of being intuitively sim-
ple and close to physical reality. For example, it is easy, if required, to
label selected molecules and to follow their changes with time. Lastly, the
speed of the program depends not on the number of reactions but on the
numbers of molecules n in the reaction system (with a time of execution
proportional to n2). The STOCHSIM distribution2 consists of a platform-
independent core simulation engine encapsulating the algorithm just de-
scribed, together with separate graphical and user interfaces.

COMPARISONWITH THE GILLESPIE ALGORITHM

Daniel Gillespie showed, in the 1970s, that it is possible to simulate chem-
ical reactions by an efficient stochastic algorithm (Gillespie, 1976). He
showed that this algorithm gives the same results, on average, as con-
ventional kinetic treatments (Gillespie, 1977), and later provided a rigor-
ous mathematical derivation for the procedure (Gillespie, 1992). The Gille-
spie algorithm has since been used on numerous occasions to analyze bio-
chemical kinetics, for example to simulate the stochastic events in lambda
lysogeny (McAdams and Arkin, 1997; Arkin et al., 1998). In view of its ev-
ident success, the question therefore arises: Why in our work did we not
use the Gillespie algorithm but chose to develop our own formulation? As
shown in Appendix B, the Gillespie and STOCHSIM algorithms are based

2 The latest version of STOCHSIM can be obtained via FTP from ftp://ftp.cds.caltech.edu/

pub/dbray/.
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on equivalent fundamental physical assumptions. However, significant
practical differences arise in applying the two algorithms to biochemical
systems, as described below.

The Gillespie algorithm makes time steps of variable length, based on
the reaction rate constants and population size of each chemical species. In
each iteration, one random number is used to determine when the next re-
action will occur, and another random number determines which reaction
it will be. Both the time of the next reaction τ , and the type of the next reac-
tion µ are determined by the rate constants of all reactions and the current
numbers of their substrate molecules. Upon the execution of the selected
reaction in each iteration, the chemical populations are altered according
to the stoichiometry of the reaction, and the process is repeated. By avoid-
ing the common simulation strategy of discretizing time into finite inter-
vals, the Gillespie algorithm benefits from both efficiency and precision
— no time is wasted on simulation iterations in which no reactions oc-
cur, and the treatment of time as a continuum allows the generation of an
“exact” series of τ values based on rigorously derived probability density
functions.

However, the efficiency of the Gillespie algorithm comes at a cost, and
its precision is guaranteed only for chemical systems with certain prop-
erties. The efficient algorithm that selects which reaction to execute next
and what time interval to take, does not represent each molecule in the
system separately. With regard to the reactions of a typical cell signalling
pathway, for example, it cannot associate physical quantities with each
molecule, nor trace the fate of particular molecules over a period of time.
Similarly, without the ability to associate positional and velocity informa-
tion with each particle, the algorithm cannot be easily adapted to simulate
diffusion, localization or spatial heterogeneity. Indeed, the “exactness” of
the Gillespie algorithm holds only for spatially homogeneous, thermody-
namically equilibrated systems in which non-reactive molecular encoun-
ters occur much more frequently than reactive ones (Gillespie, 1976, 1992).

A second limitation of the Gillespie algorithm (from a cell biologi-
cal standpoint) is that it cannot easily handle the reactions of multistate
molecules. Protein molecules are very frequently modified in the cell so
as to alter their catalytic activity, binding affinity and so on. Cell sig-
nalling pathways, for example, carry information in the form of chemi-
cal changes such as phosphorylation or methylation, or as conformational
states. A multi-protein complex may contain upwards of twenty sites,
each of which can often be modified independently and each of which can,
in principle, influence how the complex will participate in chemical reac-
tions. With twenty sites, a complex can exist in a total of 220, or one million,
unique states, each of which could react in a slightly different way. If our
multi-protein complex interacts with only ten other chemical species, a
detailed model may contain as many as ten million distinct chemical re-
actions, a combinatorial explosion. Any program in which the time taken
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increases in proportion to the number of reactions, as in a conventional,
deterministic model, or in the Gillespie method, will come to a halt under
these conditions.

We see therefore that STOCHSIM and the Gillespie algorithm take dif-
ferent approaches and are suited to different situations. STOCHSIM is
likely to be slower than the Gillespie algorithm in calculating the even-
tual outcome of a small set of simple biochemical reactions, especially
when the numbers of molecules is large. However, if the system contains
molecules that can exist in a large number of states, then STOCHSIM will
not only be faster but also closer to physical reality. It is easy, if required, to
label selected molecules in this program and to follow their changes with
time, including changes to their detailed post-translational modification
and conformational states. Lastly, spatial structures can be incorporated
into the STOCHSIM framework with relative ease, as one can directly de-
fine the spatial location of individual molecules — something that would
be difficult to do with the Gillespie algorithm.

SPATIAL EXTENSIONS TO STOCHSIM

The original version of STOCHSIM (1.0) treated the entire reaction system
as a uniformly mixed solution. Although this is clearly not how molecules
are arranged within living cells, the omission of spatial heterogeneity has
been a norm in biochemical simulations because it greatly facilitates mod-
eling and reduces the computational load of simulation. However, as the
resolution of our understanding of biochemical processes increases, it is
becoming clear that even in bacteria, the spatial organization of molecules
often play an important role (RayChaudhuri et al., 2001; Norris et al.,
1996).

In the chemotaxis pathway, the membrane receptors are not only as-
sociated with the signalling molecules CheW and CheA in the cytoplasm,
but also clustered together, usually at one pole of the cell (Maddock and
Shapiro, 1993). The density of packing of molecules in the cluster implies
a regular arrangement, and recent model building led to the proposal
of a hexagonal lattice built from CheA and CheW into which receptor
dimers are inserted in sets of three (Shimizu et al., 2000). An arrange-
ment of this kind would create a “microenvironment” within the cyto-
plasm which could sequester certain molecules and exclude others simply
through binding affinities (and without an internal membrane). A regular
lattice would allow neighboring receptors to influence each other’s activ-
ity by what has been termed “conformational spread” (Bray et al., 1998;
Duke et al., 1999). We must also consider the time taken for diffusible
components of the signal pathway, notably CheY and its phosphorylated
derivative, which have to shuttle repeatedly between the receptor com-
plex on the plasma membrane and the flagellar motors. Although this
time is short, consistent with distances of less than a micrometer and a

220 Thomas Simon Shimizu and Dennis Bray



Adapted

Ligand-bound

(a) (b)

Figure 10.1 Graphical representations of the spatial patterns of receptor activity
in a STOCHSIM simulation of the E. coli chemotaxis pathway with clustered
receptors. The two arrays shown above are both square lattices of 50 × 50 closely
packed receptors, represented by one pixel each. These views are averaged over
0.1 seconds of simulated time, and the activities are represented by sixteen gray
levels, with white corresponding to active and black to inactive receptors. In this
simulation, ligand binding and methylation reactions were disabled in order to
reveal the patterns due to activity spread alone. One receptor was permanently
assigned to the ligand-bound (ligated and zero-methylated) state and another to
the adapted (unligated and four-methylated) state. All other receptors were in the
two-methylated state. In (a), no coupling reactions are defined and no spread of
conformation is observed, but in (b), nearest-neighbor interactions allow the
activity of certain receptors to “spread” over a wide range.

diffusion coefficient of around 5 ×10−8 cm2s−1, it is in principle measur-
able by recent techniques (Elowitz et al., 1999; Cluzel et al., 2000). A fully
realistic model would have to deal with not only time delays but also the
possibilities that diffusing species might have a non-uniform distribution
and move within privileged channels in the interior of the cell.

Considerations such as these encouraged us to extend STOCHSIM to in-
corporate spatial representation, and the positions of the important molec-
ular species within the cell. As a first step, we have so far introduced mod-
ifications that allow us to represent the two-dimensional arrangement of
receptors in the plane of the plasma membrane. These changes, embodied
in version 1.2 of STOCHSIM, assign two-dimensional coordinates to the ar-
ray of receptors and permit such phenomena as the spread of activity from
one receptor to its neighbor (Figure 10.1), and the diffusive movement of
individual molecules bound to the surface array, to be represented.

Model of bacterial chemotaxis with “conformational spread”

In the Escherichia coli chemotaxis pathway, one of the major discrepancies
between simulation and experiment thus far has been in the sensitivity of
the system to very small changes in attractant concentration (Bray et al.,
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Figure 10.2 Patterns of receptor activity in an unconstrained simulation, in
which ligand binding and methylation reactions were enabled in a coupled
receptor array. These patterns are averaged over 0.01 seconds of simulated time,
equivalent to roughly 16.7 million simulation iterations, in which each receptor
flipped about 783 times on average. Discrete white patches correspond to the
vicinities of adapted (highly methylated), and therefore highly active, receptors
and black patches to centers of inactivity near bound ligand. In this simulation,
the background attractant concentration was set to 10−8 M (∼ 1

100Kd ), and then
doubled. The two patterns represent the average activity of intervals at 10 ms (a)
prior to, and (b) after the doubling of stimulus. Rapid suppression of activity is
observed, despite the very low concentration of stimulus.

1998). For example, computer-based estimates of the minimal detectable
concentration of aspartate is on the order of 100 nM (Bray et al., 1998)
whereas responses to concentration jumps as small as 5 nM have been de-
tected experimentally (Segall et al., 1986). In order to test the possibility
that the aforementioned “conformational spread” mechanism could ac-
count for this exquisite sensitivity observed in real bacteria, we have incor-
porated a two-dimensional representation of the receptor clusters into our
previous STOCHSIM model (Morton-Firth et al., 1999) of the E. coli chemo-
taxis pathway. In that model, chemotactic receptors were modeled as mul-
tistate complexes with 11 binary flags to represent their various states. One
of these flags represents the conformational state of the receptor, and was
controlled by a rapid equilibrium. The probability of this flag being on
or off, and hence the receptor being active or inactive, depended on the
binding of ligand and the receptor’s methylation state. In our new spa-
tially extended model, an additional “coupling” factor that depends on
the number of neighbors in the active state, has been defined. The more
active neighbors a receptor has, the higher the probability of being active.
The spread of conformations that results from this can be visualized in
time-averaged views of the receptor cluster (Figures 10.1 and 10.2).

Preliminary results of our simulations indicate that the conformational
spread mechanism can indeed serve to enhance the chemotactic response
at the cost of higher steady-state noise. In simulations where receptor clus-
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Figure 10.3 The enhancement of response achieved by coupling interactions in
the receptor cluster model. Changes in total receptor activity during a doubling
of stimulus at two background concentrations, (a) 0.1 µM and (b) 1 µM are
shown. The concentration of ligand was doubled at time 0 in both (a) and (b).
Significant enhancement is observed at both concentrations; the coupled array
shows clear amplification of the ligand signal in (a), and in (b) only the coupled
array shows a significant response to the doubling of attractant, demonstrating
that the coupling could also act to increase the range of concentrations to which
the system can respond.

ters were first adapted to various background concentrations of attractant
and tested for their response to a subsequent doubling in stimulus, sig-
nificant amplification of the signal is observed (Figure 10.3). The level of
amplification is not as high as that reported previously (Bray et al., 1998;
Duke et al., 1999), but the performance of the receptor cluster is less de-
pendent on the precise value of the coupling strength. These differences
arise because the previous models did not consider the multiple methyla-
tion states of the receptors, which can be covalently modified with up to
four methyl groups. We are now investigating the effect of spatial patterns
of methylation, an example of which is shown in Figure 10.4.

FUTURE DIRECTIONS

The obvious next steps for development of STOCHSIM are the implemen-
tation of other geometries (e.g. triangular and hexagonal) for the two-
dimensional arrays, further extending the spatial representation to a third
dimension, and the development of a more generally accessible interface.
Recent models of the neuromuscular junction include a realistic repre-
sentation of the folds of the muscle membrane surface, the position and
state of individual synaptic vesicles, and even the location of individ-
ual calcium ions (Stiles and Bartol, 2000). Three-dimensional representa-
tion of a cell may require some form of compartmentalization of its con-
tents, whether into regularly spaced volume elements (voxels) or more
biologically relevant compartments, such as nucleus, and membrane cor-
tex. The interface development is now focused around a cross-platform
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Figure 10.4 Spatial patterns of methylation. As in the activity snapshots
(Figures 10.1 and 10.2), each pixel represents a single receptor in (a) an array
without coupling and (b) an array with coupling. Four- and zero-methylated
receptors (the extreme receptors) are are highlighted in black and white,
respectively, while receptors in all other methylation states are shown in gray. A
notable feature of the changes in methylation state distribution between the
uncoupled and coupled arrays is that the extreme receptors are more abundant
and tend to be closer together in the latter. This tendency is due to the relationship
between receptor activity and methylation reactions, and is also reflected in (c)
the average number of methyl groups per neighbor for each methylation state.

GUI (Le Novère and Shimizu, 2001), and a simple command-line interface
is also provided for ease of scripting.

On the more general question of the future of modeling in cell biol-
ogy, it seems unavoidable that stochastic representations will be increas-
ingly useful. As the resolution of experimental techniques improves, they
will generate large quantities of data relating to the behavior of individ-
ual cells and molecules. There will be an increasing emphasis on situa-
tions in which cell behavior depends on small numbers of molecules and
analysis of such situations will naturally invoke individual-based simu-
lations with a stochastic basis. Presently available simulation programs
such as STOCHSIM will doubtless become integrated into larger software
packages that allow non-specialist users to quickly identify their require-
ments and obtain results. The remorseless increase in the power and speed
of computers available to the modeling community will accompany, and
empower, these developments.
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APPENDIXA:DERIVATIONOFREACTIONPROBABILITIES INSTOCHSIM

First consider the following unimolecular reaction with substrate A:

d[A]

dt
= −k1[A] (A.1)

If the size of the STOCHSIM time-slice �t is sufficiently small, the change
in the number of reactant molecules, �nA, within this interval will be
between 0 and 1, and is given by

�nA = −k1nA�t (A.2)

where k1 is the deterministic rate constant.
In the STOCHSIM algorithm, the expected value of �nA within a single

time-slice is

−�nA = Pr(molecule of A is selected in the first selection)

× Pr(pseudo-molecule is selected in the second selection)

×p1 (A.3)

−�nA = nA
n
× n0

n + n0
× p1 (A.4)

Equating Eqs. (A.2) and (A.4) gives

p1 = k1n(n + n0)�t

n0
. (A.5)

The probability for the bimolecular reaction can be derived similarly.
Consider the following reaction with substrates B and C :

d[B]

dt
= −k2[B][C] (A.6)

In a very small �t ,

�nB = −k2nBnC�t

2NAV
(A.7)

where V is the volume of the reaction system, and NA is Avogadro’s
constant.

In STOCHSIM, the expected value of �nB within a single time-slice is

−�nB = {Pr(molecule of B is selected in the first selection)

× Pr(molecule of C is selected in the second selection)

×p2}
+{Pr(molecule of C is selected in the first selection)

× Pr(molecule of B is selected in the second selection)

×p2} (A.8)

−�nB = 2× nB
n
× nC
n + n0

× p2 (A.9)
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Equating Eqs. (A.7) and (A.9) gives

p1 = k2n(n + n0)�t

2NAV
. (A.10)

APPENDIX B: EQUIVALENCE OF PHYSICAL ASSUMPTIONS IN THE
GILLESPIE AND STOCHSIM ALGORITHMS

Gillespie rigorously derived his algorithm from what he called the fun-
damental hypothesis of stochastic chemical kinetics. To show that the
STOCHSIM algorithm can also be derived from this same hypothesis, we
can translate the expressions for the STOCHSIM probabilities (Eqs. 10.1
and 10.2) into the Gillespie formalism and show that in the limit �t → 0,
it reduces to probability expressions derived directly from the fundamental
hypothesis.

Gillespie’s fundamental hypothesis states that the probability π of an
elementary reaction R, occurring within the infinitesimal time interval δt ,
can be expressed as

π = hcδt (B.1)

where h is the number of distinct molecular reactant combinations for the
R reaction, and c is its stochastic rate constant. As with the deterministic
rate constant k, the stochastic rate constant c can be interpreted to account
for the mean rate at which reactant molecules collide, and the “activation
energy” required for the reaction to occur. The relationship between the
two constants are such that if the effects of fluctuations and correlations in
reactant concentrations can be considered negligible, the following holds
true for uni- and bi-molecular reactions (Gillespie, 1976):

k1
.= c1 (B.2)

for the unimolecular rate constant k1 and the unimolecular stochastic rate
constant c1 (both with dimensionality s−1), and

k2
.= NAV c2 (B.3)

for the bimolecular rate constant k2 (with dimensionality M−1s−1) and the
bimolecular stochastic rate constant c2 (with dimensionality s−1). Here, V
is the volume of the reaction system and NA is Avogadro’s constant.

For a specific unimolecular reaction R1 with species A as reactant, h
in Eq. (B.1) is simply the number of molecules of the reactant species
(h = nA). For a specific bimolecular reaction R2 with species B and C
as reactants, h is the product of the number of each species (h = nBnC ).
Therefore, the probability of an R1 reaction occurring within δt is

π1 = nAc1δt, (B.4)
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and the probability of an R2 reaction occurring within δt is

π2 = nBnCc2δt . (B.5)

We now proceed to inspect how Gillespie’s reaction probabilities (π1

and π2) are related to the reaction probabilities in STOCHSIM. In doing
so, it is important to note that the uni- and bi-molecular reaction proba-
bilities stored in STOCHSIM’s look-up tables (p1 and p2 in Eqs. 10.1 and
10.2) are conditional probabilities, i.e. they are the probability of a cer-
tain reaction occurring given that its reactant molecules have been cho-
sen by STOCHSIM in the current time-slice. However, Gillespie’s reaction
probability π is the probability of a given reaction occurring within any
given time interval, so we must first obtain the equivalent quantities for
STOCHSIM reactions.

For a unimolecular reaction with a look-up table probability of p1 in
STOCHSIM, the probability �1 of this reaction occurring in any given time-
slice can be written as

�1 = puni · nA
n
· p1 (B.6)

where puni = n0/(n + n0) is the probability that a unimolecular reaction
is tested for in each time-slice. Similarly for a bimolecular reaction whose
look-up table probability is p2,

�2 = pbi · 2 · nB
n
· nC
n
· p2 (B.7)

where pbi = 1 − puni = n/(n + n0) is the probability that a bimolecular
reaction is tested for in each time-slice. Using puni and pbi , Eqs. (10.1) and
(10.2) can be rewritten as

p1 = nk1�t

puni
(B.8)

and

p2 = n2k2�t

2NAV · pbi . (B.9)

Substituting (B.8) into (B.6)and (B.9) into (B.7) yields the following expres-
sions for �1 and �2:

�1 = nAk1�t (B.10)

�2 = nBnC k2

NAV
�t (B.11)

If the assumptions made in obtaining Eqs. (B.2–B.3) are valid, we may
further substitute (B.2) into (B.10) and (B.3) into (B.11), and take the limit
�t → 0 to obtain

�1 = nAc1δt = π1 (B.12)
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and

�2 = nBnCc2δt = π2. (B.13)

We see, therefore, that the reaction probabilities for uni- and bi-molecular
reactions calculated by the Gillespie and STOCHSIM algorithms are equiv-
alent.
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11 Computer Simulation of the Cell: Human
Erythrocyte Model and its Application

Yoichi Nakayama and Masaru Tomita

We constructed a computer model of the human erythrocyte using E-
CELL simulation system. The model has three major metabolic pathways
including glycolysis, the pentose phosphate pathway, and nucleotide
metabolism, as well as physical effects such as volume change along with
osmotic pressure. In this paper, we report two results of simulation ex-
periments as follows: (i) Analyses of the effect of osmotic pressure that
changes the cell volume. (ii) The simulation of the hereditary enzyme
deficiency of glucose-6-phosphate dehydrogenase (G6PD), including the
pathways for glutathione (GSH) de novo synthesis and export system of
glutathione disulfide (GSSG).

INTRODUCTION

In conventional molecular biology, experimental analyses of cells and or-
ganisms have been the primary focus. These experimental analyses have
been performed within a limited system where the targeted phenomenon
can be analyzed in a measurable form. Then, the acquired raw data of el-
ementary processes are reorganized and reconstructed manually, in order
to understand intracellular processes. Because of the fact that everything
is reconstructed within the scope of human capacity, the scope for under-
standing the whole cell system is very limited. Thus, conventional molec-
ular biology has not yet developed a capability of understanding and pre-
dicting the behavior of cells as a whole integrated system. In “Genome
Project”, however, which was initiated in the 80’s, genomic sequences that
cover all existing genomes have been collectively and all-inclusively iden-
tified. Genomic DNA was actually fragmented and the genomic sequence
of each piece was determined by a system within the limited scope of con-
ventional molecular biology. Information regarding an ever-expanding
volume of genomic sequence, which is beyond human capacity to under-
stand, has been computationally organized and integrated. New methods,
such as Microarray analysis have continuously been developed for collec-
tive and high-throughput analyses of the intracellular events. “Cell Sim-
ulation” is, based on the expanded data acquired from such all-inclusive
analyses and previously accumulated data, aims to analyze and under-



stand the intact intracellular events by integrating all the information and
reconstructing the various intracellular processes.

Comparable to the time when genomic sequences had been sporadi-
cally identified before “Genome Project” began, there have been so many
worm-eaten holes in most parts of current data associated with intracellu-
lar processes. Stimulated by the great success of “Genome Project”, how-
ever, projects that collectively analyze each intracellular process from vari-
ous biological events have recently been initiated. Thus, in the near future,
it will be possible to utilize the all-inclusive data of intracellular processes
acquired from these projects. “Cell Simulation” will enable the reconstruc-
tion of cells in a computer using those data. “Cell Simulation” system has
a great potential to become an important concept such as the weather fore-
cast in experimental science.

We have been focusing on the development of “E-CELL”, generic
software for cell simulation, in our laboratory since 1996 (Tomita et al.,
1999, 2000). In this article, we will review our goal and future aims. We
will discuss several questions, such as what ’Cell Simulation’ system aims
at, and what will be possible through this ’Cell Simulation’ system, by
quoting our results of Cell simulation models reconstructed by the E-
CELL system as an example.

SIMULATION ALGORITHM FOR CELLULAR PROCESSES

Cellular homeostasis is maintained by a myriad of different mechanisms.
Major homeostatic mechanisms include “metabolism”, “cell division” and
“environmental adaptation”. In order to simulate these cellular mecha-
nisms, a certain operation where cellular process are abstracted and trans-
formed into equations, is specifically required. This operation is termed
“modeling”. From a viewpoint of cellular simulation, it is very difficult
to handle all the cellular processes within a single simulation algorithm.
Instead, it requires the application of specific simulation algorithm most
suitable for the properties of each cellular mechanism, by understanding
each specific property. There are major two types of simulation algorithm
currently used. One is “deterministic simulation”, and another is “stochas-
tic simulation”.

“Deterministic simulation” can be calculated by phase equations,
which express the equations of changes in several substances involved
in certain cellular processes as a function of time. The calculated results of
deterministic simulations are always identical how often the experiments
are repeated, as far as the initial conditions are the same, since the calcu-
lation process for this deterministic simulation is completely independent
of other indefinite factors such as probability. Therefore, deterministic
simulation is very suitable for representing the average feature of certain
events, such as some metabolic reactions, which occur simultaneously at
many times. Since most experimental data can be obtained by analyzing
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a large group of cells considered to be almost identical, this method is
generally most suitable when the calculation of simulation is started from
the experimental values as an initial value. However, there are processes
that may be very difficult to reconstruct by the deterministic simulation
method. For example, in a certain regulation system easily affected by en-
vironmental changes, 50% of a group of cells exhibit one response and the
remaining 50% of cells exhibit a completely different response. In this case,
resultant events can be easily influenced by probabilities. If deterministic
simulation is applied to represent this situation, all cellular processes are
averaged out, resulting in a situation where all cells appear to exhibit
identical reactions.

Stochastic simulation is the best solution for this problem. Two dif-
ferent stochastic simulation algorithms are used for the cell simulation,
one of which determines reaction velocity by using probability, and an-
other represents the situation by expressing the intermolecular interac-
tion itself based on the probability. In both cases, the systems are based on
the concept that intracellular processes are occurring under the control of
probability. Therefore, it is possible to precisely express the “switch-like”
stochastic process in the example described above. On the other hand, this
method also has a defect. Since the reactions are expressed as a result of
probability, multiple simulations are required when the average behavior
of a certain group of cells should be obtained. It is up to a cellular process
to determine exactly how many times simulations should be done in order
to analyze the situation close to the average behavior of cells.

In addition to cases described above, there are several situations where
diffusion and/or localization of certain molecular species need to be ex-
pressed as an intracellular process, and cases where the three-dimensional
structure of macromolecules are required to be expressed.

SIMULATION OFMETABOLIC PROCESSES

Many attempts have been made since the 1960’s to reconstruct the intra-
cellular metabolic pathways. One of the most basic concepts is the dy-
namic analysis of enzymatic reactions using rate equations. There were
many simulation models of metabolic pathways published since then. The
first practical cell simulation model was a human erythrocyte simulation
model reported by Joshi and Palsson. This is a deterministic simulation
model constructed by integrating models of the partial metabolic path-
ways, which had been previously reported and published. Their simu-
lation model is reconstructed from major metabolic pathways of the ery-
throcyte, integrated with previously existing partial simulation systems of
glycolysis, pentose phosphate pathway and nucleic acid metabolic path-
way. The human erythrocyte has been well studied over the last three
decades, and extensive biochemical data on its enzymes and metabolites
have been accumulated. The erythrocyte of many species including the
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human erythrocyte does not contain a nucleus, nor does it carry genes.
The cell uptakes glucose from plasma and processes it through glycol-
ysis, generating ATP molecules for other cellular metabolism. The ATP
molecules are consumed mostly for the ion transport systems in order to
maintain electroneutrality and osmotic balance. Therefore, erythrocytes
seem to be the best target for metabolic simulation due to their simplicity.
However, the computer capacity at that time was very limited as com-
pared to that we currently have. Therefore, it was almost impossible to
carry out a long-term simulation for pathological analysis using this first
erythrocyte simulation model. Various metabolic pathways including mi-
tochondria, Calvin-Benson Cycle and glucose metabolism in pancreatic
Langernhans islet cells had been modeled since then, but nothing led to a
great success contributing to full understanding of the myths of life (biol-
ogy). Meanwhile, generic simulation systems for the analysis of metabolic
pathways such as KINSIM (Barshop et al., 1983), MetaModel (Cornish-
Bowden and Hofmeyr, 1991), SCAMP (Sauro, 1993), MIST (Ehlde and Za-
cchi, 1995) and GEPASI (Mendes, 1993) have been developed. Moreover,
generic simulation software including EX-TD and Stella are commercially
available.

Our E-CELL project was launched in the 1990s. Using the E-CELL sys-
tem, we developed a computer model of the human erythrocyte based on
the previous model (Joshi and Palsson, 1989; Edwards and Palsson, 2000).
The prototype model of a human erythrocyte consisted of glycolysis, pen-
tose phosphate pathway, nucleotide metabolism and simple membrane
transport systems. During calculation of steady state, we improved the
parameters and kinetic equations based on experimental data in literature
(Schauer et al., 1981; Schuster et al., 1989; Mulquiney and Kuchel, 1997).
After repeating simulations with the addition of substance parameter esti-
mations, the model has reached steady state, indicating that it is very close
to approximating the real erythrocyte (Table 11.1).
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Table 11.1 Steady state of the erythrocyte model. We obtained a data set of a
steady state with this model. The initial data set was from experimental data in
literature and predictions of previous simulation models. The simulation was run
for more than 200,000 seconds in simulation time, until the model reached steady
state.

Stability of a simulation model: Effect of osmotic pressure on cell
volume and metabolism

One of the very important factors is the stability and robustness of a
system on the cellular simulation. Stability in this case means that the
model of the entire metabolic system can accept whatever level of re-
ceived changes, and can keep the conditions at a similar level prior to
any changes. All living organisms create this “stability” using very subtle
mechanisms in order to maintain homeostasis. In the field of engineer-
ing, there are two systems used for the improvement of stability of the
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systems; feed-back mechanism and redundancy. Feed-back system surely
contributes to the stability of the cellular system. How about redundancy
in the world of biology? This redundancy is very prominent specifically
in an artificially constructed machine such as an airplane. This is because
we can maintain a functionally high reliability of an individual machine.
In biology, however, the reliability of one organism cannot be considered
to be such a big factor. The organism, which is in failure of its original
function after being mutated, should be useless, and could be beneficial
when it is eliminated from the group where it belongs. In other words,
the reliability of organisms is not important, but the maintenance of the
species and adaptation to the new environment is crucial. Living organ-
isms can survive even without the proper function of whichever pathway
that has become redundant because of a certain cause. This results in the
accumulation of mutants, which in turn leads to the acquisition of a new
reason for the existence of one pathway (in most cases, another function)
or selective elimination of another. What are the possibilities of a redun-
dant pathway surviving? It is possible only if the reliability of individual
functions is too low to threaten the existence of species, if it occurs with
only one of the pathway with low reliability despite its great importance,
or when one pathway becomes accidentally and temporarily redundant
in the process of evolution.

The model, which we constructed, has been extended in various ways
since then, and the second version is capable of simulating osmotic bal-
ance (Figure 11.1). The cell has to vary its volume while balancing osmotic
pressure. In this model, the cell volume is made to increase or decrease un-
til both osmotic pressures became equal. After this improvement, we ana-
lyzed the effect of this variable volume on metabolism. Metabolites of the
cell at a steady state were increased/decreased, and the influence was ob-
served. The graphs in Figure 11.2 show the differences between the fixed
volume model and the variable volume model. In the variable volume
model, the change was absorbed more quickly in all ten substances that
we tried. These differences indicated a possibility that the volume, which
changes with osmotic pressure, is stabilizing the metabolism. A possible
mechanism of this stabilization is as follows: the cell volume changes with
an increase or a decrease in a substance, and the concentration of all sub-
stances decreases or increases due to the change of cell volume. Then,
enzymes, especially rate determining enzymes will alter their activity by
their allosteric effect.

Furthermore, the reaction rates, which were oscillating in the fixed
volume, were stabilized in the variable volume model (Figure 11.3). In
this case, the amount of many substances will probably be changed syn-
chronously, if only one reaction causes synchronous oscillation of many
reactions. Therefore, the oscillation of reaction will be suppressed by the
oscillation of cell volume.

We focused our effort mabinly on physical functions because the ki-
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Figure 11.1 General concept and architecture of the erythrocyte model. The
circles and hexagons are metabolic intermediates and ions. These molecular
species are defined as “Substance” in the rule file of this model. Boxes represent
enzymes and reaction processes. Their rate expressions are defined as “Reactor”
whereas enzyme molecules are “Substance”.

Figure 11.2 Effect of variable volume on metabolism. After starting the
simulation, the number of molecules of phosphate was increased up to 50-fold at
100 sec, and the simulation was run for 30,000 seconds. The concentration of
phosphate after 30,000-second simulation was about 1.91 mM in the variable
volume model while it was about 1.95 mM in the fixed volume model.
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Figure 11.3 Effect of variable volume on reaction rates. (a) Reaction rates in the
fixed volume model. (b) Reaction rates in the variable volume model. (c) Cell
volume in the variable volume.

netic equations of various enzymes especially the rate-determining en-
zymes already contain the feedback factor. As already shown, the vari-
able volume system can probably stabilize metabolism in the human
erythrocyte. Similarly, it is plausible that pH have a role for stabiliz-
ing metabolism. The metabolic enzymes of red blood cells are affected
strongly by the pH. Although the cell has buffering ability, the intracel-
lular pH is influenced strongly by the pH of plasma, probably receiving
non-negligible influences from substance amounts in cells. The accumu-
lated or decreased amount of charged molecules in abnormal conditions
should affect intracellular pH, and the pH sensitivity of enzymes is con-
sidered to be acting as a specific feedback system. As discussed above,
in addition to the allosteric effects of enzymes, there seems to exist var-
ious physical feedback systems in cells. In the simulation, not only the
rate equations of enzymes, but also these physical functions that occur in
nature, must be modeled to achieve an accurate simulation model.

Simulation of G6PD deficiency and homeostasis

We next carried out the simulation of Glucose-6-phosphate dehydroge-
nase (G6PD). G6PD is a key enzyme that produces NADPH in the pen-
tose phosphate pathway. G6PD converts glucose-6-phosphoric acid into
6-phosphoglucono-1,5-lactone, and generates NADPH simultaneously.
After that, this metabolic intermediate is metabolized into ribulose-5-
phosphoric acid via 6-phosphogluconic acid. In this process, NADPH
is also generated. This reduction power is applied at various other in-
tracellular processes, most importantly the reduction of GSSG. A major
function of GSH in the erythrocyte is to eliminate superoxide anions and
organic hydroperoxides. Peroxides are eliminated through the action of
glutathione peroxidase, yielding GSSG.

At first, we implemented the inhibition of rate-determining enzymes
caused by the ratio of GSH/GSSG to the model (Sugiyama, 1988), and
simply modified the kinetic parameters of G6PD into those of the mutant
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extracted from patients with the deficiency (Jacobash et al., 1987). The
simulation experiments were carried out with steady state concentrations
corresponding to those of the normal erythrocyte. Sequential changes in
the quantity of NADPH, GSH, and ATP were observed in the simulation
experiments. However, the longevity of our computer model estimated by
the concentration of ATP turned out to be much shorter than that of the
real erythrocyte with G6PD deficiency. This difference was presumably
due to the lack of pathways producing GSH and the export system of
GSSG. A mature erythrocyte contains 2mM of GSH, but contains only
several µM of GSSG. It is well known that in order to keep the ratio of
GSH/GSSG stable, in addition to reduction with NADPH, other processes
such as these pathways play an important part. We obtained the kinetic
equations and parameters of these pathways from experimental analyses
(Rae et al., 1990; Sriram and Ali-Osman, 1993), and implemented these
pathways to our model. After the modification, the longevity of the cell
was longer and the ratio of GSH/GSSG was higher as shown in Figure
11.4. This result indicates that these pathways compensate the reduction
of GSH partially, and have a role to ease anemia, a condition of G6PD
deficiency. This result can be a good explanation for the fact that G6PD
deficiency is the most common cause of anemia. From the standpoint
of evolution, if the deficiency has no severe disadvantage for surviving
because of these compensation pathways, it would spread.

Figure 11.4 Simulation of G6PD deficiency. When the activity of G6PD is
decreased, the activity of 6-phosphogluconate dehydrogenase increased,
compensating the reduced production of NADPH. However, because
6-phosphoglucono-1,5-lactone was not supplied due or due to G6PD deficiency,
in a short time, 6-phosphogluconic acid was exhausted and the production of
NADPH was stopped. Then, the amount of NADPH started to reduce gradually
and was soon exhausted, and reducing glutathione (GSH) started to decrease and
was soon completely converted into GSSG. Then, the cells degenerated in their
metabolic performance and finally exhausted all ATP because of the inhibition of
rate-determining enzymes by low GSH/GSSG.

During this simulation analysis, we realized that the longevity of en-
zymes should be considered to calculate the concentration of metabolic in-
termediates at a steady state. For the mature erythrocyte, the activity of en-
zymes decreases gradually with time. We calculated the point with which
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production and consumption of all metabolic intermediates become equal
as a steady state. However, this mathematical steady state does not rep-
resent the real steady state. Biological homeostasis is essentially different
from “mathematical steady state”. Such a condition never occurs in living
organisms, especially in higher multi-cellular organisms. It can be said
that the constancy of “homeostasis” in multi-cellular organisms is main-
tained by replacing the loss with disposable cells for a long time. It is spec-
ulated that these disposable cells never reach a mathematical steady state.
A model, which can tolerate a long-term simulation for practical applica-
tion to pathological analysis of human diseases, should not approximate
to the “mathematical steady state”. Moreover, in cases where the system
reaches a steady state with a certain oscillation, it is impossible to obtain
the biological homeostasis in actual living organisms. To solve this prob-
lem, we are trying to develop a method of searching for a real steady state
using a parameter estimation method called the genetic algorithm.

SIMULATION OF THE SIGNAL TRANSDUCTION PATHWAY AND
REGULATION NETWORK OF GENE EXPRESSION

Major simulation models previously constructed for the signal trans-
duction are pathways associated with cell cycles (Aguda, 1999; Chen et
al., 2000), bacterial chemotaxis (Bray et al., 1993), and circadian rhythm
(Leloup and Goldbeter, 2000). These models mainly take deterministic
simulations, but some models using stochastic algorithm have been con-
structed recently. The pilot study of stochastic simulation of the signal
transduction pathways has been reported by Morton-Firth, Bray et al, who
have constructed a model of the bacterial chemotaxis using the StochSim
(Morton-Firth and Bray, 1998), a newly designed software platform for
stochastic simulations. In this simulation model, each molecule is ran-
domly selected and reacts with other selected molecules by the proba-
bility calculated from free energy. This chemotaxis simulation can very
precisely express the function of the “Tar” receptor, and has successfully
represented the mechanism “adaptation”, which enables the sensing of
subtle change (Morton-Firth et al., 1999). We are also simulating the bac-
terial chemotaxis. This simulation model is aimed at combining two al-
gorithms, deterministic and stochastic simulations, within a single cell
model. The motor-driven behavior and signal transduction pathways are
expressed with stochastic and deterministic simulations respectively. In
a whole cell simulation model, the development of a combined model
is considered essential for the goal of accurate expression of integrated
cellular processes, and for the reduction of calculation cost. A simulation
model of lambda by McAdams and Shapiro is representative of simula-
tion for the regulation network in gene expression. In addition to this,
McAdams and Arkin have attempted to construct the simulation based
on stochastic theory similar to that of the signal transduction pathways.
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SIMULATION OFWHOLE CELL

A self-sustaining model is the first model that was constructed using our
E-CELL system (Tomita et al., 1999, 2000). In this model which was recon-
structed from genetic information of Mycoplasma Genitalium, the cells
can uptake glucose from the outside to the inside of the cells by enzymes
encoded by certain specific genes, and through the gene expression sys-
tem within the cells, they metabolize the ingested glucose to produce ATP
as an energy source (Figure 11.5). On the computer screen, gene-knock
out can be easily done with the gene map window prepared in the E-
CELL system. Moreover, it is possible to confirm the actual activities of
metabolic enzymes and transcription and translation activities by the re-
actor window. Furthermore, the number of molecule for each substance
can be confirmed by the substance window.

CONCLUDING REMARKS

It is nearly impossible to obtain a complete collection of accurate data to
reconstruct cells in the computer. Recently, network prediction for gene
regulation, signal transduction and metabolism has been highly valued as
a basic technique for reconstruction of simulation models. However, it is
theoretically very difficult to predict the precise networks from time series
data. The reason for this is because the number of combination could be
explosively large for the prediction of the networks except in cases that
occur in a relatively closed system or in cases where most parts are al-
ready known. In the near future, however, it may be possible to directly
reconstruct the networks from data related to gene-protein interaction and
their roles obtained through protein-chips, two-hybrid methods and thor-
ough analysis of gene-knock-out strains. Practically, however, there is also
a major problem of the explosive number of combination of factors. For
example, it is speculated that there are approximately 30,000 genes in hu-
mans. When attempting to determine whether all these genes bind to each
other one to one (1:1), it is speculated that the number of the possible com-
binations reaches almost 900 million. Moreover, this number is the calcu-
lated result for only one to one binding, and it has been known that many
proteins interact with two or more proteins. Thus, if you try to thoroughly
analyze everything including the cases when several molecules form com-
plexes, and so on, the number of possible combinations is explosively
high. Furthermore, there are many false positives and false negatives ob-
served in the “Two-Hybrid” method. On the other hand, in the thoroughly
collective analysis of gene-knock out strains, there remain some problems
in the reliability of data, since only the temperature-sensitive mutation or
the complementation test can be analyzed for the essential genes. Another
technical problem in the analysis of gene knock out strains is that some-
times, there are no phenotypes appearing in many cases with mutants in
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Figure 11.5 Overview of the cell model. We simulated the cell behavior in a
condition where glucose is depleted using this model. As a result, the
concentration of intracellular ATP transiently increases before it decreases. This is
because ATP was no longer consumed at the earlier phase of glycolysis, but ATP
was still produced by consuming the accumulated metabolic intermediates in the
latter phase of glycolysis, resulting in a transient increase in ATP as a whole cell
system. Such a result has never been observed or suggested in experiments. Thus,
it has become possible to analyze and understand the behavior of the cells as a
whole cell system using the cell simulation system integrated with various
pathways. Examples of other successful models include the construction of cell
simulation models by Goryanin et al and Schaff et al using DBSolve (Goryanin et
al., 1999) and V-Cell (Schaff et al., 1997), respectively.

an experimental environment. Even in “Genome Project”, however, the
speed of progress in determination of gene sequences, which was thought
impossible and adventurous when it began, have been conquered by var-
ious great progresses in high technology. Therefore, we believe that these
practical problems in setting the experiments described above would be
eventually solved in the near future. One may think that one of the solu-
tions for this problem is probably the prediction of protein-ligand docking
using amino acid sequences.
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12 Constructing Mathematical Models of
Biological Signal Transduction Pathways:
An Analysis of Robustness

Tau-Mu Yi

Living organisms detect and respond to a variety of environmental cues
(e.g., light, attractants, hormones, etc.) through receptor-mediated sig-
nal transduction pathways. The majority of pharmaceutical agents act by
modulating the behavior of these biological networks. Many of the sig-
naling systems possess remarkable performance characteristics includ-
ing exquisite sensitivity, broad dynamic range, and robustness. Using
techniques from control and dynamical systems theory, we have studied
two well-characterized signaling pathways: (1) bacterial chemotaxis (two-
component), and (2) mammalian visual phototransduction (G-protein).
We have found that the dynamics of these complex networks are care-
fully regulated through feedback control in order to achieve robust per-
formance.

INTRODUCTION

Understanding the robustness of biological systems is a major challenge
facing biologists in the 21st Century. Robustness can be defined as the in-
sensitivity of a particular system property to variations in the components
and environment of the system. When designing and constructing a com-
plex system such as a jet airplane, engineers are primarily concerned with
robustness issues: can the plane fly in a wide range of weather conditions,
can the plane fly if one or more instruments fail, etc.? Likewise, biologists
who are trying to reverse engineer Nature’s design should be equally con-
cerned with robustness.

The main question that I am concerned with in this chapter is how bio-
logical systems achieve robust performance despite facing significant fluc-
tuations in the external environment and the internal conditions. Changes
in temperature, pH, nutrient levels, etc. contribute to the environmental
uncertainty; mutations, variations in protein levels, aging, etc. contribute
to the uncertainty of the components of living systems.

The short answer to this question is feedback control. By feedback
control, I mean that you can regulate a certain property by measuring that



property and feeding the information back into the system. For example,
a thermostat measures the temperature of a room and based on that
measurement decides whether to increase or decrease the heat.

I will focus primarily on a particular type of biological system: signal
transduction networks. Living organisms detect and respond to a variety
of environmental cues through signal transduction pathways. A typical
signaling system consists of a receptor residing on the cell surface that
binds a ligand representing the signal. The binding of ligand modulates
the activity of the receptor which triggers a signaling cascade leading to
an effector which produces a response. Each of these levels in the pathway
are carefully regulated.

This chapter will be divided into two parts. For the first section, I will
describe the robustness of a steady-state property, perfect adaptation in
bacterial chemotaxis. In the second section, I will describe the robustness
of a transient property, the single-photon response in phototransduction.
In both cases, I will focus on specific feedback strategies used to ensure
the robustness of each process.

ROBUSTPERFECTADAPTATIONAND INTEGRALFEEDBACKCONTROL
IN BACTERIAL CHEMOTAXIS

In the bacterial chemotaxis signaling network, the receptor complex –
which consists of receptor, the histidine kinase CheA, and the adap-
tor protein CheW – phosphorylates the response regulator CheY (Stock
and Surette, 1996). Phosphorylated CheY, interacts with the flagellar mo-
tor to induce tumbling. Attractant inhibits the receptor complex produc-
ing straight runs. Receptor complex activity is regulated by methylation.
Methylation by CheR increases activity. Demethylation by CheB decreases
activity. In this work, I assume that CheB only demethylates active recep-
tor complexes (Barkai and Leibler, 1997), thus allowing CheB to sense the
activity state of the receptor. This assumption leads to a key negative feed-
back loop acting through CheB (see Figure 12.1).

Bacterial chemotaxis exhibits perfect adaptation. Experimental data
(Berg and Brown, 1972; Macnab and Koshland, 1972) showed that a con-
tinual dose of attractant produced a transient increase in the output, fol-
lowed by a period of adaptation, and then a return to the prestimulus level
of activity, Y0. Thus, the steady-state level of activity, YSS , asymptotically
approached Y0, and this was observed for a wide range of attractant con-
centrations. Thus, perfect adaptation can be defined as YSS = Y0 for all
concentrations of attractant.

Recently, Leibler and colleagues tested the robustness of perfect ada-
pation to dramatic changes in the concentration of key components of
this pathway (Alon et al., 1998). They demonstrated that as the methy-
lase CheR was varied over a 50-fold range, the output YSS remained close
to Y0. They went on to show that perfect adaptation was also robust to
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Figure 12.1 Schematic diagram of the bacterial chemotaxis signal transduction
pathway.

changes in the levels of CheB, receptor, and CheY.
Is it possible to model perfect adaptation in bacterial chemotaxis? Sev-

eral models in the literature indeed were able to reproduce perfect adap-
tation, but only through the fine-tuning of the model parameters (Hauri
and Ross, 1995; Spiro et al., 1997). Perfect adaptation was non-robust in
these models because subtly altering a parameter disrupted perfect adap-
tation. Alternatively, one can imagine that perfect adaptation is a struc-
tural property of the system insensitive to parameter variation, perhaps
resulting from a particular feedback control mechanism. To distinguish
between these two types of models, we have systematically varied model
parameters and tested for perfect adaptation in two different models (Yi
et al., 2000).

In one example, the model of chemotaxis developed by Spiro et al.
(1997), the total concentration of receptor was varied over a 100-fold range
from 1 µM to 100 µM, and the steady-state level of receptor complex
activity was evaluated at three different levels of ligand concentration (0,
1 µM, 1 mM). Perfect adaptation occurred at only a single value of this
parameter, 8 µM of total receptor concentration. In this model, perfect
adaptation was non-robust because changing total receptor concentration
from 8 to 10 µM did not preserve perfect adaptation.

The model of Barkai and Leibler was different (Barkai and Leibler,
1997). In their model, the steady-state receptor activity at the three con-
centrations of attractant completely superimposed as you varied the total
receptor concentration. Perfect adaptation was robust to a 100-fold range
in receptor concentration and to dramatic changes in the levels of the other
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protein components of this system as well as to perturbations in the kinetic
rate constants.

The key to the Barkai-Leibler model is what they term activity depen-
dent kinetics which leads to robust perfect adaptation. To control engi-
neers this type of behavior is quite familiar; it is a sign of integral feedback
control.

What is integral feedback control? It is a type of feedback structure
that ensures the robust tracking of a specific steady-state value so that
the error approaches 0 despite parameter variation. The term integral
refers to the fact that the time integral of the system error is fed back
into the system, not the error itself. Integral controllers are ubiquitous
in man-made systems. For example, a thermostat uses integral control
to maintain robustly the temperature in a room at the set point despite
doors being opened and closed and despite the heater not performing up
to specifications.

Figure 12.2 Block diagram of integral feedback control and bacterial
chemotaxis. The input u is the ligand concentration, and the block with gain k
represents the receptor dynamics producing the output A, receptor activity. The
integral of the error y is the feedback term x which represents the methylation
level of the receptor.

A block diagram of integral control illustrates its chief features (see
Figure 12.2). The plant or network, schematically represented by the block
with gain k, takes the inputs and produces the output A. The difference
between the output A and the desired steady-state output is the error term
y. This term is integrated and its negative is fed back into the system. The
feedback term x = ∫

y, and so ẋ = y. At steady-state, ẋ goes to 0, and
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hence y approaches 0 as t goes to infinity independent of the values of the
input u and the gain k. Hence, the error asymptotically approaches 0 for
all values of u and k as long as the system is stable.

We were able to derive the integral control equations from the Barkai-
Leibler model thus demonstrating that their model possessed integral
feedback (Yi et al., 2000). A simplified version of the derivation is shown
here. The variable x represents the the total methylation state of the recep-
tor. The change in x , ẋ , equals the methylation rate r minus the demethy-
lation rate. Taking advantage of the assumption that CheB only demethy-
lates active receptor complexes, we can write the demethylation rate as
a function of A the receptor activity level. Thus, we obtain the following
differential equation:

ẋ = r − bA (12.1)

where bA is the activity-dependent demethylation rate. At steady-state,
r = bA, and hence the steady-state receptor activity level is r/b. We can
then rewrite equation (12.1) in terms of the error term y:

ẋ = r − bA = −b(A− r
b
) = −by (12.2)

Thus, we obtain the characteristic ẋ = y equation for integral control.
We can superimpose the chemotaxis signaling network on the block

diagram for integral control (see Figure 12.2). As we know the feedback
loop arises through the methylation dynamics of the receptor, and x the
feedback term approximates the methylation level of the receptor com-
plex. The assumption that CheB only demethylates active receptor com-
plexes leads to the characteristic equation for integral control. It all makes
sense because the output A or receptor complex activity depends on the
inputs u, ligand concentration, and x , methylation level.

Leibler and collegues essentially rediscovered integral control in the
context of their model of bacterial chemotaxis. Our contribution was to
place their findings within the framework of control theory. Another fun-
damental result of control theory states that integral control is not only
sufficient for robust tracking but it is also necessary in linear systems.
Thus, for the linearized approximation of the Barkai-Leibler model, we ar-
gue that integral control is the only feedback mechanism that can explain
robust perfect adaptation. This suggests that even if the Barkai-Leibler
model is later overturned, there is most likely some other mechanism for
implementing integral feedback.

To a biologist this robust tracking of a set point sounds very famil-
iar; it sounds like homeostasis. Homeostasis is the dynamic self-regulation
observed in living organisms resulting in the maintenance of a relatively
constant internal state (Fell, 1997). Thus, we suggest that integral control
may represent an important strategy for ensuring homeostasis. For exam-
ple, the intracellular concentration of calcium is influenced by numerous
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biological events. An integral control loop, perhaps acting through a regu-
latory enzyme like CaM-Kinase II which in turn may phosphorylate some
calcium channel, could fix the steady-state concentration of intracellular
calcium at some desired level. Variations in the calcium dynamics else-
where in the cell would not affect this steady-state concentration.

Figure 12.3 Phototransduction pathway. A. Schematic diagram of pathway
divided into modules. B. Converting the schematic diagram of the pathway into a
mathematical model. The arrows from the diagram above were replaced with
mathematical equations.
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Figure 12.4 Robustness and feedback control in the single-photon response. The
robustness of the amplitude of the current output to variations in T0, the lifetime
of R*, was measured for three controllers as a function of the amplitude.
Robustness increased, and the amplitude decreased, as one raised the gain of the
feedback. The curves for the proportional (P, dashed), proportional-integral (PI,
solid), and lag (Lag, dashed-dot) controllers are shown.

REPRODUCIBILITYOFTHESINGLE-PHOTONRESPONSEANDCALCIUM-
MEDIATED FEEDBACK IN PHOTOTRANSDUCTION

Let us now switch gears and turn our attention to the robustness of a
transient process, the single-photon response in phototransduction. In the
retina, rod photoreceptor cells detect light along with the cone photorecep-
tor cells and send this information to the visual cortex in the brain. The
rod cell possesses a highly specialized geometry. In particular, the outer
segment of the photoreceptor cell consists of many membraneous disks
which are loaded with the components of the phototransduction signal-
ing cascade.

When exposed to a single photon, rod photoreceptor cells produce a
stereotyped current response. Early on, Baylor and colleagues noted the
striking reproducibility of the single-photon response (Baylor et al., 1979).
For example, Whitlock and Lamb (1999) recorded 50 trials from a single
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photoreceptor cell. The amplitude, time-to-peak, and decay constant from
the resulting single-photon current responses were quite reproducible.
Indeed, one consequence of this reproducibility is that one can easily
distinguish the single-photon response from the zero-photon response
from the two-photon response.

In Figure 12.3A, I schematically outline the phototransduction path-
way. For simplicity, I have divided the pathway into modules. The recep-
tor dynamics of the single-photon response consist of a single receptor
activated by a photon and shut off by phosphorylation by rhodopsin ki-
nase (RK) followed by binding to arrestin. The activated rhodopsin, R*,
activates hundreds of G-proteins which in turn stimulate cGMP phospho-
diesterase, PDE. Activated PDE, PDE*, degrades the second messenger
cGMP, and this reduction in cGMP concentration results in the closing of
cGMP-gated channels, causing a change in current. Note the two feedback
loops acting via calcium. Calcium enters the cell through the cGMP chan-
nels, and hence the concentration of intracellular calcium is a function of
the current J . In one loop, the enzyme guanylate cyclase (GC), which syn-
thesizes cGMP, is modulated by the calcium-binding protein guanylate
cyclase activating protein (GCAP). In the other loop, rhodopsin kinase is
modulated by the calcium-binding protein recoverin (Stryer, 1991).

In my modeling I have preserved this basic structure and replaced the
arrows with mathematical equations (see Figure 12.3B). I used several dif-
ferent types of equations. Because the receptor dynamics are stochastic,
the level of R* at a given time t must be represented by a probability
function (i). Hundreds of molecules of G-protein and cGMP phosphodi-
esterase are activated by the single R*. After this amplification, the concen-
tration of the downstream species can be represented deterministically by
ordinary differential equations, ODEs (ii). Finally, to simplify the analysis,
I have approximated some ODEs by linear transfer functions (iii).

As described above, the single activated rhodopsin is phosphorylated
by rhodopsin kinase, and the resulting phosphorylated molecule is bound
by arrestin and eliminated. We can represent these stochastic events as a
Poisson process. Furthermore, it is clear that these stochastic fluctuations
in R* lifetime can contribute significantly to the variability in the single-
photon response.

Let us now focus on the dynamics within the box (modules G, cG,
and GC) depicted in Figure 12.3B. The input to the box is the number of
activated rhodopsin molecules. The output is the current trace, J . To a
control engineer, the problem is to design a controller that minimizes the
variations in the output resulting from variations in the input and in the
components of the system. Criteria for evaluating the potential controllers
include the following: (1) robustness, (2) fit to real data, and (3) physical
realizability.

We replaced the guanylate cyclase (GC) module with three types of
controllers: (1) proportional controller (P), (2) proportional-integral con-
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troller (PI), and (3) lag compensator (Lag). The proportional controller
takes the output and multiplies it by a constant before feeding it back
into the system. The proportional-integral control combines a propor-
tional controller with an integral controller. The lag compensator can be
viewed roughly as a tunable PI controller.

How well do these three controllers suppress the variability in the re-
sponse caused by the stochastic fluctuations in R* lifetime? I have plotted
in Figure 12.4 the inverse sensitivity or robustness in the amplitude of the
output to changes in the lifetime of R*, T0. As one increases the gain of
the feedback for all three controllers the robustness increases, but the am-
plitude decreases, resulting in a tradeoff. The wild-type response has an
amplitude of 0.5 pA, and at that value the PI and lag controllers suppress
variability in T0 better than the proportional controller.

The closed-loop response of which controller can best fit data from rod
photoreceptor cells derived from wild-type and mutant mice? Ideally, one
would like to fit the response of the system to a step input. Knock-out
mice have been created in which the rhodopsin kinase (RK) gene has been
deleted (Chen et al., 1999). In these cells, R* is not inactivated for a long
time, and after absorbing a single photon the resulting input to the system
will be a step function.

In Figure 12.5, the black line represents the single-photon response
from RK -/- rod cells. The output from the system using a proportional
controller shows a slow rise. The PI controller response rises quickly but
eventually returns to zero. Only the system with the lag compensator is
able to provide an adequate fit to the real data.

Two populations of the GC/GCAP complex reside on the surface of
the membraneous disks of the photoreceptor cell. One population faces
the plasma membrane, the other is exposed to the interstitial region be-
tween disks. The concentration of calcium in the narrow region between
the plasma membrane and the disk is expected to be proportional to the
current J because of rapid equilibration; the concentration of calcium in
the larger region between the disks is expected to be proportional to the
integral of the current J over a defined period of time. Taken together, one
would expect the calcium regulated activity of GC/GCAP to produce the
combined proportional and integral action of a lag controller.

I have suggested that the calcium-mediated modulation of GC by
GCAP may act as a lag compensator to enhance the robustness of the
single-photon response. It is important to emphasize that other factors
also contribute to the reproducibility of this response. For example, Rieke
and Baylor (1998) have argued that the multi-step shutoff of activated
rhodopsin serves to average the stochastic variability in R* lifetime. Al-
ternatively, the calcium-mediated feedback loop acting through recoverin
may modulate the behavior of R* as well.
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Figure 12.5 Fitting the closed-loop response of the three controllers to the
single-photon response from RK -/- rod cells. Displayed are the experimental
data (solid) as well as the closed-loop responses for the three controllers: (i) P
(dashed-dot), (ii) PI (dotted), (iii) Lag (dashed).

CONCLUSIONS

One goal of this chapter is to convince the reader that robustness is an
essential property of any biological system and that feedback control is a
good way of achieving robustness. Thus, some of the most important fea-
tures of any biological pathway are the feedback loops. The richness and
complexity of biological processes arise through the dynamics of highly
interconnected networks; feedback regulates the behavior of these net-
works. Indeed, control theory suggests that this dense web of intercon-
nections may be necessary to achieve robust performance given the un-
certainties faced by living systems.
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13 Combination of Biphasic Response
Regulation and Positive Feedback as a
General Regulatory Mechanism in
Homeostasis and Signal Transduction

Andre Levchenko, Jehoshua Bruck, and Paul W.
Sternberg

In this report we introduce a mechanism of maintaining homeostasis (au-
toregulation) based on combination of a positive feedback and biphasic
regulation. In this mechanism two molecular species interact in such a
way that activation of the first of them affect activation of the second pos-
itively, while activation of the second species affect the activation of the
first positively at low and negatively at high values. We demonstrate that a
combination of biphasic response regulation with positive feedback leads
to a possibility of homeostasis and limited graded response to variations
of external parameters, possibly in a threshold manner. In addition, spike-
like excitatory transient responses to perturbations of the system variables
are possible. We then provide three examples of this sort of regulation in
biological systems as diverse as transcriptional machinery, calcium chan-
nels and MAPK cascades. Correlation between the properties of bipha-
sic response/positive feedback regulation and functional characteristics
of these three biological systems is then discussed.

INTRODUCTION

Various biological systems from bacteria to humans are in constant need to
both maintain homeostasis (processes leading to constant interior milieu)
and be sufficiently sensitive to various external signals that may result
in transient changes in homeostasis. One of the challenges is to maintain
the concentrations of molecules constituting diverse signaling pathways
at values optimal for signal reception prior to signaling event. If the con-
centrations are allowed to deviate significantly from the optimal levels,
inadequate response may ensue. For example, whereas normally signal
transduction mediated by mitogen-activated protein kinase (MAPK) can
lead to cell proliferation, increased amplitude and duration of this signal-
ing may arrest cell growth and lead to terminal differentiation (Marshall,



1995).
There is a distinction between two types of homeostatic regulation

processes that often remains obscure. In one process a particular variable,
such as the concentration of a regulatory protein, is maintained at a cer-
tain level in spite of some transient changes due to small external pertur-
bations of this variable. In control theory such systems are said to be in a
steady state with respect to this variable. We will refer to this form of reg-
ulation as autoregulation. In the second type of homeostasis the property of
autoregulation is extended to include compensatory complete adaptation
of a variable to persistent changes in some external parameter affecting the
variable. This means that although the variable may change transiently in
response to some parameter changes, mechanisms exist that compensate
for this parameter changes in such a way that the variable always returns
to the same steady state in the long run. We will refer to this type of regu-
lation as homeostatic adaptation.

Homeostatic adaptation in living organisms has recently come to at-
tention of control engineers, who proposed that integral negative feedback
is a common feature of such regulation by analogy with controllers com-
monly used in design of various devices. One striking example of such
regulation is adaptation to changing chemoattractant concentrations in
bacterial chemotaxis. Similar processes may occur at physiological level.
For instance, a rise in blood pressure is sensed by baroreceptors in carotid
artery and aortic arch, which send the message about it to the medulla,
from where a signal to reduce the heart rate then emanates. It is important
to mention that stability or autoregulation is always assumed for systems
regulated by homeostatic adaptation. Autoregulation is thus a more gen-
eral feature of homeostatic systems.

In this report we introduce a mechanism of autoregulation based on
combination of a positive feedback and biphasic regulation. In this mech-
anism two molecular species interact in such a way that activation of the
first of them affect activation of the second positively, while activation of
the second species affect the activation of the first positively at low and
negatively at high values. Activation here is understood as the concentra-
tion of the active form of the species of interest. This form of regulation
may seem counterintuitive, as autoregulation generally presupposes ex-
istence of negative feedback mechanisms restoring a variable to a steady
state. However, we argue that biphasic regulation can provide both the
necessary local negative feedback and limit the absolute values of the
steady state. We show that this regulatory mechanism may be used for
such important regulatory functions as calcium homeostasis, signal trans-
duction through MAPK cascades and transcription regulation. We also
demonstrate how autoregulation achieved through this mechanism is af-
fected by the level of incoming signal providing a means for graded signal
response and oscillations.
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A THEORY OF BIPHASIC REGULATION COUPLED WITH POSITIVE
FEEDBACK

In this section we treat mathematically some of the aspects of combination
of biphasic regulation with positive feedback. We assume that there are
two variables describing the system: x(t) and y(t), the evolution of which
is described by the following equations:

{
ẏ = f (S, x, y)
ẋ = g(x, y) (13.1)

Here S stands for an external parameter that can affect the properties
of f (it will be discussed later). We further assume that y(t) is affected
by x(t) in a biphasic manner, whereas x(t) is affected by y(t) only posi-
tively (this latter assumption will be relaxed for the particular case of IP3-
sensitive Ca++ channels, as described below). These assumptions can be
interpreted as follows. If x is fixed at a certain value, x0, the first equation
of [1] is assumed to ultimately evolve to f (S, x0, y0) = 0. If we now cal-
culate the values of y0 corresponding to all such x0, we obtain a biphasic
curve y0 = f 1(S, x0). By analogy we can obtain the curve x∗ = g−1(y∗), for
all fixed y∗. This curve will have only positive slope. The curves f 1(S, x0)

and g−1(y∗) are called null clines of (13.1). Plotting them in the same sys-
tem of coordinates can be instructive about the behavior of the system. In
our analysis we will have the obvious requirement that both null clines be
attractive. That is for any fixed x0, for example, the system will converge
to the corresponding y0 from any initial y, if given enough time. This re-
quirement translates into the conditions:

{
∂ f (S,x,y)

∂y < 0
∂g(x,y)

∂x < 0
(13.2)

It can be demonstrated that these conditions and the character of null
clines themselves (biphasic vs. positive slope curves) imply that any
steady states of the system (intersections of the null clines) are stable,
as long as they are on the “down-swing” part of the biphasic null cline. In
the “up-swing” portion the conditions (13.2) still hold. However, an extra
assumption needs to be made for stability of the steady state:

∣∣∣∣∂ f (S, x, y)∂x

∂g(x, y)

∂y

∣∣∣∣ <

∣∣∣∣∂ f (S, x, y)∂y

∂g(x, y)

∂x

∣∣∣∣ (13.3)

This is illustrated by a cob-webbing diagram (Figure 13.1), in which
the consecutive states of the system are obtained by sequential “reflec-
tions” between the null clines of the system. It should be noted that cob-
web diagrams may be misleading and are used here only for illustrative
purposes.
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Figure 13.1 Three stable states defined by intersections of null clines of the
system (13.1). The stability is illustrated by “cob-webbing’, a method in which the
trajectories are traced in discrete steps with each output taken to be the input for
the next step. The result is a series of “reflections” from the system’s null clines.

We are now ready to explore the properties of the system (13.1). First we
will consider ways, in which the parameter S can affect the system. We
will assume that the value of S does not influence the biphasic character
of f , and only affects the relative amplitude of the null clines f 1(S, x0)

and the position of the maximum. We also assume that dependence on S
is monotonic everywhere. These assumptions are based in consideration
of some particular examples of (13.1) below. We thus limit ourselves to
analysis of two classes of behavior of (13.1) presented in Figure 13.2.

Figure 13.2 Increasing values of the external parameter S can lead to two types
of changes in the null clines y0 = f 1(S, x0). A. In the Type I behavior the null
clines shift upward with maxima shifting toward higher values; B. In the type II
behavior the null clines shift upward with maxima shifting toward lower values.
It is evident that in the Type II behavior the steady state coordinates change from
the low values around (0,0) to high values in a threshold way as a function of S.
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In both classes an increase in the external parameter S leads to increas-
ing values of f . In addition, however, in the first class increasing S also
leads to positive shifting of the maxima of f , whereas in the second class
it leads to negative shifting of the maxima of f .

It can be easily seen from Figure 13.2 that in class I behavior increasing
values of S lead to gradual changes in the values of the steady state
response of the system from very low to very high values. In the class
II systems, however, the graded response sets in only at sufficiently high
levels of S. There is thus a very sharp threshold for the steady state
response as a function of S.

Since the “down-swing” part of biphasic response is indistinguish-
able form simple negative feedback, it is of interest to ask whether hav-
ing biphasic response rather than just negative feedback can provide any
advantages in regulation. It is evident from Figure 13.3, as well as from
Figures 13.1 and 13.2, that biphasic response implies that the steady state
values for y cannot exceed a certain limit. This is not true for simple neg-
ative feedback case, in which y can assume any value. Another potential
consequence of having biphasic response regulation rather than negative
feedback lies in the possibility of establishing sharp thresholds in response
to variation of the external parameter S. Again, this dependence cannot
be achieved if simple negative feedback rather than biphasic regulation is
used.
The third potential advantage of having biphasic regulation is related to
the kinetics of transient responses. Indeed, as illustrated in Figure 13.3, ex-
istence of the “up-swing” portion in the biphasic dependence curve leads
possibility of a spike in the value of x in response to an external pertur-
bation. As will be clear below, this possibility is important in regulation
of Ca++ concentration. Having simple negative feedback precludes this
possibility.

In conclusion, the analysis given in this section demonstrated that a
combination of biphasic response regulation with positive feedback leads
to a possibility of a limited graded response to variations of external pa-
rameters, possibly in a threshold manner. In addition, spike-like transient
responses to perturbations of the system variables become possible. In the
next section we provide three examples of this sort of regulation in di-
verse biological systems indicating how the properties outlines here serve
to control autoregulation and response to external signals.

BIPHASIC REGULATION COUPLED WITH POSITIVE FEEDBACK IN
BIOLOGY

Here we present three cases, in which biphasic regulation coupled with
positive feedback is used for autoregulation and graded response to ex-
ternal signals on sub-cellular level. These examples are not exhaustive,
nor are they meant to be. Their only function is to illustrate how this reg-
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Figure 13.3 The main differences between the behaviors of the systems, in
which positive feedback is combined with biphasic response (BR) vs. simple
negative feedback (NF). The biphasic response and negative feedback null clines
are shown as solid lines. Although for some positive feedback null clines (—) the
system response is identical for BR and NF, for other possible null clines it is not.
In the case of the positive feedback null cline intersecting BR null cline close to its
maximum value (- . -) a spike-like response following perturbation (red
trajectory) can be observed. No such excitory response is expected if the same
steady state is given by combination of positive feedback and NF (green
trajectory). Finally, combinations of positive feedback with NF, but not with BR,
can result in unlimited values of y for the steady state (e.g., see high values for
the null cline (. . . )).

ulatory scheme is utilized to achieve homeostasis and efficiently respond
to stimulation.

TATA box binding protein and regulation of transcription

TATA boxes are elements commonly found in promoters of various highly
expressed eukaryotic genes approximately 25-35 base pairs upstream of
the start site. Mutations in TATA boxes frequently cause drastic reduction
of transcription rate. It is now accepted that TATA boxes serve as a binding
sites for the TATA binding protein (TBP), which, if bound, can provide
(with some additional factors) nucleation sites for the assembly of general
transcription machinery.

The current experimental evidence suggests that TBP interacts with
TATA box and other regulatory factors as a monomer. At the same time
TBP is capable of self-association and oligomerization. Oligomers formed
from full-length protein include tetramers and octamers. Although it is
not clear whether TBP oligomerization prevents association with DNA,
the protein surface responsible for DNA binding apparently remains ex-
posed in both oligomer forms. Therefore a possibility remains that TBP
oligomers competitively interact with TATA box to prevent regulation by
monomers.
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The central role of TBP in transcription initiation suggests that its ex-
pression is tightly regulated. Investigation of the regulatory elements in
TBP promoter reveals presence of a TATA box required for basal tran-
scription and two control elements that bind another transcription factor:
TBP promoter-binding factor (TBFP). One of the control elements, a higher
affinity binding site located upstream of the TATA box, is activating and
the other one, a lower affinity binding site located between the TATA box
and the start element, is inhibitory for transcription activation(Huang and
Bateman, 1997). The action of TBFP on the second site is negative pre-
sumably because it interferes with binding of TBP itself to the TATA box.
Exposure of the TBP promoter to various amounts of TBFP resulted in a
biphasic curve with the maximum at approximately 50 nM. A biphasic
dependence is also predicted theoretically (Figure 13.4A).

As TBFP transcription is likely to be positively regulated by TBP (as
part of the general transcription activation machinery), a combination
of biphasic dependence of TBP transcription on TBFP concentration and
positive dependence of TBFP transcription on TBP concentration emerges.
Since, TBP transcription is also regulated by external signals involving
Ras (Johnson et al., 2000), the biphasic dependence of TBP on TBFP can
be modulated by the external parameters (designated as S above). Further
simulations (Figure 13.4B) demonstrate that the biphasic dependence is of
Type I, as classified above. In summary, the TBP-TBFP system described
here is an example of the system [1] described in the theory section above.

Figure 13.4 TBP expression is stimulated by TBFP in a biphasic manner. A.
Existence of two binding sites on a receptor molecule (such as TBP promoter) for
a ligand (such as TBP) leads to the illustrated dependence on the total ligand
concentration. The complexes shown are empty and full receptor (solid lines),
complex with the ligand present only at the high affinity site (- -) and only at the
low affinity site. Since only the occupation of the high affinity but not the low
affinity site signals activation, the biphasic dependence of response follows. The
dissociation constants of 0.5 and 0.05 are assumed. The concentrations of
complexes are normalized to unity. B. Dependence of TBP concentration on TBFP
and Ras activation. Here competition of TBP and TBFP at the low affinity site was
assumed (with equal dissociation constants of 0.05 vs o.5 for the high affinity
site). Different rates of TBP production as a function of TBFP/TBP/DNA
complexes give rise to the set of the curves. Type I dependence on the external
signal is evident.
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Since the expression of TBP needs to be maintained at limited levels
even in the presence of activating signals, such those mediated by Ras,
the use of biphasic regulation is best explained by property of the limited
response identified above. We want to stress again that if simple negative
feedback regulation was used instead, no upper limit on expression of
TBP would be posed.

Regulation of the cytosolic Ca++ concentration

Ca++-activated Ca++ release, shown to be important in a multitude of in-
tracellular processes, is mediated by inosytol-triphosphate (IP3) and Ryan-
odine Receptor (RyR) sensitive Ca++ channels in the endoplasmic reticu-
lum. Of these the IP3–sensitive channel, known as IP3 receptor (IP3R), has
been studied to a larger extent (Keizer et al., 1995; Li, 1995). We thus re-
strict ourselves here to discussion of IP3R. The opening probability of IP3R
is a biphasic function of cytosolic Ca++ concentration, arising from acti-
vation of the channel at low and inactivation at high Ca++ concentrations.
In this case biphasic regulation stems from the presence of a high affin-
ity activating and low affinity inhibitory Ca++ binding sites on each of
the four receptor monomers. This opening probability dependence can be
dramatically altered, both in terms of the position and absolute value of
its optimum by varying IP3 concentration (hence the name of the channel)
(Mak et al., 1998) and ATP (Mak et al., 1999). Thus, increasing IP3 leads
to a positive shift in the position of the optimum and an increase in the
maximum opening probability. This effect of IP3 has been attributed to its
ability to decrease allosterically the affinity of Ca++ to the inhibitory site,
while the affinity to the activating site remains constant. Increase in ATP
concentration shifts the position of the optimum negatively by decreasing
the Ca++ affinity to the activating site. An important property of IP3R is
the inherent feedback of the output (probability of IP3R opening) to the
input (Ca++ concentration). The consequences of this feedback regulation
are discussed below.

A range of intermediate of IP3 concentrations has been reported to
lead to Ca++ oscillations, while at the low and high IP3 concentrations
the levels are stable and depend on IP3 in a graded way. As depicted in
Figure 13.5, the reason for this behavior is the non-monotonic character
of the feedback curve describing how the cytosolic Ca++ depends on
the opening probability of IP3R. It can be demonstrated that due to the
non-linear dependence of the Ca++ pumps transporting Ca++ back to
endoplasmic reticulum of the following (from (Li, 1995)):

α[Ca++]2
cyt

β+[Ca++]2
cyt

, the feedback dependence is a 3rd order polynomial of the

shape presented in Figure 13.4. In the regions where the feedback becomes
negative the steady states might lose their stability and oscillations may
ensue. However, in the regions of true positive feedback all the steady
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states are positive and the response is truly graded.

Figure 13.5 Optimal regulation in combination with a positive feedback can
produce graded responses and help maintain homeostasis of signaling
components. Solid curves correspond to optimal regulation of output by input.
The level of a modifying component, such as IP3 or MAPKKK activation
increases from (a) to (c). The feedback curves correspond to monotonic positive
feedback (- . -) for MAPK regulation and non-monotonic feedback (- -) for Ca++
regulation. The numbered intersection points correspond to steady states, 1,2,3,
1’, 3’ – all stable, and 2’ – unstable. The lack of stability at 2’ may cause
oscillations around this steady state.

We have thus demonstrated again that cytosolic Ca++ regulation is an ex-
ample of the system (13.1) above. The question of possible advantages of
biphasic regulation vs. simple negative feedback can once again be posed.
As in the case of TBP expression considered above, it is imperative for nor-
mal cell functioning to maintain low levels of Ca++ in absence of signal-
ing. Indeed, Ca++ has been implicated in numerous regulatory functions
including signal transduction, activation of muscle contraction, secretion
and exocytosis and many others. Due to this important role in regulation
of cellular function the cytosolic Ca++ levels (10−7 M) are maintained sev-
eral orders of magnitude higher than the total cellular levels (10−3 M).
The steep [Ca++] gradient between cytosol and extracellular and various
intracellular compartments is maintained by various means. A prolonged
increase in intracellular [Ca++] can be toxic. The benefit of an upper limit
on the maximum output provided by a combination of biphasic response
and positive feedback is thus obvious.

Another advantage provided by the system (13.1), as discussed above,
is the possibility of the spike-like transient responses. This form of re-
sponse is frequently observed following stimulation of excitable cells by
various agents capable of transiently increasing cytosolic [Ca++]. As can
be seen from Figure 13.3, the spike-like response is possible only for cer-
tain values of the external parameter S. In case of Ca++ regulation, this
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parameter can be interpreted as IP3. Our analysis thus predicts that the
spike-like response, as well as oscillations, is possible only within certain
ranges of cytosolic [IP3]. This prediction fully confirmed by experimental
data. A spike-like response would be impossible to implement if simple
negative feedback was used instead of biphasic regulation.

Regulation of MAPK concentration

A MAP kinase (MAPK) cascade consists of three sequentially acting ki-
nases (Garrington and Johnson, 1999). The last member of the cascade,
MAPK, is activated by dual phosphorylation at tyrosine and threonine
residues by the second member of the cascade: MAPKK. MAPKK is ac-
tivated by phosphorylation at threonine and serine by the first member
of the cascade: MAPKKK. The dual phosphorylation reactions occur in
solution in a distributive manner, that is the two phosphorylation reac-
tions are separated by full dissociation of kinase and its substrate. It has
been shown theoretically (see Figure 13.6 for example) and experimentally
that the distributive character of MAPKK and MAPK activation leads to
a biphasic dependence of the signaling output on the concentrations of
these kinases (Burack and Sturgill, 1997; Kieran et al., 1999; Sugiura et al.,
1999). In simple terms this dependence results from saturation of the ac-
tivating kinases (MAPKKK or MAPKK) by unphosphorylated substrates
(MAPKK or MAPK, respectively) at high substrate concentrations, mak-
ing second substrate phosphorylation unlikely.
In some systems MAPKK and MAPK expression can be up-regulated
as a result of signaling in this pathway, thus creating a feedback on the
level of the concentrations of the signaling components. In particular,
increased expression of MAPK in pheromone and cell integrity pathways
in response to activation of these signaling cascades has been documented
by us (unpublished results) and others (Roberts et al., 2000). This may
create a positive feedback from the activated MAPK onto the total level of
MAPK in the system.

Such a system would again display all the characteristics of the sys-
tem (13.1) above. As in the previous instances of biological regulation
by a combination of biphasic response and positive feedback, limitation
of the maximum response in the system seems to be a critical. Indeed,
overexpression and overactivation of MAPK may lead to inappropriate
responses, such as cell death or transformation. Simulations of MAPK ac-
tivation reveal that the biphasic response may be of type II (Figure 13.7),
which implies that there may be another benefit of using biphasic regu-
lation – a switch like response. Indeed, switches in MAPK signaling have
been described before with the mechanism different form proposed here
(Ferrell and Machleder, 1998). We are now testing experimentally whether
the threshold generating signal response mechanism proposed here is in-
deed present in yeast MAPK cascades.
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Figure 13.6 Biphasic dependence of MAPK activation on the total MAPK and
MAPKK concentrations. Note that the time integral of MAPK dual
phosphorylation over the first 2 min. rather than the steady state level of MAPK
activation is shown. The red dots on the contour plots show locations of the
maxima. [MAPK] is varied between 0 and 2 µM and [MPKK] is varied between 0
and 3 µM.

DISCUSSION

In this paper we describe a general mechanism of autoregulation and sig-
nal response arising from combination of positive feedback and biphasic
regulation in interaction of two molecular species. We first showed that a
mathematical analysis of a general description of such systems results in
the property of autoregulation with limited graded response to variations
of external parameters, possibly in a threshold manner. In addition, spike-
like transient responses to perturbations of the system variables become
possible. We then provided three examples of this sort of regulation in bio-
logical systems as diverse as transcriptional machinery, calcium channels
and MAPK cascades.

Although a negative feedback regulation (which should be more prop-
erly viewed as a combination of mutual positive and negative feedback
regulation between two molecular species) has long been demonstrated
as means to maintain autoregulation in homeostasis, we show here that
substitution of biphasic response for simple negative feedback can pro-
vide some regulatory advantage. In particular, existence of a maximum in
biphasic response implies that there is an upper limit for a steady state
activation of the system. Simple negative feedback, on the other hand,
can result in a virtually infinite value for the steady state response of the
system. In all three examples of biologic regulation discussed a limit in
activation is of paramount importance. Overexpression of TBP or MAPK
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Figure 13.7 Simulations of the MAPK activation levels as a function of the total
MAPK concentration. A. The biphasic curves combined with a positive feedback
curve obtained from our simulations are shown for different activated MAPKKK
concentrations (external signal). Type II character of the dependence on the
external signal is evident. B. The steady state values obtained in A are plotted to
reveal a sharp threshold dependence and switch-like signal reponse.

or high values of cytosolic [Ca++] all can result in inappropriate cellular
reactions, including apoptosis or transformation. Biphasic response regu-
lation is thus critical for establishing and maintenance of appropriate ac-
tivity values in homeostasis.

Another potential advantage of having biphasic response combined
with positive feedback is possibility for spike-like responses or excitability.
This property is heavily used in cell regulation by Ca++, where Ca++–
induced Ca++ response is critical in such diverse processed as generation
of the nerve impulse or muscle contraction. Here a balance between a very
tight autoregulation in Ca++ homeostasis and fast and sensitive response
is struck mainly due to biphasic regulation property.

Finally, we have demonstrated that combination of biphasic response
may result in threshold response to variations in external parameter. Al-
though this property remains to be demonstrated in the biological sys-
tems, we believe that it is likely to occur in regulation of MAPK cascade.
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A set of experiments to verify this prediction in yeast MAPK cascades is
currently under way at our laboratory.

Although the property of biphasic regulation has long been appreci-
ated for it role in Ca++ oscillations, its functions in cellular regulation may
go far beyond that. It is therefore of interest to further explore whether
biphasic responses commonly observed in various biological systems are
coupled to positive feedback as a general rule or only under certain cir-
cumstances. The analytical approach described here may serve to facilitate
this task.

SIMULATIONS

Simulations for Figures 13.4-13.6 were performed within Mathematica R©
environment. The parameters for simulations in Figure 13.4 are given in
the legend. The parameters used in obtaining Figures 13.5, 13.6 are the
same as in (Levchenko et al., 2000).
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14 Distinct Roles of Rho-kinase Pathway and
Myosin Light Chain Kinase Pathway in
Phosphorylation of Myosin Light Chain:
Kinetic Simulation Study

Shinya Kuroda, Nicolas Schweighofer, Mutsuki
Amano, Kozo Kaibuchi, and Mitsuo Kawato

Phosphorylation of myosin light chain (MLC) plays a key role in regula-
tion of cell morphology, cell contraction and cell motility. The phospho-
rylation of MLC has been shown to be regulated by Rho-kinase path-
way and MLC kinase (MLCK) pathway. However, due to the complex
nature of signal transduction pathways and limitation of experimental ap-
proach, it remains obscure whether signal transduction pathways known
at present can actually reproduce the whole process of phosphorylation
of MLC. To address this issue, we built a diagram of phosphorylation of
MLC and developed a computational kinetic model of phosphorylation
of MLC based on kinetic parameters. Phosphorylation of MLC induced
by thrombin has been experimentally shown to consist of two phases: the
initial and the prolonged phases. The simulation reproduced the initial
phase of the phosphorylation of MLC. The simulation also reproduced the
activation of Rho-kinase pathway and MLCK pathway. However, the sim-
ulation failed to reproduce the prolonged phase, suggesting an existence
of missing pathway responsible for the prolonged phase. The simulation
revealed that both activation of MLCK and inhibition of myosin phos-
phatase by Rho-kinase are required for the sufficient phosphorylation of
MLC. Thus, the kinetics simulation is a complementary tool to access the
roles of signaling molecules and to predict a missing pathway(s) necessary
to reproduce the whole process of phosphorylation of MLC.

INTRODUCTION

Cytoskeleton plays a crucial role in regulation of various cellular processes
such as cell movement, cell morphology and cell contraction (Fishkind
and Wang, 1995; Mitchison and Cramer, 1996; Stossel, 1993; Zigmond,
1996). The contractile force necessary for these processes is provided
by actin-myosin interaction (Fishkind and Wang, 1995; Mitchison and
Cramer, 1996; Stossel, 1993; Zigmond, 1996). In non-muscle cells and



smooth muscle cells, phosphorylation of myosin light chain (MLC) has
been shown to be a key reaction for regulation of actin-myosin interaction
(Allen and Walsh, 1994). The MLC phosphorylation has been shown to
be regulated by an increase of intracellular Ca2+ followed by activation
of Ca2+/calmodlulin-dependent MLC kinase (MLCK) (Allen and Walsh,
1994; Gallagher et al., 1997; Goeckeler and Wysolmerski, 1995; Somlyo
and Somlyo, 1994). However, because the level of MLC phosphoryla-
tion is not always correlates to intracellular Ca2+ concentration, an ad-
ditional mechanism which regulates the MLC phosphorylation has been
proposed (Bradley and Morgan, 1987). Recent progress revealed that Rho-
kinase, one of the effecters for the Rho small GTPase, regulates the MLC
phosphorylation (Amano et al., 1996; Kaibuchi et al., 1999; Kimura et al.,
1996). Rho-kinase phosphorylates MLC (Amano et al., 1996; Feng et al.,
1999). Rho-kinase also phosphorylates myosin-binding subunit (MBS), a
regulatory subunit of myosin phosphatase, and consequently inhibits the
myosin phosphatase activity, resulting in elevation of phosphorylation
level of MLC (Feng et al., 1999; Kimura et al., 1996). Thus, the MLC phos-
phorylation is dually regulated by MLCK and Rho-kinase pathways.

However, it still remains unclear whether agonist-dependent MLC
phosphorylation can be reproduced by both the MLCK and Rho-kinase
pathways. To address this issue, it is important to utilize the computa-
tional framework of kinetic simulation. We here built the computational
simulation model of the MLC phosphorylation based on the kinetics pa-
rameters available in the literature or determined by the experiments by
taking advantage of the recently developed program, GENESIS/kinetikit
(Bhalla and Iyenger, 1999). The simulation reproduced the initial phase of
the MLC phosphorylation, but failed to reproduce the late phase of the
MLC phosphorylation, suggesting an existence of an unidentified path-
way responsible for the late phase of the MLC phosphorylation. The ki-
netic simulation also suggests that the distinct role of MLCK and Rho-
kinase in the regulation of the MLC phosphorylation. In addition, we at-
tempted a re-interpretation of the effect of dominant active and negative
form of Rho and Rho-kinase in the MLC phosphorylation.

METHODS

Block diagram of the MLC phosphorylation

To develop a kinetic simulation model of the MLC phosphorylation, we
used thrombin (Essler et al., 1998; Goeckeler and Wysolmerski, 1995) as
an agonist to induce the MLC phosphorylation. Addition of thrombin
in some cell lines including endothelial cells has been shown to induce
the MLC phosphorylation (Essler et al., 1998; Goeckeler and Wysolmer-
ski, 1995). Signal of the stimulation of thrombin leads to activation of
trimeric GTP-binding protein (G-protein), such as Gq and Gα12. The acti-
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vated Gq interacts with and activates phospholipase Cβ , resulting in pro-
duction of inositol-1,4,5-phosphate (IP3) and diacylglycerol (DAG) (Bhalla
and Iyenger, 1999). IP3 elevates intracellular Ca2+ and Ca2+ interacts with
calmodulin (Bhalla and Iyenger, 1999). Ca2+/calmodulin complex binds
and activates MLCK and activated MLCK phosphorylates MLC (Allen
and Walsh, 1994). On the other hand, the activated Gα12 interacts with
and activates guanine nucleotide exchange factor (GEF) for Rho, RhoGEF,
resulting in the activation of Rho small GTPase (Hart et al., 1998; Kozasa
et al., 1998; Majumdar et al., 1999, 1998). The activated Rho interacts with
one of the effecters, Rho-kinase and activates it (Kaibuchi et al., 1999). The
activated Rho-kinase phosphorylates MLC (Amano et al., 1996; Feng et al.,
1999) and MBS (Feng et al., 1999; Kimura et al., 1996). Phosphorylation of
MBS results in inactivation of myosin phosphatase and consequently ele-
vates the MLC phosphorylation (Kimura et al., 1996). All kinetic parame-
ters are previously reported (Bhalla and Iyenger, 1999) or shown in Table
14.1 and 14.2. The kinetic parameters in the Gα12 cascade is assumed to
be the same as Gq (Bhalla and Iyenger, 1999).

Kinetic simulation

The MLC phosphorylation was simulated based on the following two bio-
chemical reactions; the protein-protein (molecule-molecule) interactions
and enzymatic reactions. The protein-protein interactions involve the in-
teractions such as Ca2+-calmodulin-MLCK and Rho-Rho-kinase. This re-
action is given by the following formulation.

[A]+ [B]
Kf−⇀↽−
Kb

[AB] (14.1)

In most cases, K f and Kb were not available in the literature. Thus,
based on the reported Kd values, the dissociation constant, K f and Kb
were calculated by following definition.

Kd = Kb
K f

(14.2)

Enzymatic reactions involve the phosphorylation and dephosphory-
lation. This reaction is given by the following formulation of Michaelis-
Menten.

[E]+ [S]
K1−⇀↽−
K2

[ES]
K3−→ [E]+ [P] (14.3)

where E, S and P denote enzyme, substrate and product, respectively.
K1 and K2 values were not generally given in the literature. However,
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K3 can be calculated by experimentally shown Kcat value, given by the
Vmax divided by the concentration of the enzyme. Km values are also
generally reported. Thus, based on the Km values and K3 values, K1 and
K2 values were calculated by following definition.

Km = K2 + K3

K1
(14.4)

Once the above parameters based on the kinetic values were set to
reproduce the initial phase of phosphorylation of MLC, we simulated the
following experiments. All numerical computations were performed with
the kinetics library, which is an extension to GENESIS (Bhalla and Iyenger,
1999).

RESULTS ANDDISCUSSION

To develop a computational kinetic simulation of the MLC phosphoryla-
tion, we first built a block diagram of the MLC phosphorylation based on
the literature (Figure 14.1A). We used thrombin as an agonist to induce the
MLC phosphorylation in this study. According to the literature, signal of
thrombin can be divided into two pathways such as Ca2+/calmodulin-
activated MLCK pathways (Figure 14.1A, Figure 14.1B) and Rho/Rho-
kinase pathway (Figure 14.1A, Figure 14.1C). The former pathway directly
regulates the MLC phosphorylation (Allen and Walsh, 1994), while the
latter pathway directly regulates the MLC phosphorylation and indirectly
regulates it through the inhibition of myosin phosphatase (Kaibuchi et al.,
1999). In the block diagram of Figure 14.1A, numbers of initial concen-
trations of molecules were 25, which were determined by the literature
(Bhalla and Iyenger, 1999) or by our experiments (Table 14.1 and 14.2).
Numbers of protein-protein interactions and enzymatic reactions were 33
and 19, respectively. All kinetic parameters such as Kd , Km and Kcat on
the above reactions have been reported (Bhalla and Iyenger, 1999) (Table
14.1 and 14.2) or determined by experiments (Table 14.2). Taking advan-
tage of the kinetic parameters experimentally obtained, we built the ki-
netic simulation model of the MLC phosphorylation.

Using the kinetic parameters based on the literature and experiments,
we tried to make the kinetic simulations to reproduce the experimental
results of thrombin-induced MLC phosphorylation (Essler et al., 1998). It
has been experimentally shown that the MLC phosphorylation induced
by the stimulation of thrombin consists of at least two phases; the initial
phase (< 200 sec ) and the prolong phase (> 200 sec) (Figure 14.2A). In
the kinetic simulation, the initial phase was induced in a thrombin dose-
dependent manner, whereas the prolonged phase was not observed (Fig-
ure 14.2A). This result indicates that the initial phase, but not prolonged
phase of the MLC phosphorylation could be reproduced. This result also
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Figure 14.1 Block diagram of the MLC phosphorylation (a) Block diagram of
the MLC phosphorylation. The stimulation of thrombin results in the elevation of
the MLC phosphorylation through the two linear cascades, the MLCK pathway
and the Rho-kinase pathway. Arrows and circles denote the stimulatory and
inhibitory pathways, respectively. (b) Detailed block diagram of the MLCK
pathway. Reversible reactions are represented as bidirectional arrows and
irreversible reaction as unidirectional arrows. Enzymes are located on the middle
of the segment. The numbers indicate the reactions whose kinetic parameters are
shown in Table 14.1. Kinetic parameters of the interaction of Ca2+ with
calmodulin are described elsewhere (Bhalla and Iyenger, 1999). The MLCK
complex with either form of Ca2+/calmodulin complex is assumed to show the
same catalytic property (*). Abbreviations; CaM, calmodulin; Ca, Ca2+. (c)
Detailed block diagram of the Rho-kinase pathway. The numbers indicate the
reactions whose kinetic parameters are shown in Table 14.2.
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Figure 14.2 Thrombin dependent-MLC phosphorylation, the Ca2+ elevation,
and the MBS phosphorylation. The simulation was run with various
concentration of thrombin and the concentration of each indicated molecule was
plotted. The concentration of thrombin; ( ), 1 unit/ml; (–), 0.1 unit/ml; (...), 0.01
unit/ml. AU, arbitrary unit. (a) Time course of the MLC phosphorylation
induced by thrombin. Circles are the MLC phosphorylation obtained by the
experiments when 0.1 unit/ml of thrombin was used (Essler et al., 1998). (b) Time
course of intracellular Ca2+ elevation induced by thrombin. (c) Time course of
the phosphorylation of myosin phosphatase and of the myosin phosphatase
activity induced by the stimulation of thrombin. Circles are the myosin
phosphatase activity toward phosphorylase b obtained by the experiments when
0.1 unit/ml of thrombin was used (Essler et al., 1998).
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Figure 14.3 The role of MLCK, Rho-kinase, and myosin phosphatase in the
regulation of the MLC phosphorylation. To explore the role of the indicated
connections in the regulation of the MLC phosphorylation, the simulation was
run under the condition where the indicated connections was deleted. The
stimulation of thrombin 0.1 unit/ml was used. Deletion of the connections; (-),
none; (..), MLCK-MLC connection; (- -), Rho-kinase-MLC connection; (-.-),
Rho-kinase-MBS (myosin phosphatase).

suggests the possibilities that the thrombin-induced response of the two
linear cascades, such as Ca2+/calmodulin-activated MLCK pathways or
the Rho/Rho-kinase pathway, could not be reproduced, or that an uniden-
tified pathway(s) responsible for the prolonged phase of the MLC phos-
phorylation is missing in the block diagram. To exclude the former pos-
sibilities, we next asked whether the response of the two linear cascades
to thrombin could be reproduced. We measured intracellular Ca2+ con-
centration in response to the stimulation of thrombin as an output of the
Ca2+/calmodulin-activated MLCK pathway (Figure 14.2B). In the kinetic
simulation, intracellular Ca2+ concentration in response to the stimulation
of thrombin showed the initial peak and reached the basal level 10 min af-
ter the stimulation (Figure 14.2B). This result is consistent with the earlier
observation that the concentration of intracellular Ca2+ in response to the
stimulation of thrombin shows transient initial peak and reached the basal
level 10 min after the stimulation (Bahou et al., 1993; Goligorsky et al.,
1989; Lum et al., 1992; Molino et al., 1997; Wickham et al., 1988). Next, we
measured the unphosphorylated MBS concentration in response to throm-
bin as an output of the Rho/Rho-kinase pathway (Figure 14.2C), because
the phosphorylation of MBS results in the inactivation of myosin phos-
phatase activity (Kaibuchi et al., 1999; Kimura et al., 1996). In the kinetic
simulation, the unphosphorylated MBS concentration in response to the
stimulation of thrombin showed the initial decreased peak and reached
the basal level 10 min after the stimulation (Figure 14.2C). Although the
decay in the kinetic simulation is faster than that obtained by the experi-
ments (Figure 14.2C) (Essler et al., 1998), this result is consistent with the
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Figure 14.4 The effect of DA Rho and DN Rho on the MLC phosphorylation.
The simulation was run with 0.1 unit/ml of thrombin stimulation. To examine the
effect of DN Rho in the regulation of the MLC phosphorylation, DN Rho was
introduced and the simulation was run with 0.1 unit/ml of thrombin (Lane 1 – 4).
To examine the effect of DA Rho in the regulation of the MLC phosphorylation,
the simulation was run under the conditions where the indicated concentration of
DA Rho was added by holding its concentration as below without stimulation of
thrombin (Lane 5 – 7). The maximum value of the MLC phosphorylation in the
initial phase was plotted. Lane 1, none; Lane 2, 0.1 µM DN Rho, Lane 3, 1 µM DN
Rho; Lane 4, 10 µM DN Rho, Lane 5, 0.036 µM DA Rho; Lane 6, 0.1 µM DA Rho;
Lane 7, 1 µM DA Rho.

observation that the myosin phosphatase activity toward phosphorylase
b transiently decreased and reached the basal level 10 min after the stim-
ulation (Figure 14.2C) (Essler et al., 1998). These results indicate that the
kinetic simulation reproduced the response of the two linear cascades to
the stimulation of thrombin. Thus, it is likely that an unidentified path-
way(s) responsible for the prolonged phase is missing in the current signal
transduction pathways of the MLC phosphorylation.

The MLC phosphorylation has been shown to be dually regulated
by the MLCK and Rho-kinase pathways (Figure 14.3A). It is intuitively
difficult to understand how much each pathway, such as the MLCK-
or Rho-kinase- dependent MLC phosphorylation, and the Rho-kinase-
MBS-dependent dephosphorylation of MLC, contributes the whole pro-
cess of the MLC phosphorylation (Figure 14.3A). To access the role of
each pathway, we took advantage of the kinetic simulation by deleting
each connection (Figure 14.3A, B). When the MLCK-MLC connection was
deleted, the MLC phosphorylation dramatically reduced in response to
the stimulation of thrombin (Figure 14.3A, B). By contrast, when the Rho-
kinase-MLC connection was deleted, the MLC phosphorylation slightly
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Table 14.1 Kinetic parameters in Ca2+-calmodulin-MLCK pathway

Protein-protein Kd (µM) Ref.
interaction

1 5 (Burger et al., 1983)∗
2 4.5 (Burger et al., 1983)∗
3 1.0−3 (Adelstein and Klee, 1981)∗

(Burger et al., 1983)∗
4 50 (Adelstein and Klee, 1981)∗

(Burger et al., 1983)∗
Enzymatic Km(µM) Kcat (/sec) Ref.

reaction
5,6 530 3.67 (Zimmer et al., 1984)
7,8 23.3 3.67 (Zimmer et al., 1984)

Molecule Concentration (µM) Ref.
MLCK 0.695 (Suzuki et al., 1999)
MLC 5 This study

∗ The Kd values were assumed from those toward δ subunit of phosphorylase
kinase.

decreased (Figure 14.3A, B). When the Rho-kinase-MBS connection was
deleted, the MLC phosphorylation dramatically reduced (Figure 14.3A,
B). These results indicate that the direct MLC phosphorylation is mainly
regulated by MLCK, but not by Rho-kinase, and that the inhibition of
myosin phosphatase by the MBS phosphorylation by Rho-kinase is es-
sential for the sufficient MLC phosphorylation in the kinetic simulation.
Thus, the simulation is also useful to predict the role of molecule in a di-
verse pathway. However, it has recently been shown that MLCK and Rho-
kinase play distinct roles in spatial regulation of the MLC phosphorylation
(Totsukawa et al., 2000). Therefore, to conclude the role of each connection
in the MLC phosphorylation, the distinct role of MLCK and Rho-kinase in
the spatial regulation of the MLC phosphorylation should be further in-
corporated into the kinetic simulation.

MLCK activation is essential for the sufficient MLC phosphorylation
in the kinetic simulation. On the other hand, the introduction of dominant
active form of Rho (DA Rho), thought to be constitutively active in the
cells, results in the sufficient MLC phosphorylation (Chihara et al., 1997;
Gong et al., 1996; Kimura et al., 1996; Noda et al., 1995), although no evi-
dence has been reported that the introduction of DA Rho leads to the ele-
vation of Ca2+, necessary for the activation of MLCK. If Ca2+ concentra-
tion is not affected by Rho, then how can Rho induces the MLC phospho-
rylation without MLCK activation? To address this issue, we examined
the effect of DA Rho on the MLC phosphorylation without Ca2+ elevation
by holding the concentration of DA Rho in the kinetic simulation (Figure
14.4A). The introduction of DA Rho induced the MLC phosphorylation
in a dose-dependent manner (Figure 14.4A). When the concentration of
DA Rho was the same as that induced by the stimulation of thrombin
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Table 14.2 Kinetic parameters in Rho-Rho-kinase pathway

Protein-protein Kd (nM) Ref.
interaction

1 5 (Kozasa et al., 1998)
5 50 This study

Enzymatic Km(µM) Kcat (/sec) Ref.
reaction

2 0.02 0.1 (Hart et al., 1998)
4 2.83 0.9933 (Zhang and Zheng, 1998)
6 0.1 17.505 (Feng et al., 1999)

8,9 2.47 8.66 (Feng et al., 1999)
10,11 4.51 1.28 (Feng et al., 1999)
12,13 16.0 9.317 (Ichikawa et al., 1996)
14,15 58.1 1.95 (Ichikawa et al., 1996)

GTPase k1 /sec Ref.
3 0.022 (Zhang and Zheng, 1998)

Dephosphorylation k1 /sec Ref.
7 0.2 *

Molecule Concentration(µM) Ref.
RhoGEF 0.1 **

Rho 0.1 This study
RhoGAP 0.05 **

Rho-kinase 0.047 (Suzuki et al., 1999)
Myosin phosphatase 1.2 This study∗

∗ The concentrations of the molecules were determined in MDCK cells.
∗∗ Assumption

(0.036 µM) as shown in Figure 14.2, MLC was not sufficiently phospho-
rylated. However, when the concentration of DA Rho was increased to
1 µM, MLC was phosphorylated to the similar extent to that induced by
thrombin. When the concentration of DA Rho was held at 0.036 µM, about
10% of Rho-kinase was activated, whereas the concentration of the acti-
vated Rho was held at 1 µM, about 90% of Rho-kinase was activated (data
not shown). Thus, it is likely that the overexpression of DA Rho induces
the excess activation of Rho-kinase which is unlikely to occur under the
physiological conditions.

We also examined the effect of the dominant negative form of Rho (DN
Rho) in the kinetic simulation. DN Rho is thought to preferentially bind
GDP rather than GTP and to inhibit the activation of endogenous Rho by
the competition of the interaction with its activator RhoGEF. When DN
Rho was introduced in the kinetic simulation, the MLC phosphorylation
induced by the stimulation of thrombin was blocked in a dose-dependent
manner (Figure 14.4B). Thus, the effect of DA Rho and DN Rho were
reproduced in the kinetic simulation.

DA Rho and DN Rho have been shown to lead to the opposite effects
on the MLC phosphorylation. This result seems to indicate that the MLC
phosphorylation is regulated linearly by the Rho/Rho-kinase pathway.
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However, in the kinetic simulation, both MLCK and Rho-kinase path-
ways are required for the MLC phosphorylation. In addition, as described
above, under the physiological conditions, about 10% of Rho-kinase is ac-
tivated by the stimulation of thrombin. Overexpression of DA Rho leads to
the excess activation of Rho-kinase, resulting in the sufficient MLC phos-
phorylation, which is unlikely to occur under the physiological condi-
tions. Therefore, it is generally important to measure how much popu-
lation of the molecules are activated to determine whether the cascade is
regulated by the linear pathway.

One of the potential advantages of the kinetic simulation is the appli-
cation for drug design. Due to the complex nature of signal transduction
pathways which regulate various cellular responses, it is intuitively dif-
ficult to know the consequence when a certain molecule or pathway is
pharmacologically blocked or activated. However, using the kinetic simu-
lation, we could predict the consequence when a certain molecule or path-
way is pharmacologically blocked or activated. Therefore, this method
will provide us with a novel approach for the efficient drug design.

Several molecules such as protein kinase C (PKC) are not included in
the current model simply because the detailed molecular mechanism in
the regulation of the MLC phosphorylation has yet to be shown. In addi-
tion, the distinct spatial roles of MLCK and Rho-kinase in the MLC phos-
phorylation has recently been shown (Totsukawa et al., 2000). Although
the kinetic parameters to deal with the distinct localization are not avail-
able at present, this feature should be incorporated into the future model.
It should be also emphasized that, even if the simulation can reproduce
the experimental results, this does not deny the possibility that unknown
pathways or unidentified molecules are required. In terms of the obser-
vation not reproducible by the simulation such as the prolonged phase of
the MLC phosphorylation, a missing pathway(s) should be required to re-
produce the observation. Therefore, the present kinetic simulation should
not be regarded as a definitive model, rather as one of the complemen-
tary methods for exploring and predicting of the regulation of the MLC
phosphorylation in addition to experimental methods.
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